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Preface

The concept of the adaptive landscape is the creation of the great

American geneticist Sewall Wright who, along with the equally great

British scientists R.A. Fisher and J. B. S. Haldane, crafted the Neo-

Darwinian synthesis of evolutionary theory in the 1930s. The metaphor

of the adaptive landscape, that evolution via the process of natural

selection could be visualized as a journey across adaptive hills and valleys,

mountains and ravines, permeated both evolutionary biology and the

philosophy of science through the succeeding years of the twentieth

century. Yet critics of the adaptive landscape concept have maintained

that the concept is of heuristic value only; that is, it is fine for creating

conceptual models, but that you cannot actually use the concept in

analysing the evolution of actual animals or plants. That criticism became

invalid in the year 1966 when the palaeontologist David M. Raup used

computer simulations to model hypothetical life forms that have never

existed in the evolution of life on Earth, and who subsequently created

the concept of the theoretical morphospace.

The focus of this book is to demonstrate to the reader the power of

the adaptive landscape concept in understanding the process of evolution,

and to demonstrate that the adaptive landscape concept can be put into

actual analytical practice through the usage of theoretical morphospaces.

The adaptive landscape concept allows us to visualize the possible effects

of natural selection through simple spatial relationships, rather than

complicated modelling of changing environmental or ecological condi-

tions. For that reason, this book relies heavily on spatial graphics to

convey the concepts developed within these pages, and less so on formal

mathematics.

I thank the Santa Fe Institute for the invitation to visit and work on

computational methods in theoretical morphology in 2000, for it was

xi



at the Santa Fe Institute that the idea of writing this book came to me

in conversations with Dave Raup. I thank the Konrad Lorenz Institute

for Evolution and Cognition Research for the Fellowship that enabled

me to work at the institute in 2005, for it was there that I developed

many of the ideas presented in Chapters 7 and 8 of this book. Finally,

I thank my wife, Marae, for her patient love.
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The concept of the adaptive landscape

The idea of a fitness landscape was introduced by Sewall Wright
(1932) and it has become a standard imagination prosthesis for
evolutionary theorists. It has proven its worth in literally thousands
of applications, including many outside evolutionary theory.

Dennett (1996, p. 190)

What is an adaptive landscape?

An adaptive landscape is a very simple � but powerful � way of

visualizing the evolution of life in terms of the geometry of spatial

relationships, namely the spatial relationships one finds in a landscape.

Consider an imaginary landscape in which you see mountains of high

elevation in one region, towering mountains separated by deep valleys

with precipitous slopes. In another region these mountains give way to

lower elevation rolling hills separated by wide, gently sloping valleys,

and that these further give way to broad flat plains in the distance.

Now replace the concept of ‘elevation’ (height above sea level) with

‘degree of adaptation’ and you have an adaptive landscape. Why is that

such a powerful concept? The purpose of this book is to answer that

question.

The concept of the adaptive landscape was first proposed by the

geneticist Sewall Wright in 1932. Being a geneticist, he thought in terms

of genes rather than morphology and Darwinian fitness rather than

adaptation, and his original concept is what is termed a fitness land-

scape today, rather than an adaptive landscape. The two concepts differ

only in that the dimensions of a fitness landscape are genetic traits and

1



Figure 1.1. A hypothetical adaptive landscape, portrayed as a three-

dimensional grid at the top of the figure and a two-dimensional contour

map at the bottom. Topographic highs represent adaptive morphologies that

function well in natural environments (and therefore are selected for), and

topographic lows represent nonadaptive morphologies that function poorly

in natural environments (and therefore are selected against). In the contour

map portrayal, the top of an adaptive peak is indicated by a plus-sign,

following the convention of Sewall Wright (1932).

Source: Modified from McGhee (1980a).
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degree of fitness whereas the dimensions of an adaptive landscape are

morphological traits and degree of adaptation (Fig. 1.1). A fitness

landscape is used by geneticists to visualize evolution, and an adaptive

landscape is used by morphologists. As I am a morphologist, a student of

the evolution of biological form, this book will concentrate on adaptive

landscapes and, beginning in Chapter 4, the very important related

concept of the theoretical morphospace.

But back to Sewall Wright. His first crucial insight was that it

could be possible (at least theoretically) to construct a space of all

possible genetic combinations that living organisms might produce, and

that one could visualize such a complex space by simply considering

the possible combinations of two genes at a time or, in the case of

an adaptive landscape, two morphological traits at a time (Fig. 1.1).

That is, if genetic trait number one had 10 different variants or alleles,

and genetic trait number two had 10 different variants, then the total

possible genetic combinations of those two traits would be 100 potential

variants.

Wright’s second crucial insight was that the majority of those

100 possible variants probably do not exist in nature. Perhaps only 10

of the possible variants actually exist as living organisms, the other

90 variants potentially could exist but do not. Why not? Wright proposed

that these 90 potential genetic combinations had zero fitness; that is,

they represented lethal genetic combinations. The other 10 variants

had fitness values greater than zero, some perhaps having higher fitness

than others. Wright further proposed that these genetic relationships

could be spatially visualized as geometric relationships by simply

adding the dimension ‘degree of fitness’ to the two genetic

trait dimensions, producing a three-dimensional grid similar to a land-

scape (as in the adaptive landscape in Fig. 1.1). If the landscape is

portrayed in two-dimensions by using fitness contours to give the fitness

dimension, then the result looks very much like a topographic map of

a landscape. The 10 existent combinations of genetic traits number

one and two would be located on the peaks or slopes of the hills within

the landscape (depending upon their degree of fitness), and the 90 possible

but nonexistent combinations of genetic traits number one and two

would be located in the flat plain of zero fitness. Thus was born Sewall

Wright’s concept of the fitness landscape.

In adaptive landscapes the high regions are called adaptive peaks,

and the low regions between the peaks are called adaptive valleys

(Fig. 1.1). The degree of adaptation of the possible morphological traits

What is an adaptive landscape? 3



is determined by functional analyses of the potential forms; that is,

analyses of how well the potential morphological variants function in

nature. The geometric arrangement of the adaptive peaks within the

landscape thus represents, in a spatial fashion, the different possible ways

of life available to organisms. The spatial distribution of the adaptive

valleys and plains represents ecomorphologies that are nonfunctional

in nature.

Modelling evolution in adaptive landscapes

Adaptive landscapes are potentially very powerful tools for the analysis

of the evolution of life. Life is constantly evolving, and we would like

to know why life has evolved the way that it has in the past three and one-

half thousand million years of Earth history, and perhaps be able to

predict how life might evolve in the future.

Although evolution itself is a fact, an empirical observation, the cause

of evolution is theoretical. That is, there exist several different theories to

explain how evolution takes place. The most widely subscribed-to theory

of how evolution takes place is that of natural selection, first proposed

by Charles Darwin. If he had not proposed it, Alfred Wallace would

have instead; thus it was clearly an idea whose time had come in the

1800s. What is natural selection? A precise, rather pithy definition is

the ‘differential change in genotypic frequencies with time, due to the

differential reproductive success of their phenotypes’ (modified from

Wilson and Bossert, 1971). The first part of the definition (‘differential

change in genotypic frequencies with time’) is simply a restatement

of evolution itself, in that evolution is genetic change in populations

from generation to generation. The real heart of the theory is

‘differential reproductive success’ of various phenotypes, or morphol-

ogies. If certain organisms with certain morphologies in a population

reproduce at a higher rate than other organisms with other morphologies,

then the next generation will contain more of their genes than the

previous one. And that change in gene frequencies, from generation one

to generation two, is by definition evolution. Thus natural selection

could clearly drive evolution.

The definition of natural selection does not specify what causes differ-

ential reproductive success; it simply holds that if it does occur, evolution

will result. The next question is obvious: what determines the differential

reproductive success of differing phenotypes, or morphologies, such that
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different animals and plants reproduce at different rates? It is here that

the concept of adaptation enters the equation. Organisms must function

in their environments, and they must interact with other organisms.

If some organisms possess morphologies and behaviours (aspects of their

phenotypes) that allow them to function well in their ecological setting

then they are described as well adapted. Well adapted organisms are

healthy, well fed and potentially able to devote more time and energy to

reproduction. If other organisms possess morphologies that do not

allow them to function as well � say, they cannot run as fast due to the

different structure of their legs, or cannot find their prey or other food

as quickly due to the different structure of their eyes or ears (their visual

and auditory systems) � then they are described as poorly adapted.

Poorly adapted organisms must spend more time simply trying to escape

predators and to find food, are generally less healthy and spend less

time and energy in reproduction.

Wright’s concept of a fitness, or adaptive, landscape is firmly rooted

in the theory of natural selection (we shall see in Chapter 4 that the

concept of the theoretical morphospace is not). In the previous section

we have seen that an adaptive landscape is an actual spatial map of

the different possible ecomorphologies that are available to organisms,

and of other possible ecomorphologies that are nonfunctional and thus

not available to organisms. What would happen now if we place a popu-

lation of actual organisms within the adaptive landscape, say half-way up

the side of an adaptive peak, and observe the evolution of that population

with time? A basic rule of modelling evolution in adaptive landscapes

is that natural selection will operate to move a population up the slope of

an adaptive peak, from lower degrees of adaptation to higher degrees of

adaptation. That seemingly simple rule has some intriguingly complicated

consequences, however, as we shall see in the next chapter.

Modelling evolution in adaptive landscapes 5



2

Modelling natural selection in
adaptive landscapes

‘Wedges in the economy of nature’ wrote Darwin in his diary,
leaving us with a glimpse of his own first glimpse of natural
selection . . . Later biologists, by the fourth decade of the twentieth
century, would invent the image of an adaptive landscape whose
peaks represent the highly fit forms, and see evolution as the
struggle of populations of organisms driven by mutation,
recombination, and selection, to climb toward those high peaks.
Life is a high-country adventure.

Kauffman (1995, p. 149)

Visualizing natural selection

We have seen in the last chapter that an adaptive landscape is a way

of visualizing the evolution of life in terms of the geometry of the

spatial relationships one finds in a landscape, where the landscape

consists of adaptive hills and valleys. If we use the theory of natural

selection to model evolution within an adaptive landscape, we saw that

natural selection will operate to move a population up the slope of an

adaptive peak, from lower degrees of adaptation to higher degrees of

adaptation.

What happens, however, when an evolving population reaches the

top of an adaptive peak? Or what happens if an evolving population

encounters two peaks in an adaptive landscape, rather than one?

Clearly natural selection will operate in different ways at different

times in the evolution of any group of organisms, depending upon

the environmental and ecological context within which that group

of organisms is evolving. The adaptive landscape concept allows
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us to visualize the possible effects of natural selection through simple

spatial relationships, rather than complicated modelling of changing

environmental or ecological conditions.

Modelling directional selection

Let us consider again the situation where a population of animals of plants

is positioned half-way up the slope of an adaptive peak. In this situation,

natural selection will operate to move the population up the slope of

an adaptive peak, from lower degrees of adaptation to higher degrees of

adaptation. But how does natural selection actually accomplish this?

Natural selection operates on variation in nature. If there were

no variation in nature, natural selection would cease (note that evolution

itself may not cease, however, because evolution may be driven by more

than natural selection � we shall consider this possibility in more detail

later). That is, if a population of animals is composed of individuals that

are all identical in the state of their adaptive morphologies � for example,

if they are all clones inhabiting the same environment � then they should

all function equally as well in a given environment. Natural selection

would have no differences in adaptive morphology to ‘select’ and all the

individuals should reproduce at more or less the same rate, with some

random variation. Such a hypothetical situation is very rare in nature,

however, where variation is the normal natural condition.

There are two main sources of variation for natural selection

to operate with. One is genetic recombination, the other is genetic muta-

tion. Genetic recombination is the constant reshuffling of genes that

occurs from generation to generation in sexually reproducing organisms.

Imagine all the genes present within a species, its genome, to be repre-

sented by a deck of 52 playing cards, where each card is a gene. Imagine

further that the morphology of any individual animal is determined

by four cards (genes), then you can divide your deck of 52 cards into

13 individual animals in generation number one. Each time the animals

reproduce to produce a new generation you reshuffle all the cards again

and draw another 13 sets of four cards each. In this simple exercise

(actual genetic recombination is much more complicated) you can easily

see how much variation is produced from generation to generation by

merely reshuffling the same genes over and over again. Genetic mutation,

on the other hand, is the appearance of a new genetic coding � a new

card in the deck that was not present there previously.

Modelling directional selection 7



Consider that our hypothetical population is composed of two

major variants, animals with A-type morphologies and animals with

B-type morphologies, and that in generation number one the population

is equally divided in numbers of individuals with A-type and B-type

morphologies (Fig. 2.1). However, let us further imagine that animals

with A-type morphologies function a bit better in the environment than

animals with B-types; that is, A-types have a somewhat higher degree

Figure 2.1. Modelling directional selection, part one. The spatial positions

of individuals of a hypothetical species population, composed of organisms

with morphological variants A and B, are depicted within an adaptive

landscape in the top figure. Individuals with morphological variants A have

a higher adaptive value than B (these variants are shown upslope from B)

and thus, under the expectations of the theory of natural selection,

organisms with A-type morphologies should reproduce at a higher rate

than those with B-type morphologies. The initial frequency of organisms

with morphological variants A and B within the species is depicted as

roughly equal in the graph given in the bottom figure.
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of adaptation than B. We can represent this selective difference in an

adaptive landscape by bisecting the population with an adaptive contour,

where individuals with A-type morphologies are on the upslope side

of the contour, and individuals with B-type morphologies are on the

downslope side (Fig. 2.1).

Now let us consider the state of the population after several genera-

tions of reproduction under the influence of natural selection. We would

predict that the somewhat better adapted animals with A-type morphol-

ogies should reproduce at a somewhat higher success rate than the less

well-adapted animals with B-type morphologies, and that the number of

individuals with A-type morphologies now comprise a greater percentage

of the total population numbers than individuals of B-type (Fig. 2.2).

That is, we now have more individuals in the population on the upslope

side of the adaptive gradient than on the downslope side (Fig. 2.2).

The population is moving uphill.

Sooner or later, however, the uphill movement of the population will

cease when all of the individuals in the population have A-type morphol-

ogies, and all have the same degree of adaptation. Now we need to

introduce the second source of variation into the equation: genetic

mutation. Let us introduce three new morphological variants into the

scenario at random, as genetic mutation is random. One new variant, X,

has a morphology that is further upslope than the parent population;

another new variant, Y, has a morphology that is further downslope

than the parent population; the last variant, B, is a backmutation to

a previously existent morphology (Fig. 2.3). Under the expectations of

the theory of natural selection, variants Y and B will be selected against �
they will have an even lower success rate of reproduction than the

individuals in the parent population that produced them. On the other

hand, however, variant X will be selected for, and would have a higher

success rate of reproduction than the individuals in the parent popu-

lation itself. With time, individuals with X-type morphologies should

become more and more numerous, and individuals with A-type morphol-

ogies less numerous; thus the population continues to move uphill.

The effect of natural selection in this particular scenario is termed

directional selection. We can summarize the effects of directional selec-

tion in Figure 2.4 with a series of vectors that indicate that the effect of

natural selection will always be to select genetic mutational morphologies

that possess higher degrees of adaptation, and that the net result of

natural selection is evolution that always proceeds in the uphill direction

in an adaptive landscape.

Modelling directional selection 9



Modelling stabilizing selection

As directional selection operates to produce evolution in the uphill

direction, sooner or later the evolving animals or plants will reach the

adaptive peak, the local point of maximum degree of adaptation within

the adaptive landscape. What happens then?

Once at the peak, any major new source of variation will always be

in the downslope direction, and thus will be selected against. Consider

a hypothetical population sitting on top of an adaptive peak, and

Figure 2.2. Modelling directional selection, part two. The spatial positions

of individuals of the hypothetical species population within the adaptive

landscape after several generations of natural selection (top figure). The

number of organisms possessing the higher-adaptive A-type morphologies

has increased within the species (top figure), and the frequency distribution

of morphologies within the species has shifted to the left in the graph given

in the bottom figure.
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three new random mutational variants with morphologies X, Y and Z

(Fig. 2.5). If the variants are different, they must of necessity occur

outside the boundaries of the pre-existing morphologies already present

in the population. However, regardless of which new morphology is

randomly produced, the variants will always be in the downslope

direction if the parent population is already sitting on top of an adaptive

peak. The new variants will be less well adapted than individuals in

the parent population and will be selected against.

The effect of natural selection in this particular scenario is termed

stabilizing selection. We can summarize the effects of stabilizing selection

in Figure 2.6 with a series of vectors that indicate that the effect of

natural selection will always be to select against genetic mutational

morphologies that deviate from the maximally adapted morphologies

already present in the parent population; that the net result of natural

selection is to return the population to its original state and the cessation

of further evolutionary changes in morphology.

Figure 2.3. Modelling directional selection, part three. The effect of new

genetic mutation in an adaptive landscape. After several generations of

natural selection, the hypothetical species population now is composed of

organisms that all possess morphology A. Three new morphological variants

arise randomly by mutation: one new mutation is upslope (X) and two new

variants are downslope (Y, and the backmutation B). Under the expecta-

tions of the theory of natural selection, organisms with morphology X

should reproduce not only at a higher rate than organisms with

morphologies Y and B, but should also reproduce at a higher rate than

than those of the parent population itself (organisms with A-type

morphologies).

Modelling stabilizing selection 11



Figure 2.5. Modelling stabilizing selection, part one. The spatial positions of

individuals of a hypothetical species population, all of which possess A-type

morphologies located at the top of an adaptive peak (all located within the

highest adaptive contour shown in the figure). Three new morphological

variants arise randomly by mutation (X, Y and Z), all of which have a lower

adaptive value than the morphologies of the parent population (the variants

are all in the downslope direction) because the parent population

morphology occupies the top of the adaptive peak. As the new

morphological variants are less well adapted than individuals in the parent

population, they will be selected against.

Figure 2.4. Modelling directional selection, part four. The vectors

summarize the effect of natural selection in an adaptive landscape.

Natural selection should always favour genetic mutational morphologies

that possess higher degrees of adaptation; thus evolution should always

proceed in the upslope direction within the landscape.

12 Modelling natural selection in adaptive landscapes



Modelling disruptive selection

Environments are variable in nature, just as animal and plant morphol-

ogies are. In some parts of the Earth you may stand on a craggy, rocky

mountainside and view a broad, green glen only a few hundred metres

away in one direction, and see the ocean itself only a few hundred metres

away in another direction.

Thus it is entirely conceivable that a single species population

may encounter a variety of different environments, each with different

selective properties in terms of which morphologies function well in those

environments, and which do not. This possibility is easy to model by

simply adding additional adaptive peaks to the adaptive landscape,

where each peak represents a different environment and selective

condition.

Consider the case of a population that finds itself positioned mid-way

between two adaptive peaks in an adaptive landscape. Imagine there

are three variants in the population: animals with morphological types

A, B and C, where animals with B-type morphologies are the most

abundant in the population (Fig. 2.7). However, let us further imagine

that animals with A-type morphologies function a bit better in the

environment characterized by adaptive peak number one, that animals

Figure 2.6. Modelling stabilizing selection, part two. The vectors summarize

the effect of natural selection on a species population occupying the top

of an adaptive peak. All new genetic mutational morphologies that deviate

from the maximally adapted morphologies of the parent population will be

selected against, resulting in the cessation of further evolutionary changes in

morphology.
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with C-type morphologies function a bit better in the environment

characterized by adaptive peak number two, and that than animals with

B-type morphologies do not function quite as well in either environment.

We can represent this selective difference in an adaptive landscape by

Figure 2.7. Modelling disruptive selection, part one. The spatial positions

of individuals of a hypothetical species population, composed of organisms

with morphological variants A, B and C, are depicted within an adaptive

landscape (top figure). Organisms with A-type and C-type morphologies

have higher adaptive values than B (A-type morphologies are upslope from

B towards the peak to the left, and C-type morphologies are upslope

from B towards the peak to the right) and thus, under the expectations of

the theory of natural selection, organisms with morphological variants A

and C should reproduce at a higher rate than those with B. The initial

frequency of organisms with morphological variants A, B and C within the

species is depicted in the graph given in the bottom figure, where the B-type

morphology is shown to be the most abundant and the frequency

distribution tails off in the A-type and C-type directions.
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trisecting the population with two adaptive contours, where individuals

with A-type morphologies are on the upslope side of the contour in

the direction of the peak on the left in the landscape, individuals with

C-type morphologies are on the upslope side of the contour in the

direction the peak on the right and individuals with B-type morphologies

are on the downslope sides of both contours in the valley between the

peaks (Fig. 2.7).

Now let us consider the state of the population after several genera-

tions of reproduction under the influence of natural selection. We would

predict that the somewhat better adapted animals with morphological

types A and C should reproduce at a somewhat higher success rates than

the less well-adapted animals with B-type morphologies, and that the

number of individuals with morphological types A and C now comprise

a greater percentage of the total population numbers than individuals

of B-type (Fig. 2.8). That is, we now have more individuals in the

population on the upslope side of the adaptive gradients in the direction

of both peaks one and two than on the downslope side in the valley

between the peaks (Fig. 2.8). The population is splitting apart.

As we modelled before, let us introduce new morphological variants

into the scenario at random through genetic mutation. One new variant,

X, has a morphology that is further upslope than individuals with

A-type morphologies, and another new variant, Y, has a morphology

that is further downslope (Fig. 2.9). Likewise, one new variant, P, has

a morphology that is further upslope than individuals with C-type mor-

phologies, and another new variant, Q, has a morphology that is further

downslope (Fig. 2.9). Under the expectations of the theory of natural

selection, variants Y and Q will be selected against � they will have an

even lower success rate of reproduction than the individuals of mor-

phological types A and C in the parent population that produced them.

On the other hand, however, variants X and P will be selected for, and

will have a higher success rate of reproduction than the individuals

of morphological types A and C in the parent population. With time,

individuals with morphology X and P should become more and more

numerous, and individuals with morphological types A, B and C less

numerous, thus the end-points of the original population continue to

move uphill and the population continues to split apart.

The effect of natural selection in this particular scenario is termed

disruptive selection. We can summarize the effects of disruptive selection

in Figure 2.10 with two vector trails that separately climb two different

adaptive peaks. The net result of disruptive selection is the splitting of an

Modelling disruptive selection 15



ancestral species population into two (or more) descendant species

populations with different adaptive morphologies.

Modelling less-than-optimum evolution

Thus far we have seen that quite different evolutionary scenarios

result, depending upon the location of a population within an adaptive

Figure 2.8. Modelling disruptive selection, part two. The spatial positions

of individuals in the hypothetical species population within the adaptive

landscape after several generations of natural selection (top figure). The

number of organisms possessing morphological types A and C has increased

within the population, whereas the number of organisms possessing B has

decreased, leading to the shift in the frequency distribution of morphologies

depicted in the graph given in the bottom figure. Thus the initial unimodal

frequency distribution of morphologies (Fig. 2.7) has now become bimodal.

The population is splitting apart.
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landscape, from the application of the same modelling rule that natural

selection operates to move a population up the slope of an adaptive

peak, from lower degrees of adaptation to higher degrees of adaptation.

Now let us envision a situation where the strict application of this rule

results in a population winding up with a less than optimum morphology

through the action of natural selection!

Consider the adaptive landscape illustrated in Figure 2.11. A high

adaptive peak exists with a smaller adaptive peak located on the slope

of the taller peak. An evolving population has climbed the adaptive

slope to the top of the smaller peak, the location of the local adaptive

maximum. However, the higher adaptive position of the taller peak is

Figure 2.9. Modelling disruptive selection, part three. The effect of new

genetic mutation in an adaptive landscape. Four new morphological

variants arise randomly by mutation: one new mutation is upslope on the

peak to the left (X), and one new mutation is upslope on the peak to

the right (P). Two new variants are downslope, one down from the peak

to the left (Y) and one down from the peak to the right (Q), and have the

same adaptive value as the ancestral morphology B. Under the expectations

of the theory of natural selection, organisms with new morphologies X and P

should reproduce at a higher rate than organisms with morphological

variants A and C in the parent population. The new morphologies Y and Q,

and the organisms with ancestral morphology B, will not be favoured

by selection. Thus with time, individuals with morphologies X and P should

become more and more numerous, and individuals with ancestral morpho-

logical variants A, B and C less numerous, thus the end-points of the

original population continue to move uphill and the population continues

to split apart.
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Figure 2.10. Modelling disruptive selection, part four. The vectors

summarize the effect of disruptive natural selection in an adaptive landscape.

Natural selection should always favour genetic mutational morphologies

that possess higher degrees of adaptation, thus evolution should always

proceed in upslope directions within the landscape, resulting in two vectors

trails that separately climb two different adaptive peaks. The net result of

disruptive selection is the splitting of an ancestral species population into

two (or more) descendant species populations with different adaptive

morphologies.

Figure 2.11. Modelling less-than-optimum evolution. A species population

evolving under the influence of natural selection can only explore the local

adaptive possibilities. The evolving population depicted by the vectors in the

figure has climbed the local smaller adaptive peak and is now separated by

an adaptive valley from the much higher adaptive peak located to the left.

Stabilizing selection will now act to keep the population confined to the

smaller peak, with a less-than-optimum adaptive value.
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within sight, so to speak, so surely the population will continue to evolve

to eventually conquer it, yes?

The answer is no. A population evolving under the influence of

natural selection can only explore the local adaptive possibilities. That is,

the higher peak is not ‘in sight’ at all to the population stuck on the local

adaptive maximum, where the action of stabilizing selection will operate

to keep it positioned.

Evolutionary topology of adaptive landscapes

In the previous example we have seen that it is possible to construct

more and more complicated evolutionary scenarios in an adaptive land-

scape simply by adding additional adaptive peaks. Now let us consider

the possible shapes and arrangements of those peaks. If you go hiking

in the mountains, you immediately notice that not all mountains are

alike. Some are very high, with precipitous slopes. Others are lower, and

have more gently rounded slopes. Just as in a real landscape, the peaks

and hills in an adaptive landscape may come in different sizes, shapes,

and arrangements.

The theoretician Stuart Kauffman (1993, 1995) has conducted

extensive computer simulations of evolution via the process of natural

selection in what he calls ‘NK fitness landscapes’. In NK fitness land-

scape models, N is the number of genes under consideration and K is the

number of other genes which affect each of the N genes. The fitness of

any one of the N genes is thus a function of its own state plus the states

of the K other genes which affect it, allowing one to model epistatic

genetic interactions. Such interactions can be extremely complex, yet still

can be modelled with the computer.

Kauffman’s computer simulations have demonstrated that two end-

member landscapes exist in a spectrum of NK fitness landscapes:

a ‘Fujiyama’ landscape at K equal to zero, and a totally random land-

scape at K equal to N minus one, which is the maximum possible value

of K. In the Fujiyama landscape a single adaptive peak with a very

high fitness value exists, with smooth slopes of fitness falling away from

this single peak (Fig. 2.12). Such a fitness landscape exists where there are

no epistatic interactions between genes, where each gene is independent

of all other genes. At the other extreme, every gene is affected by every

other gene, and a totally random fitness landscape results, a landscape

comprised of numerous adaptive peaks all with very low fitness values.
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In a Fujiyama landscape a single adaptive maximum occurs, in a ran-

dom landscape any area in the landscape is just about the same as any

other area. Between these two extremes exists a spectrum of landscapes,

ranging from ‘smooth’ (a few large peaks) to increasingly ‘rugged’

(multiple smaller peaks; Fig. 2.12), and from ‘isotropic’ (landscapes

where the large peaks are distributed uniformly across the landscape;

Fig. 2.13) to ‘nonisotropic’ (landscapes where the large peaks tend to

cluster together; Fig. 2.13).

Kauffman (1993, 1995) has argued that the process of evolution on

Earth appears to have taken place on rugged fitness landscapes and

not on Fujiyama landscapes, smooth landscapes of high peaks that he

characterizes as the Darwinian gradualist ideal. Computer simulations of

the process of evolution via natural selection in rugged fitness landscapes

reveals on the one hand that the rate of adaptive improvement slows

exponentially as the evolving population climbs an adaptive peak, but on

the other hand that the highest peaks in the landscape can be climbed

from the greatest number of regions! The latter conclusion is in accord

with the empirical observation that the phenomenon of convergent

morphological evolution has been extremely common in the evolution of

life on Earth, a phenomenon that we shall examine in more detail in the

next chapter.

Figure 2.12. Contrasting topologies of adaptive landscapes. The dashed line

depicts a ‘Fujiyama’ landscape, with a single adaptive peak with very high

adaptive value, versus the solid line depicting a ‘rugged’ landscape, with

multiple peaks of varying height but all of much lower adaptive value than

the Fujiyama peak.
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If life has evolved on rugged fitness landscapes then epistatic inter-

actions must be the norm, and the fitnesses of morphological character

states must be correlated. Kauffman (1993, 1995) has argued that the

more interconnected the genes are the more conflicting constraints

arise. These conflicting constraints produce the multipeaked nature of

the rugged landscape (Fig. 2.12). There exists no single superb solution

as in a Fujiyama landscape. The conflicting constraints of the inter-

correlated genes produce large numbers of compromise, less than

optimum, solutions instead. A rugged landscape results, a landscape

with numerous local peaks with lower altitudes.

Figure 2.13. Contrasting topologies of adaptive landscapes. The top figure

depicts an ‘isotropic’ landscape, where the adaptive peaks are uniformly

distributed across the landscape. The bottom figure depicts a ‘nonisotropic’

landscape, where the adaptive peaks cluster near one another in several

groups.
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Kauffman’s computer simulations are based on models of genetic

interactions and their consequences. However, we can take his fitness

landscapes and transform them to adaptive landscapes by simply

changing their dimensions (as we saw in Chapter 1), and use them to

explore the consequences of the different adaptive landscape topologies

for the evolution of morphology. In doing so, we must keep in mind

the caveat of Arnold et al. (2001) that a complex fitness landscape of

genotypes does not automatically produce a corresponding complex

adaptive landscape of phenotypes. We shall be exploring the morpho-

logical effects of geometry, not genetics.

Why has evolution not ceased?

Regardless of the shape and arrangement of adaptive peaks, natural

selection will operate to move a population up the slope of an adaptive

peak, from lower degrees of adaptation to higher degrees of adaptation.

Sooner or later, every evolving animal or plant (if evolving via natural

selection) should wind up on top of a local adaptive peak. Once a species

reaches the top of an adaptive peak, stabilizing selection should

operate to keep that species in that position in the adaptive landscape.

Evolution should cease.

Evolution has clearly not ceased (we, the species Homo sapiens, are

a mere 200,000 years old). Yet we know that life has existed on Earth for

at least three and one-half thousand million years, and that surely should

have been enough time for all life to have reached all possible adaptive

peaks, or not? Why does life continue to evolve new forms?

If we examine this question using the concept of the adaptive land-

scape we can quickly see that there are two possible causes of continued

evolution: the first is the possibility that life might be able to overcome

the effect of stabilizing selection by jumping directly from one adaptive

peak to another without going downslope into the adaptive valley

between them. Evolution via jumping from one peak to another is an

interesting concept, the consequences of which the adaptive landscape

concept allows us to quickly visualize. In Figure 2.14 we see a variety of

adaptive peaks, some low, some high. The higher the peak, the deeper

the valley produced by their longer adaptive slopes. The distance within

the landscape between the higher peaks is thus greater than the distance

between the lower peaks, and the depth of the valley between the higher

peaks is deeper than the depth between the lower peaks. A jump from
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one high peak to another high peak thus requires a long distance to be

covered, whereas the closer proximity of the smaller peaks requires only

a short jump to go from one to another.

In such a landscape (Fig. 2.14) we can predict that random short

jumps off low peaks are more likely to reach an adjacent peak

successfully than random long jumps off high peaks. Such a conclusion

matches the empirical observation of geneticists that larger random

mutations are more likely to be lethal than smaller mutations. That is,

if you make a long jump off a tall peak in the landscape, the most

probable consequence is a drop in the degree of adaptation, a long fall

into the valley. Thus the adaptive landscape concept would predict that,

if evolution by peak jumping occurs, then it should occur in organisms

that are not highly adapted, in organisms that are generalists in their

environments rather than highly adapted specialists.

The second possibility is that the adaptive peaks themselves are not

stable in time. The morphology that has a high degree of adaptation

today may not have that same high degree of adaptation tomorrow;

Figure 2.14. Modelling evolution via peak jumping in an adaptive

landscape. The higher the peak, the deeper the valley between the peaks.

A jump off a high peak is much more likely to result in a large drop in

adaptive value of the new mutant morphology than jumps off low peaks

surrounded by shallow adaptive valleys. In such a landscape, random short

jumps off low peaks are much more likely to be successful than random long

jumps off high peaks. Thus the adaptive landscape concept predicts that

evolution by peak jumping should occur in organisms that are not highly

adapted, in organisms that are generalists in their environments rather

than highly adapted specialists.
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that is, the position of the adaptive peak in the landscape has moved,

or the peak itself has vanished entirely, leaving behind only a flat

nonadaptive plain.

The position of an adaptive peak in the landscape is a function of

environmental and ecological factors, of abiotic and biotic conditions.

Clearly, those conditions may change with time. In fact, the longer

the period of time that elapses, the less likely that the environmental

and ecological conditions that were present at the beginning of that

period of time will still be present at the end of that period of time.

What is now fertile farmland and forest in parts of northern Europe

and North America was frozen tundra just eleven to twelve thousand

years ago, and the varied habitats of most of present day Canada,

Norway and Sweden did not exist at all, as those regions were covered

by immense ice caps. Times change.

Modelling environmental and ecological change

Environmental and ecological change can be either gradual or abrupt,

continuous or quantal. We can model continuous, gradual environ-

mental change in an adaptive landscape by allowing the adaptive peaks

to move their positions within the landscape. We can model abrupt,

quantal environmental change in an adaptive landscape by allowing

the adaptive peaks to collapse, or to drastically lower their altitudes

(the degree of adaptation), and then to return to their previous position

and altitude when the environmental disturbance has passed.

The major question in modelling gradual environmental change

is: how fast is the environment changing? That is, how fast are the

adaptive peaks moving across the landscape (Fig. 2.15). In our previous

modelling, evolving organisms climb stationary adaptive peaks under

the influence of natural selection. Now organisms must not only climb

the peaks, but must also follow the peaks as they shift their positions in

the landscape. Thus a great deal of the continuity of evolution through

geological time may be modelled with unstable adaptive landscapes,

landscapes that change with time (Snoad and Nilsson, 2003).

The speed at which various organisms can evolve to follow shifting

adaptive peaks is a function of their variability and mutation rate.

