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Preface

For many years my coauthor, Susumu Kawamura, PhD, and I have been
good friends and colleagues in the business of designing and estimating
the costs of water treatment plants, along with reservoirs, pipelines, and
pumping stations. Susumu performs detailed designing with great preci-
sion. My part has been the development of construction cost estimates for
the plants and facilities that civil engineers design with great precision.
By this I mean that Susumu is paid to be precisely correct in designing a
plant, while I am paid to estimate the future cost of transferring the de-
sign to a physical plant. In short, he has to be right, and I just have to be
close. Of course, I mean this in the best possible way. Estimating is more
of an art than a science.

The design criteria and process selection for the complete plants is
closely aligned to the Susumu’s book, in its second edition Integrated De-
sign and Operation of Water Treatment Facilities (Wiley, 2000). We have
talked about writing this manual for a number of years, and although it
has taken over twice as long as we planned, it passes the estimator’s pri-
mary test of being close enough for government work.

This manual is specifically for the estimating of construction costs
for water treatment plants at the preliminary design level. In order to
provide you with a manual that you can use with some confidence, we
have compiled the results of our experience and that of many others
into a fairly large database of construction costs for separate water
treatment processes. The actual historic costs were analyzed, mas-
saged, and separated into component parts representing constructed
elements. These primary constructed elements include: civil site work,
structures, architectural, process equipment, mechanical piping and
valves, electrical, and instrumentation. And each treatment process

Xi



xii PREFACE

has more or less the same relative percentage of these elements over at
least one order of magnitude of costs, say between $1.0 million and
$10.0 million.

Once the cost of the treatment processes is established, they can easily
be combined into a complete water treatment plant cost estimate. The
manual identifies 43 individual processes or facilities for a “normal”
water treatment plant. We have selected nine types of water treatment
plants and augmented them with five additional types of advanced water
treatment plants. The 43 treatment processes are listed in order for
each type of treatment plant along with the number of unit modules and
the quantity for the process parameter. The equation form is used to cal-
culate the dollar cost of the complete process, which is summed to a sub-
total to which certain mark-ups or allowances are then added to estimate
the total direct cost of construction for the plant. To estimate the total
raw capital cost, additional allowances are then added for the non-
construction or “soft costs.” Sample tables for each type of plant are in-
cluded for 10 mgd and 100 mgd product water flow rates.

The secondary data is adjusted using construction cost indexes bring-
ing them to September 2007 in Los Angeles, California. We used the
Engineering News Record (ENR) Construction Cost Index which is pub-
lished and distributed monthly by McGraw-Hill. This index is annotated
on each cost curve in this manual (ENR-CCI = 8889).

We have also compiled operations and maintenance costs for these
same plants over the same range of product water flow. The O&M costs
are similarly set for the current period of September 2007 for labor,
power, and chemical usage, as well as maintenance of the facility at an
average cost per year.

This manual comes with the complete electronic files in Microsoft Ex-
cel on a single compact disk (CD). There are instructions on the CD in the
use of the tables for estimating treatment process and total plant costs.
The primary data used to generate the curves and establish equations for
calculating the costs are not is not part of the manual or CD. The files are
not protected nor are they warranted free of error.

We believe this manual will provide you with the basis to estimate con-
struction costs at the preliminary design level for water treatment proc-
esses and complete plants. If you compile actual construction costs within
your own experience and wish to share them with the authors, we will
add them to the database and include the results in the second edition.
All confidences will be preserved as they are in regard to the data in this
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manual. The authors have committed to a second manual for wastewater
treatment. So if you find this manual useful, let us know.

—Susumu Kawamura and William McGivney,
Christmas 2007
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Chapter 1

Introduction to Construction
Cost Estimating

1.1 COST ESTIMATING — ART OR SCIENCE?

Is cost estimating an art or a science? My usual response to this question
is that cost estimating is both, but more art than science. The science part
is made up of engineering and statistics. And the art of estimating is
based more on economics and subjective modeling based, and relying on
the estimator’s experience and knowledge of construction.

Good accurate cost estimating has been the mainstay of human devel-
opment for at least 8,000 years. Every great empire sustained growth and
development because they could afford it. And they could afford this eco-
nomic development because, among other things, they were good at esti-
mating costs in advance of expenditures. Many other groups suffered
through a trial-and-error method of achieving sustained economic devel-
opment for myriad reasons. But one reason could be that they were very
poor cost estimators. This may be a gross oversimplification, but good cost
estimating is better than bad.

1.2 STRUCTURE OF THE MANUAL

This manual is not meant to be a rigorous economic analysis or scholarly
investigation. It is an outline for preparing good cost estimates for water
treatment plants. In this manual the reader will find; basic water treat-
ment plant design philosophy and process schematics; predesign cost es-
timating methods and procedures; process parameters and their cost

curves; and total plant costs, including tables and equation functions; as

Cost Estimating Manual for Water Treatment Facilities William McGivney and Susumu Kawamura
Copyright © 2008 John Wiley & Sons, Inc. ISBN: 978-0-471-72997-6
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2 INTRODUCTION TO CONSTRUCTION COST ESTIMATING

well as capital and operations and maintenance cost for each type of com-
plete water treatment plant.

The estimating methodology is an amalgam of the best practices of cost
estimating and the personal experience of the authors. We have freely
used studies and public documents provided by governments and our own
historical project data. These tools have provided us with a sound way of
developing cost estimates based on specific parameters for individual
processes of conventional as well as advanced water treatment plants.

1.3 RULES OF THUMB FOR GOOD ESTIMATES

In the busy life of an engineer or manager, there is rarely enough time to
develop a comprehensive detailed cost estimate. So, one may look around
for someone not so busy and free to take on the assignment. They may
give the assignment to the newest addition to their staff. If this person
has enough experience, the estimate will be good. If they have little expe-
rience, the estimate will be very poor. And there will be negative reper-
cussions to the budget for design and construction. Cost overruns will
run amok, reputations will suffer, and the owner will be very unhappy.

* So, the first rule of thumb is to assign the cost estimating to the
best-qualified staff person and give them a copy of this manual to
help guide them through the effort.

e The second rule of thumb is to resist the temptation to assume
that cost estimates have the same precision as engineering tasks.
If they did, they would not be called estimates. Many predesign
estimates are carried out to the dollar and much is made of ex-
pected accuracy. At this level of estimate a line item estimated to
the nearest $10,000 is a reasonable level of accuracy.

e The third rule of thumb is complete the design philosophy and de-
sign parameters before estimating the costs. Time is better spent
developing solid design parameters such as the detention time,
volume of process vessels, and redundancy of process units that
will make operation and maintenance of the plant possible.

* Rule of thumb number four is to assign an experienced person to
review the estimate. This is obvious on the face of it, but the esti-
mate is usually the last thing to develop when the design budget is
exhausted and there is only one day before the report is due.

 The fifth and final rule of thumb is to check the math.
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1.4 USE OF HISTORIC DATA

All cost estimators and many engineers and managers keep historic costs
in their lower-left desk drawer. This information is a gold mine to their
staff and organization. Once adjusted for appropriate indices and level of
detail, this data could be added to the cost curves in this book and used to
improve the in-house capabilities of the estimator, engineer, manager,
and organization. The tables and cost curves contain the formula used to
get the best fit for the cost data behind the curves in this manual.

If your experience is the same as the authors, you will find that there
appears to be a great variation in data and results. There are many root
causes for these variations. Some are the results statistical anomalies;
others, economic disparities; yet others, poor record keeping and adjust-
ments. Even with the original, “primary” data, we found coefficients of
colinearity (r-squared) in the neighborhood of 0.60 for the total cost of a
conventional water treatment plant. And got r-squared(s) of 0.35 for
pumping stations. In summary, do not expect precision, but constantly
test your assumptions, recheck the math, and review the work of others.

1.5 ADJUSTING THE NUMBERS

Historic costs have a way of remaining constant. They represent the ac-
tual price of goods and services at some time in the past. They can be ad-
justed to another time or place on the basis of a cost index published by
either the government or a private entity that is generally accepted by
the industry or constituency it represents. It is important that the esti-
mator select the most reliable index and apply that index to the historic
cost to compare it to other costs, either actual or estimated. Once ad-
justed, the resulting cost is no longer considered primary data.

Adjusting actual costs from some time in the past to the current period
presumes that the goods and services that made up historic cost have
not changed and the costs for all components have changed in exactly
the same way. Making this adjustment can introduce inaccuracies
into the estimate. Adjusting the actual cost from place to place either
across the country or from country to country is even riskier. And making
both types of adjustments can eliminate any reasonable expectation of
accuracy.

Our recommendation is to make at least three separate estimates of
the cost using different means and assumptions. The cost curves and



4 INTRODUCTION TO CONSTRUCTION COST ESTIMATING

tables in this manual are one way to go about the estimating process.
Getting input from someone of greater experience is the second. And us-
ing actual costs from published documents as comparisons could be the
third. In this way the estimator is able to plot a triangle of points and test
the individual process or complete treatment plant cost model for
reasonableness.



Chapter 2

Water Treatment Processes

2.1 BASIC PLANT DESIGN PHILOSOPHY

Construction cost estimating at the preliminary design phase of a project
is dependent on the basic design scheme, including sketches of the proj-
ect. A properly and clearly prepared design philosophy is essential for the
success of the design and construction of all treatment facilities. The
well-prepared preliminary design construction cost estimate will form
the basis of an accurate capital projects budget. This type of cost estimate
is based on experience and intuition rather than the more rigorous de-
tailed engineer’s estimate.

Following a half-century of water and wastewater treatment design,
construction and plant operational experience a pattern of successful de-
sign development has become clear. There are ten basic rules or com-
mandments for a successful design project.

The Ten Commandments for design project are as follows:

1. You shall make a careful analysis and evaluation of the quality
of both raw and required finished waters.

2. You shall undertake a through evaluation of local conditions.

3. The treatment system developed shall be simple, reliable, effec-
tive, and consist of proven treatment processes.

4. The system considered shall be reasonably conservative and
cost-effective.

5. You shall apply the best knowledge and skill available for the
design.

6. The system shall be easy to build and constructible within a rea-

sonable length of time.

Cost Estimating Manual for Water Treatment Facilities William McGivney and Susumu Kawamura
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6 WATER TREATMENT PROCESSES

7. The system shall be easy to operate with maximum operational
flexibility and with minimum operation and maintenance costs.

8. The facilities shall be aesthetically pleasing with no adverse ef-
fect on the environment.

9. Design engineers shall perform services only in the area of their
competence. Get help from qualified experts in areas outside
your expertise.

10. You shall respect and owner’s knowledge and experience and in-
corporate his wish list of additional features if they are within
the established budget.

2.2 BRIEF DESCRIPTION OF BASIC WATER TREATMENT

Early water treatment systems were simple batch operations designed
for individual households. These processes included boiling, simple filtra-
tion, and coagulation and filtration utilizing naturally available inor-
ganic or organic coagulants. However, from the seventeenth century
onward, it was necessary to create facilities capable of treating large
quantities of water to supply larger human settlements. The treatment
of water based on scientific principles began in Europe around the mid-
1800s. During this time, water treatment professionals in England
undertook the elimination of water-borne diseases such as typhoid and
cholera.

The application of chlorine to potable water supply systems in Eng-
land, during the 1850s, followed the scientific validation of germ theory.
However, it soon became evident that chlorination was ineffective when
applied to cloudy water. This gave rise to the process of slow sand filtra-
tion (0.05 gpm/sfor 0.125 m/hr filter rate), which removed suspended sol-
ids before the application of chlorine. This first era of water treatment
was control of pathogenic bacteria by chlorination preceded by slow sand
filtration.

During the late nineteenth century, the Louisville Water Company in
Kentucky began pretreating raw water with alum coagulation followed
by clarification and the use of rapid sand filters (2 gpm/sf or 5 m/hr filter
rate). This new process was urgently needed. A significant increase in
population and rapid industrial growth placed a demand on the water
system that the slow sand filters could not meet. This development was
the beginning of the water treatment plants of today.
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Drinking water quality standards were relaxed until the middle of the
twentieth century. Only minor changes to the basic conventional treat-
ment processes occurred until the late 1960s. The object of the water
treatment in this period was to produce sufficient amount of water “safe”
from pathogenic bacteria. Water treatment engineers, from late 1960s to
1970s, concentrated their effort on designing the lowest-cost treatment
system to produce “safe” drinking water. High rate filtration and high
hydraulic loading for a sedimentation basin with tube settler or plate set-
tler modules and the use of ozone as an advanced treatment process have
become popular since the mid-1990s.

The beginning of modern water treatment design started after the Sec-
ond World War. High-technology industries flourished in the postwar
years in industrialized nations such as United States. As a result, large
quantities of untreated synthetic industrial wastes were discharged into
nearby water courses, the oceans, or the atmosphere, or dumped into and
onto the land. Consequently, serious global environmental pollution re-
sulted in more stringent drinking water quality standards, and new ad-
vanced treatment processes were urgently needed.

During the early 1970s, the Environmental Protection Agency (EPA)
was established and the Safe Drinking Water Act (1974) and its amend-
ment (1986), subsequently passed by the U.S. Congress, set stringent
drinking water quality standards.

The motto of water treatment had now become “make large quantities
of ‘good’ quality water.”

The issues after mid-1990s are control of protozoa, especially Crypto-
sporidium and Giradia; control of disinfection process byproducts as well
as arsenic; disposal of treatment residues; and the supplying of noncorro-
sive water. Recent treatment issues coming up are treatment of xenobiot-
ics, which are related to small amount of pharmaceutical and drug
residuals in source of waters, as well as control of taste and odor.

