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Preface
AIMS AND SCOPE

It is widely acknowledged today that extreme weather and climate change aggravate the frequency 
and magnitude of disasters. Facing atypical and more severe events, existing early warning and 
response systems become inadequate both in scale and scope, while planning and coordination 
schemes need to scale-up for a timely and adequate reaction. Too often, response to extreme weather 
events is hampered by the lack of information, long distances, and coordination difficulties, leav-
ing citizens in great peril. Instead of being immediate and targeted, response lingers and misses. 
Simultaneously, emerging technologies open up for an improved emergency response. A special 
category of hazards includes hydrometeorological hazards, and in this subgroup some of the main 
hazards included are droughts, frost, floods, landslides, and storms/cyclones. Today, Earth observa-
tion (EO) provides one of the most promising avenues for providing information at global, regional, 
and even basin scales related to hydrometeorological hazards. The general circumstances that make 
EO technology attractive for this purpose in comparison to traditional techniques include their ability 
to provide inexpensive, repetitive, and synoptic views of large areas in a spatially contiguous fashion 
without a disturbing influence on the area to be surveyed and without site accessibility issues.

The preparation of this book is motivated by the scientific challenges emerging from the require-
ments to develop a capability for predicting and mapping hydrometeorological hazards to support 
research, practical applications, and decision-making from local to larger scales. In all cases, the 
need for improving relevant observations and modeling capabilities of parameters related to those 
hazards is mandatory in order to overcome the current drawbacks and the limitations faced by the 
scientific and operational communities.

This book provides readers an all-inclusive critical overview of the state of the art in different 
algorithms and techniques applied today in hydrometeorological hazards exploiting the EO technol-
ogy datasets. In particular, it focuses on covering the following types of hydrometeorological haz-
ards: droughts, frost, wildfires, floods, storms, and landslides. This book aims at providing readers 
an overview of examples of case studies in which EO data have been used in each of the aforemen-
tioned groups of hydrometeorological hazards. In each of those case studies, readers are provided 
with a deeper understanding of the operation and principles of widely applied recent approaches in 
each hazard case study. What is more, this book allows readers to value the added importance of 
EO in hydrometeorological hazards in comparison to conventional techniques applied today and 
also become aware of any operationally distributed relevant EO-based products available today, as 
well as from ground-installed operational networks that could be used in such studies. Such a book 
is needed due to the importance of hydrometeorological hazards today globally, having devastat-
ing effects in human lives as well as on global economies, with their frequency being dramatically 
increased over the past decade or so.

Evidently, this book integrates decades of research conducted by leading scientists in the field, 
and it has been designed with different potential users in mind. As such, it promotes the synergistic 
and multidisciplinary activities among scientists. Potential readers of the book may come from a 
wide spectrum of scientific backgrounds, such as environmental sciences, hydrology, meteorology, 
ecology, agricultural sciences, and geography. This book preparation has been possible because of 
the extensive and valuable contributions from interdisciplinary experts from all over the world in 
the fields covered within it. On account of the unique way it is structured, consisting of a series of 
independent parts, its use can be adapted to meet the specific needs of different readers, leading to 
its adoption for teaching and research purposes alike. The different chapters can be perceived as 
even smaller units that can be combined with other materials if required each time.
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SYNOPSIS OF THE BOOK

This book is divided into the following six sections: 

Section I focuses on droughts. Chapter 1 by Dalezios reviews the use of EO in droughts. 
Chapter 2 by Martinez-Fernandez et al. presents an approach for modeling droughts for 
agricultural crops using soil moisture estimates from space and demonstrates the use of 
this approach in the Iberian Peninsula. Chapter 3 by Texeira et al. provides a method for 
drought assessment via the coupling of MODIS satellite and weather data and testing their 
approach for a region in Brazil. Chapter 4 by Enekel et al. furnishes a reflective discus-
sion on the added value of satellite soil moisture for agricultural insurance assessment. In 
Chapter 5, Yagci et al. demonstrate the use of drought indicators derived from Moderate 
Resolution Imaging Spectroradiometer (MODIS) data for detecting drought conditions in 
the Southern United States.

Section II exemplifies recent advances in modeling approaches utilizing EO data for frost 
conditions. In Chapter 6, Dalezios and Petropoulos summarize the main frost types and 
properties defining frost conditions and provide a critical overview of the use of EO in this 
domain. Chapter 7 by Gupta presents a review of the use of remote sensing in ice hazard, 
whereas Chapter 8 by Youngwook et al. discusses and demonstrates the use of satellite 
microwave remote sensing of landscape freeze/thaw status related to frost hazard monitor-
ing. In Chapter 9, Louka et al. provide the usefulness of the coupling of remote sensing 
data, thermal mapping, and geographic information system (GIS) techniques for mapping 
temperature fluctuation and frost risk on a road network.

Section III mainly focuses on the use of EO in wildfires. In Chapter 10, Dalezios et al. furnish 
a systematic overview of the use of this technology in this domain, providing a few exam-
ples as case studies. Subsequently, Chapter 11 by Piles et al. critically offers a detailed 
overview of the state of the art specifically in European remote sensing activities in wild-
fire prevention. Chapter 12 by Zhao et al. furnishes a discussion on recent advances in 
burnt areas and burn severity mapping from remote sensing, providing relevant examples 
of recently published studies. Chapter 13 by Hassan et al. uses as an example wildfires in 
Alberta, Canada, and discusses the relationships between topographical elements and the 
occurrence of forest fires. Chapter 14 by Mills and Colton discusses the use of operational 
products in burnt area mapping and presents results from the use of such products in quan-
tifying the interannual variability of wildfires across Portugal.

Section IV focuses on remote sensing of floods. Chapter 15 by Schumann et al. discusses the 
use of EO from space for disaster response assistance. Chapter 16 by Pinel et al. debates 
the usefulness of remote sensing data for extreme flood event modeling and gives a relevant 
example from the Amazonian floodplain. Chapter 17 by Kwak et al. demonstrates the use 
of remote sensing data from MODIS for large-scale flood monitoring in monsoon Asia for 
global disaster risk reduction. Chapter 18 by Stathopoulos et al. exhibits a new method for 
mapping flood susceptibility using remote sensing and GIS and demonstrates its use for a 
region in Greece. Chapter 19 by Mei et al. delivers a systematic review of the state of the 
art on the use of EO precipitation data for modeling floods.

Section V focuses on remote sensing of storms. Chapter 20 by Sabareesh et al. demonstrates 
the application of remote sensing data for post-wind storm damage analysis. Chapter 21 
by Dutta et al. furnishes a study that shows how precipitation radar EO data can be used 
for analyzing tropical cyclones. Chapter 22 by Marra et al. discusses how radar rainfall 
estimates can be used for debris flow early warning systems.
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Section VI focuses on landslides. Chapter 23 by Parsinevelos et al. offers a critical review 
of the use of the unmanned aerial vehicles (UAVs), citizen science, and interferometry 
remote sensing in landslide hazards. Chapter 24 by Bathrellos et al. demonstrates the use 
of remote sensing and GIS in developing a landslide susceptibility map using as a case 
study in a region of Greece.

The editors hope this preface has successfully furnished some insight on the breadth of the topics 
covered in this book. Users are encouraged to adapt this book in the best way it fits their needs that 
would help them in understanding the capabilities and potentials of EO technology in the field.

The users of this book can inform the editor of any errors, suggestions, or other comments at 
george.petropoulos@aber.ac.uk or tanvir.islam@jpl.nasa.gov.

mailto:george.petropoulos@aber.ac.uk
mailto:tanvir.islam@jpl.nasa.gov
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4 Remote Sensing of Hydrometeorological Hazards

1.1 INTRODUCTION

Drought is considered as a natural phenomenon recurring at a regional scale throughout history. 
Essentially, droughts originate from a deficiency or lack of precipitation in a region over an extended 
period of time and can be regarded as an extreme climatic event associated with water resources 
deficit (Dalezios et al., 2017a). This is why droughts are also referred to as nonevents. Droughts 
occur in both high and low rainfall areas and virtually all climate regimes. It is recognized that 
drought is characterized as one of the major natural hazards with significant impact to the environ-
ment, society, agriculture, and economy, among others (Dalezios et al., 2017b). Indeed, there are 
several regions around the world, which are characterized as vulnerable areas due to the combined 
effect of increased temperature and reduced precipitation in areas already coping with water scar-
city (IPCC, 2012). As a result, agricultural production risks could become an issue in these regions 
as mainly droughts are likely to increase the incidence of crop failure. As yield variability increases, 
the food supply is at increasing risk (Sivakumar et al., 2005; Dalezios et al., 2017c). Moreover, the 
impacts of droughts may be severe and are neither immediate nor easily measured. It is difficult to 
determine the effects of drought as it constitutes a complicated phenomenon, evolving gradually 
in any single region. In particular, drought impacts are very critical and especially costly affecting 
more people than any other type of natural disaster universally (Keyantash and Dracup, 2002). All 
the above may accumulate difficulties in drought assessment and response, which may result into 
slow progress on drought preparedness plans and mitigation actions. Thus, there is a need to estab-
lish the context in which the drought phenomenon and its associated impacts are being described 
leading to a better definition.

Drought quantification is usually accomplished through indicators and indices. There are several 
commonly used drought indices based on ground (conventional) and/or remotely sensed data (Du 
Pissani et al., 1998; McVicar and Jupp, 1998; Kanellou et al., 2009a, 2009b; Mishra and Singh, 
2010; Zargar et al., 2011). Traditional drought quantification methods rely on conventional meteo-
rological data, which are limited in a region, often inaccurate, and usually unavailable in near 
real-time (NRT) (Thenkabail et al., 2004). On the other hand, satellite-based data are consistently 
available and can be used to detect several drought features and characteristics. Indeed, the grow-
ing number and effectiveness of pertinent earth observation satellite systems present a wide range 
of new capabilities, which can be used to assess and monitor drought hazard and its effects, such 
as the activities for droughts of the United Nations International Strategy for Disaster Reduction 
(UNISDR) (UNISDR, 2005, 2015; Dalezios et al., 2017b, 2017d). Remote sensing data and methods 
can delineate the quantitative spatial and temporal variability of several drought features (Kanellou 
et al., 2012; Dalezios et al., 2012, 2014). Thus, there is a need for proper remotely sensed quantifi-
cation of drought and drought impacts. Moreover, drought monitoring is of critical importance in 
economically and environmentally sensitive regions and is a very significant input in any drought 
preparedness and mitigation plan.

This chapter focuses on discussing the remote sensing potential and capabilities in drought 
analysis. Drought definitions and concepts, including types, factors, and features, are initially 
presented. Then, remote sensing capabilities, in terms of data and methods, are explored in 
drought analysis and assessment. Specifically, the adjustment of existing drought indices to 
use remotely sensed data and techniques is reviewed followed by an examination of the remote 
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sensing strategies. Moreover, the reliability of remote sensing data and methods is steadily 
increasing year by year. Then, remotely sensed drought quantification and assessment are con-
sidered, including composite drought indices (CDIs). Representative remotely sensed drought 
indices are presented, namely the Reconnaissance Drought Index (RDI) (Tsakiris and Vagelis, 
2005; Dalezios et  al., 2012) and the Vegetation Health Index (VHI) (Kogan, 1995; Dalezios 
et al., 2014). Applications of both indices, RDI and VHI, are considered in drought early warn-
ing systems (DEWS) and monitoring. Finally, remotely sensed drought assessment and manage-
ment are briefly presented.

1.2 DROUGHT CONCEPTS AND FEATURES

Drought indicators are variables, which describe drought features. Several indicators can also be 
combined into a single quantitative indicator, namely a drought index (Wilhite et al., 2000). For 
monitoring drought, drought indices are used based on several drought features, such as severity, 
duration, onset, end time, areal extent, and periodicity (Dalezios et al., 2000). Moreover, for drought 
assessment through drought indices, the focus is on the estimation of precipitation shortage and 
water supply deficit; however, evapotranspiration or temperature may also be included (Tsakiris and 
Vagelis, 2005; Vicente-Serrano et al., 2010).

Since the last decade, a web service-based environment is being developed for integration of 
regional and continental drought monitors; for computation and display of spatially consistent sys-
tems, such as in situ Standardized Precipitation Index (SPI), satellite-based indices, and modeled 
soil moisture; and for drill-down capacity to regional, national, and local drought products. This 
research effort has indicated, among others, the research need for CDIs toward a global drought risk 
modeling system (Brown et al., 2008; Zargar et al., 2011) is also based on remote sensing data and 
methods. Indeed, due to the complexity of drought, the scientific trend and research need are to con-
sider multiple indicators or CDIs for assessing and monitoring droughts (Hao and AghaKouchak, 
2013; Svoboda, 2015). There are indices for all types of drought, although there is no one-size-fits-
all drought index or indicator. In summary, the approaches to drought assessment are essentially 
three (Svoboda et  al., 2002): (1) single indicator or index (parameter); (2) multiple indicators or 
indices; and (3) composite or hybrid indicators, which integrate several indicators or indices and 
converge an evidence approach.

In terms of climate variability, there is medium confidence that since the 1950s, some regions 
of the world have experienced more intense and longer droughts (IPCC, 2012). Land-use changes 
have potential impacts on droughts (Arneth et al., 2014), and anthropogenic forcing has contrib-
uted to the global trend toward increased drought in the second half of the twentieth century. 
Extreme climate variables and climate extremes, such as droughts, are projected to experience 
significant changes over the twenty-first century, just as they have during the past century, in 
many areas, including Southern Europe, among others (Tarquis et al., 2013; Nastos et al., 2016). 
There is also medium confidence that the duration and intensity of hydrological droughts will 
increase in the twenty-first century in some seasons and areas, due to reduced precipitation and/
or increased evapotranspiration, although other factors, such as changes in agricultural land 
cover and upstream interventions, lead to a reduction in river flows or groundwater recharge. 
Moreover, climate variability and change may affect drought preparedness planning and mitiga-
tion measures (Salinger et al., 2005; IPCC, 2012). Thus, climate change has to be considered in 
all the aspects of drought analysis.

Drought preparedness and mitigation planning based on remote sensing data and methods are 
considered as essential components of integrated water resources management. It is recognized that 
there is an international research need for drought preparedness plans through the development 
of decision support system (DSS) (Wilhite, 2005; Dalezios, 2017). It is also recognized that the 
drought policy principle has to consider the implementation of preparedness and mitigation mea-
sures (Wilhite, 2009; Arneth et al., 2014).
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1.2.1 Drought Definitions anD types

Drought is not just a physical phenomenon, because it results from the interplay between a natu-
ral event and demands placed on water supply by human-use systems. Drought clearly involves a 
shortage of water, but realistically it can be defined only in terms of a particular need. It is difficult 
to find a generally accepted definition of drought. Indeed, there is no universally accepted defini-
tion of drought, because there is a wide variety of sectors affected by drought and because of its 
diverse spatial and temporal distribution (Heim, 2002). More than 150 published definitions of 
drought have been identified (Niemeyer, 2008). If drought is considered as a phenomenon, then it is 
certainly an atmospheric phenomenon. Studies in several areas around the world have shown that 
drought periods are often characterized by a large decrease in the amount of rainfall per rainy day, 
by an increase in the continentality of clouds, and by lack of rain-producing clouds (Dalezios et al., 
2009). In general, droughts have been shown to be associated with persistence of ridges or centers of 
high-pressure systems at middle level in the troposphere. Furthermore, the corresponding reduced 
cloud cover results in positive temperature anomalies in the lower atmosphere, which produces the 
middle-level pressure anomaly and favors subsidence at high level, keeping the atmosphere signifi-
cantly drier and more stable than normal. Nevertheless, by considering drought as a hazard, there 
is a tendency to define and classify droughts into different types; however, the relationship between 
the different types of drought is complex. In the international literature, three operational defini-
tions are considered, namely meteorological or climatological, agrometeorological or agricultural, 
and hydrological drought (Wilhite et al., 2000). As a fourth type of drought, the socioeconomic 
impacts of drought can also be considered.

All droughts begin with a deficiency of precipitation in a region over a period of time. These early 
stages of accumulated departure of precipitation from normal or expected are usually considered as 
meteorological drought (Dalezios et al., 2017a). A continuation of these dry conditions over a longer 
period of time, sometimes in association with above normal temperatures, high winds, and low rela-
tive humidity quickly results into impacts in the agricultural and hydrological sectors. Specifically, 
with the exception of meteorological drought, the other types of drought, such as agricultural and 
hydrological, emphasize on the human or social aspects of drought, in terms of the interaction 
between the natural characteristics of meteorological drought and human activities that depend 
on precipitation, to provide adequate water supplies to meet societal and environmental demands. 
Drought concepts refer to conditions of precipitation deficit, soil moisture, streamflow, plant wilt-
ing, wild fires, famine, and other components. Moreover, drought monitoring involves climate data, 
soil moisture, streamflow, groundwater, reservoir and lake levels, snow pack, short-, medium-, and 
long-range forecasts, as well as vegetation health/stress and fire danger. A brief description of the 
aforementioned drought types is as follows: 

Meteorological or climatological drought is a region-specific natural event, due to the 
regional nature of atmospheric phenomena, resulting from multiple causes. It is defined 
as the degree of dryness specified by precipitation deficiencies and the dry period dura-
tion. Meteorological drought is generally characterized by a precipitation anomaly being 
lower than the average in a region for some period of time and by prolonged and abnormal 
moisture deficiency.

Agricultural or agrometeorological drought refers to the agricultural impacts resulting from 
deficiencies in the water availability for agricultural use. Indeed, agricultural drought is 
described in terms of crop failure and exists when soil moisture is depleted so that crop 
yield is reduced considerably. Specifically, agricultural drought is defined by the avail-
ability of soil water to support crop and forage growth, and there is no direct relationship 
between precipitation and infiltration of precipitation into the soil. Soils with low water 
holding capacity are typical of drought-prone areas, which are more vulnerable to agricul-
tural drought.
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Hydrological drought is normally defined by the departure of surface and subsurface water 
from some average conditions over a long time period resulting from meteorological 
drought. Hydrological drought is considered to be a period during which the actual water 
supply, either surface water or groundwater, is less than the minimum water supply that is 
necessary for normal operations in a particular region (watershed). Similar to agricultural 
drought, there is no direct relationship between precipitation amounts and the status of sur-
face and subsurface water supplies. There is also a significant time lag between departures 
of precipitation and the appearance of these deficiencies in surface and subsurface of the 
hydrological system.

Finally, socioeconomic drought is defined in terms of loss from an average or expected return 
and can be measured by both social and economic indicators (Gobron et al., 2007). Indeed, 
socioeconomic drought refers to the gap between supply and demand of economic goods 
brought on by the three other types of drought described earlier, such as water, food, raw 
materials, transportation, hydroelectric power, as a result of a weather-related shortfall in 
water supply. Socioeconomic drought is different from other types of drought, because 
its occurrence depends on the spatiotemporal distribution and processes of supply and 
demand.

1.2.2 factors anD features of Drought

Several factors may be implicated as potential causes of drought: El Nino Southern Oscillation 
(ENSO), abnormal sea surface temperature (SST) patterns in areas other than the equatorial eastern 
Pacific, soil moisture desiccation, and nonlinear behavior of the climate system. Frequent droughts 
around the world, and interest in their possible links with phenomena, such as El Nino, keep the 
hazard in evidence even for the casual observer. For example, in areas such as the Sahel in Africa, 
where nomadism and intermittent grazing have been prevalent and more or less in balance with 
environmental conditions, more intensive exploitation has had disastrous results for social systems 
and ecosystems when drought has struck.

For assessing and monitoring droughts, several drought features are usually detected (Mishra 
and Singh, 2010; Dalezios et al., 2017a). A description of some key features is as follows: 

Severity: Severity or intensity of drought is defined as an escalation of the phenomenon into 
classes from mild, moderate, severe, and extreme. The severity is usually determined 
through drought indicators and indices, which include the aforementioned classes. The 
regions affected by severe drought evolve gradually, and there is a seasonal and annual 
shift of the so-called epicenter, which is the area of maximum severity.

Periodicity: Periodicity is considered as the recurrence interval of drought.
Duration: Duration of a drought episode is defined as the time interval between the start and 

end time usually in months.
Onset: The beginning of a drought is determined by the occurrence of a drought episode. The 

beginning of a drought is assessed through indicators or indices reaching certain threshold 
value.

End time: End time of a drought episode signifies the termination of drought based again on 
threshold values of indicators or indices. As drought is a complex phenomenon, it is often 
difficult to determine the onset and the ending of a drought and on what criteria these 
determinations should be made.

Areal extent: Areal extent of the drought is considered as the spatial coverage of the 
 phenomenon as is quantified in classes by indicators or indices. Areal extent varies in time, 
and remote sensing has contributed significantly in the delineation of this parameter by 
counting the number of pixels in each class.
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1.3 REMOTE SENSING IN DROUGHT ANALYSIS

Over the last decades, there is a gradually increasing trend for the use of remote sensing in drought 
analysis and assessment, and specifically for the detection of several spatial and temporal drought 
features at different scales (Dalezios et al., 2017e). Moreover, a major consideration for remote sens-
ing use in drought analysis is the extent to which operational users can rely on a continued supply of 
data (Thenkabail et al., 2004). Indeed, satellite systems provide temporally and spatially continuous 
data over the globe, and, thus, they are potentially better and relatively inexpensive tools for regional 
applications, such as drought quantification, monitoring, and assessment, than conventional envi-
ronmental and weather data. For these types of applications, appropriate remote sensing systems 
are weather radars and satellites that provide low spatial and high temporal resolution data, because 
daily coverage and data acquisition are necessary. The series of geosynchronous, polar-orbiting 
meteorological satellites fulfil the aforementioned requirements, and there are already a long series 
of datasets. This section presents a brief description of remote sensing systems and their potential 
in drought analysis and assessment.

1.3.1 remote sensing systems for Drought analysis

The classification of the satellite systems can be based on several criteria. A basic criterion is 
certainly the wavelength of the electromagnetic radiation, which classifies the systems as being 
sensitive to visible, infrared, and microwave radiation regions of the spectrum. Another crite-
rion consists of the classification into active and passive satellite systems. Specifically, the active 
 satellite systems transmit energy and record the returned signal. Such systems are weather radars 
and synthetic aperture radars (SARs), which operate in the microwave portion of the electro-
magnetic spectrum and are considered as all-weather systems, because they can penetrate clouds 
without  signal attenuation. Active satellite systems are very useful in drought analysis, because 
precipitation from weather radar is a key parameter, as well as soil moisture can be detected 
from SAR images. On the other hand, passive satellite systems just record the naturally reflected 
or transmitted radiation. In drought quantification and assessment, two types of passive remote 
sensing systems are considered, namely meteorological and environmental or resource satellites. 
The main differences between the two types of satellites are their spatial and temporal reso-
lutions, which affect their applications and uses. Specifically, meteorological satellites have a 
rather coarse spatial resolution but high temporal reoccurrence, thus, being suitable mainly for 
operational applications, such as monitoring drought through changes in the index values. On 
the other hand, environmental satellites have usually a fine spatial resolution but low temporal 
reoccurrence, being basically used in land-use classification, such as quantitative classification of 
drought severity.

The advantage to using remotely sensed data is that they allow for a high-resolution spatial 
coverage and are updated frequently to allow for NRT analyses, whereas the main drawbacks are 
the relatively short period of record. Indeed, the number of satellite systems is steadily increas-
ing year by year with a continuous improvement of the spatial resolution. Moreover, there is a 
recent tendency to increase the number of available bands in these satellites resulting in new and 
valuable information. New types of remote sensing systems offer online open information for 
web platforms and are also utilized for monitoring and detecting drought. Such systems are the 
European Copernicus system with six sentinel satellites (2014–2021) to monitor land, ocean, emer-
gency response, atmosphere, security, and climate change (ESA, 2014) or National Aeronautics 
and Space Administration’s (NASA’s) new online satellites for climate change, Global Precipitation 
Measurement Core Observatory, Orbiting Carbon Observatory-2, and active–passive Soil Moisture. 
Moreover, massive cloud computing resources and analytical tools for working with big datasets 
make it possible to extract new information from environmental satellites’ imagery with varying 
spatial resolution, such as Landsat-8 imagery (15 m), RapidEye (5 m), Worldview-3 (0.31 m), or 
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Pleiades (0.5 m). Thus, digital data processing for CDIs, including satellite imagery, monitoring and 
preparedness planning, including DSS, could be incorporated into a dynamic web drought platform.

1.3.2 remote sensing capabilities in Drought analysis

Remote sensing capabilities provide a viable method to offset any loss of information. However, 
there are dissimilarities in temporal and spatial averages as envisioned by modeling efforts, as 
existing in the real world and as measured by remote sensing systems. Thus, remotely sensed data 
in order to be useful for monitoring and assessing droughts must be compatible with mathematical 
modeling of the corresponding quantification schemes. Moreover, new sensors have higher spatial 
resolution, a current shortcoming in drought indices products. Novel noise reduction algorithms 
and other atmosphere correction algorithms improve the thematic accuracy of remote sensing 
datasets.

1.3.2.1 Drought Quantification and Monitoring
Traditional methods of drought assessment and monitoring rely on conventional rainfall data, 
which are usually limited in a region, often inaccurate, and, most importantly, difficult to 
obtain in NRT (Thenkabail et  al., 2004). Indeed, some indicators may not have a sufficient 
record length, and this is usually the case of remotely sensed data. Thus, it is best to con-
sider multiple indicators for DEWS and for detection and verification of the onset, existence, 
and severity of drought. At the present time, it is possible to have direct estimation of envi-
ronmental parameters, such as temperature, precipitation, evapotranspiration, soil moisture, 
snow cover and snow depth, as well as water and energy balance, all of which are involved in 
drought quantification and assessment. Indeed, remote sensing data and techniques provide, 
among others, direct measurements of land characteristics, vegetative cover, and components 
of the hydrological cycle.

Moreover, monitoring the extent of drought is best achieved in near arid areas by the vegetation 
coverage. This can be achieved through multispectral visible imagery from polar-orbiting satel-
lites for monitoring vegetation conditions and agricultural drought than conventional weather data 
(Dalezios et al., 2014). For these types of applications, appropriate remote sensing systems are those 
that provide optimal spatial and temporal resolution data, because daily coverage and data acquisi-
tion are necessary. The series of geosynchronous, polar-orbiting meteorological satellites fulfil the 
aforementioned requirements, and there are already a long series of databases. For example, the 
Normalized Difference Vegetation Index (NDVI) and the VHI of several satellites, among other 
indices, are effectively used (Kogan, 1995) and provide good guidance on monitoring the areal 
extent of drought affected regions.

1.3.2.2 Drought Assessment and Management
Remote sensing methodologies and data can be employed in vulnerability and damage assessment, 
as well as relief, which involve assistance and/or intervention during or after drought. The possible 
contribution of remote sensing could be focused on relief and, possibly, preparedness although in 
many cases remote sensing can make a valuable contribution to disaster prevention in which fre-
quency of observation is not a prohibitive limitation. Moreover, remote sensing is a useful tool to 
analyze the vegetation dynamics on local, regional, or global scales (Keyantash and Dracup, 2002); 
to assess the vegetative stress; and to determine the impact of climate on vegetation. Satellite-
derived vegetation indices have been extensively used for identifying periods of vegetative stress 
in crops, which represent an indication of agricultural drought, or generally vegetation. Moreover, 
soil moisture can be directly measured in the microwave region of the electromagnetic spectrum 
through satellites, and interpretation of SAR data may also provide additional information on soil 
moisture (Petropoulos et al., 2015).
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1.4 REMOTELY SENSED DROUGHT QUANTIFICATION AND INDICES

Drought quantification is mainly implemented through drought indices. Remotely sensed drought 
indices use information from remote sensing sensors to map the condition of the land and to detect 
several drought features based on parameters, such as precipitation or temperature.

1.4.1 remotely senseD composite Drought inDices

Combined drought indices, which are also termed hybrid or aggregate or composite (Waseem et al., 
2015), are derived by incorporating existing drought indicators and indices into a single measure. At 
the present time, there are several regional/continental drought monitor models, leading to Global 
Drought Monitor (GDM), which coordinate and exchange information toward a Global Drought 
Information System (GDIS). Specifically, the four major regional/continental models are the North 
American Drought Monitor (NADM), which consists of U.S. Drought Monitor (USDM), Canada 
and Mexico; the European Drought Observatory (EDO) model; the African Drought Monitor 
(ADM); and the Australian Drought Monitor model (Dalezios et al., 2017b). There is an interna-
tional need to continue working toward improving drought indices that can take climate change 
impacts into consideration. 

USDM: The USDM system uses a composite of multiple indicators, such as SPI and Palmer 
Drought Severity Index (PDSI), as well as indicators, such as vegetation and hydrological 
conditions, into a national weekly map of drought, covering various short- and long-
term time frames, to develop a percent ranking methodology for drought monitoring 
and DEWS, leading to a single product (Svoboda et al., 2002; Wilhite, 2009; Svoboda, 
2015). The short-term composite drought index operates on time scales ranging from a 
few days to a few months and consists of 35% Palmer Z-Index; 25% 3-month precipita-
tion, 20% 1-month precipitation, 13% Climate Prediction Center Soil Moisture Model, and 
7% Palmer (Modified) Drought Index. Similarly, the long-term composite drought index 
 operates on time scales ranging from several months to a few years and consists of 25% 
Palmer Hydrologic Drought Index (PHDI), 20% 12-month precipitation, 20% 24-month 
precipitation, 15% 6-month precipitation, 10% 60-month precipitation, and 10% Climate 
Prediction Center Soil Moisture Model (Huang et al., 1996; Wood, 2012).

EDO model: When precipitation reduction produces a decrease in soil moisture enough to 
not satisfy the water demand of the plants, this means the starting of agricultural drought, 
which is essentially based on satellite data and methods. Specifically, the EDO model com-
bines different drought indices, namely SPI-n (McKee et  al., 1993), satellite-based soil 
moisture anomalies, and the satellite-based fraction of absorbed photosynthetically active 
radiation (FAPAR) anomalies, which are absorbed by vegetation. This EDO model is pro-
posed as drought indicator due to its sensitivity to vegetation stress (Gobron et al., 2007; 
Sepulcre-Canto et al., 2012). The method involves a classification scheme based on three 
drought impact levels: Watch, Warning, and Alert. Two additional levels, Partial recovery 
and Recovery, identify the stages of the vegetation recovery process. The development 
of a  composite index by combining and integrating meteorological and remote sensing 
 indicators helps to reduce false alarms, such as in vegetation indices, in which a biomass 
reduction can be generated by causes different from a drought induced by water stress.

1.4.1.1 Remotely Sensed Meteorological Drought Indices
As a general rule, any meteorological drought index can be converted to a remotely sensed index 
provided that meteorological variables, such as precipitation and/or temperature, are computed 
by remotely sensed algorithms or methods. Moreover, the use of remotely sensed drought indices 
is expected to increase drastically in the forthcoming years due to the availability of precipitation 
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and temperature data platforms at a global scale, besides the increasing  technological and 
 computational advances. Meteorological drought indices can be used in the context of DEWS in 
order to provide timely information on drought for decision-making. It should be stated that a 
meteorological drought index value is essentially considered far more useful than raw data, espe-
cially in the case of drought monitoring for NRT decision-making. Moreover, a meteorological 
drought index can also be used as ground-truth information for modeling efforts or remotely 
sensed detection of several drought features.

There are precipitation-only drought indices, such as Rainfall Anomaly Index (RAI) (Van-Rooy, 
1965), Bhalme–Mooley Drought Index (BMDI) (Bhalme and Mooley, 1980), Drought Severity Index 
(DSI) (Bryant et al., 1992), National Rainfall Index (NRI) (Gommes and Petrassi, 1994), Effective 
Drought Index (EDI) (Byun and Wilhite, 1999), and Drought Frequency Index (DFI) (González and 
Valdez, 2006). For better correlation with drought impacts and accounting for temporal tempera-
ture trends, additional meteorological variables have been considered. These include modifications 
to SPI (McKee et al., 1993) to develop the more comprehensive RDI (Tsakiris and Vagelis, 2005) 
that incorporates evapotranspiration resulting in better association with impacts from agricultural 
and hydrological droughts. Moreover, there is a similar index, namely Standardized Precipitation 
Evapotranspiration Index (SPEI) (Vicente-Serrano et  al., 2010), which is sensitive to long-term 
trends in temperature change. If such trends are absent, SPEI performs similarly to SPI. Indeed, 
Keetch–Byram Drought Index (KBDI) (1968) has considered temperature and has had wide appli-
cation to wildfire monitoring. In addition to temperature and evapotranspiration, PDSI (Palmer, 
1965) also considers streamflow and soil moisture to give a more complete picture of the water 
balance. PDSI is categorized as a comprehensive drought index (Niemeyer, 2008) and remains a 
popular index. Improvements include self-calibration capacity and modifications in the estimation 
of evapotranspiration by replacing the original Thornthwaite method (1948) with other formulations 
and/or remotely sensed estimation (Dalezios et al., 2012).

1.4.1.1.1 Classification of Meteorological Drought Indices
Table 1.1 presents an indicative list of available and commonly used meteorological drought indices 
in different classes (Farago et al., 1989; Dalezios et al., 2017a). A brief description of the classes of 
meteorological drought indices is as follows: 

Indices of atmospheric drought: Low humidity is considered as the standard signal of dry 
spell. Indeed, atmospheric drought is usually described by the water vapor saturation defi-
cit (Selyaninov, 1958).

Indices of precipitation anomaly: Several existing precipitation anomaly indices are listed 
in Table 1.1, such as the Precipitation Index, the Relative Precipitation Sum, the Relative 
Anomaly, the Standardized Anomaly Index, and the Average Standard Anomaly (WMO, 
1975).

Aridity indices: The aridity index is based on the evapotranspiration/precipitation ratio 
(Budyko, 1952). There are several types of aridity indices, some of which are listed in 
Table 1.1, such as Lang’s Rainfall Index, de Martone Aridity Index, Ped’s Drought Index 
(PDI1) (1975), Selyaninov’s Hydrothermal Coefficient (1958), Thornthwaite Index (1948), 
Potential Water Deficit, Potential Evaporation Ratio, Aridity Index: Moisture Available 
Index, Relative Evaporation, Surface Energy Balance, and Bowen Ratio (Skvortsov, 1950).

Recursive drought indices: There are several recursive drought indices consisting of the fam-
ily of PDSI, which are listed in Table 1.1. Such indices are Fooley Anomaly Index (FAI) 
(Fensham and Holman, 1999), BMDI, the family of PDSI (Palmer, 1965), SPI (McKee 
et  al., 1993), Surface Water Supply Index (SWSI), Reclamation Drought Index (RDI), 
Palmer Drought Index (PDI), Crop Moisture Index (CMI), KBDI, EDI, and RDI (Tsakiris 
and Vagelis, 2005).
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1.4.1.2 Remotely Sensed Agricultural Drought Indices
Most of the existing and widely used remotely sensed drought indices are based on spectral reflec-
tance of vegetation and, thus, are mainly used as agricultural drought indices, also known as veg-
etation indices. There are several indices based on remotely sensed information (Wagner et  al., 
1996), some of which are listed in Table 1.1, such as Crop Water Stress Index (CWSI) (Jackson 
et al., 1981), Vegetation Index, NDVI (Tsiros et al., 2006) and Stress Degree Days (Idso et al., 1980). 
Moreover, agricultural drought mainly involves monitoring of soil water balance and the subsequent 
deficit if a drought occurs (Table 1.2). Indeed, Table 1.2 presents an indicative list of internation-
ally used conventional and remotely sensed agricultural drought indices (Dalezios et  al., 2017c, 
2017e). Specifically, there are models, such as Relative Soil Moisture (RSM) (Thornthwaite and 
Mather, 1955), CMI (Palmer, 1965), which is similar to PDSI, however, models short-term agricul-
ture by considering moisture deficit only in the top 5 ft of soil column (Narasimhan and Srinivasan, 
2005) and Crop Specific Drought Index (CSDI) (Meyer et al., 1993). Agricultural Drought Index 
(DTx) (Matera et al., 2007) calculates the daily transpiration deficit (DT) for x days. DTx uses the 
CRITeRIA soil moisture balance model (Zinoni and Marletto, 2003) with inputs including soil, 
crop, and weather conditions in addition to temperature anomalies, which affect evapotranspiration. 
Increased spatial and temporal resolutions are sought in developing Soil Moisture Deficit Index 
(SMDI) and Evapotranspiration Deficit Index (ETDI) (Narasimhan and Srinivasan, 2005), which 
are the soil components of the soil and water assessment tool (SWAT) hydrological model.

Remote sensing indices are diverse, and new indices are frequently proposed. Although NDVI 
has remained popular (Dalezios et  al., 2017e), other indices such as the Normalized Difference 
Water Index (NDWI) (Gao, 1996), Temperature Vegetation Dryness Index (TVDI) (Domenikiotis 
et  al., 2008), Vegetation Drought Response Index (VegDRI) (Brown et  al., 2008), Vegetation 

TABLE 1.1
Indicative List of Meteorological Drought Classes and Indices

Classification of Drought Indices

1. Atmospheric Drought Indices 4. Recursive Indices
   1.1 Saturation Deficit    4.1 Fooley Anomaly Index (FAI)
2. Precipitation Anomaly Indices    4.2 Bhalme–Mooley Drought Index (BMDI)
   2.1 Precipitation Index    4.3 Palmer Drought Severity Index (PDSI)
   2.2 Relative Precipitation Sum    4.4 Standardized Precipitation Index
   2.3 Relative Anomaly    4.5 Surface Water Supply Index (SWSI)
   2.4 Standardized Anomaly Index (SAI)    4.6 Reclamation Drought Index (RDI)
   2.5 Average Standard Anomaly    4.7 Palmer Drought Index (PDI)
3. Aridity Indices    4.8 Palmer Crop Moisture Index (CMI)
   3.1 Lang’s Rainfall Index    4.9 Keetch–Byram Drought Index (KBDI)
   3.2 De Martone Aridity Index    4.10 Effective Drought Index
   3.3 Ped’s Drought Index (PDI1)    4.11 Reconnaissance Drought Index (RDI)
   3.4 Selyaninov’s Hydrothermal Coefficient 5. Remotely Sensed Information
   3.5 Thornthwaite Index    5.1 Crop Water Stress Index (CWSI)
   3.6 Potential Water Deficit    5.2 Vegetation Index
   3.7 Potential Evaporation Ratio    5.3 Normalized Difference Vegetation Index
   3.8 Aridity Index: Moisture Available Index    5.4 Stress Degree Days
   3.9 Relative Evaporation
   3.10 Surface Energy Balance
   3.11 Bowen Ratio

Source: Dalezios, N.R. et al., Meteorological drought indices: Definitions, In Eslamian, S. (Ed.), Handbook of Drought and 
Water Scarcity (HDWS), Vol. 1, Taylor & Francis Group,  Abingdon, UK, 2017a.
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Condition Index (VCI) (Kogan, 1995), Temperature Condition Index (TCI), and VHI (Kogan, 1995) 
are currently operationally used (NDMC, 2011; NOAA, 2011). Moreover, Enhanced Vegetation 
Index (EVI) (Liu and Huete, 1995) and NDWI (Foley, 1957) are also used to monitor vegetation 
state and health (Sivakumar et al., 2011). Traditionally used bands include near-infrared (NIR), red 
and shortwave infrared (SWIR). The land surface temperature (LST) has been used as an additional 
source along with NDVI to improve drought quantification accuracy.

1.4.1.3 Remotely Sensed Hydrological Drought Indices
The advanced PHDI (Palmer, 1965) model considered precipitation, evapotranspiration, runoff, 
recharge, and soil moisture. The PDSI shows ever lacked the snow component accumulation, which 
led to the development of SWSI (Shafer and Dezman, 1982), probably the most popular of this 
group. Reclamation Drought Index (RDI) (Weghorst, 1996) has improved SWSI by incorporating 
temperature and hence calculates a variable water demand as input. Remote Sensing Drought Index 
(RSDI) (Stahl, 2001) bases its model on homogeneous drought-stricken regions that comprise several 
neighboring low-flow gauging stations. In addition, there have been numerous attempts to estimate 
low-flow indices, such as the estimation of the low-flow index (7Q10), the 7-day, 10-year low-flow, 
using principal component regression (PCR) based on physiographic and hydrological variables 
(Eslamian et al., 2010). Two recent indices consider a water balance model: Groundwater Resource 
Index (GRI) (Mendicino et al., 2008) and Water Balance Derived Drought Index (Vasiliades et al., 
2011). The former focuses on groundwater resources and uses geolithological information in a dis-
tributed water balance model, whereas the latter uses a model that artificially simulates runoff for 
ungauged watersheds. Moreover, Palfai Aridity Index (PAI) (Palfai, 1991) considered groundwater, 
along with temperature and has mainly been applied to basins.

1.4.1.4 Aggregation of Remotely Sensed Drought Indices
Combining drought indices has been increasingly discussed as a means to incorporate and more 
effectively exploit information that is readily available and proven to be useful in field-specific 

TABLE 1.2
Conventional and Satellite-Based Agricultural Drought Indices

Conventional Drought Indices Satellite-Based Drought Indices

1. Agricultural Drought Index (DTx) 1. Normalized Difference Vegetation Index

2. Bhalme–Mooley Drought Index (BMDI) 2. Deviation NDVI index

3. Corn Drought Index 3. Enhanced Vegetation Index (EVI)

4. Crop Moisture Index (CMI) 4. Vegetation Condition Index (VCI)

5. Crop Specific Drought Index 5. Monthly Vegetation Condition Index

6. Evapotranspiration Deficit Index (ETDI) 6. Temperature Condition Index (TCI)

7. Global Vegetation Water Moisture Index 7. Vegetation Health Index (VHI)

8. Leaf Water Content Index (LWCI) 8. Normalized Difference Temperature Index

9. Moisture Availability Index (MAI) 9. Crop Water Stress Index (CWSI)

10. Reclamation Drought Index (RDI) 10. Drought Severity Index (DSI)

11. Soil Moisture Anomaly Index (SMAI) 11. Temperature-Vegetation Dryness Index

12. Soil Moisture Deficit Index (SMDI) 12. Normalized Difference Water Index

13. Soil Moisture Drought Index (SMDI) 13. Remote Sensing Drought Risk Index

14. Standardized Vegetation Index (SVI) 14. Vegetation Drought Response Index

15. Computed Soil Moisture

16. Agro-Hydro Potential

Source: Dalezios, N.R. et al., Agricultural drought indices: Combining crop, climate and soil factors, In Eslamian, S. (Ed.), 
Handbook of Drought and Water Scarcity (HDWS), Vol. 1., Taylor & Francis Group, Abingdon, UK, 2017c.
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drought indices (Niemeyer, 2008). In follow-up to the Lincoln Declaration (WMO, 2009), the 
 creation of a new composite hydrological drought index is recommended that would cover stream-
flow, precipitation, reservoir levels, snowpack, and groundwater levels (Sivakumar et al., 2011). In 
general, hybrid drought indices can provide a stronger correlation with actual impacts sustained 
in the ground. Most hybrid drought indices are comparatively recent, including the USDM and 
VegDRI (Brown et  al., 2008). VegDRI combines SPI and PDSI in addition to two NDVI-based 
indicators: Percent Average Seasonal Greenness (PASG) and Start of Season Anomaly (SOSA). 
Moreover, a combination of SPI, SWSI, and PDSI was accomplished to develop the integrated HDI 
(Karamouz et al., 2009). However, the combinations are mainly based on subjective local experi-
ence and are not considered objective. The predicted nonstationarity in future climates (IPCC, 
2012) has instigated research for including future temporal patterns in drought characterization. 
Moreover, the SPEI accounts for the increase in the duration and magnitude of droughts resultant 
from higher temperatures. Additional research has been conducted for specific regions including 
Australia and the Czech Republic (Dalezios et al., 2017b).

1.4.2 Description of representative remotely senseD Drought inDices

For drought quantification, two remotely sensed drought indices are briefly presented, namely the 
meteorological RDI (Tsakiris and Vagelis, 2005) and the agricultural VHI (Kogan, 1995), respec-
tively. The presentation includes the composite use of the two indices for drought quantification. 
In addition, applications of both indices, RDI and VHI, are considered in DEWS and drought 
monitoring.

RDI is a new physically based general meteorological index, which can be used in a variety of 
climatic conditions. Moreover, RDI provides information for the water deficit in a region as it is 
based not only on precipitation, but also on potential evapotranspiration (PET). In the computation 
of RDI, the innovation consists of employing the Blaney–Criddle method for PET instead of the 
Thornthwaite method (1948), because it is more appropriate for the Mediterranean region with dry 
and hot summers (Blaney and Criddle, 1950). Furthermore, in this application, Blaney–Criddle 
method is based on brightness temperature (BT) and LST, which are derived from satellite data and 
constitute an innovative approach (Kanellou et al., 2009a; Dalezios et al., 2012).

Similarly, for the quantitative assessment of agricultural drought, as well as the computation of 
spatiotemporal features, one of the most reliable and widely used indices is applied, namely the 
VHI, which combines VCI and TCI. The VCI and TCI, as well as the adjusted VHI, have proven to 
be useful tools for agricultural drought and for monitoring agricultural crops in vulnerable agroeco-
systems internationally (Domenikiotis et al., 2004; Dalezios et al., 2014).

1.4.2.1 Study Area and Datasets
1.4.2.1.1 Study Area
A drought-prone study area is selected, namely the Thessaly region (about 14,400 km2) in central 
Greece (Figure 1.1). The area has been selected, because it has long records of environmental data 
and is subject of diachronic research. The Thessaly plain constitutes the main agricultural area 
of the country. Thessaly is characterized by vulnerable agriculture. Extreme hydrometeorological 
events, such as hail and droughts, are quite common in the catchment due to the existing water 
deficit. Droughts are caused mainly by reduced precipitation resulting into lack of soil moisture, 
increased evapotranspiration, runoff reduction, decrease in streamflow levels in rivers, lakes and 
dams, lowering of groundwater table, and resulting in water deficit for agriculture (Dalezios 
et al., 2012).

1.4.2.1.2 Datasets
For the RDI estimation, the following data are utilized: daily precipitation of Thessaly water 
district in 50 × 50 km2 spatial analysis derived by ground measurements provided by the Joint 
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Research Center (JRC) of European commission (EC), Ispra, Italy. The main area is flat with 
no complex terrain, and the interpolation is effective. Crop coefficients maps are extracted 
by Corine Hellas 2000 for each month of the year (12 maps). Monthly maps of daytime 
sunshine duration for 39.39° Middle North Latitude of Thessaly (12 maps) are produced. A 
time series of 10-day BT images is extracted from Channels 4 and 5 of national oceanic and 
atmospheric administration (NOAA) satellite for 20 consecutive hydrological years (October 
1981–September 2001) with a resolution of 8 × 8 km2 provided by NOAA. Similarly, a time 
series of 10-day NDVI is extracted from Channels 1 and 2 of NOAA satellite for 20 con-
secutive hydrological years (October 1981–September 2001) with a resolution of 8 × 8 km2 
provided by NOAA.

For the VHI estimation, the following data are utilized: a time series of 10-day BT images is 
extracted from Channels 4 and 5 for 20 consecutive hydrological years (October 1981–September 
2001) with a resolution of 8 × 8 km2 provided by NOAA. Similarly, a time series of 10-day NDVI 
is extracted from Channels 1 and 2 for 20 consecutive hydrological years (October 1981–September 
2001) with a resolution of 8 × 8 km2 provided by NOAA.

1.4.2.2 Remotely Sensed Meteorological Drought Index: Reconnaissance Drought Index
The estimation of RDI includes prepossessing of satellite data, calculation of air temperature, esti-
mation of PET with the use of satellite data, rain map extraction, and remotely sensed estimation of 
RDI (Dalezios et al., 2012). A brief description is as follows:

1.4.2.2.1 Preprocessing
Satellite data that are used originate from 10-day NOAA/advanced very high resolution radiometer 
(AVHRR) images with a spatial resolution of 8 × 8 km2. The initial variables, which are extracted 
from the aforementioned satellite data, are BT and NDVI on a monthly basis. Then, geometric cor-
rection of all images is conducted.

1.4.2.2.2 Computation of Air Temperature
This method is analytically presented in Chapter 6. The monthly BT and NDVI values are pro-
cessed based on an established algorithm (Becker and Li, 1990) to derive LST values on a pixel 
basis (Kanellou et al., 2009b). Monthly air temperature maps are then derived from LST satellite 
images based on a regression analysis between LST values and air temperature measurements 
from the meteorological station of Larissa, which is located in the region, for the whole period 
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FIGURE 1.1 Geophysical map of Thessaly region. (From Dalezios, N.R. et al., Nat. Hazard. Earth Syst., 14, 
2435–2448, 2014. With permission.)
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(1981–2001). The derived empirical relationship between LST and air temperature (Tair) is given 
by Equation 1.1:

 T Rair LST= − + ≈0 6143 7 3674 0 822. . .  (1.1)

1.4.2.2.3 Estimation of Potential Evapotranspiration
The estimation of PET is based on Blaney–Criddle (1950) method, which is considered appropriate 
for subtropical climates with dry and hot summers, such as the Mediterranean region, because it has 
been applied in California. Originally, PET has been estimated by the Thornthwaite method, which 
is more appropriate for climates with wet and hot summers (e.g., East United States). The monthly 
potential evapotranspiration (ETm), in mm, is estimated from Equation 1.2:

 ETm k T p= +*[ . . ]*0 46 8 16  (1.2)

where:
T is the mean monthly air temperature
p is the monthly daytime sunshine duration, which depends on the latitude of the area
k is the crop coefficient, different for each cultivation, vegetation type, and land use

Mean monthly crop coefficients for each vegetation type and land use in 500 × 500 m2 pixel size and 
daytime sunshine duration (p) for each monthly value for the Thessaly water district (39,39° North 
Latitude) are mapped in a GIS environment (Kanellou et al., 2012). Then, the monthly crop coeffi-
cient maps and the maps of daytime sunshine duration are combined with the air temperature maps 
in order to derive Blaney–Criddle PET on a monthly basis for the whole time period (1981–2001).

1.4.2.2.4 Rain Map Extraction
Rain maps over Thessaly on a monthly basis, which are used for RDI estimation, are provided by 
JRC, Ispra. These data cover Greece from 1975 to 2005 per 50 × 50 km2. From daily rainfall time 
series, the monthly cumulative rain of each hydrological year from 1975 to 2005 is calculated. Then 
rain maps are produced every month using linear interpolation.

1.4.2.2.5 Estimation of Remotely Sensed Reconnaissance Drought Index
Estimation of RDI is based on monthly temperature maps, crop coefficient (Kc) maps, sunlight dura-
tion maps (p), PET maps based on Blaney–Criddle, and rain maps (P). In this study, RDI is calcu-
lated on a monthly and annual basis. At first, the ak coefficient is estimated (Tsakiris and Vagelis, 
2005) from Equation 1.3:
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where Pj and PETj are the precipitation and potential evapotranspiration, respectively, of the jth 
month of the hydrological year. The hydrological year for the Mediterranean region starts in 
October; hence for October, k = l. RDIn is the Normalized RDI, which is given by

 RDIn
k

k
k

a
a

( ) = −1 (1.4)



17Drought and Remote Sensing

The Standardized RDI (RDIst), which is used in this study, is given by

 RDIst ( )k
y yk k

k
= −

σ
 (1.5)

where:
yk is the ln ak

yk  is its arithmetic mean
σ k is its standard deviation

The drought categories based on RDI are shown in Table 1.3.

1.4.2.3 Remotely Sensed Agricultural Drought Index: Vegetation Health Index
Remotely sensed monthly VHI images are produced. Preprocessing of the initial satellite images 
is conducted, involving geometric and atmospheric correction of all images. Specifically, an inno-
vative procedure is used based on certain filters for smoothing the data, leading to improved VHI 
values (Dalezios et al., 2014). Then, the computation of the VHI is conducted, and monthly VHI 
images are produced on a pixel basis. 

Preprocessing: Ten-day NDVI maps are produced from the corresponding maximum value 
composite (MVC) images from the original visible (CH1) and NIR (CH2) images, respec-
tively, of NOAA/AVHRR. BT images are produced from CH4 and CH5 images using 
the formula provided by the info file of the dataset. Then, fluctuations induced by noise 
are removed. Indeed, the combination of filtering and the MVC can significantly reduce 
the noise from residual clouds, satellite orbital drift, target/sensor geometry, and fluctuat-
ing transparency of the atmosphere. There is also additional noise, which can be related to 
 processing, data errors, or just random noise. Specifically, a 4253 compound twice median 
filter is applied to NDVI images, whereas a conditional statistical mean spatial filter (window 
size ranging from 3 × 3 to 7 × 7, according to image needs) is used for smoothing the BT 
series (Dalezios et al., 2014). Indeed, the BT series present continuous spatial fluctuations, 
and thus, a spatial filter (statistical mean) is preferred for smoothing CH4 and CH5 BTs. 
The term conditional means that the filter is applied only to the pixels that present errors. 
Finally, the 10-day NDVI and BT images are integrated into monthly values from the MVC 
and the mean pixel value, respectively.

TABLE 1.3
RDI Drought Classification Scheme

Drought Categories RDI Values

Extremely wet >2.00

Very wet 1.50 to 1.99

Moderately wet 1.00 to 1.49

Near normal 0.99 to −0.99

Moderately dry −1.00 to −1.49

Severely dry −1.50 to −1.99

Extremely dry <−2.00

Source: Tsakiris, G. and Vangelis, H., Eur. Water., 9, 3–11, 2005.
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VHI: The computation of monthly VHI images is based on BT and NDVI values. The VHI is 
the weighted summation of VCI and TCI, both derived from NOAA/AVHRR satellite data 
(Kogan, 1995). The VCI is based on NDVI and is expressed by Equation 1.6:

 VCI 100*
NDVI NDVI

NDVI NDVI
=

−
−

min

max min

 (1.6)

 where NDVI, NDVImax, and NDVImin are the smoothed 10-day NDVI, its multiyear maxi-
mum, and its multiyear minimum, respectively, for each pixel, in a given area. Following 
the same concept as with VCI, TCI is based on BT values and is given by Equation 1.7:

 TCI 100*
BT BT

BT BT
=

−
−

max

max min

 (1.7)

 where BT, BTmax, and BTmin are the smoothed 10-day radiant temperature, its multiyear 
maximum, and its multiyear minimum, respectively, for each pixel, in a given area. From 
Equations 1.6 and 1.7, it is evident that VCI and TCI characterize the moisture and ther-
mal conditions of vegetation, respectively. Specifically, thermal conditions are especially 
important when moisture shortage is accompanied by high temperature, increasing the 
severity of agricultural drought and having direct impact to vegetation health.

  The VHI represents overall vegetation health and is used for drought mapping and crop 
yield assessment (Kogan, 1995). Table 1.4 presents the four VHI classes of agricultural 
drought severity, as well as no drought conditions. VHI is expressed by Equation 1.8:

 VHI 0.5*(VCI) 0.5*(TCI)= +  (1.8)

 VCI and TCI vary from zero, for extremely unfavorable conditions, to 100, for optimal 
conditions.

1.5  REMOTELY SENSED DROUGHT EARLY WARNING 
SYSTEM AND MONITORING: A CASE STUDY

DEWS focuses on monitoring drought conditions (Wilhite et al., 2000) through the use of drought indica-
tors and indices. Depending on the data availability and quality for any particular area, it may be possible 
to utilize many drought indices that are available, such as the USDM, and to determine the most suitable 
for any particular area or season for drought monitoring and DEWS. There is an international need to 
continue working toward newer and potentially better drought indices that can also account for a chang-
ing climate in which there may be a shift in both temperature and precipitation regimes. For illustrative 

TABLE 1.4
VHI Drought Classification Scheme

VHI Values Vegetative Drought Class Drought Class Numbers

<10 Extreme drought 1

<20 Severe drought 2

<30 Moderate drought 3

<40 Mild drought 4

>40 No drought 5

Source: Kogan, F.N., Adv. Space Res., 15, 91–100, 1995.
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purposes, two case studies using empirical models and leading to DEWS, one based on RDI (Dalezios 
et al., 2012) and the other based on VHI (Dalezios et al., 2014), respectively, are briefly presented.

1.5.1 remotely senseD meteorological DeWs: reconnaissance Drought inDex

By plotting the cumulative monthly areal extent values of the extreme RDI drought class, that is, 
class 4 of Table 1.3 with values lower than −2, for all the drought episodes, two figures are pro-
duced, namely Figure 1.2 for droughts of large areal extent and Figure 1.3 for droughts of small areal 
extent, respectively. Furthermore, curve fitting is conducted for each of these figures resulting in the 
 following polynomials, namely Equation 1.9 for droughts of large areal extent and Equation 1.10 for 
droughts of small areal extent, respectively, both with high coefficient of determination.

 y x x x R= − + − =0 477 9 7934 78 221 36 078 0 96763 2 2. . . . ( ).  (1.9)

 y x x R= − + =0 4868 3 3415 4 78 0 96182 2. . . ( . ) (1.10)
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FIGURE 1.3 Cumulative small areal extent (no. of pixels 8  ×  8  km2) of extreme drought (>2.0) during 
drought years based on remotely sensed RDI. (From Dalezios, N.R. et  al., Nat. Hazard. Earth Syst., 12, 
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It is worth noticing that for droughts of large areal extent (Figure 1.2), drought starts during the first 
3 months of the hydrological year, whereas for droughts of small areal extent (Figure 1.3), drought starts 
in spring (April). This finding justifies the use of the fitted curves of Figures 1.2 and 1.3 along with the 
corresponding Equations 1.9 and 1.10, respectively, for drought prognostic assessment or DEWS.

1.5.2  remotely senseD agricultural Drought early 
Warning systems: vegetation health inDex

In Figure 1.4, the cumulative monthly areal extent curves of the two merged classes are shown, 
which correspond to the four VHI severity classes of agricultural drought (Table 1.4). Furthermore, 
curve fitting is conducted for each of these curves resulting in the following polynomials, namely 
Equation 1.11 for high severity areal extent drought and Equation 1.12 for low severity areal extent 
drought, respectively, both with high coefficient of determination.

 y x x R= + =0 0905 4 3574 0 91682 2. . ( . ) (1.11)

 y x x x R= − + − =3 7413 34 977 6 8352 0 99983 2 2. . . ( . ) (1.12)

The two curves of Figure 1.4 present the range of values that agricultural drought may take every 
year during the warm season. These findings signify the potential of using the fitted curves of 
Figure  1.4, along with the corresponding Equations 1.11 and 1.12, respectively, for first-guess 
drought prognostic and monitoring assessment leading to DEWS.

1.5.3 results anD Discussion

This section summarizes the results for drought quantification and monitoring based on two 
remotely sensed indices, namely RDI and VHI, respectively. For an extensive analysis of 
results, additional information and references are provided for RDI (Dalezios et al., 2012) and 
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VHI (Dalezios et al., 2014), respectively. The results of RDI analysis are summarized in Figures 1.2, 
1.3, and 1.5. Specifically, Figure 1.5 is a plot of the computed time series of annual RDI for Larisa 
(1981–2001) in which the negative RDI values represent drought years, and the positive RDI values 
refer to nondrought years based on the RDI classification scheme of Table 1.3. It should be clarified 
that the nondrought years also include the near-normal conditions. In Figure 1.5, the term conventional 
RDI means computation of the RDI from conventional meteorological data at Larisa station, whereas 
satellite RDI means the corresponding remotely sensed RDI values, as computed for a 3 × 3 pixel area 
above the Larisa station. The results of Figure 1.5 indicate that there are eight (8) drought episodes 
during this 20-year period in the study area of Thessaly, Greece. Moreover, the drought periods coin-
cide with the hydrological year in most of the cases, that is, 12 or 13 months duration.

Similarly, VHI is estimated on a monthly basis for a period of 20 years (1981–2001) using satellite 
data, and the results are summarized in Figures 1.4 and 1.6, respectively. Moreover, several drought 
features are extracted from VHI images, leading to useful inferences. The results are presented in 
the upper curve of Figure 1.4 (for high drought severity classes 1 and 2) and in the lower curve of 
Figure 1.4 (for low drought severity classes 3 and 4), respectively, based on the VHI classification 
scheme of Table 1.4. Indeed, the initial four VHI severity classes are merged into two in Figure 1.4, 
namely extreme (class 1) and severe (class 2) drought into one class (upper curve of Figure 1.4). 
Similarly, moderate (class 3) and mild (class 4) drought are merged into another class (lower curve 
of Figure 1.4). The reason for merging classes is the relatively small number of pixels in each class in 
order to develop a sizeable dataset for performing a reliable analysis and fitting models. The analysis 
of agricultural drought based on VHI results and for the same period shows that drought occurs 
every year during the warm season, namely from April till October. The majority of pixels are 
accumulated between mild to moderate drought severity classes indicating a significant decrease in 
the number of pixels from mild to extreme drought classes for all the months. Finally, for illustrative 
purposes, Figure 1.6 presents VHI drought severity mapping of Thessaly for 6 months of a drought 
year, namely from April to September 1985 (Kanellou et al., 2009b). In Figure 1.6, it is evident that 
drought starts occurring in May with increasing severity and areal extent throughout the warm 
season with the maximum occurring toward the end of the summer, as expected. Figure 1.6 also 
shows the spatial variability of agricultural drought severity and extent within Thessaly, as well as 
the areas of drought persistence.

In summary, the findings justify the composite use of RDI and VHI, as well as other drought 
indices of different drought types, for drought monitoring and assessment.
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1.6 DROUGHT RISK ASSESSMENT AND MANAGEMENT

1.6.1 principles anD concepts

1.6.1.1 Drought Risk Assessment
Drought risk assessment involves risk estimation, which means the risk of such drought events, that 
is, event probabilities, as well as magnitude–duration–frequency and areal extent relationships for 
drought assessment (Wilhite et al., 2000; Dalezios et al., 2017d). The risk estimation also involves 
vulnerability assessment and its uncertainty. The combination of all the specific risks sums up to 
the total drought risk for all the severities (intensities), return periods, and elements at risk leading 
to the quantitative risk assessment (QRA) (Wilhite, 2009). Remote sensing methods and data can 
be employed in all aspects of drought risk assessment, vulnerability, and damage assessment, as 
well as relief, which involve assistance and/or intervention during or after drought (Dalezios et al., 
2017e). Moreover, the areal extent of specific common drought episodes is another important feature 
of droughts, which could also be detected from remote sensing data and methods.

1.6.1.2 Drought Risk Management
The main principle of drought risk management policy is based on preparedness and mitigation 
measures (Wilhite, 2005; Arneth et al., 2014). Indeed, preparedness means predisaster activities 
with the objective to improve the institutional and operational efficiency, as well as to upgrade the 
level of readiness in order to respond to a drought episode. Moreover, mitigation involves short- and 
long-term programs, actions, or policies, which are applied in advance or during a drought in order 
to reduce the degree of risk to human life, productive capacity, and property. However, emergency 
response is always expected to be a part of drought management, because it is unlikely to consider, 
avoid, or reduce all potential impacts through mitigation actions. Nevertheless, at the present time, 
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FIGURE 1.6 VHI map of Thessaly for 6 months (April–September 1985): (a) April 1985, (b) May 1985, 
(c) June 1985, (d) July 1985, (e) August 1985, and (f) September 1985. (From Kanellou, E. et al., Eur. Water J., 
23, 111–122, 2009b. With permission.)
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the adopted plans follow a more risk management approach to drought management, becoming 
more proactive (Dalezios et al., 2009).

The possible contribution of remote sensing could focus on relief and, possibly, preparedness, 
although in many cases remote sensing can make a valuable contribution to disaster prevention 
in which frequency of observation is not a prohibitive limitation. Moreover, remote sensing is a 
useful tool to analyze the vegetation dynamics on local, regional, or global scales (Keyantash and 
Dracup, 2002) to assess the vegetative stress and to determine the impact of climate on vegeta-
tion. Satellite-derived vegetation indices, such as VHI, have been extensively used for identify-
ing periods of  vegetative stress in crops, which represent an indication of agricultural drought, or 
generally vegetation. Moreover, soil moisture can be directly measured in the microwave region of 
the electromagnetic spectrum through satellites, and interpretation of SAR data may also provide 
additional information on soil moisture, which is a key factor in agricultural drought (Gobron et al., 
2007; Sepulcre-Canto et al., 2012; Petropoulos et al., 2015).

1.6.1.3 Drought Impacts
Drought impacts refer to a multitude of drivers that may turn physical drought causes, such as 
reduced average precipitation, deficient soil moisture, and low water levels, into disaster events for 
vulnerable populations and economies. Drought impacts can be classified into direct and indirect 
impacts (Dalezios et al., 2009). Direct drought impacts may include agricultural production losses, 
food security problems, reduced cropland, forest and rangeland productivity, reduced water levels, 
increased fire hazards, livestock and wildlife mortality rates, damage to wildlife and fish habitat, 
rural livelihoods, as well as urban and economic sectors, among others. In addition, droughts may 
contribute to ecosystem decline, migration, and conflict. The consequences of these direct impacts 
are usually considered as indirect impacts. Moreover, drought impacts can also be classified by the 
affected sector, leading to environmental, economic, or social types of impact.

1.6.1.4 Drought Mitigation
Drought mitigation plans are based mainly on three fundamental components applied either to pro-
vincial, national, or regional level (Dalezios et al., 2009). First, an early warning system serves as 
the basis for decision-making during the development of a drought period. Second, it is important 
to undertake risk assessment in order to determine the subject and the causes of risk, which are 
accomplished through impact studies of drought events. Third, it is necessary to specify appropriate 
mitigation actions in order to reduce the risk of each impact for future drought events (Wilhite et al., 
2000; Arneth et  al., 2014). Assessment programs include the development of criteria or triggers 
for specific mitigation actions in response to drought, new data collection networks, early warning 
and monitoring systems, monitoring climate and water supply conditions, and drought contingency 
plans.

1.6.2 examples of Drought risk assessment anD management

Indicative examples of drought risk assessment and management, based on remote sensing data and 
methods, are presented.

1.6.2.1 Drought Severity–Duration–Frequency Relationships
Statistical frequency analysis of climatic extremes, such as droughts, has been extensively used 
internationally. However, droughts are not universally quantified phenomena, and frequency analy-
sis of droughts is not easily accomplished. Frequency of drought occurrence cannot sufficiently and 
fully cover the study of droughts, unless it is quantitatively related to other aspects and terms, such 
as severity and duration of droughts. This has led to the development of drought severity–duration–
frequency (SDF) relationships (Dalezios et al., 2000). Indeed, the frequency of an extreme event is 
usually expressed by its return period or recurrence interval, which may be defined as the average 
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interval of time within which the magnitude of the event is equated or exceeded once. Moreover, 
the magnitude of an extreme event is given by the total depth occurring in a particular duration, and 
data for extreme events can be usually presented by depth–duration–frequency graphs for several 
points throughout the region of interest.

In this example, the PDSI (Palmer, 1965) is employed, which, in addition to temperature and 
evapotranspiration, also considers streamflow and soil moisture to give a more complete picture of 
the water balance. The PDSI can be converted to a remotely sensed index provided that parameters, 
such as precipitation, temperature, evapotranspiration, or soil moisture, are computed by remotely 
sensing data and methods. For this application, the severity of drought is defined as the cumula-
tive sum of successive negative values of the Z-index (ΣZ) of PDSI. Similarly, drought duration 
is considered as the number of successive months with negative Z-index values, whereas drought 
frequency is considered as the return period of a specific cumulative Z-index (ΣZ) value for suc-
cessive months. For the development of drought SDF relationships, the computed monthly Z-index 
time series from 28 stations over Greece are used (Dalezios et al., 2000). A common period from 
1957 to 1983 is used for the 28 stations. The analysis is conducted for each station for the identified 
drought periods, that is, successive negative Z-index values. In Figure 1.7, the developed drought 
SDF relationships are presented for Volos (BL) station in which each curve represents to one return 
period. Chapter 6 presents an analytical description of the SDF methodology.

1.6.2.2  Drought Occurrence and Severity Assessment Based on Moderate 
Resolution Imaging Spectroradiometer Normalized Difference 
Vegetation Index and Vegetation Condition Index

This application refers to drought occurrence and severity assessment, where the study area is the 
territory of Kenya. Specifically, the Moderate Resolution Imaging Spectroradiometer (MODIS) 
NDVI at 250 m ground resolution is used, and the database consists of images from 2000 till now 
(Klisch et al., 2015). The methodology involves data preprocessing of NDVI values using a modi-
fied Whittaker smoother in order to produce weekly NDVI images in NRT (Figure 1.8). Moreover, 
the data processing includes modeling of the uncertainty range for each pixel and time step, where 
the uncertainties are computed by a hindcast analysis of the NRT products against an optimum 
filtering (Klisch et  al., 2015). In addition, for drought severity assessment, the VCI is estimated 
on a pixel basis. Then, the weekly VCI values are spatially integrated into administrative units 
(counties) and also temporally into 1- and 3-monthly time steps incorporating also uncertainty data. 
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This information is then combined with several socioeconomic indicators in order to reach deci-
sions about drought mitigation and relief in affected counties. A validation of the methodology 
has also been conducted for drought periods in 3 years, namely 2006, 2009, and 2011, with posi-
tive results. There have also been comparisons with existing networks, such as the Famine Early 
Warning Systems Network (FEWS NET), and the main differences have been recorded.

1.6.2.3  Retrieval of Regional Drought Monitoring by the Modified 
Normalized Difference Water Index

The objective of this application is the effective regional drought monitoring by improving the 
remotely sensed soil moisture retrieval and, at the same time, by reducing the effect of the vegeta-
tion coverage variation on the accuracy. Indeed, it is well known that the vegetation coverage is a 
key factor, which affects the soil moisture accuracy. To achieve this objective, the Leaf Area Index 
(LAI) is used and incorporated into the NDWI (Zhang and Chen, 2015). Specifically, the Relative 
LAI (RLAI) is used as an indicator, and the application is implemented in two sites, which are 
located in the north and south of Henan Province, China, respectively. At first, the correlation 
is computed between the RLAI difference values of the days after turning green for the whole 
province. In this way, the RLAI distribution is obtained in the province’s wheat-producing area. 
The next step is to use the remotely sensed Modified NDWI based on the following equation: 
MNDWI = NDWI × RLAI, which leads to the soil moisture distribution of the wheat producing area. 
The analysis results indicate that the MNDWI mapping can improve the retrieval accuracy of soil 
moisture, leading to effective drought monitoring under different vegetation coverage,  especially 
vegetation stress.
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1.6.2.4 Drought Impacts on Amazon Forest Canopies Using Enhanced Vegetation Index
The objective of this application is to show that the seasonality in greenness of the Amazon rain-
forests signifies the variations in sun-sensor geometry throughout the year. Needless to say, the 
Amazon rainforests are the largest forested area in the tropics and constitute a major factor in the 
global carbon cycle. In this type of application, the MODIS MCD43 is employed, which models 
the  bidirectional reflectance distribution function (BRDF), whereas, at the same time, the sun-
sensor geometry remains constant (Brede et al., 2015). For this analysis, the EVI is used to charac-
terize the seasonality in greenness. Specifically, the dataset consists of the 2000–2013 period, and 
the BRDF-adjusted EVI is computed. The results indicate that the developed time series of EVI 
demonstrate distinct seasonal patterns with peak values at the beginning of the dry season, whereas, 
at the same time, it maintains the same pattern of sun geometry expressed as Solar Zenith Angle 
(SZA). Moreover, in this application, precipitation anomalies are explored through the sensitivity of 
EVI for the Amazonia area and for the whole period (2000–2013). Specifically, BRDF-adjusted EVI 
dry season anomalies are compared to two drought indices, namely Maximum Cumulative Water 
Deficit and SPI. The results have shown that there is no significant relationship between EVI anoma-
lies and drought, which is not compatible with other studies that investigate the drought impact on 
EVI and forest photosynthetic capacity. Moreover, the predictive potential of EVI for applications in 
tropical forests has also been examined, which has indicated a high level of uncertainty.

1.7 SUMMARY

In this chapter, an overview of the remote sensing potential in terms of data and methods in all 
aspects of drought analysis has been explored. For drought quantification, the remote sensing 
potential focuses mainly on drought indices, which use information from remote sensing  sensors 
to map the condition of the land, to detect several drought features, and to estimate several 
 environmental parameters. Indeed, remote sensing data and techniques provide, among others, 
direct measurements of land characteristics, vegetative cover, and components of the hydrological 
cycle, such as precipitation, temperature, evapotranspiration, or soil moisture. Moreover, the sci-
entific trend in drought quantification consists of remotely sensed CDIs at different scales using 
DSS also toward global web drought platforms, which in certain cases are used  operationally. 
Similarly, drought monitoring has been considered based mainly on DEWS using the aforemen-
tioned remotely sensed CDIs. Moreover, drought monitoring could also be addressed through 
remotely sensed vegetation dynamics and mapping of vegetation stress on local, regional, or 
global scales, because satellite-derived vegetation indices have been extensively used for iden-
tifying periods of agricultural drought, such as NDVI or VHI. In general, drought monitoring is 
considered semioperational; however, there are also several operational applications internation-
ally. Furthermore, remote sensing methods and data can be effectively employed in all aspects 
of drought risk assessment, which include risk estimation, that is, drought event probabilities, 
 magnitude–duration–frequency relationships, vulnerability assessment, areal extent mapping, 
and damage assessment. Finally, the possible contribution of remote sensing in drought manage-
ment policy could focus on relief, which involves assistance and/or intervention during or after 
drought. Other contributions could possibly involve drought preparedness, drought impacts, and 
mitigation measures, although in many cases remote sensing can make a valuable contribution 
to disaster prevention.

At the present time, it is recognized that there is significant and steadily increasing reliabil-
ity of remote sensing data and methods throughout the years, mainly due to computational and 
technological advancements. Moreover, the number of satellite systems is drastically increasing 
year by year with a continuous improvement of the spatial resolution. Similarly, there is a recent 
tendency to increase the number of available bands in these satellites resulting in new and valu-
able information. In addition, new types of remote sensing systems offer online open information 
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for web platforms and are also utilized for monitoring and detecting drought. Indeed, during the 
last decade, a web  service-based environment is being developed for integration of regional and 
continental drought monitors for computation and display of spatially consistent multiple drought 
indicators on a global scale.

There are scientific challenges and future perspectives in drought analysis, whereas, at the same 
time, there are needs and requirements to be addressed. The following list is indicative: 

 1. Assessment of drought impacts requires the design of a comprehensive database in accor-
dance with the users’ needs. Indeed, effective management of, and preparedness for, 
droughts requires free and unlimited access to relevant databases that allow prediction, 
monitoring, and assessment.

 2. There is a need to assess the forecasting skills for droughts. For example, lack of good 
forecasting skills in drought is a constraint to improved adaptation, management, and 
mitigation.

 3. The concept of drought monitor map product has to be promoted as a tool for all drought-
prone regions to better understand drought severity using CDIs.

 4. A methodology for preparation of a drought monitor map needs to be developed with 
 recommendations for minimum, maximum, and optimum data layers.

 5. An integration of geographic information system (GIS), remote sensing, simulation mod-
els, and other computational  methods has to be considered in order to develop more effec-
tive DEWS alerts.

 6. There is an urgent need for a more risk-based proactive drought management, which would 
include a timely user-oriented DEWS.

 7. There is a need and opportunity to supply design requirements for new satellite sensors, in 
particular, to drought mitigation.

 8. There is a need for regular joint training workshops on national and regional drought 
monitor products.
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2 Agricultural Drought 
Monitoring Using Satellite 
Soil Moisture and Other 
Remote Sensing Data over 
the Iberian Peninsula

José Martínez-Fernández, Nilda Sánchez, 
and Ángel González-Zamora

2.1 INTRODUCTION

A natural hazard is a threat of a naturally occurring event that will have a negative effect on people 
or the environment, and drought is a type of natural hazard that is further aggravated by growing 
water demand (Mishra and Singh, 2010). Droughts rank first among all natural hazards when mea-
sured in terms of the number of people affected (Wilhite, 2000).

The assessment and monitoring of droughts are of primary importance for freshwater planning 
and management. Drought is the most important threat that is facing the management of water 
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resources and is one of the most critical issues of the water policy in any country (von Christierson 
et  al., 2011; Walker et  al., 1991). Among the three categories of drought that are commonly 
 recognized, that is, meteorological, hydrological, and agricultural drought, agricultural drought 
has the most direct and immediate impact (Cooley et al., 2015). Meteorological drought is defined 
as a lack of precipitation over a region for a period of time. Hydrological drought is related to a 
period with inadequate surface and subsurface water resources for the established water uses of a 
given water resources management system (Mishra and Singh, 2010). An agricultural drought is 
considered to begin when the soil moisture available to plants drops to such a level that it adversely 
affects the crop yield and, hence, agricultural production (Panu and Sharma, 2002). Consequently, 
drought is a major cause of limited agricultural productivity throughout the world, accounting for 
a large proportion of crop losses and annual yield variations (Boyer, 1982). Currently, agricultural 
drought is a key issue in the global change analysis due to its economic implications (Cook and 
Wolkovich, 2016; Hogg et al., 2013) and is considered as a direct factor of social and political 
conflicts in developing countries because it can have a catalytic effect, contributing to political 
unrest (Kelley et al., 2015).

Drought indicators and indices are variables that are used to describe the physical characteristics 
of drought severity, spatial extent, and duration (Steinemann et  al., 2005). Although it has been 
clearly distinguished from meteorological drought, agricultural drought has usually been studied 
from a climatological perspective. Most drought assessment methods are based on long-term atmo-
spheric data, such as rainfall and temperature, or on precipitation indices, but they typically do not 
consider site-specific soil properties (Torres et al., 2013), such as soil water content.

The most commonly used agricultural drought index, the Crop Moisture Index (CMI) (Palmer, 
1968), is based on a subset of the calculations required for the Palmer Drought Severity Index 
(PDSI) (Palmer, 1965), which is primarily a meteorological drought index. The Climatic Moisture 
Index, although it was first used for forestry applications (Hogg, 1994, 1997), is another agricultural 
index, and it is calculated by subtracting potential evapotranspiration from precipitation. Purcell 
et al. (2003) developed the Atmospheric Water Deficit (AWD) index by assuming a simple soil water 
balance using precipitation and evapotranspiration. These indices have shown good results, and the 
use of some, as in the case of the CMI, is widespread.

In other cases, soil moisture has been incorporated into agricultural drought analysis, but 
it was calculated or estimated through water balance or hydrological modeling with the use of 
 climatic variables. Narasimhan and Srinivasan (2005) used the Soil Moisture Deficit Index and the 
Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring from simulated soil 
moisture and evapotranspiration derived from the Soil and Water Assessment Tool (SWAT) model. 
ETDI uses a concept of water stress from the reference crop evapotranspiration and the actual evapo-
transpiration, both SWAT model outputs. The Agricultural Reference Index for Drought (ARID) 
(Woli et al., 2012) is based on a reference crop, which is actively growing grass that completely 
covers the soil surface and uses a simple soil water balance. Ceppi et al. (2014) used meteorological 
forecasts and hydrological modeling to simulate soil moisture as a component of a real-time agri-
cultural drought forecasting system. Recently, Qin et al. (2015) applied the Soil Moisture Drought 
Severity (SMDS) index, calculated from the Community Land Model, in a comparison study with 
a precipitation index in North China.

Another approach is based on developed indices that directly use soil moisture as a tool to iden-
tify and, in some cases, assess agricultural drought. Sridhar et al. (2008) proposed the Soil Moisture 
Index (SMI), using the soil water content as a quantitative indicator of drought. Although it is not 
defined as a specifically agricultural drought index, the Multivariate Standardized Drought Index 
(MDSI) (Hao and AghaKouchak, 2013) integrates a classical climatic approach and soil moisture 
data. Martínez-Fernández et al. (2015a) proposed the Soil Water Deficit Index (SWDI), which 
is based on soil moisture measurements and has a hydrological basis and a specific agricultural 
interpretation.
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2.2 REMOTE SENSING OF AGRICULTURAL DROUGHT

Drought monitoring involves the continuous assessment of the natural indicators of drought 
severity, spatial extent, and impacts (Wilhite and Buchanan-Smith, 2005). Remote sensing can 
play an important role in drought monitoring strategies because it provides synoptic, rapidly 
repeating, and spatially continuous information about drought conditions (Hayes et al., 2012). 
Following these authors, remote sensing products are particularly useful in this field because 
they provide information required for local-scale monitoring and decision-making that cannot 
be adequately supported from information derived from traditional, point-based data sources; 
fill in gaps in information on drought conditions for locations between in situ observations and 
in areas that lack ground-based observational networks; enable earlier drought detection in 
comparison to traditional climatic indices; and collectively provide a suite of tools and datasets 
geared to meet the observational needs for a broad range of decision-support activities related 
to drought.

2.2.1 agricultural Drought analysis through remote vegetation observation

A set of agricultural drought monitoring strategies is based on remote sensed products, many of 
them based on vegetation indices. In fact, the value of satellite remote sensing for drought monitor-
ing was first realized more than two decades ago with the application of the Normalized Difference 
Vegetation Index (NDVI) from the advanced very high resolution radiometer (AVHRR) for 
assessing  the effect of drought on vegetation (Anyamba and Tucker, 2012). For example, Brown 
et al. (2008) proposed the Vegetation Drought Response Index (VegDRI), integrating traditional 
climate-based drought indicators and satellite-derived vegetation index metrics. Otkin et al. (2013) 
proposed the Evaporative Stress Index (ESI), which uses remotely sensed thermal infrared imagery 
to estimate evapotranspiration, and demonstrated that ESI anomalies can provide early warning 
of incipient drought impacts on agricultural systems. Keshavarz et al. (2014) introduced the Soil 
Wetness Deficit Index, which is calculated from the land surface temperature (LST), and the NDVI 
is derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. From the 
same satellite, Li et al. (2014) obtained and compared the NDVI anomaly with the CMI to assess 
agricultural drought in the northeast of China.

In general, vegetative drought indices based on the NDVI have been widely and successfully 
used to identify and monitor areas affected by drought at regional and local scales (Bayarjargal 
et al., 2006; Bhuiyan et al., 2006; Hayes and Decker, 1998; Kogan, 1997; Tucker and Choudhury, 
1987). However, in some cases, the collection of only vegetation data was not sufficient for accurate 
drought analysis. Therefore, thermal channels were studied to retrieve additional drought informa-
tion (Kogan, 1995) based on the LST. The temperature of vegetation is as a proxy for the plant stress 
caused by both scarce and excessive wetness. Furthermore, if LST and NDVI are jointly considered 
as a surface condition descriptor, surface properties, such as soil water content and evapotranspira-
tion, can be inferred (Carlson, 2013). There is a remarkable inverse relationship between LST and 
vegetation condition, which in turn is related to the soil moisture content and therefore can be used 
as an agricultural drought indicator. The LST/NDVI slope retrieved from remote sensing data has 
been used to assess information related to spatially averaged soil moisture conditions (Goetz, 1997; 
Sandholt et al., 2002) and in climate and drought monitoring (Karnieli et al., 2010; McVicar and 
Bierwirth, 2001; Sánchez et al., 2016).

2.2.2 satellite soil moisture for agricultural Drought monitoring

The great progress in remote sensing during recent decades (Fernández-Prieto et  al., 2012) has 
allowed the scientific community to obtain precise and frequent soil moisture maps anywhere in the 
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world. Global satellite-based soil moisture data are becoming increasingly available (Rebel et al., 
2012), and the number of potential applications of that information has increased accordingly 
(Mecklenburg et al., 2016).

Recently, the global Soil Moisture Climate Change Initiative (SMCCI project) soil moisture 
dataset from the European Space Agency (ESA) has been generated using active and passive micro-
wave spaceborne instruments since 1978 (Dorigo et al., 2015). In November 2009, the first mission 
 dedicated to soil moisture, Soil Moisture and Ocean Salinity (SMOS, ESA), was launched (Kerr 
et al., 2010). Since January 2015, the second soil moisture satellite, Soil Moisture Active Passive 
(SMAP), National Aeronautics and Space Administration (NASA) has been in orbit (Entekhabi 
et  al., 2010). All these initiatives make it possible to generate a global soil moisture map every 
1–2 days, with constantly increasing accuracy and a variety of spatial scales. This has enabled cer-
tain uses of soil moisture measurements derived from satellite remote sensing data for enhancing 
drought monitoring systems (Nghiem et al., 2012).

Due to this new perspective and by taking advantage of the availability of soil moisture data, 
some researchers have recently started to propose new approaches to drought analysis. For example, 
Scaini et al. (2015) demonstrated that the SMOS-derived soil moisture anomalies can be properly 
used for drought monitoring assessment. Chakrabarti et al. (2014) used SMOS soil moisture down-
scaled at 1 km to investigate the effects of agricultural drought on crop yields. Carrão et al. (2016) 
used the Essential Climate Variable Soil Moisture (ECV SM) product (Liu et al., 2012), derived 
from the SMCCI project, to produce a single homogenized global dataset for assessing the impacts 
of agricultural drought throughout the whole South-Central American region. Martínez-Fernández 
et al. (2016) applied the SWDI using the SMOS soil moisture to assess the agricultural drought 
dynamics over an agricultural area in Spain. Sánchez et al. (2016) proposed the Soil Moisture 
Agricultural Drought Index (SMADI) by integrating MODIS products and SMOS soil moisture and 
assessed its applicability over the Iberian Peninsula at a spatial resolution of 500 m.

2.3 METHODOLOGY

Two approaches have been used to assess the feasibility of using satellite soil moisture data for agri-
cultural drought monitoring over the Iberian Peninsula at different spatial scales. On the one hand, 
the SWDI, which uses SMOS surface soil moisture (SSM) and soil water parameters, has been used 
over an agricultural area in the Duero basin (Spain). On the other hand, SMADI, which also uses 
SMOS SSM together with LST and NDVI from MODIS, has been applied in the same agricultural 
area as well as in diverse rainfed areas along the Iberian Peninsula.

2.3.1 the soil Water Deficit inDex

The SWDI was proposed to characterize the agricultural drought based on a soil moisture series and 
basic soil water parameters (Martínez-Fernández et al., 2015a). SWDI is able to adequately identify 
the main attributes that define a drought event (i.e., beginning/end, duration, and intensity) and has 
been formulated with a specific agricultural meaning and interpretation. The SWDI is calculated 
as follows: 

 SWDI FC

AWC

= −









θ θ
θ

10 (2.1)

where:
θ is the soil water content
FC is the field capacity
AWC is the available water content, which is the difference between FC and WP (wilting 

point)
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When the SWDI is positive, the soil has excess water; when it equals zero, the soil is at the field 
capacity of water content (i.e., no water deficit). Negative values indicate a soil drought, and the 
water deficit is absolute (wilting point) when the SWDI reaches ≤−10.

The interpretation of the SWDI is close to the concept of the readily available soil water (RAW) 
of the Food and Agriculture Organization (FAO) guidelines for the determination of the crop water 
requirements (Allen et al., 1998). The p factor of the RAW definition is the average fraction of total 
available soil water (TAW) that can be depleted from the root zone before moisture stress occurs. 
The p factor varies for the main crops from 0.2 (SWDI of −2, close to field capacity) to 0.8. Of the 
crops considered by Allen et al. (1998), 50% have a p factor below 0.5. Using these considerations, 
the severity of a drought is categorized as shown in Table 2.1.

In this work, the soil water parameters needed to calculate the SWDI have been obtained from 
in situ analytical determinations. There are other approaches to obtain these parameters based on 
the statistics of the whole soil moisture series or restricted to the growing season (Hunt et al., 2009). 
The long-term available satellite soil moisture series (Dorigo et al., 2015) together with the statis-
tical approach could be used to obtain reliable estimates of the soil water parameters (Martínez-
Fernández et  al., 2015a) and to implement that methodology through strictly earth observation 
resources. To assess the performance of the SWDI, a comparison analysis was made with the CMI 
and AWD in the REMEDHUS area for the same period.

2.3.2 the soil moisture agricultural Drought inDex

SMADI is a synergistic integration of SMOS-SSM with MODIS-derived LST and water/ vegetation 
indices for agricultural drought monitoring (Sánchez et  al., 2016) (Figure 2.1). It focuses on 
short-term agricultural droughts, and its rationale is based on the inverse relationship between 
LST and vegetation conditions, which in turn is related to soil moisture content. As different 
surface types may have different LST/NDVI slopes and intercepts under the same atmospheric 
and surface moisture conditions, the choice of scale may influence the shape of the relationship 
(Sandholt et al., 2002). Thus, scaling the temperature and the vegetation index is recommended 
to minimize the effects of atmospheric temperature changes from one day to the next (Carlson, 
2013) and to avoid site and time dependence in the series. The proposed drought index is based 
on the LST/NDVI slope but uses a normalized version of these variables, following the rationale 
of the Vegetation Condition Index (VCI) (Kogan, 1990) and the Temperature Condition Index 
(TCI) (Kogan, 1995).

The VCI is an indicator of environmental stress based on the NDVI normalized with the maxi-
mum and minimum range for each pixel over the available imagery (Equation 2.2): 

 VCI
NDVI NDVI

NDVI NDVI
min

max min

= −
−

( )
( )

i  (2.2)

TABLE 2.1
SWDI Severity Categories

SWDI Value Drought Level

SWDI > 0 No drought

0 > SWDI > −2 Mild

−2 > SWDI > −5 Moderate

−5 > SWDI > −10 Severe

−10 > SWDI Extreme
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where:
NDVIi is the NDVI for the given day or time interval considered
NDVImin and NDVImax are the absolute 5-year minimum and maximum NDVI, respectively, for 

each pixel

The TCI also has a normalized formulation but uses the thermal bands to determine temperature-
related vegetation stress. Kogan (1995) designed the TCI to be combined with the VCI in an additive 
manner similar to (a × VCI + b × TCI). However, we aim to highlight the inverse behavior of LST 
and NDVI; thus, we proposed a modified version of the TCI, the MTCI (Equation 2.3): 

 MTCI
LST LST

LST LST
min

max min

=
−
−

( )
( )

i  (2.3)

where:
LSTi is the satellite-derived temperature for the given day or time interval considered
LSTmax and LSTmin are the multiyear maximum and minimum, respectively

In this form, high values of MTCI represent dry conditions, whereas low values represent wet 
or nonstressed conditions, as opposed to the VCI. Therefore, high values of the ratio MTCI/VCI 
 correspond to dry conditions (high values of MTCI and low values of VCI), whereas low values 
correspond to wet conditions (low MTCI and high VCI).

To incorporate the SSM into the new index, the Soil Moisture Condition Index (SMCI) was 
defined, similarly to VCI and MTCI, as a normalization of soil moisture values relative to the abso-
lute maximum (SSMmax) and the absolute minimum (SSMmin) of the 5-year series (Equation 2.4) 
in order to obtain normalized SSM ranging from 1 (very dry conditions) to 0 (wet, favorable 
conditions). 

 SMCI
SSM SSM

SSM SSM
max

max min

=
−

−
( )

( )
i  (2.4)

MTCI SMCI

SMADI

VCI

Rainfed mask (Corine LC)

NDVI 8 days composite 500 mLST 8 days composite 500 m (day passes) SSM 8 days composite 500 m

8 antecedent days average8 antecedent days average

SMOS SM (SMUDP2,
15 km, daily average)

Disaggregation 500 mDisaggregation 500 m

MODIS surface reflectance
(MYD09A1, 500 m, 8 days)

MODIS LST (MYD11A1,
1000 m, daily)

FIGURE 2.1 Conceptual flowchart of the SMADI index retrieval through a multisensor downscaling 
approach.
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Finally, the proposed agricultural drought index, SMADI, incorporates the SMCI as a multiplicative 
factor with the slope of MTCI/VCI (Equation 2.5) 

 SMADI SMCI
MTCI
VCI

i i
i

i

=
+1

 (2.5)

where i corresponds to the given day or time interval considered. The SMADI values are normalized 
between 0 and 1 to make it comparable to the other datasets. VCI, MTCI, and SMCI are calculated 
on an 8-day basis due to the MODIS, the 8-day NDVI composite data used in VCI. Note that the 
VCI selected for a given i corresponds to the ensuing 8-day period in order to consider the time lag 
between the plant response and the soil moisture conditions. This lag is variable in the literature. 
Schnur et al. (2010), using MODIS over grass/herbaceous mixed with shrubby rangeland covers in 
a semiarid climatic area, showed that the correlation reaches a maximum value when the vegetation 
index lags soil moisture by 5–10 days. In addition, Li et al. (2014) found that the NDVI anomaly 
responds to CMI with a lag of 10 days. Here, a lag of 8 days was considered, taking into account 
the time resolution of the MODIS-NDVI composite, the crop type considered, and the purpose of 
detecting short-term effects.

2.3.3 stuDy areas in the iberian peninsula

2.3.3.1 The REMEDHUS Area
The Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS) 
is located in Spain (41.1°N–41.5°N; 5.1°W–5.7°W) and includes an agricultural area of approxi-
mately 1300 km2 in a central semiarid zone of the Duero Basin (Figure 2.2). This area is nearly flat 
(less than 10% slope on average), and it ranges from 700 to 900 m.a.s.l. The climate is continental–
Mediterranean, with approximately 400 mm of average annual precipitation. Mean temperature is 
12°C, and the region experiences long, cold winters and hot summers. The average annual reference 
evapotranspiration is 1025 mm. The land uses are mainly agricultural: winter and spring rainfed 
cereals and small areas of irrigated crops and vineyards (Sánchez et al., 2012).

FIGURE 2.2 Iberian Peninsula, REMEDHUS area, and soil moisture/weather station locations.
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2.3.3.2 Rainfed Agricultural Areas on the Iberian Peninsula
The Iberian Peninsula is a complex climate system, including dry, temperate, and cold climate 
categories. Annual average rainfall in the Iberian Peninsula shows a high spatial variability, rang-
ing from less than 200 mm to greater than 1300 mm on average. In general, the highest values are 
located in the northern and northwestern areas, and the lowest values are recorded in southeast-
ern Spain. The monthly average rainfall varies between years, with notable seasonality, which is 
stronger in the southern half of the Peninsula, and less notable in northeastern Spain, and with a 
clear reduction in rainfall in summer (AEMet, 2011). The month with the most rainfall across the 
Peninsula is December, and the driest month is July, coinciding with the months with the lowest and 
highest temperature values, respectively.

Based on the Joint Research Center (JRC) European Drought Observatory (EDO) monitor-
ing of the occurrence and evolution of the drought events over Europe, as well as the Spanish 
Meteorological Agency (AEMet), two periods were especially dry in several areas on the Iberian 
Peninsula during the period 2010–2014. The most severe drought took place between October 
2013 and July 2014 and was located in the southeast (the Murcia and Valencia regions and eastern 
Andalucía) and in the center of the Iberian Peninsula. These regions were affected by mean and 
long-term precipitation deficits, leading to significant soil moisture deficits. This was considered 
by the JRC to be an exceptional drought. The persistent lack of rain in central and southern Spain 
resulted in scarce soil moisture during the grain-filling phase of winter and spring crops. The situ-
ation worsened at the beginning of June when maximum daily temperatures were increased above 
seasonal values, leading to a critical early senescence (EC-JCR, 2014).

The second severe period of drought occurred during 2012. This was a dry and warm year for the 
entire Iberian Peninsula but was particularly strong in the central and northwestern parts, where the 
precipitation deficit produced a very dry year. Furthermore, the summer heat wave wiped out 80% 
of the Spanish crop and raised the price of several products, such as olive oil. Although less marked, 
2011 was also a dry year in which the drought was particularly intense in areas that are usually wet, 
such as the northern part of Spain.

As opposed to drought periods, 2010 was very wet (even extremely wet in some areas) in the 
southern part (30% more water than usual), leading to a surplus in the water reservoirs. In addi-
tion, the first trimester of 2013 was especially wet in the northern and western parts of the Iberian 
Peninsula.

The rainfed agriculture domain of the Iberian Peninsula (Figure 2.2) is critically exposed to the 
scarcity of water. In these areas, the sole supply of water comes from precipitation, strongly limit-
ing vegetation growth. Sparse rainfall and warm temperatures during the development stages or 
the growing season can impact the flowering and grain filling of most cereals, limiting the yield. 
Thus, the rainfed areas were selected to analyze the performance of SMADI. To mask these areas, 
the procedure of the crop monitoring and yield forecasting activities of the JRC of the European 
Commission was followed. The land use–land cover vectorial map from the CORINE 2006 Land 
Cover project (CLC, version 16, updated 2012) was used to identify and clip the rainfed fields over 
the MODIS products (Figure 2.2). Next, 39 locations within these areas belonging to the AEMet 
meteorological network were selected to test SMADI against another drought index in order to 
assess the spatial and temporal occurrence of drought over the Iberian Peninsula.

2.3.4 Databases

2.3.4.1 Soil Moisture and Climate Databases
2.3.4.1.1 REMEDHUS Area
The REMEDHUS monitoring network performs continuous hourly soil moisture measurements 
using Hydra probes (Stevens® Water Monitoring System, Inc.) at 5 cm depth and two Envirosmart 
probes (Sentek Pty. Ltd.) at 25 and 50 cm depths. The soil column of 0–50 cm is considered as the 
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root zone because the main crops are cereals (90% of the area) (Sánchez et al., 2010). In this work, 
six representative stations (F6, H13, L3, M9, N9, and CAR) were selected to calculate the drought 
index, and the index data were then averaged for both the surface layer (SWDI-RSSM) and the root 
zone (SWDI-RRZSM).

The meteorological variables used in the REMEDHUS area were measured at four automatic 
weather stations located along the network and at one long-term weather station (Matacán) from 
the AEMet, located close to REMEDHUS (Figure 2.2). The basic variables were daily rainfall and 
daily potential evapotranspiration (ETo), which were estimated using the Penman–Monteith meth-
odology (Allen et al., 1998). The Matacán station was selected due to the need for long climatic 
series in the CMI calculation. For the CMI calculation, mean temperature and total precipitation 
from more than 60 years were provided by the AEMet, together with mean soil water parameters 
from the REMEDHUS area.

2.3.4.1.2 Iberian Peninsula
Even though drought is a relative condition that differs widely between locations and climates, 
standardized indices, such as the Standardized Precipitation Index (SPI) (McKee et al., 1993), allow 
the user to confidently compare historical and current droughts between different climatic and 
 geographic locations. SPI is based only on precipitation records and was designed to quantify the 
precipitation deficit at multiple timescales in order to reflect the impact of drought on the availability 
of the different water resources (WMO, 2012). Here, the shortest possible timescale (one month) 
was chosen. The 1-month SPI may approximate conditions represented by the CMI (WMO, 2012) 
and is generally used to reflect short-term conditions related to short-term soil moisture and crop 
stress, especially during the growing season. Following the classification system to define drought 
thresholds (McKee et al., 1993), a drought event occurs any time; the SPI is continuously negative 
and reaches an intensity of −1.0 or less and ends when the SPI becomes positive. The SPI data 
from 39 locations from the AEMet stations (Figure 2.2) were provided from 2001 to 2014 and were 
compared to SMADI to assess the spatial occurrence and time spans of drought events across the 
Iberian Peninsula.

2.3.4.2 Satellite Databases
The length of the period of analysis was 5 years (2010–2014), coinciding with the SMOS soil mois-
ture series length. It is a very representative period of the climatic conditions of this area, with 
contrasting years in terms of the amount of rainfall. However, for the calculations of the drought 
indices, the series start in June 2010 to avoid the first period of SMOS observations, when more data 
gaps occurred.

2.3.4.2.1 Moderate Resolution Imaging Spectroradiometer Satellite
MODIS data from the Aqua satellite were chosen for the VCI and MTCI calculation. Aqua is an 
orbiting satellite with local equatorial crossing times of approximately 1:30 p.m./1:30 a.m. Among 
the wide variety of MODIS products, the 8-day composite MYD09A1 surface reflectance product at 
500 m resolution and the daily LST product (MYD11A1) at 1 km resolution were used in the present 
study. The reflectance values in different bands were tested to retrieve different alternatives for the 
VCI (Sánchez et al., 2016), as well as day/night passes. Finally, only day passes and red/ near-infrared 
bands were selected for the LST and the NDVI retrieval and further SMADI calculation.

Owing to the different spatial resolutions of the LST and reflectance products, the LST at 1 km 
was assigned to the four pixels at the 500 m resolution. Granules h17v04, h17v05, h18v04, and 
h18v05 covering the Iberian Peninsula were mosaicked and reprojected to geographic coordinates. 
Regarding their different temporal interval, the daily MYD11A1 product was transformed into an 
8-day product similar to the MYD09A1, using the average of the 8 antecedent days. During the 
period of analysis, no data gaps were found for the study area. This calculation provided 46 com-
posites for each year.
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2.3.4.2.2 Soil Moisture and Ocean Salinity Satellite
The SMOS Soil Moisture Level 2 User Data Product (SMUDP2 file) version 5.51 has been used. 
This product is delivered through ESA over the Icosahedral Snyder Equal Area Earth (ISEA-4H9) 
grid with equally spaced nodes at ~15 km, known as the Discrete Global Grid (DGG). This product 
comprises the retrieved surface geophysical parameters and quality indicators. The soil moisture 
retrieval is associated with a Data Quality Index (DQX), which represents the uncertainty of the 
retrieval. In this research, a DQX threshold filter of 0.04 m3 m−3 was used to select the best quality 
SMOS retrievals. In addition, data corrupted by radio frequency interferences (RFIs) have been 
discarded using the RFI probability flag available from the L2 product. These filters were applied to 
the ascending and descending orbits separately, and later, the average of the two orbits for each day 
was calculated. This procedure ensured a more complete series, eliminating gaps due to retrieval 
failures or corrupted data (González-Zamora et al., 2015).

In the case of the SWDI calculation, daily L2 SSM data from June 2010 to December 2014 of the 
11 DGGs overlapping the selected stations in the REMEDHUS area were used to calculate the daily 
index at each DGG. The index data were averaged over the whole area. Finally, a weekly SWDI 
average was obtained unless there were less than four daily data during the week. This temporal 
scale is usually used for agricultural drought monitoring because farmers commonly use a weekly 
period for irrigation schedules (Purcell et al., 2003). As the monthly scale can be helpful for other 
water management applications, the SWDI was also calculated and analyzed monthly.

For the SMADI calculation, data of L2 SSM from January 2010 to December 2014 over the 
Iberian Peninsula were used and combined with the MODIS products. Owing to their different spa-
tial resolutions, each MODIS pixel at 500 m was allocated a corresponding DGG, and similarly to 
the LST product, SMOS SSM was averaged into an 8 antecedent-day composite, the same interval 
used for the MODIS products.

2.4 RESULTS AND DISCUSSION

2.4.1 soil Water Deficit inDex assessment

Previous works performed in REMEDHUS (Sánchez et  al., 2012), on the Iberian Peninsula 
(Parinussa et al., 2014), and in other areas around the world (Schlenz et al., 2012) have revealed that 
the SMOS soil moisture estimate provides good and reliable results and that its accuracy has been 
increasing as new reprocessed data and various scales of analysis have been introduced (González-
Zamora et al., 2015). The use of different downscaling strategies (Piles et al., 2014) has considerably 
increased the spatial resolution of the SMOS soil moisture and, therefore, expanded the fields of 
application, including agriculture. Taking advantage of all these benefits, the SMOS SSM has been 
used in the agricultural area of REMEDHUS to characterize and assess the agricultural drought 
using the SWDI.

The indices calculated with in situ SSM (SWDI-RSSM) and with the SMOS L2 product (SWDI-
SSSM) show a very high correlation (Table 2.2, Figure 2.3) and good temporal overlap of the series 
(Figure 2.3b). The SWDI is able to detect drought periods of special relevance in terms of intensity 
and duration. For instance, the effect of two consecutive dry years (2011–2012) is clearly shown, as 
the SWDI was almost continuously negative during that period (Figure 2.3). After a very dry win-
ter season, the scarce spring rains were not enough to recharge the soil, and the drought event was 
extended to the middle of October. In the winter of 2011–2012, the Iberian Peninsula was hit by one 
of the most severe droughts that were ever recorded (Trigo et al., 2013).

One of the limitations that a priori may question the use of soil moisture estimates from sat-
ellite is the fact that the observation scope is restricted to the uppermost centimeters of the soil 
(Njoku and Entekhabi, 1996). However, several authors have demonstrated that there is a very 
close correlation between the surface and root zone soil moisture (Albergel et al., 2008; Hirschi 
et al., 2014). In the present work, the SWDI-RSSM and the product calculated for the first 50 cm 
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depth (SWDI-RRZSM) show a very high correlation coefficient (R  =  0.9). At the same time, 
the comparison between SWDI-SSSM and SWDI-RRZSM shows a very acceptable relationship 
(Table 2.2). These results show that the water content measured in situ or remotely sensed from 
the most superficial soil layer would be a good indicator of the water content located in the soil 
root zone. In relation to the agricultural drought analysis, the reference soil depth has to be the 
one explored by the roots of the crops.

To assess the SWDI and its feasibility to monitor agricultural drought, it was compared with the 
CMI and the AWD (Table 2.2). In all the cases, the correlation was good and statistically significant; 
however, some differences were detected. The comparison with the AWD is always better, espe-
cially with the SWDI obtained with SMOS data (Figure 2.4, right). The AWD was proposed as an 
indicator that expresses the soil water balance from the difference between precipitation and ETo 
(Purcell et al., 2003). It is a very simple approach but, owing the obtained results, seems to reflect the 
real soil water dynamics. However, the comparison with CMI shows a less satisfactory result and, to 
some extent, a less coherent behavior. The correlation coefficient with CMI is lower (Table 2.2), and 
the comparison reveals that CMI shows a recurring number of zero values (Figure 2.4, left). These 
particular results are associated with rain events that momentarily interrupt periods of meteorologi-
cal drought but, as evidenced by the SWDI, are not enough to sufficiently recharge the soil and to 
soothe or interrupt a period of agricultural drought.

TABLE 2.2
Correlation Analysis (Pearson) between SWDI Calculated with REMEDHUS in situ Data 
(0–5 cm, SWDI-RSSM; 0–50 cm, SWDI-RRZSM), SMOS L2 Data (SWDI-SSSM), CMI, 
and AWD

SWDI-RSSM SWDI-RRZSM SWDI-SSSM

SWDI-RRZSM 0.90

SWDI-SSSM 0.86 0.73

CMI 0.77 0.67 0.71

AWD 0.73 0.56 0.83

Note: All the correlations are significant (p < 0.001).
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Although the monthly scale may not be appropriate for certain applications in which the 
 agricultural drought monitoring is needed (e.g., irrigation schedule), it can be useful in relation to 
water management applications or for the comparison with other indicators of water deficit. For 
that reason, in this work, the monthly SWDI calculated with in situ data and satellite data were 
compared. The correlation coefficient between SWDI-RSSM and SWDI-SSSM monthly scale is 0.9 
in the case of SSM (Figure 2.5) and 0.84 with series of soil moisture in the root zone (not shown). 
Taking into account the good relationship obtained between the index measured in situ and that 
obtained with SMOS data at different timescales, it is reasonable to think that such a methodology 
could be useful for the combined analysis of the different types of drought. The data globally sup-
plied by the satellite allow researchers to have information that, until recently, was not affordable 
and that, therefore, greatly opens the scope of applications.

The results obtained suggest that the index calculated with SMOS data is capable of conveniently 
capturing, or at least in a way comparable to other indices, the situations of water shortage and 
identifying periods of drought, as well as the attributes that define a drought period (beginning/end, 
duration, and intensity).
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FIGURE 2.4 Comparison between SWDI-SSSM and CMI (a) and AWD (b) at a weekly scale. Dashed line 
1:1. (Adapted from Martínez-Fernández, J. et al., Remote Sens. Environ., 177, 277–286, 2016. With permission.)
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2.4.2 soil moisture agricultural Drought inDex performance

The assessment of SMADI was performed at two scales. First, in the REMEDHUS area, the tempo-
ral evolution of SMADI was compared to SWDI at the area-averaged scale and to CMI and SPI at 
the Matacán weather station (point scale) using the Pearson correlation coefficient (R). In addition, 
a second temporal analysis consisted of the quantitative comparison of SMADI with R calculated at 
each Iberian Peninsula AEMet station with available SPI data (n = 39).

The results of the correlation with the SWDI for the REMEDHUS average resulted in a sta-
tistically significant correlation of −0.75. The negative sense is due to the different description of 
drought using SWDI (negative values indicate drought conditions) and SMADI (positive values 
indicate drought conditions). Both indices showed a marked seasonality and revealed the period 
from winter 2011 to spring 2012 to be the driest of the series (Figure 2.6) (Trigo et al., 2013).

The results of the comparison of CMI and SMADI (Figure 2.7) showed a good inverse 
 correlation (R = −0.71). Taking into account that the CMI threshold depicting drought condition 
goes below −1, only years 2011 and 2012 can be labeled as moderately dry years, with values of 
CMI between −1 and −2 during the summer period (Figure 2.7a). On the contrary, for the SPI, 
the correlation worsened to R  =  −0.37, although the relationship was statistically significant. 
Moreover, for the SPI evolution, it is more difficult to track seasonal cycles, and there was no 
clear pattern of drought along the whole cycle (Figure 2.7). Note that for the SPI, the abnormally 
dry conditions began below −1.
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The quantitative comparison of SPI with SMADI at the 39 AEMet stations on the Iberian Peninsula 
led to weak results. Only 9 of the 39 stations showed significant correlations beyond −0.40. These 
results are in line with the previous analysis in the REMEDHUS area and can be explained through 
the different timing of both SPI and SMADI and their different approach. SMADI used a shorter, 
5-year record of soil moisture instead of the long-term precipitation series used for the SPI (more 
than 40 years). Due to its nature of short-term deviation from a normal value, the SPI correlation 
with products, such as anomalies of soil moisture, should be higher, as found in Scaini et al. (2015).

To qualitatively verify the behavior of SMADI and its input parameters under other climatic 
conditions than that of the REMEDHUS area, three dry areas and three wet areas were selected in 
the northwestern and southeastern parts of the Iberian Peninsula, respectively (Figure 2.8). The dif-
ferent behavior between dry/wet areas is remarkable. For the wet stations, SMADI rarely exceeded 
0.1, indicating a total absence of drought. On the contrary, the three dry stations exhibited  values 
beyond 0.4, indicating drought periods, especially during 2012 and 2014. In addition, a different 
temporal trend can be tracked over the selected dry/wet areas. A clear increasing SMADI trend 
along the period 2010–2014 was found for the dry stations (Figure 2.8a through c), coinciding with 
a decreasing SPI trend (both indices have an opposite sense). This trend was also found in half of 
the stations located in the dry domain (not shown). On the contrary, all the stations under wet condi-
tions on the Iberian Peninsula showed no trend (Figure 2.8d through f), meaning that no increase or 
decrease in the drought conditions was described by SMADI through time. It seems that, in the dry 
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FIGURE 2.8 Temporal evolution of SMADI and SPI at three dry (a, c, e) and wet (b, d, f) locations. (Continued)
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areas, the drought tendency is increasing with time. However, these trends must be further analyzed 
with a longer dataset and additional systematic criteria.

In contrast, no seasonal patterns or differences between dry/wet areas were noticeable in the 
SPI series. In addition, no annual/seasonal patterns were found, and abnormally dry/wet months 
(−2 > SPI > 2) were found throughout the period. Typically, the shorter the timescale of the SPI 
(one, three or 12 months), the more the SPI value moves above and below zero, as the deviation 
with respect to the mean precipitation of a given month is expected to be more variable than that 
of an annual average (McKee et al., 1993). For example, in regions where rainfall is usually low 
during a month, as occurs on the Iberian Peninsula during the dry season, SPI results can be mis-
leading due to large negative or positive values resulting from relatively small departures from the 
median values.

2.5 CONCLUSIONS

The results of this work clearly show that the use of soil moisture and other satellite data products 
can be a suitable option for agricultural drought monitoring. On the one hand, the soil moisture—
and its availability for plants—is the variable that defines agricultural drought. On the other hand, 
vegetation is the element directly affected by the agricultural drought and, at the same time, is the 
most reliable indicator of the existence of water stress. Finally, remote sensing offers the ability to 
measure and monitor all of the variables involved, without restrictions in spatial or temporal scales.
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The cases studied in the Iberian Peninsula show the reliability of the different approaches used 
to properly assess and monitor the agricultural drought at different scales and under different bio-
climatic conditions. The specific use of soil moisture or soil moisture combined with vegetation 
indices and other related variables, all obtained from remote sensing, has been demonstrated to be a 
feasible methodology for studying agricultural drought. This approach has shown good results and 
is a step beyond the classical methods based on climatological variables because it is based on the 
most important variables that define agricultural drought.

Current soil moisture satellites as SMOS and SMAP are providing a unique opportunity to 
incorporate remote sensing tools into agricultural drought monitoring. In the next few years, even 
more sophisticated earth observation instruments as those from the Sentinel missions or from the 
global navigation satellite system (GNSS) reflectometry could address key challenges that exist 
at the moment in regard to drought early warning and monitoring. The new approaches may face 
critical issues as, for example, the optimization of the binomial spatial–temporal resolution, in order 
to increase the accuracy and to have the information in a more immediate way. Therefore, it is 
expected that earth observation technology will provide precise information in the future years 
early enough, which helps to prevent or mitigate the drought impacts before it actually hits.

After floods, drought, and specifically agricultural drought, has the greatest impact of all 
water-related disasters, and the consensus among the projections of future climates is that drought 
frequency will increase. In a scenario of such climate uncertainty, the new advances and meth-
odologies will be especially relevant for near-future agriculture and for critical issues, such as 
food security and water scarcity management. The use of new methods for drought monitoring, 
specifically those from remote sensing, which were unthinkable until very recently, offers a new 
opportunity for assessment, monitoring, and early alert strategies at any temporal or spatial scale, 
even at the global scale.
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3 Drought Assessments by 
Coupling Moderate Resolution 
Imaging Spectroradiometer 
Images and Weather Data
A Case Study in the Minas 
Gerais State, Brazil
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3.1 INTRODUCTION

Droughts can occur in any climate regime around the world and can arise from a range of 
 hydrometeorological processes that suppress precipitation and/or limit surface water or 
 groundwater availability, creating conditions that are significantly drier than normal or otherwise 
limiting moisture availability to a potentially damaging extent. Indicators are often used to help 
track droughts, and tools for their elaboration and application depend on the spatial and timescale 
(WMO and GWP, 2016).

Drought impacts are significant and widespread in many hydrological basins, increasing disputes 
over water resources. More conflicts are expected as populations expand, economies grow, and the 
competition for scarce water supplies during drought events intensifies. Under these circumstances, 
agreements among different water users, including local communities, to negotiate and agree on 
the water resources allocation are required. The success of any dialogue depends on the knowledge 
base and the general trust on water data sources (Teixeira, 2012).

Aiming a more sustainable exploration of the water resources during drought events, water managers 
must consider the large-scale water balance conditions of the mixed agroecosystems. Drought indicators 
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are important to subsidize policies under water scarcity conditions, aiming to minimize the water use by 
agriculture, resulting in larger availability for the ecosystems  maintenance (Cai et al., 2002).

For drought assessments, besides precipitation, it is also necessary to quantify evapotranspira-
tion, because it is essential for crop yield, and its increase means less water is available for ecological 
and human uses. Considering the drought indicators used in this chapter, distinctions are important 
between reference evapotranspiration (ET0) and actual evapotranspiration (ET). ET0 is the water flux 
from a reference surface, not a shortage of water, which may be considered as a hypothetical grass 
surface with specific characteristics, whereas ET is the real water flux occurring from the surfaces 
in a specific situation involving all environmental conditions (Allen et al., 1998). Remote sensing 
algorithms for ET estimations need to be biophysically realistic but should be simple enough for 
implementation on large scales (Cleugh et al., 2007).

Droughts can adversely affect agriculture and food security and as they evolve, the impacts 
can vary by region and by season. Agriculture in the Minas Gerais state, Southwest Brazil, has 
been highlighted in the last decades, with increasing water demands for irrigation in some growing 
regions. On the one hand, the largest part of the dynamic agricultural products is in general grains 
and fruits for the external markets because of high investments on technologies and intensive use 
of monetary resources. On the other hand, the main impact between the use of the water resources 
and the environment is the pollution caused by the agricultural drainage, which is becoming worse 
together with several drought events during the recent years (Teixeira et al., 2015a).

In Minas Gerais state, agriculture has diversity as its main characteristic, coexisting regions with 
intensive technologies and high productivities, with others for subsistence production. The main  
agricultural growing regions of Minas Triangle and Northwest concentrate large parts of crops, as 
a consequence of the general favorable both climate and soil. There are disparities, comparing the 
intensive investments in the Minas Triangle with the technological delay of the North agricultural 
growing region. As sometimes the river water is also becoming limited as consequences of drought 
events, these disparities are increasing, even with favorable climatic conditions in the North for 
irrigated agriculture (Teixeira et al., 2015a).

Although the annual rainfall long-term values are high in some areas of the Minas Gerais state, 
there are strong natural water deficits in the semiarid region along the years, mainly during the 
drought events, bringing the need of studies on how to improve the large-scale water productivity, 
insuring the suitable river flows while contributing to the environmental preservation.

The actual scenario of the Minas Gerais state reveals that even the water being used productively 
in some agricultural growing regions, proportioning rural development, besides water deficits that 
affect crop development, the excessive agricultural drainage can adversely influence the water qual-
ity and the river flows; both locally and downstream. In addition, the state has experienced severe 
drought events in some areas, demanding the development and application of drought indicators to 
subsidize water policies.

Applications of drought indicators at various timescales allow identification of short-term wet 
periods within long-term droughts or short-term dry spells within long-term wet periods. These 
indicators are used to provide quantitative assessment of the severity, location, timing, and duration 
of drought events. Severity refers to the departure from normal of an index. Location refers to the 
geographic area experiencing drought conditions. The timing and duration are determined by the 
approximate dates of onset and cessation. A short, relatively low severity, intraseason drought, if it 
occurs during the moisture sensitive period of a stable crop, can have a more devastating impact on 
crop yield than a long, more severe drought occurring at a less critical time during the agricultural 
cycle (WMO and GWP, 2016).

The objective of this chapter is to combine geotechnologies for modeling drought indicators on 
large scales with satellite images and weather data involving 4 years. Precipitation (P) data were 
interpolated; the Simple Algorithm for Evapotranspiration Retrieving (SAFER) algorithm was used 
with the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance product to estimate 
ET. The net radiation (Rn) was estimated by the Slob equation, and the ground heat flux (G) was 
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retrieved as a fraction of Rn (Teixeira et al., 2014, 2015b). To consider the climatic water balance and 
the surface moisture conditions, these parameters were combined to generate two drought indica-
tors for large-scale moisture analyses, emphasizing the main agricultural growing regions in the 
Minas Gerais state, Southeast Brazil. The results can be used for advancing monitoring in support 
of risk-based drought management policies and preparedness plans (WMO and CWP, 2016).

This chapter is structured as follows: after the introduction, the study region, dataset, and the 
steps for modeling are described. Then applications of the drought indicators by using remote sens-
ing methods with MODIS images and weather data are shown in the Minas Gerais state, with 
emphasis in the main growing agricultural regions.

3.2 STUDY AREA AND DATASET

Figure 3.1 shows the location of the Minas Gerais (MG) state, Southeast Brazil, together with the 
net of weather stations from the National Meteorological Institute (INMET), and the cropland mask 
inside the main agricultural growing regions of the state.

Despite being close to the southeastern Brazilian coast, Minas Gerais has no contact with the 
Atlantic Ocean. More than 90% of the state is at altitudes over 300 m, and about 25% are between 
600 and 1500 m. Average daily air temperature (Ta) is in the range from 17°C to 23°C, whereas the 
annual precipitation (P) values are between 750 and 1800 mm year−1. The eastern side of the state 
used to be covered by the Atlantic Forest; however, this natural ecosystem has been removed for 
wood exploration by the development of the cities and by the establishments of the farm. In some 
areas of the North side, are the Caatinga natural species, under the Brazilian semiarid conditions. 
However, considering the whole state, most areas are occupied by the Cerrado ecosystem. The 
hydrological basins are constituted by the São Francisco and Paraná rivers (Golfari, 1978).

The weather data obtained from 36 weather stations of INMET (www.inmet.gov.br) were incident 
global radiation (RG), air temperature (Ta), air humidity (RH), wind speed (u), and  precipitation (P). 
They were used for the ET0 large-scale calculations by the Penman–Monteith (PM) method (Allen 
et al., 1998) and for the drought indicators. RG, Ta, ET0, and P were upscaled for the 16-day com-
posing periods of the MODIS reflectance product (spatial resolution of 250 m) and were interpo-
lated by using the moving average method, creating grids with the same spatial resolution of the 
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FIGURE 3.1 Location of the of the Minas Gerais (MG) state, Southeast Brazil, the net of weather stations, 
and the crop land mask inside the main agricultural growing regions.

http://www.inmet.gov.br
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satellite images. Similar upscaling process for large-scale evapotranspiration estimations was done 
in Australia (Cleugh et al., 2007).

The cropland mask was acquired from the National Institute of Spatial Researches (INPE) to 
help understanding the drought events in crops inside the North (N), Northwest (NW), and Minas 
Triangle (MT) agricultural growing regions of the Minas Gerais state.

3.3 LARGE-SCALE MODELING

Figure 3.2 shows the steps for modeling the drought indicators throughout SAFER algorithm and 
interpolated precipitation (P) data with MODIS images without their thermal bands.

The surface temperature (T0) MODIS product was not used because with a lower spatial resolu-
tion (1000 km), there were cloud contaminations in some parts of the Minas Gerais state along the 
years. Instead, T0 was retrieved by residue in the radiation balance (residual method) after having 
estimated the atmospheric and surface emissivities (Teixeira et al., 2016a, 2016b).

Cleugh et al. (2007) pointed out that the use of instantaneous measurements of the radiometric 
surface temperature to calculate time-averaged fluxes led to errors. They emphasized uncertainties 
in models, which use the MODIS 8-day that is a composite of once-daily overpass at ~10:30 h local 
time. In this case, the radiometric temperature is determined under a view angle at the satellite 
overpass time, using emissivities based on vegetation classes at a 1 km grid that differs from that of 
the MODIS pixel location.

The parameterizations involved for acquiring the radiation and energy balance components, 
including ET, by using the SAFER algorithm in Figure 3.2 were done in Brazil with  simultaneous 
satellite and field measurements, under strong contrasting agroecosystems and thermohydrologi-
cal conditions throughout different years (Teixeira et al., 2008, 2014). In addition, acquiring T0 as 

Spectral
re�ectances

ET

RR

(ET/ET0)sat

Surface
albedo

Ta

Ra

RsNDVI

Rn

ET0

RG

λEeq G

Surface
temperature

P

ETr WBd

FIGURE 3.2 Flowchart for modeling the drought indicators throughout the application of the Simple 
Algorithm for Evapotranspiration Retrieving (SAFER) algorithm and interpolated precipitation (P) data to 
MODIS images without their thermal bands.
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residue in the radiation balance gives mutual compensation, reducing possible errors in this model 
input parameter, as they are self-canceling in the upward and downward long-wave fluxes. Moreover, 
a correction factor is applied to ET/ET0 ratio in the algorithm to take into account the atmospheric 
demand for the current study, in relation to the original modeling conditions.

The SAFER algorithm, based on the PM equation, was elaborated and validated with Landsat 
images (Teixeira, 2010), when it was called PM2. Later, it was also calibrated and validated with 
MODIS images in the same original modeling study region (Teixeira et al., 2013). Field data used 
for these validations involved irrigated crops and natural vegetation (Caatinga) from 2001 to 2007, 
being described in detail in Teixeira et al. (2008). Table grapes were drip irrigated and conducted by 
an overhead trellis system. Wine grapes conducted by a vertical trellis system and mango orchard 
were microsprinkler irrigated. The experimental period for Caatinga involved different natural spe-
cies and rainfall conditions above and below the local long-term value.

Thus, with all these strongly contrasting conditions and considerations, one expects sufficient 
accuracy to obtain the input parameters to achieve dynamic analyses of the drought indicators for 
the different ecosystems inside the Minas Gerais state, Southeast Brazil.

According to Figure 3.2, the reflectances for bands 1 (α1) and 2 (α2), in the red and near infrared 
of the solar spectrum, respectively, were extracted from the MOD13Q1 product, which provides 
cloud-free temporal composed images, at 16-day period, totaling 23 images for each band along a 
year from 2012 to 2015.

For the surface albedo (α0) calculations, the following equation was applied (Valiente et al., 1995): 

 α α α0 1 2= + +a b c  (3.1)

where a, b, and c are regression coefficients, considered as 0.08, 0.41, and 0.14, obtained with dif-
ferent Brazilian vegetation types and thermohydrological conditions (Teixeira et al., 2014, 2015b).

The Normalized Difference Vegetation Index (NDVI) is a measure of the amount of vegetation 
at the surface: 

 NDVI =
−
+

α α
α α

p p

p p

( ) ( )

( ) ( )

2 1

2 1

 (3.2)

The reflected solar radiation (RR) was estimated as follows: 

 R RR G= α0  (3.3)

The long-wave atmospheric radiation (Ra) was calculated by applying the Stefan–Boltzmann law: 

 R Ta A a= σε 4 (3.4)

where:
ɛA is the atmospheric emissivity
σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4)

The radiation balance parameter ɛA was calculated as follows (Teixeira et al., 2016a, 2016b): 

 ε τA A
ba A= −( ln )  (3.5)

where:
τ is the short-wave atmospheric transmissivity calculated as the ratio of RG to the incident solar 

radiation at the top of the atmosphere
aA and bA are regression coefficients 0.94 and 0.10, respectively
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The regression coefficients of Equation 3.5 in this chapter are in between those obtained for Idaho 
(Allen et al., 2000; aA = 0.85 and bA = 0.09) and for Egypt (Bastiaanssen et al., 1998; aA = 1.08 and 
bA = 0.26).