Obviously, if organisms cannot evolve rapidly enough to follow the rate

at which peaks are moving in the landscape, they will actually move

downslope with time as the peak moves out from under their position on
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the landscape. Thus we can use the concept of the adaptive landscape

to also model the deterioration of the degree of adaptation of an

animal or plant morphology in the face of environmental change, and not

just its improvement. In this latter case, natural selection still favours

those variants with the higher degree of adaptation, but the organisms

simply cannot evolve better adaptations fast enough to match the

changing environmental conditions. Indeed, if the peak moves so fast

Figure 2.15. Modelling evolution via shifting adaptive peaks in an adaptive

landscape. Now the modelled species populations must not only climb

adaptive peaks, they must follow the peaks as they shift their positions in the

adaptive landscape. The illustrated hypothetical species population exists on

a low adaptive position at time ¼ t1, but progressively climbs to higher and

higher adaptive contours in positions time ¼ t2 through time ¼ t5, while

simultaneously exhibiting large changes in morphology simply as a result of

evolving to keep pace with the shifting adaptive peaks across the landscape

(the track of the vectors).
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as to entirely outpace the rate of evolution of the organisms upon it,

then the organisms eventually are left behind on the plane of zero

adaptation and become extinct (Fig. 2.16). Thus we can easily model the

process of extinction (or one of the processes, as there are more than

one) with the adaptive landscape concept (for models of extinction

on Stuart Kauffman’s NK fitness landscapes, see Solé, 2002; Newman

and Palmer, 2003).

Figure 2.16. Modelling extinction via shifting adaptive peaks in an adaptive

landscape. In this scenario, the hypothetical species populations cannot

evolve fast enough to keep pace with the adaptive demands of changing

environmental or ecological conditions, modelled as the shifting of adaptive

peaks across the adaptive landscape. The illustrated hypothetical species

actually moves downslope with time, from its adaptive value at position

time ¼ t1 to a lower adaptive contour at position time ¼ t2 and an even

lower adaptive contour at time ¼ t3. At position time ¼ t5 the adaptive

peak has moved entirely out from under the species (its morphologies

are now entirely maladaptive) and the species goes extinct.
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There exists a very interesting scenario midway between the two

extremes of species successfully evolving to follow moving adaptive peaks

(Fig. 2.15), and species unsuccessfully keeping up, falling behind and

becoming extinct (Fig. 2.16). This is the case where species can only

evolve fast enough to exactly maintain their same adaptive position on

a moving adaptive peak (Fig. 2.17). That is, they evolve fast enough

not to slide downslope with time, yet they cannot evolve fast enough

to climb upslope on the peak. They are constantly evolving, but per-

petually stuck at the same degree of adaptation.

Figure 2.17. Modelling the Red Queen Hypothesis in an adaptive landscape.

In this intermediate scenario between those modelled in Figs. 2.15 and 2.16,

the hypothesized species evolves fast enough to remain on a shifting adaptive

peak, but not fast enough to climb the peak to higher levels of adaptation.

Thus the species is constantly evolving new morphologies but perpetually

stuck at the same degree of adaptation (same contour level in the landscape),

in essence ‘constantly running in order to remain in the same place’ like the

Red Queen in Lewis Carroll’s Through the Looking-Glass.
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This intriguing possibility is called the Red Queen Hypothesis of

evolution, after the Red Queen in Lewis Carroll’s Through the Looking-

Glass who told Alice that she had to constantly keep running just

in order to stay in the same place (Van Valen, 1973). It is a rather bleak

evolutionary possibility, in that no adaptive improvement ever takes

place, and the probability of a species going extinct in such a world

is always a constant regardless of whether the species is young, in

existence only a few hundred years, or if the species has been present

on the Earth for millions of years.

Moving on from gradual change, the major question in modelling

quantal environmental change is: how severe is the environmental

disturbance? If the environmental disruption is severe but not lethal,

we can model the disturbance by lowing the altitude (the degree of

adaptation) of the adaptive peak. That is, the morphologies that normally

function very well do not now function nearly as well during this time

of environmental or ecological disruption. For example, small song-

birds that normally fly very well will have great difficulty flying when

a powerful hurricane or cyclone is passing through their habitat. But

if the birds take shelter and wait for the passing of the storm, then

the normal adaptive benefits of their flying abilities will return when

the environmetal disruption has ceased. The adaptive peak has returned

to its former altitude.

If, however, the environmental disruption is lethal then we can

model it by collapsing the adaptive peak entirely (Fig. 2.18). That is,

where once there existed a high altitude peak in the adaptive landscape

there now exists only a flat plain of zero adaptation. Morphologies

that used to work very well now have no adaptive value whatsoever

during the time of the environmental disruption. An actual example

could be the impact on the Earth of a large asteroid from space, such

as the Chicxulub impactor that struck at the end of the Cretaceous

period of geological time. Within the area of direct blast effects, the

adaptive benefits of the morphologies possessed by all animals and

plants ceased to exist, as they were vaporized.

The collapse of an adaptive peak results in the death of all the

organisms occupying that position within the adaptive landscape. Such

an event is termed a local extinction. If, however, all the members of

a species happen to experience the same lethal environmental disruption,

such that none had the good fortune to be in another area of the Earth

where the adaptive peak did not collapse entirely, then the entire

species goes extinct and a genetic lineage of life ceases to exist. If the
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Figure 2.18. Modelling extinction via adaptive peak collapse in an

adaptive landscape. In Fig. 2.16 extinction was modelled as the inability

of a species to evolve fast enough to keep pace with the adaptive demands

of changing environmental conditions. Extinction triggered by major, or

catastrophic, environmental disruption can be modelled by collapsing

an adaptive peak entirely, rather than having it move across the adaptive

landscape. Thus, where there once existed a high altitude peak (top figure)

there now exists only a flat plain of zero adaptation (bottom figure).

Morphologies that used to work very well (top figure) now have no adaptive

value whatsoever (bottom figure) during the time of the environmental

disruption.
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environmental disturbance is so severe that the entire planet is affected,

such as occurred in the asteroid impact at the end of the Cretaceous, then

very large numbers of adaptive peaks collapse within the landscape

and the result is termed a mass extinction.

This last scenario � the extinction of a species � has a drastic but very

interesting outcome if that species was the only one possessing the

adaptive morphologies associated with the original adaptive peak. When

the effects of the lethal environmental disruption have passed, the

previous adaptive peak will reappear in the adaptive landscape. Except

now the peak is empty: all of the individuals of the species that used to

exist in that region of the landscape are gone, and the species is extinct.

The possibility is now open for another species to evolve morphologies

very similar to the extinct species, and to occupy the vacant adaptive

peak. Such a phenomenon is called convergent evolution, and we shall

examine it in more detail in the next chapter.
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3

Modelling evolutionary phenomena in
adaptive landscapes

Simpson (1944) boldly used an adaptive landscape to synthesize
genetical and paleontological approaches to evolution . . . No
visualization before or since 1944 has been so successful in
integrating the major issues and themes in phenotypic evolution.

Arnold, Pfrender and Jones (2001, p. 9)

Evolution in geological time

In the previous chapter we have seen that the adaptive landscape concept

allows us to easily visualize and model the possible effects of natural

selection in evolution through simple spatial relationships. As those

models became more detailed, we began to encounter larger scale

evolutionary phenomena, such as mass extinction and convergent

evolution, that may involve thousands of species or operate across

millions of years of time.

The first morphologist to use Sewall Wright’s concept extensively to

model evolutionary phenomena in adaptive landscapes was the palaeon-

tologist George Gaylord Simpson in his classic books Tempo and Mode in

Evolution (1944) and The Major Features of Evolution (1953). Wright’s

original concept was that of a fitness landscape; movement across that

landscape involves changes in genotypic frequencies, small scale changes

that are termed microevolution. Simpson made the conceptual jump from

the fitness landscape of genotypes to the adaptive landscape of phenotypes,

or morphologies, and the jump to large-scale evolutionary phenomena

that operate on timescales of millions of years, or macroevolution. In this

chapter we shall examine some of the large scale evolutionary phenomena
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that have been preserved in the fossil record of life, and to explore the

possibility of modelling these patterns of evolution in adaptive landscapes.

Modelling convergent evolution

One of the most striking phenomena that we observe in the fossil record

is that of convergent evolution, where a number of different species

of animals or plants evolve morphologies that are very similar to

one another, even though these species may be only very distantly

related and originally started out with ancestral morphologies that were

very different from one another. The phenomenon of convergent

evolution is one of the most powerful sources of evidence that we

have for adaptive evolution, for evolution by the process of natural

selection. It is entirely possible, given the immensity of geological

time, that two or more species may evolve similar morphologies purely

by chance, as is hypothesized in neutralist or random models of

evolution. It is also entirely possible that two or more species may

evolve similar morphologies, particularly if the species are fairly

closely related, simply due to developmental constraint; that is, due to

the fact that they have a limited number of possible ways in which

they can develop given their particular genetic legacy; sooner or later

two species will use the same developmental pathway simply by chance.

But it is highly unlikely that large numbers of species of organisms

will repeatedly evolve similar morphologies, over and over again in

time, simply by chance. Yet that is precisely what we observe in the

fossil record: the convergent evolution of form in many different groups

of organisms, over and over again in time.

We can easily model, and understand, the phenomenon of con-

vergent evolution using adaptive landscapes. Consider one of the

more striking examples of convergent evolution: the similarity in form

between an ichthyosaur, a porpoise, a swordfish and a shark. An

ichthyosaur is a reptile and a porpoise is a mammal, animals that are

very different from one another, yet both look strikingly like a sword-

fish or shark, streamlined and fusiform (Fig. 3.1). All vertebrate forms

of life on land are the descendants of Devonian lobe-finned fish, yet

the ichthyosaur is the descendant of a group of land-dwelling reptiles

that evolved swimming adaptations and went back into the oceans some

150 million years later, during the Mesozoic. Likewise, the porpoise is the

descendant of a group of land-dwelling mammals that also have
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Figure 3.1. Modelling convergent evolution in adaptive landscapes.

Although terrestrial mammals and terrestrial reptiles are morphologically

very different, occupying distinctly different adaptive peaks within the

landscape, they have convergently evolved species that strongly resemble

sharks or swordfish. The marine adaptive peak is that of streamlined,

fusiform morphologies highly adapted for fast swimming, and it has been

heterochronously reached by cartilaginous fishes (sharks, top animal in

the figure), bony fishes (swordfish, second down in the figure), marine

reptiles (ichthyosaurs, third down in the figure), and marine mammals

(porpoises, fourth down in the figure) in different periods of geological

time (fish in the Palaeozoic, ichthyosaurs in the Mesozoic, and porpoises

in the Cenozoic).

Source: Animal sketches redrawn from Funk and Wagnall (1963).
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secondarily returned to the oceans today, and that live a life much

like their ancient ancestors, the fish.

Thus, even though the original starting positions for a terrestrial

reptile and a terrestrial mammal are very different (Fig. 3.1), the final

destination for both the ichthyosaur and porpoise is in the same region

of the adaptive landscape (Fig. 3.1), namely on top of the adaptive peak

for morphologies that function well in active swimming. That is,

morphologies that are streamlined and fusiform, with flippers and

fins for powered swimming and steering (even though the ancestors of

both the ichthyosaur and the porpoise possessed legs and feet for walking

on dry land). It is no accident that both the ichthyosaur and the porpoise

look like fish, even though they are not.

The phenomenon of convergent evolution means that there are

a limited number of ways of making a living in nature, a limited

number of ways of functioning well in any particular environment.

We can model this reality in an adaptive landscape by specifying

the location of adaptive peaks for particular ways of life: the adaptive

peak for an ocean-dwelling active-swimming animal is located in

the streamlined fusiform morphological region of the landscape. No

matter where you begin your journey on the landscape, if you evolve to be

a active-swimming oceanic animal you will wind up in the same region

of the landscape; that is, you will converge on the same morphological

solution, the same adaptive peak (Fig. 3.1).

The evolutionary convergence in form between the ichthyosaur and

the porpoise is an example of heterochronous convergence, of convergence

on the same morphological solution that nevertheless has taken place

at different points in time (during the Mesozoic for the ichthyosaur and

at the present time for the porpoise). The phenomenon of hetero-

chronous convergence is extremely common in the fossil record; living

organisms repeatedly rediscover the same morphological solutions to

the same adaptive conditions, over and over again.

Isochronous convergence, convergence on the same form by two

different groups of organisms at the same point in time, also takes place

in evolution. Convergence on the same adaptive morphology is the

evolutionary consequence of convergence on the same way of life,

and two groups of organisms with exactly the same way of life are in

danger of intense competition if they live in the same area. Thus,

in many cases of isochronous convergence the two groups of evolving

organisms are separated in space, rather than time. A striking example

is the evolution of sabre-tooth true cats (such as Homotherium and
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Smilodon) in the old world and North America, and sabre-tooth

marsupial ‘cats’ (such as Thylacosmilus) in geographically isolated

South America, during the later Cenozoic (Fig. 3.2). The true cats are

placental mammals and are very different from marsupial mammals.

Yet both placental and marsupial large-game predators evolved sabre-

tooth cat-like morphologies that are very similar, though in different

regions of the Earth, during the late Cenozoic. Another example of

isochronous convergence on morphology and way of life can be seen in

flying insectivores: birds and bats look very similar because both have

Figure 3.2. Modelling convergent evolution in adaptive landscapes.

Placental mammals and marsupial mammals simultaneously evolved

predators capable of bring down large prey animals, resulting in the

isochronous convergent evolution of sabre-tooth cat-like morphologies

(skull of the true cat Smilodon at top left, and the marsupial ‘cat’

Thylacosimlus at lower right) during the later Cenozoic, but in different

regions of the world (marsupials in South America, and cats in the

remainder of the world).

Source: Skull sketches redrawn from Kuhn-Schnyder and Rieber (1986).
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evolved wing morphologies for flight, but they are very different kinds of

animals, as birds are the descendants of theropod dinosaurs and

bats are placental mammals. Although the two groups of animals

occupy the same adaptive peak at the same point in time and in the same

geographic region, competition is minimized for the two groups

by hunting for food during different periods of the day: bats capture

insects during the twilight and night, insectivorous birds hunt during

the day.

Modelling iterative evolution

Another striking phenomenon observed in the fossil record is that of

iterative evolution. Iterative evolution is not as common in the evolution

of life as convergent evolution, though at first glance it appears to

be very similar. In iterative evolution a group of daughter species with

very similar morphologies repeatedly originate, one after another,

from an ancestral species that in itself may change very little in geological

time. Why is this not simply an example of heterochronous convergence?

In a way it is, as each daughter species converges on the same

morphology, and the daughter species are separated from one another

in time. The important difference from normal convergent evolution

is the fact that the heterochronous convergent species all originate

from the same ancestral species, thus the phenomenon is more the

iteration of a similar morphology from a single source rather than the

convergence on a similar morphology from multiple sources.

We can model iterative evolution with a single stable adaptive peak,

representing the morphological position of the ancestral species, and

a region in the landscape containing an unstable adaptive peak that

repeatedly collapses and reappears, representing the iterative morpho-

logical position of the daughter species. Iterative evolution was partic-

ularly common in Mesozoic ammonites, swimming cephalopods with

intricate chambered shells (Bayer and McGhee, 1984, 1985; McGhee,

Bayer and Seilacher, 1991). An ancestral, open-ocean ammonite species

often persisted for long periods of time during the Mesozoic, as its deep

water oceanic environment rarely changed. As sea-level rose and fell

during the Mesozoic, however, shallow water habitats on the margins of

the continents repeatedly appeared and disappeared, and these habitats

were repeatedly invaded by ammonites from the deep sea (Fig. 3.3). The

environmental conditions present in shallow-water habitats are very
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Figure 3.3. Modelling iterative evolution in adaptive landscapes. In the

Mesozoic, deep-water oceanic-form ammonites repeatedly evolved shelf-

form ammonite species, with very similar morphologies, that inhabited

shallow-water habitats during times of high sea level. The iterative evolution

of a shelf-form ammonites may be modelled by the appearance of an

adaptive peak during a period of high sea level at time ¼ t1, the collapse

of the peak (and extinction of the shelf-form ammonite) with the retreat of

the seas at time ¼ t2, and the reappearance of a very similar shelf-form

ammonite when the adaptive peak reappears in the next cycle of sea-level

rise (time ¼ t3).
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different from those in the open ocean, however, and the ammonites

evolved new shell forms to better function in the new hydrodynamic

conditions they found themselves in.

Sooner or later, sea-level would again fall during the Mesozoic, the

seas would retreat from the continental margins, and the shallow-water

habitats would vanish. In essence, the adaptive peak has collapsed, and

the ammonites occupying that peak became extinct (Fig. 3.3). In the next

cycle of sea-level rise, the shallow-water habitats reappeared with the

same hydrodynamic conditions as in the previous period of high sea level;

that is, the same adaptive peak reappeared on the landscape (Fig. 3.3).

And once again, these habitats were invaded by deep water ammonites

that evolved shell forms very similar to the previous, but now extinct,

ammonites.

Modelling speciation by cladogenesis

For many years a noisy debate raged concerning the true pattern

of cladogenesis (the phenomenon of species lineage splitting) as observed

in the fossil record (it still continues, but is quieter these days). The

debate concerned the ‘phyletic gradualism’ model of speciation versus

the ‘punctuated equilibrium’ model (Fig. 3.4). The essence of the debate

concerns the question of how much morphological change occurs within

a species lineage (called anagensis) during the existence of the species

versus how much morphological change occurs between species lineages

(called cladogenesis) in the speciation event. In the phyletic gradualism

model, morphological evolution consists of roughly equal amounts

of cladogenetic change and anagenetic change (Fig. 3.4). In the

punctuated equilibrium model, morphological evolution consists almost

entirely cladogenetic change, with very little anagenetic change (Fig. 3.4).

Species lineages, once established, are modelled as exhibiting no

morphological evolution over long periods of time, a phenomenon

known as morphological stasis.

The geometry of the two patterns of speciation appear to be radically

different (Fig. 3.4), thus at first glance it would seem easy to prove one

or the other. But not so. In general, many biologists (students of present

life) tended to favour the phyletic gradualism model and maintained

that Darwin himself had been a gradualist (complete with quotes from

the authoritative book, On the Origin of Species). They also maintained

that the fossil record was very fragmentary (as indeed Darwin did
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himself), and that if you simply looked hard enough for the best

preserved fossil record of speciation, it would turn out to match the

phyletic gradualism style of geometry (Fig. 3.4). On the other hand, many

palaeontologists (students of past life) tended to favour the punctuated

equilibrium model. They maintained that the fossil record in general was

pretty good, and that if you examined many different examples of

speciation in the fossil record, they generally displayed the geometry

in the punctuated equilibrium model (Fig. 3.4).

The palaeontologist George Gaylord Simpson (1944, 1953) first

explicitly modelled morphological evolution and speciation in adaptive

Figure 3.4. Geometry of the phyletic gradualism model of speciation (top)

and of the punctuated equilibrium model of speciation (bottom). In the

phyletic gradualism model morphological evolution consists of roughly

equal amounts of cladogenetic change between lineages and anagenetic

change within lineages, whereas in the punctuated equilibrium model

morphological evolution consists almost entirely of cladogenetic change.
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landscapes over a half a century ago. It is instructive to examine his ideas

in an adaptive landscape context, relative to the debate concerning the

phyletic gradualism versus punctuated equilibrium models of evolution.

In Figure 3.5 is his model of equid (horse) evolution in the Cenozoic.

The equids started out as small browsing animals in the Eocene (the

Hyracotheriinae), and later evolved into much larger animals

(the Anchitheriinae), some of which made the transition from a browsing

mode of feeding to a grazing mode of feeding (the Equinae).

Note that Simpson modelled the evolution of the Anchitheriinae

from the Hyracotheriinae as a process produced by shifting adaptive

peaks (as in Fig. 2.15 of the last chapter) without lineage splitting; that

is, as an anagenetic process. He then modelled the cladogenetic evolution

of the Equinae as a process of disruptive selection (as in Figs. 2.7�2.10),

with the Equinae splitting away from the Anchitheriinae as they became

more and more adapted to a grazing mode of feeding by climbing the

grazing adaptive peak. Thus Simpson clearly considered the morphologi-

cal evolution of the equids to entail both anagenetic and cladogenetic

change.

Consider a second example: Simpson’s model of penguin evolution

in an adaptive landscape context (Fig. 3.6). Simpson now models both of

the the aerial-flight adaptive peaks, aquatic and terrestrial, as unchanging

and stationary with time (unlike the shifting of the browsing adaptive

peak modelled in Fig. 3.5) and the lineages occupying those peaks as

morphologically static. Although he does model the two other flight

styles as shifting adaptive peaks, particularly the submarine flight peak

(Fig. 3.6), most of penguin morphological evolution is modelled as a

process of jumping from one adaptive peak to another. That is, he

modelled morphological evolution within the penguins as a punctuated,

cladogenetic process (Fig. 3.6).

Simpson’s two models of speciation are summarized in Figures 3.7

and 3.8. Speciation as a process of disruptive selection on two adaptive

peaks is modelled in Figure 3.7; such a process should produce a pattern

of morphological evolution that consists of both cladogenetic change

between the two diverging lineages and anagenetic change within the two

lineages as they climb their respective adaptive peaks. Thus the disruptive

selection model clearly supports the phyletic gradualism model of

evolution.

Speciation as a process of adaptive peak jumping is modelled in

Figure 3.8. Such jumps must of necessity be very quick; once firmly

established on a new adaptive peak the new species should experience
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Figure 3.5. The palaeontologist George Gaylord Simpson’s model of

morphological evolution in the Equidae (the horse family) in the Cenozoic.

Members of the equid subfamily Hyracotheriinae are shown to occupy an

adaptive peak (shaded oval in the right bottom corner of the figure), labelled

‘B’ for teeth morphologies adapted for browsing, during the Eocene. In the

left bottom corner of the figure is illustrated an empty adaptive peak,

labelled ‘G’ for teeth morphologies adapted for grazing. In the Oligocene the

subfamily Anchitheriinae are shown to evolve anagenetically from the earlier

Hyracotheriinae, and the browsing adaptive peak is shown to be moving

closer to the empty grazing adaptive peak, due to modifications in the teeth

morphologies of the Anchitheriinae due to their evolution of much larger

body masses and sizes than the Hyracotheriinae. In the Miocene the original

Anchitheriinae lineage has split in two, with one subgroup evolving teeth

morphologies that enable it to occupy the grazing adaptive peak and

resulting in the cladogenetic evolution of the subfamily Equinae from the

Achitheriinae.

Source: From The Major Features of Evolution, by G. G. Simpson.

Copyright � 1953 by Columbia University Press and reprinted with the

permission of the publisher.
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very little further morphological change due to stabilizing selection

(as modelled in Figs. 2.5�2.6 of the last chapter). Thus the peak-

jumping model clearly supports the punctuated equilibrium model of

evolution, with the majority of morphological change occurring in

the cladogenetic origination of the new species, which then exhibits

morphological stasis (i.e. no anagenetic morphological change) from

then on.

Can we now conclude that evolution via the process of disruptive

selection will always produce a phyletic gradualism pattern, while

evolution via the process of peak jumping will always produce a

punctuated equilibrium pattern? Not really. The key flaw in that

Figure 3.6. The palaeontologist George Gaylord Simpson’s model of

morphological evolution in the penguins. Rather than a topographic map

portrayal of the adaptive landscape (as in Fig. 3.5), the positions of the

adaptive peaks for differing flight styles are shown as unshaded zones, or

corridors, within a shaded landscape field of less-adaptive morphologies.

The horizontal dimension is time; note that Simpson depicts the aquatic and

terrestrial adaptive-peak zones as unchanging through time; these peaks are

modelled as stationary. Note further that the two other flight-style adaptive-

peak zones are drawn at an angle to the horizontal time dimension, thus

these peaks are modelled as shifting with time. The evolution of penguin

morphologies adapted to the spectrum of flight types, from aerial to

submarine, is modelled as a series of cladogenetic events as the ancestral

population splits and jumps from one adaptive-peak zone to another.

Source: From The Major Features of Evolution, by G. G. Simpson.

Copyright � 1953 by Columbia University Press and reprinted with the

permission of the publisher.
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conclusion is the apparent slow divergence of the two species as they

climb the two adaptive peaks in Figure 3.7. If that divergence is not slow

at all, but in actual life takes place in a few hundred to thousand

years, then in the fossil record the speciation event will appear to be

Figure 3.7. Modelling cladogenesis as a product of disruptive selection.

Illustrated in the top figure is an ancestral species population that splits into

two descendant species that climb two different adaptive peaks, as modelled

in Figure 2.10. Illustrated in the bottom figure is a possible model of the

geometry of evolution produced by disruptive selection, where morpho-

logical change consists of roughly equal amounts of cladogenetic change

between the two species lineages and anagenetic change within the two

lineages.
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virtually instantaneous and indistinguishable from the pattern pro-

duced by the peak-jumping model (Fig. 3.8). Indeed, in the actual

speciation debate many biologists and palaeontologists came to realize

that they were misunderstanding each other’s concept of the rapidity

of the evolutionary process. Once the biologists came to understand

that the palaeontologists were not calling for instantaneous speciation

in ecological time (as in one day or week!) but in geological time

(as in several hundred to a thousand years), this entire part of the debate

collapsed.

Figure 3.8. Modelling cladogenesis as a product of peak jumping.

Illustrated in the top figure is an ancestral species population that produces

two descendant species by the process of peak jumping, which in turn

produce two more descendant species by the same process, as modelled in

Figure 2.14. Illustrated in the bottom figure is a possible model of the

geometry of evolution produced by peak jumping, where morphological

change consists almost entirely of cladogenetic change.
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The debate still continues, but now in a direction of more significance

to modelling evolution with adaptive landscapes. The phyletic gradualism

model is more compatible with an adaptive landscape that is constantly

in motion, such that a significant part of evolutionary change occurs

not only in cladogenetic (lineage splitting) events, but in anagenetic

morphological change as species evolve simply to follow the adaptive

peaks that they occupy as those peaks move about the landscape.

On the other hand, the punctuated equilibrium model is more

compatible with an adaptive landscape where the peaks are stationary

for long periods of time, and then move in an abrupt or quantal fashion,

or abruptly collapse and reappear. Such a landscape is predicted

by the long periods of morphological stasis that occurs within each

species lineage in the punctuated equilibrium model (Fig. 3.4), where

virtually no anagenetic change occurs at all. Thus, rather than the pattern

of cladogenetic change, it is the debate over the pattern of anagenetic

change in geological time that is now of interest to modellers of the

process of evolution in adaptive landscapes.

Modelling hyperdimensionality in adaptive landscapes

Real life is very complex and it is clear that an actual fitness, or adap-

tive, landscape must of necessity be a hyperdimensional space. The

geneticist Theodosius Dobzhansky, who greatly admired Sewall Wright’s

concept, nevertheless realized that an actual fitness landscape must

possess a staggering number of dimensions:

Suppose there are only 1000 kinds of genes in the world, each gene existing in

10 different variants or alleles. Both figures are patent underestimates. Even

so, the number of gametes with different combinations of genes potentially

possible with these alleles would be 101000. This is fantastic, since the number

of subatomic particles in the universe is estimated as a mere 1078. . .

(Dobzhansky, 1970, p. 25)

Dobzhansky’s estimate of the potential number of possible genetic

combinations in nature is a poignant example of the complexity of

biology as opposed to physics. We now know, from the results of the

Human Genome Project, that the human genome itself contains some

20000 to 25000 genes, a number much greater than the 1000 that

Dobzhansky offered as a tentative estimate of the number of genes

in the entire world.
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Thus far we have modelled adaptive landscapes in three dimensions,

two of morphology and one of adaptation. Let us now consider

modelling higher dimensional adaptive landscapes. Figure 3.9 shows

the contour-map model of an adaptive landscape that we have used thus

far in this book. Let us now give positional coordinates to the

morphological dimensions, where morphological traits one and two can

vary from a value of zero to a value of one. The four corners of the

landscape thus have the coordinates 00, 10, 01 and 11 (Fig. 3.9). In

the lower left corner, 00, neither morphological trait one nor two is

present. In the lower right corner, 10, the first dimension, morphological

trait one, is present in its maximum value in hypothetical organisms

that might occur in this region of the landscape, but morphological trait

two is absent in these same organisms. In the upper left corner, 01, the

opposite is true. Here the second dimension, morphological trait two, is

present in its maximum value in hypothetical organisms that might

occur in this region of the landscape, whereas morphological trait one is

absent in these same organisms. Last, in the upper right corner, 11,

hypothetical organisms in this region of the landscape possess both

morphological traits developed in their maximum value. Thus in our

coordinate notation, the first digit represents the coordinate value of

Figure 3.9. A two dimensional representation of a three-dimensional

adaptive landscape. The two dimensions of the plane of the page are

morphological dimensions, and the third dimension of adaptation is given

by the adaptive contours, which measure vertical height above the plane of

the page. The two vectors represent the action of natural selection, in which

evolving populations climb the adaptive peak.
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the first morphological dimension, and the second digit represents

the value of the second morphological dimension.

The third dimension in Figure 3.9 is adaptation, represented by

the adaptive contours that measure vertical height above the two-

dimensional plane of the morphological dimensions. In Figure 3.9

an adaptive peak is shown to occur in the upper left corner of the

landscape, centred on the morphological coordinates 01. The two

vectors show the predicted evolutionary pathway of morphological

evolution in the two morphological dimensions, from the expectations of

the theory of natural selection.

Let us now add a third morphological dimension to produce a

four-dimensional adaptive landscape. Our previous landscape,

Figure 3.9, now is the front face of the cube shown in Figure 3.10.

Note now that the coordinates of its corners are no longer 00, 10, 01, and

11, but rather 000, 100, 010, and 110 (Fig. 3.10). The third digit, zero in

all of the corners in the front face of the cube, is the value of the third

dimension, morphological trait three. If we move into that third

morphological dimension we see that the morphological coordinates

of the rear face of the cube are 001, where hypothetical organisms in

this region of the four-dimensional landscape possess only morphological

Figure 3.10. A three dimensional representation of a four-dimensional

adaptive landscape. The three dimensions of the cube are morphological

dimensions, and the fourth dimension of adaptation is given by the adaptive

contours, which now are concentric spheres with surfaces of equal adaptive

value. The three vectors represent the action of natural selection, in which

evolving populations climb to the centre of the concentric adaptive spheres.
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trait three, 101, the region where organisms have both morphological

traits one and three, 011, the region where organisms have both

morphological traits two and three, and 111, the region where organisms

possess all three morphological traits.

The fourth dimension of the landscape is adaptation, represented

by the adaptive contours. Note now that the contours represent the

surfaces of concentric spheres, nested one within the other, where

the surface of any one sphere represents morphological coordinates that

have equal adaptive value. The adaptive peak centred on coordinates 01

in the three-dimensional landscape in Figure 3.9 now is shown centred on

the coordinates 010 in the four-dimensional adaptive landscape

(Fig. 3.10). We now discover that another adaptive peak exists, centred

on the morphological coordinates 101, that we could not see when

we were confined to seeing only in three dimensions (Fig. 3.9). The

three vectors drawn on both adaptive peaks show the predicted

evolutionary pathway of morphological evolution in the three morpho-

logical dimensions, in which evolving populations climb in the fourth

dimension to the centre of the concentric adaptive spheres.

Let us now add a fourth morphological dimension to produce a five-

dimensional adaptive landscape. Our previous landscape, Figure 3.10,

now is the outer cube of the hypercube shown in Figure 3.11. Note

now that the coordinates of its corners are now longer 000, 100, 010,

and 110 (Fig. 3.10), but rather 0000, 1000, 0100, and 1110. The fourth

digit, zero in all of the corners in the outer cube of the hypercube, is the

value of the fourth dimension, morphological trait four. If we move

into that fourth morphological dimension we see that the morphological

coordinates of the front face of the inner cube of the hypercube are

0001, where hypothetical organisms in this region of the five-dimensional

landscape possess only morphological trait four, 1001, the region

where organisms have both morphological traits one and four, 0101,

the region where organisms have both morphological traits two and

four, and 1101, the region where organisms possess morphological traits

one, two and four. The morphological coordinates of the rear face of

the inner cube of the hypercube are 0011, where hypothetical organisms

in this region of the landscape possess morphological traits three

and four, 1011, the region where organisms have morphological traits

one, three and four, 0111, the region where organisms have morpho-

logical traits two, three and four, and finally 1111, the region of the
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five-dimensional landscape where organisms possess all four morpho-

logical traits.

The fifth dimension of the landscape is adaptation, represented by

the adaptive contours. Note that the two adaptive peaks centred

on coordinates 010 and 101 in the four-dimensional landscape

(Fig. 3.10) now are shown centred on the coordinates 0100 and 1010 in

the five-dimensional adaptive landscape (Fig. 3.11). We now discover

that yet another adaptive peak exists, centred on the morphological

coordinates 0111 (Fig. 3.11), that we could not see when we were confined

to seeing only in four dimensions (Fig. 3.10). The four vectors drawn on

all three adaptive peaks show the predicted evolutionary pathway of

morphological evolution in the four morphological dimensions, in which

evolving populations climb in the fifth dimension to the centre of the

concentric adaptive spheres.

This is as far as we can go with simple visual representations of

hyperdimensional spaces. Mathematically, however, there is no reason

to stop at five dimensions. Although we cannot visually portray a six-

dimensional adaptive landscape, as we did with a five-dimensional

Figure 3.11. A four dimensional representation of a five-dimensional

adaptive landscape. The four dimensions of the hypercube are morpho-

logical dimensions, and the fifth dimension of adaptation is given by the

adaptive contours, which now are concentric spheres with surfaces of equal

adaptive value. The four vectors represent the action of natural selection,

in which evolving populations climb to the centre of the concentric adaptive

spheres.
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space in Figure 3.11, we still can explore its properties mathematically.

One interesting mathematical technique is to consider the morphological

coordinates given in Figures 3.9 to 3.11 as only to exist in a zero or

one condition, rather than a morphological spectrum of values from a

minimum of zero to a maximum of one. If we switch to a binary, base

two, system of mathematics we may then use the techniques of Boolean

algebra to explore the mathematical properties of evolution within

hyperdimensional adaptive landscapes. Or we can assign hypothetical

fitness, or adaptive values, to the Boolean coordinates of the hyperspace,

and computer simulate expected evolutionary pathways within the

hyperdimensional adaptive landscape. Many of the interesting evolu-

tionary insights of the theoretician Kauffman (1993, 1995), discussed in

Chapter 2, were obtained in this fashion.

