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Introduction: Trials and Tribulations in the 
Study of Complex, Multicomponent, 
Multiphasic, Nonequilibrium Systems

The computer model is to the mind what the telescope and microscope are to the eye. 
(Heinz Pagels)

Food systems encompass anything from whole organisms and living tissue to 
nanostructured soft materials: potatoes to cheese. One characteristic all these sys-
tems share is complexity. All food materials are multicomponent, multiphasic, and 
mostly nonequilibrium systems, while living matter is ephemeral. It is thus very 
difficult to use a thermodynamic approach to predict system behavior. However, at 
the same time, this makes food systems amenable to kinetic analysis, where 
researchers try to catch a fleeting glimpse at the dynamics of living processes, struc-
ture formation, structure breakdown, state transformations, and the energetics 
involved in these processes. At the end of the exercise, we talk about free energies 
of activation, partition functions, orders of processes, and rate constants instead of 
free energy, enthalpy, and entropy of standard states.

The complexity of a food system might discourage some; however, many of 
these complex systems are amenable to “coarse-graining,” which means that struc-
tural or functional averages of ensembles of molecules, higher-order structural 
units, or entire metabolic pathways can be used to model whole system behavior – a 
mean field approach. Engineers have known this for a while and carry out phenom-
enological finite-element and finite-difference analysis; however, there are many 
approaches available, limited only to the imagination and skill of the researcher. 
Here is where art meets science, where creativity is key. How do we succeed in 
describing the behavior of a complex system?

Should we use a deterministic or a stochastic approach? Deterministic processes 
(cause-effect) follow an exact mathematical rule, while in stochastic processes, the 
time evolution of a system is represented by a variable whose change is subject to 
random variation. Deterministic modeling utilizes the tools of differential equa-
tions, assuming that the time evolution of a system can be modeled exactly. 
According to Laplace, “The state of the world at a given instant is defined by an 
infinite number of parameters, subject to an infinite number of differential equa-
tions. If some ‘universal’ mind could write down all these equations and integrate 
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them, it could then predict with complete exactness the entire evolution of the world 
in the infinite future.” Features common to all deterministic mathematical formula-
tions include that the system is completely defined by mathematical entity ω (can be 
a set of real numbers, one or more functions, etc.) and that values of ω in the future 
t > to are uniquely determined by ωo, the initial state of ω, namely, ω = F(to,ωo,t). For 
phenomena described by differential equations, the process of finding their solution 
involves the integration of these differential equations with the initial conditions 
ω = ωo and t = to. Such formulations are exact and direct expressions of the deter-
ministic character of the actual phenomena, of the physical principle of causation. 
However, this quantitative infinity is coarse compared to the qualitatively inexhaust-
ible character of the real world, and this approach sometimes does not adequately 
represent the infinite complexity of actual events.

Stochastic modeling, on the other hand, uses probabilities to analyze the time 
evolution of a system. A Markov chain is probably the most famous example of 
stochastic modeling, aside from random walks. In a time-discrete Markov process, 
the probability of each event depends only on the state attained in the previous event 
in time. Interestingly, most deterministic modeling deals with nonlinear functions, 
while probabilistic modeling relies on first- and higher-order polynomial functions. 
This is a consequence of the mathematics used in either approach. Is the world non-
linear and deterministic or linear and probabilistic?

Regardless of the approach, the art of an investigation consists in finding a very 
simple space Ω (i.e., a set of values of ω or different possible states of the system) 
such that if we replace the actual process by varying the point ω in a determinate 
way over this space, we can include all the essential aspects of the actual process. In 
the words of J.W. Gibbs, “One of the principal objects of theoretical research in any 
department of knowledge is to find the point of view from which the subject appears 
in its greatest simplicity.”

At this point, we should discuss other considerations in the modeling process. 
Are we going to adopt a reductionist view or a wholistic view of the system? A 
reductionist approach would attempt to describe the behavior of a system from the 
behavior of the smallest structural unit in that system. In this bottom-up approach, 
whole system behavior can be predicted from the behavior of ensembles of the 
smallest structural units. A wholistic approach would seek to describe the behavior 
of the whole system as a unit, separate from its individual building blocks. In this 
top-down approach, correlations would be established between macroscopic behav-
ior and particular length scales in a system in an attempt to correlate function to 
biological or physical structure and their interactions. The approach could also be 
mechanistic or phenomenological in nature. Mechanistic approaches are based on 
theory that describes the physical and chemical behavior of a system. A phenome-
nological approach just utilizes a convenient function which describes system 
behavior without addressing the reason for that behavior. Finally, I would like to 
mention the difference between interpolation and extrapolation. A simple phenom-
enological modeling exercise such as obtaining a least squares estimate of a straight 
line by linear regression generates a function which can only predict unknown 
 values within the bounds of the data set. It should never be used outside these limits. 
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This is interpolation. A more sophisticated mechanistic modeling exercise should 
be able to predict unknown states of the system beyond the data set used to create 
such model. This is true prediction and constitutes extrapolation from the experi-
mental data set.

In my experience, the modeling process of a complex system involves the fol-
lowing necessary steps for maximum impact:

 1. Write down all the variables that you believe affect the behavior of your 
system.

 2. Design the experiment properly, with particular attention to replication. The 
experiment has to have at least three determinations of three replicates. They are 
not the same thing!

 3. Try to control or monitor as many variables as possible during experiments.
 4. Carry out proper statistical analysis. Any proposed effects or trends need to be 

statistically significant at least at the 5% level. Determine which variables sig-
nificantly affect the system and which ones do not; i.e., is the variability attrib-
uted to a treatment greater than the one attributed to random experimental 
error?

 5. Model the system’s behavior using a mechanistic or phenomenological model 
and test its validity.

 6. Attribute mechanistic significance to the parameters derived from the model.

Any discussion about modeling eventually digresses into the realm of the phi-
losophy of carrying out research. Research is the systematic search for new knowl-
edge, while scientific research takes place when research involves a testing step of 
carefully formulated ideas. Types of research include (a) fact finding, information 
gathering not intended to derive generalizations or solve problems; (b) critical 
interpretation, arriving at conclusions through logical reasoning (critical reviews), 
which is not scientific research; and (c) complete research, solving problems and 
arriving at generalizations after a thorough search for existent pertinent facts, 
analysis and logical classification of these facts, and development of a reasonable 
case using inductive reasoning. The scientific method is a form of complete 
research plus the development of a hypothesis and controlled experimentation. An 
essential element of the scientific method includes model building, which has to 
do with the creation of a hypothesis. Models are central to the scientific method 
and complete research. Models allow us to explain and create understanding and 
maybe even predict behavior. These days there is way too much information and 
not enough knowledge created in research. Moreover, nobody has time to look 
back and possibly accumulate wisdom (and share it) gathered from new and old 
knowledge.

This book takes a “stream of consciousness” approach to the subject and is not 
meant to be exhaustive by any stretch of the imagination. Section 1 is an introduc-
tion to the topic of kinetic analysis assuming no prior knowledge of the subject. 
Section 2 includes nine examples of kinetic modeling that illustrate many tech-
niques and approaches to problems such as color loss, oil migration, biodiesel 
 manufacture, crystallization, nucleation, and protein aggregation. The examples 
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provide a practical handle on how to carry out kinetic analysis, while each chapter 
is designed to cover a major mathematical technique such as Fourier series analysis 
and solutions to coupled ordinary differential equations. Examples include both 
phenomenological and mechanistic modeling. The book is also meant to be a stan-
dard reference in the use of the specific models presented for research. The student 
of modeling should always remember that a model is “entertained” since it is just an 
attempt to catch a glimpse at the workings of nature. Experimental evidence must 
always be gathered, which will support or not support the model in the long term. A 
model is a sophisticated hypothesis.

I finish this brief introduction with two of my favorite quotations which are very 
relevant to modeling and scientific research, one by a famous scientist and one by a 
famous wilderness adventurer:

If nature were not beautiful it would not be worth knowing, and if nature were not worth 
knowing life would not be worth living. (Henri Poincare)

Only those who have had the experience can know what a sense of physical and spiritual 
excitement comes to one who turns his face away from men and towards the unknown. (Bill 
Mason)

Alejandro G. Marangoni
Guelph, ON, Canada
November 1, 2016
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Chapter 1
Fundamentals of Kinetics

1.1  Generalities

The laws of chemical interactions are of great interest to chemists for theoretical 
and practical reasons. The theories that have been proposed to explain such interac-
tions are empirical, that is, they are based on observable experimental results. Two 
main approaches have been used to study chemical reactivity, the thermodynamic 
and the kinetic approach. In thermodynamics, conclusions are reached on the basis 
of changes in enthalpy, free energy and entropy that accompany a particular change 
of state in a system. From the magnitude and sign of the free energy change of a 
reaction, it is possible to predict the direction in which a chemical change will take 
place. Thermodynamic quantities do not, however, provide any information on the 
rate or mechanism of a reaction. These lie in the realm of kinetics. Theoretical 
analysis of the kinetics, or time course, of processes can also provide valuable infor-
mation concerning the underlying mechanisms responsible for these processes.

In the study of kinetics, it is necessary to construct a mathematical model that 
embodies the hypothesized mechanisms. A model is a simplification of the physical 
world. It is a mathematical representation of observed phenomena. A model is not 
judged by its scientific accuracy but by its utility. A model may be scientifically 
untrue yet retained by scientists as long as it adequately describes physical phenom-
ena. A model is “entertained” (as opposed to being “accepted”). A scientist must 
rigorously test a model and be prepared to discard it and adopt a new one in view of 
conflicting evidence. The model may be entertained or discarded by examining 
whether or not it is consistent with the experimental data.

The constructed models must be in accordance with the law of parsimony or the 
law of succinctness, also known figuratively as Occam’s Razor. Occam’s Razor is a 
maxim formulated by the fourteenth -century English logician William of Ockham. 
The law states that, in the formulation of a theory or a hypothesis to explain natural 
phenomena, it is necessary to make as few assumptions as possible. Furthermore, 
assumptions are only to be included if their inclusion results in an observable 
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 difference in the predictions of the theory. While the law of parsimony is one of the 
fundamental principles of the philosophy of science, it is difficult to apply to food 
systems. Reactions in foods are rarely so simple that they can be described appro-
priately with a simple model and a minimum of assumptions.

Modeling consists of two main steps: (1) Formulation of a model and (2) Testing 
of the model. A conjecture about the possible mechanism of the process to be mod-
eled is formulated. An experiment is then designed to collect data and test the pro-
posed model. Analysis of the data will reveal whether or not the data collected is in 
accordance with the model. Analysis will provide the grounds to either entertain a 
model or reject it outright. Model building is a dynamic process. If a model is 
rejected, a new model is formulated, repeating the entire modeling process.

Kinetic modeling finds many applications in the chemical sciences. In food sci-
ence, it has been used to study and quantify phenomena such as enzyme catalysis in 
biotechnological processes, inactivation of microbes and degradative enzymes in 
food processing, loss of plant pigments, the rate and inhibition of the Maillard reac-
tion, the transesterification of oils, starch degradation and many others. Kinetics is 
particularly useful in studying the stability of foods over time.

Kinetic modeling is an important tool in food science. Knowing the rate of a 
reaction given the reactant concentration and its dependence on temperature and 
other variables can allow for the prediction of the time required for a change in qual-
ity to occur. Such predictive power is of great importance to food manufacturers 
since it allows for the estimation of the shelf-life of a food. As well, studying the 
dependence of degradative reactions on certain kinetic parameters will provide the 
framework for the control of these parameters. Such control can enable food proces-
sors to decrease the rates of degradative reactions, extending the shelf-life and 
increasing the quality of foods.

1.2  Basic Definitions

Consider the simple reaction A → B. The law of mass action states that the rate at 
which the reactant A is converted to product B is proportional to the number of 
molecules of A available to participate in the chemical reaction. Doubling the con-
centration of A will double the number of collisions between molecules, leading to 
an increased rate of product formation.

The molecularity of a reaction is the number of reactant molecules participating 
in a simple reaction consisting of a single elementary step. Reactions can be unimo-
lecular, bimolecular, and termolecular. Unimolecular reactions can include isomer-
izations (A → B), and decompositions (A → B + C). Bimolecular reactions include 
association (A + B → AB; 2A → A2), and exchange reactions (A + B → C + D or 
2A → C + D). The less common termolecular reactions can also take place 
(A + B + C → D). The term molecularity only applies to processes that take place in 
a single elementary step. Thus, this implies a theoretical understanding of the 
 mechanism of a process. Reactions that take place in a single elementary step are 

1 Fundamentals of Kinetics
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rare. Thus, for more complex reactions it is necessary to specify the molecularity of 
each elementary step within a multi-step reaction.

1.2.1  The Rate Equation

The rate equation or rate law is a quantitative expression of the change in concen-
tration of reactant or product molecules in time. It is based on the law of mass 
action. Writing rate equations that embody the proposed mechanisms is usually the 
first step in the formulation of a kinetic model. The reaction rate can be obtained 
from the slope of the concentration-time curve for the disappearance of reactant(s) 
or the appearance of product(s). For example, consider the reaction A + 3B → 2C. The 
rate of this reaction can be expressed as either the disappearance of reactant, or the 
formation of product:

 

rate
d

dt

d

dt

d

dt
= -

[ ]
= -

[ ]
=

[ ]A B C1

3

1

2
 

(1.1)

The stoichiometry of a reaction is the simplest ratio of the number of reactant 
molecules to the number of product molecules. For example, consider the reaction 
above. The stoichiometry tells us that one unit of reactant A is needed along with 
3 units of reactant B to form 2 units of reactant C. This implies that the rate at which 
B is consumed is three times the rate at which A is consumed. Likewise, this tells us 
that the rate at which C is formed is twice the rate at which A is consumed.

Empirically, one also finds that the rate of a reaction is proportional to the amount 
of reactant present, raised to an exponent n:

 
rate

nµ [ ]A
 

(1.2)

where n is the order of the reaction. Order is an empirical quantity, that is, it is 
mathematically consistent with observed phenomena in the physical world.

If the rate of a reaction is independent of a particular reactant concentration, the 
reaction is considered to be zero order with respect to the concentration of that reac-
tant (n = 0). If the rate of a reaction is directly proportional to a particular reactant 
concentration, the reaction is considered to be first order with respect to the concen-
tration of that reactant (n = 1). If the rate of a reaction is proportional to the square 
of a particular reactant concentration, the reaction is considered to be second order 
with respect to the concentration of that reactant (n = 2). In general, for any reaction 
A + B + C +  …  → P, the rate equation can be generalized as:

 
Rate

a b cµ [ ] [ ] [ ] ¼A B C
 

(1.3)

where the exponents a, b, c correspond, respectively, to the order of the reaction 
with respect to reactants A, B, and C.

1.2 Basic Definitions
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The rate equation for the proportionality given in Eq. 1.2 can be re-written as:

 
rate

d

dt
kr

n= -
[ ]

= [ ]A
A

 
(1.4)

where kr is the rate constant of the reaction.
The rate constant (kr) of a reaction is a concentration-independent measure of the 

velocity of a reaction. For a first order reaction, kr has units of (time)−1, while for a 
second order reaction, kr has units of (concentration)−1(time)−1. In general, the rate 
constant of an nth order reaction has units of (concentration)−(n–1)(time)−1.

As implicitly stated above, the rate of a reaction can be obtained from the slope 
of the concentration-time curve for the disappearance of reactant(s) or the appear-
ance of product(s). Typical reactant concentration-time curves for zero, first, sec-
ond and third order reactions are shown in Fig. 1.1. The dependence of the different 
reaction rates or velocities on reactant concentration are shown in Fig. 1.2.

Fig. 1.1 Changes in 
reactant concentration as a 
function of time for zero-, 
first-, second- and 
third-order reactions

Fig. 1.2 Changes in reaction 
velocity as a function of 
reactant concentration for 
zero-, first-, second-, and 
third-order reactions

1 Fundamentals of Kinetics
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1.2.2  Integrated Rate Equations

By integrating the rate equations, it is possible to obtain analytical expressions that 
describe changes in the concentration of reactants or products as a function of time. 
As will be described in the next section, these integrated rate equations are extremely 
useful in the experimental determination of rate constants and reaction order.

1.2.2.1  Zero Order Integrated Rate Equation

The rate equation for a zero order reaction can be expressed as:

 
rate

d

dt
kr=

[ ]
= - [ ]A

A
0

 
(1.5)

Since [A]0 = 1, integration of the above equation for the boundary conditions 
A = Ao at t = 0 and A = At at time t,

 A

A

r

t

o

t

d k dtò ò[ ] = -A
0  

(1.6)

yields the integrated rate equation for a zero order reaction:

 
A A k tt o r[ ] = [ ]-  

(1.7)

where [At] is the concentration of reactant A at time t, and [Ao] is the initial concen-
tration of reactant A at t = 0. For a zero order reaction, a plot of [At] versus time 
yields a straight line with slope −kr (Fig. 1.3).

Fig. 1.3 Determination  
of the reaction rate constant 
(kr) for a zero-order reaction 
from a graph showing the 
change in reactant 
concentration as function of 
time

1.2 Basic Definitions
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1.2.2.2  First Order Integrated Rate Equation

The rate equation for a first order reaction can be expressed as:

 
rate

d A

dt
k Ar=

[ ]
= - [ ]

 
(1.8)

Integration of the above equation for the boundary conditions A = Ao at t = 0 and 
A = At at time t,

 A

A

r

t

o

t d A

A
k dtò ò

[ ]
[ ]

= -
0  

(1.9)

yields the integrated rate equation for a first order reaction:

 
ln

A

A
k tt

o
r= -

 
(1.10)

This can be re-arranged to give:

 A A et o
k tr[ ] = [ ] -

 
(1.11)

For a first order reaction, a plot of ln
A

A
t

o

[ ]
[ ]

 versus time yields a straight line with 
slope −kr (Fig. 1.4).

1.2.2.3  Second Order Integrated Rate Equation

The rate equation for a second order reaction can be expressed as:

 rate
d A

dt
k Ar=

[ ]
= - [ ]2  

(1.12)

Fig. 1.4 Determination of 
the reaction rate constant (kr) 
for a first-order reaction from 
a semi- logarithmic graph 
showing the change in 
reactant concentration as a 
function of time

1 Fundamentals of Kinetics
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Integration of the above equation for the boundary conditions A = Ao at t = 0 and 
A = At at time t,

 A

A

r

t

o

t d A

A
k dtò ò

[ ]
[ ]

= -
2

0  

(1.13)

yields the integrated rate equation for a second order reaction:

 

1 1

A A
k t

t o
r[ ]

=
[ ]

+
 

(1.14)

The following equation can be re-arranged to give:

 
A

A

A k tt
o

o r

[ ] = [ ]
+ [ ]1  

(1.15)

For a second order reaction, a plot of 
1

At[ ]
 against t yields a straight line with 

positive slope kr (Fig. 1.5).
For the second-order bimolecular reaction A + B → P, it is possible to express the 

rate of the reaction in terms of the amount of reactant that is converted to product 
(P) in time:

 

d P

dt
k A P B Pr o o

[ ]
= -[ ] -[ ]

 
(1.16)

Integration of the above equation using the method of partial fractions for the 
boundary conditions A = Ao and B = Bo at t = 0 and A = At and B = Bt at time t,

 

1

0 0A B

dP

B P

dP

A P
k dt

o o

P

o o
r

tt

[ ]-[ ]( ) -[ ]
-

-[ ]
æ

è
çç

ö

ø
÷÷ = -ò ò

 

(1.17)

Fig. 1.5 Determination of 
the reaction rate constant (kr) 
for a second-order reaction 
from a linear plot of the 
reactant concentration as a 
function of time

1.2 Basic Definitions
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yields the integrated rate equation for a second order reaction in which two different 
reactants participate:

 

1

A B

B A

A B
k t

o o

o t

o t
r-[ ]

[ ][ ]
[ ][ ]

=ln
 

(1.18)

where [At] = [Ao − Pt] and [Bt] = [Bo − Pt]. For this type of second order reaction, a 

plot of 
1

A B

B A

A Bo o

o t

o t-[ ]
ln  versus time yields a straight line with positive slope kr.

1.2.2.4  Higher Order Reactions

For any reaction where n>1, the integrated rate equation has the general form:

 

1

1

1

1
1 1

n A n A
k t

t

n

o

n r
-( )[ ]

=
-( )[ ]

+
-( ) -( )

 

(1.19)

Or

 

A
A

n A k t
t

o

o

n

r
n

[ ] = [ ]
+ -( )[ ] -( )-( )1 1

11

 

(1.20)

For an nth order reaction, a plot of 1/[(n–1) [At](n–1)] versus time yields a straight 
line with positive slope kr.

1.2.2.5  Opposing Reactions

For the simplest case of an opposing reaction, A ⇌ B,

 

d A

dt
k A k B

[ ]
= - [ ]+ [ ]-1 1

 
(1.21)

where k1 and k−1 represent, respectively, the rate constant for the forward A → B 
and reverse B → A reactions. It is possible to express the rate of the reaction  
in terms of the amount of reactant that is converted to the product B in time  
(Fig. 1.6):

 

d B

dt
k A B k Bo

[ ]
= -[ ]- [ ]-1 1

 
(1.22)

At equilibrium, 
d B

dt

[ ]
= 0 , and [B] = [Be], and it is therefore possible to obtain 

expression for k−1 and k1[Ao]:

1 Fundamentals of Kinetics



11

 

k
k A B

B
and k A k k Bo e

e
o e- -=

-[ ]
[ ] [ ] = +( )[ ]1

1
1 1 1

 

(1.23)

Substituting 
k A B

B
o e

e

1 -[ ]
[ ]

 for k1 into the rate equation, we obtain:

 

d B

dt
k A B

k A B B

Bo
o e

e

[ ]
= -[ ]- -[ ][ ]

1
1

 
(1.24)

Summing together the terms on the right side of the equation, substituting 
(k−1 + k1)[Be] for k1[Ao], and integrating for the boundary conditions B = 0 at t = 0 and 
B = Bt at time t,

 

0

1 1

0

B

e

e

tt dB

B B

B

k k dtò ò-[ ]
[ ]

æ

è
çç

ö

ø
÷÷

= +( )-

 

(1.25)

yields the integrated rate equation for the opposing reaction A ⇌ B:

 

ln
B

B B
k k te

e t

[ ]
-[ ]

= +( )-1 1

 

(1.26)

The following equation can be re-arranged to yield:

 
B B B et e e

k k t[ ] = [ ]-[ ] - +( )-1 1

 
(1.27)

A plot of ln
B

B B
e

e

[ ]
-[ ]

æ

è
çç

ö

ø
÷÷  versus time results in a straight line with positive slope 

(k1 + k−1) (Fig. 1.7).

Fig. 1.6 Changes in 
production concentration 
as a function of time for a 
reversible reaction of the 
form A ⇌B

1.2 Basic Definitions
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1.2.2.6  Reaction Half-life

The half-life is another useful measure of the rate of a reaction. A reaction half-life 
is the time required for the concentration of the initial reactant(s) to decrease by 
one-half. Useful relationships between the rate constant and the half-life can be 

derived using the integrated rate equations by substituting 
1

2 0A  for At.

The resulting expressions for the half-life of reactions of different orders (n) are 
as follows:

 
n t

A

kr
= ¼ =

[ ]
0

0 5
1

2

0.

 
(1.28)

 
n t

kr
= ¼ =

( )
1

2
1

2

ln

 
(1.29)

 

n t
k Ar

= ¼ =
[ ]

2
1

1

2 0  

(1.30)

 

n t
k Ar

= ¼ =
[ ]

3
3

2
1

2 0

2

 

(1.31)

The half-life of an nth order reaction where n > 1 can be calculated from the fol-
lowing expression:

 

n t
n k A

n

r

n
= ¼ =

- ( )
-( ) [ ]

-( )

-( )2
1 0 5

1
1

2

1

0

1

.

 

(1.32)

Fig. 1.7 Linear plot of 
changes in product 
concentration as a function 
of time used in the 
determination of forward 
(k1) and reverse (k−1) 
reaction rate constants

1 Fundamentals of Kinetics
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1.3  Dependence of Reaction Rates on Temperature

1.3.1  Theoretical Considerations

The rates of chemical reactions are highly dependent on temperature. Temperature 
affects the rate constant of a reaction, but not the order of the reaction. Classic ther-
modynamic arguments will be used to derive an expression for the relationship 
between the reaction rate and temperature.

This treatment involves knowledge of the concept of molar standard state, 
enthalpy ΔH0, entropy ΔS0 and free energy ΔG0 changes of the system. These ther-
modynamic functions have the form: 

 

DH C dT
K

T

p
0

298

= ò
 

(1.33)

 

DS
C

T
dT

K

T
p0

298

= ò
 

(1.34)

 D DG H T S0 0 0= - D  (1.35)

where the standard state enthalpy, entropy and free energy changes in the sys-
tem are always between the reference state temperature of 298 K and a given tem-
perature T. The molar heat capacity of the system (Cp) can be constant, or variable, 
in the temperature range (298  K, T). These thermodynamic functions are only 
dependent on temperature and correspond to a standard state where the pressure is 
1 atm.

The molar standard state free energy change of a reaction at equilibrium is a 
function of the equilibrium constant (K), and is related to changes in the molar 
standard state enthalpy and entropy as described by the Gibbs-Helmholtz 
equation:

 DG RT K0 = - ln  (1.36)

Re-arrangement of the above equation and substitution of ΔG0 with ΔH0 − TΔS0 
yields the well-known van’t Hoff equation:

 
ln K

H

RT

S

R

o o

= - +
D D

 
(1.37)

The change in ΔS0 due to a temperature change from T1 to T2 is given by:

 
D D DS S C

T

TT T p2 1

0 0 2

1

= + ln
 

(1.38)

1.3 Dependence of Reaction Rates on Temperature
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While the change in ΔH0 due to a temperature change from T1 to T2 is given by:

 
D D DH H C T TT T p2 1

0 0
2 1= + -( )

 
(1.39)

If the standard heat capacities of reactants and products are the same i.e., ΔCp = 0, 
then ΔS0 and ΔH0 are independent of temperature. Subject to the condition that the 
difference in the heat capacities between reactants and products is zero, differentia-
tion of Eq. 1.37 with respect to temperature yields a more familiar form of the van’t 
Hoff equation:

 

d K

dT

H

RT

ln
=
D 0

2
 

(1.40)

For an endothermic reaction, ΔH0 is positive, while for an exothermic reaction 
ΔH0 is negative. The van’t Hoff equation predicts that ΔH0 of a reaction defines the 
effect of temperature on the equilibrium constant. For an endothermic reaction, K 
increases as T increases, while for an exothermic reaction, K decreases as T 
increases. These predictions are in agreement with le Chatelier’s principle, which 
states that increasing the temperature of an equilibrium reaction mixture causes the 
reaction to proceed in the direction that absorbs heat. The van’t Hoff equation is 

used for the determination of the ΔH0 of a reaction by plotting ln K against 
1

T
. The 

slope of resulting line corresponds to 
-DH
R

0

 (Fig. 1.8). It is also possible to deter-

mine the ΔS0 of the reaction from the y-intercept, which corresponds to 
DS
R

0

. It is 

important to reiterate that this treatment applies only for cases where the heat capac-
ities of the reactants and products are equal and temperature-independent.

Enthalpy changes are related to changes in internal energy:

 
D D D DH E PV E PV PVo o o= + ( ) = + -1 1 2 2  

(1.41)

Fig. 1.8 A van’t Hoff plot 
used in the determination 
of the standard-state 
enthalpy ΔH0 of a reaction

1 Fundamentals of Kinetics
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Hence, ΔH0 and ΔE0 differ only by the difference in the PV product of the final 
and initial states. For a chemical reaction at constant pressure in which only solids 
and liquids are involved, ΔPV ≈ 0 and therefore ΔH0 and ΔE0 are nearly equal. For 
gas phase reactions, ΔPV ≠ 0, unless the number of moles of reactants and products 
remains the same. For ideal gases, it can easily be shown that ΔPV = (Δn)RT. Thus, 
for gas-phase reactions, if Δn = 0, then ΔH0 = ΔE0.

At equilibrium, the rate of the forward reaction (v1) is equal to the rate of the 
reverse reaction (v−1), v1 = v−1. Therefore, for the reaction A↔B at equilibrium, 
k1[Ae] = k−1[Be]

and therefore:

 

K
B

A

k

k
e

e

=
[ ]
[ ]

=
[ ]
[ ]

=
-

Products

Reactants
1

1  

(1.42)

Considering the above, the van’t Hoff equation can therefore be rewritten as:

 

d k

dT

d k

dT

E

RT

oln ln1 1
2

- =- D

 
(1.43)

The change in the standard state internal energy of a system undergoing a chemi-
cal reaction from reactants to products ΔE0 is equal to the energy required for reac-
tants to be converted to products minus the energy required for products to be 
converted to reactants (Fig. 1.9). Moreover, the energy required for reactants to be 
converted to products is equal to the difference in energy between the ground state 
and transition state of the reactants ( DE1

# ), while the energy required for products 
to be converted to reactants is equal to the difference in energy between the ground 
state and transition state of the products ( DE1

# ). Therefore, the change in the inter-
nal energy of a system undergoing a chemical reaction from reactants to products 
can be expressed as:

 
D D DE E E E Eo

products reactants= - = - -1 1
# #

 
(1.44)

Fig. 1.9 Changes in the free 
energy of a system 
undergoing a chemical 
reaction from substrate A to 
product B. ΔE‡ corresponds 
to the energy barrier/energy 
of activation for the forward 
(1) and reverse (−1) 
reactions, C‡corresponds to 
the transition state structure 
and ΔE‡ corresponds to the 
standard-state difference in 
the internal energy between 
products and reactants

1.3 Dependence of Reaction Rates on Temperature
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Equation 1.43 can therefore be expressed as two separate differential equations 
corresponding to the forward and reverse reactions namely:

 
dlnk

dT

E

RT
C1 1

2
= +
D #

 
(1.45a)

and

 

dlnk

dT

E

RT
C- -= +1 1

2

D #

 
(1.45b)

Arrhenius determined that for many reactions, C = 0. Therefore, indefinite inte-
gration of the above equation for either the forward or reverse reactions,

 ò ò=d k
E

R

dT

Trln
D #

2  
(1.46)

yields an expression for the relationship between the rate constant of a reaction 
and temperature. Upon re-arrangement, the familiar Arrhenius equation is obtained

 
ln

# #

k A
E

RT
k Aer r

E

RT= − =
−

ln∆ ∆ ∆

or
 

(1.47)

ΔE#, or Ea as Arrhenius defined this term, is the energy of activation for a chem-
ical reaction, while A is called the Arrhenius pre-exponential factor. Since, in first- 
order kinetics, A has units of (time)−1, it is also sometimes called the frequency 
factor. The Arrhenius pre-exponential factor has the same dimensions as the rate 
constant and is related to the frequency of collisions between reactant molecules.

1.3.2  Energy of Activation

Figure 1.9 depicts a potential energy reaction coordinate for a hypothetical reaction 
A↔B. In order for A molecules to be converted to B (forward reaction), or for B 
molecules to be converted to A (reverse reaction), they must acquire energy to form 
an activated complex C#. This potential energy barrier is therefore called the energy 
of activation of the reaction. This energy of activation is the minimum energy that 
must be acquired by the system’s molecules in order for the reaction to take place. 
Only a small fraction of the molecules may possess sufficient energy to react. The 
rate of the forward reaction depends on DE1

# , while the rate of the reverse reaction 
depends on DE-1

#  (Fig. 1.9). As will be shown later, the rate constant is inversely 
proportional to the energy of activation.

In order to determine the energy of activation of a reaction, it is necessary to 
measure the rate constant of a particular reaction at different temperatures. A plot of 

ln kr versus 
1

T
 yields a straight line with slope 

-DE
R

#

 (Fig. 1.10).
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Alternatively, but not recommended, is the integration of Eq. 1.46 as a definite 
integral with appropriate boundary conditions,

 k

k

r

T

T

d ln k
E

R

dT

T
1

2

1

2

2ò ò=
D #

 

(1.48)

which yields the following expression: 

 

ln
#k

k

E

R

T T

T T
2

1

2 1

2 1

=
-æ

è
ç

ö

ø
÷

D

 

(1.49)

This equation can be used to obtain the energy of activation, or predict the value 
of the rate constant at T2 from knowledge of the value of the rate constant at T1, and 
of ΔE#.

1.4  Theory of Reaction Rates

Absolute reaction rate theory will be discussed briefly in this section. Collision 
theory will not be explicitly developed since it is less applicable to the complex 
systems studied. Absolute reaction rate theory is a collision theory that assumes that 
chemical activation occurs through collisions between molecules. The central pos-
tulate of this theory is that the rate of a chemical reaction is given by the rate of 
passage of the activated complex through the transition state.

This theory is based on two assumptions, a dynamical bottleneck assumption and 
an equilibrium assumption. The first asserts that the rate of a reaction is controlled 
by the decomposition of an activated transition-state complex, and the second one 
asserts that an equilibrium exists between reactants (A and B) and the transition- 
state complex, C#, namely A + B ⇄ C# → C + D.

Fig. 1.10 An Arrhenius 
plot used in the 
determination of the 
energy of activation Ea of a 
reaction

1.4 Theory of Reaction Rates
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It is therefore possible to define an equilibrium constant for the conversion of 
reactants in the ground state into an activated complex in the transition state. For the 
above reaction:

 

K
C

A B
#

#

=
éë ùû
[ ][ ]  

(1.50)

As discussed previously, ΔGo =  − RT ln K, and ln K =  ln k1 −  ln k−1. Thus, in an 
analogous treatment to the derivation of the Arrhenius equation (see above), it 
would be straightforward to show that:

 k ce cKr

G

RT= =
-
D #

#

 (1.51)

Where ΔG# is the free energy of activation for the conversion of reactants into the 
activated complex C#. By using statistical thermodynamic arguments, it is possible 
to show that the constant c equals:

 c = kn  (1.52)

where κ is the transmission coefficient and ν is the frequency of the normal mode 
oscillation of the transition state complex along the reaction coordinate; more rigor-
ously, the average frequency of barrier crossing. The transmission coefficient, which 
can differ dramatically from unity, includes many correction factors, including tun-
neling, barrier re-crossing correction and solvent frictional effects. The rate of a 
chemical reaction depends on the equilibrium constant for the conversion of reac-
tants into activated complex.