Today, we have advanced water treatment technology and thousands
of miles of water distribution systems. However, the field of water treat-
ment faces new problems such as a limited source (less than 3% of water
on earth) of easily treatable water for potable water, heavy industrial and
human activities, and the population explosion.

The project development and project delivery procedure in recent
years have been shifting away from traditional ways. The old way was
having a single group of civil engineers handle the majority of design
work, supported by mechanical, electrical, and architectural engineers.
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However, the regulatory requirements and complexity of the projects
now require a multidisiplinary design team.

The traditional designing of water treatment plants includes a profes-
sional engineering firm or owner’s in-house staff who prepares specifica-
tions and drawings. Sealed bids are received and contractor(s) selected
based on the lowest responsible bidder. The design team performs con-
struction management services until the facility is completed and com-
missioned. After commissioning by the design team and the owner, they
begin operating the facilities.

In early 1990s, changes were taking place in traditional project deliv-
ery. The idea was the incorporation of design, construction, and operation
of the facilities with a new financial/political arrangement called “privati-
zation.” Privatization as its name implies is turning over all or part of the
facility development and operation to a privately held entity. These
schemes include; design-build-operate (DBO), design build-maintain
(DBM), public-private-partnerships (PPPs), and long-term contract
operation.

The recent popularity of privatization for domestic water utilities is
the result of internal and external competition. Contributing factors in-
clude increased regulatory requirements for upgrading existing as well
as new plants, negative consequences from different levels of mainte-
nance, public resistance to rate increases, and the financial crisis faced
by many public utilities. However, privatization projects also have nega-
tive aspects, including less than optimum safety as well as reliability for
plant and a tendency toward operational inflexibility. These negative is-
sues are mainly due to attempts to improve profitability, reduce costs by
rapid facility construction, and keep operational costs at a minimum.
This is also true for wastewater treatment facilities.

2.3 BASIC CONVENTIONAL WATER TREATMENT PROCESSES

Figure 2.3 above shows the relative size and layout of the treatment proc-
esses of a conventional water treatment plant. The basic conventional
treatment train for surface water treatment consists of coagulation with
rapid mixing followed by flocculation, sedimentation, granular media fil-
tration with final disinfection by chlorine. This treatment process train is
a standard requirement for municipal water treatment by the Depart-
ment of Health Services (DHS) of each state as well as the Ten State
Standards, which apply to the ten states in the Midwest Region and the
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Figure 2.3 Overhead View of Water Treatment Plant

East Coast Region of United States. However, the basic treatment trains
can be modified, dependent upon the quality of raw water and the fin-
ished water quality requirements.

For instance, where the raw water quality is good, sedimentation pro-
cess can be excluded from the basic treatment train. This process system
is Direct Filtration. In some instances, both regular flocculation and sedi-
mentation process are replaced with coarse media flocculation/roughing
filter process in front of regular granular media filtration. In other cases,
the filtration process is preceded by flash mixing of a coagulant. This is the
In-Line Filtration or Contact Filtration process. However, these modified
conventional treatment processes must have a variance permit from the
governing regulatory agencies before design and facility construction.

If surface waters have high levels of turbidity, hardness, total organic
carbon (TOC), microorganisms including algae, taste and odor, and other
unwanted substances, then certain additional process or modifications of
the conventional process and plant operation will be necessary. Flash
mixing of coagulant at the head of plant is essential and the water-jet dif-
fusion type is the most effective system. The current flocculation basin is
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a rectangular basin and vertical shaft mechanical flocculators with hy-
drofoil type mixing blades. An earlier design included a horizontal shaft
with paddle type mixing wheel. However, an improved baffled channel
design (helicoidal flow pattern) is currently in use. Common sedimenta-
tion tanks are rectangular horizontal flow type with or without high rate
settler modules such as tube settler or plate settler modules. A mechani-
cal sludge collection system is a part of the sedimentation system. A few
proprietary units use a combination of flocculation and clarification
processes.

The common filtration system consists of gravity filters with granular
media beds. The anthracite and sand dual-media bed has been a standard
filter bed since the 1980s. Surface wash systems for 6" to 18" depth of bed
depending on the system used, as well as air scouring wash systems that
scour the entire filter bed, with a backwash and filter-to-waste provision
have become common. The clearwell usually provides at least 4 hours of
finish water storage capacity. The clearwell should be baffled to minimize
flow short-circuiting, and it must be covered.

Chemical storage and feed system are an important part of the treat-
ment plant. The sludge handling and disposal is an essential facility of
water treatment plant. These items are discussed later in this chapter. A
few water treatment plants require intermediate pumping. Intermediate
pumping facilities can become expensive when required by hydraulic
analysis. Plant security systems are critical facilities due to the potential
for acts of terrorism.

Basic ground water treatment uses granular media filtration process
followed by chlorination. If the water quality of the source is exception-
ally good, only disinfection by chlorine may be required. However, an oxi-
dation process may be needed when high levels of soluble iron,
manganese, and other substances exist in the source water.

The granular filtration process is always included in the basic treat-
ment process because it is the main barrier to keep suspended matter,
including microorganisms, from passing into the potable water supply.
Over the last forty years, filter design has become either dual-media bed
or coarse media deep bed with or without a thin fine sand layer at the
bottom. The filtration rate for these filters is usually limited to 6 gpm/sf
(15 m/h) by regulatory agencies. However, several water treatment
plants on the West Coast are achieving a flow rate of 8 to13 gpm/sf (20 to
32.5 m/h) with pre-ozonation under variance permits issued by the Cali-
fornia Department of Health Services. Figures 2.3.1a, 2.3.1b, and 2.3.1c
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show three diagrams of a basic conventional treatment processes with
slightly different chemical application systems.

2.4 ADVANCED WATER TREATMENT PROCESSES

As described earlier the EPA has promulgated the Surface Water Treat-
ment Rule (1989) and the Interim Enhanced Surface Water Treatment
Rule (1998) in order to provide not only safe but also the best quality
drinking water for the public. The major elements of these rules include
removal of total organic carbon (TOC) from raw water to certain targeted
levels in order to control the disinfection byproducts (DBPs) and inactiva-
tion or removal of Cryptosporidium oocysts, which regular chlorination
cannot achieve. There are many other Maximum Contaminant Levels
(MCL) for drinking water quality standards for inorganic and organic
chemicals, microbiological contaminants, disinfectants, radionuclides,
turbidity, and other conditions.

Since the basic conventional water treatment processes cannot achieve
these requirements unless the source of water is exceptionally good, sev-
eral new treatment process technologies have been developed and imple-
mented in recent years.



Ozonation, granular activated carbon adsorption, high-speed micro-
sand settling process, high-rate dissolved air flotation (DAF) process,
magnetic exchange (MIEX) process, new type of UV disinfection process,
and advanced membrane filtration process (MF, UF, NF, and RO) are
considered as major advanced water treatment processes of in late twen-
tieth century to early twenty-first century. These new treatment proc-
esses are used in conjunction with the basic conventional treatment

Advanced Water Treatment Processes

process described earlier.

Figures 2.4.1a, 2.4.1b, and 2.4.1c illustrate three examples of advanced

water treatment plants.
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These advanced treatment processes are also being incorporated into
wastewater treatment design as advanced treatment processes for water
reuse purposes. Desalination and water reuse are growing water treat-
ment technologies because of a growing shortage or contamination of raw
water in many regions of the world. The as yet unknown consequences
resulting from global warming, whatever the cause, may rapidly increase
the need for water reuse. Figures 2.4.2a, 2.4.2b, and 2.4.2¢ are examples
of additional, advanced water treatment plant design.
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In the following chapters, preliminary construction costs will be devel-
oped for each of these nine scenarios, with a design plant flow of 10 MGD
and 100 MGD. The data used for the cost curves was collected over many
years from multiple sources.



Chapter 3

Solids Handling and Disposal

3.1 SOLIDS HANDLING

Solids handling begins with thickening the collected sludge in order to
increase the solids content from 0.5% produced in the clarifiers to any-
where from 3% to as much as 70% solids. The sludge removal process will
waste less than 0.5% of the plant flow unless the sludge is dewatered and
the liquid returned to the head of the plant. This thickening is aided by
the addition of a polymer to the collected sludge increasing the percent-
age of solids in the sludge liquor. The sludge is then processed either
through gravity thickening or by mechanical thickening, increasing the
percentage of solids. The minimum percentage of solids allowed at most
disposal sites is dictated by a combination of federal and local regulations.

3.2 SLUDGE THICKENING

There are several means to handle this task, including sludge lagoons,
gravity thickening tanks, and dissolved air flotation tanks. Each process
will produce a different percentage of solids and have different construc-
tion and operations costs. The construction costs of these processes are
among those detailed in Chapter 5 of this manual.

It may be possible to transfer the cost of solids handling simply by add-
ing the sludge to the local sewer connection. The local sewage disposal
utility can provide the fee structure to be used along with a meter at-
tached to the sewer lateral that will keep track of the discharge. For a
small water treatment plant this transfer fee will usually be lower than
the capital investment and O&M costs of a solids facility. Some existing
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water treatment plants utility use existing sludge lagoons where the
liquid seeps into the ground leaving the solids at the surface. Lagoons
are by far the cheapest from both a construction and operating cost. If
there is sufficient land available and this type of system is permitted, it is
a very cost-effective solution.

To avoid compromising the ground water aquifers the filtrate must be
captured and not allowed to seep into the ground. Sand drying beds are
designed with liners, drains, and sumps to catch the filtrate. They also
provide a higher percentage of solids and allow the capture of the filtrate
to be disposed of in the sewer.

Gravity thickeners and dissolved air flotation tank construction costs
are necessary when land is scarce, particularly when an existing plant is
going through phased expansion. These processes are commonly used as
the first stage of solids handling at water treatment plants.

3.3 SLUDGE DEWATERING AND DRYING

Once the solids pass through a thickening process they are further proc-
essed to remove additional water and increase the percentage of solids by
volume. With the exception of sand drying beds all other drying methods
require mechanical means and significant investment. Mechanical equip-
ment for dewatering and drying include; solid-bowl centrifuges, belt-filter
presses, recessed plate filter presses, vacuum filters, rotary sludge dryer,
and incinerator. Centrifuges and filter presses are commonly used and
are among the processes identified in Chapter 5. Vacuum filters and ro-
tary sludge dryers with incinerators are not addressed here.



Chapter 4

Construction Cost Estimating at Predesign

4.1 CONSTRUCTION COST ESTIMATING

A basic element of the design process is facilities construction cost esti-
mating. Establishing a reasonable construction budget during the pre-
design work will add direction and integrity to the design process. The
predesign will typically consider multiple process alternatives. Each type
of process will have a different construction cost. The owner must take
into account interest rates, administrative/legal costs, design engineer-
ing costs, land use, and local political considerations. Invariably the issue
of design engineering and engineering support during construction will
be carefully reviewed and negotiated in part on the integrity of the pre-
design process. Each of the process alternatives will also have unique op-
eration and maintenance costs dependent on the requirement for labor,
energy, chemical and other consumables.

Since design development is a dynamic process, it is very important
that the estimated cost of the project be periodically checked against the
capital budget. Therefore, a series of cost estimates are prepared and
compared to the previous ones. These estimates should be as detailed as
possible, based upon the increasing level of information available. It is
recommended that written guidelines for each of type of construction cost
be developed. An initial set of guidelines is offered below.

The Association for the Advancement of Cost Engineering, (AACEi)
has established a comprehensive set of standards and guidelines for this
purpose. It is imperative that the entire design team, and all project
stakeholders, be kept fully informed, and be held responsible for their
participation in the establishment of budgets for design, and ultimately
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for the final construction cost of every project. A project-centered ap-
proach coupled with an effective, open channel of communication will
prevent unfortunate surprises to escalating or uncontrolled costs. It will
further help ensure a professional engineering environment, directed at
problem solving, rather than one deteriorating into reactionary, or adver-
sarial, relationships between members of the design team.

More specifically, these guidelines establish the criteria, format, us-
age, accuracy, and limitations of the various types of construction cost
estimates. To accomplish this task it is necessary to implement the fol-
lowing criteria:

* Define the type of cost estimates and a detailed narrative called
the Basis of Estimate to be prepared during the various phases of
a projects development. Within these definitions would be the ex-
pected accuracy of the cost estimate as well as limitations on its
value and use.

* Define the responsibility for the preparation and review of these
cost estimates.

* Define the cost estimating method relative to the construction and
capital improvement costs of the facilities.

Develop the procedures to prepare and review the cost estimates
on a uniform basis.

Once developed, these standards can be implemented on all design
projects and capital improvement programs. A consistently applied set of
guidelines and growing project database as well as local unit pricing data
can provide a more accurate, less problematic cost estimate.

4.2 CLASSES AND TYPES OF COST ESTIMATES

Construction cost estimates are categorized into five classes: 5, 4, 3, 2,
and 1, in reverse numerical order by level of detail available depending
on their use. Each cost estimate should include a “Basis of the Estimate”
narrative as discussed below. As the level of detail required in performing
the cost estimate increases, the labor and experience of the estimating
staff required to complete the material take-off and pricing rises signifi-
cantly. The estimating accuracy discussed below, pertinent to each class
of cost estimate, is not meant to represent absolute limits or guarantees,
but instead to establish a most likely range within which the final project
construction cost will fall.
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4.3 PREDESIGN CONSTRUCTION COST ESTIMATING

The first of these is the predesign cost estimate. The intent of this manual,
given the lack of design detail, is to assist in the establishment a realistic
estimate of the cost and time components, based on a combination of unit
costs and process parameters. This cost estimate is typically defined as a
Class 5 cost estimate with an expected accuracy of +50% to —30% of the
average bid price for construction. This type of construction cost estimate
is generally used for the development of capital improvement plans, mas-
ter plans, and feasibility studies. Predesign construction costs are useful
in the comparisons between project cost and between specific process al-
ternative costs. As a result, the predesign cost estimate is particularly
sensitive to assumptions and qualifications.