The question of hyperdimensionality has played an interesting role in

evolving concepts of the fitness landscape of genotypes, Sewall Wright’s

original concept, as discussed in Chapter 1. Wright’s evolutionary rival,

R. A. Fisher, argued that an inverse relationship existed between the

number of adaptive peaks one could expect to find in an adaptive

landscape and the number of genotypic dimensions of that landscape

(Fisher, 1941). That is, the greater the number of genetic combinational

possibilities that one considered, the fewer the number of actually fit

combinations one could expect to exist simply due to the sheer number of

potential genetic combinations that would be lethal. Thus Fisher argued

that the multi-peaked fitness landscape of Wright (1932) was unrealistic

and simply the result of the low dimensionality (i.e. two dimensions) of

the hypothetical landscape � real fitness landscapes would have very few

actual peaks (see discussions in Ridley, 1996 and Futuyama, 1998).

More recently, the hyperdimensionality question has once again

arisen, but in a different formulation (Gavrilets, 1997, 1999, 2003;

Gavrilets and Gravner, 1997). Gavrilets (1997, p. 307) has argued that the

fitness landscape metaphor ‘with its emphasis on adaptive peaks and

valleys, is to a large degree a reflection of our three-dimensional

experience’ and argues for ‘a new unifying framework that provides a

plausible multidimensional alternative to the convential view of rugged

adaptive landscapes’ (Gavrilets, 2003, p. 135). Using a Boolean-style

mathematical model in which the fitness of a genotype is either zero

(lethal) or one (fit), Gavrilets and Gravner (1997, p. 51) argue that the

resulting fitness landscape is a multimensional ‘flat surface with many

holes’, which they term a holey fitness landscape. The ‘holes’ in the
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multidimensional space represent the intersection of many planes

of genotypic dimensions with those regions of the hyperspace where

fit genotypes exist. Rather than modelling evolution as a process of

climbing fitness landscapes, in the holey fitness landscape model

evolution proceeds by jumping from hole to hole in the landscape

through ‘extra-dimensional bypasses’ (Gavrilets, 1997, p. 311).

This book is concerned with adaptive landscapes and morphology,

not with fitness landscapes and gene interactions, so I shall not

pursue the dimensionality debate concerning fitness landscapes

further than the references mentioned above. However, we shall return

to a somewhat similar concept of abrupt, quantal jumps of evolution

in potentially discontinuous adaptive landscape surfaces when we

consider the questions of morphogenesis and developmental constraint

in Chapter 8.

Are adaptive landscapes of heuristic value only?

Although the adaptive landscape concept has been termed a ‘standard

imagination prosthesis for evolutionary theorists’ (Dennett, 1996, p. 190),

the many uses of the concept have been mostly that, imaginary or

conceptual. As mentioned at the beginning of this chapter, the first

morphologist to extensively use the adaptive landscape to model

evolution in geological time was George Gaylord Simpson, yet all

the examples given in his books Tempo and Mode in Evolution (1944)

and The Major Features of Evolution (1953) are conceptual

models. All of the examples of evolutionary processes in adaptive

landscapes given in the first three chapters of this book have

been conceptual models. And if you survey the biological literature

today you will find that the vast majority of mentions of the adaptive

landscape concept involve conceptual models, ranging in complexity

from sophisticated computer simulations to entertaining graphic

cartoons.

We have encountered the concept of rugged adaptive landscapes

in Chapter 2. In Figure 3.12 a rugged adaptive landscape for ancient

trilobites (extinct marine arthropods) is given from Solé and Goodwin

(2000). The portrayed landscape does indeed look rugged, and various

peaks are linked to trilobites by arrows. Yet in the text of their work

Solé and Goodwin (2000, p. 257) point out that the figure does not have
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anything to do with real trilobites; that is, it is a conceptual model.

Another example is given in Figure 3.13, which illustrates an adaptive

landscape of eye morphologies from Dawkins (1996), created by his

colleague Michael Land. On the left we see mountains representing

highly-adapted types of compound eyes, and on the right we see

mountains representing highly-adapted variants of camera-type eyes.

In the middle ground we see rolling hills represent less highly-adapted

types of eyes, and in the foreground we see barely perceptible changes

Figure 3.12. The evolution of ancient trilobites (extinct Palaeozoic marine

arthropods) in a rugged adaptive landscape. Although the three dimensions

of the landscape are labelled with numbers, and the trilobites shown are

real organisms, the diagram itself is entirely a conceptual model.

Source: From Signs of Life: How Complexity Pervades Biology, by R. Solé

and B. Goodwin. Copyright � 2000 by R. Solé and B. Goodwin and

reprinted with the permission of R. Solé and B. Goodwin.
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in elevation in the landscape that represent the simplest types of ‘eyes’

possible, such as mere photoreceptors (I have never discovered why

Land portrayed the camera-type eyes of the last living ectocochleate

cephalopod, Nautilus, as a volcano that has blown its top!). This

intriguing graphic presents in a single, easily-comprehensible view, the

complexity of eye evolution over the past six hundred million years.

Yet it is also simply a conceptual model.

One last example of a conceptual model of evolution using adaptive

landscapes is given in Figure 3.14, from Strathmann (1978), who has

argued that many adaptive-types of organisms may have progressively

vanished through the passage of geological time due to the combined

effects of occasional peak collapse and of evolutionary specialization.

Figure 3.13. The biologist Michael Land’s adaptive landscape of eye

morphologies. On the left are peaks representing highly-adapted types of

compound eyes, and on the right are peaks representing highly-adapted

variants of camera-type eyes. In the middle ground are lower peaks

represently less highly-adapted types of eyes, and in the foreground are

barely perceptible adaptive slopes in the landscape that represent the

simplest types of ‘eyes’ possible, such as mere photoreceptors. Although all

of the eye types listed are present in real organisms, the diagram itself is

entirely a conceptual model.

Source: From Climbing Mount Improbable, by R. Dawkins. Copyright

� 1996 by R. Dawkins and reprinted with the permission of R. Dawkins.
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In Strathmann’s model, organisms evolve from generalists with broad

adaptations (animal sketches shown in the top landscape, at time level

‘a’ in Fig. 3.14) to specialists with narrow adaptations (animal sketches

shown on the tops of high peaks, at time level ‘b’). Note that Strathmann

has not modelled the different organisms climbing pre-existing peaks,

but rather has the organisms themselves steepening the slopes of the

peaks as they become better and better adapted to their respective

environments and ecological setting.

Figure 3.14. The biologist Richard Strathman’s conceptual model of the

evolution of specialization, and of extinction, in an adaptive landscape.

The vertical dimension is time, with the oldest landscape at the top and

the youngest at the bottom. Generalist organisms on low peaks in landscape

‘a’ evolve into specialist organisms on high peaks in landscape ‘b’. Two

of the peaks collapse in landscape ‘c’, resulting in the extinction of the

organisms that inhabited them. Once the environmental disruption that

triggered the peak collapses has passed, the adaptive peaks reappear in

landscape ‘d’ but are now empty. See text for discussion.

Source: From Strathmann (1978). Copyright � 1978 by Evolution and

reprinted with the permission of the publisher.
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The generalists, located at low altitude positions in the landscape,

can move about the landscape with little difficulty as the adaptive

valleys are shallow from their relative perspective. Specialists, however,

are located in high altitude positions at the very top of adaptive peaks

and cannot budge from their high-fitness positions as the adaptive valleys

surrounding them are very deep. Under the expectations of the theory of

natural selection, Strathmann (1978) argued that most organisms will

evolve with time from being generalists to being specialists. Late in the

evolutionary scenario most all organisms will be sitting on the tops of

high altitude peaks, surrounded by deep valleys (but only if the peaks

remain stable in time, as we saw in Chapter 2).

Now let us introduce an environmental catastrophe (such as an

asteroid falling out of the sky) that results in the temporary destruction of

two of the adaptive peaks, which leads to the extinction of the organisms

inhabiting those peaks as the fitness of their areas of the landscape

has dropped to zero (Fig. 3.14, time level ‘c’). After the environment

recovers and returns to the precatastrophe state, the two adaptive peaks

reappear but are not occupied, as their previous inhabitors have gone

(Fig. 3.14, time level ‘d’).

Now we enter the interesting conclusion of Strathmann’s scenario.

We have two vacant adaptive peaks on the landscape, two really nice

pieces of real estate up for sale (Fig. 3.14, time level ‘d’). Surely one

or two of the neighbouring organisms will evolve adaptations which will

allow them to move onto these vacant adaptive peaks, yes? Strathmann

(1978) argued that this may not be possible at this late and specialized

stage in the evolution of the organisms. The adaptive valleys which

separate the existent organisms from the vacant peaks are simply too

deep. The organisms have simply become too specialized to move very far

on the adaptive landscape. That is, the conclusion of Strathmann’s (1978)

argument is that more adaptive-types of life may have existed in the

earlier phases of evolution on the Earth than those which exist at present.

Rather than steadily increasing the numbers of adaptive-types of life,

evolution may have led to the progressive loss of adaptive-types through

time. Although that is a model prediction that can be tested by examining

the actual numbers of adaptive-types of life seen in the fossil record

in geological time, the model producing the prediction (Fig. 3.14) is still

that, a conceptual model.

The actual utilization of an adaptive landscape in the actual analysis

of genotypes or morphologies is hampered by the complexity of
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biological form, and for that reason some critics have stated that

the adaptive landscape concept is of heuristic value only. That is, it is

fine for creating conceptual models, but you cannot actually use the

concept in analysing the evolution of actual animals or plants. We shall

see in the next chapter, however, that the adaptive landscape concept

indeed can be put into practice through the usage of theoretical

morphospaces.
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The concept of the theoretical morphospace

The study of evolutionary constraint requires a metric — a map
for visualizing the occupied and unoccupied evolutionary pathways
that are theoretically possible. Two such maps are the often cited
‘adaptive landscape’ of genetic frequencies (from Sewall Wright)
and David M. Raup’s ‘morphospace’ of coiled shells.

Schindel (1990, p. 270)

What is a theoretical morphospace?

Imagine a room whose floor is covered with beautiful glass models of sea

shells. The glass sea-shell models are carefully arranged in a pattern of

parallel rows on the floor, such that as you walk down one row after

another, you can see the glass models change their geometries progres-

sively from one type of sea shell to another. At the end of one row you

might find a glass model that looks very much like a snail shell, but at the

end of that same row the spire of the models has become so low that the

glass model now looks more like a clam shell. You are walking in a

theoretical morphospace (Fig. 4.1).

The concept of the theoretical morphospace was first proposed by

the palaeontologist David M. Raup in 1966; it is an extension of the

adaptive landscape concept. Theoretical morphospaces may be defined

most explicitly, if a bit tersely, as ‘n-dimensional geometric hyperspaces

produced by systematically varying the parameter values of a geometric

model of form’ (McGhee, 1991, p. 87). The main difference between the

adaptive landscape and the theoretical morphospace lies in their

dimensions. The dimensions of the adaptive landscape are morphological

57



traits and degree of adaptation (Fig. 4.2). The degree of adaptation, or

fitness, is a fundamental feature of the adaptive landscape concept.

In contrast, the dimensions of a theoretical morphospace are geo-

metric or mathematical models of form and the frequency of occurrence

of those hypothetical model forms in nature (Fig. 4.2). The concept of

adaptation does not enter into the construction of a theoretical morpho-

space, whereas the concept of adaptation is a fundamental feature of an

adaptive landscape.

Within an adaptive landscape, different locations not only represent

differing morphological or genetic combinations, they represent differ-

ent degrees of adaptation or fitness. As the dimensions of a theoretical

morphospace are geometric model parameters, different locations

within the theoretical morphospace simply represent morphologies

produced by the combination of different model coordinates along the

dimensional axes. Given a theoretical morphospace, one can then deter-

mine which of the hypothetical forms seen within that morphospace have

Figure 4.1. A theoretical morphospace of hypothetical mollusc shells. The

two morphological trait dimensions are W, the whorl expansion rate of

the shell, and T, the translation rate of the shell.

Source: These computer simulations were produced using a modified version

of the source code that may be found in Swan (1999), rewritten in Visual

Basic 6.0.
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actually been produced in nature and those which, though geometrically

possible, have not. The absence of actual biological forms within a

theoretical morphospace does not necessarily mean that the hypotheti-

cally possible, but naturally nonexistent, morphologies are nonadaptive

Figure 4.2. Contrasting the concept of an adaptive landscape (top figure)

with that of a theoretical morphospace (bottom figure). The two morpho-

logical trait dimensions are the same in the two concepts. The vertical

dimension, however, is the adaptive value of the different morphological

combinations in the adaptive landscape. In the theoretical morphospace

concept, the vertical dimension is the frequency of occurrence in nature

of the different morphological combinations.
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or have zero fitness (something that would be automatically assumed in

an adaptive landscape). An alternative point of view could just as easily

maintain that such hypothetical nonexistent morphologies might function

perfectly well in nature, but that the process of evolution simply has not

produced them yet. This point will be considered in more detail in

Chapter 7.

A crucial concept shared by both theoretical morphospaces and

adaptive landscapes (at least theoretically) is their ability to specify

nonexistent form: e.g. Sewall Wright’s possible but nevertheless nonexis-

tent genotypes in the case of his fitness landscape and Dave Raup’s

possible but nevertheless nonexistent sea shells in his theoretical morpho-

space. And, although adaptive landscapes and theoretical morphospaces

share the feature of hyperdimensionality, the dimensionality of a

theoretical morphospace is always much less than that envisaged by

Sewall Wright as necessary for an adaptive landscape large enough to

encompass all possible combinations of genes present in life on Earth.

Another important feature of the dimensions of a theoretical

morphospace is that they are defined without any reference to actual

measurement data from existent form (we shall see an example of

how this is done later in this chapter). The very ability of a theoretical

morphospace to reveal nonexistent form is a function of the measure-

ment-independent nature of the dimensions of the morphospace.

Finally, the concepts of an adaptive landscape and a theoretical

morphospace converge if the dimension of ‘degree of adaptation’ or

‘fitness’ is somehow also mapped into a theoretical morphospace. Some

examples of the convergence of these two concepts will be considered

in Chapter 5.

Procedural phases of theoretical morphospace analyses

Consider again the room whose floor is covered with beautiful glass

models of sea shells encountered at the beginning of this chapter. Now

imagine that you and your family and friends spend an entire delightful

week at the sea shore, relaxing and collecting sea shells as you walk

along the shore. At the end of that week, you all take your collections and

enter the room with the glass sea-shell models and carefully walk along

each row of models, row after row, placing each real sea shell on top

of the glass model that it most closely resembles. After all of your

collected sea shells have been placed on the floor, you stand back and
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view the room. What you will see will be large piles of sea shells in some

parts of the room, smaller piles of sea shells in other parts of the room,

and some areas of floor where there are no sea shells whatsoever, even

though the glass models are lying there. You are conducting a theoretical

morphospace analysis of the evolution of actual sea-shell form in nature.

There are five procedural steps in conducting a theoretical morpho-

space analysis of actual form in nature (Fig. 4.3):

Step One: in order to construct a theoretical morphospace you will

need to start with a geometric or mathematical model of morphology

itself, or a mathematical model of the morphogenetic process that creates

morphology. Both approaches are equally valid; choice of one or the

other depends upon what you are most interested in (form simulation or

growth simulation). In many cases creating such a model is not very

difficult, it simply requires a little thought. An example of a simple model

of form will be given in the next section of this chapter; for numerous

additional examples see McGhee (1999).

Figure 4.3. Flowchart of the procedural steps in a theoretical morphospace

analysis.
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Step Two: simulating the hypothetical morphologies that can be

produced by the mathematical model. The actual simulations of form

produced by different parameter combinations of the model can be as

simple as line drawings, requiring nothing more complicated than pro-

tractors and compasses (and a pocket calculator for the calculations),

to elegant graphics produced on your desk or laptop computer. In the

next section of this chapter we shall examine some shell form simulations

that were produced by a computer, but that could just as easily been

drawn with a ruler and a compass.

Step Three: constructing a theoretical morphospace of hypothetical yet

potentially existing morphologies. Once you have simulated a spectrum

of hypothetical morphologies you can use the parameters of the

mathematical model that produced them as the dimensions of your

theoretical morphospace. Because the parameters of the model poten-

tially determine the dimensionality of your morphospace, you want

to use as few parameters as possible. A morphospace that has one million

dimensions may be an interesting concept, but it is also an impractical

one. Minimizing the dimensionality of the morphospace required to

examine a particular group of organisms adequately is a major part of

this phase of the analysis. Thus if your model has only three parameters,

you can use them all to create a three-dimensional morphospace. If your

model has eight or ten parameters, you probably will want to use fewer

than that number in your final morphospace. Examine the spectrum of

form produced by the model by systematically varying its parameter

values. If variation in one or more of the parameters of the model

produces small changes in form, relative to variation in other parameters

of the model, then those parameters could be omitted in the construction

of the final morphospace.

Step Four: measuring and plotting the spectrum of an existing form

in the morphospace. Once you have constructed a theoretical morpho-

space of hypothetical form, you next will need to take measurements

of the parameter values directly from actual organisms that fall within

the hypothetical range of morphologies produced by your model.

Obviously in this phase it is crucial to be able to obtain measurements

of your model parameters from existing organisms. If your parameters

are too abstract and unobtainable from actual biological form, then you

must return to Step One and start over again with a different model.

It is in this phase of the analysis that you will begin to see which of

your possible geometries or forms exist in nature, that have been

produced in the evolution of life, and which equally possible geometries
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do not exist in nature. You will be able to see nonexistent form, in

that you have before you a perfectly possible geometry in a simulated

form that nevertheless has never been produced by any living organism.

With enough data, you will be able to map out the regions of an

existing and nonexistent form for a group of animals or plants within

the theoretical morphospace.

Step Five: analyse the functional significance of both existing and

nonexistent form in the morphospace. This is perhaps the most difficult,

or labourious, phase of a theoretical morphospace analysis, yet is

essential to determine whether the observed distribution of form within

the morphospace is of adaptive significance. It is in this phase that the

concepts of the adaptive landscape and the theoretical morphospace

begin to converge.

The revelation of the spectrum of existing morphology within the

realm of theoretically possible morphology does not in itself interpret

the adaptive significance of the spectrum, but it does provide a powerful

vehicle to facilitate the functional analysis of that spectrum of form.

In most functional morphological studies, the morphologist concen-

trates on analysing the functional or bioengineering properties of the

existing form that they have before them in their laboratory, or in

the field. Sometimes this is an easy task, often is quite complicated.

In theoretical morphospace analyses, however, you have the additional

advantage of having both existing and nonexistent forms before you,

not just the existing form. That is, you can not only generate and

test functional hypotheses about the adaptive significance of a par-

ticular existing morphology, you can further test those hypotheses by

applying them to the nonexistent morphologies within the morphospace.

In summary, the five steps of a theoretical morphospace analysis

(Fig. 4.3) can be simply viewed as the creation of a morphospace, the

exploration of a morphospace and the analysis of evolution within a

morphospace. Now let us consider a real example of a theoretical

morphospace.

Creating theoretical morphospaces: an example

In 1967 Dave Raup, the founder of the discipline of theoretical

morphology, was interested in the evolution of shell form in ammonoids.

Ammonoids are an extinct group of swimming cephalopod molluscs,

related to the chambered nautilus that still survives in today’s oceans.
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The living chambered nautilus is but a pale shadow of the past glory of

the swimming cephalopod molluscs, in that the oceans of the Palaeozoic

and Mesozoic were filled with hundreds of their species and millions of

their intricately coiled-shell individuals.

Raup considered the geometry of ammonoid shells and decided that

the essence of their form could be simulated with a two-dimensional

logarithmic spiral model. In polar coordinates, a two-dimensional logar-

ithmic spiral has three geometric parameters: its radius r, its coiling

angle j, and its tangent angle a (Fig. 4.4), and is described by the

exponential equation (4.1):

rj ¼ r0e
ðcotaÞj ð4:1Þ

where r0 is the magnitude of the initial radius you start with in the

simulation, and rj is the magnitude of the radius at coiling angle j. The
variables rj and j are constantly changing as the spiral grows, but

the tangent angle a does not. This constancy of the tangent angle means

that the logarithmic spiral has the additional geometric property of

isometry; that is, the proportions of the spiral remain the same regardless

of the size of the spiral.

Raup preferred to measure ratios of radii rather than tangent angles

(it is easier!), thus he designed a new parameter to replace the tangent

angle, which he named the ‘whorl expansion rate’, or W (see 4.2):

W ¼ ðrj=r0Þ2p=j: ð4:2Þ
He then re-wrote equation (4.1) in the following fashion, in terms of his

new parameter W as in (4.3):

rj ¼ r0W
j=2p: ð4:3Þ

Figure 4.4. A logarithmic spiral, illustrating its three geometric parameters:

radius r, coiling angle j, and tangent angle a.
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Examining a typical ammonoid shell, Raup decided that the essential

aspects of the shell could be described by two logarithmic spirals:

one spiral describing the outermost edge of the whorls of the shell,

and a second spiral describing the innermost edge of the shell. He then

designed a new parameter D, the distance from the coiling axis to the

aperture, to measure the relative distance between the innermost

and outermost spirals in the shell. The morphology of the ammonoid

shell thus could be modelled by the twin equations (4.4) and (4.5):

Outermost spiral rj ¼ r0W
j=2p, ð4:4Þ

Innermost spiral rj ¼ Dðoutermost rjÞ: ð4:5Þ
Using these two equations, Raup wrote a brief computer program to

simulate hypothetical ammonoid shells; that is, he wrote the program

to simply draw the different spirals that could be produced by changing

the parameter values of W and D in the mathematical model. The

aperture of the shell lies between the innermost and outermost spirals of

the shell, and Raup modelled the shell aperture to be a simple circle in

the initial simulations. He then arranged these simulated shells into a

two-dimensional theoretical morphospace of hypothetical ammonoid

form, as illustrated in Figure 4.5, where the morphological dimensions

of the morphospace are the parameters of the model, W and D.

In Figure 4.5 Raup has created a theoretical morphospace of hypo-

thetical ammonoid shell form, the third step in a theoretical morphospace

analysis (Fig. 4.3). All of the simulated shell forms are possible geometries

for ammonoids to use as actual shells. If we use the traditional

morphological terminology of ammonoid palaeontologists, the hypo-

thetical shell forms illustrated in Figure 4.5 range, from the upper left in

the morphospace to the lower right, from shell forms that are convolute

to involute to advolute to evolute.

The various hypothetical ammonoid shells illustrated in Figure 4.5

were produced by a computer program, but they could just as well

have been produced by using a ruler, a protractor and pocket calculator

to perform the calculations. The computer simply does the job much

faster; that is, the computer was used chiefly as a labour-saving device.

The code that was used in producing the computer simulations shown

in Figure 4.5 is given in Table 4.1.

What types of shell geometries did the ancient ammonoids actually

evolve? The next step in a theoretical morphospace analysis is the actual

measurement of an existing form in nature, and plotting those data in the
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theoretical morphospace (Fig. 4.3). Raup deliberately designed his two

model parameters W and D such that their actual values could be

measured easily, and quickly, from an actual ammonoid shell (Fig. 4.6).

He proceeded to measure the model parameters W and D on the actual

shells of 405 ammonoid species, and to plot those measurements in the

theoretical morphospace. He was interested in the frequency of occur-

rence of different shell geometries within the ammonoids: which shell

forms were the most abundantly found among the ammonoids, which

were rarer, and which were never found in ammonoids? Therefore he

contoured the density of his data point distribution within the morpho-

space, as illustrated in Figure 4.7. The topographic high, or peak, in

Figure 4.7 thus shows the most frequently occurring shell geometry in

ammonoids, and the slopes away from the high point show shell geo-

metries that are less abundant than shell geometries that are rarely

found in ammonoids. Shell morphologies in the morphospace outside the

outermost contour of the data density distribution are not found at all �
they are nonexistent ammonoid shell forms.

Figure 4.5. The theoretical morphospace of ammonoid form. The two

morphological trait dimensions of the morphospace are the model

parameters W, the whorl expansion rate of the shell, and D, the distance

from the coiling axis to the aperture of the shell. These computer simulations

were produced using the source code given in Table 4.1.
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Table 4.1. Source code for producing the computer simulations given in
Figure 4.5, written in Visual Basic 6.0. For use with a VB6 Form containing
a PictureBox and three Command buttons: Run, Clear and Print

Private Sub Command1_Click()
Dim OX(1 To 1000)
Dim OY(1 To 1000)
Dim IX(1 To 1000)
Dim IY(1 To 1000)
'Specify four initial parameter values (D, W, R0, PHI)
'Change these values as desired for other simulations
D ¼ 0.5
W ¼ 1.5
R0 ¼ 1000
PHI ¼ 1.5708
'Locate left edge of the simulation (LE)
t ¼ 0.1
For j ¼ 1 To 180

x ¼ R0 � Cos(PHI) � (W ^ (-PHI/6.2832))
If (x 4 t) Then Exit For
t ¼ x
PHI ¼ PHI þ (3.1416/180)

Next j
LE ¼ t
PHI ¼ 0
'Specify outer aperture margin (OMX, OMY)
OMX ¼ R0
OMY ¼ 0
'Specify inner aperture margin (IMX, IMY)
IMX ¼ OMX � D
IMY ¼ 0
'Locate bottom edge of simulation (BE)
PHI ¼ 3.1416
t ¼ 0.1
For j ¼ 1 To 180

Y ¼ R0 � Sin(PHI) � (W ^ (-PHI/6.2832))
If (Y 4 t) Then Exit For
t ¼ Y
PHI ¼ PHI þ (3.1416/180)

Next j
BE ¼ t
'Determine the length of the spiral (PHImax)
PHImax ¼ (6.2832) � Log((200 � R0 � (1 - D))/(OMX - LE))/Log(W)
'Plot Outer Spiral (OX(j), OY(j)), reverse growth (anticlockwise)
N ¼ PHImax � 180/3.1416 þ 1
N ¼ N/5
PHI ¼ 0
Rout ¼ OMX
OX(1) ¼ Rout � Cos(PHI) � (W ^ (-PHI/6.2832)) - LE
OY(1) ¼ Rout � Sin(PHI) � (W ^ (-PHI/6.2832)) - BE

OX(1) ¼ OX(1) � 2 'scale the plot (change as desired)
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Table 4.1 (cont.)

OY(1) ¼ OY(1) � 2 'scale the plot (change as desired)
PHI ¼ PHI þ (3.1416/36)
For j ¼ 2 To N

OX(j) ¼ Rout � Cos(PHI) � (W ^ (-PHI/6.2832)) - LE
OY(j) ¼ Rout � Sin(PHI) � (W ^ (-PHI/6.2832)) - BE
OX(j) ¼ OX(j) � 2 'scale the plot (change as desired)
OY(j) ¼ OY(j) � 2 'scale the plot (change as desired)
PHI ¼ PHI þ (3.1416/36)
Picture1.DrawWidth ¼ 2
Picture1.CurrentX ¼ 3000
Picture1.CurrentY ¼ 6000
If (W 4¼ 1/D) Then
Picture1.Line (OX(j-1) þ 3000, 6000 - OY(j-1)) - (OX(j) þ 3000, 6000 - _

OY(J))
Printer.Line (OX(j-1) þ 3000, 6000 - OY(j-1)) - (OX(j) þ 3000, 6000 - _

OY(J))
ElseIf (W 5 1/D And PHI 5¼ 6.2832 þ 3.1416/36) Then
Picture1.Line (OX(j-1) þ 3000, 6000 - OY(j-1)) - (OX(j) þ 3000, 6000 - _

OY(J))
Printer.Line (OX(j-1) þ 3000, 6000 - OY(j-1)) - (OX(j) þ 3000, 6000 - _

OY(J))
End If

Next j
PHI ¼ PHI - (3.1416/36)
N ¼ N þ 100
'Plot Inner Spiral (IX(m), IY(m)), forward growth (clockwise)
N ¼ N þ 20
Rin ¼ IMX
If (PHI < 0) Then PHI ¼ 0
IX(1) ¼ Rin � Cos(PHI) � (W ^ (-PHI/6.2832)) - LE
IY(1) ¼ Rin � Sin(PHI) � (W ^ (-PHI/6.2832)) - BE

IX(1) ¼ IX(1) � 2 'scale the plot (change as desired)
IY(1) ¼ IY(1) � 2 'scale the plot (change as desired)

For m ¼ 1 To N
If (PHI < 0) Then PHI ¼ 0
IX(mþ1) ¼ Rin � Cos(PHI) � (W ^ (-PHI/6.2832)) - LE
IY(mþ1) ¼ Rin � Sin(PHI) � (W ^ (-PHI/6.2832)) - BE
IX(mþ1) ¼ IX(mþ1) � 2 'scale the plot (change as desired)
IY(mþ1) ¼ IY(mþ1) � 2 'scale the plot (change as desired)
If (PHI < 0.001) Then Exit For
PHI ¼ PHI - (3.1416/36)
Picture1.Line (IX(m) þ 3000, 6000 - IY(m)) - (IX(mþ1) þ 3000, 6000 - _

IY(mþ1))
Printer.Line (IX(m) þ 3000, 6000 - IY(m)) - (IX(mþ1) þ 3000, 6000 - _

IY(mþ1))
Next m
'Plot Line of Aperture
Picture1.Line (OX(1) þ 3000, 6000 - OY(1)) - (IX(m) þ 3000, 6000 - IY(m))
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Note also the curved line, a hyperbola, within the morphospace that

is labeled W ¼ 1/D. This line is the whorl-overlap boundary; it delimits

the region of the morphospace that contains shell forms that have

whorls that overlap one another (the region to the left of the line) from

the region that contains shell forms where the whorls do not touch

one another (the region to the right of the line). Hypothetical ammo-

noids that fall exactly on the line within the morphospace have shell

forms that have whorls that exactly touch one another, neither overlap-

ping nor separating (see Fig. 4.5 for actual simulations of each of these

morphological conditions). Of immediate interest is the fact that the

huge majority of acutal ammonoids in nature occur to the left of the

whorl-overlap boundary � very few ammonites possessed shells in which

the whorls did not touch or overlap.

Table 4.1 (cont.)

Printer.Line (OX(1) þ 3000, 6000 - OY(1)) - (IX(m) þ 3000, 6000 - IY(m))
End Sub
Private Sub Command2_Click()
Picture1.Cls
End Sub
Private Sub Command3_Click()
Form1.PrintForm
End Sub

Figure 4.6. Measurements needed to obtain the model parameters W

and D on an ammonoid shell whose whorls do not overlap. For a discussion

of measurement techniques on more complicated shell morphologies, see

Raup (1967).
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In Figure 4.7 Raup has completed the fourth step in a theoretical

morphospace analysis, the exploration of the distribution of natural

form within the morphospace. Note that the topographic high and

lows in Figure 4.7 represents the frequency of occurrence of different

shell forms in nature, and does not represent degrees of adaptation

(see Fig. 4.2); thus Figure 4.7 is not an adaptive landscape.

The purpose of this section of the chapter has been to give an

actual example of theoretical morphospace construction and to demon-

strate that the process need not be complicated. The final step in a

theoretical morphospace analysis is the functional analysis of both

existing and nonexistent form within the morphospace (Fig. 4.3). It

is often the most difficult step and, curiously, Raup himself did

not complete it! But one of his graduate students did, and the results

will be discussed in the next chapter.

Figure 4.7. The frequency distribution of actual ammonoid morphologies

found in 405 species, in the theoretical morphospace of hypothetical

ammonoid form given in Figure 4.5. Note that the peak of the contours

represents the most frequently occurring morphology in real ammonoids,

and not the adaptive value of that morphology.

Source: Data from Raup (1967).
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5

Analysing the role of adaptive evolution in
theoretical morphospaces

In studying the functional significance of the coiled shell, it is
important to be able to analyze the types that do not occur in nature
as well as those represented by actual species. Both digital and
analog computers are useful in constructing accurate pictures of the
types that do not occur.

Raup and Michelson (1965, p. 1294)

Functional analysis in theoretical morphospace

We saw in the last chapter that the five steps of a theoretical morphospace

analysis (Fig. 4.3) can be summarized in three conceptual phases: the

creation of a morphospace, the exploration of a morphospace, and the

analysis of evolution within a morphospace. The analysis of evolution

within a morphospace involves the functional analysis of the spectrum of

both existent and nonexistent form within the morphospace, a spectrum

that has been revealed in the first two phases of the analysis. The goal of

functional analyses is to determine whether the observed distribution

of form within the morphospace is indeed of adaptive significance, and

it is in this phase of the analysis that the concepts of the adaptive

landscape and the theoretical morphospace begin to converge.

In Chapter 4 we examined the process involved in creating

a theoretical morphospace of hypothetical ammonoid morphologies,

and the plotting of species of actual ammonoids within that morpho-

space, from the early work of Dave Raup, the founder of theoretical

morphology. Raup did not complete the final step of the analysis � the

analysis of the functional significance of the spectrum of existent
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and nonexistent ammonoid form � but his graduate student,

John Chamberlain, did.

Adaptive significance of existing and nonexistent

ammonoid form

Let us return to the frequency distribution of 405 ammonoid species

within Raup’s ammonoid morphospace that we considered in Chapter 4.

The peak of the distribution, showing the most frequently occurring

morphology found within actual ammonoids, occurs where the value

of D ¼ 3.5 and W ¼ 2.0 (see Fig. 5.1). The frequency distribution

is markedly asymmetrical, as can be seen in the pattern of the density

contours. The distribution slopes sharply away on either side of an

elongate ridge which trends from left to right across the figure and

which is oriented subparallel to the D-axis of the morphospace.

Thus variation in the parameter D in ammonoids is much greater than

variation in W and the ammonoid values of the two parameters have

a slight negative correlation. Note also the very steep slope of the

morphological frequency distribution where the distribution abuts

the whorl-overlap boundary in the morphospace (the hyperbola labelled

W ¼ 1/D in Fig. 5.1).

What is the functional significance of the observed ammonoid

frequency distribution within the morphospace? As noted by Raup

(1967), there might not be any at all, in that the argument could be

made that the frequency distribution of ammonoid morphologies that

did evolve in time may simply represent chance. That is, if the ammo-

noids had had more time to evolve new morphologies (and not have

met extinction 65 million years ago), that perhaps the empty regions

of the morphospace seen in Figure 5.1 might eventually have been filled.

We shall examine this idea in more detail in Chapter 7, when we

consider the concept of evolutionary constraint within morphospace.