Since ΔG = ΔH − TΔS, it is possible to rewrite Eq. 1.51 as:

 k e er

S

R

H

RT=
-

kn
D D# #

 (1.53)

Consider ΔH = ΔE + (Δn)RT, where Δn equals the difference between the num-
ber of moles of activated complex nac and the moles of reactants (nr). The term nr 
also corresponds to the molecularity of the reaction, e.g., unimolecular, bimolecu-
lar. At any particular time, nr <  < nac and therefore ΔH ≈ ΔE − nrRT. Substituting this 
expression for the enthalpy change into Eq. 1.53 and rearranging, we obtain:
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 (1.54)

Comparison of this equation with the Arrhenius equation sheds light on the 
nature of the frequency factor:
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 (1.55)
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The concept of entropy of activation (ΔS#) is of utmost importance for the under-
standing of reactivity. Two reactions with similar (ΔE#) at the same temperature can 
proceed at appreciably different rates. This effect is due to differences in their entro-
pies of activation. The entropy of activation corresponds to difference in entropy 
between the ground state and transition state of the reactants. Recalling that entropy 
is a measure of the randomness of a system, a positive ΔS# suggests that the  transition 
state is more disordered (more degrees of freedom) than the ground state. 
Alternatively, a negative ΔS# suggests that the transition state is more ordered (less 
degrees of freedom) than the ground state. Freely diffusing, non-interacting mole-
cules have many translational, vibrational and rotational degrees of freedom. When 
two molecules interact at the onset of a chemical reaction and pass into a more 
structured transition state, some of these degrees of freedom will be lost. For this 
reason, most entropies of activation for chemical reactions are negative. When the 
change in entropy for the formation of the activated complex is small (ΔS# ≈ 0), then 
the rate of the reaction is solely controlled by the energy of activation (ΔE#).

It is interesting to use the concept of entropy of activation in order to explain the 
failure of collision theory to explain reactivity. Consider that for a bimolecular reac-
tion A + B → P, the frequency factor (A) equals the number of collisions per unit vol-
ume between reactant molecules (Z) times a steric, or probability factor (P), namely:

 A PZ e
n
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= =
+
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è
çç
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ø
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kn
D #

 (1.56)

If only a fraction of the collisions result in conversion of reactants into products, 
then P < 1, implying a negative ΔS#. For this case, the rate of the reaction will be 
slower than predicted by collision theory. If a greater number of reactant molecules 
than predicted from the number of collisions are converted into products, then P > 1, 
implying a positive ΔS#. For this case, the rate of the reaction will be faster than 
predicted by collision theory. On the other hand, when P = 1 and ΔS#, predictions 
from collision theory and absolute rate theory agree.

1.5  Reaction in Solution

The major difference between reactions in the gas phase and in solution is solvent 
effects. In a liquid, molecules are much closer together and the energy difference 
between reactants and the activated complex E# should be smaller than in the gas 
phase. In the gas phase, two molecules that collide with each other do so only once and 
generally fly away. In solution, however, molecules are trapped in a solvent “cage”. 
This cage effect causes interacting molecules to remain together for longer periods of 
time, and molecules tend to collide with each other hundreds of times before drifting 
apart. Thus, for a case of a reaction with a low energy of activation, this cage effect 
virtually ensures reaction during each encounter. The steric factor is less important 
here since there is a high probability that the reacting molecules will become properly 
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oriented for reaction during the collisions in the “cage”. Under these conditions, reac-
tions are limited mainly by the diffusion coefficient of the molecules in the medium.

The situation is quite different for charged species in solution. The solvation 
around charged ions can greatly influence the rate of chemical reactions via an 
effect on the entropy of activation (ΔS#). Moreover, steric effects will also greatly 
influence the sign and magnitude of ΔS#. The reaction rate is strongly dependent on 
the ionic strength of the solution. This kinetic salt effect can be modeled using:

 
log10

k

k
z z A I

o
a b=

 
(1.57)

where k and k0 correspond to the rate constants of a reaction at a particular ionic 
strength (I) and the case where I ≅ 0. Recall that ionic strength is defined as 

I c z
i

n

i i=
=
å12 1

2 , where [c]i corresponds to the molar concentration of the ith ion in 

solution and zi corresponds to the net charge of that ion. The constant A depends on 
the nature of the solvent and temperature, while za and zb correspond to the charge 

of reactants A and B. An increase or decrease in 
k

ko
 will depend on the relative 

charge on the reactants, and the ionic strength of the medium.

1.6  Diffusion Controlled Reactions

A recurring question in the area of kinetics is how fast reactions can take place 
in solution. The ultimate limit to the speed at which a reaction can take place is 
set by the rate of approach of the reacting species, which in turn is set by their 
rate of diffusion. Smoluchowski showed that the rate of a diffusion controlled 
reaction (v), where all encounters lead to a productive reaction outcome, is 
given by:

 v k N ND A B=  (1.58)

where Na and NB correspond to the number of reacting molecules A and B, and kD, 
the diffusion controlled rate constant of the reaction [cm3 ⋅ molecule−1 ⋅ s−1] is given 
by:

 
k D D r rD A B A B= +( ) +( )4p

 
(1.59)

where DA and DB are the diffusion coefficients for molecules A and B [cm2 ⋅ s−1], and 
rA and rB correspond to the radii of the reacting molecules [cm]. If we simplify this 
model for the case where DA = DB and rA = rB, we then obtain:

 k rDD =16p  (1.60)
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The Stokes-Einstein equation,

 
D

k T

r
b=

6ph  
(1.61)

states that the diffusion coefficient of a spherical molecule corresponds to the 
ratio of the thermal (or kinetic) energy of the molecule (kBT), where kB is Boltzman’s 
constant and T is the absolute temperature, to the viscous energy dissipation, or 
viscous resistance to diffusion (6πηr), where η is the solvent viscosity and r is the 
radius of the particle. This energy dissipation arises from the frictional forces 
between the solute molecules and the solvent molecules. The ratio of these oppos-
ing quantities defines how easily a molecule diffuses in solution.

Introducing Eq. 1.61 into Eq. 1.60, we obtain and expression of the rate constant 
of a diffusion controlled reaction as a function of temperature and solvent viscosity, 
namely:

 
k

k T
D

b=
8

3 h  
(1.62)

Multiplying this expression by Avogadro’s number (Nav) gives us the rate con-
stant per mole [cm3 ⋅ mol−1 ⋅ s−1],

 
k

RT
D =

8

3 h  
(1.63)

where R is the universal gas constant (R = Nav ⋅ kB). Since 1 cm3 equals 0.001 L, and 

1 
mol

L
 is equal to 1M, Eq. 1.63 can be expressed as:

 
k

RT
D =

8

3000 h  
(1.64)

in units of M−1s−1.
Two characteristics of diffusion controlled reactions are that they have zero acti-

vation energy, and the rate is inversely proportional to the viscosity of the medium, 
which itself has an Arrhenius-like temperature dependence.

1.7  Experimental Determination of Reaction Order 
and Rate Constants

1.7.1  Differential Method (Initial Rate Method)

Knowledge of the value of the rate of the reaction at different reactant concentra-
tions would allow for the determination of the rate and order of a chemical reaction. 
For the reaction A → B, for example, reactant or product concentration-time curves 
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are determined at different initial reactant concentrations. The absolute value of 

slope of the curve at t = 0, 
dA

dt o

 or 
dB

dt o

, corresponds to the initial rate or initial 

velocity of the reaction (Fig. 1.11).
As shown before, the reaction velocity (vA) is related to reactant concentration,

 
v

dA

dt
k AA r

n= = [ ]
 

(1.65)

Taking logarithms on both sides of the above equation results in the expression:

 
log logv k nlog AA r= + [ ]  

(1.66)

A plot of the logarithm of the initial rate against the logarithm of the initial reac-
tant concentration yields a straight line with a y-intercept corresponding to logkr, 
and a slope corresponding to n (Fig. 1.12).

Fig. 1.11 Determination 
of the initial velocity of a 
reaction as the 
instantaneous slope of the 
substrate depletion curve in 
the vicinity of t = 0

Fig. 1.12 Logarithmic 
plot of initial velocity 
versus initial substrate 
concentration used in the 
determination of the 
reaction rate constant (kr) 
and the order of the 
reaction
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For more accurate determinations of the initial rate, changes in reactant concen-
tration are measured over a small time period, where less than 1% conversion of 
reactant to product has taken place.

1.7.2  Integral Method

In this method, the rate constant and order of a reaction are determined from least- 
squares fits of the integrated rate equations to reactant depletion or product accumu-
lation concentration-time data. At this point, knowledge of the reaction order is 
required. If the order of the reaction is not known, one is assumed or guessed at, 

e.g., n = 1. If necessary, data is transformed accordingly, e.g., ln
A

A
t

o

æ

è
ç

ö

ø
÷ , if a linear 

first-order model is to be used. The model is then fitted to the data using standard 
least-squares minimization protocols, i.e., linear or non-linear regression. From this 
exercise, a “best-fit” slope, y-intercept, their corresponding standard errors, as well 
as the pearson correlation coefficient, r for the fit, is determined. The r-squared 
statistic is used as a measure of the fraction of the total variance accounted for by 
the model. The closer the values of |r2| to one, the better the fit of the model to the 
data. This procedure is repeated assuming a different reaction order, e.g., n = 2. The 
order of the reaction would thus be determined by comparing the correlation coef-
ficients for the different fits of the kinetic models to the transformed data. The model 
that fits the data best defines the order of that reaction. The rate constant for the 
reaction, and its corresponding standard error, is then determined using the appro-
priate model. If the coefficients are similar, further experimentation may be required 
to determine the order of the reaction.

The advantage of the differential method over the integral method is that no reac-
tion order needs to be assumed. The reaction order is determined directly from the 
data analysis. On the other hand, determination of initial rates can be rather 
inaccurate.

In order to use integrated rate equations, knowledge of reactant or product con-
centrations is not an absolute requirement. Any parameter proportional to reactant 
or product concentration can be used in the integrated rate equations, e.g., absor-
bance or transmittance, turbidity, conductivity, pressure, volume, among many oth-
ers. However, certain modifications may have to be introduced into the rate 
equations, since reactant concentration, or related parameters, may not decrease to 
zero --- a minimum, non-zero value (Amin) might be reached. For product concentra-
tion, and related parameters, a maximum value (Pmax) may be reached, which does 
not correspond to 100% conversion of reactant to product. A certain amount of 
product may even be present at t = 0 (Po). The modifications introduced into the rate 
equations are straightforward. For reactant (A) concentration:

 
A A A and A A At t o o[ ]® -[ ] [ ]® -[ ]min min  
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For product (P) concentration:

 
P P P and P P Pt t o o o[ ]® -[ ] [ ]® -[ ]max  

1.8  Modeling Complex Reaction Pathways

In this section, we will briefly discuss strategies for tackling more complex reaction 
mechanisms. The first step in any kinetic modeling exercise is to write down the 
differential equations and mass balance that describe the process.

Consider the reaction A B C
k k

® ®
1 2

.

Typical concentration-time patterns for A, B and C are shown in Fig. 1.13. The 
differential equations and mass balance that describe this reaction are:

 

d A

dt
k A

[ ]
= - [ ]1  

(1.67)

 

d B

dt
k A k B

[ ]
= [ ]- [ ]1 2  

(1.68)

 

d C

dt
k B

[ ]
= [ ]2  

(1.69)

 
A B C A B Co o o t t t[ ]+ [ ]+ [ ] = [ ]+ [ ]+ [ ]  

(1.70)

Once the differential equations and mass balance have been written down, three 
approaches can be followed in order to model complex reaction schemes. These are:

Fig. 1.13 Changes in 
reactant, intermediate, and 
product concentrations as a 
function of time for a 
reaction of the form 
A → B → C. Bss denotes the 
steady-state concentration 
in intermediate B at time tss
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 1. steady-state approximations to solve differential equations analytically
 2. exact analytical solutions of the differential equations without using 

appro  xi  mations
 3. numerical integration of differential equations

It is important to remember that in this day and age of powerful computers, it is 
not necessary to find analytical solutions to differential equations anymore. Many 
commercially available software packages will carry out numerical integration of 
differential equations followed by nonlinear regression to fit the model, in the form 
of differential equations, to the data. Estimates of the rate constants and their 
 variability, as well as measures of the goodness of fit of the model to the data, can 
be obtained in this fashion. Eventually all modeling exercises are carried out in this 
fashion since it is difficult, and sometimes impossible, to obtain analytical solutions 
for complex reaction schemes.

1.8.1  Exact Analytical Solution (Non-steady State 
Approximation)

Exact analytical solutions for the reaction A → B → C can be obtained by solving the 
differential equations using standard mathematical procedures or by merely refer-
ring to the appropriate page of a common mathematical handbook. Exact solutions 
to the differential equations for the boundary conditions [Bo] = [Co] = 0 at t = 0, and 
therefore [Ao] = [At] + [Bt] + [Ct], are:
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(1.73)

Figure 1.13 shows the simulation of concentration changes in the system 
A → B → C. The models (equations) are fitted to the experimental data using nonlin-
ear regression in order to obtain estimates of k1 and k2.

1.8.2  Exact Analytical Solution (Steady State Approximation)

Steady-state approximations are useful, and thus extensively used in the develop-
ment of mathematical models of kinetic processes. Take, for example, the reaction 
A → B → C (Fig. 1.13). If the rate at which A is converted to B equals the rate at 
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which B is converted to C, then the concentration of B remains constant, or in a 
steady-state. It is important to remember that molecules of B are constantly being 
created and destroyed, but since these processes are occurring at the same rate, the 

net effect is that the concentration of B remains unchanged 
d B

dt

[ ]
=

æ

è
ç

ö

ø
÷0 , thus:

 

d B

dt
k A k B

[ ]
= = [ ]- [ ]0 1 2

 
(1.74)

Decreases in [A] as a function of time are modeled as a first-order decay 
process,

 
A A et o

k t[ ] = [ ] - 1

 
(1.75)

with the value of k1 being determined as previously discussed.
From Eqs. 1.79 and 1.80, we can deduce that:
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(1.76)

If the steady-state concentration of B ([B]ss), the value of k1, and the time at which 
that steady-state was reached (tss) are known, k2 can be determined from Eq. 1.82:
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A e
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2
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(1.77)

The steady-state of B in the reaction A → B → C is short lived. However, for many 
reactions, such as enzyme-catalyzed reactions, the concentrations of important 
reaction intermediates are in a steady-state. This allows for the use of steady-state 
approximations to obtain analytical solutions for the differential equations and thus 
be able to estimate the values of the rate constants.

1.8.3  Numerical Integration and Regression

1.8.3.1  Numerical Integration

Finding the numerical solution of a system of a first order ordinary differential 
equations,

 

dY

dx
f x Y x Y x Yo= ( )( ) ( ) =, where

 
(1.78)

entails finding the numerical approximations of the solution Y(x) at discrete points 
xo , x1 , x2 <  …  < xn < xn + 1 < … by Yo , Y1 , Y2 ,  …  , Yn , Yn + 1 , … The distance between two 
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consecutive points, hn = xn − xn + 1, is called the step size. Step sizes do not necessarily 
have to be constant between all grid points xn. All numerical methods have one prop-
erty in common, namely, finding approximations of the solution Y(x) at grid points 
one by one. Thus, if a formula can be given to calculate Yn + 1 based on the information 
provided by the known values of Yn , Yn − 1 ,  …  , Yo, then the problem is solved. Many 
numerical methods have been developed to find solutions for ordinary differential 
equations, the simplest one being the Euler method. Even though the Euler method 
is seldom used in practice due to lack of accuracy, it serves as the basis for analysis 
in more accurate methods, such as the Runge-Kutta method, among many others.

For a small change in the dependent variable (Y) in time (x), the following 
approximation is used:
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(1.79)

Therefore we can write:
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(1.80)

By rearranging the above equation, Euler obtained an expression for Yn + 1 in 
terms of Yn:

 
Y Y x x f x Y Y Y h f x Yn n n n n n n n n n+ + += + -( ) ( ) = + ( )1 1 1, or ,

 
(1.81)

Consider the reaction A → B → C. As discussed above, the analytical solution for the 
differential equation which describes the first order decay in [A] is [At] = [Ao]e−kt and 
thus the differential equation that describes changes in [B] in time can be written as:

 

d B

dt
k A e k Bo

k tr
[ ]

= [ ] - [ ]-
1 2

 
(1.82)

A numerical solution for the above differential equation is found using the initial 
value [Bo] at t = 0, and from the knowledge of the values of k1 , k2, and [Ao]. Values 
for [Bt] are then calculated as follows:

 

dB

dt

B

t
k A k Bo= = [ ]- [ ]D

D 1 2

 
(1.83)

 
D DB t k A k Bo= [ ]- [ ]( )1 2  

(1.84)

 DB B Bo= -1  (1.85)

 
B B t k A k Bo o1 1 2- = [ ]- [ ]( )D

 
(1.86)

 
B B h k A k Bo o o1 1 2[ ] = [ ]+ [ ]- [ ]( )

 
(1.87)
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It is therefore possible to generate a numerical solution (i.e. a set of numbers 
predicted by the differential equation) of the above ordinary differential equation. 
Values obtained from the numerical integration, i.e. predicted data, can now be 
compared to experimental data values.

1.8.3.2  Least-Squares Minimization (Regression Analysis)

The most common way in which models are fitted to data is by using least-squares 
minimization procedures (regression analysis). All these procedures, linear or non-
linear, seek to find estimates of the equation parameters (α , β , γ , δ ,  .  . .) by determin-
ing parameter values for which the sum of squared residuals is at a minimum, and 
therefore:
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where yi and yi
  correspond, respectively, to the ith experimental and predicted 

points at xi. If the variance (si
2) of each data point is known from experimental rep-

lication, then a ‘weighted’ least-squares minimization can be carried out, where the 
weights (wi) correspond to 1/si

2. In this fashion, data points that have greater error 
contribute less to the analysis, namely
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(1.91)

Regression analysis involves several important assumptions about the function 
chosen and the error structure of the data. These include:

 (a) The correct equation is used.
 (b) Only dependent variables are subject to error, while independent variables are 

known exactly.
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 (c) Errors are normally distributed with zero mean, are the same for all responses 
(homoscedastic errors), and are uncorrelated (zero covariance).

 (d) The correct weighting is used.

For linear functions, single or multiple, it is possible to find analytical solutions 
of the error minimization partial differential. Therefore, exact mathematical expres-
sions exist for the calculation of a slopes and intercepts. It should be noted at this 
point that a linear function of parameters does not imply a straight line. A model is 
linear if the first partial derivative of the function with respect to the parameter(s) is 
independent of such parameter(s), therefore, higher order derivatives would be zero.

For example, equations used to calculate the ‘best-fit’ slope and y-intercept for a 
data set that fits the linear function y = mx+b can be easily obtained by considering 
that the minimum sum of squared residuals (SS) corresponds to parameter values 
for which the partial differential of the function with respect to each parameter 
equals zero. The squared residuals to be minimized are:
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The partial differential of the slope (m), for a constant y-intercept (b) is therefore:
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And thus,
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The partial differential of the y-intercept (b), for a constant slope (m) is:
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And therefore,
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(1.96)

where x  and y  correspond to the overall averages of all x and y data, respec-

tively. Substituting b into m, and rearranging, we obtain an equation for the direct 
calculation of the ‘best fit’ slope of the line:
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(1.97)

The ‘best-fit’ y-intercept of the line is given by:
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(1.98)

At this point, it would be useful to mention goodness-of-fit statistics. A useful 
parameter for judging the ‘goodness of fit’ of a model to experimental data is the 
reduced chi square ( cn

2 ) statistic:
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where wi is the weight of the ith data point ( w si i=1 2/ , where si
2  is the variance of 

mean of yi values, and ν corresponds to the degrees of freedom, defined as ν=(n-p-1), 
where n is the total number of data values and p is the number of parameters that are 
estimated. The reduced cn

2  value should be roughly equal to the number of degrees 
of freedom if the model is correct, i.e., cn

2 1» .
Another statistic most appropriately applied to linear regression, as an indication 

of how closely the dependent and independent variables approximate a linear rela-
tionship to each other, is the correlation coefficient (CC):
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(1.100)

Values for the correlation coefficient can range from −1 to +1. A CC value close to 
+/−1 is indicative of a strong correlation.

The coefficient of determination (CD) is the fraction of the total variability 
accounted for by the model. This is a more appropriate measure of the goodness-of- 
fit of a model to data than the r2 statistic. The CD has the general form:
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(1.101)
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Finally, the r2 statistic is similar to the CD. This statistic is often used erroneously 
when, strictly speaking, the CD should be used. The root of the r2 statistic is some-
times erroneously reported to correspond to the CD. An r2 value close to +/−1 is 
indicative that the model accounts for most of the variability in the data. The r2 
statistic has the general form:
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1.8.3.3  Non-linear Regression: Techniques and Philosophy

For nonlinear functions, however, the situation is more complex. Iterative methods 
are used instead, in which parameter values are changed simultaneously, or one at a 
time, in a prescribed fashion until a global minimum is found. The algorithms used 
include the Levenberg-Marquardt method, the Powell method, the Gauss-Newton 
method, the steepest-descent method, simplex minimization, and combinations 
thereof. It is beyond the scope of this chapter to discuss the intricacies of procedures 
used in nonlinear regression analysis. Suffice to say, most modern graphical soft-
ware packages include nonlinear regression as a tool for curve-fitting.

At this point it is necessary to discuss differences between uniresponse and mul-
tiresponse modelling. Take for example the reaction A→B→C. Usually, equations 
in differential or algebraic form, are fitted to individual data sets, A, B, and C, and a 
set of parameter estimates obtained. However, if changes in the concentrations of A, 
B and C as a function of time are determined, it is possible to use the entire data set 
(A, B, C) simultaneously to obtain parameter estimates. This procedure entails fit-
ting the functions that describe changes in the concentration of A, B and C to the 
experimental data simultaneously, thus obtaining one global estimate of the rate 
constants. This, so called, multivariate response modeling helps increase the preci-
sion of the parameter estimates by using all available information from the various 
responses. However, this type of analysis is beyond the scope of this book. It is not 
difficulty to carry out, but it does require experience and perspective.

Should the reader decide to embark on a modelling journey, some comments on 
curve-fitting and nonlinear regression are required. There is no general method that 
guarantees obtaining the best global solution to a nonlinear least squares minimiza-
tion problem. Even for a single parameter model, several minima may exist! A mini-
mization algorithm will eventually succeed in find a minimum, however, there is no 
assurance that this corresponds to the global minimum. It is theoretically possible 
for one, and maybe two parameter functions, to exhaustively search all parameter 
initial values and find the global minimum. However, this approach is usually not 
practical even beyond a single parameter function.

There are, however, some guidelines that can be followed to increase the likelihood 
of finding the best fit to nonlinear models. All nonlinear regression algorithms require 
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initial estimates of parameter values. These initial estimates should be as close as pos-
sible to their best-fit value so that the program can actually succeed in finding the 
global minimum. The development of good initial estimates comes primarily from the 
scientists’ physical knowledge of the problem at hand, as well as from intuition and 
experience. Curve-fitting can sometimes be somewhat of an art form.

Generally, it is useful to carry out simulations varying initial estimates of param-
eter values in order to develop a ‘feel’ of how changes in initial estimate values will 
affect the nonlinear regression results obtained. Some programs offer simplex mini-
mization algorithms that do not require the input of initial estimates. These second-
ary minimization procedures may provide values of initial estimates for the primary 
minimization procedures. Once a minimum is found, there is no assurance, how-
ever, that it corresponds to the global minimum. A standard procedure to test 
whether the global minimum has been reached is called sensitivity analysis. 
Sensitivity analysis refers to the variability in results (parameter estimates) obtained 
from nonlinear regression analysis due to changes in the values of initial estimates. 
In sensitivity analysis, least-squares minimizations are carried out for different 
starting values of initial parameter estimates in order to determine whether the con-
vergence to the same solution is attained. If the same minimum is found for different 
values of initial estimates, then the scientist can be fairly confident that the proposed 
minimum is the best answer. Another approach is to fit the model to the data using 
different weighting schemes, since it is possible that the largest or smallest values in 
the data set may have an undue influence on the final result. Very important as well 
is the visual inspection of the data and plotted curve(s), since a graph can provide 
clues that may aid in finding a better solution to the problem.

Strategies exist for systematically finding minima and hence finding the best 
minimum. In a multi-parameter model, it is sometimes useful to vary one or two 
parameters at a time. This entails carrying out the least-squares minimization 
 procedure floating one parameter at a time while fixing the value of the other param-
eters as constants, and/or analyzing a subset of the data. This simplifies calculations 
enormously, since the greater the number of parameters to be simultaneously esti-
mated, the more difficult it will be for the program to find the global minimum. For 
example, for the reaction A→B→C, k1 can be easily estimated from the first order 
decay of [A] in time. The parameter k1 can therefore be fixed as a constant, and only 
k2 and k3 floated. After preliminary parameter estimates are obtained in this fashion, 
these parameters should be fixed as constants and the remaining parameters esti-
mated. Only after estimates are obtained for all the parameters should the entire 
parameter set be fitted simultaneously. It is also possible to assign physical limits, 
or constraints, to the values of the parameters. The program will find a minimum 
that corresponds to parameter values within the permissible range.

Care should be exercised at the data-gathering stage as well. A common mistake 
is to gather all the experimental data without giving much thought as to how the data 
will be analyzed. It is extremely useful to use the model to simulate data sets, and 
then try to fit the model to the simulated data. This exercise will promptly point out 
where more data would be useful to the model building process. It is a good invest-
ment of time to simulate the experiment and data analysis to identify where prob-
lems may lie, and identify regions of data that may be most important in determining 
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the properties of the model. The gathered data must be amenable to analysis in such 
a way as to shed light on the model.

For difficult problems, the determination of best-fit parameters is a procedure 
that benefits greatly from experience, intuition, perseverance, skepticism and scien-
tific reasoning. A good answer requires good initial estimates. Start the minimiza-
tion procedure with the best possible initial estimates for parameters, and if the 
parameters have physical limits, specify constraints on their value. For complicated 
models, begin model fitting by floating a single parameter and using a subset of the 
data that may be most sensitive to changes in the value of the particular parameter. 
Subsequently add parameters and data until it is possible to fit the full model to the 
complete data set. After the minimization is accomplished, test the answers by car-
rying out sensitivity analysis. Maybe run a simplex minimization procedure to 
determine if there are other minima nearby, and whether or not the minimization 
‘wanders off’ in another direction. Finally plot the data and calculated values and 
visually check for goodness of fit – the human eye is a powerful tool. Above all, care 
should be exercised – if curve-fitting is approached blindly without understanding 
its inherent limitations and nuances, erroneous results will be obtained.

The F-test is the most common statistical tool used to judge whether a model fits 
the data better than another. The models to be compared are fitted to data and reduced 
cn

2  values obtained. The ratio of the cn
2  values obtained is the F-statistic, namely:
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where ν stands for the degrees of freedom, which are determined from ν = n − p − 1, 
where n and p correspond, respectively, to the total number of data points and the 
number of parameters in the model. Using standard statistical tables, it is possible 
to determine if the fits of the models to the data are significantly different from each 
other at a certain level of statistical significance.

The analysis of residuals (ŷi-yi), in the form of the serial correlation coefficient, 
provides a useful measure of how much the model deviates from the experimental 
data. Serial correlation is an indication of whether residuals tend to run in groups of 
positive or negative values, or tend to be scattered randomly about zero. A large 
positive value of the serial correlation coefficient is indicative of a systematic devia-
tion of the model from the data. The serial correlation coefficient (SCC) has the 
general form:
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A word of caution about weighting of data needs to be mentioned. Consider a 
typical experiment where the value of a dependent variable is measured several 
times at a particular value of the independent variable. If the experiment itself is then 
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replicated several times, a set of sample means and variances of sample means can 
be obtained. As stated before, the weight is merely the inverse of this sample vari-
ance. The two most basic assumptions made in regression analysis are that experi-
mental errors are normally distributed with mean zero, and that errors are the same 
for all data points (error homoscedasticity). Systematic trends in the experimental 
errors, or the presence of outliers would invalidate these assumptions. The purpose 
of weighting residuals is to eliminate systematic trends in the error  structure of the 
data, and “weigh less” excessively noisy data. Thus, the error structure present in the 
experimental data needs to be determined, which is not a trivial task. Ideally, each 
experiment would be replicated sufficiently so that individual data weights could be 
calculated directly from experimentally determined variances. However, replicating 
experiments to the extent that would be required in order to obtain accurate esti-
mates of the errors is expensive, time consuming, and impractical. It is important to 
note that if insufficient data points are used to estimate individual errors of data 
points, incorrect estimates of weights will be obtained. The use of incorrect weights 
in regression analysis will make matters worse – if in doubt, do not weigh the data.

1.9  Enzyme Kinetics

1.9.1  Enzyme Catalyzed Reactions

An enzyme is a protein with catalytic properties. As a catalyst, an enzyme lowers the 
energy of activation for a reaction (Ea). This increases the rate of reaction without 
affecting the position of equilibrium. An enzyme increases the rate of a reaction primar-
ily by specifically binding to, and thus stabilizing, the transition state structure. Joseph 
Kraut eloquently pointed this out when he stated that “an enzyme can be considered a 
flexible molecular template, designed by evolution to be precisely complementary to 
the reactants in their activated transition-state geometry, as distinct from their ground-
state geometry. Thus an enzyme strongly binds the transition state, greatly increasing 
its concentration, and accelerating the reaction proportionately.” This description of 
enzyme catalysis is now usually referred to as transition-state stabilization.

1.9.2  Characterizing Enzyme Activity

The enzyme unit (e.u.) is the most commonly used standard unit of enzyme activity. 
An enzyme unit is defined as the amount of enzyme that causes the disappearance 
of 1 μ mol of substrate per minute. As well, it can be defined in terms of the moles 

of product that appears per minute,  1
1

e u. .
min

=
mmol
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Specific activity is defined as the number of enzyme units per unit mass. This 
mass could correspond to the mass of the pure enzyme, the amount of protein in a 
particular isolate, or the total mass of the tissue from where the enzyme was derived. 
Regardless of which case it is, this must be clearly stated.

The molecular activity or the turnover number, kcat, is the number of substrate 
molecules converted to product per enzyme molecule per unit time when the enzyme 
is fully saturated with substrate.

In order to determine enzyme-catalyzed reaction velocities, it is necessary to 
generate a progress curve. For the conversion of the substrate S to the product P, the 
general shape of the progress curve is that of a first-order exponential decrease in 
substrate concentration (Fig. 1.14):

 S S S S eo
kt-[ ] = -[ ] -

min min  
(1.105)

or that of a first-order exponential increase in product concentration (Fig. 1.14):

 P P P P eo o
kt-[ ] = -[ ] -( )-

max 1  
(1.106)

where [So], [Smin] and [S] correspond, respectively, to the initial substrate concentra-
tion at t = 0, the minimum substrate concentration as t → ∞, and the substrate con-
centration at time t, while [Po], [Pmax] and [P] correspond to, respectively, the initial 
product concentration at t = 0, the maximum product concentration as t → ∞, and 
the product concentration at time t.

The rate of the reaction, or reaction velocity (v), corresponds to the instantaneous 
slope of either of the progress curves, namely:

 
v

dS

dt

dP

dt
= - =

 
(1.107)

However, as can be appreciated in Fig. 1.14, the reaction velocity, i.e., the slope of 
the curve, decreases in time. This drop can be caused by any number of the follow-
ing reasons:

Fig. 1.14 Changes in 
substrate (S) and product 
(P) concentration as a 
function of time, from 
initial values (S0 and P0) to 
final values (Pmax and Smin)
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 1. The enzyme becomes unstable during the course of the reaction.
 2. The degree of saturation of the enzyme by substrate decreases as substrate is 

depleted.
 3. The reverse reaction becomes predominant once product accumulates.
 4. The reaction products inhibit the enzyme (negative feedback).

It is for these reasons that progress curves for enzyme-catalyzed reactions do not 
fit standard models for homogeneous chemical reactions requiring a different 
approach. Enzymologists use initial velocities as a measure of reaction rates instead. 
During the early stages of an enzyme-catalyzed reaction, conversion of substrate to 
product is small, and can thus be considered to remain constant and effectively 
equal to the initial substrate concentration ([St] ≈ [So]). By the same token, very little 
product has accumulated ([Pt] ≈ 0); thus, the reverse reaction can be considered to 
be negligible, and any possible inhibitory effects of product on enzyme activity, 
insignificant. More importantly, the enzyme can be considered to remain stable dur-
ing the early stages of the reaction. In order to obtain initial velocities, a tangent to 
the progress curve is drawn as close as possible to its origin (Fig. 1.15). The slope 
of this tangent, i.e., the initial velocity, is obtained using linear regression.

For proper enzyme kinetic analysis, it is essential to obtain reaction velocities 
strictly from the initial region of the progress curve. By using the wrong time for the 

a

b

Fig. 1.15 Determination 
of the initial velocity of an 
enzyme-catalyzed reaction 
from the instantaneous 
slope at t = 0 of substrate 
depletion (a) or product 
accumulation (b) progress 
curves
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derivation of rates (not necessarily initial velocities), a linear relationship between 
enzyme concentration and velocity will not be obtained, this being a basic requirement 
for enzyme kinetic analysis. For the reaction to be kinetically controlled by the enzyme, 
reaction velocity must be directly proportional to enzyme concentration (Fig. 1.16).

Continuous and discontinuous methods used to monitor the progress of an enzy-
matic reaction may not always agree. This can be the case particularly for two-stage 
reactions in which an intermediate between product and substrate accumulates. In 
this case, the disappearance of substrate may be a more reliable indicator of activity 
than product accumulation. For discontinuous methods, at least three points are 
required, one at the beginning of the reaction (t = 0), one at a convenient time t1, and 
one at time t2, which should correspond to twice the length of t1. This three-point 
measurement provides a check for linearity.