This is most important when designing for plant rehabilitation and op-
erating facility expansion. It is also significant when comparing process
types and system components. And finally, it can be used when compar-
ing costs for alternatives that include ultimate capacity versus current
flow rates.

4.4 DEFINITION OF TERMS

Accuracy of the Estimate

The accuracy of a predesign cost estimate is taken from the guidelines of
the American Association of Cost Engineers, International (AACEi) as a
percentage range for estimating purposes. The accuracy ranges are iden-
tified by the use of percentages +/— in reference to the expected actual
construction cost of the work. These ranges differ with the type of esti-
mate performed. (i.e., the Class 5 predesign cost estimate can be expected
to range from +50% to —30% of the actual cost of the project.) A graphic
representation in the appendix identifies the accuracy range for each
class and type of cost estimate.

Allowance for Additional Direct Costs

Due to the preliminary stage of the project, some conditions affecting the
pricing and productivity could change. This percentage allowance is in-
tended to cover work items not yet quantified but known to exist in pro-
jects of this type and size. This allowance is a variable percentage (%) of
Total Direct Cost.
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Construction Costs

Construction costs are the sum of all individual items submitted in the
successful contractor’s winning bid through progress of the work, culmi-
nating in the completed project, including change order costs.

Construction Cost Trending

A construction cost “trending” is the preparation and updating of the
project construction cost estimate over time. As the design process contin-
ues, the project becomes more defined and as more detailed engineering
data becomes available, “trending” provides a basis for the analysis of the
effects of these changes. These design and construction-related issues are
the documented, logged, and analyzed on a regular periodic basis during
the design phase of the project. As each issue is resolved, it is included in
the “trended” cost estimate.

Contingencies

Contingencies are defined as specific provisions for unforeseeable cost el-
ements within the defined project scope. This is important where pre-
vious experience relating estimates and actual costs has established that
unforeseeable events are likely to occur. Allowances for contingencies are
an integral part of the estimating process. Contingency analysis of cost
estimates is a useful aid to successful project performance. The periodic
review and analysis of these contingencies provide a myriad of opportuni-
ties for project management to assess the likelihood of overrunning a
specified dollar amount, budgetary limitations, or time commitments.
However, many owners are hesitant to include unidentified contingencies
in their budgets. This may be because the owner believes that the engi-
neer can and should identify all issues that impact the cost of construc-
tion in advance of completing the design process. This is a fair
assumption, but it invites “cost creep” during the design process and
forces the owner to increase the construction budget of the project or lose
precious time in redesign.

Cost Indexes

Cost indexes are a measure of the average change in price levels over
time, for a fixed market basket of goods and services. Commonly used in-
dexes effecting construction costs are:
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* The Consumer Price Index (CPI): The Bureau of Labor Statistics of
the U.S. Department of Labor produces monthly data on changes
in the prices paid by urban consumers for a representative basket
of goods and services. It is applicable, in a general sense, to the
monthly and annual change in the cost of goods and services in
the end user market. These would be price- level changes in aggre-
gate including construction related goods and services for labor
and incidental materials.

e The Producer Price Index (PPI): This is also prepared by the U.S.
Bureau of Labor Statistics and measures the average change over
time in the selling prices received by domestic producers for their
output to the wholesale market. These are price-level changes in
specific manufactured products, including construction related
goods like cement, steel, and pipe.

e The Engineering News-Record Construction Cost Index (ENR-CCI):
This is applicable in a general sense to the construction costs.
Created in 1931 the ENR-CCI most nearly tracks the price-level
changes in major civil engineering capital construction costs over
time.

e The Handy-Whitman Index of Water Utility Construction Costs:
This has been maintained since 1949 and is applicable to water
and wastewater treatment plants. This index more closely approx-
imates aggregate price-level changes in more complex treatment
plants and pumping stations.

® The Marshall and Swift National Average Equipment Cost Index:
This is specifically for the tracking of complex equipment price-
level changes. It is useful in the indexing of pure equipment costs
over time.

Escalation

All cost estimates are prepared using current dollars. In preparing a cost
estimate, an evaluation may be made to determine what effect inflation
may have on the cost of the project extending some time into the future.
An escalation factor is then applied to the total cost or “bottom line” of the
estimate. A published cost index is the basis used for escalation should
be localized, reputable, and reflective of the construction industry. More
specifically, the cost index used must be particular to the type of pro-
ject being designed and constructed. This escalation may be used in
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conjunction with the cost-of-funds to prepare a present worth analysis of
various project alternatives or construction phasing requirements.

4.5 ESTIMATING METHODOLOGY

The cost-estimating guidelines identified here comply with conventional,
professional standards established by the AACEi. Project and process pa-
rameters must be developed and a preliminary site layout established.
Process parameters for this manual are in English units (i.e., gallons,
feet, tons, etc.). The data used for this manual was compiled from actual
plant and process construction in the United States since 1970. The cost
data has been “normalized” to a current construction cost index pub-
lished monthly by the Engineering News Record, McGraw Hill, as the
Construction Cost Index (CCI).

Cost Capacity Curves

Cost capacity curves are charts that describe average costs of an item as a
function of capacity. The typical cost curve for water treatment processes
is a smooth line drawn or fitted through a scatter of real data points ad-
justed to a fixed time by which the data is “normalized.” The information
on that chart would define the construction cost for a process in dollars at
various plant flow capacities at a fixed point in time.

The cost and cost capacity curves relate to various process treatment
alternatives, pumping station capacities, reservoir storage capacities,
and pipeline sizes and types, as well as other civil engineering projects.
Other sources of cost and cost capacity curves cited below may also prove
effective and reliable when used correctly. Some of these published docu-
ments are no longer in print, but copies may be available at various uni-
versity or government locations.

“Innovative and Alternative Technology Assessment Manual.”
February 1980 EPA/430/9-78-009 MCD-53.

“Operation and Maintenance Costs for Municipal Wastewater
Facilities.” September 1981 EPA/430/9-81-004 FRD-22.
“Construction Costs for Municipal Wastewater Treatment Plants:
1973 — 1978.” April 1980 EPA/430/9-80-003 FRD-11.

“Treatability Manual, Volume VI, Cost Estimating.” July 1980
EPA/600/8-800-042d.
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* “Estimating Costs for Water Treatment as a Function of Size and
Treatment Plant Efficiency.” August 1978 EPA/600/2-78-182.

Basis of Estimate

A brief description, in narrative form, of the work scope, assumptions,
and qualifications with details particular to the project should be pre-
sented with the finished cost estimate.

Structure of the Estimate

The estimate is organized by both alternative treatment trains and spe-
cific processes. A treatment train will include all processes specific to that
alternative. If there are alternative processes under consideration, a sep-
arate treatment train must be created to include all necessary processes
associated with that alternative.

Once the alternative treatment trains are identified and their parame-
ters calculated, their individual construction costs can be calculated from
the process graphs or equations in this manual. Once the alternative pro-
cess treatment trains are identified and their construction costs esti-
mated, additional site-specific parameters may be applied.

These additional cost parameters could include: interconnecting con-
duit and yard piping, site demolition, earthwork, paving and grading,
landscaping and irrigation, and electrical and instrumentation infra-
structure. Separate curves and their parameters for these additional
costs are included in this manual.

Estimate Global Mark-Ups

These mark-ups typically pertain to specific allowances for Escalation,
Contingency, Construction Management, Inspection & Construction Ad-
ministration, Design, Administration & Legal, Rights of Way Acquisi-
tion, Environmental Mitigation, and Permitting. The construction cost
estimate may include any or all of these, depending upon the require-
ments set by the client.

Comparison of Alternative Process Construction Costs

When developing the alternatives, it is best to estimate costs for the en-
tire treatment train that includes the selected alternatives. In this way, a
complete picture can be developed for the alternative analysis. Process
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parameter values and their relative cost of construction may not differ
much. But, depending on how the selected processes are laid out and con-
nected on the site, the total cost of the train including the alternative pro-
cess can be dramatically different. Land constraints, process hydraulic
requirements, and subsurface conditions can dramatically increase the
overall cost of the facility many times the difference in cost of two or more
alternatives.

4.6 CAPITAL IMPROVEMENT COSTS

A capital improvement program can be made up of a number of individual
projects and span many years of development, design, and construction.
The cost of a capital improvement program is usually developed without
significant design input. Realistic budgets established early in the predes-
ign phase can improve the likelihood of the program’s success. Knowing
the reasonable cost of design, construction, and operation disruption on
an annual basis can provide labor and cost savings and avoid delays that
will invariably drive costs much higher than expected. A good realistic
plan, even one based on parametric ratios, can provide tools for a more
successful outcome or reduce the likelihood of an embarrassing failure.

Starting with a set of realistic construction cost estimates for multiple
treatment trains that include unique costs for construction, operation,
and maintenance, and additional nonprocess costs assists in evaluating
and selecting the project(s). By including the estimated time for the de-
velopment, design, and construction the project costs can be spread over
an annual calendar to assess the availability of capital, offsetting reve-
nue, and staffing required to make the program a success. And the esti-
mate of cost and time begins with a reasonable and realistic process
construction cost. As the estimating process is developed in Chapter 5, an
allocation of costs for each parameter group will be made and a total capi-
tal improvement cost model will be presented as an example of how it all
fits together.

Regulatory Impact

As was shown in Chapter 2, the historic changes in water treatment reg-
ulations by both state and federal government agencies has, over the pre-
ceding century, accelerated as a result of public concern, scientific
testing, and technological improvements. With the increased burden of a
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growing population, limitations on waste disposal, and resistance to
change in the acceptance of water reuse, we can expect the acceleration
in regulatory response to continue. As a result, many of the treatment
processes that are the basis of water treatment design could become out-
moded as more restrictive regulations on water quality are imposed. The
present cost of design and construction of advanced treatment facilities
for microfiltration and desalination are included in this manual.

Operations and Maintenance Costs

The costs of operating and maintaining an existing or new treatment fa-
cility can vary from plant to plant even for the same owner. The operating
costs are dependent to a great degree on the energy requirement and
chemical dosage. These costs are directly related to the quality of the raw
water that must be brought up to a minimum “good” quality set by regu-
latory agencies and plant hydraulics, which are dictated by the plant hy-
draulic profile. If intermediate pumping is necessary, then the energy
costs and maintenance costs for continuous pumping drive O&M cost
higher. Labor costs are a factor but can be overshadowed by the cost of
energy and chemical consumption. Larger chemical storage and feed fa-
cilities are also regulated and becoming expensive and time-consuming
to maintain. Simple parameters that are related to these processes are
included in this manual. O&M cost curves are for each type of plant are
discussed and shown in Chapter 6.



Chapter 5

Water Treatment Predesign
Construction Costs

5.1 INTRODUCTION

In this chapter, we will identify and examine the parameters developed
for estimating construction costs. These parameters will then be ap-
plied to the nine types of water treatment plants specified in Chapter 2,
at design flow rates of both 10 and 100 million gallons per day (MGD).
The results will be made into tables for 43 different processes equations
based on predesign parameters at the two design flow rates. We will
also present cost curves for advanced treatment plants including: four
types of seawater desalination plants, ultra-filtration and membrane
filtration.

In Chapter 2, we identified nine types of water treatment facilities,
each characterized by their unique design parameters and processes.
These water treatment designs are listed again below by figure and
name.

2.3.1a Two-Stage Filtration

2.3.1b Direct Filtration

2.3.1c Conventional Treatment

2.4.1a Dissolved Air Flotation

2.4.1b Lime and Soda Ash Softening

2.4.1c Iron Manganese Removal

2.4.2a Micro Membrane Filtration

2.4.2b Direct Filtration w/Pre-Ozonation

2.4.2¢ Conventional Treatment w/Ozonation and GAC Filters

Cost Estimating Manual for Water Treatment Facilities William McGivney and Susumu Kawamura
Copyright © 2008 John Wiley & Sons, Inc. ISBN: 978-0-471-72997-6
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Each of these plants types has unique processes and operating param-
eters differentiating them from one another by purpose and ultimately by
construction costs based on those parameters. The two design flow rates
are one order of magnitude apart at 10 and 100 million gallons per day.
Historical process costs have been gathered, sorted, tabulated, and
graphed to show the relationship between the process parameter and
construction cost. Results consistently show it is not a one-to-one rela-
tionship. For example, it doesn’t cost twice as much to design and con-
struct a circular clarifier with a 100-foot diameter as to one with a 50-foot
diameter. We have identified forty-three specific processes or facilities
that are currently used in water treatment plant design, prepared cost
curves and compiled them into a total plant cost including nonprocess
costs common to the construction of these plants.

These cost and cost capacity curves have been developed for specific
treatment process alternatives, pumping station capacities, clearwell
storage capacities, and process pipeline sizes and types, as well as other
components, including engineering design and construction support
costs are made a part of this Cost Estimating Manual. Other sources
of cost and cost capacity curves cited below may also prove effective and
reliable when used correctly. Some of these published documents are
no longer in print but copies may be available at various university or
other sources.

» Estimating Costs for Water Treatment as a Function of Size and
Treatment Plant Efficiency, August 1978 EPA/600/2-78-182.