The alternative argument from natural selection theory is, of course,

that there is an adaptive advantage associated with the morphologies

that the ammonoids have evolved, and an adaptive disadvantage with

those which have not. Raup (1967) speculated that the observed fre-

quency distribution of ammonoid morphologies within the morphospace

does not represent the optimization of any single functional aspect of

shell form, but rather that the geometries present in the occupied region

of the morphospace represented shell forms which minimize several

72 Analysing the role of adaptation in theoretical morphospaces



different functional problems faced by the ammonoids. Ammonoids were

active swimmers, and thus the shell forms that they did evolve might have

something to do with streamlining and orientation stability constraints

associated with their swimming mode of life. These swimming

constraints, particularly the need for streamlining, might partially explain

why the great majority of ammonoids have shells in which the whorls

contact and overlap one another, producing a solid disk with no open

spaces between the whorls. The location of the ammonoid frequency

distribution to the left of the whorl-overlap boundary in Figure 5.1 could

also be due, at least in part, to bioeconomical constraints in efficient

secretion of shell material by the animals (overlapped whorls cost less

shell material) and due to increased strength in these types of shell (shells

with overlapped whorls are stronger, and can better resist crushing by

predators).

The theoretical suggestions of Raup (1967) concerning the adaptive

significance of ammonoid shells have been corroborated and expanded

by the experimental work of his graduate student, John Chamberlain

(1976, 1981). Using a series of shell models, Chamberlain (1976)

experimentally determined the drag coefficients for a variety of different

shell geometries. Not unexpectedly, he found that shells with whorl

overlap have much lower drag coefficients than those without. I have

here converted Chamberlain’s drag coefficients to swimming-efficiency

coefficients in order to create a topographical space where the maximum

swimming-efficiency coefficient (a topographic high) represents the

minimum drag coefficient, and vice versa (Fig. 5.1).

For shells with whorl overlap, Chamberlain found that two regions

of maximum swimming-efficiency coefficients exist within the

morphospace: one where W ¼ 1.5 and D ¼ 0.05 to 0.13, and another

where W ¼ 1.9 and D ¼ 0.35 to 4.2 (Fig. 5.1). These adaptive peaks have

swimming-efficiency coefficients greater than 70. The first adaptive

peak corresponds to shells that are highly involute (computer simula-

tion on the left), and the second to shells with only moderate whorl

overlap and a wide umbilicus (computer simulation in the middle).

The computer-simulated evolute shell shown on the right lies within the

region of the morphospace where the whorls of the shell do not touch

one another, and it has a very low swimming-efficiency coefficient

(around 10).

The swimming-efficiency-coefficient surface shown in Figure 5.1 is,

in essence, an adaptive surface. It shows the degree of adaptation for

each potential shell geometry within the morphospace, where the degree
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Figure 5.1. Comparison of the contoured frequency distribution of 405

species of actual ammonoid forms in theoretical morphospace (top figure)

with the contoured distribution of swimming-efficiency coefficients within

theoretical morphospace (bottom figure).

Source: Swimming-efficiency data from Chamberlain (1981).
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of adaptation is measured in terms of the degree of streamlining that

an ammonoid would experience while swimming with any particular

shell geometry.

Comparing the topology of the frequency distribution of real ammo-

noid shells within the morphospace and the topology of the adaptive

surface of maximum swimming-efficiency reveals a surprise � only one of

the adaptive peaks is occupied (Fig. 5.1)! The maximum peak of most

abundant ammonoid shell forms in nature is very close indeed to the

experimentally-determined maximum swimming-efficiency peak around

W ¼ 1.9 and D ¼ 0.35 to 4.2 in the morphospace (as shown by the arrow

in Fig. 5.1). Thus Chamberlain was able to demonstrate that a major

adaptive determinant in the evolution of shell form in ammonoids is

maximizing streamlining efficiency in swimming.

Why is the swimming-efficiency adaptive peak on the left unoccupied?

For many years this was a mystery. One possibility is that the ammo-

noids were unable to develop morphologies in this region of the morpho-

space � the concepts of developmental and phylogenetic constraint,

which we shall examine in more detail in Chapter 7. Alternatively, there

may be some additional functional property, in addition to streamlining

efficiency, that renders shells with the geometries found in this region of

the morphospace maladaptive. Several suggestions include maladaptive

bouyancy stability of these shells, or simply that there is too little space in

the outer whorl of these shells to contain the body of the ammonoid!

Now, some four decades after Raup’s original study, we finally

have the answer to this mystery � the peak is indeed occupied! Saunders,

Work and Nikolaeva (2004) point out that Raup (1967) used a 1957

database of ammonoid systematics, the best available at the time, that

is now vastly out of date. In the past half-century, 588 new genera of

Palaeozoic ammonoids have been discovered and described. Saunders,

Work and Nikolaeva (2004) took measurements from 597 species of

these newly described ammonoids, plotted them in Raup’s theoretical

morphospace of ammonoid form, the results of which are shown in

Figure 5.2. These new data reveal an ammonoid-form frequency dis-

tribution that is much more rugged than that originally seen by Raup

(Fig. 5.1). Saunders, Work and Nikolaeva (2004) discern three main

peaks in shell frequency, instead of one, located along a ridge centred

at W ¼ 1.9. All ammonoid shell forms located along this ridge have

swimming-efficiency coefficients greater than 60 (Fig. 5.2). Most impor-

tantly, these new data reveal that the Palaeozoic ammonoids did evolve

forms very close to the swimming-efficiency adaptive peak on the left
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Figure 5.2. Comparison of the contoured frequency distribution of 597

species of Palaeozoic ammonoids. Measured by Saunders, Work and

Nikolaeva (2004), in theoretical morphospace (top figure) with the

contoured distribution of swimming-efficiency coefficients within theoretical

morphospace (bottom figure). In the bottom figure, both of the two adaptive

peaks of maximum swimming-efficiency coefficients are shown to have been

occupied by the Palaeozoic ammonoids.

Source: Ammonoid data from Saunders, Work and Nikolaeva (2004).



(Fig. 5.2) that for so many years was thought to have been an empty

region of morphospace (Fig. 5.1). We have now completed the last phase

of a theoretical morphospace analysis of the adaptive significance of both

existent and nonexistent shell form in the extinct ammonoids. We have

seen that the most significant adaptive determinant of shell geometry in

the ancient ammonoids was shell streamlining for efficient swimming

(Figs. 5.1 and 5.2).

In this discussion, I purposefully did not skip directly to the recent

study of Saunders, Work and Nikolaeva (2004) in order to illustrate the

predictive power of the techniques of theoretical morphospace analysis.

The adaptive surface in Figure 5.1 would predict, under the expecta-

tions of the theory of natural selection, that ammonoids should have

evolved forms in the apparently empty region of the morphospace.

Empty morphospace in and of itself leads to the concept of evolutionary

constraint, which we shall examine in detail in Chapter 7. Empty mor-

phospace that can be demonstrated to be an adaptive peak is even

more interesting and anomalous. In the present case, the anomaly turns

out to have been simply due to an inadequate database. In Chapter 7

we shall see that it is indeed theoretically possible for adaptive peaks

to remain unoccupied, and to consider the potential causes of such

a phenomenon.

The crucial point to be seen in Figures 5.1 and 5.2 is that they give

an actual adaptive surface and a real frequency distribution of ammo-

noid shell forms that have evolved in nature. They are not merely

conceptual models, heuristic devices for thinking about evolution.

They give an actual analysis of the adaptive significance of morphology

that has been evolved by an actual group of animals.

Adaptive significance of existing and nonexistent

brachiopod form

The brachiopods, or lampshells, are another group of organisms that

have been analysed for adaptation by using the techniques of theoretical

morphology. Brachiopods are marine animals that superficially resemble

clams, but in fact are not molluscs at all. They belong to a group of

animals known as the lophophorates, as all of these organisms use

delicate tentacular feeding organs known as lophophores to strain food

particles out of the surrounding sea water; that is, they are filter feeders.

Although brachiopods are still present in today’s oceans, they were much
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more abundant in the past and are often referred to as the ‘shellfish of

the Palaeozoic’ by palaeontologists.

A theoretical morphospace of brachiopod shell form can be created

by using the same two geometric parameters that Raup devised for the

swimming ammonoids in the previous chapter: the whorl expansion rate

of the shell, W, and the distance of the aperture of the shell from the

coiling axis, D. The major difference between the shells of ammonoids

and brachiopods is that the brachiopods have two shells, or valves, that

are articulated together (much like clams) instead of just one shell, like

ammonoids. Anatomically, the two valves in a brachiopod shell are

termed the dorsal, or upper valve, and the ventral, or lower valve. Thus,

in order to characterize the geometry of a brachiopod shell, we have to

specify a separate W value for each of two valves in the shell (Fig. 5.3).

Brachiopods have shells that are very flat compared to the highly coiled

shells found in ammonoids, thus they have very high whorl expansion

rates and the dimensions of the morphospace shown in Figure 5.3

are scaled in logarithms, or orders of magnitude, of W.

Figure 5.3. A theoretical morphospace of hypothetical brachiopod shells.

The two morphological-trait dimensions are the dorsal and ventral whorl

expansion rates, W, of the two valves that comprise the shell.

Source: From McGhee (1980a).
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The reader will also note something else unusual in Figure 5.3. One

vertical row of ventral valves is shown on the left in the morphospace,

and two horizontal rows of dorsal valves are shown at the bottom,

that are not articulated with their corresponding opposite valve to

make a complete brachiopod shell (like all the other shells shown in

the morphospace). Why not? This is because the single valves shown

have whorl overlap, and whorl overlap must be absent in both valves

in order to articulate those valves together to form a functioning hinged

bivalved shell. The absence of shells with functioning hinged valves

in this region of the morphospace is an example of geometric constraint

in evolution; that is, it is geometrically impossible to created hinged

bivalved shells in this region of the morphospace. We shall consider

the concept of geometric constraint in evolution in more detail in

Chapter 7.

In the case of brachiopod shells, the values of W and D in both

dorsal and ventral valves must meet the geometric condition that the

magnitude of W < 1/D. Typically, brachiopod shells have dorsal values

of D of around 0.01 and ventral D values of around 0.1, which mean that

typical brachiopods cannot produce shells with ventral valves with

log W < 2 and dorsal valves with log W < 3 (Fig. 5.3). This region of

the morphospace is empty of brachiopods, not due to low or zero

adaptive potential, but due to the fact that it is impossible to form hinged

bivalved shells at all in this region of the morphospace. To illustrate

this impossibility graphically, two simulations are shown in the lower

left corner of the morphospace (Fig. 5.3). Inescapable geometry would

require the valves of the hypothetical shells to interpenetrate one another,

to occupy the same space at the same time, which is impossible.

In Figure 5.3 the first phase of a theoretical morphospace analysis of

shell morphology in biconvex brachiopods has been completed. To com-

plete the second phase, measurements were taken from the shells of

324 species of actual brachiopods, and the frequency distribution of those

shells was mapped into the morphospace (Fig. 5.4). The peak, or most

frequently used, shell form in the examined brachiopods has a dorsal-

valve log W ¼ 5, and a ventral-valve log W ¼ 3, and is thus inequivalved;

that is, the shells have flatter dorsal valves than ventral. The frequency

distribution of morphologies is positively skewed, with the majority of

brachiopod shells occurring in regions of low W magnitudes, but with

the distribution sloping outwards to the high magnitude regions of log W

values, ranging from 10 to 12. As we knew had to be the case, no bicon-

vex brachiopods are found with very low magnitudes of log W, such as
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one to two, because shells in this region of the morphospace are

geometrically impossible (Fig. 5.3).

Figure 5.4 gives the frequency distribution of actual brachiopod

shell morphologies within the spectrum of geometrically possible shell

forms (Fig. 5.3) that have been produced by nature in the long

evolution of the group. The last phase of the analysis is entered when

we ask: what, if anything, is the functional significance of this frequency

distribution? Actual brachiopods occupy only a limited region within

the theoretical continuum of potential shell geometries, that is, there

exist possible geometries that nevertheless cannot be found among

brachiopods in nature (compare Figs. 5.3 and 5.4). Is this chance? Or is

there a functional reason for the evolution of so many brachiopod shells

in the lower-left region of the morphospace (Fig. 5.4)?

Brachiopods are marine filter feeders. The animals pump outside

water into their shells, where any food material present in the water is

filtered out by the tentacles of the lophophore, and then the filtered water

is pumped back out of the shell. The larger the brachiopod’s lopho-

phore, the more water it can filter for food. The lophophore, however,

has to be contained within the protective shell of the animal.

Although brachiopods have evolved complex ways to fold up their

lophophores in order to pack big lophophores in small shells, there is

still a limit to what can be accomplished by folding. The best way to

create space within the shell for bigger lophophores is to grow a shell

that has a large internal volume relative to its external surface area.

The one three-dimensional geometry that has the smallest surface area,

and largest volume relative to its surface area, is the sphere.

Figure 5.4 illustrates the contoured frequency distribution of volume-

to-surface-area ratios for shell forms within the morphospace. The peak

of maximum volume-to-surface-area ratios is located in the lower left

region of the morphospace; that is, shell geometries in this region of the

morphospace have the largest volumes and smallest surface areas of any

shells in the morphospace. Comparing the topology of the frequency

distribution of real brachiopod shells within the morphospace and the

topology of the adaptive surface of volume-to-surface-area ratios

(Fig. 5.4) reveals a close correspondence between the two topologies.

The most abundant shell geometries found in the real brachiopods have

volume-to-surface-area ratios of 10 or greater, and the frequency of

occurrence in nature of real brachiopod shells with lower and lower ratios

of volume-to-surface-area becomes less and less (Fig. 5.4). The fact that

the frequency distribution peak is not exactly centred on the maximum

80 Analysing the role of adaptation in theoretical morphospaces



Figure 5.4. Comparison of the contoured frequency distribution of 324

species of actual brachiopod shell forms in theoretical morphospace (top

figure) with the contoured frequency distribution of volume-to-surface-area

ratios for shell forms within the morphospace (bottom figure). In the bottom

figure, an adaptive peak of maximum volume to minimum surface-area can

be shown to exist, which is very close to the frequency of form peak seen in

actual brachiopods.

Source: Data from McGhee (1980a).
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volume-to-surface-area ratio peak of 11, but is located slightly down-

slope, may indicate the additional geometric constraint effects of shell

hingeing in the real brachiopods (McGhee, 1980a).

Thus a major adaptive determinant in the evolution of shell form

in brachiopods is maximizing internal volume; that is, brachiopods

evolved shells to approximate a spherical form as closely as possible

within specific geometric constraints (McGhee, 1980a). As in our consi-

derations of the evolution of ammonoid form, the crucial point to be seen

in Figure 5.4 is that it gives a real adaptive surface and a real frequency

distribution of brachiopod shell forms that have evolved in nature. It is

not merely a conceptual model, a heuristic device for thinking about

evolution. It is an actual analysis of the adaptive significance of morpho-

logy that has been evolved by an actual group of animals.

Adaptive significance of existing and nonexistent

plant form

Thus far we have considered examples of theoretical morphospace

analyses of organic form in marine animals that swim, and marine

animals that are sessile on the sea bottom. Life is not confined to the

oceans, however, and not all multicellular life is animal. Numerous

innovative analyses of the adaptive significance of terrestrial plant forms

in theoretical morphospace have been conducted by Karl Niklas and his

colleagues (Niklas and Kerchner, 1984; Ellison and Niklas, 1988; Niklas,

1986, 1997a, 1997b, 2004).

Figure 5.5 gives just one example of several theoretical morpho-

spaces of plant form created by Niklas and his colleagues. The

hypothetical plant forms shown in Figure 5.5 were computer simulated

using a geometric model of plant form that has four parameters, two

probabilistic and two geometric. The first two parameters are the

probability that a branch will continue to grow once formed, and

the probability of branching of a leader branch, a branch that has

grown for at least two internodes. The second two parameters are

the branch angle, f, that a branch makes with the main plant axis when

it forms, and the leader-internode ratio, LIR, which is the ratio of the

lengths of the successive growth internodes of the branch (Ellison and

Niklas, 1988). Note that hypothetical plant forms in the upper-left

region of the morphospace are spindly and thin, with few branches,
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whereas hypothetical plant forms in the lower-right region of the

morphospace are bushy and thick (Fig. 5.5). Various hypothetical

intermediate plant morphologies can seen within the morphospace,

trending from the upper-left to the lower-right in the figure.

For each of the hypothetical plant geometries illustrated in Figure 5.5

it is possible to calculate the light-interception efficiency of that geometry.

Plants are photoautotrophic organisms � they harvest light, rather

Figure 5.5. A theoretical morphospace of hypothetical plants. The two

morphological-trait dimensions are the probability that a branch will con-

tinue to grow, versus the probability that the leader branch will bifurcate.

Two other morphological parameters in the model are here held constant

(i.e. f ¼ 45� and LIR ¼ 1.0; see text for discussion).

Source: From Ellison and Niklas (1988). Copyright � 1988 by the American

Journal of Botany and reprinted with the permission of the publisher.

Adaptive significance of existing and nonexistent plant form 83



than harvesting plankton or nutrients like the filter-feeding brachio-

pods we considered in the previous section. Therefore it is of major

importance to plants to have maximum photosynthetic surface areas

for the collection of light from the sun. But the efficiency with which

plants collect light is not just a simple function of total photosyn-

thetic surface area of the plant. They must also possess geometries that

have minimum shading of the photosynthetic surface areas of the plant

by other parts of the plant itself. The trick is to arrange the various

branches of the plant at different angles and orientations from one

another so as to minimize the amount by which the various branches

shade one another, and thus cut off the the sunlight from the photo-

synthetic surfaces of the shaded branch.

Six different permutations of the model parameters, and the adaptive

peaks and valleys of differing light-interception efficiencies of hypo-

thetical plant geometries produced by those geometric permutations,

are illustrated in Figure 5.6. The two horizontal dimensions of the

three-dimensional block diagrams shown are the morphological dimen-

sions of the theoretical morphospace given in in Figure 5.5, whereas the

vertical dimension of the block diagrams is the light-interception effi-

ciency of the plant geometries at the morphological coordinates within

the theoretical morphospace. In the three block diagrams on the right, the

branching angle f is equal to 30�, and in the three block diagrams on the

left f is equal to 45�. In the two block diagrams at the top, the leader-

internode ratio LIR is equal to 1.0, in the two middle block diagrams LIR

is equal to 0.75, and in the two bottom block diagrams LIR is equal

to 0.50. Computer simulated plant forms from selected regions in the

morphospace are also given (see also Fig. 5.5).

Figure 5.6 is an actual adaptive landscape of terrestrial plant form,

within the limits of the model that produced the theoretical morphospace

in Figure 5.5. Note that the altitudes of the adaptive peaks within

the landscapes become progressively higher, from the bottom land-

scapes to the top landscapes within the figure, in terms of the magnitude

of the light-interception efficiency index values found in each landscape.

This increase in the altitude of the adaptive peaks is a function of the

increase in the parameter LIR in the theoretical morphospace; as the

value of the leader-internode ratio increases, the branches progressively

become longer and the total plant becomes taller (see simulations

in Fig. 5.6). Note that, in general, hypothetical plants with high proba-

bilities of branching, and continued growth of those branches, are in the

adaptive valleys of minimum light-interception efficiency.
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One major limitation of the model producing the theoretical mor-

phospace in Figure 5.5 is that the plants have no leaves! Adding the

geometries and orientations of leaves to the branching model would

vastly increase its complexity. Yet still there exist many plants, both fossil

and living, that do indeed have no leaves and that are photosyntheti-

cally active over the entire surface of the plant. One such plant is the

living succulent Salicornia europaea, found in the salt marshes of

Figure 5.6. Adaptive peaks and valleys in the theoretical morphospace of

hypothetical plants given in Figure 5.5. The adaptive peaks represent

maximum light-interception efficiency by plant geometries in that region of

the morphospace. Computer simulated plant forms from selected regions

in the morphospace are indicated. Hypothetical plant forms that correspond

to actually occurring plant forms in Salicornia europaea during different

successional stages are indicated by letters; e indicates an early successional

morphology, m a middle successional morphology, l a late successional

morphology.

Source: From Ellison and Niklas (1988). Copyright � 1988 by the American

Journal of Botany and reprinted with the permission of the publisher.
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North America and Europe. Ellison and Niklas (1988) were interested in

the phenomenon of ecological succession, the sequential replacement of

one species by another following an ecological disruption of a plant

community, and its subsequent recovery to its initial state. Following the

disruption of a salt marsh community during a storm tide, Salicornia

europaea is often the first colonizer in the disrupted area, but is eventually

replaced by the return of the dominant marsh grasses. In contrast to

the usual ecological succession studies, which focus on the sequential

species replacements, Ellison and Niklas (1988) were interested in mor-

phological changes that occurred in the Salicornia europaea plants

themselves during the succession process. As Salicornia europaea is

leafless, its morphology can be accurately modelled by the branching

model alone.

Measurements taken from actual Salicornia europaea plants, obtained

during different successional stages, were plotted within the theoretical

morphospace by Ellison and Niklas (1988). The position of the early,

middle and late successional plant morphologies are given in Figure 5.6.

The early successional plants are quite bushy, with many branches having

small internodes (see the middle-left adaptive landscape in Fig. 5.6). In

contrast, middle and late successional plants are elongated, with many

fewer branches, and with longer internodes (see upper-right adaptive

landscape in Fig. 5.6). Ellison and Niklas (1988) have argued that these

morphological changes � and the movement of Salicornia europaea plant

morphologies across the adaptive landscapes in Figure 5.6 � are directly

related to the reduction in light availability to Salicornia europaea during

the successional process. As more and more individuals of the dominant

marsh grasses return to the disturbed area, they progressively shade

out the colonizer Salicornia europaea individuals. Early successional

individuals of Salicornia europaea have relatively low light-interception

efficiencies, but produce many seeds on their numerously-branched bushy

forms. Thus they concentrate on reproductive potential in the absence of

competition for light. Following the return of the marsh grasses, light

becomes a limiting resource, and Salicornia europaea individuals produce

geometries that have much higher light-interception efficiencies (Ellison

and Niklas, 1988).

One final example from the work of Karl Niklas addresses the

theoretical morphology of leaf shape and orientation in terrestrial plants.

Consider the helicospiral arrangement of leaves along a branch: number

the lowest leaf as the first leaf, the next leaf higher up along the branch as

the second leaf, and so on. The second leaf on the branch is usually
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oriented at an angle to the first leaf; that is, the second leaf is not directly

above the position of the first leaf on the branch. Farther along the

branch, however, we usually encounter a leaf, say the nth leaf, which is

directly above the position of the first leaf. We can then use the first leaf

and the nth leaf to define a phyllotactic period, a period that has two

descriptive components: the number of leaves in the period (in this

case, n) and the number of whorls or windings that the leaves make along

the branch in the period, which we can designate as w. Empirical

examination of enormous numbers of plants reveals that both n and w are

numbers in a Fibonacci sequence.

What is a Fibonacci sequence? The Fibonacci sequence is the

mathematical sequence of the Italian mathematician Leonardo Pisano

(‘Fibonacci’) who, in addition to introducing into Europe the numericals

we today call ‘arabic’, was concerned with breeding rabbits in the

year 1202. The solution to the problem of ‘how many pairs of rabbits

do I have?’ with each successive reproductive cycle turns out to be the

Fibonacci sequence, in which each number in the sequence is the sum of the

two previous numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . , and so

on, where any given number, a, at position p in the sequence is:

apþ1 ¼ ap�1 þ ap

where p is an integer of value of two or larger.

In the case of leaf arrangements, the values of w and n in many

actual plants are two numbers in the Fibonacci sequence that are not

immediately adjacent to each other, but rather are separated by a single

number within the sequence; that is:

w=n ¼ 1=2,1=3,2=5,3=8,5=13,8=21, . . . ,ap=apþ2:

This relationship is known as the phyllotactic fraction, and the ratio

of w/n for higher phyllotactic fractions, such as 8/21, 21/55, 34/89, and

so on, results in each leaf being arranged around the branch at an angle

of 137.5� to the previous leaf. This angle, 137.5�, is thus also known as

the Fibonacci angle.

It is generally assumed that leaves are arranged in Fibonacci angles

in order to minimize the shading of one leaf by another along the branch,

and thus to maximize the total photosynthetic area exposed to the sun

of the combined leaves of the plant. Using the analytical techniques of

theoretical morphology, Niklas (1997b) was able to show that this is

not always the case. In Figure 5.7 is given the phyllotactic morphospace

of Niklas (1997b), which illustrates the combined geometric effect of

Adaptive significance of existing and nonexistent plant form 87



both leaf arrangement and leaf shape on light-interception efficiency.

Using this morphospace of hypothetical leaf geometries, Niklas (1997b)

demonstrated that leaves arranged in Fibonacci angles to one another

along a branch do indeed produce the maximum light-interception

efficiency � but only if those leaves are long and slender (Fig. 5.7).

Figure 5.7. The phyllotactic morphospace of Niklas (1997b). The two

morphological-trait dimensions are the width/length ratio of leaves (y-axis

of the morphospace), and the divergence angle between leaves arranged

along a branch (x-axis). The vertical axis is the light-interception efficiency

(z-axis) of the geometric permutations of leaf shape and arrangement in the

morphospace. At the top of the figure are given the various leaf-divergence

angles produced by a series of phyllotactic fractions; note that the higher

fractions converge on the Fibonacci angle of 137.5�. Narrow, slender leaves

arranged in Fibonacci angles along branches have the highest light-

interception efficiencies; leaves with a nearly circular outline have much

lower efficiencies, even arranged in Fibonacci angles, due to overlapping leaf

outlines leading to shading.

Source: Artwork courtesy of K. J. Niklas. From Niklas (1997b); copyright

� 1997 by the University of Chicago Press and reprinted with the permission

of the publisher.
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In contrast, hypothetical plants with circular leaves may have leaf

arrangements which deviate significantly from the Fibonacci angle,

as leaf divergence angles of 137.5� convey only a slight increase in

light-interception efficiency (Fig. 5.7).

In summary, both Figure 5.6 and Figure 5.7 illustrate actual adaptive

landscapes, created using the analytical techniques of theoretical mor-

phology. The theoretical morphospace in Figure 5.6 is one for branching

geometries, and in Figure 5.7 is one for leaf geometries, but both have

been converted to adaptive landscapes by adding the dimension of light-

interception efficiency to the two morphological dimensions.

Simpson (1944, 1953) made the conceptual jump of modelling macro-

evolutionary phenomena in geological time on adaptive landscapes, as

discussed in Chapter 3. In the next chapter we shall actually analyse such

phenomena through the usage of theoretical morphospaces.
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Analysing evolutionary phenomena in
theoretical morphospaces

There is no necessary link between theoretical morphology and
adaptation . . . Theoretical morphology is about form and
possibility; adaptation is about function and efficiency in the realm
of the actual. Adaptation can certainly shape the occupation of
morphospace; but because the model underlying a morphospace
can produce nonfunctional possibilities, the morphogenetic process
itself is nonadaptive . . . the [model] parameters themselves cannot
be adaptive, only their values can.

Eble (2000, p. 524)

Analysing evolution in geological time

In Chapter 3 we saw that we could use the adaptive landscape concept

to conceptually model large scale evolutionary phenomena, macroevolu-

tionary phenomena that may involve thousands of species or operate

across millions of years of geological time. In this chapter we shall see

that the analytical techniques of theoretical morphology allow us to

actually analyse the adaptive significance of macroevolutionary phenom-

ena, and not simply to conceptually model those phenomena.

Analysing convergent evolution in theoretical morphospace

The geometry of the helix is ubiquitous in nature � an incredible number

of biological structures on all scales, from molecules to entire animals,

have evolved helical structures (just a few years ago, in 2003, we observed

the 50th anniversary of the discovery that the coding mechanism
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of life itself, DNA, has a helical structure). Within the Bryozoa, a group

of colonial marine animals, helical colonies have convergently, indepen-

dently, evolved in no less than six separate genera in distantly related

higher taxa, scattered across a span of time comprising some 400 million

years (Fig. 6.1).

McKinney and Raup (1982) created a mathematical model and

computer program for helical-colony form simulation, which they

then used to create a helical-byrozoan theoretical morphospace.

Figure 6.2 illustrates two dimensions of the morphospace, and the

spectrum of hypothetical helical-colony forms that can be produced

by varying the model parameter values ELEV, the rate of climb of the

helix, and BWANG, the angle between the central helical axis and

the filtration-sheet whorls of the colony. Note that as the value of ELEV

becomes larger, the helical shape of the colony becomes more elongate

and the colony’s filtrations-sheet whorls more stretched-out and less

overlapping. As the value of BWANG becomes larger, the filtration-sheet

whorls of the colony are oriented at higher and higher angles to

the central helix, until they eventually project out at right-angles from the

helical axis of the colony.

In Figure 6.3 are given the boundary polygons of measurement

data taken from seven different groups of actual helical bryozoans,

both extinct and alive, within the morphospace. Note the overlap-region

of the polygons in the centre of the figure: these bryozoans have not

only convergently evolved helical colonies, they have repeatedly evolved

helical colonies that have the same geometry, over and over again.

The computer simulation given in the upper right of the figure

illustrates this convergently evolved geometry.

Now note the four computer simulations given in Figure 6.4. These

simulations represent nonexistent colony morphologies; these four

regions of the morphospace are empty of bryozoans. Thus the theoretical

morphospace can show us not only what organic form nature has

produced over and over again, it can also reveal to us biological form that

is theoretically possible, but never produced by nature. Analysis of these

nonexistent colony morphologies reveals that they represent nonfunc-

tional geometries for the filter-feeding mode of life of marine bryozoans

(McKinney and McGhee, 2003). Colony geometries with very low values

of BWANG and ELEV have filtration-sheet whorls that are nested one

within another, and that extensively overlap one another (see Fig. 6.2).

These geometries inhibit water flow through the colony, and produce

dead-water zones in the colony centre. Colony geometries with very high
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Figure 6.1. Illustration of fossil and living bryozoans that have convergently

evolved helical colony forms. Figure 6.1A illustrates the central helical screw

of a Carboniferous species of Archimedes, where the delicate fronds of the

filtration-sheet whorls have been broken away. Figures 6.1B and 6.1C shows

two colonies in which the filtration-sheet whorls of Archimedes colonies have

been preserved, compressed into the sediment in Fig. 6.1B and preserved

within the infilling sediment in Fig. 6.1C. Figure 6.1D illustrates the central

helical screw of the Eocene species Crisidmonea archimediformis. Figures

6.1E and 6.1F illustrate two living genera of bryozoans with species having

helical colony geometries, the Australian Retiflustra cornea in Fig. 6.1E and

the North American Bugula turrita in Fig. 6.1F. Length of scale bars is 10

millimetres in Figs. 6.1A�6.1E, and one millimetre in Fig. 6.1F.

Source: From McKinney and McGhee (2003).
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values of BWANG have very poor filtration potential, as most water

flows through the colony without ever crossing the filtration sheet whorls.

Last, colony geometries with very high values of ELEV have the same

poor filtration potential, in that the filtration-sheet whorls are too

stretched-out (see Fig. 6.2), and much water passes through the colony

without being filtered for food.

In contrast, the convergently re-evolved colony form shown in

Figure 6.3 has the maximum efficiency in filtration potential � its

filtration-sheet whorls are oriented at an angle that best intersects

all water flow through the colony, without at the same time impeding

water flow. Its helical repeat-distance, a function of its ELEV value,

best spaces the filtration-sheet whorls out for maximum filtration

surface-areas with minimum areal overlap.

The analytical techniques of theoretical morphology allow us to

take the heuristic concept of convergent evolution on an adaptive

landscape (Fig. 3.1) and to apply it to the analysis of the evolution

Figure 6.2. A theoretical morphospace of hypothetical helical colony form

in bryozoans. The two morphological trait dimensions of the morphospace

are ELEV, the rate of climb of the helix, and BWANG, the angle between the

central helical axis and the filtration-sheet whorls of the colony. For

purposes of illustration, the dimensional axes are not arithmetically scaled.

Source: From Raup, McGhee and McKinney (2006), where the code for

producing these simulations may be found.
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Figure 6.3. Boundary data polygons of data taken from 208 helical

colony forms that have been evolved in seven different groups of marine

bryozoans. Computer simulations of existent colony form within the

morphospace are also illustrated: the simulation in the upper right illustrates

the morphology most frequently attained by convergent evolution, shown

by the overlapping boundary polygons of morphologies evolved in four

separate groups of bryozoans. The two simulations on the left and one

simulation in the lower right illustrate more rarely evolved bryozoan

morphologies (each present in only one species).

Source: From Raup, McGhee and McKinney (2006).
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Figure 6.4. Computer simulation of nonexistent helical colony forms

within the theoretical morphospace. Although these morphologies are

geometrically possible, they have never evolved as organic forms within

the bryozoans.

Source: From Raup, McGhee and McKinney (2006).
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of life (Figs. 6.3 and 6.4). In essence, the overlapping boundary

polygons of helical-colony morphologies evolved within the Bryozoa

in the past 400 million years, illustrated in Figure 6.3, are the apex

and upper slope regions of an adaptive peak of helical-colony form.

The three colony morphologies shown on the left margin and lower

right in Figure 6.3 represent the lower slope regions of the adaptive

peak � they function, but not as well as the peak morphology, and each

is only found in one species of bryozoan, respectively. And last, the four

computer simulations given in Figure 6.4 show us the colony geometries

that lie out on the flat plane of the adaptive landscape, the region of

nonfunctional helical colony forms. These actual convergent�evolution

relationships are schematically summarized in Figure 6.5.

Analysing iterative evolution in theoretical morphospace

In Chapter 3 we considered the phenomenon of iterative evolution,

in which a group of daughter species with very similar morphologies

repeatedly originate, one after another, from an ancestral species that in

itself may change very little in geological time. In iterative evolution

a similar evolutionary pathway repeated appears in an adaptive

landscape, from one region to another region, rather than the

evolutionary convergence on a similar morphology from multiple, and

different, regions within the adaptive landscape (Fig. 3.1).

Iterative evolution was particularly common in the extinct

ammonites. In Figure 6.6 are illustrated three separate groups of

Jurassic ammonites (the leioceratines, graphoceratines and sonniniids)

that repeatedly evolved descendant species with smooth shells,

having narrow umbilici and high whorl expansion rates, from ancestral

species that had ornamented shells with wide umbilici and low

whorl expansion rates. The ancestral species also all had shells with

wide, oval apertures, whereas the descendant species all evolved shells

with compressed, narrow apertures.

In Figure 6.7, the vectors represent morphological data taken from

four groups of Jurassic ammonites (the hammatoceratids have been

added to the three groups shown in Fig. 6.6), plotted in a theoretical

morphospace of ammonoid form. The dimensions of this morpho-

space are different from the W-D dimensions that we have used

previously in our analyses of the evolution of ammonite form

(Fig. 5.1), in that the parameter W has been replaced by S, the shape
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of the aperture of the shell. Raup (1967) modelled the aperture of

ammonoid shells as ovoid to circular in shape, where S is simply defined

as the ratio of the minimum axis of the aperture to the maximum axis.