1.9.3  The Equilibrium Catalysis Model

An enzymatic reaction is usually modeled as a two-step process  – substrate (S) 
binding by enzyme (E) and formation of an enzyme-substrate (ES) complex, fol-
lowed by an irreversible breakdown of the enzyme-substrate complex to free 
enzyme and product (P), namely:
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In the equilibrium model of Michaelis and Menten, the substrate-binding step is 
assumed to be fast relative to the rate of breakdown of the ES complex. Therefore, 
the substrate binding reaction is assumed to be at equilibrium. The equilibrium dis-
sociation constant for the ES complex, (Ks), is a measure of the affinity of enzyme 
for substrate. The lower the value of Ks, the greater the affinity of the enzyme for the 

substrate. The Ks corresponds to substrate concentration at 
1

2
Vmax :

Fig. 1.16 Linear 
dependence of reaction 
initial velocity on enzyme 
concentration in the 
reaction mixture.
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The rate limiting step for the particular series of reactions is the breakdown of the 
ES complex, which can be expressed in the following rate equation:

 
v

d ES

dt
k EScat=

[ ]
= [ ]

 
(1.110)

where kcat corresponds to the effective first-order rate constant for the breakdown of 
the ES complex to free product and free enzyme. The rate equation is usually nor-
malized by the total enzyme concentration ([ET] = [E] + [ES]) to give:
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(1.111)

where [E] and [ES] correspond, respectively, to the concentrations of free enzyme 

and enzyme-substrate complex. By re-arranging Eq. 1.111 and substituting 
E S

Ks

[ ][ ]
 

into [ES] yields:
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(1.112)

After dividing both the numerator and denominator by [E], multiplying the numera-
tor and denominator by Ks and then re-arranging, the familiar Michaelis-Menten 
expression for the velocity of an enzyme catalyzed reaction is obtained:

 
v
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(1.113)

kcat[ET] can be redefined as the maximum reaction velocity Vmax. Eq. 1.113 can be 
re-written as:

 
v

V S

K Ss

=
[ ]

+ [ ]
max

 

(1.114)

The Michaelis-Menten model makes the following assumptions:

 1. The rate of the formation of the ES complex is fast relative to its breakdown 
rate.

 2. The concentration of substrate remains constant during the time period in which 
the velocity is measured.

 3. The conversion of product to substrate is negligible.
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In cases where rapid equilibrium conditions cannot be assumed, a steady-state 
approximation can be used to obtain an enzyme catalysis model.

1.9.4  The Steady-State Catalysis Model

The main assumption made in the steady-state approximation is that the concentra-

tion of enzyme-substrate complex remains constant in time, i.e., 
d ES

dt

[ ]
= 0 . Thus, 

the differential equation that describes changes in the concentration of the ES com-
plex in time equals zero:

 

d ES

dt
k E S k ES k ES

[ ]
= [ ][ ]- [ ]- [ ] =-1 1 2 0

 
(1.115)

Re-arranging this equation gives an expression for Km, the Michaelis constant:
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(1.116)

This Km will only be equivalent to the dissociation constant of the ES complex (Ks), 
used in the equilibrium catalysis model, for the case where k−1 >  > k2, and therefore 

K
k

k
Km s= =-1

1

. The Michaelis constant Km corresponds to substrate concentration 

at 
1

2
Vmax .

As stated before, the rate-limiting step of an enzyme-catalyzed reaction is the 
breakdown of the ES complex. The velocity of the enzymatic reaction can thus be 
expressed as:

 
v k EScat= [ ]

 
(1.117)

The rest of the derivation is the same as for the equilibrium model.

1.9.5  The Initial Velocity vs [S] Plot

The general shape of a velocity versus substrate concentration curve is that of a 
rectangular hyperbola (Fig. 1.17). At low substrate concentrations, the rate of 
the reaction is proportional to the substrate concentration. In this region, the 
order of the enzymatic reaction is first order with respect to substrate concentra-
tion (Fig. 1.17). For the case where [S] = Km, the Michaelis-Menten model will 
reduce to: 
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where 
k

K
cat

m

 [M−1s−1] is the second order rate constant for the reaction, while 
V

Km

max  

[s−1] is the first order rate constant for the reaction. Knowledge of enzyme concen-

tration allows for the calculation of 
k

K
cat

m

 from 
V

Km

max . There are some physical limits 

to this ratio. The ultimate limit on the value of 
k

K
cat

m

 is dictated by k1. This step is 

solely controlled by the rate of diffusion of substrate to the active site of the enzyme. 
This, in turn is related to the solvent viscosity. This limits the value of k1 to 108 to 

109 M−1s−1. The ratio 
k

K
cat

m

 for many enzymes is in this range. This suggests that the 

catalytic activity of many enzymes depends solely on the rate of diffusion of the 
substrate to the active site.

At higher concentrations, the velocity of the reaction remains approximately 
constant, and effectively insensitive to changes in substrate concentration. At this 
point, all enzyme molecules are saturated with substrate. In this region, the order of 
the enzymatic reactions is zero order with respect to substrate (Fig. 1.17). For the 
case where [S] >  > Km, Eq. 1.113 will reduce to:

 
v k E Vcat T= [ ] = max  

(1.119)

The value of Km varies widely. For most enzymes, it generally lies between 10−1 M 
and 10−7 M. The value of Km depends on the type of substrate and on environmental 
conditions such as pH, temperature, ionic strength and polarity. Km and Ks corre-
spond to the concentration of substrate at half maximum velocity (Fig. 1.18). This 
fact can be readily shown by substituting [S] with Ks in Eq. 1.119. It is important to 
remember that Km equals Ks only when the breakdown of the ES complex takes 

Fig. 1.17 Initial velocity 
versus substrate 
concentration plot for an 
enzyme-catalyzed reaction. 
Notice the first- and 
zero-order regions of the 
curve, where the reaction 
velocity is, respectively, 
linearly dependent and 
independent of substrate 
concentration
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place much more slowly than the binding of substrate to the enzyme; that is, when 
k−1 >  > k2, and thus: 

 K
k

k
Km s= =-1

1

 
(1.120)

1.9.6  Determining Parameters of an Enzyme Kinetic Model: 
Method 1

The first step to determining parameters for the Michaelis-Menten model of an 
enzyme is to validate whether the assumptions for the Michaelis-Menten model 
have been met, specifically:

 1. The activity of the enzyme does not decrease over the time course of the experi-
ment, i.e. the enzyme remains stable.

 2. Reaction velocity should be linearly proportional to the enzyme concentration.

Enzyme stability can be tested by using Selwyn’s simple assay for enzyme inac-
tivation. In Selwyn’s test, the reaction’s progress (in %) is plotted as a function of 
the product of the time t and the total enzyme concentration [Eo], [Eo]t. If plots with 
different enzyme concentrations are superimposable, this indicates that the enzyme 
is not being inactivated over the course of the experiment. Non-superimposable 
graphs imply that the reaction rate is not linearly proprotional to the enzyme con-
centration. This, in turn, indicates that the enzyme is being inactivated.

In the experimental setup, substrate concentrations in the range 0.5Km–10Km 
should, if possible, be used. These should be spaced more closely at low substrate 
concentrations, with at least one high concentration approaching Vmax. Concentrations 

of 
1

3
, 
1

2
, 1, 2, 4, 8 Km are appropriate. Each substrate concentration must preferably 

have three replicates.

Fig. 1.18 Initial velocity 
versus substrate 
concentration plot for an 
enzyme with 
Vmax = 80 nM/min and 
Km = 37 μM
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As will be later discussed, the collected velocity and substrate concentration data 
can then be fitted to the Michaelis-Menten model in order to obtain estimates of Km 
and Vmax.

1.9.7  Determining Parameters of an Enzyme Kinetic Model: 
Method 2

It is theoretically possible to derive estimates of Km and Vmax from a single progress 
curve. This method is preferable to that described in the previous chapter since it 
does not require measuring the initial velocity as a function of several different con-
centrations, hence minimizing the number of experiments that must be performed. 
What follows is the explicit solution of the Michealis-Menten differential equation.

The velocity of an enzyme-catalyzed reaction as given by the Michaelis-Menten 
model can be described in terms of the disappearance of substrate:
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By multiplying the given differential equation by 
K S

S
dt

m +[ ]( )
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 and subsequent 

integration over the boundary conditions [S] = [So] at t = 0 and [S] = [St] at time t 
gives:
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After performing the necessary integration operations, the following expression 
is obtained:
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The use of commercial software to regress the above equation to a given data set 
often requires that [S] be an explicit function of t. Algebraic manipulation of the 
equation gives:

 

1 0 0

t

S

S

S S

K t

V

Kt

t

m m

ln max[ ]
[ ]

= -
-[ ]

+
 

(1.124)

A plot of 
1

t

S

S
o

t

ln  versus 
S S

t
o t-[ ]

 yields a straight line with a slope of -
1

Km

, 

x-intercept = Vmax and y-intercept = 
V

Km

max  as shown in Fig. 1.19. The values of the 
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slope and intercept can be readily obtained using linear regression making it possi-
ble to obtain the required kinetic parameters from a single [St]-t data set.

1.9.8  Kinetic Effects of Reversible Inhibition

An inhibitor is a compound that decreases the rate of an enzyme-catalyzed reaction. 
This inhibition can be reversible or irreversible. Reversible enzyme inhibition can 
be competitive, uncompetitive or non-competitive, each affecting the Ks and Vmax in 
a specific fashion. In this chapter, each type of reversible inhibition will be dis-
cussed in turn. This will be followed by a discussion of the methodology used to 
measure the enzyme-inhibitor dissociation constant (Ki).

1.9.8.1  Competitive Inhibition

A competitive inhibitor competes with the enzyme’s substrate for binding to the 
active site. The mechanism is illustrated in Fig. 1.20.

The result is an increase in the enzyme-substrate dissociation constant Ks which 
signifies a decrease in the affinity of the enzyme towards the substrate. The Vmax of 
the enzyme, however, is unaffected.

Based on Fig. 1.20, the following rate equation, dissociation constants and mass 
balance can be written to describe competitive binding.

 v k EScat= [ ]  
(1.125)
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Fig. 1.19 A linear plot of 
a single progress curve 
used to determine the 
catalytic parameters Vmax 
and Km.
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By dividing Eq. 1.125 by the total enzyme concentration (
v

ET[ ]
) and rearrang-

ing, the following expression for the velocity of an enzymatic reaction in the pres-
ence of a competitive inhibitor is obtained:
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where Ks
*  is the apparent enzyme-substrate dissociation constant in the presence of 

an inhibitor. In competitive inhibition, a = +
[ ]

1
I

Ki

.

1.9.8.2  Uncompetitive Inhibition

In uncompetitive inhibition, the inhibitor interacts with only the enzyme-substrate 
complex at a site other than the active site. This is illustrated in Fig. 1.21. The 
inhibitor does not bind to the same site on the enzyme as the substrate. Presumably, 
binding of the inhibitor to this site causes a conformational change that decreases 
the activity of the enzyme.

Uncompetitive inhibition results in an apparent decrease in both the Vmax and Ks. 
The apparent increase in affinity of enzyme for substrate, i.e. a decrease in Ks, is due 
to unproductive substrate binding. This, in essence, results in a decrease in the free 
enzyme concentration. Half-maximum velocity, or half-maximal saturation, will 
therefore be attained at a relatively lower substrate concentration. The rate equation 

Fig. 1.20 Postulated mechanism for 
competitive inhibition

Fig. 1.21 Postulated mechanism for 
competitive inhibition

1 Fundamentals of Kinetics



45

for the formation of product, the dissociation constants for enzyme- substrate (ES) 
and ES-inhibitor (ESI) complexes, and the enzyme mass balance are, respectively:

 
v k EScat= [ ]  

(1.129)
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Normalization of the rate equation by total enzyme concentration (
v

ET[ ]
) and 

rearrangement results in following expression for the velocity of an enzymatic reac-
tion in the presence of an uncompetitive inhibitor:
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where Vmax
*  and Ks

*  correspond, respectively, to the apparent enzyme maximum 

velocity and apparent enzyme-substrate dissociation constant in the presence of an 

inhibitor. In the case of uncompetitive inhibition, V
V

max
* max=

a
 and K

K
s

s* =
a

 where:

 
a = +

[ ]
1

I

Ki  
(1.133)

1.9.8.3  Non-competitive Inhibition

In non-competitive inhibition, the inhibitor interacts with both the free enzyme and 
with the enzyme substrate complex at a site other than the active site. This is illus-
trated in Fig. 1.22.

Fig. 1.22 Postulated mechanism for 
competitive inhibition

1.9 Enzyme Kinetics
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Unlike uncompetitive inhibition, Vmax decreases while Ks is unaffected. The rate 
equations for the formation of product, the dissociation constants for enzyme- 
substrate (ES and ESI) and enzyme-inhibitor (EI and ESI) complexes, and the 
enzyme mass balance are given below:

 
v k EScat= [ ]  

(1.134)
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It is assumed that the binding of either substrate or inhibitor to the free enzyme 
to form their respective complexes will not affect the subsequent binding of the 
inhibitor or substrate to these complexes. In the diagram given in Fig. 1.22, it is 
assumed that the binding of the enzyme-inhibitor complex (EI) to the substrate (S) 
has the same dissociation constant (Ks) as the binding of the substrate to the free 
enzyme (E). Similarly, the binding of the inhibitor to the enzyme-substrate complex 
(ES) is described by the same dissociation constant as the binding of the inhibitor 
(I) to the free enzyme (E). This mathematically translates to KEIS = Ks and KESI = Ki 
to give:
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Normalization of the rate equation by total enzyme concentration (
v

ET[ ]
) and 

rearrangement results in the following expression for the velocity of an enzymatic 
reaction in the presence of a non-competitive inhibitor:
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(1.137)

where Vmax
*  corresponds to the apparent enzyme maximum velocity in the presence 

of an inhibitor. In the case of non-competitive inhibition, V
V

max
* max=

a
, where:

 
a = +

[ ]
1

I

Ki  
(1.138)

A summary of the effects of reversible inhibitors on the catalytic parameters Ks 
and Vmax is presented in Table 1. The effects of these reversible inhibitors on the 
shape of the Michaelis-Menten curve is given in Fig. 1.23.
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Table 1. Summary of the effects of reversible inhibitors on apparent enzyme catalytic parameters 

Vmax
*  and Ks

*

Competitive Uncompetitive Noncompetitive

Vmax
* No effect Decrease Decrease

Ks
* Increase (αKs) Decrease (

Ks

a
)

No effect (Ks)

Fig. 1.23 The effects of different 
types of reversible inhibition on the 
shape of the Michaelis-Menten plot

1.9 Enzyme Kinetics



48

1.9.8.4  Determining Inhibitor Affinity

A typical enzyme inhibition experiment is designed to determine the nature of the 
inhibition process, as well as estimate the magnitude of Ki, itself a measure of the 
enzyme’s affinity to the inhibitor. An inhibitor with a stronger binding affinity than 
a given substrate will have a Ki lower than the Ks of the particular substrate. This 
means that a smaller concentration of inhibitor is adequate to achieve a similar 
degree of binding as the substrate.

To measure the Ki, the initial velocities used to generate a Michaelis-Menten plot 
are measured at different inhibitor and substrate concentrations. The apparent 
 maximum reaction velocity and the apparent equilibrium dissociation constant for 
the enzyme-substrate complex can then be used to determine the Ki by the transfor-
mations described in Figs. 1.24a and 1.24b.

For competitive inhibition, Ks
* = αKs, where a = +

[ ]
1

I

Ki

. Thus, K
I

K
Ks

i
s

* = +
[ ]æ

è
ç

ö

ø
÷1 . 

This can be re-arranged to form:

 

K K I
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è
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ø
÷

 

(1.139)

a

b

Fig. 1.24 Characteristic 
plots used in the 
determinations of the Ki 
for competitive inhibition 
(a), uncompetitive and 
non-competitive inhibition 
(b) from plots of Ks

* (a) 
and 1/ Vmax

* (b) versus 
inhibitor concentration, 
respectively
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A plot of the apparent Ks ( Ks
* ) versus inhibitor concentration will yield a straight 

line with a y-intercept corresponding to Ks and a slope corresponding to 
K

K
s

i
. This 

is shown in Fig. 1.24a.

For uncompetitive inhibition and non-competitive inhibition, V
V

max
* max=

a
 where 

a = +
[ ]

1
I

Ki

. Thus, V V
I

Ki
max

*
max *= +

[ ]æ

è
ç

ö

ø
÷

-

1

1

. Taking the inverse of both sides yields
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(1.140)

which can be linearized to

 

1 1 1

V V
I
V Kimax

*
max max

= +[ ]
×  

(1.141)

The y-intercept is the inverse of the maximum attainable reaction rate while the 
slope is the inverse of the product of the maximum attainable reaction rate and the 
Ki. This linearization is shown in Fig. 1.24b.

1.10  Food Science-Specific Kinetic Analysis: D and Z Values

A special application of the first order integrated rate equation is in the determi-
nation of ‘decimal reduction times’ or D values. The decimal reduction time of a 
reaction is the time required for a one log10 reduction in the concentration of 
reacting species, i.e., a 90% reduction in the concentration of reactant. Decimal 
reduction times are determined from the slope of log10([At]/[Ao]) versus time 
plots (Fig. 1.25). The modified integrated first order integrated rate equation can 
be expressed as:

Fig. 1.25 Semi- 
logarithmic plot of a first 
order reaction showing 
decreases in relative 
concentration as a function 
of time. The characteristic 
time required for a 90% 
reduction in the 
concentration of reactant is 
called the Decimal 
Reduction Time (D)

1.10 Food Science-Specific Kinetic Analysis: D and Z Values
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or
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The decimal reduction time (D) is related to the first order rate constant (kr) in a 
straightforward fashion:

 
D

kr
=
2 303.

 
(1.144)

A parameter closely related to the energy of activation is the so-called “Z” value, 
or the temperature dependence of the decimal reduction time (D). The Z value is the 
temperature increase required for a one log10 reduction (90% decrease) in the D 
value, expressed as: 

 
log log10 10D C

T

Z
= -

 
(1.145)

or

 D C
T

Z= ×
-

10  (1.146)

where C is a constant related to the frequency factor A in the Arrhenius equation. 
The Z value can be determined from a plot of log10D versus temperature (Fig. 1.26). 

Fig. 1.26 Temperature 
dependence of the Decimal 
Reduction Time (D). The 
increase in temperature 
leading to a 90% reduction 
in D value is called the Z 
value
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Alternatively, if D values are only known at two temperatures, the Z value can be 
determined using the following equation:

 
log10

2

1

2 1D

D

T T

Z
= -

-( )
 

(1.147)

It can be easily shown that the Z values is inversely related to the energy of 
activation:

 
Z

RTT

Ea

=
2 303 1 2.

 
(1.148)

where T1 and T2 are the two temperatures used in the determination of Ea.
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Chapter 2
Chlorophyll Degradation in Green Tissues: 
Olives, Cabbage and Pickles

2.1  Chlorophyll Pigments

The chlorophylls are the main pigments in green plants, algae and other photosyn-
thetic microorganisms. They belong to a class of pyrrole ring compounds known as 
porphins. Derivatives of porphins are called porphyrins. Phorbin, a porphyrin 
formed by the addition of another ring structure, serves as the basis for all chloro-
phyll molecules (Fig. 2.1). Different types of chlorophyll may arise depending on 
the chemical substituents on the R and R′ group (Fig. 2.2).

Chlorophylls are predominantly found in the chloroplasts of plant cells. They are 
of hydrophobic nature and are found alongside carotenoids, lipids and lipoproteins. 
The carotenoids serve an important physiological function. Carotenoids prevent 

Fig. 2.1 Porphin is a compound made of 4 pyrole rings linked via methylene bridges. Phorbin is 
a porphin derivative with an attached 5-carbon ring structure.
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chlorophyll from acting as a photosensitizer in light-induced oxidation. The extrac-
tion of chlorophyll is often achieved through the use of generally non-polar solvents 
with some polar groups an example of which is acetone.

2.2  Chlorophyll Degradation

Chlorophyll absorbs visible light in in the wavelength range 400–500nm (blue) and 
600–700nm (red). The remaining unabsorbed radiation is reflected, giving the chlo-
rophylls their green color. When the chlorophyll molecule is altered or degraded, 
the absorption spectra may shift, leading to a change in color. This alteration may be 
natural or a result of food processing.

To the food scientist, chlorophyll loss represents a quality problem in the manu-
facture of processed plant products. The degradation of chlorophyll causes a shift in 
colour from brilliant green to olive-brown in processed foods. This results in an 
undesirable swamp-green appearance in foods. Chlorophyll loss, however, may 
serve as a useful measure of a plant’s ripeness and freshness. In live plants, chloro-
phyll loss accompanies the natural process of senescence.

The degradation of chlorophyll results in the formation of five groups of interme-
diate compounds. The reason for their classification into groups rather than indi-
vidual compounds is that the side chains of the chlorophyll molecule are often 
substituted with different groups, resulting in structurally similar, yet different 
compounds.

Several mechanisms contribute to the degradation of chlorophyll. The phytyl 
chain on chlorophyll can be cleaved off, or hydrolyzed, by the chlorophyllase 
enzyme to yield chlorophyllide. Chlorophyllase is dormant in live tissues but is 

Fig. 2.2 The base molecule for chlorophyll compounds. Possible derivatives that can be obtained 
via the substitution of the R- and R’- groups are shown.

2 Chlorophyll Degradation in Green Tissues: Olives, Cabbage and Pickles
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activated by heat during processing. The enzyme exhibits a temperature optimum 
between 60 and 80 °C (blanching temperatures) but loses activity if it is further 
heated. The phytyl chain may also be removed via non-enzymatic means. The de- 
phytylation of the chlorophyll molecule does not cause any change in the color of 
the pigment.

The second major chlorophyll degradation mechanism is the abstraction of the 
Mg2+ ion bound to the center of the chlorophyll molecule to yield pheophytin. Under 
acidic conditions, the Mg2+ is replaced by H+ ions. The reaction may also be cata-
lyzed by the magnesium dechelatase enzyme. The removal of the Mg2+ results in a 
shift of the absorption spectrum, leading to the appearance of an olive-brown, 
swamp-green color.

The degradation of chlorophyll to pheophorbide is a two-step process. These two 
steps can come in any order resulting in two distinct parallel pathways of chloro-
phyll degradation. In the first pathway, the phytyl chain from the chlorophyll mol-
ecule is cleaved to yield chlorophyllide. The Mg2+ ion bound to the center of the 
porphyrin ring is then replaced with H+ ions to yield pheophorbide.

The second pathway is chemically identical to the first pathway except that the 
order in which the steps occur are reversed. The Mg2+ ion in chlorophyll is first 
removed by the action of either acid or magnesium dechelatase to yield pheophytin. 
The phytyl chain in pheophytin is then removed to yield pheophorbide. The entire 
reaction and the parallel nature of the steps are outlined in Fig. 2.3.

2.3  A Kinetic Model of Chlorophyll Degradation

The following rate equations can be written for the degradation of chlorophyll as 
given in Fig. 2.4 where A stands for chlorophyll, B stands for pheophytin, C stands 
for chlorophyllide and D stands for pheophorbide.

 

d A

dt
k A k A

[ ]
= - [ ]- [ ]1 3

 
(2.1)

 

d B

dt
k A k B

[ ]
= [ ]- [ ]1 2

 
(2.2)

 

d C

dt
k A k C

[ ]
= [ ]- [ ]3 4

 
(2.3)

 

d D

dt
k B k C

[ ]
= [ ]+ [ ]2 4

 
(2.4)

Assuming no chlorophyll molecules are synthesized or introduced into the sys-
tem, the four compounds are governed by the following mass balance:

2.3 A Kinetic Model of Chlorophyll Degradation
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Fig. 2.3 The parallel reaction pathway for the conversion of chlorophyll a to pheophorbide a.

2 Chlorophyll Degradation in Green Tissues: Olives, Cabbage and Pickles
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A B C D A B C Do o o o[ ]+ [ ]+ [ ]+ [ ] = [ ]+ [ ]+ [ ]+ [ ]  

(2.5)

where [Ao] is the initial chlorophyll concentration, [Bo] is the initial pheophytin 
concentration, [Co] is the initial chlorophyllide concentration and [Do] is the initial 
pheophorbide concentration. The following differential equations were solved to 
yield the following analytical solutions.
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Instead of writing a separate differential equation describing the formation of 
pheophorbide, the quantity of pheophorbide was calculated by the re-arrangement 
of the mass balance equation. This assumes that pheophorbide is the ultimate prod-
uct of chlorophyll degradation. This is a reasonable assumption since a study inves-
tigating this degradation pathway revealed that the pheophorbide concentration did 
not decrease even after 200 days.

The given solutions to the differential equations can be fitted to their correspond-
ing data sets via nonlinear regression. Oftentimes, however, analytical solutions are 
impossible to obtain for differential equations describing more complex phenom-
ena. A simple solution to this is to fit the data set to a numerical approximation of 

Fig. 2.4 A proposed kinetic 
model for the degradation of 
cholorophyll to pheophorbide.

2.3 A Kinetic Model of Chlorophyll Degradation
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the differential equation. The availability of more powerful computers and sophisti-
cated data analysis software have allowed for the fitting of data directly to differen-
tial equations instead of the analytical solutions to these same differential equations. 
Moreover, all equations can be fitted to all data sets simulataneously, thus creating 
one unique set of parameter estimates, which are more accurate and robust. This is 
called multiple nonlinear regression. Multiple nonlinear regression is not discussed 
in this book.

2.3.1   Coleslaw by Heaton et al. [2]

In a previous study establishing the theoretical framework for the kinetic modelling 
of chlorophyll degradation in coleslaw, Heaton and others determined that  chlorophyll 
degradation in coleslaw followed only one particular pathway out of the two path-
ways available. This pathway is the Chlorophyll → Pheophytin → Pheophorbide 
pathway. The data was fitted to the model on the assumption that chloro-
phyll  does  not  degrade by the other pathway available, namely  
Chlorophyll → Chlorophyllide → Pheophorbide. This was evident from the experi-
mental data.

The experimental data were fitted using the following constraints: k3 = 0, k4 = 0, 
Alim = 6 mol%, Blim = 20.5 mol%, Clim = 0.1 mol%, Ao = 58.4 mol%, Bo = 27.9 mol%, 
Co = 0.1 mol%, Do = 13.6 mol%. The assumption that chlorophyll only follows the 
Chlorophyll → Pheophytin → Pheophorbidepathway is embodied in the model by 
setting k3 and k4 equal to 0. Alim, Blim and Clim denote the limiting concentration of 
chlorophyll, pheophytin and chlorophyllide, respectively. The limiting concentra-
tion denotes the minimum amount of the substance that exists in the system. 
Presumably, the limiting concentration is the concentration of each particular inter-
mediate that is unavailable for degradation but is nevertheless present in the system. 
The difference between the reactant’s concentration (for example, [A]) and its 
 limiting concentration Alim, [A] − [Alim], gives the concentration of reactant available 
to undergo degradation.

The calculated curves for this model and the experimental points are presented in 
Fig. 2.5, demonstrating that the model described the experimental results quite 
accurately.

2.3.2   Pickles by White et al. [6]

To ensure that the given differential equations also applied to chlorophyll degra-
dation in other food systems, the model was used to describe chlorophyll degra-
dation in brined cucumbers (pickles). White et  al. noted that the pheophytin 
levels in the system studied remained constant after an initial increase early on in 
the experiment. This observation translates to k2 = 0, that is, pheophytin is not 

2 Chlorophyll Degradation in Green Tissues: Olives, Cabbage and Pickles
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further degraded to pheophorbide and that pheophytin accumulates in the food 
system, reaching a constant concentration towards the end of the observation 
period.

White’s experimental data was fitted with the following boundary conditions: 
k2 = 0, Ao = 100 mol%, Bo = 0, Co = 0, Do = 0, Alim = 0, Blim = 21.4  mol%, Clim = 0, 
Dlim = 78.6 mol%. The experimental data and the resulting model curve is given in 
Fig. 2.6. The good fit observed implies that the model is also applicable to describe 
chlorophyll degradation in brined cucumbers.

Fig. 2.5 Chlorophyll 
degradation data for 
processed coleslaw. (○) 
chlorophyll; (●) chlorophyl-
lide; (■) pheophytin; (□) 
pheophorbide. The solid 
lines represent the curves 
obtained by regressing the 
analytic solutions to the data 
(Data by Heatonet al. [2]).

Fig. 2.6 Chlorophyll 
degradation data for brined 
cucumbers. (○) chlorophyll; 
(●) chlorophyllide; (■) 
pheophytin; (□) pheophor-
bide. The solid lines 
represent the curves obtained 
by regressing the analytic 
solutions to the data (Data 
by White et al. [6]).

2.3 A Kinetic Model of Chlorophyll Degradation
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2.3.3   Olives by Minguez-Mosquera et al. [4]

To further test the utility of the model, experimental data on the degradation of 
chlorophyll in processed olives was fitted to the given model. Minguez-Mosquera 
et al. proposed a similar pathway of chlorophyll degradation as that proposed by 
White. Fig. 2.7 shows the experimental data and the modelled curve. Once again, 
the closeness-of-fit indicates that the model is also valid for brined olives.

2.3.4   Relating Kinetic Parameters to Degradation Mechanisms

The kinetic parameters derived from fitting the analytical solutions of the model to 
the data is given in Table 2.1. Consider the degradation of Chlorophyll → Pheophytin. 
It is believed that this reaction occurs rapidly under acidic conditions. At low enough 
pH, H+ ions can displace the Mg2+ ion chelated to the porphyrin ring. A glance at 
the k1 constants of the different data sets reveal that the formation of pheophytin 
from chlorophyll was fastest in coleslaw (k1 = 0.54 day−1), followed by the pickles 
(k1 = 0.084 day−1) and then by the olives (k1 = 0.023 day−1). The vastly greater k1 
constant observed in the early portion of the coleslaw experiment is due to the 
almost instantaneous drop in the pH of coleslaw, presumably caused by the addition 
of salad dressing.

Similarly, no change was observed in the chlorophyllide concentration in cole-
slaw since the beginning of the experiment. This is the basis for the abovementioned 
assumption k3 = 0 and k4 = 0  in Heaton et al’s data. However, the degradation of 
chlorophyll to chlorophyllide was the primary initial pathway observed in brined 
olives (k3 = 0.033 day−1) and pickled cucumbers (k3 = 0.29 day−1). A likely explana-
tion as to the high rate of conversion from Chlorophyll → Chlorophyllide (relative to 

Fig. 2.7 Chlorophyll 
degradation data for whole 
brined olives. (○) chloro-
phyll; (●) chlorophyllide; 
(■) pheophytin; (□) 
pheophorbide. The solid 
lines represent the curves 
obtained by regressing the 
analytic solutions to the data 
(Data by Minguez-Mosquera 
et al. [4]).
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the corresponding rates of conversion to pheophytin) is the high activity of the chlo-
rophyllase enzyme in the unprocessed olives. Prior to brining and fermentation, the 
pHs of both the cucumber and the olives are neutral. Chlorophyllase has high activ-
ity at neutral pH. Furthermore, the pH of the olives and the cucumbers remained at 
the neutral optimum for several days --- ample time to degrade chlorophyll to chlo-
rophyllide. Subsequent fermentation results in a decrease in pH, completing the 
degradation pathway by converting chlorophyllide to pheophorbide. This decrease 
in pH also resulted in the conversion of chlorophyll to pheophytin as observed in 
Figs. 2.6 and 2.7.
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Chapter 3
Oil Migration Through Cocoa Butter: 
The Solubilization-Recrystallization-Diffusion 
(SRD) Model

3.1  Oil Migration in Confectionery Products

Oil migration is a serious quality problem for the food industry and is a leading fac-
tor in the deterioration of most fat - structured products. Chocolate enrobed prod-
ucts (e.g. chocolate- coated biscuits, filled chocolate bars or shells, wafers with 
fat-based cream fillings and, pralines) are particularly vulnerable to this phenome-
non and it causes significant softening of chocolate coatings, hardening of fillings, 
bloom formation and a corresponding decrease in consumer acceptability. Many 
studies have already tested the effects of storage conditions and variations in filling 
and chocolate compositions; however, the exact mechanism of oil migration still 
remains hypothetical and controversial. A diffusion model, commonly used in biol-
ogy and medicine to define mass transfer, has also been applied to food systems in 
order to explain mass transport processes. However, considering the heterogeneous 
characteristics of certain food media such as chocolate (mixture of cocoa, sugar and 
milk particles in a fat matrix), it is conceivable that other mechanisms like capillary 
flow, matrix dissolution and recrystallization may also play a role in oil migration.

3.2  Proposed Oil Migration Mechanisms

Oil migration in confectionery type matrices has been studied for more than 50 years 
and its mechanism is still subject to controversy.
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3.3  Fickean Diffusion

Ziegleder and coworkers first explained oil migration mechanisms in 1996 
using Fickean diffusion. They started with a solution of Fick’s second law of 
the form:
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with ct and c0 being the concentration of migrating species at time t and at t = 0, 
A is the contact area between the phases, V is the volume of the fat phase through 
which migration is taking place, D is the diffusion coefficient and t is the migration 
time. Here, K describes the contact between the two phases and K = 1 for perfect, 
K<1 for insufficient contact and K>1 for structural changes due to swelling or eutec-
tic effects.

Ziegleder then proposed a further simplified form of the equation based on a 
number of assumptions:
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where mt represents the mass migrated at time t and m∞ the final mass of migrat-
ing material at equilibrium.

They suggested that in the short-time limit, mt/m∞ increases linearly with t  
and thus the apparent diffusion coefficient can be calculated from the slope of the 
curve as shown in Fig. 3.1. We should stop at this point and discuss the differences 

Fig. 3.1 Simulation of the 
generalized form of the 
diffusion oil migration 
model commonly used in the 
literature. The diffusion 
coefficient is usually 
determined from the slope in 
the “linear” initial region of 
the plot

3 Oil Migration Through Cocoa Butter
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between the figure reported in his paper of 1996 and the one generated by our simu-
lation (Fig. 3.1) since they are not the same. As a matter of fact, the graph of the 
function shown as Eq. 3.2 bears little resemblance to the one reported originally in 
1996. It is very difficult to identify a linear region in this curve. This is somewhat 
problematic since the slope of this “linear” region, according to Ziegleder, is 
required to determine the diffusion coefficient for the migration process. Moreover, 
there are other serious problems with this equation. For example, it does not plateau 
at m∞. Our value of ymax was set at 50 for the simulation, but the curve just keeps 
increasing as a function of increasing x, beyond y = 50. It is not clear either how one 
goes from Eqs. 3.1 and 3.2. The use of this popular model should, probably, be 
abandoned.

Even though this model has been extensively used to describe oil migration in 
cocoa butter and chocolate by many researchers over the years, including our group, 
it does not take into account the complex microstructure of chocolate and the very 
specific characteristics of fat (crystal network structure, polymorphism, melting and 
crystallization behavior, fat matrix dissolution, limited amount of migrating oil, 
recrystallization). Diffusion processes are probably likely to occur, but the type of 
diffusion might differ from a Fickean one. This behavior us expressed as a tn type 
time dependence, where n ≠ 0.5. Thus, non-negligible and time-dependent physical 
modifications of the dark chocolate matrix have to be considered in order to explain 
the transport mechanisms and obtain accurate estimates of diffusion coefficients. In 
addition, the similarity in the analytical solutions of both Fickean diffusion and 
capillary flow models (both express a square root of time dependence) needs to be 
at least considered.