Rn can be described by the 24 h values of net short-wave radiation, with a correction term for net 
long-wave radiation (Teixeira et al., 2014, 2015b, 2016a, 2016b): 

 R R an G L= − −( )1 0α τ (3.6)

where aL is the regression coefficient of the relationship between net long-wave radiation and τ on 
a daily scale.

Because of the thermal influence on long-wave radiation via the Stephan–Boltzmann equation, a 
previous study investigated whether the variations of the aL coefficient from Equation 3.6 could be 
explained by variations in 24 h Ta (Teixeira et al., 2008): 

 a dT eL a= −  (3.7)

where d and e are regression coefficients that are found to be 6.99 and 39.93, respectively. A con-
stant value of aL = 110 was previously applied by Bastiaanssen et al. (1998) without considering the 
thermal spatial differences.

Having estimated RR, Ra, and Rn, the emitted surface long-wave radiation (Rs) was acquired as 
residue in the radiation balance equation: 

 R R R R Rs G R a n= +− −  (3.8)

Then, the surface temperature (T0) was estimated as follows (Teixeira et al., 2016a, 2016b): 

 T
Rs

s
0 4=

σε
 (3.9)

where the surface emissivity (ɛS) was estimated as follows (Teixeira et al., 2016a, 2016b):

 εs s sa b= +ln NDVI  (3.10)

aS and bS are regression coefficients 0.06 and 1.00, respectively.
The original coefficients of Equation 3.10 are aS = 0.047 and bS = 1.009 (Bastiaanssen et al., 

1998), being slightly different from those for Brazil.
Even with small differences on both ɛ A and ɛ S, when comparing the Brazilian values with those 

from other environments, estimate errors from these emissivities in the Minas Gerais state should 
be self-cancelled on the accounting of the upward and downward radiation balance components.

The SAFER algorithm is used to model the ratio of the actual to the reference evapotranspira-
tion based on the input remote sensing parameters (ET/ET0)sat, which is then multiplied by ET0 24 h 
values from the weather stations to estimate the daily ET large-scale values (Teixeira et al., 2016a, 
2016b): 

 ( ) expET/ET
NDVI

ET
sat

year
0

0

0

0

5
= + 






























f g

T
α

 (3.11)

where f and g are the original regressions coefficients, 1.8 and −0.008, respectively. The correction 
factor (ET0ano/5) was applied, where ET0year is the annual grid of reference evapotranspiration for 
Minas Gerais state for the years 2012, 2013, 2014, and 2015, and 5 mm is the ET0year value for the 
period of the original modeling in the Brazilian Northeast (Teixeira et al., 2016b).
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Equation 3.11 does not work for water bodies, that is, when NDVI < 0. Thus, as sometimes some 
areas are mixtures of land and water in the Minas Gerais state, the equilibrium (eq) evapotranspira-
tion (Raupach, 2001) was considered under these conditions in the SAFER algorithm, and λEeq was 
retrieved throughout conditional functions and was transformed into ETeq:

 λ
γ

E
s R G

s
n

eq =
−( )

+
 (3.12)

where:
s is the slope of the curve relating saturation water vapor pressure to Ta

G is the ground heat flux
γ is the psychometric constant

For the daily G values, the following equation was used (Teixeira et al., 2016b): 

 
G
R

a b
n

G G= exp( )α0  (3.13)

where aG and bG are regression coefficients that are found to be 3.98 and −25.47, respectively.
After considering the results for ET taking into account both Equations 3.11 and 3.12 according 

to the conditional functions for the NDVI pixel values, a drought indicator, related to soil moisture 
conditions, the evapotranspiration ratio (ETr) was applied: 

 ET
ET
ET

r =
0

 (3.14)

High ETr values indicate that vegetation is well supplied with water, whereas low values mean water 
stress (Lu et al., 2011), and it can also be used for determining crop water requirements (Teixeira 
et al., 2015b, 2016c).

Similarly to what was done in Australia (Cleugh et al., 2007) and in the Brazilian Northeast 
(Teixeira et al., 2016c), another drought indicator was applied for the large-scale analyses, the water 
balance deficit (WDd): 

 WB ETd P= −  (3.15)

The indicator represented by Equation 3.15 enables the characterization of the large-scale climatic 
water balance, taking into account the water consumption and rainfall. Low positive WDd values 
may imply the feasibility of rainfed crops, whereas the higher ones indicate unsuitable conditions, 
due to moisture excess problems and also the possibility of water storage for subsequent drier peri-
ods. Negative WDd values are related to climatic water deficiencies for vegetation and the degree 
of irrigation needs in crops. Thus, WDd quantifies the degree of water deficits or excess in terms of 
mm of water (Teixeira et al., 2016c).

3.4 DROUGHT INDICATORS

3.4.1 rainfall anD evapotranspiration

The trends of P, ET, and ET0 for each 16-day periods of the MODIS images, during the years from 
2012 to 2015, were firstly analyzed in Figure 3.3 in terms of day of the year (DOY), considering the 
average pixel values for the entire Minas Gerais state, Southeast Brazil.
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Concerning P, during the years from 2012 to 2015, one can see two periods with rainfall 
 concentrations from January to April (DOY 001–112) and from the second half of October to the 
end of December (DOY 289–365). The naturally driest conditions were from the second half of June 
to the end of September (DOY 177–272), being in 2014 the water scarcity period of longest dura-
tion. Taking into account the annual values for the entire state, the year 2015 was the one with the 
lowest rainfall amounts, presenting average pixel totals of 891 mm year−1, and the year 2013 was the 
moister year with 1318 mm year−1.

In relation to the atmospheric demand, the ET0 values had fewer oscillations along the years, 
when compared to those for rainfall. The periods with the lowest ET0 pixel averages were after the 
rainy seasons. At the end of these periods, ET0 started to rise continuously from the second half of 
June to the end of October (DOY 177–304), whereas P values decline to increase again only in the 
second half of October (DOY 289). The driest year 2015 corresponded to the highest ET0 (1533 mm 
year−1), whereas the year 2012, with 1304 mm year−1, presented the lowest atmospheric demand.

The largest ET values occurred inside the rainy periods, from January to May (DOY 001–144) 
and from November to December (DOY 321–365), when the 16-day water fluxes were higher 
than 40 mm. The lowest rates, in that timescale, below 30 mm, happened from the end of August 
(DOY 241) to the first half of November (DOY 320). Considering the annual scale and the whole 
Minas Gerais state, the year with the highest ET (928 mm year−1) was 2015, whereas that with the 
lowest one was 2012 (737 mm year−1).

ET0 and ET represented ranges from 122% to 68% (2013) and 165% to 99% (2014), respectively, 
of P. From the scenarios presented in Figure 3.3, it is clear that the most critical period in relation 
to drought conditions was from the end of April (DOY 113) to the first half of October (DOY 288) 
during the year 2014. For minimizing this problem, water storage techniques in areas previously 
presenting water excess should be encouraged in the water public policies.

After extracting the quarterly (Q) and annual average pixel values of the totals for P, ET0, and ET 
inside the main agricultural growing regions of the Minas Gerais state, North (N), Northwest (NW), 
and Minas Triangle (MT), during the years from 2012 to 2015, they are presented in Table 3.1.

In general, the Q largest rainfall values in the three agricultural growing regions were the first 
(Q1) and the third (Q3), highlighting the ones for MT. The lowest P happened from May to August 
(Q2), mainly in the N agricultural growing region during the year 2015.

Regarding the atmosphere demand, Q3 was the quarter period with the highest ET0 values, with 
highlights for the year 2015 in the N agricultural growing region, when its total was above 700 mm. 
The smallest demands occurred in Q2, below 400 mm, with those for TM presenting the lower ET0. 
Taking into account the annual values, 2015 and 2012 showed the highest and the smallest ET0 
totals, respectively.

The ET trends were similar to those for ET0 under good soil moisture conditions; however, for all 
agricultural growing regions, low rainfall amounts in Q2 promoted strong decline of the ratios ET/ET0 
in the subsequent Q3. Although this ratio was above 70% in Q1 and Q2 along the studied years, in the 
last quarter it reached to only 30%, with the lowest values happening in NW during the year 2012. 
The decline of ET/ET0 in Q3, even under good rainfall conditions, evidenced a gap between P and ET 
related to the time for the soil that need to recover its good moisture status. In Australia, ET reflected 
the conditions of rainfall, available energy, and air temperature (Cleugh et al., 2007).

3.4.2 large-scale Drought assessments

Figure 3.4 presents the spatial distribution of the MODIS 16-day average pixel values for the ETr 
drought indicator during specific periods of the years from 2012 to 2015 in the Minas Gerais state, 
Southeast Brazil.

The ETr spatial and seasonal variations along the years are clear, confirming the sensibility of the 
SAFER algorithm. The soil moisture differences are mainly noticed when comparing the wettest 
period of DOY 145–160 (end of May to first half of June), soon after the rainy period, with the one 
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from DOY 241–256 (end of August to the first half of September) at the end of the driest periods 
(Figure 3.3).

The highest 16-day ETr values, with average above 0.90 from DOY 145 to 160 (end of May to 
first half of June) happened in the year 2015, whereas the lowest ones happened in the year 2014 
(end of May to first half of June). The strong ETr variation with the thermohydrological conditions 
evidenced that this drought indicator can be useful for monitoring the large-scale soil moisture 
conditions (Teixeira et al., 2016b).

Figure 3.5 shows the spatial distribution of the MODIS 16-day average pixel values for the WBd 
drought indicator during specific periods of the years from 2012 to 2015 in the Minas Gerais state, 
Southeast Brazil.

The WBd spatial and temporal variations are also clear along the years from 2012 to 2015. The 
maximum positive values (P > ET) occurred in December (DOY 337–352) with 16-day pixel values 
above 150 mm in the year 2013. The smallest and negative 16-day pixel values (P < ET) happened 
more often from August to September (DOY 241–256), lower than –45 mm, in a large area of the 
state. By the spatial and temporal trends of the WBd drought indicator, one can see possibilities of 
rainfall water storage in wet periods and places with high WBd for later use during the climatically 
driest conditions of the years.

Figure 3.6 presents the seasonal variations of the mean 16-day pixel values for the ETr and WBd 
drought indicators in terms of DOY, during the years from 2012 to 2015, in the main agricultural 
growing regions North (N), Northwest (NW), and Minas Triangle (MT) of the Minas Gerais state, 
Southeast Brazil.

In general, the highest ETr values were from DOY 081 (March) to 128 (May), with ET reach-
ing, in some cases to 70% of ET0, indicating good soil moisture conditions inside the rainy period 
(Figure 3.3). The largest values for the MT agricultural growing region along the years, besides the 
climatic effects, could also be attributed to larger irrigated areas, clearly observed during the natu-
rally driest periods of the years. On the one hand, ETr values (well known as crop coefficient—Kc) 
can be used for estimating the water requirements at different spatial scales in well-irrigated crops 
(Teixeira et al., 2015b, 2016c). On the other hand, in natural vegetation, this ratio characterizes the 
degree of the water status in the root zones (Lu et al., 2011).

Zhang et al. (2012), studying a temperate desert steppe in the Inner Mongolia, China, reported 
seasonal ETr variations from mean daily values of 0.16 to maximum of 0.75, similar to several 
 situations of the current study. However, Lu et al. (2011), in the same Chinese region, found ETr 
values higher than 1.00 for six different ecosystems, whereas Sumner and Jacobs (2005) reported 
ETr values between 0.47 and 0.92 in a nonirrigated pasture site in Florida, United States.

Zhou and Zhou (2009) concluded that air temperature, air humidity, and the available energy 
were the most important variables for the ETr variations in a reed marsh in the Northeast China. 
In the current study, the most important reason for the highest ETr values was the previous rainy 
seasons making the soil moister in the subsequent period. However, the ETr values in natural eco-
systems also depend on the stomatal regulation and plant adaptation to water scarcity conditions 
(Mata-González, 2005).

The large positive WBd values indicate high probability of water excess with subsequent percola-
tion and runoff, depending on the soil retention capacity, whereas the negative WBd values may be 
related to natural climatic water deficiency. Along the studied period, there were concentrations of 
positive values at the start and end of the years in all agricultural growing regions. However, in 2014 
and 2015, some periods presented negative WBd from January to February, what may have affected 
the rainfed agriculture, while demanded much irrigation water in irrigated crops. According to 
Cleugh et al. (2007), low WBd values reflect reductions of rainfall and/or increases on ET. From the 
three agricultural regions studied, the North (N) with WBd annual average value of –245 mm year−1 
in 2015 was the one with the driest natural conditions.

Within a specific year, similar trends of ETr and WBd among the agricultural growing regions 
were observed; however, they were different among the years, mainly varying with the amount and 
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distribution of rainfalls (Figures 3.3 and 3.6). By the seasonal and spatial behaviors of the drought 
indicators, one can see that, in general, after the rainy periods, even under situations of negative 
WBd values, there is no need of irrigation to satisfy the crop water requirements. However, supple-
mentary irrigation should be beneficial for agriculture from the end of August (DOY 241) to the 
end of the first half of November (DOY 320), when ETr dropped below 0.50. In this last case, 
situations with previous positive WBd values indicate possibilities of rainfall water storage, as the 
latter support the crop water requirements throughout irrigation. Considering all the studied years, 
ET attended 50%, 53%, and 61% of the atmospheric demand, respectively in the agricultural growing 
regions North (N), Northwest (NW), and Minas Triangle (MT).

Due to the importance for the rural development and under the actual water scarcity conditions, 
the rainfed agriculture with supplementary irrigation to mitigate the drought impacts should be 
encouraged in the Minas Gerais state, mainly in the Minas Triangle, which is the wettest agricul-
tural growing region. For the success of this activity, the use of the tools tested here is important for 
monitoring the drought conditions on large scales.

3.5 CONCLUSIONS AND POLICY IMPLICATIONS

The coupled use of remote sensing parameters from MODIS images and weather data allowed 
the application of drought indicators along the years from 2012 to 2015 in the Minas Gerais state, 
Brazil. These indicators can subsidize a better understanding of the water balance dynamics, impor-
tant issue for mitigating the drought impacts upon agriculture.

Analyzing a series of 4-year data for drought indicators in the agricultural growing regions 
North, Northwest, and Minas Triangle, it could be concluded that Minas Triangle present the high-
est moist conditions, whereas North has shown the lowest natural soil moisture levels, with the criti-
cal period from July to November. Besides the climatic conditions, the high soil moisture in Minas 
Triangle could also be attributed to larger irrigated areas.

It was demonstrated that the drought conditions could be analyzed from instantaneous measure-
ments of only the red and infrared spectral radiations from MODIS bands 1 and 2, by modeling the 
ratio of actual to reference evapotranspiration at the satellite overpass time and the available energy 
on a 16-day timescale. The combination of these images with weather stations proved to be useful 
for monitoring water parameters, contributing to the mitigation policies for facing the drought prob-
lems in some areas and periods in the Southeast Brazil.

The limitations of the MODIS result because the spatial resolution of the low 1 km thermal 
resolution was minimized, by retrieving the surface temperature from the residual that emitted 
long-wave radiation from the surfaces together with weather data, allowing the downscaling of the 
drought indicators to a 250 m spatial resolution.
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4 The Added Value of 
Satellite Soil Moisture for 
Agricultural Index Insurance

Markus Enenkel, Daniel Osgood, and Bristol Powell

4.1 INTRODUCTION

Weather shocks affect farmers, whose livelihoods depend on agricultural production, both directly 
and indirectly. Direct impacts are linked to the impact of anomalous weather conditions on the health 
of crops. Indirect impacts, however, often limit advances in agricultural productivity (e.g., the invest-
ment in drought resistant but more expensive seeds) due to the threat of a weather shock, whether 
it actually occurs or not (Hellmuth et al., 2009). In contrast to conventional loss-based insurance, 
weather index insurance relies on objective indicators that are agreed upon before the start of the 
season (Brown et al., 2011; Hellmuth et al., 2009; International Fund for Agricultural Development, 
2011). Since in situ observations are often not reliably quality controlled and are not available in large 
regions of the world, satellite data are often the only source of information (International Research 
Institute for Climate and Society, 2013). If independent satellite-derived key variables of the hydro-
logic water cycle and indicators of vegetation health agree on specific drought events, this informa-
tion can be used to decrease uncertainties in the design of insurance indices. Currently, only parts 
of the hydrologic cycle are considered via satellite data in index insurance due to a strong focus on 
satellite-derived precipitation and vegetation products. Satellite-derived soil moisture holds a great 
potential to close the temporal gap between rainfall deficits and the corresponding response of crops. 
However, to our knowledge, studies focusing on its added value for index insurance are virtually 
nonexistent. In order for soil moisture to add value beyond existing rainfall estimates, there would 
need to be evidence that the soil moisture is not only reflecting substantial agreement with rainfall 
estimates, but also that it is more effectively reflecting biophysical processes related to crop loss. 
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As an initial test of the potential utility of soil moisture in index insurance, this study evaluates 
the agreement of satellite-derived rainfall, soil moisture, and vegetation vigor over a study area in 
central Senegal. Because satellite estimates of vegetative vigor do not directly indicate crop loss, 
this analysis does not prove the effectiveness of the soil moisture or rainfall as an insurance product. 
Instead, it is a comparison of how well soil moisture correlates with near-future vegetation health, as 
compared to satellite rainfall estimates. If soil moisture more significantly predicts vegetative stress 
behavior, that would provide evidence that soil moisture is likely to be a useful tool in improving 
index insurance.

Following the introduction, we discuss the role of soil moisture in the hydrologic cycle and the 
use of space-based microwave sensors for soil moisture estimation. Section 4.3 concentrates on the 
basics of weather index insurance as well as the necessity to understand the benefits and limitations 
of satellite-based datasets, which are often the only source of information. Section 4.4 focuses on 
the region of interest, the Tambacounda region in central Senegal (West Africa). The datasets and 
methods are presented in Section 4.5. We use satellite-derived rainfall, soil moisture, and vegetation 
health to identify their spatial and temporal agreement. Section 4.6 presents the results of this study. 
We conclude with summary and conclusions (Section 4.7) in which we discuss the implications of 
our findings for weather index insurance. In addition, we highlight current scientific challenges and 
potential solutions with regard to the exploitation of satellite-derived soil moisture for weather index 
insurance. Finally, we suggest the combination of well-established and new soil moisture sensors to 
improve both the spatial and temporal resolution.

4.2 SATELLITE-DERIVED SOIL MOISTURE

The global hydrologic water cycle is a complex and dynamic process that is largely defined by 
energy- and moisture-related feedback loops (Trenberth et al., 2007). Soil moisture, the water con-
tent in the topmost layer of soil, may seem negligible compared to the global water resources. 
However, it plays a crucial role in these feedback loops with regard to land surface temperature 
(Miralles et al., 2012), evapotranspiration (Anderson et al., 2011), groundwater recharge (Abelen 
et  al., 2015), moisture supply for boundary layer cloud development (Ek and Holtslag, 2004), 
and water supply for agriculture (Enenkel et al., 2015; Engman, 1991; Martínez-Fernández et al., 
2016). A look at the International Soil Moisture Network (Dorigo et al., 2011), which is hosted by 
Vienna University of Technology, reveals a very unequal distribution of in situ stations on a global 
scale—many available observations for instance in the United States or Europe and very little on 
the African continent. Therefore, and because of their ability to provide comparable information on 
a global scale, satellite-based soil moisture observations are often the only source of information.

Satellite sensors that operate in the microwave domain (wavelengths of around 1 mm to 1 m) 
are among the most promising technologies for space-based soil moisture estimation (Petropoulos 
et al., 2015). The use of microwave sensors for soil moisture detection was discovered in the early 
1990s (Engman, 1991; Jackson, 1993). Microwaves react sensitively to the dielectric properties of 
water (the characteristics of a water molecule to align when exposed to an electromagnetic field). 
Nevertheless, the first operational surface soil moisture dataset from the Advanced Scatterometer 
(ASCAT) onboard the MetOp satellites only became available in 2007 via the European Organisation 
for the Exploitation of Meteorological Satellites (EUMETSAT). Soon after, different applications, 
such as numerical weather forecasting (Dharssi et  al., 2011; Drusch, 2007) or flood prediction 
(Brocca et al., 2012, 2010) started to assimilate ASCAT-derived soil moisture into their models. 
Although research communities such as remote sensing and weather or climate prediction are natu-
rally relatively close, the gap between remote sensing and socioeconomic applications is far larger. 
As a consequence, research organizations similar to the International Research Institute for Climate 
and Society (IRI) at Columbia University have started to focus on both earth observation and socio-
economic  applications, such as health monitoring, climate change impacts, or social safety nets. 
This study concentrates on the latter with a particular focus on index-based agricultural insurance 
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for smallholder farmers. In addition to the IRI report to the UN International Labour Organisation 
(International Research Institute for Climate and Society, 2013), the research group’s website pro-
vides a comprehensive overview about the use of satellite data to improve index insurance: http://iri.
columbia.edu/our-expertise/financial-instruments/using-satellite-data-to-improve-index-insurance/.

4.3 WEATHER INDEX-BASED INSURANCE AND EARTH OBSERVATION

Weather index-based insurance aims at distributing covariate risks (weather shocks that affect large 
geographical regions) among the people affected and at transferring the local/regional climatic risk 
to global markets. Traditionally, weather risk index insurance relied on rainfall data to link payouts 
to abnormal rainfall deficits (drought) or surplus (flood). An example of an element of a typical index 
used for coverage of hundreds of thousands of people against drought is as follows (Figure  4.1): If 
the cumulative rainfall in a predefined temporal window is less than a certain threshold (the  trigger 
value), the payout rises linearly up to 100% (the exit value). This exit value represents a  rainfall 
amount below which agricultural production is severely threatened.

The advantage of index insurance lies mainly in four areas (Hellmuth et al., 2009; International 
Fund for Agricultural Development, 2011): 

• Costly, postdisaster loss assessment is not required, leading to lower premiums and faster 
payouts.

• The index is an objective indicator that insures the risk of a weather shock, not crop failure. 
As a consequence, farmers have no incentive to let the crops fail (moral hazard).

• Key parameters (e.g., the envisaged payout frequency, the hazard and crops insured) are 
discussed and agreed upon in collaboration with users.

• Index insurance can help to unlock agricultural potential, for instance by allowing farmers 
to access credit, which can be used to increase their productivity (drought-resistant seeds, 
irrigation, etc.), or by generating more income in good years to compensate bad ones.

However, apart from issues related to user-tailored knowledge transfer, a limited number of brokers 
to promote demand (Brown et al., 2011), and the harmonization with other risk management strate-
gies, the largest source of uncertainty with regard to the overall index design lies in the input data. 
The design team must try to minimize the basis risk, the mismatch between the index, and the 
actual impact of a weather shock by using in situ and/or satellite data. Several sophisticated  satellite 
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FIGURE 4.1 Schematic example of index-based insurance.
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rainfall datasets already assimilate thousands of quality-controlled in situ observations in their 
satellite retrieval algorithms (Funk et al., 2015; Novella and Thiaw, 2013); others use local measure-
ments for historical calibration (e.g., Tarnavsky et al., 2014). Nevertheless, the fact that rainfall is 
not detected directly, but via estimating the top temperature of clouds via sensors in the infrared 
domain and a low number of in situ observations in large parts of the world, leads to uncertainties 
with regard to the estimated rainfall quantity. For instance, over complex topography or coastal 
regions satellite rainfall products often do not perform well (Dinku et al., 2007, 2008, 2010).

While rainfall-based indices can potentially be used throughout the season, indices that are 
based on satellite-derived indicators of vegetation greenness/health are currently tested to cover the 
later parts of the growing seasons in which the crops are already developed. It has to be noted that 
satellite-based vegetation indicators, such as the Normalized Difference Vegetation Index (NDVI) 
or the Enhanced Vegetation Index (EVI), cannot be directly used as an indicator for yield (Lopresti 
et al., 2015; Ren et al., 2008). Both satellite rainfall estimates and NDVI/EVI indices have been 
widely utilized in index insurance, sometimes in combination (Greatrex et al., 2014).

4.4 REGION OF INTEREST

The study area is located in central Senegal (Figure 4.2), one of the countries that participate in the 
R4 Rural Resilience Initiative of the United Nations world food programme (WFP) and OXFAM, 
covering many tens of thousands of farms (http://www.wfp.org/climate-change/initiatives/r4-rural-
resilience-initiative). R4 links four risk management strategies: (1) improved natural resource 
 management, (2) agricultural insurance, (3) access to microcredit, and (4) savings. The IRI is a 
partner with the WFP and OXFAM to support the agricultural insurance component.

According to the European Space Agency (ESA) Climate Change Initiative (CCI) land cover 
dataset (version v 1.6.1), the region of interest (red rectangle in Figure 4.2) is characterized mainly 
by rain-fed cropland. The staple/cash crops are maize millet, rice, and groundnut. The Food and 
Agriculture Organization of the United Nations (UN FAO) crop calendar (www.fao.org/agriculture/
seed/cropcalendar/) lists May/June as the planting/sowing months for maize. The maize harvest usu-
ally starts in August/September. There is a high interannual and interdecadal rainfall variability in 
key agricultural production areas (Fall et al., 2006; McSweeney et al., 2010), leading to an increased 
drought risk.

N

100 km

FIGURE 4.2 Illustration of the study area (grey rectangle) in central Senegal (Tambacounda region). The 
dimension of the study area is 1 × 1 degree (roughly 109 × 109 km).

http://www.wfp.org/climate-change/initiatives/r4-rural-resilience-initiative
http://www.wfp.org/climate-change/initiatives/r4-rural-resilience-initiative
http://www.fao.org/agriculture/seed/cropcalendar
http://www.fao.org/agriculture/seed/cropcalendar
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According to Reliefweb (2002), a major drought with severe agricultural impacts was recorded 
in 2002. Furthermore, Senegal was affected by droughts in 2006, 2007, and 2011 and affected by 
flood events in 2009 and 2012. Between 2008 and 2011, the food security-related vulnerability was 
aggravated by economic shocks, which were partly related to the global financial crisis (UN WFP, 
2014). The last severe drought, which resulted in socioeconomic consequences, was recorded in 
2014/2015 (Famine Early Warning Systems Network, 2014). One of the latest vulnerabilities and 
food security assessments of the UN WFP (2014) stated that 42% of all households were suffering 
from food insecurity in 2014.

4.5 DATASETS AND METHODS

4.5.1 precipitation

According to Funk et al. (2015), the Climate Hazards Group Infrared Precipitation with Stations 
(CHIRPS) dataset is designed to support the agricultural drought monitoring activities of the U.S. 
Agency for International Development, Famine Early Warning Systems Network (FEWS NET). It is 
a quasi-global (50°S–50°N), high resolution (0.05°; ~4.5 km at the equator), daily, pentadal (5-daily), 
and monthly precipitation dataset with a climatology dating back to 1981. A preliminary product, 
which includes the Global Telecommunication System (GTS) of the UN World Meteorological 
Organization gauge observations (around 14,000 stations in 2014), is available 2 days after the end 
of the pentad for several regions, such as Mexico. The final, global product is distributed during 
the third week of the following month. All observations are based on infrared cold cloud duration 
(CCD) observations. The algorithm relies on a high-resolution climatology and a novel blending 
scheme, whose method to assign interpolation weights considers the spatial correlation structure of 
CCD estimates.

4.5.2 soil moisture

Within the CCI of the ESA different active (radar) and passive (radiometer) sensors are combined 
to generate a daily surface soil moisture product (Liu et al., 2011, 2012; Wagner et al., 2012). 
In contrast to active microwave systems, which record the backscatter of the emitted microwave 
beam, radiometers detect emitted brightness temperatures, a product of surface temperature and 
surface emissivity. Although higher soil moisture content leads to higher backscatter values, the 
brightness temperature decreases (Mulder and Jeu, 2003). The ESA CCI soil moisture product uses 
the passive component in regions with low vegetation cover, the active component in regions with 
moderate, and an average of both in regions where both components agree well (P > 0.65). The 
dataset covers the years 1978 to 2014 (v02.2) with large gaps before 1992 (McNally et al., 2016). 
For the purpose of this study, we use an in-house product of Vienna University of Technology, 
which is based on the methods developed by Liu et al. (2011, 2012) and covers one additional 
year (2015).

Maybe the biggest advantage of soil moisture retrieval via microwave sensors is the indepen-
dence from weather conditions. In particular for agricultural applications, it is an added value if the 
observations are not impeded by clouds, which are present during large parts of the rainy season. 
Although physical limitations allow only the detection of surface soil moisture in the topmost (less 
than 2 cm) soil layer, the application of an infiltration model allows estimations of soil moisture in 
the root zone of plants (Albergel et al., 2008; Wagner et al., 1999). However, the major drawback 
is the comparably low resolution of the ESA CCI datasets. It provides volumetric soil moisture at 
a spatial resolution of 0.25° (Liu et al., 2012). In addition, retrieval is not possible or flawed over 
frozen/snow-covered soils, over complex topography (e.g., over mountain ranges) or in the presence 
of dense vegetation (tropical forests) (Dorigo et al., 2012).
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4.5.3 vegetation greenness/health

The EVI is an advanced version of the NDVI (Tucker, 1979), which is one of the most widely 
used vegetation indicators for vegetation, agricultural, and drought monitoring (Anyamba and 
Tucker, 2005; Jiang et al., 2008; Karnieli et al., 2010; Klisch and Atzberger, 2016). Both NDVI 
and EVI correspond to the vegetative landscape changes caused by factors such as moisture sup-
ply and evapotranspiration. Their retrieval is based on observations in visible and near-infrared 
channels, which react sensitively to the chlorophyll content of leaves. However, the EVI exploits 
additional information from the blue channel, which has a wavelength of 470 nm to reduce atmo-
spheric distortions caused by particles in the air and ground cover below the vegetation (Huete 
et al., 2002). In general, the EVI is less sensitive to the chlorophyll content of plants than the 
NDVI but more sensitive to structural variations in the canopy cover, as expressed by the Leaf 
Area Index (LAI).

For the purpose of this study, we use the EVI that is operationally distributed by the U.S. 
Geological Survey (USGS) Land Processes Distributed Active Archive Center (LP DAAC). It is 
based on observations from the two Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensors Terra/Aqua. The spatial resolution is 500 m/1 km at 16-day compositing periods with a 
temporal coverage since 2000.

4.5.4 methoDs

Figure 4.3 illustrates the methodological approach underlying this study. First, we extract CHIRPS, 
ESA CCI soil moisture, and EVI for the region of interest based on a geographic bounding box 
(14.5°W–13.5°W and 13.5°N–14.5°N). After temporal matching to get monthly averages and spatial 
matching of datasets at different spatial resolutions, we calculate standardized anomalies for all 
variables (Equation 4.1).

 z = −Monthly average Longterm monthly mean for the same month
Standarrd Deviation

 (4.1)

Temporal matching

(monthly averages)

Extraction of data for
the region of interest

and the largest
temporal overlap

Monthly and seasonal
agreement (Pearson/
Spearman correlation

coe�cient)

Lagged monthly
agreement (Pearson/
Spearman correlation

coe�cient)

Calculation of
standardized

anomalies

Spatial matching

(linear averaging)

FIGURE 4.3 Method—Schematic illustration.
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The time series analysis concentrates on the analysis of 

• Monthly and seasonal agreement of precipitation, soil moisture, and vegetation via Pearson 
(P) and Spearman (S) correlation coefficient.

• Lagged monthly agreement via Pearson and Spearman correlation coefficient, whereas we 
shift the data at time steps of 1 month to account for the delayed response of vegetation 
greenness to changes in moisture supply.

4.6 RESULTS

Table 4.1  shows the agreement of precipitation/soil moisture, precipitation/vegetation greenness, 
and soil moisture/vegetation greenness. For all combinations, the highest P-correlation and compa-
rable S-correlations are found for the standardized anomalies calculated for the June–July averages. 
We find the highest agreement between soil moisture and vegetation greenness/health anomalies 
(P = 0.76, S = 0.76). The correlations for rainfall and vegetation greenness/anomalies in the same 
period are 0.54 (Pearson) and 0.51 (Spearman).

In addition, with regard to anomalies over the entire season (June to August/September), we 
observe the highest correlations for soil moisture and vegetation anomalies. The agreement between 
rainfall and soil moisture anomalies reaches its maximum over June–July (P = 0.72, S = 0.69), 
whereas a lagged response of soil moisture was not considered. Overall, the  agreement of rainfall/
soil moisture and vegetation greenness decreases as the season  proceeds. As the response of vegeta-
tion greenness to anomalies in moisture is usually delayed, we also calculate the correlation between 
rainfall/soil moisture and vegetation with a 1-month delay.

TABLE 4.1
Correlations of Precipitation (CHIRPS), Soil Moisture (ESA CCI), and Vegetation (EVI) 
for the Entire Growing Period of Central Senegal and 2-Month Averages (June/July, 
July/August, and August/September)

Variable A Variable B Coverage Months Averaged
Correlation 
(Pearson)

Correlation 
(Spearman)

Precipitation Soil moisture 1992–2015 June–August 0.63 0.71
Precipitation Soil moisture 1992–2015 June–September 0.66 0.70

Precipitation Soil moisture 1992–2015 June–July 0.72 0.69

Precipitation Soil moisture 1992–2015 July–August 0.38 0.52

Precipitation Soil moisture 1992–2015 August–September 0.48 0.53

Soil moisture Vegetation 2000–2015 June–August 0.74 0.74

Soil moisture Vegetation 2000–2015 June–September 0.72 0.69

Soil moisture Vegetation 2000–2015 June–July 0.76 0.76
Soil moisture Vegetation 2000–2015 July–August 0.63 0.56

Soil moisture Vegetation 2000–2015 August–September 0.51 0.40

Precipitation Vegetation 2000–2015 June–August 0.49 0.43

Precipitation Vegetation 2000–2015 June–September 0.52 0.43

Precipitation Vegetation 2000–2015 June–July 0.54 0.51

Precipitation Vegetation 2000–2015 July–August 0.40 0.56
Precipitation Vegetation 2000–2015 August–September 0.31 0.26

Note: The bold numbers highlight the highest correlation for each pair.
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Table 4.2 illustrates the lagged correlations for standardized precipitation/soil moisture  anomalies 
and the standardized vegetation anomaly. The agreement of soil moisture and vegetation greenness 
is generally higher than for precipitation. We find the best correlation for soil moisture anomalies in 
July and for vegetation greenness anomalies in August (P = 0.82, S = 0.83).

The following illustrations demonstrate the seasonal agreement of standardized anomalies for 
the precipitation/soil moisture and vegetation between the years 2000 and 2015. With regard to 
the Tambacounda region, in particular, the years 2001, 2002, 2014, and 2015 had been mentioned 
by local farmers as severe drought years (IRI/R4 project report, unpublished). The green line in 
Figure 4.4 represents vegetation greenness/health. Both the 2002 and the 2014/2015 events are 
well captured in the EVI time series. However, the CHIRPS rainfall anomaly misses the largest 
event in 2002.

In Figure 4.5, we replaced the rainfall component with seasonal standardized soil moisture. With 
regard to the drought in 2002, soil moisture and EVI anomalies match very well. Both time series 
exhibit an anomaly of around two standard deviations below the mean. In addition, the 2014 and 
2015 events are well reflected in both datasets. Over the 2001 agricultural season, the agreement 
between EVI anomalies and soil moisture anomalies is higher than for rainfall. However, neither 
EVI nor soil moisture indicates a severe drought.

The maps in Figure 4.6 illustrate the spatial agreement between precipitation and soil 
moisture with vegetation health throughout all seasons (June–September) from 2000 to 2015. 
The results for the entire country are comparable to the time series analysis in the central 
Tambacounda region. The correlation of the coarser resolution soil moisture dataset and vegeta-
tion health is generally higher than the correlation of precipitation and vegetation health. Only 
in the Southeast, which is characterized by higher altitudes, the correlations are negative if no 
temporal lags are considered.

Figure 4.7 shows the agreement of precipitation and soil moisture with vegetation health, whereas 
a time lag of 1 month is considered. The top left image, for instance, shows the correlation of pre-
cipitation in June with vegetation health in July. Again, the findings are in line with the time series 
analysis for the Tambacounda region. We observe the highest correlation for soil moisture condi-
tions during July and the response of vegetation health in August.

TABLE 4.2
Correlations of Precipitation (CHIRPS)/Soil Moisture (ESA CCI) and Vegetation (EVI) 
Considering a Temporal Lag of 1 Month for Vegetation for 2000–2015

Variable A Variable B Month (Variable A) Month (Variable B)
Correlation 
(Pearson)

Correlation
(Spearman)

Precipitation Vegetation June July 0.36 0.42

Precipitation Vegetation July August 0.64 0.72
Precipitation Vegetation August September 0.33 0.24

Soil moisture Vegetation June July 0.50 0.55

Soil moisture Vegetation July August 0.82 0.83
Soil moisture Vegetation August September 0.64 0.64

Note: The bold numbers highlight the highest correlation for each pair.
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FIGURE 4.4 Time series of standardized June–August anomalies for precipitation and vegetation health/
greenness, expressed in standard deviations (P = 0.49, S = 0.43).
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78 Remote Sensing of Hydrometeorological Hazards

−0
.8

−0
.6

0.
6

0.
8

−0
.4

0.
4

−0
.2

0.
2

0
Co

rr
el

at
io

n

(a
)

(b
)

17
.6

°W
17

.2
°W

16
.8

°W
16

.4
°W

16
°W

15
.6

°W
15

.2
°W

14
.8

°W
14

.4
°W

Lo
ng

itu
de

14
.0

°W
13

.6
°W

13
.2

°W
11

.6
°W

11
.2

°W
12

.8
°W

12
.4

°W
12

.0
°W

16.8°N 16.4°N 16°N 15.6°N 15.2°N 14.8°N 14.4°N
Longitude

14.0°N 13.6°N 13.2°N 11.6°N 11.2°N12.8°N 12.4°N 12.0°N

16.8°N 16.4°N 16°N 15.6°N 15.2°N 14.8°N 14.4°N
Longitude

14.0°N 13.6°N 13.2°N 11.6°N 11.2°N12.8°N 12.4°N 12.0°N

17
.6

°W
18

°W
17

.2
°W

16
.8

°W
16

.4
°W

16
°W

15
.6

°W
15

.2
°W

14
.8

°W
14

.4
°W

Lo
ng

itu
de

14
.0

°W
13

.6
°W

13
.2

°W
11

.6
°W

11
.2

°W
12

.8
°W

12
.4

°W
12

.0
°W

FI
G

U
R

E 
4.

6 
Se

as
on

al
 (

Ju
ne

–S
ep

te
m

be
r)

 P
ea

rs
on

 c
or

re
la

ti
on

 (a
) 

be
tw

ee
n 

pr
ec

ip
it

at
io

n 
an

d 
ve

ge
ta

ti
on

 h
ea

lt
h 

an
d 

(b
) 

be
tw

ee
n 

so
il

 m
oi

st
ur

e 
an

d 
ve

ge
ta

ti
on

 h
ea

lt
h.



79The Added Value of Satellite Soil Moisture for Agricultural Index Insurance

Co
rr

el
at

io
n

Ju
ne

 vs
. J

ul
y

Ju
ly

 vs
. A

ug
us

t
A

ug
us

t v
s. 

Se
pt

em
be

r

Longitude

17.6°
W

17.2°
W

16.8°
W

16.4°
W

16°W
15.6°

W
15.2°

W
14.8°

W
14.4°

W

Lo
ng

itu
de14.0°

W
13.6°

W
13.2°

W

11.6°
W

11.2°
W

12.8°
W

12.4°
W

12.0°
W

16
.8

°N

16
.4

°N

16
°N

15
.6

°N

15
.2

°N

14
.8

°N

14
.4

°N

Longitude

14
.0

°N

13
.6

°N

13
.2

°N

11
.6

°N

11
.2

°N

12
.8

°N

12
.4

°N

12
.0

°N

16
.8

°N

16
.4

°N

16
°N

15
.6

°N

15
.2

°N

14
.8

°N

14
.4

°N

14
.0

°N

13
.6

°N

13
.2

°N

11
.6

°N

11
.2

°N

12
.8

°N

12
.4

°N

12
.0

°N

16
.8

°N

16
.4

°N

16
°N

15
.6

°N

15
.2

°N

14
.8

°N

14
.4

°N

14
.0

°N

13
.6

°N

13
.2

°N

11
.6

°N

11
.2

°N

12
.8

°N

12
.4

°N

12
.0

°N

16
.8

°N

16
.4

°N

16
°N

15
.6

°N

15
.2

°N

14
.8

°N

14
.4

°N

14
.0

°N

13
.6

°N

13
.2

°N

11
.6

°N

11
.2

°N

12
.8

°N

12
.4

°N

12
.0

°N

16
.8

°N

16
.4

°N

16
°N

15
.6

°N

15
.2

°N

14
.8

°N

14
.4

°N

14
.0

°N

13
.6

°N

13
.2

°N

11
.6

°N

11
.2

°N

12
.8

°N

12
.4

°N

12
.0

°N

16
.8

°N

16
.4

°N

16
°N

15
.6

°N

15
.2

°N

14
.8

°N

14
.4

°N

14
.0

°N

13
.6

°N

13
.2

°N

11
.6

°N

11
.2

°N

12
.8

°N

12
.4

°N

12
.0

°N

17.6°
W

17.2°
W

16.8°
W

16.4°
W

16°W
15.6°

W
15.2°

W
14.8°

W
14.4°

W

Lo
ng

itu
de

Lo
ng

itu
de

14.0°
W

13.6°
W

13.2°
W

11.6°
W

11.2°
W

12.8°
W

12.4°
W

12.0°
W

Longitude

17.6°
W

17.2°
W

16.8°
W

16.4°
W

16°W
15.6°

W
15.2°

W
14.8°

W
14.4°

W

Lo
ng

itu
de

Lo
ng

itu
de

14.0°
W

13.6°
W

13.2°
W

11.6°
W

11.2°
W

12.8°
W

12.4°
W

12.0°
W

Longitude

Longitude Longitude

17.6°
W

17.2°
W

16.8°
W

16.4°
W

16°W
15.6°

W
15.2°

W
14.8°

W
14.4°

W
14.0°

W
13.6°

W
13.2°

W

11.6°
W

11.2°
W

12.8°
W

12.4°
W

12.0°
W

Lo
ng

itu
de

17.6°
W

17.2°
W

16.8°
W

16.4°
W

16°W
15.6°

W
15.2°

W
14.8°

W
14.4°

W
14.0°

W
13.6°

W
13.2°

W

11.6°
W

11.2°
W

12.8°
W

12.4°
W

12.0°
W

17.6°
W

17.2°
W

16.8°
W

16.4°
W

16°W
15.6°

W
15.2°

W
14.8°

W
14.4°

W
14.0°

W
13.6°

W
13.2°

W

11.6°
W

11.2°
W

12.8°
W

12.4°
W

12.0°
W

−0
.8

−0
.6

0.
6

0.
8

−0
.4

0.
4

−0
.2

0.
2

0

(a
)

(b
)

FI
G

U
R

E 
4.

7 
L

ag
ge

d 
Pe

ar
so

n 
co

rr
el

at
io

n 
fo

r 
(a

) 
pr

ec
ip

it
at

io
n 

an
d 

ve
ge

ta
ti

on
 h

ea
lt

h 
as

 w
el

l a
s 

(b
) 

so
il

 m
oi

st
ur

e 
an

d 
ve

ge
ta

ti
on

 h
ea

lt
h.



80 Remote Sensing of Hydrometeorological Hazards

4.7 SUMMARY AND CONCLUSIONS

If integrated with complementary risk management strategies, weather index-based insurance can 
help to unlock the agricultural potential of smallholder farmers. Satellite data play an important 
role in the design of the insurance indices. One main task of researchers is to select, analyze, and 
combine different datasets to maximize the match between satellite-derived information and the 
impact of the insured peril (e.g., drought) on the ground. Current agricultural index insurance pro-
grams are mainly driven by satellite-derived rainfall or estimations of vegetation greenness/health. 
Satellite soil moisture holds the potential to indicate both drought and near-future vegetation growth 
(Qiu et al., 2014; Zribi et al., 2010). However, studies that analyze the added value of satellite soil 
moisture, a relatively new variable in earth observation, are very scarce. Consequently, we focus 
on an initial analysis of the agreement between three satellite-derived datasets over a rain-fed agri-
cultural area in central Senegal: precipitation (CHIRPS), soil moisture (ESA CCI), and vegetation 
greenness/health (EVI).

Our findings indicate that in the study region the agreement of standardized seasonal (June–
August) anomalies of rainfall and vegetation greenness is lower than the agreement of soil moisture 
and vegetation greenness (Table 4.1). As vegetation usually takes time to respond to changes in 
moisture, we also investigate the lagged (1 month) agreement. Again, the correlation between soil 
moisture and vegetation is higher than for rainfall and vegetation, whereas we observe the best fore-
casting capability of vegetation anomalies in July via soil moisture anomalies (P = 0.82, S = 0.83) in 
July (Table 4.2). Figures 4.4 and 4.5 illustrate the time series of standardized seasonal anomalies for 
the Tambacounda region in central Senegal. Although the seasonal rainfall anomaly fails to capture 
the severe drought event in 2002, both the soil moisture and vegetation anomalies agree with regard 
to severity and timing. A moisture deficit in 2014 and 2015 is more or less captured by all datasets. 
The 2001 season, which had been mentioned by local farmers as a bad year during IRI field visits, is 
reflected in the rainfall anomaly but not in soil moisture or vegetation greenness. Possible explana-
tions are a preseason moisture deficit that affected the start of the season and a different (e.g., flood) 
or nonclimatic (e.g., locust) impact on the crops.

The findings in this study, provide strong evidence for the consideration of satellite soil moisture 
to complement other datasets. Therefore, we suggest five approaches to better exploit the added 
value of satellite soil moisture for weather index insurance and to overcome challenges with regard 
to the development of operational systems: First, following the example of satellite-based rainfall 
and vegetation health estimations, interdisciplinary research must identify if the coarse resolution 
(0.25°, roughly 26 km at the equator) or satellite soil moisture reflects local conditions (drought 
impacts, detection of the start of season, etc.) sufficiently well for a specific region of interest. 
Second,  specific methods need to be developed for the purpose of index insurance design that uses 
soil moisture as a validation for one or more satellite-derived rainfall datasets. The SM2Rain algo-
rithm of Brocca et al. (2014, 2013), which basically inverts the water balance equation to estimate 
rainfall from satellite soil moisture, is a promising approach. Third, the reliance on polar-orbiting 
satellites results in data gaps. Several methods (e.g., data filling via a z-score transformations of 
nearby data to fill the missing data) need to be tested to avoid the distortion of historical payout 
simulations. Fourth, the ESA CCI dataset is updated approximately every year. Currently, methods 
are developed to extend the historical reference with near real-time (NRT) observations from radars 
and/or radiometers. Studies will have to show the consistency of NRT and historical data, which is 
crucial for the calculation of anomalies or insurance indices. In situ soil moisture  observations, which 
are scarce on the African continent, are therefore an indispensable source of information. Fifth, data 
continuity needs to be guaranteed for operational weather index insurance. The Copernicus portal 
of the European Commission, for instance, provides a satellite-derived root-zone soil moisture (Soil 
Water Index) as a daily product on global scale and free of charge.

With regard to Senegal high uncertainties, which are intrinsic to long-range climate projections, 
make it hard to draw conclusions about future changes in mean annual rainfall. However, most 
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climate projections indicate a clear increase in the frequency of hot days and nights (McSweeney 
et al., 2010). Naturally, this might have negative impacts on the vulnerability of smallholder farm-
ers. In combination with user-tailored knowledge transfer and institutional partnerships, scaling up 
index insurance can become an even more important component of long-term poverty alleviation 
(Greatrex et al., 2014). Earth observation from satellites will inevitably play an important role in 
the development and scaling up of weather risk indices. Satellite-derived soil moisture holds the 
potential to optimize this process.

Future research will have to focus on the latest generation of soil moisture missions, such as the 
Sentinel mission of the European Commission and ESA. In contrast to National Aeronautics and 
Space Administration’s (NASA’s) Soil Moisture Active Passive (SMAP) mission, whose key radar 
sensor failed in 2015, Sentinel 1A and B provides global soil moisture estimates every 6 to 
12 days (Malenovský et al., 2012). Operational products are available at a spatial resolution of 1 km. 
Methods that combine the high temporal resolution of the two ASCAT sensors onboard the MetOp 
satellites, which individually cover more around 82% of the global land surface every day (Wagner 
et al., 2013), and the high spatial resolution of Sentinel 1A/B are therefore very promising.
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5.1 INTRODUCTION

Drought is one of the devastating natural hazards, which often recurs when plants cannot sustain 
their growth as a result of water deficit. Its occurrence interferes with agricultural production by 
significantly reducing crop yields, in turn damaging the global economy. As the world population 
has been steadily growing, food supply must keep up with this increasing demand.

In this regard, several drought monitoring tools such as United States Drought Monitor (USDM) 
(Svoboda et al. 2002) and Global Agricultural Drought Monitoring and Forecasting System 
(GADMFS) (Deng et al. 2013) have been developed to detect onset, duration, extent, and severity of 
drought and to timely inform the state and government agencies, stakeholders, farmers, and public 
so that its devastating effects can be mitigated.

Daily observations obtained by satellites orbiting in space are indispensible to routinely track the 
Earth’s ground and surface water resources and natural hazards such as droughts and floods because 
they provide spatially continuous synoptic view of the Earth. In the last decade, many efforts have 
been devoted to drought monitoring. Drought is relatively defined as natural phenomenon, generally 
identified by the deviations of precipitation (e.g., meteorological drought), soil water (e.g., agricul-
tural drought), and groundwater and streamflow (e.g., hydrological drought) from their long-term 
average condition (Wilhite 2000).

Remotely sensed vegetation indices such as the Normalized Difference Vegetation Index (NDVI) 
have been extensively used to track droughts (Kogan 2001), especially from the NOAA’s advanced 
very high resolution radiometer (AVHRR) because of its long record (e.g., ≈30 years). Vegetation 
indices are good surrogate measures of photosynthetically functioning vegetation (Tucker and 
Choudhury 1987). Because drought hinders the photosynthetic activity of plants, large-scale 
reduction in NDVI over a region (e.g., statewide) can be associated with droughts. After complet-
ing 10 years in orbit, the products of National Aeronautics and Space Administration’s (NASA’s) 
Moderate Resolution Imaging Spectroradiometer (MODIS) have also been used to monitor droughts 
(Yagci et al. 2012; Deng et al. 2013; Yagci et al. 2013). MODIS acquires observations in narrower 
bands than the AVHRR instrument, successfully avoiding the water vapor absorption in the visible-
red and near-infrared (NIR) region of the electromagnetic spectrum. Therefore, MODIS-NDVI 
products attain relatively larger values and better accuracy in exhibiting temporal profiles of forests 
than the AVHRR-NDVI data (Huete et al. 2002).

In addition to NDVI, ability of surface brightness temperature (Tb) or land surface temperature 
(LST) to track drought has been successfully tested and validated against the crop yields in the 
state of Texas, United States (Yagci et al. 2011) and around the globe (Kogan 2001). LST is a better 
indicator of surface temperature conditions than Tb because it is corrected for surface emissivity and 
estimated from surface radiance, that is, atmospherically corrected surface radiance reaching the 
sensor. LST is a proxy for moisture availability and evapotranspiration conditions such that water 
depletion in the plant root zone leads to stomatal closure, reduced transpiration, and subsequently 
elevated canopy temperatures (Anderson and Kustas 2008). Drought detected by NDVI and LST 
products is referred to as vegetative drought or agricultural drought.

In recent years, a new way has surfaced to monitor drought through analysis of the terrestrial 
water storage (TWS) anomalies. The monthly variations in the Earth’s gravitational signal mea-
sured by twin satellites of the Gravity Recovery and Climate Experiment (GRACE) have been 
shown to relate to monthly TWS changes with roughly 1.5 cm accuracy at regional scales (Wahr 
et al. 2004). GRACE-derived TWS is coarsely resolved and contains vertically integrated informa-
tion about surface and subsurface water conditions; therefore, its spatial, temporal, and vertical 
decomposition into soil moisture and groundwater components achieved through data assimila-
tion into the Catchment Land Surface Model (CLSM) aids in its interpretation and application to 
drought monitoring (Houborg et al. 2012; Rodell 2012). The resulting groundwater and soil  moisture 
wetness fields are appropriate for hydrological and agricultural drought monitoring applications, 
respectively.
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USDM is a collaborative effort by the National Drought Mitigation Center at the University of 
Nebraska–Lincoln, the Departments of Commerce and Agriculture and outside experts to summa-
rize weekly drought conditions across the United States (Svoboda et al. 2002). Despite the fact that 
USDM is the premier drought product for the United States, it does have certain shortcomings such 
as a tendency toward overestimation of drought areal coverage and difficulty in representing the 
local-scale (e.g., county-scale) conditions, which have been highlighted by several studies (Brown 
et al. 2008; Tadesse et al. 2005).

The conterminous United States experienced a vast costly drought in 2012, which caused disas-
trous impacts on agriculture and livestock industries, totaling nearly $30  billion losses (Rippey 
2015). The drought of 2012 was similar to the drought of 1988 in terms of cost and the megadrought 
of the 1950s in terms of areal coverage (Rippey 2015). In this study, characteristics of the 2012 
drought are examined using the drought maps derived from the aforementioned approaches. Each 
method is rather distinct in terms of input type and source, theoretical background, and level of 
complexity. Their results are intercompared in 2012, and their similarities and discrepancies are 
also highlighted in Southeastern United States.

5.2 DATA AND METHODS

5.2.1 normalizeD Difference vegetation inDex (nDvi)

NDVI is a measure of vegetation greenness, ranging from −1 to 1. Presence of chlorophyll pig-
ments in plant leaves causes visible sunlight in the red region of the spectrum to be absorbed for 
photosynthesis, and sunlight in the NIR region of the spectrum is substantially reflected due to the 
cell structure of the leaves. Therefore, green healthy functioning vegetation always attains larger 
NDVI value than brown stressed vegetation. Swain et al. (2011) demonstrated that NDVI in the 
drought year of 2002 was considerably smaller than NDVI during the nondrought year, 2007 over 
the croplands and grasslands of Nebraska, United States. The 16-day composite MODIS-NDVI 
products (collection 5) were retrieved from the NASA’s Land Processes Distributed Active Archive 
Center (LP DAAC). The level 3 NDVI products, abbreviated as MOD13A2.005, are compiled from 
radiometrically-, geometrically-, and atmospherically-corrected surface reflectances and have 1 km 
 spatial resolution. The compositing algorithm, the constrained view angle maximum value com-
posite (CV-MVC), picks the best available NDVI observation that is noncloudy and closest to nadir 
view to represent the vegetation conditions during the 16-day period (Solano et al. 2010).

5.2.2 lanD surface temperature (lst)

LST is a proxy variable for moisture availability and evapotranspiration conditions (Anderson and 
Kustas 2008). Elevated LSTs are typical during drought years as opposed to LSTs observed in nor-
mal or wet years because plants are not transpiring to cool off the canopy. Similarly, Swain et al. 
(2011) demonstrated that LST increased during the 2002 drought year in comparison to the 2007 
normal year in the croplands (corn) and grasslands of Nebraska. The collection 5 daytime MODIS-
LST products were retrieved from the NASA’s LP DAAC. The level 3 LST products, abbreviated 
as MYD11A2.005, are composited over a 8-day period with 1 km spatial resolution and are calcu-
lated from radiometrically, geometrically, and atmospherically corrected surface radiances. Unlike 
16-day NDVI composites, the 8-day LST composite is the average of all noncloudy LSTs during the 
8-day period (Wan 2007).

5.2.3 vegetation conDition inDex (vci)

The Vegetation Condition Index (VCI) was introduced to separate the annually varying NDVI com-
ponent due to prevailing weather conditions from long-term component of NDVI (e.g., climate, soil, 
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and land cover type) (Kogan 1997). The index ranges from 0 to 100 and can be calculated with the 
following formula: 

 
VCI

NDVI NDVI
NDVI NDVI

min

max min
c

c= × −
−

100
 

(5.1)

where:
NDVImin and NDVImax are the multiyear minimum and maximum NDVI values, respectively
NDVIc is the NDVI value of the compositing period of interest

For instance, if VCI of the 177th day of 2012 is the interest, then NDVIc is the NDVI value of 
the 177th day of 2012. VCI values of 0 and 100 indicate the worst and best vegetation conditions, 
respectively. Prior to VCI calculation, low-quality NDVI pixels that are covered with cloud, cloud 
shadows, and adjacent to clouds were removed based on quality flags in the corresponding quality 
assurance (QA) layers that come with the NDVI products. The resulting gaps in NDVI products 
were filled by interpolation. NDVI observations from two preceding and following 16-day peri-
ods along with their corresponding day of year (DOY) information were used to interpolate gaps 
and downscale to 8-day temporal resolution. The VCI-based drought maps were compiled by the 
percentile-based classification scheme given in Table 5.1.

5.2.4 temperature conDition inDex (tci)

Similar to VCI, TCI was designed to highlight LST changes due to prevailing weather conditions 
(Kogan 1997). It ranges from 0 to 100 and can be calculated with the following formula: 

 
TCI

LST LST
LST LST

max

max min
c

c= × −
−

100
 

(5.2)

where:
LSTmin and LSTmax are the multiyear minimum and maximum LST values, respectively
LSTc is the LST value of the compositing period of interest

For instance, if TCI of the 177th day of 2012 is the interest, then LSTc is the LST value of the 
177th day of 2012. Minimum and maximum TCI values (e.g., 0 and 100) indicate the worst and best 
vegetation conditions, respectively. Prior to TCI calculation, LST products underwent a masking 
process in which all cloudy LST observations were removed. The incomplete LST time series were 
filled by temporal interpolation using LST observations from two preceding and following 8-day 
compositing periods. The TCI-based drought maps were categorized by the drought classification 
scheme in Table 5.1 to identify drought-affected areas.

TABLE 5.1
USDM Drought Classification Scheme

Category Description Percentiles

D0 Abnormally dry 21–30

D1 Moderate drought 11–20

D2 Severe drought 6–10

D3 Extreme drought 3–5

D4 Exceptional drought 0–2
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5.2.5 uniteD states Drought monitor (usDm)

The team of roughly 15 authors of the USDM combines meteorological, agricultural, and hydro-
logical drought indicators such as Palmer Drought Severity Index (PDSI), Climate Prediction 
Center (CPC) soil moisture model, United States Geological Survey (USGS) weekly streamflow, 
Standardized Precipitation Index (SPI), and other drought indices to produce weekly drought maps, 
by focusing on broadscale conditions (e.g., state-level). In turn, it may not be used to infer local-
scale (e.g., county-level) conditions. Drought is classified by percentiles into five different severi-
ties: abnormally dry, moderate, severe, extreme, and exceptional drought, as outlined in Table 5.1 
(The National Drought Mitigation Center 2016). In the end, a blend of drought indicators with dif-
ferent weights determined subjectively by the experts contributes to the final drought map (Svoboda 
et al. 2002), and this map is updated weekly and is disseminated via the USDM website (http://
droughtmonitor.unl.edu/Home.aspx).

5.2.6 gravity recovery anD climate experiment-baseD (grace) Drought inDicators

Earth’s gravity field varies in space and time as a result of heterogeneities and movements of 
mass at the surface, including redistribution of TWS. GRACE detects these gravitational varia-
tions as they perturb the orbits of its twin satellites (Tapley et al. 2004; Wahr et al. 2004) and uses 
them to infer monthly changes in TWS at regional scales (>150,000 km2) (Swenson et al. 2006). 
In addition to its coarse spatial and temporal resolutions, GRACE alone cannot separate changes in 
groundwater, soil moisture, surface waters, and snow/ice (Rodell and Famiglietti 1999). Zaitchik 
et al. (2008) proposed a data assimilation method based on the CLSM (Koster et al. 2000) to 
downscale and vertically decompose GRACE-based TWS. Later, Houborg et al. (2012) applied 
this data assimilation approach to GRACE-derived TWS and produced drought indicators for sur-
face soil moisture (SFSM), root-zone soil moisture (RTZSM), and groundwater storage (GWS), 
which conformed to the percentile ranges proposed by the USDM (Table 5.1). SFSM and RTZSM 
are indicative of agricultural drought, whereas GWS can be used to map the extent and severity 
of hydrological drought. These experimental GRACE-based drought/wetness maps are now pro-
duced weekly at 0.125° resolution for the continental United States. They are used as an input to 
the USDM and are disseminated weekly via this website, http://drought.unl.edu/monitoringtools/
nasagracedataassimilation.aspx.

5.2.7 stuDy area

The study area is the Southeastern United States, where a humid warm temperate climate is prev-
alent according to Köppen–Geiger climate classification (Kottek et al. 2006). The land cover is 
mainly dominated by forests (mostly deciduous), cultivated crops, and hay/pasture according to the 
National Land Cover Database 2011 (NLCD 2011). Summers are characteristically hot and wet with 
frequent thundershowers. Evaporative demand is high during summers, which makes the region 
very susceptible to drought when seasonal rainfall is delayed.

Basins in the study area (Figures 5.1 and 5.2) were retrieved from the website of the Watershed 
Boundary Dataset (WBD) (http://nhd.usgs.gov/wbd.html) to compare the drought indicators on the 
basin level. The WBD contains boundaries of drainage areas developed by the collaborative effort 
among the U.S. federal agencies in consistent with national federal standards, and topographic and 
hydrologic features across the United States and territories (U.S. Geological Survey and the U.S. 
Department of Agriculture, Natural Resources Conservation Service 2013). Each basin in the WBD 
is defined as the level 3 hydrological unit and assigned a unique identifier, hydrological unit code 
(HUC). In this chapter, we follow the naming conventions of hydrological units established in the 
WBD, region (level 1), basin (Level 3), and watershed (level 5), in the descending order with respect 
to areal size.

http://droughtmonitor.unl.edu/Home.aspx
http://droughtmonitor.unl.edu/Home.aspx
http://drought.unl.edu/monitoringtools/nasagracedataassimilation.aspx
http://nhd.usgs.gov/wbd.html
http://drought.unl.edu/monitoringtools/nasagracedataassimilation.aspx


90 Remote Sensing of Hydrometeorological Hazards

0 125 250 500 km

Legend

NLC 2011

St. Francis basin

Coosa-Tallapoosa basin
Basins

Barren land

Deciduous forest

Developed, low intensity

Developed, open space
Emergent, herbaceuous wetlands
Evergreen forest

Herbaceuous
Mixed forest
Open water

Unclassified
Woody wetlands

Shrub/scrub

Hay/pasture

Developed, medium intensity

Developed, high intensity

Cultivated crops

Upper white basin

Albers conical equal area projection

N

FIGURE 5.1 Study area and boundaries of basins defined in the Watershed Boundaries Dataset (WBD). 
The background image is the land cover/land use subset from the National Land Cover Database 2011. 
(Homer, C. et al., Photogramm. Eng. Remote Sen., 81, 345–354, 2015.)
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FIGURE 5.2 Irrigated areas in 2012 with respect to basins in the study area. Irrigation map is the subset of 
the MODIS-based Irrigated Areas Database. (Brown, J.F. and Pervez, M.S., Agric. Syst., 127, 28–40, 2014.)
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Various crops such as corn, soybeans, rice, winter wheat, sorghum, cotton, and peanuts are 
grown in the study area, particularly in the Lower Mississippi region along the Mississippi river 
(Figure 5.1). During hot seasons, crops are irrigated to support crop growth and ensure high crop 
yields, and irrigation is primarily concentrated over the Lower Mississippi region (Figure 5.3) 
according to the irrigation map, extracted from the MODIS Irrigated Agriculture Dataset for the 
United States (MIrAD-US). Pervez and Brown (2010) developed a geospatial model by combining 
remote sensing inputs such as MODIS-NDVI and NLCD products with United States Department 
of Agriculture (USDA) Census of Agriculture irrigated area statistics to produce 2012 irrigated 
agriculture areas dataset at 250 m resolution.

5.3 RESULTS

The spatial extent and severity of the 2012 drought are mapped by all drought indicators as 
described in Section 5.2. The identical classification scheme (Table 5.1) is employed to iden-
tify drought-affected regions and quantify severity of drought, ensuring that they are all in the 
same units. Therefore, percentile-based classification allows us to visually and quantitatively 
analyze the drought results and draw meaningful conclusions. Visual comparison is necessary 
to analyze the spatial extent of drought reported by all drought indicators, whereas quantitative 
 examination enables to intercompare results with respect to drought onset, end, and intensity. 
It is crucial to reemphasize that drought maps based on GWS percentiles are an indicator of 
hydrological drought, whereas VCI-, TCI-, RTZSM- and SFSM-based drought maps provide 
agricultural drought conditions. On the other hand, USDM-based drought maps collectively 
contain information about hydrological, meteorological, and agricultural drought.
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FIGURE 5.3 Drought maps of (a) GRACE-based GWS, (b) RTZSM, (c) SFSM, (d) MODIS-based TCI, 
(e) VCI, and (f) USDM. The USDM drought map is valid from August 7 to August 13, 2012, and all other maps 
are valid between August 6 and August 12, 2012.
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5.3.1 spatial representation of Drought

GRACE- and MODIS-based maps are shown side-by-side in Figure 5.3 along with the USDM map 
on August 6, 2012. These maps are valid for the week of August 6–12, 2012, except that USDM 
map is valid for the week of August 7–13, 2012. Good correspondence between TCI- and VCI-based 
maps was observed, although VCI indicated relatively large drought extent. Both maps were also 
generally in good agreement with the USDM map and GRACE-SFSM, although they displayed 
more extensive drought extent than MODIS-based drought indices. One stark discrepancy among 
all indicators was seen in Georgia where both GRACE-derived indices and USDM suggested 
severe-to-exceptional agricultural drought, whereas VCI and TCI did not indicate any drought. 
Over Central United States, drought extent reported by all indicators was in complete agreement. Of 
all the indicators, the largest drought extent was reported by GRACE-GWS and GRACE-RTZSM 
on August 6, 2012 (Figure 5.3).

Another disagreement in indices was observed over the Lower Mississippi region where the 
land is cultivated for agricultural production. Crops in this region were irrigated in 2012 according 
to irrigated agriculture map (Figure 5.2). Over this region, VCI did not report widespread reduced 
vegetation activity (Figure 5.4), and TCI did not indicate elevated LST in comparison to other years, 
both indicating a response of the respective index to the irrigation signal. On the other hand, severe-
to-exceptional drought was reported in the USDM- and GRACE-derived SFSM over the St. Francis 
basin (Figure 5.4), which is more representative of the natural hydrometeorological conditions in 
2012 in nonirrigated locations.

According to GRACE-based maps, groundwater, root zone, and surface soil moisture all  deviated 
negatively from their historical averages throughout the study area, further signaling both agricul-
tural and hydrological drought throughout Southeastern United States. In Georgia where VCI and 
TCI did not detect drought on August 6, 2012, both USDM- and GRACE-based drought indicators 
detected severe-to-exceptional drought. Over irrigated agriculture of the Lower Mississippi region, 
GRACE-based drought indicators were in agreement with USDM but not with the MODIS-based 
indicators (Figures 5.3 and 5.4). Disagreements between MODIS and GRACE indices were gener-
ally situated along the Appalachian Mountains (e.g., Blue Ridge mountains, and Ridge and Valley), 
Piedmont Plateau, and Atlantic Coastal Plains. Over these regions, GRACE drought indicators 
reported severe-to-exceptional groundwater and soil moisture depletion in 2012. Drought reported 
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FIGURE 5.4 Close-up view of the drought maps of (a) GRACE-based GWS, (b) RTZSM, (c) SFSM, 
(d) MODIS-based TCI, (e) VCI, and (f) USDM over three basins on August 6, 2012 (USDM map is on 
August 7, 2012). Basin names are given in Figures 5.1 and 5.2.
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by GRACE-SFSM was not seen in VCI and TCI maps along the Appalachian Mountains. Broadly, 
discrepancies between GRACE-SFSM and MODIS indices seemed to be concentrated over highly 
elevated areas along the Appalachian Mountains (i.e., Blue Ridge Mountains).

There is a well-known lagged response of vegetation (i.e., NDVI) to precipitation (Di et al. 1994), 
and Ji and Peters (2003) suggested 3-month lag of NDVI to precipitation deficit. For this reason, 
3-month percent of normal precipitation for the time period of June–August of 2012 (Figure 5.5) 
was retrieved from the NOAA’s National Climatic Data Center (NCDC) (http://www.ncdc.noaa.
gov/temp-and-precip/). This precipitation deficit map broadly matched drought extent indicated by 
VCI on August 6, 2012, whereas smaller drought extent was reported by TCI. Both USDM and 
GRACE-SFSM indicated comparatively larger drought extent.

5.3.2 Drought intensity

Apart from analysis of spatial extent of drought, quantitative examination of drought intensity is 
essential to reveal similarities and differences across indices. The comparison is conducted based 
on the basin-level averages of drought indicators. Time series of these averages for each drought 
indicator are formed and plotted together in Figures 5.6 and 5.7, and their results are discussed. 
The location of three basins in the study area: Coosa-Tallapoosa (HUC6 =  031501), St. Francis 
(HUC6 = 080202), and Upper White (HUC6 = 110100) can be seen in Figures 5.1 and 5.2. Coosa-
Tallapoosa basin was selected for analysis because MODIS-based drought indicators did not indicate 
any drought on August 6, 2012, in contrast to USDM- and GRACE-derived indicators (Figure 5.4). 
St. Francis basin was impacted by the irrigation signal seen only in VCI and TCI, and all drought 
indicators were in good agreement in Upper White basin. Using basin boundaries, time series of 
VCI, TCI, RTZSM, SFSM, and GWS were constructed between April 30, 2012 and October 1, 2012 
on a weekly basis (Figures 5.6 and 5.7).

Precipitation percent of average 
June–August 2012

Averate period: Twentieth Century
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FIGURE 5.5 Three-month percent of normal precipitation for the time period of June–August, 2012. (From 
NOAA-National Climatic Data Center, 3-month percent of normal precipitation. National temperature and 
precipitation maps, http://www.ncdc.noaa.gov/monitoring-content/sotc/national/grid-prcp/prcp-pon- 201206-
201208.gif., 2012. With permission.)

http://www.ncdc.noaa.gov/monitoring-content/sotc/national/grid-prcp/prcp-pon-201206-201208.gif
http://www.ncdc.noaa.gov/monitoring-content/sotc/national/grid-prcp/prcp-pon-201206-201208.gif
http://www.ncdc.noaa.gov/temp-and-precip
http://www.ncdc.noaa.gov/temp-and-precip
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The results (Figure 5.6a) show that VCI was relatively constant above the drought threshold (>30, 
Table 5.1) in St. Francis basin throughout 2012 where agriculture is irrigated (Figure 5.2). Similarly, 
VCI did not report any drought throughout the 2012 growing season in Coosa-Tallapoosa basin 
where precipitation deficit was not seen between June and August of 2012 (Figure 5.5). However, 
TCI fluctuated substantially around the drought threshold throughout 2012 in St. Francis basin 
(Figure 5.7a) unlike Upper White (Figure 5.7b), indicating drought from May 14 to May 27, no 
drought from May 28 to June 17, drought from June 18 to July 8, and no drought from July 9 to 
July 15. Moreover, TCI reported drought during the late June and early July of 2012 (Figure 5.7c) 
and at other times, no drought was indicated by TCI in Coosa-Tallapoosa basin. From early June to 
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FIGURE 5.6 Basin averages of Vegetation Condition Index (VCI), groundwater storage (GWS), root-zone 
soil moisture (RTZSM), and surface soil moisture (SFSM) percentiles in (a) St. Francis, (b) Upper White, and 
(c) Coosa-Tallapoosa between April 30 and October 1, 2012.
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late August in 2012, good correspondence was observed between all GRACE-based and MODIS-
based drought indicators in Upper White basin (Figures 5.6b and 5.7b), identifying drought condi-
tions. GRACE-derived indicators implied that all three basins experienced severe-to-exceptional 
drought during the 2012 growing season.

Correlation analysis was conducted using the time series of drought indicators in 2012. Each 
time series is composed of 23 weekly observations spanning from April 30 to October 1, 2012. The 
results revealed that TCI had higher statistically significant relationship at 0.01 significance level 
with both SFSM and RTZSM than GWS in St. Francis and Upper White basins (Table 5.2). TCI did 
not display any relation to groundwater variations in all basins. On the other hand, VCI exhibited 
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FIGURE 5.7 Basin averages of Temperature Condition Index (TCI), groundwater storage (GWS), root-zone 
soil moisture (RTZSM), and surface soil moisture (SFSM) percentiles in (a) St. Francis, (b) Upper White, and 
(c) Coosa-Tallapoosa between April 30 and October 1, 2012.
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statistically significant relationship with GWS, RTZSM, and SFSM only in Upper White basin. 
Finally, there was no statistically significant correlation among any MODIS- and GRACE-based 
indicators in Coosa-Tallapoosa basin.

Lagged response of NDVI and NDVI-based drought indices to soil moisture at various depths 
up to 100 cm was reported by other studies (Adegoke and Carleton 2002; Peng et al. 2014) such that 
response of plants to soil moisture changes is not concurrent, rather exhibits some time lag. Time 
lags up to 7 weeks are considered, and additional basin averages of GRACE-derived GWS, RTZSM, 
and SFSM are computed starting from January 16 until October 1, 2012, ensuring that correlation 
coefficients are always computed from 23 weekly observations of all drought indicators, and the 
time period matches the growing season when vegetation is not dormant (i.e., April 30 to October 
1). The results (Table 5.3) show that correlations among drought indicators improved considerably, 
thus suggesting that VCI exhibited lagged response to changes in surface and root-zone soil mois-
ture in St. Francis and Upper White basins. On the other hand, no lag was found between TCI- and 
GRACE-based RTZSM and SFSM, thus suggesting that LST varies simultaneously with SFSM and 
RTZSM during dry years. Again, there was no significantly lagged relationship among all indica-
tors in Coosa-Tallapoosa basin. Overall, VCI lagged behind RTZSM and SFSM about 2 weeks in 
St. Francis and Upper White basins. Therefore, TCI responded to changes in SFSM and RTZSM 
more quickly than VCI in St. Francis and Upper White basins. Furthermore, the results pointed out 
that VCI and TCI had a positive relationship in all basins, yet only statistically significant at 0.01 

TABLE 5.2
Correlation Coefficients (r) between VCI, TCI, SFSM, RTZSM, and GWS in St. Francis, 
Upper White, and Coosa-Tallapoosa Basins

N = 23 St. Francis Upper White Coosa-Tallapoosa

r = 0.53 VCI TCI VCI TCI VCI TCI

GWS 0.46 −0.08 0.64 −0.13 −0.26 −0.08

RTZSM 0.43 0.75 0.67 0.71 0.07 0.17

SFSM 0.52 0.78 0.67 0.64 0.17 0.23

TCI 0.44   0.44   0.40  

Note: Time series are composed of observations between April 30 and October 1, 2012. Statistically significant r at 0.01 
significance level (α = 0.01) are underlined. The critical r value is 0.53 at 0.01 significance level.

TABLE 5.3
The Lags and Their Correlation Coefficients (r) between VCI, TCI, SFSM, RTZSM, and 
GWS in St. Francis, Upper White, and Coosa-Tallapoosa Basins

N = 23 St. Francis Upper White Coosa-Tallapoosa

r = 0.53 VCI TCI VCI TCI VCI TCI

  Lag r lag r lag r lag r lag r lag r

GWS 0 0.46 0 −0.08 0 0.64 0 −0.13 7 0.14 0 −0.08

RTZSM 2 0.55 0 0.75 2 0.87 0 0.71 0 0.07 0 0.17

SFSM 1 0.57 0 0.78 2 0.83 0 0.64 0 0.17 0 0.23

TCI 1 0.46     3 0.84     1 0.50    

Note: Statistically significant r and lag at 0.01 significance level (α = 0.01) are underlined. The critical r value is 0.53 at 
0.01 significance level.
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level in Upper White basin (Table 5.3). Time delay of 3 weeks between VCI and TCI was observed 
in Upper White basin.

The correlation analysis among GRACE-derived SFSM, RTZSM, and GWS revealed that SFSM 
was strongly correlated with RTZSM and GWS in all basins (Table 5.4), although relationship was 
relatively less strong in Coosa-Tallapoosa basin in 2012. SFSM relation to RTZSM was concurrent, 
whereas a time lag of 4 weeks was observed between SFSM and GWS in all basins (Table 5.4). 
The results also suggested that there was a strong lagged relationship between RTZSM and GWS 
in all basins, and the lag was 5 weeks in St. Francis and Upper White basin and 3 weeks in Coosa-
Tallapoosa basin.

5.4 DISCUSSION

Over irrigated agriculture in the Lower Mississippi region, VCI did not report any drought although 
USDM clearly indicated drought in 2012. Especially in St. Francis basin, VCI provided more con-
sistent results as opposed to TCI because LST responds more rapidly to prevailing weather condi-
tions and irrigation events than NDVI. Furthermore, there was no discernible variation in SFSM, 
RTZSM, and GWS unlike that observed in TCI over irrigated fields of St. Francis basin. It can be 
concluded that when agricultural fields were irrigated in 2012, LST decreased rapidly, and subse-
quently TCI signaled no drought. When the surface became dry before the next irrigation event, TCI 
reported drought after the sudden increase in LST (Figure 5.7a). In conclusion, discrepancy between 
MODIS- and GRACE-based results in St. Francis can be easily explained by irrigation, where 
irrigation is not considered in the decomposition of GRACE-based TWS into SFSM, RTZSM, and 
GWS (Houborg et al. 2012).

Correlation analysis revealed that the relationship between VCI- and GRACE-based SFSM and 
RTZSM is not concurrent, but rather lagged in St. Francis and Upper White basins, whereas TCI 
had concurrent positive relationships with both GRACE-derived SFSM and RTZSM. VCI exhibited 
roughly a 2-week lag to surface and root-zone soil moisture in 2012. Such conclusions with NDVI-
based indices were achieved by other studies (Adegoke and Carleton 2002; Peng et al. 2014), as 
well. Correlations between VCI and other drought indicators were statistically significant at 99% 
confidence level and improved considerably when the lag effect is taken into consideration in St. 
Francis and Upper White basins. However, the results of the correlation analysis in St. Francis basin 
should be interpreted with caution because the transfer of groundwater to surface through irrigation 
and subsequently infiltration of that water down to root zone are not explicitly handled in CLSM. 
Besides, the land is heavily subject to anthropogenic effects (e.g., irrigation, harvesting of crops, 
and farming practices), and timing of these events can vary annually. Therefore, such drivers could 

TABLE 5.4
The Lags and Their Correlation Coefficients (r) among GRACE-Derived Drought Indicators 
in St. Francis, Upper White, and Coosa-Tallapoosa Basins

N = 31 SFSM

r = 0.46 St. Francis Upper White Coosa-Tallapoosa

  lag r lag r lag r
RTZSM 0 0.93 0 0.97 0 0.75

GWS 4 0.89 4 0.89 4 0.69

  RTZSM
GWS 5 0.94 5 0.93 3 0.81

Note:  The critical r value is 0.46 at 0.01 significance level.
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be partly responsible for poorer correlation of VCI to SFSM, RTZSM, and TCI in St. Francis basin 
in comparison to Upper White basin. In Coosa-Tallapoosa, no statistically significant relationship 
observed between VCI and TCI could be attributed to frequent thundershowers, a common weather 
activity in summer across this region. We demonstrated that TCI fluctuated substantially throughout 
the 2012 growing season as opposed to VCI because LST responds to wetting events (e.g., irrigation 
and thundershowers) more quickly than NDVI.

We theorize that the timing of irrigation events can be detected by LST or TCI in which LST 
responds rapidly to irrigation event as sharp changes were seen in TCI time series in St. Francis 
as opposed to Upper White basin. The methodology developed by Pervez and Brown (2010) only 
decides whether or not a pixel is irrigated, but it does not supply any information about the timing 
of watering events. We suspect that sudden changes in the time series could be a sign of irrigation 
as depicted with arrows in Figure 5.7a. However, LST products must be combined with MIrAD irri-
gation dataset to eliminate likely errors because sharp fluctuations observed in Coosa-Tallapoosa 
(Figure 5.7c) could lead to false positives (i.e., Type I error). More research is needed to validate 
our claim.

Utility of VCI to monitor meteorological drought was investigated by Quiring and Ganesh (2010); 
however, we demonstrated that although USDM indicated drought conditions (i.e., meteorological 
drought) over irrigated agriculture in the Lower Mississippi region, drought was not reported by 
VCI during the 2012 growing season (Figure 5.6a). Therefore, VCI may not be a reliable indicator 
of meteorological drought, but agricultural drought.

Our analysis of the 2012 drought in the Southeastern United States demonstrated that the agree-
ments and disagreements over the extent and intensity of the 2012 drought exist among USDM-, 
GRACE- and MODIS-based drought indicators. We demonstrated that precipitation between June 
and August (Figure 5.5) was at normal levels in which disagreements between MODIS, GRACE, 
and USDM were seen over Georgia. In addition, two principal factors, irrigation and lagged response 
of vegetation to variations in soil moisture, could be partially responsible for these disagreements. 
Another factor that may contribute to these disagreements is the type of drought reported by these 
indicators such that GRACE-GWS is a measure of hydrological drought indicator, whereas the rest 
could be more suitable in depicting agricultural drought conditions.

5.5 CONCLUSIONS

USDM-, GRACE-, and MODIS-based drought maps were successful in depicting the drought of 
2012 despite disagreements over its extent and intensity, and they all indicated that Southeastern 
United States experienced severe-to-exceptional drought in 2012. Both MODIS-based and GRACE-
SFSM drought maps closely mimicked the surface conditions depicted in the USDM maps except 
over irrigated areas, Georgia, and along the Appalachian Mountains (e.g., Blue Ridge mountains, 
and Ridge and Valley). However, short-term precipitation deficit map agreed with MODIS indices in 
these regions, indicating normal precipitation conditions compared to long-term average conditions. 
GRACE-based GWS implied that majority of the Southeastern United States experienced moder-
ate-to-extreme hydrological drought, thus suggesting that groundwater sources severely depleted 
during the drought of 2012. We demonstrated that disagreements over the extent and intensity of the 
2012 drought across all drought indicators could result from irrigation, complex lagged response of 
vegetation to precipitation and soil moisture, and the type of drought these indicators report (e.g., 
meteorological, agricultural, and hydrological drought).

At present, the main challenge is to extend the length of MODIS-NDVI and MODIS-LST obser-
vations with historical records from the AVHRR sensors. However, AVHRR products still suffer 
from inherent problems attributed to sensor changes and degradation, volcanic eruptions, and satel-
lite orbital drift (Huete et al. 2002; Gallo et al. 2005) despite numerous efforts to correct these issues 
(Tucker et al. 2005). In addition, wider bandwidths and coarser spatial resolution of AVHRR spec-
tral bands than MODIS and difficulties in applying atmospheric correction on visible and thermal 
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bands further complicate such endeavor. The follow-on sensor to AVHRR and MODIS instruments 
is the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-
orbiting Partnership (Suomi NPP) spacecraft. Fortunately, the VIIRS instrument ensures the data 
continuity in NDVI and LST records because the specification of VIIRS bands closely resembles 
MODIS bands (Gallo et al. 2005).

At the time of writing, the GRACE mission has survived well beyond its original design lifetime 
of 5 years. Due to degradation of the onboard battery cells, the instruments are powered down for 
roughly 2 out of every 5 months, resulting in a loss of data. During those months, the GRACE-based 
drought indicators rely more heavily on standard meteorological inputs to the model. GRACE’s 
orbit is slowly decaying such that mission operations are expected to end no later than late 2017. 
Fortunately, the GRACE follow-on mission is scheduled for launch in February 2018. That mission 
will provide gravimetric measurements and derived TWS data that are similar to those of GRACE 
but with some small to moderate improvement in spatial resolution and accuracy. Hence, produc-
tion of the GRACE-based drought indicators will be able to continue. In addition, ongoing research 
projects include the goals of expanding the drought indicators to the global scale, using them as the 
starting point for 30–90-day drought forecasts, and integrating other satellite observations in addi-
tion to those of GRACE through multivariate data assimilation.

Future research in satellite drought monitoring will focus on the products of two new missions, 
Soil Moisture Active Passive (SMAP), and Global Precipitation Measurement (GPM). SMAP and 
GPM missions provide spatially continuous, but coarse, soil moisture and precipitation estimates 
across the Earth’s surface, which can be downscaled or assimilated into Land Surface Models 
(LSM) to derive finer resolution products. Later, in a similar fashion to VCI and TCI, drought 
indicators can be calculated from these products. In this case, 6 or more years of data as well 
as one drought and wet year within that time period are required to generate reliable drought 
information.

ACKNOWLEDGMENTS

This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard 
Space Flight Center (GSFC), administered by Universities Space Research Association (USRA) 
under a contract, NNH15C048B.

REFERENCES

Adegoke, J. O. and A. M. Carleton. 2002. Relations between soil moisture and satellite vegetation indices in 
the U.S. Corn Belt. Journal of Hydrometeorology 3(4): 395–405.

Anderson, M. C. and W. Kustas. 2008. Thermal remote sensing of drought and evapotranspiration. 
Eos, Transactions American Geophysical Union 89(26): 233. doi:10.1029/2008EO260001.

Brown, J. F., B. Wardlow, T. Tadesse, M. J. Hayes, and B. C. Reed. 2008. The vegetation drought response 
index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience & 
Remote Sensing 45(1): 16–46. doi:10.2747/1548-1603.45.1.16.

Brown, J. F. and M. S. Pervez. (2014). Merging remote sensing data and national agricultural statistics to 
model change in irrigated agriculture. Agricultural Systems 127: 28–40. https://doi.org/10.1016/j.
agsy.2014.01.004.

Deng, M., L. Di, W. Han, A. L. Yagci, C. Peng, and G. Heo. 2013. Web-service-based monitoring and analy-
sis of global agricultural drought. Photogrammetric Engineering & Remote Sensing 79(10): 929–943. 
doi:10.14358/PERS.79.10.929.

Di, L., D. C. Rundquist, and L. Han. 1994. Modelling relationships between NDVI and precipitation 
during vegetative growth cycles. International Journal of Remote Sensing 15(10): 2121–2136. 
doi:10.1080/01431169408954231.

Gallo, K., L. Ji, B. Reed, J. Eidenshink, and J. Dwyer. 2005. Multi-platform comparisons of MODIS and 
AVHRR normalized difference vegetation index data. Remote Sensing of Environment 99(3): 221–231. 
doi:10.1016/j.rse.2005.08.014.

https://doi.org/10.1016/j.agsy.2014.01.004
https://doi.org/10.1016/j.agsy.2014.01.004


100 Remote Sensing of Hydrometeorological Hazards

Homer, C., J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J. Wickham, and 
K. Megown. 2015. Completion of the 2011 National Land Cover Database for the Conterminous United 
States – Representing a Decade of Land Cover Change Information. Photogrammetric Engineering & 
Remote Sensing 81(5): 345–354.

Houborg, R., M. Rodell, B. Li, R. Reichle, and B. F. Zaitchik. 2012. Drought indicators based on model-
assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. 
Water Resources Research 48(7): W07525. doi:10.1029/2011WR011291.

Huete, A. R., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. Overview of the radio-
metric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 
83(1–2): 195–213. doi:10.1016/S0034-4257(02)00096-2.

Ji, L. and A. J. Peters. 2003. Assessing vegetation response to drought in the northern great plains using vegetation 
and drought indices. Remote Sensing of Environment 87(1): 85–98. doi:10.1016/S0034-4257(03)00174-3.

Kogan, F. 1997. Global drought watch from space. Bulletin of the American Meteorological Society 78(4): 
621–636.

Kogan, F. 2001. Operational space technology for global vegetation assessment. Bulletin of the American 
Meteorological Society 82(9): 1949–1964.

Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar. 2000. A catchment-based approach 
to modeling land surface processes in a general circulation model: 1. Model structure. Journal of 
Geophysical Research: Atmospheres 105(D20): 24809–24822. doi:10.1029/2000JD900327.

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate 
classification updated. Meteorologische Zeitschrift 15(3): 259–263. doi:10.1127/0941-2948/2006/0130.

The National Drought Mitigation Center. 2016. U.S. drought monitor classification scheme. United States 
Drought Monitor. http://droughtmonitor.unl.edu/AboutUs/ClassificationScheme.aspx.

NOAA-National Climatic Data Center. 2012. 3-month percent of normal precipitation. National temperature 
and precipitation maps. http://www.ncdc.noaa.gov/monitoring-content/sotc/national/grid-prcp/prcp-
pon-201206-201208.gif.

Peng, C., M. Deng, and L. Di. 2014. Relationships between remote-sensing-based agricultural drought indi-
cators and root zone soil moisture: A comparative study of Iowa. IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing 7(11): 4572–4580. doi:10.1109/JSTARS.2014.2344115.

Pervez, M. S. and J. F. Brown. 2010. Mapping irrigated lands at 250-M scale by merging MODIS data and 
national agricultural statistics. Remote Sensing 2(10): 2388–2412. doi:10.3390/rs2102388.

Quiring, S. M. and S. Ganesh. 2010. Evaluating the utility of the Vegetation Condition Index (VCI) for 
monitoring meteorological drought in Texas. Agricultural and Forest Meteorology 150(3): 330–339. 
doi:10.1016/j.agrformet.2009.11.015.

Rippey, B. R. 2015. The U.S. drought of 2012. Weather and Climate Extremes, 10: 57–64. doi:10.1016/j.
wace.2015.10.004.

Rodell, M. 2012. Satellite gravimetry applied to drought monitoring. In B. D. Wardlow, M. C. Anderson, and 
J. P. Verdin (Eds.) Remote Sensing of Drought, Drought and Water Crises, pp. 261–278. Boca Raton, 
FL: CRC Press.

Rodell, M. and J. S. Famiglietti. 1999. Detectability of variations in continental water storage from satel-
lite observations of the time dependent gravity field. Water Resources Research 35(9): 2705–2723. 
doi:10.1029/1999WR900141.

Solano, R., K. Didan, A. Jacobson, and A. R. Huete. 2010. MODIS vegetation index (MOD13) C5 user’s guide 
version 2. Vegetation Index and Phenology Lab, The University of Arizona, Tucson, AZ. http://vip.
arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_01_2012.pdf.

Svoboda, M., D. Lecomte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey et al. 2002. The drought moni-
tor. Bulletin of the American Meteorological Society 83(8): 1181–1190.

Swain, S., B. D. Wardlow, S. Narumalani, T. Tadesse, and K. Callahan. 2011. Assessment of vegetation 
response to drought in Nebraska using Terra-MODIS land surface temperature and normalized differ-
ence vegetation index. GIScience & Remote Sensing 48(3): 432–455. doi:10.2747/1548-1603.48.3.432.

Swenson, S., P. J.-F. Yeh, J. Wahr, and J. Famiglietti. 2006. A comparison of terrestrial water storage vari-
ations from GRACE with in situ measurements from Illinois. Geophysical Research Letters 33(16): 
L16401. doi:10.1029/2006GL026962.

Tadesse, T., J. Brown, and M. Hayes. 2005. A new approach for predicting drought-related vegetation stress: 
Integrating satellite, climate, and biophysical data over the U.S. Central Plains. ISPRS Journal of 
Photogrammetry and Remote Sensing 59(4): 244–253. doi:10.1016/j.isprsjprs.2005.02.003.

http://droughtmonitor.unl.edu/AboutUs/ClassificationScheme.aspx
http://www.ncdc.noaa.gov/monitoring-content/sotc/national/grid-prcp/prcp-pon-201206-201208.gif
http://www.ncdc.noaa.gov/monitoring-content/sotc/national/grid-prcp/prcp-pon-201206-201208.gif
http://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_01_2012.pdf
http://vip.arizona.edu/documents/MODIS/MODIS_VI_UsersGuide_01_2012.pdf


101Detecting the 2012 Drought in the Southeastern United States

Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber. 2004. The gravity recovery and climate 
experiment: Mission overview and early results. Geophysical Research Letters 31(9): L09607. 
doi:10.1029/2004GL019920.

Tucker, C. J. and B. J. Choudhury. 1987. Satellite remote sensing of drought conditions. Remote Sensing of 
Environment 23(2): 243–251. doi:10.1016/0034-4257(87)90040-X.

Tucker, C. J., J. Pinzon, M. Brown, D. Slayback, E. Pak, R. Mahoney, E. Vermote, and N. El Saleous. 2005. 
An extended AVHRR 8-Km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. 
International Journal of Remote Sensing 26(20): 4485–4498. doi:10.1080/01431160500168686.

U.S. Geological Survey and the U.S. Department of Agriculture, Natural Resources Conservation Service. 
2013. Techniques and methods 11–A3. In Federal Standards and Procedures for the National Watershed 
Boundary Dataset (WBD), 4th ed., 63. Reston, VA: U.S. Geological Survey and the U.S. Department of 
Agriculture, Natural Resources Conservation Service. http://pubs.usgs.gov/tm/11/a3/.

Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna. 2004. Time-variable gravity from GRACE: First results. 
Geophysical Research Letters 31(11): L11501. doi:10.1029/2004GL019779.

Wan, Z. 2007. Collection-5 MODIS Land Surface Temperature Products Users’ Guide. Santa Barbara, 
CA: ICESS, University of California. http://www.icess.ucsb.edu/modis/LstUsrGuide/MODIS_LST_ 
products_Users_guide_C5.pdf.

Wilhite, D. A. 2000. Drought as a natural hazard: Concepts and definitions. In D. A. Wilhite (Ed.) Drought: 
A Global Assessment, 1st ed. Hazards and Disasters. pp. 3–18. London, UK: Routledge.

Yagci, A. L., L. Di, and M. Deng. 2013. The effect of land-cover change on vegetation greenness-based satel-
lite agricultural drought indicators: A case study in the southwest climate division of Indiana, USA. 
International Journal of Remote Sensing 34(20): 6947–6968. doi:10.1080/01431161.2013.810824.

Yagci, A. L., L. Di, M. Deng, W. Han, and C. Peng. 2011. Agricultural drought monitoring from space using 
freely available MODIS data. In Proceedings of 18th William T. Pecora Memorial Remote Sensing 
Symposium. Herndon, VA: ASPRS.

Yagci, A. L., L. Di, M. Deng, G. Yu, and C. Peng. 2012. Global agricultural drought mapping: Results for 
the year 2011. In 2012 IEEE International Geoscience and Remote Sensing Symposium, 3764–3767. 
Munich, Germany: IEEE. doi:10.1109/IGARSS.2012.6350498.

Zaitchik, B. F., M. Rodell, and R. H. Reichle. 2008. Assimilation of GRACE terrestrial water storage data 
into a land surface model: Results for the Mississippi river basin. Journal of Hydrometeorology 
9(3): 535–548. doi:10.1175/2007JHM951.1.

http://pubs.usgs.gov/tm/11/a3/
http://www.icess.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide_C5.pdf
http://www.icess.ucsb.edu/modis/LstUsrGuide/MODIS_LST_products_Users_guide_C5.pdf


http://taylorandfrancis.com


Section II

Remote Sensing of Frost and 
Sea Ice Hazards



http://taylorandfrancis.com


105

6 Frost and Remote Sensing
An Overview of Capabilities

Nicolas R. Dalezios and George P. Petropoulos

6.1 INTRODUCTION

Frost is a natural environmental risk, which occurs when the air temperature at the surface becomes 
equal to 0°C or below (Webb and Snyder, 2013). One of the areas directly affected by frost with 
disastrous results is agriculture (WMO, 2010; IPCC, 2013). Indeed, the occurrence of frost in active 
growth may cause major damage, even the total loss of production. In addition, frost may cause 
injuries to sensitive crops in which the extent of injuries depends on frost type, severity, frequency, 
and duration. Frost marks the end of growth for the plant, because it can freeze plant tissue; thus, it 
is considered significant, because it can occur at either end of the growing season (Figure 6.1). Thus, 
frost crop damages result in significant economic losses and are one of the most important threats to 
farmers (Louka et al., 2015). Moreover, the impact of a severe winter extends beyond economic loss: 
indeed, production losses in industry, crop losses, transportation losses in revenue, losses in retail 
sales, and losses resulting from increased energy consumption during cold winters. Frost forecast-
ing and monitoring help farmers to reduce any possible crop injuries. In addition, frost protection 
methods help farmers to combat frost. At present, there is clearly a global requirement for more and 
better spatial and temporal information on frost occurrence and its associated risk (Dalezios, 2017). 
Moreover, there is an increasing recognition of the potential value of meteorological information in 
decision-making relevant to frost.
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Earth observation (EO) or remote sensing is the acquisition and interpretation of spectral mea-
surements made at a distant location to obtain information about the Earth’s surface. During the 
last decades, the technological advances in the field of remote sensing have resulted in the gradual 
improvement of the level of accuracy in quantitative assessment of several environmental param-
eters and variables including frost. At present, EO data and techniques provide direct measurements 
of land characteristics, which are relevant to frost risk assessment, monitoring, and mitigation, such 
as vegetative cover, meteorological, environmental, and hydrological parameters (e.g., temperature 
and evapotranspiration) (EM-DAT, 2012).

The objective of this chapter is to present an overview on the relationship between frost 
hazard and EO and to discuss the potential and capabilities of this technology in that respect. 
At first, frost concepts are presented followed by a classification of frost into different types 
based on several criteria. Then, remote sensing capabilities in frost hazard are discussed. This 
is followed by a presentation of frost forecasting (before the event), frost monitoring (during 
the event), and frost assessment (after the event), along with the corresponding remote sensing 
methods. Specifically, frost quantification is described, which includes frost modeling and fore-
casting, where remote sensing methods are also presented. Next, frost early warning systems 
(FEWSs) and the potential of remote sensing in this context are discussed. Subsequently, frost 
frequency analysis methods with reference to remote sensing are covered. Finally, a discussion 
on frost assessment in terms of impacts is furnished; mitigation methods are also summarized 
providing some case studies on the use of EO in frost-related studies.

6.2 FROST CONCEPTS

Frost may be considered either as a climatic condition or a form of mineral, or even a hazard with 
several human impacts (Webb and Snyder, 2013). At first, frost as a climatic condition refers mainly 
to hoar frost or white frost that accumulates on the surfaces in places with appropriate temperatures 

(a) (b) (c)

(d) (e) (f)

FIGURE 6.1 Frost damage on apple trees in the stage of (a) swollen buds, (b) bud burst, (c) green cluster, 
(d) bloom, (e) petal fall, and (f) fruit set. (From ELGA–GAIO, Estimation manual of frost damage in apple 
trees, Available: www.elga.grv, 2003. With permission.)

http://www.elga.grv
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and lack of sunshine. Indeed, the hoar implies a gray tone observed on objects covered with frost. 
Hoar frost is indicative of the following three conditions: 

 1. Surfaces on which the frost forms must be 0°C or below.
 2. The surrounding air is saturated at 0°C or slightly below.
 3. Nuclei are present so that the process of sublimation can take place.

Second, frost as a form of mineral refers to a solid phase of water, because it crystallizes according 
to the hexagonal system featuring six-sided plates, needles, clusters, and columns. Finally, frost as a 
hazard implies near 0°C temperatures. Thus, a plant may suffer chilling injury but not as a result of 
frost or freezing. In general, frost is a symptom of a climatic condition in which temperatures have 
been reduced through radiation or advection to the freezing stage. It is thus clear that, in quantitative 
terms, frost is a function of temperature.

The term frost is used by the public to describe the condition when plants experience freezing 
injury (again see Figure 6.1 as an example). Specifically, the word frost refers to the formation of 
ice crystals on surfaces, either by freezing of dew or a phase change from vapor to ice (Blanc et al., 
1963). Indeed, there are several definitions of frost, such as the following: 

 1. When the surface temperature drops below 0°C and the existence of low air temperature 
that causes damage or death to the plants (Ventskevich, 1958).

 2. The occurrence of a temperature less than or equal to 0°C measured in a Stevenson-screen 
shelter at a height between 1.25 and 2.0 m (Hogg, 1971).

 3. Frost is defined as the condition, which exists when the air temperature near the Earth’s 
surface drops below 0°C (Kalma et al., 1992). A freeze exists when over a widespread 
region the air remains below freezing (0°C) for a sufficient period of time, which is at least 
1 or 2 days.

 4. Snyder and Paulo de Melo-Abreu (2005) define frost mainly for tropical areas as follows: 
“A freeze exists when over a widespread region the air remains below freezing.”

Water within plants may or may not freeze during a frost event. Plants freeze that result into intra-
cellular or extracellular freezing. Indeed, intracellular freezing is immediately fatal, whereas extra-
cellular freezing may cause injuries. Moreover, the injury extent depends on plant resistance to 
frost, which is associated with a critical temperature below which a malfunction or death of the cell 
takes place.

6.3 FROST CLASSIFICATION SCHEME

The term remotely sensed frost classification is used when temperature is measured or estimated 
through remote sensing data and methods. The frost phenomenon is characterized by varying sever-
ity and extent. The scale of the atmospheric mechanisms, which constitutes the driving force of 
frost occurrence, varies considerably. Frost, as a function of temperature, is generally classified into 
different types (Kalma et al., 1992), based on certain criteria, and is summarized as follows: 

 1. The criterion of frost genesis: Frost is classified based on the genesis criterion into radia-
tion frost and advection frost, respectively, which are caused by synoptic meteorologi-
cal conditions. Radiation frost is the result of intense radiation during the night, which 
causes cooling of the land surface, and is associated with high pressure systems dur-
ing calm and cloudless nights (Figure 6.2a). Specifically, radiation frosts originate from 
intense long-wave radiation, which causes cooling of the surface of the earth due to 
energy loss during calm and clear nights. These types of frost are usually characterized 
by temperature inversion, clear and calm nights, and usually air temperature higher than 
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0°C during daytime. Indeed, a feature in radiation frosts is usually temperature inversion, 
which means that the temperature at an average height of about 15 m above the ground is 
usually higher about 4°C–5°C than the corresponding surface temperature. An example of 
temperature inversion is presented in Figure 6.3, which shows a valley with trees planted 
on the valley slopes and deep in the valley, where, during the night, due to radiation the 
cool air reaches the bottom of the valley, while forcing the warm air to rise upward. On the 
other hand, advection frost is produced by a sudden and strong invasion of cold air masses 
often from polar region, which usually follows the passage of a cold front from a region 
(Figure 6.2b). Advection frosts usually develop during the day or night, and they are also 
related to high winds and a well-mixed atmosphere with air temperatures below 0°C during 
daytime. Specifically, these frosts occur in valleys and surface depressions, when radiation 
frost conditions exist in a region, although invasion of cold air on a local scale leads to sudden 
temperature drop within the radiation frost area. Needless to say, the most damaging frosts 
are the advection frosts followed by radiation frosts.

(a)

1020

10
20

10201030
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10
10
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(b)

FIGURE 6.2 (a) Synoptic surface map with predominantly anticyclonic circulation over Europe favoring 
radiation frost over Greece. (b) Synoptic surface map showing strong invasion of cold air masses, following 
the cold front passage and causing advection frost. (Dalezios, N.R. et al., Remote sensing in drought quanti-
fication and assessment, In Eslamian, S. (Ed.), Handbook of Drought and Water Scarcity (HDWS), Vol. 1 of 
3-Volume, Chapter 21, Taylor & Francis Group, Boca Raton, FL, 2017. With permission.)

°C

+2

+2
0

+4

−3

−1
0

−2

FIGURE 6.3 Formation of frost pocket in a valley. (Dalezios, N.R. et al., Remote sensing in drought quan-
tification and assessment, In Eslamian, S. (Ed.), Handbook of Drought and Water Scarcity (HDWS), Vol. 1 of 
3-Volume, Chapter 21, Taylor & Francis Group, Boca Raton, FL, 2017. With permission.)
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 2. The criterion of total or partial frost: Based on duration, frost is characterized as total 
frost when the maximum daily temperature is equal to 0°C or below and partial frost 
when the minimum daily temperature is less than or equal to 0°C. If the total frost lasts 
for several consecutive days, it can have catastrophic consequences, because in such cases 
frost penetrates into the soil, resulting in the destruction of seeds and roots. In general, the 
most common type of frost is partial frost, which is equally devastating, especially when it 
occurs during spring, where the plants are in active growth stage.

 3. The frost criterion of humidity: Atmospheric humidity is another frost criterion, which 
may cause condensation of water droplets creating ice crystals (frost), along with tempera-
ture drop to negative values. This type of frost is called white frost. On the other hand, 
when there is no condensation along with the drop in temperature below 0°C, then this 
type of frost is called black frost.

 4. The criterion of frost severity: Frost is classified based on the severity criterion into mild 
frost when the temperature ranges between 0°C and −4°C, moderate frost when the tem-
perature ranges between −4.1°C and −10°C, and severe frost when the temperature ranges 
from −10.1°C and below.

6.4 REMOTE SENSING IN FROST ANALYSIS: AN OVERVIEW

6.4.1 remote sensing systems anD capabilities in frost assessment

In environmental analysis and, in particular, in frost quantification and assessment, two types of 
(passive) remote sensing systems are considered, namely meteorological and environmental or 
resource satellites. The main differences between these two types of satellites are their spatial and 
temporal resolutions, which affect their applications and uses. Specifically, meteorological satellites 
have a rather coarse spatial resolution, but high temporal reoccurrence, thus, being suitable mainly 
for operational monitoring applications of frost. On the other hand, environmental satellites are 
generally characterized by fine spatial resolution but low temporal reoccurrence, being basically 
used in applications, which do not change dramatically over time, for example, qualitative features 
of frost, such as the identification of land use/cover types and detection of several frost features (e.g., 
frost areal extent, frost assessment), FEWSs, and monitoring.

The majority of meteorological satellites operate at heights ranging between 800 and 1,500 km, 
called low orbit satellites, whereas the rest operate at approximately 36,000 km, called high or 
geostationary orbit satellites, respectively. The first class consists of the polar or near-polar orbit 
satellites with a sun-synchronous orbit, because they cross the equator at the same time, such as 
the series of NOAA-N. Similarly, the second class consists of the so-called geostationary satellites, 
because they appear to be stationary at specific locations over the equator and move in the same 
direction and at the same rate that Earth is spinning. There are several such satellites, for example, 
Meteosat and geostationary operational environmental satellite (GOES), that cover the Earth and 
provide images every 30 min with a spatial resolution of 2.5 km in the visible part of the electro-
magnetic spectrum, and they are mainly used in operational meteorology, weather forecasting and 
monitoring.

The first environmental satellite was the Landsat series, with the first one launched in 1971. 
This satellite is considered as one of the most representative and successful satellites of this 
type that is still in orbit (with Landsat 8) providing valuable data and information. Essentially, 
the main feature of the series of environmental satellites is the gradual improvement of their 
spatial and spectral resolution throughout the years. There are many such satellites in orbit at 
present, such as ASTER, SPOT, or the recent Sentinel-2 (ESA, 2014), just to mention a few. 
The trend of further improving the spatial resolution continues reaching the level of microre-
mote sensing in the order of 1 m or smaller with new satellites, such as Quick bird, Ikonos, and 
WorldView-2/-3.
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6.4.2 remote sensing capabilities in frost assessment

The application and utility of EO technology to frost assessment are growing rapidly, mainly due to 
the increasing number of satellite systems that are launched and due to their continuously improved 
technical capabilities. Indeed, satellite images and data are consistently available and can be used 
to detect several frost features. Remote sensing methodologies and techniques can be employed in 
several aspects of frost, such as vulnerability and damage assessment and warning. The possible 
contribution of remote sensing could be focused on relief and, possibly, preparedness or warning 
(e.g., Foot, 1993). However, in many cases remote sensing can make a valuable contribution to 
disaster prevention in which frequency of observation is not such a prohibitive limitation. In fact, 
EO data and methods can delineate the spatial and temporal variability of several frost features in 
quantitative terms (Louka et al., 2015).

A major consideration for development of EO technology for frost assessment and disaster reduc-
tion is the extent to which operational users can rely on a continued supply of data. Remote sensing 
capabilities provide a viable method to offset any loss of information (Jupp et al., 1998). However, 
remote sensing has been of increasing value for improving the ability to delineate and simulate the 
spatial features of frost. Furthermore, there are considerations to be accounted for, related to the 
dissimilarities in temporal and spatial averages as envisioned by modeling efforts, as that exist in 
the real world and as measured by remote sensing systems. Thus, EO data to be useful for moni-
toring and assessing frosts must be compatible with mathematical modeling of the corresponding 
quantification schemes.

6.5 REMOTELY SENSED FROST QUANTIFICATION

Remotely sensed frost quantification involves temperature measurement or estimation through 
remote sensing data and methods. In particular, Table 6.1 presents a list of extreme air temperature 
indices for frost or heat waves assessment and monitoring (http://cccma.seos.uvic.ca/ETCCDMI/
list_27_indices.html.—see in Dalezios, 2016). The contribution of meteorology to the frost phe-
nomenon can be summarized in the early detection of the phenomenon, as well as the consideration 
of the climatic conditions in order to estimate the frequency of probability of frost occurrence in a 
certain area (Dalezios, 2016). Then the annual temperature variability can be described, along with 
frost forecasting and modern frost assessment methods.

Annual temperature variability: The annual temperature variability is approximated with suf-
ficient accuracy by sinusoidal functions of the form: 

 Ti i i iD A B D F( ) sin= + −( )360
365  (6.1)

where:
The quantities Ai (in °C), Bi (in °C), and Fi (in degrees) are constants for each location
The variable D represents the day of the year (D = 1, …, 365)
The index i denotes the mean, that is, mean maximum (mean–max), mean minimum (mean–min), 

absolute maximum (max–max), and absolute minimum (min–min) daily temperature

6.5.1 frost moDeling anD forecasting

Frost modeling and forecasting are very important especially for the prevention of disasters in agricul-
ture and particularly in crops. Frost modeling and forecasting are conducted through the analysis of 
daily synoptic weather charts, as well as the application of empirical models based on remote sensing 
data and methods. Theoretical and applied methods are implemented, which combine air temperature, 
dew point temperature, and land surface temperature (LST) through heat transfer. There are two levels 
of frost forecasting, namely general and local forecast. General forecast consists of the identification 

http://cccma.seos.uvic.ca/ETCCDMI/list_27_indices.html.%E2%80%94seeinDalezios
http://cccma.seos.uvic.ca/ETCCDMI/list_27_indices.html.%E2%80%94seeinDalezios


111Frost and Remote Sensing

TA
B

LE
 6

.1
Ex

tr
em

e 
A

ir
 T

em
pe

ra
tu

re
 I

nd
ic

es
 R

ec
om

m
en

de
d 

by
 t

he
 E

TC
C

D
M

I

ID
In

di
ca

to
r 

N
am

e
In

di
ca

to
r 

D
efi

ni
ti

on
s

U
ni

ts

T
X

x
M

ax
 T

m
ax

L
et

 T
x k

j b
e 

th
e 

da
ily

 m
ax

im
um

 te
m

pe
ra

tu
re

s 
in

 m
on

th
 k

, p
er

io
d 

j. 
T

he
 m

ax
im

um
 d

ai
ly

 m
ax

im
um

 te
m

pe
ra

tu
re

 e
ac

h 
m

on
th

 is
 th

en
 T

X
x k

j =
 m

ax
(T

x k
j)

°C
T

N
x

M
ax

 T
m

in
L

et
 T

n k
j b

e 
th

e 
da

ily
 m

in
im

um
 te

m
pe

ra
tu

re
s 

in
 m

on
th

 k
, p

er
io

d 
j. 

T
he

 m
ax

im
um

 d
ai

ly
 m

in
im

um
 te

m
pe

ra
tu

re
 e

ac
h 

m
on

th
 is

 th
en

 T
N

n k
j =

 m
ax

(T
x k

j)
°C

T
X

n
M

in
 T

m
ax

L
et

 T
x k

j b
e 

th
e 

da
ily

 m
ax

im
um

 te
m

pe
ra

tu
re

s 
in

 m
on

th
 k

, p
er

io
d 

j. 
T

he
 m

in
im

um
 d

ai
ly

 m
ax

im
um

 te
m

pe
ra

tu
re

 e
ac

h 
m

on
th

 is
 th

en
 T

X
n k

j =
 m

in
(T

x k
j)

°C
T

N
n

M
in

 T
m

in
L

et
 T

n k
j b

e 
th

e 
da

ily
 m

in
im

um
 te

m
pe

ra
tu

re
s 

in
 m

on
th

 k
, p

er
io

d 
j. 

T
he

 m
in

im
um

 d
ai

ly
 m

in
im

um
 te

m
pe

ra
tu

re
 e

ac
h 

m
on

th
 is

 th
en

 T
N

n k
j =

 m
in

(T
n k

j)
°C

T
N

10
p

C
ol

d 
ni

gh
ts

L
et

 T
n i

j b
e 

th
e 

da
ily

 m
in

im
um

 te
m

pe
ra

tu
re

 o
n 

da
y 

i i
n 

pe
ri

od
 j 

an
d 

le
t T

n i
n1

0 
be

 th
e 

ca
le

nd
ar

 d
ay

 1
0t

h 
pe

rc
en

til
e 

ce
nt

er
ed

 o
n 

a 
5-

da
y 

w
in

do
w

 
(Z

ha
ng

 e
t a

l.,
 2

00
5b

).
 T

he
 p

er
ce

nt
ag

e 
of

 ti
m

e 
is

 d
et

er
m

in
ed

 w
he

re
 T

n i
j <

 T
n i

n1
0

D
ay

s

T
X

10
p

C
ol

d 
da

ys
L

et
 T

x i
j b

e 
th

e 
da

ily
 m

ax
im

um
 te

m
pe

ra
tu

re
 o

n 
da

y 
i i

n 
pe

ri
od

 j 
an

d 
le

t T
x i

n1
0 

be
 th

e 
ca

le
nd

ar
 d

ay
 1

0t
h 

pe
rc

en
til

e 
ce

nt
er

ed
 o

n 
a 

5-
da

y 
w

in
do

w
 

(Z
ha

ng
 e

t a
l.,

 2
00

5b
).

 T
he

 p
er

ce
nt

ag
e 

of
 ti

m
e 

is
 d

et
er

m
in

ed
 w

he
re

 T
x i

j <
 T

x i
n1

0
D

ay
s

T
N

90
p

W
ar

m
 n

ig
ht

s
L

et
 T

n i
j b

e 
th

e 
da

ily
 m

in
im

um
 te

m
pe

ra
tu

re
 o

n 
da

y 
i i

n 
pe

ri
od

 j 
an

d 
le

t T
x i

n9
0 

be
 th

e 
ca

le
nd

ar
 d

ay
 9

0t
h 

pe
rc

en
til

e 
ce

nt
er

ed
 o

n 
a 

5-
da

y 
w

in
do

w
 

(Z
ha

ng
 e

t a
l.,

 2
00

5b
).

 T
he

 p
er

ce
nt

ag
e 

of
 ti

m
e 

is
 d

et
er

m
in

ed
 w

he
re

 T
n i

j >
 T

n i
n9

0
D

ay
s

T
X

90
p

W
ar

m
 d

ay
s

L
et

 T
X

ij
 b

e 
th

e 
da

ily
 m

ax
im

um
 te

m
pe

ra
tu

re
 o

n 
da

y 
i i

n 
pe

ri
od

 j 
an

d 
le

t T
x i

n9
0 

be
 th

e 
ca

le
nd

ar
 d

ay
 9

0t
h 

pe
rc

en
til

e 
ce

nt
er

ed
 o

n 
a 

5-
da

y 
w

in
do

w
 

(Z
ha

ng
 e

t a
l.,

 2
00

5b
).

 T
he

 p
er

ce
nt

ag
e 

of
 ti

m
e 

is
 d

et
er

m
in

ed
 w

he
re

 T
x i

j >
 T

x i
n9

0
D

ay
s

D
T

R
D

iu
rn

al
 

te
m

pe
ra

tu
re

 
ra

ng
e

L
et

 T
x i

j a
nd

 T
n i

j b
e 

th
e 

da
ily

 m
ax

im
um

 a
nd

 m
in

im
um

 te
m

pe
ra

tu
re

, r
es

pe
ct

iv
el

y 
on

 d
ay

 i 
in

 p
er

io
d 

j. 
If

 I
 r

ep
re

se
nt

s 
th

e 
nu

m
be

r 
of

 d
ay

s 
in

 j,
 th

en
 

D
T

R
j

ij
ij

iI

Tx
Tn

I
=

−
=∑

(
)

1

°C

FD
O

Fr
os

t d
ay

s
L

et
 T

n i
j b

e 
th

e 
da

ily
 m

in
im

um
 te

m
pe

ra
tu

re
 o

n 
da

y 
i i

n 
pe

ri
od

 j.
 C

ou
nt

 th
e 

nu
m

be
r 

of
 d

ay
s 

w
he

re
 T

n i
j <

 0
°C

D
ay

s

SU
25

Su
m

m
er

 d
ay

s
L

et
 T

x i
j b

e 
th

e 
da

ily
 m

ax
im

um
 te

m
pe

ra
tu

re
 o

n 
da

y 
i p

er
io

d 
j. 

C
ou

nt
 th

e 
nu

m
be

r 
of

 d
ay

s 
w

he
re

 T
xy

ij
 >

 2
5°

C
D

ay
s

ID
O

Ic
e 

da
ys

L
et

 T
x i

j b
e 

th
e 

da
ily

 m
ax

im
um

 te
m

pe
ra

tu
re

 o
n 

da
y 

i i
n 

pe
ri

od
 j.

 C
ou

nt
 th

e 
nu

m
be

r 
of

 d
ay

s 
w

he
re

 T
X

ij
 <

 0
°C

D
ay

s

T
R

20
T

ro
pi

ca
l n

ig
ht

s
L

et
 T

n i
j b

e 
th

e 
da

ily
 m

in
im

um
 te

m
pe

ra
tu

re
 o

n 
da

y 
i i

n 
pe

ri
od

 j.
 C

ou
nt

 th
e 

nu
m

be
r 

of
 d

ay
s 

w
he

re
 T

n i
j >

 2
0°

C
D

ay
s

G
SL

G
ro

w
in

g 
se

as
on

 
L

en
gt

h
L

et
 T

ij
 b

e 
th

e 
m

ea
n 

te
m

pe
ra

tu
re

 o
n 

da
y 

i i
n 

pe
ri

od
 j.

 C
ou

nt
 th

e 
nu

m
be

r 
of

 d
ay

s 
be

tw
ee

n 
th

e 
fir

st
 o

cc
ur

re
nc

e 
of

 a
t l

ea
st

 6
 c

on
se

cu
tiv

e 
da

ys
 w

ith
 

T i
j >

 5
°C

 a
nd

 th
e 

fir
st

 o
cc

ur
re

nc
e 

af
te

r 
Ju

ly
 1

 (
Ja

nu
ar

y 
1 

in
 S

H
) 

of
 a

t l
ea

st
 6

 c
on

se
cu

tiv
e 

da
ys

 w
ith

 T
ij
 <

 5
°C

D
ay

s

W
SD

I*
W

ar
m

 s
pe

ll 
du

ra
tio

n 
in

di
ca

to
r

L
et

 T
x i

j b
e 

th
e 

da
ily

 m
ax

im
um

 te
m

pe
ra

tu
re

 o
n 

da
y 

i i
n 

pe
ri

od
 j 

an
d 

le
t T

x i
n9

0 
be

 th
e 

ca
le

nd
ar

 d
ay

 9
0t

h 
pe

rc
en

til
e 

ce
nt

er
ed

 o
n 

a 
5-

da
y 

w
in

do
w

 
(Z

ha
ng

 e
t a

l.,
 2

00
5b

).
 T

he
n 

th
e 

nu
m

be
r 

of
 d

ay
s 

pe
r 

pe
ri

od
 is

 s
um

m
ed

 w
he

re
, i

n 
in

te
rv

al
s 

of
 a

t l
ea

st
 6

 c
on

se
cu

tiv
e 

da
ys

: T
x i

j >
 T

x i
n9

0
D

ay
s

N
ot

e:
 

Se
e 

al
so

 1
13

0 
ht

tp
://

cc
cm

a.
se

os
.u

vi
c.

ca
/E

T
C

C
D

M
I/

lis
t_

27
_i

nd
ic

es
.h

tm
l.

http://cccma.seos.uvic.ca/ETCCDMI/list_27_indices.html


112 Remote Sensing of Hydrometeorological Hazards

of the properties and characteristics of the air mass, which prevails over the area during the night and 
early morning. In the local forecast, some representative sites of the area are selected, such as a valley, 
or the slopes or the top of a hill. The drop in temperature during the night depends on the duration of 
the night, meaning that the longer the duration of the night, the greater the drop in temperature is and 
the heat lost by the ground. The amount of heat lost by the land surface is a function of soil moisture 
and temperature, cloud cover, vegetation cover, air temperature, and other factors.

Some frost forecasting methods are presented as follows (Bagdonas et al., 1978): 

 1. Rule of wet bulb temperature: This method takes into account the effect of atmospheric 
water vapor, which prevents heat loss from the land surface.

 T aT bT cw dmin = − −  (6.2)

 where:
Tw is the wet bulb temperature at the time of sunset of day N
Td is the dry bulb temperature at the same day and time
a, b, c are the constants, depending on the location

 Many times a and b are very small, so Equation 6.2 can be simplified to Tmin = Tw−c and 
is called Kammerman formula.

 2. Gold formula: This formula computes the minimum temperature Tmin as follows:

 T aT bT cZ Zmin = + −1500 1500dew  (6.3)

 where:
T1500Z is the temperature at 15:00Z
Tdew1500Z is the dew point temperature at 15:00Z
a, b, and c are constants

 3. Multiple linear regression: For the forecast of the minimum temperature Y of the day, a 
multiple linear regression can be used as follows:

 Y a X a X a X a X a X= + + + +1 1 2 2 3 3 5 5 5 5 (6.4)

 where:
X1 is the dry bulb temperature
X2 is a function of the cloud cover: X2 = 0.9 m + 0.5 k, where m is the amount of low 

cloud, and k is the amount of medium clouds into eighths
X3 is a function of the wind speed and direction
X4 is the dew point temperature
X5 is a function dependent on whether frost has occurred the previous day. If frost has 

occurred the previous day, then it takes the value 1 and if frost does not occur, then 
it takes the value 0.

 The variables a1–a5 are calculated using the least squares method in a specified area.
 4. Model ANGELA: The physical model of ANGELA system (WMO, 2010) refers to the drop 

in temperature at night. In this model, the LST is a function of temperature at the sunset 
time and several hours after the sunset, given by 

 T T K nn s= − × 1 2/  (6.5)

 where:
Tn is the temperature of n hours after sunset in °C
Ts is the temperature at the time of sunset in °C
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K is the coefficient of temperature drop
n is the number of hours after sunset

 5. Rule of maximum–minimum: It has been shown that the minimum temperature (Tmin) on 
the next day (N + 1) follows a linear relationship with the maximum temperature (Tmax) of 
day (N), when the forecast is issued, namely:

 T aT b a bmin max ,= − where , are constants (6.6)

 6. Craddock formula: It is an empirical formula for the minimum temperature Tmin based on 
the dry bulb temperature Td at 12:00Z and dew point temperature Tdew also at 12:00Z.

 T aT bT cdmin .= + + +dew 2 12  (6.7)

 The values of the temperatures are given in degrees °F. The parameters a and b are con-
stants. The constant c is given as a function of the average cloud on prognostic hours 
18:00Z, 24:00Z, and 06:00Z and the average wind speed (in knots) at the same hours. The 
formula is not valid when there is fog at night.

 7. Faust formula for soil frost: Faust has provided an empirical formula in which if the 
amount of cloud at night is less than 2/8, and if the average wind speed is less than 2 knots, 
then soil frost occurs when the sum [T + [1/(2Tdew)]] at 14:00 local time is less than 79°F.

6.5.2 remote sensing methoDs

Frost assessment using EO-based methods is based on temperature observations from  infrared (IR) 
bands of meteorological satellites, such as Meteosat or MODIS. From these satellites, brightness 
temperature is usually observed from thermal IR channels on a pixel basis from which LST can 
be computed. Meteorological satellites are characterized by high temporal resolution, for exam-
ple, for Meteosat every 30 min, but with rather coarse spatial resolution ranging between 1 and 
2.5 km or a few hundred meters for MODIS. As a result, temperature monitoring can be conducted 
through meteorological satellites leading to estimation and assessment of frost, especially for radia-
tion frost in cloudless nights during spring season in frost-prone valleys or land surface patches 
(Domenikiotis et al., 2004, 2006). For illustrative purposes Table 6.2a delineates the surface 549 
temperatures from a Meteosat IR image in the area of Katerini in Northern Greece consisting of 
26 pixels (Dalezios and Lavrediadou, 1995). Moreover, Table 6.2b presents the number of pixels for 
each corresponding temperature from Meteosat IR 552 during the night of March 31, 1994 in the 
same area of Katerini in Northern Greece 553 (Dalezios and Lavrediadou, 1995).