* Innovative and Alternative Technology Assessment Manual, Feb-
ruary 1980 EPA/430/9-78-009 MCD-53.

* Construction Costs for Municipal Wastewater Treatment Plants:
1973-1978, April 1980 EPA/430/9-80-003 FRD-11.

» Treatability Manual, Volume VI, Cost Estimating, July 1980 EPA/
600/8-800-042d.

* Operation and Maintenance Costs for Municipal Wastewater Fa-
cilities, September 1981 EPA/430/9-81-004 FRD-22.

5.2 TREATMENT PROCESS AND COST ESTIMATING
PARAMETERS

The processes we identify here have general parameters such as: square
feet, gallons per day, lineal feet, and so on. These parameters are a way of
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comparing the relative size or function of the process against historic, up-
dated construction costs. In this way, we generate a parametric curve so
that we can estimate the construction cost. Included in the appendix is a
short table of common conversions to the metric system used in the de-
sign of water treatment plants. The curve functions developed here have
been calculated using the standard single-variable “trend line” functions
available in an electronic worksheet. In most cases, the “trend line” func-
tion that best fit the data was a simple equation represented by (y = aX™).
In some cases, the equation that best fit data was of the form (y = aX + b).
Both types of equations are supported by economic theory within a para-
metric range of one order of magnitude.

Since the historic costs have occurred over many different years and
places within the United States, they were “normalized” to a common
time and place by using the published cost indices identified in Chapter 2.
These curves were updated to an ENR CCI = 8889 for Los Angeles, Cali-
fornia (April 2007). Since the historic data has already been updated to a
common period and location, future updating of the cost curves are made
by multiplying the cost by the change in the applicable index, that is, for a
10% increase in the index the cost is multiplied by 110% to get the up-
dated cost.

The following table of forty-three water treatment processes, facilities
and additional nonprocess cost multipliers are the result of the analysis of
historic actual costs. The resulting Total Project Cost is the sum of all con-
struction costs, mark-ups, and engineering, legal, and construction ad-
ministration costs in current dollars. This type of predesign cost estimate
provides a common basis for evaluating process alternatives against total
project costs. By applying these costs curves to phased design and con-
struction, a Present Worth analysis, using interest rates, and operations
and maintenance costs can assist the engineer and owner in choosing be-
tween alternatives.

The table below lists an array of processes, cost equations, and range of
application parameters. These cost equations and source data are com-
piled into individual cost curves and detailed in the following section.

Before using the cost equations or curves, you must know the design
criteria for each process. For example; for the Clarifiers, Process Nos. 23
& 24, Circular Clarifiers (No. 23) must use its accepted hydraulic loading
of 1.0 gpm/sf to 1.4 gpm/sf (avg. 1.2 gpm/sf). But Rectangular Clarifiers
(No. 24) have a hydraulic loading rate of 0.5 gpm/sf to 1.0 gpm/sf (avg.
0.75 gpm/sf) without plate settlers. If you use 0.75 gpm/sf as the loading
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rate circular clarifiers the cost becomes very expensive in relation to the
rectangular clarifiers.

5.3 COST CURVES

Each of these processes is also represented by a unique cost curve like the
one for Figure 5.5.23 Circular Clarifiers. The curve is fit to the data and

2

represented by an equation and an r“* or measure of colinearity. Since the

original data has been consolidated and an average value for each unit of
parameter, the 2 simply tells us if the best fit curve type is “power”
(y = aX™), “polynomial” y = aX? + bX + ¢, or “linear” (y = aX + b) is the
most appropriate.

Using either the equation function in Table 5.2.1 or scaling off the
appropriate process curve, selecting the parameter of 17,000 SF for clari-
fier floor area drawing a perpendicular line from the curve where x =
17,000 and a second line to the y-axis and estimate the value for the con-
struction cost at approximately $1,4250,000. From the equation function
y = 3470.6x%6173 where x = 17,000 square feet of floor area the value for
the construction cost is $1,424,736. Although the equation delivers a more
precise arithmetic answer, it is no more accurate than a rough line drawn
on the graph. The likelihood of either number being correct is the same.

5.4 ESTIMATING PROCESS AND TOTAL FACILITIES COST

Each of the forty-three water treatment processes have a range of appli-
cation, and we will briefly discuss the limits, physical characteristics, and
ultimately the costs as they apply to the nine types of treatment plants
for both 10 MGD and 100 MGD.

5.5 INDIVIDUAL TREATMENT PROCESS COST CURVES

5.5.1 Chlorine Storage and Feed from 150-Ib to 1-ton
Cylinders

Chlorine gas is purchased from the producer and delivered to the site to
be used as a disinfectant for the finish water delivered to customers of the
water treatment plant.

The smallest application is a 150-1b vertical tank with an eductor feed
system. This application might be used as the only treatment for a small
system where the raw water is taken from a shallow aquifer and stored
above ground for relatively short periods of time.
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Figure 5.5.1a One-Ton Chlorine Cylinders and Chlorine Feeder
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Figure 5.5.1b One-Ton Chlorine Cylinders and Chlorine Feeder

When more than 200 lb/day of chlorine are required the design phi-
losophy would require multiplel-ton cylinders resting horizontally on
load-cells and connected to a manifold and housed in an enclosure with
separate rooms for the cylinders and feed systems. Each room must be
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mechanically ventilated at one complete air change per minute and in
some areas must be serviced by an air scrubber to reduce the hazard of
escaping chlorine gas into the local environment. Figure 5.5.1b is for
the 1-ton system. The 1b designation is the reference number used in the
general cost equation table shown earlier in this chapter. It and all the
process cost curves will be in the appendix.

A 200 1b per day system shows a $100,000 construction cost, inclusive
of the chlorinators, housing, ventilation, and process water supply. A
2,000 Ib/day chlorination system would be about $340,000. These costs
do not take into account the wide variety of architectural features neces-
sary to enhance or minimize the visibility of the plant.

5.5.2 Chlorine Storage Tank with Rail Delivery or Feed
from Rail Car

When design criteria permits, a larger storage and feed facility can be
more cost-effective. A 20-ton storage tank can provide 8-days of chlorine
at 5,000 1bs per day. (See Figure 5.5.2.)

CHLORINE STORAGE AND FEED
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Figure 5.5.2 Chlorine Storage and Feed On-Site Storage Tank with Rail
Delivery
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5.5.3 Chlorine Direct Feed from Rail Car

And a direct feed from multiple rail cars on a siding can extend the time
between deliveries thereby reducing the frequency and potential hazard
of escaping chlorine gas during delivery. (See Figure 5.5.3.)

DIRECT CHLORINE FEED FROM RAILCAR
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Figure 5.5.3 Direct Chlorine Feed from Railcar

5.5.4 Ozone Generation

Figure 5.5.4a Ozone Generator
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An ozone disinfection process is made up of a feed gas system, ozonator,
contactor, and ozone destruct system. The ozone generation equipment
for this cost curve includes: liquid oxygen (LOX) tanks, vaporizer and
regulators, piping, valves flow meters, filters, and the ozone generators.
Figure 5.5.4c represents the construction cost curve for the ozone gener-
ation process.

S

Figure 5.5.4b Liquid Oxygen Storage Tank and Evaporators
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Figure 5.5.4c Ozone Generation in Pound per Day
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5.5.5 0Ozone Contact Chamber

The ozone contactor is a separate process and is usually designed as a
pair of contactors to allow for system maintenance and operations redun-
dancy. The contactor is a cast-in-place concrete structure, including: pip-
ing, valves, diffusers, and an air handling system, which collects residual
ozone and delivers it to the destruct unit. Figure 5.5.5 is the cost curve for
the ozone contactors. If the design is for two contactors at full capacity,
then the cost would be two times the cost for a single unit.
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Figure 5.5.5 Ozone Contact Chamber Over/Under Baffles

0

5.5.6 Liquid Alum Feed

The chemical feed systems for liquid aluminum sulfate (Alum) consist of
storage tanks, transfer pumps, metering pumps, piping and valves, and
the facility enclosure. Figure 5.5.6 represents the cost of construction of
these facilities over the range of 2 to 1,000 gal/hr.
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LIQUID ALUM FEED
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Figure 5.5.6 Liquid Alum Feed

5.5.7 Dry Alum Feed

Figure 5.5.7a  Alum-Polymer Storage Tank

Figure 5.5.7b Dry Alum Feed includes: dry storage and feed, dissolving
and mixing tank, metering and monitoring instruments, piping and
valves, and a liquid metering and feed system for the liquid product.
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DRY ALUM FEED
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Figure 5.5.7b Dry Alum Feed

5.5.8 Polymer Feed

Dry Polymer system design is more complex than the simple dry chemical
feed system. It contains the same elements of the dry alum process above
but also includes: a wetting unit, aging tank, transfer pumps, day tank,
metering pumps, piping and valves, meters, and injectors. Figure 5.5.8
Polymer Feed shows the cost curve for the construction of this process.
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Figure 5.5.8 Polymer Feed
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5.5.9 Lime Feed

LIME FEED
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Figure 5.5.9 Lime Feed

The lime (quick lime) feed system includes a lime silo with bin activator and
dust collector, a gravimetric dry chemical feeder, a slaker to prepare the
lime slurry, and all other piping, valves, and meters. Figure 5.5.9 illustrates
the construction cost of this facility over a range of 10 to 700 pounds per day.

5.5.10 Potassium Permanganate Feed (KMNOA4)
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Figure 5.5.10 Potassium Permanganate Feed
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Potassium Permanganate is a dry chemical and is stored and fed much
like the dry alum and includes: dry storage and feed, dissolving and mix-
ing tank, metering and monitoring instruments, piping and valves, and a
hydraulic injector for the liquid product.

5.5.11 Sulfuric Acid Feed

SULFURIC ACID FEED 93% SOLUTION
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Figure 5.5.11 Sulfuric Acid Feed 93 % Solution

Sulfuric acid is delivered in a liquid form at 93%. Its storage and feed is
more hazardous to store and handle than some other requires separate
secondary containment protection from other reactive chemicals. Fig-
ure 5.5.11 illustrates the construction cost of this process, including sec-
ondary containment.

5.5.12 Sodium Hydroxide Feed

Sodium hydroxide is usually delivered and stored in liquid form at
50%. This solution will freeze at 53 degrees Fahrenheit. Heat tracing
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Figure 5.5.12a Sodium Hydroxide Storage

and insulation for the storage tanks are recommended for cold cli-
mates. It requires secondary containment separate from other reac-
tive chemicals like sulfuric acid. And its elements include: storage
tanks, transfer pumps, metering pumps, piping and valves, and the
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facility enclosure. Figure 5.5.12b represents the construction cost of
this process.
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Figure 5.5.12b Sodium Hydroxide Feed

5.5.13 Ferric Chloride Feed

FERRIC CHLORIDE FEED
42% SOLUTION
400,000

350,000

300,000 [y =34153x0319

250,000

A\

)

200,000 2

N
A\

150,000 7

COSTS IN DOLLARS

100,000

T =l

50,000

0

0 200 400 600 800 1,000 1,200 1,400 1,600
FEED IN GALLON PER DAY

Figure 5.5.13 Ferric Chloride Feed 42 % Solution
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Ferric chloride is delivered in a liquid form at 42% solution. This solution
will freeze below 20 degrees Fahrenheit. The range of application is from
2 to 1,450 gallons per day of liquid ferric chloride. Constructed facilities
include: storage tanks, transfer pumps, metering pumps, piping and
valves, and the facility enclosure. Figure 5.5.13 represents the construc-
tion cost of this process.

5.5.14 Anhydrous Ammonia Feed

This optional process used only for chloramination allows the ammonia
and chlorine to combine for a longer-lasting disinfectant in large distribu-
tion systems. The anhydrous ammonia is delivered and stored as a lique-
fied gas. The construction cost of this facility is shown in Figure 5.5.14 for
a range of 200 to 5,000 pounds per day.
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Figure 5.5.14 Anhydrous Ammonia Feed

5.5.15 Aqua Ammonia Feed

Aqua ammonia is delivered and stored as a liquid at 29% solution. Its use
and performance is much the same as the anhydrous ammonia. It is
stored and fed similarly to other liquid chemicals. Because it is unstable
and strongly alkaline, it must have separate, secondary containment
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protection. Figure 5.5.15 illustrates the construction cost of the facility
for a range from 50 to 750 gallons per day.
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Figure 5.5.15 Aqua Ammonia Feed

5.5.16 Powdered Activated Carbon

Powdered activated carbon (PAC) conforms to the dry feed process model.
It has a dry feeder with a bag-loading hopper, extension hopper, dust
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Figure 5.5.16 Powdered Activated Carbon
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collector, and either a dissolving tank or a vortex mixer tank. Figure
5.5.16 shows the construction cost of the process. The curve shape is a
polynomial of the form y = ax? + bx + ¢, where x is the amount of carbon
expended in pounds per hour.

5.5.17 Rapid Mix G = 300

Figure 5.5.17a Flocculation and Rectangular Clarifier Basins

RAPID MIX G =300

600,000

500,000 o
wn)
Z 400,000
= .
3 y =3.2550x + 31023 l
2 300,000 , | R?=0.999% ||
z p
Z
2
& 200,000
&}

100,000 et ENR CCI = 8889

P
&’(
0

0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000
BASIN VOLUME IN GALLONS

Figure 5.5.17b Rapid Mix G = 300
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Although the energy input for this process is considered too low for an
effective process, it is included for comparison purposes. The second and
third graph in the Rapid Mix series illustrates the construction costs for
G = 600 and G = 900.