In a hypothetical shell having a circular aperture, the minimum and

Figure 6.5. A schematic summary of the convergent evolution of helical-

colony forms within the Bryozoa. Six different genera of actual bryozoans,

starting from different morphological regions of the morphospace, have

convergently climbed the adaptive peak of maximum filtration efficiency

within the morphospace, and convergently re-evolved the colony geometry

illustrated in the top centre of the figure. The hypothetical colony forms

shown to the right and left of the centre simulation have very poor filtration

potentials, and have never evolved in real bryozoans.
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Figure 6.6. Iterative evolution of smooth-shelled ammonite species with

narrow umbilici and high whorl expansion rates (right side of figure) from

ornamented-shelled species with wide umbilici and low whorl expansion

rates (left side of figure) in Jurassic ammonites. Three separate iterative-

evolutionary sequences are illustrated: ammonites in the top row are

leioceratines, in the middle row are graphoceratines, and in the lower row

are sonniniids. Modified from ‘‘Iterative evolution of Middle Jurassic

ammonite fauna’’, by U. Bayer and G. R. McGhee, in Lethaia,

www.tandf.no/leth, 1984, volume 17, pp. 1�16. Copyright � 1984 by

Taylor & Francis AS and reprinted with the permission of the publisher.
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maximum axes have the same magnitude, and the value of S is thus 1.0.

Computer simulations of different shell forms in different S and D

regions of the morphospace are illustrated in Figure 6.7.

With each of the four data vectors shown, ammonites repeatedly

evolved descendant species in the low-S, low-D region of the morphospace

from ancestral shell morphologies in the high-S, high-D region of the

morphospace. This iterative pattern of evolution produces the four

Figure 6.7. Iterative morphological evolution in four separate groups of

Jurassic ammonites in theoretical morphospace. The morphological trait

dimensions of the morphospace are S, the shape of the shell aperture, and

D, the distance from the coiling axis to the aperture. The vectors within the

morphospace give the morphological range and evolutionary direction of

change in morphologies found in (1) sonniniid species, (2) hammatoceratid

species, (3) graphoceratine species, and (4) leioceratine species. All four

groups of ammonites iteratively moved from the high-S, high-D region of

the morphospace to the low-S, low-D region of the morphospace, as

illustrated by the vectors. Computer simulations illustrate the morphologies

present in select regions of the morphospace. Data from Bayer and McGhee

(1984).
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strikingly parallel evolutionary pathways seen within the morphospace.

The evolutionary pathways are not identical � the sonniniid and

hammatoceratid ammonite species started out in a higher-value S and D

region of the morphospace than the graphoceratines and leioceratines, and

they did not evolve shells with as low values of S that the grapho-

ceratines and leioceratines did � yet the parallelism is still uncanny.

What evolutionary mechanism could produce such a phenomenon?

In this case the actual analysis of iterative evolution of ammonite

morphologies in theoretical morphospace (Fig. 6.7) preceded the

construction of the adaptive-landscape conceptual model to explain

the phenomenon (Fig. 3.3), not vice versa! It turns out that the

ammonites in the high-S, high-D region of the morphospace are

deep-water, open-oceanic species, and the ammonites in the low-S,

low-D region of the morphospace are shallow-water, continental-shelf

species. Each of the iterative cycles of morphological evolution (Fig. 6.7)

were triggered by repetitive transgressive-regressive cycles of sea level

(Fig. 3.3), in which shallow-water shelf habitats repeatedly appeared

and disappeared. Each time the shallow-water shelf habitat appeared,

a deep-water species evolved a daughter species that invaded it

(Bayer and McGhee, 1984, 1985; McGhee, Bayer and Seilacher, 1991).

Analysing biodiversity crises in theoretical morphospace

Catastrophic losses of biodiversity have occurred many times in

the history of life on Earth. The five most severe losses of biodi-

versity in geological time are termed the ‘Big Five’: these are the

End-Ordovician, the Late Devonian (between the Frasnian and

Famennian Stages within the Late Devonian), the End-Permian

(which ended the Palaeozoic Era), the End-Triassic, and the

End-Cretaceous biodiversity crises (which ended the Mesozoic Era).

Three of the Big Five biodiversity crises were trigged by dramatic jumps

in the extinction rate of species in geological time: the End-Ordovician,

the End-Permian and the End-Cretaceous, which are also known

as periods of ‘mass extinction’ (Bambach, Knoll and Wang, 2004).

In contrast, the Late Devonian and End-Triassic biodiversity crises

were ecologically more complex, being triggered by a precipitous

decline in speciation rates operating in concert with elevated extinction

rates (McGhee, 1988; Bambach, Knoll and Wang, 2004). With the

notable exception of the End-Permian, the magnitude of biological
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diversity loss in each crisis has declined with geological time, indi-

cating a biosphere that is becoming more extinction resistant. Quite to

the contrary, the ecological disruption produced by each crisis has

increased with geological time, indicating a global ecosystem that

is becoming increasingly more interdependent and integrated (McGhee

et al., 2004). Outside the Big Five, other notable biodiversity crises

occurred in the Late Cambrian, End-Devonian, Mid-Carboniferous,

Early Eocene and the Pleistocene. Indeed, some would add the

current global loss of biodiversity, produced by human destruction of

habitat space, to the list as well.

Some of the most spectacular ‘boom and bust’ cycles of bio-

diversity increase and decrease in geological time are exhibited by the

ammonoids. These animals barely survived the Late Devonian,

End-Devonian, End-Permian biodiversity crises, but each time they

re-evolved new species following the crisis and eventually recovered

comparable biodiversities. However, they did not survive the End-

Cretaceous biodiversity crisis. The only even remotely similar cephalo-

pods with external shells that exist today are the species of the single

genus Nautilus, a close relative of the extinct ammonoids.

Analyses of the morphological effects of the Late Devonian,

End-Devonian and End-Permian biodiversity crises on ammonoid

evolution in theoretical morphospace have been conducted by Korn

(2000), Saunders, Work and Nikolaeva (2004) and McGowan (2004).

In both the Late Devonian and End-Devonian biodiversity crises, the

few genera that survived had geometries with very low values of D

(Fig. 6.8), located near the hydrodynamic-efficiency adaptive peak

in the left region of the morphospace (Fig. 5.2). Shells in this region

of the morphospace are involute, with small umbilici (simulation

given in Fig. 6.8). From such a slim survival margin, the ammonoids

explosively evolved new species post-crisis such that the diversity of

shell geometries seen in the later Famennian and the later Tournaisian

(Early Carboniferous) ammonoids is similar to that seen in the morpho-

space prior to the biodiversity crisis (Saunders, Work and Nikolaeva,

2004). In particular, the empty adaptive peak on the right in the

morphospace (Fig. 6.8) is quickly reinvaded.

In contrast, the two genera of ammonoids that survived

the End-Permian biodiversity crisis were located near both of the

maximum swimming-efficiency adaptive peaks in the morphospace

(cf. Figs. 6.9 and 5.2). Interestingly, the ammonoid genus near the

swimming-efficiency adaptive peak on the left, the polecanitid
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Figure 6.8. Morphospace position of the five ammonoid genera that

survived the Late Devonian biodiversity crisis (black points plotted in the

upper figure) and the two genera that survived the End-Devonian

biodiversity crisis (black points plotted in the lower figure) shown with

respect to the total morphological frequency distribution seen in Palaeozoic

ammonoids. All survivors are close to only one of the swimming-efficiency

peaks shown in Figure 5.2. Data from Saunders, Work and Nikolaeva

(2004).



Figure 6.9. Morphospace position of the two ammonoid genera that

survived the End-Permian biodiversity crisis (black points plotted in the

upper figure) shown with respect to the total morphological frequency

distribution seen in Palaeozoic ammonoids (data from Saunders, Work and

Nikolaeva, 2004). The lower figure shows, for comparison, the morpholo-

gical frequency distribution eventually re-evolved by post-crisis Triassic

ammonoids. Both of the two swimming-efficiency peaks shown in Figure 5.2

are reoccupied by ammonoids in the Triassic.

Source: Data from McGowan (2004).



Episageceras, did not survive long into the Triassic, and left no

descendants. All of the subsequently evolved Mesozoic ammonoids

were the descendants of the ammonoid that survived near the swimming-

efficiency adaptive peak in the right region of the morphospace � the

ceratitid Xenodiscus (Saunders, Work and Nikolaeva, 2004). Shells in this

region of the morphospace have moderate whorl overlap and wide

umbilici (simulation given in Fig. 6.9). Yet even so, subsequent new

species evolution in the later Triassic produced shell geometries that

reinvaded the adaptive peak on the left, such that the frequency

distribution of morphologies found in later Triassic ammonoids is similar

to that found in the Palaeozoic ammonoids (Fig. 6.9).

It is not clear why ammonoids with shell geometries near the

swimming-efficiency adaptive peak in the right region of the morpho-

space did not survive the Late Devonian and End-Devonion

biodiversity crises (Fig. 6.8), or why the surviving genus near the

adaptive peak in the left region of the morphospace following the

End-Permian biodiversity crisis (Fig. 6.9) died out, leaving no descen-

dants. These survival patterns may simply reflect the role of chance, or

historical contingency (Gould, 1989), in ammonoid morphological

evolution.

Of major importance, however, is the fact that following each of

the three biodiversity crises the few slim survivors subsequently

repopulated the empty regions of the morphospace. Two critical points

are revealed in the observed pattern of morphological evolution of

the ammonoids during periods of biodiversity crisis: one, the stability

of the adaptive landscape upon which the ammonoids evolved, and two,

the fact that ammonoids from very different phylogenetic lineages

convergently re-evolved the same shell geometries following the

biodiversity crisis. The two hydrodynamic-efficiency adaptive peaks

in ammonoid theoretical morphospace (Fig. 5.2) have thus continued

to exist for the 145 million year history of Palaeozoic ammonoid

evolution. Each time one of the peaks was vacated in a biodiversity

crisis, the surviving ammonoids subsequently reinvaded the empty peak

post-crisis, demonstrating the continued stability of the peak. Thus the

analysis of the actual pattern of morphological evolution exhibited

by the ammonoids in theoretical morphospace contradicts the expec-

tations of the Red Queen model of evolution on adaptive landscapes,

with its constantly moving adaptive peaks (as discussed in Chapter 2).

Likewise, the pattern of ammonoid evolution contradicts the

Strathmann (1978) model whereby adaptive peaks that are vacated
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during a biodiversity crisis remain empty following the crisis because

organisms in adjacent regions of the adaptive landscape have become

too specialized to reinvade the empty adaptive peak (as discussed

in Chapter 3).

The fact that ammonoids from very different phylogenetic lineages

convergently re-evolved the same shell geometries following each

biodiversity crisis argues against any strong effect of phylogenetic

constraint, at least in ammonoid evolution. We shall examine the concept

of phylogenetic constraint in more detail in Chapter 7. Suffice it here

simply to note that the highly involute-shelled ammonoid survivors

of the Order Goniatitida convergently re-evolved moderately involute

descendants following the Late Devonian biodiversity crisis (the

Order Clymeniida) and the End-Devonian biodiversity crisis (the Order

Prolecanitida), whereas the moderately involute-shelled survivors of

the Order Ceratitida convergently re-evolved highly involute-shelled

descendants, similar in geometry to the extinct Order Goniatitida,

following the End-Permian biodiversity crisis (Saunders, Work and

Nikolaeva, 2004; McGowan, 2004).

Analyses of the morphological effects of biodiversity crises in

theoretical morphospace have also been conducted with brachiopods

(McGhee, 1995). Interestingly, and analogous to the ammonoids,

the morphological response of brachiopods to the End-Permian and

End-Cretaceous biodiversity crises was very similar, even though very

different phylogenetic lineages are involved in these two crises, and

even though the crises are separated by some 180 million years of

geological time. In both cases a major loss of morphological

diversity occurs, though not near as severe as that seen in the ammonoids

(Figs. 6.8 and 6.9). The area extent of the morphological frequency

distribution of brachiopod shell geometries within the theoretical

morphospace shrank by 8.7% from the Permian to the Triassic, and by

10.2% from the Cretaceous to the Palaeogene (McGhee, 1995).

Moreover, the boundaries of the morphological frequency distributions

shift within the morphospace, and the direction of that shift was the same

for both biodiversity crises.

The outer boundary of the morphological frequency distributions

of brachiopod shell geometries before and after the End-Permian

biodiversity crisis are given in Figure 6.10. A major loss of brachio-

pods having highly inequivalved shells with very flat dorsal

valves (high dorsal W values) occurred from the Permian to Triassic

(Fig. 6.10). On the other hand, new brachiopod morphologies appeared

Analysing biodiversity crises in theoretical morphospace 105



in the Triassic with flatter ventral valves (higher ventral W values), such

that the median ventral valve position shifted from a value of the

logarithm of W of 3.16 to a value of 4.34, which is one of the few

statistically significant shifts (at the 1% level) in median brachiopod shell

form which occurs in geological time (McGhee, 1995). The end result of

the biodiversity crisis was that brachiopods made a major retreat from

dorsal high W regions of the morphospace but spread into ventral higher

W regions. That is, the entire frequency distribution of brachiopod shell

forms shifted down and to the right within the morphospace, toward the

region of equiconvexity, where shell forms with ventral and dorsal valves

Figure 6.10. Shifting morphological frequency distribution. The Permian

boundary of the morphological frequency distribution of brachiopod shell

geometries is given by the dashed line, and the Triassic boundary is given by

the solid line, relative to the contours of shell volume-to-surface-area ratios

for differing geometries within the morphospace (Fig. 5.4). Permian

brachiopods evolved shells far away from the adaptive peak of maximum

volume-to-surface-area ratios, whereas Triassic brachiopods retreated from

the morphospace region having shells with larger surface areas and smaller

volumes (arrows).

Source: Data from McGhee (1995).
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of equal W values are located. Post-extinction Triassic brachiopod shells

were more equibiconvex, and more centred on the slopes of the adaptive

peak of maximum volume-to-surface-area ratios within the morphospace

(Fig. 6.10). A similar shift within the morphospace occurs during the

End-Cretaceous biodiveristy crisis (McGhee, 1995).

From a functional perspective it appears that brachiopods in their

evolutionary history have repeatedly evolved less-than-optimum shell

forms (as discussed in Chapter 5) in the periods of geological time

between biodiversity crises. That is, periods of brachiopod morphological

diversification were characterized by expansion of the boundaries of their

morphological frequency distribution into regions of the theoretical

morphospace with shell forms having lower volume-to-surface-area ratios

(Fig. 6.10).

The biodiversity crises at the end of the Palaeozoic and Mesozoic are

evidenced by the retreat and contraction of the boundaries of the

morphological frequency distribution back to regions of the theoretical

morphospace characterized by shell forms with more equibiconvex,

spherical morphologies. Rather than vacating and reinvading a stable

adaptive peak, the evolutionary pattern seen in biodiversity crises in the

ammonoids (Figs. 6.8 and 6.9), the brachiopods diversified out into their

morphospace during good times, only to retreat back up the slopes of

their adaptive peak during times of crisis (Fig. 6.10).

Are there limits to the amount of movement a group of organisms

might potentially make in theoretical morphospace, other than those of

function? This is a question we shall take up in the next chapter, where we

shall examine the concept of evolutionary constraint.
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7

Evolutionary constraint in theoretical
morphospace

Our results strongly support the hypothesis that the essential
elements of organic structure are highly constrained by geometric
rules, growth processes, and the properties of materials. This
suggests that, given enough time and an extremely large number of
evolutionary experiments, the discovery by organisms of ‘good’
designs � those that are viable and that can be constructed with
available materials � was inevitable and in principle predictable.

Thomas and Reif (1993, p. 342)

Potential causes of empty morphospace

One surprising revelation of many actual theoretical morphospace

analyses is the degree to which the morphospace is empty. Empty

morphospace is not simply a conceptual model, a heuristic construct in

visualizing the potential evolution of life. It is an empirical reality, and

part of the power of theoretical morphospace analysis is the ability of this

type of analysis to reveal empty morphospace to us (McGhee, 1999,

2001a). The subsequent analysis of empty morphospace involves the

concept of evolutionary constraint, the concept that there are limits to the

spectrum of possible evolutionary change. We shall examine the potential

causes of evolutionary constraint in this chapter.

Some confusion exists at present concerning the concept of evolu-

tionary constraint, and the various types of constraint (see the reviews

of Maynard Smith et al., 1985; Antonovics and van Tienderen, 1991;

McKitrick, 1993; Schwenk, 1995; Blomberg and Garland, 2002; Cubo,

2004). One group of potential constraints has been variously called

developmental, architectural, fabricational, constructional, ontogenetic
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and morphogenetic. These have been variously contrasted with or

equated to phylogenetic constraints historical constraints, canalization

constraints and phylogenetic inertia. The resulting confusion has

prompted one set of reviewers to tongue-in-cheek propose ‘onto-

ecogenophyloconstraints’ to cover all concepts (Antonovics and van

Tienderen, 1991).

Even where the concept of constraint in evolution is accepted,

confusion often still exists as to the actual type of constraint in action.

For example, Ciampaglio (2002, p. 182) describes the fact that ‘bivalves

must have nonoverlapping whorls in order to achieve a functioning hinge’

(a fact that we considered in some detail in Chapter 5 with respect

to another group of bivalved organisms, the brachiopods) as an example

of developmental constraint; that is, animals with articulated bivalved

shells are constrained to occur only in the morphospace characterized

by shells with morphologies with whorls that do not overlap. It is

indeed true that bivalve molluscs, for example, are unable to develop

articulated shells with valves that have overlapping whorls, but not for

the reason that bivalve molluscs do not possess the genetic coding

needed to produce valves with overlapping whorls (phylogenetic

constraint) or that the morphogenesis of such a valve geometry is not

possible (developmental constraint). Instead, bivalve molluscs and

brachiopods cannot develop shells with valves with overlapping whorls

because it is geometrically impossible to articulate those two valves into

a bivalved shell (geometric constraint).

In this chapter I shall argue that four conceptually distinct types of

evolutionary constraint exist: geometric, functional, phylogenetic and

developmental. The first two constraints are extrinsic functions of the

laws of physics and geometry, whereas the latter two constraints are

intrinsic functions of the biology of specific organisms.

Modelling geometric constraint

In this chapter we shall see also that the analytical techniques

of theoretical morphology allow us to take a spatial approach to the

concept of evolutionary constraint. To explicitly define the concepts of

evolutionary constraint considered here, I shall use Venn diagrams

and set theory. A given biological form, f, may be described by a set of

measurements taken from that form. Each type of measurement, such

as length, width, or height, can be considered as a form dimension.
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The total set of the possible dimensions of form can be used to

construct a hyperdimensional space of possible form (Fig. 7.1). All

coordinate combinations within this space represent a universal set of

form, U. Some of the coordinate combinations within the total hyper-

space of form represent the set of geometrically possible forms: GPF ¼
{ f | f ¼ geometrically possible forms} (Fig. 7.2). Other coordinate combi-

nations within the total hyperspace represent the set of geometrically

impossible forms: GIF ¼ { f | f ¼ geometrically impossible forms}.

The regions of impossible and possible form within the total

hyperspace of form do not overlap one another; that is, a given set of

coordinates within the hyperspace cannot simultaneously represent

a possible geometry and an impossible geometry (Fig. 7.2). The sets of

form GIF and GPF are thus compliments of each other:

GIF [ GPF ¼ f j f 2 GIF or f 2 GPF
� � ¼ U,

GIF \ GPF ¼ f j f 2 GIF and f 2 GPF
� � ¼ �:

The boundary between the sets GIF and GPF is here designated as the

geometric constraint boundary (Fig. 7.2).

Figure 7.1. A theoretical hyperdimensional space of possible form

Each dimension of the space represents a morphological trait that may be

measured on a given biological form, f. All possible coordinate combi-

nations within the hyperdimensional space represent the set of all possible

biological forms. Although only eight dimensions are shown in this

schematic diagram, the dimensionality of an actual hyperspace of form

will be much larger.
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Modelling functional constraint

Within the region of geometrically possible forms there exists two sub-

regions: a region of forms that are functional in nature, and a region

of nonfunctional forms (Fig. 7.3), and the totality of these forms

represent the two sets FPF ¼ { f | f ¼ functional possible forms} and

NPF ¼ { f | f ¼ nonfunctional possible forms}. The word ‘nonfunctional’

is used here in the sense of lethal function; that is, possession of non-

functional form does not allow the organism to survive in nature.

The regions of functional and nonfunctional form within the region of

geometrically possible form do not overlap one another; that is, a given

set of coordinates within the geometrically possible region cannot

simultaneously represent a form that is both functional and nonfunc-

tional. Thus the sets of form FPF and NPF are compliments of each

other, and contained within GPF:

FPF [NPF ¼ f j f 2 FPF or f 2 NPF
� � ¼ GPF,

FPF \NPF ¼ f j f 2 FPF and f 2 NPF
� � ¼ �:

The boundary between the sets NPF and FPF is here designated as the

functional constraint boundary (Fig. 7.3).

Figure 7.2. Geometric constraints. Geometric constraint as the boundary

between the set of geometrically impossible forms (GIF) and the set of

geometrically possible forms (GPF) in the total hyperspace of form

dimensions (the universal set of form, U).

Source: From McGhee (2006).
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Modelling phylogenetic constraint

The concepts of geometric constraint and functional constraint are here

considered to belong to the class of extrinsic constraint, where extrinsic

constraints are those imposed by the laws of physics and geometry.

Extrinsic constraints exist whether any actual biological form encounters

them or not. A separate class of constraint is that of intrinsic constraint,

where intrinsic constraints are those imposed by the biology of a specific

organism. Instrinsic constraints do not exist in the absence of an actual

organism.

At least two conceptually different types of intrinsic constraint exist:

phylogenetic constraint and developmental constraint. In Figure 7.4,

phylogenetic constraint for species x is illustrated as the boundary

of the set of forms that are possible given the genetic coding present

in species x, the set PPFx ¼ {f| f ¼ phylogenetically possible forms for

species x}. Note that this set has boundaries that hypothetically may

cross the boundaries of both functional and nonfunctional possible

form (FPF and NPF), and the boundaries of both geometrically possible

and impossible form (GPF and GIF). Thus, while both sets FPF and NPF

are contained within the set GPF, the set PPFx is not:

PPFx 6� GPF, hence PPFx 6� FPF [NPF:

Figure 7.3. Functional constraints. Functional constraint as the boundary

between the set of nonfunctional possible form (NPF) and the set of func-

tional possible form (FPF) within the set of geometrically possible form

(GPF).

Source: From McGhee (2006).
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That is, species x may possess the genetic coding to produce func-

tional form, but it may also possess the genetic coding for nonfunctional

form. Hypothetically, species x may also possess the genetic coding

that could potentially produce coordinate combinations in the total

hyperspace of form dimensions that are geometrically impossible

(Fig. 7.4).

We can formally consider these three possibilities as set intersections:

PPFx \ FPF ¼ f j f 2 PPFx and f 2 FPF
� �

¼ potential existing form for species x,

PPFx \NPF ¼ f j f 2 PPFx and f 2 NPF
� �

¼ lethal form for species x,

PPFx \ GIF ¼ f j f 2 PPFx and f 2 GIF
� �

¼ developmentally impossible form:

Only the set intersection PPFx \ FPF represents genetic combinations

that will produce functional form in nature. Lethal mutations lie in the

set intersection PPFx \ NPF. The hypothetical possible intersection

PPFx \ GIF (i.e. genetic coding for forms that are impossible to develop)

is of interest as it leads us to the second intrinsic constraint, that of

development.

Figure 7.4. Phylogenetic constraints. Phylogenetic constraint for species x

as the boundary of the set of forms that are possible given the genetic coding

present in species x, (PPFx). Note that this set has boundaries that hypo-

thetically may cross the boundaries of both functional and nonfunctional

possible form (FPF and NPF), and the boundaries of both geometrically

possible and impossible form (GPF and GIF).

Source: From McGhee (2006).

Modelling phylogenetic constraint 113



Modelling developmental constraint

In Figure 7.5, developmental constraint for species x is illustrated as the

boundary between the two sets DPFx ¼ {f| f ¼ developmentally possible

forms for species x} and DIFx ¼ {f| f ¼ developmentally impossible

forms for species x}. The regions of developmentally possible and

developmentally impossible form within the region of phylogenetically

possible form for species x do not overlap one another; that is, a given set

of genetic codings cannot simultaneously produce a form that can and

cannot be developed. Thus DPFx and DIFx are complements of each

other and contained within PPFx:

DPFx [DIFx ¼ fj f 2 DPFx or f 2 DIFx
� � ¼ PPFx,

DPFx \DIFx ¼ fj f 2 DPFx and f 2 DIFx
� � ¼ �:

Note that although it is hypothetically possible for organisms to

possess the genetic coding for forms that are geometrically impossible

(PPFx \ GIF), it is developmentally impossible to produce these forms

(DPFx \ GIF ¼ �). Thus, unlike PPFx,

DPFx � GPF,

Figure 7.5. Developmental constraints. Developmental constraint for

species x as the boundary of the set of forms that are developmentally

possible for species x, (DPFx), and the set of forms that are developmentally

impossible for species x, (DIFx), within the set of forms that are

phylogenetically possible for species x, (PPFx).

Source: From McGhee (2006).
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as shown in Figure 7.5. Developmentally possible form must be both

phylogenetically possible and geometrically possible, but on the other

hand it can either be functional (DPFx \ FPF) or lethal (DPFx \ NPF).

That is,

DPFx 6� FPF:

Last, note that the set of developmentally impossible forms for

species x, DIFx, could hypothetically include forms that geometrically

impossible (DIFx \ GIF), forms that are geometrically possible

but nonfunctional (DIFx \ NPF), and forms that are both geomet-

rically possible and functional (DIFx \ FPF), but cannot be developed

(Figure 7.5).

For the programmer, the distinction between phylogenetic constraint

and developmental constraint in morphogenesis may be illustrated by two

analogous programming questions. (1) Phylogenetic constraint: is the

source code (i.e. the genetic coding) for the morphogenetic program

available? (2) Developmental constraint: will the program run, or will it

crash? That is, if the code is present we can potentially simulate the form,

otherwise we cannot. But, as every programmer knows, possessing the

code specifically written to produce a form does not necessarily mean

that the program will run on a particular computer, and that the form

can be simulated.

The theoretical morphospace characterization of the evolutionary

constraint concept developed here is summarized in Table 7.1. The

extrinsic constraint boundaries of geometric and functional constraint in

form hyperspace are absolute and do not vary in time. That is, the laws of

geometry and the physics of swimming are the same today as they were

100 million years ago. This is not true of intrinsic constraint boundaries.

Both phylogenetic constraint boundaries and developmental constraint

boundaries are intrinsic to the biology of specific organisms and, as

organisms evolve with time, their intrinsic constraint boundaries may

evolve as well.

Figure 7.6 summarizes the total effect of evolutionary constraint for

the development of form by species x within the total hyperspace of form

dimensions. The set of potentially existent form for species x, PEFx, is

thus constrained within the series of set intersections:

PEFx ¼ DPFx\PPFx\ FPF\GPF ¼ f j f 2 GPF and f 2 FPF
and f 2 PPFx and f 2 DPFx

� �
:

Modelling developmental constraint 115



Table 7.1. Theoretical morphospace characterization of the
evolutionary constraint concept developed in this chapter

I. Extrinsic Constraints (imposed by the laws of physics and geometry):
1. Geometric Constraint: the boundary between form sets GPF and

GIF.
2. Functional Constraint: the boundary between form sets FPF and

NPF.

II. Intrinsic Constraints (imposed by the biology of specific organisms):
1. Phylogenetic Constraint for taxon x: the boundary between form sets

PPFx and PIFx.
2. Developmental Constraint for taxon x: the boundary between form

sets DPFx and DIFx.

Figure 7.6. Potentially existent form. The set of potentially existent form for

species x, PEFx (black rectangle), constrained as the subset of developmen-

tally possible form for species x, (DPFx), phylogenetically possible form for

species x, (PPFx), functional possible form (FPF) and geometrically possible

form (GPF) within the total hyperspace of form dimensions (U).

Source: From McGhee (2006).
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Forms outside the region of the set intersections DPFx \ PPFx \ FPF \
GPF are not possible for species x, but they may be possible for species y,

with a different set of phylogenetically possible forms PPFy; that is:

DPFx \ PPFx \ FPF \ GPF 6¼ DPFy \ PPFy \ FPF \ GPF:

Thus intrinsic constraints will vary from taxon to taxon. Extrinsic

constraints do not, however, and all existent form must be in the set

FPF \ GPF.

This is not to say that the phenomenon of intrinsic constraint must

mean that each separate taxon occupies its own unique region of the total

hyperspace of form dimensions. Each taxon has its own unique

evolutionary history, thus it is highly unlikely that the set of forms

evolved by two taxa will be exactly alike. However, the phenomenon

of evolutionary convergence in form, which is extremely common in

nature, means that some forms function particularly well in particular

environments, and that these forms are repeatedly evolved in many

different taxa. That is, although the set of form DPFx 6¼ DPFy, the

phenomenon of evolutionary convergence in form means that, for many

separate taxa:

DPFx \DPFy ¼ fj f 2 DPFx and f 2 DPFy
� � 6¼ �:

This relationship is depicted by the Venn diagram given in Figure 7.7.

Analysing evolutionary constraint in theoretical

morphospaces

The analytical techniques of theoretical morphology actually allow us

to explore the boundaries of geometric, functional, phylogenetic and

developmental constraint within the total hyperspace of form dimensions

by the construction of theoretical morphospaces (Fig. 7.8). Theoretical

morphospaces are produced without any measurement data from real

organic form. They are not only independent of existent morphology,

they also can be used to produce nonexistent morphology. Such

morphospaces exist in the absence of any measurement data (as opposed

to empirical morphospaces, which are data dependent; see the discussion

in McGhee, 1999, pp. 22�26). As such, theoretical morphospaces

are topological spaces (for a discussion of pre-topological spaces in

the analysis of biological form, see Stadler et al., 2001; Stadler and

Stadler, 2004).
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The dimensionality of a theoretical morphospace will always be less

than the total hyperspace of form dimensions (Fig. 7.8); indeed, one of

the goals of theoretical morphospace analysis to to create a morphospace

with the lowest dimensionality possible while still capturing the essential

aspects of the biological form under consideration (McGhee, 1999,

pp. 18�22). However, the boundaries of the theoretical morphospace can

hypothetically cross all of the evolutionary constraint boundaries

(Fig. 7.8); that is, potentially we can actually map these boundaries

within the theoretical morphospace for a given set of actual organisms.

Mapping geometric constraint boundaries

In this section we shall consider two examples where geometric constraint

boundaries (Fig. 7.2) have actually been mapped within theoretical

morphospaces for two separate groups of organisms, the brachiopods

(multicellular animals) and the foraminifera (unicellular eukaryotes).

We have encountered the brachiopod shellfish previously in Chapter 5

Figure 7.7. Venn diagram of the phenomenon of evolutionary convergence.

Convergent form (shaded rectangle) in species x and species y is the set

intersection DPFx \ DPFy; that is, these forms are developmentally possible

for both species.
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(Figs. 5.3 and 5.4). There we examined a theoretical morphospace

designed to simulate the spectrum of possible form that potentially could

be found in actual biconvex brachiopods; that is, brachiopods with shells

in which both the dorsal and ventral valves are convex (Fig. 5.3).

In their long evolutionary history the brachiopods actually have

evolved shell geometries that are much more diverse than just biconvex

forms. In the past, particularly in the Palaeozoic, numerous brachiopod

species evolved shells in which one of the valves, dorsal or ventral, is

essentially flat or lid-like. Other species evolved shells in which one of the

valves is concave, where the curvature of the valve is actually recessed

within that of the opposing valve. In order to simulate these more

complicated shell geometries with the logarithmic spiral model we must

abandon the geometric parameter W, the whorl expansion rate, that we

used in Chapter 5 to simulate both ammonoid and brachiopod shell

forms (for a mathematical demonstration of the truth of this statement,

see the discussion in McGhee, 1999, pp. 119�123). Instead, we simply

switch to the geometric parameter a, the tangent angle of the logarithmic

spiral, that we considered previously in Chapter 4 (Fig. 4.4). A new

Figure 7.8. Boundaries of a hypothetical theoretical morphospace within

the total hyperspace of form dimensions. Note that although the area of the

theoretical morphospace (i.e. the dimensionality of the morphospace) is less

than that of the total hyperspace of form, the boundaries of the theoretical

morphospace may cross all the boundaries of form constraint within the

total hyperspace.

Source: From McGhee (2006).
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theoretical morphospace for brachiopod shell form is illustrated in

Figure 7.9, in which not only biconvex shells may be simulated (lower

left corner of Fig. 7.9) but also shell geometries with planar to concave

dorsal valves (upper left corner of Fig. 7.9), and shell geometries with

planar to concave ventral valves (lower right corner of Fig. 7.9).

We have in fact already encountered a geometric constraint boundary

in our earlier consideration of brachiopod shell form � that of the

boundary between the region of morphospace in which whorl over-

lap is absent in the valves of the shell, and that of the region of

Figure 7.9. A theoretical morphospace of brachiopod shell form, with

a computer-produced spectrum of both biconvex and nonbiconvex shell

forms. The two morphological-trait dimensions are the tangent angles, a, of
the dorsal and ventral valves of the shell.

Source: From McGhee (1999).
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morphospace in which whorl overlap is present (Fig. 5.3). That is, we

saw in Chapter 5 that is geometrically impossible to create hinged

bivalved shells in which whorl overlap is present in either one or both of

the valves.

In the new morphospace of a-parameters (Fig. 7.9), whorl overlap

occurs when the a-value of the valve is less than or equal to 70�, if the
D-value of the valve is equal to 0.01 (which is typical for brachiopod

shells; see Chapter 5). The geometric constraint boundary between the

region of possible brachiopod form (geometries with no whorl overlap)

and the impossible region of brachiopod form (geometries with whorl

overlap) is illustrated in Figure 7.10. The computer simulation in the

left margin of Figure 7.10 illustrates the geometry produced when a is

equal to 70� in the dorsal valve, and a is equal to 80� in the ventral valve,

in a hypothetical brachiopod shell in the whorl overlap region

of the morphospace. The computer simulation in the left margin of

Figure 7.10 illustrates why it is impossible to articulate two valves

together to form a bivalved shell if whorl overlap is present in either

valve � the whorls would have to interpenetrate one another; that is,

portions of the two separate valves would have to occupy the same space

at the same time, which is geometrically impossible.