Remotely sensed LST and air temperature: The extraction of LST includes the use of empirical 
equation such as the one shown in the following equation (Dalezios et al., 2012): 

 T = +(image pixel , ) * .31 990 0 005 (6.8)

where:
image pixel is the pixel value from the thermal band
T is temperature in Kelvin (°K), which is then converted to values of degrees Celsius (°C)

For the elimination of the water vapor effect in IR radiation and the transmitted radiation from the 
surface, the algorithm of split window (Becker and Li, 1990) is employed. This method achieves 
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atmospheric correction of the satellite data including water vapor absorption. The equation of 
Becker and Li is given by Equation 6.9: 

 
T T T

T T

= + + + − −

+ −

1 274 2 1 0 15616 1 0 482 24 5

4 5

. ( ) / [ . {( e) / e} . de/ e** ]

( ) // [ . . {( e) / e} . de/ e** ]2 6 26 3 989 1 38 33 2+ − −
 (6.9)

where:
T is the LST in °C,
T4 and T5 are the values of thermal bands 4 and 5 of the satellite, respectively

The variables e and de of Equation 6.9 are defined by 

 e
e e= +( )4 5

2
 (6.10)

 de e e= −4 5 (6.11)

where e4 and e5 are the reflection values of bands 4 and 5, respectively, which estimate the transmission 
of IR radiation from the surface and are given by Van de Griend and Owe (1993) empirical equations: 

 e4 1 0094 0 047= +. . ln(NDVI) (6.12)

 e e5 4 0 01= + .  (6.13)

TABLE 6.2
(a) Observed Temperatures from Meteosat IR (2.5 × 2.5 km Resolution) at 04:00 a.m. of 
March 31, 1994 in the Area of Katerini in Northern Greece. (b) Number of Pixels for Each 
Corresponding Temperature during the Night of March 31, 1994 in the Area of Katerini 
from Meteosat IR
(a)

1 1 2

1 0 1

0 0 1

2 1 −1 0 1

1 0 −2 −1 0

0 −1 −2 −1 0

0 −1

(b)

Time
(March 31, 1994)

Area of Katerini in Northern Greece

3°C 2°C 1°C 0°C −1°C −2°C
3:30 – 5 8 8 4 1

4:00 – 2 8 9 5 2

5:00 – 10 9 6 1 –

6:00 1 12 12 5 1 –

6:30 2 9 9 6 – –

7:00 6 10 6 4 – –

Source: Dalezios, N.R. and Lavrediadou, E.E., Adv. Space Res., 15, 123–126, 1995.
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where NDVI are the values of the index. A regression analysis is conducted between the derived 
monthly LST values (derived from Equation 6.9) and the corresponding monthly air temperature 
(Tair) values, which are shown in Figure 6.4. This equation was developed from Larisa meteorologi-
cal station in Greece using data from a 20-year period (1981–2001). 

 T Rair LST= − + ≈0 6143 7 3674 0 822. . .  (6.14)

Finally, from Equation 6.14 monthly air temperature maps (images) of Thessaly may be produced 
on a pixel basis (for more details on the method see Dalezios et al., 2012).

6.6 REMOTELY SENSED FROST EARLY WARNING SYSTEMS

Frost monitoring is based on the development of FEWSs. Indeed, frost occurrence and warning are 
based on temperature and its spatiotemporal variability (Moeletsi et al., 2013; Shen et al., 2015). 
Quantification of frost hazard uses a methodological approach based on the minimum temperature 
consideration through EO data and methods. Indicative examples of FEWS and frost monitoring are 
presented based on remote sensing data and methods.

 1. Kalman filtering approach: For monitoring and forecasting or nowcasting frost, a so-
called phenomenological approach is used based on Kalman filtering, which belongs to 
estimation and control theory (see e.g., Dalezios, 1987). Specifically, a one step-ahead 
forecasting on a pixel basis using 2D satellite temperature images is considered. The data-
base consists of a series of satellite records (e.g., Landsat, Meteosat, national oceanic and 
atmospheric administration (NOAA)/advanced very high resolution radiometer (AVHRR)) 
from which temperature is extracted on a pixel basis. In this way, temperature time series 
are developed for each pixel, and then the one step-ahead forecasting is attempted. The 
adopted approach comes from the optimal estimation theory, and in the current application 
the adaptive Kalman filter is employed (Dalezios, 1987). The system model is the so-called 
phenomenological temperature model, which is based on the assumption that the daily 
temporal variability of temperature follows a sinusoidal function.

 2. Georgia’s Extreme-Weather Neural-Network Informed Expert (GENIE) system: This appli-
cation refers to an expert system, entitled GENIE. GENIE incorporates the knowledge of 
experts, such as agrometeorologists, and additional information on air temperature, dew point 
temperature, and wind speed into a fuzzy expert system. GENIE is designed to be used by 
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Georgia producers in order to present warning levels of frost and freeze mainly for blueberries 
and peaches (Chevalier et al., 2012). Forecasting of air temperature and dew point temperature 
across the state of Georgia for 1–12 h ahead is conducted through artificial neural network 
(ANN). Moreover, observed wind speed, along with the aforementioned forecasts, are used 
as input variables for this fuzzy expert system. Specifically, five levels of frost and freeze are 
considered by experts to describe the prevailing meteorological conditions. Then, this classifi-
cation is used to develop fuzzy logic rules and membership functions for GENIE. Additional 
scenarios are presented to GENIE for evaluation. GENIE is available to Georgia  producers 
through a web-based interface (www.georgiaweather.net). Specifically, the five general warn-
ings are (1) no frost or freeze, (2) possible frost, (3) mild frost, (4) severe frost, and 
(5) hard freeze. The crisp output of the fuzzy expert system, which represents the relative 
level of damage associated with the given weather conditions, is arbitrarily restricted to the 
continuous set [0, 1000]. Warnings are generated based on the value of this output as follows: 

 Output: [0, 200] = No frost or freeze
 Output: [201, 400] = Possible frost
 Output: [401, 600] = Mild frost
 Output: [601, 800] = Severe frost
 Output: [801, 1000] = Hard freeze

  A user by receiving the warning level and the continuous output value is able to differenti-
ate between conditions, such as a possibly less threatening mild frost (output = 405) and a 
mild frost that is dangerously close to a severe frost (output = 595). A temperature of 4°C 
is the upper limit, because no frost occurs at that temperature. Similarly, a lower limit of 
−5°C is chosen, because, at this temperature, severe damage due to freezing conditions 
is certain. The current observed wind speed is used as part of the expert system. A wind 
speed of 16 km/h is used as the upper threshold, and half that value (8 km/h) is used as the 
lower threshold. The possible weather scenarios, thus, consist of the various combinations 
of integer air temperature and dew point temperature values, along with the three ranges 
of wind speed (less than 8 km/h, between 8 and 16 km/h, and greater than 16 km/h). Each 
of these scenarios is labeled using one of the previously described five warning levels. As 
an example, the following rule, which is related to severe frost conditions, can be inferred 
based on the provided and classified information: “If the air temperature is greater than 
−2.5°C and less than 4.5°C, and the dew point temperature is greater than −2.5°C and less 
than −1.5°C, and the wind speed is over 16 km/h, then severe frost conditions exist.”

 3. Frost risk mapping model: This approach is based on developing a deterministic model 
to predict frost hazard in agricultural land utilizing remotely sensed imagery, and GIS 
is developed (see, e.g., study by Louka et al., 2015—see Figure 6.5). The model is based 
on the main factors that govern frost risk including environmental parameters, such as 
LST and geomorphology. Its implementation is based primarily using EO data from 
polar-orbiting sensors, supported—in some instances—by ancillary ground observation 
data. Topographical parameters required in the model include the altitude, slope, steep-
ness, aspect, topographic curvature, and extent of the area influenced by water bodies. 
Additional data required include land use and vegetation classification (i.e., type and 
density). In general, the adopted methodology consists of three basic stages:

 Step 1: Development of a frost hazard model in a GIS environment. The proposed frost 
hazard model combines the following parameters and takes the generic form:

 
Frost azard elevation aspect slopeh . . . .= × + × + × +0 3 0 10 0 10 0 115

0 15 0 10 0 10

×

+ × + × + ×

CTI

dist water curvature landuse. . . .
 (6.15)

http://www.georgiaweather.net
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Step 2: Development of a frost frequency map product based on multitemporal analysis of MODIS 
LST data. The first processing stage consists of the selection of areas, where LST was below 0°C, 
therefore, indicating frost conditions, and it includes the following steps: the images were processed 
with the Band Math Tool, using the equation:

 Ts < 273° °K (which equals to 0 C) (6.16)

where Ts represents the LST. The objective of the second processing stage is to separate the areas, 
where temperature information is recorded from areas with no data due to cloud cover or other 
cause. Similar processing steps are followed for each image with the Band Math Tool, using the 
equation:

 Ts < 0°K  (6.17)

Step 3: Mapping of frost damage distribution on agricultural land, based on ground observations, 
is conducted in order to study the spatial and temporal distribution of frost risk. Such data that 
record frost damages are important, because they offer an independent data source, which can 
also help to validate the model. The processed data consist of 10-year frost incidents (2000–2010) 
or longer.
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6.7 FROST FREQUENCY ANALYSIS

Frost is characterized by several features, such as the recurrence period, the space–time–
frequency analysis, and the frost persistence (IPCC, 2007; Dalezios, 2017). The recurrence 
period is extremely useful, because it allows the determination of the expected extreme value of 
a quantity, based on the average of the extreme values of the same magnitude in a given period. 
If frequency of frost occurrence is defined, the likelihood of partial frost occurrence for several 
consecutive days, whereas frost severity is defined as the absolute minimum (negative) tempera-
ture, which occurs on successive days of frost. Moreover, frost duration is defined as the number 
of consecutive days in which there is partial frost. Frost has also been related to the average length 
of frost-free period (or growing season in days) during the year and the frost severity–duration–
frequency relationships. Needless to say, the frost-free period is a very important parameter in 
several parts of the world. A frost-free period is defined as the period between the latest spring 
and the earliest autumn frosts. For example, in Greece, analysis of measurements from 86 meteo-
rological stations showed that the frost-free period reaches more than 240 days per year mainly 
in the southern regions and decreases from south to north (Dalezios, 2015). Information on the 
occurrence of frost has an economic effect on high-value crops, although crops can be protected. 
Frost risk maps and dates of first and last frost are simple but useful applications to agriculture. 
These maps are made at the macro- to mesoscale and are useful for specifying general planting 
dates for crops and for the assessment of crop damage when combined with phenological data 
(WMO, 2010).

A methodology for frost frequency analysis is presented next (Dalezios et  al., 2000). The 
daily minimum temperature below 0°C is used as a threshold, and the number of days with such 
a temperature, or partial frost, is identified for each station. The number of successive days with 
minimum temperature below 0°C defines the duration of a frost episode, whereas the recorded 
absolute minimum temperature below 0°C identifies the intensity or severity of the frost episode. 
Several episodes are grouped according to their duration, for the whole period of study, and are 
ranked according to their severity for each station. Similarly, the frequency of an extreme event 
is usually expressed by its return period or recurrence interval, which may be defined as 
the average interval of time within which the magnitude of the event is equated or exceeded 
once. The analysis of extreme events is usually presented by severity–duration–frequency 
relationships for several stations throughout the region of interest. The results of frost fre-
quency analysis are shown in Table 6.3. In this table, column 1 shows the ranking numbers; 
column 2 shows the absolute minimum temperature values in ascending order; column 3 
shows the corresponding probability (P) of occurrence using the Weibull plotting position 
equation, where m is the current ranking number and n is the total number of data points; and 
column 4 shows the corresponding return period T duration using the equation, where P was 
previously defined.

For the estimation of extreme events, such as frosts, in which the return periods are required, 
when the severities and duration are given, it is necessary to assume a particular mathematical 
form of the frequency distribution. Several theoretical distributions have been tested against the 
cumulative severities of extreme phenomena of various durations. These include the Extreme Value 
Index (EVI, Gumbel), the generalized extreme value (GEV), the three parameter lognormal (LN3), 
and the log-Pearson (LP3) distributions (Dalezios et al., 2000). Application of the nonparametric 
Kolmogorov–Smirnov two sample tests at 95% confidence level and visual inspection of the fitting 
of the aforementioned theoretical frequency distributions to cumulative intensity values indicate 
that the EVI provides overall, a reasonable and acceptable approximation of the frequency of the 
calculated severity values (Dalezios and Lavrediadou, 1994). Furthermore, the EVI has been used 
in numerous studies of extreme phenomena. Data used in this study include daily series of minimum 
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temperature from 15 meteorological stations in Greece. The threshold is temperature below 0°C. 
A brief description of the steps, which are followed to develop the severity–duration–frequency 
(SDF) relationships, is presented as follows: 

Step 1: Probability Tables. The frost episodes for each station are identified, when the mini-
mum temperature for successive days is below 0°C. Absolute minimum temperatures of 
partial frost below 0°C of each episode are used in order to rank the episode’s severity. 
In this way, multiple episodes for the whole period are calculated for several durations 
(Table 6.3).

Step 2: Fitting Gumbel Distribution. For each frost episode, the identified absolute minimum 
temperatures versus the corresponding return period are plotted, and the EVI distribution 
(Dalezios and Lavrediadou, 1994) is fitted to the plotted data points, which has the following 
cumulative distribution function (Equation 6.18):

 F x A x U( ) exp exp( ( ))= − − ⋅ −[ ] (6.18)

TABLE 6.3
Frost Absolute Minimum Temperatures of 2-Day Duration with the Corresponding 
Probabilities (P) and Return Periods (t) for Agrinio Station

Rank

Absolute 
Minimum 

Temperature
Probability 

P = m/(n + 1)

Return 
Period 

t = 1/P Rank

Absolute 
Minimum 

Temperature
Probability 

P = m/(n + 1)

Return 
Period 

t = 1/P

1 0.2 0.025 40.00 21 2.4 0.525 1.90

2 0.5 0.05 20.00 22 2.6 0.55 1.82

3 0.6 0.075 13.33 23 2.6 0.575 1.74

4 0.8 0.1 10.00 24 2.6 0.6 1.67

5 1 0.125 8.00 25 2.8 0.625 1.60

6 1 0.15 6.67 26 2.8 0.65 1.54

7 1.2 0.175 5.71 27 3 0.675 1.48

8 1.3 0.2 5.00 28 3 0.7 1.43

9 1.3 0.225 4.44 29 3 0.725 1.38

10 1.4 0.25 4.00 30 3.2 0.75 1.33

11 1.4 0.275 3.64 31 3.5 0.775 1.29

12 1.6 0.3 3.33 32 3.6 0.8 1.25

13 1.6 0.325 3.08 33 3.6 0.825 1.21

14 1.8 0.35 2.86 34 3.8 0.85 1.18

15 1.8 0.375 2.67 35 4 0.875 1.14

16 1.9 0.4 2.50 36 4.8 0.9 1.11

17 2 0.425 2.35 37 4.8 0.925 1.08

18 2.2 0.45 2.22 38 5 0.95 1.05

19 2.2 0.475 2.11 39 7 0.975 1.03

20 2.3 0.5 2.00

Source: Dalezios, N.R. and Lavrediadou, E.E., Frost severity-duration-frequency relationships, In Proceedings, 2nd Greek 
Scientific Conference on Meteorology, Climatology and Atmospheric Physics, Thessaloniki, Greece, September 
29–30, pp. 27–34, 1994.
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 where A and U are the fitted parameters, which are computed for each duration from the data. 
The procedure of fitting EVI distribution is applied to all the identified episodes for each 
station.

Step 3: SDF Curves. Finally, using the Gumbel distribution, cumulative periods are com-
puted, which correspond to return periods of 2, 5, 10, 25, 50, and 100 years, respectively, 
for each identified frost duration. The SDF curves appear to be as expected, because for 
decreasing frequencies, there is a corresponding increase in severities or intensities. There 
is a corresponding increase in frost severities, which tend to become asymptotic to the 
x axis, as seen in Figure 6.6.

6.8 FROST IMPACTS AND MITIGATION

Frost damage is responsible for more economic losses than any other weather-related phenomenon in 
many regions across the globe (Jonsson et al., 2004; Pulatov et al., 2015). With sufficient warning, pro-
ducers can minimize the potential damages caused by frost and freeze events. However, the severity of 
these events is dependent on several factors including air temperature, dew point temperature, and wind 
speed. Assessing this risk is not easily quantifiable and requires methodologies and decision support 
systems (DSSs) to address the process. Moreover, EO data and methods can assist to assess the extent of 
frost damages in agriculture. Specifically, satellite-based methods to estimate LST or air temperature, 
such as the methods described earlier (see Section 6.5.2), or methods to monitor vegetation through the 
Normalized Difference Vegetation Index (NDVI) (e.g., see Lin and Lv, 2010; Prabhakara et al., 2015), 
as well as frost risk mapping methods (e.g., Louka et al., 2015) can certainly contribute to frost damage 
assessment. Indicative examples and case studies are presented later in this chapter (see Section 6.8.3).

6.8.1 frost impacts anD prevention

Agriculture is a field of economic activity, which is directly affected by frost, usually with disastrous 
results. The frost losses in agriculture are too large and sometimes reach the total loss of production. 
The critical temperature below which there is no damage to the plants depends mainly on the develop-
ment stage of the plant tissue. The damaging effect of frost on plants is related to cellular scale activity. 
Factors, which determine the amount of damage, for example, in horticulture, are the rate and speed 
of temperature drop, freezing conditions, the rate of temperature increase, the time of freezing, the 
botanical species and variety, the vegetative part and stage of the plant, and the age of the plant. Winter 
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frosts contribute the most to total frost injuries. The most damaging events are the successive frosts, 
that is, advection frosts followed by severe radiation frosts. Frost damages account forto more than 
half of the total damages due to weather-related phenomena in Greece (Dalezios, 2015). Contribution 
refers to total frost injuries. Fruit trees damages account to more than 50% of the total frost injuries. 
Special horticulture plantation in the Mediterranean region, such as vines, may account for 20% of the 
losses, although damages are infrequent. Further studies are needed to relate reliable forecasting with 
economic impact on both local and regional scale. In addition, more studies are needed to indicate the 
economic benefits of accurate frost forecasting for different crop categories.

The accumulated experience of frost as a hazard leads to techniques for frost or freeze prevention. 
These methods aim at developing plants that mature in shorter periods of time, or in the field of clima-
tology, which may define the areal extent of frost incidence for any particular area. Indeed, the great-
est emphasis in frost prevention is in the marginal or fringe areas, where the farmer is willing to risk 
planting in the hope to produce a crop. The frost prevention techniques applied in agriculture include 
both treatment of the phenomenon and crop resistance. It is observed that the best time to protect an 
area from frost is even before planting. This means the need of careful selection of plant species, the 
area, and the time of planting. Long before, agriculture is considered for a particular area or crop; a 
climatic record or history would reveal the probabilities of frost or freeze incidence and the chance of 
success if the proper plans and methods are used. Additional terrain analysis helps to identify local 
microclimatic conditions in basins, alluvial fans, slopes, plains, or other topographic conditions. In the 
competition for the early harvest–high price crop, farmers for many years have tried to protect young 
plants with plastic or paper shields. However, the shield protects within limited temperature ranges.

6.8.2 frost protection anD mitigation methoDs

One of the main issues of this chapter remains whether EO data and methods can help farmers 
and producers to plan and implement frost protection measures effectively, such as passive and 
active methods, which are described in Sections 6.8.2.1 and 6.8.2.2. At the present time, it is rec-
ognized that the increasing reliability of remote sensing, along with the continuously increasing 
technological and computational advancements, signals a positive impact on the field of agriculture. 
Specifically, the previously presented methodologies and examples of FEWS and frost monitoring 
systems can certainly assist farmers to develop and use appropriate protection measures at the farm 
level. Moreover, if these systems are incorporated into DSS, then integrated farm systems are devel-
oped for optimal farm and production management.

The aforementioned FEWS and DSS should be linked to the development and establishment of the 
so-called agroclimatic classification (Tsiros et al., 2009). Indeed, the agroclimatic potential of agri-
cultural areas has to be assessed in order to achieve sustainable and efficient use of natural resources 
in combination with production maximization. Specifically, zones indicating water availability are 
combined with topographic features and soil types in order to identify areas for sustainable produc-
tion. First, Aridity Index (AI) and Vegetation Health Index (VHI) are used in order to define zones 
adequate for sustainable farming according to water limitations. As crop growth is affected by water 
supply, these zones are named as water limited growth environment (WLGE) zones. VHI is derived 
from NOAA/AVHRR data, whereas in AI computations both satellite and conventional field data 
are used. Then, WLGE zones are combined with soil maps and a digital elevation model (DEM) of 
the area under investigation in order to define zones appropriate for sustainable production, namely 
noncrop-specific agroclimatic zones. By incorporating the additional remotely sensed indices, such 
as growing degree days (GDD) and direct solar radiation (DSR), crop-specific agroclimatic zones are 
developed leading to the final identification of sustainable production classes, namely high, medium, 
and low productivity. These zones can be further used for agroclimatic classification.

To limit the damage to agriculture from frosts, various protection methods are used around the 
globe (Monzon et  al., 2007; Ghaemi et  al., 2009; Smyth and Skates, 2009). These methods are 
classified as either passive or active and are outlined in Sections 6.8.2.1 and 6.8.2.2. Most of the 
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practical techniques listed in these sections to combat the phenomenon of frost are only effective for 
radiation frosts, although some can be applied to advection frosts.

6.8.2.1 Passive Methods
The passive protection measures include microclimatological research prior to any use of a field and 
selection of the most suitable crop for each region. Passive methods are utilized prior to the frost 
event in order to avoid or minimize injuries. Passive methods include the following: 

 1. Proper site selection: It is probably the most important passive protection method. Hilltops 
and middle portions of hillsides are most volatile to advection frosts, where the tempera-
tures observed are usually higher than down-wind sides and low spots that are sheltered 
from the wind. Exactly the opposite is observed during a radiation frost event.

 2. Cold air drainage management: Cold air drained downhill can be diverted by using meth-
ods such as building a solid wall or using a wooden fence. This diversion can effectively 
provide protection.

 3. Plant selection.
 4. Avoiding soil cultivation.
 5. Plant covers.
 6. Canopy trees provide protection from radiation frosts because there is an enhanced long-

wave radiation downward from the trees. The effect is that temperatures are higher under 
these trees than in the open space.

Passive methods of frost protections are used more widely in agricultural regions basically because 
they are more cost-effective and more beneficial. For example, in Greece, passive protection methods 
are widely utilized to help farmers combat freezing injuries (Dalezios, 2015). Low prices and over-
production are responsible for the unwillingness of farmers to invest in active protection methods.

6.8.2.2 Active Methods
Active frost protection measures focus to modify the microclimate of the field in order to avoid 
low temperatures leading to frost in crops. In other words, they cover the development of physical 
equipment, such as fans, heaters, brushes, sprinklers, and plant shields to modify temperatures or 
reduce radiation. Active protection methods are costly, because most of them are fuel dependent. 
Active methods are deployed during a frost night. Whatever method or combination of methods is 
chosen to prevent destruction by frost, the choice is usually to modify temperatures a few degrees, 
usually not more than four or five. The techniques involve reducing radiation, improving wind 
circulation, discouraging sublimation, or creating a fog or smoke cover. The physical modification 
of the environment in the immediate condition of a frost or freeze hazard includes the deployment 
of the following: wind machines, sprinklers, heaters, surface irrigation, or foggers. Specifically, 
wind machines and microsprinklers are used as active protection methods only in a small scale. For 
example, horizontal (conventional) blowing machines are deployed in the Argolic plain in Greece 
to protect citrus, namely sweet oranges and mandarins (Dalezios, 2015).

6.8.3 remotely senseD frost Damage: examples anD case stuDies

A number of indicative examples and case studies of frost damage assessment are presented based 
on remote sensing data and methods. 

 1. Frost damage risk: This application refers to a comprehensive method to quantify frost 
damage risk in different sweet cherry production areas of South Patagonia and to esti-
mate the potential impact of frost control systems on risk reduction (Cittadini et  al., 
2006). A theoretical–empirical approach is considered due to lack of historical weather 
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data. At first, it is assumed that frost damage for any specific day of the growing season 
occurs when the minimum temperature on that day is below the specific lethal tempera-
ture for the phenological stage. Indeed, phenological models are used for the prediction 
of the phenological stage. Moreover, remote sensing data and methods are used for the 
estimation of areal minimum temperature. Then, for each production location of South 
Patagonia, frost damage probability is estimated as the frequency of seasons in which 
at least one damaging frost occurs, which means damage is greater than or equal to 
90% of the reproductive organs during the growing season. Finally, frost damage risk 
is reduced based on active frost control methods. The analysis has indicated that the 
frequency of years with at least one killing frost decreases dramatically when the mini-
mum temperature increases by 3°C, using active frost control systems (Cittadini et al., 
2006). This methodology appears useful to identify the main and secondary variables 
affecting frost damage risk. Thus, this type of quantitative analysis can support growers 
in decision-making on required investments and operational costs of the equipment for 
frost control, on the basis of potential impact of a particular control system on mean 
yields and yield stability.

 2. Frost risk mapping for agroclimatic suitability: This application refers to the development 
of an agroclimatic suitability library for crop production. The database consists of climatic 
data from 20 to 33 years for 41 meteorological stations in the Bolivian Altiplano (Geerts 
et  al., 2006). For validation purposes, four agroclimatic indicators are used, namely the 
reference evapotranspiration, the length of the rainy season, the severity of intraseasonal 
dry spells, and the monthly frost risks for each station. Indeed, monthly frost risks are iden-
tified for temperatures below which crop frost damage occurs. It is clear that temperature 
thresholds differ between crop types and within each crop type during the growing season. 
Specifically, three temperature thresholds are considered, namely −8°C, −6°C, and −4°C, 
respectively. As temperatures at crop canopy height are generally up to 1°C lower than 
those recorded at screen height, the monthly probabilities of frost occurrence at least once 
are equal to or lower than −7°C, −5°C, and −3°C, which are computed for the period from 
September to May for 39 meteorological stations. Indeed, the input data used are either 
daily minimum temperatures or monthly absolute minimum temperatures. Alternatively, 
remote sensing data could be used for the required regional estimation of LST. Moreover, 
the point data are entered in a GIS environment and interpolated using kriging in order to 
obtain regional estimates. In this application, quinoa is considered, an important crop in 
the region that is cultivated during the short and irregular rainfall season and that is well 
adapted to the frequent occurrence of drought and frost. The GIS library is used to mark 
agroclimatic zones, where irrigation could improve quinoa production. Specifically, irriga-
tion requirements are used to assess the vulnerability of the delineated zones. In this appli-
cation, two regions with a high vulnerability are selected, namely a severe drought risk and 
an acceptable frost risk region.

 3. Assessment of frost occurrence and severity: In this application, remotely sensed assess-
ment of frost occurrence and severity is considered. Specifically, frost occurrence is 
monitored by remote sensing based on the difference of vegetation index values and on 
the differences in canopy temperature (Lin and Lv, 2010). Needless to say, remote sens-
ing has proven to be a feasible tool in monitoring crop growth, especially after stresses. 
Indeed, based on the difference of NDVI and canopy temperature (CT), it is possible to 
combine data of frost damage and crop development. For this application, the remote 
sensing potential is considered for temporal Landsat ETM images in order to monitor 
the frost occurrence on cotton fields in specified regions. In particular, in the cotton 
zone without frost occurrence, NDVI values are apparently higher, and the correspond-
ing canopy temperature is 26.4°C. Moreover, when mild frost occurs in the area, the 
corresponding canopy temperature becomes 27.6°C. Finally, in the case of severe frost 
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occurrence in the area, the corresponding canopy  temperature becomes 29.3°C. In sum-
mary, based on the difference of NDVI and canopy temperature, frost occurrence and 
the degree of frost severity can be monitored.

 4. Frost risk assessment: This application covers the assessment of frost risk in tropical 
highlands such as the Andes, where there are human activities at altitudes up to 4200 m, 
and night frost may occur throughout the year. Specifically, in these semiarid and cold 
regions with sparse meteorological networks, remote sensing and topographic modeling 
are considered for potentially delineating the effect of geomorphology on topoclima-
tology. In this application, the integration of night MODIS LST and the extraction of 
physiographic descriptors from a DEM contribute to explore how regional and land-
scape-scale features influence frost occurrence in the southern Altiplano of Bolivia 
(Pouteau et al., 2011). Specifically, based on the high correlation between night LST and 
minimum air temperature, frost occurrence in early, middle, and late summer periods is 
computed from satellite observations and mapped at a 1 km resolution over a 45,000 km² 
area. Moreover, physiographic modeling of frost occurrence is then conducted compar-
ing multiple regression (MR) and boosted regression trees (BRT) in which physiographic 
predictors are latitude, elevation, distance from salt lakes, slope steepness, potential 
insolation, and topographic convergence. In particular, insolation impact on night frost 
is tested assuming that ground surface warming in the daytime reduces frost occurrence 
in the following night.

  The results indicated that BRT models explain 74%–90% of frost occurrence variation, 
thus, showing better performance than the MR method. Moreover, inverted BRT models 
allow the downscaling of frost occurrence maps at 100  m resolution, illustrating local 
processes, such as cold air drainage. In addition, minimum temperature lapse rates show 
seasonal variation and mean values higher than those reported for temperate mountains. 
Indeed, in successive application at regional and subregional scales, BRT models reveal 
noticeable impacts of latitude, elevation, and distance to salt lakes at large scales, whereas 
topographic convergence, slope, and insolation show effects at local scales (Figure 6.7). 
The daytime insolation on night frost occurrence at local scale is considered significant, 
particularly in the early summer and midsummer periods, when solar astronomic forcing is 
maximum, thus, allowing a prognostic potential. Finally, there are also seasonal variations 
and interactions in physiographic effects.

 5. Spring frost damage day (SFDD): This application considers spring frost damage. At first, 
it is well known that spring temperatures affect plant phenology. Moreover, recent spring 
warming coincides with earlier and longer nonfrozen season trends, as well as, earlier 
spring canopy onset resulting, in general, in increased vegetation productivity. However, 
the frost damage risk increases due to earlier spring onset, with potential negative impacts 
to productivity. Indeed, the occurrence, severity, and regional impact of frost events are 
difficult to monitor from sparse weather stations. This application deals with the develop-
ment of spring frost day (SFD) and SFDD metrics from a long-term (>30 year) record. 
Specifically, the database consists of a satellite microwave remote sensing record of daily 
landscape freeze–thaw (FT) status and optical-IR sensor-based phenology record of start 
of season (SOS) and day of peak (DOP) canopy cover (Kim et al., 2014). The analysis 
has shown a decreasing regional SFD trend coincident with spring warming, whereas the 
SFDD is generally increasing. Moreover, although spring warming reduces frost occur-
rence, an earlier SOS trend increases vegetation frost damage risk. In addition, satellite-
derived vegetation gross primary production (GPP) and vegetation greenness (EVI2) 
anomalies are used to assess the environmental impacts of the SFD and SFDD changes. 
The results indicate that higher SFD and SFDD levels coincide with reduced vegetation 
growth in spring, although only the SFDD shows significant correlation with EVI2 sum-
mer growth anomalies.
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6.9 SUMMARY

In this chapter, an overview of the remote sensing data and methods in frost hazard analysis has been 
presented, along with its potential. At first, basic concepts and several characteristics of frost have 
been described, thus developing an understanding of temperature extremes. Then, risk identifica-
tion of frost has been examined, including remotely sensed frost quantification. For frost quantifica-
tion, the remote sensing potential focuses mainly on temperature extremes and frost indices, which 
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use information from remote sensing sensors to map the condition of the land, detect several frost 
features and estimate several environmental parameters. Indeed, remote sensing data and methods 
provide, among others, direct measurements of land characteristics, vegetative cover, and compo-
nents of the hydrological cycle, namely temperature, precipitation, soil moisture, or evapotranspira-
tion, among others. Moreover, the scientific trend in frost quantification consists of remotely sensed 
 temperature extremes and frost indices at different scales also using DSS toward web frost hazard 
platforms, which in certain cases have become operational. Furthermore, frost monitoring has been 
examined based mainly on modeling and forecasting methods, as well as FEWS. In general, frost 
monitoring is considered semi-operational; however, there are also several operational applications 
internationally. Moreover, remote sensing data and methods can be effectively used in frost risk 
assessment, which includes frost risk estimation, that is, frost event probabilities, SDF relationships, 
vulnerability assessment, areal extent mapping, and damage assessment. Finally, the possible con-
tribution of remote sensing in frost risk management policy could focus on frost preparedness, frost 
impacts, prevention, and mitigation measures.

The future outlook of remotely sensed frost hazard analysis is promising due to significant and 
steadily increasing reliability of remote sensing data and methods throughout the years, mainly due 
to computational and technological, as well as scientific advancements. Indeed, the number of satel-
lite systems is increasing year by year with a continuous improvement of their spatial and temporal 
resolution. Moreover, there is a current trend to increase the number of available bands in these 
satellites resulting in new and valuable information. In addition, there is a new challenge, because 
new types of remote sensing systems offer online open information for web platforms and are also 
utilized for monitoring and detecting frost.
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7 Remote Sensing of 
Sea Ice Hazards
An Overview

Mukesh Gupta

7.1 INTRODUCTION

A natural process or event, which becomes a potential threat to human life and property, is known 
as a natural hazard (Keller and DeVecchio 2012). Sea ice covers about 7.3% of Earth’s surface, or 
about 11.8% of the surface of the World Ocean (Weeks 2010). During summer, it reflects sunlight 
back into the space and during winter, it radiates heat into the space (Perovich 1996). Sea ice acts as 
a large lid on the polar oceans, controlling the exchange of heat and mass across the ocean-sea ice-
atmosphere (OSA) interface, thus playing a significant role in the Earth’s climate system (Serreze 
and Barry 2005). The accelerated melting of Arctic sea ice in recent decades may have long-term 
impact on the Earth’s climate likely to affect the lives and properties of billions of humans (Stroeve 
et al. 2007; IPCC 2014). This chapter identifies the hazards related to sea ice, factors that are respon-
sible for inducing it or that directly play a role in causing the hazard, and the remote sensing-based 
investigation, detection, and possible mitigation of the ice hazard.

Sea ice, being a complex substance, behaves differently under different atmospheric and oce-
anic conditions at a range of temporal (seconds to decades) and spatial (mm to thousands of km) 
scales (Wadhams 2000). The hazardous nature of sea ice stems from its physical, rheological, 
morphological, thermodynamic, and hydrodynamic properties that vary with prevailing envi-
ronmental conditions (Laxon 1994). This makes sea ice as one of the most complex geophysical 
substances for making predictions of its behavior. Sea ice also grows vertically undersea (called 
keel growth) (Steiner et al. 1999), which represents a major hazard for under ice navigation/
operation of automated underwater vehicles, and is dangerous for scuba diving. Keels that extend 
up to the ocean floor (called stamukhi) pose a significant danger to the running oil pipelines or 
cables (Astafiev et al. 1991).
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With the advent of spaceborne sensors in 1970s for monitoring polar oceans, it became pos-
sible to study sea ice in greater details than ever before covering all aspects of its behavior; thus, 
spaceborne sensors helped in identifying associated ice hazards and its possible prediction (Carsey 
1992). Altimeters (Laxon et al. 2013), passive microwave radiometers (Tian-Kunze et al. 2014), and 
multispectral optical sensors (Liu et al. 2015a) have enabled the detection of ice thickness from 
space. However, better accuracy is required to have greater confidence in retrieving ice thickness 
from spaceborne observations, which can be assimilated in ice forecast models (Yang et al. 2014). 
Synthetic aperture radars (SARs) have been used to monitor the movement of sea ice, which is always 
in mobile state except the landfast ice (Kwok et al. 1998). SAR images are, in fact, being used 
commercially for navigation (Johannessen et al. 1992), ice tracking (Kwok et al. 1990), and high-
resolution science experiments over polar regions (Maslowski and Lipscomb 2003). Multispectral 
radiometers provide wealth of information, however, limited to cloud-free conditions, on the sea 
ice leads (Onana et al. 2013), polynyas (Meier et al. 2013), and hazardous thaw holes (Digby 1984). 
Spaceborne scatterometers (Haarpaintner et al. 2004) and passive microwave radiometers (Meier 
and Stroeve 2008) have shown promise in identifying sea ice edge, thus greatly helping in the detec-
tion of extent of sea ice in a given area of the ocean where commercial or other activities involving 
life and property are conducted.

The focus of this chapter will be on the remote sensing detection of the potentially hazardous 
sea ice behavior and its mitigation measures. There are four sections in this chapter. Section 7.2 
identifies the potential role of sea ice and its geophysical properties as a natural hazard. It covers 
sea ice thickness, ice motion, ice leads, ice roughness, melt ponds and thaw holes, ice edge, and oil 
spill in sea ice. Section 7.3 suggests mitigation measures to understand and circumvent the severity 
of ice hazard. Section 7.4 concludes the chapter with suggestions for future avenues and techniques 
required to make reasonable predictions related to sea ice hazards. In each section, we first describe 
the important physical processes related to ice hazard followed by how Earth observation (EO) 
technology can be helpful in a better understanding of those processes.

7.2 REMOTE SENSING OF SEA ICE AS NATURAL HAZARD

7.2.1 ice thickness

Sea ice is frozen seawater. During its formation at various temporal and spatial scales, it exhibits 
different properties depending on prevalent atmospheric conditions (Untersteiner 1986). Although 
the thickness of sea ice is a major hazard for ship navigation, the navigability of ships depends on 
the internal stresses of ice (Thorndike 1986). Generally, the icebreakers can easily cut through ~1 m 
(or more) thick ice if the ice is porous and has very little strength. Ice rheology plays a big role in 
response to different stresses acting on sea ice (Feltham 2008).

Sea ice is polycrystalline and behaves as a viscoelastic solid. However, sea ice in the marginal 
ice zone (MIZ) can be explained through different ice rheology representations, for example, plastic 
(Hibler 1989) and a rheology based on ice floe mechanics (Shen et al. 1987). Ice has near-zero tensile 
strength, which means if we apply divergent stresses in two dimensions, it will dilate and easily break 
apart (Figure 7.1). Ice has very high compressive strength, that is, it is difficult to crush the ice under 
compression (Timco and Frederking 1990). Ice also has significant shear strength (Saeki et al. 1985), 
which implies that when shear stress is applied on ice, it is more likely to slip and deform. This shear 
property facilitates the main cause of rafting and piling up of ice and the formation of rubble, pressure 
ridges, and hummocks under the influence of differential forces at the ice edge and in the MIZ due to 
wind and waves (Leppäranta 2011). The severity of sea ice hazard is thus governed by its rheological 
properties to a great extent.

The thickness of sea ice is not uniform everywhere. The ratio of the part of ice above mean 
sea level (sail height) and the part extending into the ocean below mean sea level (keel draft) is 
about 1:4.5 (Wadhams et al. 1992). An ice distribution is required for operational and theoretical 
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computations, which can help reduce the impact of the ice hazard (Bourke and Garrett 1987). In 
a recent study, the sea ice distribution, g h( ) has been theoretically determined (Toppaladoddi and 
Wettlaufer 2015) as (Equation 7.1), 

 g h N q h eq h H( ) ( ) /= −  (7.1)

where q and H are expressible in terms of moments over the transition probabilities between thick-
ness categories. Due to harsh polar environment, technological limitations, and poor spatial and 
temporal coverage, the direct measurement of ice thickness distribution is still a challenge for the 
scientific community and technologists (Rothrock 1986). Over the past several decades, continuous 
satellite-based observations (see following paragraphs) in the polar areas have helped enormously 
in dealing with aforementioned issues.

Ice thickness is one of the most underestimated geophysical variables that are important to climate 
modeling (Battisti et al. 1997). The climate models include sea ice as it plays a significant role in con-
trolling the heat budget (therefore global warming) and global ocean circulation of the Earth system 
(Vinnikov et al. 1999). However, the volume of sea ice is inaccurately represented due to uncertainty 
in ice thickness and its distribution given that the surface and bottom of sea ice is nonuniform, aniso-
tropic, and heterogeneous. Most climate models use thermodynamic model of the growth of sea ice, 
which is unverified and thus underrepresents the reality. There are nil or scarce direct observations 
of ice thickness measured in the field. Satellite observations are close proxies, but not accurate, of the 
thickness variable. Altimeters (CryoSat-2; Ice, Cloud, and land Elevation Satellite [ICESat]), passive 
microwave (Soil Moisture and Ocean Salinity [SMOS]), SAR systems (e.g., Radarsat-2) have been 
used to estimate sea ice thickness to a variable degree of accuracy, which is essentially limited to 
thin ice. No satellite observations are able to provide accurate thickness of full ice draft due to uncer-
tainties in snow depth, snow and sea ice density, and challenges in backscattering and waveform 
interpretation in altimetry (Laxon et al. 2013; Ricker et al. 2014) (Table 7.1). However, submarine-
based sonar measurements provide good thickness observations, but these are spatially insignificant. 
Various thermodynamic model estimates suffer from complete lack or inadequate representation of 
ice thickness distribution. Thus, the problem of sea ice thickness and its adequate representation in 
various regional and global climate models is still a topic of ongoing research.

Kaleschke et al. (2012) provided an algorithm for estimating ice thickness up to 0.5 m from the 
SMOS brightness temperature. High penetration depth at L-band (1.4 GHz) and high brightness 
temperature contrast of over 100 K between ice and open water reflect in the L-band emission as 
increasing sea ice thickness (Huntemann et al. 2014). Therefore, it is imperative to assess the poten-
tial of retrieving sea ice thickness with SMOS (spatial resolution 35 km at nadir). The estimation of 

Tensile strength: near zero

It is easy to break ice if divergent forces are applied

Compressive strength: very high

It is very di�cult to crush ice under compression

Shear strength: signi�cant

�is causes ice to slip and deform → pressure ridges, rubble, rafting, hummocks

FIGURE 7.1 Rheological properties of sea ice.
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ice thickness from passive microwave brightness temperature involves a number of approximations 
and uncertainties, which also depend on the type of emissivity model of sea ice. Kaleschke et al. 
(2012) assumed the bulk ice temperature and bulk ice salinity, which turns out to be a major short-
coming of this algorithm. Tian-Kunze et al. (2014) overcame this issue by considering the profiles 
of ice temperature and salinity varying with depth in the ice. Figure 7.2 provides a comparison of 
ice thickness retrieval using two algorithms: Kaleschke et al. (2012) (Algorithm I) and Tian-Kunze 
et al. (2014) (Algorithm II). Algorithm II enables ice thickness estimates up to 1.5 m. However, the 
coarse resolution (35 km grid size) of SMOS prevents detection of smaller leads and polynyas and 
ignores the effect of snow cover in thin ice thickness estimation.

Although microwave instruments (e.g., SMOS) are preferred due to their all-weather capability, 
other remote sensing instruments (optical and thermal), for example, Moderate Resolution Imaging 
Spectroradiometer (MODIS), have also demonstrated capability in estimating ice thickness. 
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FIGURE 7.2 (a) MODIS ice thickness with 12.5  km grid resolution. (b) Ice thickness derived using 
Kaleschke et al. (2012) (Algorithm I). (c) Ice thickness obtained using Tian-Kunze et al. (2014) (Algorithm II). 
(From Tian-Kunze, X. et al., Cryosphere, 8, 997–1018, 2014. With permission.)
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The MODIS ice thickness of the same area is shown in Figure 7.2a for comparison with SMOS ice 
thickness. MODIS ice thickness is calculated using thermal ice temperature and High-Resolution 
Limited Area Model (HIRLAM) (Mäkynen et al. 2013). This MODIS algorithm provides ice thick-
ness up to 0.99 m. It is shown that MODIS ice thickness values larger than 0.5 m are areas of thick 
ice without accurate ice thickness estimates. This uncertainty is due to exclusion of solar shortwave 
radiation and surface albedo, ambiguity in thin cloud detection, and inaccurate numerical weather 
prediction forcing data.

Apart from passive microwave and optical satellite imageries, satellite radar altimeters such as 
CryoSat-2 (Ku-band) have also been used to estimate sea ice volume and thickness (Laxon et al. 
2013). Figure 7.3 shows a recent near real-time (NRT) sea ice thickness product (at 5 km grid; also 

(c)

(b)(a)
Ice thickness (m)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

April 18, 2016–April 19, 2016

Ice thickness (m)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

March 23, 2016–April 19, 2016

Ice thickness (m)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

April 6, 2016–April 19, 2016

FIGURE 7.3 Near real-time sea ice thickness maps generated by CPOM/ESA at 5 km grid for (a) 2 days, 
(b) 14 days, and (c) 28 days during March–April 2016. (Courtesy of Centre for Polar Observation and Modelling 
Data Portal (CPOM): http://www.cpom.ucl.ac.uk/csopr/seaice.html)

http://www.cpom.ucl.ac.uk/csopr/seaice.html
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available at 1 km for individual sectors) generated by Centre for Polar Observation and Modelling/
European Space Agency (CPOM/ESA) for 2-, 14-, and 28-day time period. Ice thickness is calcu-
lated by combining the freeboard measurements and estimates of snow depth and density derived 
from climatology (Warren et al. 1999; Laxon et al. 2013). NRT data are preliminary fast access 
products, which ignore all the precise corrections that come with the final products made avail-
able 30 days later. As the ice thickness is estimated using the freeboard and ice/snow density, it 
is able to provide full thickness of the ice (from keel-depth to sail-height). Similar to CryoSat-2 
ice thickness, Geoscience Laser Altimeter System (GLAS) instrument (wavelength 1064  nm) 
onboard ICESat provided ice thickness calculated using freeboard and snow density (Kwok and 
Cunningham 2008). However, these products were available till 2008. Thus, CryoSat-2 provides 
one of the best available datasets of ice thickness. This can be tremendously useful in dealing with 
ice hazards and mitigation plans.

7.2.2 sea ice motion

Moving ice can be more hazardous than the landfast ice that remains attached to the shore. The 
continuous motion of sea ice further aggravates the hazard caused by it. This motion is governed by 
a number of forces that act on sea ice. Under various forces, the ice moves in the ocean in a divergent 
or convergent manner to create surface roughness. The forces given in the following act as a total 
force ( )F  that controls the sea ice motion (Equation 7.2) (Leppäranta 2011): 

 F F F Fa w C i t= τ τ+ + + +  (7.2)

where:
τa and τw are wind and water drag, respectively
FC is Coriolis force
Fi is internal stress
Ft is sea surface tilt

Four major external forces working on sea ice control the deformation and movement of an ice 
floe: (1) wind force; (2) water drag—it is the frictional force between ice and seawater, which is 
controlled by water density, temperature, and underwater currents; (3) Coriolis force—this is one 
of the precisely calculated forces on sea ice unlike wind and water drag, which are computed using 
semiempirical formulae (Steele et al. 1997). The Coriolis force arises due to Earth’s rotation. An 
ice floe experiences acceleration caused by rotation of the Earth deflecting the original trajectory 
of the floe to move clockwise in the northern hemisphere. The magnitude of Coriolis force is given 
by Equation 7.3: 

 F m UC = 2 ω sin φ (7.3)

where:
m  is the mass of the ice floe
ω is angular velocity of Earth = 7.272 × 10–5 rad s–1

U is ice velocity
φ is latitude

The ice floe appears to move toward the right of its velocity direction in the northern hemisphere. 
The Coriolis force is also observed in the atmosphere. It is zero at the equator and maximum 
toward the poles; therefore, big ice floes due to their large mass experience greater Coriolis force in 
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the Arctic. Other forces are, for example, internal ice stress—it acts on a unit area of ice in an ice 
floe due to transmitted stress within the ice floe. Winds or ocean currents play a greater role in gen-
erating internal stresses in addition to other forces acting on ice (Leppäranta 2011). The net stress 
can be the result of all the stress vectors on a given ice floe. The sustainability of stress within the 
ice is dependent on ice thickness distribution, ice rheology, and the strength of ice cover. Multiyear 
ice, which is thicker than first-year ice, is more likely to sustain greater internal ice stresses. All 
the aforementioned forces control the motion of a sea ice floe, which can be monitored using the 
microwave satellite images.

Sea ice motion is calculated from SAR images acquired under similar conditions in two or three 
consecutive passes (i.e., the repeat cycles of SAR) using different algorithms including the most 
popular cross-correlation method (e.g., Thomas et al. 2011). The ice motion algorithms produce 
satisfactory results with the C-band SAR images commonly used in sea ice remote sensing. In a 
recent study, Lehtiranta et al. (2015) have found that L-band images produce better results than 
C-band images for ice tracking. There are, however, limitations in estimating ice motion from con-
secutive satellite images (Table 7.1). The ice surface requires coherency, which means that it must 
not change during the time span between two images. The microwave signatures (active or passive) 
of sea ice are highly sensitive to meteorological conditions such as ice surface temperature, wind, 
and air temperature (Gupta 2014). This alters the ice surface characteristics (surface roughness and 
dielectric constant), thereby changing its microwave response. Second, only average ice velocity 
can be determined. Generally, two images from the satellite repeat pass that are 2–3 days apart are 
used for ice motion estimation, but this is difficult to achieve as most radar satellites have a repeat 
cycle of more than 2–3 days for the same site. Image pairs from two different satellites provide 
an ideal dataset required for ice motion estimation, but this suffers from the two images being of 
different characters and requires additional processing. Figure 7.4 shows the ice motion vectors 
obtained in the Gulf of Bothnia using Radarsat SAR and Envisat ASAR images that are 2 days apart 
(Lehtiranta et al. 2015).

Ice displacement vectors can also be obtained from the passive microwave imageries, 
Special Sensor Microwave/Imager (SSM/I, 85 GHz), and Scanning Multichannel Microwave 
Radiometer (SMMR, 37  GHz) (Kwok et al. 1998). The magnitude of the normalized cross- 
correlation coefficient of brightness temperature is used as a measure of similarity between 
features in the two passive microwave images. Daily ice motion vectors are derived from the 
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FIGURE 7.4 Sea ice motion vectors calculated from combining C-band Radarsat SAR (March 16, 2009) 
and Envisat ASAR (March 18, 2009) images in the Gulf of Bothnia of Baltic Sea. (From Lehtiranta, J. et al., 
Cryosphere, 9, 357–366, 2015. With permission.)
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89 GHz channel of Advanced Microwave Scanning Radiometer for Earth Observing System 
(AMSR-E) at 6.25 km spatial grid (Kimura et al. 2013).

7.2.3 sea ice leaDs

Leads are narrow openings (1–104 m wide and several km long) in the ice, which can turn into a haz-
ard for people working nearby, for example, scientists set up an instrument near a lead (Esau 2007). 
Leads are of utmost importance as they provide an easy path for navigating ships. Second, leads 
are the hot spots of exchange of mass, momentum, and heat at the OSA interface. The leads cover 
1%–5% of the central Arctic (Miles and Barry 1998) and up to 20% of the Arctic marginal seas, 
accounting for more than 70% of the upward heat fluxes (Lindsay and Rothrock 1995; Inoue et al. 
2005). Refrozen leads can camouflage the ice field, thus turning hazardous. Narrow leads are about 
twice more efficient in transmitting turbulent heat fluxes than large leads. In a recent study, Marcq 
and Weiss (2012) have shown that lead widths are power law distributed. Turbulent heat fluxes over 
leads depend on the distribution of lead width and decrease with increasing lead width (Esau 2007; 
Marcq and Weiss 2012). Leads have been successfully identified using optical and microwave EO 
technology to be discussed later.

Sea ice leads can be easily detected on optical satellite imageries. Figure 7.5a shows a grayscale 
Satellite Pour l’Observation de la Terre (SPOT; Earth-observing satellite) image of sea ice cover 
with image center at 80°11́ N, 108°33ʹW. The peaks represent different states of refreezing over 
the three largest leads (Figure 7.5b). The peaks clearly discriminate leads from the ice. Adequate 
lead detection algorithms (e.g., AMSR-E lead detection algorithm by Röhrs and Kaleschke (2014); 
CryoSat-2 lead detection algorithm by Wernecke and Kaleschke (2015)) are used for automatic 
identification of leads in an image. Onana et al. (2013) have developed a new algorithm (sea-ice lead 
detection algorithm using minimal signal [SILDAMS]) that extracts leads and classifies ice types 
within the lead from an airborne visible imagery.

The fraction of leads in a sea ice cover can be seen as a parameter reflecting the loss in 
mechanical strength of ice pack controlling the degree of mobility of pack ice. Figure 7.6 shows 
lead area fraction obtained from the AMSR-E passive microwave imagery (ICDC 2003; Röhrs 
and Kaleschke 2012); and CryoSat-2 image (ICDC 2013; Wernecke and Kaleschke 2015). In a 
recent study, Ivanova et al. (2016) have investigated the lead fraction estimates from AMSR-E and 
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FIGURE 7.5 (a) Grayscale SPOT image of sea ice cover and (b) pixel histogram of the SPOT image; the 
dashed lines are thresholds of 115 and 125. (From Marcq, S. and Weiss, J., Cryosphere, 6, 143–156, 2012. 
With permission.)
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Envisat ASAR images (Figure 7.7). Sea ice leads are warmer in comparison to surrounding sea 
ice cover during wintertime. This property of leads can be utilized to detect them using a thermal 
infrared imagery such as MODIS (Figure 7.8) (Willmes and Heinemann 2015, 2016). Some of 
the challenges in ice lead detection are cloud artifact filtering and improved ice concentration 
estimation (Table 7.1).
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FIGURE 7.6 (a) Lead area fraction in percentage (%) from AMSR-E passive microwave imagery of 
March 4, 2003. (From ICDC [Integrated Climate Data Center], AMSR-E lead area fraction for the Arctic, 
(March 4, 2003), Integrated Climate Data Center [ICDC, http://icdc.zmaw.de/], University of Hamburg, 
Hamburg, Germany, 2003. With permission.); (b) lead area fraction (%) from CryoSat-2 image of February 1, 
2013. (From ICDC [Integrated Climate Data Center], CryoSat-2 lead area fraction for the Arctic, [February 1, 
2013], [ICDC, http://icdc.zmaw.de], University of Hamburg, Hamburg, Germany, 2013. With permission.)
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The beige bars are the unfiltered signal. Gray dashed line is the mean. (From Ivanova, N. et al., Cryosphere, 10, 
585–595, 2016. With permission.)
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7.2.4 sea ice roughness

Sea ice roughness (aerodynamic or physical) is the manifestation of turbulent processes at the OSA 
interface (McPhee 2002). With a few exceptions, sea ice always turns into a rough field (ice surface 
as well as ice bottom) to a varying degree of spatial scales under the influence of atmospheric and 
oceanic forcing (Andreas 1987). Sea ice hazard is more difficult to mitigate under rough ice condi-
tions. The rough ice terrain is almost inaccessible, difficult for ships to navigate, and unpredictable. 
The rough ice (rubble ice, pressure ridges) dramatically alters the heat and momentum fluxes in the 
atmospheric boundary layer (McPhee 1992). The regional and global climate models exclude the 
atmospheric boundary layer above sea ice due to poor understanding of the boundary layer physics, 
inaccurate parameterizations, and difficulty in acquiring relevant in situ data over sea ice for valida-
tion (Ebert and Curry 1993; Gettelman and Rood 2016). Since the advent of satellite remote sensing 
of polar ice in 1970s, one of the major research objectives of scientists has been to incorporate sea 
ice boundary layer into the regional numerical models for a better understanding of the effects of ice 
roughness on the regional climate and associated processes (Herzfeld et al. 2015).

Efforts have been put to derive information on ice roughness from ship-based, airborne, and 
satellite remote sensing techniques (Gupta 2015). This requires parameterization of boundary layer 
processes of momentum and heat fluxes at the OSA interface (Andreas 2002). New parameteriza-
tions of air–ice and ice–water drag coefficients have been developed as a result of advances in 
instrumentation, field experiments, and laboratory work (Lu et al. 2016). The aerodynamic rough-
ness length is determined from wind flow characteristics measured from a meteorological tower 
(Zippel and Thomson 2016). It is possible to estimate the aerodynamic roughness length from the 
measurements of surface characteristics. Such surface features are the size and distribution of 
roughness elements (rms height) (Kustas and Brutsaert 1986; Vries et al. 2003). Parameterization 
of ice drag coefficient using EO technology (e.g., laser altimeter) is currently of much interest to the 
scientific community and needs to be explored further (Elvidge et al. 2016).

Satellite or airborne altimetry is extremely useful for measuring physical roughness of the ice-
covered ocean (Rivas et al. 2006) and is the only known way of parameterizing the drag coefficient 
using remote sensing (Petty et al. 2016). Sea ice roughness distribution is acquired from a helicopter-
based laser altimeter and an electromagnetic induction system in an area dominated by first-year ice 
and MIZ (Gupta 2014, 2015). However, altimeters provide point/profile measurements and do not 
cover large swaths, which are important requirements for measuring ice roughness (Table 7.1). The 
altimeter data can be resampled to match the spatial resolution of other microwave satellite data such 
as SSM/I. Some of the satellite altimeters used in Arctic applications are Seasat, European Remote 
Sensing (ERS-1/2) satellite, Envisat Radar Altimeter-2 (past); CryoSat-2, Satellite with ARgos and 
ALtika (SARAL) (current) (Kwok and Rothrock 2009); and Sentinel-3, ICESat-2 (future).

Leads Artifacts Sea ice Land Clouds(a) (b)

FIGURE 7.8 (a) MODIS band 2 (841–876 nm), April 4, 2009, swath normalized and daily averaged reflec-
tance. (b) Fuzzy cloud artifact filter (FCAF) applied to extract leads. (From Willmes, S. and Heinemann, G., 
Remote Sens., 8, 4, 2016. With permission.)
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Although parameterization of aerodynamic roughness using remote sensing is still an emerg-
ing science, different EO techniques (e.g., polarimetric coherences and ratios) have been uti-
lized to estimate the physical roughness of various sea ice surfaces (Wakabayashi et al. 2004). 
Polarimetric coherences and ratios (ground-based or spaceborne) are helpful in discriminating 
ice types and roughness categories (Gupta 2014). Ship-based observations of co- (linear), cross-
polarized, and circular polarimetric coherences (ρVVHH, ρHHVH, and ρRRLL) are used to evaluate ice 
surface discrimination using polarimetric radar operating in C-band (Equations 7.4 through 7.8) 
(Gupta 2015) 
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where S is the complex scattering matrix. The elements of S are complex numbers containing 
magnitude and phases of transformed electric field. An asterisk (*) represents the complex conju-
gate. The brackets .  represent ensemble averages of the observed data. The field-based acquisi-
tion of C-band signatures of ice physical roughness forms the basis of improving EO algorithms 
using similar sensors from space platform. In a recent study, Fors et al. (2016) have utilized 
polarimetric coherences and ratios using Radarsat-2 (C-band) SAR images for estimating sea ice 
surface physical roughness.

A SAR provides detailed information on the surface and volume scattering from the sea ice 
surface (Onstott 1992). SAR scattering of sea ice is a major and very important tool for improving 
our knowledge of surface roughness in the ice-covered ocean as the microwave signatures of ice 
vary with the changing surface dielectric and physical properties (Drinkwater 1989). SAR sensors 
are highly sensitive to the changes occurring at the ice surface. SAR sensors have been operated on 
airborne (Nakamura et al. 2005) and satellite platforms (Dierking 2010). A summary of successful/
planned SAR missions is given in Table 7.2.

Satellite-based passive microwave sensors (e.g., AMSR-E) provide nearly complete temporal 
(1–2  day) data coverage (especially for polar regions; e.g., sea ice concentration, extent), which 
SARs and altimeters do not provide (Stroeve et al. 2006). The spatial resolution of passive micro-
wave sensors at the most desired frequencies is, however, approximately limited to 30 km (Spreen 
et al. 2008). This restricts subpixel evaluation (higher resolution) of sea ice passive microwave emis-
sion signatures using satellite-based sensors (Gupta 2014). Stroeve et al. (2006) have investigated the 
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effect of surface roughness on passive microwave emissions from sea ice. The passive  microwave 
emissions from the ocean surface increase with increasing surface roughness due to increased sur-
face area (Hollinger 1971). Table 7.3 provides a summary of some of the past, current, and future 
passive microwave missions suitable for sea ice hazard studies. Figure 7.9 shows monthly sea ice 
concentration derived from Defense Meteorological Satellite Program (DMSP)-F17/Special Sensor 
Microwave Imager/Sounder (SSMIS) passive microwave brightness temperature for March 2016 
(Fetterer et al. 2002). These types of satellite observations have become an ideal source of informa-
tion in mitigating sea ice-related hazards and for proper planning and management of resources in 
the polar regions.

TABLE 7.2
A Summary of Past, Current, and Future SAR Missions Suitable for Sea 
Ice Hazard Studies

Period Mission Reference

Past Spaceborne Imaging Radar-C (SIR-C)
ERS SAR
Envisat ASAR
Radarsat-1 SAR
Japanese Earth Resources Satellite (JERS-1) SAR
Advanced Land Observing Satellite—Phased Array 
type L-band Synthetic Aperture Radar (ALOS 
PALSAR)

Lang et al. (2014)
Johannessen et al. (1992)
Lehtiranta et al. (2015)
Lehtiranta et al. (2015)
Dierking and Busche (2006)
Dierking (2010)

Current Radar Imaging Satellite (RISAT-1) SAR
RADARSAT-2
Sentinel-1
ALOS-2

Srisudha et al. (2013)
El-Hilo et al. (2013)
Muckenhuber et al. (2016)

—

Future Sentinel-3
ALOS-3
Radarsat Constellation Mission (RCM)
NASA-Indian Space Research Organisation (ISRO) 
SAR (NISAR)

—
—
—
—

TABLE 7.3
A Summary of Past, Current, and Future Passive Microwwave 
Satellite Missions Suitable for Sea Ice Hazard Studies

Period Mission Reference

Past SSM/I
AMSR-E
SMMR

Kwok et al. (1998)
Kimura et al. (2013)
Kwok et al. (1998)

Current AMSR-2
SSMI/S
SMOS
Soil Moisture Active Passive (SMAP)

Karvonen (2014)
Fetterer et al. (2002)
Huntemann et al. (2014)
Ludwig (2016)

Future SSMI/S —
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7.2.5 melt ponDs

Melt ponds are puddles of meltwater from the surface of first-year or multiyear sea ice, usually 
occurring during the melt onset and lasting till they refreeze or drain into the ocean (Fetterer and 
Untersteiner 1998). A significant change in the surface roughness, ice morphology, and topography 
is observed after the melt onset in mid-June in the Arctic (Scharien and Yackel 2005). The melt-
water forms a network of ponds over the surface. The depth and area of initially small and shallow 
melt ponds increase as the summer progresses (Maykut 1986). Eventually, the meltwater drains 
into the sea through holes called thaw holes. The melt ponds that do not drain through thaw holes 
refreeze in the fall (Taylor and Feltham 2004). It is the thaw holes that are hazardous and can lead to 
loss of instruments installed usually during summer on sea ice or accidents during hunting (Laidler 
et al. 2009). In addition to thaw holes being hazardous, melt ponds also affect the variability of 
surface albedo of the sea ice cover, thus impacting the heat budget of the atmospheric boundary 
layer (Morassutti and LeDrew 1996). It should also be mentioned that thaw holes are the sources of 
sunlight for the flora and fauna underneath sea ice, and Arctic seals usually come out of these holes 
for sunlight (Digby 1984). Thaw holes serve as one of the favorite spots for polar bears to look for 
food. The next paragraph discusses how optical and microwave remote sensing techniques can be 
used to detect and estimate melt pond coverage.

As the melt ponds can significantly alter the surface albedo of the sea ice cover, it is possible to 
study melt pond coverage using images from optical satellites such as MODIS (Tschudi et al. 2008). 
Estimates of melt pond coverage are made as melt pond fraction, which is the ponded area relative to 
the sea ice cover (Schröder et al. 2014). Figure 7.10 shows the surface albedo curves for different sea 
ice surface types including various stages of melt pond development (Rösel et al. 2012). Schroder 
et al. (2014) have observed an increase in melt pond fraction in the Arctic since 1979 correlating with 

FIGURE 7.9 Monthly sea ice concentration for March 2016 derived from Defense Meteorological Satellite 
Program (DMSP)-F17/Special Sensor Microwave Imager/Sounder (SSMIS) passive microwave brightness 
temperature. (Courtesy of National Snow and Ice Data Center/NASA Earth Observatory; From Fetterer, F. 
et al., Updated daily. Sea Ice Index, Version 1. [Sea ice concentration], National Snow and Ice Data Center 
[NSIDC], Boulder, CO, 2002, accessed April 26, 2016. With permission.)
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the Arctic sea ice minimum extent, and the increase of melt ponds (4%/decade in July) results in the 
observed decrease in summer albedo (3%/decade in July/August). In a recent study, Liu et al. (2015b) 
have observed an increase in melt pond fraction during 2000–2011 showing that the Arctic sea ice 
minimum extent can be predicted using the melt pond fraction estimated from MODIS (Figure 7.11).

Optical satellites such as MODIS are constrained by limited solar illumination and persistent cloud 
cover in the polar regions. The potential of high-resolution airborne SAR (0.3 m) and TerraSAR-X 
images has been explored in mapping the melt ponds on first-year ice (Kim et al. 2013) and on multiyear 
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FIGURE 7.11 Melt pond fraction obtained from MODIS from May 9 to (a) June 2, (b) June 26, and (c) July 20 
during 2000–2011. Color represents the averaged pond fraction for the given day. Black areas are the statisti-
cally significant correlations (integrated from May 9 to the given day) between the pond fraction and the extent 
of sea ice in September. (Liu, J. et al., Environ. Res. Lett., 10, 054017, 2015b. With permission.)
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ice (Han et al. 2016). The shape and size of melt ponds derived from high-resolution TerraSAR-X pro-
vided greater details and better accuracy than that obtained from aerial photographs. However, pond 
fraction estimation, pond interconnections, and open water classification using SAR still require fur-
ther improvements (Figure 7.12). Scharien et al. (2012) have assessed, using high-resolution surface-
based C-band radar scatterometry, the role of various geophysical parameters that control the melt pond 
behavior in the high Arctic and MIZ. Figure 7.13 shows Radarsat-2-retrieved melt pond fraction using a 
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FIGURE 7.12 Melt pond mapping using TerraSAR-X HH-polarized amplitude image (a, b), and rule-based 
machine learning approach (random forest) for melt pond mapping of the same scene (c, d). Yellow circles 
indicate well-identified melt ponds. (From Han, H. et al., Remote Sens., 8, 57, 2016. With permission.)
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FIGURE 7.13 Melt pond fraction retrieved using a Radarsat-2 C-band copolarized ratio (VV/HH)-based model 
(called CV model) in the Parry Channel, Canadian Arctic Archipelago. Land is masked as white. Scene R1—May 
12, R2—June 13, R3—June 20, R4—June 24, and R5—June 26, 2012. (From Scharien et al., 2014. With permission.)
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model (called cross-validation (CV) model) that uses copolarized ratio (VV/HH) (Scharien et al. 2014). 
As suggested, the retrievals using Radarsat-2 still require more work to ensure accurate pond detection 
(Table 7.1); however, the transition from ice-covered regime to the formation of melt ponds (melt onset) 
is well detected by the Radarsat-2 images (R1 to R2, Figure 7.13). A better understanding of the forma-
tion, development, and disappearance of melt ponds can tremendously assist in planning to mitigate 
melt pond hazards.

7.2.6 ice eDge

According to World Meteorological Organization (WMO), ice edge is defined as “the demarcation 
at any given time between the open sea and sea ice of any kind, whether fast or drifting. It may 
be termed compacted or diffuse (cf. ice boundary).” Accurate location and extent of the boundary 
between open water and sea ice are important for various activities including mitigation of sea ice 
hazards (Meier and Stroeve 2008). Ice edge detection is essential for secure navigation, protection 
of oil rigs from ice hazards, and for high-resolution geophysical modeling (Bitz et al. 2005). Optical 
identification of ice edge is relatively quick and easy, only if the optical satellite images are cloud-
free, which is uncommon in the polar regions. Satellite images and airborne reconnaissance surveys 
provide valuable information on the ice edge location, extent, and likely future shifts. Microwave 
remote sensing is preferable due to its all-weather capability, for example, day/night or under cloud 
cover. Active microwave scatterometer, for example, QuikSCAT has shown potential for ice edge 
detection in the polar regions. The algorithm uses active polarization ratio (APR) defined by Tonboe 
and Ezraty (2002) as Equation 7.9, 

 APR = −
+

( )
( )
σ σ
σ σ

0 0

0 0

H V

H V

 (7.9)

The skill to detect ice edge also relies upon the sea ice type to be appropriately interpreted using the 
satellite image (active or passive). For example, frazil ice can be visually interpreted on SAR images; 
however, a similar signature from QuikSCAT may be interpreted as open water (Haarpaintner et al. 
2004). Polarization and gradient ratios have been widely used for estimating sea ice concentration 
and ice extent using AMSR-E and SSM/I brightness temperature at different frequencies (Swift and 
Cavalieri 1985). Sea ice concentration calculations are based on certain algorithms, for example, 
National Aeronautics and Space Administration (NASA) Team and Bootstrap algorithm, which use 
a percentage (e.g., 10%) of ice concentration thresholds in a pixel area (Comiso et al. 1997). This 
defines the ice edge; however, this estimate may render spurious ice edge identification due to atmo-
spheric moisture and wind-roughened ocean surface (Table 7.1).

In recent years, ice edge prediction has drawn utmost attention of researchers and stakeholders 
(e.g., oil companies) who require accurate location of sea ice edge for hazard-free ship navigation, 
conducting scientific experiments, and planning of infrastructure development for installation of 
new offshore oil platforms. U.S. National Ice Center (NIC) generates daily ice edge products using 
multiple sources of NRT satellite data (visible, infrared, passive microwave, scatterometer, and SAR 
images), buoy data, satellite-derived products, and meteorological data (Posey et al. 2015). These 
products define ice edge as areas of less than 10% sea ice concentration (Figure 7.14) and are used 
for navigational purposes to avoid ice hazards. Ice edge detection techniques combining different 
kinds of satellite sensors are also in use, for example, QuikSCAT, AMSR-E, and SSM/I (Meier and 
Stroeve 2008). In recent decades, the volume of data from various kinds of satellite sensors, air-
borne sensors, and in situ observations have grown substantially. This useful data is assimilated in 
thermodynamic/numerical models of ice edge detection to get the most accurate sea ice–water edge 
discrimination, and the products are continually updated with new observations at high temporal 
and spatial resolution (Posey et al. 2015).
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7.2.7 oil spill in sea ice

This section describes the science behind the remote sensing detection of oil spill in sea ice. 
The mitigation of oil spill in sea ice is discussed in Section 7.3. Of all the hazards related to sea 
ice, oil spill is one of the most devastating hazards from the viewpoint of biodiversity of polar 
regions (Owens et al. 1998). Due to inaccessibility and extreme cold temperatures, the hydro-
carbon exploration in the Arctic, in case of an accident, can turn into an irrecoverable ecologi-
cal hazard (Potter et al. 2012). There is a need to understand the oil spill in sea ice, resulting 
advection and dispersion of oil-smeared ice, and its impact on the vulnerability of the coastlines, 
landfast ice, and biodiversity at the ice bottom (Wilkinson et al. 2013). Satellite remote sensing 
is near ideal for monitoring such disasters on timely and regular basis. Optical and microwave 
sensors have been efficiently used for oil spill management, detection, and mitigation purposes 
for open ocean and ice-free seas (Brekke et al. 2014; Liu et al. 2016). Oil spill in sea ice poses 
greater challenges in terms of spatial and temporal frequency of observations from three differ-
ent regions affected by the oil spill: (1) open water, (2) MIZ, and (3) ice-covered ocean (Dickins 
and Buist 1999; Afenyo et al. 2016). The optical and microwave signatures of these three distinct 
regions are difficult to characterize with available scientific understanding of oil spill in sea ice 
(Table 7.1).

Active microwave: Electromagnetic response of oil in sea ice is expected to have a lower rela-
tive permittivity than newly formed sea ice (Brekke et al. 2014). The SAR signatures of 
oil-smeared sea ice also pose difficulty due to changing nature of physical and chemical 
properties of oil over time. This is called weathering of oil in sea ice. Weathering process 
includes spreading, drift, evaporation, dissolution, dispersion, emulsification, floccula-
tion, biodegradation, and oxidation. The dielectric constant, a parameter that radar is 
highly sensitive to, is dependent on the type of oil and its characteristics. It is possible 
to identify oil spill in sea ice using the radar sensors; however, it is hindered by the time 
varying spatial variability of the target. Brekke et al. (2014) have shown that the copo-
larization ratio (VV/HH) using SAR can be used for discriminating oil in sea ice from 
freshly frozen ice-covered Arctic. The dielectric properties of oil-smeared sea ice under 
varying wind conditions are less understood, indicating a need for dielectric models of 
a mixture of water and different types of oil and sea ice. The field, lab, and modeling 
experiments conducted by Bradford et al. (2008) indicate that ground penetrating radar 
(GPR) methods can detect oil films under sea ice as long as adequate energy reaches the 
ice–water interface (Bradford et al. 2010).

Hyperspectral: Near-infrared and optical remote sensing (multi- and hyperspectral) have been 
shown to have greater potential than SAR in detecting oil in sea ice. Hyperspectral sensors 
can provide a continuous reflectance spectrum from the mixture of different types of sea 
ice and oil. Liu et al. (2016) have measured the reflectance of seawater, pack ice, crude oil, 
and its mixture. The oil-contaminated ice has lower reflectance than that of compact ice for 
wavelengths smaller than 490 nm and higher beyond 510 nm (Figure 7.15c). Figure 7.15d 
shows the reflectance spectra of the pack ice contaminated with a thin film of oil (Liu et al. 
2016). The reflectance of the polluted pack ice is lower than that of clean ice between 560 
and 710 nm, which clearly discriminates the two types of ice (Liu et al. 2015c). Although 
oil can be distinctively identified in an oil-polluted sea ice environment using the visible 
and near-infrared hyperspectral channels, the time-varying behavior of oil-infested thick 
ice cover is unknown.

Acoustic: Acoustic methods show a great promise of detecting oil in sea ice (Fingas and 
Brown 2013). Acoustic waves propagate in different media (types of oil and ice) with dif-
ferent speeds and attenuation factors. This property of acoustic waves forms the basis of 
oil detection in, on, and under sea ice (Collis et al. 2016). Oil also behaves similar to a 
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solid that allows the propagation of secondary waves (S-waves or shear waves) in addition 
to transverse and compressive waves. S-waves travel much slower than the primary waves, 
and their arrival is delayed at the acoustic sensor (Wilkinson et al. 2007). If there are no 
sediments in sea ice, it is much easier to disseminate oil signal from that of sea ice (Fingas 
and Brown 2000). The operation of underwater/ice vehicles with acoustic sensors can be 
laborious and expensive enterprise.

Passive microwave: It is possible to detect oil in sea ice using a passive microwave sensor 
operated from airborne or spaceborne platform (Fingas 2015). Crude oil has higher emis-
sivity than the sea ice and seawater (Fingas and Brown 2000). This property of crude oil 
can easily identify areas of oil spill in the MIZ or the pack ice region. The detection of 
oil in sea ice using passive microwave sensors has its own limitations. The atmospheric 
correction of emitted radiation is critical for such investigation; second, the spatial reso-
lution of passive microwave sensors is too coarse for an effective oil spill response. Sea 
ice thickness and oil layer thickness can significantly alter the observations (Brekke and 
Solberg 2005). However, passive microwave radiometers have a unique potential of operat-
ing under all-weather conditions (Jha et al. 2008).

Ultraviolet: Ultraviolet (UV) remote sensing is very useful for detecting oil sheen on the 
ocean surface due to high reflectivity of UV radiation. UV method can provide a positive 
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nated with the oil film. (From Liu, B. et al., J. Spectrosc., Article ID 6584314, 2016. With permission.)



149Remote Sensing of Sea Ice Hazards

indication of oil-mixed sea ice in a MIZ; however, UV sensors suffer from spurious signals 
from sun glint, biomass, and wind disturbances to the sea surface (Fingas 2015). Similarly, 
laser fluorescence sensors identify areas of UV light absorption, indicating oil presence; 
however, the signal can also come from chlorophyll a, yellow substance, and colored dis-
solved organic matter.

7.3 MITIGATION MEASURES

With the exception of oil in sea ice hazard, other ice-related hazards can be effectively mitigated 
using sophisticated EO technology that is already in use and is being practiced by polar nations 
(Jha et al. 2008; Fingas 2015). Strategic planning and adequate protocols for operations in cold 
environment of polar regions can effectively mitigate many of the challenges of ice hazards related 
to melt ponds, ice edge, ice roughness and thickness, leads, and ice motion. The development of new 
technologies for the detection and better understanding of the hazard in a sea ice-covered ocean and 
related strategic plans are required for the mitigation of consequences of the hazard (Owens et al. 
1998). The mitigation can benefit by having the proximity to infrastructure in the extreme environ-
mental conditions in polar regions.

As oil spill in sea ice is the most devastating geohazards among other ice hazards, we 
keep our focus on the mitigation strategies of this aspect of ice hazard. Oil in sea ice hazard 
cleanup and mitigation measures are currently insufficient, and there exists a little understand-
ing of the science behind the interaction of oil with sea ice during winter and summer seasons 
(Kauranen 2016).

The following can be the approaches to mitigation plans for oil hazard in sea ice: 

• In-situ burning (transfer from ocean to atmosphere): In-situ burning of oil is the most 
common practice today; however, it only transfers the pollutants from the ocean to the 
atmosphere, which can have impact on global climate change (Benner et al. 1990).

• A wide range of oil types—knowledge of physical and chemical properties: There can be 
numerous kinds of oil types in the oil spill hazard in sea ice; a prior knowledge of physical 
and chemical properties of each oil type may help the mitigation (Fingas 2012).

• Toxicity testing of chemical herding agents before in situ burning: Before practicing dis-
persant use and spraying of herding agents in the Arctic/Antarctic, the toxicity testing of 
herding agents is required to contain the hazard from expanding further (Buist et al. 2011). 
Limited understanding exists on the use of dispersants for oil spill treatment in Arctic.

• Develop capacity for large-scale direct source injection of dispersant for subsea and sur-
face oil spill.

• Knowledge of wave energy in ice for effective application of dispersants (Ardhuin et al. 
2016): The understanding of ice behavior upon interaction with waves is still in infancy. 
The addition of dispersants to the oil–ice system makes it a complex media to study and 
prevents from making accurate model predictions.

• Mechanical recovery of oil in the presence of ice—extremely limited expertise.
• Combat interference of ice in mechanical recovery.
• Infrastructure for storage and disposal of recovered oil.
• Coastal vulnerability mapping is required (Barnhart et al. 2014).
• Shoreline cleanup and prespill assessment should be completed.
• Mitigation tactics should be based on geomorphological processes and biological parameters.
• Emphasis should be placed on natural recovery processes for shorelines.
• Detection of buried oil on the shorelines and landfast ice indicates a need of thorough 

understanding of coastal processes (Eicken and Mahoney 2014).
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7.4 CONCLUSIONS

This chapter provided an overview of available and future remote sensing techniques that can be 
used to (1) understand the scientific nature of the ice hazard, (2) make possible predictions, and 
(3) take effective mitigation measures. Despite our inability to confidently predict sea ice behavior 
due to lack of complete understanding of sea ice processes (physical, biological, chemical, geomor-
phological), the microwave satellites (e.g., Radarsat, AMSR-2, SMAP, Sentinel-1) have boosted our 
confidence manifold in the level of maturity, readiness, and NRT response for planning and execu-
tion of mitigation measures related to sea ice hazards in the Arctic or Antarctic. NRT MODIS rapid 
response Earth data and Radarsat imageries are already in use onboard various icebreakers in the 
Arctic for enhanced navigability. Theoretical approaches and parameterization of sea ice-related 
processes are continuously being rectified with the availability of large volumes of in situ and 
remote sensing observations. Microwave remote sensing has been and continues to be extremely 
useful in monitoring sea ice in the polar regions. The first decade of the twenty-first century has wit-
nessed unprecedented surge in ship- and space-based observations resulting in better understanding 
of ice hazards, for example, ice edge, thaw holes, rubble ice and ridges, ice leads and polynyas, and 
oil spill in sea ice. However, sea ice thickness and oil hazard in sea ice are still not well understood 
due to the complex nature of the processes involved and extreme polar environment. The main 
challenges that we face today are the poor understanding of the physics of turbulent (ice) boundary 
layer and inadequate parameterization of sea ice processes (at varying spatial and temporal scales) 
that are much needed for inclusion in regional and global climate and ice prediction models. Future 
avenues of work are open on the integrated use of various kinds of data (in situ and remote sens-
ing) in conjunction with the theoretical models and data assimilation. Our ability to predict sea ice 
behavior and associated geohazards is slated for improvement, as we grow with the development 
and integrated utilization of the EO technology as the way forward.
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8 Satellite Microwave Remote 
Sensing of Landscape 
Freeze–Thaw Status Related 
to Frost Hazard Monitoring

Youngwook Kim, John S. Kimball, and Jinyang Du

8.1 INTRODUCTION

An increasing frequency and intensity of extreme weather events have been reported under recent 
climate change (Solomon et al., 2007; Marino et al., 2011) and are associated with hydrometeoro-
logical hazards, including frost, drought, flooding, and wildfires (Bello and Aina, 2014; Yaodong, 
2005; Wang et al., 2012; Westerling, 2016). These natural disasters result in significant loss of life 
and property and negatively impact regional and national economies (Martino et al., 2009). Frost 
hazard monitoring is critical in countries where natural, agricultural, and man-made environments 
are directly influenced by the frost season. Spring freeze–thaw (FT) conditions influence processes 
involved in surface and groundwater storages, including soil permeability and water infiltration, the 
timing of seasonal snowmelt, river ice breakup, and the spring flood pulse (Kim et al., 2015; Park 
et al., 2016a). Warmer springs promote snowpack melting, which lowers the land surface albedo, 
allows greater absorption of incoming solar radiation, and further intensifies the melting process; 
relatively rapid and extensive thawing, and snowmelt increases the risk of flooding (Todhunter, 
2001; Whitfield, 2012) and landslides (Gauthier and Hutchinson, 2012). The timing and duration of 
the seasonal FT transition between predominantly frozen winter conditions and summer nonfrozen 
conditions are closely related to civil and transportation infrastructure damage risk (Thomachot 
et al., 2005; Larsen et al., 2008; Li et al., 2014). Ground surface deformations caused by seasonal 
surface uplift (frost heave) and subsidence (thaw settlement), and longer-term surface subsidence 
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associated with degradation of ice-rich permafrost, pose major threats to the safety and stability 
of human infrastructure (Nelson et al., 2001; Kääb, 2008; Chang and Hanssen, 2015). Although it 
may be paradoxical that global warming leads to an increase in the frequency of vegetation frost 
damage, several studies have reported that unusual winter thawing and earlier springs have led to 
tree dieback (Braathe, 1957, 1995; Bourque et al., 2005) and that the combination of earlier spring 
phenology onset followed by a sudden frost resulted in vegetation damage and productivity declines 
(Rigby and Porporato, 2008; Martin et al., 2010; Hufkens et al., 2012).

Satellite remote sensing has been widely used for monitoring frost season length (Kim et al., 
2014a) and for detecting frost-related occurrence and damage, including crop losses and freeze 
injury (Feng et al., 2009; Papagiannaki et al., 2014), vegetation productivity decline (Gu et al., 2008; 
Kim et al., 2014b), and frost heave (Kääb, 2008). Satellite microwave remote sensing technology 
has been used to develop efficient tools for regional and global retrieval, and monitoring of frost-
related metrics including landscape FT status (Kim et al., 2011, 2012; Du et al., 2015), Arctic ice 
phenology (Kang et al., 2012; Park et al., 2016a), snowmelt dynamics (Rawlins et al., 2005; Kim 
et al., 2015), and thaw–refreeze events (Derksen et al., 2009; Bartsch et al., 2010; Wilson et al., 
2013). The landscape FT status detected from microwave remote sensing is sensitive to weather and 
climate conditions and provides a useful metric for determining frozen temperature constraints on 
ecohydrology, surface energy, and permafrost processes (Kim et al., 2014a; Zhang et al., 2011; Park 
et al., 2016b). The frost season indicated from satellite microwave sensor observations influences the 
chilling requirements for vegetation dormancy and frost resistance, plant bud break, and blossom-
ing (Bennie et al., 2010; Yu et al., 2010). The timing and duration of seasonal frozen temperatures 
also effectively bound the potential growing season for crops and natural vegetation, thereby influ-
encing annual productivity (Buermann et al., 2013; Eccel et al., 2009; Fengjin and Lianchun, 2011).

In this chapter, we provide an overview of satellite active and passive microwave sensor char-
acteristics, pertaining to the retrieval of landscape FT status. We summarize some of the major FT 
classification algorithms and introduce a global daily FT Earth System Data Record (FT-ESDR) 
recently developed from similar long-term satellite passive microwave sensor observations. 
The  FT-ESDR is used to illustrate several frost-related metrics over the Northern Hemisphere, 
including the number of spring frost days (SFDs), which have been linked to anomalous declines in 
vegetation productivity and changing crop planting practices. Finally, recommendations are made 
for improving the detection and monitoring of frost-related environmental impacts, including 
developing finer resolution and multifrequency satellite FT data records, and for improving the 
integration of multisensor observations with other data for more comprehensive assessments.

8.2  SATELLITE MICROWAVE SENSOR CHARACTERISTICS 
RELATED TO THE FREEZE–THAW RETRIEVAL

Many operational satellite sensors provide global coverage and frequent temporal revisit capabili-
ties suitable for natural hazards assessment and monitoring (Chen et al., 2012; Gähler, 2016). For 
frost hazard monitoring, the satellite detection of landscape FT status can provide greater spatial 
coverage and accuracy than in situ measurements and spatially interpolated temperatures from 
sparse weather station networks, or regional weather model predictions (Gisnas et al., 2014; Kollas 
et al., 2014). Moreover, the limited temperature measurements available in weather station data-
sparse areas, including boreal-Arctic and mountainous regions, constrain capabilities for regional 
assessment and monitoring of frost hazards (Andre et al., 2015; Kim et al., 2011).

Terrestrial remote sensing applications generally exploit up to three spectral wavelength 
(or  frequency) regions, including visible and near-infrared (VNIR; 0.4–1 µm), thermal-infrared 
(TIR; 3.5–20 µm), and microwave bands (frequencies between 0.3 and 300 GHz). Remote sensing 
using lower frequency microwave bands has certain advantages for FT detection and monitoring, 
 including greater vegetation transparency and surface penetration ability, and less sensitivity to 
atmosphere cloud and aerosol contamination relative to VNIR and TIR bands. The global coverage 
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and overlapping orbital geometry of polar-orbiting satellites, coupled with relative microwave insen-
sitivity to solar illumination and atmosphere effects, allow for potential FT monitoring day and night 
throughout the year, especially at higher latitudes where frozen temperatures are more common and 
have generally greater ecosystem impact. Microwave sensors detect natural radiation emitted by 
the land surface (passive system) or the surface radar backscatter energy pulse originating from the 
sensor (active system). The sensitivity of passive and active microwave sensors to land surface FT 
is influenced by several factors, including microwave frequency and polarization, sensor incidence 
angle, surface moisture content, atmospheric parameters, and landscape dielectric properties.

Passive microwave sensors (i.e., radiometers) provide brightness temperature (Tb) retrievals 
 sensitive to surface temperature and emissivity. The emissivity depends on the surface moisture 
content, roughness, and dielectric properties (Bateni et al., 2013). The Tb retrieval represents the 
mean emitted radiation from the integrated land surface within the sensor footprint, including bare 
soil, vegetation, open water bodies, and snow cover (when present) elements (Holmes et al., 2015; 
Kim et al., 2011). The microwave emission and sensing depth are frequency dependent and gener-
ally shallower for wet surface conditions, and deeper for dry conditions due to the low emissivity 
and high attenuation of liquid water relative to dry soil (Ulaby and Long, 2014). Frozen condi-
tions, whereby liquid water in the landscape is immobilized as ice, exhibit microwave emissivity 
characteristics similar to dry soil. The emissivity of dry soil and pure water ice is relatively high 
at microwave frequencies, which correspond to their low dielectric constants. Upon melting, the 
new release of liquid water in the landscape results in an increase in the surface dielectric constant 
and corresponding decrease in surface emissivity. Large characteristic changes in surface dielectric 
properties and emissivity occur between predominantly frozen and nonfrozen conditions during FT 
transitions, resulting in a large Tb temporal shift and associated FT signal relative to background 
noise effects. Potential noise effects influencing FT retrieval performance include sensor calibra-
tion accuracy, non-FT-related changes in surface moisture conditions including seasonal phenology 
or disturbance-related variations in vegetation structure and water content, and rainfall events and 
associated surface wetting and drying. The emissivity of wet soil decreases at lower (e.g., L-band) 
microwave frequencies (Raytheon, 2000), leading to a larger Tb response to  surface moisture and 
FT variability relative to higher frequency observations (McDonald and Kimball, 2005; Das et al., 
2014). Microwave polarization is another important property, which refers to the predominant 
horizontal (H) or vertical (V) orientation of the electrical field of an electromagnetic wave. 
The frequency-dependent difference between H- and V-polarized Tb retrievals increases with sur-
face moisture content, whereas lower sensor incidence angles show less Tb polarization difference 
(Raytheon, 2000). The Tb sensitivity to vegetation is strongly influenced by vegetation opacity, which 
increases with higher microwave frequency and biomass density. Increase in vegetation opacity 
generally leads to reduced FT sensitivity to underlying soil conditions, but greater sensitivity to FT 
conditions within the vegetation canopy. The Tb sensitivity to deeper vegetation and soil layers is 
generally proportional to the landscape moisture content and sensor frequency; higher moisture levels 
in soil and vegetation layers reduce the effective depth of Tb sensitivity, whereas lower frequency 
(C-, L-band) sensor observations generally have greater depth of sensitivity than higher frequency 
(e.g., X-, K-band) observations. The Tb sensitivity to snow cover depends on the snowpack wetness, 
density, depth, and ice crystal structure, and it is more significant at higher frequencies (e.g., X-, 
K-band) due to more snowpack volume scattering (Ulaby et al., 1986; Lemmetyinen et al., 2011; 
Ulaby and Long, 2014). A constant sensor look angle and sampling time are generally optimal for 
the FT retrieval, although the Soil Moisture and Ocean Salinity (SMOS) and Aquarius radiometers 
have successfully used multitemporal Tb observations at variable sensor look angles for FT classifi-
cation (Roy et al., 2015; Rautiainen et al., 2016).

The underlying characteristics and physical basis for the FT retrieval are similar between 
passive and active microwave sensors. Active microwave sensors (e.g., radars, scatterometers) 
emit pulses of electromagnetic energy that are backscattered from the land surface, whereas a 
portion of the returned backscatter is measured by the sensor detector at a defined frequency, 
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polarization, and incidence angle. The received backscatter (σ0) signal represents the complex 
microwave  frequency and polarization-dependent interactions with aggregate landscape dielectric 
and  structural characteristics. The σ0 signal from natural snow cover is affected by three general 
parameters (Du et al., 2010a) relating to sensor characteristics (e.g., frequency, polarization, and 
sensing geometry), snow cover (e.g., snow density, particle size distribution and stratification, and 
free liquid water content), and subsurface conditions (e.g., dielectric and roughness at the snow-
ground interface). For vegetated land, radar σ0 is also sensitive to vegetation dielectric properties 
and canopy structure, including biomass water content, leaf and branch scatterer size, shape, and 
orientation (Du et al., 2010b). The radar σ0 sensitivity to vegetation is proportional to microwave 
frequency and polarization, and the size and distribution of the vegetation scattering elements 
(Ulaby et al., 1986; Elachi, 1987). The vegetation scattering effects are generally more significant 
at higher frequencies (McDonald and Kimball, 2005) and for radar relative to passive microwave 
remote sensing. Active microwave sensors generally enable measurements with finer spatial reso-
lution than passive sensors due to stronger radar energy emissions and the use of synthetic aperture 
radar (SAR) processing techniques to enhance signal-to-noise relative to passive microwave sen-
sors that rely on detecting low levels of natural microwave emissions. Compared with available 
satellite radiometers and scatterometers, which generally have high temporal fidelity (~1–2 days) 
but coarse (~ 25 km) spatial resolution, currently available satellite SARs provide finer (on the 
order of 10 m to 100 m) spatial resolution, but coarse (on the order of weeks) temporal repeat 
observations. Interferometric synthetic aperture radar (InSAR) processing measures the phase 
differences between SAR images of the same location taken at different times and is capable of 
deriving FT-induced surface deformations with centimeters precision (Bürgmann et al., 2000; Lu 
and Dzurisin, 2014; Schaefer et al., 2015). InSAR has also been used for detecting frost hazards 
(e.g., permafrost deformation) related to seasonal FT transitions (Chang and Hanssen, 2015; Chen 
et al., 2012; Kääb, 2008; Liu et al., 2010).

8.3 LANDSCAPE FREEZE–THAW CLASSIFICATION ALGORITHMS

Satellite VNIR and TIR sensors provide snow-covered area, surface albedo, and land surface tem-
perature (LST) observations that can be used to infer landscape FT status. However, for most of the 
cryosphere, frequent cloud cover, low solar elevation angles, shadowing, and low solar illumination 
limit regional monitoring from these sensors to relatively coarse 8–16-day temporal composites 
necessary to mitigate atmospheric effects (Cihlar et al., 1997). Satellite microwave remote sensing 
has unique capabilities that allow near real-time monitoring of landscape FT state without many of 
the limitations of VNIR and TIR sensors (McDonald and Kimball, 2005; Kim et al., 2011, 2012). 
The basic physical principle applied in FT classification is the relatively strong sensitivity of Tb and 
σ0 to large temporal shifts in landscape dielectric properties as the landscape transitions between 
predominantly frozen and nonfrozen conditions. The relative magnitude of the Tb or σ0 response 
to the FT state transition is dependent upon microwave frequency, surface moisture content, and 
aboveground land elements, including vegetation and snow cover (Ulaby et al., 1986). Despite the 
complex interactions that occur between microwave signals and land elements, the large dielec-
tric change and the associated Tb and σ0 response that occur from thawing and freezing of water 
in vegetation, snow, and soil allow for the FT classification (McDonald and Kimball, 2005; Kim 
et al., 2011, 2012). Low spatial resolution and high temporal revisit passive microwave sensors are 
well suited for detecting frequent FT state transitions from Tb time series, whereas finer resolution, 
but low-to-moderate temporal revisit active microwave sensors are better able to resolve spatial 
heterogeneity in landscape FT state transitions over complex terrain, heterogeneous land–water 
boundaries, and land cover conditions (Podest et al. 2014). However, radar imaging of regions with 
high topographic relief is subject to geometric distortions, including foreshortening and layover, 
depending on terrain slope-aspect variations and sensor viewing geometry. Radar shadow may also 
occur over mountainous areas when the radar beam is unable to reach the ground surface target 
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due to terrain obstructions, which result in no backscattered signal and FT information loss for the 
 terrain shadowed areas (Henderson and Lewis, 1998).

General approaches for classifying landscape FT status from satellite active and passive 
 microwave sensors include seasonal threshold, moving window, temporal edge detection, multi-
channel combinations, decision tree, and probabilistic model algorithms (Table 8.1). Temporal edge 
detection algorithms are suitable for the identification of dominant FT state transitions from Tb 
(Liu et al., 2005; Kimball et al., 2006) or σ0 observations (Park et al., 2011; Mortin et al., 2012). 
Moving window algorithms are useful for temporally consistent Tb or σ0 observations and deter-
mine FT state transitions by comparing microwave retrievals for a selected location and period with 
a  temporal moving window average Tb or σ0 condition defined from a preceding period (Frolking 
et al., 1999; Rawlins et al., 2005; Wang et al., 2008). Seasonal threshold algorithm (STA) approaches 
examine the temporal progression of microwave Tb (Smith et  al., 2004; Kim et  al., 2011, 2012; 
Podest et al., 2014) or σ0 (Du et al., 2015; Naeimi et al., 2012; Podest et al., 2014; Wilson et al., 2013) 
relative to seasonal reference frozen or nonfrozen conditions. The STA approach is well suited for 
determining daily FT conditions and for identifying multiple FT transition events, although algo-
rithm performance and classification accuracy depend on the quality and stability of FT reference 
conditions. Multichannel combination algorithms exploit microwave signal differences between ice 
and liquid water from two or more frequencies or polarizations (e.g., ratio, differences, and normal-
ization) for both σ0 (Bartsch et al., 2007) and Tb (Zhao et al., 2011; Wang et al., 2013; Rautiainen 
et al., 2014; Guo et al., 2015; Roy et al., 2015). Decision tree algorithms are similar to multichannel 

TABLE 8.1
Summary of the Major FT Classification Approaches and Their Relative Advantages and 
Disadvantages

Classification 
Approach Advantages Disadvantages

Temporal Edge 
Detection 
Algorithms

Suitable for identification of 
dominant FT state transitions

Less efficient for detecting smaller 
FT events, including daily or 
multiple FT transitions

Moving Window 
Algorithms

Suitable for identifying FT state 
transitions for a selected location 
and period on the basis of 
temporal anomalies computed 
relative to a preceding period

Sensitive to potential errors from 
non-FT-related, short-term 
microwave fluctuations

Seasonal Threshold 
Algorithms

Suitable for determining daily and 
multiple FT transition events

Classification accuracy depends 
on the quality and stability FT 
reference conditions

Multichannel 
combinations

Suitable for deriving composite 
classifications that distinguish FT 
conditions from different 
landscape elements

Potential errors from microwave 
frequency-dependent differences 
in sensing depths and sampling 
footprints

Decision Tree 
Algorithms

Useful for distinguishing FT 
conditions from precipitation 
events and in sparse vegetation 
and dry climate zones constrained 
by lower FT signal-to-noise

Less efficient for global domain 
due to larger computational costs 
and ancillary data requirements

Probabilistic Model 
Algorithm

Unsupervised classification from 
FT state transition probabilities 
that require no training data

Limitations from inherent 
assumptions of statistical models
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combination algorithms; in that, multiple microwave channels are used to classify FT status. The 
decision tree algorithm approach has been found to effectively distinguish FT conditions from pre-
cipitation events and in sparse vegetation and drier climate zones in which other approaches are 
constrained by lower FT signal-to-noise (Jin et al., 2009; Chai et al., 2014; Han et al., 2015). The 
probabilistic model algorithm approach computes FT state transition probabilities using statistical 
models (e.g., statistical Markov model) for recognizing temporal patterns in Tb or σ0 time series 
(Zwieback et al., 2012). All of these algorithms exploit the dynamic temporal response of Tb or σ0 
to the large characteristic changes in surface moisture and dielectric properties that occur as the 
landscape transitions between predominantly frozen and nonfrozen conditions. A major algorithm 
assumption is that the microwave temporal response to FT transitions is larger than other potential 
factors influencing Tb or σ0 variability, including seasonal variations in snow cover, surface wet-
ness, and vegetation cover. This assumption generally holds for northern temperate, boreal, Arctic, 
and alpine biomes with relatively well-defined frozen seasons and FT transition periods. However, 
large rainfall events can cause transient Tb or σ0 shifts similar to FT transitions, whereas a smaller 
temporal dielectric response to FT transitions under dry surface or soil conditions can degrade FT 
signal-to-noise. Sensor footprint temporal geolocation instability and mixed land and water hetero-
geneity in coastal or open water body dominant areas can also degrade FT classification accuracy.

Global and regional FT classifications have been generated using a variety of satellite  microwave 
active and passive systems and frequencies as summarized in Table 8.2. Sensor  frequencies used for 
FT retrievals have included L-band (1–2 GHz), C-band (4–8 GHz), X-band (8–12 GHz), Ku-band 
(12–18  GHz), and Ka-band (27–40  GHz) observations. Satellite FT detection using radiometers 
has generally low-to-moderate spatial resolutions (>25 km) ranging from shallower characteristic 

TABLE 8.2
Overview of Satellite Active and Passive Microwave Systems Used for FT Classification

Mission 
(Operation Period)

Frequency 
(GHz) Native Footprint Size Relevant Studies

Passive Radiometer
SMMR (1979–1987) 18 55 km × 41 km Smith et al. (2004)

37 27 km × 18 km Kim et al. (2011, 2012) and Smith 
et al., 2004

SSM/I(S)(1987–present) 19 70 km × 45 km Chai et al. (2014), Jin et al. (2009), 
Smith et al. (2004), and Podest et al. 
(2014)

37 38 km × 30 km Chai et al. (2014), Jin et al. (2009), 
Kim et al. (2011, 2012), and Smith 
et al. (2004)

AMSR-E (2002–2011) 18.7 27 km × 16 km Chai et al. (2014), Han et al. (2015), 
and Zhao et al. (2011)

36.5 14 km × 8 km Chai et al. (2014), Han et al. (2015), 
Kim et al. (2011, 2012), and Zhao 
et al. (2011)

AMSR2 (2012–present) 36.5 12 km × 7 km Kim et al. (2017)

SMOS (2009–present) 1.4 ~42 km Rautiainen et al. (2014, 2016), Roy 
et al. (2015), and Zwieback et al. 
(2012)

SMAP (2015–present) 1.41 39 km × 47 km Entekhabi et al. (2010) and Dunbar 
et al. (2015)

Aquarius (2011–2015) 1.413 62 km × 68 km–75km × 100 km Roy et al. (2015)

(Continued )
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 sensing depths at Ka-band to deeper sensing depths at L-band. Similar multifrequency passive 
microwave radiometer measurements from overlapping sensor records (e.g., Scanning Multichannel 
Microwave Radiometer [SMMR], Special Sensor Microwave Imager [SSMIS], Advanced 
Microwave Scanning Radiometer for Earth Observing System [AMSR-E], Advanced Microwave 
Scanning Radiometer 2 [AMSR2]) operating on polar orbiting operational environmental satel-
lites have enabled the development of long-term (>35years) global data records that can track 
FT daily, seasonal and interannual variability, and multidecadal trends (Kim et al., 2011, 2012). 
Satellite Ku-band and C-band scatterometers (e.g., quick scattermeter (QuikSCAT) and advanced 
scatterometer (ASCAT)) have moderate resolution (~25 km) to retrieve surface FT state, but with 
greater sensitivity to vegetation and snow cover conditions. Lower frequency (<10 GHz) SAR pro-
vides relatively finer resolution (10–100 m), but coarse (on the order of weeks) temporal repeat FT 
observations. The lower frequency L-band retrievals from SAR and passive microwave radiometers 
(e.g., SMOS, Soil Moisture Active Passive [SMAP]) also provide potentially enhanced sensitivity to 
soil FT conditions (Entekhabi et al. 2010).

Mission 
(Operation Period)

Frequency 
(GHz) Native Footprint Size Relevant Studies

Active Scatterometer
NSCAT (1996–1997) 14 9 km × 32 km Frolking et al. (1999) and Kimball 

et al. (2001)

QuikSCAT/Seawinds 
(1999–2009)

13.4 25 km × 37 km Bartsch et al. (2007), Colliander et al. 
(2010, 2012), Podest et al. (2014), 
Rawlins et al. (2005), Wilson et al. 
(2013), and Zwieback et al. (2012)

ASCAT (2006–present) 5.255 25–50 km Bartsch et al. (2012), Naeimi et al. 
(2012), and Zwieback et al. (2012)

Aquarius (2011–2015) 1.26 76–94 km × 96–156 km Xu et al. (2016)

Active SAR
ERS1/SAR (1991–2000) 5.30 6–30 m Rignot et al. (1994) and Podest 

et al. (2014)

ERS2/SAR (1995–2011) 5.30 6–30 m Rignot et al. (1994)

Radarsat-1 (1995–2008) 5.30 8–100 m Murphy et al. (2001)

Radarsat-2 (2007–present) 5.405 1–100 m Jagdhuber et al. (2014)

JERS-1 SAR (1992–1998) 1.27 18 m Podest et al. (2014)

Envisat/ASAR (2002–2012) 5.331 30–1000 m Park et al. (2011)

ALOS/PALSAR 
(2006–2011)

1.27 7–100 m Colliander et al. (2011) and 
Du et al. (2015)

ALOS2/PALSAR2 
(2014–present)

1.20 1–100 m Rosenqvist et al. (2014)

TerraSAR-X 
(2007–present)

9.65 1–16 m Antonova et al. (2016)

Sentinel-1A 
(2014–present)

5.405 5–40 m Malenovský et al. (2012)

Sentinel-1B 
(2016–present)

5.405 5–40 m Malenovský et al. (2012)

SMAP (2015) 1.26 1–3 km Entekhabi et al. (2010) and 
Dunbar et al. (2015)

TABLE 8.2 (continued )
Overview of Satellite Active and Passive Microwave Systems Used for FT Classification
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8.3.1 a satellite passive microWave global freeze–thaW Data recorD

A long-term global satellite data record of daily landscape FT conditions (i.e., the FT-ESDR) is 
used in this chapter to illustrate FT-related applications for frost hazard assessment and moni-
toring. The FT-ESDR is a publicly accessible database developed from calibrated overlapping 
satellite microwave Tb time series extending over more than 35 years of continuous observations 
(Kim et al., 2014c, 2017). The FT-ESDR was derived using a STA temporal change classifica-
tion of similar 37  GHz V-polarized (pol) daily Tb records from the SMMR, Special Sensor 
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FIGURE 8.1 Selected daily combined (CO) FT-ESDR classification results for 2007, representing: 
(a) Apr 19 (DOY 109), (b) Jul 20 (DOY 201), (c) Oct 30 (DOY 303), and (d) Dec 26 (DOY 360). White 
and grey colors denote respective open water bodies and land areas outside of the FT-ESDR domain. FR 
denotes frozen conditions (AM and PM frozen); NF denotes non-frozen (AM and PM thawed); TR denotes 
transitional (AM frozen and PM thawed) and INV-TR denotes Inverse transitional (AM thawed and PM 
frozen) conditions.
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Microwave Imager (SSM/I), and SSMIS. The FT-ESDR provides a daily classification of the pre-
dominant frozen or nonfrozen status of the land surface within a satellite sensor footprint. The 
37 GHz frequency Tb retrievals have relatively high atmospheric transmittance and are sensitive 
to surface layer conditions (Holmes et al., 2013; Andre et al., 2015). The V-pol Tb retrieval is less 
sensitive to surface moisture variations and snow, and ice stratifications than H-pol Tb retrievals 
(Owe et al., 2008; Green et al., 2012). The FT-ESDR distinguishes twice daily (AM and PM) FT 
status from ascending and descending satellite overpass observations, posted to a 25 km EASE-
Grid geographic projection (Brodzik and Knowles, 2002). The FT-ESDR also includes similar 
global daily FT data records derived from the National Aeronautics and Space Administration’s 
(NASA’s) AMSR-E daily (AM and PM overpass) 36.5 GHz (V-pol) Tb retrievals (June 2002–
September 2011); the AMSR-E sensor ceased operations in 2011, whereas the associated FT 
record has been extended to more recent years using compatible Tb measurements from the 
Japan Aerospace Exploration Agency’s (JAXA’s) AMSR2 sensor record. Satellite ascending and 
descending orbital data time series are processed separately to produce information on morning 
(AM), afternoon (PM) and composite daily FT conditions (CO). Four categorical daily FT clas-
sification levels are provided, including frozen (AM and PM frozen), nonfrozen (AM and PM 
thawed), transitional (AM frozen and PM thawed), and inverse transitional (AM thawed and PM 
frozen) status. The FT-ESDR provides a daily FT classification across the vegetation–snow–soil 
continuum within a global domain (Figure 8.1). The global FT-ESDR domain encompasses all 
FT affected areas where seasonal frozen temperatures are a significant constraint to surface 
water mobility and ecosystem processes (Kim et al., 2017).

8.3.2  ft Detection from the phaseD array l-banD 
synthetic aperture raDar active sensor

The phased array L-band synthetic aperture radar (PALSAR) sensor onboard the JAXA’s Advanced 
Land Observing Satellite (ALOS) and its successor PALSAR2 are among the few L-band space-
borne radars available for studying L-band SAR-based landscape FT detection. The PALSAR 
ScanSAR mode was capable of acquiring radar σ0 data over a swath as large as 350 km, resulting in 
variable incident angle radar σ0 retrievals. Different from the coarse resolution (~25 km) and high 
temporal repeat observations (~1–2 days revisit time) of satellite radiometers and scatterometers, 
PALSAR ScanSAR had a much finer (~100 m) spatial resolution, but much lower temporal fidelity 
(46 day orbit revisit). A similar STA approach as the FT-ESDR was used with PALSAR L-band 
σ0 to classify the FT pattern over Alaska (Du et al. 2015); these results are used in this chapter to 
illustrate spatial scale differences between the relatively coarse FT-ESDR and finer resolution SAR 
classification. A similar STA approach was used for production of a global FT product derived from 
NASA’s SMAP L-band radar σ0 retrievals (Entekhabi et al., 2010; Dunbar et al., 2015). The STA 
relies on a pixel-wise FT temporal change classification of radar σ0 differences from reference fro-
zen or nonfrozen conditions.

An example FT state map derived from 100 m resolution PALSAR retrievals over a subregion of 
Alaska (67.6°N–68.1°N, 155.6° W–157.2°W) for April 29, 2007 is shown in Figure 8.2. The resulting 
FT classification shows the general spring FT transition for the subregion where frozen conditions 
are more prevalent at higher elevations, whereas the lower valley areas and south-facing slopes 
show predominately thawed conditions. The relatively fine-scale SAR retrievals distinguish large 
characteristic FT spatial heterogeneity congruent with the influence of terrain slope and aspect, 
and vegetation cover on local microclimate variability. This level of FT spatial heterogeneity is lost 
in the coarser scale FT-ESDR retrievals (Figure 8.1), though the FT-ESDR distinguishes daily FT 
variability and has global coverage.
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8.3.3 freeze–thaW metrics relateD to frost hazarDs

Various FT-related metrics including the start, end, and length of the frost season have been used 
as climate indicators (Easterling et al., 2002; Moonen et al., 2002; Rawlins et al., 2016). Spatial 
and temporal changes in FT-related climate indicators have been linked with terrestrial ecosystem 
impacts, including the timing of spring bud burst and leaf out, photosynthetic activity, and the tim-
ing and pathways of animal migrations (Wolfe et al., 2005; Hufkens et al., 2012; Schwartz et al., 
2013). Previous studies have documented a variety of FT-related climate indicators using in situ field 
measurements (Bourque et al., 2005; Augspurger, 2013; McCabe et al., 2015), including icing day 
(Tmax < 0°C), frost day (Tmin < 0°C), and cumulative plant growing degree day metrics (Alexander 
et  al., 2006; Richardson et  al., 2006). SFDs determined from surface freezing air temperatures 
have been developed for studying temporal variability of the spring frost season (Heino et al., 1999; 
Bonsal et al., 2001; Frich et al., 2002; Kunkel et al., 2004) and for analyzing frost impacts on spring 
phenology (Linkosalo et al., 2000; Augspurger, 2013; Lenz et al., 2016) and crop planting dates 
(Parker et al., 2016). Frost events have also been considered as significant hazardous frost processes 
for improving ecosystem models (Poirier et al., 2010; Rammig et al., 2010) and phenological models 
(Cannell and Smith, 1986; Cittadini et al., 2006).

The frost season derived from the FT-ESDR is defined as an accumulation of frozen days 
during a year. The frost seasons were derived for each EASE-Grid cell within the global domain 
on an annual basis over the 36-year (1979–2014) FT-ESDR. The resulting 36 annual counts 
were averaged for each grid cell to obtain a mean annual frost season map. The resulting annual 
frost season and frost probability maps are shown in Figure 8.3. These results show a global 
mean annual frost season of 126.9 ± 119.0 (spatial SD) days for the 1979–2014 satellite record, 
and a general increase in the average frost season and probability of frost occurrence at higher 
latitudes and elevations. Longer frost season duration and higher probability of frost are found 
in mountainous areas, including the Rocky Mountains, Alps, Andes, and the Tibetan plateau. 
The frost season determines the timing and effective duration of the growing season, and the 
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FIGURE 8.2 Spring FT pattern over a sub-region of Alaska (67.6° N-68.1°N, 155.6° W-157.2°W) 
derived from 100 m resolution PALSAR L-band radar backscatter retrievals for April 29, 2007, follow-
ing Du et al. (2015). The resulting image is draped over a digital terrain map. Open water bodies are 
denoted in black.
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seasonal progression of land–atmosphere water, energy, and carbon exchange in which frozen 
temperatures are a major constraint to ecosystem  processes and land surface water mobility 
(Penuelas et al., 2009; Kim et al., 2014b).

The timing and duration of freezing temperatures in spring have been linked to large varia-
tions in spring phenology and annual vegetation productivity in temperate and northern climate 
areas (Tubiello et  al., 2007; Vitasse et  al., 2009; Schwartz et  al., 2013). In this chapter, we 
define a SFD metric as the total number of FT-ESDR derived frozen or transitional frost days 
in spring (March–May) (Kim et al. 2014b) in which the resulting SFD metric ranges from 0 
(no spring frost events) to 92 (complete spring frozen period) days. The SFD results show a 
general latitudinal gradient and a mean of 44.0  ±  29.3 (spatial SD) days over the Northern 
Hemisphere (Figure 8.4a), with large interannual (SD) variability (Figure 8.4b). The SFD vari-
ability is more extreme along the boundaries of major climate zones and air masses, including 
the interior continental United States, Central Canada, Europe, Southern Greenland, Central 
Asia, and Southern China.
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FIGURE 8.3 (a) Average annual frost season (frozen and transitional days) and (b) mean annual frost occur-
rence probability (%) derived from the FT-ESDR 36-year (1979–2014) record.
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8.4  SATELLITE DETECTION OF FROST DAMAGE-RELATED 
IMPACTS ON VEGETATION GROWTH

The end of frost in spring is a prerequisite for bud-burst and canopy onset, whereas earlier plant 
leaf out and late spring frost events can cause frost damage to vegetation, including leaf  pigment 
injuries, withering and loss of canopy photosynthetic capability (Ensminger et al., 2004; Lazarus 
et  al., 2006; Oksanen et  al., 2006). Frost damage can also affect a wide range of vegetation 
(Awaya et al., 2009; Hufkens et al., 2012; Kreyling et al., 2012), including crops (Rodrigo, 2000; 
Carter et al., 2006; Fengjin and Lianchun, 2011). For example, extraordinary warm spring tem-
peratures in May and June of 2007 were recorded in the northeastern United States relative to 
the long-term (1971–2000) climatology; the anomalous warm temperatures were followed by a 
late spring freezing event extending across several states (Blunden et al., 2011; Guirguis et al., 
2011). The effects of this event were widespread and ranged from mild leaf damage to complete 
canopy defoliation. The anomalous spring warming in 2007 led to early canopy leaf out and plant 
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FIGURE 8.4 (a) Average annual spring frost day (SFD) metric (days) and (b) SFD temporal standard devia-
tion (SD) derived from the FT-ESDR 36-year (1979–2014) record. Grey denotes land areas outside of the 
FT-ESDR domain.
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growth across eastern and central North America. The relatively early spring leaf out coupled with 
the subsequent late spring frost event resulted in widespread frost damage to vegetation growth, 
including forests and managed cropland (Gu et al., 2008; Kim et al., 2014b).

Several studies have documented frost damage-related patterns and severity to vegetation using 
satellite VNIR remote sensing ranging from relatively fine resolution Landsat imagery (Olthof et al., 
2004; King et  al., 2005; Wang et  al., 2012) to Moderate Resolution Imaging Spectroradiometer 
(MODIS) and Satellite Pour l’Observation de la Terre (SPOT; Earth-observing satellite) imagery 
(Silleos et al., 2002; Feng et al., 2009; Currit and Clair, 2010). These studies have focused on the use 
of image classification techniques and change detection for analyzing frost-related impacts on veg-
etation greenness, photosynthetic canopy structure, and productivity. LST from advanced very high 
resolution radiometer (AVHRR) and MODIS TIR remote sensing has also been used for detecting 
and mapping frost occurrence and extent (Kerdiles et al., 1996; Tait and Zheng, 2003; Pouteau et al., 
2011). However, LST monitoring of transient frost occurrences from global satellite VNIR and TIR 
sensors is constrained by data loss and temporal compositing requirements necessary to mitigate 
cloud and atmosphere contamination effects. VNIR signals are sensitive to plant photosynthetic 
canopy phenology and productivity, whereas passive microwave remote sensing is well suited for 
monitoring high temporal (e.g., daily) variations in landscape FT status. LST retrievals from TIR 
sensors may also provide effective information for FT monitoring (Hachem et al., 2009), although 
capabilities for global monitoring of transient FT events may be constrained by cloud and atmo-
sphere contamination effects and information loss.

A satellite data fusion approach combining vegetation greenness and FT information from 
VNIR and passive microwave sensors was recently applied for assessing frost damage-related 
impacts to ecosystem productivity (Kim et al., 2014b). VNIR sensor-derived land surface phenol-
ogy from a vegetation greenness index (VI) was combined with FT-ESDR-derived frost season 
metrics to define the number of damaging frost days (NFD) over the conterminous United States. 
The NFD was defined as the sum of FT-ESDR-observed spring frost events following VI-defined 
canopy onset when vegetation is more vulnerable to frost injury. In this chapter, the NFD record 
is extended over the entire Northern Hemisphere and a longer period (1981–2014). The annual 
spring start of season (SOS) and day of peak (DOP) VI greenness for the study period were 
obtained from a globally consistent and continuous 5.6 km resolution (0.05° × 0.05°) satellite 
VNIR sensor-based vegetation phenology record (Barreto-Munoz, 2013; Didan et  al., 2016a). 
The 5.6 km SOS and DOP data were projected to a consistent 25 km global EASE-Grid format 
and used with the FT-ESDR to determine the number of frost days occurring between spring 
canopy onset and peak seasonal canopy development for each year of record and grid cell over 
the Northern Hemisphere domain.

The NFD metric defines the accumulation of FT-ESDR-classified frost (frozen or transitional) 
days between SOS and DOP as determined from the VNIR phenology record. The resulting NFD 
pattern varies according to different locations, terrains, climates, vegetations, and land cover con-
ditions, ranging up to a maximum period defined by the SOS and DOP difference. The Northern 
Hemisphere shows a mean NFD count of 7.7 ± 9.4 (spatial SD) days (Figure 8.5a), with large year-
to-year variability (Figure 8.5b). Unlike the SFD metric representing the sum of all frost days in 
spring (Figure 8.4), the NFD metric only accounts for frost days occurring during the period of 
active canopy development, when vegetation is more sensitive to frost damage and impaired growth 
(Kim et al., 2014b).

Early spring leaf development has the potential to increase exposure to potential frost damage 
(Strimbeck et al., 1995; Inouye, 2008), including loss of stored carbon and nutrients, and reduction 
of photosynthetic carbon uptake by natural and cropland vegetation (Gu et al., 2008; Martin et al., 
2010). Previous studies indicate an increasing NFD regional trend over the continental United States 
(Kim et al., 2014b). Similarly, the spatial mean NFD trend over the Northern Hemisphere domain is 
0.05 ± 0.62 day year−1 (spatial SD) for the 1981–2014 records. The temporal NFD trends are defined 
using prewhitened Kendall’s tau statistics screened for outliers (≥ ±2 temporal SD). The regional 
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distribution of the NFD trend is heterogeneous over the Northern Hemisphere (Figure 8.6), indi-
cating relatively large increases in damaging frost events over western North America, northern 
Europe, and central Eurasia. The NFD trend is increasing for 34.5% of the Northern Hemisphere 
domain. As indicated in a previous study (Kim et al., 2014b), a positive NFD trend indicates greater 
risk of damaging frost events leading to loss of vegetation productivity. The general increase in NFD 
occurrence is associated with an earlier spring vegetation greening trend. Regional trends toward 
earlier onset of the growing season have been attributed to global warming and the relaxation of cold 
temperature constraints to vegetation growth, which paradoxically increases frost damage risk in 
many areas. The positive NFD trend implies that the danger of leaf damage from spring frosts may be 
greater than the potential gains to annual vegetation growth from early leaf out (Kim et al., 2014b).
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FIGURE 8.5 (a) Average annual number of NFD damaging frost days and (b) NFD temporal standard 
deviation (SD) derived from the FT-ESDR 34-year (1981–2014) record. Grey denotes land areas outside of the 
FT-ESDR domain or no availability of VI defined SOS and DOP vegetation phenology metrics.
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8.5  APPLICATIONS USING ENHANCED RESOLUTION 
SATELLITE FREEZE–THAW DATA RECORDS

Similar daily 36.5 GHz, V-pol Tb records from the AMSR-E and AMSR2 sensors were integrated 
to produce a consistent FT daily data record over the Northern Hemisphere. The AMSR-E sen-
sor was operational on the NASA Aqua satellite from June 2002 to October 2011 and provided 
twice-daily global Tb observations with sensor descending/ascending orbital equatorial cross-
ings at 1:30  AM/PM local time. After the loss of AMSR-E normal operations on October 4, 
2011, the successor AMSR2 sensor was launched on May 18, 2012 on the JAXA global change 
 observation mission – water satellite 1 (GCOM-W1) satellite. AMSR2 is similar to AMSR-E 
in sensor configuration, including microwave frequencies, sensor incidence angles, and orbital 
equatorial crossing times. The AMSR-E 36.5 GHz orbital swath Tb data have a native footprint 
resolution of 14 km × 8 km (Kawanishi et al., 2003); these data were merged with similar fre-
quency Tb orbital swath (L1R) data from AMSR2 with a native 12 km × 7 km footprint resolu-
tion (Imaoka et al., 2010) by resampling the Tb records to a consistent 6 km polar EASE-Grid 
projection format (Brodzik et al., 2012, 2014). The AMSR FT retrieval is obtained using the STA 
approach, which classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated 
using 6 km resolution surface air temperature (SAT) maps downscaled from coarser (0.25°) spa-
tial resolution European reanalysis (ERA)-Interim global reanalysis daily surface meteorological 
data using a digital elevation map (DEM) and environmental lapse rates (ELR). The daily grid 
cell-wise ELR was derived from the linear regression relationship between DEM elevations and 
Aqua MODIS LST retrievals. The resulting FT record is mapped to a 6  km resolution polar 
EASE-Grid for the Northern Hemisphere domain and spans more than 14 years of observations 
(2002–2016) from both AMSR-E and AMSR2 sensors. The resulting FT record shows relatively 
enhanced delineation of the spring thaw pattern over Alaska relative to the coarser (25 km) resolu-
tion global FT-ESDR (Figure 8.7). Here the primary spring thaw date is estimated from the daily 
FT records for each grid cell as the first day for which 12 out of 15 consecutive days from January 
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FIGURE 8.6 Regional Kendall’s tau trend patterns (days yr−1) derived from the number of NFD damag-
ing frost days (1981–2014) over the Northern Hemisphere. Grey denotes land areas outside of the FT-ESDR 
domain or no availability of VI defined SOS and DOP vegetation phenology metrics.



172 Remote Sensing of Hydrometeorological Hazards

to June were classified as nonfrozen (Kim et al., 2014a). Other spatial enhancement techniques 
are available and may provide greater accuracy, including Backus–Gilbert, truncated singular 
value decomposition (TSVD), smoothing filter-based intensity modulation (SFIM) techniques 
(Migliaccio and Gambardella 2005; Santi 2010; Lenti et al., 2014), machine learning algorithm, 
and data assimilation-based fusion of coarser passive microwave and finer scale VNIR, TIR, and 
radar data (Zhan et al., 2006; Song et al., 2014; Kou et al., 2016). Other fine-scale auxiliary data 
(e.g., topography) can also be used for downscaling coarser resolution data using statistical corre-
lations (Reichle et al., 2001; Chauhan et al., 2003) or distributed physically based models (Pellenq 
et al., 2003; Merlin et al., 2013).