3.4  Capillary Forces

Chocolate can be described as a dense medium containing solid particles of cocoa, 
milk and sugar dispersed in a continuous crystallized fat phase. Within this matrix, 
pores may exist and their role in oil migration should also be considered. From a 
mathematical point of view, the Lucas-Washburn equation is used to model flow and 
assuming the capillary is cylindrical and in contact with an infinite liquid 
reservoir:
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where h is the distance the fluid is drawn into the capillary, γ is the surface ten-
sion of the fluid, θ is the contact angle between the fluid and the capillary wall, ρ and 
μ are the density and viscosity of the liquid, respectively, g the acceleration due to 
the gravity and r the radius of the pore.

3.4 Capillary Forces
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The solution to an ordinary differential equation of the form 
dh

dt

a

h
b+ - = 0  in 

the asymptotic limit of long times can be approximated by an exponential function 
of the form:
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where h∞ is the height at equilibrium reached by the liquid within the capillary. 
The coefficient α has the following form:
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At short times, and in a horizontal capillary, the analytical solution of Eq. 3.3 
predicts a linear relationship between h and t  as described by:
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This approximation was validated by curve fitting in Fig. 3.2. A simulated expo-
nential association curve (Eq. 3.4) was fitted to a function with a square root depen-
dence of time and the fit had an r2 of 0.99, which was acceptable.

The principal limitations in using this model are mainly a lack of internal micro-
structural data for chocolate and the difficulty in determining the contact angle 
between the capillary wall and the liquid, the viscosity and the surface tension of the 
migrating fluid. For more information on capillary issues, the reader should read the 
work from Rousseau’s group listed in the bibliography.

Fig. 3.2 Simulation of the 
generalized form of the 
capillary flow migration 
model showing how a square 
root of time function 
approximates a one phase 
exponential association 
model in the early stages of 
flow

3 Oil Migration Through Cocoa Butter
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3.5  Other Considerations

From previous studies, it is clear that diffusion and capillary flow might explain 
most of the oil migration behavior within confectionery matrices. However, “sec-
ondary” type phenomena induced by TAG migration such as matrix dissolution or 
crystal modification via Ostwald ripening should also be considered.

It is also important to consider the system being studied. The mechanisms 
responsible for oil migration in single-phase or multiphase systems will differ. In 
plain chocolates, assuming homogeneous fat, cocoa powder, sugar and milk pow-
der distributions, TAG concentration gradients do not exist and thus the main 
mechanism for oil transport will be capillary movement through capillaries in the 
chocolate. Thus, the micro- and nano-structural porosity of chocolate network 
will play a major role. In the presence of migrating oil, dissolution of small 
 crystals to the benefit of larger ones via Ostwald ripening and solid-liquid poly-
morphic transitions (due to the lower free energy of Form VI) will also take place. 
Diffusional transport of TAGs from dissolved crystals will also be observed. 
Furthermore, since the coefficient of thermal expansion is different between solid 
and liquid phases, dissolution and re-crystallization will simultaneously induce 
the formation of further cracks or pores due to repeated contraction and expan-
sion, and thus possibly further enhance capillary transport. On the other hand, this 
contraction-expansion process combined with transient overpressure forces cre-
ated by a higher volume fraction of liquid oil (occupying a greater volume than 
solid lipid) could even lead to the convective flow of oil; a microstructural pump. 
This will be accentuated during temperature cycling or high temperature 
storage.

Conversely, in filled type chocolate, diffusion due to TAG concentration gradi-
ents will play a major role in oil migration, though capillary forces may likely also 
take place due to the same reasons as explained above. In this case, fat phase inter-
actions will be critical and phase diagram determination will be necessary to better 
understand/predict the overall structure modification. For multi-phase systems, the 
most common causes of enhanced oil migration include (a) the presence of incom-
patible fats (e.g. lauric type fats vs. SOS ones) leading to the formation of eutectic 
mixtures with cocoa butter, (b) the migration of oil, like hazelnut oil, into chocolate 
leading to the dissolution of solid fat, as it will act as a solvent.

Triglyceride phase behavior is generally well understood, however, the role of 
TAG dissolution on oil migration is not. Dissolution of solid triglycerides into 
migrating oil moving due to diffusion or capillary action will induce matrix soften-
ing, which in turn will enhance further movement by decreasing medium viscosity 
or creating new pores through which oil can move. These effects will have a strong 
temperature dependence.

In what follows, we propose a new model for describing oil migration in confec-
tionery products, namely a simple model that takes into account solubilisation, 
recrystallization and diffusion/capillary movement.

3.5 Other Considerations
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3.6  Solubilization-Recrystallization-Diffusion Model

One common thread in all oil-migration work is that the models used are too simple 
to describe the complexity of such a process. This complexity can be appreciated 
from looking at the swelling of a cylindrical piece of cocoa butter in contact with an 
oily “cream” for several months at room temperature (Fig. 3.3). The amount of 
swelling was dramatic. This casts doubt unto the validity of, for example, the value 
of diffusion coefficients determined by using the simple models described above. 
As stated above, many authors have mentioned the possibility of dissolution playing 
an important role in the oil migration saga. We decided to verify how much dissolu-
tion actually takes place when you drop some solid cocoa butter into peanut oil (2:8 
w/w) at 18 °C and incubated statically for a long time.

Figure 3.4 shows the dynamics of dissolution of tempered and non-tempered cocoa 
butters from different geographical origins in peanut oil (EC-Ecuador, Brazil-BR, 
Malaysia-MA, China-CH, Ivory Coast- IV, Nigeria-Ni). The dissolution was, surpris-
ingly, quite significant. In order to quantify the amount and rate at which dissolution 
was taking place, we fitted the data to a single exponential decay model, obtaining 
estimates for the rate constant of dissolution (kS) and the span of dissolution (M), i.e., 
the total amount of solids dissolved, or drop in solid fat content, SFC (Table 3.1).

One conclusion form this work is that cocoa butter does dissolve in liquid vege-
table oil, and that most non-tempered cocoa butter samples dissolved more than 
tempered ones. What was very surprising, though, is that tempered samples dis-

Fig. 3.3 Changes in the volume and shape of a cocoa butter cylinder exposed to an oil-rich cream 
phase for a period of a year at room temperature. The cylinder was placed on top of the cream 
layer. The side in contact with the oil phase is the smaller one

3 Oil Migration Through Cocoa Butter
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solved faster than non-tempered ones, but, as stated above, less cocoa butter 
dissolved.

Thus, these results suggested that dissolution was indeed possible in an oil 
migration process. One could envision the migrating liquid oil interacting with the 
cocoa butter matrix, dissolving it and moving further. This could be taking place 
possibly after an initial rapid movement of the oil by capillary action through small 
pores, and a slower diffusive movement through the matrix. However, if dissolution 
is possible, then recrystallization of the dissolved and migrating fat molecules is 
also possible.

Thus, we decided to create a simple mathematical model that would encompass 
this dynamic. The model is shown diagrammatically in Fig. 3.5. The logic behind 
this simple model will be described next.

Fig. 3.4 Solubilization-induced decreases in the solid fat content as a function of time for a 20:80 
(w/w) mixture of cocoa butter in peanut oil at 18 °C. The different cocoa butters are from different 
geographical origins Iv Ivory Coast, Ni Nigeria, Ma Malaysia, Ec Ecuador, Ch China, Br Brazil

3.6 Solubilization-Recrystallization-Diffusion Model
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Cocoa butter comes into contact with migrating oil and dissolves following a first 
order process characterized by a rate constant, kS, and with a total “mobile” fraction 
of triglycerides (TAGs), M. The increase in “free-to-migrate” liquid molecules is 
thus characterized by

 
L M et

k ts= -( )-1
 

(3.7)

These liquid TAGs, or a fraction therefrom, can re-crystallize back into their 
original solid form (S1), or into another solid (S2). This process would take place in 
an Avrami-like fashion (Chap. 6) characterized by a rate constant of crystallization 
(kc) and an Avrami index (n):

 S M et
k tc

n

= - -( )1  (3.8)

The net amount of liquid TAGs which are ready to migrate can be estimated from 
the difference between these two processes, namely Lt − St = Lnet, and the migration 
of oil (Lmig) is assumed to be of diffusive and/or capillary in nature and thus:

Table 3.1 First order dissolution 
rate constants and total amount of 
cocoa butter solids mixed into 
peanut oil (20:80 w/w) at 18 °C, 
as determined by solid fat content 
measurements as a function of 
time by pulse NMR

M (%SFC) kS (day−1)

ECT 2.5 (0.19) 0.42 (0.074)
ECNT 4.2 (0.094) 0.29 (0.018)
BRT 2.6 (0.37) 0.72 (0.22)
BRNT 2.3 (0.37) 0.28 (0.12)
MAT 2.4 (0.27) 0.51 (0.13)
MANT 2.6 (0.30) 0.16 (0.055)
CHT 1.4 (0.16) 0.44 (0.11)
CHNT 3.4 (0.34) 0.14 (0.041)
IVT 1.5 (0.20) 0.38 (0.11)
IVNT 2.8 (0.090) 0.24 (0.022)
NIT 1.5 (0.29) 0.57 (0.23)
NiNT 2.9 (0.27) 0.18 (0.050)

Values represent the least square fit estimates and standard 
errors of n = 42–45 data points, depending on the data set
EC ecuador, BR Brazil, MA Malaysia, CH China, IV Ivory 
Coast, Ni Nigeria, T tempered, NT non-tempered

Fig. 3.5 Solubilization-Recrystallization-
Diffusion model for modelling and predicting oil 
migration through cocoa butter
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L L m tmig net= +

 
(3.9)

Processes characterized by a square root of time dependence are usually diffu-
sive in nature, while m is a phenomenological constant representing a migration “oil 
migration rate constant”. However, as shown in Eq. 3.6, this type of square-root-of- 
time dependence could be due to capillary action. Introducing Lnet into Eq. 3.9 using 
the expressions in Eqs. 3.7 and 3.8, yields
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which conveniently simplifies to the final form of this analytical solution:
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Please note that we are assuming that the mobile fraction, M, is the maximum 
amount of TAGs that can both dissolve and recrystallize in this process.

This simple little function proved to be very powerful and fit the data incredibly 
well (Fig. 3.6). Reversals, nonlinearities, plateaus were all modelled very well 
with this function and produced a series of very interesting results from the fits 
(Table 3.2).

One should remind oneself that a good fit to the data does not mean that the 
model is correct. Fits of the model to the data were excellent for non-tempered 
cocoa butters (NT), with a Pearson correlation coefficient, r2>0.96. On the other 
hand, due to the data scatter in the tempered cocoa butter (T) samples, r2 values 
ranged from 0.33 to 0.91.

Some very interesting insights became apparent from this simple modelling 
exercise. Firstly, the amount of mobile TAGs (M) is always much greater in the non- 
tempered samples than in the tempered samples. This makes logical sense. Also, the 
rate of oil migration by diffusion (m) is always greater for non-tempered than for 
tempered samples. Finally, the rate of dissolution (ks) is greater for non-tempered 
samples than for tempered samples, except for cocoa butter from Ivory Coast, where 
they are similar. On the other hand, behaviors for the rate of recrystallization (kc) 
and Avrami index (n) were not consistent and thus trends were not evident; some-
times tempered ones were higher, sometimes non-tempered ones were. So, one 
clear conclusion form this work is that a reasonable strategy to mitigate oil migra-
tion in chocolate could be a reduction in the mobile fraction of TAG molecules in 
CB. These mobile TAGs should be identified and eliminated by breeding, or geneti-
cally modifying, the cacao plant to yield fruit with a cocoa butter devoid of these 
troublesome “mobile” TAGs.

As a final analysis, we compared two tempered cocoa butter samples with the 
highest (Nigeria) and lowest (China) oil migration rates (Fig. 3.7). Inspection of 
Table 3.2 with hopes of finding a simple explanation for these extremes will prove 
disappointing, since a clear trend was not identified within tempered samples.

3.6 Solubilization-Recrystallization-Diffusion Model
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Fig. 3.6 Fits of the SRD model to oil migration data for tempered and non-tempered cocoa butters 
of different geographical origins

3 Oil Migration Through Cocoa Butter
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Table 3.2 Parameter estimates for the solubilisation-recrystallization-diffusion (SRD) oil 
migration model developed in this work

M kS n kC m

ECT 0.35 0.0043 3.8 0.0048 0.28
ECNT 34 0.029 0.88 0.022 1.1
BRT 2.6 0.0076 1.8 0.055 0.23
BRNT 29 0.16 0.37 0.18 0.79
MAT 2.4 0.0033 2.6 0.12 0.26
MANT 39 0.093 0.65 0.061 0.91
CHT 0.45 0.00014 3.6 0.84 0.21
CHNT 26 0.073 0.68 0.041 1.1
IVT 0.54 0.069 2.3 0.0013 0.34
IVNT 68 0.048 0.81 0.024 1.2
NIT 1.9 0.000093 3.9 0.011 0.59

Oil migration was determined as described in [13]

As a modeller, one needs to realize the limitation of the approach. Firstly, the 
experimental error in the migration data is high for the tempered samples, mainly 
because the amount of migration is very small. Thus, it is difficult to trust values of 
the model parameters obtained when comparing small differences between samples 
with very little oil migration. Also, it is possible that migration actually involves all 
factors listed in combination and not only a single controlling one. On the other 
hand, among non-tempered samples, the highest value of m was associated with the 
highest value of M in the data set for cocoa butter from Ivory Coast, while the lowest 
value of m was associated with the second lowest value of M in the data set for 
Brazilian cocoa butter.

Thus, considering the limitations in the resolution of the model and data, we can 
ascertain that decreasing the amount of mobile TAGs in cocoa butter constitutes the 
best strategy to mitigate oil migration in confectionery products. Obviously, tem-
pering has a greater effect on oil migration than cocoa butter geographical origin. 
Improper tempering will lead to greater oil migration and associated ensuing quality 
problems.

Here we have presented a simple and interesting kinetic modelling exercise on 
oil migration through cocoa butter from different geographical origins. This exer-
cise has yielded valuable insights into the possible factors that influence oil migra-
tion through confectionery products.

3.6 Solubilization-Recrystallization-Diffusion Model
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Chapter 4
Low-Temperature Sweetening  
in Potato Tubers

4.1  Potato Sprouting

The potato is a staple food in North American and European countries. When 
exposed to light, potatoes have a tendency to sprout. Sprouting introduces toxic 
glycoalkaloids (solanine) in the tuber. As well, the potato tuber has a tendency to 
sweeten during sprouting. Sweetening is a normal biological process associated 
with sprouting. The sugars released during sprouting serve as an energy source for 
the growing potato plant. This type of sweetening is called senescent sweetening. 
Sprouting can be inhibited by the application of sprout inhibitors such as chlor-
propham. However, the growing market for “untreated” and “organic” foods neces-
sitates the development of another method of inhibiting sprouting.

One alternative to the use of sprout inhibitors is cold storage. Sprouting can be 
inhibited by storing potatoes at cold temperatures (2–4 °C). While this method may 
inhibit sprouting, it does not eliminate sweetening. In fact, cold storage exacerbates 
sweetening. The storage of potatoes below 8 °C result in an accumulation of sug-
ars. This phenomenon is called “low-temperature sweetening” or “cold-sweeten-
ing”. It is likely that cold sweetening in plants serve as a cold acclimation survival 
mechanism. The released sugars depress the freezing point, serving as cryoprotec-
tants by preventing the formation of large ice crystals which may damage plant tis-
sues. As well, plants typically accumulate sugars as a stress-response mechanism in 
response to conditions such as excess nitrogen in soil, drought and anaerobic condi-
tions in storage (hypoxia).

The presence of the reducing sugars glucose and fructose in sweetened potatoes 
is undesirable in the processing of such potatoes into fried products such as potato 
chips and French-cut fries. During frying operations, reducing sugars can react with 
primary amines on amino acids in what is known as the Maillard reaction. The 
Maillard reaction results in the formation of dark-colored polymers. Other side 
reactions such as the Strecker degradation generate flavor compounds which render 
the product unpalatably bitter. The end result is a fried product that is unaccpetable 
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to the consumer. The level of reducing sugars in process potatoes must therefore be 
minimized to ensure the quality of fried potato products.

Despite its apparent dormancy, the potato under storage is a living and metaboli-
cally active organism. The energy for respiring potatoes is obtained from the oxida-
tive catabolism of sugars released from starch. Starch in the amyloplast may be 
broken either hydrolytically (catalyzed by amylases) or phosphorolytically (cata-
lyzed by starch phosphorylase). The products are sugars (dextrins, maltose and glu-
cose) and glucose-1-phosphate, respectively. It is widely held that phosphorylases 
are the primary starch degrading enzymes in potato tubers during cold sweetening. 
This is supported by the fact that no increase in the concentration of dextrins (glu-
cose oligosaccharides) and maltose is observed during cold-sweetening. The liber-
ated hexose phosphates are then exported into the cytosol where they are converted 
into sucrose by sucrose phosphate synthase. Sucrose may then be cleaved by acid 
invertase to yield glucose and fructose.

The production of sucrose, fructose and glucose in potato tubers is not believed 
to be controlled by a single factor, but by the interaction of several pathways of 
carbohydrate metabolism including starch synthesis, glycolysis, mitochondrial res-
piration and gluconeogenesis. The interactions are complex --- transient oscillatory 
behavior in sucrose tissue levels has been observed at 4 °C. The exact mechanism 
responsible for the stress-induced sweetening of potato tissue at the molecular level 
has not yet been fully elucidated.

Several theories have been proposed to explain the mechanism behind the cold 
sweetening of potato tubers. Perhaps the earliest theory is that the flow of hexose 
phosphates (glucose-6-phosphate and fructose-6-phosphate) through the glycolytic 
Embden-Meyerhof-Parnas pathway is reduced, causing hexoses to accumulate. 
Low temperatures are believed to inactivate phosphofructokinase-1 (PFK-1) and 
pyruvate kinase. Both of these enzymes are key regulators of glycolysis in that they 
catalyze highly exergonic irreversible steps in glycolysis. PFK-1 catalyzes the con-
version of fructose-6-phosphate to fructose-1, 6-bisphosphate. This phosphoryla-
tion step commits the hexose sugar to glycolysis. Pyruvate kinase catalyzes the 
conversion of phosphoenolpyruvate to pyruvate with the concomitant synthesis of 
an ATP molecule.

The theory implies that cold-sweetening is a result of fine metabolic control, that 
is, cold-sweetening can be observed as soon as a potato is exposed to cold tempera-
tures. Fine metabolic control is an immediate, short-term response to controlling 
metabolic flux through pathways. It occurs rapidly --- within minutes or seconds. It 
does not require a significant expenditure of energy. Fine metabolic control involves 
mechanisms such as covalent modification of enzymes, allosteric control, attach-
ment and dissociation of regulatory subunits, and environmental changes (changes 
in temperature, pH and substrate concentration).

Some studies, however, support the theory that cold-sweetening is a result of 
coarse metabolic control. This is supported by the observation of a lag time prior to 
the onset of cold-sweetening. Coarse metabolic control refers to a gradual long-term 
response to changing metabolic conditions. It occurs over a period of days to weeks. 

4 Low-Temperature Sweetening in Potato Tubers
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It is often accompanied by an expenditure of energy and involves modification of 
the total amount of enzyme in the cell. It often involves cellular processes such as 
protein turnover and changes in gene expression.

Other theories focus on the state of the cellular and organelle membranes to 
explain cold sweetening. It is believed that chilling causes physical changes to the 
physical state of lipid membranes enclosing cellular organelles such as the vacu-
ole (surrounded by a membrane called the tonoplast) and the amyloplast. The 
vacuole is the cellular organelle responsible for segregating compounds that are 
toxic to the cell. Cold temperatures alter the permeability of the tonoplast, permit-
ting the leakage of inorganic ions such as phosphate into the cytosol. Chilling also 
increases the permeability of the amyloplast to phosphate. Phospate is thus trans-
located into the amyloplast where it inhibits ADP-glucose pyrophosphorylase, a 
key starch biosynthesis enzyme. This prevents the synthesis of starch at cold tem-
peratures. As well, phosphate stimulates starch phosphorylase, the phosporylase 
responsible for the breakdown of starch. The overall result is an increase in free 
sugar.

It has also been observed by researchers that starch was re-synthesized from 
released sugars when the temperature of cold-stored tubers was increased. Sucrose 
was formed from starch when potato tubers were transferred from 10 to 
2 °C. Starch was re-synthesized when the tubers were moved from 2 to 10 °C. This 
is the basis of “reconditioning” potatoes. After storage at low temperatures, pota-
toes are stored at 18–20 °C for several days prior to processing. Reconditioning 
decreases reducing sugar lwevels, decreasing the likelihood of undesirable brown-
ing reactions.

4.2  The Kinetics of Cold Sweetening

A general mathematical model to describe the degradation of starch in mature potato 
tubers under cold storage was formulated. The model describes the movement of 
carbon metabolites from starch to sucrose, glucose, fructose and carbon dioxide via 
the metabolic pool of phosphorylated hexose intermediates ([X]). This is described 
in Fig. 4.1. The k terms denote the rate constants for each step.

Fig. 4.1 A model for the 
movement of carbon in cold 
sweetened potatoes

4.2 The Kinetics of Cold Sweetening
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The rate constants in the proposed mechanism can be linked to certain enzyme 
activities based on knowledge of the factors involved in starch metabolism:

• Starch breakdown - starch phosphorylase, amylase and/or glucosidase activities 
(k1)

• Sucrose synthesis - sucrose phosphate synthase activity (k2)
• Sucrose breakdown - invertase activity and/or vacuolar permeability to sucrose 

(k3)
• Entry of metabolites into metabolic pathways - vacuolar permeability to reduc-

ing sugars and/or hexokinase activity (k4)
• Sugar utilization - glycolytic and/or respiratory activities (k5)

The constants k1 and k2 are first-order rate constants while k3, k4 and k5 are zero- 
order rate constants. The reasons for assuming zero order behaviour in k3, k4, k5 are 
discussed in the following assumptions:

All effects are purely kinetic in nature. No enzyme induction (the de novo 
 synthesis of new enzyme molecules in response to a signal molecule called the 
inducer) is involved. It is assumed that LTS involves fine metabolic control rather 
than coarse metabolic control. This assumption is tenable given that no substantial 
changes in the Vmax (indicating no new synthesis of enzyme) of several enzymes 
involved in carbohydrate metabolism have been observed upon cold storage of 
potato tubers. In contrast, the Q10 of glycolytic enzymes such as ATP-dependent 
phosphofructokinase and pyruvate kinase increase significantly when the system 
temperature is increased from 2 to 10 °C.

The Q10, also called the temperature coefficient, is a dimensionless factor by 
which the reaction rate increases for every 10  °C increment. The mathematical 
expression for the Q10 is given as:
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From this mathematical expression, it can be seen that if Q10 = 1, then R2 = R1and 
that the reaction is not temperature dependent. If Q10 > 1, then R2 > R1 and the reac-
tion rate increases with temperature. If Q10 > 1, then R2 < R1, indicating that the 
reaction rate decreases with increasing temperature. The tendency of the Q10 to 
increase from 2 to 10 °C implies that decreasing the temperature from 10 to 2 °C 
results in a decrease in the Q10, indicating relatively lower reaction rates at cold 
temperatures.

The assumption that k3, k4 and k5are zero-order rate constants holds if the reac-
tions are assumed to be diffusion-controlled, that is, the mass transfer to the cata-
lytic site and not the reaction itself is the rate-limiting step for the reactions listed 
below. As well, the enzymes responsible for catalyzing the following processes are 
assumed to be saturated in this particular substrate. The substrate concentration for 
the given enzymes is assumed to be high enough to permit all of the active sites on 
the enzyme to be occupied with ligand. The reaction rate under such conditions is 
assumed to be constant and at the theoretical maximum Vmax.
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• invertase-catalyzed hydrolysis of sucrose to reducing sugars and transfer of 
sucrose into the vacuole (k3 is a zero-order rate constant)

• the transfer of reducing sugars out of the vacuole and phosphorylation to hexose 
phosphates ( k4 is a zero-order rate constant)

• the oxidative respiration of reducing sugars to carbon dioxide (thus k5 is a zero- 
order rate constant)

Sucrose hydrolysis by acid invertase will lead to high amounts of fructose and glu-
cose being produced in the vacuole. Removal of these reducing sugars from the vacuole 
will most probably be mass transfer limited by the capacity of glucose and fructose 
transporters in the vacuolar membrane. Like enzymes, membrane transporters are satu-
rable in that they display a hyperbolic activity curve relative to the substrate concentra-
tion. The rate of removal of glucose and fructose will also depend on how quickly they 
are phosphorylated into hexose phosphates and utilized in glycolysis and respiration.

It is also assumed that there is no significant starch synthesis occurring in LTS- 
stressed potato tubers at 2 °C. This assumption is valid considering the tuber under 
study is a mature tuber, i.e., beyond the growth and development stage. The conditions 
under which the tuber was stored also inhibits starch synthesis. It has been shown that 
starch synthesis in potato tubers displays an optimum at about 21.5 °C, with starch 
synthesis decreasing rapidly as temperature is shifted from this optimum.

The rate constants in this model embody both the activity of enzymes and/or 
whole enzyme pathways, and/or the transfer of materials in and out of subcellular 
organelles. In such a phenomenological model, it is not possible to unambiguously 
differentiate between mass transfer and catalytic kinetic effects. However, it is 
assumed that the rate constants obtained correspond to enzyme catalytic constants 
such as kcat since mass transfer limitations should be similar for the two tubers. The 
differences would therefore be attributed to enzyme activities.

Samples of the potato cultivars Norchip and ND860-2 grown in Cambridge, 
Ontario, Canada using standard agricultural practices were obtained from Ontario 
Ministry of Agriculture, Food and Rural Affairs’ Agricultural Research Station in 
Cambridge, Ontario. The Norchip cultivar is sensitive to low temperature sweeten-
ing while the ND860-2 cultivar is resistant to cold-sweetening. After curing for 
2 weeks at 15 °C, tubers were stored at 2 °C and 95% relative humidity. It must be 
noted that this model has been shown to represent the data best at 2 °C. At tempera-
tures higher than 2 °C, the data may deviate signficantly from the the predictions 
made by the model. Random samples of potato tubers were blended and filtered. 
The sugar content of the supernatant filtrate was quantified using HPLC methods.

The degradation of starch to sucrose, reducing sugars (glucose and fructose) and 
carbon dioxide depicted in Fig. 4.1 can then be represented by the following set of 
differential equations:
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A mass balance for the model is given by:

St Suc Red CO X St Suc Red CO Xo o o o o[ ]+ [ ]+ [ ]+ [ ]+ [ ] = [ ]+ [ ]+ [ ]+ [ ]+ [ ]2 2  
(4.6)

[Sto] is the initial starch concentration, [St∞] is the limiting starch concentration 
as t → ∞, [Suco] is the initial sucrose concentration, [Redo] is the initial reducing 
sugar concentration, [CO2o] is the initial carbon dioxide concentration and [Xo] is 
the initial phosphorylated hexose intermediates concentration. The limiting starch 
concentration, [St∞] is the concentration of starch that is unavailable for reaction but 
is nevertheless quantified during analysis. Initial concentrations of all intermediates 
were assumed to be zero at t = 0.

These equations were simultaneously solved by integration, rearrangement and 
substitution to obtain the following set of solutions:
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By difference, from the mass balance, the concentration of CO2 can be estimated:

CO St Suc Red CO X St Suc Red Xo o o o o2 2[ ] = [ ]+ [ ]+ [ ]+ [ ]+ [ ]-[ ]-[ ]-[ ]-[ ]  
(4.11)

4.3  Relating Kinetic Parameters to Mechanism

Figure 4.2 shows the patterns of sucrose accumulation for ND860-2 and Norchip 
tubers stored at 2 °C. The solid lines represent the regressed analytic solutions. The 
tubers grown in 1993 displayed approximately twice the amount of sucrose than the 
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tubers grown in 1994. This difference is most likely due to 1994 being an ideal 
growing year. In contrast, 1993 was a wet and cold year. The environmental stresses 
in 1993 may account for the accumulation of higher concentrations of sucrose.

Figures 4.3 and 4.4 shows the glucose and fructose concentrations of the respec-
tive potato cultivars from the years 1994 and 1993, respectively. The results suggest 
that the rate and the amount of reducing sugar accumulated depends on the differ-
ence between the rate constants for the invertase-catalyzed hydrolysis of sucrose 
(k3) and the rate constant for the removal of reducing sugars from the vacuole and/
or hexokinase activity (k4). The rates of accumulation of fructose and glucose were 
found to be greater for the Norchip (LTS-sensitive) cultivar than for the ND860-2 
(LTS-tolerant) cultivar in both years. The rates of glucose and fructose accumula-
tion between the years 1993 and 1994 were not significantly different (P > 0.05).

The rate constants and other parameters were derived from fitting the model to 
the data. These are shown in Table 4.1. Among these, k1 and k2 were not significantly 
different within each cultivar grown in the same season. Furthermore, no significant 
difference was observed between the k1 and k2 of different cultivars grown in the 
same year. This suggests that the enzymes that catalyze these reactions are not 
responsible for the difference in sugar accumulation between the two cultivars. 
However, significant differences in the k3 (invertase activity) constant were observed 
between different cultivars grown in the same year. The value of k3 for Norchip 
(LTS-sensitive) in 1993 was twice that of ND860-2 (LTS-tolerant). In 1994, how-
ever, no significant differences in k3 between the cultivars were evident (P > 0.05).
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Fig. 4.2 Sucrose accumulation over time of ND860–2 potatoes grown in the year 1994 (a) and 
1993 (c) and Norchip potato tubers grown in the year 1994 (b) and 1993 (d). Sucrose accumulation 
was induced by storing the potatoes at 2 °C
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Fig. 4.3 The accumulated level of glucose and fructose in potato tubers grown in 1994 and stored 
at 2 °C. ND860–2, fructose (a); ND860–2, glucose (b); Norchip, fructose (c); Norchip, glucose (d)
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Interestingly, the difference between the rate constant for invertase activity (k3) 
and the rate constant for transport of sugars from the vacuoule and/or hexokinase 
activity (k4), k3 − k4 appears to be directly proportional to the amount of sugar that 
accumulates in the tuber. k3 − k4 for Norchip for both glucose and fructose was con-
sistently higher than the corresponding value for ND860-2 in both 1993 and 1994. 
The data suggests that increased invertase activity coupled with an impaired ability 
to remove sugars from vacuoles in the form of hexose phopshates is responsible for 
the accumulation of sugar in the system.

The k4 and k5 rate constant in both years and cultivars were similar. In fact, the 
k

k
4

5

 ratio for all years and cultivars was close to unity. This strongly suggests that k4 

and k5 describe a similar (or linked) reaction. It is not without reason to suggest that 
k4 is the rate constant for the glycolysis pathway (which includes a phosphorylation 
step) and k5 describes the remainder of the respiration pathway.

4.4  The Impact of Starch Availability on Cold Sweetening

An interesting result from the fits to the data was the difference observed in the 
starch available to undergo degradation to hexoses ([Sto] − [St∞]). The amount of 
starch degraded was always greater for the Norchip cultivar than for the ND860-2 
variety in both years. This result suggests that cold sweetening may be attributable 
to differences in the availability of starch for LTS-induced degradation. It is possible 
that the starch from the LTS-sensitive cultivar is more susceptible, or more avail-
able, to degradation than starch from LTS-tolerant cultivars. This conclusion would 
tend to support the theory that starch structure plays a role in LTS-sensitivity or 
tolerance. A point to consider is that the starch substrate does not become depleted, 
but rather that the amount of “available starch” initially available becomes depleted. 
Available starch is the portion of starch that is more susceptible to enzymatic degra-
dation than the main bulk of crystalline starch (estimated to be 6–17% w/w).

Table 4.1 Estimates of kinetic constants as obtained from regression fits to the glucose and 
fructose content of two potato cultivars grown in the years 1994 and 1993

Parameter
ND860- 2 
(1993)

ND860- 2 
(1994)

Norchip 
(1993)

Norchip 
(1994)

k1 (day−1) 0.100a 0.073a 0.109a 0.114a

k2 (day−1) 0.098a 0.077a 0.103a 0.108a

k3 (day−1) 1.095a 0.662a 2.282b 1.227a

k3 − k4 (day−1) Fructose 0.141a,e 0.0217b 0.544c 0.134d,e

k3 − k4 (day−1) Glucose 0.211a 0.0314b 0.635c 0.136d

1.007a 1.013a 1.056a 1.095a

St0 − St∞ (mg/g dry weight) 126a 65b 160c 77b

Values with the same superscript within a row are not significantly different from each other 
(P > 0.05)
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4.5  Numerical Simulations

Figure 4.5 shows a simulation of the complete model using the rate constants 
derived from fitting the experimental data to the analytic solutions of the given dif-
ferential equations. The simulated patterns agree closely with the experimentally 
obtained patterns for sucrose and hexose accumulation.

The simulation indicates that there is an initial but temporary increase in phos-
phorylated hexose intermediates ([X]) with a subsequent gradual increase in CO2 pro-
duced. These observations agree with experimental findings published by Isherwood 
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Fig. 4.5 Kinetic simulations of the proposed cold-sweetening mathematical model for the 
Norchip (a) and ND860-2 (b) cultivars stored at 2o C. The parameters used were obtained from 
the non-linear fits of the data to the model as tabulated in Table 4.1
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in 1973 and 1976. This prediction is a good “test” of the model, since phosphorylated 
intermediates were not measured at all in this work. This demonstrates that when 
kinetic modelling is mechanistic in nature, it can have predictive power, which is more 
than can be said about statistical models, which mainly predict data within the the data 
set (interpolation). Power comes from extrapolation!