Interestingly, when we consider the total spectrum of hypo-

thetical brachiopod shell form (Fig. 7.9) another geometric constraint

boundary appears that was not apparent when we considered only

the potential spectrum of biconvex shell form (Fig. 5.3). That is, it is

impossible to form a bivalved shell if a is negative in both valves. Both such

valves would have convex inner surfaces and concave outer surfaces. The

computer simulation in the right margin of Figure 7.10 illustrates the

geometry of a hypothetical shell with a dorsal valve having an a-value
of �70� and a ventral valve having an a-value of �70�. In essence,

the entire region of negative a-coordinates in both valves within the

morphospace maps out a region where the hypothetical brachiopod

shells that have been turned ‘inside-out’, and thus are geometrically

impossible (Fig. 7.10).

The triangular line surrounding the shaded region labelled ‘potential

brachiopod morphospace’ in Figure 7.10 is an actual geometric constraint

boundary, a real demonstration of a boundary between the set of forms

GIF and GPF in Figure 7.2. Thus the techniques of theoretical

morphospace analysis can actually map geometric constraint boundaries,

rather than simply thinking of such boundaries in a hypothetical and

heuristic sense.
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A second quick example of mapping an actual geometric constraint

boundary within theoretical morphospace is illustrated in Figure 7.11,

from the work of Berger (1969). Figure 7.11 illustrates a theoretical

morphospace designed to simulate the spectrum of form found in

the tiny shells, called tests, of marine foraminifera. The foraminifera

are unicellular organisms, passively floating in the world’s oceans,

Figure 7.11. Illustration of an actual geometric constraint boundary within

a theoretical morphospace of computer-produced foraminiferal test form.

The ‘forbidden range’ region of the morphospace is the region where the

dimensional parameter coordinates would produce foraminiferal tests whose

chambers no longer overlap, or even touch, one another and are thus

geometrically impossible test forms.

Source: Modified from Berger (1969). Copyright � 1969 by SEPM (Society

for Sedimentary Geology) and reprinted with permission.
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that develop intricate test forms composed of small spherical chambers,

which grow discretely and are sequentially added to one another. The two

morphological-trait parameters of the morphospace are the chamber

ratio, which measures the relative placement of the chambers formed

in each whorl, and the overlap ratio, which measures the extent to

which one chamber overlaps the geometry of the previously formed

chamber.

Note that the upper-left region of the morphospace is designated

as a ‘forbidden range’ within the spectrum of hypothetical foraminiferal

test forms (Fig. 7.11). Examining the spectrum of computer-simulated

foraminiferal tests within the morphospace, you can see that the degree to

which the chambers within the tests overlap one another decreases as you

move from the lower-right corner of the morphospace to the upper-left

corner; that is, as the values of the geometric parameters chamber

ratio and overlap ratio decrease. The ‘forbidden range’ region of the

morphospace is the region where the dimensional parameter coordinates

would produce foraminiferal tests whose chambers no longer overlap,

or even touch, one another. That is, a hypothetical foraminiferal test

having a chamber ratio of two, and an overlap ratio of one, would be

composed of a series of small chambers that are floating independently in

space, unconnected to one another, and thus is a geometrically impossible

test form.

These are but two examples of the actual mapping of geo-

metric constraint boundaries in theoretical morphospace using real

organisms. Further computer simulation of the evolutionary processes

suggest that ‘evolutionary mode, tempo and direction may often be the

result of constraints inherent in the geometry of the organism’ (Swan,

1990, p. 223), yet at present the role of geometric constraint in shaping

evolution is largely unrecognized, and unexplored, by evolutionary

biologists.

Mapping functional constraint boundaries

Figure 7.3 is a Venn diagram illustrating the relationship between the

set of forms that function in nature, FPF, and the set of forms that do

not, NPF. We can take a more spatial representation of these sets by

realizing that the forms within these sets not only are characterized

by the binary attributes of function versus nonfuction, but that they

also have dimensional coordinates (which are unspecified in a simple
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Venn diagram representation of the concept of FPF versus NPF). That is,

the forms contained within the sets FPF and NPF do not necessarily

occur in a single region of the total hyperspace of form, and that those

regions are not necessarily contiguous. Figure 7.12 gives a hypothetical

spatial realization of the Venn diagram in Figure 7.3. Note the

nonoverlapping regions of functional possible form and nonfunctional

possible form in Figure 7.12; that is, the spatial representation preserves

the set configurations:

FPF [NPF ¼ f j f 2 FPF or f 2 NPF
� � ¼ GPF,

FPF \NPF ¼ f j f 2 FPF and f 2 NPF
� � ¼ �,

that we outlined earlier in the chapter. Viewing Figure 7.12 from a

landscape or geographic perspective, we have a large continent of

functional possible form, and a few smaller islands of functional possible

form, sitting in an ocean of nonfunctional possible form in the

hyperspace region of geometrically possible form. Within the large

region of functional possible form exists a large lake of nonfunctional

possible form, totally surrounded by the region of functional possible

form. Of course, these regions could themselves be expressed precisely as

subsets of either FPF or NPF by adding the additional information of

Figure 7.12. A spatial representation of the sets of functional possible form

(FPF) and nonfunctional possible form (NPF) in the geometrically possible

region of form (GPF) of the total hyperspace of form. Note that the spatial

distribution of the two sets of form do not overlap, thus preserving the

property FPF \ NPF ¼ �.
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their spatial coordinates to their subset designations, but that is not the

point of the present discussion.

Although it is theoretically possible that all of the forms found in the

spatial regions of functional possible form are of equal adaptive value, we

know that that possibility is highly unlikely. Some of the functional

possible forms will function better, having a higher adaptive value, than

others. Continuing our landscape reasoning, we can contour the adaptive

value of differential forms within the spatial regions of functional possible

form. Thus, in Figure 7.13, we see that three mountains exist on the

continent of functional possible form, surrounded by lowlands and low-

lying islands of functional possible form. In Figure 7.13 we have simply

reinvented the adaptive landscape, where the adaptive peaks and slopes

give the set of forms FPF and the flat adaptive plane contains the set of

forms NPF (Fig. 7.14).

In Chapters 5 and 6 we considered multiple examples of the actual

spatial mapping of adaptive surfaces and of the actual spatial bound-

aries of the frequency of form found in real organisms, in theoretical

morphospaces. We examined real adaptive peaks occupied by real

ammonoids, brachiopods, terrestrial plants, bryozoans and so on.

Figure 7.13. A spatial representation of differing degrees of the adaptive

value of forms within the region of functional possible form (FPF )

Dark-shaded rectangles represent the FPF regions with the best adapted

forms, lighter-shaded regions contain less well-adapted forms, and

nonshaded regions contain the least adapted forms within the region of

functional possible forms.
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Very importantly, however, we saw that the techniques of theoretical

morphospace analysis actually allow us also to create and examine

nonexistent forms, and that the geometries and functional properties of

these nonexistent forms can be used to analyse nonfunctional spatial

regions of empty morphospace. Thus the techniques of theoretical

morphospace analysis can actually map functional constraint boundaries,

a real demonstration of the boundaries between the set of forms NPF and

FPF in Figure 7.12, as well as the mountains and lowlands seen within

FPF in Figures 7.13 and 7.14.

Analysing intrinsic constraints

The analytic techniques of theoretical morphology are particularly

powerful when applied to extrinsic constraints, those of geometry and

function. The analysis of intrinsic constraints, those imposed by the

biology of specific organisms, is more difficult and often is more the

assessment of a series of probabilities within theoretical morpho-

space, rather than a deterministic demonstration of geometrically

possible versus impossible, or functional versus nonfuctional, regions of

morphospace.

Figure 7.14. An adaptive landscape where the adaptive peaks and slopes

give the set of forms FPF and the flat adaptive plane contains the set of

forms NPF.
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We shall consider two actual examples of the analysis of the question

of intrinsic constraint in this section. First, let us return to the helical

bryozoan colonies that we considered in Chapter 6. We saw that is it

possible to create a theoretical morphospace of helical colony form

(Fig. 6.2) that allowed us to computer simulate actual geometries found

in existent bryozoan colonies (Figs. 6.1 and 6.3), as well to simulate

helical colony geometries that have never been evolved by bryozoans

(Fig. 6.4), even though they are geometrically possible.

Figure 7.15 illustrates one of the forms, f, that clearly belongs to the set

of geometrically possible forms, GPF, yet nevertheless has never been

evolved in nature and thus is located in a region of morphospace that is

empty of bryozoans (Fig. 6.4). Why have the bryozoans never evolved

this elegant form? Two possibilities immediately arise; first, the form may

be nonfunctional and its nonexistence is due to extrinsic functional

constraint. That is, the form is a member of the set of forms GPF that do

not belong to the set FPF:

GPF nFPF ¼ f j f 2 GPF, f =2 FPF
� �

:

Figure 7.15. A nonexistent bryozoan helical colony form, f, from the

theoretical morphospace of helical colony form discussed in Chapter 6.

The computer simulation illustrates the fact that the form is geometrically

possible (i.e., f 2 GPF). The nonexistence of the form in nature may be

because it is maladaptive (functional constraint, f 62 FPF) or because the

Bryozoa do not possess the genetic coding necessary to develop the form

(phylogenetic constraint, f 62 PPF(Bryozoa)).
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Alternatively, we can hypothesize that the form functions just fine, but

that it is impossible for the bryozoans to evolve it due to constraints

intrinsic to the bryozoans: either phylogenetic constraint, in that the

genetic coding necessary for producing the form is not present in the

bryozoan genome:

FPFnPPF Bryozoað Þ ¼ fj f 2 FPF, f =2 PPF Bryozoað Þ� �
,

or that the genetic coding is present, but that it is developmentally

impossible for the bryozoans to develop the form:

PPF Bryozoað ÞnDPF Bryozoað Þ ¼ ffj f 2 PPF Bryozoað Þ,
f =2 DPF Bryozoað Þg:

The intrinsic constraint hypothesis for the nonexistence of the

form f in Figure 7.15 can be refuted in two ways, one deterministic

and the other probabilistic. Functional analyses demonstrate that the

nonexistent form f possesses aspects of geometry that are unrealistic

as fluid-filtering geometries for filter-feeding organisms (as discussed

in Chapter 6; see McGhee and McKinney, 2000; McKinney and McGhee,

2003). This is the easiest approach to refuting a hypothesis of

intrinsic constraint: by demonstrating that the constraint is extrinsic.

However, for the sake of heuristic argument, let us imagine at this

point that we cannot demonstrate in this case that the form f does not

belong to the set of FPF. We can still argue that the nonexistence of

form f is not due to phylogenetic constraint even in the absence of the

deterministic proof that the form is nonfunctional.

Phylogenetic constraints are best analysed within the framework

of phylogenetic hypothesis construction (McKitrick, 1993; Schwenk,

1995). Cladistic (phylogenetic) analyses reveal that helical colony

geometries have convergently, independently, evolved (see Chapter 6) in

widely separate regions of the total cladogram for the Phylum Bryozoa

(McKinney and McGhee, 2003). That is, the extinct species of the

helical bryozoan genera Archimedes and Chrisidmonea belong to two

separate Orders within the Class Stenolaemata, thus they are only

distantly related to one another. The extant species of the helical

bryozoan genera Bugula and Retiflustra are even more distantly related,

in that they belong to an entirely different Class of bryozoans, the

Gymnolaemata. Thus the genetic coding permitting the development

of helical colony forms must be present near the very base of the

cladogram of the bryozoans, near the evolution of the phylum Bryozoa
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itself in the early Palaeozoic, and thus had to be present some 495 million

years ago.

Thomas and Reif (1993) have argued that, given enough evolutionary

time and an extremely large number of evolutionary experiments, the

evolutionary discovery of the spectrum of functional morphologies

obtainable by a group of organisms is essentially inevitable. The repeated

convergent evolution of certain helical morphologies by the bryozoans

(Fig. 6.3), but not others (Fig. 6.4), corroborates this argument. On

probabilistic grounds one can further argue that if the observed

nonexistent colony form f (Fig. 7.15) was functional, the bryozoans

would surely have discovered it since the genetic coding necessary for

producing helical colony forms has been present for some 495 million

years of bryozoan evolution. That is, its nonexistence is not due to

intrinsic phylogenetic or developmental constraints within the phylum

Bryozoa.

Are we to conclude then that phylogenetic or developmental

constraints do not in fact exist? Not at all � let us consider a second

example of the analysis of empty morphospace with respect to the

question of intrinsic constraint. In Chapter 6 we considered the mor-

phological effects of biodiversity crises in the evolution of the ammonoids

in theoretical morphospace. The ammonoids survived the Late Devonian

biodiversity crisis (Fig. 6.8) and the End-Permian biodiversity crisis

(Fig. 6.9), but they did not survive the End-Cretaceous biodiversity

crisis, becoming totally extinct some 65 million years ago. However,

a distantly related group of swimming cephalopods with external

shells, the nautilids, did survive the End-Cretaceous event and are alive

today.

An early study that examined the differential evolutionary fates of the

ammonoids and nautilids within theoretical morphospace is that of Ward

(1980). In the Cretaceous, the ammonoids and nautilids inhabited

distinctly different regions of morphospace, with very little overlap in

the spectrum of morphologies found in the two groups of swimming

cephalopods (Fig. 7.16). Obviously, as the ammonoids go extinct at the

end of the Cretaceous, the region of morphospace formerly inhabited by

these animals is vacant in the early Cenozoic. Of interest is the region of

morphospace inhabited by the nautilids during the subsequent Cenozoic,

following the demise of the ammonoids (Fig. 7.16).

Ward (1980) found that a very interesting shift in the frequency

distribution of nautilid morphologies occurs in theoretical morphospace

following the extinction of the ammonoids (Fig. 7.16). Values of D
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Figure 7.16. Contoured frequency distribution of shell forms found in

Cretaceous ammonoids and nautilids (top figure), and in Cenozoic nautilids

(bottom figure), in Raup’s theoretical morphospace of cephalopod shell

forms discussed in Chapters 4 and 5. In the top figure, the nautilid frequency

distribution is on the left, and ammonoid shell forms are the much larger

frequency distribution on the right. Following the extinction of the

ammonoids, the nautilids shifted their distribution downwards from a

peak at S ¼ 1.15 to S ¼ 0.9, shown by the vertical vectors in the bottom

figure. The fact that Cenozoic nautilids never invaded the large empty region

of the morphospace, previously occupied by ammonoids, is indicated by the

horizontal vectors and question mark.

Source: Data from Ward (1980).



remain about the same, but many more nautilids evolved with lower

values of S in the Cenozoic than were present in the Cretaceous. The

peak, or mode, of the morphological frequency distribution also exhibits

this shift, moving from a position of S equal to about 1.15 in the

Cretaceous to a position of S around 0.9 in the Cenozoic (Fig. 7.16).

What does this mean? More nautilids have moved into the region of

morphospace that had previously been occupied by the ammonites!

Ward (1980, p. 32) does not think that this pattern is coincidence, and

suggests that ‘the terminal Cretaceous extinction of ammonites may have

opened up new opportunities for nautilid evolution during the Tertiary,

because Tertiary nautilids are dominated by moderately compressed,

hydrodynamically efficient shell shapes which were rarely present among

Jurassic and Cretaceous nautilids, but common among ammonites.’

Ward (1980) noted, however, that the region of ammonite morphospace

which has been successfully invaded by nautilids is very small compared

to the former total range of form exhibited by the ammonites.

Now let us consider this evolutionary phenomenon from an opposite

perspective. In fact, the great majority of theoretical morphospace

once occupied by the ammonoids (see Fig. 7.16) was vacated when

the ammonoids became extinct, and remains empty today. Why? If the

nautilids were able to successfully invade the lower-S regions of the

morphospace once the ammonoids became extinct, why have they not

been able to also invade the vastly larger higher-D regions of empty

morphospace that remain empty to this day?

On probabilistic grounds one can argue that the inability of

the nautilids to evolve morphologies present in the empty region of

morphospace is due to intrinsic phylogenetic constraint. First, it is clear

that shell forms in this region of the morphospace belong to the

set of functional possible forms, FPF, for swimming ectocochleate

cephalopods as they were successfully utilized by the ammonoids for the

greater part of the Palaeozoic and the entire Mesozoic. Second, the

nautilids have had 65 million years to evolve these forms, yet they have

not. Reasoning from Thomas and Reif (1993), we know the morphologies

in the empty region of morphospace are functional and we know the

nautilids have had a long span of evolutionary time to discover them,

thus we should conclude that the re-evolution of these morphologies

would be inevitable. Thus it is extraordinary that this region of the

morphospace continues to remain empty, and argues for the action
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of another type of constraint other than the extrinsic constraint of

function.

The extinct ammonoids had long, eel-like bodies, encased in narrow

shells with numerous whorls. Often their eel-like bodies extended in a

narrow tube a full revolution back into the shell, as we can see in their

fossil shells that the living chamber is typically over 360� in length

(Saunders, Work and Nikolaeva, 2004). In contrast, the nautilids have

short, thick bodies, encased in broad shells with few whorls. The living

chamber of the shell containing their bulbous bodies is typically very

short, less than 180� in length. The phylogenetic legacy of the bodies

and organ systems of these two groups of cephalopods is very different.

It is also very ancient: you have to go back in time to the early Palaeozoic,

over 400 million years, to find the most recent common ancestor of

these two groups of superficially similar swimming cephalopods.

The probability is thus high that the nautilids simply do not possess

the genetic coding necessary to produce the shell morphologies found in

the empty region of the morphospace (Fig. 7.16). These shell geometries

are fundamentally at variance with the shape and organ distribution

of the nautilid body itself, and the 400-million-year-old phylogenetic

legacy of the nautilids would have to undergo a radical reorganization in

order to allow the animals to utilize these shell forms. These shell

morphologies are unattainable by the nautilids due to constraints

imposed by the specific biology of the nautilids themselves; that is, by

intrinsic constraint.

Last, the concept of empty morphospace and its analysis can

even be extended to the field of community ecology. Mack (2003) has

conducted an interesting comparative analysis of plant communities

in which he argues that the phenomenon of ‘absent life forms’ in some

communities is due to phylogenetic constraint, in that the resident plant

species are unable to produce these ecological (and morphological) types.

He has further argued that the relative success of invasive, alien species

in many cases is a function of their ability to produce the forms absent

in the native plant communities. Thus the analytic techniques of

theoretical morphology might be applied to the analysis of the spectrum

of ecomorphologies present in communites, and that the detection of

‘absent life forms’ within a community may provide a clue for pre-

dicting the potential success of alien invasive species in such communities

(Mack, 2003).
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Modelling the evolution of intrinsic constraints

The boundaries of the extrinsic constraints of geometry and function

in form hyperspace are absolute and do not vary with time. That is,

the laws of geometry and the physics of flying or swimming are the

same today as they were 100 million years ago. This is not to say that

local physical changes in the universe do not occur, changes that may

alter the local conditions determining functional versus nonfunctional

form. For example, the atmosphere of Mars four thousand million

years ago was much thicker and denser than at present. Thus the type of

morphology that could have functioned as a powered flying organism on

Mars in the early history of the planet cannot possibly be functional

in the thin atmosphere present on the planet today; that is, much more

wing surface area would be necessary to produce lift in the current

Martian atmosphere. But within the period of time in the evolution of

the universe within which the physical conditions of the universe are such

that life can exist, the boundaries of the total sets of form GIF versus

GPF, and FPF versus NPF, do not change within the universal set

of form U.

This is not true of the boundaries of intrinsic constraints. Intrinsic

constraints are imposed by the specific biology of specific organisms and,

as organisms evolve in time, the boundaries of their intrinsic constraints

must evolve and change as well within the total sets of geometrically

possible form, GPF, and functional possible form, FPF.

As we did previously in our considerations of possible spatial

distributions of the boundaries of the sets FPF and NPF (Figs. 7.12

and 7.13), let us consider possible spatial and temporal distributions

of the boundaries of the phylogenetically possible set of forms for a group

of organisms of lineage x, or PPF(x), as those boundaries might

change in time, t. If we consider three time intervals, t1, t2 and t3,

we then can designate three sets of phylogenetically possible form for

lineage x:

PPF x, t1ð Þ ¼ ffj f ¼ phylogenetically possible forms

for lineage x at time 1g,
PPF x, t2ð Þ ¼ ffj f ¼ phylogenetically possible forms

for lineage x at time 2g,
PPF x, t3ð Þ ¼ ffj f ¼ phylogenetically possible forms

for lineage x at time 3g:

134 Evolutionary constraint in theoretical morphospace



Let us now explore some of the possible evolutionary changes that

might occur in the boundaries of these three sets. In this modelling

section, we shall consider only the possible changes in the boundaries of

PPFx that theoretically might occur within the boundaries of the larger

set of functional possible form, FPF. Although it is theoretically possible

that the set PPFx could have boundaries that hypothetically cross the

boundaries of both functional and nonfunctional possible form (FPF and

NPF in Fig. 7.4), and even the boundaries of geometrically possible and

impossible form (GPF and GIF in Fig. 7.4), it is only within the set

intersection PPFx \ FPF that existent form can potentially be found,

depending upon the boundaries of the set of developmentally possible

forms for lineage x, DPFx (Fig. 7.6), a condition that we shall consider in

more detail in Chapter 8. A key feature of the concept of phylogenetic

constraint is there may exist functional possible form that cannot be

attained by a group of organisms purely due to constraints imposed by its

own phyletic legacy, thus from a theoretical morphospace analytical

perspective, we are looking for empty regions of FPF morphospace that

might be due to the action of this constraint.

One common evolutionary phenomenon is that of diversification,

where an original ancestral species radiates into a clade of new species

descendants. We can model morphological diversification as the process

of the expansion of the boundaries of the phylogenetically possible region

of form within form hyperspace for a genetic lineage with time (Fig. 7.17).

In Figure 7.17, the region of form, the spectrum of morphologies, that are

phylogenetically possible for lineage x at time t1 is quite small. With the

evolution of new genetic coding with time, this initial region of

phylogenetically possible form is modelled as expanding within the

form hyperspace. That is, at time t3 the lineage x possesses the genetic

coding needed to produce morphologies that were not possible for that

lineage at time t1; regions of morphospace that were outside the

boundaries of the set of forms PPF(x, t1) are now within the boundaries

of the set of forms PPF(x, t3). A hypothetical phylogenetic tree for

lineage x is given in Figure 7.17, which represents a possible observable

pattern of speciation in the fossil record that corresponds to the modelled

expansion of the lineage’s boundaries of phylogenetically possible form

within the form hyperspace. Note that in this model of diversification, the

genetic legacy of the lineage is conserved, such that the sets of possible

form are nested within one another:

PPF x, t1ð Þ � PPF x, t2ð Þ � PPF x, t3ð Þ:
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An opposite phenomenon to that of diversification is a genetic

bottleneck, in which genetic legacy is lost and the spectrum of

morphologies seen within a lineage becomes more restricted with time.

We can model a genetic bottleneck as a contraction of the region of

phylogenetically possible form for lineage x within form hyperspace with

time (Fig. 7.18). Regions of morphospace that were within the boundaries

of the set of forms PPF(x, t1) are now outside the boundaries of the set

of forms PPF(x, t3), and morphologies that were once present within

Figure 7.17. Evolutionary expansion. Upper figure: spatial representation

of the hypothetical evolutionary expansion of the region of phylogenetically

possible form for lineage x in the region of functional possible form (FPF ),

from time-interval one (PPF(x, t1)) to time-interval three (PPF(x, t3)).

Lower figure: a hypothetical phylogenetic tree of speciation events within

lineage x, where the morphological diversification of the lineage’s species

corresponds to the expansion of the lineage’s PPFx in the form hyperspace

(upper figure).
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the lineage are no longer possible for that lineage to produce as the

genetic coding necessary to produce them has been lost. A hypothetical

phylogenetic tree for lineage x, corresponding to the modelled contrac-

tion of the lineage’s boundaries of phylogenetically possible region of

form within the form hyperspace, is given in Figure 7.18. Note that in this

model of a genetic bottleneck, genetic legacy and morphological diversity

is lost, such that:

PPF x, t1ð Þ � PPF x, t2ð Þ � PPF x, t3ð Þ:

Figure 7.18. Evolutionary contraction. Upper figure: spatial representation

of the hypothetical evolutionary contraction and bottleneck of the region of

phylogenetically possible form for lineage x in the region of functional

possible form (FPF), from time-interval one (PPF(x, t1)) to time-interval

three (PPF(x, t3)). Lower figure: a hypothetical phylogenetic tree of

speciation events within lineage x, where the loss in morphological diversity

of the lineage’s species corresponds to the contraction of the lineage’s PPFx

in the form hyperspace (upper figure).

Modelling the evolution of intrinsic constraints 137



In both the model of morphological diversification (Fig. 7.17) and

diversity loss (Fig. 7.18), the temporal boundaries of the phylogenetically

possible region of form for lineage x are shown as centred and

symmetrical. We can model the phenomenon of an evolutionary trend

by introducing asymmetry into the models. In Figure 7.19, the

boundaries of the phylogenetically possible region of form for lineage x

are shown as moving from one region in the form hyperspace to another,

Figure 7.19. Evolutionary trends (Part 1). Upper figure: spatial representa-

tion of a hypothetical evolutionary trend in the location of the region of

phylogenetically possible form for lineage x in the region of functional

possible form (FPF), from time-interval one (PPF(x, t1)) to time-interval

three (PPF(x, t3)). Lower figure: a hypothetical phylogenetic tree of

speciation events within lineage x, where the trend in the morphologies of

the lineage’s species corresponds to the trend in the location of the lineage’s

PPFx in the form hyperspace (upper figure).
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and not just symmetrically expanding or contracting. A hypothetical

phylogenetic tree for lineage x, representing a possible observable

pattern of speciation in the fossil record that corresponds to the modelled

movement of the lineage’s boundaries of phylogenetically possible

form within the form hyperspace, is given in Figure 7.19.

The model of an evolutionary trend shown in Figure 7.19 entails both

the evolution of new genetic novelties and the loss of genetic legacy.

Regions of morphospace that were outside the boundary of the set of

forms PPF(x, t1) are now within the boundary of the set of forms

PPF(x, t3); that is, the lineage at time t3 now possesses the genetic

coding to produce morphologies that were impossible for the lineage to

produce at time t1. On the other hand, note that the model also indicates

that regions of morphospace that were within the boundary of the set of

forms PPF(x, t1) are now outside the boundary of the set of forms

PPF(x, t3), and morphologies that were once present within the lineage

are no longer possible for that lineage to produce as the genetic coding

necessary to produce them has been lost (as seen in the hypothetical phylo-

genetic tree for the lineage). That is, the evolutionary trend is modelled

as the sequential overlapping of the temporal sets of form such that:

PPF x, t1ð Þ \ PPF x, t2ð Þ 6¼ � and PPF x, t2ð Þ \ PPF x, t3ð Þ 6¼ �,

but that eventually the trend produces the condition:

PPF x, t1ð Þ \ PPF x, t3ð Þ ¼ �,

where the original set of form PPF(x, t1) is no longer available and

genetic legacy has been lost. Only set PPF(x, t3) exists at time t3.

The loss of genetic legacy is not a necessary condition of modelling an

evolutionary trend. In Figure 7.20 an evolutionary trend is modelled in

which genetic legacy is conserved, in that the trend is produced by the

asymmetrical expansion of the boundaries of phylogenetically possible

form for lineage x in form hyperspace, rather than the symmetrical

expansion of these boundaries as modelled in Figure 7.17. As in the

model of morphological diversification, the sets of form shown in

Figure 7.20 meet the condition:

PPF x, t1ð Þ � PPF x, t2ð Þ � PPF x, t3ð Þ:

A hypothetical phylogenetic tree for lineage x, representing a possible

observable pattern of speciation in the fossil record that corresponds

to the modelled asymmetrical expansion of the lineage’s boundaries

Modelling the evolution of intrinsic constraints 139



of phylogenetically possible form within the form hyperspace, is given

in Figure 7.20. To a palaeontologist, the phylogenetic tree illustrated in

Figure 7.19 looks much more realistic than that shown in Figure 7.20.

In Chapter 3 we considered the morphological evolution of the horse

family, which the palaeontologist George Gaylord Simpson modelled

in an adaptive landscape format back in 1953 (Fig. 3.5). Modern

members of the horse lineage (Equinae) possess only a single toe in the

Figure 7.20. Evolutionary trends (Part 2). Upper figure: spatial representa-

tion of a hypothetical evolutionary trend produced by the asymmetrical

expansion of the region of phylogenetically possible form for lineage x

in the region of functional possible form (FPF), from time-interval one

(PPF(x, t1)) to time-interval three (PPF(x, t3)). Lower figure: a hypo-

thetical phylogenetic tree of speciation events within lineage x, where the

trend in the morphologies of the lineage’s species corresponds to the trend

in the asymmetrical expansion of the lineage’s PPFx in the form hyperspace

(upper figure).
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forelimb and are quite large animals, whereas ancestral animals in

the horse lineage (Hyracotheriinae) back in the Eocene had four toes

in the forelimb and were very small. There exist no small, four-toed

members of the horse family today, thus does this mean:

PPFðEquidae, TodayÞ \ PPFðEquidae, EoceneÞ ¼ �,

and that the genetic coding necessary to produce small, four-toed animals

has been lost, as modelled in Figure 7.19? Certainly the observed

phylogenetic tree of morphological evolution within the horse family is

much more similar to that shown in Figure 7.19 than 7.20.

Or has the genetic legacy of the ancient Eocene members of the

horse family been conserved in modern day horses? Charles Darwin

himself was fascinated with morphological atavisms, which he termed

‘reversions to long-lost characters’. He was particularly interested in the

mysterious appearance of stripes of different fur-colour on the legs

and shoulders of many breeds of modern living horses, ponies and

asses and speculated in his book, On the Origin of Species, that the

original ancestor for these equids was striped like the zebra and that

the random reappearance of stripes in modern equids reflected a

‘reversion’ to this primitive ancestral morphology: ‘For myself, I venture

confidently to look back thousands on thousands of generations, and I

see an animal striped like a zebra, but perhaps otherwise very differently

constructed, the common parent of our domestic horse, whether or not it

be descended from one or more wild stocks, of the ass, the hemionus,

quagga, and zebra’ (Darwin, 1859, p. 167). In essence, before the science

of genetics was founded, Darwin (1859) considered these morphological

reversions to be evidence for the conservation of genetic legacy within the

horse family.

In this alternative view, the absence of small, four-toed members of the

equid lineage today is due to functional constraint, rather than

phylogenetic constraint. Under this hypothesis, the ancient Eocene

equid browsers have been ecologically displaced by other browsing

animals during the span of the Cenozoic, transforming the phylogenetic

tree shown in Figure 7.20 into the phylogenetic tree shown in Figure 7.19

by functional constraint. That is, the modern day equids still possess

the genetic legacy to produce Eocene-type morphologies, but these

ancient browsing-equid morphologies are no longer functional in the

modern world.

Could modern horses re-evolve four-toed miniature morphologies?

This is a question that ultimately can only be answered by the detailed
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analysis of the genome of modern horses; it is a theoretical question

for the empiricist and experimentalist to consider. From a theoretical

perspective, is the re-evolution of four-toed miniature equid morphol-

ogies any less probable than the re-evolution of fish-like fins for

swimming in land-dwelling tetrapods? Yet we know that the latter has

indeed occurred, twice no less, in the convergent re-evolution of such

morphologies in ichthyosaurs and porpoises (Fig. 3.1).

Let us consider one last theoretical morphospace model of a hotly-

contested evolutionary phenomenon proposed by the palaeontologist

Stephen Jay Gould: the ‘pruned bush’ model for the evolution of

morphological disparity. In this model, Gould (1989, 1991) proposed that

the spectrum of morphological disparity, the numbers of different types

of morphologies present, in Cambrian arthropods was much greater

than that seen in the Arthropoda today. With the passage of time, he

proposed that more and more ancestral morphologies have been lost, and

thus that the phylogenetic tree for the Arthropoda resembles a bush,

rather than tree. That is, rather than a tree with ever more branches, and

hence morphological diversity, increasing and expanding from the distant

past to the present, the tree of life for the Arthropoda is more like a bush

that has been progressively pruned, with many branches at its base back

in the Cambrian but with only a few extending upward in time to the

present.

In order to produce such a model in a theoretical morphospace format,

one can consider the case where the phylogenetically possible region

of form for a lineage actually fragments in form hyperspace with time,

rather than expanding (Fig. 7.17), contracting (Fig. 7.18), or shifting

(Figs. 7.19 and 7.20). In such a model, genetic legacy is of necessity lost

(Fig. 7.21), such that:

PPF x, t1ð Þ � PPF x, t2ð Þ � PPF x, t3ð Þ,
as in Figure 7.18. However, in a spatial represention, the sets of

phylogenetically possible form PPF(x, t2) and PPF(x, t3) are composed

of different spatial subsets of form within the form hyperspace that are

not spatially contiguous (Fig. 7.21), similar to our previous spatial

consideration of the single sets of functional and nonfunctional possible

form, FPF and NPF, that may have multiple spatial subsets in form

hyperspace (Fig. 7.12).

Figure 7.21 illustrates the resultant ‘pruned bush’ hypothetical

phylogenetic tree of speciation events within lineage x, where the loss

of ancestral morphologies, and the fragmentation of the morphological
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distribution of the lineage’s species, corresponds to the fragmentation of

the lineage’s PPFx in the form hyperspace. In essence, rather than

experiencing a single genetic bottleneck (Fig. 7.18), the evolving

morphological lineage x is broken up by a series of bottlenecks

(Fig. 7.21). The applicability of such a model to the evolution of

life, or its frequency of occurrence in the evolution of life, remains

Figure 7.21. Evolutionary fragmentation. Upper figure: spatial representa-

tion of the hypothetical fragmentation of the region of phylogenetically

possible form for lineage x in the region of functional possible form (FPF ),

from time-interval one (PPF(x, t1)) to time-interval three (PPF(x, t3)).

Lower figure: a hypothetical phylogenetic tree of speciation events within

lineage x, where the loss of morphologies, and the fragmentation of the

morphological distribution of the lineage’s species, corresponds to the frag-

mentation of the lineage’s PPFx in the form hyperspace (upper figure).
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controversial to this day (see discussions in Conway Morris, 1998 and

McGhee, 1999).