For the frost hazard monitoring case study, the AMSR-E 6 km daily FT data records were used 
for analyzing the documented anomalous spring freezing event that occurred in April 2007 over 
the continental United States (Gu et al. 2008). The AMSR-E daily FT state maps of frost affected 
areas within nine states (MO, IL, IN, KY, TN, GA, AL, MS, and AR) reporting unusual spring 
freezing events in April 2007 are shown in Figure 8.8. The frost maps are also presented with 
corresponding VI anomaly maps indicated from the satellite VNIR Enhanced Vegetation Index 
(EVI2) (Barreto-Munoz, 2013; Didan et al., 2016b). The EVI2 metric is derived at 5.6 km resolu-
tion and is used as a proxy for changes in vegetation photosynthetic canopy cover and productiv-
ity (Kim et al., 2010; Zhang et al., 2014). The EVI2 anomalies represent the difference between 
the daily VI retrieval and the corresponding daily mean climatological value derived from the 
2000 to 2014 satellite records. These results indicate that the extent of frost-affected areas is 
considerably larger on April 8, 2007 and extends over nine states. The enhanced 6 km resolution 
AMSR-E frost sequence maps are closer in scale to the 5.6 km resolution EVI2 record than the 
coarser (25 km) global FT-ESDR, providing improved delineation of frost patterns and associated 
impacts to vegetation growth over the affected regions. Frost occurrence is primarily captured as 
nighttime freezing followed by subsequent daytime thawing indicated by the AMSR-E Tb orbital 
acquisitions at 1:30 AM/PM local time, and recorded as transitional (AM frozen, PM thaw) frost 
events by the AMSR-E FT daily composite. The anomalous frost occurrence is followed by a 
widespread decrease in EVI2-derived photosynthetic canopy cover and vegetation productiv-
ity. The frost-related damage to vegetation growth persists even after the cold snap has ended. 
Vegetation recovery from damaging spring frost events may extend up to several weeks or more 
following frost occurrence and can also result in plant mortality and annual productivity decline 
(Gu et al. 2007, Kim et al. 2014).
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FIGURE 8.7 Spring primary thaw pattern over Alaska derived from AMSR-E 36GHz V-pol Tb retrievals at 
25-km (a) and 6 km (b) resolution for 2007.
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8.6 CONCLUSIONS

Accurate and timely assessment of frost risk and occurrence is critical in countries where natural 
and man-made environments are directly influenced by freezing temperatures. Satellite remote 
sensing provides an effective means for global monitoring of frost occurrence and associated 
ecological impacts. The FT-ESDR introduced in this chapter is one of the most consistent and 
longest global satellite environmental data records, spanning all significant frost-affected land 
areas and providing daily delineation of FT status that can be used to inform frost risk and dam-
age assessments. Satellite radar sensors (e.g., SAR) are capable of finer spatial delineation of 
frost events than passive microwave sensors, which may have particular value over heterogeneous 
land cover and mountainous regions, but at the expense of degraded temporal fidelity for regional 
monitoring. The increasing cost and risk of extreme weather events and natural disasters have led 
to a growing demand for near real-time geospatial detection and monitoring capabilities, includ-
ing suddenly evolving frost events. Capabilities for near-real time FT monitoring are enabled by 
currently operational global environmental satellites, whereas further investments in rapid data 
processing and distribution services would facilitate disaster early warning, assessment, and rapid 
response planning.
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FIGURE 8.8 (a) Anomalous spring frost and (b) vegetation greenness (EVI2) patterns for April 2007 over 
the central United States including: MO, IL, IN, KY, TN, GA, AL, MS, and AR. The frost pattern is derived 
from 6-km resolution AMSR-E daily Tb retrievals, and includes frozen (FR; AM and PM frozen), non-frozen 
(NF; AM and PM thawed), transitional (TR; AM frozen and PM thawed) and Inverse transitional (INV-TR; AM 
thawed and PM frozen) FT categories. The EVI2 anomaly maps (5.6-km resolution) indicate higher (in red) 
and lower (in blue) canopy greenness and productivity differences from the EVI2 climatological (2000–2014) 
mean for each grid cell.
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Warmer springs associated with global climate change are promoting earlier onset of vegeta-
tion growth and increased risk of frost damage in many areas that are affected by seasonal frozen 
temperatures. These environmental trends not only impact vegetation productivity but may also 
alter plant community composition, ecosystem function, and biosphere–atmosphere interactions. 
A shift in the extent and frequency of thawing and freezing with climate warming may influence the 
structure and duration of seasonal snow cover, adversely affecting animal habitats, migration and 
foraging success, and human infrastructure (Jorgenson et al., 2001; Li et al., 2014; Kim et al., 2015; 
Leblond et al., 2016; Riseth et al., 2016).

The NASA’s SMAP mission began effective operations in April 2015, producing new global 
observations of landscape FT status and associated impacts on water mobility and ecosystem pro-
ductivity with enhanced L-band microwave sensitivity to surface soil conditions underlying vegeta-
tion and snow cover, and with near daily temporal monitoring capabilities (Dunbar et al., 2015). 
However, wet snow and dense vegetation can still obscure the soil FT signal. The use of model data 
assimilation and data integration techniques utilizing a diversity of environmental observations 
from satellite VNIR and microwave sensors, active and passive microwave frequencies and polar-
izations, and other geospatial data may enable enhanced delineations of snow, soil, and vegetation 
elements from the aggregate FT retrieval (Farhadi et al., 2015; McColl et al., 2016; Podest et al., 
2014). Despite loss of the SMAP radar, which ceased functioning after approximately 2.5 months 
of operations, similar operational FT products are being developed using the SMAP radiometer, 
which continues normal operations. Enhanced resolution FT products are also being developed 
from SMAP L-band radiometer retrievals with 9 km spatial gridding through postprocessing of 
overlapping Tb retrievals (Das et al., 2016). Better understanding of relations between surface condi-
tions and microwave signals at finer spatial resolution and various frequencies would enhance sat-
ellite microwave remote sensing capabilities for frost hazard monitoring over complex terrain and 
land cover areas. Other satellite microwave sensor records are available and may provide additional 
FT information, including the Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager 
(TMI) and the precipitation radar (PR); these sensors potentially provide higher temporal fidelity 
FT observations in lower latitude and high elevation regions (e.g., Himalaya and Rocky Mountain 
ranges), and relatively finer spatial resolution retrievals (~14  km for TMI and ~4.5  km for PR; 
Viltard et al., 2006). Continuing satellite microwave observations from existing global operational 
satellites allow for the development and extension of global environmental data records capable 
of distinguishing transient weather events from periodic climate anomalies and long-term climate 
trends in frost events, risk probabilities, and hazards. The recent launch of the next-generation sat-
ellite sensors (e.g., SMAP) designed for FT detection and producing operational FT data products 
provide for new frost hazard applications. All of these recent advances offer capabilities for new 
investigations and regional monitoring of frost hazards and environmental impacts.
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9.1 INTRODUCTION

Safe transportation during the winter months depends highly on temperatures and on the presence 
of snow or ice on the road surface. During periods with wintery conditions, there is a higher risk of 
car accidents due to road slipperiness and delays due to lower commuting speed. In more extreme 
weather, the road may be inaccessible even for essential traffic such as ambulances, fire engines, and 
police cars, causing a major issue for civil protection agencies.

Road closures can lead to significant economic losses. According to the Washington State 
Department of Transportation between 1992 and 2004, one of the main motorways of the state (I-90) 
had been closed on average 120 h per year, causing an annual loss of at least $17.5 million dollars. 
In addition, the crash rate on the I-90 highway in the presence of snow has been found to be about 
five times the rate compared to clear conditions (Federal Highway Administration 2006).

Winter road maintenance costs depend on the type of climate of each country. In Japan, for 
example, which has the snowiest roads in the world, approximately £1.1 billion is spent annually 
for clearing and melting the snow from the roads (Chapman et al. 2001). In North America, where 
the climate conditions vary greatly throughout the country, £1.7 billion is spent annually on win-
ter road maintenance, which accounts for 40% of global spending approximately (Boselly et al. 
1993). In the United Kingdom, which is considered as a country with marginal winter environment, 
£140 million is spent every year on winter road maintenance (Cornford and Thornes 1996). At the 
same time, the side effects of salt corrosion and damage to vehicles and structures cause an extra 
annual cost of £100 million (Thornes 2000). It is apparent from the aforementioned references that 
significant amount of money could be saved annually by optimizing winter maintenance measures.

A precise prediction concerning road surface temperature (RST) in a road network is critical 
especially during the winter months even in areas with temperate climate, as marginal temperatures 
may be observed during nighttime. Highway authorities use this type of information as a reference 
tool for planning precautionary measures, such as salting and gritting of the road. It is essential for 
highway engineers and meteorologists to plan a network of field meteorological stations, which will 
assist in the monitoring of weather conditions of roads. Finally, this information is important to be 
communicated to road users so that they can adjust their driving behavior accordingly.

Prediction of frost daily duration and intensity is very important for roadway maintenance person-
nel in order for them to decide when, where, and which protection measures should be used (Greenfield 
and Takle 2006). Winter nighttime road temperatures may vary by over 10°C across a network. Such 
variation means that some stretches of road may fall below freezing temperatures, whereas other may 
remain well above freezing. It is vital to identify not only when ice or frost conditions are likely to 
occur but also to identify which road sections are most susceptible (Shao et al. 1997).

Two main strategies are currently used for winter maintenance: deicing and anti-icing. In the first 
method, chemicals are applied that melt ice and snow. In the latter, the use of chemicals is preventive 
as their target is to reduce ice by hindering bonds between ice crystals and road pavement. Anti-icing 
is preferred to deicing as it reduces the total chemical use, is more environmentally friendly, and 
allows a higher level of public service (Berrocal et al. 2010).

However, both strategies have important corrosive and environmentally damaging effects on soil, 
vegetation, streams, road surface, and to the vehicles themselves (Shao et al. 1996; Ramakrishna 
and Viraraghavan 2005). Thus, understandably, being able to provide a precise prediction of road 
weather conditions, precautionary measures could be avoided if they are unnecessary, as well as 
their environmental and economic cost could be reduced.
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The aim of the study included in this chapter is to present a methodology that aims at the analysis 
of different sources of information regarding temperature fluctuation of the road surface, including 
remote sensing data. In addition, it attempts to predict low temperature and frost risk levels along 
a stretch of road by applying a geographic information system (GIS) model, which incorporates 
geographical and environmental parameters.

More specifically, the main objectives of this chapter are 

• To predict frost hazard on a stretch of a mountainous motorway with a GIS model based 
primarily on remote sensing data.

• To analyze the temperature variation through the process of thermography measurements 
and Earth observation (EO) data.

• To evaluate the predicted frost risk by the GIS model in comparison to the recorded fluctua-
tion of temperature along the studied stretch of the motorway.

9.2 PREVIOUS WORK ON ROAD SURFACE TEMPERATURE DISTRIBUTION

A plethora of research has been focused on the variation of RST and on methods of predicting road 
surface conditions.

Numerical models have been developed since the 1970s, which predict RST based on the meteo-
rological data of a weather station (e.g., Shao 1990; Thornes 1991; Jacobs and Raatz 1996; Wood 
and Clark 1999 Crevier and Delage 2001; Bouilloud and Martin 2006; Yahia 2006; Bouilloud et al. 
2009). In order to extrapolate the forecast throughout the road network, the technique of thermal 
mapping was employed (e.g., Thornes 1991; Shao et  al. 1997; Gustavsson 1999; Postqard and 
Lindqvist 2001; Shao 2000). A different approach was the use of empirical methods and the develop-
ment of local climatological models (e.g., Bogren et al. 1992; Gustavsson et al. 1998; Rayer 1987).

The most recent methods for the prediction of road weather conditions are based on the numeri-
cal modeling of geographical parameters that affect RST variation (Chapman et al. 2001; Bradley 
et al. 2002; Chapman and Thornes 2006). These models are developed in a GIS environment and 
exploit the enhanced potential of remote sensing data (Eriksson 2001; Fry 2010; Hammond et al. 
2010; Vinter 2015).

9.2.1 thermography

Infrared thermography has been used in road climatological studies since 1975 as a reliable and 
effective method to describe and display RST spatial variation (Lindqvist 1975; Rosema and 
Welleman 1977; Stove et  al. 1987). The results from thermal measurements have been used to 
detect cold spots along a road and possible positions for temperature sensors (Gustavsson and 
Bogren 1991). They are the basic methods for recording actual surface temperature variation along 
a road and are the main inputs to forecast models (Fry 2010).

Thermal surveys are organized with an infrared thermometer that can be mounted to a vehicle, such 
as a car or a helicopter or for stationary measurements; the sensors are mounted on specific road spots 
(Paumier and Arnal 1998; Chapman and Thornes 2005). The data collection is usually organized dur-
ing nighttime, before dawn, as minimum daily temperatures occur during this period (Shao et al. 1997).

Infrared systems used in RST surveys usually consist of a scanner unit, a display unit, and a 
computer that processes and corrects thermal data with special software. Infrared radiation emitted 
by objects in the wave band of 2–5 µm is converted to electronic video signals. These signals are 
processed by the video scanner and are presented in gray tone thermal image. The images can be 
converted to color images through computer processing, presenting temperature values (Gustavsson 
and Bogren 1991).

It is crucial that thermography measurements are applied under strict quality control in order to 
eliminate possible sources of error (Shao et al. 1997). These include the determination of external 
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parameters such as the emissivity of road materials, temperature differences due to reflection of 
surrounding space of the road, and effect of atmospheric temperature variations.

Finally, another drawback on the use of thermal mapping is that it is an expensive method, as it 
requires the use of special equipment. In addition at least five different nocturnal surveys must be orga-
nized to ensure satisfactory coverage of a range of atmospheric stability (Chapman and Thornes 2006).

9.2.2 geographical anD environmental parameters of roaD surface temperature

Temperature variation and likelihood of frost are determined by the energy receipt and loss 
at the road surface. This energy flow is controlled by a variety of environmental, geographical–
geomorphological (exposure, altitude, traffic, etc.), and meteorological (wind speed, cloud cover, 
etc.) factors. Significant variation, up to 10°C, may be recorded in RST from one location to another 
because of these parameters (Shao et al. 1997).

The major factors of temperature fluctuation and frost risk are briefly reviewed in Table 9.1, 
based on previous research. These include geographical parameters, such as elevation, slope gradi-
ent and aspect, parameters connected to the surrounding topography, and finally factors connected 
to the land use and cover, such as vegetation or human activity.

The importance of the effect of frost risk factors is differentiated depending on the prevailing 
weather conditions. During periods with climatic instability, when cloudy and windy weather is 
observed, the most important factor is elevation. On calm days, temperature variation is affected 
greatly by the incoming solar radiation determined. Topography factors such as slope and aspect 
as well as screening of the road influence importantly RST. During clear and calm nights, the 
distribution of temperature is influenced by cold air flows and pooling in low lying areas, and an 
inverse relationship between temperature and elevation is observed (Eriksson 2001).

9.2.3  moDeling roaD surface temperature fluctuation 
on geographic information system environment

Nowadays, with growing availability of spatial referenced data and advances of computing power, 
more accurate and complex GIS environmental models may be produced. The incorporation of 
geographical parameters in the GIS models assists in the forecasting of the microclimate of the 
surrounding of the road network and thus improves the produced results.

One of the first attempts of modeling the relative variation of road climate with GIS was imple-
mented by Gustavsson et al. (1998). It was based on topography and land use factors in combination 
to climate data. The road climate model was further developed by including information sources 
such as traffic accidents and winter road maintenance data (Norrman et al. 2000; Eriksson 2001).

Another example of a GIS-based model, which provides a dynamic prediction of road conditions, 
has been developed by Chapman and Thornes (2006). The model combines geographical parameters 
such as altitude, land use, road construction and the sky view factor, and meteorological data in 
order to provide spatiotemporal forecast of RST. According to their results in West Midlands, UK, 
the model can predict the spatial variation of the road network successfully up to 73%. Another 
model focused on the impact of urban heat island on RSTs has been developed by Bradley et al. 
(2002), who analyzed the spatial correlation of topography and classified Landsat imagery.

A more recent attempt of developing a deterministic frost risk model in a GIS environment was 
accomplished by Louka et al. (2016). The model was based on topographic parameters, including 
altitude, slope, steepness, aspect, topographic curvature, and environmental factors linked to land use, 
vegetation classification, and the existence of water bodies. The data used in the implementation of 
the model were primarily remote sensing data from Moderate Resolution Imaging Spectroradiometer 
(MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 
sensors and ancillary ground observation data used mainly for the validation of the model’s results. 
It was applied on agricultural land (tree crops and arable farms), and the model’s results were found 
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to correlate well or fairly well with the remotely sensed land surface temperature (LST) data over the 
vast majority (83.39%) of the study area (Louka et al. 2016).

Winter road maintenance can also be optimized by combining GIS with weather data. The mini-
mization of gritting costs has been a major subject of research, which is based on a heuristic algo-
rithm devised in a GIS environment by Li and Eglese (1996). Optimization models and solution 
algorithms have been developed for the routing of vehicles for spreading operations, ploughing 
roadways, and loading snow and for transporting it to disposal sites (Muyldermans et  al. 2003; 
Perrier et al. 2007; Tagmouti et al. 2007).

GIS models can significantly reduce costly field surveys, including thermal mapping, and can 
produce accurate forecasts covering a wide area of a road network (Fry 2010). Field surveys are 
often work, time, and money consuming, and their results depend on the accessibility of an area. 
In addition thermal mapping results may be representative of the temperature variation for the 

TABLE 9.1
Geographical and Environmental Temperature and Frost Risk Parameters

Parameter Interaction with Frost Risk
Measurement 

Technique

Latitude It is linked to incoming shortwave radiation and as a result daytime RST 
(Chapman et al. 2001).

GPS

Altitude RST decreases as altitude rises according to lapse rates, with a nonlinear 
relationship. The importance of this factor is higher under unstable weather 
conditions (Shao et al. 1997; Chapman et al. 2001; Pouteau et al. 2011).

Derived from 
DEM

Hydrographic 
network

Water bodies through their thermal inertia have a protective role as far as frost 
risk is considered. Sea, lakes, and rivers reduce frost risk up to a distance of 
20 km (Fridley 2009; Pouteau et al. 2011).

Derived from 
vector data

Slope and aspect They are related to the amount of incoming shortwave radiation and daytime 
RST. Areas with a south orientation and a slope gradient of 20% receive 
double shortwave radiation than a flat area during January (Radcliffe and 
Lefever 1981; Oliver and Dolph 1992; Fridley 2009; Pouteau et al. 2011).

Derived from 
DEM

Topography/
geomorphology

Its impact is correlated to catabatic flow of cold air, which creates cold air pools 
in hollows and valley bottoms (Oke 1987; Soderstrom and Magnusson 1995; 
Pouteau et al. 2011; Bogren and Gustavsson 1991).

Derived from 
DEM

Screening/sky 
view factor

It is closely related to incoming shortwave radiation and radiation losses 
(Gustavsson and Bogren 1991; Chapman et al. 2001; Grimmond et al. 2001; 
Chapman and Thornes 2004; Bogren et al. 2000).

Calculated from 
fish-eye 
photographs

Land use The thermal properties of surfaces vary with land use. Forested areas act as a 
protective barrier to cold air masses leading to temperature differences up to 
3°C (Gustavsson et al. 1998). In addition, anthropogenic activities reduce frost 
risk due to urban heat island impact (Rouse and Wilson 1969; Chapman and 
Thornes 2006).

Derived from 
remote sensing 
data

Road 
construction

RST is affected by the road bed materials and their specific thermal properties, 
such as heat capacity and thermal conductivity (Gustavsson and Bogren 1991; 
Eriksson 2001).

Derived from 
remote sensing 
data

Traffic RST increases with traffic due to limitation of long-wave radiation by surfaces, 
tyre friction, increased turbulence, and heat radiation by vehicles’ engines 
(e.g., Gustavsson and Bogren 1991; Thornes 1991)

Traffic counters/
empirical 
formulae

Special features/
thermal 
singularities

RST is usually lower in bridges, and frost is more often reported on them than on 
adjoining roads. There is usually a lack of compensating heat flow from the 
ground and higher loss of long-wave radiation during night. RST differentiation 
depends on the type of the surrounding of the bridges and on whether they cross 
water (Takle 1990; Gustavsson and Bogren 1991; Greenfield and Takle 2006).

Aerophotography/
remote sensing 
data/field 
surveys
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specific climate conditions of the day the survey was conducted. On the contrary, modeling road 
conditions with GIS model can produce forecasts that are not focused on a fixed climatic scenario, 
can incorporate a multitude of parameters, and can reduce costs at the same time.

9.2.4 remote sensing of roaD surface temperature fluctuation

With the development of EO technologies, remote sensing data of higher accuracy or temporal 
availability has become a major part of current applications. Most of these data have the advantage 
of being free of charge and easily accessible online.

EO data can be used as an input for GIS models focused on RST variation and frost risk and to 
improve their ability to produce accurate predictions. The geographical and geomorphological factors 
that are incorporated in models developed in a GIS environment are derived from digital surface model 
(DSM). The higher spatial resolution data offer higher accuracy in the models’ output. For example, 
ASTER Global Digital Elevation Model (GDEM) data with a mean spatial resolution of 30 m can be 
replaced by light detection and ranging (LIDAR) data with grid spacing of 1 m or less (Fry 2010).

Additionally, remote sensing data that provide ready to use products with information on day 
and nighttime LST are available. The main sources of nighttime LST information are imagery by 
MODIS and ASTER sensors. The values of remotely sensed LST are determined from Planck’s Law 
using the emissivity of thermal infrared (TIR) bands.

LST information derived by the MODIS (MOD11A1) has a course spatial resolution of 1 km 
but a very high temporal resolution with more than one revisit per day for some areas of the world. 
On the other hand, ASTER LST product (AST-08–L.2) contains information on surface kinetic 
temperature at 90 m resolution for land areas only. It has a 16-day revisit, but due to cloud cover 
data it may be available in bigger time intervals. Its relative accuracy is calculated to be 0.3 K 
(https://lpdaac.usgs.gov/).

Additionally, Landsat 8 Thermal Infrared Sensor (TIRS) is the very recent thermal infrared 
sensor, which provides two adjacent thermal bands from which LST can be derived. Several 
approaches have been used for LST inversion from TIRS, including the radiative transfer equation 
(RTE)-based method, the split-window (SW) algorithm, and the single channel (SC) method. The 
estimated accuracy is lower than 1 K for RTE, whereas the SW algorithm has moderate accuracy 
and the SC method has the lowest accuracy (Yu et al. 2014).

A new development in the acquirement of remotely sensed temperature information is the latest 
mission of the European Space Agency, Sentinel-3. Data concerning sea and land surface tempera-
ture (SLST) data will be provided, among others, on a daily basis with a spatial resolution of 1 km, 
according to the user guide of Sentinel-3 products. The produced sea surface temperature (SST) 
has an accuracy of better than 0.3 K under certain cloud-free conditions (i.e., >20% cloud-free 
samples within each area). The possible accuracy of the derived LST is estimated to be 1 K, espe-
cially at night when differential surface heating is absent. The sea and surface temperature radi-
ometer (SLSTR) instrument also has a temporal stability of 0.1 K/decade (https://earth.esa.int).

Currently, there are no remote sensing temperature data, which combine high spatial resolution 
and revisit capabilities. However, in temperature fluctuation studies, it is often essential to have data-
sets with high spatial and temporal resolution. During the data selection for these studies, a critical 
choice has to be made, which creates significant limitations: either using data with high spatial but 
low temporal resolution or data with high temporal but low spatial resolution. Effectively synthesiz-
ing high temporal resolution imagery with high spatial resolution imagery can potentially ease this 
limitation (Liu and Weng 2012). Data fusion models have been developed, such as spatial and tem-
poral adaptive reflectance fusion Model, that provide the ability to produce ASTER-like daily LST 
with promising results (Gao et al. 2006; Coll et al. 2007; Liu and Weng 2012; Semmens et al. 2016).

An emerging technology that may overcome this restriction of remote sensing data is based 
on the unmanned aerial vehicles (UAVs), which can monitor frost conditions in near real-time. 
As several demonstrations organized by National Aeronautics and Space Administration (NASA) 

https://lpdaac.usgs.gov/
https://earth.esa.int
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have shown, UAVs can be used to monitor frost conditions and plan emergency response mea-
sures (Anand 2007). UAVs are expected to replace satellites in several applications. They have the 
advantage of being easily retrieved, upgraded, and retasked. They can also be moved to a different 
location from their automated global positioning system (GPS)-generated flight pattern at little 
cost. On the other hand, satellites have relatively fewer respective options. However, there are still 
issues to be resolved with the use of UAVs, such as their integration with the civilian airspace and 
the setting of regulations so as to avoid risk to other airspace users and the development of algo-
rithms for frequency allocation and avoidance of collisions (Odido and Madara 2013).

9.3 EXPERIMENTAL SETUP

This study is focused on the analysis of a period of frost conditions in northwestern Greece during 
January 2008, when thermography measurements were conducted on a part of a major motorway of 
northern Greece, Egnatia motorway.

The selection of the days of the thermography was based on the forecast of the weather 
conditions for the nearest meteorological station of Kozani, which is presented in Table 9.2. 
According to reliable national weather forecasts, temperatures below 0°C were forecasted along 
with clear sky, conditions very favorable for frost to occur (Bolam Model Weather Forecast 2008; 
POSEIDON System 2008).

9.3.1 stuDy area

The study area is a 26 km portion of a major highway in northern Greece, Egnatia motorway, a dual 
carriage way with two traffic lanes per direction, a central reserve and an emergency lane throughout 
its length. It is the main way for the East–West crossing of the South Balkans.

Egnatia motorway has a total length of 670 km and runs across Greece with an east–west direction 
from Igoumenitsa port in the prefecture of Thesprotia to Kipi in the prefecture of Evros. It is linked 
to the borders of all Greece’s northern bordering countries, that is, Albania, FYROM, Bulgaria, and 
Turkey, through nine major axes. The motorway can be characterized as one of the most mountainous 
roads of Europe as more than 200 km is situated in altitudes over 500 m, whereas its highest altitude 
is over 1000 m in the area of Metsovo. Its climatic conditions have a significant variation and, espe-
cially during the winter months, extreme weather events may occur unexpectedly causing difficulty 
to road users, as the motorway crosses through rough landscape (Figure 9.1). (www.egnatia.eu).

The studied motorway is situated in a mountainous region of northern Greece where, during 
winter and early spring, frost and snow conditions often occur. This part of Egnatia motorway is 
one of the most demanding in terms of weather extremes and terrain complexity. It includes 15 tun-
nels from which the longest two bore tunnel has a total length of 2.225 m. In addition, it includes 
six bridges, none of which cross over water, with the longest one being 456 m long. The area under 

TABLE 9.2
Forecasted Climatic Conditions according to the National Weather Forecast for the 
Meteorological Station of Kozani

Date January 25–26 (02:00) January 26–27 (02:00) January 29–30 (02:00)

Temperature (°C) −1 −2 −5

Relative humidity (%) 76 50 43

Wind direction—intensity 
(Beaufort force)

N – 1 SW – 2 N – 2

Sky Clear Clear Clear

http://www.egnatia.eu


190 Remote Sensing of Hydrometeorological Hazards

study is subject to an altitude range of 650 m, as elevation varies between 800 m in Polymilos and 
150 m in Veroia. The sky view factor along the road is relatively constant with major differentiations 
that are observed only close to tunnel entrances and exits (Bouris et al. 2010).

9.3.2 Datasets

This research is based on the combined use of EO and GIS datasets, either derived directly through 
internet open sources or derived by the process of thermography measurements, as presented in 
Table 9.3.

First of all, ASTER GDEM V002 data were retrieved from the online data pool, courtesy of 
the NASA Land Processes Distributed Active Archive Center (LP DAAC), United States geologi-
cal survey (USGS)/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South 
Dakota (https://lpdaac.usgs.gov/data_access/data_pool). ASTER GDEM is a product of NASA and 

TABLE 9.3
Datasets of Present Study

Data Source

ASTER GDEM, V. 2 http://reverb.earthdata.nasa.gov (date of access: September 16, 2016)

CORINE CLC2012 (V 18.5.1) http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 
(date of access: September 16, 2016)

MODIS LST (MYD11A1-L3) http://reverb.earthdata.nasa.gov (date of access: October 15, 2016)

HYDROGRAPHIC NETWORK www.geodata.gov.gr (date of access: September 16, 2016)

ROAD NET WORK EGNATIA S.A.

THERMOGRAPHY EGNATIA S.A.

FIGURE 9.1 View of study area.

https://lpdaac.usgs.gov/data_access/data_pool
http://reverb.earthdata.nasa.gov
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://reverb.earthdata.nasa.gov
http://www.geodata.gov.gr
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the Japan Ministry of Economy, Trade and Industry (METI). The dataset comprised of the granules 
N40E21-22 and has a spatial resolution of 30 m and the mean accuracy is estimated to be 12.41–
13.6 m for the area of Greece (Chrysoulakis et al. 2004; Miliaresis and Paraschou 2011)

Land use and cover data were included in this research by Corine Land Cover (CLC) inventory. 
The selected spatial data belong to CLC2012, Version 18.5.1 data with a positional accuracy of 
100 m (http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012).

Datasets by MODIS with information on LST were also obtained from the online Data Pool, cour-
tesy of NASA’s Earth Observing System Data and Information System (EOSDIS) EOSDIS (2009), 
Land Processes Distributed Active Archive Center (LP DAAC), USGS/ EROS Center, Sioux Falls, 
South Dakota (https://lpdaac.usgs.gov/data_access/data_pool). The product MYD11A was selected, 
which provides information on nighttime LST with a spatial resolution of 1 km on a daily basis. It is 
a level L3 product, available in tiles of 1.113 km2 and its estimated accuracy is 1 K in land and under 
clear sky conditions, according to MODIS LST ATBD, V. 3.3 (https://modis.gsfc.nasa.gov/data/ atbd/
atbd_mod11.pdf). These data were captured by Aqua satellite and were preferred to MODIS satellite, 
because the predicted overpass time of Aqua is approximately at 11:30–01:00 for the period of study 
 (https://cloudsgate2.larc.nasa.gov/cgi-bin/predict/predict.cgi). A dataset of seven images was created 
corresponding to the week the thermography was conducted (January 25–31, 2008). The principle of 
this wider date selection was to assess a set of dates closest to the thermography measurements with 
low cloud cover. This dataset was considered to be representative of LST fluctuation for the period 
of study.

Ancillary data concerning the hydrographic network of the study area, including lakes, rivers, and 
the sea were obtained from the Greek national open data catalogue of website www.geodata.gov.gr.

Finally, thermography measurements as well as the vector file of the Egnatia motorway were 
kindly granted by Egnatia SA. Thermography measurements provided information on air tempera-
ture (Tair) and RST with an estimated accuracy of ±2°C (Bouris et al. 2010).

9.4 METHODOLOGY

The methodology, which was adopted in the present study consisted of four basic stages and are 
outlined as follows: 

 1. Assessment of frost risk levels along the selected section of the Egnatia motorway through 
the application of GIS modeling

 2. Analysis of thermography results in order to extract temperature distribution along the 
motorway

 3. Processing of MODIS images for the period of time the thermography was conducted
 4. Overlay of all results from the GIS frost risk model and temperature variation maps derived 

from MODIS and thermography data

9.4.1 mapping areas of high frost risk

The levels of frost hazard along the selected stretch of the Egnatia motorway were assessed by 
applying a variant of the GIS model developed by Louka et al. (2016). The model is based on geo-
graphical and environmental factors related to temperature fluctuation and frost risk. The selection 
of the frost model parameters was based on the relevant literature review (Table 9.1). More specifi-
cally, the model incorporates the following input parameters: elevation (E), slope aspect (A) and 
gradient (S), curvature (C), Compound Topographic Index (CTI), Euclidean distance from water 
bodies (H), and land use (LU).

It is based on the multiattribute decision-making methods and on the application of weighted 
linear combination (WLC) in a GIS environment. These multicriteria evaluation procedures are 
considered as major support tools with applications in many different spatial decision fields 
(e.g. Drobne and Lisec 2009; Malczewski 2011).

http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
https://lpdaac.usgs.gov/data_access/data_pool
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf
https://cloudsgate2.larc.nasa.gov/cgi-bin/predict/predict.cgi
http://www.geodata.gov.gr


192 Remote Sensing of Hydrometeorological Hazards

For each frost risk factor, a corresponding thematic map was created with a spatial resolution 
of 100 m. Each thematic map was reclassified using Natural Breaks method in GIS, one of the 
most common grouping data methods for decision-making processes (Mitchell 1999; Simpson and 
Human 2008; Sunbury 2013). The initial raw data were converted into classes with values ranging 
from 1 to 5. The classes were assigned according to previous research on the relevance of each 
factor with frost (Radcliffe and Lefever 1981; Soderstrom and Magnusson 1995; Gustavsson et al. 
1998; Gessler et al. 2000; Geiger et al. 2003; Chapman and Thornes 2006; Fridley 2009; Pouteau 
et al. 2011).

In the maps contained in Table 9.4, the reclassification of each frost parameter is presented. The 
background of the maps is the reclassification of the surrounding area of the motorway and the 
reclassification of the pixels of the Egnatia motorway is presented in colours ranging from light grey 
to black. So, there are two color ramps in the maps’ legends.

By analyzing the reclassification of the frost risk parameters along the motorway and the corre-
sponding maps, the importance of each frost risk factor can be derived. The factors that are ranked 
mainly in the high-risk zone are curvature (Table 9.4d) and Euclidean distance from water bodies 
(Table 9.4g). Elevation (Table 9.4a) and slope gradient (Table 9.4c) are ranked in the moderate class. 
Finally, slope aspect (Table 9.4b), land use (Table 9.4f), and CTI (Table 9.4e) in the low to very low 
frost risk class are ranked. In conclusion, frost hazard in the study area is mainly attributed to the 
rough terrain of the motorway’s surroundings, whereas there is no significant proximity to water 
bodies to act as a protective layer to low temperatures.

According to the parametrization followed for the GIS models, the reclassified attribute layers 
were aggregated with their corresponding assigned weight with multiplication and addition overlay 
operations in GIS. The values extracted from the model formed the basis of the final frost hazard 
map after a normalization of the raster values.

9.4.1.1 Weighted Linear Combination Model
Weights were assigned to reclassify attribute maps corresponding to each factor’s relative impor-
tance and effect on the risk of frost. The factor with the most prominent effect on frost was assigned 
with the highest weight and opposite. WLC was introduced in the assignment of the weights for the 
criteria of the map layers.

The levels of frost hazard (FH) values were computed for the study area according to the follow-
ing formula: 

 FH CTI LU= × + × + × + × + × + × + ×0 3 0 10 0 10 0 15 0 15 0 10 0 10. . . . . . .E A S H C  (9.1)

9.4.1.2 Analytical Hierarchy Model
In order to assess the consistency of the factors rating, the method of analytical hierarchy (AH) was 
also applied in assigning the weights after pairwise comparisons between the frost factors. The new 
factors’ weights were generated by a pairwise comparison matrix. The Consistency Index (CI) of 
the procedure was calculated to be 0.0388, which is considered satisfactory, as it is lower than the 
threshold of 0.10 appointed by Saaty (2008).

The frost hazard parameter combination, which was produced by AH is the following: 

 FH CTI LU= × + × + × + × + × + × +0 39 0 07 0 10 0 21 0 15 0 05 0 03. . . . . . .E A S H C  (9.2)

9.4.2 thermography measurements

As already mentioned, thermography measurements were conducted on a 26  km stretch of the 
Egnatia motorway between the intersections of Polymilos and Veroia. Measurements were con-
ducted during the nights of 25th, 26th, and 30th of January 2008 between 01:00 and 05:00 h. The 
scope of the measurements was the identification of areas that are more prone to low temperatures 
and ice formation (Bouris et al. 2010).
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TABLE 9.4
Reclassification of Thematic Maps

Reclassified Thematic Map Reclassification of Risk Factor

a. Elevation
Risk Level Classes
Very low 0–250 m

Low 250–500

Moderate 500–850 m

High 850–1,300 m

Very high 1,300–2,396

b. Slope Aspect
Risk Level Classes
Very low 157.5–202.5

Low 112.5–157.5 and 202.5–247.5

Moderate 67.5–112.5 and 247.5–292.5

High 22.5–67.5 and 292.5–337.5

Very high 337.5–360.0 and 0.0–22.5

c. Slope Gradient (°)
Risk Level Classes
Very low 26.2°–56.1°
Low 17.6°–26.2°
Moderate 10.6°–17.6°
High 4.4°–10.6°
Very high 0°–4.4°

d. Curvature
Risk Level Classes
Very low 0.5–3.6

Low 0.1–0.5

Moderate −0.1–0.1

High −0.5–−0.1

Very high −3.28–−0.5

e. CTI
Risk Level Classes
Very low 11.9–21.0

Low 9.8–11.9

Moderate 8.2–9.8

High 6.8–9.2

Very high 4.1–6.8

(Continued)
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Over 12,000 thermal images were recorded and processed in total, so that RST profiles were 
produced for the selected stretch of road for the three dates by the research team of Bouris et al. 
2010. These temperature profiles of the Egnatia motorway were kindly granted by Egnatia SA for 
processing within the framework of the study presented in this chapter. More specifically, road 
surface and air temperature values were extracted from the initial temperature profiles for points 
distributed every 100 m along the motorway.

The fluctuation of the average temperature of the road surface (black line) and the air (blue line) was 
calculated for the three dates of the measurements, and the temperature profiles of Figure 9.2 were pro-
duced. Average RST values are depicted with black lines, and air temperature variation is represented 
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FIGURE 9.2 Average road surface temperature and air temperature profile produced by extracting thermog-
raphy measurement values per 100 m for the 3 days of measurements.

Reclassified Thematic Map Reclassification of Risk Factor

f. Land Use
Risk Level Classes
Very low Wetlands, forests, artificial surfaces, and water bodies

Moderate Cultivated land, mixed vegetation, and open fields

Very high Narrow vegetation and pastures

g. Distance from Water Bodies
Risk Level Classes
Very low Ds < 10 km and Dlr < 1.5 km

Low Ds < 10 km and 1.5 < Dlr < 3 km or
10 < Ds <20 km and Dlr < 1.5 km

Mode Rate Ds < 10km and Dlr > 3 km or
10 < Ds <20 km and 1.5 < Dlr < 3 km or
Ds > 20 km and Dlr < 1.5 km

High 10 < Ds <20 km and Dlr > 3 km or
Ds > 20 km and 1.5 < Dlr < 3 km

Very high Ds > 20km and Dlr > 3 km

Note: Ds: Distance from sea shore
Dlr: Distance from lakes and rivers

TABLE 9.4 (continued)
Reclassification of Thematic Maps
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with a blue line. The areas when a bridge or a tunnel exists along the motorway, which artificially alter 
the temperature conditions, are marked with a green or red line in the top part of the diagram.

According to the thermography measurements, average RST ranged from 7.76°C to −6.67°C, 
with an average value of −1.37°C for the portion of the Egnatia motorway. Abrupt changes in the 
RST were recorded in positions in which tunnels or bridges are located. Differences of more than 
10°C were measured even within a few meters’ distance. Especially when the motorway enters tun-
nels, the RST is about 10°C–12°C higher than the surrounding parts before and after the tunnel, 
which are exposed to weather conditions.

Air temperature values ranged between 6.5°C and −1.9°C with an average value of 1.89°C. The 
surface of the road was colder than the air with differences up to 8°C for the length of the motor-
way that does not include tunnels or bridges. On the contrary, inside tunnels, air was colder than 
the surface of road, with differences reaching up to 3.86°C. In general, the fluctuation of Tair was 
significantly smoother than that of the RST.

In the next phase of processing of the thermography results, a series of transformations were 
conducted aiming at the overlay and comparison of the produced temperature fluctuation and the 
results of the frost models. 

• First, the points that were positioned inside tunnels or on bridges were extracted from the 
calculations to avoid any artificially induced temperature variations. In addition, a buffer 
zone of 100 m on either side of each tunnel and bridge was also extracted from the analysis. 
As a result, 137 points were selected and included in further analysis.

• Next, temperature information of the remaining points was interpolated, and temperature 
contours were produced. These contours were rasterized into layers with the same raster 
analysis of the GIS model results, that is, cell size of 100 m and Greek grid projection system.

• Then, the raster cells that intersect the portion of the motorway were selected, and the 
values of their centroids were extracted. New charts were produced showing the tempera-
ture profile of the road. In addition, maps presenting temperature fluctuation of air and the 
surface of the road were created.

This procedure facilitated an optimal overlay of thermography measurements and frost model results.

9.4.3 moDerate resolution imaging spectroraDiometer lanD surface temperature

LST data were acquired for this study from MODIS imagery, which was collected from NASA’s 
EOSDIS site and processed through the Modis conversion toolkit (MCT) tool of environment for 
visualizing images software (ENVI) software.

The 1000 m spatial resolution MODIS daily LST data were resampled to 100 m using the nearest 
neighbor method. Then, the images were reprojected to Greek grid projection system in order to be 
compatible to the frost hazard model results.

New raster datasets were produced for each day of study by extracting cells that intersect the selected 
portion of the motorway, excluding tunnels and bridges. The average LST values were calculated dur-
ing the week of the thermography measurements along the 26 km stretch of Egnatia motorway.

A map containing LST distribution was produced, as well as the LST profile along the road with 
values of the centroids of the rater dataset was created.

9.5 RESULTS

9.5.1 geographic information system moDel results

Following the procedure described in Section 9.3.1, the predicted spatial distribution of the frost 
hazard was produced. Frost hazard level was calculated for each pixel with values ranging between 
0 and 1, with value “1” representing areas more susceptible to low temperature values and frost 
conditions and value 0 indicating areas less susceptible to frost.
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A map that presents frost hazard along the selected stretch of Egnatia motorway was produced 
for both GIS models (Figure 9.3a and b). The parts of the motorway that are depicted in red are the 
most frost-prone parts of the road, whereas green parts are considered as less prone to frost.

In addition, by extracting the centroids’ cell values of model results, a profile of frost hazard 
along the road was produced and is presented in Figure 9.3c.

By analyzing the distribution of GIS model results (Figure 9.4), the studied portion of the Egnatia 
motorway is situated in a relative low frost risk zone, but it contains parts of high to very high frost 
risk levels with a total length of 4.65 km according to WLC GIS model and 6.24 km according to 
AH GIS model. In general, AH model estimates higher levels of frost risk than WLC model.
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In the frost hazard maps of the two GIS models, the areas that are not contained in tunnels or 
bridges were numbered from “I” to “XIII,” and the results of the frost hazard models are analyzed 
as follows.

The major frost risk areas (both high and very high risk) of the studied motorway are noticed 
in area I (0–2.5 km from Polymilos Intersection). In this portion of motorway, elevation is com-
paratively high, and topography characteristics, including aspect and CTI, are favorable to frost, 
whereas there is no proximity to water bodies that can act as a protective layer.

Moderate estimated frost risk is predicted in areas II (3.5–3.6 km from Polymilos intersection) 
and III (6.0–6.2 km from Polymilos intersection). They are small-sized areas contained between 
tunnels. In addition, the areas VI (10.3–11.3 from Polymilos intersection) and VII (11.9–12.7 km 
from Polymilos intersection) are ranked mainly in the moderate frost risk zone and contain few 
pixels ranked in the high frost risk zone. In all of these areas, AH frost model provides with a higher 
frost risk prediction than WLC.

Low-to-moderate frost risk is estimated in areas VIII (13.0–14.5  km from Polymilos inter-
section) and IX (14.8–15.1 km from Polymilos intersection). A reverse tend among the models 
is noticed in these areas as the WLC is predicting higher frost risk than AH, contrary to the 
previously analyzed areas. In addition, the areas XI (16.4–16.6 km from Polymilos intersection) 
and XII (17.2–19.5 km from Polymilos intersection) are mainly ranked as low-to-moderate frost 
hazard zones.

A high variability in estimated frost risk is noticed in areas IV (8.6–9.0 km from Polymilos 
intersection) and V (9.4–9.9 km from Polymilos intersection). The GIS model results in these areas 
range from low to very high frost risk levels. The predicted frost risk peaks are mainly attributed to 
curvature and CTI and to a lesser extent to elevation. In addition, there seems to be a tendency of 
cold air pools to form, as aspect and slope gradient are favorable to cold air drainage. A high degree 
of variability in the results of the frost risk levels is also contained in area X (15.6–16.1 km from 
Polymilos intersection). It contains a part in which high frost risk is predicted due to the factors of 
slope gradient, curvature, and no proximity to water bodies.

Finally, area XIII (21.3–26.0 km from Polymilos intersection) can be divided into two parts: The 
first part (21.3–23.2 km from Polymilos intersection) is a moderate frost hazard zone with a minor 
part of high frost hazard levels attributed to the parameters of CTI and slope aspect. The produced 
frost hazard levels are higher according to WLC model results than AH model. The remaining part 
of this area, closer to Veroia, is mainly ranked as low-to-moderate frost hazard levels, with the WLC 
model providing with higher predictions of frost risk.

9.5.2 thermography results

Figure 9.5c shows the RST for the three dates of measurements and the average temperature values. 
The recorded temperature variation is similar for all three dates, which indicate that cold spots of the 
motorway are consistent, as they exhibit a clear pattern. This observation is in agreement with previ-
ous studies, which suggested that general temperature trends remained similar along the motorway. 
With the exception of extreme nights due to cold air advection, the same locations have the tendency to 
remain relatively colder due to systematic variation in geographical parameters (Chapman et al. 2001).

The recorded RST values were below freezing temperature for almost the entire length of the 
studied part of the motorway, when tunnels were excluded. The average RST values have a range of 
6.9°C and an average value of −3.6°C (Figure 9.5b).

The most extreme conditions were recorded during the third day, when temperature values 
up to −9.27°C were recorded. During the first 2 days of measurements, relatively milder weather 
conditions were prevailed.

In Figure 9.5a, a map is included that presents RST fluctuation along the road in five classes 
with natural Jenks classification method. The study area is divided into 14 subregions numbered in 
Latin similar to Section 9.5.1 and the results are analyzed as follows: The lowest RST values were 
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recorded in area I, which is in agreement to frost hazard model results. Relatively lower RST was 
also observed in regions III, IV, V, part of VIII, X, and XI. Moderate RST was seen in areas VI, part 
of VIII and XI, and relatively higher RST was seen in areas XII and XIII.

Similar to RST results, the fluctuation of air temperature was produced and is presented in 
Figure 9.6. Tair variation also has a similar pattern for the dates of measurements, and the cold spots 
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are recorded in constant positions throughout different weather conditions. The mean Tair for the 
period of study is 1.4°C, which is almost 4°C higher than mean RST for the same dates. In general, 
air temperature was above freezing temperature for the greater extent of the motorway.

The fluctuation of mean Tair is a lot smoother than that of the RST values, with values ranging 
between 3°C and −2.2°C. In addition, air temperature values had a lower variance compared to 
RST, which indicates that Tair is characterized by lower fluctuation and in general is more constant 
than the RST (Figure 9.6b).

Figure 9.6a shows a map presenting Tair variation along the motorway, presenting the study 
area classified into five classes depending on air temperature values. Similar to RST distribution, 
the most severe weather conditions were recorded in area I. In addition, relatively lower tempera-
tures were recorded in areas II, IX, X, and XII. Finally, relatively milder weather conditions were 
observed in areas IV, V, VII, VIII, and XIII.

By comparing RST and Tair distribution, it is interesting to note that the variability between them 
is striking in some parts of the motorway. For example, in areas IV and V, temperatures below 
freezing point were observed in the surface of the road, whereas Tair was recorded to reach values of 
5°C. This is a clear evidence that the recording of air temperature is not a representative indicator 
of frost conditions on the surface of the motorway.

In addition, in regions such as XII, the variation of Tair shows relatively low values contrary to 
RST variation, which shows moderate to relatively higher values. In this area, according to the 
reclassification of the frost risk factors (Table 9.5), slope gradient and aspect are favorable to frost 
conditions. So, it is possible that the microclimatic conditions in this area due to rough topography 
affect air temperature more intensively than RST. In general, frost spots indicated by air tempera-
ture measurements are not necessarily frost spots on the surface of the motorway and do not affect 
road surface conditions.

9.5.3  temperature Distribution baseD on moDerate resolution 
imaging spectroraDiometer results

The distribution of LST for the study area was extracted based on satellite-derived LST data by 
MODIS. Figure 9.7 shows the calculated average LST fluctuation along the studied portion of the 
Egnatia motorway for the period of the thermography measurements.

According to the LST profile of Figure 9.7c, all dates demonstrated similar variation in LST values. 
The average values of LST ranged between −5.14°C and −0.03°C, with a mean value of −0.808°C. 
The recorded LST variance is 1.427°C, which is lower to that of air and RST (Figure 9.7b).

In the map of Figure 9.7a, the motorway is reclassified into five classes with natural Jenks method, 
and the areas not contained in tunnels or bridges were numbered in Latin. It is not surprising that 
the lowest LST values were found in area I, which is consistent to thermal mapping and frost hazard 
model results. In addition, frost spots were observed in areas II, V, VI, VIII, IX, and X. Relatively 

TABLE 9.5
Pearson’s Correlation Matrix of GIS Model Results and 
Temperature Measurements

Variables LSTave RSTave tair ave WLC Norm AH Norm

LSTave 1 0.659 0.640 −0.386 −0.490

RSTave 0.659 1 0.820 −0.467 −0.561

Tair ave 0.640 0.820 1 −0.412 −0.510

WLC norm −0.386 −0.467 −0.412 1 0.973

AH norm −0.490 −0.561 −0.510 0.973 1
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milder conditions were recorded in areas III, XI, and the last part of XIII. Finally, higher LST val-
ues were observed in areas IV, VII, XII, and XIII.

There is a similarity in the temperature fluctuation of RST and LST in maps of Figures 9.5a 
and 9.7a. The main exceptions are noted in areas IV and XIII. In area IV, LST presents a variation 
having relatively high values, followed by a drop of temperature. In area XIII, which according to 
the thermal mapping and GIS model is expected to have the highest temperatures of the study area, 
LST shows moderate values.

In particular, the MODIS covers a 1 km pixel that averages the conditions in which a more granu-
lar approach is needed so as to capture the impact of microclimatic factors of topography. In addi-
tion, these differences could be attributed to the loss of data due to cloud cover, which is a significant 
limitation in the use of MODIS LST data. In this study, in order to minimize the effect of data loss 
on the calculated average value of LST, seven MODIS images were processed instead of only the 
three dates of thermal mapping. This was considered necessary, as during the third day of the ther-
mography measurement, there were missing LST values due to cloud cover, which would artificially 
affect the calculated average LST. So, although the possible source of error due to data loss has been 
lessened to a great extent, it has not been eliminated and still causes differentiations in the results.

9.5.4 statistical analysis: evaluation of results

9.5.4.1 Comparative Evaluation of the Results of All Processes
In order to evaluate the correlation of the results produced from all the processes carried out in this 
project, a composite chart was created and is presented in Figure 9.8. The areas contained in tunnels 
or bridges are obviously excluded from this chart.

The profiles of road surface, air, and LST are displayed in Figure 9.8a. In the RST and LST 
temperature profile, error bars are included to indicate their margins of error. These were defined 
with the strictest error limits, according to the specification of the initial data. More specifically, an 
error bar of 2°C was applied, which is the estimated accuracy of the thermography measurements 
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(Bouris et al. 2010). Accordingly, the LST error bar was defined to be 1°C, as this is the estimated 
accuracy of MODIS LST products, in land and under clear sky conditions (https://modis.gsfc.nasa.
gov/data/atbd/atbd_mod11.pdf). The error bars are useful because they signify whether differences 
between the datasets are statistically important or if the displayed datasets are in agreement.

In Figure 9.8b, the normalized GIS model results are presented. A 10-period moving average 
trend line is also included in the chart so as to smooth fluctuations of GIS results and enhance 
their pattern. In order to facilitate the visual interpretation of the outcome of the GIS models and 
its comparison with measured temperature fluctuation from the thermography and MODIS, the 
model results are shown in a reverse mode. Higher model result values represent areas of higher 
frost risk, where lower temperature values are expected. So, the areas where there is a correspon-
dence between the temperature profiles and model trend lines are areas where the GIS models are 
expected to represent sufficient temperature fluctuation.

By visually analyzing the aforementioned composite chart, it is obvious that along most of 
length of the portion of the motorway, the RST and LST temperature profiles follow similar pat-
terns, indicating that temperature variation along the road is represented adequately by both the 
thermography and MODIS. RST is estimated to be lower than remotely sensed LST with a dif-
ference of nearly 1.5°C. The difference in temperature values pointed out that this study is based 
on the temperature fluctuation as it is recorded by thermal mapping and MODIS and not on the 
absolute temperature values. The two datasets have a different recording method and also the 
emissivity values that have been assigned to the same area may be differentiated. However, this 
differentiation is statistically low and within error bars for almost the full length of the road, tak-
ing the estimated accuracy of the data into consideration. Only toward the last 3 km of the road, an 
inversion is noticed, as LST is estimated to be lower than RST. This observation could be attributed 
to the coarse spatial resolution of MODIS, which have the tendency to average the climatic condi-
tions in areas of 1 km.

The trend lines of GIS model results show a corresponding variation to the RST profile for 
almost 80% of the length of the motorway that was analyzed. In areas I, VI, XII, and XIII, it is 
striking that the trend lines of the frost model results follow a similar pattern to that of RST as it 
was produced from thermal mapping. This fitting is not observed in such an extent between frost 
model results and LST fluctuation produced by MODIS. This was expected as the spatial analysis 
of the frost model results is 100 m and is more compatible to thermography measurements in which 
values were extracted in 100 m intervals, whereas MODIS images have a coarser spatial analysis, 
which demonstrates more large-scale climatic variations.

In area I where the lowest temperature values were recorded by the thermography and where the 
frost models predict the highest frost levels, MODIS also recorded the lowest LSTs. In this area, 
according to the reclassification of the frost risk factors (Table 9.5), the elevation is ranked in the 
highest risk levels of the study area. Elevation seems to be a dominant frost risk factor, especially in 
large-scale analysis, which is detected and represented by MODIS.

The specific features of the areas where the predictions of the frost models are not in good agree-
ment with the recorded temperature comprise issues to be further analyzed, so as to enhance the 
models results. Between the two versions of the models, the AH seems to have a better fit with RST 
variation, which indicates that AH has improved the model’s efficiency in representing frost hazard 
in the local scale of a motorway. WLC model has shown to produce results that correlate well or 
fairly well when applied in wider areas, such as agricultural land (Louka et al. 2016).

9.5.4.2 Pearson’s Correlation
The recorded temperature values and the results of the two versions of the GIS model were also ana-
lyzed to evaluate the correlation of the model results with the recorded temperature fluctuation. This 
process was executed using the Pearson’s correlation coefficient in Excel’s statistical analysis software 
add-on, XLSTAT. The results are shown in Table 9.5 containing the correlation matrix of all datasets.

https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf
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9.5.4.2.1  Correlation of Temperature Variation from Thermal Mapping 
and Moderate Resolution Imaging Spectroradiometer

Concerning the correlation of temperature data, which are obtained from different and independent 
sources, a significant positive relationship is derived. The Pearson’s correlation coefficient of road 
surface and air temperature recorded during the thermography and LST obtained by MODIS imag-
ery is calculated to be 0.659 and 0.640, respectively.

The correlation between RST and air temperature is higher (0.820), as expected, because it is 
derived by the same measurement method and instruments.

9.5.4.2.2  Correlation of Geographic Information System Model 
Results and Recorded Temperature Variation

As shown in Table 9.5, the two versions of the GIS models have a negative relationship, with the 
recorded temperature fluctuation both from thermal mapping and remote sensing data. This out-
come is not surprising, as the higher values of frost risk model results are linked to lower tempera-
tures and higher risk of frost.

Between the two versions of the GIS model, it is apparent that the AH version provided a more 
accurate prediction than the WLC model. The first has a high negative association assessed to 
be −0.561 with RST and −0.510 with air temperature. In addition, its association with LST is mar-
ginally high (−0.49). The corresponding Pearson’s correlation coefficient between WLC results and 
road surface, air, and LST was calculated to be −0.467, −0.412 and −0.386, respectively. So there 
seems to be moderate to marginally high correlation.

9.5.4.3 Moran’s I Autocorrelation Analysis
In order to further investigate the pattern of temperature variation along the motorway and the exis-
tence of areas with significantly lower or higher temperatures, the spatial analysis software GeoDA 
was employed (Anselin et al. 2006). The degree of spatial autocorrelation of the results of the pro-
cesses of this study was analyzed based on the local Moran’s I statistic test. The matrix K4 nearest 
neighbor was selected for these analyses, as it combined nearly the highest values of Moran’s I index 
while providing with sufficient clustering of the data. Figure 9.9 shows the produced LISA cluster 
maps, which classify the motorway by type of spatial association. The study area is divided into 14 
numbered patches similar to Sections 9.5.1 through 9.5.3.

The dark red locations represent spatial clusters of high values surrounded by high values, form-
ing a high–high region. Similarly, the dark blue locations indicate spatial clusters with low values 
surrounded by low values, forming a low–low region. The spatial outliers are regions with high 
values surrounded by low value regions or the opposite and are marked with light red or light blue 
and are called high–low and low–high regions, respectively.

The overall pattern of the cluster maps of the GIS models seems to have a similarity. Clusters 
of high risk are observed in areas I, IV, and V. Less susceptible to frost seem to be parts of areas 
VIII, XII, and XIII. An insignificant autocorrelation was detected in the GIS model results for the 
remaining motorway.

The RST and LST cluster maps seem to follow a similar pattern, as clusters of low temperatures 
appear to be in areas I, II, VI, and VIII. High-temperature clusters are observed in areas XII and XIII.

The cluster map of Tair is quite differentiated to the RST and LST cluster maps, except from area 
I where a low-temperature cluster is detected.

Tair cluster maps show a similarity to those of LST and RST in the low-temperature regions (areas 
I and II). On the contrary, high-temperature cluster maps are contained in areas IV, V, and XIII, 
which are different to LST and RST cluster maps.

According to the autocorrelation analysis results, there seems to be an efficient prediction 
of the GIS frost models for areas I, XII, and XIII, as in these areas clusters of high levels of 
frost risk are produced by the models, and clusters of low RST and LST values are observed. 
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Further research could be addressed to the remaining study area so as to optimize the output 
of the GIS models with proper adjustments.

9.6 CONCLUSIONS

This study provides important insights into how remote sensing imagery and thermography mea-
surements might be combined to study climatological hazards such as frost.

Thermography measurements offered a high spatial resolution and enabled the better under-
standing of the RST patterns as it has the ability to produce a very precise thermal map of a specific 
area such as a motorway. However, the complementation of more repetitions of the thermography 
measurements and under more diverse weather conditions are required to produce an even more 
representative RST profile.

Remotely sensed LST derived by MODIS was processed to produce temperature fluctuation 
along the motorway. MODIS imagery is freely available data and is provided with ready to use LST 
information through the internet on a daily basis, provided cloud-free weather conditions prevail. 
But their low spatial resolution of 1 km and the possible loss of data due to clouds are significant 
limitations in studies of road weather conditions and could produce misleading results. However, 
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FIGURE 9.9 Cluster maps of GIS model results and RST and LST average values along the studied portion 
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downscaling in areas of diverse landscape and geomorphology should be performed with caution 
and by employing techniques such as data fusion, which enables the exlpoitation of the advantage 
of high temporal resolution of MODIS and spatial resolution of Landsat-8 and ASTER sensors. In 
addition, remotely sensed temperature data will be available in the near future by sources such as 
Sentinel-3, which will provide an alternative LST data source. The potential offered by these data is 
a subject of further investigation concerning temperature fluctuation studies.

Finally, the hazard levels of frost have been forecasted by applying a GIS frost model, which 
incorporates geographical and environmental variables. The use on GIS modeling to predict frost 
hazard levels on a motorway offers the possibility of forecasting frost risk for an area independent 
of its accessibility and may reduce costly field surveys. It requires the development and parametriza-
tion of a model according to the climatic conditions of an area and the availability of high-resolution 
remote sensing data to produce more accurate results. Future research should take place to analyze 
and better explain the impact and the interaction of the factors addressed in the model or even to 
include additional environmental or climatic variables. The accuracy of risk assessment could be 
improved, and the resultant hazard maps would be more valuable to road engineers and mainte-
nance personnel for creating safety protocols for specific parts of the Egnatia motorway.

The methodology analyzed herein is applicable to areas with different climatic conditions with the 
appropriate adjustments. It enables the exploitation of thermography measurements and its coupling 
with remote sensing data and GIS tecnhiques aiming at the identification of areas along a motorway 
that runs a high frost and ice risk. The ability to estimate areas more suspectible to low temperatures 
and frost conditions along a motorway is an issue of great importance. With the development of GIS 
and EO techniques, it is possible to be achieved with greater accuracy and more timely.

ACKNOWLEDGMENT

The authors are thankful to the company “Egnatia Odos SA” for providing the thermography mea-
surement data, which were used in this study.

REFERENCES

Anand, S. (2007). Domestic use of unmanned aircraft systems: An evaluation of policy constraints and the 
role of industry consensus standards. ASTM Standardization News, 35, 30.

Anselin, L., Syabri, I., and Kho, Y. (2006). GeoDa: an introduction to spatial data analysis. Geographical 
Analysis, 38(1), 5–22.

Berrocal, V. J., Raftery, A. E., Gneiting, T., and Steed, R. C. (2010). Probabilistic weather forecasting for 
winter road maintenance. Journal of the American Statistical Association, 105(490), 522–537.

Bogren, J. and Gustavsson, T. (1991). Nocturnal air and road surface temperature variations in complex 
terrain, International Journal of Climatology, 11, 443–455.

Bogren, J., Gustavsson, T., Karlsson, M., and Postgård, U. (2000). The impact of screening on road surface 
temperature. Meteorological Applications, 7(2), 97–104.

Bogren, J., Gustavsson, T., and Lindqvist, S. (1992). A description of a local climatological model used to 
predict temperature variations along stretches of road. Meteorological Magazine, 121(1440), 157–164.

Bolam Model Weather Forecast. National Observatory of Athens. Available: http://cirrus.meteo.noa.gr/fore-
cast/bolam/index.htm

Boselly, S. E., Doore, G. S., Thornes, J. E., Ulbery, C., and Einst, D. D. (1993). Road weather information 
systems. Volume 1: Research report. Washington, DC.

Bouilloud, L. and Martin, E. (2006). A coupled model to simulate snow behavior on roads. Journal of Applied 
Meteorology and Climatology, 45(3), 500–516.

Bouilloud, L., Martin, E., Habets, F., Boone, A., Le Moigne, P., Livet, J., and Marchetti, M. (2009). Road surface 
condition forecasting in France. Journal of Applied Meteorology and Climatology 48(12), 2513–2527.

Bouris, D., Theodosiou, T., Rados, K., Makrogianni, M., Koutsoukos, K., and Goulas, A. (2010). Thermographic 
measurement and numerical weather forecast along a highway road surface. Meteorological Applications, 
484(03), 474–484.

http://cirrus.meteo.noa.gr/fore-cast/bolam/index.htm
http://cirrus.meteo.noa.gr/fore-cast/bolam/index.htm


206 Remote Sensing of Hydrometeorological Hazards

Bradley, A. V., Thornes, J. E., Chapman, L., Unwin, D., and Roy, M. (2002). Modelling spatial and temporal 
road thermal climatology in rural and urban areas using a GIS. Climate Research, 22(1), 41–55.

Chapman, L. and Thornes, J., E. (2004). Real-time sky-view factor calculation and approximation. Journal of 
Atmospheric and Oceanic Technology, 21(5), 730–741.

Chapman, L. and Thornes, J. E. (2005). The influence of traffic on road surface temperatures: Implications for 
thermal mapping studies. Meteorological Applications, 12, 371–380.

Chapman, L. and Thornes, J. E. (2006). A geomatics-based road surface temperature prediction model. 
Science of the Total Environment, 360(1), 68–80.

Chapman, L., Thornes, J. E., and Bradley, A. V. (2001). Modelling of road surface temperature from a 
geographical parameter database. Part 2: Numerical. Meteorological Applications, 8, 421–436.

Chrysoulakis, N., Abrams, M., Feidas, H., and Velianitis, D. (2004). Analysis of ASTER multispectral stereo 
imagery to produce DEM and land cover databases for Greek islands: The REALDEMS project. 
Proceedings of e-Environment Progress and Challenge, p. 411–424.

Cornford, D. and Thornes, J. E. (1996). A comparison between spatial winter indices and expenditure on 
winter road maintenance in Scotland. International Journal of Climatology, 16, 339–357.

Coll, C., Caselles, V., Valor, E., Niclòs, R., Sánchez, J. M., Galve, J. M., and Mira, M. (2007). Temperature 
and emissivity separation from ASTER data for low spectral contrast surfaces. Remote Sensing of 
Environment, 110(2), 162–175.

Crevier, L. P. and Delage, Y. (2001). METRo: A new model for road-condition forecasting in Canada. Journal 
of Applied Meteorology, 40, 2026–2037.

Drobne S. and Lisec A. (2009). Multi-attribute decision analysis in GIS: Weighted linear combination and 
ordered weighted averaging. Nature, 4(26), 28.

Earth Observing System Data and Information System (EOSDIS). 2009. Earth Observing System 
ClearingHOuse (ECHO)/Reverb, Version 10.X [online application]. Greenbelt, MD: EOSDIS, Goddard 
Space Flight Center (GSFC) National Aeronautics and Space Administration (NASA). Available: http://
reverb.earthdata.nasa.gov.

Eriksson, M. (2001). Winter road climate investigations using GIS. Doctoral Thesis–University of Gothenburg, 
Gothenburg, Sweden.

Federal Highway Administration (2006). Best practices for road weather management. Version 2.0. Available: 
http://ops.fhwa.dot.gov/ Weather/best_practices /CaseStudies/029.pdf

Fridley, J. D. (2009). Downscaling climate over complex terrain: high finescale (<1000 m) spatial variation 
of near-ground temperatures in a montane forested landscape (Great Smoky Mountains). Journal of 
Applied Meteorology and Climatology, 48(5), 1033–1049.

Fry, R. (2010). Improving road ice prediction through the introduction of GIS generated geographical param-
eters to an ice- forecasting model. PhD thesis. University of Glamorgan Wales, Treforest, Wales.

Gao, F., Masek, J., Schwaller, M., and Hall, F. (2006). On the blending of the Landsat and MODIS surface 
reflectance: Predicting daily Landsat surface reflectance. IEEE. Transactions on Geoscience and 
Remote Sensing, 44(8), 2207–2218.

Geiger, R. F., Aron, R. H. and Todhunter, P. (2003). The Climate Near the Ground. Lanham, MD: Rowman & 
Littlefield Publishers, p. 584.

Gessler P. E., Chadwick O. A., Chamran F., Althouse L. and Holmes K. (2000). Modeling soil-landscape and 
ecosystem properties using terrain attributes. Soil Science Society of America Journal, 64, 2046–2056.

Greenfield, T. M. and Takle, E. S. (2006). Bridge frost prediction by heat and mass transfer methods. Journal 
of Applied Meteorology and Climatology, 45(3), 517–525.

Grimmond, C. S., Potter, S. K., Zutter, H. N., and Souch, C. (2001). Rapid methods to estimate sky-view 
factors applied to urban areas. International Journal of Climatology, 21(7), 903–913.

Gustavsson, T. and Bogren, J. (1991). Infrared thermography in applied road climatological studies. 
International Journal of Remote Sensing, 12(9), 1811–1828.

Gustavsson, T. (1999). Thermal mapping–A technique for road climatological studies. Meteorological 
Applications, 6, 385–94.

Gustavsson, T., Karlsson, M., Bogren, J., and Lindqvist, S. (1998). Development of temperature patterns 
during clear nights. Journal of Applied Meteorology, 37(6), 559–571.

Hammond, D., Chapman, L., Thornes, J. E. and White, S. P. (2010) Verification of route-based winter road 
maintenance weather forecasts. Theoretical and Applied Climatology, 100, 371–384.

Jacobs, W. and Raatz, W. E. (1996). Forecasting road-surface temperatures for different site characteristics. 
Meteororological Applications, 3, 243–256.

Li, L. Y. and Eglese, R. W. (1996). An interactive algorithm for vehicle routeing for winter—Gritting. Journal 
of the Operational Research Society, 47(2), 217–228.

http://reverb.earthdata.nasa.gov
http://reverb.earthdata.nasa.gov
http://ops.fhwa.dot.gov/Weather/best_practices/CaseStudies/029.pdf


207Temperature Fluctuation and Frost Risk Analysis on a Road Network 

Liu, H. and Weng, Q. (2012). Enhancing temporal resolution of satellite imagery for public health studies: A case 
study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sensing of Environment, 117, 57–71.

Lindqvist, S. (1975). Infraredtermografiska tillampningar inom vagklimatologin, The Swedish Geographical 
Yearbook, vol. 51, pp. 117–123. (With English abstract.).

Louka, P., Papanikolaou, I., Petropoulos, G., and Stathopoulos, N. (2016). A deterministic model to predict 
frost hazard in agricultural land utilizing remotely sensed imagery and GIS. Geospatial Technology for 
Water Resource Applications. Portland, OR: CRC Press.

Malczewski, J. (2011). Local weighted linear combination. Transactions in GIS, 15(4), 439–455.
Miliaresis, G. C. and Paraschou, C.V. (2011). An evaluation of the accuracy of the ASTER GDEM and the role 

of stack number: A case study of Nisiros Island, Greece. Remote Sensing Letters, 2(2), 127–135.
Mitchell, A. (1999). The ESRI guide to GIS analysis. Geographic Patterns and Relationships, vol. 1. Redlands, 

CA: Environmental Systems Research Institute.
Muyldermans, L., Cattrysse, D., and Van Oudheusden, D. (2003). District design for arc-routing applications. 

Journal of the Operational Research Society, 54, 1209–1221.
Norrman, J. (2000). Slipperiness on roads–An expert system classification. Meteorological Applications, 7, 27–36.
Odido, D. and Madara, D. (2013). Emerging technologies: Use of unmanned aerial systems in the realisation of 

vision 2030 goals in the Counties. International Journal of Applied Science and Technology 3(8), 107–27.
Oke, T. R. (1987). Boundary Layer Climates. London, UK: Routledge.
Oliver, W. W. and Dolph, K. L. (1992). Mixed-conifer seedling growth varies in response to overstory release. 

Forest Ecology and Management, 48(1–2), 179–183.
Paumier, J. L. and Arnal, M. (1998). Experimentation Previroute sur l’autoroute A75 dans le Cantal (Previroute 

experiments on A75 highway in Cantal department). Revue Generale des Routes et Aerodromes, 758, 44–51.
Perrier, N., Langevin, A., and Campbell, J. F. (2007). A survey of models and algorithms for winter road 

maintenance. Part IV: Vehicle routing and fleet sizing for plowing and snow disposal. Computers & 
Operations Research, 34(1), 258–294.

POSEIDON System. (2008). Hellenic Center for Marine Research. Available: http://www.poseidon.hcmr.gr
Postgard, U. and Lindqvist, S. (2001). Air and road surface temperature variations during weather change. 

Meteorological Applications, 8(1), 71–84.
Pouteau, R., Rambal, S., Ratte, J. P., Gogé, F., Joffre, R., and Winkel, T. (2011). Downscaling MODIS-derived 

maps using GIS and boosted regression trees: The case of frost occurrence over the arid Andean high-
lands of Bolivia. Remote Sensing of Environment, 115(1), 117–129.

Radcliffe J. E. and Lefever K. R. (1981). Aspect influences on pasture microclimate at Coopers Creek, North 
Canterbury. New Zealand Journal of Agricultural Research, 24, 55–66.

Ramakrishna, D. M. and Viraraghavan, T. (2005). Environmental impact of chemical deicers–A review. 
Water, Air, and Soil Pollution, 166(1), 49–63.

Rayer, P. J. (1987). The Meteorological Office forecast road surface temperature model. Meteorological 
Magazine, 116, 180–191.

Rosema, A. and Welleman, A. G. (1977). Microclimate and winter slipperiness. A study of factors influencing 
slipperiness, with application of thermal infrared observation techniques. Niwars, p.38.

Rouse, W. R. and Wilson, R. G. (1969). Time and space variations in the radiant energy fluxes over slop-
ing forested terrain and their influence on seasonal heat and water balances at a middle latitude site. 
Geografiska Annaler. Series A. Physical Geography, p.160–175.

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services 
Sciences, 1(1), 83–98.

Shao, J. (2000). Fuzzy categorization of weather conditions for thermal mapping Journal of Applied 
Meteorology and Climatology, 39, 1784–1790.

Shao, J. C., Swanson, R., Patterson, P., Lister, J., and Mcdonald, A. N. (1997). Variation of winter road surface tem-
perature due to topography and application of thermal mapping. Meteorological Applications, 4, 131–137.

Semmens, K. A., Anderson, M. C., Kustas, W. P., Gao, F., Alfieri, J. G., McKee, L., and Xia, T. (2016). 
Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor 
data fusion approach. Remote Sensing of Environment, 185, 155–170.

Simpson, D. M. and Human, R. J. (2008). Large-scale vulnerability assessments for natural hazards. Natural 
Hazard, 47(2), 143–155.

Soderstrom, M. and Magnusson, B (1995). Assessment of local agroclimatological conditions—A methodol-
ogy. Agricultural and Forest Meteorology, 72, 243–260.

Stove, G. C., Kennie, T. J., and Harrison, A., (1987). Airborne thermal mapping for winter highway mainte-
nance using the Barr and Stroud IR18 thermal video frame scanner. International Journal of Remote 
Sensing, 8, p.1077–1084.

http://www.poseidon.hcmr.gr


208 Remote Sensing of Hydrometeorological Hazards

Sunbury T. M. (2013). The role and challenges of utilizing GIS for public health research and practice. 
Technology & Innovation, 15(2), 91–100.

Tagmouti, M., Gendreau, M., and Potvin, J. Y. (2007). Arc routing problems with time-dependent service 
costs. European Journal of Operational Research, 181(1), 30–39.

Takle, E. S. (1990). Bridge and roadway frost: Occurrence and prediction by use of an expert system. Journal 
of Applied Meteorology, 29(8), 727–734.

Thornes, J. E. (2000). Road salting–An international cost/benefit review. In R. M. Geertman (Ed.) Proceedings 
of the 8th World Salt Symposium. Volume 2, Amsterdam, the Netherlands: Elsevier, pp. 787–790.

Thornes, J. E. (1991). Thermal mapping and road-weather information systems for highway engineers. 
Highway Meteorology, pp. 39–67.

Vinter, R. (2015). Utilization of Lidar data and street view images in road environment monitoring. PhD 
thesis, Aalto University, Finland.

Wood, N. L. H. and Clark, R. T. (1999). The variation of road-surface temperatures in Devon, UK during cold 
and occluded front passage. Meteorological Applications, 6, 111–118.
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10 Wildfires and Remote Sensing
An Overview

Nicolas R. Dalezios, Kostas Kalabokidis, 
Nikos Koutsias, and Christos Vasilakos

10.1 INTRODUCTION

Wildland/forest fires (or merely wildfires) are considered one of the most widespread environmental 
hazards. This hazard contributes significantly to climate change and soil degradation (NC, 2015; 
IPCC, 2012). Destruction of vegetation by wildfires can potentially affect the hydrological cycle, as 
well as land surface, due to the increase in the surface albedo, increase in surface runoff, decrease in 
evapotranspiration, increase in erosion, and occurrence of floods and deserts. Moreover, the burn-
ing of biomass may contribute, along with gases, to the greenhouse effect and can originate the 
destruction of the ozone layer.

Wildfires have been a natural disturbance of wildland ecosystems, such as in the Mediterranean 
Basin or in California, United States. Indeed, fire has played an important role in shaping many 
plant communities that grow in a climatic region characterized by hot and dry summer conditions, 
with high evapotranspiration rates (Sedaei et al., 2017). During the last decades, human activities 
have disturbed the delicate natural balance between fire activity and the regeneration processes. It 
is recognized that among the main reasons that can explain these facts, the following can be empha-
sized: abandonment of farmlands and forests, urban expansion into forest areas, and the constant 
increase of tourist development in wooded zones. With focus on the Mediterranean region, wild-
fires occur in bordering countries of this area during the dry season and mainly affect pine forests, 
shrublands, and less frequently cultivated fields. For example, on an average, about 1,500 wildfires 
are recorded annually in Greece, which affect a surface area of roughly 50,000 ha (Kailidis, 1990; 
Kalabokidis et al., 2013). Although the vast majority are small-scale fires, a small number of them 
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(about 5%) are considered as large-scale fires that burn more than 100 ha, even when the associated 
burned area reaches 70% of the aforementioned total. In United States, large-scale fires usually burn 
more than 400 ha.

This chapter focuses on the remote sensing potential in wildfires. At first, wildfires definitions 
and concepts are presented, along with parameters, causes, and factors affecting wildfires, as well 
as wildfire mechanisms and protection. Then, remote sensing concepts, as well as capabilities in 
wildfires, are presented. Specifically, remotely sensed data and methods for wildland fuel modeling 
(prefire conditions), fire early warning systems (FEWS), wildfire monitoring (during an event activ-
ity), and postfire assessment are analyzed. Remote sensing examples and case studies are presented 
on these topics.

10.2 WILDFIRE DEFINITIONS AND CONCEPTS

There are three types of forest fires, namely ground, surface, and crown fires (Omi, 2015). Ground 
fires, which burn on the ground or below ground vegetation, are often best controlled by excavating 
trenches or firelines down into the mineral soil layer, which cannot burn. Ground fires typically burn 
by smoldering and can burn slowly for days to years, as exemplified by peat fires. Surface fires burn 
along the surface and tend to move quickly. Crawling or surface fires are fueled by low-lying vegeta-
tion, such as leaf and timber litter, debris, grass, and low-level shrubbery. Surface and ground fuel 
types are especially susceptible to ignition due to spotting, which is shedding burning biomass. In 
Australian bushfires, spot fires are known to occur as far as 20 km from the fire front (VBRC, 2010). 
Ladder fuel is material between low-level vegetation and tree canopies, such as small trees, downed 
logs, and vines that may be ignited during an advancing fire front and spread flames into the tree 
canopy/crown. Crown fires are most dangerous and spread very fast. They occur on top of the trees, 
where fire can jump from crown to crown, often over firebreaks. The ignition of a crown fire, termed 
crowning, depends on the density of the suspended material, canopy height, canopy continuity, and 
sufficient surface and ladder fuels to reach the tree crowns.

10.2.1 parameters anD causes of WilDfires

Meteorological parameters, such as rainfall, air temperature, relative humidity, and wind velocity, 
have a significant effect in the initiation and spread of forest fires. Specifically, drought periods 
followed by dry and hot winds blowing from arid continental interiors over a period of days create 
a cumulative heating and drying effect on vegetation (Sedaei et al., 2017). These are atmospheric 
conditions, which promote dry lightning storms and are a frequent ignition source. Moreover, 
environmental factors affecting fire danger are topography, type of fuel, and fuel moisture content 
(FMC) which is one of the most significant factors that affect the ignition and spread of forest fires 
(Omi, 2005). 

Rainfall of long duration is capable of depositing significant amounts of water and drenches 
the flammable forest matter, thereby, increasing its resistance to the initiation and spread 
of fire. On the other hand, as expected, short-duration precipitation has a very low effect in 
increasing the fuel moisture. Besides precipitation duration and amount, seasonality also 
plays an important role. Wind effect on forest fires depends on its speed and direction. At 
the initial stages, wind provides the necessary oxygen supply and at the maturity stage it 
affects the propagation velocity through flame tilting. Wind speed that exceeds 2.8 m s−1 
has been shown to have a 45% slope equivalent (Spanos et al., 1998). The wind direction 
is also important, because it determines the moisture content of the wind and the spread 
direction of the fire. Dry winds are more dangerous with respect to fire outbreak and 
spread. Large-scale fires show a high propagation velocity (2.5 km h−1) and usually evolve 
to crown fires. High air temperature in combination with dry spells is extremely dangerous 
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for the initiation and spread of wildfires. Wildfires with spatial extension over 500 ha habit-
ually come about when the temperature is greater than 30°C. Relative humidity determines 
the amount of ignition heat and affects the number of incidents and their spatial extension. 
Dry air results in dry and highly flammable forest biomass, whereas during nighttime the 
increase of relative humidity results in the increase of the FMC.

Environmental parameters affecting the fire danger are the variety and extent of fuel (veg-
etation and dead organic material), fuel moisture, and topography (altitude, slope, and 
aspect). The fuel loading of an area depends on land use, that is, forest or cultivated area, 
the vegetation species, and the vegetation condition. Moisture content depends both on 
fuel size and atmospheric conditions. Thin dead materials, for example, needles, respond 
rapidly to moisture changes in the atmosphere. On the other hand, branches of large size 
and thick leaf layers maintain their moisture for several days after rain episodes, especially 
when calm conditions prevail and saturation vapor pressure deficit is low. Topography 
plays an important role in the initiation and spread of forest fires, as well as in vegetation 
regrowth following a fire event. Altitude affects the vegetation period through temperature 
and moisture changes in the atmospheric environment and the groundwater supply of the 
plants.

Causes of wildfires differ from one area to another due to environmental factors, such as vegeta-
tion type, lightning frequency, climatic conditions, and anthropogenic activities. Causes of 
wildfires can be classified into three broad categories: (1) wildfires caused by natural causes, 
(2) wildfires caused by human activities; and (3) wildfires caused by dubious–unknown 
reasons. In Mediterranean type of ecosystems, only the smallest percentage of fires can be 
considered to be natural, such as caused by lightning, sparks, or volcanic eruptions, com-
pared to human-caused fires. Wildfires attributable to anthropogenic activities are evoked 
either randomly, such as by negligence or accidents or on purpose, such as arsons.

Factors affecting wildfires: The spread of forest fires varies based on the flammable material 
volume and its vertical arrangement. For example, fuels uphill from a fire are more readily 
dried and warmed by the fire than those downhill. Fuel arrangement and density are gov-
erned in part by topography, as land shape determines factors, such as available sunlight 
and water for plant growth.

10.2.2 WilDfire mechanisms anD protection

Wildfire mechanisms: A wildfire front is the portion sustaining continuous flaming combus-
tion in which unburned material meets active flames, or the smoldering transition between 
unburned and burned material (NWCG, 2008). Even before the flames of a wildfire arrive 
at a particular location, heat transfer from the wildfire front warms the air to more than 
800°C, which preheats and dries flammable materials, causing them to ignite faster and 
allowing the fire to spread. Wildfires have a rapid forward rate of spread when burning 
through dense, uninterrupted fuels. Wildfires can advance tangential to the main front 
to form a flanking front, or burn in the opposite direction of the main front by backing 
motion.

Protection from wildfires: In order to have an integrated wildfire protection system, two kinds 
of measures are needed, namely prevention and suppression measures. Prevention refers 
to preemptive methods of reducing the wildfire risk, as well as lessening fire severity and 
spread. The various techniques that can be used for reduction of anthropogenic fires fall 
into two general categories, namely to reduce danger–risk and to manage it. Other mea-
sures to prevent fire ignition and spread include the creation of firebreaks or fuelbreaks or 
modification of flammable fuels. The use of different types of vegetation cover is consid-
ered as a very important measure to prevent large fires. Moreover, wildfire prevention pro-
grams around the world may employ techniques, such as wildland fire use and prescribed 
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or controlled burns. Multiple fuel treatments are often needed to influence future fire risk. 
Suppression depends on the technologies available in the area in which the wildfire occurs. 
The key to controlling and suppressing a wildfire is getting human power and equipment to 
the scene in the shortest possible time. During the evolution of the fire, as information from 
the field and data from different sources (e.g., weather and satellite maps) become  available, 
the firefighting strategy can be modified from the first-response plan (Borealforest, 2016). 
The choice of whether to apply retardants depends on the scale, location, and intensity of 
the wildfire. Past fire suppression, along with other factors, has resulted in the larger, more 
intense wildfire events that are seen today.

Assessment of burned area: The delineation of the burned area depends on the type of burned 
vegetation, the soil type, the time interval after the fire, and the extent of the fire, that is, 
totally or partially burned (Domenikiotis et al., 2002). In all these cases, the spectral signa-
tures of the land cover objects do not have a characteristic pattern. After the cease of a fire, 
significant reduction of the vegetation is expected, and values corresponding to complete 
lack of chlorophyll elements are an indication of the burned area. Vegetation indices are 
an acceptable technique for identifying vegetation changes. The methods for mapping the 
burned areas are usually based either on the thermal signal or on the use of an index or on 
an algorithm utilizing both information.

10.3 REMOTE SENSING CAPABILITIES IN WILDFIRES

Remote sensing is a useful tool for providing information before, during, and after a wildfire through 
the visible, infrared, and microwave portion of the electromagnetic spectrum (ESA, 2004). Specifically, 
in the visible and infrared, meteorological satellites, such as the sun-synchronous NOAA-N series, or 
the geostationary Meteosat and geostationary operational environmental satellite (GOES), and envi-
ronmental satellites, such as Landsat or satellite pour l’observation de la terre (SPOT), which are polar 
or near-polar low-orbit satellites, are mainly used. Indeed, meteorological satellites have a rather coarse 
spatial resolution, but high temporal reoccurrence, thus being suitable mainly for operational monitor-
ing applications of wildfires and enable detecting meteorological parameters quantitatively, such as pre-
cipitation, humidity, wind, and temperature, among  others. On the other hand, environmental satellites 
are generally characterized by fine spatial resolution, but low temporal reoccurrence, being basically 
used in land use/cover types and detection of several wildfire features, such as areal extent, postfire 
assessment, FEWS, and monitoring. Moreover, in the microwave portion, there are active sensors, such 
as synthetic aperture radar (SAR) and light detection and ranging (LiDAR), which can provide sig-
nificant data in wildfire analysis, because they can map the vertical structure of vegetation. Similarly, 
satellite sensors European remote sensing (ERS-1),  Japanese earth resources satellite (JERS-1), and 
Radarsat, as well as airborne sensors, have been widely used in wildfires (Zhang et al., 2016).

The application and utility of Earth observation (EO) technology to wildfire assessment are grow-
ing rapidly, mainly due to the increasing number of satellite systems that are launched, along with 
the increasing remote sensing reliability and the continuously improving technological advances. 
The trend of further improving the spatial resolution continues reaching the level of microremote 
sensing in the order of 1 m or smaller with new satellites. Moreover, there is a very recent tendency 
to increase the number of available bands in these satellites resulting in new and valuable information 
in wildfire analysis. New types of remote sensing systems can provide online open information for 
web platforms. Such systems are NASA’s new online satellites for climate change, Orbiting Carbon 
Observatory-2, Global Precipitation Measurement Core Observatory, or Soil Moisture Active Passive, 
as well as the European Copernicus system with six Sentinel satellites (2014–2021) to monitor land, 
ocean, emergency response, atmosphere, security, and climate change (ESA, 2014). Moreover, mas-
sive cloud computing resources and analytical tools for working with big datasets make it possible 
to extract new information from environmental satellites with varying spatial resolution, such as 
Landsat-8 (15 m), QuickBird, Ikonos, RapidEye (5 m), Pleiades (0.5 m), or Worldview-3 (0.31 m).
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A major consideration for development of EO technology for wildfires and disaster reduction is 
the extent to which operational users can rely on a continued supply of data. Remote sensing capa-
bilities provide a viable method to offset any loss of spatial information. Indeed, satellite images 
and data are consistently available and have been of increasing value for improving the ability to 
delineate and simulate the spatial features of wildfires. Moreover, monitoring the extent of wildfire 
is best achieved in near arid areas by the vegetation coverage (Dalezios [Ed.], 2017). It is recognized 
that remote sensing methodologies and techniques can be employed in several aspects of wildfire, 
such as vulnerability and damage assessment, as well as relief, which involves assistance and/or 
intervention during or after a wildfire event. Similarly, a potential contribution of remote sensing 
could be focused on wildfire preparedness or warning, although in many cases remote sensing can 
make a valuable contribution to disaster prevention.

10.4 REMOTE SENSING IN WILDLAND FUEL MODELING

10.4.1 fuel types anD moDels

The possibility of using satellite data for land use/land cover classification, vegetation monitoring, 
and mapping has been a research and operational subject for years. Satellite remote sensing has 
been proved to effectively assist in fuel type mapping of large areas with low costs. Both passive 
and active sensors can be used based on various algorithms with high accuracy, but each method 
presents both advantages and limitations. The main approach that is widely used is the extraction of 
the vegetation types and their reclassification into surface fuel models, based on fuel characteristics. 
Supervised classification, unsupervised classification, principal component analysis, and tasseled cap 
transformation of medium resolution imagery along with ancillary data have been widely used (van 
Wagtendonk and Root, 2003; Francesetti et al., 2006; Palaiologou et al., 2013) at low or no cost nowa-
days. Multitemporal images were used to identify the different fuel types based on their phenology 
(Chuvieco et al., 2003). Sensors with very high resolution, such as QuickBird and Ikonos, have also 
been used (Giakoumakis et al., 2002; Arroyo et al., 2006; Gitas et al., 2006; Lasaponara and Lanorte, 
2007a; Mallinis et al., 2008) based mainly on object-oriented classification algorithms. However, the 
major drawback of passive sensors is the fact that they cannot see underneath the canopy and under 
cloudy conditions. Thus, fuel structural characteristics cannot be quantified for all fuel layers.

Sensors with high temporal and low spatial resolution have also been used in fuel models 
retrieval. For example, Uyeda et al. (2015) used the Moderate Resolution Imaging Spectroradiometer 
(MODIS) to study postfire vegetation recovery using a pixel-explicit approach to generate maps 
of postfire biomass recovery and fuel development; they found that the Normalized Difference 
Vegetation Index (NDVI) time series reveal signals of biomass accumulation including some noise 
from precipitation and site variability. Other studies are based on the usage of the advanced space-
borne thermal emission and reflection radiometer (ASTER), showing overall accuracies of more 
than 90% (Guang-xiong et al., 2007; Lasaponara and Lanorte, 2007b). At another study, Fernández-
Manso et al. (2014) used fraction images from linear spectral mixture analysis to estimate above 
ground biomass (AGB) based on ASTER data. The modeling was based on multiple regression 
between field measurements as the dependent variable and ASTER spectral bands, fraction images, 
NDVI, or tasseled cap components as the independent variables. According to their results, the 
model that includes the green vegetation fraction image, the soil fraction image, and the shade 
fraction image improved AGB estimation. Spectral mixture analysis methods were also applied in 
hyperspectral data; Jia et al. (2006) used airborne visible infraRed imaging spectrometer (AVIRIS) 
data to estimate forest canopy cover, discriminating among the dominant canopy types (Douglas-fir 
and ponderosa pine). They concluded that spectral mixture analysis approaches offer the capacity to 
assess important fuel attributes including canopy cover, species composition, and burn severity over 
montane conifer forests. However, airborne hyperspectral data are available only for a small extent 
upon request with high costs.
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Opposed to passive sensors, active sensors such as SAR and LiDAR can provide significant data 
for mapping stand biomass due to the fact that they can discriminate the vertical structure of the 
vegetation. Various studies proved that SAR and LiDAR can describe and quantify the fuel poten-
tial of the stands, and they may be useful for estimating surface fuel models, crown bulk densities, 
and canopy dimensions (Keane, 2015).

Satellite sensors European remote sensing (ERS)-1, Japanese earth resources satellite (JERS)-1, 
and Radarsat, as well as airborne sensors, have been widely used to estimate fuel characteristics, 
such as foliar biomass, tree volume, tree height, and canopy closure (Toutin and Amaral, 2000; 
Austin et al., 2003; Li et al., 2007; Saatchi et al., 2007; Garestier et al., 2008; Huang et al., 2009; 
Ho Tong Minh et al., 2016; Zhang et al., 2016). Both polarimetric and interferometric measurements 
of SAR sensors can provide valuable information especially at low frequencies in which they are 
sensitive to crown and stem biomass. Moreover, the interferometric measurements in conjunction 
with allometric equations can provide forest height parameters (Saatchi and Moghaddam, 2000). It 
should be noted that fuel retrieval based on SAR signal depends on the bands (i.e. frequencies) and 
their polarization (Saatchi et al., 2007) (Figure 10.1).

The most promising results of fuel properties mapping are provided by airborne LiDAR. LiDAR 
data consist of a discrete point measurement of ranges, that is, distance between the sensor and 
the target. From these measurements, one can calculate elevations coupled with the strength of the 
return signal; and the fuel strata can be described in three dimensions (Figure 10.2). Many authors 
explored the usage of LiDAR (Riaño et al., 2003, 2004; Andersen et al., 2005; Popescu and Zhao, 
2008; Hermosilla et al., 2014), while the first forest applications of airborne laser have been reported 
30 years ago (Nelson et al., 1984). During the last decade, LiDAR data have been extensively used in 
conjunction with multispectral data. Erdody and Moskal (2010) used LiDAR and near-infrared 
imagery as explanatory variables in regression models to correlate them with field canopy fuel met-
rics. According to their results, LiDAR data presented strong relationship with field data, whereas 
the addition of the near-infrared increased the accuracy only by 3%–4%. Therefore, the cost of very 
high-resolution imagery is not worthy unless other usage of this imagery is performed at the same 
time; for example, for vegetation species and health mapping. A small increase of the accuracy was 
also found by Ruiz et al. (2016), who compared data fusions of low-density LiDAR, WorldView-2, 
and the new and cost-free Sentinel-2. They used an object-based classification with field data. Four 
different models were developed based on the different dataset combinations. All models could 
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FIGURE 10.1 Comparison of the penetration depth for different SAR bands.
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discriminate the different fuel types with an overall accuracy of almost 90%. The model that uses 
only the LiDAR data has shown the lower accuracy, whereas it had been only 3%–4% lower than 
using all the data together. However, if the user wants to discriminate specific classes with the mini-
mum confidence level, then the fusion of LiDAR and a very high-resolution image of WorldView-2 is 
essential. It should be mentioned that the usage of only a multispectral imagery presented an overall 
accuracy level below 70%. Except the cost-free Sentinel-2, another low-cost approach was proposed 
by Hudak et al. (2016) based on LiDAR and Landsat. Marino et al. (2016) also used low-density LiDAR 
data (1 pulse/m2) and cost-free Landsat-8 operational land imager (OLI). They applied a random forest 
classifier and obtained an overall accuracy of 82%, when they used the standard Northern Forest Fire 
Laboratory fuel modeling scheme as target and obtained an overall accuracy of 70%, when they used 
site-specific fuel models. Kramer et al. (2016) investigated a new method for predicting ladder fuel 
levels in the field using photographs with a calibration banner and remotely-sensed data using LiDAR.

10.4.2 fuel moisture content

The significant influence of the FMC in wildfires has been recognized by wildfire managers and 
scientists (Pollet and Brown, 2007). Ignition and behavior of wildfires have great sensitivity in 
FMC, which is a key parameter in risk assessment (Vejmelka et al., 2016). In wildfires, it is critical 
to know both live and dead FMCs (Danson and Bowyer, 2004). Live fuel moisture (LFM) is based 
on the process of transpiration and soil water dynamics, whereas dead fuel moistures are influenced 
by the process of evaporation. The most common technique for the estimation of fuel moisture is 
the gravimetric sampling, that is, the ratio of weight of the water in the sample or material to the dry 
weight of the sample (Countryman and Dean, 1979).

The drawbacks of fuel moisture estimation based on field sampling or measurement by remote 
automatic weather stations can be overcome by using satellite remotely sensed data (Chuvieco et al., 
2004). Through remote sensing, investigators can estimate vegetation conditions directly in which 
water stress affects vegetation electromagnetic behavior (Prosper-Laget et al., 1995) (Figure 10.3). 
Although remote sensing is considered as an advantage on fuel moisture estimation, satellites on the 
other hand have their own specifications. For example, satellites such as Landsat, with high spatial 
resolution, provide precise information of vegetation for fuel types, but they have low temporal reso-
lution unlike satellites such as MODIS, which have a revisit cycle that is less than the one of Landsat 
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(Verbesselt et al., 2006). As a result, the latter satellites provide regular update of information on 
vegetation water stress considering that water content temporal frequency can vary significantly 
(Sow et al., 2013).

Most researchers are based on both optical and thermal parts of the electromagnetic spectrum, 
using the reflectance properties of vegetation (Sow et al., 2013). Other studies have shown that short-
wave infrared (SWIR) is the most sensitive channel to water absorption (Chuvieco, 2009). However, 
for vegetation analysis, the best approach is the usage of vegetation indices (Sow et al., 2013), and the 
most common of them is NDVI, when analyzing it at multitemporal series (Alonso et al., 1996). It is 
assumed that NDVI is sensitive to water content changes because it is based on chlorophyll activity 
and vegetation vigor (Chuvieco et al., 2004). For example, it is assumed that NDVI and FMC may be 
related because of the strong correlation between leaf chlorophyll content and leaf moisture content 
(Ceccato et al., 2001; Pettorelli, 2013). Nevertheless, many researchers disagree about the direct mea-
surement of vegetation water content from NDVI. Although they use vegetation indices as a proxy for 
indirect water stress detection, the connection between FMC and chlorophyll is not direct because 
it depends on plant species and their phenological status, atmospheric pollution, nutrient deficiency, 
toxicity, plant disease, and radiation stress (Ceccato et al., 2001; Dasgupta et al., 2005). Usually, the 
approach to retrieve FMC though NDVI is done when estimating live FMC; but measuring dead 
FMC through remote sensing is difficult, because dead fuels do not have variation in chlorophyll of 
leaves, whereas weather influences water variations (Verbesselt et al., 2006). On the other hand, plant 
drying causes a decrease in Leaf Area Index and chlorophyll content, so FMC could be indirectly 
measured as the result of the effects from this procedure (Figure 10.3). Positive linear correlations 
were reported using real FMC data and satellite-derived NDVI (Jones and Reinke, 2009).

Similar approaches were made from Gao (1996), who used near-infrared (NIR) and SWIR bands 
to propose NDVI. The basic concept about using NIR is that plants have high reflectance in this 
part of the spectrum (Jones and Reinke, 2009), and indices using NIR and SWIR estimate water 
content directly because they follow wavelengths that are related more to water absorption channels. 
Several other studies (Prosper-Laget et al., 1995; Alonso et al., 1996; Dasgupta et al., 2005; Hong 
et al., 2007; Sow et al., 2013) extended the use of different indices by analyzing the combination of 
NDVI and land surface temperature (LST), making temperature measurements significant on veg-
etation water stress detection. This relationship is based on the spectral reflectance of plant leaves 
in the red and near-infrared range, combined with the thermal mass of plant leaves relative to soil 
(Sow et al., 2013). Furthermore, soil moisture and thus NDVI reduction are due to the increase in 
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evapotranspiration caused by temperature rise (Sun and Kafatos, 2007). In addition, there is a nega-
tive correlation between NDVI and LST. Water stress can rise the surface temperature rapidly (Wan 
et al., 2004). A number of studies based on the relation between FMC real data and satellite indices 
have been proposed to estimate water content and showed good correlations, especially FMC with 
NDVI and LST (Chuvieco, 2009). For example, Chuvieco et al. (2004) used a regression model 
combining FMC with NDVI to LST ratio to evaluate the connection between real ground FMC and 
satellite data. There is a positive correlation, and plant drying reduces chlorophyll activity.

Opposed to optical sensors (infrared and thermal), radars have been rarely used in fuel moisture 
estimation. SAR backscatter signal is influenced by the moisture in the forest floor, the canopy (includ-
ing woody parts), and the weather (rainfall) (Leblon, 2005). Most of the SAR applications refer to 
soil moisture estimation. Initial approaches correlate the backscattering signal with the Canadian Fire 
Weather Index and weather variables. However, temporal changes of signal are related with foliar 
moisture content (Leblon et al., 2002). Airborne SAR has also been used for the estimation of LFM. 
Backscatter intensity and polarimetric decomposition components were linearly correlated to field 
measurements (Tanase et al., 2015). As a conclusion, forest fuel moisture can be roughly estimated 
based on SAR backscatter signal because the signal is quite influenced by the biomass, surface rough-
ness, and moisture conditions of the soil and vegetation (Bourgeau-Chavez et al., 2013).

10.5  REMOTE SENSING-BASED FIRE EARLY WARNING 
SYSTEMS AND MONITORING

10.5.1 remotely senseD fire early Warning systems

The development of FEWS is an essential tool in the framework of wildfire prevention and presup-
pression planning. The type of vegetation is very significant in fire risk mapping and forecasting. 
For example in Figure 10.4, a fire initiation risk map of Greece based on the vegetation cover is 

High risk

Very low risk
Low risk
Moderate risk

FIGURE 10.4 Fire initiation risk map for Greece, derived from the vegetation cover. (From Sedaei, L. et al., 
Handbook of Drought and Water Scarcity [HDWS], Taylor & Francis Group, Boca Raton, FL, 2017. With 
permission.)
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presented. Moreover, parameters, such as fuel type, fuel moisture, wind, and topography, constitute 
inputs, among others, to fire danger predicting systems that have been developed for fire prevention 
and suppression. Two of the most effective operational and widely used systems are the National 
Fire Danger Rating System (NFDRS) in United States (US Forest Service, 2012) and the Canadian 
Forest Fire Danger Rating System (CFFDRS) in Canada (Canadian Forest Service, 1992); both rely 
on remote sensing data. Indeed, the contribution of remote sensing to FEWS in operational systems 
for use in fire management around the world can be achieved through the estimation of indices used 
for prefire risk detection models (Leblon et al., 2012). These indices, in combination with meteoro-
logical parameters and other fire risk assessment indices, can be employed for forecasting wildfires.

It is recognized that wildfire danger forecasting is one of the most important components of 
wildfire management (Chowdhury et al., 2015). This subject involves several critical issues, such as 
(1) current operational wildfire danger forecasting systems and their limitations; (2) remote sensing-
based fire danger monitoring systems and operational perspective; (3) remote sensing-based fire 
danger forecasting systems and their functional implications; and (4) synergy between operational 
forecasting systems and remote sensing methods. Theoretically, it is possible to overcome the uncer-
tainty associated with the interpolation techniques in point-based measurements of meteorological 
variables by using remote sensing data. Fire danger condition systems could be broadly classified 
into two major groups: fire danger forecasting and monitoring systems. Indeed, most of the monitor-
ing systems focus on determining the danger during and/or after the period of image acquisition.

Moreover, fire danger modeling is a key component of such systems. A case study is presented, 
where eight different spectral vegetation indices are selected to determine the most appropriate index 
in specific regions of Spain (Bisquert et al., 2014). Specifically, 6 years of MODIS images, along with 
ground fire data in a 10 × 10 km grid basis, are utilized. The Enhanced Vegetation Index (EVI) provides 
the best results (Bisquert et al., 2014). Based on these results, a simple fire danger model is established, 
using logistic regression, by combining the EVI variation with other variables, such as fire history in 
each cell and period of the year. Another example is the development of a fire risk index in Malaysia, 
where severe wildfire episodes along with atmospheric pollution and haze, occur as a result of pro-
longed dry seasons following El-Niňo. Thus, there is a need to develop better systems for effective wild-
fire management with three objectives: detecting hot spots, developing a fire risk index, and generating 
spatial analysis for remotely sensed detected fires. In this case, a simple FEWS for wildfire detection in 
Malaysia is developed (Chowdhury et al., 2015), where thermal bands of MODIS are used to extract hot 
spot information and to generate a fire risk map, which is also based on MODIS NDVI values.

The Canadian Fire Weather Index (FWI) is one of the most widely known indices and provides 
numerical rating of relative wildland fire potential in a standard fuel type on level terrains. Essentially, 
FWI consists of six components that individually and/or collectively account for the effects of fuel 
moisture and wind on fire behavior. In this example, a procedure is followed that produces operational 
daily maps of fire danger over Euro-Mediterranean (DaCamara et al., 2014). The maps are based on 
integrated use of vegetation cover, weather data, and fire activity as detected by satellite remote sens-
ing. Statistical models based on two-parameter generalized Pareto (GP) distributions adequately fit 
the observed samples of fire duration and are significantly improved when the FWI is integrated as a 
covariate of scale parameters of GP distributions. Moreover, probabilities of fire duration exceeding 
specified thresholds are then used to calibrate FWI leading to five classes of fire danger, where fire 
duration is estimated on the basis of 15 min data provided by Meteosat Second Generation (MSG) 
satellites and corresponds to the total number of hours in which fire activity is detected in a single 
MSG pixel in a day. The resulted classes of fire danger provide useful information for wildfire man-
agement and are based on the Fire Risk Mapping product that is disseminated on a daily basis by the 
EUMETSAT Satellite Application Facility on Land Surface Analysis (DaCamara et al., 2014).

Furthermore, a new system is presented, which is called Fire Urgency Estimator in Geosynchronous 
Orbit (FUEGO) and is based on a small telescope. A small telescope with contemporary detectors 
and significant computing capacity in geosynchronous orbit can detect small (12 m2) fires on the 
surface of the earth, cover large areas, such as most of the western United States every few minutes, 
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and attain very good signal-to-noise ratio against Poisson fluctuations in a second. As a result, such 
a satellite could operate and reject the large number of expected systematic false alarms from a 
number of sources. It is possible to probe the sensitivity of a fire detection satellite in geosynchro-
nous orbit through a number of algorithms that can help reduce false alarms and show efficacy on 
a few alarms (Pennypacker et al., 2013). In FUEGO, the framework is developed for a geosynchro-
nous satellite with new imaging detectors, software, and algorithms that can detect heat from early 
and small fires, and operate on minute-scale detection times.

There is recent research to develop web information systems/platforms for wildfire prevention and 
management. As an example, the AEGIS platform is based on remote sensing (Kalabokidis et al., 
2016). The AEGIS platform assists with early fire warning, fire planning, fire control, and coordi-
nation of firefighting forces by providing online access to information that is essential for wildfire 
management (Figure 10.5). The system uses a number of spatial and nonspatial data sources to sup-
port key system functionalities. Specifically, land use/land cover maps are produced by combining 
field inventory data with high-resolution multispectral satellite images, namely RapidEye. These data 
support wildfire simulation tools that allow the users to examine potential fire behavior and hazard 
with the minimum travel time fire spread algorithm. Moreover, the system uses a minimum number 
of information from end users, such as fire duration, ignition point, and weather information to con-
duct a fire simulation. Indeed, AEGIS offers three types of simulations, that is, single-fire propaga-
tion, point-scale calculation of potential fire behavior, and burn probability analysis, similar to the 
FlamMap fire behavior modeling software. Furthermore, artificial neural networks (ANNs) are uti-
lized for wildfire ignition risk assessment based on various parameters, training methods, activation 
functions, preprocessing methods, and network structures. In addition, the combination of ANNs 
and expected burned area maps are used to generate integrated output map of fire hazard prediction. 

End users

External sources

Web server

Weather data
management

Real-time
weather data

WWW

ArcMap and ArcCatalog

Weather
forecast data

Burn
probabilities

HPC cluster

Fire behavior
simulations

Fire danger
forecast

AEGIS GUI

Users

DB Publishing
spatial data

ArcGIS server

Mapping and
geoprocessing

services

Geoprocessing
databases

FIGURE 10.5 Architectural components of the AEGIS platform showing the linkages among data 
and com  pu  ting resources. (From Kalabokidis, K. et al., Nat. Hazards Earth Syst. Sci., 16, 643–661, 2016. With 
permission.)
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Moreover, the system uses weather information obtained from remote automatic weather stations and 
weather forecast maps. The system and associated computation algorithms utilize parallel process-
ing methods, such as high-performance computing and cloud computing, which ensure the required 
computational power for real-time applications. In addition, all AEGIS functionalities are accessible 
to authorized end users through a web-based graphical user interface. Finally, an innovative smart-
phone application, AEGIS App, also provides mobile access to the web-based version of the system.

10.5.2 remotely senseD WilDfire Detection anD monitoring

There are a number of automatic and semiautomatic detection and monitoring systems used glob-
ally (Alkhatib, 2014). Early detection efforts have focused on early response, accurate results in 
both daytime and nighttime, and the ability to prioritize fire risk (Ambrosia et al., 1998). Currently, 
public hotlines, fire lookouts in towers, and ground and aerial patrols can be used for early detection 
of wildfires. Moreover, near real-time systems have gained ground in recent years as a possible solu-
tion to human operator error. Specifically, satellite and aerial monitoring through the use of planes, 
helicopter, or drones can provide a wider view and may be sufficient to monitor very large and high-
risk areas. These more sophisticated systems employ global positioning system (GPS) and infrared 
or high-resolution visible cameras to identify and target wildfires (ESA, 2006). In addition, satellite-
mounted sensors, such as Envisat’s Advanced Along Track Scanning Radiometer, can measure 
infrared radiation emitted by fires, identifying hot spots greater than 39°C. The NOAA’s Hazard 
Mapping System combines remote sensing data from satellite sources, such as GOES, MODIS, and 
advanced very high resolution radiometer (AVHRR), for detection of fire and smoke plume loca-
tions (NOAA, 1998). However, satellite detection is prone to offset errors, anywhere from 2 to 3 km 
for MODIS and AVHRR data and up to 12 km for GOES data (Ramachandran et al., 2008).

10.5.2.1 Remote Sensing of Wildfire Detection
Remote sensing techniques can be considered fully operational for wildfire detection (Leblon et al., 
2012). At local scale, they are mainly based on the use of visible and infrared cameras for the 
detection of active fires or smoke plumes. Fire detection at this scale is focused on support to wild-
fire fighting operations. Specifically, active sensors, such as the ERS-1, SAR, and Radarsat, have 
proven their capacity for monitoring fires under all-weather conditions. Similarly, at large scale, 
information is provided by geostationary satellite sensors (GOES), spinning enhanced visible and 
infrared imager (SEVIRI) or sun-synchronous sensors (AVHRR, advanced along-track scanning 
radiometer (AATSR), MODIS) with operational capabilities (e.g., SEVIRI) for active fire mapping. 
The high revisit time of the geostationary satellites provides frequent information (15–30 min) that 
is indicated for monitoring fire processes and fire effects. Moreover, although sun-synchronous 
satellites provide a lower revisit time (1–2 daily passes), they provide global fire information that is 
essential for the monitoring of wildfire processes and their effects on ecosystems, the atmosphere, 
and climate. The fire detection algorithms can be divided into four generic categories: bispectral, 
threshold, spatial contextual, and multitemporal fire detection methods (Hua and Shao, 2016). At 
the present time, the Collection 6 active fire detection algorithm data acquired by the MODIS sen-
sor shows improved performance compared to previous version, with reduced omission errors and 
reduced false alarms (Giglio et al., 2016). Thus, the daily and monthly gridded summaries of fire 
pixels are used in regional and global climate modeling (Amraoui et al., 2015).

A number of examples and case studies are described on wildfire detection based on remote sens-
ing data and methods. Specifically, a fire identification and detection index is presented, namely the 
Brightness Temperature Threshold Index (BTTI) (Dalezios [Ed.], 2017), which is given by the following 
formula: 

 
BTTI 10= + −





(pixelvalue )50
10  

(10.1)
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The BTTI is used for the identification of forest-risk areas, or areas, where a forest fire already occurs. 
The index is based on values of brightness temperature above a critical threshold. The BTTI is com-
puted a few times per day from NOAA/AVHRR satellite digital data with a resolution of 1.1 × 1.1 km2. 
Similarly, the BTTI can be computed from Meteosat satellite digital data for initial fire assessment, 
because the spatial resolution is 5 × 5 km2, although the information is available for the whole Europe 
every 30 min. Another fire detection index is the Fire Potential Index (FPI), which is based on relative 
greenness (RG) estimates and measured using the Visible Atmospheric Resistant Index (VARI) derived 
from MODIS data (Schneider et al., 2008). VARI is selected, instead of NDVI, because it has been 
shown to have the strongest relationship with LFM out of a wide selection of MODIS-derived indices in 
shrublands. The results show that VARI-FPI is far better than NDVI-FPI in distinguishing between fire 
and no-fire events for historical wildfire data, as applied in southern California. In another case study, 
the Angström’s index, along with NDVI and three meteorological parameters, namely temperature, rel-
ative humidity, and wind are used for fire risk detection and assessment of a burned area (Spanos et al., 
1998). Specifically, the differences in temperature and relative humidity were not significant, although 
wind speed shows considerable variations. The Angström’s index values suggested very favorable and 
favorable fire conditions. There was a reduction of the NDVI values for the affected pixels by the fire.

The smoke plume produced by the fire can both be detected with satellite imagery and modeled 
numerically. However, most models designed to study smoke plumes are developed for controlled 
burns and not wildfires. For wildfire detection, a model is used to compare model simulations with 
different types of satellite imagery (Kuester et al., 2005). Specifically, application is attempted in the 
2003 Aspen Fire in the mountains north of Tucson, Arizona, where analysis of satellite imagery of a 
wildfire smoke plume is conducted in conjunction with model simulations of this plume. The analysis 
results indicate that this plume model can be used to adequately simulate the fire plume as depicted 
in the satellite imagery, when the plume achieves a sufficient altitude. Moreover, the results show that 
for weak fires and low wind conditions, the plumes often follow the local surface topography.

A comprehensive review of current and potential remote sensing methods is presented, which 
are used to assess fire behavior and effects and ecological responses to fire, by Lentile et al. (2006). 
Specifically, remote sensing sensors have been used to estimate features of active fires, to map area 
burned, and to assess postfire ecological effects. Indeed, uncertainties about fire severity, burn 
severity, and related aspects can lead to potential misuse of the inferred information for fire man-
agement. In addition, the development and interpretation of remote sensing products are assessed, 
including potentials and limitations of a variety of approaches for monitoring of active fires and 
their postfire ecological effects, as well as challenges and future perspectives.

Furthermore, it is recognized that thermal remote sensing is widely used in the detection, study, 
and management of biomass burning occurring in open vegetation fires (Wooster et al., 2013). It is 
also mentioned that such fires may be planned for land management, may occur as a result of acciden-
tal ignition by humans, or may result from lightning or even from other natural phenomena. Indeed, 
vegetation fires are closely related to high temperatures, which means that thermal remote sensing is 
the appropriate tool for their identification. The theoretical basis of the key approaches used involves: 
(1) detection of actively burning fires, (2) characterization of subpixel fires, and (3) estimation of 
fuel consumption and smoke emissions. Specifically, the types of thermal remote sensing methods 
indicate how operational fire management has benefited from the resulting information. Moreover, 
the significance and magnitude of biomass burning, both within global and regional scales, justify 
the importance of thermal remote sensing to the study and management of open vegetation burning.

10.5.2.2 Remote Sensing of Wildfire Monitoring
The operational monitoring and mapping of the burning areas are very important aspects in dealing 
with emergency situations and the quantitative estimation of the affected area. By directly observ-
ing the plant’s radiometric response, it is possible to record the canopy reaction to environmental 
stresses and constrains directly and in real time. Methods usually applied are based on the thermal 
signal generated by flaming or smoldering combustion, and the daily fire growth (Chuvieco, 2009). 
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The use of remotely sensed contextual algorithms can potentially improve the detection of active 
fires, as compared to simple thresholding algorithms. At the present time, the data acquired by the 
MODIS sensor have become the standard for fire monitoring at regional to global scales and are 
used for environmental policy and decision-making.

A program of active fire mapping is briefly presented, namely the design and development of 
a rapid response system (RRS) for mapping and monitoring wildfires for the entire United States 
twice daily with MODIS (Quayle, 2002). The system provides an automated, rapid, and reliable 
approach for (1) daily acquisition and processing of remotely sensed data for active fire detection; 
(2) processing, analysis, and mapping of active fire detection data, and the production of other related 
products; and (3) distributing wildfire mapping products via the Internet. Moreover, enhancements 
for the RRS have included the following: (1) integrating Aqua MODIS data to provide an addi-
tional view of fire conditions approximately 2–3  h after each Terra MODIS pass, (2) providing 
cartographic enhancements to current map products, (3) integrating MODIS fire detections and 
other geospatial data into an interactive Web map interface, and (4) providing additional wildfire 
geospatial products and information. It is also mentioned that operational use of remotely sensed 
fire monitoring has been implemented in five African countries, that is, South Africa, Namibia, 
Botswana, Senegal, and Ethiopia (Flasse et al., 2004).

Several fire properties for monitoring of active wildland and agricultural fires are considered 
based on observations by operational polar-orbiting and geostationary satellites. Specifically, simu-
lations of synthetic remote sensing pixels comprised of observed high-resolution fire data, along 
with ash or vegetation background, demonstrate that fire properties including flame temperature, 
fractional area, and radiant-energy flux, can best be estimated from concurrent radiance measure-
ments at wavelengths near 1.6, 3.9, and 12 µm (Riggan et al., 2000). Indeed, successful observations 
at night may be made at scales to at least 1 km for the cluster of fire data simulated. Moreover, dur-
ing the daytime, uncertainty in the composition of the background and its reflection of solar radia-
tion would limit successful observations to a scale of 100 m or less. Nevertheless, measurements at 
the three wavelengths in the long-wave infrared would be unaffected by reflected solar radiation and 
could be applied to separate flame properties in a binary system of flame and background.

Moreover, a project is briefly presented on the fuel treatment effectiveness of wildland–urban 
interface (WUI). The WUI fuel treatments were designed to increase fire fighter safety, to protect 
people and property, and to mitigate severe fire effects on natural resources and were proved to be, 
in general, effective (Hudak et al., 2010). Specifically, a case study was examined for the 2007 East 
Zone and Cascade wildfires in central Idaho, which were burned through fuel treatments in the WUI 
surrounding two local communities. Indeed, the analysis results demonstrated that fuel treatment 
effectiveness can also be assessed remotely, using data from Burned Area Reflectance Classification 
(BARC) maps that are customarily produced by the United States forest service (USFS) Remote 
Sensing Applications Center (RSAC) in response to major wildfires in the United States. Moreover, 
a simple GIS analysis was used to calculate the proportion of high severity burned area and to 
compare between treatment units and untreated lands in the two study landscapes. It was found 
that in both landscapes, a higher proportion of untreated lands was burned at high severity than in 
treated lands. This result was consistent with near real-time postfire BARC mapping indicative of 
fire severity or after one-year postfire BARC mapping indicative of burn severity.

Two new airborne infrared imaging systems for rapid airborne fire mapping, namely FireMapper 
and OilMapper, which operate in a snapshot mode, are briefly presented. Indeed, both systems 
delineate the real-time display of single image frames in any selected spectral band (Hoffman et al., 
2005). Specifically, these single frames are displayed to operational use with full temperature cali-
bration. Moreover, a rapid tactical imaging mode is available for low-level operation, such as lead 
plane use during wildfire operations. For operational effectiveness, all of the images are tagged 
with GPS and are recorded on hard drives. Furthermore, in order to support fire and disaster man-
agement, the raw image frames are transmitted from the aircraft, via satellite, to a data processing 
facility, which generates the digital map products and then transmits them electronically back to the 
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incident monitoring in the field (Hoffman et al., 2005). Then, after the individual image frames are 
mosaicked and orthorectified, they are overlaid on digital map base layers, such as United States 
geological survey (USGS) Digital Raster Graphics. These two systems show a wide dynamic range 
(up to 1200°C) without saturating, and the thermal infrared maps are color coded by tempera-
ture, resulting in direct interpretation of fire severities and oil spill thicknesses (Stow et al., 2014). 
Eventually, fully annotated maps are generated and transmitted to the fire incident management for 
use in the field.

Remote sensing of active fires offers consistent near real-time geospatial information, in terms 
of wildfire mapping, that has proven useful for strategic operations. However, fire management may 
require higher spatial resolution products for tactical operations. Indeed, the recently developed 
375 m Visible Infrared Imaging Radiometer Suite (VIIRS) active fire detection algorithm improves 
the current spatial resolution of active fire detection products, showing a higher level of agreement 
with available airborne data (Schroeder et al., 2014). In addition, the improved spatial sampling 
of the VIIRS sensor and the 12 h revisiting time produce consistent daily data, allowing multiple 
observations of fires lasting several days.

10.6 REMOTE SENSING AND POSTFIRE ASSESSMENT

Assessment of the diverse consequences of wildland fires on environment, economy, and society is 
supported by proper data on fire activity acquired through advanced and powerful monitoring tools. 
A critical issue that affects fire management is the lack of multiscale spatially explicit information 
of fire occurrence. Such information summarized in thematic maps of various contents is important 
in fire management, whereas it is considered as the basis for protecting and restoring fire-affected 
natural ecosystems worldwide (Koutsias and Karteris, 1998). Spatiotemporal data of fire history 
help fire scientists and managers to understand the underlying causal factors of fire behavior, to 
assess the role of climatic anomalies on fire regimes, to interpret postfire vegetation dynamics, and 
to provide consistent fire statistics (Koutsias et al., 2013).

Available tools to create spatially explicit information on past wildland fire events are restricted to 
the availability of satellite data, such as the Landsat satellites where available multispectral scanner 
system (MSS) images exist from 1972 and Thematic Mapper images exist from 1984. Field surveys, 
aerial photography, and satellite remote sensing, including lately also drones, can be used conceptually 
for mapping new fire events. Field survey has serious limitations for burned land mapping, because 
it only provides general statistics due to time and cost restrictions, but it is a highly accurate method 
at local scales (Koutsias et al., 1999). Aerial photography covers larger geographical areas than field 
surveys and processes the data with less cost, but still its use in burned land mapping is minimal again 
mainly due to cost constraints. Remote sensing, especially nowadays when satellites of improved 
spectral and spatial resolution are in orbit, is an ideal alternative for collecting and processing the 
required information in a relatively inexpensive and timely fashion (Koutsias and Karteris, 1998). 
This technology, especially after the free release of Landsat archives from USGS and European space 
agency (ESA) and the availability also of Sentinel-2 by ESA, can be used to provide data of higher 
spatial resolutions at global scales, along with periodic spectral data in the visible and infrared part of 
the electromagnetic spectrum (Koutsias et al., 1999).

During the last 30 years, there was an active period of methods development using advanced 
techniques that integrate geostatistics and support vector machines and artificial neural networks 
(Boschetti et al., 2010; Gómez and Martín, 2011; Petropoulos et al., 2011; Mallinis and Koutsias, 
2012; Lanorte et al., 2013). Burned area mapping at local, regional, and global scales has achieved 
very high classification accuracies. Although satellite remote sensing appears to be a suitable 
approach to map and monitor burned areas compared to others, this method is not free of errors, 
because there are still various limitations to be resolved.

The postfire spectral signal of burned areas is determined (Pereira et al., 1997) by (1) the depo-
sition of charcoal as the direct result of burning that is a unique consequence of fire burning and 
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(2) the removal of photosynthetic vegetation that may be also caused by other factors than fires 
(Robinson, 1991). Consequently, the spectral pattern of burned areas is characterized first by a 
strong decrease in reflectance in NIR region of the spectrum because of the destruction of the leaf 
cell structure, and second by a strong increase in reflectance in SWIR because of the reduction of 
water content, which absorbs radiation in this spectral region (Pereira et al., 1997; Koutsias and 
Karteris, 1998). This particular spectral behavior of burned areas in NIR and SWIR (Figure 10.6) 
is the basis for the development of the Normalized Burn Ratio (NBR) index (Key and Benson, 
2006). NBR is a modification of NDVI by replacing Red with SWIR, which has been proposed by 
Lopez-Garcia and Caselles (1991) and later verified by Koutsias and Karteris (2000), although the 
replacement of the Red with SWIR channels has a long history in remote sensing (Ji et al., 2011).
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FIGURE 10.6 Histogram data plots of burned and vegetation areas in (a) NIR and (b) SWIR part of 
the spectrum. (Modified from Koutsias, N. and Pleniou, M., Int. J. Remote Sens., 36, 3714–3732, 2015. 
With permission.)
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FIGURE 10.7 Landsat TM color composites images (7,4,1) before (a) and after (b) the 1995 wildfire in Penteli, 
Greece. This band compilation highlights the burned area. In image (a) the Penteli area appears as green brown, and 
in (b) as light to dark red. (From Domenikiotis, C. et al., Int. J. Remote Sens., 23, 4235–4246, 2002. With permission.)
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An additional example is presented for mapping the affected burned forested area of about 
63 km2 (Domenikiotis et al., 2002). The applied method attempted to assess the agreement of the 
NDVI, extracted by NOAA/AVHRR and evaluate that by comparing with the NDVI produced with 
Landsat TM data, delineating the burned areas. Figure 10.7a and b show color composites of the 
Landsat images before and after the forest fire, respectively. As expected, Landsat TM described 
the burned area with more details. NDVI abrupt changes before and after the fire were the basis 
for mapping the extent of burned area and estimating the damage in near real time. The magnitude 
of such changes depends on the amount of burned area per pixel, the vegetation density, and the 
dominating species. It should be emphasized that although the overall agreement of both datasets 
was similar, the Landsat TM was much more accurate when it came to the estimation of the burned 
areas only.

Spectral overlapping between burned areas and other land cover types exists, and it is responsi-
ble for the confusion observed when trying to discriminate the burned areas spectrally. Confusions 
are observed between the burned areas and (1) water bodies, especially in cases of topographi-
cally shadowed areas, recently burned surfaces, mixed land–water, and water–vegetation pixels; 
(2) urban areas, although this can be eliminated by masking out urban areas; (3) shadows as a 
result of either irregular terrain, found especially in mountainous areas, or the presence of cloud 
shadows; (4) slightly burned land and unburned vegetation that is associated mainly with mixed 
pixels (Koutsias et al., 1999).

Despite any potential limitations, remote sensing technology has been used at global scale 
to map and monitor burned areas. Global fireproducts, based for example on MODIS (Justice 
et al., 2002), have been utilized in studies referring mainly to continental scales for characterizing 
global fire regimes (Chuvieco et  al., 2008) or for estimating global biomass burning emissions 
(Korontzi et al., 2004). Annually resolved fire perimeters based on MODIS data are provided by 
the European Forest Fire Information System of the European Commission in an effort to provide 
consistent fire statistics over Europe. Systematic fire products using medium-to-high resolution 
satellite data (e.g., Landsat) are not common on a global basis, mainly due to cost constraints on 
gathering and processing medium- or high-resolution satellite data series (Koutsias et al., 2013). 
The recent developments in informatics technology together with the freely available appropriate 
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FIGURE 10.8 A Landsat image (RGB: 742) showing a fire scar in red color (a) and the result of mapping the 
burned area (b). (Modified from Pleniou, M. et al., J. Maps, 8, 499–506, 2012. With permission.)