5.5.18 Rapid Mix G = 600
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Figure 5.5.18 Rapid Mix G = 600

5.5.19 Rapid Mix G = 900
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Figure 5.5.19 Rapid Mix G = 900
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5.5.20 Flocculator G = 20

The flocculation basins consist of a linear set of three cast-in-place concrete
basin with baffle walls separating them. Each basin has a single floccula-
tor motor and gear box mounted on crossbeams above the basin with a ver-
tical drive shaft ending in mixing blades. The detention time for each
basins is 10 minutes. The following three cost curves (5.5.20, 21, and 22)
are for different G forces applied by the flocculator motor to the process
water. If variable frequency drive (VFD) motor controls are needed add
$15,000 each flocculator purchased and installed.
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Figure 5.5.20 Flocculator G = 20

5.5.21 Flocculator G = 50
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Figure 5.5.21a Vertical Shaft Flocculator with Mixing Blades
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Figure 5.5.21b Horizontal Shaft Flocculator with Paddle-Type Blades
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Figure 5.5.21c Flocculator G = 50
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5.5.22 Flocculator G = 80
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Figure 5.5.22  Flocculator G = 80

5.5.23 Circular Clarifier with 10-Ft Side Water Depth

CIRCULAR CLARIFIER
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Figure 5.5.23 Circular (10-Ft Side Water Depth)
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The circular clarifier is a cast-in-place concrete structure with a sloped
bottom, and sludge rake mechanism, and center rake type sludge collec-
tor. Designed as an up-flow clarifier it has a central inlet line and an in-
terior channel with a fixed weir around the perimeter wall to receive
processed water. Figure 5.5.23 illustrates the construction cost of a parti-
ally buried circular clarifier.

5.5.24 Rectangular Clarifier

Figure 5.5.24a Sedimentation Tank
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Figure 5.5.24b Center-Pivoted Rotating Rake Sludge Collector in Sed-
imentation Tank

The rectangular clarifier is a horizontal flow clarifier suited to larger mu-
nicipal facilities. Rectangular clarifiers are usually designed in parallel
modules to minimize the process footprint and to take advantage of the
common wall and use a common inlet and outlet channel for process
water. This clarifier is designed with a chain and flight sludge collection
system with upper weir collection troughs for process water. Figure
5.5.24c illustrates the construction cost of this process.
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Figure 5.5.24c Rectangular Clarifier
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5.5.25 Gravity Filter Structure

In this manual the gravity filter structure is separate from the filter me-
dia in order to allow cost comparison between design issues and media
types. The filter structure is a cast-in-place concrete structure with an

Filter Pipe Gallery of Weymouth Filtration Plant of MWD

Figure 5.5.25a Filter Pipe Gallery of the F. E. Weymouth Filtration Plant
of MWD of Southern California
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Figure 5.5.25b Gravity Filter Structure by Sq. Ft. Filter Area
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inlet channel, motor controlled butterfly valves, effluent gullet, and
underdrain system. For cost-efficiency, pairs of filters are placed opposite
each other with a common central gallery for piping and controls. Special
consideration should be given to the number of filter cells to adequately
accommodate the design and operation requirements and to plan for fu-
ture expansion. Figure 5.5.25b illustrates the construction cost for this
type of filter structure. The equation function for this cost curve, like the
PAC is a polynomial of the form y = ax? + bx + ¢, where x is the square
feet of filter area, making up a relatively small portion of the process
footprint.

Figure 5.5.26a Filter Cell, Granular Media Gravity Filter
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FILTRATION MEDIA -STRATIFIED SAND (OLD DESIGN)
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Figure 5.5.26b Filtration Media-Stratified Sand (Old Design)

5.5.26 Filter Media - Stratified Sand

The next three cost curves (see Figures 5.5.26b, 5.5.27, and 5.5.28) are for
three basic types of filter media. The first, stratified sand, is rarely used
but is shown for comparison purposes. The cost curves are linear since
the cost includes the media material and the labor to place it.

5.5.27 Filter Media — Dual Media

FILTER MEDIA DUAL MEDIA
1,200,000

1,000,000
y =38319x + 21377
R?=0.9992

800,000

600,000

COST IN DOLLARS

400,000

200,000

0 5,000 10,000 15,000 20,000 25,000 30,000
FILTER MEDIA AREA IN SF

Figure 5.5.27 Filter Media Dual Media
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5.5.28 Filter Multi-Media

FILTER TRI-MEDIA
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Figure 5.5.28 Filter Tri-Media

5.5.29 Filter Backwash Pumping

In the event that an elevated tank is not used filter backwash pumps are
used. The filter media is backwashed using stored backwash water and
high-flow, low-head pumps to lift the media and allow the unwanted
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Figure 5.5.29 Filter Backwash Pumping
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particles to overflow into the backwash troughs at the surface of the fil-
ter. The backwash pump station is usually a separate facility although
adjacent to the wash water storage basins. Figure 5.5.29 represents the
construction cost of this pump station including equipment, piping, and
valves.

5.5.30 Surface Wash System

The surface wash system is made up of a pair of rotating arms (for
each filter cell) that spray water just under the surface of the top
6 inches of filter media to loosen the upper layer of filtered sediment.
Figure 5.5.30 illustrates the construction cost of the surface wash

system.
SURFACE WASH SYSTEM
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Figure 5.5.30 Surface Wash System Hydraulic

5.5.31 Air Scour Wash System

The air scour wash encompasses the entire volume of filter media. Air is
entrained to assist in separating the media particles and allowing a more
thorough cleaning. (See Figure 5.5.31.)
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AIR SCOUR WASH
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Figure 5.5.31 Air Scour Wash

5.5.32 Wash Water Surge Basin

The wash water used for the filters is stored in basins prior to being pumped
to the filters for filter washing. Figure 5.5.32 is the cost curve for this surge
basin. An elevated tank is used in place of filter backwash pumps.
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Figure 5.5.32 Wash Water Surge Basin (Holding Tank)
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5.5.33 Filter Waste Wash Water Storage Tank
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Figure 5.5.33a Filter Waste Wash Water Storage Tank
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Figure 5.5.33b Filter Waste Wash Water Storage Tank
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The wash waste storage tank is usually designed to hold twice the volume
of the surge tank so that it can hold multiple backwash cycles. This type
of tank does is usually buried. The cost curve shown in Figure 5.5.33b
shows the range over which the tank is set.

5.5.34 Clearwell Water Storage — Below Ground

This structure provides a buffer between the output of the treatment
plant and the distribution system demand. It is also referred to as the
clearwell. This is a large cast-in-place concrete structure covered by a
concrete roof with interior supporting columns. Interior baffles are used
to minimize short circuiting of the product water that could compromise
the disinfection process. Figure 5.5.34 illustrates the construction cost of
the clear water storage reservoir. The cost curve is based on easily exca-
vated soil with no piles or groundwater problems. In the event that these
issues arise the additional costs could be higher by 50% or more for this
range of volume.
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Figure 5.5.34 Clear Water Storage (Buried — Million Gallons)
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5.5.35 Finish Water Pumping — TDH — 100 ft
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Figure 5.5.35a Finished Water Pumping Station (Centrifugal Pumps)

{

The finish water pumping station must be sufficiently sized to allow for
operational redundancy and to provide the necessary downstream pres-
sure. The typical design on the West Coast is for multiple vertical turbine
pumps to draw water from the clearwell directly and pump the water into
the distribution system on demand. (See Figure 5.5.35a.)

In the eastern United States a wet well/dry pit with horizontal centri-
fugal pump facility is often used. The cost of this type of facility can easily
be 2 to 3 times higher than what is shown on the curve below. Other more
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Figure 5.5.35b Finished Water Pumping (TDH 100 Ft)

sophisticated pumping systems with multiple pressure zones should be
priced using more precise design information.

5.56.36 Raw Water Pumping

Figure 5.5.36a Six Vertical Pumps in Front of a Building
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It is often necessary to lift the raw water higher than the source of supply
so the treatment processes have sufficient gravity flow to overcome the
head loss of the total plant and provide sufficient water to meet demand.
This is usually a high-flow low-head pumping requirement to lift the raw
water 20 to 30 ft. Figure 5.5.36b provides the cost curve for a simple
pump station at the head of the plant.
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Figure 5.5.36b Raw Water Pumping

5.5.37 Gravity Sludge Thickener

Figure 5.5.37a Gravity Sludge Thickener



66 WATER TREATMENT PREDESIGN CONSTRUCTION COSTS

The gravity sludge thickener provides a sludge removal to separate the
filter backwash and clarifier sludge for drying and ultimately disposal at
a land fill. The process is much like the circular clarifier where the sludge
is periodically pumped to sludge lagoons or drying beds. Figure 5.5.37b
provides construction costs for a range of thickeners.
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Figure 5.5.37b Gravity Sludge Thickeners

5.5.38 Sludge Dewatering Lagoons

Figure 5.5.38a View of Sludge Dewatering Lagoons
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Figure 5.5.38c Sludge Dewatering Lagoons

5.5.39 Sand Drying Beds

Figure 5.5.39a View of Sand Drying Beds
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Sludge drying is also accomplished by the use of sand drying beds. The
sand allows the water to separate from the sludge and be collected by an
underdrain system made of an impervious underlayment and perforated
drainage piping to a collection system, where it is sent either back to the
plant headworks, sewer or an adjacent leach field.

SAND DRYING BEDS
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Figure 5.5.39b Sand Drying Beds

5.5.40 Filter Press

Sludge can also be processed by the use of a filter press. When there is no
land area to use either lagoons or sand drying beds to process the sludge,
there are more expensive mechanical processes that can be used. Filter
press pumps the sludge through a hollow multi-plate press separated by
filter membranes to separate out the sludge from the liquid. The opera-
tion of the filter press can also be a significant cost compared with the
drying lagoons pr sand beds. Figure 5.5.40 illustrates the construction
cost of a typical facility.

5.5.41 Belt Filter Press

Another mechanical sludge-drying system is the belt filter press. This
piece of equipment is less labor intensive than the plate press but is more
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Figure 5.5.40 Filter Press

Figure 5.5.41a View of Filter Belt Press

expensive to purchase and install. The belt press uses multiple per-
forated belts that mechanically compress the sludge, allowing the water
to run through the belts and to the decant tank, where it is sent to the
sewer, headworks, or leach field.
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Figure 5.5.41b Filter Belt Press

1,000,000
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5.5.42 Centrifuge Facility

Figure 5.5.42a Centrifuge Facility

Another mechanical sludge drying system is the centrifuge facility. This
facility is usually multilevel with the centrifuges on the upper level and
sludge disposal equipment below. The centrifuge facility is cleaner but
more expensive than either the belt or filter press alternatives. The
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operation and maintenance costs are similar to the belt press with the
equipment, being less labor intensive than the plate press but more ex-
pensive to purchase and install than the belt press. Sludge is pumped to
the spinning centrifuges, forcing the water to flow from the sludge
through the outside of the centrifuge and to the decant tank, where it is
sent to the sewer, headworks, or leach field. The sludge is scavenged and
conveyed to the disposal bin below to be hauled to a disposal site.
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Figure 5.5.42b Centrifuge Facility

5.5.43 Administration, Laboratory, and Maintenance Building

The treatment plant will typically have operations facilities where the
plant business, maintenance, and testing can be performed. These are de-
signed for separate purposes and have very different costs. Figure 5.5.43
compiles the cost of operations buildings into a single curve of average
costs. And for this level of cost estimating this is good enough.

In using this curve, it is applied separately to each building. Adminis-
tration will house the offices, reception area, restrooms, public spaces,
and parking. The laboratory will have all the testing equipment, mechan-
ical piping, hazardous and special containment facilities, separate wash
rooms and showers, and so on. The maintenance area will have hydraulic
hoists, monorail or traveling bridge cranes, a paint room, and tools and
equipment to maintain the plant facilities. If all three buildings are
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Figure 5.5.43 Administration, Laboratory, and Maintenance Building

necessary for a facility, the total cost will be three times the cost calcu-
lated by the equation or plotted on the curve at the intersection of the
plant flow in million gallons per day, with the cost on the vertical, y-axis.

5.6 ESTIMATING CAPITAL COSTS

Using the design approach summarized in Chapter 2, it is important that
care be taken even at the predesign level. The first four design command-
ments call for the following activities:

1. You shall make a careful analysis and evaluation of the quality of
both raw and required finished waters.

2. You shall undertake a through evaluation of local conditions.

3. The treatment system developed shall be simple, reliable, effec-
tive, and consist of proven treatment processes.

4. The system considered shall be reasonably conservative and cost-
effective.

This will require some engineering and process calculations before pro-
viding cost estimates to the owner and other stakeholders. When com-
piled, the separate process costs can be summed and the cost of the entire
treatment plant estimated.
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As illustrated in the schematic below a conventional process train for
surface water treatment consist of coagulation with rapid mix followed
by flocculation, sedimentation, granular media filtration and final disin-
fection by chlorine and a contact tank (C*¢), followed by at least four
hours of treated water storage. Ancillary processes include intake screen,
grit chamber (optional), filter backwash, a low and high-service pumping
station, and solids-handling facilities. By itemizing and establishing the
appropriate design parameter from the schematic in Figure 5.6.1, we de-
velop the basic unit processes for estimating the construction cost. Along
with each process, we will set the value for its respective parameter.

For example, in the United States water processes can be set at million
gallons per day (MGD), by volume in gallons or in cubic feet. Water stor-
age like the clearwell is usually in million gallons (MG). Chemical storage
and feed is usually in pounds per day or pounds per hour with the storage
volume sized for 20 days at average plant flow.