Evolutionary constraint and the phenomenon

of convergent evolution

The analysis of the astonishing number of convergently evolved

morphologies seen in animals and plants is a major research focus in

the evolutionary sciences, but the further implications of the phenomenon

is also the subject of philosophical, even religious, discussion (Conway

Morris, 2003). For example, the best-known evolutionary essayist of the

twentieth century, the Harvard palaeontologist Stephen Jay Gould,

was fond of a philosophical thought experiment of his own that he

called ‘replaying life’s tape’ (Gould, 1989). That is, consider the history of

the evolution of life on Earth to be similar to a video tape of a popular

movie. Then imagine what would happen if you could take a copy of the

video tape and rewind it to a point early in the movie, erasing every-

thing on the tape that happened after that point, and then rerun the tape

to see what happens a second time. Will the historical sequence of events

in the evolution of life in the second rerun of the tape resemble

the original? Or will evolution take radically different pathways in the

second rerun, producing animal and plant forms totally unlike those of

the original? Gould argued strongly for the second scenario: ‘any replay

of the tape would lead evolution down a pathway radically different from

the road actually taken . . . the diversity of possible itineraries does

demonstrate that eventual results cannot be predicted at the outset. Each

step proceeds for cause, but no finale can be specified at the start,

and none would ever occur a second time in the same way, because any

pathway proceeds through thousands of improbable stages’ (Gould,

1989, p. 51).

Gould’s (1989) view of the evolution of life as totally unpredictable,

totally at the whim of historical contingency, is directly contradicted

by the phenomenon of convergent evolution. Let us return to the oft-cited

amazing convergence of form seen in the evolution of the cartilaginous

fish, the bony fish, the reptiles and the mammals, that we considered

in Chapter 3 (Fig. 7.22). In essence, evolution has indeed ‘replayed the

tape of life’ four times in the production of fast-swimming oceanic

organisms � and has repeatedly come up with the same morphological

solution! The phenomenon of convergent evolution demonstrates to us
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that evolutionary pathways are highly constrained, and thus are, in

fact, in principle predictable (Thomas and Reif, 1993). The degree to

which evolution is predictable is currently under debate, with

some proposing a view of predictability in evolution that is radically

different from Gould’s: the view that the detailed analysis of convergent

evolution might one day allow biologists to construct a ‘periodic table of

life’, similar to the ‘periodic table of elements’ of the chemists. In contrast

to western evolutionary thought, the idea that constraint might result in

periodic (convergent) biological systems has a long history in Russian

science (Popov, 2002).

From a modelling perspective in theoretical morphology, how is

the convergent evolution of form shown in Figure 7.22 produced?

The cartilaginous, chondrichthyan fish and the bony, actinopterygian

fish exhibit a very similar spectrum of morphologies. However, each

group does possess some unique morphologies not found in the

other, such as manta-ray morphologies in the chondrichthyans and

flounder-fish morphologies in the actinopterygians. We can thus spatially

Figure 7.22. Convergent morphologies. Convergently evolved streamlined,

fusiform swimming morphologies in the cartilaginous fish (chondrichthyan

shark, top), in the bony fish (actinopterygian swordfish, second down), in

the reptiles (an ichthyosaur, third down), and in the mammals (a porpoise,

fourth down).

Source: Animal sketches redrawn from Funk and Wagnall (1963).
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represent the sets of phylogenetically possible morphologies for the

two groups as broadly, but not totally, overlapping in form hyperspace

(Fig. 7.23). Likewise, we can represent the sets of phylogenetically

possible forms available to the reptiles and mammals as broadly, but not

Figure 7.23. Modelling convergence. A spatial representation of a Venn

diagram representation of the convergent evolution of form in chondrichth-

yan fish, actinopterygian fish, reptiles, and mammals, illustrated in Fig. 7.22,

in the region of functional possible form (FPF). The shaded regions in the

upper diagram illustrate the intersection of the fish morphological sets

PPF(Chondrichthyes) and PPF(Actinopterygia), and the intersection of

the tetrapod morphological sets PPF(Reptilia) and PPF(Mammalia),

but shows no intersection of the four sets. The lower diagram illustrates

the convergent evolution of fish-like morphologies by the Reptilia and

Mammalia, where the black region of the form hyperspace corresponds

to the set intersections PPF(Chondrichthyes) \ PPF(Actinopterygia) \
PPF(Reptilia) \ PPF(Mammalia).
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totally, overlapping in form hyperspace (Fig. 7.23). In general, however,

we consider fish to be fish and land animals to be land animals, and

the two groups to be morphologically distinct. That is, we might be

tempted to conclude, given their very different ecologies and genetic

legacies, that:

PPFðChondrichthyesÞ [ PPFðActinopterygiaÞ \ PPFðReptiliaÞ
[ PPFðMammaliaÞ ¼ �:

We know, however, that astonishingly this is not the case (Fig. 7.22).

We know that the following intersections actually exist:

PPFðChondrichthyesÞ \ PPFðActinopterygiaÞ \ PPFðReptiliaÞ
\ PPFðMammaliaÞ 6¼ �:

One possible evolutionary pathway to bring about the intersection

of these four morphological sets in form hyperspace is illustrated

in Figure 7.23. Here the boundary of the set PPF(Reptilia) and

the boundary of the set PPF(Mammalia) are shown to have expanded

into the region of form hyperspace occupied by the previously existent

set intersection PPF(Chondrichthyes) \ PPF(Actinopterygia). This

hypothesis concludes that first the reptiles, and then the mammals,

have separately and independently evolved new genetic coding that allow

them to produce the convergent morphologies.

This possibility is not the only one, however. All of the land tetrapods

are the descendants of the ancient lobe-finned, sarcopterygian fish

(Fig. 7.24). An alternative evolutionary scenario to Figure 7.23 is illustra-

ted in Figure 7.25. Here we begin with the two morphologically similar,

but not totally overlapping, fish-form sets PPF(Actinopterygia) and

PPF(Sarcopterygia) in form hyperspace. The evolution of the tetrapods

from the sarcopterygian fish (Fig. 7.24) is modelled as the expansion

of the boundaries of the phylogenetically possible set of forms originally

available to the sarcopterygians to include the region of form hyper-

space that contains existent tetrapod morphologies (Fig. 7.25), creating a

new morphological set PPF(Tetrapoda). Although later tetrapods

actually develop morphologies that only occur in the shaded region

of the spatial representation of the set PPF(Tetrapoda), and not

the total set PPF(Tetrapoda), the convergent evolution of fish-like

morphologies by the reptiles, and then the mammals, is now simply

modelled as the reactivation of their ancient genetic legacy from the
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sarcopterygians, and not the evolution of new genetic coding, as in

Figure 7.23. Which model, Figure 7.23 or 7.25, is correct? As before, in

our considerations of horse evolution, this is a theoretical question for

the empirical geneticists and experimentalists to consider. It may well

be that a considerable amount of convergent morphological evolution is

the result of convergent developmental mechanisms in organisms that are

distantly related (Wray, 2002).

The phenomenon of convergent evolution means that there are

a limited number of ways of making a living in nature, a limited number

of ways of functioning well in any particular environment. The

direction of evolution is highly constrained: no matter where you

begin your journey on an adaptive landscape, if you evolve to be a

active-swimming oceanic animal you will wind up in the same region of

the landscape; that is, you will converge on the same morphological

solution (Fig. 7.22). Contrary to Gould’s (1989) dictum that ‘biological

evolution has no predictable destination’, I predict with absolute

confidence that if any large, fast-swimming organisms exist in

the oceans of Europa � far away in orbit around Jupiter, swimming

under the perpetual ice that covers their world � then they will

have streamlined, fusiform bodies; that is, they will look very similar

to a porpoise, an ichthyosaur, a swordfish, or a shark (Fig. 7.22).

Figure 7.24. A cladogram of the evolutionary relationships of the sarcop-

terygian fish and the tetrapods.
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In connexion with the present discussion, the existence of such a hypo-

thetical organism would provide direct evidence for the modelling

scenario shown in Figure 7.23 as it would represent convergent evolution

in an extraterrestrial, Europan, lifeform independent of the origin of

life on Earth.

Figure 7.25. An alternative spatial representation of the convergent

evolution of fish-like morphologies in the tetrapods

At time t1 (upper figure) only the morphological sets for the bony fish,

PPF(Actinopterygia), and the lobe-finned fish, PPF(Sarcopterygia), are

in existence. At time t2 (middle figure), the evolution of the tetrapods from

the lobe-finned fish is represented as an expansion of the boundaries

of the original morphological set PPF(Sarcopterygia) to create the new set

PPF(Tetrapoda). At time t3 (bottom figure) the convergent evolution of

actinopterygian-like morphologies is represented as simply movement within

the existent set PPF(Tetrapoda), where the shaded region represents the

realized, existent tetrapod morphologies within the total set of phylo-

genetically possible morphologies for the tetrapods.
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Is the concept of phylogenetic constraint

of heuristic value only?

Considering all the possible temporal shifts in the boundaries of the set

PPFx within the set FPF discussed in the previous section, from

expansion (Fig. 7.17) to contraction (Fig. 7.18) to shifting (Figs. 7.19 and

7.20) and to fragmentation (Fig. 7.21), one might conclude that anything

is possible, given enough evolutionary time. That is, that the concept of

phylogenetic constraint is an interesting way of thinking about how the

evolutionary process might occur, but that it is impossible to use the

concept in the actual analysis of evolution and thus that the concept is of

heuristic value only. This question regularly appears in the works of

evolutionary biologists, from the simple statement that the constraint

concept is ‘central to current perceptions of the evolutionary process, but

operationally, it is difficult to apply’ (Schwenk, 1994, p. 251) to the

rhetorical question: ‘phylogenetic constraint in evolutionary theory: has

it any explanatory power?’ (McKitrick, 1993, p. 307). On the other hand,

other researchers have extended the concept of phylogenetic constraint to

modelling ecological phenomena, and not just morphological (Cattin

et al., 2004).

Theoretical morphospace techniques offer the powerful possibility of

actually using the concept of phylogenetic constraint as an analytical

tool. The discipline of theoretical morphology is in its infancy (McGhee,

1999, 2001a), yet already we have a very possible example of phylogenetic

constraint in operation: the inability of the nautilid cephalopods to

invade the empty morphospace previously occupied by the ammonoid

cephalopods (Fig. 7.16). The morphologies present within the empty

region of morphospace clearly belong to the set of functional possible

form, FPF, a fact the ammonoids clearly demonstrated in their long

evolutionary history. These currently nonexistent forms would function

just as well today as they did for the ammonoids in the Palaeozoic, why

then do they remain nonexistent? Why have not the related swimming

cephalopods, the nautilids, evolved these functional forms in the

65 million years following the ammonoids demise? It is difficult to

escape the conclusion that phylogenetic constraint is in operation, and

that natural selection is unable to overcome this constraint. McKitrick

(1993, p. 307) defines phylogenetic constraint to be ‘any result or

component of the phylogenetic history of a lineage that prevents an

anticipated course of evolution in that lineage’. In Figure 7.16 the

technique of theoretical morphospace analysis has actually demonstrated
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an anticipated course of evolution for a lineage that has been prevented.

Under the expectations of the theory of natural selection, the functional

forms present in the empty region of morphospace should have been

discovered by the nautilids in the past 65 million years. Yet they have not.

There remains one final constraint that might produce empty regions

within functional possible morphospace, that might produce the

nonexistence of forms that nevertheless clearly belong to the set intersec-

tion PPFx \ FPF (Fig. 7.5). This is the constraint of development, the

final determinant of the actual subset of existent form for lineage x

(Fig. 7.6). We shall consider the possible analysis of this challenging

intrinsic constraint in the next chapter.
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Evolutionary development in theoretical
morphospace

The heuristic power of building theoretical morphospaces rests on
the capability of generating hypothetical morphologies out of real
processes, thus surpassing the usual analytical observation of
natural occurrences. At some level, any experimental manipulation
involving gain and loss of gene function is a strategy that parallels
morphospace building. In both cases, natural occurrences are
violated, and new forms appear that have to be explained with
normal biological processes. The gain in insight is enormous:
looking at the logic of theoretical occurrences can single out the
logic of real occurrences.

Rasskin-Gutman and Izpisúa-Belmonte (2004, p. 411)

The concept of developmental constraint

In Chapter 7 the concept of developmental constraint for species x is

defined as the boundary between the two sets DPFx ¼ {f| f ¼ develop-

mentally possible forms for species x} and DIFx ¼ {f| f ¼ develop-

mentally impossible forms for species x} (Fig. 7.5). Forms that belong

to the set DPFx, developmentally possible form for species x, must be

phylogenetically possible and geometrically possible, belonging to the sets

PPFx and GPF, but can either be functional (DPFx \ FPF) or lethal

(DPFx \ NPF). Actual existent form for species x can only belong to the

former set intersection, such that potential existent form for species x,

PEFx, is constrained to be PEFx � DPFx � FPF � GPF ¼ {f| f 2 GPF,

f 2 FPF, f 2 DPFx} (Fig. 7.6).

A key feature of the developmental constraint concept from a

theoretical morphospace perspective is the possibility that there might
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exist empty regions of morphospace containing potential forms that are

phylogenetically possible for species x but that nevertheless cannot be

developed by species x, PPFx \ DIFx (Fig. 7.6). That is, there potentially

exists a set of forms, f, for which species x possesses the genetic coding

necessary to produce these forms but does not possess the developmental

mechanisms necessary for producing these forms, the set {f| f 2 PPFx,

f 62 DPFx}.

How tenable is such a concept? Alberch (1982, 1991) has argued that

there are two ways to conceptualize the relationship between the

genotype and the phenotype. One view holds that genes are the direct

determinants of organic form, the phenotype. That is, the genes code for

a particular developmental process, which in turn produces the resultant

morphology (Fig. 8.1). If this were true, then all existent form could be

directly reduced to the DNA coding, the genes, of the organism. In this

reductionist view, developmental constraint does not exist as a separate

constraint, as development itself is directly reducible to the genotype, thus

only phylogenetic constraints exist. That is, the set {f| f 2 PPFx, f 62
DPFx} ¼ � because DPFx ¼ PPFx.

Alberch (1982, 1991) has argued that this reductionist view is false,

and that the development of organic form is much more complex and

interactive (Fig. 8.2). In this second view, genes code for protein synthesis

that either regulates the expression of other genes or regulates the

physico-chemical processes of cellular development. Cellular morpho-

genesis in turn leads to cell-cell interactions in the developing tissue

geometry. In particular, Alberch (1991) argued for ‘induction events’

in the developmental process, when the geometry of tissue development

Figure 8.1. A hierarchial, reductionist view of development. Here genes

code for a particular developmental process, which in turn produces the

resultant morphology.

Source: Modified from Alberch (1991).
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brings into contact cells with different developmental histories. In such

induction events, the expression of genes in some cells may be halted,

or turned off, while other genes may be activated, or turned on. Thus

a feedback cycle exists in the developmental process, and this cycle is

not directly reducible to the genotype as it is the result of tissue develop-

ment itself (Fig. 8.2). In this alternative, nonreductionist, view it is

entirely possible that genes might be present that code for a develop-

mental process that fails at the cellular development or tissue develop-

ment stage, and thus that the set { f | f 2 PPFx, f 62 DPFx} 6¼ � and that a

separate type of intrinsic constraint, developmental constraint, exists in

addition to phylogenetic constraint.

Debate over the concept of developmental constraint sparked several

notable conferences in the early 1980s (Bonner, 1982; Maynard Smith

et al., 1985) which continue to the present day (see, for example,

Müller and Newman, 2003; Callebaut and Rasskin-Gutman, 2005).

Keller (2002, p. 3) characterizes the current developmental debate as the

calling into question of the genetic form of explanation that

has come to dominate biological thought over the last few decades � the

assumption that a catalogue of genes for an organism’s traits will constitute

an ‘‘understanding’’ of that organism. Yet, an increasing number of biologists

Figure 8.2. An alternative view of development. Here genes are only

one part of a feedback cycle of morphogenesis. In this view morpho-

genesis is not directly reducible to the genotype as it is the result of tissue

development itself.

Source: Modified from Alberch (1991).
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are beginning to argue that no such catalogue � not even the sequence of the

entire genome � can suffice to explain biological organization. The reason

most commonly offered for their skepticism regarding genetic explanations is

that the regulatory apparatus for turning genes on and off is distributed

throughout the organism.

Indeed, the argument has been made that little, if anything, can be

learned from population genetics in the analysis of the developmental

changes that occur in the origination of new evolutionary innovations

(Müller and Wagner, 1991; Wagner, 2001).

Transformation theory and theoretical morphospaces

An early attempt to use the concept of developmental constraint as an

analytical tool can be seen in the theory of transformations of D’Arcy

Thompson’s classic book, On Growth and Form. Thompson (1942)

was interested in the possible topological pathways by which one organic

form might be transformed into another. His analytical method involves

superimposing a rectangular cartesian grid over the form of an original

species, then measuring the deformations of that grid that are

necessary in order to superimpose it over a different, but related, species.

By this method he hoped to demonstrate the mathematical relationship

of the original grid to the transformed grid, and thus that the comparison

‘of the new coordinate system to the old . . . will furnish us with some

guidance as to the ‘law of growth’, or play of forces, by which the

transformation has been effected’ (Thompson, 1942, p. 1048).

An example of Thompson’s transformation analysis of development

is given in Figure 8.3 for the porcupine-fish Diodon and the sunfish

Orthagoriscus. He argued that the development of a sunfish-type

morphology from a more common porcupine-fish-type morphology can

be modelled by a series of hyperbolic deformations of the original

rectangular cartesian grid superimposed over the porcupine fish

(Fig. 8.3). That is, the development of a sunfish-type morphology

required the progressive differential expansion of growth gradients in the

posterior region of the fish, while growth gradients in the the anterior

region of the sunfish remain essentially unchanged from that of the

porcupine fish.

A second example of Thompson’s differential developmental analyses

is given in Figure 8.4 for the skulls of a human, chimpanzee and baboon.

Thompson’s grid-deformation analyses indicated to him that the chief
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developmental differences in the evolution of human-type skulls from

related primates lay in the reduction of growth gradients in the snout, or

maxillary, region of the skull and the vast expansion of growth gradients

in the brain-case region. He considered this developmental transforma-

tion to be continuous across the primates, differing only in the degree of

deformation of the coordinate grid, with the baboon at one extreme and

the human at the other, with the chimpanzee in an intermediate position

(Fig. 8.4).

We now know that neither the baboon nor the chimpanzee are in

an ancestor-descendant relationship to modern humans, yet we are still

all primates and the chimpanzees are genetically very close cousins to us

indeed. Thompson’s vision was to seek to discover something about the

developmental processes of the entire group of primates by his method of

transformational analysis.

From the perspective of developmental constraint, what is more

important is not the demonstration of the types of developmental

transformation that are necessary to produce observed organic forms,

Figure 8.3. Thompson’s differential developmental analysis shows morpho-

logical transformations necessary in order to turn a porcupine-fish-type

morphology (left figure) into a sunfish-type morphology (right figure).

Source: From On Growth and Form, by D’A. W. Thompson. Copyright

� 1942 by Cambridge University Press and reprinted with the permission

of the publisher.
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but rather the limits of developmental transformation, the demonstration

of transformations that are impossible. That such limits exist is a key

feature of the concept of developmental constraint. Thompson (1942)

was active in promoting his analytical technique of developmental trans-

formations, rather than seeking out cases where such transformations

Figure 8.4. Developmental grids showing morphological transformations

from a human-type skull (top figure) to a chimpanzee-type skull (middle

figure) to a baboon-type skull (bottom figure).

Source: From On Growth and Form, by D’A. W. Thompson. Copyright �
1942 by Cambridge University Press and reprinted with the permission of

the publisher.
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are impossible. Yet is is clear that he understood that such limits existed.

He considered that he was engaged in the study of that ‘Science of Form

which deals with the forms assumed by matter under all aspects and

conditions, and, in a still wider sense, with forms which are theoretically

imaginable’ (Thompson, 1942, p. 1026), implying that there exist forms

that are theoretically unimaginable or impossible. He specifically stated

that his analytical method of developmental transformations was limited

to the comparison of organisms that were developmentally similar:

We should fall into deserved and inevitable confusion if, whether by

mathematical or any other method, we attempted to compare organisms

separated far apart by Nature and in zoological classification. We are

limited, both by our method and by the whole nature of the case, to the

comparison of organisms such as are manifestly related to one another

and belong to the same zoological class. For it is a grave sophism, in

natural history as in logic, to make a transition into another kind.

(Thompson, 1942, p. 1034)

This statement does not clearly differentiate the concepts of phylogenetic

constraint and developmental constraint, yet Thompson (1942) in these

sections of his book was concerned with the analysis of development,

rather than phylogeny.

D’Arcy Thompson’s ideas on the analysis of developmental trans-

formation has inspired generations of morphometricians, scientists con-

cerned with the precise measurement of form in individual organisms

and the precise comparison of those measurements among different

individuals (see Bookstein, 1977, 1997). However, it is only recently

that D’Arcy Thompson’s ideas have been adapted to theoretical morpho-

space analysis (Rasskin-Gutman and Buscalioni, 2001; Rasskin-Gutman,

2003).

Thompson was interested in the relationships of dinosaurs and birds,

and Figure 8.5 illustrates his transformational analysis of the evolutionary

development of pelvic structures in ancient Jurassic and Cretaceous

toothed birds. Both of the pelvic structures shown in Figure 8.5 actually

exist � but can the analytical techniques of Thompson be extended to

nonexistent forms, to reveal developmental transformations that do not

exist? The answer is yes, as Rasskin-Gutman and Buscalioni (2001) have

demonstrated. A full range of both existent and nonexistent pelvic

structures in theropod dinosaurs (which includes the birds) is illustrated

in Figure 8.6, which demonstrates the ability of the analytical tech-

niques of theoretical morphology actually to create those forms that are

‘theoretically imaginable’ (Thompson, 1942, p. 1026).
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Epigenetic landscapes and theoretical morphospaces

Figure 8.6 illustrates the conceptual extrapolation of D’Arcy Thompson’s

theory of developmental transformations into the realm of theo-

retical morphospace. All of the morphologies shown are mathematical

distortions, ‘developmental transformations’ in the sense of Thompson

Figure 8.5. Developmental grids showing the morphological transformation

from the pelvic structure of an ancient Jurassic bird (Archaeopteryx, top

figure) to a more derived Cretaceous bird (Apatornis, bottom figure).

Source: From On Growth and Form, by D’A. W. Thompson. Copyright �
1942 by Cambridge University Press and reprinted with the permission of

the publisher.
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(1942), of the actual pelvis of the theoropod dinosaur Deinonychus

antirhopus (Rasskin-Gutman and Buscalioni, 2001). The argument could

thus be made that all of the hypothetical forms shown in Figure 8.6 were

(or are, if one includes the birds) actually developmentally possible for the

theropod dinosaurs. Or are they?

The concept of mapping developmentally possible and develop-

mentally impossible regions of morphospace was first proposed

by Waddington (1957, 1975) in his classic graphical portrayals of

epigenetic landscapes. Unlike the adaptive landscapes that we

have considered thus far, where morphological coordinates in the flat

plain of the landscape represents nonfuctional morphologies and various

degrees of functional morphologies are found on the slopes and peaks of

adaptive hills, the plain of an epigenetic landscape represents morpho-

logical coordinates that are developmentally impossible (Fig. 8.7). There

are no topographic peaks or mountains in Waddington’s epigenetic

landscapes � in contrast, the flat plain of the landscape is cut by a series

of winding and branching depressions that cut through it, very similar

to the pattern produced by river valleys in an actual geographical

landscape (Fig. 8.7).

Figure 8.6. A theoretical morphospace of theropod dinosaur pelvic

structures.

Source: From Rasskin-Gutman and Buscalioni (2001). Copyright � 2001 by

the Paleontological Society and reprinted with permission.
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In an epigenetic landscape, only the morphological coordinates that

occur in the river valleys and streams are developmentally possible.

Wright (1932) envisaged evolution as a process where populations of

individuals climb adaptive peaks under the influence of natural selection.

Waddington (1957, 1975) envisaged development as a process where a

single individual moves along the bottom of a depression in an epigenetic

landscape, similar to the process of rolling a ball down a valley (Fig. 8.7).

Along the way, in the process of the development of the individual, the

ball might encounter branchings in the landscape, alternate develop-

mental pathways that lead off to different regions in the epigenetic

landscape. Once the ball enters a particular valley, it is committed to

a particular developmental pathway. This progressive channeling of

development down a limited number of pathways, towards a limited

number of possible morphological outcomes, was termed developmental

canalization by Waddington (1957, 1975).

On the other hand, Waddington did think that it might be possible,

in certain natural selection circumstances, for a developing individual

to jump over the watershed, the flat plain of the epigenetic landscape,

from one developmental valley to another alternative developmental

pathway. The concept that such abrupt developmental jumps might be

possible he termed the catastrophe theory of evolution, and the watershed

Figure 8.7. The concept of the epigenetic landscape. The developing

embryo is represented by the ball, which may roll down several different

developmental valleys, each of which results in a different morphological

result.

Source: From ‘‘A catastrophe theory of evolution’’, by C.H. Waddington,

Annals of the New York Academy of Sciences, volume 231, pp. 32�42.

Copyright � 1974 by the New York Academy of Sciences, U.S.A., and

reprinted with permission.
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between two alternative developmental valleys he designated as a

catastrophe surface to be jumped in the epigenetic landscape. The concept

of a sudden jump from one region to another in a continuous topology

intrigued the mathematician René Thom, who devoted an entire book,

Structural Stability and Morphogenesis, to exploring the mathematical

properties of various topological foldings of space that would permit such

jumps to occur. Thom’s (1975) topological models subsequently became

known as catastrophe theory in developmental biology. Pere Alberch’s

early experimental work in amphibian development (Alberch and Gale,

1985; Oster et al., 1988) remains a classic argument in favour of the idea

that gaps or discontinuities might exist in epigenetic landscapes, due

to the internal constraints of development. More recent experimental

and theoretical work at the molecular level (Stadler et al., 2001) and

modelling (Stadler, 2002; Rasskin-Gutman, 2005) continue to argue for

the concept of developmental discontinuities in adaptive landscapes,

topological arguments similar to Waddington’s ideas of developmental

jumps in epigenetic landscapes.

The main conceptual contribution of Waddington’s epigenetic land-

scapes is the visualization of development as the movement of the embryo

across a continuous surface along restricted pathways: ‘I have urged that

we should think not in terms of homeostasis, but rather of homeorhesis,

the stabilization not of a stationary state, but of a pathway of change in

time. Instead of picturing the resistance-to-change of a phenotype as

a minimum in a space that is multidimensional for physiochemical

variables but does not include time, I envisage it as a set of branching

valleys in a multidimensional space that includes a time dimension, along

which the values extend’ (Waddington, 1975, p. 258). The actual

movement of a given individual across the epigenetic landscape, along

its particular set of developmental pathways, thus can be visualized as the

ontogenetic trajectory for that individual (Olsen and Miller, 1958).

At each given point in time, t, the developing organism has a particular

set of coordinates that specify its phenotypic position, p, on the epigenetic

landscape, and its total ontogenetic trajectory is the function dp/dt

(Alberch et al., 1979; Rice, 1997).

Such a spatial representation of the developmental process is

immediatly transferable to the concept of theoretical morphospace

(Richtsmeier and Lele, 1993). Indeed, some recent studies in develop-

mental biology refer to developmental pathways within a morphospace

rather than a epigenetic landscape (see, for example, Figure 16.1A of

Streidter, 2003).
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Analysing development in theoretical morphospace

If organisms grow anisometrically then they, by definition, experience

changes in morphology as they grow. In a theoretical morphospace

context, this means the morphological coordinates of juvenile organisms

within the morphospace may be quite different from the morphological

coordinates of an adult; in essence, the organism moves from one

region of the morphospace to another during development. Thus

development will produce ontogenetic trajectories of morphological

coordinate change in theoretical morphospace, analogous to ontogenetic

trajectories in an epigenetic landscape. In the special case of isometric

growth, such ontogenetic trajectories will collapse to a single point, as the

developing organism does not move within the morphospace with

growth.

Although Dave Raup’s early models of morphogenesis were isometric,

he did explore the consequences of anisometric growth in theoretical

morphospace. In Figure 8.8 is given a cross-section of an ammonoid

shell that exhibits strong anisometric growth. This extinct species,

Paracravenoceras ozarkense, started out life with a shell that is advolute,

where the whorls do not overlap one another. During growth, however,

the shell became progressively more involute, such that in the adult

shell the outermost whorl almost completely overlaps the younger

whorls (Fig. 8.8). Measurements taken from this species, and plotted in

Raup’s theoretical morphospace of ammonoid form (see discussion in

Chapter 4), are given in Figure 8.9. The plot of the ontogenetic trajectory

of P. ozarkense reveals that most of the developmental change in its

shell form occurred in the D-dimension of the morphospace: the animal

started out life with a shell with a D-value of around 0.4, moved briefly

to a slightly higher D of 0.5, then progressively moved through the

morphospace to lower and lower values of D, finally achieving adulthood

with a shellform with a D-value of almost 0.1 (Fig. 8.9). Interestingly,

Raup (1967) discovered that none of the ammonoids he examined, even

one with such marked anisometric growth as P. ozarkense, exhibited

ontogenetic trajectories that ventured outside the frequency distribution

of form exhibited by his total sample of ammonoids (Fig. 4.7).

Morphological development in the ammonoids was apparently limited

by the functional need to remain in the vicinity of the ridge of ammonoid

adaptive peaks (Fig. 5.1).

Another example of the actual analysis of morphological develop-

ment in theoretical morphospace is given in Figure 8.10. Illustrated is
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Figure 8.9. Ontogenetic trajectory of Paracravenoceras ozarkense in the

theoretical morphospace of ammonoid form discussed in Chapters 4 and 5.

Computer simulations show typical isometric adult shell-forms located

in three regions of the morphospace.

Source: Ontogenetic data from Raup (1967).

Figure 8.8. Ammonoid development. A cross-section through the shell of

the Carboniferous ammonoid Paracravenoceras ozarkense, showing marked

changes in shell cross-sectional morphology from early growth stages

(whorls in the centre of the shell) to the adult (outermost whorl).

Source: From Raup (1967). Copyright � 1967 by SEPM (Society for

Sedimentary Geology) and reprinted with permission.
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a cross-section through the dorsal valve of the shell of the extinct

brachiopod Lycophoria nucella, a species that exhibits strong anisometric

growth. The animal started out life with a dorsal valve that is only slightly

convex, but during growth the valve progressively became more con-

vex, such that the adult valve is almost hemispherical (Fig. 8.10).

Measurements taken from both valves of the shell of this species, and

plotted in the theoretical morphospace of brachiopod form (see

discussion in Chapter 5), are given in Figure 8.11. The plot of the

ontogenetic trajectory of L. nucella reveals marked developmental

changes in both the dorsal and ventral valves of the shell: the animal

started out life with a shell with W-values of around 107 in both valves,

having a very flattish shell with a large surface area and small internal

volume. As the animal progressively became larger with growth, however,

it moved through the morphospace to regions with lower and lower

values of W in both valves, such that expansion in the length of the shell

virtually ceased in the adult animal (W ¼ 0). The adult animal has

a highly convex, roughly spherical shell with a very small surface area

and a very large internal volume.

Figure 8.10. Brachiopod development. Upper figure: a cross-section

through the dorsal valve of the shell of the Ordovician brachiopod

Lycophoria nucella, where five growth stages are marked at the valve

margin. Lower figure: each of the five growth stages marked above have

now been expanded and scaled such that they all have the same length, thus

comparatively illustrating the marked developmental changes that occurred

in shell convexity during the life of the animal.

Source: Modified from McGhee (2001b).
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Note that, in contrast to the ammonoids (Fig. 8.9), the adult

morphology of L. nucella had an ontogenetic trajectory that did move

outside of the frequency distribution of form exhibited by the total

sample of brachiopods (Fig. 5.4). Indeed, the trajectory crosses into the

forbidden area of the morphospace, seemingly penetrating the geometric

constraint barrier at W equal to 102, imposed by articulation constraints

(see discussion in Chapter 5). Many brachiopods thus found a way

around the geometric constraint of articulation limitations, imposed by

the necessity of avoiding whorl overlap in both valves, by growing

anisometrically. They began life with high W values, far from the region

of the whorl-overlap geometric-constraint boundary atW ¼ 102 (Figs. 5.3

and 5.4), then progressively decreased the magnitude of W with growth

(Fig. 8.11). Their juvenile shells thus are flattish in the critical posterior

region of the shell where the articulation must be maintained, but the

shell then becomes more and more convex with growth to culminate with

an adult shell that is almost spherical in shape. The much larger adults

thus had shells with large internal volumes, which allowed them to house

a large lophophore with which to feed.

Figure 8.11. Ontogenetic trajectory of an individual of the species

Lycophoria nucella through the theoretical morphospace of brachiopod

shell form (McGhee 1980a). Computer simulations show typical isometric

adult shell-forms located in two regions of the morphospace.

Source: Ontogenetic data from McGhee (1980a).
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Subsequent researchers have analysed development in echinoids

(Ellers, 1993) and in gastropods (Stone, 1998) by plotting ontogenetic

trajectories of these organisms in theoretical morphospace. The field of

theoretical morphology is in its infancy, and the number of such studies

at present are few. The crucial point is, however, that ontogenetic

trajectories and developmental trajectories are not just heuristic concepts.

The techniques of theoretical morphospace analysis allow the actual

mapping of ontogenetic trajectories for real organisms.

The eventual actual demonstration of developmental constraint bound-

aries for a group of organisms within theoretical morphospace may come

from the analysis of the set of ontogenetic trajectories exhibited by that

group of organisms in the morphospace. Are there regions of morpho-

space that are never crossed by an ontogenetic trajectory? What are the

developmental differences, the sequence of morphological changes, that

are seen along actual existent ontogenetic trajectories versus nonexistent

ontogenetic trajectories in morphospace? For the analyst, plotting

growth-stage data for organisms within theoretical morphospaces can

reveal the actual ontogenetic trajectories within that morphospace that

nature has produced and, by comparison with the empty regions of

the morphospace, reveal ontogenetic trajectories � developmental path-

ways � that are theoretically possible but that have never evolved.

Analysis of these nonexistent developmental pathways, similar to the

analysis of nonexistent form, can be a powerful tool in the analysis

of developmental constraint. Analyses of this type may one day allow us

to map the boundaries of developmental constraint for a group of

organisms in theoretical morphospace (Fig. 7.5), just as we can map the

boundaries of geometric, functional and phylogenetic constraint for real

organisms, as demonstrated in Chapter 7.

Theoretical developmental morphospaces?

The dimensional parameters of a theoretical morphospace may be taken

either from a geometric model of form, or from a mathematical model

of the morphogenesis of form, as discussed in Chapter 4 (Fig. 4.3).