228 Remote Sensing of Hydrometeorological Hazards

satellite data (e.g., Landsat, Sentinel-2) offer new possibilities to develop such global products 
(Figure 10.8).

Currently, there is an evident redirection of the research to the development of automatically 
supported methods that are able to process the satellite data without human interference. Semi- 
or fully automated methods are not very common in studies referring to local or regional scales 
in which Landsat has been extensively applied to monitor burned areas. A method based on a 
two-phased algorithm that automatically maps burned areas has been developed by Bastarrika 
et  al. (2014), although a training phase is used to improve classification accuracy. In addition, 
a rule-based semiautomatic method to map burned areas and to reconstruct recent fire history 
has been developed by Koutsias et al. (2013). Automatic or semiautomatic techniques minimize 
human intervention and allow the algorithms to be applied to a series of satellite images in which 
hundreds of images might be used in the processing chain. Such methods enhance objectivity 
and reduce the required processing time by eliminating the time-consuming face of the classifier 
training (Hirschmugl et al., 2017). An example of time series MODIS satellite data (MYD09A1, 
MODIS/AQUA 8-day L3, RGB-721) from the northwest part of the Peloponnese suffered from the 
2007 fires is presented in Figure 10.9.

Koutsias et al. (1999) and Nioti et al. (2011) summarized and discussed the main findings about 
some strategies followed in burned land mapping studies, such as (1) the use of multitemporal ver-
sus single-date satellite data, (2) the use of multispectral transformations with emphasis on princi-
pal component analysis, and (3) the application of postclassification processing by a 3 × 3 majority 
filter. For the multi- versus single-date satellite images, research findings demonstrated that meth-
ods using a multitemporal dataset are more effective than those using only a single postfire image. 
In the multidate approach, the confusions between burned areas and other land cover types with 
similar spectral behavior that remain unchanged are minimized (Koutsias et al., 1999). However 
in multitemporal data, radiometric and geometric misregistration may result in under- or overesti-
mation of the burned areas. Mallinis and Koutsias (2012) observed that the majority of the errors 
are distributed in the borders between burned and unburned vegetation in which mixed pixels are 
found. In that sense, problems can be enhanced when geometric misregistration is considered.

The multispectral character of the satellite data promotes the application of various multi-
variate statistical methods, mainly methods dealing with dimensionality reduction. Specifically, 
principal component analysis and/or vegetation indices aim to separate spectral information (dis-
tributed in the original spectral channels) into those few new components. If dimensionality 
reduction and information separation are accomplished successfully, then the desired informa-
tion can be achieved easily by applying simple further processing such as thresholding (Koutsias 
et al., 2000). In burned land mapping, methods considering the spatial information of the sat-
ellite data can be very useful (Koutsias, 2003). Purely pixel-based multispectral classification 
approaches only consider the spectral information at pixel basis; these approaches do not take 
the spatial component into consideration defined mainly by the surrounding neighbor pixels, as 
for example, a simple 3 × 3 majority filter at the postprocessing level or an autocovariate in the 
autologistic approach. However, there are other more advanced and sophisticated approaches 
available to incorporate spatial information into digital classification either during postprocessing 
or prior to pixel labeling.

In a recent review paper on “methods for mapping forest disturbance and degradation from 
optical earth observation data” (Hirschmugl et al., 2017), two main change detection approaches 
were reported: (1) the classical image-to-image approach and (2) the time series analysis 
approach. The time series approach can be very useful to create temporal profiles extracted 
from the spectral signal of time series satellite images, which can be used to characterize vegeta-
tion phenology, and thus to be helpful for monitoring vegetation recovery in fire-affected areas 
(Figure 10.10). Vegetation phenology is an important element of vegetation characteristics that 
can be useful in vegetation monitoring, especially when satellite remote sensing observations 
are used.
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10.7 SUMMARY

In this chapter, an overview of the remote sensing, along with potentials and capabilities in wildfire 
hazard analysis, has been presented. Remote sensing data and methods provide direct measure-
ments of land characteristics, vegetative cover, and components of the hydrological cycle, namely 
temperature, rainfall, evapotranspiration, and soil moisture, just to mention a few. The international 
contribution of remote sensing to FEWS for use in fire management has been recognized and can 
be achieved through indices used in prefire risk detection modes that can be considered fully opera-
tional. Moreover, the operational monitoring and mapping of the burning areas are very important 
aspects in dealing with emergency situations and the quantitative estimation of the affected areas. 
Furthermore, satellite remote sensing proved to effectively assist in fuel type mapping of large 
areas with low costs. Both passive and active sensors can be used based on various algorithms 
with high accuracy. In addition, the significant influence of the FMC in wildfires has been recog-
nized. Specifically, LFM is based on the process of transpiration and soil water dynamics, whereas 
dead fuel moistures are influenced by the process of evaporation. Remote sensing is considered as 
an advantage on fuel moisture, because vegetation conditions can be directly estimated in which 
water stress affects vegetation electromagnetic behavior. Burned area mapping at local, regional, 
and global scales has achieved very high classification accuracies. In addition, temporal profiles 
extracted from the spectral signal of time series satellite images can be used to characterize vegeta-
tion phenology, and thus can be used for monitoring vegetation recovery in fire-affected areas.

The last 30 years was an active period of method development including advanced techniques 
that integrate geostatistics and support vector machines and artificial neural networks. At the present 
time, research is being redirected toward the development of automatically supported methods that 
are able to process the satellite data without human interference. Semi- or fully automated methods 
are not very common in studies referring to local or regional scales, where Landsat has been exten-
sively applied to monitor burned areas. Nevertheless, the future outlook of remotely sensed wildfire 
analysis is promising, because there is diachronically significant progress and steadily increasing 
reliability of remote sensing data and methods that are based on scientific as well as technological 
and computational advancements year by year. Moreover, the number of satellite systems is continu-
ously increasing with an improvement of their spatial and temporal resolution. The current trend is 
also to increase the number of available bands in these satellites, leading to additional and useful 
information. Finally, there is a new challenge due to the fact that new types of remote sensing sys-
tems offer online open information for web platforms that are also employed in wildfire monitoring 
and detecting processes.
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11 A Review on European 
Remote Sensing Activities in 
Wildland Fires Prevention

David Chaparro, Mercè Vall-llossera, and Maria Piles

11.1 INTRODUCTION

Wildland fires are an issue of major concern in human, economic, and environmental terms. They 
cause human victims and also produce important economic losses, for instance, by destroying resi-
dential structures and agricultural lands. Wildfire impacts on the environment are huge; they pro-
duce greenhouse gas (GHG) emissions and affect carbon budgets, vegetation characteristics, and 
the energy balance (Chuvieco et al. 2016).

Nowadays, Earth observing (EO) satellites provide information of a wide range of environmental 
variables at different spatiotemporal scales. Managing this information and providing it to end users are 
expected to lead to a more comprehensive monitoring of the Earth’s system and, in particular, of fire 
risks and impacts. In this respect, the European Commission (EC) established the Copernicus Program 
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to organize and deliver remote sensing and in situ observational datasets; it coordinates a set of services 
related to environmental and security issues and provides up-to-date information of the whole planet.

This chapter provides an overview of the Copernicus program and of its opportunities and chal-
lenges in wildfire prevention focusing on (1) the applicability of land cover and land use data from 
the local to the global scale, (2) the examples of fire risk studies based on fuel loads and vegetation 
hydric status information, and (3) the importance of soil moisture (SM) status to detect dry condi-
tions posing a risk of fire.

A comprehensive review on the use of EO information for wildfires risk evaluation, fire moni-
toring, burned area mapping, and the analysis of fire impacts is provided. Particular emphasis is 
given to the activities of the European Forest Fire Information System (EFFIS). The possibility 
of complementing fire risk indices using new spaceborne observations acquired at L-band (i.e. the 
water frequency channel) is discussed. In that sense, the Soil Moisture and Ocean Salinity (SMOS) 
mission, launched in 2009, and the Soil Moisture Active Passive (SMAP) mission, launched in 2014, 
are providing for the first time global information of water content in soils and vegetation, which 
crucially condition fire ignition and propagation.

Section 11.5 is focused on presenting new research showing the applicability of spaceborne-
derived SM data in fire risk assessment services. The complementarity between SM and surface 
temperature information to derive fire risk thresholds is described. In addition, the relationship 
between moisture–temperature anomalies, drought situations, and wildfire episodes is described. 
Finally, a new fire risk model based on SM and land surface temperature (LST) conditions is pre-
sented. Results from this model including fire risk maps for the Iberian Peninsula are provided.

11.2  MONITORING WILDFIRE-RELATED FACTORS FROM EARTH 
OBSERVING SATELLITES TO IMPROVE FIRE RISK ASSESSMENT

Wildfires are a multifaceted phenomenon involving interactions among human and environmental 
factors. A comprehensive framework to assess wildfires causality and risk should focus on four 
thematic areas: anthropogenic causes, vegetation characteristics, topography, and weather. First and 
foremost, humans must be considered as a main component affecting wildfires behavior. Human 
activities (e.g., land clearing, agriculture, resettlements, negligence, or arson, among others) are 
principal causes of fire ignition in most areas of the world. Moreover, humans change the availabil-
ity, continuity, and distribution of fuels as a result of land use changes, sprawl of urban areas, and 
systematic fire extinction. Consequently, most wildfires burn in patchy landscapes where forest, 
agricultural and urban zones intermingle, representing a risk for human lives and beings. In particular, 
the expansion of wildland–urban interface (WUI) areas and the fuel accumulation due to systematic 
suppression of fires increase these risks (Cohen et al. 2008; Syphard et al. 2008). In addition, veg-
etation, topography, and weather conditions strongly influence fire behavior and extent (Syphard 
et al. 2008; Verdú et al. 2012). The abundance, distribution, and structure of vegetation are determi-
nant in wildfire ignition and spread (Whelan 1995) and respond to natural and anthropogenic factors. 
Locally, topography influences climate and vegetation characteristics, fuel moisture, and wind effects 
(Whelan 1995). Finally, weather determines the fire environment and the ignition conditions (Padilla 
and Vega-García 2011). In particular, wind is the most important driver of fire spread (Whelan 1995). 
Nevertheless, temperature and rainfall are also crucial for fire ignition and spread. In that sense, the 
human-induced climate change leads to more frequent and intense droughts and extreme temperature 
events. As a result, fire seasons have lengthened, and the area affected by anomalous long exposure to 
weather situations posing a risk of fire has increased globally (Jolly et al. 2015).

11.2.1 an overvieW on the copernicus program: monitoring the earth

The ability of satellites to monitor the Earth at different spatiotemporal scales and spectral frequen-
cies is of great interest to study wildfires risk. Taking advantage of this potential, the European 
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Union has developed the Copernicus Program, aiming to monitor the Earth. It supplies a wide 
range of services among which are satellite, airborne, and in situ information. Satellite datasets are 
obtained from the Sentinel platforms (i.e., the Copernicus specific missions) and from other EO 
contributing missions. Data are classified into six main services: land, marine, atmosphere, climate 
change, emergency management, and security. The Copernicus land service permits a multiscalar 
approach as it is structured in the local, pan-European, and global components. From the point of 
view of fire management, these components allow studying prefire conditions providing key data 
such as land cover and land use changes, topography, vegetation conditions, and soil moisture and 
temperature. In addition, Copernicus accounts with an emergency management system, which facil-
itates near real-time monitoring of active fires. Figure 11.1 shows the structure of the Copernicus 
services.

11.2.2 earth observing Data sets applieD to fire prevention

11.2.2.1  Mapping Land Cover and Land Use to Understand 
Fire–Human Interaction and Fire Behavior

Satellite-derived land cover and land use data provide information on fuel types and their coexis-
tence with human activities. This is needed to evaluate fire ignition and propagation risks threaten-
ing human lives and beings, as well as agricultural and environmental services.

The anticipation to fire danger situations in the WUI areas is crucial to protect human popula-
tions and their economic activities. In that sense, the Urban Atlas (Copernicus 2016b) provides an 
accurate picture of urban sprawl in the fringe of urban zones. It contains land cover and land use 
data for ~700 European cities (>50,000 habitants) and their surroundings. The Urban Atlas is built 
from very high-resolution satellite imagery (mainly SPOT-5), which enhances its applicability in 
fire prevention. For instance, it has been used to detect urban structures, which could be endangered 
under extreme fire conditions (Mitsopoulos et al. 2014).
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FIGURE 11.1 Copernicus program services. Land, climate change, and emergency management services 
are detailed as they contribute to fire prediction applications. Datasets and systems mentioned in the text are 
written in italics. Note that the ESA Climate Change Initiative (ESA–CCI) is a project linked to Copernicus 
but not included in any particular service (dashed line). (Adapted from Copernicus, 2016a. Copernicus in 
brief, http://www.copernicus.eu/main/copernicus-brief, Last accessed: July 10, 2016. With Permission.)

http://www.copernicus.eu/main/copernicus-brief
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Beyond urban zones, the density of human population decreases, and agriculture and natural 
vegetation lands predominate. Consequently, the number of fire ignitions is lower but, in contrast, 
fires may propagate throughout large areas. They can affect different vegetation covers and land 
uses, which can be classified from satellite-derived land cover maps. At a global scale, the European 
space agency‐climate change initiative (ESA–CCI) Land Cover supplies land cover data at 300 m 
resolution, with accuracy between 70.8% and 74.4% (ESA 2016a). In Europe, the Corine Land Cover 
(CLC) map contains harmonized data of land cover and its changes since 1990. This information is 
used to estimate the effect of land covers on fire spread. Particularly, it has been found that larger 
fires burn coniferous forests and scrublands, whereas smaller ones burn broad-leaved forests, agro-
forestry areas, crops, and urban zones (Bajocco and Ricotta 2008, Verdú et al. 2012).

The influence of land covers on fire propagation is also linked to other factors. Actually, conifer-
ous forests are often located in areas where topography complicates the extinction tasks, and where 
steep slopes facilitate the rapid spread of fire. In addition, topography affects the local vegetation 
distribution (Whelan 1995). Hence, topography is considered in fire risk modeling using digital 
elevation models (DEM) from national databases (e.g., Verdú et  al. 2012). Actually, a European 
DEM (EU-DEM) is now available (Copernicus 2016b). Its application in fire risk studies should be 
a matter of future works.

11.2.2.2 Spaceborne-Derived Measurements of Fuel and Soil Conditions
Together with vegetation types and their local determinants, fuel loads and vegetation hydric status 
are main factors in fire risk assessment as they condition the availability and flammability of fuels. 
Under homogeneous fire-prone meteorological conditions within a region, large fires occur majorly 
in areas with high fuel loads (i.e., vigorous vegetation). These areas are detected by high values 
of the fraction of absorbed photosynthetically active radiation (FAPAR), which is related to gross 
primary productivity (GPP). Hence, high values of FAPAR may favor fire occurrence and propaga-
tion (Knorr et al. 2011). Other spaceborne vegetation indices, such as the Normalized Difference 
Vegetation Index (NDVI), have also been used as an indicator of vegetation water stress in fire risk 
studies (Wang et al. 2013).

NDVI has also been used to estimate live fuel moisture content (FMC), a crucial variable 
in fire ignition and propagation (Chuvieco et al. 2014). Initially, the link between NDVI and 
FMC was studied for grasslands, with good correlation between both variables (Hardy and 
Burgan 1999). However, weak correlations were obtained in shrublands and forests (Chuvieco 
et al. 1999). To bridge this gap, the combined use of NDVI and LST was applied to estimate 
FMC and associated fire risk (Chuvieco et al. 2004). Note that an increase in LST can be inter-
preted as an increase in vegetation water stress and/or soil surface dryness (Chuvieco et  al. 
2004, Li et al. 2016).

Consequently, the study of the soil surface state is paramount to detect dry conditions increasing 
the risk of fire. LST and SM are directly related to live FMC and also to the moisture content of dead 
fuels (e.g., litter), which is as well a main driver of fire propagation (Chuvieco et al. 2014). SM and 
LST are variables which can be estimated at the global scale using spaceborne sensors. Satellite-
derived LST datasets can be obtained from several platforms (see Tomlinson et al. 2011 for a review, 
and Copernicus 2016b). Concerning SM state, Copernicus provides the Soil Water Index (SWI) 
as the percentage of water in the soil at eight different time lengths (from 1 to 100 days). These 
are currently derived from MetOp C-band radar backscatter measurements. These satellites are 
planned to provide continuous data until at least 2020, complementing the quantitative SM esti-
mates (in m3/m−3) provided by the European Space Agency (ESA) SMOS mission and the National 
Aeronautics and Space Administration (NASA) SMAP mission (Naeimi et al. 2009). This chapter 
provides an overview of the quantitative SM information provided by microwave L-band satellites 
and of the applicability of SMOS data in forest fires risk assessment (Sections 11.4.1 and 11.5).
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11.3 THE EUROPEAN FOREST FIRE INFORMATION SYSTEM

Knowledge and technologies applicable to forest fires are increasing rapidly during the past years as 
described in Section 11.2. This means that, nowadays, there is a broad range of data available to sup-
port fire-related policies and researches. To take profit of this information, it is required to account 
with well-organized systems devoted to acquire, process, and offer data and products encompass-
ing all fire stages. Built on this scope, the EFFIS was established in 2003 to provide a wide range 
of fire information at a pan-European level and to support European Union environmental policies 
(San-Miguel-Ayanz et al. 2013). From 2015, EFFIS is being integrated to the Copernicus program 
in order to provide new emergency management and risk assessment tools at European level.

EFFIS offers a comprehensive approach to wildfires, encompassing fire danger forecast, fire near 
real-time monitoring, burnt area mapping, and fire impacts. These issues are described hereafter, 
and a more detailed information is found in San-Miguel-Ayanz et al. (2012) and is available at for-
est.jrc.eu/effis: 

 1. Fire danger forecast: it is based on the well-known Canadian Fire Weather Index (FWI; 
Van Wagner 1987). This index uses in situ meteorological measurements (temperature, rel-
ative humidity, wind, and rain), which are applied to derive the six components of the FWI 
(Figure 11.2). Three of these components are fuel moisture codes, which correspond to the 
moisture contents of surface, medium depth, and deep organic matter (Fine Fuel Moisture 
Code [FFMC], Duff Moisture Code [DMC], and Drought Code [DC], respectively). The 
combination of the latter two results on the Build Up Index (BUI), and the joining of the 
FFMC with wind speed data builds the Initial Spread Index (ISI). Finally, ISI and BUI 
are grouped to obtain the FWI (Figure 11.2). In the case of EFFIS, the FWI information 
is derived from meteorological forecast models. Hence, the risk maps are provided for the 
current day and predicted for the next 8 days (16 km resolution; forest.jrc.eu/effis).
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FIGURE 11.2 Diagram showing the six components of the Canadian Fire Weather Index (FWI). (Adapted 
from Government of Canada 2016, Canadian wildland fire information system, http://cwfis.cfs.nrcan.gc.ca/
background/summary/fwi, Last accessed: July 13, 2016. With Permission.)

http://cwfis.cfs.nrcan.gc.ca/background/summary/fwi
http://cwfis.cfs.nrcan.gc.ca/background/summary/fwi
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 2. Fire monitoring: EFFIS takes advantage of the Moderate Resolution Imaging Spectro-
radiometer (MODIS) active fire monitoring product (250 m resolution) in order to provide 
near real-time fire active hotspots that are useful to emergency management systems. 
EFFIS filters these products using ancillary data (e.g., CLC map) to reduce false alarms 
and to classify the type of fire. The final data are published at forest.jrc.eu/effis.

 3. Burned area mapping: Wildfires data are collected separately by each of the 22 contrib-
uting countries and are provided each year to the Joint Research Center of the EC. This 
center checks and processes the data in order to build the European Fire Database. Fire 
data contain the time of fire ignition, its size, its location and its causes, among other 
information. The validation phase includes checking for consistency of time, location, and 
size (San-Miguel-Ayanz et al. 2012). The European Fire Database has been compared to 
the Rapid Damage Assessment dataset (derived from MODIS information) with an overall 
agreement between 40% and 90% depending on the fire size (period 2006–2009; Vilar 
et al. 2015). The database was officially initiated in 2000, but longer records (>25 years) 
are available for Mediterranean countries, and are used to model the influence of climate 
change on forest fires in Southern Europe, as well as to understand spatial, temporal, and 
seasonal trends (San-Miguel-Ayanz 2012).

 4. Fire impacts: The estimation of fire impacts is necessary to evaluate fire damages and to 
assess future derived risks. For instance, wildfires contribute to the emissions of GHG 
and, actually, these emissions may constitute a large proportion of the GHGs released to 
the atmosphere. After fire occurrences, EFFIS estimates wildfire emissions. Furthermore, 
the analysis of the potential soil erosion is planned to be a new information provided by 
EFFIS in order to estimate landslides and flood risks derived from fire impacts on soils. In 
addition, it is expected to provide a new EFFIS module devoted to the study of vegetation 
recovery after large fires. It will be based on the comparison of prefire and postfire remote 
sensing images (Joint Research Center 2015).

11.4  MEASURING WATER CONTENT IN SOILS AND VEGETATION 
FROM SPACE: APPLICABILITY TO WILDFIRE PREVENTION

Water content in live and dead fuels influences the probability of ignition and the potential 
propagation of wildfires (Chuvieco et al. 2014). Normally, fire risk indices estimate the moisture 
of dead fuels from the interpolation of in situ meteorological data, and not from direct measure-
ments with global coverage. This is the case, for instance, of most common fire risk indices 
such as the FWI (Van Wagner 1987 and Section 11.3), the McArthur Forest Fire Danger Index 
(FFDI; McArthur 1967), or the National Fire Danger Rating System (NFDRS; Deeming et al. 
1977). Such indices afford reliable and widely used fire risk information, but could potentially 
be complemented with global and direct measurements of fuel moisture variables. In addition, 
the live vegetation water content (VWC), in turn, is difficult to evaluate, and until now it is not 
generally included.

In Section 11.2.2, we have introduced some datasets providing direct information on fuel mois-
ture. Previous studies present evidence that the combination of NDVI and LST data allows for a 
good approximation to live FMC in grasslands and scrublands (Chuvieco et al. 2004). Still, results 
of this approximation in forests are not satisfactory (Chuvieco et al. 1999). Remotely sensed SM 
datasets, in turn, provide information of the dead fuel moisture conditions and of the water avail-
able to the superficial root layers of vegetation. There are at present two missions specifically 
dedicated to SM monitoring: the ESA’s SMOS and the NASA’s SMAP. In addition, recent research 
has shown that it is possible to retrieve VWC from L-band (Konings et al. 2016, Piles et al. 2016, 
Konings et al. 2017). Also, Copernicus currently provides the SWI from MetOp satellites as a 
proxy for SM state (Naeimi et al. 2009).
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11.4.1 spaceborne Quantitative measurements of soil moisture

Global and continental SM data have been obtained from microwave sensors since 1980s. This 
information is essential for the development of long-term consistent SM series serving the climate 
research community, which is the main goal of the ESA Soil Moisture Climate Change Initiative 
program (Dorigo et al. 2016, ESA 2016b).

Nevertheless, the challenge of measuring Earth emissivity at the optimal frequency for SM esti-
mation (1.4 GHz; L-band) has been overcome recently with the launch of SMOS (2009), Aquarius 
(2011), and SMAP (2016) missions. Theoretical and practical research has evidenced that L-band is 
the optimal frequency to measure SM. The main advantages of L-band sensors are that emissivity 
originates from the top ~5 cm of soil, the atmosphere is almost transparent, and measurements are 
sensitive to SM through vegetation of up to 5 kg·m−2 water content (Ulaby et al. 1981).

The ESA SMOS satellite was the first mission specifically dedicated to SM measurements. Its 
unique payload is an L-band interferometric radiometer, the Microwave Imaging Radiometer with 
Aperture Synthesis (MIRAS). After more than 6 years in orbit, SMOS continues providing global 
SM maps every 3 days, with a target accuracy of 0.04 m3 · m−3 (Kerr et al. 2012). The spatial resolu-
tion of the SMOS data is ~40 km (L2 product). This meets the needs for global applications, but it is 
still too coarse to serve regional and local uses. Downscaling techniques allow improving the spa-
tial resolution to 1 km (Merlin et al. 2005, 2008, Piles et al. 2011a, 2014). The NASA SMAP satellite 
has a real aperture L-band radiometer and an L-band radar. The specific advantages of both instru-
ments allow for a high temporal resolution and enhance the spatial resolution from 36 km to 9 km 
(Entekhabi et al. 2010). However, the SMAP active–passive operations were ceased abruptly with 
the failure of the SMAP radar on July 2016. Nonetheless, the SMAP radiometer is continuing to 
make measurements, and the use of Sentinel-1 data as a replacement of its radar is under evaluation. 
The Aquarius satellite was an L-band mission shared between NASA and the Comisión Nacional 
de Actividades Espaciales (CONAE; Argentina). This mission, which was designed for measuring 
ocean salinity, was proved to be valid for SM retrievals (Bindlish et al. 2015). Nevertheless, the 
Aquarius mission ended in June 2015.

Particularly, the SMOS-derived SM data has served to different applications related to the assess-
ment of drought and vegetation water stress conditions. SMOS-derived SM anomalies have been cor-
related with two drought indices: the Standard Precipitation Index (SPI; McKee 1993) and the Standard 
Evaporation Precipitation Index (SPEI; Vicente-Serrano et al. 2010). The study was conducted at dif-
ferent timescales (10–120 days), and it was found that 30-day anomalies were highly correlated to the 
drought conditions reported by both indices in the Duero basin (Spain; Scaini et al. 2014). In addition, 
the SMOS data have been used to develop two agricultural drought indices: the Soil Water Deficit 
Index (SWDI; Martínez-Fernández et  al. 2015, 2016) and the Soil Moisture Agricultural Drought 
Index (SMADI; Sánchez et  al. 2016). Both indices appropriately track the agricultural droughts 
affecting the growing season and the impact on yield. Finally, SMOS data allowed detecting water 
stress conditions leading to vegetation dieback in grasslands of Australia (Ross et al. 2014) and in 
forests of Catalonia (northeastern Spain; Chaparro et al. 2016a). Consequently, the ability of detecting 
drought situations with SMOS data has suggested its applicability on forest fire risk evaluation studies. 
Section 11.5 presents an overview of the research conducted in this field and the main results obtained.

11.4.2 microWave retrievals of vegetation optical Depth from space

Passive microwave SM inversion techniques need to account for the effect of vegetation optical depth 
(VOD) and vegetation scattering albedo in surface emissivity in order to retrieve SM. Recent research 
has shown that these two vegetation parameters can also be retrieved alongside SM (Konings et al. 
2016, Piles et al. 2016). VOD is directly proportional to VWC, and the vegetation scattering albedo 
is related to the canopy structure. An algorithm was proposed to retrieve microwave-based SM and 
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VOD and first evaluated using 3 years of global observations from Aquarius (Konings et al. 2016). 
At the global scale, the resulting VOD distribution was coherent with climate gradients, with sea-
sonal precipitation dynamics, and with the expected patterns of canopy biomass. Furthermore, VOD 
retrievals showed temporal dynamics to be consistent with precipitation and drought periods, and 
captured both water retention and drying processes in canopies. The same method was applied to the 
first annual cycle of SMAP data, and the resulting SM, VOD, and albedo measurements were con-
sistent with expected vegetation dynamics and precipitation regimes (Piles et al. 2016; Konings et al. 
2017). VOD provides complementary information to the data obtained from indices such as NDVI, 
LAI, or FAPAR. Future work in microwave vegetation parameter retrievals is expected to generate 
VWC maps, which could be applied to detect vegetation water stress conditions posing a risk of fire.

11.4.3 vegetation Water content retrieval from visible anD infrareD inDices

Indices based on the infrared and optic spectral bands are also sensitive to the water content of veg-
etation. A research from Ullah et al. (2014) compared a variety of indices and concluded that the mid 
infrared (MIR) and the shortwave infrared (SWIR) bands were the most sensitive spectral regions to 
changes in VWC. On the contrary, the thermal infrared (TIR) showed limited sensitivity to VWC. 
A review on the methods and indices for the estimation of VWC is provided by Roberto et al. (2012) 
showing different products available, such as (1) the Normalized Difference Infrared Index (NDII), 
from Landsat Thematic Mapper, (2) the Global Vegetation Moisture Index (GVMI), from satellite Pour 
l’Observation de la Terre (SPOT)-VGT, (3) the Normalized Difference Water Index from MODIS, and 
(4) the Normalized Multiband Drought Index (NMDI) from MODIS. Finally, note that the widely used 
NDVI has also been applied as an estimator of the moisture content of live fuels (Chuvieco et al. 2014).

11.5 FIRE RISK ASSESSMENT FROM REMOTELY SENSED SOIL MOISTURE

Studying the relationship between drought and forest fires is feasible due to the availability of satel-
lite estimates of SM, which can be applied to fire risk prediction. First approaches in this research 
line were conducted in central Siberia by Bartsch et al. (2009) and Forkel et al. (2012). In both 
studies, dry soil conditions were detected by moisture anomalies (derived from European remote 
sensing satellite (ERS)-1/2 and advanced microwave scanning radiometer (AMSR)-E satellites) and 
led to large and frequent fires in the region. These results opened an avenue to the applicability 
of remotely sensed SM in fires research. It was observed that SMOS-derived SM data at a coarse 
resolution (L2 product) was well correlated with the FWI in Siberia. However, this relationship was 
found only in some areas, suggesting that further research was needed (Shvetsov 2013).

The application of SMOS data at a higher resolution was expected to enhance the capability of 
detecting droughts increasing the risk of fires. This has been explored in the Iberian Peninsula by the 
Barcelona Expert Center (BEC), applying the downscaling algorithm described in Piles et al. (2011a 
and 2014). This method merges SMOS observations (L2) with higher spatial resolution MODIS NDVI 
and LST data into 1 km SM estimates (BEC L4 product). Recently, it has been enhanced with a new 
version (L4v3 product) complementing MODIS surface temperature (LST) data when it is masked 
by clouds. Consequently, it provides SM data regardless of weather conditions. The new product is 
supplied by the BEC (2015). Sections 11.5.1 to 11.5.3 report studies in the Iberian Peninsula, which 
were based on the L4 and L4v3 versions of the high-resolution SM product.

11.5.1  Dry anD heateD soils favor WilDfire ignition 
anD spreaD in the iberian peninsula

The Iberian Peninsula is a particularly interesting region for the study of SM and its relationship 
with wildfires due to its high fire activity and due to its contrasting climate and fire patterns. The 
area influenced by the Mediterranean climate suffers recurrent drought situations in summer. 
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This limits the fuel availability but, in turn, favors the dryness of the combustible fuel and its 
accumulation in areas which remain unburned for years. This leads to the burning of few but large 
fires in the region. In contrast, the northwestern Iberian Peninsula is influenced by the humid 
Atlantic climate, facilitating the accumulation of large amounts of fuel with high water content. 
This brings to the occurrence of many fires, which are limited in extent (Moreno et al. 2005; 
Verdú et al. 2012). Nevertheless, anomalously dry situations bring to large wildfires in Portugal 
and Galicia (Trigo et al. 2006; Fischer et al. 2007). Then, the study of droughts is essential to 
prevent fires in the Iberian Peninsula. The analysis of SM patterns from satellite information, and 
the application of complementary data, should enhance the capability to anticipate droughts and 
fire risk situations (see Section 11.5.2 and Chaparro et al. 2016b).

In that sense, the relationship among SM, LST, and fires was initially studied in Piles et  al. 
(2011b). This research analyzed the complementarity between the SMOS-derived SM (L4; 1 km) 
and the MODIS LST (1 km). SM–LST values before fire ignitions showed that soils were drier and 
warmer in fire-affected areas in comparison to unburned perimeters. Later, the SM–LST comple-
mentarity was further explored to assess the risk of wildfires. To this objective, fires burning in all 
the Iberian Peninsula were obtained from the EFFIS database (European Comission 2010) for the 
period 2010–2014. These wildfires were grouped in three categories (<500 ha, 500–3,000 ha, and 
>3,000 ha) and the relationship between SM–LST and wildfires spread was investigated. The L4v.3 
product provided SM data at 6 a.m., and the European centre for medium-range weather forecasts 
(ECMWF) interim reanalysis (ERA)-Interim LST reanalysis models (at noon; ECMWF 2015) were 
also used. LST data were linearly interpolated from 0.125° to 1 km. Median SM and LST values 
before burning were calculated and assigned to each fire perimeter. Soil surface conditions prior 
to fire occurrences were compared to a database containing the unburned conditions of SM and 
LST in the Iberian Peninsula for each day of the study period (2010–2014) and for each flammable 
pixel in the region (the only pixels considered were those containing natural or agricultural vegeta-
tion in the CLC map; EEA 2006). To exclude burned cells, those pixels affected by fire after 2005 
(obtained from the EFFIS database for the period 2006–2014) were not included. The dataset finally 
contained ~1.9·107 SM–LST values for each unburned cell and day during all the study period. In 
addition, a single median value for each year and variable was calculated to summarize overall SM 
and LST for the unburned cells (Chaparro et al. 2015, 2016c, 2016d).

Results showed that 70% of fires <500 ha burned under drier and hotter conditions than the 
yearly median SM–LST values obtained for the unburned pixels in the region. This percentage 
increased to 88% for fires between 500 and 3000  ha and to 90% for fires larger than 3000  ha. 
Normally, most fires occurred in very dry and hot conditions (SM<0.10 m3 · m−3 and LST>300 K), 
which are frequent during July and August (i.e., summer) in the study area (Chaparro et al. 2015, 
2016c). Nevertheless, important fire episodes were detected out of summer season in 2012. This is 
reported in Figure 11.3, where the accumulated number of fires and burned area during 2012 are 
plotted. Here, the two main fire patterns, which are common in the region are detected: (1) on sum-
mer, few but large fires burned (mainly in the Mediterranean region) and (2) during February and 
March, as well as in September, many small fires occurred (mainly in the northwest; Figure 11.3 
and Chaparro et al. 2016d).

In Figure 11.4, largest fires are plotted beyond the median SM–LST for 2012. The warm cli-
mate of the Iberian Peninsula implies that dry and warm conditions are quite usual in the region, 
as shown by the density plot. This facilitates the ignition and spread of wildfires on summer. Still, 
in 2012, a high number of fire outbreaks were registered in relatively wet and cold conditions (see 
Figure 11.4), probably corresponding to fires burned out of summer season. Further analysis was 
needed to understand why these fires occurred under these conditions.

To this purpose, the relationship between wildfires and SM–LST data was analyzed, but this 
time including anomalies of both variables. SM and LST anomaly time series at 9-day and 30-day 
timescales were computed in order to detect drought periods posing a risk of fire. The anomaly 
calculation comprised three steps: (1) monthly means of each variable were computed (2) a linear 
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interpolation was performed between mean values of each pair of consecutive months and these 
time series represented the average moisture and temperature conditions and (3) the difference 
between moving means and the corresponding average conditions was calculated from the day of 
interest to 9 and 30  days backward (Chaparro et al. 2016b).

In Figures 11.5 and 11.6, the SM–LST mean conditions and anomalies for 2011 and 2012 are plot-
ted, respectively. The month of occurrence is also included. Fires burning under cold/wet conditions 
corresponded to those detected in February and March 2012. Fires on September 2012 burned under 
dry and warm conditions, as those occurred on July and August (Figure 11.6). Similarly, many fires 
burned in areas with extremely warm and dry soils on October 2011 (Figure 11.5). Note that the two 
important fire episodes detected in October 2011 and February–March 2012 were linked to negative 
moisture and positive temperature anomalies (Figures 11.5b and 11.6b). These results showed that 
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anomalies at 30-day timescale allowed detecting extremely dry conditions leading to a large number 
of fire occurrences even out of summer season. Similar patterns were found for anomalies at 9-day 
timescale (Chaparro et al. 2016b).

11.5.2  stuDy of Droughts involving risk of WilDfires 
in the northWestern iberian peninsula

As it is explained in Section 11.5.1, many fires burned in the region in October 2011 and February–
March 2012. These fires mainly affected the northwestern Iberian Peninsula. To study their rela-
tionship with the intensity and duration of droughts, Chaparro et al. (2016b) analyzed the moisture, 
temperature, and fire trends in that region. To delimit the study area, the Spanish ecoregions map 
(see Padilla and Vega-García, 2011) and the phytogeographic regions of Portugal (Paes do Amaral 
2000; Agência Portuguesa do Ambiente 2015) were used. Figure 11.7 shows the demarcated area, 
which included the northern, humid areas of Portugal and the northern regions of Spain, which are 
influenced by the Atlantic climate. Moisture and temperature anomalies trends were summarized 
computing overall median anomalies in the region each day. Only flammable pixels were consid-
ered in this calculation (this excluded water and urban pixels from the CLC map; EEA 2006), and 
pixels burned from 2006 to 2014 were excluded (EFFIS database; European Comission 2010). 
Finally, time series of median anomalies in the region were plotted using a 9-day and 30-day 
mean moving windows. These time series were compared with the number of fire occurrences. 
Figures 11.8 and 11.9 show the resulting plots at 9-day and 30-day timescales, respectively. In 
these figures, drought situations and wet/cold conditions are drawn and can be compared to the 
number of fires reported for each period of 9 days (Figure 11.8) and 30 days (Figure 11.9).

Results in Figure 11.9 show how the intense fire activity in October 2011 coincided with the 
drought situation reported from August to November 2011. In that case, the peak of driest and 
warmest soil conditions (−0.09 m3 · m−3 and 8 K) matched in time with the large number of fires 
burned during that month (304 fires; Figure 11.9c). Considering the fire period from February to 
March 2012 (267 wildfires), SM anomalies reached −0.10 m3 · m−3 (Figure 11.9a), coinciding with 
the highest values of temperature anomalies (+1.6 K; Figure 11.9b). Soils were continuously dry for 
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FIGURE 11.7 The area of interest is sited in the NW Iberian Peninsula (right box), where fires burning 
in October 2011 (grey triangles) and February–March 2012 (black triangles) were studied. (Adapted from 
Chaparro, D. et al., Eur. J. Remote Sens., 2016b. With Permission.)
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more than 3 months before this episode, although the duration of above average temperatures was 
only limited to the month of March (Figure 11.9b).

Interestingly, both fire periods coincided with synoptic meteorological anomalous situations. 
Particularly, abnormal anticyclonic activities in the western and central Iberian Peninsula occurred 
between October 11 and 18, 2011 and between February 21 and March 2, 2012. These produced 
above mean air temperatures and low air humidity (Amraoui et al. 2013). In Figure 11.8, gray lines 
have been plotted on October 18, 2011 and March 2, 2012, showing the moisture–temperature con-
ditions during the anticyclonic situation.

Results show that driest and warmest soils occurred simultaneously to the anticyclonic period 
on mid-October 2011, which also matched in time to the highest number of fire ignitions during 
that month (Figure 11.8). The fire period on February and March 2012 began under the anticyclonic 
situation and during the long and intense drought that had started 3 months ago, according to the 
SM anomalies (Figures 11.8 and 11.9).

The spatial patterns of moisture and temperature anomalies have also been studied here. 
Figure 11.10 shows the maps of the anomalies of both variables computed before, during, and after 
the anticyclone. The spatial distribution of high surface temperatures and low SM between October 11 
and 18, 2011 (Figure 11.10b and e) matched the spatial distribution of high air temperatures and low 
air humidity. These extended from the central Iberian plateau to the Atlantic coast. The meteoro-
logical  anomalies were especially intense in the northwestern Iberian Peninsula (see Figure 11.2 in 
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Amraoui et al. 2013). In addition, note that the drought intensity was lower between October 2 and 
10 (i.e. before the anticyclonic interval; Figure 11.10a and d), increased between October 10 and 18 
(Figure 11.10b and e; i.e. during the anticyclone), and clearly diminished after the anticyclonic period 
(October 19–27, 2011; Figure 11.10c and f). This pattern matches the evolution of the number of 
wildfires during that month (Figure 11.8). Particularly, the occurrences of large fires (>500 ha) rose 
between October 2–10 (8 fires) and October 11–18 (20 fires; Figure 11.10).

In conclusion, the anomaly time series from SMOS-derived data and ERA-Interim models dem-
onstrated a coherent fitting with the atmospheric conditions on October 2011 and February–March 
2012. This stresses the capacity of the computed anomalies to detect droughts increasing the risk of 
forest fires (at least out of summer season). This also suggests that the study of temperature datasets 
and remotely sensed SM should be explored to enhance fire risk assessment methodologies.

Finally, note that not all the drought periods reported in Figures 11.8 and 11.9 led to high fire 
activity. From August to November 2010, and from August to December 2013, the most adverse 
moisture and temperature conditions did not match with time and, possibly due to this reason, fires 
burned only during the summer months (fire activity was important on August 2013, as shown in 
Figure 11.9). In September 2012, the drought was intense but shorter and milder than the reported 
during October 2011 and February–March 2012, and the number of wildfires was lower (109).

11.5.3 Development anD application of fire risk moDels in the iberian peninsula

This section summarizes the results from the researches described in Chaparro et al. (2016c and 
2016d), where moisture–temperature datasets are applied to develop fire risk indices and maps in 
the Iberian Peninsula. Again, fire perimeters in the region were obtained from the EFFIS database 
(European Comission 2010) for the period 2010–2014. The datasets and the methodology used to 
obtain moisture and temperature conditions previous to each fire, as well as the dataset studied, are 
the same as those described in Section 11.5.1.

11.5.3.1 Development and Operational Use of an Empirical Fire Risk Model
Moisture and temperature conditions prior to fire occurrences were compared among different wild-
fire extents (<500 ha, 500–3000 ha, and >3000 ha). Large fires were normally related to extremely 
dry and hot soils, whereas small fires could occur, generally, under milder conditions. A linear 
relationship was found among SM, LST, and the burned area (Chaparro et al. 2016c). The configu-
ration of fire risk thresholds to develop an empirical model of risk was based on this result and was 
complemented by the study of SM and LST anomalies (Table 11.1). More details concerning to the 
methodology applied are provided in Chaparro et al. (2016c).

The model was validated with an independent sample, which was classified by burned area cat-
egories. The extent of each fire was compared to the risk category predicted by the model. Results 

TABLE 11.1
Third Quartile for Soil Moisture (SM) and First Quartile for Land Surface Temperature 
(LST) Determine Each Risk Category

Risk Thresholds Low Risk (1) Ignition (<500 ha)
Large Fire 

(500–3000 ha) (2)
Very Large Fire 

(>3000 ha)

SM (3rd Q; m3 · m−3) >0.11 <0.11 <0.09 <0.08

LST (1st Q; K) <300 >300 >304 >306

Note: Anomalies of both SM and LST variables change the risk categories as follows: (1) Low risk Pixels are finally clas-
sified as ignition risk pixels when the SM anomaly is negative; (2) Pixels where risk of large fires (500–3000 ha) is 
predicted are finally considered under risk of very large fire (>3000 ha) when the LST anomaly is positive.
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showed that 87% of fires <500 ha, 59% of fires >500 ha, and 56% of fires >3000 ha were correctly 
predicted (Chaparro et al. 2016c).

Finally, fire risk maps were put on operational application through the Barcelona Expert Centre 
website (http://cp34-bec.cmima.csic.es/NRT) on July 2015. Maps are produced at 1  km spatial 
resolution and encompass the Iberian Peninsula, the south of France, and the north of Africa 
(45°N–34°N, –11°W – 5°E). This fire risk maps (see an example in Figure 11.11), as well as the high 
resolution SM maps, are routinely included in the fire risk prevention service bulletin prepared by 
the provincial government of Barcelona (DIBA). This bulletin is delivered daily to the forest rangers 
during the summer fire prevention campaign.

These results and their operational applicability support the use of surface moisture and tem-
perature information in fire risk prevention services. Still, further research considering other crucial 
variables on wildfires is needed to develop a more comprehensive fire risk assessment framework. 
In that sense, Section 11.5.3.2 presents a recently developed fire risk model encompassing SM, 
 temperature, land cover, and ecological regions information (Chaparro et al. 2016d).

11.5.3.2 Modeling Potential Wildfire Spread
The relationship found between SM–LST data and burned area showed that wet and cold soils 
limited the spread of forest fires that, in contrast, could be propagated under drought conditions 
(see Section 11.5.3.1). This suggested that the maximum extent that a fire could reach under cer-
tain moisture–temperature conditions could be estimated. To this objective, the burned area was 
logarithmically transformed and was plotted separately as a function of SM and LST. Figure 11.12 

3 (>3000 ha)

2 (>500 ha)

0 (low)

1 (lgnition)

Fire risk

FIGURE 11.11 Fire risk map for July 11, 2016. Four risk levels are presented (from low risk to high risk 
indicating possibility of fires >3000 ha).
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FIGURE 11.12 (a) Decimal logarithm of burned area plotted as a function of soil moisture. (b) Decimal 
logarithm of burned area plotted as a function of land surface temperature. (Adapted from Chaparro, D. et al., 
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 9, 2818–2829. With Permission.)
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shows the resulting triangle-shaped plots in which a regression could be fitted along the imaginary 
hypotenuse of both triangles (Chaparro et al. 2016d).

From these results, a fire risk model was built on the basis of the moisture–temperature com-
plementarity. As no strong redundancy between SM and LST was found (r  =  −0.54; Pearson 
 correlation coefficient), both variables were combined in a single model. To perform the regres-
sion analysis, the authors binned SM and LST variables, and included all wildfires larger than 
the 90th percentile of burned area in the model for each bin. This methodology was similar to 
that found in other studies based on triangular-shaped relationships between environmental vari-
ables (Moran et  al. 1994, Sandholt et  al. 2002). Forest fires with moisture and temperature at 
the extremes of the variables’ ranges (beyond percentiles 5th and 95th) were eliminated, as the 
sample of fires is reduced in that conditions not showing a representative maximum according to 
the SM–LST data. In addition, the effect of the bin width was studied considering several bin-
ning possibilities (from [0.005 m3 · m−3 – 0.5 K] to [0.02 m3 · m−3 – 2 K]). Finally, the binning 
employed was 0.01 m3 · m−3 for SM and 2K for LST, and the sample was 183 fires. Figure 11.13 
shows the resulting plot in which SM–LST paired values condition fire spread. The binning that 
was chosen permitted the best fitting (R2  =  0.43) for the linear model defined in (Equation 11.1):

 LogArea SM LST≈ ⋅ + ⋅a b  (11.1)

where:
LogArea corresponds to the decimal logarithm of burned area
SM states for soil moisture
LST states for land surface temperature
Their corresponding coefficients are a and b

This result was considered as a good basis to improve the model. The set of variables was completed 
including land cover, the month of occurrence of the fire, and the region of occurrence. Land cover 
was obtained from CLC Map (EEA 2006) at 250 m and transformed to 1 km grid. Later, these 
data were reclassified to eight land cover categories: broadleaved forests, coniferous forests, mixed 
forests, heathlands and moors, sclerophyllous vegetation, natural grasslands, woodland–shrub tran-
sitions, and sparse vegetation areas. Considering the geographical classification, it aimed to group 
wildfires depending on the biogeophysical and climatic characteristics of the region where they 
burned. The 53 ecoregions defined by the Spanish Forest Service were useful to this proposal (see 
Padilla and Vega-García 2011). In Portugal, the geographical division was based on the phytogeo-
graphic regions from the environmental atlas of Portugal (Paes do Amaral 2000). Finally, to sim-
plify the study, the regions were grouped (Figure 11.14). Three regions were considered in Spain, 
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FIGURE 11.13 Decimal logarithm of maximum burned area (colorbar) per SM–LST bins is plotted. Bins of 
2K and 0.01m3 · m−3 led to the model in Equation 11.1 with R2 = 0.43.
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that is, Mediterranean, northwestern, and central areas. This permitted to separate the main climate 
and fire regimes in the country. In Portugal, five regions were considered: northwestern Portugal, 
northeastern Portugal, Atlantic center, Alentejo, and Algarve (Figure 11.14). Finally, one land cover 
datum and one region were assigned to each fire in the database, considering the modal category 
within each wildfire perimeter.

The sample for each variable and category was detailed (see Table 11.2 in Chaparro et al. 2016d). 
Fires burning on January, May, November, and December were excluded as the sample for these 
months was lesser than 5. The same criterion was applied to land cover (agricultural areas were 
excluded) and regions (Alentejo, Algarve, and Central Atlantic regions were excluded). Finally, a 
linear model was fitted (Equation 11.2):

 LogArea LC SM LST≈ + + + + + ⋅⋅( ), ( )c M R a bM R R  (11.2)

where:
c is the intercept
M, LC, and R correspond to the additive terms of month, land cover, and region, respectively
The term a(M, R) is the slope for SM, which depends on the month and the region
b(R) is the slope for LST, which depends on the region

The model explained 68% of the variance of the potential burned area. In particular, SM and LST 
explained 33.1% and 19.8%, respectively, land cover explained the 6.6%, regions explained 3.1%, 
and the month of occurrence explained 2.5%. Interestingly, SM was found to be the most important 
explanatory variable. Dry soils facilitated fire spread during all the studied months and in four of the 
studied regions. The effect was remarkable in the Mediterranean, coherently with the climate–fire 
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Alentejo

Algarve

Atlantic-Center

Central Peninsula

Mediterranean

North

NW Portugal

0 100 km

NE Portugal

FIGURE 11.14 Geographical division of the Iberian Peninsula. (Adapted from Chaparro, D. et al., IEEE J. 
Sel. Topics Appl. Earth Observ. Remote Sens., 9, 2818–2829. With Permission.)

TABLE 11.2
Classification of the Model Output (Predicted Potential 
Burned Area) into Five Risk Categories

Risk Categories

Predicted area (ha) <10 10–100 100–1,000 1,000–10,000 >10,000

Risk category Low Moderate High Very high Extreme
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relationship in the region (Figure 11.15). High temperatures facilitated fire propagation in some of 
the northernmost regions (see Figure 11.16). On the contrary, an inverse relationship was found in 
the Mediterranean, where probably the high importance of moisture conditions and unstudied fac-
tors (e.g., wind) could explain this unexpected behavior (Figure 11.16). Finally, the largest spread of 
fires occurred in coniferous forests and in summer months.

The model was validated, and 83.3% of accuracy was obtained. The remaining 16.7% of fires 
burned larger areas than the maximum predicted. The maximum excess reported was 44.6  ha. 
As some months, land covers, and regions were eliminated from the model, the authors provided 
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(Centre), northern Iberian Peninsula (North), and Mediterranean (Med). Black lines show the modeled effects 
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for each region, where effects are extrapolated. The effect was significant in the central region (p < 0.05) 
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Chaparro, D. et al., IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 9, 2818–2829. With Permission.)
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complementary equations excluding these variables one by one. The accuracy and the excess were 
similar to the main model (see Chaparro et al. 2016d).

Finally, the reclassification of the model outputs (Table 11.2) allows obtaining fire risk maps as 
the one presented in Figure 11.17.

In conclusion, the model provided a good estimate of the potential spread of fires. It demon-
strated the applicability of spaceborne SM data and surface temperature information on fire risk 
modeling. Chaparro et al. (2016d) suggested that an operational implementation was feasible apply-
ing forecasted or observed temperatures to provide near real-time information. The model imple-
mentation is restricted to the Iberian Peninsula, and it should be recalibrated in order to apply it in 
other regions of the world. Finally, the need of a longer dataset was stressed in the article in order to 
account with a more robust model in all months, land covers, and regions.

11.6 CONCLUSIONS

Wildfires threaten humans and environment, and their occurrence and impacts are expected to increase 
under present climate changing conditions. In this context, remote sensing technologies offer a great 
opportunity to assess the potential risk of fires. Satellite missions and their derived products facilitate 
information for a wide range of environmental variables at different spatial scales. This information is 
currently processed, organized, and provided to end users through unified service platform initiatives 
such as the Copernicus program in Europe. Applications derived from Copernicus datasets encompass 
several thematic areas (e.g., WUIs, land cover and land use, vegetation conditions, or SM) and contrib-
ute to further our understanding of the fire risk phenomenon, assessment, and prevention.

In order to improve our capacity of preventing and extinguishing fires, as well as to manage fire 
impacts, it is essential to deal with fire-related information in a comprehensive manner, considering dif-
ferent fire stages: fire risk evaluation, active fire monitoring, burned areas, and postfire impacts. In that 
sense, the ESA–CCI Fire project, the Copernicus system, and the EFFIS are three initiatives that effec-
tively contribute to enhance our capacity to deal with each of these fire aspects. In particular, the accu-
rate assessment of fire risk is the crucial step preventing wildfire ignition and its derived impacts. At this 
moment, fire risk indices are based on meteorological data. The use of new remote sensing information 
could complement and improve these indices. Particularly, L-band missions launched during the last 
decade permit retrieving for the first time VOD and surface soil moisture information, which are linked 
to water content of live and dead fuels, and allow detecting drought situations posing a risk of fire.

The combined use of SM with surface temperature has been shown to provide an effective mean 
to evaluate fire risk conditions in the Iberian Peninsula. Empirical models in the region have been 
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developed to set risk thresholds depending on moisture and temperature values calculated in abso-
lute and relative terms. In addition, moisture and temperature anomalies with respect to mean cli-
matic values have been related to adverse atmospheric conditions and fire episodes. Finally, a linear 
predictive model has been proposed to assess the potential spread of fires in near real time using 
satellite imagery only. Fire risk maps have been obtained using this approach and have been vali-
dated showing high accuracy (>80%).

Still, further enhancement and evaluation of remotely sensed data and fire risk models are needed 
for practical improvements in the field of wildfire prevention. First, the integration of soil and VWC 
data in fire risk indices should be explored. The interaction of water depletion with fire-related fac-
tors (e.g., LST, wind and land cover) should be further studied. Second, groundwater estimations 
from the Gravity Recovery and Climate Experiment (GRACE) allowed developing fire predictive 
maps in the United States (Skibba 2015), showing a new research line with high potentiality to 
improve fire risk assessment.

This review has detailed how recent remote sensing technologies deriving water content from 
soils and vegetation are opening a new path toward improving fire risk models. It is anticipated that, 
through their combination with the Copernicus datasets and their application within a comprehensive 
fire management framework, they will lead to significant progress in wildfire prevention services.
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12 Remote Sensing of Fire Effects
A Review for Recent Advances 
in Burned Area and Burn 
Severity Mapping

Ran Meng and Feng Zhao

12.1 INTRODUCTION

As a primary disturbance agent, fire significantly alters ecological processes and ecosystem ser-
vices around the world, driving the changes in terrestrial carbon stocks; shaping the distribution and 
structure of vegetation; and influencing the temporal variability in carbon, water, and energy fluxes 
(Bowman et al. 2009, Scott et al. 2013, Franklin et al. 2016). For example, fire-related deforestation 
is a net CO2 source with a flux estimated to be 2.1 Pg C per year (Van der Werf et al. 2010), whereas 
postfire forest recovery is a CO2 sink and might be enhanced by proper management (Bowman 
et al. 2009); the water yield of river catchments was also found to be significantly influenced by fire 
effects and the postfire vegetation recovery process (Benda et al. 2003, Mayor et al. 2007). Due to 
the importance of fire on these fundamental ecosystem processes, accurately monitoring the effects 
of fire events (i.e., time, location, and severity) is thus one of the central questions in ecology and 
natural resource management. In addition, projection of fire behavior under potential future climate 
also relies on the proper characterization of fire effects at local, regional, and global levels.

CONTENTS

12.1 Introduction ......................................................................................................................... 261
12.2 Remote Sensing of Burned Area .........................................................................................265

12.2.1 Burned Area Estimation Using Active Fire Counts ..............................................265
12.2.2 Image Classification Using Burned Areas’ Spectral Properties ...........................266
12.2.3 Burned Areas Estimation Using Changes in Canopy Cover .................................268
12.2.4 Burned Area Mapping Using Active Remote Sensing Sensors.............................268
12.2.5 Burned Area Mapping Using Hybrid Algorithms .................................................269

12.3 Remote Sensing of Burn Severity ....................................................................................... 270
12.3.1 Representative Studies of Spectral Indices-Based Burn Severity ......................... 271
12.3.2 Representative Studies of Spectral Mixture Analysis-Based Burn Severity ........ 271
12.3.3 Representative Studies of Radiative Transfer Model-Based Burn Severity .......... 273
12.3.4 Supervised and Unsupervised Classification......................................................... 273
12.3.5 New Remote Sensing Techniques for Burn Severity Studies ................................ 274

12.4 Future Directions ................................................................................................................ 274
12.4.1 New Satellite Instruments for Remote Sensing of Fire Effects ............................. 274
12.4.2 Scalable Burn Severity Maps for Improved Wildfire Monitor across 

Spatial Scales ......................................................................................................... 275
12.4.3 Toward Ecological Meaningful Characterization of Fire Effects ......................... 275

Acknowledgment ........................................................................................................................... 276
References ...................................................................................................................................... 276



262 Remote Sensing of Hydrometeorological Hazards

Burned area and burn severity are the two most widely used metrics for assessing fire effects 
(Turner et al. 1997 and 1999, Lentile et al. 2006, Meng et al. 2015) for calculating smoke genera-
tion and carbon consumption (Miller and Yool 2002, Randerson et al. 2012), for characterizing fire 
regimes (Morgan et al. 2001, Keane et al. 2003, Kasischke and Turetsky 2006), and for modeling the 
feedback between climate change and fire activity (Randerson et al. 2006, Westerling et al. 2006, 
Loehman et al. 2011, Smithwick et al. 2011, McKenzie and Littell 2016). Burned areas are  usually 
composed of complex landscape mosaics of low, moderate, and high burn severity (Figure 12.1) 
because of variations in wind, topography, fuel conditions, and so on (Turner et al. 1994). The vari-
able burn severity results in a heterogeneous pattern of fire effects including vegetation loss and 
soil alteration (Sugihara 2006, Lentile et al. 2006, Keeley 2009, Veraverbeke et al. 2011, Quintano 
et al. 2013). Burn severity refers to the degree in which an ecosystem has changed (e.g., vegeta-
tion removal, soil exposure, and soil color alteration), caused by fire disturbance. Although often 
used interchangeably nowadays (Keeley 2009), Lentile et al. (2006) discussed and clarified the 
distinctions between the term of burn severity and fire severity: fire severity refers to short-term 
(i.e., about within 1 year following the fire) effects on the local environment, whereas burn severity 
refers to both short-term and long-term (i.e., up to ten years) effects, including ecosystem response 
processes (e.g., vegetation recovery). Recently, Composite Burn Index (CBI, a generalized rating 
of postfire conditions in the field) and its variant GeoCBI have gradually become the standard 
protocol to measure field burn severity at landscape scale (Key and Benson 2006; De Santis et al. 
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2009). Specifically, as an integrated metric, (Geo)CBI averages the magnitude of change by fire 
across five strata from soil to vegetation canopies, then within each strata four or five variables are 
visually assessed and assigned a value from zero (unburned) to three (highest severity).

Remote sensing has provided a convenient and consistent way to monitor fire events and 
 quantity fire effects across spatial scales. Remote sensing sensors measure reflected energy within 
specified regions of the electromagnetic spectrum, which is known as a band or bandwidth. Each 
band responds differently to surficial characteristics such as water, soil, and vegetation. A common 
practice to enhance information from target features is to combine brightness values of multiple 
bands, such as the red, near-infrared (NIR), and shortwave near-infrared bands. Unique spectral 
signatures of vegetation and burn residuals become the foundation for detecting vegetation change 
by fires (Figure 12.2). Since the late-1970s and 1980s, remote sensing technique has been widely 
used to assess how severe is the fire. Different variables have been measured as ground reference 
readily to assess burn severity from remotely sensed measurements (Morgan et  al. 2014). Fire 
effects lead to the changes in spectral response and make the remote sensing of burn  severity possi-
ble. After a fire, a dramatic reduction in visible to NIR surface reflectance (i.e., 0.4–1.3 µm) asso-
ciated with the charring and removal of vegetation is the dominant signals detected by pre- and 
postfire sensors at moderate–coarse spatial resolution; at fine spatial scales (< 5 m), an increase 
in surface reflectance is likely detected, due to the deposition of white ash, as an indicator of 
combustion completeness (higher burn severity). With the increase in wildfire’s size, severity, and 
frequency over recent decades, there are increasing interests in remote sensing of fire effects and 
the potential impact of climate change on wildfire activities. We did a series of searches in Web 
of Science to examine the current research on remote sensing of fire effects, with keywords such 
as burned area remote sensing and burn severity remote sensing. Results from such investigation 
show that the number of publications on fire effects has been increasing over the past decade, 
especially after the year 2002, in consistent with the increase in large wildfire events around the 
world (Figure 12.3).
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FIGURE 12.2 Vegetation spectral reflectance of Landsat bands 1–6 for (a) prefire and (b) postfire conditions. 
The spectral profile shows the reflectance value for the center pixel at the crosshair mark.
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As fire effects can vary at different scales, one spatial or temporal scale may not be appropriate to 
address all objectives for assessing burn severity (Morgan et al. 2014). Over the past three decades, 
various satellite remote sensing-based approaches have been developed to monitor fire events at 
coarse, moderate, and fine resolutions. A few studies have already reviewed the application of 
moderate–coarse resolution remotely sensed measurement in mapping large-scale fire characteristics 
(Lentile et al. 2006, Chu and Guo 2013, Roy et al. 2013, Morgan et al. 2014), so here we will focus 
on remote sensing of fire effects at moderate and high spatial resolution in this review. A number of 
studies with different types of satellite imagery and approaches have been conducted for burn sever-
ity assessment. Moderate Resolution Imaging Spectroradiometer (MODIS) fire product is one of 
the most popular datasets for wildfire studies across the globe. The Landsat sensors provide one of 
the longest and widely used imagery collections for wildfire monitoring, especially for burn severity 
applications (Eidenshink et al. 2007); while images from newer launched sensor with high spatial 
resolution, such as WorldView-2 and QuickBird, also incur interest in very high spatial resolution 
(VHR) fire mapping (Holden et al., 2010; Meng et al., 2017).

In addition to the type and resolution of imagery used, image acquisition date, in relation to field 
data collection and time since fire, also plays an important role in remote sensing of burn severity: 
interannual phonological change of vegetation, the interaction of long-term climate patterns 
(i.e., drought), and regeneration trends might confuse varying fire effects. What is more, chal-
lenges still exist in the repeatable and transferable assessment of burn severity across spatial scales 
or fire regimes, given the limited mechanistic and predictive power of widely used but subjective 
descriptors of burn severity (unburned, low, moderate and high severity): thresholds on the widely 
used Normalized Burn Ratio (NBR)-based burn severity measurements are arbitrary and often 
vary between fires within the same ecoregion (Kolden et al. 2015). A new paradigm in burn sever-
ity assessment, based on a consistent and transferable quantification of burn severity (e.g., changes 
in carbon, water and energy fluxes), has been discussed and explored in the community recently 
(Morgan et al. 2014; Smith et al. 2016; Sparks et al. 2016; Meng et al. 2017). With the develop-
ment of remote sensing techniques (i.e., light detection and ranging [LiDAR], hyperspectral, and 
VHR imagery) these years, fire measurements with high temporal, spatial, and spectral resolution 
become increasingly available and provide new opportunities in remote sensing of fire effects stud-
ies (Montealegre et al. 2014, Schepers et al. 2014, McCarley et al. 2017, Meng et al. 2017).

Accurate characterization of fire effects is critical for postfire forest management. Effective fire 
management is reliant on reliable information on which to base appropriate decisions and actions. 
With projected increasing occurrences of wildfires under the current climate change scenarios, there 
are urgent needs to better characterize the impact of fires on ecosystem dynamics and processes. 
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In this chapter, we discuss the recent advances of remote sensing applications in monitoring burned 
areas and burn severity at local to regional and global scales. In the following sections, we summa-
rize key mapping techniques for both burned areas and burn severity, respectively, and also discuss 
the potential future directions in characterizing burned areas and burn severity.

12.2 REMOTE SENSING OF BURNED AREA

One of the key remote sensing measurements of fire effects is the burned area. Fires produce a 
significant change in the structure and the reflectance of vegetation and the soil properties within 
the burned area that are noticeable in the microwave, visible, and especially the infrared part of the 
electromagnetic spectrum (Leblon et al. 2012). In this section, we will discuss the remote sensing 
of burned areas, by techniques.

A variety of techniques have been employed for burned area mapping. These techniques can be 
grouped into five types of approaches: 

 1. Burned area estimation using active fire counts
 2. Image classification using the spectral properties of burned residues
 3. Burned areas estimation using changes in canopy cover
 4. Burned areas classification using active remote sensing sensors
 5. Burned area mapping using hybrid classification approach (Table 12.1)

12.2.1 burneD area estimation using active fire counts

Active fire count products capture the location and timing of fire burning at the time of the satel-
lite overpass, usually as swath-based fire masks or lists of fire pixel locations and dates (Giglio 
et al. 2006). Globally, long-term observations of active fires made with coarse- and medium-
resolution spaceborne sensors are readily available. Selected examples of these observations 

TABLE 12.1
Summary of Major Burned Area Mapping Methods and Selected References

Burned Area Mapping Methods Types Selected References

2.1 Active fire counts Aggregate active fire detections Giglio et al. (2006)
Oliva and Schroeder (2015)

2.2 Spectral change detection approach Multitemporal composites Chuvieco et al. (2008)

Spectral indices (SIs) Key and Benson (2006)

Spectral mixture analysis (SMA) Quintano et al. (2006)

Machine learning classification Petropoulos et al. (2010, 2011)
Hudak and Brockett (2004)

Time series change detection Goodwin and Collett (2014)

2.3 Canopy cover change detection Changes in Leaf Area Index Boer et al. (2008)

Forest cover loss Potapov et al. (2008)

2.4 Active remote sensing Synthetic aperture radar (SAR) Siegert and Hoffman (2000)
Gimeno et al. (2004)
Kasischke et al. (2008)

PALSAR Polychronaki et al. (2013)

2.5 Hybrid approach SIs + thermal Roy et al. (1999)

Time series change detection + machine 
learning classification

Zhao et al. (2015)
Kennedy et al. (2015)
Schroeder et al. (2015)
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include the advanced very high resolution radiometer (AVHRR) active fire product (Li et  al. 
2001), along track scanning radiometer (ATSR) nighttime fire product (Schultz 2002), the 
MODIS global active fire product (Giglio 2010), and the visible infrared imaging radiometer 
suite (VIIRS) global active fire product (Schroeder et al. 2014).

Although these fire count products capture many aspects of the spatial and temporal distribution 
of burning, it is difficult to relate them to actual area burned due to inadequate spatial and temporal 
resolutions, variability in cloud cover and fuel conditions, and differences in fire behavior (Giglio 
et al. 2009, Oliva and Schroeder 2015). In addition, the probability of active fire detection is depen-
dent on the fire temperature and size: small- and/or low-intensity fires may not be detected at the 
time of satellite overpass (Boschetti et al. 2015). Cumulative active fire detection algorithms usually 
underestimate the area burned in grassland and savanna ecosystems where the fires front progresses 
rapidly across the landscape (Roy et al. 2008, Oliva and Schroeder 2015). Conversely, active fire 
detection methods may overestimate the area burned for isolated fire points that are detected but 
very hot and smaller than the pixel dimension, for example, in certain forest ecosystems where the 
fuel conditions can sustain high energy fires and where the fire spread is slow relative to the satellite 
overpass frequency (Boschetti et al. 2015).

Several studies reported burned areas mapped from aggregated active fire detections for large 
fires. Many studies underestimated the burned areas due to cloud contamination and difficulty in 
detecting small fires with coarse satellite images. For example, Sukhinin et al. (2004) used aggre-
gated active fire detection data from the AVHRR to estimate burned areas in Russia in 2000, under-
estimating the total area measured by 27% (Sukhinin et  al. 2004). Oliva and Schroeder (2015) 
assessed the performance of the VIIRS 375 m active fire detection product for direct burned area 
mapping. Fire detection rates were lower for small fires (<500 ha), and mapping accuracies highly 
depend on ecosystem and vegetation conditions, where forested areas have higher accuracy than 
grassland, savannas, and agricultural areas due to differences in the duration of fires. Although 
active fire detection-based burned area product generally has higher commission and omission 
errors compared with other mapping approach, it was one of the first methods that were developed 
to consistently map burned areas at global scale (Table 12.2).

12.2.2 image classification using burneD areas’ spectral properties

Fires change the spectral signatures of the land surface by reducing the cover, greenness, density, 
and water content of the vegetation, by partially or completely consuming surface litter fuel, and 
by exposing and altering the color and brightness of the soil (Lentile et al. 2006). Such changes in 
surface properties can often be detected as a decrease in spectral reflectance in the visible NIR and 

TABLE 12.2
Name, Equation, and References for Major Vegetation Spectral Indices (SIs) in Burned 
Area Mapping

Index Equation Reference

Normalized Difference Vegetation Index (NDVI) (ρ4 − ρ3)/(ρ4 + ρ3) Tucker et al. (1986)

Enhanced Vegetation Index (EVI) (ρ5 − ρ4)/(ρ5 + 6 * ρ4 − 7.5 * ρ2 + 1) Gao et al. (2000)

Soil Adjusted Vegetation Index (SAVI) ((ρ5 − ρ4)/(ρ5 + ρ4 + 0.5)) * 1.5 Huete (1988)

Normalized Burn Ratio (NBR) (ρ4 − ρ7)/(ρ4 + ρ7) Key and Benson (2006)

Note: ρ3, ρ4, and ρ7 represent the surface spectral reflectances as measured in Bands 3 (red band, 0.3–0.69 µm), 4 (near-
infrared band, 0.76–0.90 µm), and 7 (Shortwave infrared band, 2.08–2.35 µm) of the Landsat Thematic Mapper and 
Enhanced Thematic Mapper Sensors
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an increase in the mid-infrared (MIR) wavelengths. The vast majority of satellite-based burned 
area mapping studies use information on differences in spectral properties of a land surface 
before and after a fire.

Vegetation spectral indices (SIs) are the most widely used approach to detect fire-induced spec-
tral reflectance changes because of the simple concept and easy computation. Table 12.2 sum-
marizes the commonly used vegetation indices for mapping burned areas. Normalized Difference 
Vegetation Index (NDVI) is strongly related to above-ground biomass and as a result, the index has 
shown to discriminate reasonably well between burned and unburned areas (Tucker et al. 1986). 
Several modifications of NDVI, including the Enhanced Vegetation Index (EVI) (Gao et al. 2000), 
the Soil Adjusted Vegetation Index (SAVI) (Huete 1988), and Modified SAVI (MSAVI) (Qi et al. 
1994), have been successfully applied in burned area mapping. NBR is commonly used for burn 
severity assessment, whereas its application in burned areas mapping is also widespread and has 
been found to outperform the other SIs in some ecoregions (Schepers et al. 2014). Modifications 
for NBR include differenced NBR (dNBR) and relative dNBR (RdNBR). A consistent burned area 
product for United States—Monitoring Trends of Burn Severity—was developed by delineating 
the calculated dNBR images from Landsat (Eidenshink et al. 2007). A more recently developed 
spectral index, Integrated Forest Index (IFI), representing the probability that a pixel is forest 
based on the image statistics (Huang et al. 2009, 2010, Chen et al. 2011) has also been applied to 
track burned areas in the Greater Yellowstone Ecosystems (Zhao et al. 2015), as well as the postfire 
forest spectral recovery (Zhao et al. 2016). Despite the popularity of SIs in mapping burned areas, 
it is still limited in its ability to accurately characterize burned area across different ecosystems 
due to spectral confusion with shaded surface such as cloud shadow or topography variations 
(Schepers et al. 2014).

Spectral mixture analysis (SMA) is a classification technique based on modeling image spectra 
as the linear combination of endmembers (e.g., soil, vegetation, nonvegetation, etc.) has been used 
to derive the fractional contribution of endmember materials to image spectra in a wide variety of 
applications including burned area assessment (Riaño et al. 2002, Dennison and Roberts 2003). 
Several studies examined the usefulness of SMA for mapping burned areas from sensors such as 
AVHRR, MODIS, and Landsat, and the results show that SMA could accurately identify the burned 
surface area, and the spatial resolution of the satellite images do not affect burned area mapping 
(Vafeidis and Drake 2005, Quintano et al. 2006).

Machine learning algorithms are a group of statistical algorithm that can learn and make pre-
dictions on data (Kohavi and Provost 1998). A number of studies have also investigated the utility 
of machine learning algorithms in classifying burned areas, such as principal components analy-
sis (PCA) (Hudak and Brockett 2004, Maingi and Henry 2007), support vector machines (SVM) 
(Petropoulos et al. 2011, Zhao et al. 2015), neural networks (NN) (Shabanov et al. 2005, Petropoulos 
et al. 2010), spectral angle mapper (SAM) (Petropoulos et al. 2010), decision trees (Silva et al. 2005, 
Giglio et al. 2009, Loboda et al. 2011, Hall et al. 2016), random forests (RF), and so on. These meth-
ods were proven to be effective in mapping burned areas in many ecosystems, but spectral confu-
sion with cloud shadow and shades from high topography variations could be difficult to separate 
(Petropoulos et al. 2011).

In the past decade, high and very high spatial resolution burned area mapping using spec-
tral characteristics began to grow rapidly. Data availability from sensors such as Landsat and 
Worldview-2 made it possible to characterize burned area at the meter level. The processing of 
these imageries provides a great level of spatial details that are needed for the accurate analysis of 
fire damages and for the sound planning of postfire restoration measures. Mitri and Gitas (2008) 
used 1 m Ikonos images to map object-based burn severity in open Mediterranean forests. Holden 
et al. (2010) assessed burn severity using 3 m QuickBird differenced spectral index from prefire to 
postfire. Meng et al. (2017) endeavored to produce ecological meaningful and scalable burn severity 
from WorldView-2 images in an imperiled fire-dependent Pine Barren Ecosystem in Northeastern 
United States.
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12.2.3 burneD areas estimation using changes in canopy cover

Change in green vegetation cover manifests one of the most visible and ecologically significant 
impacts of fire. Partly limited by the data availability of vegetation cover, however, burned 
area mapping based on canopy cover change is not as common as the spectral-based meth-
ods. Boer et  al. (2008) proposed to quantify burned area and burn severity as the change of 
the Leaf Area Index (LAI) of a 27,700  ha fire in Australia, by linking spectral information 
from satellite images with field-derived LAI estimates. LAI was found to be strongly related to 
NBR, and changes in NBR can largely be explained by the variations in ground measured LAI 
(R2 = 0.76). Potapov et al. (2008) examined forest cover loss induced by wildfires by combin-
ing MODIS and Landsat imagery, and the MODIS-derived burned forest area fraction resulted 
in an estimated root-mean-square error (RMSE) of 2.24% and R2 of 0.75. Hansen et al. (2013) 
developed global 30 m forest cover maps of the twenty-first century, and wildfire was found to 
be the dominant disturbance agent in regions such as forests in the boreal and the intermountain 
West of North America. Classification accuracies were found to be over 80% for each individual 
climate domain and the globe as a whole.

12.2.4 burneD area mapping using active remote sensing sensors

Remote sensing instruments can be grouped into two types: passive and active. Although passive 
instruments collect information on energy that is reflected or emitted from the observed object, 
active instruments provide their own energy source (electromagnetic radiation) and send a pulse of 
energy from the sensor to the object. Active instruments then receive the radiation that is reflected 
or backscattered from the object.

Active sensors such as the synthetic aperture radar (SAR) and LiDAR were widely used in 
mapping burned areas. Many SAR-based burned area studies were carried out in the boreal forest 
(Kasischke et al. 1994, French et al. 1999, Siegert and Hoffmann 2000, Menges et al. 2004), but 
some examples for the Mediterranean area exist (Gimeno et al. 2004, Tanase et al. 2010a,2010b, 
Stroppiana et al. 2015). Instead of the changes in vegetation condition and structure, the detec-
tion of burned area from SAR is based on the changes in water content in the burned surface 
compared with the unburned areas. Burned areas tend to have high water content than unburned 
areas, which reduces the backscatter. Thus, burned areas appear as relatively darker objects com-
pared with the surrounding nonaffected areas. Images from passive remote sensing instruments, 
such as Landsat thematic mapper (TM)/enhanced thematic mapper (ETM), are well suited for 
capturing horizontally distributed forest conditions, structure, and change, whereas LiDAR data 
are more appropriate for capturing vertically distributed elements of forest structure and change. 
Therefore, the integration of passive optical and active LiDAR remote sensing can often provide 
improved accuracies in characterizing postfire effects, especially forest recovery following fires. 
Ballhorn et al. (2009) used LiDAR to derive burn scar depth and carbon emissions from peatland 
fires in Indonesia. Goetz et al. (2010) synergized spaceborne LiDAR data and MODIS data to 
assess the vegetation response following fires in Alaska. Wulder et al. (2009) characterized boreal 
forest wildfires using multitemporal Landsat and LiDAR data. In addition, the synergies between 
active remote sensing sensors, as well as active and passive sensors, show promising results in 
burned area mapping in recent decades (Kane et al. 2014; McCarley et al. 2017).

Radar and LiDAR applications in burned area mapping are relatively narrow due to difficulty in 
data interpretation and limited data availability, respectively. But with their advantages compared 
with traditional remote sensing instruments, such as penetration through cloud and not getting satu-
rated at high biomass levels, radar and LiDAR instruments have potentials for assessing crown bulk 
density (Lentile et al. 2006) and loss from underground burnings (Reddy et al. 2015), when optical 
remote sensing is not capable of doing so.
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12.2.5 burneD area mapping using hybriD algorithms

With the development of burned area mapping techniques, many hybrid algorithms have been 
developed to further improve mapping accuracies. Methods such as SIs, machine learning classifi-
cation, and so on have been integrated in mapping burned areas in many regions (Roy et al. 2013). 
Information from thermal remote sensing and land cover/land use change has also been proven to 
be useful in many studies (Chu and Guo 2013).

Although most of the studies on burned area mapping were based on the use of optical imagery, 
temperature information derived from thermal remote sensing is sometimes used in combination 
with spectral changes to better characterize burned areas (Wooster et al. 2013). Roy et al. (1999) 
used AVHRR thermal channel, in combination with the NIR channel, to detect burn scar in a 
savanna fire in Southern Africa. Fraser et al. (2000) further integrated AVHRR thermal band with 
multitemporal NDVI to examine a large burned area in boreal forests (Fraser et al. 2000). Alonso-
Canas and Chuveico integrated hot spot information from MODIS data and temporal trends of 
mEdium resolution imaging spectrometer (MERIS) reflectance bands to develop a hybrid burn area 
algorithm (Alonso-Canas and Chuvieco 2015). Roy and Kumar (2017) combined MODIS active fire 
product and random forest algorithm to classify burned areas in the Amazon basin into deforesta-
tion, maintenance, and forest fire types.

Many land cover change detection algorithms have been developed to process Landsat pixel-level time 
series over large areas, focusing on mapping forest land cover change and forest disturbance using meth-
ods that identify significant changes by examination of the temporal trajectory of surface reflectance or 
vegetation indices (Huang et al. 2010, Kennedy et al. 2010, Verbesselt et al. 2010, Hansen et al. 2013). A 
number of hybrid land cover change (including burned area) detection approaches have been developed 
that integrate those forest change detection algorithms with machine learning algorithms to attribute the 
causes of forest change such as wildfire or timber harvesting. Zhao et al. (2015) used time series forest 
change maps produced by vegetation change tracker (Huang et al. 2010) and SVM to separate fires from 
harvests in the Greater Yellowstone Ecosystem from 1985 to 2011. The overall classification accuracy 
was about 85%, and the integration of vegetation change tracker (VCT) and SVM algorithm was proven 
effective in mapping fires and harvests in ecosystem such as the Greater Yellowstone. Kennedy et al. 
(2015) integrated temporal segmentation and RF to attribute forest disturbance change agent in support 
of habitat monitoring in the Puget Sound region. Overall accuracy was 80%, and  mapping accuracy of 
burned area was lower than that of the forest management activities such as harvesting. The use of hybrid 
approach to map burned areas often achieves high mapping accuracies, but the drawback is that this 

TABLE 12.3
Relative Advantages and Disadvantages of Main Burned Area Mapping Methods

Burned Area 
Mapping Method Pros Cons

2.1 Active fire counts Consistent algorithm/product available 
globally;

Relatively high temporal resolution

Relatively high omission and commission errors;
Inadequate for accurate burned area mapping 
(lack the ability to detect small fires)

2.2 Spectral change 
detection approach

Most common, relatively easy to 
calculate

Relatively high commission error in some 
ecosystems

2.3 Canopy cover 
change detection

Direct measurement of fire effects on 
canopy change, ecological meaningful

Limited data availability

2.4 Active remote 
sensing

Provide more information than optical 
remote sensing (such as for forest 
structural or water content)

Limited data availability;
Difficulty in interpretation;
Computing load too high for large area assessment

2.5 Hybrid approach Relatively high mapping accuracy Complex procedures and high computation loads
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approach usually involves many processing steps with high computation loads (Table 12.3). With the 
advances of super computing resources, however, computing load might not be a limiting factor in the 
near future.

12.3 REMOTE SENSING OF BURN SEVERITY

The assessment of short- and long-term fire effects on local, regional, and global vegetation has 
been conducted using a range of remote sensing methods. Burn severity is one of the most com-
monly used assessments to monitor and assess the impacts of fires on local and regional environ-
ments by remotely sensed imagery. In a fire event, the burned area is usually a complex mosaic of 
low, moderate, and high fire intensity because of variations in wind, topography, and fuel conditions 
(Turner et al. 1994). Variable fire intensity results in a heterogeneous pattern of fire effects promot-
ing landscape heterogeneity and ecosystem biodiversity; both are considered to be important for 
ecosystem resilience (Peterson 2002, Sugihara 2006, Lentile et al. 2006, Keeley 2009, Veraverbeke 
et al. 2011, Quintano et al. 2013, Wilson et al. 2015, Spasojevic et al. 2016).

In general, four different techniques (Table 12.2) were used to assess burn severity across large 
areas, including remotely sensed SIs (e.g., Miller et al. 2009; Norton et al. 2009; Lu et al. 2015), 
radiative transfer models (RTMs) (e.g., Chuvieco et al. 2006; De Santis et al. 2009), SMA (e.g., 
Riaño et al. 2002; Veraverbeke et al. 2012; Quintano et al. 2013, 2017), and supervised and unsu-
pervised classification (Mitri and Gitas 2013; Chen et  al. 2015). In addition to the previously 
mentioned techniques, as the development of new remote sensing techniques, new remotely sensed 
datasets including imaging spectrometer (e.g., Scheper et al. 2014), LiDAR (e.g., Wang and Glenn 
2009), Radar (e.g., Kasischke et  al. 2008; Tanase et  al. 2010a,2010b), and VHR imagery (e.g., 
Holden et al. 2010; Meng et al. 2017) have also become available and applied for burn severity 
assessment. Recently, the hybrid approach for combining the SI and SMA or supervised classifi-
cation techniques (e.g., Quintano et al. 2017; Meng et al. 2017) has also been explored for burn 
severity assessment (Table 12.4).

TABLE 12.4
Summary of Major Burned Severity Mapping Methods and Selected References

Burned Severity Mapping Methods Types Selected References

3.1 Spectral indices (SIs) NDVI Escuin et al. (2008)

NBR family Miller et al. (2007)
Miller et al. (2009)

RBR Parks et al. (2014)

SAVI family Schepers et al. (2014)
Arnett et al. (2015)

3.2 Spectral Mixture Analysis (SMA) Simple linear SMA Rogan and Franklin (2001)

Multiple endmember SMA Quintano et al. (2013)

3.3 Radiative Transfer Model (RTM) Turbid RTMs Chuvieco et al. (2006)
De Santis et al. (2007)

Geometric RTMs De Santis et al. (2009)

3.4 Classification Supervised classification Hultquist et al. (2014)

Unsupervised classification Roldán‐Zamarrón et al. (2006)

3.5 Hybrid approach SMA and SIs Meng et al. (2017)

LiDAR-based measurements and SIs or 
LiDAR-based measurements

Wang and Glenn (2009)
McCarley et al. (2017)

Thermal-infrared and SIs or 
Thermal-infrared bands

Zheng et al. (2016)
Quintano et al. (2017)
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12.3.1 representative stuDies of spectral inDices-baseD burn severity

Among these techniques, SIs have been most widely applied to images with varying spectral 
and spatial resolutions (Van Wagtendonk et al. 2004, Epting et al. 2005, Miller and Thode 2007, 
Schepers et al. 2014). Density slicing is one of the most commonly used methods for classifying the 
continuous SI values into several subjective categories (e.g., unburned, low, moderate, and high). 
The NDVI, the NBR, or other similar SIs are frequently developed and applied in this context in 
various ecosystems. The capability of these SIs for assessing burn severity comes from the dra-
matic changes in red, NIR, MIR, shortwave infrared (SWIR) regions of the spectrum, as a result 
of fire (White et al. 1996; Lentile et al. 2006). A recent study indicated that SIs (e.g., dNDVI) 
could accurately quantify changed plant physiology caused by fire at the leaf level and thus could 
potentially be used for physics-based burn severity assessment in future (Smith et al. 2016; Sparks 
et al. 2016).

The performances of different SIs for assessing burn severity have been compared and discussed 
in numerous literature for various ecosystems including boreal forest (Barrett et al. 2010; Chu et al. 
2016), Mediterranean forests and shrublands (Escuin et al. 2008, Harris et al. 2011), and temperate 
forests (Chen et al. 2011; Meng et al. 2017). The use of a single postfire image without prefire refer-
ence leads to confusion in assessing fire severity due to the spectral similarities with other sparsely 
vegetated areas; however, bitemporal image-based approach could also introduce additional prob-
lems, such as differences in geometric correction, atmospheric effects, illumination effects, plant 
phenology, and so on. The bitemporal NBR-based approaches have been predominantly used in the 
community and accepted as the standard spectral index to assess the burn severity across the United 
States going back to 1984 with the 30 m Landsat mission imagery, by the Monitoring Trends in 
Burn Severity Project (MTBS, http://www.mtbs.gov/; Eidenshink et al. 2007). The NBR relates to 
vegetation moisture content by combining NIR with SWIR reflectance. Therefore pre- and postfire 
NBR data are generally bitemporally differenced, resulting in the dNBR, which permits a clearer 
distinction between low severity and unburned regions. In addition, Miller and Thode (2007) pro-
posed a relative version of the dNBR (RdNBR), accounting for heterogeneous landscapes with low 
prefire vegetative cover (Figure 12.4). RdNBR relates the fire-induced change to the prefire amount 
of biomass, and therefore, rather than being a measure of absolute change, it reflects the change 
caused by fire relative to the prefire condition. Some new SIs, such as SWIR–MIR index (SMI) 
(Veraverbeke et al. 2012), relativized burn ratio (RBR, a relativized version of dNBR; Parks et al. 
2014), and land surface temperature (LST)-based index (Zheng et al. 2016, Quintano et al. 2017), 
have been developed to assess burn severity.

However, NBR and other similar SI-based methods still have limitations, potentially preventing 
their applicability to infer burn severity across various scales and ecosystems (see Lentile et al. 2009 
for the limitations of an NBR and other similar SI-based methods in detail). In short, SI-based meth-
ods are mainly based on the statistical correlations between field measurements of burn severity 
(e.g., (Geo)CBI) (Key and Benson 2006; De Santis et al. 2009) and selected SIs (e.g., NBR, NDVI), 
but the relationships are usually nonlinear asymptotic (Lentile et al. 2009), varying in both spatial 
scales (Van Wagtendonk et al. 2004) and ecosystem types (Epting et al. 2005). Several authors have 
also stated that the spectral bands used for NBR calculation are not optimal to evaluate the degree 
of burning; thus, an NBR-based approach cannot be optimal for inferring both burned areas and 
varied burned effects (i.e., severity) (Roy et al. 2006, Smith et al. 2005).

12.3.2 representative stuDies of spectral mixture analysis-baseD burn severity

SMA is a well-known remote sensing technique used for addressing the mixed pixel issue (e.g., 
the mixture of vegetation, substrate, and ash in the short-term postfire environment), by quantify-
ing the subpixel proportions of different features or classes (endmembers), which are assumed to 
represent the spectral variability of dominant land covers (e.g., green vegetation, nonphotosynthetic 

http://www.mtbs.gov/
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vegetation, and soil). Different SMA techniques exist for solving mixing problem, but linear spec-
tral mixture analysis (LSMA) has predominantly been used for inferring burn severity (Rogan and 
Franklin 2001, Smith et al. 2007, Quintano et al. 2013) and for studying postfire recovery (Lentile 
et al. 2009, Quintano et al. 2017). The theory and limitations of LSMA are well documented in 
the literature (Drake et al. Mackin, and Settle 1999, Asner and Heidebrecht 2002). SMA applied 
to postfire images has resulted in fractional ground cover measures closely related to burning effi-
ciency, usually implementing at least the green vegetation and char endmembers. Comparing to 
SI-based approaches, SMA provides a directly transferable measure between ground truth of burn 
severity and remotely sensed measures, and thus is inherently scalable, and other major advantages 
of SMA include its ability to detect the charcoal signal even in lightly burned areas that kept a 
strong vegetation signal, reliance on the single image data without constraints on bitemporal imag-
ery or specific channel availability (i.e., SWIR bands are necessary for NBR calculations), and 
making use of the full spectra, rather than just two or three bands for SI calculations (Lentile et al. 
2006, 2009, Veraverbeke and Hook 2013). Recently, an improved version of typical LSMA (i.e., 
Multiple Endmember SMA, MESMA) (Roberts et al. 1998) has been highlighted for burn severity 
studies (Veraverbeke and Hook 2013, Quintano et al. 2013, 2017, Meng et al. 2017). Different from 

(a) (b)

(c) (d)

FIGURE 12.4 Prefire (a) and (b) postfire Landsat false color composite images, (c) differenced Normalized 
Burn Ratio (dNBR), and (d) MTBS burn severity for the 2013 Rim Fire near Yosemite National Park, 
California.
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the typical LSMA technique, MESMA uses a variable number of endmembers for unmixing pixels 
and takes within class spectral variability of endmembers into account (see Quitano et al. 2013 for 
applying MESMA for mapping burn severity in detail).

12.3.3 representative stuDies of raDiative transfer moDel-baseD burn severity

RTMs are physics based and can model a set of independent variables for assessing burn sever-
ity (e.g., leaf types and conditions, LAI, vegetation fraction cover [FCOV]). The main advantage 
of these simulation models is that they are generally applicable, which potentially enhances the 
applicability and intercomparability of assessments made over a wide range of ecosystems, by 
considering the whole spectral profile (Table 12.5). Researchers conducted turbid RTMs in forward 
model for simulating burn severity scenarios (spectral signatures) from a set of input parameters 
at both leaf and canopy level, and then they estimated (Geo)CBI values for burn severity map-
ping in reverse model using postfire remote sensing imagery (Chuvieco et al. 2006, Chuvieco and 
Kasischke 2007, De Santis and Chuvieco 2007). All of these studies found improvements in burn 
severity estimation, comparing to empirical fitting methods (e.g., NBR, NDVI, Tasseled Cap (TC) 
transformation). However, turbid RTMs assumed that each vegetation stratum was composed of a 
turbid medium as a homogeneous layer, but this assumption is not often true in the burned areas 
(De Santis and Chuvieco 2009). In order to overcome this shortcoming, geometric RTMs account-
ing for the canopy structure and the illumination-shadow effects were applied for improving the 
burn severity estimation from postfire satellite images (De Santis and Chuvieco 2009, De Santis 
et al. 2009). A 3D RTM has also been developed to modeling the pre- and postfire reflectance of 
a two-layer savanna system, after detailed field measurements of overstory (tree) and understory 
(grass) structural and radiometric properties from burned plots (Disney et al. 2011).

12.3.4 superviseD anD unsuperviseD classification

Image classification is one of the most common practices to extract information from remotely 
sensed imagery, and supervised and unsupervised classification are the two most commonly used 
techniques for image classification. With known pixel samples from final classification classes, 
supervised classification uses the spectral signature of these training samples to classify an image, 
whereas unsupervised classification finds spectral clusters in an image without prior knowledge. 
Both supervised and unsupervised classification methods have been conducted for assessing burn 
severity (Benson and Briggs 1978; Chuvieco and Congalton 1988). In terms of predictor variables, 

TABLE 12.5
Relative Advantages and Disadvantages of Main Burn Severity Mapping Methods

Burn Severity Mapping Method Pros Cons

3.1 Spectral indices (SIs) Easy to compute, especially for large 
area assessment

Lacks ecological meanings

3.2 Spectral mixture analysis (SMA) Ecological meaningful assessment 
(direct measurement of vegetation 
composition change)

High computing loads, time 
consuming for large areas

3.3 Radiative transfer model (RTM) Physical based, generally applicable; 
relatively high mapping accuracy

Complex procedures and high 
computing loads

3.4 Classification Relatively easy and straightforward in 
computation

Lacks ecological meanings

3.5 Hybrid approach High in mapping accuracy; integrates 
information from multiple sensors

Complex procedures and high 
computing loads
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multispectral channels, SIs, image transformations (e.g., PCA and Karhunen-Loeve (KT)), SMA 
fractions, biophysical variables (e.g., LAI), LiDAR-based measurements, and so on have all been 
proved to provide critical information for classifying burn severity (Quintano et al. 2017; McCarley 
et al. 2017). In terms of classification algorithms, decision trees, SAM, object-oriented classifica-
tion, artificial neural network, and other machining learning algorithms were applied both on single 
postfire imagery and on bitemporal pre- and postfire imagery for burn severity assessment (Roldán‐
Zamarrón et al. 2006, Hultquist et al. 2014).

12.3.5 neW remote sensing techniQues for burn severity stuDies

Other types of remotely sensed measurements have also been used to quantify burn severity, includ-
ing thermal, hyperspectral imagery, VHR imagery, LiDAR, and SAR. With higher spatial and 
spectral resolution compared to commonly used multispectral imagery (e.g., Landsat mission and 
MODIS), hyperspectral imagery and VHR imagery datasets can distinguish finer surface features 
caused by fire (e.g., increased soil and ash cover, decreased vegetation cover). For example, using 
hyperspectral imagery, Robichaud et  al. (2007) accurately map postfire soil and ash cover frac-
tions for assessing soil erosion caused by fire. In addition, active sensor systems, such as LiDAR 
and SAR, also provide new power for inferring burn effects. For example, Wang and Glenn (2009) 
calculated the vegetation height change for burn severity estimation with an overall accuracy of 
84%, from pre- and postfire LiDAR data in a rangeland ecosystem (Wang and Glenn 2009); In 
Mediterranean and boreal environments, Tanase et  al. (2010a, 2010b and 2014) investigated the 
properties of SAR data for assessing burn severity and postfire recoveries, and they concluded that 
SAR data was useful for fire-related studies, although they have limitations. McCarley et al. (2017) 
recently investigated the correlations between changes in forest structure caused by wildfire derived 
from multitemporal LiDAR acquisitions and multitemporal spectral changes captured by Landsat 
imagery. Their findings suggested the limitations of SIs on detecting fire-induced changes in the 
topmost surface and LiDAR provide a reliable physical measure of vegetation structure and change 
caused by fire, commensurating with Landsat spectral measures.

However, one limitation of the operational use of SAR images as well as other advanced remote 
sensing techniques (i.e., LiDAR, hyperspectral, and VHR imagery) in burn severity assessment 
is data availability that is limited by the long revisit periods or the absence of satellite platforms, 
the commercial operating mode of some new satellites, and the relatively high cost of aerial-based 
measurements. However, the availability of new space missions, such as the planned Radarsat-3 
mission (Girard et al. 2002), Global Ecosystem Dynamics Investigation LiDAR (GEDI) (Dubayah 
et al. 2014), Sentinel missions (Berger and Aschbacher 2012), and Hyperspectral Infrared Imager 
(HyspIRI) (Lee et al. 2015), will solve the problem to some extent. Further studies are still in need 
to assess the integration of hyperspectral, LiDAR, SAR, thermal infrared data for burn severity 
assessment.

12.4 FUTURE DIRECTIONS

12.4.1 neW satellite instruments for remote sensing of fire effects

Burned area and burn severity maps are the very basic information required for modeling the impact 
of fires on ecosystem dynamics. Major efforts have been made to map burned area and burn severity 
at regional to continental scales. New satellites that are launched recently open up new avenues for 
characterizing fire effects across multiple spatial, temporal, and spectral scales (Wooster et al. 2012; 
Schroeder et al. 2016; Meng et al. 2017; McCarley et al. 2017). Synergies between data from new 
sensors and existing instruments also provide opportunities to characterize fire events, one of the 
key ecosystem processes, and its impact on ecosystem mass and energy exchanges in more detail 
over large areas.
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There is a wealth of untapped information for use in remote sensing of fire effects using existing 
data, and there is a huge opportunity for burned area and burn severity mapping with new datasets. 
As more data become available, they will contribute to the improvement of fire effects character-
ization and reduction of mapping errors. However, a systematic set of defined fire variables is not 
present to satisfy the needs for fire mapping comparison and fire effects modeling at regional and 
global scales. Information on fire types (such as agricultural maintenance fires, land cover conver-
sion fires or wildland forest fires) is important for modeling fire effects and postfire vegetation 
recovery, but was rarely provided, except in a few recent studies (Hall et al. 2016; Roy and Kumar 
2017). Remotely sense-based burn severity is often not well linked to its ecological meanings that 
can be applied across different ecosystems. These gaps in fire effects characterization prevent us 
from advancing and unifying our understanding of fire effects at multiple spatial and temporal 
scales, and require more collaborative work from the fire ecology and remote sensing communities 
in the near future.

12.4.2  scalable burn severity maps for improveD WilDfire 
monitor across spatial scales

Landscape distribution of burned areas and burn severity for a fire event is not homogenous, vary-
ing with biophysical conditions. This gives rise to challenges to remote sensing of burn effects. 
Traditional coarse and moderate resolution satellite images provide consistent and frequent burned 
area and burn severity maps, but they are limited in their ability to capture the heterogeneous burn 
conditions within the fire boundary. Medium-to-high resolution images from the Landsat sensors 
provide the longest available observation and widely used source for assessing burned area and 
burn severity. Although 30  m Landsat TM imagery provided decent resolution for regional fire 
assessment, higher spatial resolution data have obvious potential for quantifying fine-scale postfire 
effects. Images with meter-level spatial resolutions provide additional information on crown and 
canopy change dynamics and are well suitable for fire effects characterization at individual tree, 
plot, and landscape levels.

The spatial resolution of the remote sensing imagery should match the ecological scale of the fire 
effect of interest. Direct fire effects (e.g., Greenhouse gas emissions) have been parameterized as 
critical components in ESMs, but their legacy effects, as a result of vegetation successional trajecto-
ries, are still poorly represented and validated in the current ESMs. In the development of cutting-
edge ecosystem models (ESMs), improved characterization of vegetation response to disturbance 
events is critical for reducing model uncertainty, under the projected climate change. Remote sens-
ing technologies such as VHR open the window of opportunity to characterize fire effects at finer 
spatial scale and toward scalable burn severity mapping for improved wildfire monitoring across 
varying spatial scales (Figure 12.3). Meng et al. (2017) use 2 m WorldView-2 images to map burn 
severity and to assess fire effects at subcrown, crown, and intercrown scales, which highlight the 
importance of heterogeneous fire patterns captured by VHR images for understanding fine-scale 
fire effects on ecosystem processes (Figure 12.5).

12.4.3 toWarD ecological meaningful characterization of fire effects

Quantifying fire effects is critical for understanding the ecological impacts of fires, including 
assessing ecosystem resilience, mitigating postfire soil and water loss, examining postfire forest 
recovery, and calculating carbon dynamics (McCarley et al. 2017). Although (Geo) CBI is gradu-
ally used as a standard for field measurement of burn severity across strata in burned sites, burn 
severity is still a subjective measurement changing with the context. For practical purpose, burn 
severity is often broadly defined and partitioned into discrete classes ranging from low, moderate 
to high to link with space measurements, though having limited mechanistic and predictive power 
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(see Smith et al., 2016 for limitations of discrete severity classifications in detail). As a result, in 
recent years, researchers suggest to abandon the categorical descriptions of burn severity (i.e., 
low, moderate, and high severity) and use more ecological- or physical-based severity classifica-
tions (e.g., tree mortality percentage, live basal area, diameter of the smallest remaining branches) 
instead (Jain et al., 2004; Morgan et al., 2014; Smith et al., 2016). Without building the physical 
linkages between spectral data and quantitative measures of postfire forest change, it will be dif-
ficult to accurately calculate carbon dynamics following fires. Therefore, further studies on remote 
sensing of fire effects should work toward more ecological meaningful characterization of burn 
effects and should address the gaps in understanding the relationship between biophysical fire 
effects and spectral remote sensing.
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13 Exploring the Relationships 
between Topographical 
Elements and Forest 
Fire Occurrences in 
Alberta, Canada

Masoud Abdollahi, Quazi K. Hassan, 
Ehsan H. Chowdhury, and Anil Gupta

13.1 INTRODUCTION

Forest fire is one of the critical natural disturbances or disasters taking place over the various ecoregions 
across the world. In Canada, about 8,300 forest fires occur that burn, on an average, 2.3 million hectares 
every year during the last 25 years (NRC 2016). In order to suppress the fire events, the Government 
of Canada spends between $500 million and $1 billion per year (NRC 2016). Despite some benefits of 
forest fires, such as regenerating healthy forest, killing diseases and insects, and balancing soil nutrient 
regimes (Ruokolainen and Salo 2009; Chu and Guo 2014), they exert great adverse impacts on socio-
economic conditions. Thus, it is critical to study the factors behind such fire occurrences in order to 
develop an efficient forest fire management system to optimize the consequences of fires.

In general, there are five major influential factors that play significant role in the fire occurrences. 
These factors include (1) meteorological variables, such as temperature, precipitation, and rela-
tive humidity (Kral et  al. 2015; Argañaraz et  al. 2015; Chowdhury and Hassan 2015); (2) land 
cover variables comprising forest fuels’ conditions (both live and dead fuel loading and moisture 
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conditions), land cover type, biomass density, and so forth (Akther and Hassan 2011; Ager et al. 
2014); (3) ignition source, which can be arson or natural, such as lightning strike (Podur et al. 2003; 
Martínez et al. 2009; Wang and Anderson 2010); (4) anthropogenic (human-related) factors, such 
as infrastructures, socioeconomic condition, population density, settlements, weekends and public 
holidays, and so on (Yang et al. 2007; Prasad et al. 2008; Cipriani et al. 2011); and (5) topographical 
elements, including elevation, slope, and aspect (Vasconcelos et al. 2001; Kalabokidis et al. 2007; 
Adab et al. 2013). The first four factors are usually dynamic over time and space. In contrast, topo-
graphical elements are usually temporally static and spatially variable.

In the recent time, we conducted an extensive literature review and found that a significant 
amount of research had been carried out in comprehending fire occurrences. In most of the studies, 
the five factors described in the previous paragraph were employed. As we opted to comprehend 
the influence of topographical elements on forest fire regimes, we further investigated studies that 
considered these elements. Some of the example cases are described in Table 13.1.

In general, it was evident from Table 13.1 that the topographical elements might influence the fire 
occurrences differently from one geographic region to another. In the Canadian context, forest fire 

TABLE 13.1
Some Example Fire Occurrence Studies That Employed Topographical Elements as One of 
the Major Factors

References Study Area Factors Variables Remarks

Guo et al. 
2016

Fujian, 
China

Topographical Elevation Among all the ten variables, 
elevation was found to be the 
2nd highest influential variable.

Meteorological Daily precipitation, sunshine hours, 
daily minimum and maximum 
ground surface temperature, and 
daily mean relative humidity

Anthropogenic Distance to road and settlement, 
density of population, and per 
capita gross domestic product

Adab et al. 
2013

Golestan, 
Iran

Topographical Elevation, slope, and aspect Slope, aspect, and elevation were 
ranked as 2nd, 3rd, and 6th 
influential variables, respectively, 
among the 6 variables of interest.

Land cover Vegetation moisture

Anthropogenic Distance from roads and settlements

Dlamini 
2010

Swaziland Topographical Elevation, slope, and aspect Elevation, slope, and aspect were 
found to be 2nd, 11th, and 12th 
influential variables, respectively, 
among the 12 variables of 
interest.

Meteorological Mean annual temperature and 
rainfall, and winter relative 
humidity

Land cover Land cover/use and soil type

Anthropogenic Human population, road and 
livestock density, and distance to 
settlements

Catry et al. 
2009

Portugal Topographical Elevation Among the four variables, 
elevation was ranked as the 3rd 
influential variable.

Land cover Land cover type

Anthropogenic Population density and distance to 
roads

Kalabokidis 
et al. 2007

Greece Topographical Elevation, slope, and aspect Slope, elevation, and aspect were 
the 2nd, 3rd, and 8th influential 
variables, respectively, among 
the 10 variables of consideration.

Meteorological Air temperature, relative humidity, 
and annual precipitation

Land cover Vegetation cover and geology

Anthropogenic Distance to roads and density of 
livestock
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occurrence prediction system (known as Canadian Forest Fire Danger Rating System [CFFDRS]) 
uses meteorological variables (i.e., air temperature, precipitation, relative humidity, and wind) 
and ignition sources (that include lightning and human-caused ones) (Van Wagner 1987; Wotton 
2009). However, topographical elements are used in the Canadian fire behavior prediction systems 
to study fire situation and expansion after its ignition (Van Wagner 1987). In addition, some recent 
studies developed remote sensing–based system (known as Forest Fire Danger Forecasting System 
[FFDFS]) on incorporating meteorological variables (e.g., surface temperature and total precipi-
table water) and land cover–related variables (e.g., vegetation greenness, vegetation wetness, and 
surface wetness) (Akther and Hassan 2011; Chowdhury and Hassan 2013, 2015) and implemented it 
over the Canadian boreal forested regions. These studies recommended to investigate the influence 
of topographical elements on the fire occurrences.

Therefore, our overall objective was to explore relationship between topographical elements 
(i.e., elevation, slope, and aspect) and fire occurrences in the fire-prone nine forested natural sub-
regions in the Canadian province of Alberta (see Figure 13.1 for details). It would be worthwhile 
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experienced a total of 20,588 fires over the time period of interest.
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to note that a similar study (i.e., [PU et  al. 2007]) was conducted to evaluate the impact of the 
topography on the fire occurrences through analyzing remote sensing (i.e., National Oceanic and 
Atmospheric Administration [NOAA’s] advanced very-high-resolution radiometer [AVHRR])–
derived burned area maps across North America, including Canadian forests, during the period 
1989–2000. In this study, Pu et al. (2007) derived the topographical elements by using a digital 
elevation model (DEM) at 1 × 1 Km2 spatial resolutions. These elements were then categorized into 
coarser classes for establishing relations with fire occurrences. Those classes included (1) elevations 
into four classes (i.e., ≤500 m, 500–1000 m, 1000–2000 m, and >2000 m), (2) slopes into three 
classes (i.e., ≤10°, 10°–20°, and >20°), and (3) aspects into nine classes (i.e., flat, north, south, east, 
west, northwest, northeast, southwest, and southeast). Thus, our specific objectives were as follows: 

 1. To evaluate whether a finer spatial resolution (i.e., 30 × 30 m2) DEM–derived topographi-
cal elements with more detailed/narrower intervals would still hold similar patterns as 
depicted in Pu et al. (2007) in comparison with the ground-based historical dataset of the 
fire occurrences during the period 2001–2014.

 2. To implement probability density functions (PDFs) to develop probabilistic models to pre-
dict fire occurrences by using the data during the period 2001–2008 and their validation 
by using an independent dataset available over the period 2009–2014.

 3. Finally, to implement the best model to be found in the scope of second objective over the 
nine fire-dominant natural subregions in the study area in order to comprehend the spatial 
variability of the probabilities of fire occurrences.

13.2 MATERIALS AND METHODS

13.2.1 general Description of the stuDy area

We considered Alberta (i.e., one of the western Canadian provinces) as our study area. It is situated 
between 49°N and 60°N latitudes and 110°W and 120°W longitudes (see Figure 13.1). The province 
has a variable topography, where the elevations are to be found in the range of 150–3650 m above 
mean sea level. Climatically, this province has short summers and long and cold winters (Hassan and 
Rahman 2013). The mean annual temperature varies from −7.1°C to 6°C, and mean annual precipita-
tion is in the range of 260–1710 mm (Downing and Pettapiece 2006). In addition, based on landscape 
properties (that include topography, climate, vegetation, soil, and geology), Alberta is divided into 
21 natural subregions (see details in Figure 13.1 [Downing and Pettapiece 2006]). Among these, we 
only selected nine natural subregions as our focus in this study. These were (1) Central Mixedwood, 
(2) Lower Foothills, (3) Dry Mixedwood Boreal, (4) Montane, (5) Upper Foothills, (6) Lower Boreal 
Highlands, (7) Sub-Alpine, (8) Northern Mixedwood, and (9) Upper Boreal Highlands. The rationale 
of choosing these subregions was related to the fact that they had experienced equal to or greater 
than 1% of forest fires during the period 2001–2014 (see Figure 13.1 for more detailed information).

13.2.2 Data reQuirements anD its pre-processing

In this study, we employed two types of dataset. First one was historical fire occurrence spots avail-
able from Alberta Forest Service for the period 2001–2014. This dataset contained information about 
geolocation of the fire spots, fire start date, and the area burned among others for 20,588 fire events. 
Note that we considered all fire sizes (i.e., ≥0.01 hectares). The second dataset was a Shuttle Radar 
Topography Mission (SRTM)–derived DEM (i.e., SRTMGL1N3) at 30 m spatial resolution avail-
able from the National Aeronautics and Space Administration (NASA). The absolute vertical height 
accuracy for these data was 16 m at 90% confidence (Rodríguez et al. 2005). We used this dataset in 
order to generate elevation, slope, and aspect maps over our study area of interest. Using these two 
datasets, we extracted three topographical elements (that included elevation, slope, and aspect) for 
each fire spot (i.e., 20,122 fires) that occurred in the nine fire-dominant natural subregions during 
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the period 2001–2014. Then, we divided these data into two components: (1) calibration dataset for 
model development, comprising 11,375 fire events during the period 2001–2008 and (2) validation 
dataset for model validation, consisting of 8,747 fire events during the period 2009–2014.

13.2.3 moDel Development anD its valiDation

In the model development phase, we employed the calibration dataset mentioned in the last sub-
section and generated relative frequency distributions by diving the number of fire events in each 
bin/class over the total number of fire events (also known as observed probabilities) as a function 
of elevation, slope, and aspect (see Figure 13.2 in the Results section). On having a closer look into 
these frequency distributions, we found that aspect did not exhibit any distinct pattern. For elevation 
and slope, we assumed that they might follow Log-Logistic (LL) and Generalized Extreme Value 
(GEV) PDFs, respectively; this assumption was based on their visual appearances (see Figure 13.2). 
The generic forms of these two PDFs are as follows (Kantam et al. 2006; Rulfová et al. 2016):

LL PDF: 
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where x is elevation at the location of the fire spot, and α, β, and γ are shape, scale, and location 
parameters, respectively.
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FIGURE 13.2 Relative frequency distribution of forest fire occurrences as a function of (a) elevation; 
(b) slope; and (c) aspect, during the period 2001–2008.
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where x is the slope at the location of the fire spot, and κ, σ, and µ are shape, scale, and location 
parameters, respectively.

We then applied both PDFs in order to fit the observed probabilities related to both elevation 
and slope elements. For evaluating the goodness of fit, we used Kolmogorov–Smirnov (hereafter 
K–S) test. According to this test, the K–S statistic would be equal to the greatest vertical differ-
ence between the observed and modeled cumulative probabilities (see Equation 13.3, [Massey 1951; 
Steinskog et al. 2007]). If this test statistic would be lower than a critical value (see Equation 13.4) 
at a given confidence level (i.e., 95% in this study), then the null hypothesis (i.e., the observed prob-
abilities depict the employed PDF of interest) would be acceptable. 

 K S test statistic maximum ( )− = −F Fx xm o( )  (13.3)

 
Critical value

1.36

n
=

 
(13.4)

where F xm( ) and F xo( ) are the modeled and observed cumulative probabilities, respectively, and 
n is total number of data.

On evaluation of the goodness of fit, we determined the suitability of a particular PDF. Thus, 
the approved PDF was applied over an independent validation dataset to evaluate its applicability. 
In such a case, we again employed the K–S test, as described in the previous paragraph.

13.2.4 generating probability map for forest fire occurrences

Employing the statistically approved PDF, we then generated a slope-derived probability of forest 
fire occurrences map at 30 m spatial resolution over the nine fire-dominant natural subregions (see 
Figure 13.5 for details).

13.3 RESULTS

13.3.1 moDel Development anD valiDation

During the model development phase, we observed that the relative frequencies of elevation and slope 
elements corresponding to fire spots (i.e., 2001–2008) demonstrated a distinct pattern; however, the 
aspect did not follow any distinctive pattern (i.e., almost equally distributed in every aspect angle 
between 0° and 360°) (see Figure 13.2). So, we did not consider the aspect element any further and 
proceeded with the elevation and slope elements. In case of elevation, we found that about 99.7% of 
fire events fell in the altitude range of 200–1932 m, where the largest frequency was in between 546 m 
and 662 m (i.e., about 21.7%). In case of slope, we observed that 99.1% of the fires happened in the 
slope range of 0°–20°, and the maximum amount of fires occurred between 1° and 2° (i.e., 23.2%).
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On deciding the relative frequencies of the fire occurrences for both elevation and slope, we 
fitted the elevation- and slope-derived probabilities with LL and GEV PDFs, respectively, and cal-
culated their K–S test statistic for the fitted distribution. The K–S test statistic using the LL PDF 
was found to be 0.04234, which was greater than the critical value. The critical values of the K–S 
test statistics for both elevation and slope elements were calculated to be 0.01275 by using Equation 
13.4, as there were 11,375 numbers of fire events in the calibration dataset (i.e., 2001–2008). Hence, 
the null hypothesis (having the same distribution for both observed and modeled elevation-derived 
probabilities) was rejected at the 95% confidence level. This showed that the LL PDF might not 
represent the best fit for elevations corresponding to fire events (see Figure 13.3), and thus, eleva-
tion values could not be modeled. In addition, the slope values were fitted using the GEV PDF, and 
corresponding K–S test statistic was calculated (i.e., 0.01127). It was observed that the test statistic 
was less than the critical value, so we did not have enough evidence to reject the null hypothesis. 
This result showed that the observed and modeled slope-derived probabilities followed the same 
distribution. The values of the PDFs parameters for both elevation and slope elements were shown 
in Figure 13.3.
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FIGURE 13.3 Fitting of probability density functions (PDFs) over the observed forest fire occurrence 
probabilities (i.e., relative frequencies) derived from (a) elevation and (b) slope elements, during the period 
2001–2008. Kolmogorov–Smirnov test statistics and critical values for selected topographical elements at 
confidence level of 95%, along with the PDF parameters, are shown in the graph; α and κ are shape param-
eters, β and σ are scale parameters, and γ and µ are location parameters.
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During the model validation phase, we used the slope value at the location of fire spots during 
the period 2009–2014, and probabilities of fire occurrences were calculated using the GEV distribu-
tion. The K–S test statistic for the slope-derived probabilities was found to be 0.01449, which was 
less than the critical value (i.e., 0.01454), so we did not have enough evidence to reject the null 
hypothesis. Therefore, we could model the slope values by using GEV PDF at 95% confidence level 
(see Figure 13.4).

13.3.2 probability map for forest fire occurrences

Between the three topographical elements, we found that the slope values could be the best pre-
dictor for forest fire occurrences in our study area of interest. Thus, we implemented the GEV 
PDF over the slope map in order to generate the slope-derived probabilities of forest fire occur-
rences over the nine fire-dominant natural subregions (see Figure 13.5a). The result of our model 
showed that the probability of fire occurrence was equal to or greater than 20% in 26.2% and less 
than 5% in 17.5% of the study area. In addition, we observed 41.3% of the study area with a prob-
ability of fire occurrence in the range of 15–20% (see Figure 13.5b). The maximum probability 
was found to be 24.265%, which was at the slope 1.5°, which covered about one-fourth of our 
study area. In addition, it was evident that by increasing the slope values, the probability of fire 
occurrence would decrease (see Figure 13.5b). This result was clearly observed in steeper slopes 
such as mountain areas, which were mostly located in the southwestern part of Alberta, known 
as the Rocky Mountains (see Figure 13.5a). The only exception was observed between the slopes 
0.5° and 1.5°, where the probability of fire occurrence increased by increasing the slope value 
(see Figure 13.5b).
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FIGURE 13.4 Comparison between observed and modeled slope-derived probabilities of the forest 
fire occurrences during the period 2009–2014. Kolmogorov–Smirnov test statistic, critical value at 
confidence level of 95%, and the probability density function parameters (i.e., κ, σ, and µ) are shown 
in the graph.
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13.4 DISCUSSION

Our findings (i.e., relation between fire occurrences and topographical elements) were similar with 
those of Pu et al. (2007), where they examined relationships between the percentage of burned area 
and topographical elements. The details of such similarities are illustrated in Table 13.2. However, 
as we employed finer intervals for the topographical elements (i.e., 115 m for elevation and 1° for 
both slope and aspect) in comparison with the coarser intervals used in Pu et al. (2007) (see the 
last paragraph of the “Introduction” section for details), we found that the forested areas with slope 
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values in the range of 0°–5° had experienced majority (i.e., 80%) of the fires. In general, flat terrain 
with relatively lower elevation would support most of the fire events in North America (PU et al. 
2007) and elsewhere (Adab et al. 2015), which we also observed in this study (see Figure 13.6 for 
details). According to Figure 13.6, a significant amount of fires (i.e., 84.3%) took place where slopes 
were in the range of 0°–6° and elevations were lower than 1000 m. In fact, such fire occurrences 
might take place due to one or more of the following reasons: 

• The flat regions and gentle slope areas might be more accessible for people for camping 
(Yang et al. 2007).

• Usually, high elevations with northern slope experience relatively cooler temperature 
(Tabony 1985; Akther and Hassan 2011), and such temperature regimes may disfavor the 
growth of the vegetation and thus reduce fuel loading. As a result, due to lack of fuel, the 
probability of fire occurrences may decrease (Preisler et al. 2004; Meyer et al. 2015).

• High-elevation areas usually receive relatively higher amount of rainfall and snowfall, 
which might potentially decrease the probability of fire occurrences, in particular to North 
America (PU et al. 2007).

It would be interesting to note that PDFs have been widely employed in modeling/predicting forest 
fire occurrences. In general, the type of PDFs was found to vary from one case to another, which 

TABLE 13.2
The Comparison of the Results Reported by Pu et al. (2007) and Obtained in the Current 
Study for All Topographical Elements

Topographical Elements (Range)
Percentage of Burned Area over 

North America per Pu et al. (2007)
Percentage of Fire Occurrences over 

Alberta per This Study

Elevation (≤1000 m) ≈85 72.5

Slope (≤10°) ≈95 93.6

Aspect (all directions) No clear relationship No pattern
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FIGURE 13.6 Relative frequency of forest fire occurrences (i.e., 2001–2008) in relation to elevation and 
slope elements in the nine fire-dominant natural subregions, along with power regression line for elevation 
and slope elements.
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was also evident in this study. For example, we found that the GEV and LL PDFs were the best 
ones to model fire occurrences as functions of slope and elevation, respectively. On the contrary, 
other researchers modeled/predicted fire occurrences in (1) Iran as a function of elevation and slope, 
using the Pearson type III PDF (Adab et al. 2015); (2) Spain, using elevation on applying truncated-
exponential PDF (González et al. 2006); and (3) the United States as a function of elevation and 
slope, using homogeneous Poisson PDF (Yang et al. 2007), among others.

In general, we observed the following distinct features in the slope-derived forest fire occurrence 
probability map. For example: 

• The areas located in southwestern part of the province had lower probability (i.e., <5%) 
of forest fire occurrence. As shown in Figure 13.1, these areas fell within the two natu-
ral subregions (i.e., Montane and subalpine), where the average elevations were found to be 
1400 m and 1750 m and slopes were found to be 9.8° and 17.4°, respectively (see Table 13.3). 
Note that areas with relatively higher elevations with steeper slopes would disfavor the fire 
occurrences, and the rationales were described in the first paragraph of “Discussion” section.

• The majority of lands with higher probability (i.e., ≥10 %) of forest fire occurrence were 
located in the northern part of the province, and they fell within the following four natural 
subregions: Central Mixedwood, Dry Mixedwood Boreal, Lower Boreal Highlands, and 
Northern Mixedwood. The average of elevation and slope in these natural subregions were 
found to be in the range of 350–675 m and 1.4°–2.5°, respectively (see Table 13.3). The 
areas with such lower elevations with gentle slopes might be attractive places for people to 
go for camping and might enhance the chances of fire occurrences.

• In general, we observed that the increase in slope would potentially decrease the probabil-
ity of fire occurrences, with an exception for the slope going from 0.5° to 1.5°. The reason 
of such increase in probability would be related to the fact that the areas having a slope of 
1.5° in comparison with 0.5° were a bit higher (i.e., 26% for 1.5° vs. 25% for 0.5°). Thus, 
people might have more access into these areas, which would potentially enhance the prob-
ability of fire occurrences.

Despite the effectiveness of slope-derived probability of forest fire occurrences, other known 
factors influencing fire occurrences (i.e., meteorological variables, land cover variables, ignition 
source, and anthropogenic factors) might be incorporated, as mentioned in the “Introduction” 
section. In addition, it would be an interesting idea to incorporate our finding within the cur-
rent operational Canadian forest fire danger systems, such as CFFDRS (Van Wagner 1987), to 

TABLE 13.3
The Average Elevation and Slope of Nine Fire-Dominant 
Natural Subregions over the Period 2001–2014 in Alberta

Number on 
Figure 13.1 Natural Subregions

Average 
Elevation (m)

Average 
Slope (°)

1 Central Mixedwood 525 2.1

2 Lower Foothills 950 3.8

3 Dry Mixedwood Boreal 600 2.4

4 Montane 1400 9.8

5 Upper Foothills 1300 6.9

6 Lower Boreal Highlands 675 2.5

7 Sub-Alpine 1750 17.4

8 Northern Mixedwood 350 1.4

9 Upper Boreal Highlands 825 27.6
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evaluate its performance in predicting fire occurrences. In addition, we plan to integrate the 
generated probability map in the framework of our earlier-developed fully remote sensing–based 
fire occurrence prediction system (Akther and Hassan 2011; Chowdhury and Hassan 2013, 2015).

13.5 CONCLUDING REMARKS

In this paper, we explored relationships between topographical elements and fire occurrences over 
the nine fire-dominant natural subregions in Alberta and found that slope was the best predictor in 
modeling fire occurrences. The outcomes of this study would be useful for forest fire managers in 
defining/locating the best places to stock fire extinguishing and suppression materials in the region 
with high odds of fire occurrence, in order to reduce the firefighting costs (Wang and Anderson 
2010; Plucinski 2011). Finally, we strongly suggest that the proposed model should be thoroughly 
evaluated before its implementation in other geographic locations around the world.
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14 Quantifying the Interannual 
Variability of Wildfire Events 
across Portugal for the 
2014–2015 Wildfires Using 
the Data from the European 
Forest Fire Information System

Aaron Mills and Daniel Colson

14.1 INTRODUCTION

Fire is a naturally occurring phenomena that has shaped the Earth’s vegetation throughout its 
 natural history (Chuvieco, 2009), and fire can be described as an integral part of the Mediterranean 
ecosystems. Wildland fires play an important role in the evolution, organization, and distribution 
of ecosystems in the Mediterranean region and globally (Arianoutsou et al. 2005; Koutsias et al. 
2012). Wildfires are complex multiscale events that incorporate several key variables. These are 
vegetation, climate (weather), human impact, and topography (Wisner et al. 2012), all of which 
are assessed within the case study section of this chapter, based on two Portuguese fire seasons. 
Wildfires have negative effects, such as being a threat to the natural environment, wildlife, the 
economy and putting human life at risk (Tanase et al. 2015; Vhengani et al. 2015). Fires can lead to 
loss of life, infrastructure damage, and suppression costs (Keeley et al. 2008; Tanase et al. 2015). 
In the Mediterranean region, wildfires are regarded as one of the most threatening natural disas-
ters to affect property and infrastructure, with them having a long and important presence in the 
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region, intertwined with the area’s history (Mayor et al. 2007; Petropoulos et al. 2011). The changes 
brought upon landscapes after a wildfire event can dramatically affect land cover dynamics at vari-
ous spatial scales and have impacts on degradation processes, for example, soil erosion (Ireland and 
Petropoulos, 2015).

At a global scale, figures state that about 350 million hectares of land are annually affected by 
fire events (van der Werf et al. 2006). It has been observed that in the last few decades, forest fires in 
the Mediterranean region have increased in frequency, due to numerous climatic and anthropogenic 
factors (Maselli et al. 2003; Petropoulos et al. 2011). This increase in frequency and the factors 
outlined previously have led to significant attention being placed on wildfires in recent decades 
(Lentile et al. 2006). On a regional scale, nearly 90% of all wildland forest fires within the bound-
aries of the European Union take place in the Mediterranean (Petropoulos et al. 2011; Rosa et al. 
2008). This translates to approximately 65,000 fires every year, which in turn burn, on an average, 
half a million hectares of forested areas (European Commission, 2010; San-Miguel-Ayanz et al. 
2013). These fires within the Mediterranean region are the main source of recorded environmental 
damages in Southern Europe (San-Miguel-Ayanz et al. 2013). Owing to the damages caused by fire 
in this ecosystem, there is a need to understand the phenomena further. This has led to research of 
the interannual variability of wildfires, outlined in this chapter, to understand how and why wildfire 
occurrence and severity vary between certain years.