However, certain chemicals such as liquid alum, ferric chloride, caus-
tic soda, cationic polymers, hydrofluosilic acid, and zinc orthophosphate
are commercially available with in liquid form at specific strengths. In
these cases, actual storage and feed rates are generally expressed as gal-
lons, gallons per hour, or gallons per day.

The plant in this example has two process pumping facilities to trans-
fer collected waste and solids to be further processed. There is a complete
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Figure 5.6.1 Conventional Treatment Process
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solids-handling facility, including a solids holding tank, pumping station,
clarifier, and sludge thickener.

5.7 ESTIMATING CAPITAL COSTS OF A CONVENTIONAL
WATER TREATMENT PLANT

Table 5.7.1 is an itemization of the conventional treatment processes for
an average daily flow rate of 100 MGD. Parametric values are set on a per
module basis and a cost per module is calculated. This is typical of most
design criteria where operation and maintenance requires that a portion
of each process lie idle and under maintenance or going through a clean-
ing cycle such as filter backwash. The modular cost is multiplied by the
number of process modules, and a total process cost is extended to the To-
tal Cost column. These process costs are summed and percentage costs for
yard piping, other sitework, and electrical and instrumentation work are
calculated and summed to a Total Construction Cost. Engineering, Legal,
and Administration costs are calculated as a percentage (35% of construc-
tion) and added for a Total Capital Cost of $158 million in 2007 dollars.

5.7.1 Two-Stage Filtration Plant

Figure 5.7.1 is a composite of the construction cost and nonconstruction
costs for the two-stage filtration plant. The range of the treatment plant
cost curve is from 10 MGD to 100 MGD and is made up of a selection of
the individual process costs for the estimated process parameter. The
process cost tables for 10 MGD and 100 MGD are in the Appendix.
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Figure 5.7.1 Two-Stage Filtration
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5.7.2 Direct Filtration Plant

Figure 5.7.2 is a composite of the construction cost and nonconstruction
costs for the direct filtration plant. The range of the treatment plant cost
curve is from 10 MGD to 100 MGD and is made up of a selection of the
individual process costs for the estimated process parameter. The process
cost tables for 10 MGD and 100 MGD are in the Appendix.
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Figure 5.7.2 Direct Filtration

5.7.3 Conventional Filtration Plant

<% »/a"‘
Figure 5.7.3a New Mohawk Water Treatment Plant., Tulsa,
Oklahoma
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Figure 5.7.3b is a composite of the construction cost and nonconstruction
costs for the conventional filtration plant. The range of the treatment
plant cost curve is from 10 MGD to 100 MGD and is made up of a selec-
tion of the individual process costs for the estimated process parameter.
The process cost tables for 10 MGD and 100 MGD are in the Appendix.
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Figure 5.7.3b Conventional Filtration

5.7.4 Dissolved Air Flotation Filtration Plant

Figure 5.7.4 is a composite of the construction cost and nonconstruction
costs for the dissolved air flotation filtration plant. The range of the treat-
ment plant cost curve is from 10 MGD to 100 MGD and is made up of a
selection of the individual process costs for the estimated process param-
eter. The process cost tables for 10 MGD and 100 MGD are in the
Appendix.

5.7.5 Lime and Soda Ash Filtration Plant

Figure 5.7.5 is a composite of the construction cost and nonconstruction
costs for the lime and soda ash filtration plant. The range of the treat-
ment plant cost curve is from 10 MGD to 100 MGD and is made up of a
selection of the individual process costs for the estimated process
parameter. The process cost tables for 10 MGD and 100 MGD are in the
Appendix.
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Figure 5.7.4 Dissolved Air Filtration
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Figure 5.7.5 Lime and Soda Ash Filtration

5.7.6 Iron and Manganese Filtration Plant

Figure 5.7.6 is a composite of the construction cost and nonconstruction
costs for the iron manganese removal filtration plant. The range of the
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treatment plant cost curve is from 10 MGD to 100 MGD and is made up of
a selection of the individual process costs for the estimated process pa-
rameter. The process cost tables for 10 MGD and 100 MGD are in the
Appendix.
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Figure 5.7.6 Iron Manganese Removal

5.7.7 Micro Membrane Filtration Plant

Figure 5.7.7a Micro-Filtration Plant Designed with a Rectangular Steel Tank of
Six Compartments
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Figure 5.7.7b is a composite of the construction cost and nonconstruction
costs for the micro membrane filtration plant. The range of the treatment
plant cost curve is from 10 MGD to 100 MGD and is made up of a selec-
tion of the individual process costs for the estimated process parameter.
The process cost tables for 10 MGD and 100 MGD are in the Appendix.
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Figure 5.7.7b  Micro Membrane Filtration

Total Capital Cost

5.7.8 Direct Filtration with Pre-ozone Filtration Plant

Figure 5.7.8 is a composite of the construction cost and nonconstruction
costs for the direct filtration with pre-ozone filtration plant. The range of
the treatment plant cost curve is from 10 MGD to 100 MGD and is made
up of a selection of the individual process costs for the estimated process
parameter. The process cost tables for 10 MGD and 100 MGD are in the
Appendix.

5.7.9 Conventional Treatment with Ozonation and
GAC Filtration Plant

Figure 5.7.9 is a composite of the construction cost and nonconstruction
costs for the conventional treatment with ozonation and GAC filters. The
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Figure 5.7.8 Direct Filtration with Pre-Ozone Construction Cost
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Figure 5.7.9 Conventional Treatment with Ozonation and GAC Filters Construc-
tion Cost

range of the treatment plant cost curve is from 10 MGD to 100 MGD and
is made up of a selection of the individual process costs for the estimated
process parameter. The process cost tables for 10 MGD and 100 MGD are
in the Appendix.
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5.8 ESTIMATING THE COST OF ADVANCED WATER
TREATMENT PLANTS

According to the World Health Organization world population growth es-
timation, there will be 12 billion people on earth at the end of this cen-
tury, which is twice as many people as at the end of twentieth century.
This is a serious issue because the earth has limited resources, including
energy and fresh water to sustain the life. According to a United Nations
study, each human requires 15 gallons of clean safe water to sustain
proper daily life. However, there is not enough fresh water available to
support 12 billion people on earth.

Global warming trend makes situation worse. And the dispropor-
tionate transfer of water within coastal regions of developed coun-
tries could leave the interiors susceptible to drought and water
scarcity. For example, the Southern California and the Greater New
York metropolitan areas are currently supplying an average of 140

Figure 5.8a lon Exchange Demineralization Unit System
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gallons per capita per day (gpcd), which is almost 10 times higher
than 15 gpcd.

Therefore, advanced water treatment technologies are vitally impor-
tant to world health. Many large cities in the world are built near the
seashore giving the cities access to abundant seawater. Using a combina-
tion of advanced treatment such as; ultra-filtration (UF) and reverse os-
mosis (RO) as the primary water treatment processes can easily provide
the required 15 gped of potable drinking water. Many African countries
have serious water shortage problems, making prepackaged advanced
water treatment plants like RO and UF highly cost-effective compared to
disease and economic collapse from severe shortages of safe drinking
water. Developed countries can easily supply the technology and equip-
ment in this era of globalization, resulting in a mutually beneficial eco-
nomic and social exchange with developing countries.

There are four seawater desalination treatment strategies currently in
use with widely ranging construction and O&M costs. These treatment
strategies are; reverse osmosis (RO), multi-stage flash (MSF), mechanical
vapor compression (MVC), and multiple-effect distillation (MED). Figure
5.8b below shows the relative comparison of construction costs for these
plants.
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5.8.1 Reverse Osmosis (RO) Treatment Plant

Seawater desalination is currently provided by four alternative treat-
ment processes. The most cost-effective of these is reverse osmosis. In
general, pretreatment is accomplished by the use of a two-step process.
During the first stage of the process a coagulant is added just prior to the
clarifiers and allowed to settle before filtration. Conventional water and
air backwash systems are included to maintain cleanliness of the filters.
System uses sulfuric acid and a scale inhibitor in order to control scaling
of the membrane surfaces.

Following pretreatment, the pressure is boosted to about 1,000 psig,
water is fed to the membranes and product water is produced. The con-
centrate stream is then fed to an energy recovery device. This lowers
total process energy use by about 30% - 40%. Recovery ratios are be-
tween 40% and 50%. Figure 5.8.1 below illustrates the construction cost
of a treatment plant over a range of 10 MGD to 150 MGD of product
water.
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Figure 5.8.1 Reverse Osmosis (RO) Construction Cost
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5.8.2 Multiple-Effect Distillation (MED) Treatment Plant

Multiple-effect distillation is the second most cost-effective treatment for
seawater over the same range of 10 MGD to 50 MGD. The effect stream in
the first effect is used as the heat source; it evaporates a small portion of
the seawater entering the unit. The vapor produced is sent to the second
effect, where it becomes the heat source for further evaporation. This
procedure continues in the following effects until it reaches the last
effect, where the final vapor is condensed in the main (or final) condenser.
Figure 5.8.2 shows the construction cost for the treatment plant.
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5.8.3 Mechanical Vapor Compression (MVC) Treatment Plant

Mechanical vapor compression is an alternative treatment for seawater
at flows below 10 MGD. In this treatment process, vapor produced in the
evaporator is sent to a compressor. The compression raises the pressure
and temperature enough so the vapor acts as the heat source for further
evaporation. This process can achieve a recovery ration of 50%. Although



90 WATER TREATMENT PREDESIGN CONSTRUCTION COSTS

$180.00

$160.00

N\

$140.00 o 20.622x 0907 P

(<]
I

$120.00 7

$100.00

L ly = 15.275x 097 [

$80.00

$60.00

MILLIONS OF DOLLARS

$4000 | LA

/ | ENR CCI = 8889 |

$20.00 4

o L]
0.0 20 40 6.0 8.0 10.0 12.0

MILLIONS OF GALLONS PER DAY

Total Construction Cost

Figure 5.8.3 MVC Construction Cost

Total Capital Cost

the unit operates at low temperature, the operation and maintenance
costs are relatively high. Figure 5.8.3 shows the construction cost for the
treatment plant.

5.8.4 Multi-Stage Flash (MSF) Distillation Treatment Plant

Multi-stage flash distillation is the highest-cost treatment for seawater
over the same range of 10 MGD to 50 MGD. This treatment process uses
high-temperature additives and a complex pretreatment process and re-
circulation. The recovery section is composed of a number of flash cham-
bers and heat exchangers in multiple stages. The recirculation stream
condenses the vapors made in the flashing chamber. The recycle stream
obtains its final temperature rise in the brine heater (which controls the
final temperature of the process). The stream then reenters the first flash
chamber where flashing begins again. Figure 5.8.4 shows the construc-
tion cost for the treatment plant.



Estimating the Cost of Advanced Water Treatment Plants 91

$700.00
$600.00 >
/

7] //
% $500.00 [y =a357709 |
= P
=2 P
S) A
2 $400.00 =
o P |y =3228x067%9
2 $300.00 -
= d
= 1
= $20000 -
=
=

$100.00 [ ENR CCI = 8889 |

$-
0.0 10.0 20.0 30.0 400 50.0 60.0

MILLIONS OF GALLONS PER DAY
‘ Total Construction Cost Total Capital Cost ‘

Figure 5.8.4 MSF Construction Cost

5.8.5 Ultra-filtration and Nano-Filtration

Ultra-filtration (UF) and nano-filtration (NF) have become reliable pro-
cesses that fill the gap between low-pressure microfiltration and high-
pressure reverse osmosis. The membranes and driving pressures have
made these processes cost effective alternatives allowing a smaller, albeit
more expensive RO process to provide the removal of ionized salts and
other colloidal particles to be removed from source water at a lower oper-
ation and maintenance cost.

Ultra-filtration uses membranes significantly smaller (less than
0.1 mm) than those provided by the microfilters, while removing colloids,
bacteria, viruses, and high-molecular-weight organic compounds (Inte-
grated Design and Operation of Water Treatment Facilities, Kawamura,
Wiley & Sons, 2000). Even at a pressure of 10 to 40 psig, these mem-
branes are more susceptible to clogging and must be frequently
backwashed.

Nano-filtration membranes are smaller yet (between 0.001 to 0.002 mm)
with a pressure of 75 to 150 psig. Somewhere between the ultra-filtration
size and the RO of (<1 nm) whose pressure is greater than 200 psig. The
current preferred design is a train of UF/RO or NF/RO filters with other
process elements providing the requisite water treatment and solids
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N L/

Figure 5.8.5b Membrane Filters Fiber Details

handling required by regulators. The capital cost of these facilities varies
significantly with the cost of the NF about 1.5 times that of RO. Costs for
UF are usually in the upper third of the difference between Conventional
Treatment and RO. Figure 5.8.5¢ below gives a range of probable costs for
the combined facility.
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Chapter 6

Operation and Maintenance Cost Impacts

6.1 ANNUAL OPERATION AND MAINTENANCE COSTS

When developing the preliminary design report, it is often the case that a
set of alternative water treatment plant types is evaluated. Along with
the estimated construction and total capital cost, it is necessary to esti-
mate the annual Operations & Maintenance (O&M) cost. The cost
curves below were developed from data published by a number of public
agencies and compiled into a database. The data was brought forward by
the use of an index previously referred to as the ENR-Construction Cost
Index. For the purpose of this manual we have set the ENR-CCI = 8889.
All costs are in US dollars and all indexes were brought current to June
2007.