However, in the analysis of development, there are many who argue that

only the latter approach should be used; that is, the dimensions of the

morphospace should be explicitly morphogenetic (Gärdenfors, 2000;

Wolfram, 2002).
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Other researchers have proposed that a different type of theoretical

morphospace, a developmental morphospace, be created for the analysis

of evolutionary development. Rather than creating a hypothetical

spectrum of form, as in a conventional theoretical morphospace, it

has been proposed that a theoretical developmental morphospace

would create a hypothetical spectrum of developmental possibilities.

Eble (2003, pp. 38�39) has argued that the idea of a developmental

morphospace

can be seen as a logical morphological extension of Waddington’s metaphor of

the ‘‘epigenetic landscape’’ (Waddington, 1957), Goodwin’s notion of

‘‘epigenetic space’’ (Goodwin, 1963), and Alberch’s rendition of ‘‘parameter

space’’ (Alberch, 1989). While such developmental spaces are suitable for

probing the genotype-phenotype map (Wagner and Altenberg, 1996),

developmental morphospaces are more useful for the inference . . . of more

focally phenotypic phenomena such as heterochrony, heterotopy, and

developmental constraints.

How might such a theoretical ‘developmental’ morphospace

be constructed? For the dimensional parameters of such a morphospace,

Rasskin-Gutman and Izpisúa-Belmonte (2004, p. 405) have proposed

that ‘ontogenetic trajectories can be used as the generative functions

that build morphospaces . . . theoretical morphospaces can be built

using ranges of variations for the parameters of the function that

describes the ontogenetic trajectory’. Using the Rasskin-Gutman and

Izpisúa-Belmonte (2004) proposal, let see if we can construct a theoretical

developmental morphospace for brachiopods. The morphospace contain-

ing the ontogenetic trajectory for the brachiopod L. nucella (Fig. 8.11)

has the dimensional parameters dorsal and ventral W, the whorl

expansion rate. The whorl expansion rate is a geometric parameter

from a mathematical model of form devised by Dave Raup in his early

explorations of theoretical morphospace, as discussed in Chapter 4.

This geometric parameter was also used in creating the theoretical

morphospace of hypothetical brachiopod forms illustrated in Figure 5.3,

within which the ontogenetic trajectory of L. nucella is plotted (Fig. 8.11).

All of the hypothetical brachiopod shells shown in Figure 5.3 are

isometric, W does not change during their growth and they all exhibit

no curvature changes in their valves during development. The shell of

L. nucella, however, does exhibit strong changes in the curvature of

its valves with growth (Fig. 8.10), hence the W value of the valves
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changes with development, resulting in the ontogenetic trajectory within

the morphospace seen in Figure 8.11.

In the previous discussion of ontogenetic trajectories within epigenetic

landscapes, we saw that an ontogenetic trajectory is the function dp/dt,

the change in the phenotypic coordinates of the developing organism

in the landscape with time. In the case of L. nucella, this ontogenetic

trajectory function is dW/dj, where time is measured in terms of the

angular growth of the spiral of the valve, j (Fig. 4.4), and the phenotypic

trait of the valve is W. In the case of isometric growth, dW/dj is equal

to zero, and the convexities of the valves in the brachiopod shell

do not change with development. This leaves two developmental

possibilities for anisometric growth, either the value of dW/dj is

positive, or it is negative. If the value of dW/dj is positive, then the

convexity of the valve in the brachiopod shell decreases with growth

(Fig. 8.12). If the value of dW/dj is negative, then the convexity of

the valve in the brachiopod shell increases with growth (Fig. 8.12).

We can combine these developmental possibilites in a logical contingency

table, thereby creating a theoretical developmental morphospace for

Figure 8.12. Ontogenetic trajectory functions, dW/dj, for brachiopod and

mollusc shell simulations. The convexity of the shell is inversely proportional

to the magnitude of the whorl expansion rate, W (see Fig. 5.3) and growth

is measured in terms of the angular length of the spiral, j (see Fig. 4.4).

If growth is isometric (dW/dj equal to zero) no change in the convexity of

the shell occurs with development.
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brachiopod shells, in which the two dimensions of the morphospace are

the ontogenetic trajectories dW/dj for the dorsal and ventral valves of the

shell (Table 8.1).

In this developmental morphospace, the central cell contains the

developmental possibility (dorsal isometric, ventral isometric) seen in the

valves of the computer simulated brachiopods given in Figure 5.3.

Computer simulation of the other developmental possibilities would not

be that difficult. For example, Figure 8.13 illustrates a computer

simulation of a gastropod with strong anisometric growth and an

ontogenetic trajectory, dW/dj, that is negative.
The creation of such theoretical developmental morphospaces might

indeed give us new insights into the processes and limitations of

development. Do all the developmental possibilites shown in Table 8.1

actually exist in real brachiopods? We actually have an answer to that

question: the empirical analysis of a large sample of brachiopod species

reveals that the overwhelming majority of those species with anisometric

growth have ontogenetic trajectories that are negative in both valves of

the shell (McGhee, 1980a). That is, most brachiopods use the develop-

mental possibility in the upper-left-corner cell of the morphospace

(dorsal convexity increase, ventral convexity increase). A much smaller

number use the developmental possibility in the middle-left-column cell

Table 8.1. A theoretical developmental morphospace for hypothetical
brachiopod shells proposed here

VENTRAL
VALVE DORSAL VALVE

Negative dW/dj Zero dW/dj Positive dW/dj

Dorsal Dorsal Dorsal
Convexity increase, Isometric, Convexity decrease,

Negative
dW/dj

Ventral Ventral Ventral
Convexity increase Convexity increase Convexity increase

Dorsal Dorsal Dorsal
Convexity increase, Isometric, Convexity decrease,

Zero
dW/dj

Ventral Ventral Ventral
Isometric Isometric Isometric

Dorsal Dorsal Dorsal
Convexity increase, Isometric, Convexity decrease,

Positive
dW/dj

Ventral Ventral Ventral
Convexity decrease Convexity decrease Convexity decrease
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(dorsal convexity increase, ventral isometric), and an even smaller

number use the developmental possibility in the top-middle-column cell

(dorsal isometric, ventral convexity increase).

No brachiopods examined use any of the developmental possibilities

in the other five cells of the morphospace (Table 8.1). That is, a positive

ontogenetic trajectory in either of the two valves of the brachiopod

shell is not found in the sample of brachiopods examined by McGhee

(1980a). Why? In traditional morphospace analyses, we seek to simulate

the spectrum of possible form, to reveal which hypothetical forms

actually exist in nature and which do not, and then to analyse the causes

of nonexistent form. In the case of the developmental morphospace,

we seek to simulate the spectrum of possible development, but otherwise

the analytical procedure is similar. And, after all, development

produces form. The computer simulation of the forms produced by the

nonexistent developmental possibilities in Table 8.1 may reveal why

they are not used by real brachiopods. It may be simply due to functional

constraint. All of the nonexistent developmental possibilites would

produce shells that actually decrease their internal volumes, and increase

their external surface areas, during growth compared with shells that

have the same initial morphological parameters and that grow

isometrically (Fig. 5.3). And, as discussed in Chapter 5, brachiopods

generally require shells with large internal volumes and small external

surface areas for sound biological reasons.

Figure 8.13. Computer simulation of anisometric growth in the gastropod

Gulella. The ontogenetic trajectory, dW/dj, for this organism is negative,

such that the curvature of the shell increases with development.

Source: From Cortie (1989), artwork courtesy of M.B. Cortie. Copyright

� 1989 by the South African Journal of Science and reprinted with the

permission of the publisher.
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Alternatively, the nonexistence of the five developmental possibilities

may be due to developmental constraint. That is, the developmental

processes look possible, as outlined in the spectrum of possibilites given

in Table 8.1, but they in fact cannot produce actual form. Computer

simulations, using the nonexistent ontogenetic trajectories as model

parameters, can reveal whether these developmental processes in fact can

produce hypothetical form or not.

At present, the concept of a theoretical developmental morphospace

analysis of developmental constraint remains just that, a concept. Yet

the analytical steps necessary for the conduct of such an analysis

are all possible, and it is only a matter of time until someone attempts

them.

How does an organism come to be?

In her thoughtful book, Making Sense of Life: Explaining Biological

Development with Models, Metaphors, and Machines, Evelyn Fox Keller

asks the rhetorical question ‘How does an organism come to be?’ and

she proceeds to examine all the myriad ways biologists have attempted

to construct explanations of biological development in individual

organisms. Specifically, with regards to the work of D’Arcy Thompson,

she asks ‘What is the basis of his enduring reknown? How are we

to account for the high regard in which his celebration of the

importance of physical and mathematical models in biology has been

held, when the actual use of such models in the development of modern

biology has in fact been so minimal?’ (Keller, 2002, pp. 52�53).

She notes that, although the biologist G. Evelyn Hutchinson

once described Thompson’s theory of transformations as ‘a floating

mathematics for morphology, unanchored for the time being to physical

science’ (quoted in Gould, 1976), the modern discipline of theoretical

morphology and the advent of the digital computer have advanced the

quantitative study of morphology and might provide the missing

anchoring. But, in line with her original observation concerning the

work of D’Arcy Thompson, she goes on to note that ‘over the last

twenty-five years, a number of workers in theoretical morphology have

continued to make use of Thompson’s framework. Yet . . . such efforts

continue to remain on the margins of contemporary biological research’

(Keller, 2002, p. 69).
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The thesis of this chapter, and indeed of the entire book, is that the

power of the techniques of theoretical morphospace analysis remains

largely unrecognized by the biological community. Most evolutionary

biologists still think of the adaptive landscape and the epigen-

etic landscape as heuristic concepts, interesting ways of thinking about

life but unusable in the actual analysis of life. The challenge for present

and future theoretical morphologists is to dispel this misconception, and

to demonstrate to the wider biological community that adaptive

landscapes and epigenetic landscapes can be used as actual analytical

tools through the creation of theoretical morphospaces. The magnitude

of this challenge is the subject of the next, and final, chapter of this book.
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9

There is much to be done . . .

A second reason for giving theoretical morphology a good run
for its money is that, in many ways, it is unlike other sciences. In
A New Kind of Science (2002) Stephen Wolfram has controversially
suggested that science in the future will be more concerned with
algorithms than laws. One wonders how this could be true of all
science, but if there is any science of which this is clearly true, that
science is theoretical morphology. One of the great success stories of
this discipline is the discovery of algorithms that accurately chart
the progress of both growth and evolution.

Maclaurin (2003, p. 465)

Adaptive landscapes and theoretical morphospaces

The main goal of this book has been to demonstrate to the reader that

the concept of the adaptive landscape need not be thought of as merely

a heuristic device to conceptualize the process of evolution. The adaptive

landscape concept can be put into actual analytical practice through

the usage of theoretical morphospaces.

The concept of nonexistent morphology is implicit in Sewall Wright’s

idea of an adaptive landscape, as is the concept of functional constraint.

Theoretical morphospaces allow us to go beyond merely thinking about

the possibility of nonexistent morphologies to actually creating, via

computer simulation, morphologies and geometries that have never been

evolved by life on Earth. Theoretical morphospaces allow us to map the

boundaries of functional constraint for a group of organisms within that

morphospace.
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In contrast to an adaptive landscape, where the dimension of fitness

or degree of adaptation is a fundamental feature of the concept, theoreti-

cal morphospaces are constructed without any assumptions concerning

the adaptive significance of the hypothetical morphologies produced

within that morphospace. The absence of actual organic form in that

morphospace does not necessarily mean that the hypothetically possible,

but naturally nonexistent, morphologies are nonadaptive � something

that would be automatically assumed in an adaptive landscape. Thus

theoretical morphospaces allow us to go beyond the adaptive landscape

concept of functional constraint, and to consider empty regions of

morphospace that might be due to geometric, phylogenetic and develop-

mental constraints.

Current progress in theoretical morphospace analyses

The discipline of theoretical morphology is still in its infancy (McGhee,

1999, 2001a). Even so, a considerable number of different forms of life

have been the subject of theoretical morphospace analyses to the present

date (Table 9.1). Much work has been done with organisms that possess

shells, such as brachiopods, cephalopods, gastropods and bivalves. This is

due to the fact that all of these organisms grow by simple accretion, and

accretionary growth systems are some of the easiest to model mathe-

matically (for a detailed example of such modelling, see McGhee 1999).

Other organisms appear to be radically different but in fact can be

modelled by geometries that are strikingly similar. These morphologies

include those possessed by trees, which are land-dwelling plants, and

bryozoans, which are ocean-dwelling animals! Both groups of organisms

use branching growth systems, and models designed to produce hypo-

thetical tree morphologies often can be used to model many bryozoan

forms as well.

Other groups of organisms, such as arthropods and vertebrates,

have very intricate skeletal morphologies and are much more difficult to

model. Here theoretical morphologists have begun to analyse these

organisms by simply modelling parts of arthropod or vertebrate morpho-

logy, rather than the much more complex total.

Most theoretical morphologic simulations these days are programmed

in BASIC or C/Cþþ for the microcomputer, your standard PC.

My first simulations of shell form in brachiopods, back in the 1970s,

were written in FORTRAN for mainframe computers. Even further
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Table 9.1. Selected groups of organisms that have been the subject of
theoretical morphospace analyses. For a detailed review of many of
these studies see McGhee (1999)

MARINE UNICELLULAR ORGANISMS
Silicoflagellates (delicate silica-lattice skeletal forms): McCartney and Loper
(1989, 1992).

Foraminiferids (delicate calcareous-sphere skeletal forms): Berger (1969), Brasier
(1980), Signes et al. (1993), Tyszka and Topa (2005), Tyszka (2006).

MARINE ANIMALS
Stromatoporoids (ancient forms of calcareous sponges): Kershaw and Riding
(1978), Swan and Kershaw (1994).

Bryozoans (delicate colony forms of moss animals): McKinney and Raup (1982),
Cheetham and Hayek (1983), McGhee and McKinney (2000, 2002), Starcher
and McGhee (2000, 2002), McKinney and McGhee (2003, 2004), McGhee and
Starcher (2006).

Brachiopods (shell forms of the lampshell animals): Raup (1966), McGhee
(1980a, 1980b, 1995, 1999), Okamoto (1988), Ackerly (1989).

Cephalopods (chambered shell forms of swimming molluscs): Raup (1966, 1967),
Chamberlain (1981), Ward (1980), Bayer and McGhee (1984), Saunders and
Swan (1984), Okamoto (1988), Ackerly (1989), Dommergues, Laurin, and
Meister (1996), Korn (2000), Checa, Okamoto, and Keupp (2002), Wolfram
(2002), Saunders, Work, and Nikolaeva (2004), McGowan (2004), Hammer
and Bucher (2005).

Gastropods (spired shell forms of the snails): Raup and Michelson (1965), Raup
(1966), Davoli and Russo (1974), Kohn and Riggs (1975), Rex and Boss
(1976), Cain (1977), Williamson (1981), Okamoto (1988), Ackerly (1989),
Schindel (1990), Stone (1996, 1998, 1999, 2002, 2004), Wolfram (2002).

Bivalves (bivalved shell forms of clams, scallops, and kin): Raup (1966), Savazzi
(1987), Okamoto (1988), Ackerly (1989, 1992), Wolfram (2002), Ubukata
(2000, 2001, 2003a, 2003b, 2005).

Echinoderms (plated skeleton forms of echinoids and kin): Waters (1977), Ellers
(1993), Kendrick (2007).

Hemichordates (delicate colony forms of graptolites): Fortey (1983), Starcher and
McGhee (2003), McGhee and Starcher (2006).

Urochordates (larval swimming morphologies): McHenry and Patek (2004).
Chondrichthyans (denticle scale skins of sharks): Reif (1980).

LAND PLANTS
From primitive stem plants to bushes, shrubs, and trees: Honda and Fisher
(1978), Niklas and Kerchner (1984), Ellison and Niklas (1988), Niklas (1986,
1997a, 1997b, 2004, 2006).

Leaf morphologies: Wolfram (2002), Zwieniecki, Boyce, and Holbrook (2004).

LAND ANIMALS
Reptiles (archosaur pelvic morphologies): Rasskin-Gutman and Buscalioni (2001).
Birds (scavenger guild morphologies): Hertel and Lehman (1998).
Mammals (predatory guild morphologies): Van Valkenburgh (1985, 1988).
Mammals (primate facial morphologies): Richtsmeier and Lele (1993).

SKELETON SPACE
All marine or terrestrial animals that possess skeletons, internal or external:
Thomas and Reif (1993), Thomas et al. (2000), Thomas (2005).

176 There is much to be done . . .



back in time the founder of theoretical morphology, Dave Raup, used

analogue computers to produce the simulation graphics on oscilloscope

screens! At a conference on ‘Computational Approaches to Theoretical

Morphology’, called by the Santa Fe Institute in November of 2000,

the computer scientist Przemyslaw Prusinkiewicz noted that Dave

Raup’s early computer simulations of growth in molluscs (Raup, 1961)

used computer graphics two years before ‘computer graphics’ had been

established as a field (Przemyslaw Prusinkiewicz, quoted in McGhee,

2001a) in that Foley and Van Dam (1982, p. 18) state that the ‘beginnings

of modern interactive computer graphics are found in Ivan Sutherland’s

seminal Ph.D. work on the Sketchpad system (1963)’.

Several published sources of source code for computer programs used

in theoretical morphological simulations of organic form are given in

Table 9.2 (see also the ‘problem-solving environment’ approach to com-

puter simulation of Merks et al., 2006). Unfortunately, many scientific

journal editors are reluctant to publish computer source code, as the

per-page costs for printing those journals is expensive, thus the list given

in Table 9.2 is not as long as I would like it to be. Things are changing,

however, and with the advent of electronic publishing and personal

Websites on the Internet, much more information will become easily

available in the future.

What more is to be done?

The Harvard palaeontologist Stephen Jay Gould, the twentieth

century’s most noted essayist on the wonders of life that evolution has

Table 9.2. Selected published sources of source code for computer
programs used in theoretical morphological simulations of organic form

BASIC programs for accretionary growth systems, useful for generating
hypothetical shell forms in gastropods, cephalopods, brachiopods, and
bivalves: Savazzi (1985), Okamoto (1988), Swan (1999), Ubukata (2000).

BASIC programs for branching growth systems, useful for generating
hypothetical tree forms and bryozoan forms: Swan (1999), Raup, McGhee, and
McKinney (2006).

BASIC programs for laminar growth systems, useful for generating hypothetical
stromatoporoid and stromatolite forms: Swan (1999).

C/Cþþ programs for accretionary growth systems, useful for generating
hypothetical shell forms in gastropods, cephalopods, brachiopods, and
bivalves: Savazzi (1990, 1993).

Mathematica programs for the computer simulation of a broad spectrum of
biological form, from animals to plants: Wolfram (2002).
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produced, wrote of the discipline of theoretical morphology: ‘I believe

that the question of defining morphospaces and mapping their

differential filling through time is so vital to our understanding of

life’s history . . .’ (Gould, 1991, p. 422). That defining and mapping task

has begun, yet we are still in early days yet, and the numbers of actual

organisms that have been studied by using the analytical techniques

of theoretical morphology are still relatively small (Table 9.1).

The philosopher of science James Maclaurin has asked the rhetorical

question ‘What shall we do with theoretical morphology?’ and has

compiled the following list of observations and suggestions of future

research programmes in the discipline:

(1) Theoretical morphology has already led to a better undestanding

of growth in living organisms. This is the fundamental purpose of that

branch of theoretical morphology, which undertakes the modelling

of organic morphogenesis.

(2) A second key use of theoretical morphology is in the formulation

and testing of adaptationist hypotheses [. . . the relationship between

the current function of a trait and its selective history].

(3) [T]heoretical morphology’s contribution to the investigation

of evolutionary trends in morphospace.

(4) [T]heoretical morphology might one day shed light on the

‘‘great Cambrian disparity debate’’. One of Stephen Jay Gould’s

most famous claims is his attack on the idea that natural selection

produces a cone of increasing diversity. In a succession of works,

Gould (1989, 1991, 1993, 1995) advanced the thesis that

biological disparity is, in fact, lower now than it was directly

after the Cambrian explosion. Debate has raged ever since, as

to how we might measure disparity in an effort to test the

original claim.

(5) Theoretical morphology might aid in making operational the idea

of the adaptive landscape.

(6) Theoretical morphology might allow us to better understand the

nature of biodiversity and thus aid in the performance

of conservation biology.

(7) Theoretical morphology might solve a problem identified by

Sally Ferguson (2002) concerning evolutionary explanation. She

notes that we think of traits as standing in need of evolutionary
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explanation because of their complex functionality. However, if the

function referred to can only be spelled out in teleological terms, then

the whole idea of providing an evolutionary explanation begins to

look circular. Using theoretical morphology may provide a means of

avoiding this problem (because it allows us to focus upon the

explanation of pattern rather than process).

(8) Finally, theoretical morphology might allow us to sort life into

the actual, the non-actual and the impossible and, thereby, it might

help us to better explore the fundamental constraints on living

systems (Maclaurin, 2003, pp. 470�471).

He further makes the philosophical distinction between what he

terms a partial theoretical morphospace, which is ‘a hypothetical space

with a limited number of dimensions that can be represented graphically

and used to evaluate hypotheses about the histories of particular traits

within particular lineages’ (Maclaurin, 2003, p. 471), and the total

theoretical morphospace, which is ‘. . . the totality of morphospace. It has

many (perhaps uncountably many) dimensions and houses within it all

possible biological form . . . there are many partial theoretical morpho-

spaces but only one total theoretical morphospace’ (Maclaurin, 2003,

pp. 471�472). Having drawn this distinction, he suggests that research

programmes 1, 2, 3 and 7 are clearly in the domain of partial morpho-

space analyses, research programmes 4 and 8 are more likely in the

domain of total morphospace analysis, and that research programmes 5

and 6 could be investigated by models of either type.

The partial versus total theoretical morphospace distinction of

Maclaurin (2003) speaks directly to an objection raised to theoretical

morphospace analyses of the ‘great Cambrian disparity debate’ by

Hutchinson (1999), who posed the question ‘but which morphospace

to use?’ of such analyses. He maintained that the amount and extent of

biodisparity one can measure in morphospace is itself a function of

the dimensionality of the morphospace, hence different morphospaces

will reveal different patterns of disparity, and thus theoretical morpho-

space analyses can never definitively prove or disprove whether biological

disparity was greater in the Cambrian than at present. Maclaurin’s

philosophical conceptualization reveals that Hutchinson’s objection is

true with regard to partial theoretical morphospaces, but false with

regard to total theoretical morphospace. Thus, at least conceptually,
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the question can be addressed by the analytical techniques of theoretical

morphology, as urged by Gould (1991).

The re-emergence of the science of morphology

Eble (2000) argues that a central concept of theoretical morphology,

that existent organic forms are only a subset of the set of theoretically

possible forms, can be traced back to Johann Wolfgang von Goethe.

Goethe is indeed generally credited with being the founder of the

science of morphology, in that he coined the term Morphologie itself

and was very interested in the comparative anatomy of animals and

plants. His work in the late 1700s and early 1800s inspired the next

generation of morphologists. These include the great comparative

anatomists Georges Cuvier, twenty years younger than Goethe, who

founded the science of vertebrate palaeontology, and Richard Owen,

contemporary of Charles Darwin and founder of the study of the ‘terrible

reptiles’, the dinosaurs. Darwin himself, founder of the study of evolution

through the process of natural selection, was very interested in

comparative animal and plant morphologies. His famous insights into

morphological variation as the raw material of evolution are just that,

morphological. In On the Origin of Species itself, Darwin (1859, p. 434)

wrote of comparative morphology:

This is the most interesting department of natural history, and may be said

to be its very soul. What can be more curious than that the hand of a man,

formed for grasping, that of a mole for digging, the leg of the horse, the paddle

of the porpoise, and the wing of the bat, should all be constructed on the same

pattern, and should include the same bones, in the same relative position?

However, with the publication of Darwin’s theory of natural selection,

research in morphology began to shift from the analysis of the spectrum

of existent form, and possible theoretical limits on that spectrum, to the

analysis of shifting morphological frequencies within populations

of organisms. With Gregor Mendel’s discovery of genetics, the discovey

that morphological inheritance was quantal and discrete, that trend

accelerated. The very word morphology itself began to be replaced

by phenotype. Research into phenotypic variation became increasingly

reduced to research into genotypic variation.

In the 1930s, the role of theory blossomed in the study of evo-

lution, yet it was theoretical population genetics and not theoretical

morphology. The founders of the Neo-Darwinian synthesis, R.A. Fisher,
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J. B. S. Haldane, and Sewall Wright, were all geneticists. The study

of evolution began to be viewed as the study of genetics. Darwin’s

functional morphological understanding of the word fitness itself was

replaced by a genetic definition of differential changes in gene

frequencies.

The theoretical approaches to the analysis of morphology advocated

by Bateson (1896), Cook (1914), Russell (1916) and Thompson (1917)

were, as noted by Keller (2002), lauded but largely ignored. Thompson’s

theoretical mathematics did generate enough interest to spur him to write

a new, and greatly expanded, version of his original book (Thompson,

1942), yet even in 1942 he writes:

In the morphology of living things the use of mathematical methods and

symbols has made slow progress; and there are various reasons for this failure

to employ a method whose advantages are so obvious in the investigation

of other physical forms. To begin with, there would seem to be a psychological

reason, lying in the fact that the student of living things is by nature and

training an observer of concrete objects and phenomena and the habit of

mind which he possesses and cultivates is alien to that of the theoretical

mathematician. But this is by no means the only reason; for in the kindred

subject of mineralogy, for instance, crystals were still treated in the days

of Linnaeus as wholly within the province of the naturalist, and were described

by him after the simple methods in use for animals and plants: but as soon

as Haüy shewed the application of mathematics to the description and

classification of crystals, his methods were immediately adopted and a new

science came into being.

(Thompson, 1942, p. 1028)

But, although D’Arcy Thompson tried twice to show the power of the

application of mathematics to the analysis of morphology, no new science

came into being.

The importance of morphology in the study of evolution re-emerged

with the publication of Tempo and Mode in Evolution (1944) and The

Major Features of Evolution (1953) by the palaeontologist George

Gaylord Simpson. Simpson was one of the architects, along with the

biologist Ernst Mayr and the geneticist Theodosius Dobzhansky, of

what came to be known as the Modern Synthesis of evolutionary

theory. Intriguingly, it was the earlier fitness landscape concept of the

Neo-Darwinian geneticist Sewall Wright that inspired Simpson to

propose a new synthesis of population genetics and palaeontological

approaches to the study of evolution. Simpson made the conceptual jump

from the fitness landscape of genotypes to the adaptive landscape of

morphologies, and using ‘this phenotypic landscape, Simpson illustrated
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the concepts of phenotypic variation, selection, immediate responses to

selection, long-term evolutionary trends, speciation and adaptive radia-

tion. No visualization before or since 1944 has been so successful in

integrating the major issues and themes in phenotypic evolution’ (Arnold,

Pfrender and Jones, 2001, p. 9).

Following the publication of Simpson’s books, the study of morpho-

logical evolution experienced a resurgence in palaeontology and biology.

In biology, however, the study of morphology was quickly eclipsed by the

discovery of the structure of DNA by James Watson and Francis Crick

in 1953, and the subsequent decoding of the coding mechanism of life

itself. The discipline of molecular biology was born:

To make matters worse for morphology, the research program for molecular

evolution is conceptually simple, involving the comparative analysis of well-
defined molecular units (i.e. bases, amino acids). All that is needed
for comparison are some assumptions about the tempo in which the units
mutate. . . Morphological information, on the other hand, is not that simple.

Shape is an elusive concept. . .

(Rasskin-Gutman, 2003, p. 305)

By the mid-1960s the DNA coding for all the amino acids had been

worked out, and in the past four decades the discipline of molecular

biology has experienced explosive growth in the number of its

practitioners.

Within palaeontology the discipline of theoretical morphology

was born during this same interval of time. The final key event for the

actual utilization of the adaptive landscape concept as an analytical tool

was the invention of the digital computer. By the mid-1960s digital

computers were to be found on all major university campuses, and

Dave Raup began his early computer simulation studies of mollusc shell

form. He first was interested in the theoretical mathematical character-

ization of morphogenesis, inspired by D’Arcy Thompson’s theory

of transformations approach to comparative morphology. He soon

discovered that the computer allowed him to explore morphological

transformations that had never occurred in nature, to create nonexistent

form. The concept of the theoretical morphospace was soon to follow,

and the realization of its potential usefulness in the analysis of the

adaptive significance of form: ‘In studying the functional significance

of the coiled shell, it is important to be able to analyze the types that

do not occur in nature as well as those represented by actual

species. Both digital and analog computers are useful in constructing
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accurate pictures of the types that do not occur’ (Raup and Michelson,

1965, p. 1294). The science of morphology has finally entered into a new

theoretical, rigorous and mathematical stage.

Within biology the realization slowly has been spreading in the

past two decades that on a ‘fundamental level, molecular evolution and

morphological evolution are two quite different processes: the end

products of both are linked and expressed by the nonlinear events

that occur during the development of an organism’ (Rasskin-Gutman,

2003, p. 306). The discipline of evolutionary development, or Evo-Devo

to its practitioners, has been born, as well as a number of new scientific

journals devoted exclusively to the empirical and theoretical study

of processes that generate explicitly morphological patterns. In a review

of the recently published evo-devo book The Development of Animal

Form: Ontogeny, Morphology, and Evolution (2003) by Alessandro

Minelli, Meyer (2003, p. 255) writes of the ‘intellectual journey that

every generation of self-respecting biologists has travelled since Ernst

Haeckel, Karl Ernst, Ritter von Baer, Georges Cuvier and Johann

Wolfgang von Goethe before them . . . Selection can only act on things

that are developmentally possible. In other words, developmental

mechanisms constrain evolutionary possibilities . . . But how do develop-

mental mechanisms themselves change during evolution, and how

does evolution in turn effect development?’ Such questions are firmly

in the realm of comparative morphology (Müller and Newman, 2005;

Jablonski, 2005).

D’Arcy Thompson’s vision of a theoretical mathematical approach

to the science of morphology is now a reality, and a new science has come

into being. Sewall Wright’s and George Gaylord Simpson’s vision

of analysing evolution on an adaptive landscape is no longer simply

a conceptual model, a heuristic tool, but is now an analytical technique

for the morphologist to use. After decades of being sidelined in the wings,

the science of morphology has returned to the stage in the analysis

of the evolution of life (Müller and Newman, 2005). The morphologist

Carole Hickman (1993, p. 170) writes of the future:

The ultimate triumph of theoretical morphology would be an understanding

of biological diversity, framed in terms of the boundaries between the possible

and the actual and the possible and the impossible. It should integrate across

all levels of structure, from organic molecules to entire and seemingly complex

functioning organisms, where as yet undiscovered laws of structural

consonance may exist.
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From microevolutionary processes at the molecular level to macro-

evolutionary processes in geological time, the analysis of these processes

‘could be tackled within the framework of the morphospace of connec-

tions by analyzing the dynamics involved in the establishment of

boundaries during embryonic development and by looking at macro-

evolutionary boundary patterns. This is a task that almost certainly

would have intrigued Darwin, just as he would have been fascinated

with the discovery of the genetic code’ (Rasskin-Gutman, 2003, p. 321).

184 There is much to be done . . .



References

Ackerly, S. C. (1989). Kinematics of accretionary shell growth, with examples
from brachiopods and molluscs. Paleobiology, 15, 147�164.

Ackerly, S. C. (1992). The structure of ontogenetic variation in the shell of Pecten.

Palaeontology, 35, 847�867.
Alberch, P. (1982). Developmental constraints in evolutionary processes.

In Evolution and Development, ed. J. T. Bonner, pp. 313�332. Berlin:

Springer Verlag.
Alberch, P. (1989). The logic of monsters: evidence for internal constraint in

development and evolution. Geobios, mémoire spécial, 12, 21�57.

Alberch, P. (1991). From genes to phenotype: dynamical systems and
evolvability. Genetica, 84, 5�11.

Alberch, P. and Gale, E.A. (1985). A developmental analysis of an evolutionary
trend: digital reduction in amphibians. Evolution, 39, 8�23.

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. (1979). Size and shape
in ontogeny and phylogeny. Paleobiology, 5, 296�317.

Antonovics, J. and van Tienderen, P.H. (1991). Ontoecogenophyloconstraints?

The chaos of constraint terminology. Trends in Ecology and Evolution, 6,
166�168.

Arnold, S. J., Pfrender, M.E., and Jones, A.G. (2001). The adaptive landscape

as a conceptual bridge between micro- and macroevolution. Genetica,
112�113, 9�32.

Bambach, R.K., Knoll, A.H., and Wang, S. C. (2004). Origination, extinction,

and mass depletions in marine diversity. Paleobiology, 30, 522�542.
Bateson, W. (1896). Materials for the Study of Variation. Baltimore: Johns

Hopkins University Press.
Bayer, U. and McGhee, G.R. Jr. (1984). Iterative evolution of Middle Jurassic

ammonite faunas. Lethaia, 17, 1�16.
Bayer, U. and McGhee, G.R. Jr. (1985). Evolution in marginal epicontinental

basins: the role of phylogenetic and ecological factors (ammonite

replacements in the German Lower and Middle Jurassic). In Sedimentary
and Evolutionary Cycles, eds. U. Bayer and A. Seilacher, pp. 164�220.
Berlin: Springer Verlag.

Berger, W.H. (1969). Planktonic foraminifera: basic morphology and ecologic
implications. Journal of Paleontology, 43, 1369�1383.

Blomberg, S. P. and Garland, T. (2002). Tempo and mode in evolution: phylo-

genetic inertia, adaptation and comparative methods. Journal of Evolu-
tionary Biology, 15, 899�910.

185



Bonner, J. T. (1982). Evolution and Development: Report of the Dahlem Workshop

on Evolution and Development, Berlin 1981. Berlin: Springer Verlag.
Bookstein, F. L. (1977). The study of shape transformation after D’Arcy

Thompson. Mathematical Biosciences, 43, 177�219.
Bookstein, F. L. (1997). Morphometric Tools for Landmark Data: Geometry

and Biology. Cambridge: Cambridge University Press.
Brasier, M.D. (1980). Microfossils. London: George Allen and Unwin.
Cain, A. J. (1977). Variation in the spire index of some coiled gastropod shells,

and its evolutionary significance. Philosophical Transactions of the Royal
Society of London (B: biological sciences), 277, 377�428.

Callebaut, W. and Rasskin-Gutman, D. (2005). Modularity: Understanding

the Development and Evolution of Natural Complex Systems. Cambridge
(MA): Vienna Series in Theoretical Biology, Massachusetts Institute of
Technology Press.
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