In the near future, it is observed by many climate models that anthropogenically enhanced 
climate change will lead to an increase in frequency of wildfire events (Intergovernmental Panel 
on Climate Change [IPCC], 2014; Ireland and Petropoulos, 2015). Climate models state that fire 
frequency is expected to increase with anthropogenically enhanced climate change, in particular 
where precipitation remains the same or is reduced (IPCC, 2014; Stocks et al. 1998). This suggests 
that there is potential for an increase in the risk, severity, and frequency of forest fires globally 
and in Europe (IPCC, 2014). The literature also suggests that an ever-changing global climate will 
result in more extreme weather conditions such as heat waves and drought, which will exacerbate 
the frequency of wildfire occurrence and increase fire severities across the Mediterranean region. 
In work conducted in the late 1990s, four different global climate models predicted an earlier start 
to the fire season, with significant increase in areas affected due to an increase in flammable fuel 
(Cramer and Steffen, 1997; Stocks et al. 1998). All of this indicates that wildfires and the damages 
that these wildfires cause are on the increase; therefore, there is a need to understand the dynamics 
of wildfires and the impacts that they can have on a region.

The damages caused by wildfire events and the potential for more frequent events have led to 
policy changes to reflect changing attitudes globally, such as in the United States (Dellasala et al. 
2004). Policies toward wildfires in the European region have been driven by the factors outlined 
previously and also by the occurrence of large fires in the 1980s (San-Miguel-Ayanz et al. 2013). 
Policies toward wildfires in the European region are determined by the European Union, in par-
ticular by the establishment of the European Forest Fire Information System (EFFIS). This is a 
collaboration that has been ongoing since 1998. This partnership has allowed European Union 
member states to have uniform information on forest fires in the pan-European region (European 
Commission, 2015); exchanges of information on fire prevention and restoration practices, among 
other activities, are enabled by this collaboration. Annual reports on the state of forest fires in 
Europe have been produced since the year 2000. The EFFIS is the organization that provides har-
monized information on forest fires and the assessment of their effects in the pan-European region 
(European Commission, 2015). One of the stated aims of the EFFIS is to maintain and protect 
European landscapes and natural heritage, while avoiding loss of human lives and minimizing the 
damage caused by forest fires (European Commission, 2015). This is achieved through field data 
collections and observations from satellite data. Therefore, this study hopes to benefit future poli-
cies enabled by EFFIS.

One of the issues with an increase in fires globally and regionally is that there is an accompanying 
rise in costs to monitor and suppress these events. Therefore, there is a need to understand patterns 
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of fires and cost-efficient techniques of mapping burned areas (Lentile et al. 2006; Flannigan et al. 
2009). There are a number of approaches used to evaluate the extent and damage of wildfires, with this 
traditionally taking place in the field. However, due to the rise in accessible Earth observation (EO) 
products, wildfire risk and areas affected can be mapped with relatively low labor-intensive costs over 
large areas (Preisler et al. 2004; Vhengani et al. 2015). The use of EO datasets has been advocated by 
many, as when gathering ground fire severity estimates, there is considerable effort and labor involved; 
EO is essential for landscape-level assessments of wildland fires (Boer et al. 2008; Miller and Yool, 
2002; Tanase et al. 2015). The advantage of using EO data when exploring wildland fires is that large 
areas can be assessed with relative ease and cost (Cohen and Goward, 2004); in addition, inaccessible 
regions can be assessed (Chambers et al. 2007; Tanase et al. 2015).

Currently, remote sensing is being used to explore various wildfire studies. Remote sensing of 
wildfire is split into three main categories: prefire, during, and postfire. Mapping burned areas is 
relatively simple when using imagery of a high spatial resolution, and the extent can be observed 
through visual imagery (Boschetti et al. 2004). Remote sensing has reached a level of maturity 
today, which has allowed the development and distribution of burnt area estimates from remote 
sensing systems at operational scales (Kalivas et al. 2013). Burnt area products are a record of where 
a fire has occurred, leaving a scar on the landscape (Lentile et al. 2006). One major advantage of 
using burnt are products is that they allow for a direct estimate of how much area has been burned 
(Kaufman et al. 1997). They also have useful operational capabilities, such as burnt area maps, 
which allow for overall emission rates of biomass-burning events to be calculated (Wooster et al. 
2005). Such operational products have been proved to be generally of high demand from research 
groups and communities interested in modeling the carbon cycle; understanding the relationships 
between fire regime and climate, as well as between atmospheric emissions and pollution resulting 
from fires; and understanding the impact of vegetation burning on land cover change (Patra et al. 
2005; Jupp et al. 2006). The availability of operational products related to burnt area in particular 
can additionally provide important information on land cover change related to ecology and bio-
diversity and contribute significantly in better understanding postfire recovery of an affected area 
(Rong et al. 2004). Although EO products are constantly being developed and improved, they still 
pose scientific challenges based mainly on accuracy and extensive validation procedures that are 
undertaken. These challenges are highlighted within the case study which allows for greater context, 
when they are explained with reference to operational products that have been used within the study.

Wildfire occurrence describes the frequency and presence of fires, either within a certain time 
or across a certain space (Pinhol et al. 1998). It is a measure of how many ignitions have occurred 
and does not focus on the size of events (Diaz-Delgado et al. 2004). The interannual variability of 
wildfire occurrence looks to monitor fire events from different years and compare the data for simi-
larities and differences (Liu et al. 2013). The first key observation that can be made is to analyze 
how many events occurred for each individual year, then compare them to see how the numbers 
vary, and then try to assess why this has occurred (Gedalof et al. 2005). Many people have analyzed 
interannual variability of wildfire, with varying success (Metsaranta, 2010; Mulqueeny et al. 2011; 
Bedia et al. 2014). Many factors influence interannual variability interchangeably, such as topog-
raphy, land cover, and climate (Pausas, 2004; Costa et al. 2011). If it is a dry year, then wildfire 
occurrence rates are higher; this is based on vegetation (fuels) being low in moisture content, which 
results in a higher chance of ignition, and thus, the overall ignition rates increase (Gouveia et al. 
2012). Wildfires have also been found to be more common in elevated areas, as suppression of fire 
in these regions tends to be lower, with more focus being placed on protecting lower elevations with 
higher population (Bhandary and Muller, 2009; Gray et al. 2014).

This chapter aims at exploring and demonstrating the use of EO-based burnt area products from 
the EFFIS in analyzing the interannual variability of wildfire events in Portugal during the years 
2014–2015. As a result, the chapter is structured as follows: following the introduction, the datasets, 
the study site, and the method for this case study implementation are described. Then, the results 
and main findings of this study are systematically presented, and the patterns in the burnt area 
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estimates from year to year, including the effect of topography and land use/cover, are discussed. 
The chapter closes with a summary of the main conclusions of this study, which also provides some 
suggestions for future continuation of the work conducted herein.

14.2  CASE STUDY: INTERANNUAL VARIABILITY OF THE PORTUGAL 
WILDFIRES FOR 2014–2015

14.2.1 stuDy area

The study area is Portugal, which is located in southwestern Europe (see Figure 14.1). The North is 
mainly mountainous, with the South being relatively flat in comparison. As it is a Mediterranean 
country, it is subject to hot, dry summers and very wet winters (Costa et al. 2011). It is also one of the 
hottest countries in Europe, which has resulted in increase in the wildfire occurrences over the years 
(Ibid.). This brings justification to the study of wildfires in Portugal, as climate change has been 
stated to cause increased wildfire activity in the future (Giannakopoulos et al. 2009). This has meant 
that an increased need for burnt area mapping and a better understanding of wildfires relationship 
with variables such as topography and land cover have occurred (Lentile et al. 2006).

14.2.2 Datasets

With respect to burnt area mapping, the EFFIS provides the Rapid Damage Assessment (RDA) 
product. In this product, burnt area estimates are derived at 250 m spatial resolution from the daily 
processing of the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua 
MODIS visible-near infrared (VNIR) and shortwave (SWIR) data. Burnt area detection is assisted 
by the MODIS 1 km active fire product (Giglio et al. 2003). Burnt areas occurring in agricultural 
land, as defined by the Coordination of Information on the Environment (CORINE 2000) land cover 

Azores Medeira

0 80 160 Kilometers

N

Study area

FIGURE 14.1 The study area of Portugal on which the investigation has been based. The two smaller boxes 
within the figure display Portuguese islands. There was no burnt area data for these areas, so they were 
excluded from the rest of the study.
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map (JRC-EEA, 2005), are masked out during the algorithm implementation (Boschetti et al. 2008). 
The whole process is also assisted by visual image interpretation and by the systematic collection 
of fire news from various European media sources (Barbosa et al. 2006). The EFFIS RDA is being 
implemented since 2003. It provides the daily update of the perimeters of burnt areas in Europe 
for fires of about 40 hectares or larger; however, the product may also include the perimeters of 
burned areas of smaller dimension. The product is provided by the EFFIS via a web interface (http://
effis-viewer.jrc.ec.europa.eu/wmi/viewer.html), but potential users can also request those products 
directly from the EFFIS. In our study, the annual burnt area estimates from the EFFIS RDA prod-
uct for years 2005–2007 were acquired directly from the EFFIS team. In total, three files were 
provided, each corresponding to the yearly burnt area map included in our analysis. Each file was 
delivered in vector format (shapefile) and at LAEA-ETRS89 projection.

Land use/cover information from CORINE 2012 was utilized in the present study. We used 
specifically the 250  m spatial resolution raster dataset, provided at no cost from the European 
Environmental Agency website (http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-
2000-raster-1) as a georeferenced dataset at ETRS1989 datum and projection. CORINE (JRC-EEA, 
2005) is a project that was created in 1985 by the European Union, with the aim to create a European 
land cover/use map, derived primarily from the interpretation of satellite images and ancillary data. 
CORINE 2000 consists of an updated version of the initial CORINE product, providing land use/
cover maps of 29 European countries derived from the processing of orthorectified Landsat images.

Information on elevation was obtained from the Global Digital Elevation Model (GDEM) of the 
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. The ASTER 
GDEM product was released in 2009 and was updated (version 2) at the end of 2011. It provides ele-
vation information between 83°N and 83°S, with geographic latitude–longitude coordinates at 1 arc 
sec (30 m) grid. Estimated accuracies of the product are for 20 m at 95% confidence for vertical data 
and 30 m at 95% confidence for horizontal data (ASTER G DEM, 2009). The dataset is provided 
in geoTIFF format, in geographic latitude/longitude projection and WGS84/EGM96 datum. It is 
available at no cost to users via electronic download from the Earth Remote Sensing Data Analysis 
Center (ERSDAC) of Japan or the National Aeronautics and Space Administration (NASA’s) Land 
Warehouse Inventory Search Tool (WIST, https://wist.echo.nasa.gov/~wist/api/imswelcome/). The 
ASTER GDEM is distributed as separate tiles of elevation covering the Earth. In our study, the tiles 
covering Greece were acquired from WIST.

14.2.3 methoDs

Some preprocessing was necessary to standardize those before intercomparisons were performed. 
Most of the acquired datasets were in vector format and had been provided at LAEA-ETRS89 
projection, which is also commonly used for European products distribution according to the 
INSPIRE (INfrastructure for SPatial InfoRmation in Europe) Directive. Based on this, a decision 
was made to adopt the same specifications in terms of data format and projection for all our col-
lected datasets. All preprocessing and geospatial analysis of the spatial datasets were carried out 
in ENVI (v. 4.7, ITT Visual Solutions) and ArcMap (v 9.3, ESRI) software platforms. CORINE 
2000 land use/cover map was resampled to a spatial resolution of 500 m. The ASTER GDEM 
product tiles of Greece were merged into a single file by using image mosaic. This latter dataset 
was subsequently reprojected to LAEA-ETRS89 projection and was resampled by the nearest 
neighbor to a spatial resolution of 500 m to match the EFFIS spatial resolution. CORINE 2000 
land use/cover map was resampled to a spatial resolution of 500 m. The ASTER GDEM product 
tiles of Greece were merged into a single file by using image mosaic. This latter dataset was sub-
sequently reprojected to the LAEA-ETRS89 projection and was resampled by the nearest neigh-
bor to a spatial resolution of 500 m to match the MCD45A1 spatial resolution. The remainder 
of the paper is focused on presenting the results obtained from the intercomparisons performed 
between the two products, also discussing the differences observed.

http://effis-viewer.jrc.ec.europa.eu/wmi/viewer.html
http://effis-viewer.jrc.ec.europa.eu/wmi/viewer.html
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-raster-1
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-raster-1
https://wist.echo.nasa.gov/~wist/api/imswelcome


304 Remote Sensing of Hydrometeorological Hazards

14.3 RESULTS

This section will highlight the main results that were gathered for this study. Key observations to be 
made from Figure 14.2 (as seen previously) are that the majority of burnt areas for both years are 
in the North. There are also some burnt areas in central Portugal, and very few burnt areas can be 
observed in the South.

Figure 14.3 displays the monthly wildfire data for both years across Portugal. In 2014, 35 burnt 
areas were recorded, and in 2015, 177 burnt areas were recorded. A large majority of the events 
occurred within the prescribed fire season of the Mediterranean region (April 1–September 30). 
However, some wildfire events did occur outside of the fire season, with a large number of events 
occurring in March, especially in 2015. It is clearly apparent that more wildfire events occurred in 
2015 than in 2014. Spatiotemporal observations were found for certain months of the fire season, 
where many fires would occur in one area (province). This is particularly noticeable where large 

Beira Interior Norte

N

Montalvao, Alto Alentejo

Legend

2015 Fires

2014 Fires

0 50 100 Kilometers

FIGURE 14.2 A map of Portugal, split into provinces. Burnt area data have been overlaid for 2014 and 2015. 
Fires of 2014 are outlined in orange and those of 2015 are outlined in yellow. The largest fire event for 2014 
and 2015 was located in Montalvao, Alto Alentejo, and it had a burnt area of 2869 hectares. For 2015, the larg-
est event was located at Beira Interior Norte, and it had a burnt area of 5539 hectares.
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numbers of events occurred during the 2015 fire season in comparison with the number of the events 
in 2014. Figure 14.4 displays the fire data for both 2014 and 2015 across all provinces in Portugal. 
Some provinces clearly show high levels of wildfire activity, compared with others such as Minho-
Lima and Alto Tras-os-Montes. These data could be useful if combined with land cover data to see 
whether the cover types in these provinces are the cause of more wildfire events. Key points to note 
from Figure 14.5 are that the areas where fires have occurred are heavily dominated by certain land 
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Legend
211: Nonirrigated arable land
212: Permanently irrigated arable land
231: Pastures
241: Annual crops associated with permanent crops
242: Complex cultivation patterns
243: Land occupied by agriculture and natural vegetation
244: Agroforestry areas

313: Mixed forest
321: Natural grasslands
322: Moors and heathland
323: Sclerophyllous vegetation
324: Transitional woodland-shrub
333: Sparsely vegetated areas 
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FIGURE 14.5 Image modified from the CORINE land cover (CLC) model. It highlights three key areas 
where wildfires have been observed and identifies the land cover types within which the burnt areas lie, for 
2014–2015. (From Copernicus, 2012. CLC. Available at: http://land.copernicus.eu/pan-european/corine-land-
cover/clc-2012. Accessed December 15, 2016.)

http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
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cover types. This has clearly demonstrated that there is a strong relationship between land cover 
type and wildfire events. It can be observed that more fires occurred where moors, heathland, and 
transitional woodland shrubs were dominant. The larger burn areas were in areas of moors and 
heathland land cover. The key observation to be made from Figure 14.6 is that most wildfire events 
occurred in areas where slope gradient exceeded 15%, which would imply that there is a relationship 
between wildfire events and topography. This also applies to elevation, as the majority of events are 
found in the mountainous north, where elevations are much higher.

14.4 DISCUSSION

14.4.1 interannual anD spatiotemporal variability of WilDfire occurrence

The interannual variability of wildfire occurrence was clearly observed within this study. Large 
variance was observed between 2014 and 2015 in terms of overall burnt area counts. In 2014, 35 
burnt areas were identified, and 2015 saw staggering 177 burnt areas across Portugal. Key observa-
tions from statistical analysis of the two years showed that 2014 had a larger mean burnt area for 
wildfires at 330 hectares and 2015 had an average burnt area of only 268 hectares. This clearly 
indicates variability between the two years in terms of wildfire occurrence.

Spatiotemporal variability was also observed within the study. This was most noticeably 
observed during the fire season, where a clear increase in the frequency of wildfire events 
occurred. This was generally true for both years but was particularly highlighted in the 2015 
fire season (see Figures 14.2 and 14.3). The fire season is from April 1 to September 30, and 
this is when most fire events occurred (Huesca et al. 2009). July and August particularly saw 
an increase in the frequency of wildfire occurrence compared with other months. These months 
experience the height of summer, where temperatures are at their highest. Therefore, a poten-
tial reason for this variability could be extreme climatic conditions, causing increased wildfire 
occurrence (Costa et al. 2011).

After analyzing climatic reports and literatures from 2015, it was found that this year 
played host to several large heatwaves across the Mediterranean region (World Meteorological 
Organization, 2016). This would explain the interannual variability between years and the spa-
tiotemporal variability between months, particularly during the fire season (Salis et al. 2014). 
These heatwaves also link with other factors surrounding wildfire events, such as effects on 
land cover types and high temperatures in areas of increased elevation (Trigo et al. 2006). This 
has happened previously in Portugal, where heatwaves caused an exceptional fire season in 
2003 (Ibid.).

Portugal saw a large precipitation deficit because of these heatwaves, which resulted in drought 
(World Meteorological Organization, 2016). This caused a lack of moisture in fuels, which increased 
ignition rate probabilities (Chuvieco et al. 2004). The drought peaked toward the end of July and 
beginning of August, which explains why July and August of 2015 saw such an increase in wildfire 
frequency (World Meteorological Organization, 2016). Temperatures during this period exceeded 
43°C, and monthly averages for both months were 4°C higher than normal (Ibid.). This explains and 
supports the spatiotemporal variability that was observed between months of the fire season (Salis 
et al. 2014).

Smaller heatwaves were also observed in March and April of 2015, with large increases in 
temperature occurring compared with a normal year (World Meteorological Organization, 2016). 
This would explain the variability between the wildfire occurrence of the two years, as fire fre-
quencies were much higher in 2015 across these months than in 2014 (see Figure 14.3). Extreme 
weather events were also frequent during 2015; this led to large lightning storms occurring fre-
quently, which would explain why so many wildfire events occurred in 2015 compared with 2014 
(Correia et al. 2016).
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14.4.2 lanD covers relationship With WilDfire events

There is a clear relationship between wildfire events/occurrence and land cover within this study. 
The first observations that demonstrate this can be seen in Figure 14.5, where wildfire occur-
rence was higher in certain areas that were dominated by highly flammable land cover types. 
As you can see in the figure, most fires occurred in areas where moors and heathland or tran-
sitional woodland shrubs were dominant. Pereira et al. (2014) have identified how certain land 
cover types are more prone to fire across Europe. The relationship between land cover type and 
wildfire events is also supported when you observe Figure 14.4. This graph identifies the number 
of burnt areas per province. The highest number of events was observed in the Minho-Lima and 
Alto Tras-os-Montes provinces, which is unsurprising, as they are heavily dominated by moors, 
heathland, and transitional woodland shrubs (see Figure 14.5). This explains the spatial vari-
ability of wildfire occurrence across Portugal. Similar studies have also been found to confirm 
the relationship between land cover types and wildfire events/occurrence (Mermoz et al. 2005; 
Bajocco and Ricotta, 2008; Pereira et al. 2014). The two largest burnt areas for 2014 and 2015 
identified in Figure 14.2 occurred where moors and heathland were the dominant cover type, 
showing that there is also a relationship between cover type and size of the wildfire events. This 
has been documented in similar studies across Europe (Pereira et al. 2014; Araya et al. 2016). 
Wildfire events are heavily influenced by the type, amount, and quality of fuel available (Smith, 
2013). Wildfire size is influenced by what fuel types are present in the area, as some vegetation 
burn faster than others (Mermoz et al. 2005). The best way to assess this effect is by analyzing 
land cover maps, which can help distinguish between fuel types (Gallardo et al. 2016). Grassland 
and shrub areas are prone to large fire events, and forested areas generally burn in proportion 
to their presence (Bajocco and Ricotta, 2008). The smaller a fuel load, the slower a wildfire can 
spread (Mermoz et al. 2005). More fuel allows for higher burning intensities, which result in the 
fast spread of fire (Ibid.). Less dense fuels dry out faster, meaning that they ignite and burn faster, 
whereas dense fuels hold moisture and can slow a fire’s progress (Yebra et al. 2013). Fuels with a 
high moisture content tend to burn slowly, and in times of low humidity, wildfire events are more 
likely to occur (Vasilakos et al. 2009).

14.4.3 relationship of topography With WilDfire events

The relationship between topography and wildfire events is clearly demonstrated in Figures 14.6 
and 14.7. All fire events across Portugal for both years are found in areas of high elevation. In 
addition, many of the events are in areas where slope gradient is high. Several studies have identi-
fied slope as being a large contributing factor to wildfire occurrence (Ryan, 2002; Marschall et al. 
2016). This is due to wind mechanisms surrounding slopes that causes draft upslope, which result 
in the warmer air that hugs the surface, preheating fuels (Sharples, 2008). Slope also contributes 
to the spread of fire, which may be the reason why the larger burnt areas can be observed in areas 
of relatively high slope gradient (Marschall et al. 2016). As you can see from Figures 14.6 and 
14.7, not only do the burnt areas lie within the areas of high slope, but these areas also coincide 
with high elevation.

The relationship between wildfire events and topography, particularly elevation, was also high-
lighted. A potential explanation is that lightning strikes are more common in high-elevated areas, 
which would explain the high occurrence of wildfires across Portugal’s elevated regions. This 
idea is supported in several studies, where lightning has been found to cause the most ignitions 
in high-elevated areas (Narayanaraj and Wimberly, 2012; Correia et al. 2016). Another possible 
reason is linked to climatic conditions, where temperatures are now becoming higher in elevated 
regions due to climate change (Giannakopoulos et al. 2009). This could be a potential cause of 
numerous wildfire events occurring in these elevated regions and has been found to be the case 
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in similar studies across the planet and may very well be applicable to Portugal (Westerling et al. 
2006; Blouin et al. 2016).

Slope affects fire in two ways: preheating (convection and radiation) and draft (Ryan, 2002). On 
a slope, less dense air sits at the surface due to warmth of the earth, which allows lighter air to rise 
along slopes, which creates draft (Ibid.). This consequently causes wildfires to burn upslope, as wind 
drives them (Sharples, 2008). Another topographic influence of wildfires is aspect (Marschall et al. 
2016). South-facing slopes receive high levels of solar radiation, which results in high temperatures 
and loss of moisture in fuels on the slope (Shakesby, 2011). These dry fuels are then at higher risk 
of being ignited (Chuvieco et al. 2004). Elevation is also linked with wildfire occurrence (Brosofske 
et al. 2007). Multiple studies give reference to this and express how a warming climate has resulted 
in increased wildfire occurrence (Dlamini, 2010; Mori and Johnson, 2013).
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FIGURE 14.6 Figure derived from a DEM of Portugal. Slope gradient has been displayed as a percentage. 
Areas of slope within the figure are focused on the high-elevated areas of the country, and the burnt areas for 
2014 and 2015 have been marked in orange and yellow, respectively.
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14.5 CONCLUSIONS AND FUTURE RESEARCH

It was concluded that the interannual variability of wildfire occurrence between 2014 and 2015 
was due to the climatic influence of heatwaves, which caused increase fire occurrence in 2015, as 
conditions for ignition were more favorable. Climatic variables affect spatiotemporal variability of 
wildfire occurrence. This explains the variability between months in the fire season for both years, 
but especially for 2015. With regard to land cover types, it was found that certain cover types, espe-
cially moors and heathland, had a strong relationship with wildfire events and can dictate not only 
the occurrence of wildfires but also the extent of these biomass-burning events. Strong relationships 
were also observed between topography and wildfire events, with the main conclusions being that 
slope is linked with increased fire size and increased fire occurrence. Elevation was also found to 
have a strong relationship, as areas of high elevation saw larger numbers of wildfire events. This was 
linked with extreme weather events, where lightning strikes were presumed to have caused them.

Future directions for this research could be to gather individual elevation data for each fire event 
and analyze them to support the relationship between changes in elevation and how this impacts 
wildfire occurrence. This would also be useful if elevation data for each event were analyzed against 
the elevations most susceptible to lightning strikes, to identify how strong the relationship is between 
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FIGURE 14.7 Figure indicating the Northern sector of Portugal, where the majority of wildfires occurred. 
This area is high in slope gradient, indicating an area that is of higher elevation.
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elevation and the ignition of wildfire events. A temperature dataset would also be useful across the 
different provinces of Portugal, to further assess the spatiotemporal variability of wildfire occurrence 
regarding climatic conditions. Finally, having a larger dataset spanning over a larger period would 
allow for a more in-depth interannual variability assessment of wildfire occurrence to be conducted.

At present, there are many scientific challenges associated with operational products. These are 
heavily based on the accuracy of such products. For example, burnt area products are generally low 
in spatial, spectral, and temporal resolutions, which can cause accuracy issues. To minimize error 
and monitor accuracy, extensive validation of products must be carried out, which has proven to be 
very time-consuming. However, newly proposed sensors, which have already been and are set to be 
launched, are thought to have far greater operational capabilities, which will address the scientific 
challenges of low accuracy and allow for an easier validation of data products.
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15 Satellite Remote Sensing 
of Floods for Disaster 
Response Assistance

Guy J.-P. Schumann

15.1 INTRODUCTION

Over the past decade, floods around the world have set new records and caused unprecedented 
 damage* in many countries, including China, India, Malawi, England, Thailand, the Philippines, 
and the United States. These events cover spatial scales well beyond what we observed in the past, 
and they frequently surpass traditional regional flood management and disaster response capabilities 
(Schumann, 2016).

Mostly from a scientific standpoint, for about 40 years, with a proliferation over the last two 
decades, remote sensing data, primarily in the form of satellite imagery and altimetry, have been used 
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to study floods, floodplain inundation, and river hydrodynamics. Instruments onboard  spaceborne 
platforms and algorithms for turning image data into useful geospatial information about floods 
are  numerous. Instruments that record flood events may operate in the visible to infrared and 
 microwave ranges of the electromagnetic spectrum.

Owing to the limitations posed by adverse weather conditions during flood events, radar (micro-
wave range) sensors are invaluable for monitoring floods; however, images of flooding in the visible 
and infrared ranges are very widely used, given the long history of satellite missions operating in 
that spectral range, and, since these images are more apt to the human eye, retrieving useful infor-
mation from these types of images is often more straightforward.

During recent years, scientific contributions in the field of remote sensing of floods have increased 
considerably, and science has presented innovative research and methods for retrieving information 
content from multiscale coverages of disastrous flood events all over the world. Progress has been 
transformative, and the information obtained from remote sensing of floods is becoming mature 
enough not only to be integrated with computer simulations of flooding to allow better prediction 
but also to assist flood response agencies in their operations.

Furthermore, this advancement has led to a number of recent and upcoming satellite missions 
that are already transforming current procedures and operations in flood modeling and monitoring 
as well as our understanding of river and floodplain hydrodynamics globally. Global initiatives that 
utilize remote-sensing data to strengthen support in managing and responding to flood disasters 
(e.g., the International Charter and the Dartmouth Flood Observatory [DFO]), primarily in the 
developing nations, are becoming established and recognized by many nations that are in need of 
assistance because traditional ground-based monitoring systems are sparse and declining.

In the past decade, many articles in the scientific literature and numerous book chapters have 
reviewed remote sensing for flood management, focusing on research and applications, including 
data processing and integration, with the help of computer simulations and model predictions of 
floods (Carbonneau and Piégay, 2012; Schumann, 2015; Klemas, 2015; and Rahman and Di, 2016). 
This rapidly growing attention is reflecting the growing value that remote sensing can offer in flood 
monitoring and management.

The challenge now lies in ensuring sustainable and interoperable use and optimized distribution 
of remote-sensing products and services for science, as well as in ensuring operational assistance. 
In the context of the ever-increasing trend of remote-sensing applications in flood science and flood 
risk management, this chapter will review and critically examine the current status of remote sens-
ing of floods for disaster response assistance.

15.2 MAPPING AND MONITORING FLOODS WITH SATELLITES

Deriving information about the area or extent of permanent water bodies, flood inundation area, and 
shoreline extent from remote sensing is generally much simpler than deriving information of other 
variables in hydrology, such as soil moisture and discharge. Information about the surface area of 
permanent water bodies and associated change can be used in a variety of applications, ranging 
from simple mapping and monitoring of water bodies to more complex water quality assessments 
of lakes and reservoirs. Data on inundation area and extent are commonly used to assess the magni-
tude and extent of a flood, with the aim to support relief services and to calibrate and validate flood 
inundation models.

Clearly, the mapping of permanent water bodies can be done with most satellite imaging platforms 
(Figure 15.1) at almost any time, obtaining the area and extent of a flood; however, it is still rather 
opportunistic, and certain conditions on both the Earth’s surface and in the atmosphere during an event 
(such as emergent flooded vegetation and persistent cloud cover) may restrict suitable data-acquisition 
technology only to a few remote-sensing instruments, such as synthetic aperture radar (SAR). However, 
generally speaking, the area and extent of surface water may be measured with a variety of visible band 
sensors (e.g., Landsat, Moderate Resolution Imaging Spectroradiometer [MODIS], and Sentinel-2) 
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with different repeat frequencies (Marcus and Fonstad, 2008) and by SAR (e.g., COSMO-SkyMed, 
TerraSAR-X, Radarsat-2, and Sentinel-1A and -1B), with varying degrees of success (Schumann and 
Moller, 2015) and very limited operational applications (Schumann et al. 2016), with the only notable 
exception being the near real-time (NRT) MODIS flood mapping effort by the National Aeronautics 
and Space Administration (NASA) and the DFO (http://floodobservatory.colorado.edu).

Given the strong inverse relationship between spatial resolution and revisit time for satellites, 
monitoring floods from space in NRT or operationally is currently only possible through either low-
resolution imagery or satellite constellations. For instance, revisit times for imagery of ∼100 m or 
lower spatial resolution are in the order of just up to a few days and, as with most publicly funded 
satellite missions, images can be obtained usually at no cost and with a latency of only several 
hours. Hence, this type of spaceborne data can be used for monitoring major floods on medium to 
large rivers. Schumann et al. (2012) noted that for basin areas down to around 10,000 km2, flood 
waves usually take several days to transit through the catchment river network, and thus, there is a 
reasonable chance of floodplain inundation coinciding with a satellite overpass. In smaller basins 
with shorter flood wave travel times, the probability of imaging a flood decreases proportionately 
and acquisitions become increasingly opportunistic, such that even wide swath systems could not be 
relied on for operational monitoring. For finer-resolution systems, the same issue occurs, but here, 
revisit times can be up to 35 days, and so, one can only be guaranteed to capture flooding imagery 
in the very largest river basins such as the Amazon, which have a mono-modal annual flood pulse 
that lasts for several months. Therefore, in the majority of river basins, the chances of imaging a 
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Hydrol. Process., 30, 2891–2896, 2016.)
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flood with a high-resolution system becomes vanishingly small, except for missions in constellation 
or when activating the International Charter (https://www.disasterscharter.org).

Problems with optical imagery include cloud cover (and fire smoke), restriction to daylight opera-
tions, and low spatial resolution for sensors with high temporal coverage intervals (e.g., MODIS); 
however, such sensors are applied to global monitoring of flood inundation area with success, as 
demonstrated by the DFO, using MODIS images as much as twice daily. This database currently 
represents the only global observed record of flood events. In addition, at the global scale, mul-
tisatellite historic observations of open water surfaces over a large spectrum (Prigent et al. 2012), 
ranging from visible (advanced very-high-resolution radiometer [AVHRR]) to microwave 
wavelengths, both passive (special sensor microwave/imager [SSMI]) and active (ERS scatterometer), 
have been used to map wetland dynamics over time, albeit at spatial resolution too coarse to be of 
significance to local decision making, floodplain management, or disaster assistance, unless down-
scaled to the appropriate spatial resolution.

The SAR is usually preferred for flood mapping, given its relatively high (1–3 m is now possible) 
spatial resolution (compared with most civil-sector satellite missions operating in the optical range) 
and its near-all-weather as well as day and night operating capabilities. However, there are a number 
of challenges related to SAR image geometry and processing that make its use in civil applications 
still somewhat less widespread than optical sensors, despite attractive advantages, particularly dur-
ing flood events.

The magnitude of the deteriorating effects in a SAR (flood) image is a function of wavelength, 
incidence angle, and polarization. Incidence angle refers to the angular deviation of the incident 
signal from nadir, while polarization describes the direction at which materials reflect signals and 
SAR sensor receive these signals (Ulaby et al. 1982). Both these properties impact the ability to 
discriminate features or conditions of the Earth’s surface.

Many image-processing algorithms exist to map flooding on a SAR image (see, e.g., Matgen 
et al. [2011] for a concise review on the different methods), but difficulties in interpreting a SAR 
image may arise from a variety of sources: complex signal backscatter (e.g., diffuse and volume 
backscatter), inadequate wavelength and/or polarizations, remaining geometric image distortions, 
and multiplicative noise. During flooding, wind roughening of the water surface and protruding 
vegetation can complicate the imaging process. Moreover, in built environments, the structure of 
rectangular surfaces, for example, buildings, is such that the wave is returned to the SAR antenna 
and thus may cause complete sensor saturation, resulting in white image pixels (corner reflectors), or 
dihedral corner reflectors (i.e., a corner reflector of two sides, creating signal bounce) in conjunction 
with often-inadequate spatial resolution make it very challenging to extract flooding from urban 
areas. Of course, for obvious reasons, this would be desirable when using remote sensing for flood 
management, and despite these considerable challenges, some studies have used dihedral corner 
reflection to assist flood detection in urban areas (Mason et al. 2014).

15.3 SELECTED APPLIED RESEARCH EXAMPLES

Satellites series and sensors such as MODIS, Landsat, EO-1, and Sentinel-1 and -2, can document 
regional floodplain inundation, and high-resolution satellites, such as TerraSAR-X, Radarsat-2, and 
COSMO-SkyMed, or commercially operated very-high-resolution sensors from the air and space 
can provide city block-level data, including damage assessment capability; note that the latter has 
also been demonstrated with high-resolution satellite SAR sensors*

The following sections will illustrate a state-of-the-art application example for optical as well as 
SAR imagery and radiometry data. Finally, integration with computer models of flood inundation 
is also outlined. These sections focus on applied research examples, whereas Section 15.4 describes 
the existing tools for operational use and flood disaster response assistance.

* http://www.jpl.nasa.gov/spaceimages/details.php?id5PIA17687

https://www.disasterscharter.org
http://www.jpl.nasa.gov/spaceimages/details.php?id5PIA17687
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15.3.1 optical imagery

Probably, the most notable applications of optical imagery for flood detection on a daily or bi-daily 
basis are the NASA-funded NRT MODIS flood mapping effort and, similarly to this, the Dartmouth 
Flood Observatory (DFO), which will be described in detail in Section 15.4.

In terms of applied research and big data analytics, a state-of-the-art example is the Water 
Observations from Space (WOfS, Mueller et al. 2016), a web mapping service (WMS) displaying 
historical surface water observations derived from satellite imagery for all of Australia for the period 
1987 up to the present. The WOfS displays the detected surface water from the Australia-wide 
Landsat 5 and Landsat 7 satellite imagery archives. The aim of the WOfS is to better understand 
where water is usually present, where it is rarely observed, and where inundation of the surface has 
been occasionally observed by the satellites (Figure 15.2).

Surface water is detected using a water detection algorithm based on a decision tree classifier 
and a comparison methodology using a logistic regression, which provided an understanding of 
the confidence in the classification (Mueller et al. 2016). The water detected for each location is 
summed through time and then compared with the number of clear observations of that location 
(i.e., observations not affected by cloud, shadow, or other quality issues). The result is a percentage 
value of the number of times water was observed at a location.

As with all optical satellite sensors, common limitations or errors in classification mostly include 
cloud shadow, snow, and flat rooftops of large building being labeled as water and small water bod-
ies remaining undetected. In addition, important to note is that this is a historic observation dataset 
that spans a certain time period, so differences in river and landscape geomorphology as well as 
in the built environment before 1987 in this case, and likely changes in those settings in the future, 
would, of course, alter the location of water.
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FIGURE 15.2 The WOfS open-source dataset showing the number of times water was detected between 
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water (such as floods) in yellow, and finally to areas rarely observed as containing water in red. (Courtesy of 
Geoscience Australia, Canberra, Australia.)
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Nevertheless, this dataset represents a unique example of big data analytics and data interoper-
ability. More recently, a number of efforts using online processing platforms, such as Google’s 
Earth Engine, have started processing large amounts of satellite imagery to derive meaningful 
geophysical information, such as global deforestation rates (Hansen et al. 2013) or a mask of global 
surface water (Pekel et al. 2014), which is very difficult to produce on regular desktop computers.

15.3.2 synthetic aperture raDar imagery

Probably, the best-known SAR flood image research studies that propose an automated classifica-
tion algorithm are based on the TerraSAR-X image of the 2007 summer flood in and around the 
town of Tewkesbury, England. The first study using this case study to illustrate a fully automated 
flood mapping procedure was performed by Martinis et al. (2009), followed by Mason et al. (2012), 
and then by Giustarini et al. (2013). Figure 15.3 illustrates the results of all three studies. The reason 
for choosing this particular site and event is that many auxiliary datasets for algorithm develop-
ment and validation are available, such as a Light Detection and Ranging (LiDAR) digital elevation 
model (DEM), flooded aerial photography, and an accurate, high-resolution two-dimensional flood 
inundation model simulation of the event (Schumann et al. 2011).

In their application, Martinis et al. proposed an automatic NRT flood detection approach (result-
ing map shown in Figure 15.3a), which combines histogram thresholding and segmentation-based 
classification, specifically oriented to the analysis of single-polarized very-high-resolution SAR 
 satellite images. In most cases, thresholding is applied to an image to obtain a binary classified 
image of wet and dry pixels, with respect to detecting the flooded areas. Since local gray-level 
changes may not be distinguished by global thresholding techniques in detailed, large satellite 
scenes, Martinis et al. integrated thresholding into a split-based approach, where the derived global 
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FIGURE 15.3 Flood maps produced by three different automated SAR flood mapping algorithms: (a) DLR’s 
algorithm by Martinis et al. (2009); (b) Mason et al.’s (2012) algorithm; and (c) the algorithm by Matgen 
et al. (2011), as applied by Giustarini et al. (2013). Note that all three algorithms were applied to the same 
TerraSAR-X image of the Tewkesbury (England, the United Kingdom) summer floods of 2007.
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threshold is integrated into a multiscale segmentation, thereby combining the advantages of small-, 
medium- and large-scale per-parcel segmentations (Martinis et al. 2009).

Classification of flooded area can be augmented and improved by using a high-resolution DEM, 
such as the one proposed by Mason et al. (2010, 2012) for the same study site and event, using a 
LiDAR DEM. Mason et al. (2010) suggested the use of a LiDAR digital surface model (DSM) 
within the urban area, including buildings, to account for areas of misclassification due to layover 
and shadow effects in the SAR scene. These areas were generated from the DSM before the flood 
mapping process by using the German Aerospace Center’s (DLR’s) in-house SAR simulator and 
were then ingested in the classification algorithm. Flooding was first delineated with a region-
growing active contour model based on local metrics (also termed snake after Horritt [1999]). The 
regional image statistics from these areas were then applied locally in the urban area and fine-tuned 
by using only seeding regions in the low-lying areas of the urban floodplain, as derived from the 
DSM (Schumann and Moller, 2015). Region growing within the urban area was achieved by image 
dilation and labeling, followed by erosion. Mason et al. (2012) used the same image but suggested 
an object-oriented classification, such as the distance of trees and hedgerows from flooded areas that 
should be classified as flooded (based on compactness rule) but are not and the distance of shadow/
layover areas from flooded pixels if these fall within a certain water surface height threshold deter-
mined from the digital terrain model (DTM) (resulting map shown in Figure 15.3b).

Giustarini et al. (2013) suggested a fully automated approach, adopted from Matgen et al. 
(2011) operational procedure (for details, see Section 15.4.3.1), based on comparing the actual 
flood image backscatter distribution function with a theoretical gamma distribution, thereby 
objectively selecting the threshold backscatter value that distinguishes flooded from non-flooded 
surfaces. This classifier has the advantage of working in an operational setting where no user 
intervention is desirable. Although this is not a requirement, classification can be improved by 
ingesting a non-flood image with the exact same orbit and sensor parameters as the flood image. 
Limited to the urban area only, their final flood map showed a classified correct score of 82%, 
but the main issue of shadow/layover in dense urban areas still remained (resulting map shown in 
Figure 15.3c).

In addition, for operational flood mapping from very-high-resolution COSMO-SkyMed (CSK) 
SAR images that observed the evolution of a flood event in Albania in January 2010, Pulvirenti 
et al. (2011), though using a non-urban test case, also used a DEM in addition to land-cover 
data. These datasets were used to determine degrees of membership to the flood class based 
on similar rules to Mason et al. (2012). The class membership rules were then used to guide a 
fuzzy logic classifier applied to the multitemporal COSMO-SkyMed flood images. A similar 
fuzzy logic classifier was also employed by Martinis et al. (2013) in a modified version of their 
previously developed split-based processor for flood mapping from high-resolution SAR imagery 
(Martinis et al. 2009; outlined earlier). In the operational procedure at DLR for Satellite-based 
Crisis Information (ZKI), this modified SAR classifier is automatically triggered by a systematic 
detection of potential flood events, using daily-acquired medium spatial resolution optical data 
from the MODIS satellite sensor. More details of this operational mapping tool are given in 
Section 15.4.3.2.

15.3.3 raDiometry

To some extent, passive microwave radiometry can be used to map inundated area (Schroeder et al. 
2015), but the low resolution (25 km), resulting from the large angular beam, limits the applicability 
of these sensors. De Groeve (2010) showed that passive microwave-based flood extent corresponds 
well with gauged flood hydrographs when river overtopping occurs; however, the signal-to-noise 
ratio is highly affected by variable local conditions, such as specific river bank geometry configura-
tion that may prevent variations in width with rising water levels.
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The experimental Global Flood Detection System (GFDS*) hosted by the Global Disaster Alert 
and Coordination System (GDACS) monitors floods worldwide by using NRT satellite data. Surface 
water extent is observed using passive microwave remote sensing (advanced microwave scanning 
radiometer-EOS AMSR-E) and tropical rainfall measuring mission (TRMM) sensors). When sur-
face water increases significantly (anomalies with probability of <99.5%), the system flags it as a 
flood. Time series are calculated in more than 10,000 monitoring areas, along with small-scale 
flood maps and animations.

15.4 EXAMPLES OF OPERATIONAL SYSTEMS AND TOOLS

15.4.1 the Dartmouth flooD observatory anD nasa’s near-real-time flooD mapping

The DFO (http://floodobservatory.colorado.edu) conducts global remote-sensing-based flood map-
ping and measurements in NRT and archives this information. The primary satellite sensor for this 
is the MODIS instrument onboard NASA’s Aqua and Terra satellites. The DFO is most known for its 
rapid flood mapping with MODIS (Brakenridge and Anderson, 2006), but during high-impact flood 
disasters, it also maps flooding from other satellites, such as EO-1, the Landsat series, and SAR 
satellite missions, and aggregates these maps to a number of map formats that assist flood response 
teams through situational awareness across large-scale coverages (Figure 15.4a). The observatory 
offers two map series accessible from the global index: Current Flood Conditions, providing daily, 
satellite-based updates of surface water extent, and the Global Atlas of Floodplains, a remote-
sensing record of floods, from 1993 to 2015.

The DFO also performs global hydrological modeling, which it integrates with its global surface 
water mapping, primarily for calibrating its global River Watch† virtual stations (Brakenridge et al. 
2012) that gauge the state of potential large river flooding daily based on changes in the brightness 
temperature of the passive microwave signal onboard the AMSR-E, TRMM, AMSR-2 and Global 
Precipitation Measurement (GPM) sensors (Figure 15.5). Collaborating and partnering with a num-
ber of humanitarian and flood disaster emergency management agencies, such as the United Nations 
World Food Program (UN WFP), ensures maximum utility of the information. These systems have 
been sustained by grants and contracts among others from NASA, the European Commission, the 
World Bank, and the Latin American Development Bank.

The NASA’s NRT flood mapping (http://oas.gsfc.nasa.gov/floodmap) is similar to the DFO, and 
since 2012, it feeds its automated product to the DFO. The LANCE processing system at NASA 
Goddard provides such products typically within a few hours of satellite overpass. As with the 
DFO, open water is detected by using a ratio of MODIS bands in the visible and near-infrared 
range at 250 m spatial resolution. The impact of clouds is minimized by compositing images typi-
cally over 2 or more days. Flooding is classified as anomaly to a reference water layer denoting 
normal water extent.

15.4.2 the global flooD monitoring system

Real-time quasi-global hydrological calculations at 1/8th degree and 1 km resolution inundation 
simulations are performed with the University of Maryland’s Global Flood Monitoring System 
(GFMS; Wu et al. [2012], http://flood.umd.edu), which is a NASA-funded experimental system 
that uses real-time TRMM Multisatellite Precipitation Analysis (TMPA) data and now the iMERG 
product from the Global Precipitation Measurement (GPM) mission (Figure 15.4b). This system 
also issues flood forecasts with 4- to 5-day lead time, based on numerical weather prediction (NWP) 

† http://floodobservatory.colorado.edu/DischargeAccess.html

* http://www.gdacs.org/flooddetection

http://floodobservatory.colorado.edu
http://oas.gsfc.nasa.gov/floodmap
http://flood.umd.edu
http://www.gdacs.org/flooddetection
http://floodobservatory.colorado.edu/DischargeAccess.html
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FIGURE 15.4 (a) Flood map (Southeastern U.S. Coast and vicinity) displayed during the Hurricane Matthew 
flood disaster in October 2016. Red is flood water during past 14 days from MODIS 250 m data. Dark red 
is flooding on date shown from Landsat 8. Green is previous flooding, year 2000 to present. Dark blue is 
permanent surface water. (b) A snapshot of the NRT computation of the Global Flood Monitoring System 
(GFMS) showing inundation for the same event on October 12, 2016, at 1 km resolution.
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precipitation, and mapping of inundation at a 3-hour time step. Although at a relatively low resolu-
tion, the timeliness of the system and its forecast capability make it very attractive to flood relief 
services and flood disaster response organizations worldwide, such as the UN WFP.*

The extent of a flood, as estimated by the GFMS during large events, is regularly validated 
against satellite flood maps from the DFO. Accuracy is, of course, not great all the time and in all 
locations, but the system does typically very well in estimating the extent and identifying which 
rivers are affected. In general, over certain types of complex terrain, satellites can underestimate 
precipitation, and ground information for the model, including topography, is also limited in accu-
racy. In countries such as the United States and Europe, where geospatial data and services for 
event observation are abundant and other local datasets and monitoring stations provide high- 
accuracy information, the GFMS can add value by forecasting situational awareness over very large 
scales. However, for areas and countries without extensive weather and monitoring networks on the 
ground, the satellite view of floods, as delivered by the GFMS and the DFO, is often the only source 
of actionable information.

15.4.3 other rapiD mapping systems

15.4.3.1 Automated SAR Flood Mapping with ESA’s G-POD
The European Space Agency (ESA) hosts a SAR-based mapping tool on its Grid Processing on 
Demand (G-POD) system (http://gpod.eo.esa.int), which is currently operated in testing mode but 
will soon be freely available to end users, who can query the ESA SAR database for a flood image 
and retrieve an automatically generated flood map (Figure 15.6).

The mapping algorithm calibrates a statistical distribution of open water backscatter val-
ues of SAR images of floods. Then, a radiometric thresholding provides the seed region for a 

* https://pmm.nasa.gov/articles/improving-flood-predictions-gpm

Reference image:
28/12/2005

Flood image:
6/2/2008

Flood map

FIGURE 15.6 Flood map extracted from a satellite SAR image of the early February flood event on the 
Lower Zambezi River by using Matgen et al.’s (2011) algorithm, fully automated on ESA’s G-POD service.

http://gpod.eo.esa.int
https://pmm.nasa.gov/articles/improving-flood-predictions-gpm
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region growing process. Change detection is included as an additional step, which minimizes 
 overdetection of flooded area (Matgen et al. 2011). Using two case studies, evaluation showed 
the same performance as the optimized manual approaches. Their automated flood mapping algo-
rithm works on different SAR image modes and resolutions.

15.4.3.2 DLR’s ZKI
The DLR’s ZKI monitors flood disasters by tasking its TerraSAR-X satellite, and, as part of the 
International Charter, it has access to other tasked satellites that may provide relevant crisis data. 
In addition, the data archive is searched for matching predisaster satellite scenes. According to the 
DLR*, during the first 6 hours after the activation of ZKI, reference maps based on archive satellite 
data providing a first overview of the affected area can be made available to relief organizations. 
The newly acquired postdisaster satellite data is used to assess and monitor the ongoing crisis situ-
ation, that is, delineate the affected areas (see Section 15.3.2 and Figure 15.7a) and estimate the 
damages caused by the disaster.

15.4.3.3 NASA JPL’s ARIA
The ARIA Center (https://aria.jpl.nasa.gov), a joint venture cosponsored by the California 
Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), 
plans to provide the infrastructure to generate imaging products in NRT that can improve situational 
awareness for disaster response. The ARIA Center also plans to provide automated imaging and 
analysis capabilities necessary to keep up with the imminent increase in raw data from geo-
detic imaging missions planned for launch by NASA, as well as international space agencies. 
Analyses of these data sets are currently handcrafted following each event, such as shown in 
Figure 15.7b, and may not be generated rapidly enough for an operational response assistance 
during natural disasters.

15.4.3.4 Rapid Flood Mapping from NOAA’s VIIRS Sensor
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is one of the five major Earth 
observation (EO) instruments onboard the National Oceanic and Atmospheric Administration’s 
(NOAA’s) S-NPP and JPSS satellites, essentially a continuation of NOAA’s AVHRR legacy sensors. 
With a very large swath width of 3060 km, it provides full daily coverage, both in the day and night 
sides of the Earth. The VIIRS has 22 spectral bands, including 16 moderate spatial resolution bands 
at 750 m pixel spacing at nadir, 5 imaging resolution bands at 375 m at nadir, and 1 panchromatic 
band with 750 m spatial resolution.

Using the VIIRS and the coastal flooding caused by Hurricane Sandy as a test case, Sun 
et al. (2016) present an approach to estimate the extent of large-scale floods in an operational 
context (Figure 15.7c). The approach estimates the water fraction from VIIRS 375-m imager 
data through mixed-pixel linear decomposition and a dynamic nearest-neighbor search method. 
By using the reflectance characteristics of the VIIRS visible channel, near-infrared channel, and 
shortwave infrared channel, the method dynamically searches the nearby land and water end 
members.

As an optional postprocessing step, based on simple physical characterization of water spread-
ing, the low-resolution flood map from the VIIRS can be extrapolated to a much higher spatial reso-
lution by using topographic information from a digital elevation model, in that case, for instance, to 
30 m pixel spacing.

* https://www.zki.dlr.de/mission

https://aria.jpl.nasa.gov
https://www.zki.dlr.de/mission
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15.5 IMPROVING DISASTER RESPONSE ASSISTANCE

15.5.1 reQuirements

Despite the notable applied research efforts reported in the previous section, it is apparent in many 
case study reports and during flood disasters that important needs, from the decision-making stand-
point, are not (yet) directly met by existing satellite technology or, at least, not by any one single 
data product. This was the main conclusion of a paper published on this topic by Schumann et al. 
(2016), including several coauthors from flood response organizations and satellite operators and 
space agency managers. They reported outcomes of the Texas flood disaster of May–June 2015 and 
as an immediate action suggested a scoping workshop to be held that attempts to lay out a plan for 
better coordinating the U.S.-wide and global flood response assistance with EO data and products.

A first such NASA-funded flood response workshop was held in June 2016, with the objective 
to enable a unique dialogue between EO mission technology and science, capacity-building, and 
the flood response community, in order to foster better coordination in flood response worldwide. 
Many organizations already have ongoing missions, programs, initiatives, and research funding 
to provide flood-monitoring and response services (e.g., the DFO), as well as image and computer 
simulation products (e.g., the GFMS), during an event. However, it is obvious that with the prolifera-
tion of information (see, for instance, the commentary by Schumann and Domeneghetti [2016] for 
a discussion on this topic), it is difficult to coordinate systems, organizations, and people during a 
single event, let alone multiple simultaneous events or successive large events (Schumann, 2016). In 
addition, each of those systems is oftentimes developed with a specific purpose, at least at the out-
set of its funding and thus may provide a unique capability, which requires effective coordination. 
Therefore, a new community of practice (Figure 15.8) is needed that will set out to improve EO data 
and products to better assist flood disaster response (Schumann, 2016).

Having said that, the situation in assisting flood response with EO data, in the United States 
and elsewhere in the world, has recently taken a more positive turn, where, for instance, NASA’s 
Applied Sciences Disasters program at headquarter level is trying to aim for better coordinating its 
many different image releases and product deliveries during disasters (for detailed example of these 
products and services, see previous section). In this context, not only the DFO, for instance, is post-
ing the MODIS flood maps that it produces, but also its main website page (http://floodobservatory.

Technology

Product
utilization

Data
delivery

Data
interoperability

Product
dissemination

Product
development

Emergency
management

Capacity
building and

end-user
engagement

Monitoring
and

observingFlood
disaster

response
assistance

Product
dissemination

and
distribution

Mapping
and

modeling

FIGURE 15.8 Graphical illustration of the importance of data and product interoperability, showing the dif-
ferent components that are typically needed to get seamlessly from a data acquisition technology to product 
utilization. Such an interoperability mechanism needs to be adopted by the many actors involved in flood 
disaster response, in particular when using EO-derived information to assist.

http://floodobservatory.colorado.edu
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colorado.edu) now displays other related services and products, such as the model outputs from 
the NASA/University of Maryland’s GFMS (see previous section) and NRT satellite precipitation 
maps, on an event-by-event basis.

In addition, Europe, at the European Commission level, has developed a satellite- and model 
forecast-aided disaster response capability. The European Commission’s (EC’s) Copernicus pro-
gram, previously known as the Global Monitoring for Environment and Security (GMES) service, 
is establishing a European capacity for EO. Its Emergency Management Service (EMS, http://
emergency.copernicus.eu) is providing a number of operational services during disasters, including 
flood mapping from satellite images, in particular SAR, acquired, for instance, during activation of 
the International Charter (https://www.disasterscharter.org). Most recently, Copernicus EMS was 
activated during the devastating Louisiana summer 2016 floods* and for the Hurricane Matthew 
flood disaster in October 2016,† for flood mapping from SAR images in both instances.

In fact, both the above-mentioned flood disasters (Louisiana and Hurricane Matthew in 2016) 
are prime examples of the notable progress in a now-much-improved flood disaster response coor-
dination that in these two cases included not only flood response teams and traditional products and 
services in the United States, such as river streamflow forecasts, aerial photography, and satellite 
images from the International Charter, but also images and product services from all major space 
agencies around the world as well as the EC Copernicus EMS. Not only this coordinated effort 
helped in getting more useful products in the right hands, but it also considerably shortened the 
latency between data acquisition and product delivery. This, in turn, ensured more efficient and 
more effective field operations and a higher degree of interoperability (Figure 15.4), which are ever 
more important in an era of geospatial data proliferation (Schumann and Domeneghetti, 2016).

15.5.2 challenges

The two events described previously could serve as benchmark cases on how this new community 
of practice could and probably should operate in the future. Of course, this requires resources, both 
in time and money, and can be extremely challenging, particularly in the event of simultaneous 
disasters or large successive events that have manifested themselves several times in the last decade, 
particularly when looking at floods.

For instance, it is very common that decision makers would desire at least daily status updates 
on the affected regions and at high-enough spatial resolution that can resolve the necessary scale to 
assess local infrastructure assets at risk. In addition, in terms of EO images, clouds, fog, rain, and 
vegetation are frequently posing problems for accurate flood mapping at optical wavelengths and 
also to some extent at radar wavelengths. Furthermore, for flood relief operations and many other 
applications, river reaches tend to be monitored and studied at much smaller scale than that typi-
cally acquired with wide-swath EO imagery, and therefore, monitoring those reaches for situational 
awareness does actually require much finer spatial resolutions. Very-fine-resolution (<5 m) images 
also become a prerequisite when monitoring and modeling urban areas, where most assets at the 
risk of flooding are located and where city-block scale often dictates the ability to model or moni-
tor flood inundation patterns accurately (Schumann et al. 2012). Here, airborne repeat overpasses 
are commonly the preferred choice, but from space, constellations of multiple fine-resolution SAR 
systems may present a possible solution or even an alternative. For instance, COSMO-SkyMed can 
get a 3 m image sequence with a time from request to acquisition of the first image of 26–50 hours 
and then subsequent images at 12-hour intervals. This capability is now further enhanced with the 
recent constellation of Sentinel-1A and -1B and coupled with a program such as Copernicus or an 

† http://emergency.copernicus.eu/mapping/list-of-components/EMSR185

* http://emergency.copernicus.eu/mapping/list-of-components/EMSR176

http://emergency.copernicus.eu
http://emergency.copernicus.eu
https://www.disasterscharter.org
http://emergency.copernicus.eu/mapping/list-of-components/EMSR176
http://emergency.copernicus.eu/mapping/list-of-components/EMSR185
http://floodobservatory.colorado.edu
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operational system such as ESA’s G-POD Fast Access to Imagery for Rapid mapping Exploitation 
(FAIRE) (http://gpod.eo.esa.int), SAR-derived flood maps can be made available to the users sev-
eral hours after acquisition (see Section 15.4.3.1). This form of rapid delivery of fine resolution, 
actionable information is now technically feasible and might be a common form of dissemination 
in the near future.

As argued by Schumann et al. (2016), although systematic, high-resolution, and lower-resolution 
but wide-area observations are now possible during flood disaster, the full potential of EO data can 
only be unlocked when combining all these data in an intelligent way. This major challenges are 
still clearly posed during every large flood disaster and, as further argued by Schumann et al. (2016) 
in their account of the Texas 2015 flood disaster, are, in part, to assemble data from a variety of 
sources and to embed any local higher-resolution flood images within the larger and time-extended 
regional context of an expanding large-scale flood event.

With all this wealth of EO products and services produced and disseminated, there is still a 
noticeable underutilization of this information. Most of the reasons for this situation relate to the 
relative novelty of these types of data. Generally, very limited time and personnel are available dur-
ing an emergency situation to understand, process, and handle new types of geospatial datasets. In 
addition, limited NRT data accessibility, bandwidth, and sharing capacity make product and data 
distribution cumbersome. Further, oftentimes, incompatibility between user platforms and geospa-
tial data formats hinders more widespread use of new EO products and services, or data availability 
may be simply unknown and data latency may be inadequate. However, the largest gap that needs 
to be bridged is the limited understanding by scientists and engineers about the end user’s product 
and timing needs, which are also discussed by Hossain et al. (2016) as a widespread concern in the 
applied Earth sciences arena.

Although all these challenges represent a clear limitation in fulfilling the needs of the decision 
maker, they create an opportunity for innovation to develop products that deliver better actionable 
information.

15.5.3 perspectives

In order to address the many challenges that exist in making EO data more readily useable and 
actionable for assisting flood disaster response between data availability, the scientific community 
should seek closer collaboration with end users. This is also strongly advocated by Hossain et al. 
(2016). According to Schumann and Domeneghetti (2016), a step in the right direction would be to 
build a one-stop shop (i.e., data portal) dedicated to the remote sensing of floods. The idea of a data 
clearinghouse or one-stop shop is not new (see, e.g., the USGS Hazards Data Distribution System 
[HDDS] and related services, all under the U.S. Geological Survey [USGS] Emergency Operations 
portal, https://hdds.usgs.gov) and is also a top priority action item that came out of the NASA Flood 
Response Workshop mentioned earlier (Schumann, 2016; Table 15.1).

This platform could collect EO imagery and products and synthesize knowledge as well as data 
from past events and experiences. Decision makers need to be able to pull data and products from 
this portal at low bandwidth and latency and request tailored information layers, as needed for their 
operations. Other relevant information could be made available alongside remote-sensing data of 
floods, such as output layers from models such as those produced by flood forecast or NRT event 
models. Those model computations can then be complemented and verified by social media streams 
and help pinpoint target regions for satellite image acquisition and delivery of flood products. Of 
course, this functionality requires the highest level of interoperability (Figure 15.8), since it needs 
to integrate seamlessly with end-user operation systems and platforms and ideally also be acces-
sible on any device. In this context, strengthening public–private partnerships would allow access to 
high-end capabilities and leveraging advanced data interoperability standards and service protocols 
developed by the geospatial industry sector.

http://gpod.eo.esa.int
https://hdds.usgs.gov
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Regardless of where this one-stop shop resides and who manages it, it would not only better orga-
nize and structure data availability, thereby clarifying existing confusion over data and products but 
also help meet expectations and add further value to the various EO products and services. At the 
same time, the end-user community should have the opportunity to provide feedback on data and 
products, which, in turn, should be used to improve the different types of information disseminated.

15.6 CONCLUSIONS

In recent years, there has been a significant increase in the number of satellite instruments that can 
be used to map floods and produce actionable information. The ability to monitor floods with sen-
sors onboard satellites has been known for quite some time now (at least since the early 1970s), and 
over those years, there has been much stimulating research in this area, and significant progress has 
also been achieved in fostering our understanding of the ways in which remote sensing can support 
and advance flood modeling, even flood forecasting (Revilla-Romero et al. 2015), and assist in flood 
disaster response operations.

This article reviewed the utility of remote sensing from satellites to map and monitor floods, with 
the aim to assist disaster response activities. Examples of applications in different landscape set-
tings and at various spatial and temporal scales have been illustrated and critically discussed. Many 
satellite missions are collecting data that can inform directly or indirectly about water bodies and 
flood inundation processes. This data proliferation has shifted the research and application fields in 
the area of remote sensing of floods from a data-poor (prior 2000) to a data-rich (post 2000) envi-
ronment (Bates, 2012). Consequently, innovative methods and products from these data have been 
developed, which led not only to better understanding of flood processes at various spatial and tem-
poral scales but also to global initiatives and applications that utilize and promote remote sensing 
for improved decision-making activities, particularly in developing nations and during emergencies.

Global-scale initiatives and end-user oriented applications are now becoming established and are 
also recognized by many nations that are in need of assistance because traditional ground-based moni-
toring systems are sparse and in decline. The value that remote sensing can offer is growing rapidly, 
and many challenges lie ahead. New sensor technologies, for instance, light-weight small satellites and 
drones, will soon add many terabytes of new data every day, and as a result, innovative and powerful 
online data analytics platforms are being offered to retrieve actionable information from these data.

TABLE 15.1
Top Priorities for the Flood Response Community

Emergency Management
Monitoring and 

Observing
Mapping and 

Modeling

Product 
Dissemination 

and Distribution

Capacity Building 
and End-user 
Engagement

Push data and products out 
in 12- to 24-hour intervals, 
within capabilities (ask for 
assistance with resources, 
as needed, and manage 
expectations)

One-stop shop (should 
also include future 
acquisitions), where 
communities can pull 
rather than push data 
and products

Automated polygon 
generation of flood 
disaster location to 
target EO data and 
products, especially 
at the international 
level

Single access point 
(one-stop shop) 
that allows 
automated product 
delivery system

Build trust in the 
products and report 
value to community: 
more than one-stop 
shop need to have 
products that are 
tailored to user needs 
and allowed to report 
feedback

Source: Schumann, G.J., EOS, 97, 2016.
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It is clear that we have entered an era of big data and the Internet of Things, in which everyone 
and everything is connected across networks, transmitting and receiving an overload of information. 
For remote sensing of floods, the grand challenge now lies in ensuring sustainable and interoper-
able use as well as optimized distribution of remote-sensing products and services for science and 
end-user applications and for operational flood disaster assistance (Schumann, 2017). In addition, a 
top priority is the need for end-user-driven validation cases to make satellite-based products and ser-
vices more credible to the decision maker. At the same time, it is paramount to manage expectations, 
and if satellite-based applications are to achieve the required readiness level for decision making, 
scientists and engineers need to be clear about what exactly science and technology can offer and 
what the capabilities of the many products and services being offered mean to the end users.
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16.1 INTRODUCTION

The Amazon basin, with an area of 6.2  million km², is the largest watershed in the world 
(Figure 16.1a). The Amazon River has a mean discharge of 170,000 m3s−1, with a minimum and 
maximum of 60,000 m3s−1 and 270,000 m3s−1, respectively (Gallo and Vinzon, 2005). The Amazon 
River runs through more than 6,700 km. It contributes 17% of the freshwater inputs to the global 
ocean (Callede et al. 2010; Richey et al. 1986). Located between latitudes 5°N and 20°S and between 
longitudes 50°W and 80°W, the Amazon basin covers 4/10 of South America and 5% of the world-
wide continents. It is spread over several countries: 63% of the total area is in Brazil, 16% in Peru, 
12% in Bolivia, 5.6% in Colombia, 2.3% in Equateur, 0.6% in Venezuela, and 0.2% in French Guyana 
(Goulding et al. 2003).

Lowland basin flatness, with slopes ranging from 3.7  cm/km (2900–4000  km upstream) to 
1.6 cm/km (800–1020 km upstream), joined to high tidal (>10 m in Manaus), favors the emergence 
of large alluvial floodplains (várzeas) and wetlands (Birkett et al. 2002). The latter are commonly 
defined as inland areas that are periodically inundated or permanently waterlogged, including lakes, 
rivers, estuaries, and freshwater marshes. In the Amazon basin lowlands (altitude <500 m), wet-
lands and floodplains cover a huge area, recently estimated to 800,000  km² (Melack and Hess, 
2011), from which 12% are located along the Solimões Amazon mainstream.

Amazonian floodplains play an important role in the spread of flows—mitigation of the flood 
wave (Paiva et al. 2011, 2012; Richey et al. 1989)—and also in sediment transfer (Bourgoin et al. 
2007; Mangiarotti et al. 2013). They influence cycles of a large number of chemical elements 
(Bonnet et al. 2016; Melack et al. 2004; Moreira-turcq et al. 2013). The moving littoral in the aquatic 
terrestrial transition zone (ATTZ) compounds a complex mosaic of habitats, changing in space and 
time, conducive to biodiversity (Junk and Wantzen, 2004; Parolin et al. 2004; Tockner and Stanford, 
2002). It also prevents from stagnation and enables a rapid recycling of organic matter and nutrients, 
thereby explaining the large productivity of these systems (Junk, 1997). Fish-bearing waters and 
soil fertility higher than that in upland regions form attractive conditions for human settlement. For 
these reasons and because of their relative accessibility, Amazon floodplains have long been colo-
nized (Dufour, 1990; Grennand and Bahri, 1990). The nutrient-rich water inflow sustains human 
activities such as agriculture, animal husbandry, and forestry. Hydroclimatic seasonality rhythms 
agricultural and fishing activities and more generally local social life (Bommel et al. 2016).

In the past five decades, considerable public investment has encouraged economic growth in the 
Amazon region, leading to not only record expansion of the agricultural sector but also important 
development within the mining sector and hydroelectric dams (Ferreira et al. 2014) and a rapid 
population increase, which passed from 6 million to 20 million in Brazilian Amazonia from 1960 to 
2010 (IBGE, 2016). This economic development has modified landscapes in multiple ways, result-
ing in many regions being characterized as a mosaic of disturbed forests, agriculture fields, and 
pastures.

Human impacts have also resulted in changes in freshwater ecosystems, with impacts on ter-
restrial and aquatic systems often being felt across large distances (Castello et al. 2013). The 
Brazilian government has engaged in finding a compromise between ecosystems preservation and 
development in the Amazon region. Consequently, policy makers have acted against deforestation 
and also pursued poverty alleviation strategies, with the perspective that this would contribute to 
limit environmental damages and mitigate the vulnerability of local Amazonian populations. A 
strong action plan has drastically reduced the agriculture expansion into forests (including pro-
tected areas, law enforcement, land regulation, markets and credit restriction (Arima et al. 2014; 
Nepstad et al. 2014)). The National Plan on Climate Change, signed in 2008, planned to reduce 
the deforestation average rate of the period 1996–2005 by 80% by 2020. In 2012, this goal was 
almost achieved through coercive measures to stop deforestation, with convincing results since 
2005 (annual deforestation fell from 27.772 km² in 2004 to 4.656 km² in 2012). However, exist-
ing management policies, including the protected area network, still fail to protect freshwater 
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 ecosystems. These policies are insufficient to guarantee the conservation of hydrological con-
nectivity (Castello et al. 2013), and they are increasingly threatened by dam construction (Ferreira 
et al. 2014) waterways projects (Soito and Freitas, 2011) and increasing investments in oil exploita-
tion (Zurita-Arthos and Mulligan, 2013).

Combined with global warming and a spatiotemporal redistribution of precipitation (Nobre et al. 
2013), land-use changes across Amazonia have resulted in widespread loss of soils and biodiversity 
and marked shifts in biogeochemical cycles, seriously threatening the functioning and biodiversity 
of terrestrial and aquatic Amazonians ecosystems. Although the interactions and impact of man-made 
land transformation on the local to regional climate and their feedbacks are still in debate, changes 
in precipitation and discharge are already observed by the most deforested regions of the Amazon. 
It provides evidence of the potential shift in vegetation and further feedback on climate and river 
corridor dynamics (Davidson et al. 2012; Funatsu et al. 2012). This could partly explain the rapid 
succession of extreme hydrological events (droughts in 2005 and 2010, and floods in 2009, 2012, 
and 2014) (Marengo et al. 2011; Zeng et al. 2008) in the last decade. Gloor et al. (2013) recently 
showed that the Amazon basin has presented wetter climatic conditions since 1990.

Finally, anthropogenic pressures and climatic changes alter the hydrological regime of 
Amazonian rivers, thus threatening the whole river-floodplain ecosystem (Junk et al. 2010). To bet-
ter understand the interplay between water circulation and ecological characteristics and to predict 
their evolution in terms of probable changes in river regime, it is necessary to develop appropriate 
models to reproduce the flow characteristics in floodplains.

Studies of Amazonian floodplain hydrology have included water balances of individual lakes 
(Lesack and Melack, 1995; Bonnet et al. 2008, 2011, 2016). These studies have shown that flood-
plain water balance was influenced by different water sources, whose contribution to floodplain 
water mixture varies seasonally and in function of floodplain morphologies. Several modelling 
approaches have been used to simulate flood propagation in the Amazon. Richey et al. (1989) pro-
posed a routing scheme based on the Muskingum formulation for a 2000 km reach. Decharme 
et al. (2008), Coe et al. (2002; 2007), and Paiva et al. (2011, 2013) succeeded in regional flooding 
modeling by using a relative simple formulation to describe the lateral exchanges between the main-
stream and its floodplain. Models, coupling one-dimensional (1D) simulation with two-dimensional 
(2D) simplified hydrodynamic formulation in floodplain, such as LISFLOOD-FP (Bates et al. 2010; 
Baugh et al. 2013; Hunter et al. 2005), have been developed and successfully applied at medium-
sized reach scale (hundreds of kilometers) (Baugh et al. 2013; Rudorff et al. 2014a; Trigg et al. 
2009; Wilson et al. 2007) and at regional scale (Yamazaki et al. 2013; 2011). Wilson et al. (2007) 
and Trigg et al. (2012) highlighted the importance of the drainage network floodplain. Baugh et al. 
(2013) and Yamazaki et al. (2012) proposed digital elevation model (DEM) adjustment algorithms 
in order to simulate realistic water exchanges between river channels and floodplains. Rudorff et al. 
(2014a) provided a detailed analysis of the hydraulic controls of flooding of the Curuaí floodplain 
on the lower Amazon.

However, due to difficult access and huge extent, data scarcity and low accuracy are often major 
problems to be faced, when monitoring Amazonian wetlands. Most of the meteorological stations in 
Brazil are located along rivers. Few data are available on floodplains. This distribution leaves large 
areas without any information. There is also a lack of water level (WL) gauges. On the Brazilian 
side, the National Water Agency (ANA) has made efforts to increase the number of flow and rain 
gauges, but the density remains the lowest in the country. Calmant et al. (2009) counted an average 
of one WL gauge in the Amazon basin for 7,200 km² (Figure 16.1b). It is also noteworthy that in situ 
gauges’ maintenance is complicated and costly. Their number is decreasing as in others countries in 
the world. In addition, political relations inside the country and between Amazon countries have 
influence on data collection and exchange. If Brazilian hydrological data are easily available, this 
is not the case with other countries. Moreover, getting detailed topographic data or ecological 
data is even more challenging in this region.
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Hence, analyses of hydrological processes and full forecast are limited by the availability of data 
with appropriate spatial and temporal distribution. In this context, monitoring systems based on 
remotely sensed observations are an efficient alternative.

Indeed, beside the traditional use of satellite-based imagery for soil, land-cover and land-use 
mapping (Lu et al. 2012; Yengoh et al. 2014), or wetlands types and flood extent (Chapman et al. 
2015; Martinez and Le Toan, 2007; Sippel et al. 1998), the use of remotely sensed products for 
hydrology has been significantly intensified in the last decades.

Even though it has been originally conceived for ocean studies, satellite radar altimetry has 
been proven to give reliable WL over lakes and rivers (Birkett et al. 2002; Calmant and Seyler, 
2006; Cretaux et al. 2011; Frappart et al. 2005; Roux et al. 2008, 2010; Santos da Silva et al. 
2010, among others). It has given a great impulse for monitoring large and relatively poor gauged 
basins (Santos et al. [2014]). A valuable information for hydrological modeling validation (Coe 
and Costa, 2002; Getirana et al. 2010; Paiva et al. 2013) and for improving model previsions 
(Paiva et al. 2012) has been shown. Combined with validated modeled discharge, it enabled to 
generate rating curves all over the Amazon basin, thereby providing the basis for a fully spatially 
distributed monitoring system in nearly real time (Paris et al. 2016). Rainfall is also estimated 
with a reasonable accuracy, for instance, from the Tropical Rainfall Measuring Mission (TRMM) 
(Huffman and Bolvin, 2014) or Global Satellite Mapping of Precipitation (GSMaP) (GSMaP, 
2013) (Nerini et al. 2015; Satge et al. 2015). Several works relate the possibility to use data 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) to obtain evapotranspira-
tion estimation (Mu et al. 2007, Velpuri et al. 2013). Other information on the dynamics of water 
stock has been obtained with gravimetric mission, the Gravity Recovery and Climate Experiment 
(GRACE) (Schmidt et al. 2008; Ramillien et al. 2008). Among the most significant advances for 
hydrology, it is noteworthy that the production of global DEMs is essential to numerically capture 
flow direction and watershed limits (Jenson and Domingue, 1988). In the last decade, three nearly 
global DEMs of high resolution have been freely released. The National Aeronautics and Space 
elevation data Administration (NASA) and the National Geospatial-Intelligence Agency (NGA) 
of the United States released the Shuttle Radar Topography Mission (SRTM) (Farr et al. 2007, 
Rodriguez et al. 2006). The NASA and the Ministry of Economy, Trade, and Industry (METI), 
Japan, released the first GDEM version in 2009 and the second version in 2011 (Tachikawa et al. 
2011). Ultimately, the AW3D30 was released in 2015 by the Japan Aerospace Exploration Agency 
(JAXA) (Tadono et al. 2016).

These different products have improved the knowledge of floodplains dynamics. Combining 
radar altimetry with flood extent deduced from imagery enabled retrieving of floodplain storage 
dynamics (Frappart et al. 2008, 2005); insights on water circulation within the floodplain (Alsdorf, 
2003; Alsdorf et al. 2000) were obtained from synthetic aperture radar (SAR) and interferometric 
data analysis, and exchanged fluxes between the mainstream were estimated from a combination of 
satellite products (Alsdorf et al. 2010).

In this chapter, we present a methodological framework to set a hydrodynamic model at local 
scale, integrating a broad range of remotely sensed data. The model is applied to simulate the 2009 
flooding hazard, one of the major flood events ever recorded. According to the methodological 
framework, Earth observation (EO) products are used in each step, namely input data production, 
calibration, and validation. Input data production consists of obtaining reliable and distributed WLs 
in the floodplain and mainstream, topographic data, and flood extent maps. Boundary conditions 
include conditions of WL issued from altimetry and conditions of flow generated from a hydro-
logical model (Bonnet et al. [in revision]). Calibration is performed on Manning’s roughness coef-
ficients during the first year of simulation. The latter are determined from derived SAR images. 
Finally, we validated the model in terms of vertical accuracy, using WLs, as well as in terms of 
horizontal accuracy, comparing simulated flood extent with maps deduced from available remote-
sensed product imagery.
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The wide range of useful remotely sensed data for our purpose and the hydrodynamic model 
used for the study are presented in the first section. Sections 16.5 and 16.6 give details of the differ-
ent methods used to produce relevant information for modelling. Calibration and validation steps 
are described in Sections 16.7 and 16.8.

16.2 THE STUDY SITE

The Janauacá Floodplain is located in the low Amazon basin between 3.200°S and 3.250°S and 
between 60.230°W and 60.130°W, along the right margin of the Solimões River, approximately 
40 km upstream from its junction with the Rio Negro (Amazon state, Brazil) (Figure 16.1).

It is composed of one lake connected with the Solimões River, the major affluent of the Amazon 
River. Rich in nutrients and suspended solids, this river is commonly considered as a whitewater 
river (Moquet et al. 2015; Sioli, 1984). In contrast, small streams (igarapés), draining the south of 
the watershed, present properties closer to black waters, which are rich in dissolved organic mat-
ter. According to the rain gauge data in Manacapuru (3.317°S, 60.583°W), at about 40 km from 
the study, the mean annual rainfall is 1976 mm/y. The river WL mean annual fluctuation reaches 
12.2  m, at the Manacapuru WL gauge, when considering the period 2006–2011. The Solimões 
River has a mono-modal flood phase, with WL usually starting to rise mid-November until mid-
June, when the recession phase starts. According to altimetric data, the water surface slope between 
Manacapuru and VS VSR is, on the average, about 2.2 cm/km.

The Janauacá watershed is divided into two municipalities (Manaquiri and Carreiro). Between 
2010 and 2015, population increased on average of 20% (IBGE, 2016), attesting to the local dyna-
mism of the region. Population growth is accompanied by landscape modifications, such as aug-
mentation of non-forested landscapes in the watershed (Drapeau et al. 2011). As mentioned in the 
introduction, population has mainly rural activity, which is rhythmed by hydrological seasonality. 
Even if the local population is used to important changes from low water (LW) to high water (HW), 
the last extreme flood events (especially 2009 and 2012) have provoked material damages and have 
had direct consequences on local life.

16.3 THE FLOOD 2009–2010

At the regional scale, Filizola et al. (2014) detailed the flood event of 2009. A combination of 
regional-scale climatic events (Marengo et al. 2012) and unusual flood mechanism can explain this 
hazard. Large positive anomalies of sea surface temperatures (SSTs) in the tropical South Atlantic 
Ocean anomalously maintained the intertropical convergence zone (ITCZ) in the South, produc-
ing greater rainfall. Rainfall led to advanced flood in the western part of the river. The latter was 
this year almost in phase with the flood peak of the southern tributaries. The backwater effect was 
amplified, and it resulted in higher stages and water quantity in the Amazon mainstream. Stage 
recorded at Óbidos, the lowermost gauge station in the Amazon, was the highest (10.83 m) regis-
tered since the beginning of the measurement (1928). With a recorded stage of 10.67 m, the 2012 
flood event did not reach the higher stage at Óbidos gauge. Nevertheless, measured water stage 
at Manaus (central Amazon) was paradoxically higher than the one measured in 2009, such as 
measured flow at Óbidos (260,000 m3s−1). Such a flood event impacts the socioeconomic life of the 
Amazon. In 2009, 38 Brazilian municipalities states declared to be flooded along the Amazon River 
and its tributaries (Filizola et al. 2014).

At a local scale, the RL1 stages recorded inside the Janauacá floodplain at RL1 are 24.0 m and 
24.3 m for the years 2009 and 2012, respectively. Average peak stage over the period 2006–2012 
is 22.3 m. In 2009, rising water lasted 241 days, against an averaged value of 181 days over the 
period 2006–2012. Whole hydrological year lasted 398 days. Tidal amplitude was 11.6 m for the 
year 2009, whereas the average over 2006–2012 tidal amplitude was 9.9 m. Paradoxically, local rain 
during the hydrological year 2008–2009 is not elevated. The agência nacional das águas (ANA) 
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provided daily rainfall through the stations labeled 00359005 (3.100°S, 59.994°W) and 00359007, 
both located at Manaus, and 00360001 (3.317°S, 60.583°W), located at Manacapuru. We computed 
daily rainfall following the Thiessen polygon method applied on Manacapuru and Manaus data. 
This method led to an estimation of 1469 mm during the hydrological year 2008–2009. Average 
value over the period 2006–2011 is 1980 mm/y. The EO TRMM data (Huffman and Bolvin, 2014) 
provide an estimation of 1544 mm during the hydrological year 2008–2009.

16.4 THE MODEL

The IPH-TRIM3D-PCLake model (Fragoso et al. 2009), also known as IPH-ECO, freely available 
at www.ipheco.org, is a three-dimensional (3D) hydrodynamic module coupled with an ecosystem 
module. It describes the main physical (water temperature and density, velocity fields, and free-
water elevation), chemical, and biological (e.g., nutrients and trophic structure) processes existing 
in the aquatic ecosystem. Since its first release, some improvements have been added to the model, 
such as a resuspension flux that is a function of wind fetch and the day length as a function of lati-
tude (Fragoso et al. 2011).

The IPH-ECO hydrodynamic module solves the Reynolds-averaged Navier–Stokes equations 
by using a semi-implicit discretization on a structured staggered grid (Casulli and Cheng, 1992; 
Cheng et al. 1993). The non-linear convective terms existing in the Tidal, Residual, Intertidal 
Mudflat (TRIM) solution (Cheng et al. 1993) are solved by using an explicit Eulerian-Lagrangian 
finite-difference scheme. To increase the stability and accuracy of the numerical discretization, the 
θ-method is used (Casulli and Cattani, 1994). The horizontal eddy viscosity is calibrated manually, 
and the vertical eddy viscosity is parameterized by using an empirical relationship (Pacanowski and 
Philander, 1981).

The model was successfully applied to simulate phytoplankton dynamics in a large shallow 
Brazilian lake (Fragoso et al. 2008) and then extended to evaluate trophic dynamics and aquatic 
metabolism in a large shallow aquatic environment (Cavalcanti et al. 2016; Fragoso et al. 2011). 
In addition, the model was used to simulate a complex river–lake interface (Pereira et al. 2013; 
Cavalcanti et al. 2016) and as a tool to understand the complex dynamics of a biomanipulated 
Danish lake (Pereira et al. 2013). Currently, the model is being applied to simulate estuarine regions’ 
hydrodynamics, deep reservoirs’ carbon dynamics, and floodplain lakes’ dynamics.

In this study, we used a 2D horizontal (vertically averaged) representation of the floodplain. 
It differs from the common approach, as the floodplain is fully simulated, and not seen as a flooded 
zone, mainly depending on the river simulation, where flows are only guided by bed slopes.

16.5 PRECURSORY WORK: GATHERING DATA

16.5.1 generating anD correcting In SItu (real or virtual) gauges

Accuracy of hydraulic model especially relies on boundary conditions of high confidence. In this 
study, part of the boundary conditions and reference data used for calibration and validation are in 
part composed of WL.

16.5.1.1 Ground Gauges
The WLs of Solimões River at the Manacapuru gauge (3.317°S, 60.583°W), labeled 14100000, located 
50 km upstream of the study zone (Figure 16.2), were obtained from the ANA (http://hidroweb.ana.
gov.br/). This gauge has been leveled against EGM08 by differential Global Positioning System (GPS).

In addition, two WLs gauges were installed in the floodplain at “RL1” (3.424°S, 60.264°W) and 
“RL2” (3.368°S, 60.193°W) in the thalweg connecting the lake and the Solimões (Figure 16.2). 
These gauges were leveled with the help of satellite radar altimetry level time series data, according 
to the method described in Santos da Silva et al. (2010), and validated by high-precision bi-frequency 

http://www.ipheco.org
http://hidroweb.ana.gov.br
http://hidroweb.ana.gov.br
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GPS stations. Finally, level time series were reported to the EGM08 geoid. A series of daily values 
is available beginning from September 1, 2006 to December 31, 2012.

16.5.1.2 Virtual Stations
In this study, we used data from two different radar altimeters, namely T/P and ENVISAT/RA-2. 
They were used to produce WL time series in several locations of the floodplain and in the main-
stream, following (Roux et al. 2010; Santos da Silva, 2010).

The NASA and the Centre National d’Etudes Spatiales (CNES) launched the T/P altimeter. 
Data were collected from 1992 to 2004. The T/P altimeter has a 10-day repeat cycle. The intertrack 
distance is 315 km at the equator. Birkett et al. (2002) reported accuracies ranging from 10 cm to 
several meters (root-mean-square error [RMSE] 1.1 m). Two VSs were created from the T/P passes, 
crossing the Solimões River in the vicinity of the Manacapuru gauge: VS_076 (3.863°S, 61.685°W), 
147 km upstream of the gauge, and VS_063 (3.172°S, 59.947°W), 84 km downstream of the gauge.

Within the Earth Observation Program (EOP), the ENVISAT satellite, launched by the European 
Spatial Agency (ESA), collected data from 2002 to 2012. The latter was the follow-on mission for 
the ERS-1 and ERS-2 missions (Zhang, 2009). ENVISAT embarked 10 instruments (Wehr and 
Attema, 2001), including a nadir radar altimeter (RA-2). RA-2 is a high-precision nadir radar that 
operates at two frequencies (ESA, 2007): Ku-band (13.575 GHz) and S-band (3.2 GHz). ENVISAT 
flied on a sun-synchronous circular orbit with an inclination of 98.5° and a 35-day repeat period. It 
completed a global cover of the Earth between latitudes of ±81.5° and the orbit ground track has an 
intertrack distance of approximately 80 km at the equator (Louet, 2000).
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FIGURE 16.2 Study site with the locations of available river stage data and the virtual stations with back-
ground SRTM Global 1 arc-second (SRTMGL1).



345Usefulness of Remotely Sensed Data for Extreme Flood Event Modeling

With 10 years of services, ENVISAT allowed numerous hydrological modeling over the Amazon 
(e.g., Getirana et al. 2010, 2013; Paiva et al. 2013; and Paris et al. 2016), monitoring studies 
(Getirana et al. 2009; Santos da Silva et al. 2014; Seyler et al. 2008; and Da Silva et al. 2012), and 
other derived studies (Bonnet et al. 2016 and Pinel et al. 2016). Regarding altimetry accuracy in the 
Amazon, comparison at crossovers with in situ gauges showed that the quality of the series can 
be highly variable, with results ranging from 12 cm to several meters (Santos da Silva, 2010; Santos 
da Silva et al. 2010).

In this study, satellite radar altimetry ENVISAT mission provided five additional VSs. VS1_564 
(3.392°S, 60.239°W), VS2_564 (3.493°S, 60.253°W), and VS1_149 (-3,375 °S, 60.202°W) were 
located in the floodplain, whereas VSR_564 (3.325°S, 60.220°W) and VSR_149 (3,358°S, 
60.214°W) were located in the Solimões (Figure 16.2).

16.5.1.3 Water Level Data Consolidation
As a whole, we dispose of the records from the official ANA network at Manacapuru gauge and 
from two in situ stations (RL1 and RL2) installed in the floodplain. Altimetry provides five VSs 
(VS1_564, VS2_564, VS1_149, VSR_149, and VSR_564) (Figure 16.2). However, gauge elements’ 
displacements or errors in reading or reporting data are always possible. The comparison between 
altimetry data and in situ records enabled to correct or fulfill in situ measurements, when necessary, 
giving more confidence in the in situ WL series, as mentioned in (Santos da Silva et al. 2014). In 
this paper, these authors highlighted how altimetry helps in managing the Brazilian ANA network. 
Common technic to improve the quality of an in situ gauge located in the river is to compare it with 
two VSs (upstream and downstream).

Altimetry helped in cleaning the ANA records. It was indeed necessary to have confident data 
at Manacapuru to properly estimate the slope along the reach from Manacapuru to the Janauacá 
connecting channel mouth. We also needed to estimate WL in Janauacá at the acquisition dates of 
the Japanese Earth Resources Satellite-1 (JERS-1) images used in this study (see Section 16.5.2). 
As shown in Figure 16.3a, the series at the Manacapuru gauge presents noisy variations during 
years 1994 and 1995. From the T/P series SV_076 and SV_063, we estimated the WL on October 
10, 1995, to be 12.20 m against 10.42 m, as given by the Manacapuru gauge series. The same rea-
soning for the HW level gave a difference of 0.2 m between altimetry estimation and Manacapuru 
gauge level. As the T/P altimetry data have a vertical accuracy of about 0.5 m (Santos da Silva, 
2010), we did not alter the level provided by the ANA gauge for the HW level. Then, by build-
ing linear regression between the Manacapuru gauge and RL1 over the LW and HW periods, we 
estimated the WL in the floodplain at RL1 gauge to be 13.5 m on October 10, 1995, and 22.1 m 
on May 27, 1996.

Altimetry enabled filling and cleaning of RL1 and RL2 gauges. The latter were specially 
constructed for research needs. Compared with ANA gauges, quality robustness were inferior. 
Maintenance was not as sharp as the ANA gauges. In addition to human report error, unstable 
background (muddy moving soil) caused displacements. Hence, the initial leveling did not stand 
for the whole study, and several leveling corrections were necessary along the study period. RL1 is 
located between VS1_564 and VS2_564. We selected the dates for which both stations have data 
and retained only those for which the WL difference was less than 5 cm. The leveling value at RL1 
was obtained as the average of the differences between WL measured at the gauge and the average 
value measured by altimetry.

We also generated four daily VSs. In the Solimões, in front of the Janauacá floodplain, VSR_149 
and VSR_564 were distant of 1.16  km. We merged these data into a single, one VSR. We lin-
early correlated these records with those situated 40 km upstream at Manacapuru place to obtain 
daily  VSR (Figure 16.3b and 3c), following (Roux et al, 2010) methodology. In the floodplain, 
we linearly correlated RL1 to VS1_564, RL1 to VS2_564, and RL2 to VS1_149 to generate daily 
WL VS1_564, VS2_564, and VS1_149, respectively (Figure 16.3f).
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16.5.2 generating flooD extent map

In perspective of generating the DEM and validating the simulation, we built map of inundation 
extent for expected range of WLs in the floodplain.

16.5.2.1 Available Remotely Sensed Products
16.5.2.1.1 Synthetic Aperture Radar Imagery
Hess et al. (2015) produced a dual-season mapping of wetlands inundation and vegetation for the 
central Amazon basin. It is available at the NASA’s Earth Observing System Data and Information 
System (EOSDIS) website (http://reverb.echo.nasa.gov/). In this product, wetland areas have been 
defined as land areas that are seasonally or permanently waterlogged, including lakes, rivers, 
estuaries, and freshwater marshes. The Hess et al. (2015) product is based on mosaicked L-band 
SAR imagery, acquired by JERS-1 during two periods: August–September 1995 and May–August 
1996 for LW and HW, respectively. The dual-season approach provided 15 classes of vegetation. 
Information about the acquisition date and the corresponding level of both images are summarized 
in Table 16.1.

The maps were validated using high-resolution, geocoded digital videography collected during 
aerial surveys at HW and LW periods. Thematic accuracy of the wetlands mask was estimated to be 
95%. Inundation maps issued from the wetland map are commonly used for assessment of accuracy 
in modeling studies of inundation in the central Amazon basin (Alsdorf et al. 2007; Baugh et al. 
2013; Coe et al. 2007; Rudorff et al. 2014b; Trigg et al. 2009; Yamazaki et al. 2012). Some studies 
reported an overestimation of the inundation at LW stages (Rudorff et al. 2014a; Pinel et al. 2015).

The product named ALOS SCANSAR classification and imagery was released by NASA and 
JAXA through the program Inundated Wetlands—Earth Science Data Record (IW-ESDR). Data 
are available at the global monitoring of wetlands extent and dynamics website (http://wetlands.
jpl.nasa.gov/). Extensive multitemporal L-band ALOS ScanSAR data acquired bi-monthly by the 

TABLE 16.1
List of the Inundation Maps

Images Date Hydrologic Period
Corresponding 
Water Level (m) Source

October 10, 1995 Low waters 13.5 Hess et al. 2015

May 27, 1996 High waters 22.1 Hess et al. 2015

January 25, 2007 Rising waters 17.3 ALOS SCANSAR imagery

March 12, 2007 Rising waters 17.8 ALOS SCANSAR imagery

March 17, 2007 Rising waters 17.8 ALOS SCANSAR imagery

April 27, 2007 Rising waters 20.2 ALOS SCANSAR imagery

July 28, 2007 High waters 21.5 ALOS SCANSAR imagery

August 2, 2007 High waters 21.3 ALOS SCANSAR imagery

December 18, 2007 Rising waters 14.9 ALOS SCANSAR imagery

September 14, 2008 Flushing waters 16.6 ALOS SCANSAR imagery

August 4, 2008 High waters 21.00 ALOS SCANSAR imagery

November 29, 2011 Low waters 11.5 Landsat 5 TM

October 20, 2006 Low waters 13.3 Landsat 5 TM

September 2, 2006 Flushing waters 18.4 Landsat 5 TM

July 24, 2009 High waters 23.5 Landsat 5 TM

August 25, 2009 High waters 21.5 Landsat 5 TM

October 09, 2009 Flushing waters 19.8 Landsat 5 TM

http://reverb.echo.nasa.gov
http://wetlands.jpl.nasa.gov
http://wetlands.jpl.nasa.gov
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PALSAR instrument onboard ALOS were used to classify the inundation state for South America 
(Chapman et al. 2015). Horizontal resolution is 100 m at the equator. For the study zone that we were 
interested in, nine classified images were useful (Table 16.1).

16.5.2.1.2 Optical Products
The United States Geological Survey (USGS) and NASA have managed the Landsat missions since 
1972. Recently, the Landsat archive has been made freely available (Woodcock et al. 2008). Landsat 
5 Thematic Mapper (1984–2013) imagery has moderate spatial resolution (30 m) and provides mul-
tispectral images (seven or eight bands), with a short revisit interval (16  days). We selected six 
Landsat images relatively free of clouds. Two images were representative of the LW period, with 
water elevations at the RL1. The third image was representative of the flushing period. Other images 
were acquired during the year 2009.

Water areas were distinguished from non-water areas computationally by using the  normalized 
difference ratio between the mid-infrared band (1.55–1.75 µm) and the visible band (0.52–0.60 µm). 
The latter has already been used by Toivonen et al. (2007) to map open water areas over a 2.2  million 
km² portion of the western Amazon. Each image has been associated with a specific threshold. 
The remaining errors, such as individual clouds and cloud shadows, were corrected by using high 
thresholds. However, this led to underestimation of the water bodies. To attenuate this underestima-
tion, we ranked the classification regarding the associated WL and decided that a pixel that is water 
for one classification has to stay water in the upper-ranked classifications. Inversely, on pixel that is 
non-water for one classification has to stay non-water in the lower-ranked classifications.

16.5.3 generating the topographic Data

16.5.3.1 Available Data for Digital Elevation Model Construction
Obtaining reliable topography is another condition for realistic flood modeling. It also has to be 
seamless from dry land to the beds of water bodies. However, detailed collection is challenging over 
large wetland environments. Currently, the construction of such large floodplain DEMs is achieved 
through integration of land data, generally issued from remote-sensing methods, and bathymetric 
data acquired during several field camps at different water stages. In addition, dense vegetation 
prevents classical airborne DEM in fully reaching the bare earth elevation. Indeed, in the Amazon 
lowland basin, (Carabajal and Harding, 2006) estimated the SRTM elevation to be 40% of the dis-
tance from the canopy top to the ground.

16.5.3.1.1 Earth Observation Data
The global 1 arc-second SRTM V3.0 dataset (SRTMGL1) is a joint product of the NGA and NASA. 
Data were collected during 11 days in February 2000 by using dual Spaceborne Imaging Radar and 
dual X-band SAR. From these data, a near-global DEM was generated, downloadable at NASA’s 
EOSDIS website. Since 2015, the SRTMGL1 had been freely released for South America. The 
SRTM data products have been validated on continental scales: the absolute and relative vertical 
accuracies over South America are 6.2 m and 5.5 m, respectively (Rodriguez et al. 2006). Rudorff 
et al. (2014a) noted a local negative bias of 4.4 m in an Amazonian floodplain. Satge et al. (2015) 
reported a negative bias of 7.2 m for the Andean Plateau region.

Besides the bias introduced by interferometric errors, the SRTM data present an elevation rang-
ing above the bare earth and below the maximum canopy height (Brown et al. 2010; Carabajal and 
Harding, 2006), because of the incapacity of C-band radar in reaching the bare earth. (Carabajal 
and Harding, 2006) estimated the vertical height accuracy to 22.4 m in the lowland Amazon basin. 
Original data are referenced to the World Geodetic System 84 (WGS84) ellipsoid and the Earth 
Gravitational Model 1996 (EGM96) geoid. The EGM96 geoidal undulations were replaced by the 
EGM08 ones (Pavlis et al. 2013).
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Water surfaces have low radar backscatter. Hence, water bodies and coastlines are not well 
defined. As a by-product of the water body editing, a water mask was generated: the SRTM Water 
Body Data (SWBD). It presents the same coverage as SRTMGL1 and is available in 1° by 1° tile 
from NASA’s EOSDIS website. Lehner et al. (2006) reported that this dataset presents some incon-
sistencies. These are partly explained by the fact that water body depiction required ancillary data 
sources, such as Landsat 5 data, that were collected much earlier than the shuttle mission.

The NASA produced ICESAT/GLAS data, collected from 2003 to 2009 by the Geoscience Laser 
Altimeter System (GLAS) on board of the Ice Cloud and land Elevation Satellite laser altimeter 
(ICESat). The GLAS footprint size was approximately 65 m in diameter, spaced by 170 m along 
track and several tens of kilometers across tracks. The ICESat/GLAS products are available at 
NASA’s EOSDIS website. The ICESat/GLAS mission was initially launched for monitoring ice-
caps, and it does not penetrate water surfaces. Nonetheless, literature reported its capability in 
monitoring other land covers. Baghdadi et al. (2011) showed the ability to monitor a lake with a 
vertical accuracy of 5 cm. Many studies also used ICESat/GLAS as ancillary data to validate DEM 
(Satgé et al. 2015, 2016; Schutz et al. 2005; Zwally et al. 2002).

In this study, we used the last released v34 of GLA14 Global Land-Surface, specific for land-
surface elevation. Data were referenced to the TOPEX/Poseidon ellipsoid and EGM96 geoid. We 
selected data acquired at LW, between October and January, outside of SWDB boundaries and 
inside herb classes of the wetlands map. The original geoid was replaced by the EGM08.

The vegetation offset correction required vegetation characteristics. Simard et al. (2011) released 
a global map of forest canopy height at 1 km spatial resolution. This map is based on data from the 
MODIS on NASA’s Terra and Aqua satellites and from the ICESat/GLAS. The Simard et al. (2011) 
map was created by regressing ICESat RH100 (relative height) canopy height measurements with 
global grids of annual mean precipitation, precipitation seasonality, annual mean temperature, tem-
perature seasonality, elevation, and percentage tree cover. It is distributed as an 890 MB GeoTIFF 
file on the website http://lidarradar.jpl.nasa.gov/. This product presents an accuracy of 6.1 m com-
pared with measurements at 66 Fluxnet sites.

16.5.3.1.2 Bathymetric In Situ Data
Bathymetry field campaigns were performed. Most of the data were acquired during a field trip orga-
nized during June 2012, when water stage in the floodplain raised exceptionally to a level of 24.3 m. 
In situ depth data were acquired with an Acoustic Doppler Profiler Current (ADCP, 12 Hz, Teledyne 
RD Instruments) linked to a GPS or an echo sounder linked to a GPS station. The ADCP and echo 
sounder data were checked against manual measurements by using a ruler and showed an overall good 
agreement between them. Other in situ bathymetric data were acquired in May 2008 and August 2006. 
Errors in the bathymetric grid are expected in both depth and position accuracy. According to the con-
structor, an ADCP has a vertical precision of 1 cm in 99% of the measurements, far less below the errors 
induced by field conditions (instruments onboard). In this study, we estimated that waves can generate 
errors in the order of 0.2 m. According to the constructor, the position error is less than 15 m for 95% 
of the measurements for both instruments. This distance is less than the usual grid mesh (30 m for the 
SRTMGL1). Examining survey data, we excluded all the data that had no consistency with the others.

16.5.3.2 Correction of the Interferometric Bias and Vegetation Offset
Pinel et al. (2015) proposed a systematic approach over Amazonian floodplains to generate topo-
graphic data (Figure 16.4). The method removes the vegetation signal, addressing its heterogeneity 
by combining estimates of vegetation height and a land cover map. They improved this approach by 
interpolating the first results with drainage network, field, and altimetry data to obtain a hydrologi-
cally conditioned DEM. Data needed for these methods are initial DEM (SRTMGL1), land cover 
map (Hess et al. (2015) wetlands map and SWBD, height vegetation map (Simard et al. 2011), in situ 
elevation of land, and underwater split-independent Ground Control Point (GCP) datasets: GCP_I 
and GCP_V for interpolation and validation phases, respectively.

http://lidarradar.jpl.nasa.gov/
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First, focusing on a window, including a large area around the floodplain and the river, the pro-
cess begins with the correction of the interferometric bias (Rodriguez et al. 2006). Bare soil areas 
were deduced from the wetland map. The bias was computed as the mean difference between in situ 
and GCP_I data over bare soil and the SRTMGL1 elevations. Bias was uniformly reported over the 
entire study site domain. Finally, an intermediary DEM was obtained, denoted as DEM1.

To correct the positive vegetation bias, the wetland map and SWBD classes were used to split 
the study area into several regions, where the correction offset was computed considering the type 
of vegetation and constrain on elevation related to the flooded status. As a whole, 16 regions were 
identified. In the study area, WLs at the time of images acquisition were estimated to be 13.5 m and 
22.1 m for the LW and HW seasons, respectively. The DEM_ADJ was obtained by subtracting an 
elevation offset to the DEM1 pixel within each region and by turning all pixels that do not respect 
the elevation constraints into NODATA. Forested classes (ID41, ID42, ID43, and ID51) needed 
special attention to determine vegetation subtract offset by using the Simard et al. (2011) product. 
New DEM generated was named DEM2.

The third step consisted of merging DEM2 with the GCP_I dataset. The resulting dataset was 
interpolated by using the ANUDEM v5.3 algorithm (Hutchinson et al. 2011), constrained by a 
drainage network, to produce the corrected DEM (DEMCOR). The input ground truth stream net-
work was formed by applying the commonly used D8 algorithm (Jenson and Domingue, 1988) to 
SRTMGL1, subsequently improved by the inspection of Landsat images.

The DEMs improvements were assessed vertically (against the GCP_V), horizontally (against 
maps of flood extent gathered during the previous step), and hydrologically (through watershed and 
river network assessments).

16.5.3.3 Application to the Janauacá Floodplain
The first step led in the estimation of the interferometric bias to be 2.0  m (standard deviation 
[SD] = 4.1 m). An offset of this magnitude was applied to increase the SRTMGL1 elevations. This 
bias is half the value encountered by Rudorff et al. (2014a) in another floodplain, located approxi-
mately 700 km downstream of the Janauacá floodplain. However, as reported by Rodriguez et al. 
(2006), the interferometric bias is expected to vary from place to place.

The vegetation bias presented a mean value of 5.9 m (SD = 6.9 m) and 7.4 m (SD = 7.3 m) over the 
whole study area and the highland zone, respectively. Carabajal and Harding (2006) reported that 

Ground truth stream
network

Landsat images

Interferometric
bias correction

Vegetation
correction

Interpolation

Honrizontal validation

Hydrological validation

Vertical validation

SRTMGL1

Wetlands map
Map of vegetation height

In situ data
ICESAT data

DEM1 DEM2 DEMcor

FIGURE 16.4 Overview of the method to generate the topographic input.
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SRTM elevation is located at approximately 40% of the distance from the canopy top to the ground. 
Hence, we estimated that the mean canopy height was 12.3 m over the highland zone. This value is 
consistent with the canopy heights found in studies of tree species in central Amazonian floodplain 
forests (Schöngart et al. 2010; Wittmann et al. 2002). In another floodplain, Rudorff et al. (2014a) 
applied a lower vegetation offset of 1.4 m, but this area includes a larger proportion of savanna and 
secondary vegetation than the Janauacá floodplain. It is also much smaller than the value of 22.4 m 
estimated by Carabajal and Harding (2006) or suggested in regional models (23 m and 17 m, pro-
posed by Coe et al. [2007] and Paiva et al. [2011], respectively).

The vertical accuracy assessments, against the GCP_V dataset for the generated DEM and the origi-
nal SRTMGL1, as well as the roughness criteria, are gathered in Table 16.2. Vertical validation against 
GCP shows an RMSE reduction of 64% (from 4.8 m to 1.7 m). Focusing on hydrological agreement, 
DEMCOR presents the best matching with the ground truth stream network (GTSN) (83%), against 
percentages lower than 58% for the SRTMGL1. It also presents the right outlet position. Assuming a 
hypothesis of horizontality in the floodplain, flood extent accuracy, controlled against generated flood 
maps, stresses improvements in the LW and HW periods (+10% and +27%, respectively) (see Pinel 
et al. [2015] for more details).

16.6 MODELING PROJECT SETTING

Setting the model consists of defining the modeled zone, the resolution, and the boundary condi-
tions. Area of simulation is chosen as the region, subject to intense variations of open water extent, 
mainly the downstream part of the floodplain and the main igarapé (Figure 16.5). Owing to high 
computational costs, spatial resolution needs to be stepped down. Bilinear resampling has effects on 
roughness and slopes, and curvatures has effects on the inside channels. To overcome resampling 
effects, we redraw and burnt the channels.

We first restrained the computing domain to the flooded area dropped down by 71% of the cell 
number of model. Hence, we resampled the modeled zone from 31 m to 278 m. The resampling has 
side effects on the roughness (+166%), on bankfull levels, and on floodplains channels (curvature 
and bed slope). The first simulation attempts showed that the model failed in draining the floodplain 
during flushing waters and LWs. Several studies mention the importance of channels systems that 
organize the flows inside floodplains (Rudorff et al. 2014a; Trigg et al. 2012). Taking into account 
these studies, we first artificially burned the DEM, creating a channel network (channelized DEM). 
Based on the bathymetric field dataset, we burned channels in view of generating realistic slopes 
(channelized with slopes). The field trip highlighted that depth in the Solimões can reach up to 
−35 m (against −16 m in the main thalweg). Hence, the last modification was to artificially burn 
the ending cells of the main thalweg (channelized with slopes and Solimões depth). We controlled 
that each of the above-mentioned step allowed improving the accuracy during the first hydrological 
cycle (Figure 16.6). For instance, controlled against RL2, RMSE between simulated and observed 
waters varies from 1.32 m to 0.33 m for simulated WL based on the original DEM and based on a 
Channelized with slopes and Solimões depth DEM, respectively.

TABLE 16.2
DEM Vertical Accuracy Assessment against 10 GCP Dataset and River 
Network Assessments

DEM
Mean 
(m)

SD 
(m)

RMSE 
(m)

Roughness 
(m)

Outlet 
(Boolean)

Connectivity 
(Boolean)

GTSN 
Matching 
Index (%)

SRTMGL1 −0.4 4.7 4.8 1.5 0 1 58

DEMCOR 0.1 1.7 1.7 0.9 1 1 83
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RL1, and (b) water level simulated and observed at RL2.
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Two types of boundary conditions are needed: ones based on flow over the catchment and the 
others based on WL of the Solimões River. Hess’s wetlands map provided the details of the main 
water sources from the upstream catchment. It allowed the partitioning of the upper catchment in 
eight subzones. Bonnet et al. (in revision), through a hydrological model, estimated the flow over 
upland part of the catchment from ANA rainfall gauges. For each igarapé determined through the 
wetland map, we associated a subcatchment. Flow generated over the latter was computed as a ratio 
of the global upland flow.

Visual inspection of the Landsat images allowed to determine the beginning and ending 
dates of overflood and the bankfull cells. Two places were identified: WLBC1 (WL Boundary 
Condition 1) underwater for a WL of 20 m at 49 km from Manacapuru and WLBC2 underwater 
for a level of 20.5 m at 47 km from Manacapuru. At these cells (WLBC1/2), bankfull elevations 
were modified in order to match with the flooding overbank. Level water along this zone was 
estimated by using the recorded WL at Manacapuru gauge and a mean slope (2.2 cm/km) of this 
Solimões reach.

Visual inspection of the Landsat images allows delimitating the zones of overflow from the 
river into the floodplain. As described in the presentation of the study zone, a thalweg continuously 
makes the connection between the floodplain and the river (Figure 16.3). This channel acts alterna-
tively as an inlet or as an outlet in function of the period in the hydrological cycle (Bonnet et al. [in 
revision]). Thus, a WL condition is required here (WLBC3). Luckily, the junction of this thalweg 
and the river is located under an ENVISAT track. Hence, the VS generated at this place (VSR) 
stands for boundary condition.

16.7 CALIBRATION

Simulation is developed in view of modeling extreme hydrological year of 2008–2009. Simulated 
WLs at RL1 and RL2 gauges from June 2007 (HWs) to January 2008 (LWs) are analyzed in order 
to calibrate the model through RMSE between simulated and in situ records. Calibration is real-
ized against Manning’s roughness coefficient. A map of roughness is generated from EO product. 
Values of the Hess’s wetlands map are grouped by vegetation main type. Each type of vegetation 
leads to a specific Manning’s coefficient. As much as we have vegetation types, we have different 
Manning’s values. We separately disturbed the Manning’s values in order to check the influence of 
each vegetation type on the model.

For the study site, we grouped the EO Hess’s wetlands classes into four distinct ones: water/
herb, shrubs, flooded forest, and forest in spatial proportions of 53%, 12%, 22%, and 21%, respec-
tively. Guided by published values for wooded floodplains (Arcement Jr and Schneider, 1989; 
Chow, 1959), we assigned a range of Manning’s roughness values (Table 16.3). We first assigned 
the mean of the range to each class: 0.03 for a range 0.02–0.04, 0.045 for a range 0.03–0.06, 0.1 
for a range 0.05–0.15, and 0.15 for a range 0.1–0.2 for water/herb, shrubs, flooded forest, and 
forest, respectively. We separately disturbed each Manning’s class by changing the manning by 
minimum and maximum values. For each dataset, we analyzed the RMSE of first year of simula-
tion at RL1 and RL2 places (Table 16.3). Depending on the assigned Manning’s coefficient, we 
obtained RMSE value ranges from 0.5 m to 0.59 m at RL1 and RMSE value ranges from 0.28 to 
0.32 m at RL2 place. Finally, the calibration led to the following assignment for the Manning’s 
values: 0.032, 0.042, 0.14, and 0.18 for water/herb, shrubs, flooded forest, and forest, respectively 
(Figure 16.7). For these coefficients, RMSE between observed and simulated elevations at RL1 
and RL2 places reaches the lower values encountered during the calibration phase. These are near 
the values widely used in hydraulics studies in the Amazon. For instance, Rudorff et al. (2014a) 
assigned Manning’s values of 0.14 and 0.10 for forest and shrubs classes, respectively. Their cali-
bration yielded a value of 0.031 in the Solimões. Calibration by Trigg et al. (2009) resulted in a 
value of 0.034 in the Purus River.
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16.8 VALIDATION

The vertical WL accuracy assessment was estimated by comparison with the four gauges located 
inside the floodplain (RL1, RL2, VS1_564, and VS2_564) and against the VSR (limit between 
the Solimões and floodplain). We computed the following statistics: the correlation coefficient, the 
RMSE, the mean, and the SD of the difference between the observed and simulated data.

The simulated inundation extents are compared to flood maps derived from the 2009 Landsat 
images. The agreement between the flooding extent deduced from the DEM and imagery is calcu-
lated by using the following classical skills scores (Paiva et al. 2011; Wilks, 2006): The threat score 
(TS) measures the model’s accuracy with a perfect score of 100; the bias index (BIAS) indicates the 
type of error (overestimation or underestimation); the false alarm ratio (FAR) measures the overesti-
mation of the flooded areas deduced from the DEM with a perfect score of 0, and the missed flooded 
areas ratio (MFR) measures the underestimation of the flooded areas deduced from the DEM with 
a perfect score of 0. Those scores are determined by using the following relations: 
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TABLE 16.3
Analysis Sensibility over Manning’s Roughness Coefficients

Vegetation Type

Area 
Percentage 

(%) Manning’s Roughness Dataset
Manning’s 

Chosen

Water/herb 53 0.02 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.032

Shrubs 12 0.04 0.04 0.02 0.06 0.04 0.04 0.04 0.04 0.042

Flooded forest 22 0.1 0.1 0.1 0.1 0.05 0.15 0.15 0.15 0.14

Forest 21 0.15 0.15 0.15 0.15 0.15 0.15 0.1 0.2 0.18

RL1 RMSE 0.51 0.54 0.55 0.5 0.59 0.5 0.53 0.52 0.5

RL2 RMSE 0.32 0.28 0.28 0.32 0.27 0.28 0.32 0.28 0.28

Mean RMSE 0.415 0.41 0.415 0.41 0.43 0.39 0.425 0.4 0.39
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FIGURE 16.7 Input grid data: (a) Channelized with slopes and Solimões depth DEM and (b) Manning 
roughness map.
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Where, a represents the total area that is both mapped and predicted by the model as inundated, b is 
the predicted but not mapped inundated area, and c is the mapped but not predicted inundated area.

Simulated water elevations were compared with data from the in situ and VSs in the floodplain 
(Figure 16.8 and Table 16.4).

Global RMSE and correlation coefficient between the simulated and observed data at the fifth 
stations over the entire period were 0.22 m and 0.99, respectively. It showed that calibration over 
the first hydrological year was successful. Compared with the accuracy of the used DEM and the 
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TABLE 16.4
WL Vertical Accuracy Assessment

All Station
in situ 
Station

Virtual 
Station Low Water

Rising 
Water

High 
Water

Flushing 
Water

Correlation coefficient 0.99 0.99 0.99 0.95 0.99 0.99 0.99

RMSE (m) 0.22 0.31 0.23 0.38 0.13 0.15 0.33

Differential mean (m) 0.08 0.20 0.015 −0.11 −0.0 0.07 0.06

Differential SD (m) 0.14 0.18 0.18 0.35 0.13 0.10 0.28
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amplitude of the flood wave (11.6 m), RMSE value is low. This suggests that IPH-ECO was able to 
reproduce well the variations of water-surface elevations in the floodplain. Rudorff et al. (2014a) 
yielded an RMSE of 0.24 m when simulating the WL in another Amazonian floodplain. However, 
statistics indexes can vary depending on the station’s nature: an RMSE value of 0.31 m with a corre-
lation coefficient of 0.99 when comparing with both in situ stations, against an RMSE value of 0.99 
with a correlation coefficient of 0.23 when comparing with VS. As SVR is a boundary condition, 
statistics for this gauge improve the statistics when comparing VS with in situ station. Figure 16.8 
highlights that we can expect a statistics variation, depending on the water period. Setting global 
RMSE values as references, Table 16.4 presents that RMSE values can vary from +71 % at LWs to 
−43% at rising waters. This highlights that the ability of the model to reproduce the floodplain flows 
depends on the period of the hydrological year.

The other important source of errors can also come from boundary conditions. Those of water 
flow type are derived from rainfall through a hydrological model developed in a work currently in 
revision (Bonnet et al. [in revision]). VS1_564 located in the south of the basin is mostly dependent 
on the water issued from the upstream subcatchments. Good statistics (RMSE = 0.26 m) obtained 
at VS1 place tends to positively validate these premodeled data. However, the model seems to prove 
that at LW, these water inputs are overestimated. Lower accuracy (RMSE = 0.38 m and correlation 
coefficient = 0.95) obtained at LW can be linked to a draining problem related to an unadapted 
resolution. Such a coarse resolution cannot take into account all the channels that drive the flows 
(Trigg et al. 2012). Rudorff et al. (2014a) mentioned the importance of the channels that organize 
the flooding and flushing periods.

Regarding the evaluation of the flood extent, the values of the different skill scores (TS, BIAS, 
MFR, and FAR) obtained by comparing simulation results with flood maps are reported in Table 16.5. 
We consider the areas predicted by the model but not mapped as inundated to be overpredictions 
and the areas mapped but not predicted by model as inundated to be underpredictions. Two valida-
tions of flood extent correspond to HWs (July 24, 2009 and August 25, 2009) and one to flushing 
waters (September 10, 2009).

From a general point of view, simulation overpredicts the inundation in the floodplain and the 
skill scores are consistent from a date to another. The TS remains the highest in the case of the 
highest WL (TS = 71 for the date July 24, 2009). Variations in the accuracy (TS index) are little. 
Indeed, the lowest TS value is 63, obtained for the date August 25, 2009. The BIAS values are simi-
lar and range from −35 to −53 for the dates July 24, 2009, and August 25, 2009. The average nega-
tive BIAS value suggests that the model overpredicted the flooding extent. This fact is corroborated 
by a high FAR and a low MFR. Regarding the spatial distribution, Figure 16.9a through 9c clearly 
spotlights that simulated waters are in overprediction. Comparing with similar hydraulics studies in 
the Amazon basin, Wilson et al. (2007a) yielded to an accuracy of 73 at the HW level. The matching 
result of Yamazaki et al. (2012) reached 60 at the HW level. On a global scale, Paiva et al. (2011) 
found a model performance of 70 at the HW level.

TABLE 16.5
Agreement between Simulated and ALOS-1/PLASAR 
Mapping of Inundation Extent

Date Acquisition TS BIAS FAR MFR

July 24, 2009 71 −35 28 2

August 25, 2009 63 −53 36 2

October 09, 2009 65 −41 33 5
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Overestimation of the simulated flood extents can be attributed to an underestimation to a pixel 
misclassification during the process of mapping the Landsat images. Detecting water under vegeta-
tion with the Landsat images is challenging (Toivonen et al. 2007; Yamazaki et al. 2015). Indeed, 
most of the overestimated pixels lie around the Janauacá Lake (Figure 16.9a through 9c), where 
woody areas are encountered according to the wetlands map. Overestimation of the simulated flood 
extents can also be linked to an underrepresentation of the channels network. Such a coarse resolution 
cannot take into account the entire channels that drive the flows. Trigg et al. (2012) and Rudorff et al. 
(2014a) mentioned the importance of the channels that organize the flooding and flushing periods.

16.9 CONCLUSIONS

Floodplains are among the most diverse and productive ecosystems in the world. They ensure sev-
eral hydrological and ecological functions for the basin. Today, these sensitive zones are facing 
increasing human anthropization and augmentation in frequency and intensity of extreme flood 
events. How they will evolve with these progressive changes is still difficult to predict. In this 
context, hydrodynamic models are attractive tools for studying water circulation patterns in the 
floodplain and exchange with mainstream. However, they require relatively high-quality data of 
topography, land cover, WLs, and water flows to produce realistic results. In the large unmonitored 
regions, such as the low Amazonian basin, remotely sensed data appear as a solution to gather input 
data in view of hydrodynamics modeling.

Parallelly, the recent and ongoing proliferation of free EO data brings the challenge of integrating 
the many heterogeneous geospatial datasets to monitor and model in view of effective information 
management.

In this study, we aimed at reproducing one of the largest flood events (2009–2010) ever recorded 
for a floodplain of the low Amazon basin. Stage recorded at Óbidos, the lowermost gauge station in 
the Amazon, was the highest registered (10.83 m). We detailed a systematic procedure step by step 
to generate relevant and reliable datasets for model setting, calibration, and validation. All the steps 
involve various EO data products: altimetry, airborne DEM, land cover derived from SAR imagery, 
vegetation height map derived from altimetry (Light Detection and Ranging [LIDAR]) and optical 
imagery, inundation maps derived from SAR, and optical images.

Dataset generation was divided into three steps. The first step was to map the zone in terms 
of WL. Altimetry furnished five VSs in the zone. We use the latter to correct local national offi-
cial data, to generate in situ daily virtual WL in the mainstream. Two ground-stage stations were 
installed in the area for research needs in the floodplain. Altimetry allowed in filling records gap 
and correcting gauge elements displacements. By interpolation of VSs, two additional daily VSs 
were generated. The second step led to building and gathering 14 flood extent maps. The third step 
was to generate an accurate DEM. Here, we exhibited and applied a method presented in a recently 
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published work (Pinel et al. 2015). For this, using ICESat and in situ data, we began to detect and 
rectify a negative bias of 2.0 m noising the SRTMGL1. Then, we removed the vegetation signal by a 
coupled analysis of EO products: two maps of the vegetation and of the vegetation height map. Over 
the flooded forested zones, analysis led to subtract an average percentage of 53% from the vegeta-
tion height. We built drainage network, generated from the SRTM, and then rectified with the help 
of satellite imagery. Inputting the adjusted DEM, the drainage network, in situ data, and altimetry 
data in ANUDEM v5.3, we generated an adjusted and conditioned DEM. Improvements between 
original SRTMGL1 and DEM were validated vertically (+64%), horizontally (+24% and +18% for 
LW and HW periods, respectively), and hydrologically (+43%).

Setting the model includes defining the computing domain and boundary conditions. In view of 
reducing computation time, we restricted the watershed area to a modeled zone (−71% in terms of 
cells), resampled the computation grid from 1 arc-second to 3 arc-second. To overcome resampling 
effects, we redrew and burned the channel network inside the floodplain. These topographic modifi-
cations dropped down the RMSE from 1.32 m to 0.33 m between observed and simulated elevations. 
Visual inspection of EO images allowed the identification of boundary conditions. Those of WL 
type, located in the Solimões, were derived from interpolated data from in situ WL given by ANA 
and by altimetry (SVR). Those of water flow type, located in the floodplain, were derived from rain-
fall through a hydrological model developed in a previous work (Bonnet et al. 2017).

We performed the calibration over roughness coefficient against WL at RL1 and RL2 during 
the 2007–2008 hydrological year. A wetlands map, provided by Hess et al. (2015), derived from 
JERS-1 images, was used to establish a land cover map of four zones. On each zone, a commonly 
used Manning’s value was proposed. Each value was separately altered to investigate the influence 
of each vegetation type. Finally, calibration phase led to Manning’s values of 0.032, 0.042, 0.14, and 
0.18 for the water/herb, shrubs, flooded forest, and terra firme zones, respectively.

Extreme flood event (2009–2010) was validated in terms of vertical accuracy against altimetrics 
and in situ WLs and in terms of horizontal accuracy, comparing simulated flood extent against 
inundation map. Simulation WLs presented a high correlation level (r = 0.99) and an RMSE of 
0.22 m (compared with a WL fluctuation of 11.6 m). However, depending on the location of the 
reference, the RMSE varied: 0.5 m for RL2 located near the river and 0.11 m for RL1 located in the 
center of the lake. Accuracy also depended on the hydrological periods, and RMSE can range from 
0.13 m at rising waters to 0.38 m during LWs. Regarding horizontal accuracy, simulation tended 
to overpredict the inundation in the floodplain. The skill scores, over the three studied dates, were 
similar. Horizontal accuracy remained the highest in the case of comparison, with the images cor-
responding with the highest WL.

The presented case demonstrates how remote-sensing data can be integrated with flood models. 
Since 1998, the Copernicus program, the world largest EO program, aims at providing continu-
ous and accurate EO data. The ongoing Sentinel series, the future mission of surface water and 
ocean topography (SWOT), and the numerous studies on integrating remotely sensed data with 
flood modeling spotlight that there is now a real will of space agencies to fortify the support that 
satellite missions can offer over water monitoring. Although progresses have already been achieved 
in recent years, research in comprehension of the ways in which remote sensing can support flood 
monitoring, modeling, and management is still an active open field.
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17 Large-Scale Flood Monitoring 
in Monsoon Asia for Global 
Disaster Risk Reduction 
Using MODIS/EOS Data

Youngjoo Kwak

17.1 INTRODUCTION

Natural disaster risk under climate change is an inevitable threat to sustainable development, as major 
flood disasters have been frequent in both developing and advanced countries. Causing widespread 
devastation, with massive economic damage and loss of human lives, flood disasters hamper eco-
nomic growth and accelerate poverty, particularly in most developing countries. Globally, this trend 
will likely continue owing to an increase in flood magnitude and lack of preparedness for extreme 
events (World Bank 2013). Since the early twenty-first century, risk reduction of natural disasters 
has been globally recognized as a common goal and has been included in the eight Millennium 
Development Goals (MDGs) and the Sustainable Development Goals (SDGs) to adapt to climate 
change. The United Nations Office for Disaster Risk Reduction (UNISDR) (2015) reported SDGs 
that pertain to disaster risk reduction and action to strength at local, national, regional, and global 
levels in priority areas. In 2015, the Sendai Framework for Disaster Risk Reduction was adopted by 
187 national governments and international organizations as the first of the post-2015 international 
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agreements and as the basis for a risk-informed and resilient future. The Sendai Framework particu-
larly emphasized the importance of “geospatial and space-based technologies and related services 
and maintaining and strengthening in-situ and remotely-sensed earth and climate observations” to 
support national measures for understanding disaster risk and successful disaster risk communica-
tion (UNISDR 2015). In line with these efforts, the monitors and governors of global river floods pay 
attention to international scientific and policy communities for their support to facilitate evidence-
based policy making for disaster risk reduction.