In conclusion, analysis of sucrose, glucose and fructose accumulation data at 
2  °C suggests that low-temperature induced reducing sugar accumulation is due 
mainly to relative differences between invertase activity and glycolytic/respiratory 
capacity. A high invertase activity coupled with decreased glycolytic/respiratory 
capacity results in an increased accumulation of reducing sugars in potato tuber tis-
sue at low temperatures. LTS-sensitive potato cultivars may contain greater amounts 
of labile starch than tolerant ones.
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Chapter 5
Modelling Sucrose Oscillations in  
Cold- Sweetened Potato Tubers using 
a Statistical Approach to Fourier Analysis

5.1  The Fourier Series

The Fourier series is a mathematical tool for expressing a complex sinusoidal (peri-
odic) function as a sum of simpler periodic functions. It is a sub-branch of the 
mathematical field of harmonic analysis. The Fourier series is named after the 
French mathematician Joseph Fourier, who utilized Fourier series in his work, “The 
Analytical Theory of Heat”. It is used in several fields of study including image 
processing (in particular medical imaging), signal analysis, data compression, spec-
troscopy and acoustics among many others. In the science of foods, it finds an indi-
rect application in the study of heat transfer in foods. In this chapter, sucrose levels 
in cold-sweetened potato tubers will be modelled using a Fourier series.

5.2  A Periodic Function

A function f(x) is said to be periodic with a period T if

 
f x f x nT( ) = +( )  

(5.1)

for n = 1, 2,.... The most elementary example of such functions are the sine and 
cosine functions sin(x) and cos(x), each with a period T. The frequency f of a peri-
odic function is the inverse of the period T. The period often has units of time, while 
frequency has units of time−1.

In lay terms, a function is periodic if it “repeats itself”. The period is the “length 
of time” required for one oscillation. The frequency is the number of oscillations per 
unit time and is the inverse of the period.

For example, consider a simplified discussion of the phases of the moon. Starting 
with a “new moon”, the moon undergoes a cycle through several phases of the 
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moon, eventually returning to a `new moon’ after 29.5 days. The period of the lunar 

orbit is 29.5 days. The frequency of this cycle is 
1

29 5
0 0338

.
.

days
=  days−1 that is 

0.0338th of a cycle occurs every day. This phenomenon can be easily modelled 
using a sinusoidal function.

5.3  The Mathematics of a Fourier Series

Suppose we are given a function f with the real-valued domain x, f : R → C, where 
f(x) is continuous and periodic with a period T. Also, the definite integral of the 
function over the interval x1 to x2 must be finite. The Fourier series expansion of f(x) 
is given by:
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where n is the harmonic number, ωn is the angular speed/angular frequency at the 
nth harmonic, an are the even Fourier coefficients and bn are the odd Fourier 
coefficients.

The parameters in the Fourier series expansion can be calculated using the fol-
lowing formulas:
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5.4  Modelling Sucrose Levels Oscillation Using a Statistical 
Approach to Fourier Analysis

After exposure to low temperatures (i.e., <10 °C), potato tubers, as well as many 
other plants and plant parts, often undergo a phenomenon known as low- temperature 
sweetening (LTS) which results from the conversion of starch to sugars. Although 
this phenomenon has been well documented, the causes and mechanisms by which 
LTS occurs are still not established. Fine metabolic control exerted by allosteric 
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enzymes, coarse metabolic control due to enzyme induction, and mass transfer of 
reaction substrates and products in and out of subcellular organelles may all play a 
role in the observed metabolic response to stress.

Excitability, periodic oscillations, polyrythmicity, chaos, bursting or transitions 
between multiple steady states are possible in metabolic pathways. These dissipa-
tive structures are evidence of self-organization in destabilized open systems that 
are far away from equilibrium and obey nonlinear kinetic laws. Such non- equilibrium 
conditions prevail in cells, tissues and whole organisms, which are highly compart-
mentalized structures where diffusion is coupled with biochemical reactions. 
Oscillations can therefore occur at all levels where regulation is exerted.

A classic example of a metabolic oscillation is that of glycolysis. Glycolytic 
oscillations have been studied in yeast and muscle extracts and intact yeast cells. 
They are solely attributed to the positive feedback regulation of 6- phosphofructokinase 
(an allosteric enzyme) by the reaction product adenosine diphosphate (ADP) and 
adenosine monophosphate (AMP). AMP is linked to ADP by the activity of adenyl-
ate cyclase.

While the physiological significance of glycolytic oscillations remains unclear, 
excitability and oscillations in cyclic nucleotides and calcium concentrations are an 
integral part of the intercellular communication system of the cellular slime mould 
Dictyostelium discoideum. Cyclic nucleotide waves, induced by starvation, are gen-
erated and relayed by the individual amoebae, acting as a chemotactic attractant. 
These chemical waves regulate the aggregation of over 105 individual amoebae into 
a motile multicellular organism which eventually transforms into a fruiting body 
with differentiated stalk and spore cells.

The glycolytic oscillator is an example of metabolic oscillations in unicellular 
organisms and in tissue extracts while the cyclic nucleotide signalling system of 
Dictyostelium discoideum is an example of a metabolic oscillator in a simple multicel-
lular organism. This work presents evidence of a stress-induced transient oscillation in 
the sucrose metabolism of intact potato tubers. The transient oscillation is an example 
of a non-monotone approach of a complex biological system to a new steady state.

Solanum tuberosum cv. Norchip (LTS-sensitive) and ND860–2 (LTS-tolerant) 
plants were grown from seed during the summers of 1993 and 1994 at the Cambridge 
Agricultural Research Station, Ontario Ministry of Agriculture, Food and Rural 
Affairs (Cambridge, ON) using standard agronomical practices. Tubers were har-
vested manually in late September and stored for 2 weeks at 15 °C prior to storage 
at 12, 10, 8, 4 and 2 °C (1993), and 16, 12, 8, 4, and 2 °C (1994). Tubers were not 
sprout inhibited in either growing season. Sucrose, glucose and fructose concentra-
tions (mg/g dry weight) were determined by high performance liquid chromatogra-
phy (HPLC) as described by Wilson and co-workers.

Sucrose accumulation patterns were modelled using Fourier series analysis (5). 
The general form of the Fourier series used was:
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where Ao is average initial sucrose concentration, t is the time in days, Ak corre-
sponds to the amplitude of the harmonic of frequency kω, where k is an integer 
ranging from 1 to n, while φk corresponds to the phase angle of the particular har-
monic. The Fourier series were fitted to the experimental data using nonlinear least 
squares methods with robust data weighting to exclude outliers. The software pro-
gram used the standard Marquart-Levenburg method using a numerical second 
order method to calculate partial differentials. The criterion for convergence was a 
less than 0.01% change in the reduced chi-square (χ2) value upon variation of 
parameters. Robust data weighting was performed using the method of Mosteller 
and Tukey, as implemented by Duggelby.

The experimental points for the LTS-sensitive Norchip tubers grown in 1993 and 
stored at 4 °C were initially fitted to a Fourier series with a period equal to the full 
data length T (k = 1). Additional, higher order harmonics were then attempted by 
increasing sequentially the value for k, where period components are given by T/k. 
Each subsequent harmonic added to the k = 1 series was evaluated by testing for 
significance of improvements (p < 0.05) in the reduced chi-square value (χ2) for the 
fit (F-test). The F-test was performed by comparing the ratios of reduced chi-square 
values. Nonlinear fits using simple weighting and robust weighting were identical; 
hence, none of the data points were considered outliers in our analysis. A higher 
order Fourier series (k > 1) was adopted only when the fit to the data was signifi-
cantly improved over its k = 1 counterpart (p < 0.05). The process was then repeated 
using the new higher order Fourier series as the starting point for comparisons. Each 
subsequent harmonic added to the series was evaluated by testing for significance of 
improvements (p < 0.05) in the reduced chi-square values (χ2) for the fit (F-test) as 
described before.

A seven harmonic series fitted the data significantly better than a one harmonic 
series (p < 0.05) in 1993. No significant improvements in the fit to the data (p > 0.05) 
were observed by adding a greater number of harmonics. The one-harmonic fit to 
the data was used to detrend this non-stationary time series.

For 1994, a seven harmonic series also fitted the data significantly better than a 
one harmonic series (p < 0.05). No significant improvements in the fit to the data 
(p > 0.05) were observed by adding a greater number of harmonics. For the 1994 
data, the detrending procedure was slightly different. A linear fit (using robust data 
weighting) through the data, from day 6 onwards, was subtracted from the experi-
mental points resulting in a stationary time series. The aim of the detrending proce-
dures was to produce stationary time series.

The 1993 and 1994 LTS-tolerant cultivar (ND860–2) data at 4 °C were trans-
formed by simply subtracting the average steady-state value of sucrose from each 
data point, usually the average of all values after day 2. Its dynamic behaviour was 
not oscillatory in nature.

Sucrose concentrations of potato tubers stored at 10 °C or higher maintained a 
steady-state value throughout the sampling period (data not shown). However, when 
potato tubers are stored below 10  °C, sucrose concentrations increase to a new 
steady state. This was clearly shown for the 1993 and 1994 tubers (Fig. 5.1). This 
discontinuity at 10 °C may constitute a bifurcation point in sucrose metabolism, 
where exposure to temperatures below this critical value cause the system, i.e. the 
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potato tuber, to jump into a different state that produces higher sucrose concentra-
tion. The simplest case of a bifurcation is the transition from one steady state to 
another. More complex cases include transitions from a steady state to oscillations, 
or from oscillations to chaos.

At a critical temperature change from the apparent bifurcation point at 10 °C 
(ΔT), complex dynamic behaviour in sucrose metabolism of potato tubers was 
observed. This critical temperature distance depends on the relative tolerance or 
sensitivity of the tissue to low temperature stress. For a LTS-sensitive cultivar 
(Norchip), ΔT is 6 °C. The average sucrose concentration values at 4 °C for the 
LTS-sensitive cultivar shown in Fig. 5.1 are averages of the fluctuating values 
observed in tissue sucrose levels at this temperature (Fig. 5.2a). A true steady-state 
concentration was not achieved at this temperature.

Figure 5.2a shows the complex pattern of sucrose accumulation in 1993-grown 
Norchip tubers during a 55-day period at 4 °C, while Fig. 5.3a shows the complex 
pattern of sucrose accumulation in 1994-grown Norchip tubers during a 73-day 
period at 4 °C. Sucrose concentration did not increase monotonically from one state 
to another, but rather transiently oscillated towards the new state. The non- monotone 
behaviour observed in these 2 years, for potatoes grown under vastly different envi-
ronmental field conditions, was strikingly similar. For comparison purposes, the 
time axis of both patterns were normalized to a relative time. This parameter is 
defined as the actual storage time divided by the time required to reach the apex of 
the first large oscillation (27 days in 1993 and 49 days in 1994). When the 1993 and 
1994 data were compared in terms of their relative times (Fig. 5.4), striking pattern 
similarities were evident; however, the period of the oscillations observed in 1993 
was shorter than that observed in 1994. Differences in growing conditions (tempera-
ture, precipitation, environmental stresses) between the 2 years may have influenced 
initial tuber carbohydrate metabolism.

For proper mathematical analysis, time series have to be detrended; that is, the 
underlying tendency of the series must be removed from their oscillatory behaviour 

Fig. 5.1 Sucrose tuber tissue 
concentrations (mg/g d.w.) as 
a function of temperature for 
low- temperature sweetening 
(LTS) sensitive Solanum 
tuberosum Norchip tubers 
grown in 1993 () and 1994 
(), and LTS-tolerant 
Solanum tuberosum 
ND860–2 tubers grown in 
1993 () and 1994 (). 
Below 10 °C, sucrose tissue 
concentrations increase 
significantly (p < 0.05) with 
decreasing temperatures

5.4 Modelling Sucrose Levels Oscillation Using a Statistical Approach
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(5). These non-stationary time series were detrended as outlined before. The result-
ing stationary time series are shown in Fig. 5.2b (1993) and Fig. 5.3b (1994). Our 
results show that Norchip tuber sucrose levels transiently oscillate about a central 
accumulation tendency towards the new steady state. In contrast, for a LTS-tolerant 
(ND 860–2) tuber, the transient oscillations are much smaller, or nonexistent, and 
sucrose levels increase monotonically to a new steady state. This effect becomes 
quite obvious in the transition function portraits (iterated map) for both time series 
(Fig. 5.2c and 5.2d for 1993 and Fig. 5.3c and 5.3d for 1994). The sensitive cultivar 
loses part of its metabolic control and the tissue sucrose levels transiently oscillate 
(Figs. 5.2c and 5.3c), while the tolerant cultivar manages to keep a tight metabolic 
control over its sucrose tissue levels (Figs. 5.2d and 5.3d).

At 2 °C, tissue sucrose concentrations increased in a sigmoidal, non-oscillatory 
fashion (data not shown) to an average of 89 mg/g d.w. (Norchip) and 66 mg/g d.w. 
(ND 860–2) in 1993 and 35 mg/g d.w. (Norchip) and 35 mg/g d.w. (ND860–2) in 
1994. This situation possibly represents a complete loss of metabolic control. We 

a b

c d

Fig. 5.2 Tubers grown in 1993. (a) Oscillatory pattern of sucrose accumulation (mg/g d.w.) in 
potato tuber tissue from the low-temperature sweetening (LTS) sensitive Norchip cultivar as a 
function of storage time at 4 °C. Each point in time represents the average of three separate experi-
ments and their standard errors. (b) Stationary (detrended) time series for sucrose tuber tissue 
concentrations in LTS sensitive () and LTS tolerant () cultivars. (c) Transition function portrait 
for the LTS-sensitive cultivar tuber sucrose concentrations. The sensitive cultivar’s sucrose levels 
oscillate at 4 °C because, unlike the tolerant tuber, it is not able to maintain a steady-state tissue 
concentration. (d) Transition function portrait for the LTS-tolerant cultivar tuber sucrose concen-
trations. The tolerant cultivar manages to keep sucrose levels within a narrow margin of concentra-
tions at 4 °C. In both transition function portraits, () and () represent the beginning and end of 
the time series, respectively
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a b

c d

Fig. 5.3 Tubers grown in 1994. (a) Oscillatory pattern of sucrose accumulation (mg/g on a dry 
basis) in potato tuber tissue from the low-temperature sweetening (LTS) sensitive Norchip cultivar 
as a function of storage time at 4 °C. Each point in time represents the average of three separate 
experiments and their standard errors. (b) Stationary (detrended) time series for sucrose tuber tis-
sue concentrations in LTS sensitive () and LTS tolerant () cultivars. (c) Transition function 
portrait for the LTS-sensitive cultivar tuber sucrose concentrations. The sensitive cultivar’s sucrose 
levels oscillate at 4 °C because, unlike the tolerant tuber, it is not able to maintain a steady-state 
tissue concentration. (d) Transition function portrait for the LTS-tolerant cultivar tuber sucrose 
concentrations. The tolerant cultivar manages to keep sucrose levels within a narrow margin of 
concentrations at 4 °C. In both transition function portraits, () and () represent the beginning 
and end of the time series, respectively

Fig. 5.4 Oscillations in 
sucrose tuber tissue 
concentrations in the 
low-temperature sweetening 
(LTS) sensitive Norchip 
cultivars at 4 °C for 1993 () 
and 1994 () grown tubers. 
The relative time corresponds 
to the time divided by the 
time required to reach the 
apex of the first oscillation
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Fig. 5.5 Oscillations in 
sucrose tuber tissue 
concentrations in the 
low-temperature sweetening 
sensitive Norchip cultivar at 
4 °C for 1993 (a) and 1994 
(b) grown tubers. Data points 
were generated every 
0.25 days using Fourier 
series analysis and series 
data detrending as described 
in the text. The relative time 
corresponds to the time 
divided by the time required 
to reach the apex of the first 
oscillation

therefore postulate that at 4 °C, the LTS-sensitive tuber’s carbohydrate metabolism 
becomes temporarily deregulated, undergoes oscillations but manages to adapt to 
the decreased temperature and reach a new steady state. In contrast, at 2 °C all meta-
bolic regulation or capacity for recovery are lost.

The sucrose oscillations were analyzed using Fourier series analysis in order to 
generate a preliminary power spectrum. The power is defined as the square of the 
amplitude Ak at the corresponding harmonic kω. The patterns shown in Fig. 5.5 
were generated by subtracting the values of the seven harmonic Fourier series from 
the one-harmonic Fourier series fit to the experimental data every 0.25 days. For the 
1993 data (Fig. 5.5a), the resulting stationary time series was best modelled by a 
one-harmonic Fourier series (a sine wave) with a period of 11.5 days (0.55 radians/
day), i.e., the time series displayed only one predominant frequency. No improve-
ments in the fit to the data were observed when higher harmonics were added 
(p > 0.05). For the 1994 data (Fig. 5.5b), the resulting stationary time series was best 
modelled by a nine-harmonic Fourier series with a period of 80 days (0.078 radians/
day). Each subsequent addition of a harmonic was significant (p < 0.05), however, 
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the contribution was becoming smaller with each new harmonic added, and there-
fore the process was stopped at the ninth harmonic.

A power spectrum (square of the amplitude of the harmonic vs. harmonic number) 
was generated for these waves (Fig. 5.6). For the 1993 data, the power spectrum could 
only be generated up to three harmonic components because of constraints imposed by 
the Nyquist theorem: “The maximum frequency (minimum period) that can be esti-
mated is one corresponding to half (twice) the sampling frequency (period)”. Our mini-
mum sampling period was 2 days. For the 1994 data, we could have generated a spectrum 
of up to 20 harmonic components. We doubled the requirements of the Nyquist theorem 
by estimating only up to 10 harmonics for the Norchip cultivar’s oscillations. No alias-
ing was observed in any of the analysis. We did not have enough data for this, but a plot 
of the log of the square of the amplitude (the power) of a particular harmonic vs. the log 
of the harmonic number would yield a slope, f. The value of this slope has been associ-
ated with specific process, for example, if the thee slope of this log-log plot is:

0 – White noise (1/f0 noise)
1 – Mandelbrot noise or chaos (1/f noise)
2 – Brownian motion or diffusion process (1/f2 noise)

Dynamic processes (time histories of biological variables) can be generated by 
deterministic processes or by random processes. Deterministic processes: (cause- 
effect) can be periodic, quasi-periodic or chaotic. Power spectra of these processes 
have patterns. They can be broad and have a 1/f pattern (chaotic) or be narrow and 
display only a single frequency component (periodic oscillations). Random pro-
cesses: random, probabilistic in nature. Power spectra are broad and featureless and 
are due to white noise.

This analysis clearly demonstrated the presence of only one harmonic in the 
periodic motion of the 1993 sucrose oscillations. Had the data not been detrended, 
a power spectrum could have been erroneously generated using the seven harmonic 
series, or even worse, assumed to be an infinite number of harmonics as in classic 

Fig. 5.6 Power spectra for 
the 1993 (■) and 1994 () 
sucrose oscillations observed 
in the low- temperature 
sweetening sensitive Norchip 
potato tubers
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Fourier analysis. For the 1994 data, a more complex oscillation was observed with 
several frequency components. Even though the oscillations observed in 1993 and 
1994 were quite similar when expressed in terms of relative time, subtle differences 
in the oscillatory patterns were evident. Whether the 1994 oscillation contains ran-
dom noise or is deterministic in nature is unclear at the moment, however, the pat-
tern observed in Fig. 5.6 is reminiscent of white noise.

Glucose and fructose are the products of sucrose degradation and also displayed 
complex dynamic behaviour in the sensitive cultivar. However, the observed patterns 
were not periodic and their relationship to the sucrose oscillations was not evident. As 
well, the signal to noise ratio is smaller for fructose and glucose relative to that of 
sucrose and it becomes difficult to discern between a true oscillations and random noise.

This chapter highlights a statistical approach to Fourier analysis. It is my view that 
this approach is better suited to the study of complex systems where the usual assump-
tion that an infinite number of frequencies can be present in a time series is probably 
not correct. As opposed to traditional Fourier Analysis, no assumptions of data orthog-
onality (Σxy = 0) are made and we do not require equally spaced data points. Our 
approach does make the assumption that errors are random, that is, they are normally 
distributed with mean 0 and standard deviation sdx. Here we fitted the Fourier func-
tion to the experimental time series, starting with a sine wave (k = 1), and added one 
harmonic at a time while testing for an improvement in the fit of the series to the data. 
We only added a higher harmonic if the fit using the higher order harmonic fitted the 
data statistically significantly better than the lower harmonic series. We stopped when 
further improvement was not observed. This allowed us to characterize the complex 
transient behaviour in the sugar metabolism of a whole living system (the potato). 
This approach could be used in many other biological and food systems.

As a final philosophical comment to the fact that oscillations and instabilities are 
observed in biological systems, we paraphrase the words of Yates:

“The very nonlinear world of chaotic dynamics and fractal geometries seems to 
me to justify the term homeodynamics for homeostasis. In the stability of biological 
systems over space and time, homeostasis is linear and limited while homeodynam-
ics is nonlinear and general. Homeodynamics carries with it the potential for a 
deeper understanding of what it means for a complex system to be stable and yet 
show very rich behaviors, such as chaos and fractals, while including the develop-
ment of individuals and evolution of species.”

5.5  A “How-To” Analytical Toolbox for the Study 
of Instabilities and Oscillations in Complex Systems

 1. Collect your data as a string of numbers (lots), usually equally spaced in time. Be 
careful to choose the proper sampling intervals  - use common sense. Do not 
smooth or filter any data. Be sure to collect at least 200 points in time.

 2. Remove any non-stationarity in your time series before any analysis is carried 
out. You may choose to analyze a shorter record length, however, this is not good 
practice.
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 3. Perform spectral analysis and examine the power spectrum for evidence of peri-
odicities and broad-band, background noise (1/1, 1/f, 1/f2). Fit your time series 
to a one-harmonic Fourier Series (FS), obtain a chi-square value. Fit your har-
monic to a second order FS and determine the chi-square value. Test for signifi-
cance of improvement in the fit (F test). Continue until you find significant 
improvement. Start the process over. Do not fit to a higher number of harmonics 
unless you observe significant improvements in the fit. Once you obtain your FS, 
square each amplitude component and plot a power spectrum.

 4. Plot Y(t + 1) vs. Y(t) along the whole time series. The resulting iterated map 
gives the Transition Function. If the process is random, a random scatter of 
points will be observed. If the process is oscillatory in nature and stable, a limit 
cycle will be observed. If the process is a dampened oscillation, an inward 
spiral will be observed. If the process is chaotic, a strange attractor may be 
evident.

 5. Calculate a Correlation Dimension or Apparent Entropy. The nature of dynamic 
processes may be classified according to the values obtained. Most of these 
dimensionality calculations are “souped-up” serial correlation coefficients:

 
r t y t i t t i wherei ni = ( ) +( ) ( ) +( )( ) =S S Sy y y) / , , , ,.....,
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With a serial correlation coefficient you can generate a lagk function.
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Chapter 6
Biodiesel Synthesis via Transesterification 
of Soybean Oil with Methanol

6.1  The Need for Alternative Fuel Sources

Given the rapid rate of consumption of the world’s mineral oil resources, there is a 
great likelihood of an energy crisis in the future. Given the vital role that oil plays as 
an energy source in industrialized socieities, an alternative energy source is neces-
sary to ensure the continuation of civilization. Fuels derived from biological sources, 
or biofuels, are being explored for use as an alternative energy source. A wide variety 
of organic compounds are being explored for use as biofuels. Chief among these are 
ethanol and butanol. Ethanol can be produced by the ethanogenic fermentation of 
carbohydrates by yeasts (Saccharomyces) and the bacteria Zymomonas mobilis. 
Butanol is produced by the Weizman process wherein sugar substrates are fermented 
by anaerobic Clostridium acetobutylicum to produce butanol and acetone.

6.2  Biodiesel

The idea of using biomaterials as a fuel source is not a recent idea. Over a century 
ago, Rudolf Diesel, the inventor of the diesel engine, tested vegetable oil as a fuel for 
his engine. Biological materials used as fuel for diesel engines is called biodiesel. 
The introduction of cheap petroleum sources eclipsed the use of vegetable oils as a 
fuel source. Ever since, vegetable oils have only been used during fuel shortages. It 
must also be noted that biodiesel need not necessarily be produced from vegetable 
oil sources alone. Animal fats, single-cell oils (oils from microorganisms), terpenes 
and latexes can also be used to produce biodiesel. However, for the remainder of this 
discussion, the term “biodiesel” shall refer specifically to biodiesel made from veg-
etable oil sources. Biodiesel need not be made from high- quality virgin oil. Biodiesel 
made from fresh vegetable oil is relatively expensive. Used cooking oils can be used 
as the reaction substrate although the high free fatty acid and moisture content of 
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such oils present technological challenges that must be first overcome before the use 
of waste frying oil to produce biodiesel can be realized.

Biodiesel has several advantages over conventional diesel fuel or petrodiesel. First 
and foremost, it is a renewable energy source. It can be made from readily available 
raw materials which can be agriculturally grown. It has the image of being more envi-
ronmentally friendly (low emission profiles). The heat content of biodiesel is also simi-
lar to that of petrodiesel. The long chain fatty acid moeity of biodiesel is chemically 
similar to the long-chain hydrocarbons typical of petrodiesel. Biodiesel contains 
approximately 80% of the heat content of diesel fuel from petroleum sources. Other 
advantages include non-flammability and biodegradability. Existing engines can also 
be made compatible with biodiesel without having to undergo major modifications.

Several challenges need to be overcome before triglyceride-based fuels can be 
economically used. Vegetable oils can be very viscous, particularly if they are not 
degummed. Their high viscosity causes them to block fuel injector lines in diesel 
engines. This can result in the build-up of carbon deposits (coking) during combus-
tion. High viscosity along with low volatility makes it difficult to introduce the fuel 
into the combustion chamber as a fine mist, especially in cold weather. Engine lubri-
cating oils contaminated by vegetable oil can also thicken and gel, requiring fre-
quent replacement of engine lubricant. Polyunsaturated fatty acids can also 
polymerize and gel at high operating temperatures or during prolonged storage. 
These problems are often manifest only when the engine has been running on veg-
etable oils for an extended period of time. In many cases, running diesel engines on 
biodiesel for short periods of time do not lead to any adverse effects.

6.3  Biodiesel Production

6.3.1  Blending

The simplest and most crude form of biodiesel is a mixture of vegetable oils and conven-
tional diesel fuel. The use of such mixtures in diesel engines was pioneered by the 
Caterpillar company in the 1980’s in cooperation with the Brazilian government. 
Research carried out on triglyceride-diesel blends found that blends containing a high 
proportion of unmodified vegetable oils were simply not practical. 20% vegetable oil + 
80% diesel fuel was successfully used as a fuel and some experiments were able to sat-
isfactorily use a 50:50 ratio. Despite this, unmodified vegetable oils presented problems 
in the form of an increase in viscosity as a higher proporation of vegetable oils was used.

6.3.2  Derivatization

The viscosity increase can be ameliorated by derivatizing the vegetable oil to make 
it more compatible with existing engines. Most of these derivatization processes 
result in the chemical transformation of the oil but some processes such as 
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microemulsification, do not result in chemical changes. Biodiesel microemulsions 
of vegetable oil can be formed with organic solvents such as methanol, ethanol and 
1-butanol. Microemulsions are colloidal dispersions of fluid microstructures with 
diameters ranging from 10 to 100 nm.

Microemulsions are formed spontaneously by mixing two normally immiscible flu-
ids along with a surfactant. Microemulsions, unlike ordinary emulsions, do not need to 
be sheared to be formed. Microemulsification was found to lower the viscosity, improv-
ing the spray characteristics and injection of fuel into the combustion chamber.

6.3.3  Pyrolysis

Biodiesel can also be produced from the process of pyrolysis or thermal cracking. 
Pyrolysis is the conversion of one substance into another by means of heat, with or with-
out a catalyst. Pyrolysis is different from combustion in that it is conducted in the 
absence of oxygen while oxygen is a necessary prerequisite for combustion. In the pyro-
lytic production of biodiesel (or rather conventional diesel from biological sources), oils 
are pyrolyzed to form hydrocarbons from vegetable oils. The reaction usually yields 
shorter chain hydrocarbons characteristic of gasoline (octane) instead of long chain 
hydrocarbons that comprise diesel. Pyrolysis often results in the formation of a wide 
variety of products, making it difficult to characterize the reaction throroughly. Research 
on the thermal cracking of several vegetable oils concluded that it was possible to pro-
duce hydrocarbon-rich fractions. However, the capital investment for pyrolytic equip-
ment is relatively high even for moderate outputs. Fuels made from pyrolytic cracking 
contain a high amount of un-oxygenated hydrocarbons. As well, fuels made via pyro-
lytic cracking have a relatively high particulate emission profile. Fuels made from pyro-
lytic reactions are non-oxygenated, that is, they do not contain any oxygen in their 
chemical structures. This is a consequence of performing the pyrolytic reaction at anaer-
obic conditions. The oxygen content of a fuel influences its particulate emission profile. 
An oxygenated fuel is believed to result in a more complete combustion than non-oxy-
genated fuels. Incomplete combustion of fuel (usually stemming from a lack of oxygen 
during combustion) leads to the formation of particulates (soot) and carbon monoxide. 
These are major air pollutants. Thus, fuels made from pyrolytic cracking are viewed as 
less environmentally friendly than the oxygenated biodiesel. A fuel can be oxygenated 
by adding combustible oxygen-containing additives. Petrodiesel is, in fact, commonly 
oxygenated by adding alcohols (ethanol, methanol and butanol) or ethers (methyl tert-
butyl ether and ethyl tertiary butyl ether) to give a “cleaner” fuel.

6.3.4  Transesterification

The most commonly employed method of biodiesel production is transesterification. 
It is currently the process of choice for producing biodiesel from vegetable oils. 
Transesterification, or more specifically alcoholysis, or methanolysis if methanol is 
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used, is the reaction by which the fatty acid moiety of a triglyceride is removed and 
esterified to an alcohol to produce fatty acid esters and glycerol. The reaction is con-
ducted in the presence of a catalyst, which may be a chemical or an enzyme. This 
reaction is shown in Fig. 6.1. The reaction mechanism by which Fatty Acid Methyl 
Esters (FAMEs) products are formed is called the carbonyl addition scheme. In this 
scheme, the negative oxygen moeity of methoxide (or a similar catalyst) conducts a 
nucleophilic attack on the carbonyl carbon of a triglyceride to form a tetrahedral 
intermediate. This reaction intermediate decomposes to yield a glycerylate ion and a 
FAME. The glycerylate ion reacts with methanol or any alcohol to regenerate the 
basic catalyst.

Biodiesel made of these fatty acid esters is non-toxic and biodegradable. This type 
of fuel also does not contain sulfur, reducing pollution from combustion processes. 
Moreover, the glycerol produced can be recovered and sold to defray the high cost of 
tranesterification. Methanol is often used as the alcohol of choice, due to its low cost 
and chemical advantages. It is the most polar primary alcohol. Basic catalysts such as 
NaOH are easily dissolved in methanol. Ethanol can also be used. The most commonly 
studied vegetable oils for their potential to be used as biodiesel stocks are soybean oil, 
sunflower oil and rapeseed oil. These are the most commonly produced vegetable oils 
in countries pioneering the use of biodiesel. The oils that can be used are by no means 
limited to these. Transesterification produces a mixture of esters, mono- and diglycer-
ides (resulting from incomplete reaction), alcohol, glycerol and catalyst. This reaction 
end product mixture must be purified to obtain mostly fatty acid esters, the primary 
component of biodiesel. Purification of the biodiesel can be carried out using a variety 
of methods ranging from simple distillation to ion exchange chromatography.

Chemical transesterification is usually carried out in the presence of a basic or 
acid catalyst with an excess of alcohol. The excess of alcohol is necessary since the 
transesterification reaction is reversible. Excess alcohol (>3:1 alcohol:triglyceride) 
ensures that the reverse reaction is limited compared to the forward reaction. A high 
molar ratio of alcohol to triglycerides is necessary to ensure a high reaction yield.

Basic catalysts are preferred over acid catalysts in the commercial production of 
biodiesel. Acid catalysis requires a higher molar ratio of alcohol to triglyceride, usu-
ally in the order of 15:1–30:1. Basic catalysts only require molar ratios of 3:1–6:1. 
Commonly-used basic catalysts include KOH, NaOH, carbonates and alkoxides 
such as methoxide and ethoxide. Note that methoxide and ethoxide are generated 
when the hydroxyl group in the corresponding alcohol (methanol or ethanol) is 
deprotonated. This deprotonation reaction inevitably results in the formation of 
minute amounts of moisture, which may hinder later stages of the reaction. Because 

Fig. 6.1 A reaction for the transesterification of a triacylglycerol to yield a fatty acid methyl ester 
(FAME) and diacylglycerol
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of this, it is preferable to use straight methoxide or ethoxide as direct addition of 
these catalysts (in powder form) do not generate moisture. However, alkoxides are 
relatively expensive compared to strong bases. Large-scale transesterification typi-
cally uses strong base.

Reactions catalyzed with basic catalysts can proceed at a rate 4000 times greater 
than that of reactions with acid catalysts. However, several challenges need to be over-
come in order to use basic catalysts efficiently. Basic catalysts are very sensitive to the 
presence of water and free fatty acids. The presence of even small amounts of water 
can lead to saponification, an undesirable side reaction. Saponification produces soap, 
which increases the viscosity of the fuel and results in product losses. The formation 
of soap gels complicates the recovery of the by-product glycerol as well as that of the 
fatty acid methyl esters. It also consumes the basic catalyst, reducing the rate and yield 
of the reaction. In oils with high moisture content and free fatty acids, an acid catalyst 
is often employed. The use of basic catalysts is also energy intensive and can produce 
a substantial amount of high-pH waste products. Alternatively, triglycerides in the oil 
can be first saponified. The free fatty acid solution can then be purified (H2O removed) 
and then transesterified with an acid catalyst.

Numerous studies have been published on the kinetics of the transesterification 
reaction. These studied various parameters that affect the transesterification reaction:

(1) molar ratio of alcohol to vegetable oil (“concentration”), (2) type of vegetable 
oil (rapeseed oil, soybean oil, waste frying oil), (3) catalyst type (acid, base, enzyme 
or none), (4) temperature, (5) impurities (presence of free fatty acids, moisture), 
(6) mixing intensity.

6.4  A Kinetic Model of Chemical Transesterification

Complete transesterification of triglycerides to yield fatty acid methyl esters con-
sists of three sequential, step-wise and reversible reactions. Triglycerides are first 
converted to diglycerides, which are then converted to monoglycerides, which are 
eventually converted to glycerol and FAMEs. A FAME is produced at each step. 
Completion of the reaction consumes a triglyceride and three molecules of alcohol 
to produce glycerol and three molecules of FAME. The equilibrium of the reaction 
tends towards the production of FAMEs and glycerol.

The experimental model assumes that the oil contains only triglycerides and that 
all triglyceride molecule species react at the same rate. The model also assumes that 
there is no production of soap during the course of the reaction.