Operation and maintenance costs are made up of both fixed costs and
variable costs. The fixed costs are typically labor, supervision, and ad-
ministration. Variable costs are associated with chemicals, power, main-
tenance repairs and replacement of plant and equipment, and other
supplies and services that are necessary to operate the process plant and
supporting facilities. There are many additional factors that can signifi-
cantly affect these costs, including the policies of the owner, climate and
weather, from both a local plant site and the raw water source of surface
waters. In addition, the sophistication of the plant instrumentation and
controls can have a great effect on these costs.
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O&M cost curves were developed for each of the common types of treat-
ment plants identified in Chapter 2 and the advanced water treatment
plants identified in Chapter 5.

Actual O&M costs can vary significantly between two plants with the
same flow, treatment processes, and instrumentation even within the
same owner/agency. And these cost curves should only be taken as a pre-
liminary estimate when comparing a group of alternatives. When evalu-
ating a single alternative, more care should be given to analyzing the
owner/agency’s policies and the system already in place.

6.2 O&M COST CURVES

O&M cost curves for the common treatment plants are shown below in
the same order as in Chapter 2. These common plant O&M curves range
in design flow between 10 MGD and 100 MGD.

6.2.1a Two-Stage Filtration
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Figure 6.2.1a O&M Costs for Two-Stage Filtration
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6.2.1b Direct Filtration
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Figure 6.2.1b O&M Costs for Direct Filtration

6.2.1c Conventional Treatment
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6.2.2a Dissolved Air Flotation
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Figure 6.2.2a O&M Costs for Dissolved Air Flotation

6.2.2b Lime & Soda Ash Softening
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Figure 6.2.2b O&M Costs for Lime and Soda Ash
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6.2.2¢ Iron Manganese Removal
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6.2.3a Micro Membrane Filtration
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6.2.3b Direct Filtration with Pre-Ozonation
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Figure 6.2.3b O&M Costs for Direction Filtration with Pre-Ozonation

6.2.3¢c Conventional Treatment with Ozonation and GAC Filters
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Figure 6.2.3c  O&M Costs for Conventional Treatment with Ozona-
tion and GAC Filters

6.3 ADVANCED WATER TREATMENT — SEAWATER
DESALINATION

Cost data for the flow rates shown here vary by treatment type and in-
clude a limited amount of data. For desalination, there were from as few
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as three to more than ten. The data for ultra- and nano-filtration had sig-
nificant variation and unsupported source material. These two advanced
treatment plant types were combined into one cost curve for O&M.

6.3.1 O&M Costs for Reverse Osmosis Treatment
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Figure 6.3.1 O&M Costs for Reverse Osmosis

6.3.2 O&M Costs for Multi-Stage Flash
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6.3.3 O&M Costs for Multiple Effect Distillation (MED)
Treatment
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Figure 6.3.3 O&M Costs for Multiple Effect Distillation (MED) Treatment

6.3.4 O&M Costs for Mechanical Vapor Compression (MVC)
Treatment
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6.3.5 O&M Costs for Ultra-Filtration and Nano-Filtration

The data for ultra-filtration is less detailed than we would prefer and the
data on NF is even less robust. The curve below reflects the annual Q&M
costs for UF. Since the operating pressure of NF is nearly four times that
of UF we expect the Q&M cost for NF to be 2 to 3 times that of the UF
Curve Figure 6.3.5.
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Chapter 7

Future Water Supply, Treatment
and Distribution

As previously mentioned, the goal for drinking water quality in the fu-
ture should be to provide finished water that is safe for human consump-
tion, palatable, and available in quantities necessary to sustain life.
Currently, membrane filtration is the primary process to remove sus-
pended particles. This coupled with conventional pretreatment processes
like clarification, oxidation, adsorption, and disinfection with UV and
chlorination, will be required to adjust the final water quality to maintain
the proper mineral content for human health.

Twenty-first century water demand will require treatment schemes
that are; high flow rate, effective, reliable, and cost-effective to build and
operate, as well as operator-friendly and environmentally friendly. Water
treatment in the future will consume more energy than the current con-
ventional treatment processes and delivery schemes. To meet this
greater demand and stricter water quality regulations, it will cost much
more to design, construct, and operate these facilities. Increased treated
water production for human consumption will impose significant impacts
on the environment from the disposal of chemical wastes and residue.
The economic impact will be more greatly felt in the nations of Africa and
the Middle East than in developed countries.

The World Health Organization in Water a Shared Responsibility, The
United Nations World Water Development Report 2, released in 2006,
held that regional economic benefits exceeded costs at all levels of water
and sewer treatment intervention. These levels included,;

1. Water improvements required to meet the Millennium Develop-
ment Goals (MDG) of the World Health Organization for water
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supply (halving by 2015 the proportion of those without safe
drinking water).

2. Water improvements to meet the water MDG for water supply
plus the MDG for sanitation (halving by 2015 the proportion of
those without access to adequate sanitation).

3. Increasing access to improved water and sanitation for everyone.

4. Providing disinfectant at point-of-use over and above increasing
access to improved water supply and sanitation.

5. Providing a regulated piped water supply in-house and a sewer-
age connection with partial sewerage connection for everyone.

The WHO report shows water and sewer treatment benefits dramati-
cally exceeding the annualized capital and O&M costs many times over
from a benefit-cost ratio low of 6 to a high of 40. This type of return on
capital investment would enhance economic growth and stability, reduce
regional conflict, and improve the health of the regions population and
their quality of life. Looked at another way not making the investment
would reduce the likelihood of economic stability and general health and
hygiene, and increase regional conflict, while reducing the economic
growth by a like percentage.

There is no single right answer to the question of how to meet the in-
creasing worldwide demand for potable water. Factors such as a reliable
water source, geography, the shape and elevation of the surrounding
area, and political boundaries all affect the ability to meet the water de-
mands of cities, towns, and villages throughout the world. Well-
established urban and suburban areas cannot continue expanding exist-
ing water treatment plants and distribution systems indefinitely because
of limited land to expand existing facilities.

Wastewater treatment facilities and landfills receiving waste disposal
face the same limitations to expansion. Most metropolitan areas of the
world have therefore spread out, forming suburbs. In these cases, the
best solution is to design and build new (small to midsized) modern water
treatment and distribution systems in each region. The availability and
treatment requirements are different for each locality: industrial, com-
mercial, and residential zones. Regions with access to the world’s oceans
could construct seawater desalination plants that met local needs and
regulations, with the plants located above the anticipated increase in sea
level.
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There are multiple design schemes for water treatment plants that
could meet future needs under these projected adverse conditions. Three
scenarios are presented that could satisfy the mission of public water
purveyors. Each design scheme will depend on regional conditions and
the regulatory requirements specific these regions.

¢ Design Scheme 1: Treat and deliver the entire water demand resi-
dential consumption, manufacturing, industrial, and commercial
services according to strict drinking water quality standards set
by regulatory agencies. Although the finished water is of the high-
est quality, the cost of producing this water may be prohibitive
with respect to nonresidential demand.

This design scheme is suitable for most communities in developed
countries. Due to the high cost of producing and supplying this water,
the consumption of water per capita may have to be limited to as low as
50 gpcd. As an alternative, water consumption could be controlled by me-
tering all service pipelines using a base line cost of water with a high pen-
alty charge for amounts exceeding the limited initial allotment.

* Design Scheme 2: Provide two levels of drinking water quality
through the use of two different treatment plants each with its
own treatment process train. Approximately 80% of the total
water demand would be treated to meet basic regulatory stand-
ards using conventional treatment processes and the remaining
20% by an advanced treatment process train. Two sets of water
distribution systems would, therefore, be required.

This design scheme may be applied to newly developed communities
and to developing nations. The obvious concerns are cross-connections
and illegal connections. Although water treated by conventional water
treatment processes is relatively safe for human health, people will not
become immediately sick or die if the water is accidentally ingested.
There are concerns about long-term exposure and cancer, as well as ill-
ness due to the contamination of the source water by protozoa.

¢ Design Scheme 3: Treat all water demand with conventional water
treatment processes to satisfy the basic regulatory standards, and
provide good-quality drinking water to meet residential demand
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by installing either a point-of-entry or point-of-use system utiliz-
ing a reverse osmosis (RO) process (or equivalent). Alternatively,
about 5% of the total demand could be treated with advanced
water treatment processes to produce very good water (bottled) for
drinking. This bottled water could be delivered by either public or
private companies.

This design scheme could be used in remote or isolated regions and
developing countries. Such a scheme can provide the minimum daily hu-
man needs of 0.5 gpd or even a comfortable 13 gpd for each person and
thereby sustain many unserved communities and isolated islands.

Traditionally water supply, wastewater treatment and water reuse
have been divided into separate disciplines. In reality they are closely re-
lated. Drinking water quality is affected by the efficiency of wastewater
treatment. Wastewater treatment plants will discharge treated effluent
into large bodies of water or pump it into the ground to become potential
source waters. And some manufacturers and industries reclaim their own
water multiple times to produce ultra-pure water meet their manufactur-
ing water quality requirements.

It is likely that the demand for potable water will outstrip the supply.
Even though water is not considered an “economic good,” its presence has
always been the precursor to economic growth and its absence the bell-
wether of economic collapse. The construction cost of water treatment fa-
cilities does depend on the scarcity and quality of water supply and the
regulatory requirements governing the treatment and delivery of water
to the end user.



Appendices

Expanded versions of the tables
in these appendices may be found online at
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471729973.html
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Preface to the Appendices

This appendix contains the tables and graphs used in this manual. These
tables and cost curves are shown in the order they appear in the manual
and are designed to be used together to arrive at a preliminary construc-
tion cost and the associated operations and maintenance for water
treatment facilities. They are useful in comparing different design alter-
natives or plant expansion phases anticipating future development
needs. They can also be used in preparation of lifecycle cost to screen mul-
tiple alternatives.

A complete set of electronic files created using Microsoft Excel accom-
pany this manual. They are on a single compact disk. There are instruc-
tions on the CD in the use of the tables for estimating the construction
costs for individual treatment processes, total plant costs and the opera-
tion and maintenance costs of the facility. The primary data used to gen-
erate the curves and establish equations for calculating the costs are not
part of the manual or included on the CD. The files are not protected nor
are they guaranteed free of error. They are the result of many adjust-
ments over nearly 30 years of design and construction of water treatment
plants.

The user is invited to add their own data to the curves and adjust them
for local conditions. But caution should be used in radically changing val-
ues either upward or downward to account for anticipated changes in the
economy. Most material and labor costs have risen steadily during the
past three decades while a few have been relatively flat. The significant
increase in development in Asia and the subsequent demand for con-
struction and raw materials has and will continue to drive up the cost for
the foreseeable future.
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Appendix A

Detailed Treatment Plant Cost Tables
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Appendix Ala

Predesign Cost Estimate for a Two-Stage
Filtration Treatment Plant Figure 2.3.1a
with Capacity of 10 MGD
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Appendix A1b

Predesign Cost Estimate for a Two-Stage
Filtration Treatment Plant Figure 2.3.1a
with Capacity of 100 MGD
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Appendix A2a

Predesign Cost Estimate for a Direct
Filtration Treatment Plant Figure 2.3.1b
with Capacity of 10 MGD
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Appendix A2b

Predesign Cost Estimate for a Direct
Filtration Treatment Plant Figure 2.3.1b
with Capacity of 100 MGD
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Appendix A3a

Predesign Cost Estimate for a Conventional
Treatment Plant Figure 2.3.1c with
Capacity of 10 MGD
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Appendix A3b

Predesign Cost Estimate for a Conventional
Treatment Plant Figure 2.3.1c with
Capacity of 100 MGD
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Appendix Ada

Predesign Cost Estimate for a Dissolved Air
Flotation Treatment Plant Figure 2.4.1a
with Capacity of 10 MGD
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Appendix A4b

Predesign Cost Estimate for a Dissolved Air
Flotation Treatment Plant Figure 2.4.1a
with Capacity of 100 MGD
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Appendix A5a

Predesign Cost Estimate for a Lime Soda
Ash Treatment Plant Figure 2.4.1b with
Capacity of 10 MGD

147



€79°0LL$ e¥9°0LL$ T 00006 000°9L¥ 0S%‘6  (3[ue], SUIP[OH) - Ulseq o3Ing Iojep\ UYSB\\ GE
90L°2.26% €63e97$ 14 003 000°L3 (4! USeM Jnoos Iy T1¢
188°661$ 176°66$ 4 003 000°L3 1ja8 weysAg Ysep edejng  0g
916cLES 8G7°981¢ 4 00g 00S°‘T 06 Surdwng ysemypeq 19 63
LGL06T$ 689°L7$ 14 0S¥y 00083 (74! BIPOIA Ten( - BIPSN Uonjel}if Lg
689295 7S  TLIOVI‘TS 14 0S¥y 00083 071 aaInjonIg 191 £j1ARL) g7
8TL‘800°T$  08T1°CSG$ 14 0009 000°0ST 000°g JoyLIe[) Ie[nduelddy ¥g
8¥9701$ ¥38°G9$ 4 a€ 00€°e 099 JogLIB[) Je[NOII) €3
6%8‘0359$ €91°09%$ 4 Ge0'0 L G100 08 = D 103B[NIO0TH GG
e1L‘765$ L9€°L6G$ 4 Ge0'0 L G100 0G = D 103801 T¢
1.6°609% 986‘10€$ 4 G600 L ST0°0 0¢ = D 103e[NO20Td 0%
£€86°99$ €86'99% T 0GLT 000°G¥T 008 006 = D XN prdey 61
179°e67'2$  183°973'T$ 4 0091 000°0T 0T posJ oWl 6
a3erI10)S I9pUI[AD