Around 40% of the world’s poor countries live on transboundary river-basin systems in South 
Asia. At the same time, many floodplains in this region have been experiencing a  rising number of 
flood disasters. In particular, the Economic Social Commission for Asia and Pacific (ESCAP 2015) 
reported, based on data from the World Resources Institute (2015), that 10 riparian  countries, where 
transboundary river-basin floods occur frequently, are disproportionally influenced by the impacts 
of large-scale flood disasters in the Asia-Pacific region (World Water Assessment Programme 
[WWAP] 2009). For instance, India has the largest number of flood-exposed population (approxi-
mately 4.84 million), followed by Bangladesh (approximately 3.48 million) and China (approxi-
mately 3.28 million) (Hanson et al. 2011, UNISDR 2015, ESCAP 2015). In terms of annual gross 
domestic product (GDP) affected by floods, Bangladesh has the highest percentage (4.75%) of the 
country’s total GDP, followed by Cambodia (3.42%) and Afghanistan (2.58%) (Dilley et al. 2005, 
ESCAP 2015). Kwak (2012b) demonstrated that the Asia-Pacific region will be exposed to higher 
flood risks throughout the twenty-first century than ever before, because more extreme rainfall will 
lead to greater flood inundation depths in many areas. Figure 17.1 shows the maximum extent of 
inundation risk areas (blue-colored areas) in transboundary river basins and nationwide large flood 
areas affected by the maximum daily discharge of 50-year return period based on the Gumbel dis-
tribution from the hydrological block-wise use of TOPMODEL (BTOP) under the present climate 
conditions (1980–2004). Figure 17.1 also shows the representative transboundary river basins in 

FIGURE 17.1 Maximum extent of potential flood-inundated area (blue color) in transboundary river basins 
(black line) and nationwide large flood areas (orange color) in Monsoon Asia.
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the area enclosed by the black line. Therefore, the management of transboundary river basins is a 
very important driver for sustainable development and international water resource.

Flood detection and mapping are one of the traditional themes of satellite-based remote sens-
ing, using optical images, such as Landsat (Flood Mapping, https://oas.gsfc.nasa.gov/Landsat) and 
the advanced very-high-resolution radiometer (AVHRR, the National Oceanic and Atmospheric 
Administration [NOAA]), and synthetic aperture radar (SAR) images, such as X-band TerraSAR-X, 
X-band Cosmo-SkyMed, C-band RADARSAT-2, and L-band ALOS/PALSAR-1 and -2 
(Mason et al. 2010, Giustarini et al. 2013, Refice et al. 2014, Evans et al. 2010). Considering trans-
boundary river-basin floods and nationwide flood monitoring, floodwater detection is a more spe-
cific area of challenge in relation to the selection of suitable sensors, and many methods have been 
developed (Alsdorf et al. 2003, Brakenridge et al. 2012, Verbesselt et al. 2012).

Satellite remote sensing has opened a new era to pursue global flood estimation, which is partic-
ularly important for hard-to-access, remote and transboundary areas. Since its launch in December 
1999, the Moderate Resolution Imaging Spectroradiometer (MODIS) has been one of the main 
contributors to progress in near real-time (NRT) monitoring and global mapping. One of the great-
est benefits of the MODIS instrument is its capability to broadcast raw data directly all over the 
world. In addition, it stores raw data for later download and has a wide swath range (approxi-
mately 2330 km), with good temporal and moderate spatial resolutions (250, 500, and 1000 m) 
(Pinheiro et al. 2007). Flood mapping systems utilizing MODIS multispectral sensors are now able 
to generate NRT flood maps, with a global coverage on a daily basis. The National Aeronautics 
and Space Administration (NASA) is also in charge of the Land, Atmosphere Near-Real-Time 
Capability for EOS (Earth Observing System) (LANCE) and supports application users interested 
in monitoring a wide variety of Earth’s land surface. In 2011, the MODIS NRT Global Flood 
Mapping System was released as a 3-day product by NASA and the Dartmouth Flood Observatory 
(DFO). It uses a water detection algorithm based on a reflectance ratio of MODIS bands 1 and 2 
and a threshold on band 7 to provisionally identify pixels as water (Brakenridge and Anderson 
2006, DFO 2008).

A reliable flood monitoring system at a global scale is in great demand by a variety of national and 
international agencies for disaster risk reduction and management. Disaster risk reduction strategies 
and policies should also be developed to systematically incorporate a framework for the use of NRT 
satellite data, which offer significant advantages for quick response to emergency situations soon after 
a disaster. In January 2015, Japan’s space policy was established as the new Basic Plan for Space 
Policy emphasizing the development and utilization of space, because Japan has been faced with 
increasing demands for safety and security, including recovery from the Great East Japan Earthquake 
(Cabinet Office [CAO] 2015). Remote-sensing technology should play a central role in this effort for 
more effective and accurate disaster risk reduction and restoration. Online flood mapping systems 
have been created by NASA, which not only provide fundamental observational information but also 
produce such maps with a rapid mapping technique (NASA 2007, 2015). These online data are down-
loadable for monitoring nationwide flood disasters all over the world, with high spatial and temporal 
resolution. Therefore, disaster managers and other end users will be able to monitor floods and evalu-
ate larger-scale flood risk by accessing these flood maps and related products.

Remote-sensing-based index algorithms have been designed to detect surface water in a con-
ceptually simple way, relying mainly on spectral indices, such as the Normalized Difference Water 
Index (NDWI) (McFeeters 1996, Gao 1996, Ji  et  al.  2009) and the Land Surface Water Index 
(LSWI) (Chandrasekar et al. 2010). With worldwide applicability, the MODIS sensor has three spec-
tral bands that are sensitive to water and soil moisture: near-infrared (NIR, band 2: 841–876 nm) 
and shortwave infrared (SWIR, band 6: 1628–1652 nm, and SWIR, band 7: 2105–2155 nm). In 
order to acquire a better detection capability, spectral indices are necessary to detect surface water 
in a spectrally normalized way; for example, the Modified Land Surface Water Index (MLSWI), 
which was a new index developed from NDWI and LSWI, specifically for floodwater detection 
(Kwak et al. 2012a, 2014a).

https://oas.gsfc.nasa.gov/Landsat
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This study focuses on large-scale flood monitoring during Asia’s monsoon season by using EOS/
MODIS data. Although it is obviously hard to identify distributed floodwaters, the ultimate goal of 
this study is to instantly produce a nationwide flood map, while maximizing the utility of MODIS 
time series data for the spatial and temporal dynamics of inundation areas, covering the whole of the 
Asia as well as all global surface for disaster risk reduction. Therefore, we developed an improved 
algorithm of the MODIS-derived water index based on a reflectance ratio of MODIS bands 2 and 7 
for floodwater detection immediately after a disaster, and then, we confirmed the performance 
of  the water detection algorithm even in different conditions such as flood time, flood duration, 
and topography.

17.2 DATA USED

17.2.1 moDis

The MODIS instruments, onboard NASA’s EOS/Terra and Aqua satellites, provide twice-daily 
near-global coverage, with differences in Terra’s and Aqua’s orbits resulting in different viewing 
and cloud-cover conditions. The Terra equatorial overpass is at 10:30  a.m. local solar time and 
Aqua is at 1:30 p.m. The frequent acquisition of the MODIS onboard the Aqua and Terra satellite 
platforms enables efficient monitoring of the seasonal change of land cover such as water bodies 
and vegetation.

For nationwide and large-scale NRT flood mapping, MODIS is the most suitable for detect-
ing floodwater because of high frequent acquisition, high observation coverage, low view angle, 
the absence of clouds or cloud shadow, and aerosol loading at 500 m spatial resolution (the U.S. 
Geological Survey [USGS] LPDAAC 2012, NASA 2015). Recently, Kwak et al. (2015) conducted 
a feasibility study on the development of a rapid flood mapping system in case of Bangladesh by 
using MODIS products and level-three 8-day composite surface reflectance products in the sinu-
soidal projections, MOD09A1 (Terra) and MYD09A1 (Aqua), respectively. Both studies used the 
same products as the best observations during an 8-day period. The quality of the MOD09A1 prod-
ucts was checked for cloud cover in reference to the quality layer of the Quality Assessment (QA) 
Science Datasets (SDS) as quality indicator. The images were acquired from the five case studies of 
representational catastrophic floods in Asia from 2010 to 2016 (Figure 17.1): the Indus River flood 
of Pakistan in 2010, the Chao River flood of Thailand in 2011, the Mekong River flood of Cambodia 
in 2011, the Ganges-Brahmaputra-Meghna (GBM) River flood of Bangladesh in 2015, and the Hai 
River flood of China in 2016. Table 17.1 shows the list of MODIS data from data pool of USGS-
NASA Land Processes Distributed Active Archive Center (USGS LPDAAC 2012) (https://lpdaac.
usgs.gov/data_access/data_pool).

TABLE 17.1
MODIS Data (MOD09A1: Terra and MYD09A1: Aqua)

River Basins Countries Scale Observed Date Tile

Indus Pakistan Transboundary August 5–12, 2010 and 
August 21–28, 2010

h23-24v05-06

GBM Bangladesh Transboundary August 5–12, 2007, 
September 6–13, 2015 and 
September 14–21, 2015

h26v06

Chao Phraya Thailand Nationwide October 24–31, 2011 h27v07

Mekong Cambodia Transboundary September 22–30, 2011 h28v07

Hai China Nationwide July 19–26, 2016 h26-27v05

https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool
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17.2.2 alos observation

The Advanced Land Observing Satellite (ALOS) was launched by the Japan Aerospace Exploration 
Agency (JAXA) in 2006, and it carries three remote-sensing instruments: an L-band Polarimetric 
Synthetic Aperture Radar (PALSAR), an along-track 2.5 m Panchromatic Resolution Stereo Mapper 
(PRISM), and an Advanced Visible and Near-Infrared Radiometer, type 2 (AVNIR-2). The ALOS 
AVNIR-2  is a visible and NIR radiometer with four bands for observing land and coastal zones. 
The data types of AVNIR-2 and PALSAR are 8- and 16-bit unsigned integers and have spatial reso-
lutions of 10 m and 12.5 m, with absolute accuracy of 19.8 m and 0.76 dB, respectively (Tadono 
et al. 2009, Shimada et al. 2009, JAXA 2011). The AVNIR-2 and PALSAR images from ALOS 
in this study were employed in order to verify the detection of surface-water products, including 
floodwater from MODIS-derived MLSWI. The PALSAR level 1.5 images, which were acquired on 
August 5, 2010, were captured around the conjunction area between the Indus and Kabul Rivers of 
Pakistan and used for validation in a pixel-based comparison after image classification with the flood 
areas extracted by a MODIS-derived hybrid detection algorithm. The AVNIR-2 images, captured on 
December 23, 2006 (preflood time), and August 10, 2007 (flood time), were also used for validation 
in the Brahmaputra River flood areas of the Sirajganj district (approximately 2480 km2), Bangladesh.

17.2.3 elevation Data

The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data (DEM 15 s, 
with a 450 m spatial resolution, 1 m vertical resolution, and 6.2 m absolute height error in Eurasia) 
is an international project spearheaded by the National Geospatial-Intelligence Agency (NGA) 
and NASA (Rodriguez et al. 2005, Farr et al. 2007). The void-filled DEM in this research was 
acquired from Hydrological data based on the SHuttle Elevation Derivatives at multiple Scales 
(HydroSHEDS), originating from a combination of the SRTM-3 and Digital Terrain Elevation Data 
(DTED®)-1 for regional and global-scale applications (Lehner et al. 2006). As a reference data, we 
also used the river network data from HydroSHEDS for confirming the detected major river. In 
this study, DEM data were used to compensate for the weakness of detecting spatial flood areas at 
15 arc-second spatial resolution (approximately 500 m at the equator) and 1 m vertical resolution.

17.3 METHODOLOGY

17.3.1 nationWiDe emergency flooD monitoring frameWork

For effective nationwide flood mapping in a transboundary river basin, a framework of emergency 
activities is essential. We applied a framework of national environment monitoring, focusing on 
disaster risk response, which was recently developed by the Ministry of Land, Infrastructure, 
Transport, and Tourism of Japan. In this study, we developed a technical approach to assist in select-
ing and providing risk information as part of the new framework (Figure 17.2). For this technical 
approach, we invented hybrid floodwater detection algorithm for flood inundation mapping, which 
eliminates complexity and ambiguity of spectral characteristics, so that hazard maps will be easy 
to understand for decision makers of national and local governments, for example, in differentiat-
ing flooded from non-flooded areas. We selected MODIS data to ensure a nationwide coverage of 
emergency flood detection in this framework.

17.3.2 spectral characteristics of flooDWater

The reflectance characteristics of land covers become complicated during flooding due to mix-
ture of land types. In particular, turbid water albedo increases significantly during flooding, with 
a maximum reflectance peak moving toward band 1 (red: 620–670 nm) because silt and debris are 
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concentrated in the water; in contrast, an increase in soil moisture causes a decrease in soil albedo. 
To discriminate water from other types of land cover, that is, soil and vegetation, the reflectance 
rate of band 2 (NIR) increases when clean water becomes turbid during a flood. Consequently, 
the reflectance rates of bands 6 and 7 (SWIR) are lower than those of the other bands in the case 
of some types of surface water, such as clean water, muddy water, and turbid water (Kwak et al. 
2014a, 2015). Based on the theory of experimental reflectance characteristics, NIR and SWIR can 
be used to devise new floodwater indices. Therefore, the design of a spectral floodwater index is 
based on the fact that water absorbs energy at NIR (841–876 nm) and SWIR (1628–1652 nm and 
2105–2155 nm) wavelengths.

17.3.3 hybriD flooDWater Detection algorithm

In this study, we developed a hybrid floodwater detection method with a tracking algorithm, sequen-
tially using MLSWI and SRTM DEM. This algorithm is designed to track the trajectory of floodwa-
ter flowing in eight directions to adjacent pixels with the same or lower DEM. The MLSWI from the 
MODIS bands was applied to floodwater detection after analyzing inland water characteristics, with 
a focus on the sensitivity of water indices. The MLSWI combining bands 2 and 7 was validated and 
compared with two water indices of NDWI1,6 (ρRed−ρSWIR)/(ρRed+ρSWIR) and LSWI2,6 (ρNIR−ρSWIR)/
(ρNIR+ρSWIR). An equation of “1−NIR” to emphasize the effect of changes in NIR used to derive 
MLSWI from the MODIS bands is as follows:

 MLSWI NIR SWIR

NIR SWIR
2 7

1

1
, =

−( ) −
−( ) +

ρ ρ
ρ ρ

 (17.1)

Where, ρNIR and ρSWIR are atmospherically corrected surface reflectance for their respective 
MODIS bands: band 1 (red: 620–670 nm), band 2 (NIR: 841–876 nm), and bands 6 and 7 (SWIR: 
1628–1652 nm and 2105–2155 nm, respectively).

After detecting floodwater by means of selected MLSWI, a hybrid floodwater detection algo-
rithm (Kwak et al. 2014b) was applied to each pixel to calculate the floodwater  boundary, based 
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on the difference in height between a flooded pixel and a non-flooded pixel. Figure 17.3 illustrates 
how to detect flooded pixels around the target pixel. Floodwater was assumed to flow in eight direc-
tions to any adjacent pixel with the same or lower DEM; that is, if floodwater_DEM ≦ 0 m, the 
adjacent pixel is given the value of 1 as a flooded pixel. The MLSWI alone is not complete in 
detecting floodwater from a mixture of water and vegetation within a moderate spatial resolu-
tion of 500 m. In addition, it is not sufficiently capable of accurately detecting floodwater over 
a large area in its solo application. In order to compensate for these limitations of the MLSWI, 
the hybrid floodwater detection algorithm was applied to nationwide flood mapping as a supple-
menting approach by using the eight-direction flow scheme, solely based on remotely sensed 
data sources via open internet, that is, DEM and MODIS. This hybrid floodwater detection algo-
rithm made it possible to identify flood areas more accurately than the single use of the MLSWI 
or any indicator.

17.3.4 verification of flooDWater from alos observation anD hyDroinformation

For validating the hybrid floodwater detection algorithm coupled with MLSWI and DEM, ambi-
guities of flooded pixels were examined by using high-spatial-resolution ALOS images, AVNIR-2 
(10 m) and PALSAR (15 m), and observed data from the representative gauge stations (point data) 
along the Brahmaputra River of Bangladesh and the Indus River of Pakistan, respectively. Cross-
validation using high-spatial-resolution ALOS images and ground-based water levels was per-
formed in order to estimate the optimal threshold values of the MLSWI and to identify flooded 
areas more accurately.

First, the AVNIR-2 (10 m) and PALSAR (15 m) were used to verify floodwater and non-flooded 
areas in the Sirajganj district along the Brahmaputra River of Bangladesh and near the Chashma 
Barrage on the Indus River in Mianwali District of Punjab Province of Pakistan. The floodwater 
pixels of the MLSWI were confirmed by a comparison with the water pixels from Normalized 
Difference Vegetation Index (NDVI_2,1  =  (ro_Red  −  ro_NIR)/(ro_Red  +  ro_NIR)) threshold-
based classification, focusing on NIR (band 4: 760–890 nm) of AVNIR-2, and by a comparison 
with the water pixels from backscattering threshold-based classification (−13 to −15 dB), focusing 
on water scattering of single L-band PALSAR image. For evaluating floodwater map products, 
Kappa coefficient (0.0 < K ≤ 1.0, Landis and Koch 1977, Smeeton 1985) was used for comparison of 
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inundated areas (Kwak et al. 2015). It is an index to estimate the degree of agreement; for example, 
when the value is less than 1.0, it implies that the agreement is not perfect between two rasters:

 K
P P

P
e

e

= −
−

0

1
 (17.2)

 P
a b a b

n n
e = × + ×

×
( )1 1 0 0  (17.3)

Where, P0 is the overall accuracy, which is the ratio of matched pixels; Pe stands for the probability 
of random agreement, including both inundated (a1 and b1) and non-inundated (a0 and b0) pixels in 
MODIS-derived MLSWI and ALOS data, respectively; and n is the total number of compared pixels.

Next, flooded and non-flooded areas were cross-validated with hydrological data from river 
water gauging stations. Such data are crucial in cross-validation, because remarkable changes are 
usually observed in the extent of detected floodwater from the time when the water level exceeded 
the water danger level or the flood reached the danger level. In this respect, hydrological gauging 
stations play an important role in recording current maximum water levels and flood stages in moni-
toring river flood situations. Water level data were collected at the gauge stations of the Bangladesh 
Water Development Board (BWDB) and Pakistan Meteorological Department (PMD) during the 
flood season from June to September in 2007 and 2010, respectively.

17.4 RESULTS AND VALIDATION

17.4.1 valiDateD flooD areas

Figure 17.4 presents inundation extent maps, with spatial distributions for two cases of flooding. 
The pixel-based classification of the MLSWI, generated by MODIS images from MLSWI 2 and 7 
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(Figure 17.4d), was confirmed by comparisons to be superior to the other water indices of the LSWI 
(Figure 17.4e) and the NDWI (Figure 17.4f) during 5–12 August 2007.

The flooded areas were also verified by comparing MODIS-derived results with ALOS 
AVNIR-2 captured on August 10, 2007 (Figure 17.4g), and PALSAR data captured on August 5, 
2010 (Figure 17.4b). Although the flooded areas smaller than a resolution of 500 m were not detected 
accurately in the case of MODIS, the MLSWI products are in moderate agreement with the high-
spatial-resolution ALOS AVNIR-2 (10 m) and PALSAR images (10 and 15 m spatial resolution, 
respectively) for estimating the most vulnerable areas near the major river. The overall accuracy of 
78% was achieved with a Kappa coefficient (K) of 0.57, confirming a moderate agreement due to 
a different water fraction caused by the different spatial resolution, especially in a mixed area. In 
addition, the accuracy of floodwater contained some errors originating from the accuracy of DEM, 
such as overestimated height of the terrain due to gaps of forests, buildings, and other artificial 
structures.

In addition, Table 17.2 shows a clear relationship between the peak water level (exceeding the 
danger level) and the detected flooded areas during the floods at the representative gauge stations 
in both countries. We clearly confirmed that flood propagation was in good agreement with the 
timing of the water level exceeding the water danger level, for example, which is 13.35 m above 
mean sea level (MSL, meter) in the case of the 2007 flood event at the Sirajganj station. The hybrid 
floodwater detection algorithm confirmed that the total inundated area also increased at the peak of 
water level on August 1, 2007, as the water level exceeded the danger level on July 19, 2007. These 
validations appear consistent with the maximum flood areas (August 5–12) in Figure 17.4d, from the 
hybrid floodwater detection algorithm coupled with MLSWI and DEM after the peak water level on 
August 1, 2007, and show the universal superiority of floodwater detection.

17.4.2 nationWiDe flooD mapping from the moDis/eos observation

This study focused on transboundary river-basin floods and used a nationwide comprehensive 
approach to detect floodwater for flood mapping, based on characterization of flood detection indi-
ces. We estimated flooded areas by using an optimal threshold of the MLSWI (red-colored pixels 
in Figure 17.5, ranging between 0.75 and 0.85 in the five cases) and then improved the accuracy 
of detecting flooded areas by using a hybrid floodwater detection algorithm (blue-colored pixels 
in Figure 17.5a and 5c). The variation of optimal threshold was sensitive to the water fraction of 
mixture pixels covered with water, vegetation, and soil. It was difficult to standardize the optimal 
threshold for all cases in a single formula, and we found that the dependence on the spectral charac-
teristics of land surface was the main reason why the value of the MLSWI fluctuated with mixture 
pixels during a flood. The selected case studies of flood mapping represented the MLSWI’s varia-
tion divided into two threshold groups: an optimal threshold of 0.75 resulted for Chao Phraya River 

TABLE 17.2
Hydrological Data during the Floods at Representative Gauge Stations

Basin Station

Flood Peak Events

Water Level 
(MSL, meter)

Danger Level 
(MSL, meter) Flood Travel Time Date

Indus, Pakistan Kalabagh 211.53 198.12 N/A July 30, 2010

Indus, Pakistan Chashma 197.51 198.12 48 h (2 days)/60 km August 01, 2010

Brahmaputra, Bangladesh Sirajganj 14.95 13.35 99 h (4 days)/140 km August 02, 2007

Source: Data from PMD (2011) and Bangladesh Water Development Board (BWDB), Flood Forecasting and Warning 
Centre (FFWC), Annual flood report 2015. Available: http://www.ffwc.gov.bd (accessed February 20, 2016), 2015.

http://www.ffwc.gov.bd
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of Thailand, Mekong River of Cambodia, and Hai River of China, and 0.85 resulted for the Indus 
River of Pakistan and GBM River of Bangladesh.

The two groups can be characterized from spectral and topographical aspects of the MLSWI. 
First, in terms of spectral characteristics, the more soil and vegetation a pixel contains, the further 
the optimal threshold of the MLSWI decreases during a flood. Next, in terms of topographical 
characteristics, the value of the optimal threshold of the MLSWI was larger in lowland floodplains 
than in alluvial fan floodplains near mountainous areas, because of land surface reflectance from 
soil and forests. A typical example is Cambodian lowland as part of the Mekong Delta, most of 
which is used for agriculture. Excluding microtopographic patterns, the area can be considered as 
nearly uniform land in the floodplain. Therefore, floodwater can be detected better during a flood at 
0.75 in the floodplain rather than at 0.85, which is the optimal threshold for alluvial fan floodplains 
near mountainous areas.

As a result, the maximum inundation areas covered at least 18,000 km2 (12% of the total area 
of Pakistan, transboundary river flood) during the Indus River flood in 2010, at least 29,900 km2 
(32% of the total area of Bangladesh, transboundary river flood) during the Bangladesh flood in the 
GBM River in 2015, at least 4,000 km2 (nationwide flood) during the Chao Phraya River flood in 
2011, at least 23,000 km2 (12% of the total area of Cambodia, transboundary river flood) during the 
Lower Mekong River flood in 2011, and at least 1,700 km2 (nationwide flood) during the Hai River 
flood in 2016.

Improved up-to-date nationwide flood maps are in great demand from relevant government min-
istries and agencies right after flood disasters in developing countries. Although they have an obli-
gation to do their best to collect risk information from all sectors, it is obviously hard to identify the 
distribution and location of flood-related damage in temporal and spatial distribution after flooding 
at local, national, and transboundary levels. In order to improve satellite-detected flood mapping at 

FIGURE 17.5 Nationwide flood map from the hybrid floodwater detection algorithm, coupled with the 
MLSWI and DEM in the five selected flood cases. (a) An optimal threshold of 0.85 for the Indus River of 
Pakistan flood during August 22–28, 2010; (b) GBM of Bangladesh flood during September 6–21, 2015; (c) the 
Chao Phraya River flood during October 24–31, 2011, and the Lower Mekong River flood during September 
22–30, 2011; and (d) the Hai River flood during July 19–26, 2016; flooded areas from the MLSWI (red-colored 
pixels) and improved flooded areas from the hybrid algorithm (blue-colored pixels).
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national or larger scales, data limitation is the main difficulty, and it needs to be resolved by apply-
ing different approaches, including some using a single sensor, while others using multisensors via 
advanced international disasters charts such as Sentinel Asia Constellation. At the same time, a new 
algorithm of water detection should be developed for image fusion-based flood change detection 
from SAR and optical multispectrometers, because open surface water and turbid water, including 
muddy variations, are hard to discriminate clearly due to weather conditions, especially clouds over 
mixed areas during a flood. It is also important to verify satellite-detected flood areas with ground-
based truth and in situ data from intergovernmental collaboration, since floods can cause not only 
domestic issues but also international issues involving transboundry river basins. Despite these 
limitations, the flood mapping introduced in this study can be a globally applicable approach for any 
scale of countries exposed to damage and risk from extreme river floods to improve their emergency 
response framework and data availability.

17.5 CONCLUSIONS

The study found that the hybrid floodwater detection algorithm coupled with the MLSWI and DEM 
can be a comprehensive and universal approach in the framework for nationwide emergency flood 
monitoring and that it will be a valuable tool to risk managers and decision makers, despite the 
limitation of data availability. We confirmed that this hybrid detection algorithm can identify flood-
water, and thus flood hazard areas, in the application of the monsoon Asia. The main conclusions of 
the study can be summarized as follows.

First, an improved floodwater index, the MLSWI, should be applicable to large flood detection 
in any floodplain over the monsoon Asia and reduce ambiguity in detecting floodwaters. In par-
ticular, SWIR (2105–2155 nm) reflectance is more stable to discriminate inland surface water from 
land cover as an optimal water indicator. Although the hybrid floodwater detection algorithm is a 
straightforward methodology, we found that the MLSWI can directly detect floodwaters from the 
reflectance of multitemporal MODIS during flood events. The nationwide flood mapping was evalu-
ated and validated through pixel-to-pixel comparison with observed high-spatial-resolution satellite 
images (10~15 m) and recorded hydrological data. We confirmed that these results were reasonable 
and acceptable as a flood hazard map after comparing them with the results of the observed data.

Second, we confirmed that nationwide flood maps can be quickly provided as a low-cost solution to 
stakeholders, governments at all levels, policy makers, and administrative agencies in various relevant 
sectors of their countries. This type of map will play an important role in providing disaster informa-
tion for effective emergency response in the early stage of a flood disaster before obtaining validated 
data at the regional and local levels. The balance between accuracy and timeliness should be taken into 
account in detecting and estimating floodwater and its extent, because emergency task forces need as 
much disaster information as possible as soon as possible to better understand actual flood situation.

The next challenge is to develop broadly scalable products and contribute a practical tool for 
an NRT flood monitoring system with time-series analysis, while overcoming the lack of data and 
limitations, such as weather problems, spatial resolution considering a mixed-water pixel, flood-
water depth, and evidence-based comparable data. In this respect, it will be one of the appropri-
ate solutions to adopt multitemporal change detection and water fraction calculation based on a 
multispectral linear mixture approach to improve the accuracy of floodwater detection in a pixel 
of MODIS data. Future work will continue to contribute to global flood monitoring as well as to 
NRT flood risk mapping, for building better emergency response and economic development as an 
innovative solution.
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18 Introducing Flood 
Susceptibility Index 
Using Remote-Sensing 
Data and Geographic 
Information Systems
Empirical Analysis in Sperchios 
River Basin, Greece

Nikolaos Stathopoulos, Kleomenis Kalogeropoulos, 
Christos Polykretis, Panagiotis Skrimizeas, Panagiota 
Louka, Efthimios Karymbalis, and Christos Chalkias

18.1 INTRODUCTION

Natural disasters have important impacts in many countries worldwide, with a large number of 
deaths, destructions in technical works and infrastructure, and dislocations of population. Moreover, 
due to the significant effects of climate change, these impacts are expected to rise in the upcom-
ing years for a lot of countries. Although, technology and science have developed significantly 
nowadays, natural disasters keep having disastrous economic, environmental, and human results 
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at a global scale. The study of these phenomena is constant during the last decades and presents 
augmentation trends (Smith and Petley, 2009). In order to manage adequately their effects, it is of 
high importance to synthesize risk and hazard maps for both natural and artificial environments 
(Maantay and Maroko, 2009; Smith, 2014). Flood phenomena are the most devastating and severe 
among natural disasters and affect more than 75 million people globally (Smith, 2001). In extreme 
flood events, it is important to manage rapidly the magnitude of the flood effects and land uses 
covered with water (Wang, 2004). Flood mapping is a useful tool for improving short- and long-
term assistance in the affected areas directly after the event. The flood danger/risk can be defined at 
many scales, from universal to local ones.

In the beginning of the 1980s, geographers argued that flood maps do not influence significantly 
people’s perception on floods and at the same time do not offer a satisfactory research design. Based 
on the Canadian Flood Damage Reduction Program, even though flood awareness has risen among 
the post‐map groups, it is not due to the maps (Handmer, 1980; Handmer and Milne, 1981). Many 
methods were tested in an attempt to improve this deficiency. Use of remote sensing (RS) is not a 
new idea. In 1980, a research discussed the application of RS for disaster warning and procedures 
such as flood mapping; in addition, flood assessment was included (Deekshatulu et al. 1980). Twelve 
years later, Hubert‐Moy et al. (1992) suggested that Landsat Thematic Mapper (TM) spatial resolu-
tion is compatible with small-sized catchment areas. This study also supported the fact that image 
processing and flow analysis can simulate the flood conditions several days after the peak of the 
event, even though the repeatability of satellites is low.

The usefulness of synthetic aperture radar (SAR) data was addressed within a research in 1996. 
This study managed to compare satellite data on river flooding, with photographic records (obtained 
from a light aircraft) aiming to demonstrate the accuracy of the SAR technique (Biggin and Blyth, 
1996). In the United Arab Emirates (U.A.E.), in 2002, in an attempt to deal with erosion caused by 
flash floods, coupling of RS data and GIS techniques was used (Torab, 2002). Light Detection and 
Ranging (LIDAR) data were processed in 2004 to identify coastal impacts and sea‐level rise due to 
climate change, on Prince Edward Island (PEI). In this study, Webster et al. (2004) demonstrated 
that validated digital elevation models (DEMs) derived from airborne LIDAR data can be used 
efficiently for mapping flood risk and hazard zones in coastal areas.

Pelletier et al. (2005) attempted an integrated approach, combining four different but comple-
mentary methods: (a) two‐dimensional raster‐based hydraulic modeling, (b) change detection from 
satellite images, (c) flood inundation field‐based mapping, and (d) surficial geologic mapping. Each 
method had different spatial detail but provided important information for a complete and sufficient 
assessment, thus leading to the creation of a probabilistic flood hazard map by modeling several 
events. In the same year, the North Atlantic Treaty Organization (NATO) developed a project for 
monitoring extreme flood events in Romania and Hungary. For improving the existing local opera-
tional flood hazard assessment and monitoring, Earth observation (EO) data were used in the project. 
Optical and microwave data acquired from U.S. DMSP/Quikscat, RADARSAT, LANDSAT‐7/TM, 
EOS‐AM TERRA/MODIS and ASTER satellite sensors were used to extract information such as 
accurate updated digital maps of the hydrographical network, land cover/land use, extent of the 
flooded areas, multitemporal maps concerning the flood dynamics, hazard maps for the flooded 
areas and the affected zones, and so on (Stancalie and Craciunescu, 2005).

The following year, Dewan et al. (2006) used multidate RADARSAT SAR and geographic infor-
mation system (GIS) data in order to delineate flood hazard. It was accomplished by using SAR data 
for estimating flood frequency and water depth, which were the basis for synthesizing flood hazard 
maps. The creation of the maps was based on a ranking matrix, with land‐cover, geomorphic, and 
elevation data as GIS layers.

The RS data were also used in many studies in 2007. For example, satellite data such as Landsat 7 
enhanced thematic mapper (ETM)+ images and Shuttle Radar Topography Mission (SRTM) DEM were 
combined with a distributed rainfall–runoff model in an attempt to map flood hazard on urban canyons. 
For this to be accomplished, Landsat 7 ETM+ images were classified (supervised classification), thus 
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creating the land-cover map, whereas flow characteristics and topography were extracted by analyzing 
the SRTM DEM and the geographic extent of the drainage lines by the topographic map (Tapia‐Silva 
et al. 2007). Two years later, Pradhan (2009) used logistic regression on RS data via GIS‐based analysis, 
to delineate risk areas and produce flood susceptibility maps. The study concerned Malaysian possible 
flood areas, and its goal was to present them in a susceptibility map produced by statistical GIS modeling. 
The methodology was to create a geodatabase populated by all the necessary spatial data (topographical, 
geological, land cover, hydrological, DEM, Global Positioning System [GPS], and precipitation data), 
which were later processed to calculate the rating of each factor by using logistic regression. The final 
flood susceptibility map was synthesized by overlaying the produced layers (of the factors).

Pulvirenti et al., in 2011, proposed an algorithm for flooded area mapping, applied on SAR data. 
The main idea was to integrate radar data, describing the flooded areas along with simple hydraulic 
information via fuzzy logic. Radar data, and specifically L, C, and X frequency bands, were the 
algorithm’s inputs, aided by the land-cover and DEM data. In order to validate the mapping process 
COSMO‐SkyMed, very-high-resolution X‐band SAR data were used (Pulvirenti et al. 2011). Tehrany 
et al. (2013) also published an assessment, about prediction efficiency for two other methods on flood 
susceptibility mapping, which are (a) rule‐based decision tree (DT) and (b) combination of frequency 
ratio (FR) and logistic regression (LR) statistical methods. In parallel, Gioti et al. (2013) worked on a 
GIS‐based runoff model for flash floods, using high-resolution DEM and meteorological data.

A time series analysis of satellite imagery for flooded areas took place in 2014. The areas 
covered by water were extracted by satellite, images, and as a result, an image for each flood 
event came up, presenting the maximum extent for each case. Furthermore, the produced maps 
were processed in order to calculate the relative frequency of inundation (RFI), along with a 
Landsat‐5/7 time series (from 1989 to 2012) imagery analysis (Skakun et al. 2014). Flood map-
ping is a crucial element of flood risk management. In Europe, the European Commission (EC) 
requested from the member states to prepare two types of maps, flood hazard maps and flood risk 
maps. Flood hazard maps depict the extent and expected water depths/levels of a flooded area in 
three different scenarios: a low-probability scenario or extreme events, a medium-probability  scenario 
(at least with a return period of 100 years), and, if appropriate, a high-probability scenario. Flood 
risk maps must also be prepared for the flooded areas under these three scenarios, presenting the 
potential population, economic and environmental risks due to flood events, and other possible 
information that member states may find useful to include, for instance, other sources of pollu-
tion (Directive2007/60/EC). To support the transition from traditional flood defense strategies 
to a flood risk management approach at a basin scale in Europe, the European Union (EU) has 
adopted this directive. Based on the EU directive, De Moel et al. (2009) attempted to record the 
flood mapping practices followed in 29 European countries and study the available maps and the 
ways that were used. The conclusion was that roughly half of the countries had adequate maps 
covering their complete extent, whereas no more than another third had maps that cover only sig-
nificant areas. Five countries were found to possess a very small number or even no flood maps.

This study introduces a methodology for flood hazard assessment by using RS data (SAR data from 
Sentinel‐1, Aster global digital elevation map (GDEM), and so on), free RS and GIS software (Quantum 
GIS (QGIS) and European space agency (ESA) sentinel application platform (SNAP), advanced geo-
computations, and statistical techniques. The main objective of this project is to present a new method, 
which is based on Flood Susceptibility Index (FSI) mapping, for flood hazard susceptibility assessment.

18.2 DATA AND METHODOLOGY

18.2.1 research frameWork

The implementation of the proposed method (Figure 18.1) requires two main categories of spatial 
data: geographical background data related to flooding and floods inventory. The general research 
strategy is to calculate the density of floods within classes of each background factor and then to 
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use these values for the estimation of integrated FSI. Accordingly, the mapping of this index can 
be used for the flood susceptibility zonation. Thus, the research framework includes (a) spatial 
database creation of the flood‐related factors; (b) categorization of these factors; (c) extraction of 
the flooded areas by analyzing RS imagery; (d) calculation of the flooded areas within each factor 
category, by using GIS techniques (the output of this step is the calculation of the FSI for each 
category); (e) integration of FSI values in order to calculate total FSI for each mapping unit; and 
finally (f) mapping/zonation of the total FSI in the study area.

18.2.2 stuDy area

Sperchios River basin (Figure 18.2) is in Central Greece and is bounded by Mount Othrys (1,727 m) 
on the North, by Vardousia (2,437 m), Oeta (2,152 m), and Kallidromo (1,372 m) mountains on the 
South, and by Tymfristos mountain (2,316 m) on the West. Maliakos Gulf is the eastern limit of the 
basin. The basin covers an area of about 2116 km2, with an average altitude of 810 m (Kakavas, 1984).

Sperchios River, with a main river channel of about 82.5 km, originates from the eastern sides 
of Tymfristos mountain and follows a west–east flow direction, discharging into Maliakos Gulf. 
The main channel of Sperchios River is recharged by both perennial and ephemeral flow streams. 
The river’s valley, in the two-thirds of its length, has steep slopes, which give to the river a rather 
mountainous-torrential character, with crucial flooding peaks and very intense sediment yield. 
On the contrary, at the last third of its course, Sperchios gradually becomes a lowland river, crossing 
low-altitude areas, often causing severe flooding (Koutsogiannis, 2007).

The delta of the river covers about 200 km2 and is continuously prograding with a unique rate com-
pared with other Greek river deltas. This progradation rate, according to Maroukian et al. (1995), was 
estimated approximately in 130 acres annually, with augmentation trends in the last 150–200 years.

The type of the hydrographic network is characterized in general as elongated dendritic, and the 
main channel of Sperchios is a seventh-order stream per Strahler’s ordering system.
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FIGURE 18.1 Flowchart of the methodology.
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The climate ranges from dry to semi‐humid.
The main land uses refer to agricultural areas with significant natural vegetation and complex 

cultivation systems (Stathopoulos et al. 2013).
Regarding the geology of Sperchios River basin, it is mainly composed of igneous and sedimentary 

rocks (Kallergis et al. 1970; Marinos et al. 1957, 1962, 1963, 1967; Papastamatiou, 1960, 1962). 
The main geological formations in the west part of the basin are limestones, flysch, and clastic sediments. 
In the north, northeast, and southeast parts of the basin, and specifically in Kallidromo mountain, 
the main rocks are limestone and schist‐crests with ophiolites. In the south part (Oiti mountain), the 
prevailing geological formations are limestones and, in a limited extent, flysch formation.

The 450  km2 of the lowland area of the river’s basin consists of the most recent Quaternary 
deposits, which constitute the 20% of the basin’s area. These sediments consist of conglomerates, 
lacustrine deposits, Quaternary alluvial deposits, scree, talus cones, and Holocene alluvial deposits. 

FIGURE 18.2 Study area (Sperchios River basin).
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The total thickness of these deposits, in the area of Sperchios delta, exceeds 1000 m (Stathopoulos 
et al. 2011).

Sperchios River basin and Maliakos Gulf constitute an asymmetric tectonic rift.
The geological formations are divided into four relevant categories according to their perme-

ability (Kakavas, 1984): 

 1. Permeable (carbonate rocks, conglomerates, coarse‐grained sediments, recent deposits 
of Sperchios riverbed, coarse‐grained formations of alluvial, etc.)

 2. Medium-permeable (deep deposits of Sperchios river, several petrologic types of the ophiolitic 
complex, etc.)

 3. Semi‐permeable (weathered territorial mantle of flysch and of schist‐chert, and so on)
 4. Impermeable (formations of flysch, old deposits of Sperchios, the deposits of mineral‐ 

thermal springs, etc.)

18.2.3 flooD event

The upper-atmosphere synoptic circulation was driven by an extensive low geopotential 
heights centered in Northern Europe. The 500‐hPa analysis of 1800 UTC on January 31, 2015 
(Figure 18.3a), shows a strong northern airflow over West Europe, bringing cold air mass over 
West Mediterranean. This air mass, after a long sea track over the relatively warmer Mediterranean 
Sea, is then forced to move over Greece due to the strong west–southwest flow dominating over 
central and east Mediterranean.

This upper-atmosphere synoptic circulation, corresponding to an extensive low-pressure 
area at the surface (Figure 18.3b, mean sea level (MSL)), triggered and deepened mesoscale 
lows over Northern Ionian Sea–Northwest Greece, which then, associated (or not) with cold 
fronts, gave a lot of precipitation passing over West Greece, with the greatest intensity recorded 
on the evening of January 31.

Mediterranean depressions typically produce high rainfall intensities over West Greece 
due to the intense relief. The air mass in this kind of weather disturbances, after crossing the 
Mediterranean Sea, except of being supplied with abundant moisture, also becomes unstable. 
Furthermore, as this moist and unstable air is continuously forced to rise over the mountains of 
Pindus, it gives rise to showers and thunderstorms, mainly in the windward side. In the east part 
of the mainland, the rainfall amounts, although relatively limited, may also result in extensive 
flooding (Stathis et al. 2005).

In Table 18.1, we can see the 24-hour precipitation height for the 2-day period (January 31 to 
February 1, 2015) in four meteorological stations in the area of interest (Figure 18.2).

The two maxima of this episode (in the afternoon on January 31 and in the early hours on 
February 1) are clearly represented in the diagram of the 3-hour accumulated precipitation, recorded 
at the Makrakomi meteorological station (Figure 18.4).

The studied rainfall event is extreme and rare, thus leading to overestimation of floods in 
Sperchios River basin. It is assumed that estimating FSI for this event covers floods caused by less 
severe rainfall events and consequently floods of smaller spatial extent.

18.2.4 Data Description

The proposed FSI methodology focuses on using open-source data as primary inputs of this proce-
dure. Loyal to this idea, the main data reservoirs were RS projects, such as Aster, Sentinel‐1, Google 
Earth, and Coordination of Information on the Environment (CORINE), as well as open govern-
ment databases. Table 18.2 presents all the primary data that were used, the purpose for which the 
data were used, and the sources from which the data were acquired.
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FIGURE 18.3 (1) ECMWF 500hPa analysis 31‐01‐2015/1800UTC, and (2) ECMWF MSL (Mean Sea Level) 
analysis 31‐01‐2015/1800UTC.

TABLE 18.1
Twenty-Four-Hour Accumulated Precipitation at Meteorological Stations in the Area 
of Interest

Meteorological Station (NOA) Altitude (m)

24-Hour Accumulated 
Precipitation Height (mm) 

January 31, 2015

24-Hour Accumulated 
Precipitation Height (mm) 

February 1, 2015

Makrakomi 125.00 24.4 18.0

Domokos 570.00 12.2 6.4

Myriki 1045.00 69.0 48.6

Mavro Lithari 1250.00 80.4 43.2

Source: http://www.meteo.gr/meteoplus/Gmap.cfm

http://www.meteo.gr/meteoplus/Gmap.cfm
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From Aster* project, by METI† and NASA‡ (http://asterweb.jpl.nasa.gov/GDEM.ASP), GDEM 
V2§  data were used. In addition, from SENTINEL‐1  mission, which is the European Radar 
Observatory for the Copernicus (2012) joint initiative of the EC and the European Space Agency 
(ESA), SENTINEL‐1A Level 1 GRD IW HR Dual Polarization data images were acquired, where 
(https://sentinel.esa.int/web/sentinel/missions/sentinel‐1):

• Level 1 is the data-processing level for common (most) users
• GRD is ground-range-detected products
• IW is the interferometric wide swath
• HR is high resolution
• Dual polarization indicates VV + VH or HH + HV (where V = Vertical and H = Horizontal)

Land-cover data were acquired from CORINE project, which also belongs to Copernicus initiative 
(the pan‐European component is coordinated by the European Environment Agency). The most 
recent land-cover data (2012) that were used for this study have the following characteristics (http://
land.copernicus.eu/pan‐european/corine‐land‐cover/view):

• Satellite data: IRS P6 LISS III and RapidEye dual date
• Time consistency: 2011–2012
• Geometric accuracy, satellite data: 25 m or less
• Minimum mapping unit/width: 25 ha/100 m

* Advanced Spaceborne Thermal Emission and Reflection Radiometer
† Ministry of Economy, Trade, and Industry, Japan
‡ National Aeronautics and Space Administration, United States
§ Global Digital Elevation Model Version 2, October 2011
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FIGURE 18.4 Meteorological Station Makrakomi (NOA)—3-hour accumulated precipitation.

TABLE 18.2
Primary Data Information

Data—Projects Purpose Source

Aster GDEM Digital elevation model http://reverb.echo.nasa.gov/reverb/

SENTINEL–1 images Extraction of flooded areas https://scihub.copernicus.eu/dhus/#/home

CORINE Land cover—use http://land.copernicus.eu/pan-european/
corine-land-cover/clc-2012

Google Earth images Digitization of main river network https://www.google.com/earth/

IGME geological maps Digitization of geological formations http://www.igme.gr/index.php

Greece basins—shapefiles Sperchios River basin limits http://geodata.gov.gr/dataset

http://reverb.echo.nasa.gov/reverb
https://scihub.copernicus.eu/dhus/#/home
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://asterweb.jpl.nasa.gov/GDEM.ASP
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
http://land.copernicus.eu/pan%E2%80%90european/corine%E2%80%90land%E2%80%90cover/view
http://land.copernicus.eu/pan%E2%80%90european/corine%E2%80%90land%E2%80%90cover/view
https://www.google.com/earth
http://www.igme.gr/index.php
http://geodata.gov.gr/dataset
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
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• Geometric accuracy, CLC: better than 100 m
• Thematic accuracy, CLC: 85% or more

The main river network, in order to depict the contemporary regime of the study area, was digi-
tized by using Google Earth images. Furthermore, the geological formations of the study area were 
digitized from the Institute of Geology and Mineral Exploration (IGME) 1:50,000 Geology Maps. 
Finally, the extent (limits) of the studied basin was acquired from the open database Geodata.
gov.gr (the delimitation of all the national hydrological basins is a result of national projects).

Aster GDEM and Sentinel 1 images are raster datasets, whereas CORINE land cover (polygon), 
main river network (polyline), geological formations (polygon), and basin’s extent (polygon) are 
vector shapefiles.

18.2.5 Data homogenization

Τhe homogenization of the primary data was a crucial stage for the implementation of the proposed 
method. This stage is constituted by (a) reprojection of all datasets in WGS 1984 UTM 34N projec-
tion in order to match DEM’s projection system, (b) rectification of all raster layers in order to cor-
respond to DEM’s pixel size (~28.5 m), and (c) masking of all layers according to the extent of the 
basin. With these preprocessing actions, we ensured the integration of all datasets in the next stages 
of the proposed method.

18.2.6 flooD Data—remote-sensing analysis

To create a layer depicting the total extent of the basin that was either permanently or periodically 
flooded throughout the extreme rainfall event until the basin drained out, six Sentinel‐1 images were 
acquired and processed (via ESA SNAP software), covering days 2, 3, 8, 9, 14, and 15 of February 2015.

The preprocessing (A, B, and C), processing (D), and postprocessing (E) steps that were fol-
lowed, for each image, are (www.un‐spider.org, steps for flood mapping using Sentinel imagery): 

 A. Spatial subset: The region of interest is selected, as the total area covered by the images is 
significantly wider, thus discarding the unnecessary data and making the processing faster 
(Figure 18.5A1 and A2).

 B. Radiometric calibration: The backscatter (the signal that was reflected from the surface 
back to the direction where it came from) coefficient values are calibrated (Figure 18.5B).

 C. Speckle filtering: The salt and pepper effect (grainy texture caused by random constructive 
and destructive interferences from the multiple scattering returns that occurs within each 
resolution cell) is reduced. As speckle is a form of noise, which degrades the quality of an 
image and may make interpretation (visual or digital) more difficult, it is generally desirable 
to reduce it before interpretation and analysis. In this case study, Lee Filter with window 
size 7 × 7 (after trials) was applied (Figure 18.5C).

 D. Binarization: A threshold value is selected (after trials), in order to separate water from 
non‐water, by analyzing the logarithmic histogram of the filtered backscatter coefficient 
(different for each image), as presented in Figure 18.5D1 and D2. The histogram shows two 
peaks of different magnitude. Low values of the backscatter correspond to water class, and 
high values correspond to non‐water class. For example, the threshold value for February 2, 
2015, image is 2.22^E‐2. The threshold value is applied in a band math expression in order 
to binarize the image (The image’s backscatter pixel values that are lower than the thresh-
old are multiplied by 255 and represent water objects, while the higher ones are multiplied 
by 0 (non-water)). The binary image is presented in Figure 18.5D3.

 E. Range‐Doppler terrain correction: As the obtained image is in the geometry of the sensor, it 
is reprojected to the geographic projection (geometric correction), as shown in Figure 18.5E. 
For this final step, SRTM3Sec DEM is used—bilinear interpolation as resampling method 
and WGS 1984 UTM 34N as projection system.

http://www.un%E2%80%90spider.org
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The final binary raster images are converted to vector shapefiles and then merged, creating this way a 
final vector dataset, with the total flooded extent of the basin as an integration of all flooded areas for 
the complete duration of the flood event. It must be noted that before merging the shapefiles, a small 
number of polygons, from each shapefile, was manually removed, as it corresponded in shadows 
created by the satellite’s acquisition angle and the morphology of the study area (the backscatter 
values of shadows and water are similar). This was not made arbitrarily, as both the sun’s position 
and the satellite’s angle were known for the specific acquisition date and time of each image.

18.2.7 geographic information system process

It is of high importance for the proposed analysis to create a hydrologically valid DEM, representing 
the current hydrologic regime of the basin. For this, the first step was the digitization of the main 
river network, using the most resent images available from Google Earth. Alongside, the primary 
DEM was processed in order to fill the existing sinks. Finally, the digitized main river network and 
the filled DEM were combined and co‐processed by using a GIS DEM reconditioning method.

FIGURE 18.5 Sentinel image analysis: (A1) primary image, (A2) spatial subset, (B) radiometric calibration, 
(C) speckle filtering, (D1) histogram—threshold, (D2) separation of water/non-water, (D3) binarization, and 
(E) range‐Doppler terrain correction.
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The reconditioning method modifies a DEM by imposing linear features onto it (burning/
fencing). It is an implementation of the AGREE method developed at the University of Texas at 
Austin in 1997; it requires setting a stream buffer,* a smooth drop/raise value,† and a sharp drop/
raise value‡ (Arc Hydro Tools Version 2.0 Tutorial (ESRI, 2011)). After many trials, the values for 
these parameters that produced a hydrologically valid DEM are 5 pixels, 5 m, and 25 m accordingly. 
The main concept is to create a hydrologically valid DEM and, at the same time, to preserve the real 
morphological characteristics of the basin.

It must also be noticed that the studied river network has an important particularity, which posed 
specific obstacles during the basin’s hydrological analysis. In the final part of the riverbed, an arti-
ficial channel is constructed, which diverts part of the river’s flow and is mostly used for flooding 
management and irrigation purposes. The diversion was digitized along with the main river network 
and was included in the DEM reconditioning step. Nevertheless, this fact results in creating two 
outlet points for Sperchios River in Maliakos Gulf. When attempting to calculate the basin’s flow 
accumulation, a false layer is created, as the algorithm is set to work only for one outlet point. To 
overcome this problem, the valid flow accumulation layer was created by combining five different 
flow accumulation layers that were created by using the two outlet points separately. The next step 
involved the creation of the flow length layer. This layer was reclassified to discard areas with flow 
length more than 10 km. These areas are mountainous with progressively increasing slopes.

Finally, the conditional‐background factors, related to flooding, were created. Slope, flow accu-
mulation, and flow length layers were produced from DEM analysis; distance layers were produced 
from main river network and coastline vectors (polyline shapefiles); and hydrolithology layer was 
produced from geology layer after classification of the geological formations according to their 
permeability and hydraulic conductivity (K coefficient).

18.2.8 total fixeD susceptibility inDex calculation

The FSI defines the importance of a factor category on flood occurrence according to spatial dis-
tribution of the pixels of the considered factors and the flooded pixels. This method calculates the 
FSI for each category of all factors (e.g., land cover, lithology, and slope), which are selected for 
the case study. Thus, the FSI for the factor category j (FSIj) is defined as follows: 
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where:
Npix (Sj) is the number of flooded pixels in factor category j
Npix (Nj) is the total number of pixels in the same-factor category

Thus, the FSI presents the relative susceptibility to flood occurrence. If a category is highly cor-
related to flooding, the area associated with this category will have a high positive FSI value. 

* The number of cells around the linear feature for which the smoothing will occur.
† The amount (in vertical units) that the linear feature will be dropped (if the number is positive) or the fence extruded 

(if the number is negative). This value will be used to interpolate the DEM into the buffered area (between the boundary 
of the buffer and the dropped /raised vector feature).

‡ The additional amount (in vertical units) that the linear feature will be dropped (if the number is positive) or the fence 
extruded (if the number is negative). This results in additional burning/fencing on top of the smooth buffer interpolation 
and needs to be performed to preserve the linear features used for burning/fencing.



392 Remote Sensing of Hydrometeorological Hazards

A negative FSI value for a specific category is an indicator of low flooding density in this class. 
Thus, high positive FSI values indicate FS density in this class much higher than the average, and 
high negative FSI values indicate FS density much lower than the average. Consequently, for a 
causal factor to be useful for flood susceptibility mapping, its categories should provide a range of 
FSI values. The overall susceptibility, S, for each pixel is defined as 
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where:
FSIi is the susceptibility for the factor i
n is the total number of the factors

A similar concept has been used for the assessment of landslide susceptibility (Van Westen, 1997; 
Tien Bui et al. 2011).

In this case study, in order to calculate local FSI values for each layer and determine the final 
layers that were used for the total FSI (TFSI) computation, the following steps were followed: 

 1. Categorization of all flood‐related factors: The Natural Breaks (Jenks) categorization (five 
categories) was implemented (by using a GIS‐based function) for the factors with continu-
ous values (slope, flow accumulation, flow length, distance from coastline, and distance 
from main river network). Natural Breaks (Jenks) method is a data classification method 
that minimizes variance within groups of data and maximizes variance between groups of 
data (Jenks, 1967). For land cover and hydrolithology, the thematic classes of the nominal 
scale were preserved (Table 18.3).

 2. Creation of flood events (points): The total flood polygon, produced by Sentinel images, 
was converted in raster layer, which was then converted in point features.

 3. Random selection of 70% of flood points: From the flood points, 70% were randomly 
selected, whereas the rest 30% were kept as a validation set.

 4. Export all layer class values for each flood point: The corresponding class value of all 
layers or factors were exported for each one of the flood points.

 5. Calculation of local FSI values for each class of all layers: The number of flood points 
corresponding to each class was calculated for every layer. This number was divided by the 
total number of pixels of each class, thus resulting in flood density per class for every layer. 
Local FSI values for each class of every layer were calculated by dividing flood density per 
class by the total density (all flood points divided by the total number of pixels) of each layer. 
The calculation of FSI for all the categories of factors (local FSI) was based on the imple-
mentation of Equation 18.1. Table 18.4 presents the calculation of local FSI values for flow 
length layer (as an example), and Table 18.5 presents all local FSI values for every layer.

TABLE 18.3
Classification of Thematic Layers

Thematic Class Raster 
ClassHydrolithology (Formations) Land Cover

Very low up to no permeability Water bodies 1

Very low permeability Wetlands 2

Low permeability Artificial surfaces 3

Medium permeability Agricultural areas 4

High up to very high permeability Forest and semi-natural areas 5
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 6. Correlation tests of layers: Range and standard deviation values of FSI were calculated 
for all factors, in order to interpret the importance of each factor (He and Beighley, 2008). 
After the statistical correlation tests among these layers (for every pair of factors), some 
of them were excluded (DEM, aspect, and Topographic Wetness Index). The layers used 
for the process should not be correlated with each other; thus, when two correlated layers 
were found, the one that was kept was that with the wider range of local FSI values, while 
standard deviation values were also taken under consideration. The final layers or factors 
used for the process are as follows:

• Slope
• Flow accumulation
• Flow length
• Distance from main river network
• Distance from coastline
• Land cover
• Hydrolithology

 7. Finally, by using GIS overlay analysis and Equations 18.1 and 18.2, the integrated flood 
susceptibility map was created by combining the FSI values of the final selected factors 
(equal overlay of layers or factors). This map was classified into five classes (very low, low, 
moderate, high, and very high susceptibility), based on Natural Breaks (Jenks) classifica-
tion method (Foumelis et al. 2004; Wati et al. 2010).

TABLE 18.4
Local FSI Calculation for Flow Length Layer

Flow Length Class Flood Points Pixels Density Per Class Total Density FSI

1 13,588 302,426 0.044929999 0.011396261 1.37

2 1,616 278,138 0.005810066 0.011396261 −0.67

3 551 274,459 0.002007586 0.011396261 −1.74

4 339 282,384 0.001200493 0.011396261 −2.25

5 14 276,039 5.07175E-05 0.011396261 −5.41

TABLE 18.5
Local FSI Values Per Class, for Each Factor

Classes
FSI 1 2 3 4 5

Slope 0.36 −4.84 — — —

Flow accumulation 0.00 −2.03 — 0.90 1.73

Flow length 1.37 −0.67 −1.74 −2.25 −5.41

River distance 0.91 −0.75 −1.97 −2.40 —

Coastline distance 0.88 0.03 −2.75 −4.65 —

Land cover 2.62 3.51 −1.55 0.21 −1.61

Hydrolithology −4.48 −4.06 −7.96 0.86 −5.71

DEM 0.83 −5.77 — — —

Aspect 0.05 0.03 −0.03 0.06 −0.14

TWIa −1.21 −0.03 0.00 −0.09 −0.22

a Topographic Wetness Index (TWI), also referred as Compound Topographic Index (CTI).
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18.3 RESULTS AND DISCUSSION

18.3.1 flooD susceptibility inDex mapping

Figure 18.6 presents the local FSI values for all the factors that compose the total FSI layer. Some 
factor or layers have less than five FSI classes, as there are classes without flooded areas, and thus 
the FSI value cannot be calculated. Hydrolithology is the layer with the wider range of values, 
whereas the layer with the shortest range is the one concerning the distance from the main river.

Factors – local FSI’s

Slope FSI

1 2

3 4
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6

Distance
from river
FSI
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Flow length
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1. Slope
2. Flow accumulation
3. Flow length
4. Euclidean distance from main river network
5. Euclidean distance from coastline
6. Land cover
7. Hydrolithology

FIGURE 18.6 Factors—local FSI values.
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As can be deduced from Figure 18.6, FSI values are higher in flat or low-slope areas such 
as the river’s valley (Figure 18.6.1). Hydrologically, higher FSI classes concern high-flow accu-
mulation and low-flow length values, thus referring to the middle and final parts of the riverbed 
(Figure 18.6.2), as well as to a narrow zone covering both sides of the main river axis (Figure 18.6.3). 
Areas close to the main river (Figure 18.6.4) and areas close to the coastline (Figure 18.6.5) belong 
to high-FSI classes. Based on land cover, high FSI values are found in the final part of the riverbed, 
whereas the highest ones are seen on the deltaic part and specifically in the wetlands created in the 
areas where the river’s outlets meet the coastline (Figure 18.6.6). Finally, high FSI values are in the 
Quaternary formations of the basin (mainly alluvial deposits with high permeability rate but quick 
saturation), which cover the highest extent of the river’s valley (Figure 18.6.7).

Total FSI layer (Figure 18.7) presents the highest-susceptibility class over the last part of 
Sperchios riverbed and around the outlet of the two estuaries. The next-highest-susceptibility class 
is found in the second part of the basin’s valley, covering a small area around the river’s flow path 
and around its two riverbeds (artificial and natural).

These high-flood-risk parts of the basin, as expected, meet most of the flood susceptibility criteria. 
Namely, these are flat areas that (a) are covered by alluvial deposits, (b) include the river’s highest 
flow-accumulation downstream part, (c) are in short distance and low flow-length in both sides of the 
natural riverbed and its diversion, and finally (d) are next to the coastline. The areas with the highest 
susceptibility are found in the deltaic wetlands.

18.3.2 receiver operating characteristics analysis

The validation step is essential to know the predictive value of the model (Remondo et al. 2003). 
A  standard validation method, known as receiver operating characteristics (ROC) analysis, was 
performed in order to evaluate the overall performance of the FSI model in the study area. This 
method is considered a powerful tool for the validation of predictive models and has been widely 
used to provide estimates of their performance (Frattini et al. 2010).

In ROC analysis, the sensitivity of the model is shown as a function of the specificity. The sen-
sitivity refers to a percentage of positively predicted cases among the whole positive observations 
(Althuwaynee et al. 2014):
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where:
n(TP) is the number of the true positive predictions
n(FN) is the number of the false-negative predictions

On the other hand, the specificity refers to a percentage of negatively predicted cases among the 
whole negative observations:

 
Specificity

( )= n TN
n TN n FP( ) ( )+  

(18.4)

where:
n(TN) is the number of the true negative predictions
n(FP) is the number of the false-positive predictions

A true positive is a prediction of flood at a location where the flood occurred, whereas a false posi-
tive is a prediction of flood at a location where the flood did not occur.

The ROC graph consists of two axes: y‐axis represents the sensitivity and x‐axis represents the 
1–specificity. Thus, high sensitivity indicates a high number of true positives (correct predictions), 
whereas high specificity (low 1−specificity difference) indicates a low number of false positives 
(Cervi et al. 2010). The corresponding ROC curve shows the ability of the model to correctly dis-
criminate between positive and negative observations in the validation space (Montrasio et al. 2011). 
The area under the ROC curve (AUC) characterizes the quality of a model and is often used when a 
general measure of its predictive capability is desired. In practice, AUC value ranges from 0.5 to 1.0. 
The ideal model performs at a value close to 1.0 (perfect fit), whereas a value close to 0.5 indicates 
inaccuracy in the model (random fit) (Polykretis et al. 2015).

In the current study, the remaining 6,905 pixels (rest 30% flood points) from the flood-occurrence 
area and an equal number of pixels from the flood‐not‐occurrence area (validation dataset) were 
used for the validation of the model output. Subsequently, the 13,810 pixels were matched with 
the relative flood susceptibility categories of the final map.

Then, based on this matching, the ROC curve was drawn and the AUC value was calculated for 
the proposed model.

As can be deduced from the validation analysis, the selected layers or factors attribute to flood 
susceptibility (TFSI) in a very high level of accuracy. The AUC value of 0.965 indicates an excellent 
prediction ability of the model (Figure 18.8).
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18.4 CONCLUSIONS

The need to efficiently cope with natural hazards has led many researchers to carry out stud-
ies on prediction and impact assessment. The contemporary needs for low‐budget but efficient 
applications and management tools are met by the constantly developing modern technology. 
Thus, advances in RS technology, open spatial databases, and new modern technologies such as 
GIS tend to replace costly and time-consuming field work, traditional techniques, and extremely 
difficult and costly data-collecting methods.

The proposed FSI methodology uses free RS datasets and open spatial databases, as well as 
non‐commercial software packages such as QGIS and SNAP. Moreover, the construction of the 
spatial database was supported by low-cost or freeware spatial datasets.

This method is based on the mapping of past flood events and on the construction of a spatial 
database with background information (conditional factors). In this case, the assumption that 
past flood events are located within the extent of a severe event was taken into consideration. 
Specifically, the studied rainfall event was extreme and very rare, thus leading to overestima-
tion of floods in the study area. Therefore, it was assumed that estimating FSI for this event will 
include floods caused by less severe rainfall events and consequently floods of smaller spatial 
extent. Accordingly, it is substantial to analyze the appropriate RS imagery in order to map this 
event.

A key aspect of the proposed process is the need to create a hydrologically valid DEM and, 
at the same, to preserve the real morphological characteristics of the area under investigation. 
This fact constitutes the pre‐process of the DEM and its derivatives that are essential and neces-
sary. The validation of the method showed very good flood susceptibility prediction properties 
of the model. These results show that the proposed FSI mapping is a solid and easily imple-
mented approach for flood susceptibility at regional scale.

The FSI can and will be further tested and developed by incorporating additional and  different 
conditioning factors (e.g., triggering factors such as rainfall), by working on different scales 
of analysis (e.g., higher spatial resolution), and by applying it in areas with various geomor-
phological characteristics, climatic characteristics, and so on, the results of which will be com-
pared and evaluated. Furthermore, another highly interesting implementation of the proposed 
method would be the development of FSI models, by examining different change scenarios of 
the conditioning factors (e.g., changes in land cover, in flow length after a technical work, in 
permeability after extensive transport of fine sediment materials, and so on). The next step for 
the present case study is a  multitemporal analysis of FSI, covering as many past flood events as 
can be found and specified, thus creating not only a spatial but also a temporal FSI correlation.

It must be noticed that the proposed method does not replace a high-scale hydrological 
analysis, which is based on detailed and actual runoff data, thus providing highly accurate flood 
risk assessments. Conversely, it is a regional‐scale application, which provides fast and reliable 
estimations of flood susceptibility.

The empirical analysis indicated that FSI could be useful for management at regional scale 
(flood susceptibility zonation) and for the indication of areas where detailed hydrological anal-
yses should be implemented.

Finally, EO data are used as a key input for estimating FSI; thus, any further evolution 
concerning spatial analysis, availability, and so on, will help significantly in developing the 
proposed methodology and the accuracy of its results. The EO data combined with GIS tech-
niques are widely used worldwide for setting up policies for management of natural hazards 
and extreme phenomena. Future development on EO projects should focus on improving spatial 
resolution of RS data and on acquiring data in denser time intervals. 
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19 Satellite-Based Precipitation 
for Modeling Floods
Current Status and Limitations

Yiwen Mei, Efthymios, E. I. Nikolopoulos, 
and Emmanouil N. Anagnostou

19.1 INTRODUCTION

Accurate measurement of surface precipitation is of great importance for the monitoring, forecast-
ing, and early warning of flood hazard. Conventional ground-based measurements for quantifying 
precipitation include observations from rain gauge and weather radar networks (Michaelides et al. 
2009). Rain gauge networks provide accurate pointwise precipitation measurements but suffer 
from lack of space–time representation of precipitation. On the other hand, weather radar networks 
provide precipitation estimates with high spatiotemporal resolutions (i.e., 1–4 km and 5–15 min) 
but are subjected to uncertainties arising from variations in rainfall drop size distribution, beam 
blockage, beam overshooting, beam filling, hardware calibration, and random sampling error 
(Berne and Krajewski, 2013; Delrieu et al. 2014; Kirstetter et al. 2015). A viable solution to the 
accuracy issues of precipitation measurement is to combine rain gauges with weather radar, but 
this cannot be applied to typically mountainous areas, which are characterized by large radar beam 
blockages due to the orographic effect (Kirstetter et al. 2015; Prat and Nelson, 2015).

Integration of satellite-precipitation products with hydrologic models can be used to study catch-
ment flood response in areas with inaccurate or scare ground-based measurements. Precipitation 
estimation from satellite remote sensors is uninhibited by topography and thus can provide coherent 
global-scale estimates at high space (as fine as 0.04°) and time (as fine as half-hourly) resolution. 
High-temporal-resolution satellite-precipitation retrievals are based on a combination of observations 
from the visible–infrared (VIS–IR) spectrum on geostationary (GEO) satellites and the polar-orbiting 
microwave sensors (PMW) on low-Earth-orbiting (LEO) satellites, or either the VIS–IR or PMW 
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observations. The IR sensors have high sampling frequency, but precipitation estimates are based 
on cloud-top temperature observations. The PMW sensors observe directly the hydrometeor content 
present within the atmospheric column but have less temporal sampling frequency. Although the 
combinations of VIS–IR and PMW retrievals provide high spatiotemporal precipitation estimates, 
the ground-gauge information is often incorporated with the remote-sensing-based measurements to 
improve the accuracy of retrievals. The ground-gauge adjustments are often done on monthly basis 
to reduce the systematic bias in remote-sensing precipitation estimations.

Studies have demonstrated that satellite-precipitation estimation is subject to uncertainties 
from either the sensor observations or the assumptions used in the retrieval algorithms. The exis-
tence of precipitation uncertainties limits the hydrologic applications of the satellite products, as 
these uncertainties propagate to the hydrologic simulations. Therefore, assessing the accuracy of 
satellite-precipitation estimates and their corresponding use in simulating hydrologic variables are 
critical for advancing satellite-based hydrologic applications. The aim of this chapter is to provide 
the reader with an overview of the current status of satellite-precipitation-driven flood modeling, 
including evaluation of the error in precipitation estimates and analysis of error propagation in flood 
modeling. This chapter is structured as follows: in Section 19.2, we introduce some of the most 
widely used satellite-precipitation products, along with findings from their corresponding ground 
validation studies. Section 19.3 provides an overview of factors affecting the accuracy of satellite-
precipitation-driven flood modeling. Summary and conclusion are reported in Section 19.4.

19.2 SATELLITE PRECIPITATION

19.2.1 overvieW

The vast and continuous advancement of space-borne sensors and precipitation retrieval algorithms 
over the last two decades have made available a number of satellite-precipitation products that 
have been used for local, regional, and global-scale studies (Wu et al. 2014; Li et al. 2015; Derin 
et al. 2016). Some of the most frequently used products that are available in quasi-global scale and 
involve distinct differences in their corresponding retrieval algorithms are listed in Table 19.1. 
The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 
3B42 is a combined VIS–IR and PMW product available from the National Aeronautics and Space 
Administration (NASA) Goddard Space Flight Center (GSFC) (Huffman et  al. 2007; Huffman 
et al. 2010). Specifically, the PMW precipitation estimates are calculated and then calibrated with 
respect to the TRMM Combined Instrument and merged. These calibrated PMW precipitation 
estimates are used to calibrate the IR-based estimates, and then, the IR- and PMW-based estimates 
are combined. A bias-correction procedure based on monthly rain gauge is implemented as the last 
step. The 3B42 products are available in real time and research-grade post analysis, based on the 
inclusion of the gauge adjustment. A climatological calibration algorithm (CCA) has been included 
in the 3B42 since October 2014, owing to the degradation of TRMM precipitation radar (Huffman 
et al. 2010). These products are available at 0.25°/3-hourly resolution.

The Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 
(PERSIANN) is an IR-based product developed by the University of California, Irvine (Hsu et al. 
1997; Sorooshian et  al. 2000). The PERSIANN system scans and extracts features from the IR 
cloud images with a moving window. The extracted features are classified by the self-organizing 
feature map (SOFM) algorithm into groups representing the cloud-top characteristics. The fea-
tures are mapped to rain rate by a multivariate linear function to output precipitation estimates 
at 0.25°/3-hourly resolution. A bias-corrected version of PERSIANN is also available. This product 
maintains the total monthly precipitation estimates of the Global Precipitation Climatology Project 
(GPCP) product and the spatiotemporal patterns of the original PERSIANN (Adler et  al. 2003; 
Huffman et  al. 2009). Hong et  al. (2004) proposed the PERSIANN-CCS (Clouds Classification 
System) based on a procedure similar to the PERSIANN product. The PERSIANN-CCS extracts 
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the cloud features based on the segmentation of the IR cloud images and then classifies the cloud 
features by the SOFM algorithm. The cloud-top brightness temperature (Tb) and rainfall rela-
tionships are calibrated for the clusters by using gauge-adjusted radar rainfall datasets at hourly 
resolution. The PERSIANN-CCS has a higher space–time resolution available at 0.04°/hourly.

The National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) 
morphing technique (CMORPH) is a PMW-only global-scale satellite-precipitation product (Joyce 
et al. 2004). It is based on the propagation of PMW-derived precipitation estimates by the IR-derived 
cloud system advection vectors (CSAVs). Specifically, the precipitation estimates are derived from 
the PMW observations, and CSAVs are generated based on the GEO–IR imagery at half-hourly 
interval. The PMW precipitation estimates are propagated and morphed spatially by a time-weighted 
linear interpolation. A bias-corrected version of CMORPH is also available by matching the prob-
ability distribution function (PDF) with the interpolated daily gauge data over land (Xie et al. 2011). 
These two versions of CMORPH are available at 0.072°/half-hourly and 0.25°/3-hourly resolutions. 
Another type of CMORPH available is the Kalman filter-based CMORPH (CMORPH-KF), which 
also includes the PMW-calibrated IR-based precipitation estimates as part of the inputs for propa-
gation when no PMW observations are available. The PMW-calibrated IR-based precipitation esti-
mates are used to update the propagated PMW estimates through the use of the Kalmar filter (Joyce 
and Xie, 2011). Besides, more PMW sensors are included in the CMORPH-KF algorithm compared 
with the original CMORPH. This product is available with 0.072°/half-hourly resolution.

Another PMW-based satellite-precipitation product is the Global Satellite Mapping of 
Precipitation (GSMaP), produced by the Japan Aerospace Exploration Agency (JAXA). The GSMaP-
MVK (Motion Vector Kalman filter) product applies a similar approach to propagate the PMW 
estimates by the motion vector of clouds derived from the IR imagery. Compared with CMORPH, 
GSMaP-MVK uses a Kalman filter to refine the propagated PMW precipitation estimates based on 
the IR Tb data and surface precipitation. Following the same adjustment scheme as the CMORPH, 
the gauge-adjusted GSMaP is also produced (Mega et al. 2014). These two GSMaP products are 
available at 0.1°/hourly resolution.

TABLE 19.1
A List of Satellite-Precipitation Products Involved in This Chapter

Product Source Type

Resolution

Space Time

TMPA-3B42-RT NASA GFSC VIS-IR + PMW 0.25° 3-hour

TMPA-3B42 VIS-IR + PMW + G

NRL-blended U.S. NRL VIS-IR + PMW 0.25° 3-hour

PERSIANN University of 
California, Irvine

VIS-IR 0.25° 3-hour/6-hour

PERSIANN-adj VIS-IR + G

PERSIANN-CCS VIS-IR + R 0.04° 1-hour

H-E NOAA STAR VIS-IR + R 0.04° Quarter/half-hour

CMORPH NOAA CPC PMW 0.25/0.072° Half-hour/3-hour

CMORPH-adj PMW + G

CMORPH-KF VIS-IR + PMW 0.072° Half-hour

GSMaP-MVK JAXA PMW 0.1° 1-hour

GSMaP-MVK-adj PMW + G

IMERG NASA GFSC VIS-IR + PMW 0.1° Half-hour

IMERG-adj VIS-IR + PMW + G

Note: G and R represent information from gauge and radar rainfall, respectively. Products with adj as 
suffix are the gauge-adjusted products.
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The current state of the art in global satellite-precipitation estimates is related to the recently 
launched Global Precipitation Measurement (GPM) mission (Hou et al. 2014). An example of GPM-
related products is the Integrated Multisatellite Retrievals for GPM (IMERG) product (Huffman 
et al. 2015). This product draws on strengths from three prior multisatellite algorithms, namely the 
TMPA (Huffman et al. 2007), the CMORPH-KF (Joyce and Xie, 2011), and the PERSIANN-CCS 
(Hong et al. 2004). The PMW estimates are intercalibrated and merged to create the precipitation 
estimates at 0.1°-by-0.1° half-hourly resolution. These PMW estimates are morphed by the PMW-
calibrated GEO–IR images, following the Kalman filter framework, as developed in Joyce and 
Xie (2011). The calibrated GEO–IR images are created by following the procedures adopted in the 
PERSIANN-CCS system. For gaps of the PMW estimation longer than 90 min, precipitation rates 
are defined by the GEO–IR estimates. The gauge-based information is also infused to the IMERG 
product to create the gauge-adjusted IMERG by following the same procedures as those for the 
TMPA (Huffman et al. 2007).

Other example satellite-precipitation products listed in Table 19.1 are two combined VIS–
IR and PMW estimations and a VIS–IR-only estimation. The U.S. Naval Research Laboratory 
(NRL)-blended satellite-precipitation technique is a combined VIS–IR- and PMW-based estima-
tion available at 0.25°/3-hourly (Turk and Miller, 2005). Precipitation estimations are retrieved 
using the cloud-top temperature based on the lookup table, mapping the Tb with the PMW pre-
cipitation estimates. The Hydro-Estimator (H-E) is a GEO–IR-based precipitation estimation 
provided by the NOAA Center for Satellite Applications and Research (STAR) (Scofield and 
Kuligowski, 2003). The H-E algorithm uses a power law function to fit the radar rain rate with 
observed Tb. Data from numerical weather prediction models are utilized to correct for evaporation 
of raindrops, topographic influence on rainfall, and other factors.

19.2.2 evaluation of the satellite-precipitation proDucts

The ground-based evaluation of satellite-precipitation products is an essential component in 
satellite-based hydrologic applications, because it provides information on the relative accuracy 
of products, thus allowing to identify the advantages and limitations of the various satellite-
precipitation estimates with respect to different hydrologic applications. The importance of the 
evaluation of satellite-precipitation datasets is reflected in a large number of investigations that 
have been conducted over different regions of the globe (see Maggioni et al. [2016] for a review), 
and it has furthermore motivated the scientific community to establish scientific groups dedicated 
to this task, for example, the International Precipitation Working Group (Turk and Bauer, 2006). 
Validation of satellite-precipitation products is carried out by comparing rainfall estimates to those 
derived from ground-based networks. Observations from rain gauge networks are widely used 
for validation of satellite-precipitation products at a global scale (Stampoulis and Anagnostou, 
2012; Chen et  al. 2013; Cattani et  al. 2016; Derin et  al. 2016). National mosaics of weather 
radar and rain gauge rainfall products are typically available through operational National Weather 
Services (Lin and Mitchell, 2005; Kamiguchi et  al. 2010; Boudevillain et  al. 2011; Figueras i 
Ventura and Tabary, 2013; Zhang et al. 2015), which in several studies have been used to validate 
satellite-precipitation products. For example, the Stage IV radar/gauge precipitation product (Lin 
and Mitchell, 2005) has been used to evaluate satellite-precipitation products over the continental 
United States (AghaKouchak et al. 2011; Nikolopoulos et al. 2015; Dis et al. 2016; Zhang et al. 
2016; to name a few).

The strong regional dependence of the satellite-precipitation accuracy, as it is nicely portrayed 
in the recent work of Derin et al. (2016) and depicted in Figure 19.1, shows clearly that the accu-
racy of satellite-precipitation products varies across regions and products. This suggests that there 
is no single product that can be identified as a global optimum (even with the adjustments from 
ground-gauge information), and therefore, region-specific evaluations are needed to gain a better 
understanding of the performance of different dataset (Derin et al. 2016).
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A number of evaluation studies of various satellite-precipitation products have been (and are still 
being) carried out. Some of those are described later as examples to provide the reader with an over-
view of past and recent work on this. Cattani et al. (2016) categorized the area of East Africa into 
eight clusters representing different precipitation climates and conducted assessments of six satellite 
products to the Global Precipitation Climatology Centre Full Data Reanalysis, version 6, product; 
they showed that the error characteristics of satellite precipitation are different for the eight clusters. 
Salio et al. (2015) evaluated six satellite-precipitation products by a 5414-station network over five 
subregions of South America. Their results revealed different patterns on the systematic and random 
components of error over different seasons for the five subregions. Bharti and Singh (2015) evalu-
ated the gauge-adjusted 3B42, version 7, product over the Himalayan region with respect to the India 
Meteorological Department (IMD) rain gauge network and concluded that the magnitudes of error 
reduce from the low- to high-elevation bands. Mei et al. (2014) compared four satellite-precipitation 
products to a dense rain gauge network (1  gauge per 53  km2) over the mountainous basin in the 
Eastern Italian Alps; the results demonstrated lower magnitudes of systematic bias for basins with area 
greater than 500 km2. More studies on the evaluation of satellite-precipitation products are available 
based on different study areas over the globe in the literature. Chen et al. (2013) evaluated the real-
time and post-real-time 3B42, versions 6 and 7, products over China with respect to the China daily 
Precipitation Analysis Products (CPAP); they found that the satellite products over-/underestimated 
precipitation in the arid/humid region; the scores of probability of detection (POD) and critical suc-
cess index (CSI) were low for rainfall rates greater than 50 mm/day over the arid region. Stampoulis 
and Anagnostou (2012) conducted the analysis of the 3B42, version 6, and CMORPH products with 
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respect to 825 meteorology stations covering the European Continent; they concluded that increas-
ing rainfall intensity leads to an increasing underestimation of both satellites products. AghaKouchak 
et al. (2011) evaluated four satellite-precipitation products with respect to the Stage IV radar rain-
fall measurement over the South Great Plain. The study reviewed that the near-real-time CMORPH, 
PERSIANN, and 3B42, version 6, product over-/underestimated precipitation during the warm/cold 
season, whereas the gauge-adjusted 3B42, version 6, product showed the opposite trend.

A general finding from the literature on the accuracy of satellite-precipitation products is 
the regional dependency of products’ error characteristics and that there is no single product 
that can be considered the best. The accuracy of satellite-precipitation products is related to the 
types of precipitation measurements involved in the retrieval algorithm (Michaelides et al. 2009; 
Nikolopoulos et al. 2015; Duan et al. 2016) and can vary due to the physiography of the study areas 
(geomorphology, land use, land cover, precipitation climate, and so on) (Yong et al. 2015; Derin 
et al. 2016). Besides, the designated space–time evaluation scales and resolutions affect the prod-
ucts’ performance (Vergara et al. 2013).

19.3 CONTROL FACTORS IN SATELLITE-BASED FLOOD APPLICATIONS

Precipitation estimated from satellite remote sensing constitutes a viable solution for hydrologic 
simulations over data-scare regions (e.g., mountainous region and tropical rain forest). However, 
the satellite-precipitation products are subjected to systematic and random errors that propagate to 
corresponding hydrologic simulations. Owing to the nonlinear transformation of rainfall to other 
hydrologic variables (e.g., soil moisture and runoff), the error in simulated variables can be reduced 
or increased. The properties of the error propagation are regional-dependent and can vary based 
on the designated scales of modeling and the characteristics of the targeted hydrologic variable. 
Satellite-rainfall error-correction procedures commonly based on reference precipitation informa-
tion can potentially improve the hydrologic performance of satellite products, but the degree of 
effectiveness depends again on several factors (e.g., density of in situ observations and topography). 
Recalibration of hydrologic models to account for errors in satellite-precipitation estimates has been 
used as an alternative approach to improve the hydrologic performance. All these aspects are dis-
cussed in more detail in the following section.

19.3.1 regional DepenDency

The hydrologic performance of satellite-precipitation products can vary from region to region, 
based on the local physiography, the dominant precipitation type, and other climatic factors. 
For  example, hydrologic modeling over complex-terrain basins is more challenging in terms of 
the simulation accuracy because of the high spatiotemporal variability of rainfall and high hetero-
geneity in runoff-generation routing processes. Tobin and Bennett (2010) studied the flood response 
of the San Pedro River basin in Arizona (1036–2885  m a.s.l.), a typical open-book basin, with 
mountains riming the eastern and western boundaries. The results show reasonable performance 
of the reference flow simulation compared with the observation but significant overestimation by 
the 3B42-RT, version 6, product (Table 19.2). Another case study conducted over the Siloam basin 
in Arkansas, a basin that is free of major complications, such as orographic influences (285–590 m 
a.s.l), significant snow accumulation, and stream regulations, indicates significantly better perfor-
mance by the 3B42-RT, version 6 (Behrangi et al. 2011). This simple comparison, involving similar 
scale of basins and length of study period (3 years for both studies), provides clear evidence on the 
variability and regional dependence in performance of satellite-based flood simulation studies.

Another factor that is embedded in the observed regional difference is the availability and 
quality of the ground-gauge networks. A comparison of the error metrics derived from the gauge-
adjusted 3B42, version 6, products between the Gilgel Abay study and the San Pedro and Siloam 
basin demonstrates that the inclusion of ground-based information in satellite-precipitation 
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retrievals plays different role for the areas (Table 19.2). Bitew and Gebremichael (2011) showed that 
for Gilgel Abay, flow simulations using the gauge adjusted 3B42, version 6, product yielded higher 
underestimation compared with its real-time counterpart. However, the use of gauge-adjusted 3B42, 
version 6, clearly benefited the hydrologic simulation for the other study basins in Tobin and Bennett 
(2010) and Behrangi et al. (2011). Previous works of Gourley et al. (2011) and Wilk et al. (2006) have 
revealed that the highly sparse distributed feature of rain gauges (such as that of the Gilgel Abay case) 
over mountainous terrain can introduce systematic bias to the gauge-adjusted satellite precipitation.

19.3.2 space–time scales of applications

The target space–time scales and resolution of the hydrologic modeling system are critical aspects 
that control the performance in flow simulations. In general, evaluation of streamflow simulations at 
coarser temporal resolutions (e.g., monthly) result in better performance (Behrangi et al. 2011; Meng 
et al. 2014; Li et al. 2015). Tong et al. (2014) and Meng et al. (2014) simulated the flow for the 
Upper Yellow Basin (121,972 km2 basin area). Their results indicate that, at monthly scale, the values 
of Nash Sctuliffe Index (NSI) of flow simulation are higher than the daily NSI for both the refer-
ence- and satellite-driven scenarios (Table 19.3). Similar results are demonstrated from Behrangi 
et al. (2011), conducted for the Siloam basin. The study compares the results of flow simulations at 
6-hourly and monthly resolutions and is able to reveal decreases in root-mean-square error (RMSE) 
values from 6-hourly to monthly results.

TABLE 19.2
Error Metrics of Flow Simulation Derived with Respect to the Observed 
Flow Taken from Tobin and Bennett (2010), Behrangi et al. (2011), 
and Bitew and Gebremichael (2011)

Basin (km2)
Elevation 
(m a.s.l.)

Reference 3B42-RT, Version 6 3B42, Version 6

MRE NSI MRE NSI MRE NSI

San Pedro (1971) 1036–2885 8 0.9 165 −1.4 8 0.9

Siloam (1489) 285–590 −9.9 0.84 14.5 0.62 −6.8 0.71

Gilgel Abay (1656) 1880–3530 −2 0.76 −20 0.76 −75 <0

Note: MRE and NSI stand for the mean relative error and Nash Sutcliffe Index.

TABLE 19.3
Impact on Hydrologic Performance Indices from the Temporal Aggregation

Upper Yellow Basin 
(121,972 km2) Siloam Basin (1489 km2)

Reference 3B42, Version 6 Reference 3B42, Version 6 CMORPH PERSIANN

6-hourly 22.03 25.97 64.24 26.88

Daily 0.524 0.632

Monthly 0.744 0.804 6.57 6.92 18.35 10.71

Source: Statistics are taken from Tong, K. et al., Evaluation of satellite precipitation retrievals and their potential utilities in 
hydrologic modeling over the Tibetan Plateau, J. Hydrol., 2014, 519: 423–437, and Behrangi, A. et al., 2011. 
Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 2011, 397(3–4): 225–237.

Note: The respective statistics used in the Upper Yellow and Siloam study are the Nash Sutcliffe Index and root mean square 
error (mm/h).



408 Remote Sensing of Hydrometeorological Hazards

The spatial scale of the basin has also been demonstrated to play an important role in the 
performance of satellite-based flood simulations (Nikolopoulos et al. 2010; Maggioni et al. 2013; 
Mei et al. 2016a). The general finding is that larger amount of error can be buffered as the size of the 
basin increases due to the increased space–time filtering of precipitation by the catchment surface 
processes. Studies on the nested sub-basins of the Tar-Pamlico river basin (five sub-basins from 529 
to 5,709 km2), low-elevation mild-slope basin, have shown that the random error in runoff simula-
tions decreases with the increase in basin area (Maggioni et al. 2013; Vergara et al. 2013). Maggioni 
et al. (2013) also shows that the increase in basin area leads to decrease in the ratio of random error 
of flow over random error of precipitation, indicating higher degree of error-dampening effects in 
larger basin scales. The decrease in random error of flow simulation with basin scale is also revealed 
by Mei et al. (2016a) on the mountainous nested Upper Adige river basin (16 sub-basins from 255 to 
6,967 km2) in Eastern Italian Alps.

19.3.3 flooD characteristics

The performance of satellite-based flood modeling varies considerably with season, which subse-
quently relates to the seasonal characteristics of rainfall and corresponding flood response. This is 
exemplified by the study of Mei et al. (2016a), which evaluated separately the flood simulations for 
warm (May–August) and cold (September–November) periods in Eastern Italian Alps. Specifically 
for their study, it was shown that performance of satellite-based simulations in terms of the sys-
tematic bias, the random error, and correlation coefficient was superior for the warm period. Kim 
et al. (2016) evaluated the utilities of four satellite-precipitation products in runoff modeling for the 
Soyang Dam basin in South Korea. Their study basin is characterized by well-defined cold, dry 
winters and hot, wet summers, and they concluded that the biases in rainfall are directly dictated to 
the biases in flow simulation for the wet period, whereas the uncertainties in flow simulations during 
the dry period are attributed to the false snowfall estimations by the model.

The performance of satellite-based flood modeling is different for flood types and the flood event 
properties of interest. Figure 19.2 exhibits the mean relative error (MRE) of four flood event proper-
ties for two different types of flood event available from a flood event database for basins located 
in Eastern Italian Alps (Zoccatelli et al. 2016). The figure indicates more severe underestimations 
(overestimations) with larger (lower) variability in the simulations of cumulative rainfall, flow vol-
ume, and flood peak (time lag) parameter for the flash flood events compared with the long rain 
flood events. Besides, the gauge adjustments are able to bring up the magnitude of flow simulations, 
which in turn modulate the underestimations in the cumulative rainfall, flow volume, and flood 
peak parameter by the CMORPH- and PERSIANN-based simulations; they also lead to overesti-
mations in these parameters by the TMPA-based simulations. For the time lag parameter, consis-
tent pattern is shown among products (with or without gauge adjustment), referring to the fact that 
effects from gauge adjustments on event timing are negligible. A recent study focusing on the use 
of satellite precipitation in modeling different types of floods from the same flood event database is 
provided in Mei et al. (2016b). Their results revealed that the long rain flood events exhibited higher 
magnitudes of random error than the flash flood events for the event hyetographs and hydrographs. 
In addition, higher degrees of dampening effects on the random error are found for the long rain 
flood cases. The study also reveals that the error-dampening effect tends to be more linear to events 
with higher runoff coefficient, which suggests the impact of soil wetness condition on rainfall error 
propagation, as it was shown by (Nikolopoulos et al. 2013).

19.3.4 improving satellite-precipitation proDucts for flooD stuDies

Clearly, the various evaluation studies suggest that further improvement in the accuracy of satellite-
precipitation data in terms of their magnitude and space–time distribution patterns is needed to 
enhance the usability of these products for flood-related studies. Numerous efforts have focused on 
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deriving procedures for correcting satellite-precipitation estimates. In general, these procedures 
involve adjustment of satellite-precipitation estimates, using additional precipitation information 
from ground-based sources (radar and rain gauge), atmospheric models, and other auxiliary atmo-
spheric and land surface. Nikolopoulos et al. (2013) carried out a mean field bias (MFB) adjustment 
based on the available radar-rainfall field. Results from the study demonstrated slight improvement 
in hydrologic simulations. Similar method to remove the MFB was investigated in Habib et al. 
(2014) over the Gilgel Abay. The study paid attention to three different schemes for retrieving the 
MFB with respect to the interpolated rain gauge data used. These schemes included a space–time 
fixed (TSF) one, a time varied (TV) one, and a space–time varied (TSV) one (see Habib et al. 
[2014] for details). Results indicated improvements from all the adjustment schemes; however, the 
space–time varied one outperformed the other two in terms of the improved accuracy. Tobin and 
Bennett (2010) developed a filter based on autoregression (AR) to adjust the satellite products with 
respect to information from rain gauge and radar precipitation. Results indicated lower degree of 
MRE when the satellite products are adjusted to the radar measurements. However, despite the 
apparent improvement in satellite-precipitation estimates, results on the hydrologic simulations for 
many cases maintained significant discrepancies (MRE ranged from −90% to 40%) compared with 
the corresponding reference (Table 19.4). This suggests that error in flood simulation can be sig-
nificantly attributed to the random error component as well as to resolution factors (Nikolopoulos 
et al. 2010; Maggioni et al. 2013; Vergara et al. 2013).

Application of stochastic error modeling for satellite-precipitation correction is another 
methodology that has been followed by several researchers (Maggioni et  al. 2013; Müller and 
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Thompson, 2013; Falck et al. 2015). Falck et al. (2015), Nikolopoulos et al. (2010), and Maggioni 
et al. (2013) investigated the hydrologic uses of satellite precipitation ensemble produced by the 
two-dimensional satellite rainfall error model (SREM2D, Hossain and Anagnostou [2006]). Their 
results indicated that the flow simulations derived from the SREM2D-corrected precipitation 
ensembles are able to resolve the biases in flow simulations driven by the unperturbed satellite 
precipitation. In addition, Maggioni et al. (2013) revealed that the random error is larger for the 
ensemble precipitation than the corresponding runoff simulations in small-scale basins. However, 
this is reversed as the basin scale increases. Nikolopoulos et al. (2010) showed that there exists a 
linear relationship on systematic error derived between the ensemble mean of rainfall and the mean 
of ensemble-driven flow simulations.

A novel approach for correcting satellite-precipitation products by matching the PDF between 
satellite-rainfall estimates and high-resolution atmospheric simulations was proposed in Zhang 
et al. (2016), who carried out a study for six hurricane landfall precipitation events over 20 basins 
in the southern Appalachian. The study assessed the hydrologic potential of CMORPH adjusted by 
the weather research and forecasting (WRF) atmospheric model. The evaluation of corresponding 
hydrologic simulations showed that the WRF-adjusted CMORPH nearly eliminated biases in the 
simulations of peak runoff and cumulative flow volume (5% for peak runoff and nearly zero bias 
for cumulative flow volume) compared with the original CMORPH (33% and 29% underestimation) 
and gauge-adjusted CMORPH (12% and 10% underestimation). This method improves considerably 
the hydrologic simulations and appears more effective than the common gauge-based adjustment 
approach.

19.3.5 moDel recalibration

The optimum parameters of hydrologic modeling for a basin are typically retrieved by using the 
ground-based precipitation measurement as reference. The optimized parameters are considered as 
the synthetic true parameter set, representing the hydrologic response of the basin, and are directly 
applied on the different satellite-precipitation products for simulations. This often leads to deterio-
ration in the resulted streamflow simulations, because the two precipitation products are different 
from each other in characteristics. Model recalibration with respect to the individual satellite- 
precipitation products consists of another avenue for improving the performance of  satellite-based 
hydrologic simulation. In their recent work, Skinner et al. (2015) showed the potential of improving 

TABLE 19.4
MREs of the Hydrologic Simulations of Satellite-Precipitation 
Products’ Statistical Bias Adjustments

Basin (Area, km2) Type
3B42, 

Version 6 CMORPH PERSIANN-CCS

Fella (623) Original −98 −95 −99.7

MFB −93 −86 −94

MFBdyn −94 −90 −90

San Pedro (1971) Original  165  63

AR filter to gauge  35  41

AR filter to MPE  16  34

Gilgel Abay (1656) Original  26.6

TSF  23.8

TV  23.6

TSV  16.9
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satellite-based ensemble hydrologic simulations if model recalibration is considered for the whole 
ensemble. However, model recalibration for different rainfall input has to be treated with caution 
because many studies have reported that the recalibrated model parameters may reach values that 
exceed a realistic range of the parameters. Nikolopoulos et al. (2013) showed that the recalibrated 
saturated hydraulic conductivity parameters (Ksat in mm/h) are more than three times of the Ksat 
derived from the radar-driven calibration because of the severe underestimation from satellite prod-
ucts. Xue et al. (2013) also showed that severe underestimation of 3B42, version 6, resulted in model 
parameters that are significantly different than the optimum gauge-derived parameters, in order to 
allow the 3B42, version 6, forced model to capture the hydrologic response.

Studies on large-scale basins also report similar issues on model recalibration. Yong et al. (2012; 
2010) integrates the real-time and post-real-time 3B42, version 6, with the three-layer variable infil-
tration capacity (VIC-3L) hydrologic model to simulate flow for the Laohahe basin. Results sug-
gested that the recalibrated parameters for the gauge-adjusted 3B42 were closer to the rain gauge 
ones. However, due to the severe overestimation of rainfall from the real-time 3B42, the soil layer 
thickness parameter was forced to take value above the upper bound (2 m) to increase the water 
storage capacity of the soil and thus compensate for the overestimation in precipitation.

19.4 CONCLUSIONS

The integration of satellite-precipitation products with hydrologic models for modeling floods is a 
topic of worldwide concern. In this chapter, we provided an overview of the past and recent stud-
ies over the globe that highlight the current state and limitations of satellite-precipitation-driven 
flood predictions. Uncertainties in flow simulations driven by the satellite precipitation depend on 
a wide variety of factors, including regional geomorphology and climate characteristics, the scales 
of application, as well as the typology of the targeted floods. Results suggest that the space–time 
scale of application exerts an important control on the performance of satellite-based hydrologic 
 simulations. Large basins (>1000 km2) and coarse temporal scales (i.e., monthly) seem to be a 
favorable setting for skillful satellite-based hydrologic predictions. Flood modeling applications 
over complex terrains remains the most challenging task, given that both precipitation and  runoff 
generation are subject to high space–time variability in these areas. Moreover, different flood 
types are associated with different performance characteristics, suggesting that seasonality and 
 precipitation/flood event characteristics should be considered when developing error correction 
procedures for satellite rainfall.

Error correction procedures of satellite-precipitation products and recalibration of hydrologic 
models are typical approaches aiming to improve the performance of satellite-based hydrologic 
simulations, but their efficiency is not consistent. Some new approaches that involve high-resolution 
numerical weather prediction simulations for correcting satellite estimates over complex terrains 
look promising, but they need to be tested at several regions and climates to conclude on their 
applicability at a large, global scale. Recalibration of hydrologic model with individual satellite 
products can improve the performance of the model, but the model parameters are often forced 
to take unrealistic values. Thus, this should not be treated as a typical method for improving the 
hydrologic simulation accuracy.

The integration of remotely sensed precipitation with hydrologic models has been the focus of 
recent hydro-meteorological extremes studies (e.g., flash flood, debris flow, and drought), which 
is a vastly growing field, owing to the more frequent occurrences of these extreme events and the 
increased availability of high-resolution satellite-precipitation products. As new satellite missions 
are launched with new and advanced sensors (Kerr et al. 2001; Entekhabi et al. 2010; Hou et al. 
2014), more hydrologic variables can be targeted from the Earth observation systems. Combining 
satellite observations from different sensors will allow us to develop improved correction algo-
rithms that will better characterize and correct errors in satellite-precipitation estimates. Thus, the 
use of satellite-precipitation products in observing and predicting catastrophic floods and associated 
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hazards correlates well with the development of integrated products in the GPM era. An example 
is the IMERG product (Huffman et al. 2015), available since the launch of the GPM satellite in 
February 2014. This novel algorithm is expected to overcome some issues in precipitation estimation 
encountered in the TRMM-era precipitation products (e.g., coverage of sensors and quantification of 
snow) and will provide estimations with higher accuracy at finer resolution, which could potentially 
advance flood-modeling applications worldwide.
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20 Application of Remote-Sensing 
Images for Post-Wind 
Storm Damage Analysis

Sudha Radhika, Yukio Tamura, and Masahiro Matsui

20.1 INTRODUCTION

From the days of cave dwellings to the present day, wind damage to structures and buildings has 
been a fact of life. The bar chart shown in Figure 20.1, provided by the Munich Re Geo Risks 
Research, illustrates the world’s major natural disasters (1980–2013). It shows a dramatic increase 
in number of catastrophes from 1987 onward. Majority of the catastrophes are due to meteorological 
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and hydrological events. Among the meteorological events, the major share of losses goes to tropical 
cyclones, or Hurricanes: “Hugo” (1989), “Andrew” (1992), “Georges” (1998), and so on. These are 
large storms that form in the Earth’s tropical regions just north or south of the equator and travel 
toward the west and spin in a circular manner about the eye, or the center, of the storm. They result 
in storm surges, causing eroding of shorelines, flooding areas far inland, and finally causing eco-
nomic losses and losses of life.

Not only tropical cyclones but also tornadoes account for much of the economic and human 
losses. A downward rotating air column, formatting into a funnel shape, violently pulling up dust 
and debris as the wind force increases near the Earth’s surface, is the general characteristic of a 
matured tornado. Such tornadoes finally result in a catastrophic damage to both life and building 
structures in their path.

It is necessary to obtain detailed damage information from field investigations after strong 
winds such as tropical cyclones and tornadoes, but this is time-consuming. For quicker responses 
after catastrophic damage, automated computational investigation becomes inevitable, in order to 
provide instant help to large damaged areas and to access remote damage areas. Exploitation of 
remote- sensing technology along with image-processing techniques and the latest pattern-recognition 
knowledge create a new route for such automated computational investigations. Fast tracking of 
such tornado-damaged path from wind-borne debris (Radhika et al. 2012) and identification of 
damaged roofs of buildings by change-detection method, using pre-storm and post-storm imageries 
(Womble et al. 2007; Radhika et al. 2015), could cover a wider area of investigation at a faster rate.

Past researches have been done on other types of natural disasters such as earthquakes by using 
aerial images. Hasegawa et al. (2000) identified damaged buildings by maximum likelihood clas-
sification method on the Kobe Earthquake in Japan, whereas Mitomi et al. (2001) used the same 
methods for analysis of the Gujarat Earthquake, India, from aerial television images. Sumer et al. (2004) 
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FIGURE 20.1 Bar chart showing the number of natural catastrophe worldwide (1980–2013). (Courtesy of 
Munich Re Geo Risks Research, Munich, Germany.)
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used a watershed segmentation method to identify damaged buildings from post-earthquake aerial 
images, and Ozisik (2004) used edge detection methods from pre- and post-earthquake satellite 
imageries and post-aerial imageries of Turkey earthquakes. A major contribution to earthquake 
building- damage detection using satellite imagery was also done by Matsuoka and Yamazaki (2000), 
using the backscattering coefficient of the European remote sensing satellite–synthetic  aperture radar 
(ERS-SAR) satellite images pre-and post-event of the 1995 Hyogoken-Nanbu (Kobe) Earthquake, 
Japan. A shadow-based detection of building damage from QuickBird Satellite imagery performed 
by Vu et al. (2005) was another remarkable contribution to remote-sensing-based natural disaster 
building-damage investigation.

Many researches have also been done on other natural disasters, such as on wild fires by Ambrosia 
et al. (1998), on floods by Groeve et al. (2009), on landslides by Danneels et al. (2008), and so on, by 
computational identification, using low-resolution satellite images. However, in all these methods, 
both pre- and post-disaster images were necessary.

Tornado-damaged-path tracking was done from low-resolution Landsat satellite imagery by 
change detection from pre-and post-storm imageries by Myrint et al. (2008) and Thomas et al. 
(2002). Myrint et al. used a nearest-neighbor-classifier approach, whereas Thomas et al. used a 
principal component analysis.

The introduction of high-resolution satellite imageries has created a breakthrough in identification 
of disaster-affected building structures, for rescue purposes as well as for  reconstruction. In Womble 
et al. (2007), Lakshminarasimhan (2004), and Womble (2005), computational  analyses were done 
on building damage detection, mainly using statistical analysis on image pixel radiance value. They 
classified the damage to building structures into a remote-sensing scale (RS scale).

However, damage tracking by a change-detection algorithm from both pre- and post-disaster 
imageries faced many difficulties. Immediate availability of both pre- and post-disaster imageries 
of the same location, need for an error-free image registration procedure for aligning both pre- and 
post-disaster imageries in order to detect the changes, and so on, are some of the major difficulties 
that will affect the accuracy of the detection. These difficulties can be minimized if the detection 
is performed by using only post-storm imagery. Therefore, in the current research,  tornado-damaged 
path is detected from post-storm images alone, which solved the difficulty of  non-availability 
of  pre-storm images. After a tornado, there will be a lot of wind-borne debris deposits. A particular 
pattern is identified for this debris deposit when it is taken as an image by texture-wavelet analysis, 
using a two-dimensional biorthogonal wavelet. Introduction of this texture-wavelet analysis instead 
of conventional statistical analysis to identify damaged buildings after the passage of a hurricane 
was proved efficient by using both pre- and  post-storm imageries (Radhika et al. 2015).

This chapter also describes a novel technique for rapid and accurate damage estimation by using 
post-storm RS imagery alone. Once damaged buildings are identified, the extent of damage to 
building roofs is estimated, by calculating the percentage area of damage to roof structures, which 
is very difficult to obtain in a ground survey. This makes damage identification more informative. 
More accurate and faster damage identification will save more lives and enable more building struc-
tures to be restored faster.

20.2 METHODOLOGY

Once a natural disaster occurs, post-storm imagery is acquired and texture-wavelet analysis 
(Radhika et al. 2010, 2011b, c) is performed to detect wind-borne debris deposit area, leading to 
tracking of the disaster area. Once the disaster area is tracked, the buildings are segmented from the 
imagery. From the segmented-building image, wavelet features are extracted and classification of 
damaged and non-damaged buildings is done by using artificial neural network (ANN) and support 
vector machine (SVM) classification. In the segmented roof imagery, it is observed that damaged 
roof areas show a particular pattern when compared with undamaged smooth image portions of 
roof structures. These patterns can be successfully recognized by applying texture-wavelet analysis 
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on segmented-building roof image portions; that is, on the buildings images, which are classified as 
damaged buildings, wavelet-based edge extraction is performed, texture of the broken roof area is 
identified, and the percentage area of roof damage is estimated.

Validation is performed by using visual interpretation and conventional field survey information. 
The entire methodology is shown as a flow chart in Figure 20.2.

20.3 POST-STORM IMAGE ACQUISITION

The current work utilizes a combination of both low- and high-resolution remote sensing images.
Two different disaster events were selected for analysis, as shown below: 

 1. Aerial imagery after Saroma, Japan Tornado, 2006.
 2. Satellite imagery after U.S. Hurricane “Charley” at Punta Gorda in 2004.

20.3.1 aerial imagery after saroma, Japan tornaDo, 2006

Aerial image data of the damaged area after a deadly tornado hit at Saroma town in Hokkaido, 
on November 7, 2006, was acquired. The three-band natural-color high-resolution (10  cm/
pixel) aerial imagery, provided by the Saroma-cho Local Government, is shown in Figure 20.3a. 
This RGB imagery is of 1/2500 scale. The damage covered an area of roughly 200 m*1500 m 
and was almost in a straight line (Cao et al. 2006). Field survey data were also collected for 
validation.

Post storm image acquisition

Natural
disaster

Texture-wavelet analysis

Damage path detection

Building segmentation

Feature extraction

Feature classification

Damaged buildings

Percentage area of roof
damage measured

Texture-wavelet analysis on
roof tops

Non-damaged buildings

FIGURE 20.2 Flow chart showing detection of damaged buildings and estimation of degree of damage to 
building roofs.
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20.3.2 satellite imagery after u.s. hurricane “charley” at punta gorDa, 2004

Quick Bird satellite imagery of the disaster location of Punta Gorda, Florida, after Hurricane Charley 
provided wider information about the area where it had a severe impact. The landfall of Hurricane 
Charley took place on Friday, August 13, 2004, on the southwest coast of Florida at Charlotte Harbor. 
A multispectral post-storm imagery was taken by optical probes of Quick Bird imagery satellite on 
August 14, 2004, just a day after landfall. This satellite imagery used in this research was purchased 
from Digital Globe™ and was licensed and provided by the Remote Sensing Technology Center of 
Japan (RESTEC); it is shown in Figure 20.3b. This imagery is of 2.44 m/pixel resolution. The revisit 
time of the satellite was 1 ~ 3.5 days, depending on the latitude, which makes the damage detection 
faster; that is, the image will be available very soon after a disaster has occurred.

2004/08/14 PUNTA GORDA

(a)

(b)

FIGURE 20.3 (a) Post-storm aerial imagery after Saroma, Japan Tornado (2006). Courtesy of Shin 
Engineering Consultants Co. Ltd. (b) Post-storm satellite imagery after U.S. Hurricane “Charley” at Punta 
Gorda (2004).
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20.4 DAMAGED-PATH DETECTION BY TEXTURE-WAVELET ANALYSIS

Strong-wind-damaged location is tracked automatically from debris deposits in a post-storm image 
by using texture-wavelet analysis by tracing image portions that represent the wind- borne debris 
deposits (Radhika et al. 2012).

Immediately after the disaster, the post-storm imagery is acquired and wavelet-based edge 
extraction is performed on the input imagery. This process divides the imagery into one low- 
frequency coefficient (approximate coefficient) matrix and three high-frequency co efficient (hor-
izontal, vertical, and diagonal coefficient) matrices. The information on wind-borne debris lies 
within the three high-frequency imagery (horizontal, vertical, and diagonal coefficient matrices), 
as the debris deposit has sudden gradient change due to the irregularity of the damaged-building 
deposits. Therefore, the image is reconstructed from horizontal, vertical, and diagonal coefficient 
matrices and the low-frequency matrix; that is, the approximate co-efficient matrix is removed. 
From the reconstructed image, the debris pattern is extracted by measuring the degree of distribu-
tion of the broken edges in the debris deposits, that is, by calculating the standard deviation. The 
debris deposit path has the maximum standard deviation due to its irregular distribution. For sepa-
rating the extracted debris pattern, image segmentation is performed using Otsu’s thresholding 
method, and noise removal is performed by filtering. Thus, the tornado-damaged path is tracked 
by texture-wavelet analysis. A step-by-step process of texture-wavelet analysis for path detection 
is shown in Figure 20.4.

In order to automate the identification of the disaster location, for faster recovery, user-friendly 
automatic damage area detection system is designed, as shown in Figure 20.5.

Figure 20.6 shows the results of a damaged path detected for different disasters from satellite/
aerial imagery. Once the exact location of the disaster is tracked from aerial/satellite imagery, an 
immediate automatic survey report for emergency aid can be provided.

Post-storm image

Debris detected Noise removal

Wavelet edge extraction

Segmentation

Reconstructed image
Diagonal

Vertical

Horizontal

Approximate

Distribution

FIGURE 20.4 Step-by-step results for strong-wind-damaged path detection from low-resolution post-storm 
imagery (debris detected are masked in red).
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20.5 BUILDING SEGMENTATION

Once the debris path is detected from low-resolution imagery, high-resolution imagery segment is 
cropped from the image at the exact location where the damage has occurred (Figure 20.7a) and 
buildings are more concentrated. Building segmentation is performed using edge detection and color 
invariance property (Radhika et al. 2011a), and buildings are separated as shown (Figure 20.7b).

Damage path detection system

FIGURE 20.5 Automatic damaged-area detection system designed for immediate tracking of disaster area.

Saroma-cho Tornado, Japan, 2006 Moore US Tornado, 1999

Punta Gorda, Hurricane CharleyTuscaloosa
US Tornado, April 27, 2011

Tokunoshima Tornado,
Japan, November 19, 2011

FIGURE 20.6 Wind-damaged locations identified for different imageries (detected path shown in red).
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20.6 FEATURE EXTRACTION

Features are extracted from the segmented post-storm roof images. In Radhika et al. (2015), the data 
used for feature extraction were the change-detected portions of wind-damaged roof images. In the 
present work, a wavelet-based feature extraction approach is used on post-storm roof images alone.

20.6.1 Wavelet-baseD eDge feature extraction

In all the feature-extraction methods used in the past for different types of fault classification 
(Sabareesh et al. 2006; Douglas et al. 2005), either spatial (time) domain information or frequency 
domain information is available, but the two are not available together. Hence, there is a chance 
of losing major information while converting from one domain to another. The feature extraction 
using wavelet transform aids in gathering spatial (time) and frequency domain information together 
(Radhika et al. 2009). In the current case of remote sensing of digital images, wavelet-based feature 
extraction is performed by using two-dimensional discrete wavelets. The best wavelet, which is capa-
ble of identifying the broken edges, was selected as biorthogonal 3.7 wavelet (Radhika et al. 2012).

The wavelet-based feature-extraction method includes two main steps: 

 1. Wavelet analysis or decomposition
 2. Wavelet synthesis or reconstruction by using high-frequency information (coefficients)

The wavelet has two scaling functions ( )φ( ), φ( )x x  and two wavelet functions ( )ϕ ϕ( ), ( )x x  . Analysis 
or decomposing using wavelets basically performs filtering and downsampling by using the decom-
posing filters l(k) and h(k) of the wavelets. As the post-storm image is a 2D signal, the filtering and 
downsampling are performed first horizontally and then vertically (Kannan et al. [2010]). There 
are l(k) and l k( ) low-pass impulse responses (low-pass filters) and h(k) and h k( ) high-pass impulse 
responses (high-pass filters). Of these, l(k) and h(k) are used for decomposition or analysis, and l k( ) 
and h k( ) are quadrature mirror filters and are used for reconstruction or synthesis.

The basic decomposition steps are described in Figure 20.8, where:

 I x y f I x y I x y l kLL L( ) ( ( ) ( ) ( ))( ), , , , ,= Approximate Coefficient  (20.1)

 I x y f I x y I x y h kLH L( ) ( ( ) ( ) ( ))(, , , , ,= Horizontal Detailed Coeffiicient) (20.2)

(b)(a)

FIGURE 20.7 (a) Damaged area cropped. (b) Damaged houses segmented.
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 I x y f I x y I x y l kHL H( ) ( ( ) ( ) ( ))(, , , , ,= Vertical Detailed Coefficiient) (20.3)

 I x y f I x y I x y h kHH H( ) ( ( ) ( ) ( ))(, , , , ,= Inclined Detailed Coefficiient) (20.4)

as explained by Feng et al. (2000). In the image, LD and HD correspond to the decomposition filters 
l(k) and h(k), respectively; IL(x, y) is the low-pass coefficient matrix; and IH(x, y) is the high-pass 
coefficient matrix given by Equations 20.5 and 20.6 of the image I(x, y) of size M × P (Pajares and 
de la Cruz 2004). 

 I x y
N

l k I x k M yL

k

N

( , ) ( ) (( ) mod , )= ⋅ +
=

−

∑1
2

0

1

 (20.5)

 I x y
N

h k I x k M yH

k

N

( , ) ( ) (( ) mod , )= ⋅ +
=

−

∑1
2

0

1

 (20.6)

For x = 0, 1, 2 ... M/2–1 and y = 0, 1, 2, ... P–1
The approximate coefficients contribute to low-frequency information, which gives information 

on smoother surfaces, that is, non-damaged roof portions, whereas the three detailed coefficients 
give information on high-frequency information, that is, broken edges, which show a sudden gradi-
ent change in pixel radiance information. The wavelet decomposition is performed till the third level 
(Akhtar et al. 2008), as the high-frequency information saturates at this level.

Finally, the low-frequency information is removed and the high-frequency information is aggre-
gated together to extract the features. This aggregation of high-frequency information is performed 
by wavelet synthesis or reconstruction, as shown in Figure 20.9. In this figure, HR corresponds to 
h k( ), as the synthesis filters are l k( ) and h k( ). Equation 20.7 explains the reconstruction by using the 
three detailed high-frequency pieces of information, using h k( ) (Feng et al. 2000; Lixin et al. 2004).

 E x y f I x y I x y I x yLH HL HH( , ) ( ( , ), ( , ), ( , ))=     (20.7)

From the wavelet-reconstructed image, both statistical and image histogram features are extracted. 
The image after reconstruction with high-frequency information alone has more prominent edge 
information than before, which increases the accuracy of the extracted statistical features. Statistical 
features such as standard deviation and entropy depend on the distribution and the randomness of 
the edge pixels, respectively.

Post-storm roof

Row convolution

I (x, y)*LD = IL (x, y)

IL (x, y)*LD = ILL (x, y)

IL (x, y)*HD = ILH (x, y)

IH (x, y)*LD = IHL (x, y)

IH (x, y)*HD = IHH (x, y)

I (x, y)*HD = IH (x, y)

Column convolution
Horizontal

Approximate

Vertical

Inclined

FIGURE 20.8 Wavelet decomposition on post-storm image of a building roof.
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20.6.2 stanDarD Deviation

The broken edges of roof surfaces show higher distribution, that is, more gradient change in the 
pixel radiance information, which results in higher standard deviation than the portion of the roof 
with intact smooth surfaces. Thus, as the area of the damage portions increases, the standard devia-
tion also increases.

The standard deviation of red, green, and blue layers; the hue, saturation, and vision informa-
tion; and the image intensity information of the wavelet-reconstructed post-storm building images 
are calculated. The variation of the standard deviation of all the damaged-building segmented 
images with respect to the degree of damage is plotted. The best features that contributed to effi-
cient classification for each building are plotted against percentage area of roof damage obtained 
by texture-wavelet analysis and are shown in Figure 20.10. A comparison of the variation of the 
features, using the conventional change-detection method and texture-wavelet analysis, is also 
shown in Figure 20.10.

It is observed that as the percentage area of roof damage increases, the standard deviation also 
increases approximately when texture-wavelet analysis is used.

IHL (x, y)*HR

 Column convolution

Inclined

Vertic
al

Horizontal

Row convolution

Reconstructed
image

ILH (x, y)*HR I*L (x, y)*HR

I*H (x, y)*HR

IHH (x, y)*HR

+

+

FIGURE 20.9 Wavelet reconstruction on post-storm image of the building roof.
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FIGURE 20.10 (a) Standard deviation of pixel radiance of red layer. (b) Standard deviation of pixel radiance 
of green layer.  (Continued)
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20.6.3 entropy

Randomly arranged broken portions of a damaged roof image show high entropy values when 
compared with other non-broken roof image portions, where the pixels are regularly arranged. The 
variation of the entropy of all the damaged-building segmented images with respect to the degree 
of damage is plotted. The best features that contributed to efficient classification for each building 
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FIGURE 20.10 (Continued) (c) Standard deviation of pixel radiance of blue layer. (d) Standard deviation of 
gray-scale intensity. (e) Damaged-portion standard deviation of red-layer pixel radiance. (f) Damaged-portion 
standard deviation of green-layer pixel radiance. (g) Damaged-portion standard deviation of blue-layer pixel 
radiance. (h) Damaged-portion standard deviation of gray-scale intensity.
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are plotted against percentage area of roof damage obtained by texture-wavelet analysis and are 
shown in Figure 20.11. A comparison of the variation of the features, using the conventional change-
detection method and texture-wavelet analysis, is also shown in Figure 20.11.

Therefore, the measure of randomness, entropy, also shows an ascending nature as the damaged 
area increases.

20.6.4 histogram

Once the damage pixels are identified, the histogram of the broken edges is measured, which is one 
of the 15 features used for classifying damaged buildings from non-damaged ones.

20.6.5 observation

Standard deviations of the pixel radiance of the three visible layers, that is, red, green, and blue, and 
also the standard deviation and entropy of the gray-scale intensity obtained by the wavelet-based 
feature-extraction method for all the damaged buildings have shown an almost linear increase as the 
percentage area of roof damage obtained by automatic texture wavelet analysis increases. However, 
for conventional features extracted by the change-detection method, a scattered relation with the 
percentage area of roof damage was obtained. This linear relation between extracted features and 
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FIGURE 20.11 (a) Damaged-portion entropy of red-layer pixel radiance. (b) Damaged-portion entropy of 
green-layer pixel radiance. (c) Damaged-portion entropy of blue-layer pixel radiance. (d) Damaged-portion 
entropy of gray-scale intensity.
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the automatically obtained percentage area of damage by texture wavelet analysis aid in a faster and 
more precise identification of damaged-building structures.

20.7 FEATURE CLASSIFICATION

20.7.1 artificial neural netWork classification

Neural network is one of the approaches for forecasting and validating by using computer models, 
with some of the architecture and processing capabilities of the human brain. The technology that 
attempts to achieve such results is called neural computing or artificial neural networks (ANN). It 
mimics biological neurons by simulating some of the workings of the human brain. An ANN is 
made up of processing elements called neurons that are interconnected in a network. The way in 
which the information is processed and intelligence is stored depends on the architecture and algo-
rithms of ANN. The ANN is characterized by the topology, weight vector, and activation functions. 
It has three layers, namely an input layer that receives signals from some external source, a hidden 
layer that does the processing of the signals, and an output layer that sends processed signals back to 
the external world. The main advantage of the ANN is its ability to learn patterns in very complex 
systems. Through learning or self-organizing processes, it translates the inputs into desired outputs 
by adjusting the weights given to signals between neurons.

The proposed method diagnoses a damaged building by using the ANN. A multilayered feed-
forward neural network trained with error backpropagation was used. The backpropagation of an 
ANN assumes that there is a supervision of learning of the network. The features extracted for both 
damaged and non-damaged building are given to train the ANN. On the trained ANN, features are 
given in order to classify the unknown data into damaged or non-damaged building images. Results 
of ANN classification are detailed in Section 20.9.

20.7.2 support vector machine classification

Classification is also performed by using Support Vector Machine (SVM), as SVM was proved to be 
an efficient classifier in earlier researches (Radhika et al. 2009; Sabareesh et al. 2006). In SVM, the 
selected features are arranged in an input space. This input space is mapped into a high-dimensional 
dot product space called feature space, and in the feature space, the optimal hyperplane is deter-
mined to maximize the generalization ability of the classifier. As the classification includes only 
two categories, damaged roofs and non-damaged roofs, a biclassifier SVM is enough. A biclassifier 
optimization theory is utilized to obtain the optimal hyperplane with maximum percentage margin 
of separation and with minimum error, as shown in Equation 20.8.

 Min
w y

T
Tw w

ve y
, 2

+











 (20.8)

The class decided for the new set of building samples is based on Equation 20.9. 

 f x w xT( ) sign( )= − γ  (20.9)

If f(x) is positive, the new set of features belongs to a particular class; otherwise, it belongs to the 
other, depending on the training information feed.

Classification is performed from the wavelet-extracted features, and damaged buildings 
are identified. Results of SVM classification are detailed in Section 20.9. The validation pro-
cedure is done by visual inspection of the damaged buildings and from information collected 
from field survey.
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20.8  TEXTURE-WAVELET ANALYSIS ON POST-STORM 
DAMAGED-BUILDING IMAGES

The following steps are involved in texture-wavelet analysis of the extracted wavelet edge and 
reconstructed post-storm roof images: 

 1. Wavelet-based edge feature extraction
 2. Measure of distribution of the broken edges in the image
 3. Segmentation using Otsu’s thresholding method
 4. Percentage area of damage

Wavelet-based edge feature extraction using biorthogonal 3.7 wavelet on post-storm images are 
already performed and discussed in detail in Section 20.6.1.

20.8.1 measure of Distribution of broken eDges in image

After wavelet-based edge extraction, the reconstructed roof image includes only high-frequency 
information, where the broken edge information is more obvious. However, in rare cases, the edges 
E(x, y) derived in Equation 20.7 extracted by wavelet-based edge extraction sometimes extract non-
broken edges, for example, as shown in Figure 20.12. Edges of the intact roof portions are detected 
(shown within grey rectangle), as there is no common portion-deletion procedure as in change- 
detection methods (Canny 1986).

In order to extract the broken edges from a reconstructed image, the measure of distribution of 
broken edges is calculated. The broken roof edges show a higher distribution rate than long non-
broken edges in a reconstructed image, as the broken edge extraction using biorthogonal 3.7 wavelet 
enhances the edge properties in the reconstructed image. A 2D standard deviation is performed 
using a 3 × 3 window on the edge-extracted imagery, and the central pixel radiance is replaced by 
the calculated standard deviation. Figure 20.13 shows the intensity of distribution of the broken 
edges of a reconstructed post-storm imagery.

20.8.2 segmentation using otsu’s thresholDing methoD

The damaged area is segmented from the rest by using Otsu’s thresholding method (Otsu, 1979). 
In this method, the objects (damaged area) to be segmented are separated from the background 
(remaining part of the roof) by initializing a threshold level, formulating the objectives, and finally 
treating segmentation process as an optimization problem, that is, by maximizing any one of these 
objectives by maximizing the separability between the two classes, objects, and the background. 
The damaged portion segmented using Otsu’s segmentation method is shown in Figure 20.14.