Note that TG = Triglyceride, DG = Diglyceride, MG = Monoglyceride, E = Fatty 
acid ester, A = Alcohol and GL = Glycerol. Transesterification consists of the fol-
lowing elementary reactions:

 
TG DG+ +A E

k

k

2

1
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DG MG+ +A E

k

k

4

3

 

 
MG GL+ +A E

k

k

6

5

 

The overall stoichiometry of the reaction can be written as:

 TG CH OH GL+ +3 33  E  

The following differential equations can be written to describe the rate of the 
reaction:

 

d

dt
k k

TG
TG DG

[ ]
= - [ ][ ]+ [ ][ ]1 2A E

 
(6.1)

 

d

dt
k k k k

DG
TG DG DG MG

[ ]
= [ ][ ]- [ ][ ]- [ ][ ]+ [ ][ ]1 2 3 4A E A E

 
(6.2)

 

d

dt
k k k k

MG
DG MG MG GL

[ ]
= [ ][ ]- [ ][ ]- [ ][ ]+ [ ][ ]3 4 5 6A E A E

 
(6.3)

d

dt
k k k k

k k

E
A E A E

A

[ ]
= [ ][ ]- [ ][ ]+ [ ][ ]- [ ][ ]
+ [ ][ ]-

1 2 3 4

5

TG DG DG MG

MG 66 GL[ ][ ]E  (6.4)

d

dt

d

dt

A E[ ]
= -

[ ]
 (6.5)

 

d

dt
k k

GL
MG GL

[ ]
= [ ][ ]- [ ][ ]5 6A E

 
(6.6)

where [A] and [E] denote alcohol and fatty acid methyl ester concentrations. The 
data was simultaneously fitted to the numerical approximations of the given differ-
ential equations. The criterion for goodness-of-fit was the minimized sum of 
squares. It is important to note here that certain fitting programs allow you to work 
directly from the differential equations and not the analytical solutions, which can 
be very convenient. Moreover, some programs also allow for multiple nonlinear 
regression, in which all equations are fitted simultaneously, obtaining thus a global 
set of parameter estimates based on the fits of the equations to multiple data sets. 
The parameter estimates obtained this way are more accurate and robust, but you 
need greater computational power and more sophisticated programs.

6 Biodiesel Synthesis via Transesterification of Soybean Oil with Methanol



109

6.4.1  Relating Kinetic Data to Reaction Mechanism

Figure 6.2 shows the concentration of methyl esters over the course of the reaction 
at 50 °C at different mixing intensities. Alcohol is normally immiscible with tri-
glycerides, resulting in the presence of two phases, an alcohol phase and a triglyc-
eride phase. This implies that the reaction is controlled by the diffusion of reactants 
in one phase to the other. This limited the rate of the reaction as can be seen by the 
long lag time observed in the curve describing transesterification at a mixing inten-
sity of 150 rpm. The reaction accelerates, however, once the lag time is past. A 
probable explanation for this is that FAMEs served to “emulsify” alcohol with the 
vegetable oil.

Increasing temperature decreases the lag time observed in the mass transfer lim-
ited phase. Figure 6.3 shows the effect of temperature on the reaction at 150 rpm. 
At 150  rpm, the difference in lag time between the reaction at 30 and 70  °C is 
approximately 35 min.

Fig. 6.2 The production of 
fatty acid methyl esters at 
50 °C over time as 
influenced by three mixing 
intensities, 150 rpm, 
300 rpm and 600 rpm

Fig. 6.3 The effect of 
different temperatures on 
the transesterification 
reaction conducted with a 
mixing intensity of 
150 rpm

6.4 A Kinetic Model of Chemical Transesterification
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The effect of agitation speed on the rate of the reaction can be easily visualized 
by comparing Figs. 6.3 and 6.4, which displays the course of different 
 tranesterification reactions at 300 rpm. The data shows the effect of mixing on the 
reaction rate. At 30 °C and 150 rpm, the lag time is approximately 55 min. In con-
trast, at 30 °C and 300 rpm, the lag time is less than 10 min. This trend is also evi-
dent at other reaction temperatures, with the mixing rate having less of an effect at 
higher temperatures. For example, at 150 rpm, the lag time for the reaction at 70 °C 
is approximately 20 min. The lag time at 300 rpm is approximately 2 min. The dif-
ference between the delay time at 70 °C is roughly 18 min. Contrast this to the dif-
ference of nearly 45 min for the reaction at 30 °C.

Table 6.1 gives the rate constants alongside the activation energy of each reaction 
step and its corresponding reverse reaction. It can be seen that a reaction with a 
higher activation energy has a lower rate constant, indicating a slower reaction. This 
is in agreement with the Arrhenius relationship. The data indicates that for the con-
version of triglycerides to diglycerides, the magnitude of the forward reaction rate 
constant is less than that of the reverse reaction’s. Similarly, the conversion of 
diglyceride to monoglyceride is less kinetically favorable than the reverse reaction. 
However, the data also shows that the last reaction step, the conversion of mono-
glyceride to glycerol is kinetically favorable as evidenced by the lower activation 
energy as well as a higher reaction rate constant.

Fig. 6.4 The progress of 
the transesterification 
reaction at different 
temperatures and a mixing 
intensity of 300 rpm

Table 6.1. Energy of activation (kJ/mol) and rate constants (1/(M alcohol)·s) of different reactions 
at 300 rpm

Reaction
Activation energy
kJ/mol Rate constant (min–1)

TG → DG 55.00 0.05
DG → TG 41.56 0.110
DG → MG 83.09 0.215
MG → DG 61.25 1.228
MG → GL 26.87 0.242
GL → MG 40.12 0.007

6 Biodiesel Synthesis via Transesterification of Soybean Oil with Methanol
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If each step is assumed to be an elementary reaction step, thermodynamic informa-
tion on the free energy (ΔG) released or required can be calculated from the activation 
energies. The free energy change of a reaction in solution can be approximated by sub-
stracting the activation energy of the reverse reaction from the activation energy of the 
forward reaction. A reaction with an activation energy that is higher than the activation 
energy of the reverse reaction will give a positive ΔG, indicating an exergonic reaction 
(Fig. 6.5a). Similarly, a reaction with a lower activation energy than that of the reverse 
reaction is exergonic (Fig. 6.5b). Examining the data, it can be seen that the conversion 
of triglyceride to diglyceride and of diglyceride to monoglyceride are endergonic reac-
tions. The free energy change, ΔG, of the TG → DG reaction is 13.44 kJ·mol−1. Similarly 
the free energy change of the DG → MG reaction is 21.84 kJ·mol−1. The conversion of 
monoglyceride to glycerol is an exergonic reaction as can be surmised from its negative 
free energy change of −13.25 kJ·mol−1. These calculations indicate that the last step of 
the reaction is essentially irreversible whereas the first two are reversible.

This example has shown how kinetic modelling can be a very useful tool in the 
study of processes, and how detailed consideration of the value of the reaction 
parameters can be used to propose mechanisms for the reaction and/or to better 
understand it.

Fig. 6.5 The free 
energy – reaction progress 
plots of an exergonic (a) 
and endergonic (b) 
reaction

6.4 A Kinetic Model of Chemical Transesterification



112

Bibliography

 1. Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. J Am Oil Chem Soc 
74:1457–1463

 2. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15
 3. Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 

4:111–133
 4. Knothe G, Gerpen JV, Krahl J (2005) The biodiesel handbook. AOCS Press, Urbana

6 Biodiesel Synthesis via Transesterification of Soybean Oil with Methanol



113© Springer International Publishing AG 2017 
A.G. Marangoni, Kinetic Analysis of Food Systems, 
DOI 10.1007/978-3-319-51292-1_7

Chapter 7
Kinetics of Crystal Growth Using the Avrami 
Model and the Chemical Potential Approach

7.1  Introduction

The Avrami model of crystallization was proposed by the scientist Melvin Avrami 
in the early 1940s. It was originally used to quantify the liquid-solid phase transi-
tion kinetics in metals. Its principles have been since expanded to model other 
systems including fat and starch crystallization. The utility of the model stems 
from its ability to provide indications on the nature of the crystal growth process. 
Applied to the study of fat crystallization, the Avrami equation has the following 
form,

 

SFC

SFCmax

= - -1 e ktn

 
(7.1)

where n is the Avrami exponent (dimensionless), k is the Avrami constant, SFC 
corresponds to the solid fat content at time t, and SFCmax corresponds to the maxi-
mum SFC achieved at a given temperature.

The Avrami model is the most commonly used model in the study of fat crys-
tallization. The equation describes an event in which there is an initial lag- period, 
where crystallization occurs very slowly, followed by a subsequent rapid increase 
in crystal mass. This model takes into account that crystallization occurs by both 
nucleation and crystal growth. The model makes several assumptions such as iso-
thermal conditions, random nucleation in space, and linear growth kinetics 
wherein the growth rate of the new phase depends only on temperature and not on 
time. The density of growing bodies is also assumed to remain constant.

The Avrami parameters provide information on the nature of the crystallization 
process. The constant, k, is the crystallization rate constant. It is mainly a function 
of the crystallization temperature and generally obeys an Arrhenius-type  temperature 
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dependency. The crystallization rate constant takes both nucleation rates and crystal 

growth rates into account. Half-times of crystallization, t1
2

, reflect the magnitudes 

of k and n according to:
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k

n

1

2

1

2
= æ
è
ç

ö
ø
÷

ln

 
(7.2)

The Avrami exponent, n, sometimes referred to as the index of crystallization, 
indicates the crystal growth mechanism. This parameter is a combined function of 
the time dependence of nucleation and the number of dimensions in which growth 
takes place. Nucleation is either instantaneous, with nuclei appearing all at once 
early on in the process, or sporadic, with the number of nuclei increasing linearly 
with time. Growth either occurs as rods, discs, or spheres in one, two, or three 
dimensions, respectively. Table 7.1 shows the value of the Avrami exponent, n, 
expected for various types of nucleation and growth.

Although n should be an integer, fractional values are usually obtained, even in 
cases where the model fits the data quite well. Deviations from integer values for n 
have been explained as simultaneous development of two (or more) types of crys-
tals, or similar crystals from different types of nuclei (sporadic vs. instantaneous). 
Deviations may also occur in cases where spherical crystals arise from initially rod- 
or plate-like nuclei, such as is the case for spherulites.

Following the philosophy of Christian, specific Avrami exponents can be 
associated with certain growth modes determined by microscopy. For example, 
milk fat crystallized at a high degree of supercooling will have a lower activation 
energy for the nucleation process. Since the kinetic barrier is lower, a high rate 
of nucleation will be observed. This, in turn, will lead to the formation of a large 
number of nuclei at the onset of the crystallization process (instantaneous nucle-
ation). The rate of crystal growth would also be quite high. This in turn would 
lead to a more one-dimensional growth. The end result would be a granular 
microstructure composed of a large number of small crystals as can be seen in 
Fig. 7.1.

On the other hand, fats crystallized at low degrees of undercooling will have a 
higher free energy of nucleation and a lower rate of nucleation. A smaller number of 

Table 7.1 Values for the Avrami exponent, n, for different types of nucleation and growth

N Type of crystal growth and nucleation expected

3 + 1 = 4 3D growth from sporadic nuclei (spheroids)
3 + 0 = 3 3D growth from instantaneous nuclei (spheroids)
2 + 1 = 3 2D growth from sporadic nuclei (discs, plates)
2 + 0 = 2 2D growth from instantaneous nuclei (discs, plates)
1 + 1 = 2 1D growth from sporadic nuclei (needles, rods)
1 + 0 = 1 1D growth from instantaneous nuclei (needles, rods)

Adapted from Sharples (1966)

7 Kinetics of Crystal Growth Using the Avrami Model
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nuclei will be formed, possibly in a sporadic fashion (sporadic nucleation). The rate 
of crystal growth would also be lower. This in turn would lead to a growth mode that 
is more multi-dimensional. The end result would be a “clustered” microstructure 
composed of a small number of large crystals as shown in Fig. 7.2.

7.2  Derivation of the Avrami Model

The starting point for the derivation of the Avrami model is the empirical chemical 
diffusion equation also called Fick’s first law in one dimension.

 

¶
¶
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ø
÷
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t
KA

C

x

D
D  

(7.3)

Fig. 7.1 Microstructure of 
cocoa butter after being 
crystallized isothermally at 
5 °C for 7 days. The 
Avrami index for the 
crystallization process 
leading to this 
microstructure was n = 1

Fig. 7.2 Microstructure of 
cocoa butter after being 
crystallized isothermally at 
20 °C for 21 days. The 
Avrami index for the 
crystallization process 
leading to this 
microstructure was n = 4

7.2 Derivation of the Avrami Model
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Fick’s first law of diffusion describes the transport of mass per unit area, ¶
¶
Q

t
, 

across a concentration difference (mol·m3), ΔC. Since the rate of increase in mass 

of a crystal 
¶
¶
m

t
cæ

è
ç

ö
ø
÷  is a function of the amount of mass that diffuses to the crystal 

surface, we can rewrite Eq. 7.3 as the following:

 

¶
¶

=
¶
¶

m

t

Q

t
MWc

 
(7.4)

The growth of a single crystal is proportional to the surface area Ag (in m2) of the 
crystal nucleus and the concentration difference, c − c* (in kg·m−3), between the 
supersaturated material and the equilibrium concentration of the same material at a 
specific temperature:

 

¶
¶

µ -( )m

t
A c cc
g *

 
(7.5)

A rate constant for single crystal growth kg (in m·s−1) can be written for this pro-
portionality to obtain the following:

 

¶
¶

= -( )m

t
k A c cc
g g *

 
(7.6)

The crystallization rate constant kg is a function of the mass transfer/diffusion 
coefficient K (in m2·s−1), the surface reaction rate constant κ (in m2·s−1) and the dis-
tance/thickness Δx (in m) through which diffusion takes place. The Δx term is also 
called the boundary layer. The dependence of the crystallization rate constant kg on 
these parameters is given in Eq. 7.7.

 
k
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k D  
(7.7)

The concentration difference c − c* (in terms of kg·m−3) can be rewritten as the 
concentration gradient in moles per m−3 (ΔC) multiplied by the molecular weight 
MW (in kg·mol−1):

 
DC MW c c( ) = -( )*  

(7.8)

The rate constant for single crystal growth (kg) accounts for the possibility of 
diffusion control at small relative velocities and surface reaction control at high 
relative velocities. The diffusion coefficient (K) varies with solution properties like 
viscosity and agitation, but the surface reaction rate constant (κ) does not. As well, 
K varies little with temperature, while κ can change dramatically on cooling.
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The rate of total increase in solids in the system 
¶
¶
m

t
sæ

è
ç

ö
ø
÷  is the product of the 

increase in mass of a single crystal, kgAg(c − c*), times the number of growing crys-
tals in the system, Nc:
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(7.9)

The change in concentration, c − c* (in kg·m3), is simply the change in mass 
divided by the total volume:
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By substituting Eq. 7.10 into Eq. 7.9, the following is obtained:
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The crystallite density ρc (crystals per m−3) is expressed as the number of crystals 
(Nc) per unit volume (VT) and is defined as:
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which can be re-arranged to give ρcVT = Nc.
After substitution of Eq. 7.12 into Eq. 7.11 and re-arrangement, the following 

expression is obtained:
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(7.13)

This is the basic equation that can be used to derive the final form of the Avrami 
equation for different growth geometries and types of nucleation (i.e., different 
Avrami exponents).

7.3  Spherical Growth with Instantaneous Nucleation

The surface area Ag (m2) of a spherical crystal involved in crystal growth is

 
A rg = 4 2p

 
(7.14)
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where r is the crystal radius (m). The linear growth rate of the crystal radius in 
time is expressed as:

 r gt=  (7.15)

Introducing Eq. 7.14 and Eq. 7.15 into Eq. 7.13 results in:
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(7.16)

Integration of the above expression for the boundary conditions ms = 0 at t = 0, 
and ms at t,
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results in the equation
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This expression can be transformed and rearranged to:
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Moreover, the mass fraction 
m

m
s
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÷  can be expressed as the ratio of the solid fat 

content at a particular time SFC to the maximum solid fat content as t → ∞, SFCmax:
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Thus, the Avrami equation describing the growth of a spherical crystal under 
conditions of instantaneous nucleation can be expressed as:

 

SFC
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(7.21)

where
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(7.22)

7 Kinetics of Crystal Growth Using the Avrami Model



119

7.3.1  Spherical Growth with Sporadic Nucleation

The treatment starts with (Eq. 7.16), shown here again for the sake of clarity,
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For sporadic nucleation, the change in the number of nuclei as a function of time 
is given as:
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Introducing Eq. 7.23 into Eq. 7.16 results in:
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Integration of the above expression for the boundary conditions ms = 0 at t = 0, 
and ms at t,
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results in the expression:
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which can be transformed and rearranged to give:
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Thus, the Avrami equation describing the growth of a spherical crystal under 
conditions of sporadic nucleation can be expressed as
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(7.28)

where

 
k k jgA g= p 2

 
(7.29)
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7.3.2  Plate-Like Growth with Instantaneous Nucleation

Consider a rectangular plate growing in the X-Y plane, but not in the Z-plane. The 
area involved in crystal growth Ag is therefore:

 
A lhg = 4

 
(7.30)

where the dimension l is increasing linearly in time according to

 l gt=  (7.31)

Introducing Eqs. 7.30 and 7.31 into Eq. 7.16 with subsequent integration and 
rearrangement results in:
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where

 
k hk gA g c= 2 r

 
(7.33)

7.4  Plate-Like Growth with Sporadic Nucleation

For sporadic nucleation, the change in the number of nuclei as a function of time is 
given in Eq. 7.23, shown here again for the sake of clarity,
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Introducing Eq. 7.23 into Eq. 7.16 along with integration and rearrangement 
results in:
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Thus, the Avrami equation describing the growth of a plate-like crystal in 
2-dimensions under conditions of sporadic nucleation can be expressed as
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where

 
k hk jgA g=

4

3  
(7.35)

7.4.1  Rod-Like Growth with Instantaneous Nucleation

Consider a cylinder growing in length, but not in cross-section. The area involved in 
crystal growth is the area of the base ends:

 
A rg = 2 2p

 
(7.36)

Introducing Eq. 7.36 into Eq. 7.16 along with integration and rearrangement 
results in:
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where

 
k r kA g c= 2 2p r

 
(7.38)

7.4.2  Rod-Like Growth with Sporadic Nucleation

For sporadic nucleation, the change in the number of nuclei as a function of time is 
given by Eq. 7.23, shown here again for the sake of clarity,
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Introducing Eqns. 7.23 and 7.36 into Eq. 7.16, integration and rearrangement 
results in
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where

 
k r k jA g= p 2

 
(7.40)
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7.5  Transformation and Use of the Model in Experiments

SFC vs. time data can be fitted to the Avrami model in its nonlinear form (Eq. 7.1), 
using standard curve-fitting (nonlinear regression) routines available in most mod-
ern data analysis programs, with estimates of kA and n being obtained. Model fits to 
experimental data and estimates of the kinetic parameters are shown in Fig. 7.3. 
This data set corresponds to the isothermal crystallization of palm kernel oil (PKO) 
in the presence or absence of different amounts of a “stabilizer”, a blend of fully 
hydrogenated high-erucic acid rapeseed oil and soybean oil. According to this anal-
ysis, PKO crystallization is strongly affected by intermediate levels of stabilizer 
addition (0.2%), which are reversed upon addition of higher amounts (0.5%). The 
Avrami index suggests possibly a plate-like growth with sporadic nucleation or a 
spherical growth with instantaneous nucleation for PKO without stabilizer and 
0.5% stabilizer. Addition of 0.2% stabilizer slows down the reaction considerably 
and increases the Avrami index to about n = 5. There is no interpretation for n > 4 in 
the Avrami model, and one must be very careful with this since the Avrami index 
can be affected by non-crystallization-related factors such as heat and mass transfer 
limitations and crystallizer geometry, resulting in a long lag time prior to com-
mencement of crystallization.

Fig. 7.3 Change in solid fat content as a function of time for the isothermal crystallization of palm 
kernel oil (PKO) in the presence or absence of a stabilizer composed of fully hydrogenated high 
erucic acid rapeseed oil and soybean oil. Data fits to the Avrami model and parameter estimates are 
shown

7 Kinetics of Crystal Growth Using the Avrami Model
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As stated above, the Avrami model does not implicitly take induction times into 
consideration. However, if induction times (to) are somehow independently deter-
mined, these can be incorporated into the Avrami model:
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(7.41)

This is particularly important point since a process with an actual induction time, 
as evidenced in the Fig. 7.3 for PKO 0.2%, cannot be properly modelled using the 
Avrami model. This delay could be, for example, due to slow cooling effects and poor 
mixing. In the experience of the author, Avrami exponents higher than four are most 
probably artefactual and the model should then include such induction time. However, 
such induction time should be determined independently since estimating it as a fitting 
parameter upon curve fitting will most probably introduce large errors in the overall 
fit of the model to the data. The induction time needs to be fixed as a constant.

If nonlinear regression is not available to the researcher, it is sometimes possible 
to linearize the model and use linear regression instead using a variety of more widely 
available programs. We outline this procedure below and provide an example.

The Avrami model has the general form
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This model can be linearized by a double logarithmic transformation to give:
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Thus, a plot of ln ln
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SFC
 vs. ln (t) should yield a straight line with a 

slope n and a y-intercept of ln(kA). The same PKO data shown in Fig. 7.3 is shown in 
its “linearized” form in Fig. 7.4. We would expect the linearization to yield a straight 
line when plotted. However, the transformed points do not yield a straight line! 
Interestingly, for PKO with 0.2 and 0.5% stabilizer added, linear regions can be dis-
cerned. The situation for PKO with no stabilizer (0%) is more complicated. Notice 
that the estimates for the Avrami index and Avrami constant are not equivalent to 
those obtained by nonlinear regression. A lack of a linear region may be indicative of 
a variable index and constant, or some other unforeseen factor. It is the experience of 
the author that regardless of the fact that linearization of crystallization data is widely 
used, it is best to stick to nonlinear regression, which uses the entire data set. Another 

7.5 Transformation and Use of the Model in Experiments
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Fig. 7.4 Linearization of 
the SFC-temperature data 
presented in Fig. 7.3 for 
each treatment in each 
separate panel for 
determination of the 
Avrami kinetic parameters 
by linear regression a 
linear region within the 
transformed data. 
Estimates of the kinetic 
parameters form the linear 
regression fits indicated in 
the data are shown
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limitation of linearization is that SFCmax must be chosen initially in order to normal-
ize the data, and many times this SFCmax does not correspond to the limiting value at 
time approaches infinity. Most the time, the last value in the data set is taken as the 
SFCmax, which may not be correct.

Another variation on the Avrami models arises because multiple-step growth 
curves are observed in crystallization experiments. Multiple steps may be due to 
fractionation or polymorphic transformations taking place during crystallization. 
For example, the SFC-time profile of milkfat being crystallized isothermally at 
10  °C is given in Fig. 7.5. The entire process could be modeled using a multi- 
component summation of the Avrami model of the form:
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where SFCo is the initial SFC, usually zero. The parameter estimates are shown 
in Fig. 7.5 and characterize the two steps involved in the step-wise solidification of 
milkfat under static conditions at this temperature.

If the multi-component model is not used and the data is instead fitted as a single 
component Avrami equation (Eq. 7.1), a different set of kinetic parameters is obtained 
as can be seen from Fig. 7.5. The single-component analysis can be taken to represent 
the average of crystallization events and is not representative of what is going on.

7.6  An Alternative to the Avrami Model: the Chemical 
Potential Approach

In this chapter I would like to present an alternative, and probably more proper, way 
to characterize the kinetics of crystallizations of crystalline materials, fats in particu-
lar. The Avrami model is a very powerful tool to characterize the kinetics of crystal-
lization. However, as we will see below, the model is not based on a “driving force” 

Fig. 7.5 Evolution of the 
solid fat content (SFC) in 
time during the isothermal 
crystallization of milkfat at 
10 °C. Shown here are 
single-step (dashed line) 
and multiple step (solid 
line) Avrami model fits to 
the data. Estimates of the 
kinetic parameters for each 
fit are indicated as well
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for crystallization and the growth curves obtained can be riddled with artifacts related 
to polymorphic transformations during the course of crystal growth, and heat-trans-
fer limitations during cooling. Moreover, the model is supposed to be used for one-
component systems, but is extensively used for multicomponent systems. These 
artifacts will strongly influence the values obtained for the Avrami index (n) and 
Avrami constant (k). Another annoying aspect of the Avrami model is that the rate 
constants are in units of t−n, which makes is very difficult to compare even between 
treatments of the same sample, and makes the study of the temperature dependence 
of rate constants for determination of the energy of activation basically impossible.

Here I will analyze the crystallization behavior of three systems, namely 20% 
fully hydrogenated soybean oil in soybean oil (FHSO-SO), 40% palm stearin in 
soybean oil (PS-PO) and 20% fully hydrogenated soybean oil in high oleic sun-
flower oil (FHSO-HOSO). The melting and crystallization temperatures of these 
systems are given in Table 7.2

Take for example, Figs. 7.6, 7.7 and 7.8. The first two systems seem to be crystal-
lizing in a fashion that would allow their growth curves to be analyzed using the 
Avrami model. Indeed, as indicated in the figures, fits of the model to the data were 
excellent and parameters estimated successfully. Even visual inspection of the fitted 
lines to the experimental points seems outstanding. However, some peculiarities can 
also be observed. For Fig. 7.6, it would seem that the fully hydrogenated soybean oil 
in soybean oil accumulates solids initially very rapidly, which are then slowly 
“melted” away in time, i.e., the SFC-time curve has a maximum. Notice the discrep-
ancies in the maximum SFC predicted by the Avrami model and the experimentally 
determined one. This was most probably due to the crystallization of a metastable 
form and slow transformation to a more stable crystal form, along with some  melting 
of the crystals. This was never considered in the Avrami model, and thus we are left 
with no explanation of why or how this is taking place. To make matters worse, if we 
had not measured the SFC for a very long time, we would have never been aware of 
this peculiar behavior. The FHSO-SO samples crystallized in the water bath peak at 
~20% solids and decreased all the way to ~16% over 3000 min, while the SFC of 
samples crystallized in the incubator peaked at ~18% and decreased to ~15% over 
the 3000 min. The Avrami fits were done for only the first 30 min of crystallization! 
For palm stearin in soybean oil the situation was better. As shown in Fig. 7.7, the 

Table 7.2 Crystallization and melting temperatures (onset and peak) for 40/60% PS-SO, 20/80% 
FHSO-SO and 20/80% FHSO-HOSFO oil blends determined by differential scanning calorimetry 
using a rate of 5 °C/min

System

Melting 
temperature 
(Onset)

Crystallization 
temperature 
(Onset)

Melting 
temperature 
(peak)

Crystallization 
temperature 
(peak)

40/60 PS-SO 44.8 ± 6.4 19.6 ± 0.3 50.6 ± 0.1 18.4 ± 0.1
20/80 FHSO-SO 54.8± 3.5 39.1 ± 0.2 60.9 ± 0.6 37.1 ± 0.6
20/80 FHSO- HOSFO 54.2± 2.2 37.4 ± 0.1 54.5 ± 1.6 36.4 ± 0.1

Values represent averages and standard deviations of three determinations

7 Kinetics of Crystal Growth Using the Avrami Model
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Fig. 7.6 Evolution of the solid fat content (SFC) in time during the crystallization of 20% fully 
hydrogenated soybean oil in soybean oil either in an incubator (INC) or in a waterbath (WB) set at 
30  °C.  This translated to approximately ~5  °C/min (INC) or ~30  °C/min (WB) cooling rates. 
Indicated at the end of the profiles shown are the maximum equilibrium SFC values determined 
experimentally. In the boxes we present parameter estimates obtained from the fits of the data to 
the Avrami model, and next to the box, the r2 values indicating the goodness of fit 

Fig. 7.7 (a) Evolution of the solid fat content (SFC) in time during the crystallization of 40% palm 
stear in soybean oil either in an incubator (INC) or in a waterbath (WB) set at 20 °C. This translated 
to approximately ~5 °C/min (INC) or ~30 °C/min (WB) cooling rates. Indicated at the end of the 
profiles shown are the maximum equilibrium SFC values determined experimentally. In the boxes 
we present parameter estimates obtained from the fits of the data to the Avrami model, and next to 
the box, the r2 values indicating the goodness of fit

7.6 An Alternative to the Avrami Model: the Chemical Potential Approach
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model fit the data well, estimates were reasonable and there was not too much dis-
crepancy between maximum SFC values obtained experimentally and via model fits. 
For fully hydrogenated soybean oil in high oleic sunflower oil (Fig. 7.8), the situation 
was very different. This sample differed from FHSO-SO in two aspects, the oil was 
changed from soybean oil to high oleic sunflower oil (HOSO) and the  crystallization 
temperature was increased from 30 to 40  °C.  We determined SO viscosity to be 
42 mPa s at 30 °C, while HOSO viscosity was 35 mPa s at 40 °C. I am mentioning 
this here because the effects noticed when going form SO to HOSO are usually asso-
ciated with either more viscous crystallization media or lower temperatures, but here 
temperatures were higher and viscosity was lower. The unusual behavior observed 
was thus related to the nature of the HOSO oil itself. Figure 7.8 demonstrates further 
the nature of the problem. Notice how both the samples crystallized in the incubator 
and in the water bath go through a massive overshoot in solids’ accumulation, rela-
tive to the final SFC, followed by a marked decrease in time. The fits of the Avrami 
model to the data are visually poor, but still have a high r2 value! Notice also the 
small “step” in the data in the early stages of crystallization. Obviously, the Avrami 
model cannot account for this crystal transformation and just drives the fit through 
the average of the data. Nevertheless, some form of quantification of the kinetics of 
the process was achieved. It depends a bit on what the modeler wants to achieve. 
However, bear with me and let’s analyze this same data from a slightly different 
perspective.

The driving force for crystallization is the chemical potential difference between the 
crystallizing molecules in the solid state and in the liquid state. It can be understood 
best form a supersaturation argument. We have all prepared saturated sugar solutions at 
some point in our professional career. We can dissolve quite a bit of sugar in water until 

Fig. 7.8 Evolution of the solid fat content (SFC) in time during the crystallization of 20% fully 
hydrogenated soybean oil in high oleic sunflower oil, either in an incubator (INC) or in a waterbath 
(WB) set at 40 °C. This translated to approximately ~5 °C/min (INC) or ~30 °C/min (WB) cooling 
rates. Indicated at the end of the profiles shown are the maximum equilibrium SFC values deter-
mined experimentally. In the boxes we present parameter estimates obtained from the fits of the 
data to the Avrami model, and next to the box, the r2 values indicating the goodness of fit
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a specific temperature-dependent concentration, where the solution cannot take in any 
more solute, and the sugar precipitates out of solution. Let’s assume we make such 
sugar solution at 50 °C and manage to dissolve 260 g sugar in 100 ml of water. If we 
decrease the temperature to 5 °C, a lot of the sugar that was dissolved at 50 °C will 
precipitate out, since at 5 °C only 180 g of sugar can be dissolved in 100 ml of water. 
If we define the saturation concentration as c*, and the supersaturation concentration of 

the solution as c, we can define a supersaturation parameter, β, as b =
c

c*
. When we 

placed our hot sugar solution in the fridge, the supersaturation at that point was 1.44, 
with a ln β of 0.36. So, we refer to this solution as being “supersaturated”, and it defi-
nitely needs to lose some of its “energy” in the form of crystallization. This supersatu-
ration is the driving force for crystallization and can be defined in thermodynamic 
terms as the “chemical potential”, Δμ, with units of J/mol. The relationship between the 
supersaturation and the chemical potential is given by:

 Dm b= -RT ln  (7.45)

where R is the Universal Gas Constant (8.314 J mol−1 K−1) and T the absolute 
temperature (K).

Now, how do we determine the supersaturation for a crystallizing fat? That is the 
crux of the problem. In Eq. 7.46, I attempt this by defining the supersaturation of a 
crystallizing fat as:
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where c(T, t) is the concentration of the supersaturated solution at a specific tem-
perature and/or time, c*(T, eq) is the saturation concentration at a specific temperature 
but when the system has fully reached equilibrium. The “i” subscript denotes the ith 
component, should we have more than one component crystallizing. In our analysis, 
we have considered the fat mixture as a one-component system, which is very conve-
nient and very dangerous. Luckily in fats and oils research, we have a widely-used 
machine that allows us to determine the solid fat content (SFC) of a fat in about 3 s. So, 
in this equation, the product of the mass fraction of fat added to an oil (x) and the SFC 
of the neat fat at equilibrium (remember it usually is not 100% solid) is the maximum 

amount of solids we would expect to obtain in our fat-oil solution ( x SFCneat
T eq× ( ), ). The 

difference between this amount and the SFC of the fat-oil solution that we measure at 

a particular time at a constant temperature ( SFCsol
T t,( ) ), corresponds to the concentration 

of the supersaturated solution. The  difference between x SFCneat
T eq× ( ),  and the maximum 

SFC determined for the fat in oil at equilibrium ( SFCsol
T eq,( ) ) corresponds to the satura-

tion concentration. In Eq. 7.46, we also express the equation in more general term using 
Φ as the volume fraction of solids.

We transformed all the crystallization data in Figs. 7.6, 7.7 and 7.8 using this equa-
tion and results are shown in Figs. 7.9a, 7.10a and 7.11a. Notice the complex dynam-
ics observed for FHSO-SO in Fig. 7.9. Since we had an overshoot in the SFC-time 
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patterns (Fig. 7.6.), this translates into a negative chemical potential due to decreases 
in SFC in time. One can observe here the delay in crystallization for the samples 
placed in the incubator (air-cooled) vs. the samples placed in a water batch (water-
cooled). Also evident is the linear region for loss of chemical potential as a function of 
time. This is the period of maximum crystallization, and a slope can be easily obtained 
by linear regression. However, I decided to plot the first derivative of the curve instead 
(Fig. 7.9b). The minima in the derivative plots correspond to the steepest slopes of the 
lines. Notice how the system fights hard to get back to a zero chemical potential after 
a long time. The system will not stop until it reaches this point and the crystallization 
process is over. Figure 7.10 depicts the case for palm stearin in soybean oil, while Fig. 
7.11 depicts the case for fully hydrogenated soybean oil in high oleic sunflower oil.