L16°0L6°T$ 89%°986$ 4 0002 000°0T 00g u0j-T Pod) pue a5eI0)s dULIO[Y) qT

7800 J1U[) L3  SI1U[) SSII0UJ SSII0.UJ J1U[) WNWIXDJ WNWIULP] §8200.4J ‘ON

$8200.g  7S00) §S200.4d Jo uaqunp 42 d Ap3unng

1701,

asuny ajqoonddy

148



'$1500 JNRQ 91} syoedwut Ajuo pue a[qeidanoe sI IsLIe[) J0RIUOY) SPI[OS

a1 Jo Juanyjje a1} ojul pajos(ur AT3oa1rp sed 20D jo uoneorjdde ay [, ‘q1 'z 831, 89s YQSH 0} 9ATIRILIS][E UB SB UOTJRUOIRI3P 10] pasn ST sed ¢y :810N

S0P ‘¥9Eve$
06%°'606°S$
GTT1‘GS¥H'Ga$
8GTTLLES
G8LcV6$
$96°G88°‘T$
1#9°GG8°81$

¥ 082$
09%°132$
190°€L6$
8€%°'S0¥$
397 L¥8$
10S%€S1$
0LL‘9TC$

LSOO LOHAr0o4d "TV.LOL

%S¢ LSOO HAILVILSININGY % TVOHT ‘ONIIIANIONT

LSOO NOLLDNYLSNOD TV.LOL

%08 STTOYLNOD % TVOIdLOHTH HLIS
%S DNIAVOSANVT MHOMHLIS

%0T ONIdId dY4VA

SLSOD SSHOO0YUd TVILOL dNS

¥¥ 082 1 0T
€89°L2$ 8 GL8T
16G°987$ z Ge
6L0°GETS e i
L8282 € 99'%
105785 1$ 1 00L'T
0LL‘9TCS 1 000003

002
000°00¥%
0ST

00¢

00€

8
000°6%6

008%
0g

vl
T10°0
008°6T

Surp[ing eourULIUTBIA

pue ‘A1ojeroqer] ‘UoRIISIUTWPY

speg Suli(] pueg

JIouayoIYJ, o3pn[S L)1ARIY)

Surdwng Jejepy mey

JOO0T = HAL - Surdwng J99ep\ poysIuly
punoin) moreg - 93eI0)g I9jeA\ Iea[)
yueJ, 93eI0)S I91RA\ USBM

(47
6¢
LE
9¢
g€
145
€€

149



Appendix A5b

Predesign Cost Estimate for a Lime Soda
Ash Treatment Plant Figure 2.4.1b with
Capacity of 100 MGD
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Appendix A6a

Predesign Cost Estimate Iron Manganese
Removal Treatment Plant Figure 2.4.1¢
with Capacity of 10 MGD
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Appendix A6b

Predesign Cost Estimate for a Iron
Manganese Removal Treatment Plant
Figure 2.4.1¢ with Capacity of 100 MGD
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Appendix A7a

Predesign Cost Estimate for a Micro
Membrane Treatment Plant Figure 2.4.2a
with Capacity of 10 MGD
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Appendix A7b

Predesign Cost Estimate for a Micro
Membrane Treatment Plant Figure 2.4.2a
with Capacity of 10 MGD
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Appendix A8a

Predesign Cost Estimate for a Direct
Filtration with Pre-Ozone Treatment Plant
Figure 2.4.2b with Capacity of 10 MGD
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Appendix A8b

Predesign Cost Estimate for a Direct
Filtration Treatment Plant with Pre-Ozone
Figure 2.4.2b with Capacity of 100 MGD
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Appendix A9a

Predesign Cost Estimate for a Iron
Manganese Removal Treatment Plant
Figure 2.4.2¢ with Capacity of 10 MGD
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Appendix A9b

Predesign Cost Estimate for a Conventional
Treatment Plant with Ozone GAC Filters
Figure 2.4.2¢ with Capacity of 100 MGD
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Appendix B

Additional Cost Indexes,
Charts and Tables

Cost Estimating Manual for Water Treatment Facilities William McGivney and Susumu Kawamura
Copyright © 2008 John Wiley & Sons, Inc. ISBN: 978-0-471-72997-6
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MILLIONS OF DOLLARS
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Appendix C

Shorthand Conversion Table for Metric (SI)
Conversions and Other Useful Factors

Length : 1ml =254 x 103 cm
lin =2.54cm
1ft =30.48cm
lyd =0.914m
1mile =1.61km
Area : 1ft2 = 0.093 m?
1yd? = 0.836 m?
1 mile? = 2.59 km?
lha = 10,000 m?
= 2.47 acres
Volume :  1ft2 =28.32L
= 7.48gal
1gal =3.785L
1yd® = 0.7646m3
1 acre-ft = 0.326 million
gallons
=1,235m3
1m3 = 35.311t3
= 264 gal
Weight : 1dalton =1.65x10"2¢
grain
11b =453.6¢g
1ton (short) =2,0001b
=907.18kg

Cost Estimating Manual for Water Treatment Facilities William McGivney and Susumu Kawamura

Temperature :
Feedingrate :

Pressure :

Power :

Gravitational
acceleration :

Copyright © 2008 John Wiley & Sons, Inc. ISBN: 978-0-471-72997-6
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(32°F) x 5/9

1mg/L
1ft3/s
1£t%/ min
1mgd
1m3/s
1gpm/ft?
1psi

(Ibf /in2)
1 psig
1kPa
(N/m?)
1MPa
1bar
1hp
lhp

1g

=°C
= 8.341b/million
gallons
= 448.5gpm
= 0.6463mgd
= 28.32L/min
= 1.547ft3/s
=3,785m?/d
=3.785ML/d
= 22.826 mgd
=25m/h
=60m/d
=0.0703 kgf/
cm?
(kg/cm?)
=14.71b/in?
=2.31ftHyO
= 0.145 psi

= 145 psi

= 1.0197 kgf /cm?
= 14.5psi

= 550ft-Ib/s

= 42.44 Btu/min
= 0.7457TkW

= 32.2ft/s?
=9.807m/s2



Glossary

AACEi American Association of Cost Engineers, International (AACEi)

Accuracy of the Estimate The accuracy of a predesign cost estimate is
taken from the guidelines of the American Association of Cost Engineers,
International (AACEI) as a percentage range for estimating purposes.

Allowance for Additional Direct Costs A percentage allowance is
intended to cover work items not yet quantified but known to exist in
projects of this type and size.

AWWA American Water Works Association
BAT Best available technology

Benefit-cost ratio The ratio of the present worth of estimated project
benefits to present worth of estimated project costs. If the ratio is 1.0 or
higher (benefits > costs), the project is considered worthwhile; it does not
mean that the project should be built—there are many projects and lim-
ited resources. SOURCE: “Glossary for Cost and Risk Management,”
Washington State Department of Transportation (WSDOT), March 2007

CMS Construction management services
CSI Construction Specification Institute

Construction Administration Costs The Base Costs of administra-
tion, management, reporting, design services in construction and com-
munity outreach, and so on that are required in the Construction Phase.

Construction Contingency A markup applied to account for substan-
tial uncertainties in quantities, unit costs and the possibility of currently un-
foreseen risk events related to quantities, work elements or other project
requirements. SOURCE: “Glossary for Cost and Risk Management,” WSDOT

Construction Costs Construction costs are the sum of all individual

items submitted in the successful contractor’s winning bid through

Cost Estimating Manual for Water Treatment Facilities William McGivney and Susumu Kawamura
Copyright © 2008 John Wiley & Sons, Inc. ISBN: 978-0-471-72997-6
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192 GLOSSARY

progress of the work, culminating in the completed project, including
change order costs.

Construction Cost Trending The preparation and updating of the
project construction cost estimate over time. As the design process con-
tinues, the project becomes more defined, and as more detailed engineer-
ing data becomes available, “trending” provides a basis for the analysis of
the effects of these changes.

Contingencies Contingencies are defined as specific provisions for un-
foreseeable cost elements within the defined project scope. SOURCE:
AACE International Recommended Practice No.18R-97, AACEi, 1997

Cost Indexes Cost indexes are a measure of the average change in
price levels over time, for a fixed market basket of goods and services.

Design Allowance See Allowance.

DAF Dissolved air flotation

DHS Department of Health Services

ENR Engineering News Record

ENR CCI Engineering News Record Construction Cost Index
EPA U.S. Environmental Protection Agency

Escalation The total annual rate of increase in cost of the work or its
sub-elements. The escalation rate includes the effects of inflation plus
market conditions and other similar factors. See also inflation. SOURCE:
“Glossary for Cost and Risk Management,” WSDOT

Estimate A quantitative assessment of the likely amount or outcome. Usu-
ally applied to project costs, resources, effort, and durations and usually pre-
ceded by a modifier (i.e., preliminary, conceptual, order-of-magnitude, etc.).

ESWTR Enhanced Surface Water Treatment Rule
ft Foot or feet

ft>/h  Cubic feet per hour

ft3/min Cubic feet per minute

ft3/s Cubic feet per second

Forecasts Estimates or predictions of conditions and events in the
project’s future based on information and knowledge available at the



Glossary 193

time of the forecast. Forecasts are updated and reissued based on work
performance information provided as the project is executed. SOURCE:
Project Management Body of Knowledge (PMBOK), Third Edition

Future Costs Costs that are escalated by projected inflation rates to
specific points in time, consistent with a particular project schedule.
SOURCE: PMBOK, Third Edition

g Acceleration of gravity
g Gram
GAC Granular activated carbon

gpced Gallons per capita per day SOURCE: World Health Organization,
Water a Shared Responsibility, The United Nations World Water Devel-
opment Report 2, 2006

gph Gallons per hour

gpm Gallons per minute

gpm/ft> Gallons per square foot

HVAC Heating, ventilation, and air conditioning

Historical Information Documents and data on prior projects, including
project files, records, correspondence, closed contracts, and closed projects.

Inflation The increase in the price of some set of goods and services in
a given economy over a period of time. It is measured as the percentage
rate of change of a cost index. Inflation’s cause is thought to be too much
money chasing too few goods.

Ib Pound

Market Conditions Market conditions are the consequence of supply-
and-demand factors, which determine prices and quantities in a market
economy and which are separate from inflation.

MCL Maximum contaminant level

MDG Millennium Development Goals SOURCE: World Health Organi-
zation in Water a Shared Responsibility, The United Nations World
Water Development Report 2, 2006

MF Microfiltration

mg Milligram
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MGD Million gallons per day

mL Milliliter

NIPDWR National Interim Primary Drinking Water Regulations
NPDES National Pollutant Discharge Elimination System
NPDWR National Primary Drinking Water Regulations
NIPDWR National Interim Primary Drinking Water Regulations
O&M Operation and maintenance

PAC Powdered activated carbon

Parametric Estimating An estimating technique that uses a statisti-
cal relationship between historical data and other variables (e.g., lane
miles, square footage, etc.) to calculate an estimate for activity parame-
ters such as scope, cost, budget, and duration. Accuracy is dependent on
the sophistication and the underlying data built into the model. An exam-
ple for the cost parameter is multiplying the planned quantity of work to
be performed by the historical cost per unit to obtain the estimated cost.
SOURCE: PMBOK, Third Edition

PMBOK An acronym meaning Project Management Body of Knowledge.
The term PMBOK™ is used by the Project Management Institute to refer to
their Guide to the Project Management Body of Knowledge publication.

PMI Project Management Institute, Inc.
ppd Pounds per day

ppm Parts per million

psi Pounds per square inch

Probability An estimate of the likelihood that a particular risk event
will occur, usually expressed on a scale of 0 to 1 or 0 to 100 percent. In a
project context, estimates of probability are often subjective, as the com-
bination of tasks, people, and circumstances is usually unique. SOURCE:
“Glossary for Cost and Risk Management,” WSDOT

Range The difference between the upper and lower values of a set of
numbers or results, either measured absolutely or related to confidence
levels. SOURCE: “Glossary for Cost and Risk Management,” WSDOT
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Range Cost Estimate A cost estimate that gives a range of costs, re-
lated to specific confidence levels. SOURCE: “Glossary for Cost and Risk
Management,” WSDOT

RCML Recommended Maximum Contaminant Level

Risk The combination of the probability of an uncertain event and its
consequences. A positive consequence presents an opportunity; a nega-
tive consequence poses a threat. SOURCE: “Glossary for Cost and Risk
Management,” WSDOT

RO Reverse osmosis

SDWA Safe Drinking Water Act

SMCLs Secondary Maximum Contaminant Levels
SWTR Surface Water Treatment Rule

UBC Uniform Building Code

UF Ultra-filtration

Ultimate Cost Actual cost at completion of all work elements, includ-
ing all outside costs, changes, and resolution of risk and opportunity
events.

Uncertainty The lack of complete knowledge of any outcome. Econo-
mist Frank Knight (1921) Risk, Uncertainty, and Profit, University of
Chicago established the important distinction between risk and uncer-
tainty: “Uncertainty must be taken in a sense radically distinct from the
familiar notion of Risk, from which it has never been properly separated.
.. . The essential fact is that ‘risk’ means in some cases a quantity sus-
ceptible of measurement, while at other times it is something distinctly
not of this character; and there are far-reaching and crucial differences
in the bearings of the phenomena depending on which of the two is really
present and operating. . . . It will appear that a measurable uncertainty,
or ‘risk’ proper, as we shall use the term, is so far different from an un-
measurable one that it is not in effect an uncertainty at all.” SOURCE:
Wikipedia

WHO World Health Organization
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