Post-storm roof top Edge extracted image

FIGURE 20.12 Edge-extracted sample roof top with intact edges detected.
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20.8.3 percentage area of Damage

The percentage area of damage is calculated from the damaged portions thus segmented, by nor-
malizing the damaged area with the total roof area, as shown in Equation 20.10. 

 % = 







×P

A
A

D
D

T

100 (20.10)

where:
PD is the percentage area of roof damage
AD is the damaged roof area
AT is the total roof area

20.9 RESULTS AND DISCUSSION

To compare the efficiency of wavelet-based feature extraction, conventional feature extraction is 
also performed on the same raw data. Classification using SVM and ANN is also performed on the 
features extracted by conventional method and wavelet-based feature extraction method.

20.9.1 classification results

A precise identification of 80% efficiency for satellite images and 82% efficiency for aerial images, 
using artificial neural network (ANN), and 88% efficiency for satellite images and 90% efficiency 
for aerial images, using support vector machine (SVM)-based classification, is obtained when 
 wavelet-based feature extraction is used. However, using conventional feature extraction, only very 

Damage severity measureEdge extracted image

FIGURE 20.13 Measure of distribution of broken edges or damage severity measure (regions shown in grey 
show maximum distribution).

Damage severity measure Damage area detected

FIGURE 20.14 Segmentation performed by Otsu’s thresholding method.
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low efficiency of 58% for satellite images and 60% for aerial images, using artificial neural network 
(ANN), and 64% for satellite images and 65% for aerial images, using support vector machine 
(SVM), is obtained. The results are shown in Figures 20.15 and 20.16.

The higher percentage of classification efficiency results in accurate damage identification. 
Wavelet-based feature-extraction methods provided a more accurate identification of damaged 
buildings than conventional feature-extraction methods. At the same time, a better classification 
was performed by SVM than by ANN.

20.9.2 percentage area of roof Damage

Damage gradation of four different roof image samples by calculating their percentage area of roof 
damage from post-storm imagery alone, using texture-wavelet analysis, is shown in Figure 20.17. 
Similarly, texture wavelet analysis is performed on all the segmented roof images, and damage 
gradation is obtained.

Correlation between this automatically calculated percentage area of roof damage by texture-
wavelet analysis and visually interpreted roof damage is calculated in order to measure the accuracy 
of texture-based wavelet analysis. Correlation factors are calculated for both satellite and aerial 

Conventional
feature extraction

Wavelet
feature extraction

Conventional
feature extraction

Wavelet
feature extraction

Correctly classi�ed buildings

Mis-classi�ed buildings

Correctly classi�ed buildings

Mis-classi�ed buildings(a) (b)

64% 88% 65% 90%

FIGURE 20.16 Percentage efficiency of classification of SVM for conventional and wavelet-extracted 
features: (a) for satellite imagery and (b) for aerial imagery.

58%

Conventional
feature extraction

Wavelet
feature extraction

Correctly classified buildings

Mis-classified buildings(a) (b)

Correctly classified buildings

Mis-classified buildings

Conventional
feature extraction

Wavelet
feature extraction

80% 60% 82%

FIGURE 20.15 Percentage efficiency of classification of ANN for conventional and wavelet-extracted 
features: (a) for satellite imagery and (b) for aerial imagery.
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imageries and tabulated in Table 20.1. A higher positive correlation value is also observed for per-
centage area of roof damage automatically obtained by texture-based wavelet analysis than by 
Canny edge detection.

The damage estimation from post-storm imagery alone has shown almost equal correlation fac-
tor as that of modified wavelet-based change-detected method, where both pre- and post-storm 
images are used. In addition, damage estimation from low-resolution satellite imagery showed a 
comparable correlation factor with the high-resolution aerial imagery, which reflects the efficiency 
of texture-wavelet analysis even with lower-resolution imagery.

The conventional change-detection method that used Canny edge detection showed a positive 
correlation but with a very low correlation factor with the visually measured data. The validation is 
performed by comparing the data with conventional methods such as field investigation data as well 
as by manually measured data through visual interpretation.

20.10 SUMMARY

Wavelet-based feature extraction was performed directly on raw data of segmented post-storm build-
ing images, and damaged buildings were identified with 88% efficiency by using SVM and with 
80% efficiency by using ANN for 2.44 m/pixel resolution satellite imagery, whereas the efficiency 

Post-storm
roof top

Damage
severity

Damage area
detected

% Area of roof damage = 0%

% Area of roof damage = 41%

% Area of roof damage = 58%

% Area of roof damage = 89%

FIGURE 20.17 Damage gradation of percentage area of roof damage by using post-storm imagery alone.

TABLE 20.1
Correlation Calculated for All Building Samples

Correlation Factor

Between Canny Edge Detection and 
Visual Interpretation

Between Texture-Based Wavelet Analysis 
and Visual Interpretation

Pre- and Post-Storm Post-Storm Alone Pre- and Post-Storm Post-Storm Alone

% area of roof damage 
on satellite imagery

0.12 0.09 0.78 0.75

% area of roof damage 
on aerial imagery

0.52 0.45 0.85 0.8
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using SVM was 90% and that using ANN was 82% for 10 cm/pixel resolution aerial imagery. This 
method proved to be more efficient and accurate than conventional feature-extraction methods.

From the identified damaged buildings, damage estimation is performed by calculating the 
 percentage area of roof damage by using texture-wavelet analysis on post-storm imageries. A corre-
lation factor of 0.75 for satellite imagery and 0.8 for aerial imagery is obtained when compared with 
the manually obtained visual interpretation data. This validates the accuracy of the automated detec-
tion of the percentage area of damaged roof structures. The high-resolution aerial imagery showed 
better correlation than satellite imagery in both cases, but with the use of texture-wavelet analysis, 
even with lower-resolution satellite imagery, a better correlation was obtained.

Thus, a cost-effective precise automatic detection of damaged roof tops and the percentage area 
of damage from post-storm images alone aid in a rapid risk-reduction attempt, soon after disastrous 
strong-wind damage and immediate reconstruction by prioritization.
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21 Analyzing Tropical 
Cyclones over India Using 
Precipitation Radar

Devajyoti Dutta, A. Routray, and Prashant K. Srivastava

21.1 INTRODUCTION

A tropical cyclone (TC) is a symmetric system characterized by a low pressure at the center and 
numerous thunderstorms that produce strong winds and heavy rain causing flash flood (Henderson-
Sellers et al. 1998). The TCs form over large, relatively warm ocean. They get energy through 
evaporation of water from the ocean surface. This warm, moist air (water vapor) rises and cools 
to saturation; ultimately, it condenses into clouds and rain. During this processes, it releases latent 
heat, and this heat feeds TCs. Latent heat provides more energy and transforms to a violent storm. 
The TCs are associated with strong wind, torrential rains, and storm surges, which create havoc 
along the coastal regions. The heavy downpours can cause significant flooding, and surges also 
result in extensive coastal flooding. The TC track and intensity forecasting is an important compo-
nent for disaster warnings and mitigation efforts (Mohapatra et al. 2013).

The North Indian Ocean (NIO), including the Bay of Bengal (BoB) and the Arabian Sea (AS), 
experiences two TC seasons, that is, post-monsoon season and pre-monsoon season. During the 
post-monsoon season (October–December), maximum number of TCs occurr as compared with 
the pre-monsoon season (April–early June). The damage steadily increases along the coastal region 
due to the TCs. The track forecast errors are relatively high over the NIO compare with those 
over the Atlantic and Pacific Oceans (Mohapatra et al. 2013). The accurate prediction of track and 
intensity of the TCs well in advance is now a challenge for all research and operational communi-
ties. The NIO is one of the important basins contributing about 7% of the global annual tropical 
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storms (WMO Technical Report 2008). The frequency and landfalling of the TCs are more over 
BoB, with the development of about four TCs per year, and hence cause more disasters than the 
TCs at the AS (IMD 2008). The previous studies (Mohanty and Gupta 1997; Gupta 2006) show 
that synoptic and statistical methods have limitations in TC track and intensity prediction over the 
NIO. Observational networks and numerical weather prediction (NWP) models have the potential 
to provide forecast for genesis, intensity, and movement of TC for disaster mitigation and warning. 
Observational and modeling studies have established a link between the TC intensification and deep 
convection (Schubert and Hack 1982; Hendricks et al. 2004; Kelley et al. 2004; Montgomery et al. 
2006; Reasor et al. 2009; Guimond et al. 2010; Montgomery and Smith 2011; Jiang 2012).

Observations of TCs are limited, because they spend most of their lifetime over oceans. Therefore, 
remote sensing is an important tool to detect a cyclone and to study its characteristics. The use 
of microwave portion of the spectrum has the advantage that microwave radiation penetrates the 
clouds. The precipitation-sized drops interact strongly with microwave radiation, which allows their 
detection by microwave radiometers. The main disadvantage of microwave precipitation monitoring 
and estimation is that the radiometers have poorer spatial and temporal resolution compared with 
infrared (IR) and visible spectral bands. Furthermore, there are two types of microwave remote-
sensing approaches to study the precipitation associated with cyclone: active and passive. In the 
active type, the transmitted signals are received from the target by backscattering process. Doppler 
Weather Radar (DWR), Precipitation Radar (PR), microwave radar altimeters, scatterometers, and so 
on, are active microwave sensors. In active microwave sensing, the characteristics of scattering can 
be derived from the radar cross-section, calculated from the received power, antenna parameters and 
the relationship between them, and physical characteristics of an object. The passive types receive 
the microwave radiation emitted from the target. The microwave radiometer is one of the passive 
microwave sensors. The passive microwave remote sensing can be understood with the help of radia-
tive transfer theory (Chandrasekhar 1960), based on the law of Rayleigh Jeans. In passive microwave 
remote sensing, the characteristics of an object can be detected from the relationship between the 
received power and the physical characteristics of the object, by using the parameter known as bright-
ness temperature (Tb). The temperature of the black body that radiates the same radiant energy as an 
observed object is called the brightness temperature of the object. The Tropical Rainfall Measuring 
Mission (TRMM) satellite had both passive and active sensors, viz. TRMM measurements from the 
TRMM Microwave Imager (TMI), PR, Lightning Imaging Sensor (LIS), and Visible and Infrared 
Scanner (VIRS). The detailed specification of the sensors boarded in the TRMM satellite is shown in 
Table 21.1. The high-resolution PR made it possible for the first time that TCs in all ocean basins can 
be viewed from orbit. The TRMM measurements from the TMI, PR, LIS, and VIRS have provided 
valuable sources of information for the study on TC’s structure, intensity, and intensity change. The 
convective structure in different regions of TCs is fundamental, and it is important for the commu-
nity of TC research. In addition, TC intensity is linked with satellite-based ice-scattering signatures 
and inner-core areal mean rainfall (Rao and MacArthur 1994; Cecil and Zipser 1999).

TABLE 21.1
Details of Various Sensors Boarded in the TRMM Satellite

Parameters TMI TRMM-PR VIRS

Frequency 10.75 GHz (V, H), 19.35 GHz (V, H), 
22.235 GHz (V), 85 GHz (V, H)

13.8 GHz (H) 0.63, 1.6, 3.75, 10.8, 
and 12 µm

Data products 1B11 (TMI brightness temperature), 
2A12 (hydrometeor profile product)

1C21 (reflectivities), 2A25 (rainfall 
rate and profile), 2A23 (radar rain 
characteristics)

1B01 (radiance)

Swath ~880 km ~215 km ~830 km

Resolution 11 km × 8 km 5 km (H) and 0.25 km (V) 2 km (nadir)
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The major objective of this chapter is to study the evolution and convective rain bands associ-
ated with the TCs from the available remote-sensing observations. For this purpose, three TCs that 
occurred over BoB are considered (Table 21.2), and details of the synoptic conditions associated 
with the TCs can be found from the Regional Specialized Meteorological Centre (RSMC’s) reports 
of the particular year (http://www.rsmcnewdelhi.imd.gov.in/).

21.2 DESCRIPTION OF OBSERVATIONAL SYSTEMS

There are major improvements in TC track forecasting in the past decade. However, TC intensity 
change and rainfall prediction are still challenging, and these have immense practical importance. 
Tropical cyclone intensification, especially rapid intensification (RI), is one of the important and 
necessary conditions in TC research. There is an increasing demand for more accurate and precise 
quantitative precipitation forecast (QPF), along with longer lead times.

Satellite-based near-real-time precipitation observations provide new opportunity to develop 
global hazard prediction techniques. The capability of microwave sensors to monitor and mea-
sure the precipitation from microwave brightness temperature data was initiated with the launch 
of Electrically Scanning Microwave Radiometer (ESMR) instruments on Nimbus-5, with a center 
frequency of 19.35 GHz. The significant works on identification of rain systems and retrieval of 
rain parameters were started with SSM/I sensors of the Defiance Meteorological Satellite Program 
(DMSP) satellite, that is, F8-F14.

There are different satellite rainfall products worldwide, for example, TMPA, CMORPH, 
PERSIANN, PERSIANN-CCS, and so on, by different agency. The National Aeronautics and Space 
Administration (NASA’s) Goddard Earth Sciences Data and Information Services Center (GES DISC) 
released the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 
(TMPA) products (resolution 025°  ×  0.25°) with near-global (50°S–50°N) coverage. The algo-
rithm combines multiple independent precipitation estimates from the TMI, Advanced Microwave 
Scanning Radiometer for Earth Observing Systems (AMSR-E), Special Sensor Microwave Imager 
(SSMI), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Microwave Sounding Unit 
(AMSU), Microwave Humidity Sounder (MHS), and microwave-adjusted merged geoinfrared (IR). 
All input microwave data are intercalibrated to TRMM Combined Instrument (TCI) precipitation 
estimates (TRMM product 3B31).

The Climate Prediction Center (CPC) morphing technique (CMORPH) satellite produces global 
precipitation analyses at very high spatial and temporal resolution. This technique uses precipitation 
estimates that have been derived from low orbiter satellite microwave observations exclusively and 
whose features are transported via spatial propagation information that is obtained entirely from 
geostationary satellite IR data.

The current operational Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Network (PERSIANN) system developed by the Center for Hydrometeorology 
and Remote Sensing (CHRS) at the University of California, Irvine (UCI), uses neural network 
function approximation procedures to compute an estimate of rainfall rate at each 0.25° × 0.25° 
pixel of the IR brightness temperature image provided by geostationary satellites.

TABLE 21.2
Detail of Tropical Cyclones over the North Indian Ocean

TC Name Basin Name Duration Peak Intensity (km/h)

Ogni Bay of Bengal October 27–30, 2006 65

Thane December 25–30, 2011 85

Helen November 19–23, 2013 65

http://www.rsmcnewdelhi.imd.gov.in/
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The PERSIANN-Cloud Classification System (PERSIANN-CCS) is a real-time global high-
resolution (0.04° × 0.04°) satellite precipitation product developed by the CHRS at the UCI. The 
PERSIANN-CCS system enables the categorization of cloud-patch features based on cloud height, 
areal extent, and variability of texture estimated from satellite imagery.

The TRMM has provided important information that are relevant to the Global Precipitation 
Measurement (GPM) mission. A lot of research information was also learned from the TRMM, 
which is relevant to the operational use of GPM data.

21.2.1 the trmm satellite

The TRMM is the first mission dedicated to measuring tropical and subtropical rainfall through 
microwave and visible IR sensors and includes the first space-borne rain radar. The TRMM’s orbit 
ranges between 35°N and 35°S of the equator, allowing the TRMM to fly over each position on 
the Earth’s surface at a different local time each day. The data from this kind of orbit can be used 
to calculate the rain variations over a 24-hour period. By use of a low-altitude orbit of 217 miles 
(350 km), the TRMM complements the state-of-the-art instruments and provides accurate measure-
ments of rainfall.

The TRMM satellite carries five instruments (Table 21.1), with both passive and active sensors: 
TMI, PR, VIRS, Clouds and the Earth’s Radiant Energy System (CERES), and LIS (Kummerow 
et al. 1998). In this study, two sensors’ (TMI and PR) data are considered to analyze the TCs. The 
scanning geometries of these two sensors are discussed in the following subsections.

21.2.1.1 TRMM Microwave Imager
The TMI is a passive sensor designed to provide quantitative rainfall information over a wide swath. 
By measuring the minute amounts of microwave energy emitted by the Earth and its atmosphere, 
TMI quantifies the water and the rainfall intensity in the atmosphere. It consists of nine frequency 
channels, that is, 10 GHz (V), 10 GHz (H), 19 GHz (V), 19 GHz (H), 21 GHz (V), 37 GHz (V), 
37 GHz (H), 85 GHz (V), 85 GHz (H). It is a relatively small instrument that consumes little power. 
The TMI measures the intensity of thermally emitted radiance by an object in units of temperature 
at nine frequency channels. It is because there is a correlation between the intensity of the radia-
tion emitted and the physical temperature of the radiating body. It is defined as the temperature of 
a black body that emits the same intensity as measured (Ulaby et al. 1981). Tb is found by inverting 
the Planck’s function. The Planck’s function can be expressed in wavelength as

 B T hc
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where:
λ is the wavelength
h is the Planck’s constant
kB is the Boltzmann’s constant
c is the velocity of light
T is the absolute temperature of a black body

The brightness temperature is found by inverting the Planck’s function as
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Where, C1 = 1.1911 × 108 W m−2 sr−1 µm4 and C2 = 1.4388 × 104 K µm.
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The TMI antenna is an offset parabola, with an aperture size of 61 cm and a focal length of 
50.8 cm. The antenna beam views the Earth’s surface with a nadir angle of 49°, which results in an 
incident angle of 52.8° at the Earth’s surface (Figure 21.1). The standard level 1B11 TMI data are 
given as single—sample effective field of view (EFOV) (Kummerow et al. 1998). The Earth science 
data in each scan line consists of latitude and longitude values, along with brightness temperatures 
for the 208 EFOVs at 85 GHz and 104 EFOVs at all the remaining lower-frequency channels.

21.2.1.2 The Precipitation Radar
The PR is the first space-borne instrument designed to provide three-dimensional maps of storm 
structure. The measurements yield information on the intensity and distribution of the rain, rain 
type, storm depth, and the height at which the snow melts into rain. The PR is a 128-element active-
phased array system operating at 13.8 GHz. The PR uses a frequency agility technique to obtain 64 
independent samples with a fixed pulse repetitive frequency of 2776 Hz, in which a pair of 1.6 µs 
pulses differing in frequency by 6 MHz is transmitted.

The PR antenna scans in the cross-track direction over ±17° (~220 km swath), which gives data 
in 49 FOVs.

21.2.2 utilizeD Data proDuct of the trmm sensors

There are different data products from level 1 to level 3. The PR product of levels 1 and 2  has a 
 resolution of 5 × 5 km, and the TMI product has a resolution of 5 × 11 km at 85 GHz. A detailed 
description of these data product can be found in TRMM Science User–Interface Control 
Specification, volume numbers 3 and 4. The present study utilizes levels 1 and 2 data product, 
viz. 1B11 (TMI brightness temperature), 2A25 (PR rainfall rate and profile), and 2A23 (radar rain 
 characteristics). The 1B11 data product gives brightness temperature at different frequency 

Range resolution:
250 m

PR
VIRS

TMI

+Z: nadir

X, Y, Z: Spacecraft coordinate system
              (right handed)

∗Nominaly coincident with spacecraft
  ight direction with velocity,
  v: 7.3 km/sec

+X: TMI side∗
+Y: VIRS cooler side

W: TMI spin speed 31.6 rpm

TMI swath:
759 km

VIRS swath:
720 km

PR swath:
215 km

TRMM ground track:
6.9 km/sec

Incident angle:
52.8°

FIGURE 21.1 Scanning geometry of TRMM sensors. (Adapted from Kummerow, C.D. et  al., J. Atmos. 
Oceanic Technol., 15, 809–817, 1998. With permission.)
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channels (10.65, 19.35, 21.3, 37.0, and 85.5 GHz, with both horizontal and vertical polarizations 
and only vertical polarization at 21.3 GHz). The 2A25 data product contains different parameters 
viz. near- surface rain rate, near-surface reflectivity, stratiform, and convective rain. The primary 
aspects of PR retrieval are the (1) precipitation classification, which is facilitated by the high vertical 
resolution (250 m) reflectivity profile measurements; (2) an inversion algorithm controlled by a surface 
reference technique for path-integrated attenuation (Meneghini et al. 2000); and (3) a reflectivity 
relationship, with parameters differentiated for convective and stratiform rain regimes (Iguchi et al. 
2000). The 2A23 data product gives the bright band information, storm height, and convective and 
stratiform classifications.

21.2.3 Doppler Weather raDar

Pulse Doppler techniques are increasingly applied in weather radars to characterize severe weather 
systems, with astounding success (Doviak and Zrnić 1993).

21.2.3.1 Doppler Shift
The principle of Doppler weather radar is based on Doppler effect. Shift in frequency caused by 
moving sources of sound is directly proportional to speed of the source. Doppler radar compares the 
received signal with the frequency of the transmitted signal and measures the frequency shift, giving 
the speed of the target. For a radar with wavelength λ observing a target at range r, if radar signal is 
transmitted with initial phase of [φ0], then the phase of returned signal φt will be [φ0−4pr (t)/λ]. If 
the target is moving with respect to the radar with a radial velocity vr, the phase of the signal varies, 
and we have: 

 
d ( )

dt
2  

4 dr( )
dt

4Φ t
f

t
vd d r= = = − = −ω π π

λ
π

λ
 (21.3)

Thus, the frequency of the echo has a shift due to the Doppler effect, fd = −2 vr/λ. The Doppler 
frequencies of atmospheric targets do not exceed a few kilohertz. Therefore, they are too small 
with respect to the transmitted frequencies to measure them directly. Doppler signal is derived 
from the comparison of transmitted and received signals. Because the duration of one pulse is only 
τ = 0.5−2 µs, it is not possible to determine Doppler frequency directly from this one pulse, but it 
is possible from phases of several consecutive pulses. The fast Fourier transformation or the method 
called pulse-pair algorithm (calculation of autocorrelation coefficients of measured phases) is used 
for calculating Doppler frequency from series of phases (Doviak and Zrnić 1993).

21.2.3.2 Doppler Dilemma
The maximum Doppler frequency that can be measured unambiguously is equal to half of the pulse 
repetition frequency, fdmax = fr/2 (also called the Nyquist frequency). Consequently, the maximum 
unambiguous velocity is equal to

 V
fr

dmax
4

= λ
 (21.4)

Thus, the unambiguously measured velocity interval is equal to (−vdmax, vdmax). The higher velocity 
(v > vdmax) will be interpreted as the velocity from the opposite direction −vdmax + (v−vdmax). This 
ambiguity is called äliasing. To detect higher velocities unambiguously, either operate the radar at 
a higher wavelength (but then it will not be able to detect a part of cloudiness composed of small 
particles) or increase the pulse repetition frequency.

Because the velocity speed of radar pulse is approximately equal to the speed of light, c, the max-
imum unambiguous range (defined as a range from which the backscattered signal can be received 
before next pulse’s transmission) is given by rmax = c/2 fr. The echo of a strong target at range r > rmax 
is interpreted as a new pulse echo target at range r−rmax. The combination of this relation with the 
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equation for maximum unambiguous velocity gives the equation (also called equation of Doppler 
dilemma) that describes the relationship between maximum unambiguous velocity and maximum 
unambiguous range for Doppler radar measurements. Unambiguous measurement of high velocities 
is thus possible only at small ranges, and measurements at large range are unambiguous for only 
lower velocities. 

 V r
c

dmax max = λ
8

 (21.5)

21.2.3.3 Radar Reflectivity Factors
Radar meteorologists need to relate the reflectivity, η, which is a general radar terminology for the 
backscattering cross-section per unit volume, to the factors that have meteorological significance 
(Doviak and Zrnic 1993). For spherical water drops that have small diameter compared with wave-
length (i.e., in the Rayleigh approximation), η can be expressed as

 η π
λ

=
5

4

2
K Zw  (21.6)

Where, Z D N D r D dD
V i= ∑ =

∞

∫1 6 6

0∆
( , )  is the reflectivity factor (21.7), DV   =  unit volume, and 

D = diameter of the hydrometeor.
The unit of reflectivity is mm6m3, and it is generally expressed in logarithm as

 dBZ
Z= ( )10
1

6

3log
mm
m

 (21.8)

21.2.3.4 Doppler Weather Radar System Configuration
For the present study, the observations from the DWR at Shriharikota (13.66°N and 80.23°E), 
Chennai (13.04°N and 80.17°E), and Machilipatnam (16.09°N and 81.12°E), India, are considered. 
Figure 21.2 shows the schematic diagram of the operational mode of the DWR. The DWR operates 
in S-band (2.8 GHz frequency/10 cm wavelength) and is normally configured as a fixed station.
The DWR consists of a high-power coherent transmitter, a pencil beam antenna with 1° beam width, 
and very low sidelobe levels. It is steerable in azimuth and elevation. A state-of-the-art digital signal 

3

-

Δr = C/2fs IPP==1/prf

Spatio temporal sampling of dynamic weather phenomena
by DWR in a hemispherical volume of space around RADAR

FIGURE 21.2 Schematic diagram of operational mode of the DWR.
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processor extracts the three essential base products, viz. reflectivity (η), mean velocity (V), and 
spectral width (σ) of hydrometeors, from the log/linear channels of the receiver.

21.3 RESULTS AND DISCUSSION

In this study, remote-sensing approach is used to analyze the four TCs (Table 21.2). The IR data 
are used to define deep convection by calculating the number of pixels, with brightness temperatures 
colder than a given threshold. The cirrus cloud causes problem in finding out convective intensity. 
Since here, the near-surface rain is grouped by a PR 2A25, the cirrus contamination is reduced.

Radar reflectivity depends on hydrometeor phase and the sixth power of hydrometeor diameter for 
Rayleigh scattering. Reflectivity, therefore, responds preferentially to the largest particles in a sample 
volume. High reflectivities below the freezing level indicate a large liquid water content, whereas 
high values above the freezing level indicate super-cooled liquid raindrops or large ice particles, 
which can only reach those altitudes by substantial updrafts. Without strong updrafts, reflectivity 
decreases rapidly with height above the freezing level (Zipser and LeMone 1980; Szoke et al. 1986).

A case study of the cyclonic storm Ogni on October 25–27, 2006, was carried out by considering 
the near-simultaneous observations from DWR, TRMM-PR, and TMI. First of all, the plan posi-
tion indicator (PPI) plots of reflectivity and radial velocity, as observed from DWR, are presented in 
Figure 21.3 (a and b, respectively). The spiral pattern of the cyclonic system is very much clear from 
these PPI plots. The total area covered by this event is around 16 × 104 km2. The maximum radial 
velocity observed was of the order of 30 m/s, both inward and outward with respect to the DWR 
beam. The positive radial velocity indicates the direction of the wind away from the beam, and the 
negative radial velocity indicates the direction of the wind toward the beam. For the same sample 
record, the vertical cross-section of the cyclonic event is shown in Figure 21.4. The two bands of 
high reflectivity are clearly visible, with heights of 5 km and 7 km, respectively. The eye is identified 
with the help of the absence of reflectivity regimes at around 60–70 km from the DWR. The near-
simultaneous observations from the DWR (reflectivity in dBZ), TMI (brightness temperature in K), 
and TRMM-PR (reflectivity in dBZ) are shown in Figure 21.5 (a through c, respectively). The DWR 
and TMI are able to capture the full cyclonic event, whereas the TRMM-PR is able to capture the 
small portion, only of the same systems, due to its smaller swath. Figure 21.6a shows the frequency 
distribution of the total radar pixel area at various dBZ ranges, as observed from the DWR, and 
Figure 21.6b shows the frequency distribution of the total pixel area at various rain intensity ranges, 
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as estimated by the DWR. Figure 21.6c shows the PPI plot of rain intensity from TMI for the same 
event. In the rain intensity domain, there is a reasonably good agreement between the DWR and 
TMI. Two distinct modes of heat released are observed for stratiform region, with upper height heat-
ing and lower height cooling (Figure 21.7a). Heat released for the stratiform region is ~5 k/h at ~5 km 
and cooling of value ~1.5 k/h at ~2 km. Convective region, on the other hand, shows a net heating 
for all levels, with maximum release of heat of the order ~20 k/h (Figure 21.7b). Although the heat 
released in stratiform region is less compared with convective, as noticed in Figure 21.3, stratifom 
region covers a very large area compared with convective, and thus, it also plays a significant role in 
atmospheric circulation.

The TC Thane was originated in the BoB on December 25, 2011. The TC Thane was associated 
with winds up to 137 km/h and hit Tamil Nadu, India, on December 30, 2011. During that duration 
of the TC, the TRMM satellite had three passes over the TC. The TRMM passed on December 26, 
2011, at 13:05 UTC over the TC. That time, the storm’s wind speed was about 40 knots. The PR was 
able to capture a large portion of the storm surrounding the north side (Figure 21.8a). Figure 21.8a 
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clearly depicted a developing stage of the storm. The TMI rain shows a circular eye-type structure 
near the storm’s center. On 21:59 UTC of December 27, 2011, the TRMM-PR showed continuous 
bands of intense convective storms occurring around rainbands (Figure 21.8b). The PR reflectivity 
shows more than 50 dBZ in some areas of the storm, proving that heavy rainfall occurred in that area. 
The vertical cross-section showed that convective towers reached up to a height of more than 16 km 
(Figure 21.9a). The frequency distribution of rain area pixel is shown in Figure 21.9b. It is seen that 
maximum occurrence of rain intensity is 20 mm/h. From 20 to 40 mm/h, there is a sharp decrease in 
the occurrence of rain intensity, and after that, it decreases gradually. Highest intensity, 120 mm/h, 
is observed by the PR. The TC had the wind speed of about 75 knots on December 29, 2011. On that 
day at 11:53 UTC, the TRMM pass was observed. The PR showed multiple spiral intense convective 
rainbands southwest of the TC center (Figure 21.8c). The reflectivity values go to more than 55 dBZ, 
showing the proof of heavy rainfall (Roy et al. 2010). The TC Thane made landfall on December 30, 
2011, near Pondicherry. The system was tracked by the DWR Chennai from December 28 evening 
till the landfall (Figure 21.8d). The DWR Chennai radar pictures show that the system had circular-
open eye.

The TC Helen formed over the BoB and made landfall in a couple of days along the coast of 
southeastern India. The TRMM satellite shows scatter convective rainbands over the northern and 
eastern quadrants of the TC on November 19, 2013. The TC was located just 180 nautical miles 
south-southeast of Visakhapatnam, India, near 15.0°N and 84.5°E at 1500 UTC on November 19, 
2013, with maximum sustained winds around 35 knots and moving to the west at 8 knots/14.8 km/h. 
On that day, the TRMM swath passed over that region and the TC was clearly seen. Satellite imag-
ery showed that the low-level center is organized and there is convection (building thunderstorms) 
flaring around the storm’s center. The scattered convective bands around the northern quadrant of 
the storm are detected. The TRMM-PR satellite data showed that the rainfall rates were as high as 
120 mm/h (see Figure 21.10). The TC came to the DWR at Machilipatnam range on 02 UTC of 
November 21, 2013. Figure 21.11 shows the life cycle of the TC at different times, as observed 
by the DWR. The highest reflectivity is seen up to 50 dBZ, and the stratiform region is dominated 
compared with the convective portion, which mean that cyclone is in the dissipation stage (Houze 
et al. 2004).
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21.4 CONCLUSIONS

The evolution of TCs over the NIO is analyzed through the available remote-sensing observations. 
In this study, we utilized the TRMM-PR, TMI, and ground-based DWR. For the convective regime, 
the storm heights are characterized by high reflectivity of 40 dBZ or more. The maximum radial 
velocity observed was of the order of 30 m/s, both inward and outward with respect to the DWR. 
The convective and stratiform regions in the TCs are associated with high- and low-intensity rain-
fall, respectively. The convective regime is characterized by the release of significant amount of 
latent heat at all heights in the troposphere compared with the stratiform regime, where cooling is 
observed at lower height (~1–2 km). Although the heat released in the stratiform region is less com-
pared with the convective, it is noticed that the stratifom region covers a very large area compared 
with convective and the stratiform region plays a significant role in atmospheric circulation. The 
vertical cross-sections of the convective towers reached up to a height of more than 16 km. High 
reflectivity up to 55 dBZ and corresponding rains of around 120 mm/h were observed. The maxi-
mum rainfall was 120 mm/h, and the maximum value of occurrence was 20 mm/h.

A long-term, strategic program of applied research will address many complex problems regard-
ing the National Oceanic and Atmospheric Administration (NOAA’s) use of space-based precipita-
tion information to improve modeling, forecasting, and climate applications. The TRMM is one 
of the very successful missions of NASA. The TRMM-PR provided significant insight into the 
information about the structure of TCs. However, the TRMM precipitation radar can only detect 
moderate to high rainfall rates because of low sensitivity. In addition, the swath of the PR is less. 
The life cycle of TC characteristics is difficult to analyze if the PR is less repetitively.

There many international initiatives to utilize the satellite dataset for disaster management. The 
International Charter on Space and Major Disasters aims at providing a unified system of space data 
acquisition and delivery to those affected by natural or manmade disasters anywhere in the globe, 
through authorized users. Indian Space Research Organization (ISRO) joined the Charter in 2002 
as a member and plays an important role in providing remote-sensing imageries to the global com-
munity, for the major disasters.

ISRO has joined Sentinel Asia Project initiated by the Japan Aerospace Exploration Agency 
(JAXA) in 2007. Sentinel Asia (SA) is a voluntary and best-efforts-basis initiative led by the Asia-
Pacific Regional Space Agency Forum (APRSAF) to share disaster information in the Asia-Pacific 
region on the Digital Asia (Web-GIS) platform and to make the best use of Earth observation satel-
lites’ data for disaster management in the Asia-Pacific region.
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22 Radar Rainfall Estimates 
for Debris-Flow Early 
Warning Systems
Effect of Different Correction 
Procedures on the Identification 
of Intensity–Duration Thresholds

F. Marra, E. I. Nikolopoulos, J. D. Creutin, and M. Borga

22.1 INTRODUCTION

Debris flows (DFs) are rapidly flowing, gravity-driven mixtures of roughly equal parts of sediment 
and water, in which a broad distribution of grain size, commonly including gravel and boulders, 
is mixed vertically (Iverson 2005). In fact, DFs are among the most devastating natural disasters 
in mountainous regions (Dowling and Santi 2014), and their occurrence has increased during the 
last decades (Dietrich and Krautblatter 2016). Development of DF forecasting and early warning 
systems is of great economical and societal importance and requires accurate knowledge on the 
triggering mechanisms and their corresponding characteristics (Borga et al. 2014). Early warning 
systems for rainfall-induced DFs are based on combining information about DF susceptibility in 
the region under consideration with rainfall measurements and forecasts (Hong and Adler 2007; 
Tiranti et al. 2014; Berenguer et al. 2015). Assessment of DF susceptibility is generally carried out 
by relating the occurrence of DF with a number of variables controlling DF initiation to identify 
the locations more prone to future events. When the information about the spatial variability of 
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DF susceptibility is neglected, early warning systems make use of rainfall thresholds, intended 
as rainfall conditions that, when reached or exceeded, are likely to result in DF (Guzzetti et al. 
2008). Starting with the works by Caine (1980) and Innes (1983), rain intensity and duration were 
recognized as the characteristic properties of rainfall triggering landslides and DF, which lead to 
the development of rainfall intensity–duration (ID) thresholds that have since been used widely for 
identification of landslides/DF occurrence at the local, regional, and global scales (Guzzetti et al. 
2008; Brunetti et al. 2010; Tiranti et al. 2014; Vennari et al. 2014; Rosi et al. 2015; Iadanza et al. 
2016; Bel et al. 2016).

Concerning rainfall monitoring and forecasting, Alfieri et al. (2012) gave an extensive review 
of the benefits and limitations of the different rainfall inputs used in the context of early warning 
systems. The DFs are very small-scale phenomena that are frequently triggered by rainfall extremes 
(e.g., due to stationary convective thunderstorms) at scales that are generally not well resolved by 
numerical weather prediction models or low-resolution rain gauge networks. More specifically, 
rainfall estimates from rain gauges can be affected by large uncertainties, caused by the insufficient 
sampling of the triggering rainfall, mainly due to the combination of two factors: (1) rain gauges 
in the mountainous context are generally scarce and located at low elevations (e.g., in the valley 
floors); (2) DFs are generally initiated in the head part of the catchments by strong convective storms 
(Stoffel et al. 2011; Borga et al. 2014; Nikolopoulos et al. 2015b).

Owing to these reasons, it is expected that rainfall thresholds derived from rain gauge observa-
tions will be associated with considerable uncertainty. In fact, recent work by Nikolopoulos et al. 
(2014) showed that uncertainty in rain gauge estimation results in a systematic underestimation of 
the identified rainfall thresholds, leading to important degradation of the performance under opera-
tional conditions. Furthermore, Nikolopoulos et al. (2015a) showed that the problem persisted even 
when more complex (than reference rain gauge) interpolation techniques are considered for spatial 
rainfall estimation.

A potential solution to the observational limitations of rain gauges lies on remote-sensing observa-
tions. More specifically, the high spatial and temporal resolutions of weather radar (~1 km2 × 5 min 
for a common C-Band) offer the unique advantage of estimating rainfall above the DF-triggering 
area. Nevertheless, the quantitative accuracy provided by radar is an important concern, particularly 
in mountainous regions (Germann et al. 2006). Correction algorithms have been proposed and tested 
for the main sources of error, generally focusing on flood and flash flood events (Pellarin et al. 2002; 
Krajewski et al. 2006; Villarini and Krajewski 2010; Gourley et al. 2011), but DF-triggering events 
pose different challenges, mainly related to the small size of the involved catchments, sometimes 
even less than 1 km2 (D’Agostino and Marchi 2001). So far, only few studies took advantage of 
radar rainfall estimates for DF observation or forecasting, generally using standard products merged 
with rain gauge data (Wieczorek et al. 2000; David-Novak et al. 2004; Chen et al. 2007; Chiang and 
Chang 2009; Saito et al. 2010).

The present study aims at (1) assessing radar rainfall estimates for DF storm events, and (2) ana-
lyzing the benefits and limitations of different radar and rain gauge rainfall estimation scenarios for 
the derivation of rainfall thresholds.

Section 22.2 describes the study area and data. Section 22.3 assesses the radar correction proce-
dure and introduces the radar rainfall scenarios. Section 22.4 derives ID thresholds from different 
sources of rainfall data. Finally, Section 22.5 summarizes the messages of the chapter.

22.2 STUDY AREA

The present research is based on the Upper Adige river basin (9700 km2), in the Eastern Italian 
Alps. The significant societal risks of the area, marked by a large number of casualties and 
important damages caused by DF (Salvati et al. 2010), together with the availability of a long-
term, accurate catalog of DF events, make this area unique for such a study. The region is char-
acterized by complex topography, with elevation ranging from 200 m to almost 4000 m a.s.l. 
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(Figure 22.1). Metamorphic rocks and calc-schists, prasinites, and serpentinites characterize 
the western part of the region, whereas dolomites and limestones prevail in the eastern part 
(Norbiato et al. 2009b). Mean annual precipitation varies from 400–700  mm of the internal 
alpine area to 1300–1800 mm of the southern and northern areas. The seasonal distribution of 
rainfall is influenced by western Atlantic airflows and southern circulation patterns (Frei and 
Schär 1998) and shows two peaks in the summer and fall seasons. The DFs typically occur (90% 
of the observed DFs) during the summer (Nikolopoulos et al. 2015b), when the precipitation 
regime is dominated by mesoscale convective systems and localized thunderstorms (Norbiato 
et al. 2009a; Mei et al. 2014).

A catalog listing more than 400 DFs is available for the area, starting from the year 2000 (Comiti 
et al. 2014). It can be considered complete, except for very small failures (<700 m3) that stopped 
upstream or remained hidden under the forest canopy. The catalog provides information about the 
initiation point of DFs, with accuracy up to 50 m.

The region is monitored by a rain gauge network, with spatial density ~1/80 km2 and temporal 
resolution of 5 min, and a C-band, Doppler weather radar located in a central position and provid-
ing rainfall estimates with 1 km2, 5-minute resolutions (Figure 22.1). Rain gauge data quality has 
been examined, rejecting suspicious measurements. Technical features of the radar instrument are 
reported in Table 22.1.

The study is based on seven storm events that triggered a total of 117 DFs, causing casualties 
and significant damages. The events, among the most severe that hit the region (Destro et al. 2017), 
occurred during the summer months and can be considered representative of the DF seasonality of 
the area. The characteristics of the storm events are reported in Table 22.2.
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FIGURE 22.1 Map showing the study area. Orography of the Adige river basin closed at Trento is shown 
with colors. Rain gauge and debris flow locations are shown with black triangles and green circles, respec-
tively. The weather radar location with a 60-km-range circle is also presented.
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22.3 RADAR RAINFALL

22.3.1 rainfall estimation proceDure

Radar data are provided by Ripartizione Protezione Civile, Provincia Autonoma di Bolzano, already 
cleaned from ground echoes. Antenna pointing accuracy is verified by cross-correlating observed 
and simulated reflectivity fields of ground echoes (Rico-Ramirez et al. 2009). The elaboration of 
radar estimates then undergoes three steps: 

C.1. Physically based corrections: Radar raw data are corrected considering the effects of 
several sources of error: (1) we accounted for attenuation due to the wetting of the radome 
under heavy rainfall following the procedure reported in Marra (2013) and Marra et al. 
(2014), that is, comparing reflectivity of dry ground echoes in the presence and absence of 
rainfall over the radome during a study event (2.7 dBZ two-way wet radome attenuation 
was observed); (2) numerical simulations of radar beam propagation over a digital terrain 
model of the radar domain were used to compute the fraction of the pulse volume blocked 
by the orography (Pellarin et al. 2002); (3) signal attenuation in heavy rain was corrected 
by using the Mountain Reference Technique, based on the procedure reported in Bouilloud 
et al. (2009); (4) vertical variations of reflectivity have been accounted for by using the 
inverse procedure developed by Andrieu and Creutin (1995), applied to the event scale 
accumulation, owing to the limited spatial and temporal extension of the studied events.

TABLE 22.2
Characteristics of the Examined Storms

Date
Triggered 

Debris Flows Duration (h)
Rain 

Gauges

Maximum 
Gauge Rainfall 
Depth (mm)

Maximum Gauge 
Hourly Rainfall 

[mm h−1]

August 1, 2005 5 2 7 5.6  5.6

June 20–21, 2007 13 20 14 102.1 25.8

July 16–17, 2009 7 27 8 150.1 95.5

July 30, 2009 15 9 14 54.0 53.0

September 4, 2009 6 12 17 122.5 23.8

August 14–15, 2009 7 13 25 160.1 47.4

August 4, 2012 64 8 8 86.0 30.6

TABLE 22.1
Technical Characteristics of the Weather Radar
Range 120 km

Peak power 307.0 kW

Wavelength 5.3 cm (C-band)

Pulse 0.8 s

Antenna gain 45.8 dB

Radial resolution 250 m

Azimuthal resolution 0.8°–0.9°
Elevation geometry 1°, 2°, 3°, 4°, 5°, 6°, 8°, 10°, 13°, 16°, 19.5°, 24°
Beam width (3 dBZ) 0.8°
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C.2. Derivation of rain rate: Reflectivity (Z) from the lowest elevation scan with less than 30% 
of blocked beam was converted into rain rate (R) by using the classic power law Z–R rela-
tionship (Marshall et al. 1955; Battan 1973; Uijlenhoet 2001). In this study, the precise Z–R 
relationship used was of the form Z R= ⋅308 1 5. , whose parameters have been empirically 
derived, comparing radar reflectivity with rain gauge rainfall estimates, and independently 
verified for isolated convective events observed over the area (Anagnostou et al. 2010).

C.3. Bias adjustment: Radar estimates are adjusted according to the mean field bias observed 
on event basis with respect to rain gauge measurements (Marra et al. 2014).

A detailed description of the procedure and the algorithms can be found in Marra et al. (2014). 
It is worth noting that the complete procedure provides accurate reanalysis data, capitalizing on the 
retrospective nature of the study and allowing the identification, correction, and quantification of 
errors that are generally untreatable in real-time conditions.

22.3.2 assessment of the raDar rainfall estimation proceDure

Accuracy of radar estimates is assessed by statistical comparison with rain gauge observations on 
total event rainfall depths, in order to minimize the uncertainties involved in the comparison of rain 
gauge (sampling area of 400 cm2) and radar (sampling area of 1 km2) data for short time intervals 
(Gires et al. 2014).

Three statistical parameters, fractional standard error (FSE), that is, the root mean square error 
normalized over the average rain gauge estimate, normalized bias (NB), and Pearson’s correlation 
coefficient (CC) are computed for each event, as follows (Marra et al. 2014): 
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Where, r and g refer to the arrays of radar and gauge observations, Cov and σ correspond to covari-
ance and standard deviation terms, respectively.

Figure 22.2 presents the statistical comparison parameters calculated after the sequential appli-
cation of the correction algorithms described previously.

Raw radar data show significant underestimation with minimum, mean, and maximum values of 
NB equal to −81%, −62%, −53%, respectively, FSE equal to 1.1, 1.3, 1.8, respectively, and CC equal 
to 0.37, 0.59, 0.90, respectively. Wet radome attenuation contributes only slightly to the improve-
ment due to the non-synchronicity between rain over the radar and over the study regions. The same 
holds true for the beam blockage correction, owing to the fact that raw radar estimates are obtained 
by using the lowest least-blocked elevation available, hence partially accounting for this problem. 
Significant improvement is provided by the correction for attenuation in heavy rain, which improves 
all the statistics, with FSE: 0.81, 1.0, 1.3, NB: −53%, −20%, +14%, and CC: 0.51, 0.69, 0.91. The 
Vertical Profile of Reflectivity (VPR) correction increases the accuracy for the events, characterized 
by the worst performances: FSE ranges in a limited interval: 0.81, 0.96, 1.0; NB: −43%, −13%, 
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+14%; and CC: 0.65, 0.71, 0.91. Mean field bias adjustment eliminates the NB, further reducing the 
FSE. The total improvement provided by the correction chain is clear, with an average 20% decrease 
in the FSE and 24% increase in the CC.

22.3.3 raDar rainfall scenarios

Four radar rainfall scenarios, characterized by different requirements in terms of correction pro-
cedures and rain gauge data, are prepared. The choice of the scenarios aims at covering potential 
situations in which not all radar correction procedures can be implemented or in which rain gauge 
data may not be available for the adjustment. They will form the basis for investigating the impact 
of radar rainfall estimation accuracy on ID threshold estimation. 

R.I—raw radar rainfall: Only C.2 is applied to the data. This scenario can be easily imple-
mented in real time, with no need for rain gauge data.

R.II—raw radar rainfall adjusted for mean field bias: C.2 and C.3 are applied to the data. This 
scenario is conditional to the availability of rain gauge data, but computational require-
ments are minimal, and the obtained rainfall accumulations are unbiased with respect to 
rain gauge measurements. Rainfall spatial patterns are unchanged with respect to R.I.

R.III—corrected radar rainfall: C.1 and C.2 are applied to the data. This scenario considers 
the effects of a number of sources of error, leading to improved rainfall spatial patterns, 
and can be applied unconditionally to the availability of rain gauge data. The complexity 
of the computational sequence prevents its use in real time, and a bias on average rainfall 
amount may still arise.

R.IV—corrected radar rainfall adjusted for mean field bias: The three correction steps are 
sequentially applied. This scenario offers accuracy in the identification of rainfall spatial 
patterns and unbiased rainfall accumulations and is expected to provide the most accurate 
spatial representation of the triggering rainfall. Therefore, hereinafter, this scenario will 
be used as a reference.

22.3.4 accuracy of rainfall estimates at the Debris floWs’ locations

The total rainfall estimated by radar (R.IV) for three example events is shown in Figure 22.3. 
Several DF locations correspond to rainfall peaks. At the same time, some DFs occurred away from 
the core of the storms. Moreover, rainfall fields are characterized by very high spatial gradients, 
with 100% variations in less than 1 km distance. The problem of measuring the triggering rainfall 
by using rain gauges emerges clearly: rainfall peaks are rarely sampled by rain gauges, and few of 
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FIGURE 22.2 Radar-gauge comparison statistics calculated during the correction procedure. The dots and 
the vertical bars identify the mean value and the range of values over the seven rainfall events, respectively. 
Raw: raw estimates. Correction algorithms are applied sequentially: WR: wet radome; Occl: beam blockage; 
Att: signal attenuation; VPR: vertical profile of reflectivity; Bias: mean field bias adjustment. (Redrawn from 
Marra, F. et al., J. Hydrol., 519, 1607–1619, 2014. With permission.)
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them are able to capture interesting features of the storm, even when a number of rain gauges are 
present within 10 km from the peak.

Figure 22.4 reports the comparison statistics, extending their meaning to the comparison of rain-
fall estimated at the DF locations from R.I to R.III and from rain gauges (G) when R.IV is used as 
a reference. Following a common operational practice (Guzzetti et al. 2008), rain gauge estimates 
of DF rainfall are obtained by using measurements from the reference rain gauge. R.III consistently 
outperforms the other rainfall estimates for all three metrics. It is very interesting to note that R.III 
(which is not gauge-adjusted) is characterized by lower bias than the gauge-adjusted R.II. Rain 
gauge rainfall estimate performance is similar to that of R.II for FSE and NB, but the values of CC 
are dramatically lower.

22.4 INTENSITY–DURATION THRESHOLDS

A widely used rainfall ID threshold consists of a power law, linking average intensity, I (or, equiva-
lently, depth), and duration, D, of DF-triggering rainfall events, according to

 I D= ⋅α β (22.4)
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Where, α and β are the parameters that adapt the power law model to the empirical data.
The parameters of the model are estimated using the frequentist method (Brunetti et al. 2010) 

by using 5% exceedance probability level (Marra et al. 2014; Vennari et al. 2014; Nikolopoulos 
et al. 2015a). Rainfall events are defined as rainy periods (>0.1 mm h−1) separated by hiatuses 
(<0.1 mm h−1) of at least 24 hours (Guzzetti et al. 2008).

Nikolopoulos et al. (2014) calculated a regional ID threshold from the DF included in the catalog, 
using rainfall measurements from the nearest rain gauge, finding that rainfall intensities exceeding 
I = 1.12 D−0.49(I in mm h−1 and D in hours) are likely to trigger a DF.

22.4.1 intensity–Duration thresholDs for Different rainfall estimation methoDs

In this section: (1) we assess the potential of radar rainfall estimates obtained with different require-
ments in terms of computation and data needs (the radar rainfall scenarios) and (2) we quantify the 
effect of the point sampling by rain gauges on the representation of spatially variable rainfall fields 
that characterize DF events (Marra et al. 2016; Destro et al. 2017).

The ID thresholds are identified using rainfall estimates above the DF locations from the four 
radar rainfall scenarios (R.I–R.IV) as well as from the nearest rain gauge (G) and from the rainfall 
estimated by radar over the nearest rain gauge location (R.G). In the case of the nearest rain gauge 
and of the gauge-colocated radar estimates, we followed the operational procedure adopted in the 
area, using constraints on rainfall duration (>2 h) and intensity (>1 mm h−1), in order to avoid unre-
liable thresholds due to critical gauge sampling issues (Vessia et al. 2014). The obtained results are 
reported in Figure 22.5 and Table 22.3 and analyzed by using the ID threshold derived from R.IV 
as a reference.

The range of rainfall intensity provided by the reference relationship R.IV (I = 8.57 D−0.48) is rela-
tively low with respect to thresholds reported for the Alpine range by Guzzetti et al. (2007). However, 
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the severity of a threshold should be assessed with respect to the local climatology of rainfall extremes. 
This aspect has been investigated for the here-presented dataset by Destro et al. (2017).

Underestimation affecting radar rainfall in R.I affects mainly the parameter α (−75% relative 
error). Underestimation of parameter α for R.II is large (−81%), but in this case, the error in the 
exponent β is also important (54%), meaning that the bias adjustment of raw radar data is not able 
to provide useful point information corresponding to DF locations. The ID thresholds for R.III 
are similar to the reference up to 6% relative error. This provides an interesting indication on the 
feasibility of using rain gauge–unadjusted corrected radar estimates for ID identification and has 
important practical implications, because rain gauges may be unavailable for the radar analysis of 
DF-triggering rain events, due to the small spatial and temporal scale, which characterizes these 
events.

Both multiplicative and scale parameters derived from G show important underestimation (−67% 
and −46%, respectively), and similar results (−75% and −23%, respectively) are observed for R.G. 
Such a result is related to the observed decrease of rainfall with distance from the DF. This result 
also suggests that the large differences observed between radar and gauge thresholds are likely 
associated with the spatial variability of rainfall around DF, which may systematically be leading to 
underestimation of rainfall when the measurement is operated away from the DF locations. Marra 
et al. (2016) analyzed this aspect in detail, finding that the event-cumulated rainfall fields systemati-
cally exhibit a peak corresponding or close to the DF initiation points, with rain depth decreasing 
with the distance, and showing that the use of log transformations on such fields explains the under-
estimation of the thresholds derived from rain gauge data.

22.5 CONCLUSIONS AND FUTURE WORK DIRECTIONS

This chapter analyzed the potential of radar rainfall estimates, opposed to the commonly used rain 
gauge estimates, for inclusion into early warning systems of DFs. More specifically, we analyzed the 
use of radar rainfall estimates, either corrected and not corrected for a number of errors sources, for 
the identification of rain ID thresholds. Two objectives are considered: (1) assessment of radar rain-
fall estimates for DF-triggering storm events, and (2) evaluation of ID rainfall thresholds obtained 
from rain gauge data with respect to thresholds obtained from radar rainfall estimates subject to 
different correction procedures.

We elaborated radar data, combining physical and empirical adjustments. We assessed the pro-
cedure step by step and obtained a set of radar and rain gauge rainfall estimation scenarios. The 
scenarios were characterized by increasing accuracy and requirements in terms of data and elabora-
tions, and we assessed their ability to reproduce the DF-triggering thresholds.

TABLE 22.3
iD Parameters Derived Using Different Rainfall Estimation Methods and Relative Error 
Calculated with Respect to the Reference iD Threshold Line

Rainfall Estimation Method α Parameter Δα/α β Parameter Δβ/β
R.IV (reference) 8.57 – 0.48 –

R.I 2.10 −75% 0.57 +19%
R.II 1.59 −81% 0.22 −54%
R.III 9.07 +6% 0.46 −4%
S.G 2.84 −67% 0.26 −46%
R.IV.G 2.18 −75% 0.37 −23%
Nikolopoulos et al. 2014 1.12 −87% 0.49 +2%
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Three important messages are provided by this work: 

 1. Raw radar estimates significantly underestimate convective rainfall (–62% bias with 
respect to rain gauge measurements), mainly due to the problem of attenuation in heavy 
rain. An adequate correction procedure, including physically based and empirical correc-
tion algorithms, strongly improves the estimates, with average CC increasing by 24% and 
FSE decreasing by 20%.

 2. Raw radar estimates significantly underestimate the ID threshold, and bias adjustment of 
radar data does not improve the thresholds. On the contrary, implementation of physically 
based correction algorithms allows us to obtain the threshold parameters with less than 6% 
error. This suggests that, for the purpose of identifying DFs’ thresholds, radar estimates 
can be used without need of rain gauge data.

 3. The ID thresholds derived from rain gauge data or rain gauge-colocated radar observations 
are strongly underestimated, underlining the importance of the spatial distribution of trig-
gering rainfall.

Results of this work highlight the unique ability of weather radar to estimate rainfall above the 
triggering locations, further stressing the added value of weather radar rainfall estimates for the 
threshold-based forecasting of DFs and, in general, for DF early warning.

Future efforts on the use of remote-sensed rainfall for DF early warning systems should be 
focused on three main directions: (1) implementation of real-time correction procedures able to 
provide accurate rainfall estimates at the relevant scales, (2) development of regional DF-triggering 
rainfall catalogs from corrected radar archives, and (3) investigation of the potential of satellite-
based rainfall estimates for DF-warning applications. Particular attention should be paid on the 
newly launched Global Precipitation Measurement (GPM) mission that has made available high-
resolution (0.1°/30 min) precipitation estimates at the global scale.
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23 A Review of Unmanned Aerial 
Vehicles, Citizen Science, 
and Interferometry Remote 
Sensing in Landslide Hazards
Applications in Transportation 
Routes and Mining Environments

Panagiotis Partsinevelos, Zacharias Agioutantis, 
Achilleas Tripolitsiotis, and Nathaniel Schaefer

23.1 INTRODUCTION

The term landslide can be defined as the movement of a mass of rock, earth, or debris down 
a slope (Cruden, 1991, p. 28). Cruden and Varnes (1996) proposed a landslide classification sys-
tem, whereas almost 20 years later, the advancement in understanding the triggering mechanisms 
involved led Hungr et al. (2014) to propose a new classification system. This broad definition of 
landslides, in conjunction with the fact that most landslides are triggered by other natural hazards, 
causes an underestimation of the economic losses induced from landslides (Kjekstad and Highland, 
2009). For example, in the NatCatService* report of the 10 costliest events worldwide between 
1980 and 2015, the overall losses of the 2011 Thailand floods and landslides are evaluated together 
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(amounting to about US$ 43,000M), whereas EM-DAT: The International Disaster Database (Guha 
et al. 2016) classifies the same event as a flood. Therefore, it is often difficult to determine the direct 
environmental, societal, and economical impacts of landslides.

Table 23.1 presents the results obtained from the EM-DAT database from 2000 to 2016 with 
respect to the total deaths and total number of people affected due to landslides and mass movement 
events per continent.

For this period, it is evident that Asia is most affected by landslide hazards, followed by America, 
whereas Europe comes in fourth place. This does not necessarily mean that Europe is less vulner-
able to landslide risks: Europe faced the second highest number of fatalities in the twentieth century 
(Haque et al. 2016).

Copernicus, the European system for Earth monitoring, consists of Earth observation (EO) satel-
lites whose data are complemented with in situ observations to provide users with environmental 
and security related services on land, marine, climate change, atmosphere, emergency management, 
and security. According to a recent Copernicus market report (PwC 2016), a 40% added value in the 
European economy is expected through the investment in the Copernicus program. Similar large-
scale EO programs are supported by other countries (i.e., the United States and China), whereas 
international collaboration for the exploitation of EO capabilities takes place via international ini-
tiatives and organizations (such as the Group of Earth Observation, the International Program on 
Landslides, the International Consortium on Landslides, etc.).

Since 2000, the European Commission Framework Programmes for Research and Technology (FP5, 
FP6, FP7, and now H2020) supported the execution of 134 projects related to landslides, with a budget 
exceeding 185M Euro. These are not the only research projects funded in Europe for landslide disaster 
mitigation. There exists a plethora of funding organizations and entities (i.e., the Directorate-General for 
European Civil Protection and Humanitarian Aid Operations [DG ECHO]), not to mention funds from 
the European Structural Funds and/or national support that sustain landslide-related projects.

Landslides constitute a major disaster on a global scale, and even a simple search on the Scopus 
database on scientific publications revealed that more than 27,000 articles contained the term land-
slide in their title, abstract, or keywords. About 81% of these scientific works were published during 
the period 2000–2016 (Figure 23.1).

Generally, a review paper on remote-sensing techniques for landslide studies is published about 
once every decade (Mantovani et al. 1996; Metternicht et al. 2005; Scaioni et al. 2014). Hence, we 
have explored the Scopus database for the period 2014–2017 by using landslide and remote sensing 
as search terms. A literature search revealed that more than 600 scientific documents have been 
published since the last review paper of 2014.

Figure 23.2 illustrates the distribution of these documents into three main groups identified in 
Scaioni et al. (2014): (1) landslide recognition, (2) landslide monitoring, and (3) landslide hazard 
assessment and prediction.

TABLE 23.1
Total Deaths and Affected People from Landslides and Mass Movement Events, per 
Continent, for the Period 2000–2016

Continent Events Count Total Deaths Total Affected

Africa 27 901 46,658

America 62 2312 260,010

Asia 216 11,281 4,028,293

Europe 11 204 2,852

Oceania 8 153 11,095

Source: EM-DAT database.
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This chapter’s contribution and differentiation from previous studies are justified by our focus on 
two emerging scientific areas: the unmanned aerial vehicles (UAVs) (Section 23.2) and the citizen’s 
science (Section 23.3). In addition, review on two critical application areas, that is, transportation 
networks and the mining industry, where remote sensing has a proven and emerging track record 
in connecting land deformation with hydrometeorological hazards, is provided in Sections 23.4 and 
23.5, respectively.

23.2 UNMANNED AERIAL VEHICLES AND LANDSLIDES

Unmanned aerial vehicles or systems (UAVs or UAS) have been used for an abundance of applica-
tions extending throughout various geoscience-related sectors. Even though the most prominent 
techniques and operations are quite old, the last decade’s simple UAV hardware implementations 
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FIGURE 23.1 The publications registered in the Scopus database with the term landslide in title, abstract 
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FIGURE 23.2 Number of documents published after 2014, included in the Scopus database, that contain the 
terms landslide and remote sensing in either their title, abstract, or keywords, following the categorization of 
Scaioni et al. (2014).
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became quite popular, giving an opportunity for widespread use. In the landslide application area, 
UAVs offer many advantages over other forms of data collection and processing, such as 

• Scanning an area of interest on demand almost anytime, providing high temporal resolu-
tion: Since natural hazards often occur unexpectedly, it is quite important to access the 
areas under distress in near real time. Furthermore, this multi-epoch data collection allows 
trend and flow dynamics monitoring toward the understanding of the landslide life.

• Mapping the affected areas in very high-spatial resolution that may reach under centimeter 
magnitude.

• Representing the corresponding geomorphology in the form of a digital surface model 
(DSM) as a continuous space and not sparsely over selected fixed points.

• Mapping inaccessible or dangerous areas (Figure 23.3).
• Capturing occluded areas from various angles, making sure that coverage will minimize 

possible surface holes.
• Lowering the mapping procedure costs along with equipment for common landslide-

mapping applications.
• Offering real-time data visualization, collection, and near-real-time processing and 

assessment.
• Carrying multiple sensors for customization.
• Facilitating other types of analyses, including fissure recognition and assessment.

The main disadvantages generally include lack of penetration capabilities through vegetation and 
other obstacles and a short flight time that limits the range of coverage.

In the literature (Scopus), most landslide studies involving UAVs share a series of common-
alities. The majority of these studies involve custom or commercial micro- or mini multicopter 
UAVs that use common off-the-shelf cameras, mainly for acquiring overlapping imagery toward 
photogrammetric-vision-based DSM construction. Image processing involves proprietary open 
or developed software based on structure from motion, matching algorithms, photogrammetric 
bundle adjustment, and camera calibration implementations (Lowe 1999; Westoby et al. 2012). 
In terms of navigation, UAVs cover the areas of interest in an automated or human-operated mode. 
In Table 23.2, a series of related papers demonstrate similarities and variations in terms of landslide 
geometries, equipment, and corresponding results.

(a) (b)

FIGURE 23.3 A geotechnical study for an inaccessible rockfall-prone area along a transportation corridor 
(a) has been supported by a UAV survey to derive the area’s DSM (b).
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As can be easily established, most studies provide multitemporal DSMs, with subpixel accuracy 
corresponding to a precision of a few centimeters in the horizontal and vertical coordinate space, by 
using ground control point (GCP) measurements through real-time kinematics (RTK) equipment. 
Landslides are mainly triggered by heavy rainfall, typhoons (Hsieh et al. 2016), or earthquakes.

Other landslide-related studies include methodologies for displacement modeling, by relating the 
resulting DSMs from different epochs through correspondence of single common points, multiple 
point sets (Fernandez et al. 2015), or linear features (Mozas-Colvache et al. 2016). Point cloud reg-
istration for multi-epoch DSMs is shown in Al-Rawabdeh et al. (2016a). Furthermore, fissures can 
be mapped and assessed through image processing toward landslide flow prediction (Niethammer 
et al. 2012; Stumpf et al. 2013). Another small subset of studies involves optimized distribution of 
GCPs, along with experiments on camera line of sight direction, either perpendicular to the slope or 
under classic vertical geometry (Giordan et al. 2015; Carvajal-Ramírez et al. 2016).

Apart from multi-epoch landslide mapping, a few studies demonstrate UAV usability on postdi-
saster assessment or simple optical visualizations to support real-time decisions (Liu et al. 2015). 
A  gasoline helicopter-type UAV capable of carrying either a laser scanner and optical camera 
bundle or a hyperspectral pushbroom scanner is the most versatile yet costly system that we have 
encountered (Gallay et al. 2016).

It is evident that throughout the related studies, the main methodologies are quite common. 
It is surprising that there is no widespread involvement of multispectral cameras that may reveal 
several attributes (e.g., soil moisture and land use) affecting the landslide dynamics and assist 
prediction (Gallay et al. 2016). In addition, UAVs are mainly used in their standardized com-
mercial or simple implementation form, and no real-time and on-the-fly processes are apparent 
(Tripolitsiotis et al. 2017).

There is no extensive experimentation or theoretical approach to optimize the mapping param-
eters that support many replications in the literature. Most studies use the error estimations given by 
the software, without real evidence on overall quality, since GCPs and validation are quite scarce 
and known photogrammetric restrictions are not tackled or quantified (Peppa et al. 2016). We would 
expect that a standardized methodology should be adopted, for the quite straightforward implemen-
tations presented.

23.3 CITIZEN SCIENCE AND LANDSLIDES

Remote sensing is the science of obtaining information about objects or areas from a distance, 
typically from aircrafts.* Given the limitations on the spatial and temporal coverage of satellite and 
(manned) aerial  platforms, utilization of unmanned aerial platforms was the subject of our review 
in the previous section. Although UAVs significantly enhance the operational capabilities and per-
formance of landslide investigations, there is still an important missing element to fill the puzzle of 
landslide management (Figure 23.4)—a piece that will provide ground truth verification of satellite/
aerial measurements and thus improve the respective classification algorithms and also provide real-
time monitoring capabilities of an evolving disaster.

Citizen science is often used to depict individuals, communities, or networks of citizens who par-
ticipate in data collection, analysis, and dissemination in a specific domain of science (Goodchild 
2007). This is mainly supported by modern devices (i.e., smartphones and tablets) and the second 
generation of the World Wide Web (web 2.0), which emphasizes the ability of people to collaborate 
and share information online via social media, blogging, and web-based communities (Techopedia). 
The emergency data management is one of the applications identified (Kotovirta et al. 2015) for the 
utilization of citizen science for EO.

* http://oceanservice.noaa.gov/facts/remotesensing.html [accessed: 17-Jan-2017]

http://oceanservice.noaa.gov/facts/remotesensing.html
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Whereas in traditional EO, images are captured by satellites or airplanes, in citizen science, this 
task is performed by the engaged citizens’ smart devices. Geolocation is performed through the 
device’s internal global navigation satellite system (GNSS). However, it is not merely about taking 
pictures; sensing of atmospheric conditions via a smartphone has become a reality, since new types 
of sensors are continuously integrated into smart devices.

It is evident that remote sensing has much to gain from citizen science (Foody 2015). This is 
the reason why specific projects have been funded to identify synergies between citizen science 
and crowdsourcing for observations from satellites (Mazumdar et al. 2016), addressing the need 
of space mission stakeholders to validate satellite measurements on the ground (Mazumdar et al. 
2017). This validation exercise was also the subject for several remote-sensing applications, such as 
forest biomass monitoring (Elmore et al. 2016, Molinier et al. 2016) and land cover/land use (Bayas 
et al. 2016). But, what about the connection between landslides, citizen science, and remote sensing? 
How can these three domains help each other?

The first way is via a geographical information system interface, using satellite imagery as back-
ground, to report on the occurrence of a landslide. Typical examples of scientists asking citizens 
to track landslides include: (1) Did You See It?* program initiated by the U.S. Geological Survey 
Landslide Hazards Program and (2) the Global Landslide Catalog† where citizens are allowed 
to make edits and report new landslides (Kirschbaum 2015). Similarly, the National Landslide 
Database of Great Britain gathers data, among others, through social media and other online 
resources (Pennington et al. 2015).

Another interesting example of the synergetic use of EO data with smart devices for emergency 
risk management and landslides includes some of the mobile apps developed under the framework 
of MyGEOSS project: DisasterHub is a mobile app where EO data are used to detect a geohazard 
and inform the users that are close to that geohazard, while the users may provide in situ informa-
tion (text messages, videos, etc.) to the app (Tsironis et al. 2016). Moreover, the RescueNET mobile 
app (Figure 23.5) permits users that are players in the emergency management chain (victims, doc-
tors, volunteers, etc.) to locate and interact with all other users and geotag information in a 3D 
geographic information system (GIS) mobile platform with base maps from EO products (http://
digitalearthlab.jrc.ec.europa.eu/apps).

† http://ojo-streamer.herokuapp.com/ [accessed: 21-Jan-2017]

* https://ccsinventory.wilsoncenter.org/#projectId/124 [accessed: 18-Jan-2017]

UAV

Satellite DSS

FIGURE 23.4 Although satellite and aerial systems are important constituents in landslide decision support 
systems (DSS), it is the active participation of citizens that will significantly enhance the performance and 
efficiency of landslide management systems.

http://digitalearthlab.jrc.ec.europa.eu/apps
http://digitalearthlab.jrc.ec.europa.eu/apps
https://ccsinventory.wilsoncenter.org/#projectId/124
http://ojo-streamer.herokuapp.com/
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Landslide research and citizen science are relatively new concepts and Scopus database returns 
just 12 documents, whereas the number of related documents rise to 50 and 78 under the floods and 
earthquake terms, respectively. For example, in Lee (2016), the volunteered geospatial information 
(VGI) GeoPortal concept is presented, and the author supports that through such a collaborative 
system, where any sign of a landslide or rockfall event may be reported by the citizens, enabling 
public authorities to take immediate actions.

Accordingly, Galizia et al. (2014) presented the Distributed Research Infrastructure for Hydro-
Meteorology (DRIHM), where researchers, environmental agencies, and citizens access and 
 combine hydrometeorological data and models.

Environmental sensing using smartphones (Aram et al. 2012) is another concept that, in conjunc-
tion with citizen science, can significantly contribute to a dense network of hydrometeorological 
parameters that may trigger a landslide. However, even if every citizen in a landslide-prone area is 
equipped with a smartphone that has weather-sensing capabilities, calibration of these measurements 
should be performed to attain a certain degree of accuracy and reliability (Zamora et al. 2015).

23.4 APPLICATION AREA: TRANSPORTATION NETWORKS

Transportation corridors (roads, railways, etc.) along landslide-prone areas constitute a  significant 
challenge to the engineering experts involved in their design. This is because these dangerous 
areas cannot always be avoided, while at the same time, it is practically impossible to apply 
mitigation measures along the entire corridor length (Ferrero and Migliazza 2013). Road  and 

Center on your current
position and direction
Initiate Real time tracking
Add EO image layer

Initial/login page Map with current
location

Map with locations of

Function button

Geo Tag victim/
information

doctors,
victims, new victims,

volunteers,

FIGURE 23.5 The general concept of the RescueNET app (up), and screen shots of the app (down).
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railway stakeholders from all over the world employ different approaches to enhance public and 
infrastructure safety and also to reduce road closure and interruption of smooth transportation 
(Zumbrunnen et al. 2017).

The impact of landslides on transportation networks has been a subject of several  studies 
(Figure  23.6). For example, Reichenbach et al. (2002) performed a qualitative analysis of  the 
impact of landslides on the Umbria, Italy, regional transponder network. Their effort was to cor-
relate the vulnerability of the road network to different types of landslides (i.e., rockfall, shallow 
landslide, or deep-seated landslide). A more quantitative effort to estimate the economic impact 
of four landslide events that occurred in Scotland in 2004 and 2007 is presented in Winter et al. 
(2016). These impacts are categorized as direct, direct consequential, and indirect consequential 
economic impacts. A similar categorization on the 2010 Colorado, United States landslides is fol-
lowed by Highland (2012): direct costs are associated with the costs for repair, replacement, or 
maintenance resulting from property damages, whereas indirect impacts include, among others, 
loss of productivity in all economic sectors, reduction in real-estate values, losses of human or 
animal productivity, and so on.

The regional-economic impact of the 75 m × 100 m rockslide that took place on May 13, 2013, at 
the Felbertauem Road in Austria was presented in Pfurtscheller and Genovese (2016). A nationwide 
(for the UK) assessment of landslide disruptions on road transportation network is given in Postance 
et al. (2017), where it is estimated that a single event (the 2007 A83 landslide) costs about 1.4M Euro 
over a 15-day closure, whereas indirect economic losses of the order of 40,000 Euro per day will 
burden the national economy for each of the 152 road segments that are susceptible to landslides. 
Given the high impact that landslides have on transportation networks, the remaining section will 
review the way in which remote sensing contributes to landslide-related studies performed on such 
networks.

At this point, we should define the differences between landslide inventory, susceptibility, hazard 
maps, and risk maps (Figure 23.7). Inventory stands for the location, dimensions, and geographi-
cal extent of past events. Susceptibility refers to the relative spatial likelihood for the occurrence 
of landslides of a specific type and volume (van Westen 2008). In addition, hazard maps indicate 
the possibility of landslides occurring throughout a given area (USGS 2016). Finally, landslide risk 
assesses the potential damage to persons and property, accounting for temporal and spatial prob-
ability and vulnerability (Fell et al. 2008). An effort to harmonize the use of these terms has been 
made through the European FP7 SAFELAND project (Corominas et al. 2011).

(a) (b) (c)

FIGURE 23.6 Different types of earth displacement affect transportation networks: (a) embankment failure 
in Cyprus; (b) rockfall events interrupting traffic at Topolia Gorge, Crete, Greece; and (c) small-scale landslide 
may be as destructive as large ones.
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Remote sensing is vital for the development of detailed landslide inventories. Their tremendous 
potential has already been identified (Nichol and Wong 2005). A review on multispectral, multimis-
sion remote-sensing techniques for the creation of landslide inventory maps is given in Guzzetti 
et al. (2012). This landslide mapping can be performed using Google Earth-derived satellite images 
(Mihir and Malamud 2014), high-resolution stereoscopic pair images from GeoEye-1 (Murillo-
García et al. 2014; Youssef et al. 2016), or more advanced techniques such as the persistent scatterer 
(PS) interferometry (Righini et al. 2012).

Regarding the generation of landslide susceptibility, Chen et al. (2017) have provided a litera-
ture review on diverse statistical methods to correlate landslide-triggering factors and the landslide 
occurrence. Comparison between these diverse approaches is, indicatively, provided in several stud-
ies (Eker et al. 2014; Trigila et al. 2015; Vakhshoori and Zare 2016; Wang et al. 2016, etc.).

In most of the studies focused on landslides and transportation networks, satellite images are 
used to derive land use parameters related to landslide susceptibility mapping. Chiu et al. (2016) 
applied  the modified multiphase segmentation method to segment the Normalized Difference 
Vegetation Index (NDVI), as obtained from SPOT satellite images. This work focused on the 
Li-Shing Estate Road in Nantou County, Taiwan. The NDVI, as calculated by SPOT imagery, is 
also used in Shou and Lin (2016) to identify landslides along the Nantou County Road #89, Taiwan. 
In their analysis, they argue that the best landslide indentification results are obtained when the 
greenness index, the NDVI and the slope angles receive values: 0.3%, <0.2% and >20% rescpec-
tively, provides the best landslide identification results for the particular area. The SPOT images 
have also been employed (Opiso et al. 2016) to estimate land-type parameters in their landslide 
susceptibility map of the Cagayan de Oro-Bukidnon-Davao city route corridor in Philippines.

Alexakis et al. (2014) analyzed Landsat 5 TM, Landsat 7 ETM+, and QuickBird images to derive 
land use, faults, and road networks to be used in their landslide susceptibility analysis for the trans-
portation network of a study area in Cyprus. Satellite image analysis was also performed to develop 
a land use/land cover map for the year 2020 to be used in landslide susceptibility map projection for 
that year. Kanwal et al. (2016) considers roads as a potential landslide-triggering factor, owing to the 
change that they induct to the stability of the slope. To this extent, they have used Landsat-8 images 
not only for land cover mapping but also for road network extraction. The Indian Remote Sensing 
(IRS) satellite images have been used for route planning when designing new roads in mountainous 
areas (Saha et al. 2005) and land use mapping (Ramesh and Anbazhagan 2015).
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FIGURE 23.7 Illustration of the different landslide maps and their relation.
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The impact that the revisit time of radar missions has on efficient landslide monitoring affecting 
transportation is examined in Singhroy et al. (2015). The authors investigate how the revisit time 
impacts different types of landslides and conclude that the 4-day acquisition plan for the Radarsat 
Constellation Mission will limit the loss of coherence between the radar images and permit moni-
toring of smaller geological subunits of the same landslide.

An interesting application of remotely sensed images is presented in Poreh et al. (2016). The 
authors use the railways as PSs, thus enabling a direct estimation of their deformation rate in land-
slide-prone areas. The high-resolution Cosmo-SkyMed X-band images were found to be superior 
compared with the low-resolution images such as European remote-sensing satellite (ERS) and 
environmental satellite-advanced synthetic aperture radar (Envisat-ASAR) for monitoring the sta-
bility of the Campania, Italy, railways.

Castagnetti et al. (2014) studied the Collagna landslide, North Apennines, Italy, that disrupted 
National Road 63 in December 2008. The airborne laser scanning technique was implemented to 
support a rockslide inventory upgrade, whereas ground-based synthetic aperture radar (GB-InSAR) 
located more than 1  km away provided real-time rockslide-monitoring capabilities. The latter 
instrument has also been employed in monitoring of the rockslide that caused the interruption of 
Regional Road 65 in Monte Beni, Tuscany, Italy.

Landslide hazard detection from airborne Light Detection and Ranging (LIDAR) data at the 
Muskingum State Route, Zanesville, Ohio, the United States, has been the subject of several stud-
ies (Toth et al. 2013; Mora et al. 2014a, 2014b). These aerial surveys focused mainly on deriving 
very accurate digital elevation models of the study area and subsequently extracting slope stabil-
ity parameters. Miller et al. (2012) also applied airborne laser scanning and multispectral aerial 
imagery on a railway corridor, focusing mainly on assessing earthwork slope stability hazard in the 
study area.

23.5 APPLICATION AREA: MINING INDUSTRY

Mining and quarrying are recognized to be among the anthropogenic causes of landslides.* A 
growing public interest in mining-induced landslides has been reported (Zhao 2016). Major land-
slides as the Bingham Canyon, Utah, the United States, certainly contribute to this rising public 
attention. On April 10, 2013, Bingham Canyon Mine, experienced the largest, non-volcanic rock 
avalanche in the history of North America (the National Aeronautics and Space Administration 
[NASA] Observatory). Fortunately, no victims were reported, as the operating company issued 
a warning some hours before the collapse. This warning was partially based on the monitoring 
results of a ground-based interferometric radar system that had been installed several months 
before the incident.

Underground mining operations are well known to induce subsidence on the ground surface 
while rainfall and/or mine aquifer recharge saturate the geological strata over these mines when 
they are abandoned (Iannacchione and Vallejo 1995). To this end, this section will review how the 
radar interferometry technique has been employed for monitoring ground subsidence caused by 
(in)active underground but also open pit mines. Radar interferometry or interferometric synthetic 
aperture radar (InSAR) is a powerful technique to derive surface deformation as well as elevation 
mapping in submillimeter scale. Its concept has been briefly presented in Milliano (2016), whereas 
a more in-depth analysis is given in Hanssen (2001).

A satellite (or airplane) payload emits electromagnetic waves, usually in the C-, L-, and X-band, 
and information such as phase and intensity is recorded on the reflection from the Earth’s surface 
(Raucoles et al. 2007). Interferometric Synthetic Aperture Radar utilizes the phase information 
acquired by the synthetic aperture radar (SAR) instrument and compares it to the image of the same 
area at different times (McCandless and Jackson 2004). Although complications are possible in 

* http://www.ga.gov.au/scientific-topics/hazards/landslide/basics/causes [accessed: 11-Nov-2016]

http://www.ga.gov.au/scientific-topics/hazards/landslide/basics/causes
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practice, this method is rooted in a simple understanding of how wave transmission works. When an 
electromagnetic wave is transmitted to the ground, the reflected signal will have an associated phase 
that is dependent on the distance of travel for the signal. At some time later, if the ground point 
moves, the transmitted signal will return with an altered phase value (Figure 23.8). The change in 
the distance will be observable as a phase difference or phase shift when the emitted signal and the 
returned signal are compared. This change is usually presented as an interferogram (Figure 23.9).

Besides the phase difference due to land deformation, there exist some other sources that may 
result in a phase difference, such as the atmosphere, the topography, instrument noise, and so on. 
After correcting for these additional contributions, the deformation-related phase difference ∆ϕint  is 
only analogous along the line of sight of the satellite ∆r  and also related to the radar wavelength (λ) 
(McCandless and Jackson 2004). 
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FIGURE 23.8 Illustration of phase shift due to ground movement.
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FIGURE 23.9 A 6.1 M earthquake-induced landslide took place on , November 17, 2015, at Lefkada Island, 
Greece. The displacement (white circle) has been captured by two Sentinel-1A images captured on November 
5, 2015, and November 17, 2015, before and just after the landslide.
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Obviously, the wavelength determines the maximum displacement that can be observed from a 
satellite (or airborne) radar system. Currently, the majority of these payloads operate in the C-band, 
whereas the L- (i.e., ALOS-2) and X-bands (i.e., TerraSAR-X) have also demonstrated their appli-
cability and usefulness. The evolution of satellite missions that carry payloads necessary for the 
implementation of InSAR processing is illustrated in Figure 23.8, whereas Figure 23.9 presents the 
distribution of mining-related InSAR studies according to the band (C-, L-, or X-band) employed. 
Not surprisingly, given that C-band satellites have been in operation 15 years longer than L-band, 
it seems that L-band is most suitable for InSAR studies related to mining operations. This can be 
justified by the radar wavelength employed, as it is to small changes of the coherence between the 
two acquisitions (Figures 23.10 and 23.11).
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After almost 20 years of InSAR data processing and analysis and given the technological achieve-
ments in the same period, a plethora of algorithms to process these radar observations have been 
developed. Osmanoglu et al. (2016) provide a comprehensive review of methods and algorithms for 
time series analysis of InSAR data. From their analysis, it seems that the most popular, in scientific 
publications, are the Interferometric Point Target Analysis, followed by Permanent Scatterer InSAR 
and Stanford Method for Persistent Scatterers (StaMPS).

23.5.1 mining as lanDsliDe-triggering source

Liu et al. (2014) stated the importance of monitoring subsidence caused by mining activities that 
take place in mountainous areas, as these activities may trigger landslides. This mountainous 
environment poses some problems in conventional InSAR analysis, and the authors performed a 
thorough evaluation of different techniques (differential interefemetric synthetic aperture radar 
(DInSAR), persistent scatterer interferometry (PSI), small baseline subset (SBAS), tomography syn-
thetic (Tomo-SAR)) as well as their combination by using radar images derived by Advanced Land 
Observing Satellite (ALOS) (L-band), Envisat (C-band), and TerraSAR-X (X-band). They tested 
their methodology on the Xishan coal mine area in the People’s Republic of China, which is actually 
composed of five active coal mines.

The Wieliczka Salt Mine, Poland, is located at the edge of the Carpathian Mountains. Thus, 
the potential relation between the underground mining activities and landslide incidents that 
occurred on the surface should be investigated. Perski performed DInSAR and PSI analy-
ses, using ERS-1 and ERS-2 imagery, to discriminate observed terrain deformations to three 
 different types: (1) salt mining, (2) water inflows to the mine, and (3) landslides (Perski et al. 
2009). The authors concluded that rapid land deformation caused by water inflow could not be 
determined via InSAR analysis. On the contrary, InSAR clearly identified slow subsidence due 
to convergence of mine caverns. Results on landslide investigations were incomplete, mainly 
due to the direction of the landslide and the lack of appropriate number of ERS imagery for 
applying the PSI technique.

A rockslide avalanche, which occurred on the Turtle Mountain, Alberta, Canada, in 1903, was 
responsible for more than 70 casualties. For almost 100 years, rumors pointed out that the under-
ground mining activities were responsible for triggering this rockslide. Mei et al. (2008) employed 
the PSI technique by using Radarsat-1 images to provide scientific evidence and quantify the sub-
sidence due to the abandoned Bellevue mine that lies underground the Frank Slide area. Their 
results indicated a 3.1 mm/y subsidence induced by the underground coal mines from April 2004 to 
October 2006, and they concluded that the coal mine subsidence could be considered as one of the 
triggering factors for the 1903 Frank Slide rock avalanche.

23.5.2 DeWatering mining activities anD remote sensing

Woldai et al. (2009) used InSAR analysis to examine surface deformation signals associated with 
the extensive dewatering activities performed in the Pipeline open-pit mine, Nevada, the United 
States. The objective of these dewatering activities is to keep the groundwater level below the 
 mining operations level. The authors employed the conventional differential (or two-pass) InSAR 
methodology, using ERS-1/2 imagery along with in situ pumping and geological data. They argue 
that InSAR is a suitable technique to support mining operators in the hydrogeological design studies 
and, in particular, in answering the question where fissures or faulting might develop.

Tripolitsiotis et al. (2014) investigated whether precursory signs of the ground fissures observed 
in the vicinity of the active Mavropigi, Greece, open-pit coal mine could be captured by InSAR 
analysis. Employing the DInSAR technique on ALOS PALSAR images, the authors demonstrated 
the applicability of this remote-sensing technique to provide early signs of land deformation well 
before tension cracks became visible.
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The Gippsland Basin in Australia has been the subject of study of Ng et al. (2015). The basin 
hosts not only mining but also oil and natural gas extraction as well as farming. Besides irrigation 
and industrial use, the local aquifer is also extracted for dewatering the open-pit and as part of oil 
and gas extraction. An advanced time series analysis based on the SqueeSAR algorithm has been 
applied by using ALOS PALSAR images. Through their analysis, the authors managed to identify 
land deformations attributed to mining activities and groundwater extraction for mine dewatering. 
In addition, they identified five more areas that need further investigation to enhance the under-
standing of the processes that take place in the basin.

Bozzano et al. (2015) correlated the spatial and temporal evolution of a subsidence process 
monitored at the Acque Albule Basin, Rome, Italy, an area of approximately 30 km2. Open-pit 
travertine mines constitute the main economic industry. The quarry areas increased about seven 
times in the period between 1954 and 2005, while the quarry floors were lowered from 14 m in 
1993 to 18 m in 2005 below the initial ground level. Pumping of the water table to keep it below 
the quarry floors is a possible anthropogenic source of the subsidence in the area. The authors 
performed historical advanced DInSAR analyses of images captured as back as 1992 by ERS 
and Envisat satellite missions. They adopted the PS but also quasi-PS InSAR techniques, and 
they combined their results with groundwater numerical modeling assisted by periodic piezomet-
ric measurements. Using the historical dataset of radar images, they managed to conclude that 
the groundwater level variations trigger subsidence over the area, whereas the geological setting 
defines the subsidence magnitude.

23.5.3 aQuifer recharge at abanDoneD mines triggers lanD uplift

When operating, underground mines may induce land subsidence, either because of the collapse 
of high extraction panels or because of dewatering activities. In Limburg, the Netherlands, the 
land subsidence monitored during the operation of the coal mines was estimated in the order of 
several meters (Caro-Cuenca et al. 2013). After the closure and the end of pumping, it was normal 
for the aquifer to recharge with water and for the formation to swell and to start to rise. In order to 
protect nearby and connected mines from flooding, some pumping activities continued for several 
more years. Caro-Cuenca et al. (2013) employed the PSI technique and ERS-1, ERS-2, and Envisat 
images to investigate surface deformations and correlate them with dewatering activities. Not sur-
prisingly, they found that the observed land uplift was due to the recharge of the aquifer.

Vervoort (2016) investigated the surface movement above the abandoned Houthalen, Belgium, 
underground coal mine by using the C-band ERS 1/2 and Envisat-ASAR radar images. The perma-
nent scatterer technique for analysis of these images was employed. Both subsidence and uplift rates 
were observed, and an effort was made to correlate them with the caving above the mined-out areas.

Raucoules et al. (2008) applied the conventional differential (or two-pass) InSAR methodology 
to monitor postmining subsidence in the Nord-Pas-de-Calais Coal Basin in France. The end of the 
mine exploitation and subsequently the water pumping resulted in a rise in the aquifer. Using ERS-1 
and ERS-2, the interferometric analysis revealed a deformation range from 2 cm to 4.5 cm for the 
1992–2000 period.

Graniczny et al. (2015) performed a detailed InSAR analysis of the Upper Silecian Coal Basin 
in Poland. They applied both DInSAR and PS-InSAR techniques for different datasets, namely 
ERS1/2, Envisat, ALOS, and TerraSAR-X. Among other significant results, the authors concluded 
that an uplift of the abandoned mining area is attributed to groundwater recharge, leading to an 
increase of hydrostatic pressure in the mine aquifer and stress in the overburden.

Qin and Perissin (2015) compared interferograms created by C-band (ERS) and L-band (ALOS) 
radar missions over the city of Evansville and Boonville, Indiana, the United States, by employing 
the PS technique. The objective was to investigate whether subsidence was present due to the area’s 
abandoned coal mines. It was determined that for the study period ranging from 2009 to 2011, the 
areas under examination were stable.
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Herrera et al. (2010) employed the coherent pixel technique (CPT) to map and monitor ground 
movements in the vicinity of an open-pit metal mining area in La Union, Murcia, Spain. Because of 
the triggering action of rain, slope stability studies of the abandoned mine areas have to be performed. 
Images from ERS and Envisat missions were utilized in CPT analysis, and a qualitative correlation of 
the rainfall intensity with an increase of deformation rates monitored by CPT was possible.

23.5.4 raDar interferometry to support safety of mining operations

The contribution of the freeze-and-thaw cycle of permafrost on mining stability was the subject of 
investigation reported by Rheault et al. (2015). The authors applied the DInSAR technique, using 
Radarsat-2 and TerraSAR-X imagery for the mining area of Nanisivik, Canada. Their analysis 
demonstrated that displacement maps (with centimeter accuracy) can be created, thus ensuring the 
safety of mining activities.

Wempen and McCarter (2017) analyzed L-band and X-band SAR data from ALOS and 
TerraSAR-X missions, respectively, using the differential InSAR methodology to identify longwall 
mine subsidence in the Wasatch Plateau, Utah, the United States. The authors argue that subsidence 
magnitudes are better measured in the L-band, whereas X-band results are more affected by signal 
saturation and temporal decorrelation.

Chatterjee et al. (2016) investigated land subsidence due to underground coal activities in the 
Jharia Coalfield, Jharkhand, India, using Radarsat-2 C-band SAR images and employing the 
DInSAR technique. The authors propose a multistep semiautomated approach to confront temporal-
terrain decorrelation noise.

Liu et al. (2015) proposed a phase unwrapping method that copes with the noisy data in three dif-
ferent operating coal mines in China. They have used TerraSAR-X images and applied the standard 
D-InSAR technique. The authors argue that the modified Cubature Kalman filtering (CKF) phase 
unwrapping methods are well suited for areas with high noise and large phase gradients, as is the 
case with operating coal mines.

23.6 CONCLUSIONS

Landslides affect infrastructure, transportation routes, and even human lives. Their dynamics are 
quite versatile in terms of triggering mechanisms and scale, and thus, several practices have been 
implemented to monitor and assess them based on geodetic, geotechnical, remote sensing, and 
hybrid instrumentation. Remote sensing offers several approaches to model, monitor, and predict 
landslides from space, air, and land. Along the various remote-sensing applications concerning 
landslide hazards, in the last few years, two relatively new practices have emerged: (a) the wide use 
of UAVs, mainly for the DSM construction of the landslide area and (b) citizen science contribution 
for data collection and analysis.

The UAVs offer many advantages for landslide and rockfall monitoring in terms of mapping in 
high spatial resolution, repeatability and on-demand monitoring, inaccessible area mapping, low 
cost, customization, fissure and morphology recognition, and so on. Although typical DSM pro-
cessing is outdated, there is still no widely accepted methodology for distributing the GCPs or 
measuring the DSM-related errors. There is a need to employ the full UAV potential by using 
varying sensors and multispectral analysis and provide real-time and on-board processing for more 
autonomous and standardized applications.

Concerning citizen science, there is a need for robustness and citizen’s awareness to promote its 
wide use, which are certainly out of the scientific scope of the core remote-sensing fields. Thus, both 
of these two technological tools offer great potential and need further development.

Furthermore, two application studies on remote sensing of landslides are demonstrated: those 
of transportation routes and mining. Given the high impact that landslides have on transporta-
tion networks, remote-sensing techniques have been used for landslide inventory, susceptibility, 



486 Remote Sensing of Hydrometeorological Hazards

hazard maps, and risk maps. Satellite images are used to derive land use parameters (e.g., NDVI and 
slope) and fault formations. Radar missions are affected by the revisit time of satellites, and thus, 
airborne and ground-based sensors have been used.

Underground mining operations assisted by rainfall and/or mine aquifer recharge induce subsid-
ence on the ground surface. The radar interferometry technique employed for monitoring ground 
subsidence has proven to be a powerful technique to derive surface deformation as well as elevation 
mapping in submillimeter scale. Satellite InSAR analysis cannot always monitor and discriminate 
fast landslide phenomena, since image temporal acquisition is not continuous and registration is not 
always successful.

InSAR is a suitable technique to monitor subsidence in the mining hydrogeological circle, since 
dewatering activities are compulsory to keep the water under the mining level. It also provides early 
signs of land deformation well before tension cracks become visible. It is generally shown that there 
is an abundance of landslide incidents that are mapped, monitored, and analyzed through varying 
radar interferometry techniques. Under this scheme, centimeter-level subsidence can be monitored, 
enhancing the understanding of the the life cycle of landslides and their triggering mechanisms and 
safety support.
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24 Landslide Susceptibility 
Assessment Mapping
A Case Study in Central Greece

George D. Bathrellos, Dionissios P. Kalivas, 
and Hariklia D. Skilodimou

24.1 INTRODUCTION

Landscape of the Earth has a complex evolution and is the result of the interactions involving  surface 
progress, climate, tectonic activity, and human activity. Natural hazards are physical phenomena 
that occur worldwide and contribute to the evolution of Earth’s landscape (Skilodimou et al. 2014). 
Their associated consequences can lead to the damage of both the natural and man-made environ-
ment. When these consequences have a major impact on human life, natural hazards are called 
natural disasters. Therefore, proper planning and management of natural disasters are essential to 
minimize the loss of human life and reduce the economic consequences. In this context, maps that 
provide information on the spatial distribution of natural hazards are important tools for planners 
and environmental managers when selecting favorable locations for land use development 
(e.g., Peng et al. 2012; Papadopoulou-Vrynioti et al. 2014; Youssef et al. 2015).

Natural hazard phenomena vary in magnitude, frequency, speed, and duration. Thus, detailed 
knowledge, about the evaluation of these events in an area, is crucial to management of natural 
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disasters. In the last decades, Earth observation (EO) data such as aerial photography, satellite 
imagery, and Global Positioning System (GPS) data have become integral means for the evaluation 
of natural hazard events. Moreover, geographic information system (GIS) is an excellent tool in the 
spatial analysis, assessment, and mitigation of various natural hazard phenomena (Lu et al. 2011; 
Youssef et al. 2011; Papadopoulou-Vrynioti et al. 2013; Chousianitis et al. 2016). These current geo-
spatial technologies are very useful to estimate future hazard occurrences, identify vulnerability of 
communities to hazards, and in disaster preparation and response. Therefore, nowadays, EO and 
GIS have become necessary tools in addressing natural disaster (Van Westen 2013).

Landslide susceptibility assessment is an important process for prediction and management of 
natural disasters; it is also a necessary step for natural and urban planning government policies 
worldwide. During the current decades, the use of landslide susceptibility maps for land use plan-
ning has drastically increased. The aim of these maps is to rank different parts of an area according 
to the degree of actual or potential landslide hazard. Thus, planners are capable of selecting favor-
able sites for urban and rural development for preventing from landslide hazards. The reliability 
of those maps depends mostly on the available data used, as well as applied methodology for the 
hazard estimation (Parise 2001; Carrara et al. 2003).

Several methods have been developed to assess a landslide susceptibility map. The choice of 
appropriate method depends on the nature of the problem, the observation scale, and data availabil-
ity. They can be separated in qualitative and quantitative approaches. Qualitative landslide suscepti-
bility assessments may include either detailed landslide inventory maps or a heuristic analysis. The 
inventory maps can be prepared by spatial and temporal record of landslide events, interpretation 
of aerial photographs or satellite images, and field observations. These maps are the basis for the 
creation of landslide density maps or landslide isopleth maps, which represent a landslide suscepti-
bility assessment map. Although this approach provides a quantitative measure on landslide spatial 
distribution, it cannot give estimations on future landslides unless they have already occurred. By 
the heuristic or knowledge-based approach, landslide data are not required, and expert opinions 
are used to rank the importance of the factors influencing the landslide events. The advantage 
of this method is that a rough assessment can be made without landslide inventory, whereas the 
main weakness is the high subjectivity and uncertainty of weightings and ratings of the variables. 
Generally, qualitative methods are more suitable to produce landslide susceptibility assessment 
maps in large areas such as at national level, where the quality and quantity of the available data are 
not enough for quantitative analysis (Dai et al. 2002; Castellanos Abella and vanWesten 2008; Galli 
et al. 2008; Rozos et al. 2011).

Quantitative landslide susceptibility methods are divided into deterministic and statistical 
approaches. Deterministic or physically based approaches express physical processes leading to 
the landslides and are based on slope instability analysis as well as on simple physical laws. These 
models do not require long-term landslide data, are based on sound physical models, and provide 
a single landslide hazard value at a given space and moment of time. The cons of deterministic 
approaches are the high degree of simplification, which is typically necessary for their use, and 
the difficult evaluation of predictive models. Another problem of these models is that they require 
high accuracy of input parameters, and often, this is impossible. They are more suitable to assess 
landslide susceptibility in small areas (Mercogliano et  al. 2013; Terlien et  al. 2013). Statistical 
approaches determine the numerical correlation of causative factors and landslide events. They 
can be categorized into bivariate statistical analysis, which compares each factor with the existing 
landslide distribution, and multivariate statistical analysis, which considers relative contribution 
of each factor to the total landslide susceptibility. The main pros of bivariate models are that they 
render quantitative and objective measures on landslide susceptibility, whereas the main problems 
are that they assume independence of input parameters and require landslide inventory maps. The 
multivariate models allow the evaluation of comparative contribution of each factor in landslide 
occurrences and predict the spatial landslide occurrence at high reliability. When they are used in 
a black-box manner, then it is possible to provide misleading results. Statistical models are suitable 
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for landslide susceptibility mapping at medium scales of 1:20,000–1:100,000 (Yalcin 2008; Cervi 
et al. 2010; Mancini et al. 2010; Akgun 2012; Pardeshi et al. 2013).

Landslide events are based on various physical factors. Therefore, several methods of landslide 
susceptibility mapping focus on (a) the compilation of a landslide inventory, (b) the determination 
of the physical factors that are directly or indirectly correlated with slope instability factors, (c) 
the selection of the rate-weighting system of all instability factors and of the individual classes 
of values of each factor, (d) the overall estimation of the relative role of factors in producing 
landslides, (e) the final susceptibility zoning by classifying the land surface according to different 
hazard degrees, and (f) the verification of the produced map by comparing the landslide susceptibil-
ity zones with recorded landslide occurrences. To this direction, EO data and GIS provide a signifi-
cant assistance. Aerial photographs and satellite images are effective tools in recording, mapping, 
and monitoring of landslide occurrences. Geographic information system capabilities and facilities 
allow the spatial analysis and processing of instability factors and landslide events, assignment of 
weights, and production of landslide susceptibility zonation map (Bathrellos et al. 2009; Yilmaz 
2009; Rozos et al. 2013).

Multicriteria analysis methods are decision-support tools for the solution of complex decision 
problems. The analytical hierarchical process (AHP) is a quantitative and multicriteria methodol-
ogy designed for hierarchical representation of a decision-making problem (Saaty 1977, 2006). The 
AHP has gained wide application in land use suitability (Thapa and Murayama 2008; Bathrellos 
et  al. 2012; Panagopoulos et  al. 2012) and particularly in landslide susceptibility analysis 
(e.g., Ayalew et al. 2004; Yoshimatsu and Abe 2006; Rozos et al. 2011; Pourghasemi et al. 2012).

Moreover, the integration of the AHP in a GIS is able to improve decision-making methodol-
ogy with powerful visualization and mapping capabilities and to facilitate the production of hazard 
maps. However, the AHP method does not have the ability to identify the uncertainty associated 
with spatial outputs (Bathrellos et al. 2013).

This chapter will deliberate on the landslide susceptibility assessment mapping. In central 
Greece, landslide events are widespread, inflicting significant damages on settlements and road 
networks. Therefore, a mountainous part of this area has been selected as the case study.

The main scope of this study is to present a method in order to produce a landslide susceptibil-
ity map. The major factors affecting landslide occurrences of the study area were estimated. The 
AHP was implemented to support the evaluation of these factors, whereas the data processing and 
the compilation of landslide susceptibility map were performed in a GIS environment. A sensitivity 
analysis of the factors was made in order to examine the effect of their variations on the spatial and 
quantitative distribution of landslide susceptibility assessment areas. Finally, a landslide inventory 
map was used for the verification of the landslide susceptibility map.

24.2 STUDY AREA

The case study area is located in the mountainous part of Karditsa Prefecture, western Thessaly, 
central Greece. This particular area was selected because landslide events have occurred many 
times in this area and have repeatedly caused serious damage at sections of the settlements and at 
the road network. It covers 144 km2, with altitudes varying from 220 to 2,000 m above sea level. 
The southern mountain range of Pindus forms the higher region of the area. The upper stream of the 
Pamisos River, which is a tributary of the Pinios River, flows through the study area; the drainage 
network is well developed, with a significant surface runoff (Figure 24.1).

The geological structure of the area comprises Alpine and post-Alpine formations. The Alpine 
formations belong to two main stratigraphic zones, which are the Pindos zone and the Koziakas zone. 
The post-Alpine formations are molassic formations of the Mesohellenic trench and Quaternary 
deposits, which cover the beds of rivers and streams. The study area is composed of (a) coarse 
grained loose to semicoherent Quaternary deposits consisting of mainly pebbles and gravels of 
varying-sized gravels, cones, and scree; (b) Miocene molassic clastic formations of Fanari series; 
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(c)  flysch  formations, whose main members are sandstones, siltstones, and more rarely 
conglomerates; (d) carbonate rocks consisting of Middle Triassic—Cretaceous limestones; and 
(e) Middle—Upper Jurassic clay—chert formations (IGME 1993).

The climate is Mediterranean, with a rainy period that begins in October and ends in May.

24.3 METHODOLOGY

24.3.1 Description of Datasets

This study was carried out using the following: 

• Topographic map (1:50,000 scale) from the Hellenic Military Geographical Service 
(HAGS)

• Geological map of the study area (1:50,000 scale) from the Institute of Geology and 
Mineral Exploration (IGME 1993)

• Mean annual precipitation data covering a time period of 25 years, from the Public Power 
Corporation (PPC) stations

• Satellite image via Google Earth and Landsat 7/Copernicus, with an acquisition date of 
July 2015

• Field work data involving observations on landslide sites

A spatial database was created, and ArcGIS 10.0 software was used to process the collected data.

24.3.2 Description of methoD

24.3.2.1 Instability Factors
The instability factors that were taken into account for the creation of the landslide susceptibility 
map have been based on extended field observations and literature (i.e., Ayalew et  al. 2004; 
Rozos et al. 2011; Bathrellos 2014; and Youssef et al. 2015). The selected factors are (1) lithology, 

FIGURE 24.1 The location map of the study area, with altitudes, drainage network and road network.
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(2)  distance  from tectonic elements, (3) slope angle, (4) slope aspect, (5) rainfall, (6) altitude, 
(7) land use, (8) distance from roads, and (9) distance from streams.

24.3.2.1.1 Lithology
The bedrock geology is an important factor for landslide occurrences. A lithological map of the 
study area was generated based on the existing geological map (scale 1:50,000) (IGME 1993). 
The lithological formations were digitized and joined according to their engineering geological 
behavior, with respect to landslide manifestation. Hence, they are classified into five categories: 
(a) Quaternary formations, including coarse grained loose to semicoherent deposits, (b) molassic 
formations consisting of clastic materials, (c) flysch, (d) carbonate rocks, and (e) clay—chert forma-
tions (Figure 24.2).

24.3.2.1.2 Distance from Tectonic Elements
Tectonic activity increases landslide events by creating steep slopes and sheared, weakened 
rocks. The tectonic elements of the study area involve thrusts, overthrusts, and faults. These 
features were collected from the literature (IGME 1993) and inserted in the GIS database 
as line layer. Buffer zones were drawn around them at distances of 50, 100, 150, and 200 m 
(Figure 24.3).

24.3.2.1.3 Slope Angle
Slope angle has an effect on the slope stability, increasing the landslide hazard. Contours with 
20 m intervals and height points were digitized from topographic map (scale 1:50,000) and saved 
as line and point layers correspondingly. A digital elevation model (DEM) was derived from the 
digitized elevation data by using 3D Analyst extension of ArcGIS, and the slope layer was extracted 
from the DEM. The slopes were classified into five classes: (1) less than 5°, (2) 5°–15°, (3) 15°–30°, 
(4) 30°–45°, and (5) more than 45° (Figure 24.4).

FIGURE 24.2 Map showing the spatial distribution of lithological formations.
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24.3.2.1.4 Slope Aspect
The aspect map was derived from the DEM. It was classified into eight categories: (1) 0°–45°, 
(2) 46°–90°, (3) 91°–135°, (4) 136°–180°, (5) 181°–225°, (6) 226°–270°, (7) 271°–315°, and 
(8) 316°–360° (Figure 24.5).

24.3.2.1.5 Rainfall
Precipitation is among the most common triggering factors for landslide events. The precipitation 
data, which were collected from the PPC and covered a time period of 25 years, were evaluated 

FIGURE 24.4 Map showing the spatial distribution of slopes.

FIGURE 24.3 Map showing the distance from tectonic elements.



499Landslide Susceptibility Assessment Mapping

and used for the synthesis of the mean annual precipitation distribution map of Greece. The mean 
annual rainfall of the study area incorporated to the spatial database constitutes a digitized part 
of this map. According to this map, the annual precipitation of the study area ranges from 920 to 
1700 mm. This map was separated into four classes: (1) less than 1100 mm, (2) 1100–1300 mm, 
(3) 1300–1600 mm, and (4) more than 1600 mm (Figure 24.6).

FIGURE 24.5 Map showing the spatial distribution of slope aspect.

FIGURE 24.6 Map showing the spatial distribution of rainfall.
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24.3.2.1.6 Altitude
The altitude map was derived from the DEM, which was generated using the topographic map (scale 
1:50,000) as the elevation data source. The categorization of altitude into five classes, that is (1) less 
than 400 m a.s.l., (2) 400–800 m a.s.l., (3) 800–1200 m a.s.l., (4) 1200–1600 m a.s.l., and (v) more 
than 1600 m a.s.l., was based on the morphology of the study area (Figure 24.7).

24.3.2.1.7 Land Use
The land use of the study area was taken from the CORINE 2012 Land Cover (CLC) map, Copernicus 
Program (Copernicus 2016). The program contains land cover data for Europe, including land cover 
class description at scale 1:100,000, published by the European Commission. The CORINE land use 
map was classified as follows: (1) urban area, (2) cultivated area, (3) forests, (4) shrubby areas, and 
(5) bare area (Figure 24.8). The land use of the area was saved as polygon layer.

24.3.2.1.8 Distance from Road Network
The road network of the study area was digitized from topographic map (scale 1:50,000) and saved 
as a line layer in the GIS database. Similar to the case of tectonic elements, four buffer zones were 
constructed around roads at distances of 50, 100, 150, and 200 m (Figure 24.9).

24.3.2.1.9 Distance from Streams
The drainage network of the study area was digitized from the topographic sheet (scale 1:50,000) 
and saved as line layer. The streams were classified by using the Strahler’s method. The streams of 
the third- and fourth-order streams continuously modify the slopes of the rivers, and thus, they can 
be considered a factor influence in landslide occurrence. For the examination of this factor, buffer 
zones were created around the bed of the rivers and the streams of the area, at distances of 50, 100, 
150, and 200 m (Figure 24.10).

24.3.2.2 Rating of the Classes of the Instability Factors
A primary step in the process of landslide susceptibility assessment is the classification of all 
the factors. Therefore, the classes of the involved factors have to be standardized to a uniform 

FIGURE 24.7 Map showing the spatial distribution of altitude.
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suitability-rating scale. The standardization method used in the analysis was consistently based on 
a five-grade scale. Integer numbers, ranging from 0 to 4 (Bathrellos et al. 2016), were assigned to 
every class corresponding to different hazard levels. Therefore, the class that was rated as 0 repre-
sented the most stable conditions (very low landslide hazard), and the one rated as 4 represented the 
most favorable conditions for slope failure (very high landslide hazard). Table 24.1 shows the rating 
of the classes of each factor.

FIGURE 24.8 Map showing the land use of the study area.

FIGURE 24.9 Map showing the distance from road network.
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(Continued)

FIGURE 24.10 Map showing the distance from streams.

TABLE 24.1
The Selected Factors Involved in the Landslide 
Susceptibility Assessment, Their Classes, and Their Ratings

Factors Classes Rating

Lithology Quaternary formations 3

Molassic formations 2

Flysch 4

Carbonate rocks 0

Clay—chert formations 1

Distance from tectonic 
elements (m)

<50 4

51–100 3

101–150 2

151–200 1

>200 0

Slope angle (°) 0–5 0

5–15 1

15–30 2

30–45 3

>45 4

Slope aspect (°) 180–225 0

135–180 1

90–135, 225–270 2

45–90, 270–315 3

0–45, 315–360 4

Rainfall (mm) <1100 2

1100–1300 3

1300–1600 4

>1600 4
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24.3.2.3 Weighting of the Instability Factors—Analytical Hierarchical Process Method
The rules of the AHP method were applied to get the final weights for each factor. The first step 
in the AHP is the computation of the pairwise comparison matrix, where each entry represents 
the relative significance of a factor to the others. The relative importance between two factors is 
measured according to a numerical scale from 1 to 9. The correlation between the numerical values 
and the intensity of importance are as follows: 1 = equal importance, 2 = weak or slight, 3 = mod-
erate importance, 4 = moderate plus, 5 =  strong importance, 6 =  strong plus, 7 =  very strong, 
8 = extremely strong, and 9 = of extreme importance. Inversely, less important variables were rated 
between 1 and 1/9 (Saaty 1977, 2006).

The method requires normalization of all factor weights by the following equation: 

 Wi

i

n

=
∑ =

1

1 (24.1)

It is important to verify the consistency of each table matrix after the calculation of the weight 
values. Therefore, the implication of each one was checked with the consistency ratio (CR): 

 CR CI/RI=  (24.2)

Where, RI is the random index, which was developed by Saaty (1977), and it is a constant that 
depends on the order of the matrix, and the CI is calculated by the equation: 

 CI = − −λ max /n n 1 (24.3)

Factors Classes Rating

Altitude (m) <400 2

400–800 3

800–1200 4

1200–1600 4

>1600 1

Land use Urban area 0

Cultivated area 3

Forest area 1

Shrubby area 2

Bare area 4

Distance from roads (m) <50 4

51–100 3

101–150 2

151–200 1

>200 0

Distance from streams (m) <50 4

51–100 3

101–150 2

151–200 1

>200 0

TABLE 24.1 (continued)
The Selected Factors Involved in the Landslide 
Susceptibility Assessment, Their Classes, and Their Ratings
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Where, λmax is the largest eigenvalue of the matrix, and n is the order of the matrix. This 
ratio is used in order to avoid the creation of any incidental judgment in the matrix, and when 
CR value is less than 0.1, an acceptable level of consistency has been achieved. The CR values 
are less than 0.1, which means that the corresponding matrixes have an acceptable level of 
consistency.

The classes of every adopted factor, their ratings, the calculations of the weighting coefficient, 
and the CR are given in Table 24.2. All the pairwise comparisons, the eigenvectors, the weights, and 
the CR were calculated by using the Expert Choice 2000 software.

24.3.2.4 The Overall Landslide Susceptibility Index
The overall score of the basic landslide susceptibility assessment for the study area was calculated 
with the correlation of the estimated factors. This correlation was performed by using the weighted 
linear combination method, according to the following mathematical operator: 

 LS =
=

∑W Xi

i

n

i

1

 (24.4)

Where:
LS is landslide susceptibility index
n is the number of the factors
Wi is the weight of the factor
i and Xi is the rating of the factor i

After the application of the above-mentioned equation, the landslide susceptibility assessment map 
was produced.

24.3.2.5 Uncertainty Analysis
Uncertainty plays an important role in natural hazard assessment and land use suitability estimation 
(Bathrellos et al. 2013; Van Westen et al. 2014). The AHP method has limitations to determinate the 

TABLE 24.2
The Weighting Coefficient of Every Factor and the Consistency Ratio for Landslide 
Susceptibility Assessment

F1 F2 F3 F4 F5 F6 F7 F8 F9 Weights, Wi

F1 1 2 1/3 3 1/2 7 3 2 3 0.145

F2 1 1/3 2 1/2 6 2 1 1 0.085

F3 1 5 2 9 5 3 4 0.275

F4 1 1/5 6 1/2 1/4 1/5 0.040

F5 1 7 4 3 2 0.186

F6 1 1/5 1/8 1/8 0.016

F7 1 1/3 1/3 0.049

F8 1 1/2 0.093

F9 1 0.111

CR=0.05

Note: F1 = lithology, F2 = distance from tectonic elements, F3 = slope angle, F4 = slope aspect, F5 = rainfall, F6 = alti-
tude, F7 = land use, F8 = distance from roads, and F9 = distance from streams.



505Landslide Susceptibility Assessment Mapping

uncertainty. Bathrelos et al. (2016, 2017) applied the AHP method to evaluate geoenvironmental 
factors to assess the urban flood hazard and natural hazard maps to estimate sites for urban develop-
ment; they determined the uncertainty involved in the technique by introducing an uncertainty in 
weighting coefficient of the adopted factors.

In this concept, the influence of uncertainty of the adopted factor weights on the landslide 
 susceptibility assessment was examined, and two more scenarios were developed. The error DS 
produced by independent errors DWi in the weighting coefficient values is given by: 

 ∆ ∆S
i 1

n

=
=

∑( )W Xi i
2  (24.5)

Each weighting coefficient value was altered 20%, without time step, from the original factor weight 
that was used for the basic landslide susceptibility assessment. The changes of weight values (DWi) 
of every factor are given in Table 24.3.

Equation 24.5 was applied to calculate the error (DS). Then, it was multiplied by 1.96 to com-
pute 95% confidence level of the level of the LS values. This process led to the creation of a 
map that was added and subtracted from the basic landslide susceptibility map to estimate the 
upper and lower LS values at 95% confidence level, respectively. Thus, two maps representing two 
extreme scenarios of maximum and minimum LS values were produced for landslide susceptibil-
ity assessment.

24.3.2.6 Landslide Inventory Map
The landslide inventory map compilation involves the following steps: (a) landslides were recorded 
from previous works (Bathrellos 2014), (b) landslide locations were recognized on satellite image, 
and (c) the manifested landslides were verified and mapped by field work. The landslide occur-
rences were digitized as point layer. The landslides were used for the compilation of the landslide 
inventory map (Figure 24.11), which was further used for the verification of the landslide suscepti-
bility assessment map.

TABLE 24.3
The Changes of Weighting Coefficient 
Values (ΔWi) of Every Factor

Factor ΔWi

Lithology 0.029

Distance from tectonic elements 0.017

Slope angle 0.055

Slope aspect 0.008

Rainfall 0.037

Altitude 0.003

Land use 0.010

Distance from roads 0.019

Distance from streams 0.022
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24.4 RESULTS

24.4.1 lanDsliDe susceptibility assessment map

The implementation of landslide susceptibility assessment methods leads to the production of a 
landslide susceptibility map. The land surface of this map is usually categorized into classes that 
represent different landslide susceptibility levels (Nefeslioglu et al. 2013; Park et al. 2013).

FIGURE 24.12 The basic landslide susceptibility assessment map.

FIGURE 24.11 The landslide inventory map of the study area.
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The results of the landslide susceptibility assessment are given in the maps of the Figures 24.12 
through 24.14. Three alternative maps were derived for different scenarios. The calculated landslide 
susceptibility index values of the three landslide susceptibility assessment maps were categorized 
by using the quantile method of classification. The study area of each map was classified into five 
sections corresponding to very high, high, moderate, low and very low landslide susceptibility zone.

The first applied scenario was the application of the AHP method, which led to the basic landslide 
susceptibility (LSb) assessment map (Figure 24.12). Regarding the spatial distribution of the five 

FIGURE 24.13 The maximum value of landslide susceptibility assessment map.

FIGURE 24.14 The minimum value of landslide susceptibility assessment map.
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landslide susceptibility zones, the areas of very high and high landslide susceptibility are located 
mostly at the northwestern, western, and southwestern parts of the study area.

The second map (LSmax) represents the maximum value of the landslide susceptibility 
assessment of each pixel (Figure 24.13). Similar to the LSb assessment map, the very high and 
high landslide hazard zones are largest in the northwestern, western, and southwestern parts of 
the study area.

The minimum-value scenario is expressed in the third map (LSmin) of Figure 24.14. The very 
high and high landslide susceptibility zones of this map have the largest spatial distribution in the 
same parts of the previous two maps.

The percentages of the five susceptibility zones, in relation to the entire extent of the study area, 
for the three alternative maps are given in Table 24.4.

24.4.2 verification of the lanDsliDe susceptibility assessment map

Testing the produced landslide susceptibility map is of great importance for the reliability and usefulness 
of the method followed. A landslide susceptibility assessment map is usually verified by using the spatial 
distribution of landslide events that affected the study area (Yilmaz 2009; Pradhan and Lee 2010).

In this context, 82 sites of landslide occurrences were examined throughout the study area. Field 
work revealed that the majority of the landslides manifested in the loose formations of the study area.

The applied verification process was checked to the superposition of the landslide occurrence 
map over the basic landslide susceptibility assessment map. The applied procedure proved that the 
majority of the landslides are located within the limits of the areas presenting high to very high 
landslide susceptibility values.

Table 24.5 presents the numerical distribution of the landslides into the landslide susceptibility 
zones of the map. According to this table, 78% of the landslides are located within the limits of the high 
to very high susceptibility classes, and 15% are located into the moderate landslide susceptibility area.

TABLE 24.4
Percentages of Each Landslide Susceptibility Zone in the Cases of Basic, Maximum, and 
Minimum Scenarios for the Study Area

Landslide Susceptibility Zones/Percentage 
of Total Study Area LSb LSmax LSmin

Very low 19.4 19.3 19.6

Low 20.2 19.8 20.4

Moderate 20.2 20.4 20.6

High 20.4 20.6 19.7

Very high 19.8 19.9 19.8

TABLE 24.5
Number and Percentage of Landslide Events into Each Landslide Susceptibility Zone

Landslide Susceptibility Zone Number of Landslides Landslides (%)

Very low 3 3.7

Low 3 3.7

Moderate 12 14.6

High 30 36.6

Very high 34 41.4

Total 82 100.0
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24.5 DISCUSSION

In the present study, a landslide susceptibility assessment map was generated by using the AHP 
method, GIS tools, and EO data. In this map, we identified zones of five hazard levels: very low, 
low, moderate, high, and very high.

The EO data can be effective in support of detailed landslide inventories mapping. Moreover, 
radar and optical EO data such as interferometric synthetic aperture radar (InSAR) and object-
based image analysis (OBIA) methods can contribute toward improving our ability for landslide 
monitoring and during all phases of emergency management: mitigation, preparedness, crisis, and 
recovery (Casagli et al. 2016). To this direction, satellite image was exploited for recording, rapid 
mapping, and monitoring of landslide events, and thus, a landslide inventory map was produced.

Concerning the produced landslide susceptibility map, the very high and high landslide sus-
ceptibility zones are mainly observed in the northwestern, western, and southwestern parts of the 
study area. The percentage of these two susceptibility zones, in relation to the total area, is about 
41% (Table 24.4). This area suffers from many landslides due to the prevailing geological and mor-
phological conditions. According to Bathrellos et al. (2009), this is a mountainous area with rather 
steep slopes, and it consists of flysch sediments, prone to landslide occurrences. On the contrary, in 
the eastern part of the study area, very few regions of limited area are classified into areas of high 
and very high landslide susceptibility.

Although the AHP presents limitations to determinate the uncertainty, it appears to be a pow-
erful and practical tool in the case of multiobjective decision-making problems (Chen et al. 2010; 
Bathrellos et al. 2013; Van Westen et al. 2014). For this reason, two more scenarios were developed 
to examine the influence of the uncertainty on the landslide susceptibility assessment results. The 
uncertainty analysis of the proposed methodology proved that the weighting coefficient of slope 
angle presents the greatest variation, whereas the altitude has the lowest variation among all the 
factors involved in the landslide susceptibility assessment. The fluctuations of the weighting coef-
ficients a little involves the spatial distribution of the hazard zones. The results of the uncertainty 
analysis (Table 24.4) showed no significant variations in the percentages of the landslide susceptibil-
ity zones among the LSb, LSmax, and LSmin maps. The percentages of the landslide susceptibility 
zones for the LSmin map have a slightly changed in comparison with the LSb map. The highest 
variation of the percentages is observed in the moderate and high landslide susceptibility zones. 
Consequently, the analysis showed no significant differences in the spatial and quantitative distribu-
tion of the landslide susceptibility zones. This fact indicates robust behavior for the predictions of 
the applied method.

The combination of the different maps may produce a map that does not include the actual 
hazard in the area (Kappes et al. 2012). For this reason, the basic landslide susceptibility map was 
verified by using 82 sites of landslide occurrences. The results established that the vast major-
ity of the landslide events, 78% (Table 24.5), occurred within the limits of the high to very high 
susceptibility zones. Consequently, the produced landslide susceptibility assessment map presents 
a satisfactory agreement between the landslide susceptibility zones and the spatial distribution of 
landslide phenomena.

At local scale, the proposed method identifies the areas that are susceptible or not susceptible to 
landslides. Subsequently, the adopted approach determines favorable places for urban development. 
Engineers, planners, decision makers, environmental managers, and local authorities may utilize 
the proposed procedure in spatial planning and landslide hazard mitigation policy.

In addition, the sites of the existing urban areas of a region that are located in non-safe areas 
regarding landslides may be identified. Therefore, proper remedial measures able to prevent and 
reduce the consequences of landslides occurrences for an area may be considered.

The selection of the proper remedial measures constructions is important to prevent the conse-
quences of landslide occurrences (Rozos et al. 2013). Thus, future works, including high-resolution 
radar and EO data, are essential to evaluate and record landslide events in detail. The increasing 
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availability of EO data offered by new sensors will enhance the possibility to cover wider areas and 
to obtain more updated data for landslide events, with improved spatial and temporal resolutions. 
Information derived from up-to-date satellite images of areas prone to landslide occurrences, com-
bined with the vulnerability of the exposed elements at landslide hazard (i.e., buildings and roads), 
will be very useful to propose the proper protection measures. Moreover, this process will offer a 
significant assistance in recovery of the areas affected by landslides.

24.6 CONCLUSIONS

In the present study, landslide susceptibility assessment maps were produced via the AHP method, 
GIS, and EO data. Satellite image was exploited for the rapid mapping of the landslide events of the 
study area. The adopted procedure was implemented in a mountainous part of western Thessaly, 
central Greece.

The results of the applied method highlighted that the areas of very high and high landslide 
susceptibility are located mostly in the northwestern, western, and southwestern parts of the study 
area. This is a mountainous area with rather steep slopes, and it consists of flysch sediments, prone 
to landslide occurrences.

The uncertainty analysis of the proposed method proved that the fluctuations of weighting 
coefficients a little involves the spatial distribution of the landslide susceptibility zones. Slight 
differences on the spatial and quantitative distribution of the landslide susceptibility zones were 
observed, indicating robust behavior for the model predictions.

The landslide susceptibility map showed that sufficient correlation with landslide occurrences 
affected the study area. This indicates that the results of the proposed method are reliable.

In regional studies, the applied procedure can be definitely used for the localization of sites sus-
ceptible to landslides. Therefore, the proposed methodology and the landslide susceptibility assess-
ment map should be taken into account by the local authorities, engineers, and planners to adopt 
policies and strategies aiming toward landslide hazard prevention and mitigation.

In the present work, EO data were very effective in support of detailed and rapid landslide map-
ping and monitoring. In future works, the increasing availability of EO data offered by new sen-
sors will improve our ability for landslide mapping and monitoring. Additional, up-to-date satellite 
images of affected and prone areas will provide reliable information for the selection of the proper 
remedial measures to prevent the consequences of landslides and the recovery of areas affected by 
landslides.
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