At this stage, I would like to discuss the reason for my enthusiasm for this linear 
region. As indicated above and in the figures, this linear region corresponds to 
d

dt

Dm( )
. This is the velocity of the crystallization reaction (v). However, let’s 

express this velocity as a function of the supersaturation (β) instead. Going back to 
Eq. 7.45, the differential of this equation corresponds to:

Fig. 7.9 (a) Evolution of 
the chemical potential (Δμ) 
in time during the 
crystallization of 20% fully 
hydrogenated soybean oil 
in soybean oil either in an 
incubator (INC) or in a 
waterbath (WB) set at 
30 °C. This translated to 
approximately ~5 °C/min 
(INC) or ~30 °C/min (WB) 
cooling rates. Indicated are 
the general areas used to 
determine the rate of 
crystallization from the 
rate of decrease in 
chemical potential in time. 
(b) First derivative of the 
plots in panel (A) showing 
how the maximum rate of 
chemical potential 
decrease was determined. 
We used a  
10 neighbor-2nd order 
smoothing function of the 
data
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The rate of the reaction in terms of the rate of change in the supersaturation is 
simply given by
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Notice how the units of this rate are [time−1], units of a first order rate constant. 
This would make comparisons between samples and studies of the temperature 
dependence of this rate constant much more meaningful.

Moreover, if we integrate Eq. 7.48 between initial time (to) and final time (t) for 
initial supersaturation β, and final supersaturation β = 1,
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Fig. 7.10 (a) Evolution of 
the solid fat content (SFC) 
in time during the 
crystallization of 40% 
palm stear in soybean oil 
either in an incubator 
(INC) or in a waterbath 
(WB) set at 20 °C. This 
translated to approximately 
~5 °C/min (INC) or 
~30 °C/min (WB) cooling 
rates. (b) First derivative of 
the plots in panel (A) 
showing how the 
maximum rate of chemical 
potential decrease was 
determined. We used a  
10 neighbor-2nd order 
smoothing function of the 
data
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we obtain a simple kinetic expression for the change in supersaturation as a func-
tion of time for a crystallizing fat, namely

 
ln b b= -( )k t t0  

(7.50)

where k
RT

d

dtb

m
=

( )1 D
.

It would seem that the time dependence of lnβ during crystallization is a simple 
linear function of time. Further studies need to be carried out to test the validity of 
this new kinetic approach for both isothermal and non-isothermal cases.

This approach was used in the quantification of the kinetic data presented in Figs. 

7.9, 7.10 and 7.11. Table 7.3 shows both the estimates of kβ and 
d

dt

Dm( )
. As 

expected, the rates of crystallization were greater for sample placed in a water bath 
vs. incubator due to cooling rate issues. However, the opposite trend was observed 
for FHSO-HOSO.  This was due to the complexity of the crystallization process 

Fig. 7.11 (a) Evolution of 
the chemical potential (Δμ) 
in time during the 
crystallization of 20% fully 
hydrogenated soybean oil 
in high oleic sunflower oil 
either in an incubator 
(INC) or in a waterbath 
(WB) set at 40 °C. This 
translated to approximately 
~5 °C/min (INC) or 
~30 °C/min (WB) cooling 
rates. Indicated are the 
general areas used to 
determine the rate of 
crystallization from the 
rate of decrease in 
chemical potential in time. 
(b) First derivative of the 
plots in  
panel (A) showing how the 
maximum rate of chemical 
potential decrease was 
determined. We used a 10 
neighbor-2nd order 
smoothing function of the 
data
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Table 7.3 Rates (d(Δμ)/dt) and first order rate constants (kβ) of crystallization derived using the 
Chemical Potential Approach for 20% Fully Hydrogenated Soybean Oil in soybean oil at 30 °C, 
20% Fully Hydrogenated Soybean Oil in High Oleic Sunflower oil at 40 °C and 40% Palm Stearin 
in Soybean Oil at 20 °C

Incubator Water bath

FHSO – SO −d(Δμ)/dt 0.75 J mol−1min−1 2.1 J mol−1min−1

kβ 3.0 × 10−4 min−1 8.3 × 10−4 min−1

FHSO – HOSO −d(Δμ)/dt 0.58 J mol−1min−1 0.31 J mol−1min−1

kβ 2.2 × 10−4 min−1 1.2 × 10−4 min−1

PS-PO −d(Δμ)/dt 0.022 J mol−1min−1 0.14 J mol−1min−1

kβ 9.0 × 10−6 min−1 5.7 × 10−5 min−1

Samples were crystallized either in a waterbath (cooling rate of ~30 °C/min) or incubator (cooling 
rate of ~5 °C/min)

Fig. 7.12 Evolution of the 
solid fat content (SFC) and 
chemical potential (Δμ) in 
time during the very early 
crystallization stages of 
20% fully hydrogenated 
soybean oil in high oleic 
sunflower oil either in an 
incubator (INC) or in a 
waterbath (WB) set at 
40 °C. This translated to 
approximately ~5 °C/min 
(INC) or ~30 °C/min (WB) 
cooling rates

7.6 An Alternative to the Avrami Model: the Chemical Potential Approach



134

under high supersaturation conditions. Recall the SFC-time profiles showed a “step” 
in the crystallization process. Upon closer examination of these early stages in the 
crystallization process (Fig. 7.12), we notice that both SFC-t and Δμ − t profiles are 
steeper for the waterbath-cooled samples, as expected. What probably happened is 
that the waterbath-cooled samples crystallized initially very rapidly and extensively 
into a metastable state, and then upon transformation to a more stable state, released 
greater amounts of heat than the incubator-cooled samples, and thus slowing down 
the second step in the crystallization process. In reality we have a transient state 
followed by a less transient state, followed by a, hopefully, final stable state. Maybe 
we are cycling through all possible polymorphs in the fat, alpha, beta prime and 
beta, during the crystallization process. As a matter of fact, we determined FHSO in 
both HOSO and SO to end up in a beta polymorphic state, but that does not address 
at all the dynamics of getting to this final beta polymorphic state. One would need 
time-resolved X-ray diffraction to do this. However, this discussion has highlighted 
that we need a more complete model to describe the kinetics of polycrystalline 
materials that undergo metastable nucleation – another opportunity for kinetic mod-
elers to jump in and have fun!

This chapter has helped introduce the student of crystallization to the well-known 
formalism of the Avrami model, while at the same time demonstrating the power of 
kinetic modelling in helping to better understand crystallization using a Chemical 
Potential Approach. As stated in the introduction to this book, this new approach/
model is a hypothesis that we can entertain.
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Chapter 8
Steady-State Nucleation Kinetics: The Fisher 
Turnbull Model

8.1  Nucleation

The nucleation process of crystalline material in foods structured by crystal net-
works is an important factor that strongly influences mechanical and functional 
properties, such as yield stress, hardness, texture and mouthfeel. For example, 
consider butter, although the same observations can be extended to fat materials 
such as palm oil, lard and tallow. Butter is a water-in-oil emulsion made from 
cream. Legally, butter must be composed of 80% milk fat. The remaining 20% is 
an aqueous solution containing protein, lactose and salt. In butter manufacture, 
the nucleation rate of the fat in the cream during the cream ageing process 
strongly influences the final texture of the butter. High supercooling conditions 
during aging favors the formation of numerous nuclei in the fat phase. The pres-
ence of numerous small crystals results in a stronger fat crystal network with 
smaller pores, which is very effective in entrapping liquid oil. During subsequent 
mechanical working of the solidified cream, the liquid oil thus remains entrapped 
within the fat globule instead of being squeezed out into the continuous phase. 
Liquid oil within the continuous phase serves as a lubricant, reducing the coeffi-
cient of friction between globules at stresses above the yield stress. Having less 
oil in the continuous phase thus results in a harder butter. On the other hand, slow 
crystallization favors crystal growth over the formation of nuclei. Large crystals 
are much less effective at trapping liquid oil. As a result, more liquid fat can be 
squeezed out into the continuous fat phase during working, resulting in a softer 
butter. The tribological properties of the liquid oil in the continuous phase are a 
key factor influencing the mechanical/textural response of butter.
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8.2  Energy of Activation for Nucleation  
(the Gibbs-Thomson Equation)

The formation of a surface during nucleus formation is an endergonic process as 
energy is required to counteract the surface tension between the growing solid phase 
and the existing supersaturated phase. The energy associated with the formation of 
a surface for a spherical nucleus is given by:

 DG rsurface = 4 2p d  (8.1)

where ΔGsurface is free energy change associated with the formation of a surface, 4πr2 
is the surface area of the crystal nucleus and δ is the solid-liquid surface energy or the 
crystal-melt interfacial tension (J·m−2). As the solid- liquid surface energy remains con-
stant, the energy required to maintain the surface is directly proportional to the surface 
area, which itself is a function of the radius of the crystal nucleus.

The creation of a nucleus, however, is not entirely an endergonic process. The cre-
ation of a nucleus also causes a decrease in the free energy of the system. This is driven 
by a decrease in the supersaturation of the system during crystallization. The expres-
sion relating the decrease in free energy to the decrease in supersaturation for a spheri-
cal nucleus is given by:
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where ΔGvolume is the free energy change associated with a change in supersatura-

tion, 
4

3
3p r  is the volume of the nucleus (m3), Δμ is the difference in chemical 

potential between the liquid and the solid (J·mol−1) and Vm
s  is the volume of a mole 

of solid crystal (m3·mol−1).
As the molar volume Vm

s  and the supersaturation Δμ remains relatively constant 
under a constant set of conditions, the ΔGvolume term is directly proportional to the 
volume of the nucleus, which is itself a function of the radius of the nucleus.

The balance between these two opposing processes thus determines whether or 
not a stable nucleus will form. The two free-energy terms can be combined to give 
the total free energy associated with the formation of a crystal nucleus. This expres-
sion is known as the Gibbs-Thomson equation. This formulation expresses the over-
all free energy change resulting from the formation of a spherical nucleus as the sum 
of the surface term and the volume term, namely:

 D D DG G Gn = +surface volume  (8.3)

which can be expanded into:
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(8.4)
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As previously mentioned, δ, Δμ and Vm
s  can be regarded as constants for the 

purpose of this treatment. The free energy change associated with the formation of 
a spherical nucleus ΔGn (in units of J) can thus be considered to be a function of 
solely the crystal radius r (in units of m). The balance between the exergonicity of 
nucleus formation (driven by the decrease in chemical potential between the melt 
and the crystal) and the endorgonicity due to the formation of a surface between 
the melt and the crystal) results in a maximum in the ΔGn − r profile (Fig. 8.1). The 
crystal nucleus radius at the free energy maximum is the critical radius rc. A stable 
nucleus forms when its radius is greater than the critical radius.

A radius below the critical radius implies a high surface area to volume ratio such 
that the energy required maintaining the surface exceeds that of the energy released 
by the formation of a crystal. Consequently, the free energy released upon nucleus 
formation is insufficient to overcome the free energy required to maintain the sur-
face. At radii below the critical radius, the crystal nucleus will not form.

Envision a TAG component in a fat mixture. If the fat melt is cooled below the 
melting point of this component, it will crystallize until it reaches its saturation 
concentration in the melt. At this point, there is a thermodynamic equilibrium 
between the formation of crystals to dissolution of these crystals in the melt. 
This means that the chemical potential of the pure solid [ mi s* ( ) ] is equivalent to 
the chemical potential of that same component dissolved in the melt [μi(l)], 
namely

 
m mi is l* ( ) = ( )  

(8.5)

Fig. 8.1 Simulation of free energy changes as a function of nucleus radius. Notice the maximum 
in the energy profile which corresponds to the critical radius above which a stable nucleus will be 
formed

8.2 Energy of Activation for Nucleation (the Gibbs-Thomson Equation)
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The chemical potential of this particular component in the melt [μi(l)] equals

 
m mi i il l RT a l( ) = ( ) + ( )* ln

 
(8.6)

where μi(l) is the chemical potential of a pure liquid of the component, and ai(l) 
corresponds to the activity of the TAG component in the melt, ai(l) = γixi(l), where γi 
is the activity coefficient and xi(l) is the concentration. Eq. 8.5 can be re-written as:

 
m mi i is l RT a l* * ln( ) = ( ) + ( )  

(8.7)

Re-arranging this equation gives the difference in the chemical potential between 
the solid and the melt as a function of the activity of the component in the melt:

 
Dm m m= ( ) - ( ) = + ( )i i is l RT a l* * ln

 
(8.8)

Consider the Hildebrand equation,
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where ΔHf is the enthalpy of fusion (J·mol−1), and Tf is the temperature of fusion 
(melting point).

Recall that D
D

S
H

Tf
f

f

=  for a process at equilibrium. By substituting this into the 

Hildebrand equation and multiplication with RT, the following form of the 
Hildebrand equation is obtained:
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T H

T
H T S H Gi

f i

f i
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,
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(8.10)

Since Δμ = RT ln ai(l), Eq. 8.10 can be re-written as:

 
D D D Dm = - = -T S H Gf i f i f i, , ,  

(8.11)

Thus, the difference in chemical potential between the pure solid of the TAG 
component and the pure liquid of the TAG component is equivalent to the free 
energy of fusion ΔGf:

 
D DG RT a l l sf i i i i,

* *ln= - ( ) = ( ) - ( ) = -m m m
 

(8.12)

If the solid phase was heterogeneous with regards to the TAG composition, then 
the concentration (activity) of every component in the solid has to be taken into 
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account. Thus, after the material has crystallized and equilibrium has been re- 
established, the chemical potential of the solid and the liquid would be equal,

 
m mi i i is RT a s l RT a l* *ln ln( ) + ( ) = ( ) + ( )  

(8.13)

The chemical potential difference between the pure TAG component solid and 
the pure TAG component liquid could then be expressed as a function of the concen-
tration (activity) of the specific component in the solid and the liquid,

 

Dm m m= ( ) - ( ) = ( ) - ( )
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i i i i
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i
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RT
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 (8.14)

Considering the above, we can rewrite the Gibbs-Thomson equation as:
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The change in free energy (derivative of the Gibbs-Thomson equation) as a func-
tion of radius is given by:
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(8.16)

The formation of a stable crystal nucleus takes place above a critical radius (rc), that is 
the energetics of the system allow for the formation of nuclei with radii above this critical 
radius rc . This radius corresponds to the maximum in the free energy versus nuclei radius 
profile. At this point, the change in free energy relative to the radius r is zero:
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(8.17)

Equation 8.16 can then be rearranged to
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Re-arranging Eq. 8.18 gives the following expression for the critical radius:
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Substituting the expression for rc (Eq. 8.19) for r in the Gibbs-Thompson equa-
tion (Eq. 8.4) gives:
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which, after rearrangement, leads to the following useful expression:
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Considering that

 
D D DG H T Sf f f= -

 
(8.22)

and that since ΔGf = 0 when T = Tf, then
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The free energy of fusion can be thus expressed as:
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Substituting Eq. 8.24 into Eq. 8.21 results in the common form of the Gibbs- 
Thompson equation used in crystallization studies:
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This free energy of nucleation corresponds to an activation free energy of nucle-
ation – the free energy barrier required to form a nucleus of critical radius rc.

8 Steady-State Nucleation Kinetics: The Fisher Turnbull Model



141

8.3  The Fisher-Turnbull Equation

The Fisher-Turnbull equation can be used to quantify the activation free energy of 
nucleation for a crystallization process. The Fisher-Turnbull equation can be 
obtained by considering the activation free energy of nucleation to be a combination 
of a free energy of activation for diffusion ( DGd

# ) and the free energy of nucleation 
for a nucleus of critical radius rc ( DGn

rc , Eq. 8.25):

 D D DG G Gd n
rc# #= +  (8.26)

The derivation of the Fisher-Turnbull model involves concepts derived in the 
absolute reaction rate theory, where the rate of a first-order reaction can be written 
as a function of its activation energy. For the sake of clarity, the reaction rate v can 
be written as follows:
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Substituting Eq. 8.26 into Eq. 8.27 gives the following expression for the rate of 
nucleation:
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where v now denotes the rate of nucleation (s−1), and N the number of molecules 
in the melt participating in the nucleation process.

DGd
#  is assumed to remain constant at relatively low degrees of undercooling. 

Likewise, for a narrow range of temperatures, DGd
#  can also be assumed to remain 

constant. Taking this into consideration, Eq. 8.28 can be expressed as:
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where the contribution of this diffusion term is assumed to be a constant α:

 a =
-
e

G

kT
dD #

 (8.30)

Experimentally, the rate of nucleation is determined by taking the inverse of the 
induction time of crystallization (τ):

 
v ~

1

t  
(8.31)
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Equation 8.29 can thus be expressed as:
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which can be re-arranged to give:
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Taking the natural logarithm on both sides results in:
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Introducing Eq. 8.25 into Eq. 8.34 yields:
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Subsequent rearrangement of this equation gives:
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Thus, a plot of ln(τT) versus 
1

2
T TD( )( )

 should yield a straight line with a slope 
m (K3), which equals:
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Since
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the free energy of nucleation can be determined from:
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Figure 8.2 depicts the Fisher-Turnbull plot for a blend of 12% Palsgaard 6111 
stabilizer (42% behenic, 42% stearic, 5% palmitic acid) in high-oleic safflower oil. 
The graph displays a single line. This is indicative of a simple system where only 
one component is crystallizing at a given time. For more complex and multicompo-
nent systems such as palm oil, several different components may crystallize over a 
given temperature and supersaturation range. The result is a graph consisting of 
different lines. These lines can be analyzed individually and the DGn

rc  determined 
for each independent crystallization process.

In our case, the peak melting temperature of the 12% blend of Palsgaard 6111 in 
high oleic safflower oil is 47 °C, as determined by differential scanning calorimetry. 
The system is thus supersaturated below 47 °C. The slope of this line can be obtained 
and the activation energy of nucleation calculated. The plot of the nucleation free 
energy against temperature is given in Fig. 8.3. As the set crystallization tempera-
ture T increases and approaches the melting point Tf, the supersaturation ΔT 
decreases. Likewise, as T increases, the free energy of nucleation increases. Thus, a 
temperature increase such that T approaches the melting point will result in a 
decreased rate of nucleation.

Fig. 8.2 Fisher-Turnbull plot 
for a 12% Palsgaard 6111 in 
high oleic safflower oil 
created using induction times 
of nucleation in the range 
40–50 °C. Induction times of 
nucleation (τ, sec) were 
determined using a cloud 
point analyzer (turbidity 
measurements)

Fig. 8.3 Changes in the 
activation free energies of 
nucleation (J/mol) as a 
function of temperature (°C) 
for 12% Palsgaard 6111 in 
high oleic safflower oil, 
calculated from the slope 
obtained in Fig. 8.2
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8.4  Other Applications of the Fisher-Turnbull Model

Another useful application of the Fisher-Turnbull equation is in the determination 
of the crystal-melt interfacial tension (δ). If reliable calorimetric data for the 
enthalpy and temperature of fusion are available, and an estimate of the molar vol-
ume can be obtained, the solid-melt interfacial tension can be directly calculated 
from:
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(8.39)

Estimates of the enthalphy of fusion should be obtained experimentally using 
differential scanning calorimetry. The density of a solid TAG mixture, crystallized 
under relevant conditions, should also be determined experimentally by picnometry. 
The molar volume of a fat can then be calculated from density data using
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MW g mol
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m ml3 6 31 10/

/

/
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(8.40)
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Chapter 9
Non-isothermal Nucleation Kinetics in Fats

9.1  Non-isothermal Nucleation

The model discussed in Chap. 8 is for a special case of the nucleation phenomenon. 
The isothermal model addresses situations where the temperature remains constant 
during the reaction and the temperature drop from the melting temperature, Tm, to 
the set crystallization temperature, Tset, is instantaneous (Fig. 9.1a). As well, it is 
assumed that crystallization occurs only when Tset is reached and not prior to this. 
For the isothermal case, time zero is assumed to be the start of the experiment as the 
temperature at the beginning of the experiment is assumed to be Tset. This model is 
suited to the study of systems that are not heat transfer limited.

Under isothermal conditions, the crystallization process can be characterized by 
an induction time (ti), which is the time required for the appearance of the first solid 
nuclei at Tset under the influence of a thermal driving force. The induction time ti is 
proportional to the degree of supersaturation (solutions), or degree of supercooling 
or undercooling (melts), ΔT, which is the difference between the equilibrium melting 
temperature of the material (Tm) and the set crystallization temperature (Tset), Tm − Tset.

Experimental realities limit the speed at which a system can reach the set tem-
perature. Limitations in heat transfer will result in a gradual reduction in tempera-
ture (Fig. 9.1b) as opposed to an instantaneous drop observed in Fig. 9.1a. These 
conditions can be considered “near-isothermal”. It is assumed, in this case, that 
crystallization does not begin until after some time the set crystallization tempera-
ture has been reached. For a “near-isothermal” case, then, it is still possible to deter-
mine an induction time of nucleation and treat the crystallization process as if it was 
taking place under isothermal conditions. For this case, it is important to remember 
that time zero corresponds to the time when the system reaches Tset. The induction 
time in this case, is the time interval between the attainment of the set crystallization 
temperature and the time of the first appearance of solid nuclei.

In the industrial manufacture of edible fat products, such as margarines and 
chocolate, from multicomponent triacylglycerol mixtures, crystallization takes 

http://dx.doi.org/10.1007/978-3-319-51292-1_8
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place under non-isothermal conditions. Under these conditions, crystallization 
occurs prior to attaining the set crystallization temperature Tset (Fig. 9.1c). For this 
situation, both the non-isothermal induction time of nucleation (tc) and the under-
cooling at nucleation (ΔTc) have different meanings than for the isothermal case.

The crystallization behavior and structure of these materials under such condi-
tions is extremely sensitive to heat and mass transfer conditions. The crystallization 
regime will ultimately affect mechanical strength, flow behavior and sensory texture. 
Of particular interest is the nucleation behavior of such systems as important struc-
tural features, such as crystallite number, size and morphology, as well as the spatial 

a

b

c

Fig. 9.1 Temperature and 
crystallization profiles for 
materials crystallizing  
under isothermal (a), near 
isothermal (b) and  
non-isothermal (c) 
conditions. Reproduc
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distribution of mass, are a direct consequence of nucleation behavior. However, no 
good theoretical tools exist to model the nucleation behavior of these complex 
organic mixtures under non-isothermal conditions. In this section, a new approach to 
the modeling of non-isothermal nucleation systems will be presented.

9.2  Formulation of the Time-dependent Supercooling 
Parameter

To model non-isothermal nucleation, a new quantity or parameter that defines the 
driving force for nucleation has to be defined. This parameter will be shown to 
embody the dynamic of the system. It was previously mentioned that the induction 
time of nucleation and undercooling at nucleation have different meanings for the 
isothermal vs. non-isothermal cases. The first step, therefore, in the formulation of 
a non-isothermal model, is the re-definition of these parameters. Upon examination 
of Fig. 9.1c, one can see that it is not the temperature differential, ΔT, that is the 
driving force for nucleation. Instead, it is the time the system has been exposed to a 
particular temperature differential. In other words, the supercooling of the system is 
a dynamic quantity as opposed to being a static quantity as for the isothermal case: 
ΔT is changing in time as the material crystallizes and changes composition. Thus, 
a supercooling-time exposure has to be defined. This corresponds to the exposure of 
the system to supercooling until the initiation of nucleation. This is calculated as the 
area under the supercooling-time trajectory from the time when the system crosses 
the melting temperature, Tm to the time where the first crystal nuclei appear (tc). The 
temperature at which the first crystal nuclei appear is called the crystallization 
temperature,Tc. Notice that Tc ≠ Tset and therefore [ΔT = (Tm − Tset)] ≠ [ΔTc = (Tm − Tc)]. 
If the cooling rate is assumed to be constant, the supercooling-time exposure (β2) at 
the onset of nucleation can thus be defined as:
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= ×DT tc c

 
(9.1)

Another important parameter in the characterization of a non-isothermal system 
is the cooling rate. A linear cooling rate is defined as:
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∆
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(9.2)

As previously discussed, at the crystallization temperature, Tc, t = tc. At the melt-
ing temperature, Tm, t0 = 0. Substituting these into Eq. 9.2 gives:
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Substituting 
DTc

f
 for tc in the expression for the supercooling-time exposure at 

nucleation (Eq. 9.1) gives the following expression:
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(9.4)

The parameter β2 corresponds to the triangular area under the curve for the 
supercooling- time curve (Fig. 9.1c). This parameter takes into consideration the 
amount of supercooling in time required for nucleation to start. It is important to 
realize that the parametrization of the data relative to temperature as well as time is 
necessary for a proper description of nucleation under non-isothermal conditions. 
The time-dependent supercooling parameter  β2 incorporates a thermodynamic 
component in the form of the supercooling at nucleation (ΔTc) and a kinetic com-
ponent in the form of the nonisothermal nucleation induction time (tc).

Finally, it is the square root of beta corresponds then to an effective supercooling 
experienced by the system at nucleation:

 

b
f
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2  

(9.5)

9.3  A Probabilistic Approach to Modeling Non-isothermal 
Nucleation Kinetics

The normalized nucleation rate (
J

Jmax

) was found to have an exponential depen-

dence on β, where Jmax is the maximum nucleation rate. The exponential relation-
ship between the normalized nucleation rate and the effective supercooling 
parameter is shown in Fig. 9.2. Figure 9.3 shows the dependence of the normalized 
nucleation rate on the cooling rate.

The shape observed in Fig. 9.2 led to the conclusion that perhaps non-isothermal 
nucleation kinetics could be modeled statistically, in a similar fashion as for the 
kinetic theory of gases. In order to develop this argument logically, we must revisit 
the basic premises of kinetic theory.

The rate of a reaction (v) is a function of the concentration of molecules with 
sufficient energy to overcome an energy barrier to the particular reaction (N*), and 
thus v = k[N*], where k is the rate constant for the reaction and N* corresponds to the 
concentration of molecules in the activated state. In the kinetic theory of gases, the 
molecules in the activated state are those molecules with sufficient energy, and in 
the proper orientation, to undergo the chemical reaction. For the case of nucleation 
reactions, N* would correspond to the concentration of molecules in the metastable 
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state, just prior to the nucleation event. The proportion of molecules in the appropri-
ate state to undergo a reaction (from energetic and conformational considerations) 
will be given by (N*) = p(x)(NT), where NT is the total concentration of reactant 
molecules, and p(x) corresponds to the probability density function (pdf) which 
describes the frequency distribution of the particular event.

Following this line of reasoning, the effective supercooling-time parameter β 
was assumed to be distributed in an exponential fashion, with an exponential pdf, 
p(β; k), of the form:

 

p k
ke k

b
b
b

b

;( ) = ³
<

ì
í
î

ü
ý
þ

- ;

;

0

0 0
 

(9.6)

The parameter k is called the rate parameter. The rate parameter has to satisfy the 
condition k > 0. This pdf applies to values of the randomly distributed variable 
belonging to the set β ∈ [0 ;  ∞ ). The scale parameter (μ) is simply the inverse of the 

Fig. 9.2 Dependence of the 
relative nucleation rate on the 
supercooling-time exposure, 
namely the effective 
supercooling (β) in partially 
hydrogenated palm oil 
(PHPO), interesterified, 
hydrogenated palm oil 
(IHPO) and a partially 
hydrogenated mixture of 
palm oil and palm stearin 
PH(PO+PS)

Fig. 9.3 Dependence of the 
relative nucleation rate on 
cooling rate for partially 
hydrogenated palm oil 
(PHPO), interesterified, 
hydrogenated palm oil 
(IHPO) and a partially 
hydrogenated mixture of 
palm oil and palm stearin 
PH(PO+PS)
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rate parameter and represents the mean, or expected value, of an exponentially dis-

tributed random variable, E
k

b m[ ] = =
1

. Thus, this pdf is appropriate to model our 

situation where our random variable has to always be greater than zero, and the 
mean is fixed.

Exponential distributions are used to model memory-less Poisson, or stochastic 
processes, which take place with constant probability per unit time or distance. This 
is the reason why exponential pdfs are extensively used to model random processes 
such as Brownian motion. In the case of Brownian motion, the future position of a 
molecule is independent of its current position. In our case, we assume that our 
nucleation phase transition initiation event takes place with a constant probability 
per unit effective supercooling in time (β), possibly not unreasonable considering 
the constant cooling rates used.

Another interesting property of an exponential pdf is that among all continuous 
pdfs, with support [0; ∞), the exponential pdf with μ = 1/k has the highest entropy. 
Many physical systems tend to move towards maximal entropy configurations over 
time (Principle of Maximum Entropy).

Considering all of the above, the rate of the nucleation reaction (J) will thus be 
given by:

 
J k N ke J kep T
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(9.7)

9.4  Determining the Energy of Activation for a  
Non- isothermal Process

By combing Eqs. 9.5 and 9.7, the relative nucleation rate can be expressed as an 
exponential function of the inverse of the square root of the cooling rate, namely:

 

J

J
ke

k
Tc

max

=
-

D

2f

 
(9.8)

Using this model, it is possible to determine the energy required to initiate the 
nucleation process. Consider that from Tm to Tc, no phase change has taken place. 
Thus, up to this point, strictly specific heat Qm has been removed from the system 
(Qm = CpΔT), where Qm is the specific heat removed from the system upon cooling 
per gram of material, Cp is the specific heat (heat capacity) of the material. 

Substituting 
Q

C
m

p

 for ΔT in Eq. 9.8 leads to the expression:
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where Qm is proposed here to represent the energy of activation for nucleation per 
unit mass [J/g], and Z [J g−1 K−1/2 s1/2] is defined as:
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(9.10)

Thus, from knowledge of k (Eq. 9.7) and Cp, Z can be calculated using Eq. 9.10. 
Moreover, from the nonlinear fit of J/Jmax vs 1/ f  data, the constant X can be 
obtained. It is then possible to determine the energy of activation for nucleation as 
Qm = Z * X [J/g]. This quantity can then be multiplied by the average molecular 
weight of the triacylglycerols [MW, g/mol], to obtain the molar energy of activation 
for nucleation (Qm), QM = Z * X * MW [J/mol].

9.5  Special Case When β Is Very Small

As shown in Eq. 9.7, the rate of nucleation for a non-isothermal crystallization pro-
cess can have the form:
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The first two terms of the Taylor expansion of this function are
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For the case where a = 0, this expression reduces to
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Thus, for the case where the time-dependent supercooling parameter (β) is close 
to 0, the exponential probability density function can be approximated by a linear 
function. This implies that such type of nucleation process has a very small meta-
stable region and therefore initiated at very small supersaturations (ΔT≈0), and/or 
with very short induction times (ti≈0).

In order to determine the energy of activation using this expression, we can use 

the same arguments as above. Replacing β with 
DTc

2f
 and ΔTc with Qm/Cp, we obtain
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If parameters are grouped as for Eq. 9.10, Z
C

k
p=

2
 and X

Q

Z
m= , then Eq. 

9.14 can be expressed as:
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Thus, a plot of J/Jmax vs. 1/ f  will yield a straight line with y-intercept k, and 

slope kX. Using the obtained parameter k, Z can be calculated using Z
C

k
p=

2
, 

while Qm can then be determined from Qm = X * Z.

9.6  Determination of the Induction Time

The following section describes the application of the proposed model in the study 
of non-isothermal nucleation kinetics in materials such as anhydrous milk fat 
(AMF), partially hydrogenated palm oil (PHPO), palm oil (PO), chemically inter-
esterified and hydrogenated palm oil (IHPO), and a partially hydrogenated blend of 
palm oil and palm stearin (PH(PO+PS)). The temperature Tc and time tc for the 
appearance of the first solid crystals were determined using a Phase Transition 
Analyzer (PTA). This machine is essentially a very sensitive turbidimeter that 
detects a phase transition during a crystallization process. It incorporates a crystal-
lization cell to cool the sample at a constant cooling rate. Melted samples are 
injected into this cell. Upon injection, the sample is cooled at a constant cooling 
rate. Both the crystallization temperatures and the induction times were determined 
from these experiments as the temperature and time when the first crystals appear, 
which is evidenced by a deviation in the signal baseline. The induction time for non- 
isothermal nucleation (tc) was calculated as the time at which the first crystals were 
detected minus the time required to reach the melting point temperature.

9.7  Determination of the Melting Point

The PTA technique was also used to determine the melting points of the fats. Melted 
samples (80 °C for 30 minutes) were placed in the PTA cell at 60 °C and then cooled 
to 10 °C at 40 °C/min. Upon reaching this temperature, samples were incubated at 
this temperature for 30 min and then heated at 1 and 5 °C/min until melted. The 
melting temperature was determined as the temperature at which the signal of the 
laser becomes constant and equal to the baseline. At this point, all the solids have 
melted away as evidenced by the lack of turbidity in the sample.

9 Non-isothermal Nucleation Kinetics in Fats
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Determination of the melting point of a pure crystalline solid is straightforward 
and unambiguous. It will melt at a specific temperature regardless of the method 
used to determine the melting point. It must be remembered, however, that fats are 
heterogeneous multicomponent materials, that is, they are almost always composed 
of several different components. It is difficult to determine a specific melting point 
for a fat as the melting point is influenced by a number of factors, not least of all the 
presence of different polymorphic forms in the solid state. In fact, fats do not have 
a true melting point unlike relatively pure materials. The thermal properties of a fat 
are instead characterized by a melting range. Depending on the technique used and 
the thermal history of the sample, different melting points can be obtained. For this 
reason, it is very important to specify which techniques and crystallization condi-
tions were used to determine the ‘melting point’.

In the analysis carried out in this work, an unabmiguous melting temperature was 
needed for the purpose of kinetic analysis. This represented a challenge since this 
temperature has to be related to the initial triacylglycerol fraction that nucleates. 
Moreover, the determination of this average/global melting temperature had to be 
reasonably reproducible.

Figure 9.4 shows the melting profile of the 5 fat samples obtained using the 
PTA. These melting profiles will be used to determine a global average melting 
point for the fat being observed. The melting temperature is determined here as the 
temperature at which the signal intensity decreases to baseline and becomes con-
stant. Interestingly, this method is equivalent to the commonly used Capillary 
Melting Point determination method, which relies on a visual inspection of a capil-
lary to determine at which point the material melts and becomes transparent. The 
melting points of the different fats are given in Table 9.1.

Fig. 9.4 Phase transition analyzer (light scattering) profiles as a function of increasing tempera-
ture used to determine the melting point of the different fat systems: anhydrous milkfat (AMF), 
palm oil (PO), partially hydrogenated palm oil (PHPO), interesterified, hydrogenated palm oil 
(IHPO) and a partially hydrogenated mixture of palm oil and palm stearin PH(PO+PS)

9.7 Determination of the Melting Point
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This method enables the determination of melting points as the temperature 
when the last crystals in the fat melt away. This method offers a convenient way to 
determine an average value for the melting point of a fat. Certainly this is not the 
true melting point of the fat, since the fat is composed of hundreds of different tria-
cyglycerol molecules, each with a unique melting point. The practice of using a 
global melting temperature was only resorted to in order to be able to carry out the 
analysis. Otherwise, the analysis would not be possible.

Table 9.2 shows the melting and crystallization temperatures obtained from dif-
ferential scanning calorimetry (DSC) and PTA together with the induction times of 
crystallization determined by PTA. The DSC peak melting temperatures and the 
PTA end of melt temperatures reported in this table were determined from the melt-
ing profiles obtained after incubating the samples for 5  min (DSC) and 30  min 
(PTA) after reaching Tset. Thus, they represent the melting temperature of the solids 
which are formed at the onset of the crystallization process.

9.8  Determination of the Nucleation Rate

The nucleation rate was estimated from the inverse of the induction time of nucle-
ation obtained from the PTA experiments as given in Table 9.2. This method is an 
approximation, but it is experimentally accessible and convenient. A nucleation rate 
corresponds to the number of nuclei appearing per unit time, however, here we 
approximate this rate from the inverse of an induction time of nucleation. It would 
be prudent, therefore, to compare this method to a more direct, but less convenient, 
method of determining nucleation rate, such as by light microscopy. The nucleation 
rate was therefore determined using polarized light microscopy by counting the 
number of particles appearing per unit time. Figure 9.5a–c show the evolution of the 
number of crystals appearing as a function of time in three fat systems at three cool-
ing rates, and the corresponding first derivatives of the N vs. t curves are shown in 
panels 9.5d–f. The peak value of the first derivative was taken as the nucleation rate 
(Jp). As can be appreciated in Fig. 9.6, increasing the cooling rate leads to an increase 

Table 9.1 The global melting 
points of five different fat samples 
obtained by determining the 
temperature at which the signal 
intensity in the PTA reaches 
baseline

Fat sample Melting point (°C)

IHPO 49.8 ± 0.9
AMF 35.5 ± 0.2
PH(PO/PS) 49.9 ± 0.2
PHPO 51.3 ± 1.7
PO 45.6 ± 0.4

IHPO interesterified, hydrogenated palm oil, AMF anhy-
drous milkfat, PH(PO+PS) partially hydrogenated mixture 
of palm oil and palm stearin, PHPO partially hydrogenated 
palm oil, PO palm oil
Values represent the average and standard deviation of three 
replicate samples

9 Non-isothermal Nucleation Kinetics in Fats
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Table 9.2 Peak melting temperatures (Tm), and peak crystallization temperatures (Tc) of samples 
cooled at as different rates (ϕ) determined using differential scanning calorimetry (DSC), melting 
(Tm) and crystallisation (Tc) temperatures determined by phase transition analysis (PTA), and 
induction time of nucleation (Tc) determined using PTA

ϕ (°C/min) Tm (DSC)(°C) Tc (DSC)(°C) Tm (PTA)(°C) Tc (PTA)(°C) tc (s)

AMF
0.5 33.6 ± 0.1 17.8 ± 0.7 35.5 ± 0.2 21.4 ± 0.6 1734 ± 69
1 33.6 ± 0.2 16.2 ± 0.2 19.9 ± 0.4 956 ± 25
2 34.0 ± 0.2 15.1 ± 0.1 18.9 ± 0.3 508 ± 10
3 34.3 ± 0.1 15.6 ± 1.4 18.8 ± 0.2 343 ± 14
4 34.2 ± 0.3 14.7 ± 0.2 18.3 ± 0.5 264 ± 7
5 33.5 ± 0.1 14.4 ± 0.1 19.5 ± 0.1 195 ± 22
10 16.0 ± 0.2 119 ± 6
15 15.8 ± 0.9 81 ± 7
20 15.9 ± 1.0 60 ± 5
PHPO
0.5 45.7 ± 0.4 27.3 ± 0.1 51.3 ± 1.7 34.6 ± 0.1 2050 ± 14
1 45.7 ± 0.1 27.7 ± 0.2 32.9 ± 1.7 1128 ± 106
2 46.0 ± 0.2 27.4 ± 0.1 30.6 ± 0.1 635 ± 8
3 45.7 ± 0.1 27.3 ± 0.1 30.4 ± 0.3 428 ± 8
4 45.6 ± 0.3 27.2 ± 0.1 30.1 ± 0.5 326 ± 8
5 45.6 ± 0.1 27.1 ± 0.1 31.2 ± 0.7 247 ± 10
10 29.0 ± 0.9 136 ± 7
15 28.4 ± 0.6 94 ± 12
20 28.7 ± 0.8 70 ± 3
PO
0.5 43.7 ± 0.1 20.3 ± 0.01 45.6 ± 0.4 25.3 ± 1.0 2471 ± 169
1 43.0 ± 0.1 19.8 ± 0.1 24.0 ± 0.1 1323 ± 18
2 43.3 ± 0.1 19.5 ± 0.1 23.0 ± 0.3 691 ± 10
3 43.0 ± 0.3 19.5 ± 0.1 22.9 ± 0.8 466 ± 16
4 43.0 ± 0.3 19.4 ± 0.1 21.7 ± 0.8 359 ± 21
5 42.8 ± 0.5 19.4 ± 0.1 23.0 ± 0.8 281 ± 13
10 21.3 ± 0.3 149 ± 8
15 21.1 ± 1.5 100 ± 7
20 21.1 ± 1.2 75 ± 16
IHPO
0.5 47.2 ± 0.5 31.9 ± 1.8 49.8 ± 0.9 37.4 ± 0.4 1527 ± 57
1 46.7 ± 0.1 32.0 ± 0.1 34.5 ± 0.2 937 ± 10
2 47.0 ± 0.5 31.3 ± 0.1 34.1 ± 0.2 483 ± 6
3 46.6 ± 0.4 29.8 ± 0.1 33.9 ± 0.1 325 ± 4
4 32.7 ± 0.6 30.1 ± 0.1 33.8 ± 0.3 230 ± 66
5 33.2 ± 0.2 30.1 ± 0.2 34.6 ± 1.1 187 ± 16
10 33.0 ± 0.3 103 ± 9
15 32.6 ± 0.7 70 ± 12

(continued)
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Table 9.2 (continued)

ϕ (°C/min) Tm (DSC)(°C) Tc (DSC)(°C) Tm (PTA)(°C) Tc (PTA)(°C) tc (s)

20 32.4 ± 0.2 54 ± 16

PH (PO+PS)
0.5 45.7 ± 0.3 30.0 ± 0.1 49.9 ± 0.2 35.1 ± 0.3 1806 ± 32
1 46.0 ± 0.1 29.2 ± 0.5 32.1 ± 0.1 1089 ± 7
2 46.2 ± 0.2 28.7 ± 0.1 31.4 ± 0.3 569 ± 11
3 46.3 ± 0.1 28.4 ± 0.3 31.3 ± 0.4 380 ± 10
4 46.3 ± 0.1 28.3 ± 0.1 30.8 ± 0.7 279 ± 54
5 46.1 ± 0.2 27.6 ± 0.3 31.5 ± 0.9 226 ± 18
10 30.0 ± 0 122 ± 30
15 30.2 ± 0.5 80 ± 11
20 29.1 ± 0.1 64 ± 11

Three determinations on each of three separate samples were carried out. The averages and stan-
dard deviations are reported

a d

e

f

b

c

Fig. 9.5 Changes in number of crystals as a function of crystallization time for three multicompo-
nent fat systems (a–c), and the corresponding first derivatives of the patterns (d–f)
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in the peak nucleation rate. For identical crystallization conditions, the nucleation 
rate as determined by polarized light microscopy was plotted against the nucleation 
rate as determined by taking the inverse of the induction time. If the two methods 
were exactly identical, the plot would show a diagonal line with a slope of 1 and a 
correlation coefficient of 1. The correlation coefficient (r2) obtained was 0.82 and 
the slope 1.1 ± 0.2. Thus, there is reasonable agreement between the two methods, 

thus validating the approximation J
tc

~
1

.

As shown in Table 9.2, crystallization temperatures obtained for the same sample 
at the same cooling rate were higher for the PTA than for the DSC. Since crystalliza-
tion is carried out by decreasing the temperature until the set crystallization tem-
perature Tset is reached, this suggests that the PTA detects the onset of crystallization 
much earlier than the DSC. The logical conclusion is that the PTA technique is more 
sensitive than the DSC technique at detecting the appearance of the first crystals 
(onset of crystallization). Given the high sensitivity of the PTA, it is reasonable to 
assume that the induction times determined using this technique are reasonable esti-
mates of the induction times of nucleation.

The induction times were shorter when the samples were crystallized at higher 
cooling rates. This observation applies to all 5 fat samples. This is an expected result 
since the higher the cooling rate, the shorter the time required to reach the 
 crystallization temperature. Also, it can be observed from Table 9.2 that when the 
cooling rate is high, the temperature of the onset of crystallization Tc is lower than 
with a low cooling rate. This validates the assumption that it is the time of exposure 
to supercooling that is of key importance.

Curve fitting of the model to the data was carried out using equations in the fol-
lowing form:

 
J J J e Jk= -( ) +-

max lim lim
b

 
(9.16)

where Jlim is the limiting nucleation rate as β→∞. We found this was necessary with 
nucleation rate data obtained from the inverse of an induction time. The introduction 

Fig. 9.6 Effect of cooling rate 
on the peak nucleation rate of 
the fats determined from the 
maxima in Fig. 9.5 b, d, e, f
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of the limiting nucleation rate (as opposed to a decay to zero nucleation rate) lead to a 
statistically significant improvement in the fit of the model to the data (P < 0.05).

The fit of the data to the model was excellent, as can be appreciated for the dif-
ferent systems in Fig. 9.7. It is interesting to notice that when the normalized nucle-

ation rate was plotted as a function of 
1

f
, (Fig. 9.8), all lines collapsed onto a 

single master curve and were not significantly different from each other (P > 0.05).
It is possible to determine the energy of activation for nucleation using the 

approach previously developed in this section. Briefly, the molar activation energy 
of nucleation can be calculated as explained before as Q = Z * X * MW, which in this 
case was determined to be X = 0.8598 K1/2s1/2. The average molecular weight MW of 
the fat was assumed to be 800 g/mol. Table 9.3 shows the values for k, Z, Jmax and 
QM determined for each sample. Although the Jmax of the samples were not signifi-
cantly different from each other, a trend could be observed between the activation 
energy QM and the maximum nucleation rate Jmax. The lower the QM value, the higher 
the nucleation rate, as expected from kinetic theory, if QM represents the energy of 
activation for the nucleation process.

Fig. 9.7 Variation of the 
normalized nucleation rate  
(J/Jmax) as a function of. the 
supercooling-time exposure, 
namely the effective 
supercooling (β) for the 
different systems studied

Fig. 9.8 Variation of the 
normalized nucleation rate as 
a function of the cooling rate 
for all systems grouped 
together
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One interesting finding is that the Jmax values were not statistically different from 
each other (P > 0.05), with an average value of 1.25. The significance of this is that 
there is evidence that 1.25 can be used as a “universal” Jmax constant for the five fat 
materials described. As such, it is thus possible to predict the nucleation rate, or 
induction time of nucleation, of triacylglycerols under nonisothermal conditions if 
the energy of activation is known:
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The parameters required are listed in Table 9.3; the energy of activation in the 
above expression should be used with units of kJ/mol.

Moreover, a reasonable approximation of the nucleation rate of fats as a function 
of cooling rate can be obtained using:
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It is worth pointing out that the entire kinetic characterization of nucleation was 
carried out using simple light scattering device. The PTA analyzer was used to char-
acterize the melting as well as the crystallization behavior. This procedure could 
thus be completely automated and a standard method developed for the character-
ization of the non-isothermal nucleation behavior of fats.

The characterization of nucleation kinetics under non-isothermal conditions was 
achieved by parametrization of the data considering both time and supercooling 
effects. A time-dependent supercooling parameter was defined and found to be related 
to the nucleation rate in a simple exponential decay fashion. The parametrization 

Table 9.3 Nucleation kinetic parameters (k, Z), energy of activation per unit mass (Qm) and per 
mol (QM), and maximum nucleation rate (Jmax) for the systems studied

System k1 (K−1/2s−1/2) Z
(J g−1 K−1/2s1/2)

Qm
(J/g)

QM
(kJ/mol)

Jmax1

(s−1)
AMF 0.0775ab (0.00480) 36.5 31.4 25.1 1.32a (0.079)
PHPO 0.0622bc

(0.00339)
45.5 39.1 31.3 1.23a

(0.056)
PO 0.0558c

(0.00329)
50.7 43.6 34.9 1.20a

(0.056)
IHPO 0.0848a

(0.00510)
33.4 28.7 23.0 1.26a

(0.070)
PH(PO/PS) 0.0701ac (0.00557) 40.3 34.6 27.8 1.23a

(0.084)
Average
(n = 5)

0.070
(0.0050)

41.3 35.5 28.4 1.25
(0.020)

1Values reported are the average and standard error (n = 9). Values with the same superscript letter 
within a column are not significantly different from each other (P > 0.05)

9.8 Determination of the Nucleation Rate
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procedure used in the analysis of the nucleation kinetics of the fats crystallized at dif-
ferent cooling rates allowed for the determination of a cooling-rate independent 
energy of activation for nucleation.
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Chapter 10
Implementation of the van Smoluchowski 
Model for Protein Aggregation Kinetics:  
Cold- Gelation of Heated Whey Protein Isolate

10.1  Introduction

Paul Flory defined a substance as a gel “if it has a continuous structure with macro-
scopic dimensions that is permanent on the time scale of an analytical experiment 
and is solid-like in its rheological properties.” Gels form when particles (in the case 
of particulate gels) or polymers (in the case of polymer gels) form an interconnected 
network with elastic properties. This network has a high surface area capable of 
entrapping large volumes of liquid. In many instances, solid-like gels with 99% 
liquid can be made.

Gels are responsible for many aspects of food microstructure and rheological 
properties in proteinaceous foods such as eggs, dairy (cheese) and soy (tofu) prod-
ucts. For this reason, characterizing the mechanisms responsible for their assembly 
into such networks has important implications for food quality. By determining the 
mechanisms and kinetics of aggregation, and quantitatively describing the geometry 
of the resulting network, food technologists will be better able to control macro-
scopic functionality of food products, such as texture and perceived color.

The “particle” in a particulate gel is a colloid-sized supramolecular aggregate 
formed from the aggregation of proteins. The interaction between these colloidal 
particles results in the formation of a continuous 3-dimensional network capable of 
entrapping liquid. The process of aggregation determines many of the gel’s proper-
ties. Colloidal particles interact with each other in a stochastic, random, fashion, 
forming a diverse range of microstructures, from completely random to fractal. The 
network formed entraps liquid in the inter-particle and inter-cluster spaces. 
Alternatively, protein particles can also aggregate linearly, thus forming strand-like 
structures. These supramolecular strands can then interact with each other, gel, and 
entrap the solvent within.

Proteins must often undergo processing before they can be used for gelling appli-
cations. For example, in cheese-making, rennet (proteolytic enzymes) is required to 
cleave off κ-casein from the major milk protein casein. κ-casein is charged and 
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glycosylated and is present as a “hairy layer” on the exterior of the casein micelle. 
κ-casein stabilizes the colloidal system via electrostatic repulsion and steric hin-
drance. Once cleaved, “bald” casein micelles can interact with other particles via 
hydrophobic interactions and form a gel.

Gelation can also be induced by heating. Heating causes the unfolding of pro-
tein molecules. Denaturation, in turn, exposes specific functional groups. These 
groups can interact with each other, which in turns leads to the formation of cross-
links between polymer chains, eventually resulting in the formation of a 
network.

Gelation can also be induced by covalent crosslinking. An example of this 
process involves the enzyme transglutaminase, which catalyzes the formation of 
amide bonds between carboxylic acid and amine side groups. This crosslinked 
gel is an example of a “chemical” gel, rather than the “physical” gels discussed 
above.

Modelling the gelation process is not simple and requires both excellent experi-
mental techniques and the appropriate theoretical models. Here we briefly present 
two such models.

10.2  van Smoluchowski’s Theory of Rapid Coagulation 
(Physical Gels)

van Smoluchowski considered the rapid coagulation of spherical colloidal particles 
to be proportional to the number of collisions of single particles with each other or 
with existing higher aggregates. Collisions between these particles are assumed to 
be controlled only by the Brownian motion of the interacting particles, i.e., diffu-
sion. The model also defines a sphere of interaction for the aggregating particles, 
with the sphere of interaction having a radius twice that of the interacting particles. 
If two particles approach to a distance smaller than their radii of interaction, i.e., if 
they “touch” as far as van der Waals forces are concerned, they would irreversibly 
aggregate. The van Smoluchowski model only applies to spherical particles. It mod-
els aggregation reasonably well at the initial stages of protein aggregation when the 
system is still monodisperse (particles all have a similar size).

van Smoluchowski described colloidal aggregation as a second order irreversible 
process of the type:

 
i j i j

kS[ ]+ [ ]→ +[ ]  
(10.1)

where [i] and [j] correspond to the monomer and/or any aggregate reacting with 
each other, and kS is the Smoluchowski rate constant for this reaction.

For example, in the case of tetramers being formed, dimers can react with dimers, 
and trimers with monomers to yield a tetrameric reaction product. Moreover, dimers 
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are formed from monomer-monomer interactions, and trimers from dimer- monomer 
interactions, namely:

 M M M+ ® 2  

 M M M+ ®2 3  

 M M M2 2 4+ ®  

 M M M+ ®3 4  

In general, the simplified differential equation which describes changes in the 
concentration of the kth aggregated species (Ck) in time during this random aggrega-
tion process, where all rate constants are equal, has the form:
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where kS represent is the Smoluchowski rate constant for the reaction between an 
“i-mer” and a “j-mer” to form a “k-mer” and viceversa. If the initial concentration 

of monomers is C0, conservation of particles requires 
k

kC k C
=
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0 .

If only monomers are present at t = 0, Smoluchowski was able to provide an 
analytical solution to Eq. 10.2, with the form
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This equation describes the dynamic where the concentration of monomer con-
tinuously decreases, while the concentration of all k-mers increases and then 
decreases in time. For example, if only the monomer to dimer transition is consid-
ered, changes in the concentration of dimer as a function of time is given by
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A simulation of the curves obtained for a putative monomer to dimer transition 
for different values of the Smoluchowski rate constant are shown in Fig. 10.1. 
Notice the characteristic initial increase in dimer concentration, which is eventually 
followed by a decrease as the concentration of trimers takes over.

Experimentally, it is very difficult to determine the concentration of all these 
aggregates in time. However, one can focus on the early stages of the reaction, 
where only monomer to dimer formation is taking place and/or monitor decreases 
in monomer concentration, which would be modelled by
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Thus, fits of experimentally determined increases in dimer concentration or 
decreases in monomer concentration would yield an estimate of the Smoluchowski 
rate constant for the gelation process (see example).

This rate constant is proportional to the relative diffusion coefficient of two 
spherical single particles, DAA = 2DA, for equally sized particles, or DAB = DA + DB, 
for unequally sized particles. The rate constant is also proportional to the radius 

of the sphere of interaction, RAA = 2a, for equally sized spheres, and R AB

a b

ab
=

+( )2
, 

for unequally sized spheres, where a and b are the corresponding particle radii. For 
unequally sized spheres, the Smoluchowski rate constant has the form:

 ks AB AB= 2pR D  (10.6)

while for equally sized spheres, this equation has the form:

 ks AA AA= 2pR D  (10.7)

with units of [M−1  s−1]. It is therefore possible to derive useful parameters from 
knowledge of the Smoluchowski rate constant of aggregation.

If the particles are assumed to be spherical, the Stokes-Einstein relationship can 
be used to show the dependence of the Smoluchowski rate constant on the viscosity 
of the medium. The diffusion constant is related to the viscosity of the medium:
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a
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Fig. 10.1 Simulations of the 
Smoluchowski model of 
colloidal aggregation at 
different rate constants
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where kB is Boltzman’s constant, T is the absolute temperature, η is the viscosity of 
the medium and a is the radius of particle A.

For two equally sized aggregating particles, A, the effective diffusion constant 
DAA is given by:
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For two differently sized aggregating particles, A and B, the diffusion constant 
DAB is given by:
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Since RAB = a + b, substituting Eqs. 10.8 into 10.6 would yield the following 
expression for the Smoluchowski rate constant:
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If the particle radii were equal, a = b, then:
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Equations 10.11 and 10.12 indicate that the greater the diffusivity and radii of 
interaction of the interacting particles, the greater the rate constant of the process 
would be. This would translate into a greater probability for the aggregation event 
to occur. A high viscosity, however, would impede the diffusion of reacting particles 
through the medium. A low-medium viscosity, however, would enhance aggrega-
tion. The rate constant for the process is greater for a polydisperse system, since the 
radii of interaction of the aggregating particles are larger.

As stated before, the van Smoluchowski approach works well for initially mono-
disperse or low initial polydispersity systems. An important modification is that of 
corrections for slow aggregation. Previously we assumed that every collision was 
effective and led to an aggregation event. This is not the case in reality. For example, 
there may be an electrostatic energy barrier that has to be surmounted before coagu-
lation takes place. To compensate for this effect, a probability factor for a “produc-
tive collision” is introduced into the scheme. The Smoluchowski rate constant for 
two equal interacting spherical particles then takes the form:

 k R Ds AA AA=a p2  (10.13)
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The factor α is the “collision probability” or fraction of collisions that cause aggre-
gation. This factor eventually becomes a “fitting parameter” and floated during fits. If 
this factor is to be introduced, the user should have an independent way of obtaining 
it, i.e., not through the fit to the data, and should be constrained to be a constant.

10.3  Polyfunctional Condensation Model (Chemical Gels)

Rather than considering aggregation as a random, solely diffusion-limited process, 
some researchers have attempted to describe certain protein aggregation processes 
as an actual chemical polymerization reaction involving monomeric units. The rate 
limiting step of the reaction is not the diffusion of the colloids, but rather the chemi-
cal reaction that takes place between colloidal particles. An example of this process 
is the Ca+2 mediated aggregation of caseins or the transglutaminase- catalyzed cross-
linking of proteins.

In this approach, the concept of functionalities, or reactive groups, is borrowed 
from small molecule polymerization theory. This concept of a functional group is 
rather nebulous for a macromolecule such as a protein, which may contain several such 
functional groups in variable quantities. At least two functionalities are required for the 
colloidal particle to form a gel network consisting of branched aggregates. As well, a 
protein in its native conformation will not have its functional groups exposed, thus 
these are unavailable for reaction. It is often necessary to first denature a protein in 
order to expose its functional groups. This approach allows for the mechanistic descrip-
tion of protein aggregation processes that is similar to polymerization reactions.

The polyfunctional model is similar to the van Smoluchowski approach, in that 
the aggregation process is considered a second order process:

 A A A+ ® 2  

In this theory, A stands for the concentration of functionalities instead of the con-
centration of reactant molecules. The change in the concentration of functional 
groups available to undergo reaction as a function of time (Ct) has the following form:
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where C0 is the initial concentration of functionalities and k is the second order rate 
constant of the process in units of M−1t−1.

Gordon [2] derived an expression relating the weight average molecular weight 
(Mw) and the number average of a polymerizing material (Mn) to the fraction of 
functionalities that have reacted (α):
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where Mo is the molecular weight of the monomer and f is the number of function-
alities per monomer.

Since α is the proportion of reacted functionalities, then a = -
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Substituting this into Eq. 10.15 yields the expression:
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Hence, by monitoring changes in the molecular weight of a protein during aggre-
gation, it is possible to derive a reaction constant for aggregation and the number of 
functionalities present per protein monomer. Changes in the molecular weight of an 
aggregating protein as a function of time can be fitted to the function above by non-
linear regression, and the parameters derived. On the other hand, it is possible to 
assume the value of f to be a constant in order to unambiguously determine the rate 
constant. Fixing the value of f as a constant in the fitting procedures would be neces-
sary for the unambiguous determination of the rate constant.

10.4  Aggregation of Whey Protein Isolate

Whey protein isolate (WPI) is a protein fraction derived from whey, a by-product of 
the cheese manufacturing process. It contains approximately 90% protein. Whey 
protein isolates are frequently used as gelling agents in functional food applications. 
Used in this manner, WPIs are added to a food formulation at a high concentration. 
The suspension is then heated to high temperatures to induce gelation. The main 
drawbacks of this method are the undesirable physical and chemical changes that 
occur during heating. As well, this method typically forms opaque gels which are 
undesirable. The gel is also less elastic and the material can be described as “crum-
bly”. A new process, cold gelation, is currently being investigated as a suitable 
replacement for the conventional gelation process. Cold gelation is carried out at 
low temperatures, thus, undesirable physical and chemical changes are avoided. 
Cold gelation results in more transparent and elastic gels than those formed by con-
ventional gelation. The process of cold gelation involves first making a low-ionic 
strength sol from whey proteins in water. If the protein concentration is less than 
12%, heating the suspension will not result in aggregation. The sol is cooled and 
then added to the food formulation.

Gelation is induced by the addition of salts such as Ca2+ or Na+. The effect of 
calcium on gelation is two-fold. As a positively charged ion, Ca2+ can neutralize or 
disperse negative charges, reducing electrostatic repulsion between protein mole-
cules. This promotes more random aggregation of whey proteins, resulting in more 
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opaque gels. However, gels formed with calcium are often observed to be transpar-
ent. This indicates that salting-out is not the sole effect of calcium on gelation. 
Calcium ions, as divalent ions, can cross-link negatively charged residues on pro-
teins. This cross-linking effect slows down the rate of aggregation, resulting in a gel 
with a more ordered network structure. The balance between these two processes 
determines the final properties of the gel.

The rate of the processes involved in protein coagulation is important in deter-
mining the final properties of the product. In particular, the rate at which the protein 
is denatured relative to its rate of aggregation is important for determining, among 
other things, the opacity of the resulting network. If the rate of denaturation is rela-
tively rapid compared to the rate of aggregation, a continuous and translucent 
hydrogel is formed. On the other hand, if the rate of aggregation is more rapid than 
the rate of denaturation, then opaque particles with less water-holding capacity are 
formed. The rates of these processes are, in turn, affected by properties such as pro-
tein concentration, pH, ionic strength and heating conditions. In brief, opaque gels 
are formed from random aggregation, which is the result when the rate of aggrega-
tion is high. In contrast, transparent gels are formed from linear aggregation, which 
occurs when the rate of aggregation is low.

The effects of pH are most pronounced when the protein is close to its isoelectric 
point. At the isoelectric point, the charged moieties of the protein are uncharged due 
to protonation or deprotonation effects. At zero charge, hydrophobic and van der 
waals interactions predominate and the protein aggregates rapidly due to a lack of 
electrostatic repulsion. This rapid aggregation promotes random aggregation. At the 
pHs away from the isoelectric point, aggregation is slow as high electrostatic repul-
sion will hinder the aggregation of proteins. Aggregation is linear under such condi-
tions. In the case of calcium-induced WPI cold gelation at pH 7, the following 
factors have been shown to induce the formation of more transparent gels: high 
pre-heating temperature, long pre-heating time, high protein concentration, low 
gelation temperature and low calcium levels. Increasing calcium concentration at 
pH 7 results in increasing gel opacity.

10.5  Aggregation Kinetics Example: The van Smoluchowski 
Model Implemented

In the following section, the kinetics of the cold-gelation of whey protein isolate in 
the presence of calcium are quantified using the van Smoluchowski model, and the 
rate constant dependence on calcium concentration determined. A 4% whey protein 
isolate solution at pH 7 was made and then heated at 80 °C for 30 min. The solution 
was then cooled and stored overnight at 3 °C. Cold-gelation was induced when this 
protein solution was mixed with different CaCl2 solutions resulting in 2% WPI solu-
tions with differing final calcium concentrations. The gelation time was determined 
as the time at which no flow of sample was observed when sample-containing tubes 
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were inverted. The kinetics of the aggregation process were quantified by measuring 
the absorbance of the solutions at 400 nm as a function of time. The increase in 
absorbance of the sample at this wavelength was mainly due increases in the turbid-
ity of the samples upon protein aggregation.

Figure 10.2 displays the change in absorbance at 400 nm (A400) for the different 
samples as a function of time. As can be observed from the progress curves, the rate 
of aggregation is greater at higher calcium concentrations. The rate at 90 mM of 
calcium was greater than the rate at 10 mM of calcium. However, it is interesting to 
note that the rate at 40 mM is greater than the rate at 90 mM, suggesting that too 
high of a calcium concentration may in fact slow down the aggregation process.

The reader should note at this point that we would have a problem if one tried to 
fit the absorbance data instead of concentration to models. Firstly, the sample 
absorbs light due to a turbidity effect rather than by a specific chromophore. This 
absorbance is due to light scattering by particles in suspension and thus influenced 
by more factors than just solution concentration. Thus, the relationship of this 
absorbance to colloid concentration is not clear. Thus, it is necessary to explore the 
possibility of transforming this absorbance data to scattered intensity, which then 
could be used to obtain an approximation to colloid concentration.

In a typical static light scattering experiment, the amount of scattered light (IS) in 
a suspension is given by:

 
I I KCM P

V

dS w
S= ( )0 q

 
(10.17)

Where I0 is the intensity of the incident light beam, K is a constant which depends 
on the experimental setup and sample (wavelength of the light used, refractive index 
of the sample and solvent), C is the weight concentration of the sample (kg/L), Mw 
is the molecular weight of the scattering particle, VS is the scattering volume, d is the 
distance from the scattering particles to the detector and P(θ) is the form factor 

Fig. 10.2 Increase in the 
absorbance at 400 nm (A400) 
as a function of time of a 2% 
(w/v) heated whey protein 
isolate solution gelled at 3 °C 
in the presence of different 
calcium chloride 
concentrations
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dependent on the size and shape of the particles. The form factor at θ = 0° is equal 
to unity (P(θ = 0°) = 1). For the purpose of the discussion that follows, I will express 
the relative scattered intensity (IS/I0) at θ = 0° for a sample with a scattering particle 
of constant molecular weight as:
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where
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Now, considering and assuming that the absorbance of the samples increased due 
to turbidity increases upon formation of dimers only, we can determine the relative 
amount of scattered light by:
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This is quite convenient since A
I

I
absorbed= - log10

0

, which means that the relative 

amount of scattered light can be determined from absorbance measurements as 
I

I
S Absorbance

0

10= - . Armed with this, we could then obtain an estimate of the concen-

tration in solution using Eq. 10.18. However, the reader should be warned since this 
concentration is an “apparent” parameter unless we determine the value of the con-
stant F in Eq. 10.18, and ensure that our assumptions are correct, such as the con-
stancy in molecular weight. However, this does not preclude the careful use of this 
approximation to colloidal concentration.

On that note, the fit of the van Smoluchowski model to this transformed data was 
remarkable (Fig. 10.3), with correlation coefficients above 0.999. This partially demon-
strates that the approach has merit and that the theory can explain the observed behav-
iour quite closely. The Smoluchowski rate constants (kS) derived from fits of the 
monomer-to-dimer model to the data were plotted as a function of calcium concentra-
tion (Fig. 10.4). A maximum in the aggregation rate was observed at a calcium concen-
tration of 30 mM. This pattern agreed very well with the independently- determined 
experimental gelation time, which showed a minimum at 30 mM calcium. As a technical 
point related to data-fitting, the transformed data had to be adjusted before proper model 
fitting could be carried out. Since the progress curves did not start at x = 0 or y = 0, some 
adjustment was necessary so that the first data point was positioned at x = 0 and y = 0. 
Time data was adjusted at tzeroed = ti − t1, where the time value of the first data point (t1) 
was subtracted from all others (ti). These new time values were labelled “zeroed time” 
(Fig. 10.3). The y-values were also adjusted by baseline correction, where the first (and 
lowest) transformed absorbance value was subtracted from all other values. The new 
transformed absorbance values were labelled as “baseline corrected” (Fig. 10.3).

The maximum aggregation rate observed at a calcium concentration of 30 mM, 
or ionic strength, μ, of 75  mM could arise due to the fact that at low calcium 
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Fig. 10.3 Baseline-corrected (average of first y-value was substracted from all other absorbance 
values) and zeroed (time of first measurement was substracted from all time values) apparent rela-
tive intensities of scattered light (Is/I0) as a function of time data during gelation of heated whey 
protein isolate solution gelled at 3 °C in the presence of different calcium chloride concentrations. 
Symbols represent averages of 5 replicates and their corresponding standard errors. Solid lines 
represent the fit of the von Smoluchowski model to the data considering only a monomer to dimer 
transition

Fig. 10.4 Changes in the apparent von Smoluchowski rate constant (ks) as a function of calcium 
concentration for heated whey protein isolate solution gelled at 3 °C. The gelation time (zero flow 
when tube inverted) was also plotted here to demonstrate that both ks and gelation time follow simi-
lar trends
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 concentrations electrostatic repulsion prevents protein colloids from approaching 
sufficiently for “sticking”, and aggregation to take place. Possibly under these low 
ionic strength conditions, charge dispersion is weak (larger Debye lengths), and 
electrostatic repulsion prevents proteins from aggregating, thus resulting in a 
lower rate of aggregation. The Debye length (κ−1) is the measure of a charge car-
rier’s net electrostatic effect in solution, and how far those electrostatic effects 
persist. A longer Debye length means that electrostatic charges exert their effect 
over longer distances. The Debye length, or radius, decreases with increasing ionic 
strength, κ−1 ~ μ−1/2. The slow kinetics at high calcium concentrations could be due 
to ionic shielding and charge dispersion of any reactive negatively charged group 
on the protein by excess calcium ions. In this case, a further decrease in Debye 
length beyond the 30 mM calcium maximum, would prevent the calcium ionic 
bridge crosslinking reaction between negatively charged groups from taking place. 
The negatively charged groups and positively charged calcium would never “feel” 
each other.

In this chapter we have implemented van Smoluchowski’s theory in the study of 
protein aggregation kinetics and shown its utility for the case of cold-gelation of 
heated whey protein isolate. Possibly a specific rate constant is associated with the 
most desirable structure. Further studies could include a study, based on a predic-
tion, of the effects of solvent viscosity on the Smoluchowski rate constant (see 
model). Addition of a polysaccharide to the solution would affect the aggregation 
process, which in turn would affect the mechanical and optical properties of the gel. 
Correlating kS to Debye lengths would be another fruitful research avenue. The 
added benefit of these investigations is that they would be hypothesis-driven and 
based on a mathematical prediction of system behaviour, which in my view, is 
always the best way to approach scientific problems.
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