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Preface

 

Software is a disruptive technology that has changed how almost every
sector of human society and the economy works. Software is now per-
vasive; it is a component of almost every industrial product or at least
essential to the development of such products. Software capabilities lie at
the core of the new national and international information-based economy.
This mission criticality of software imposes increasingly stringent demands
on business organizations that depend on software systems or are respon-
sible for software development. The Darwinian nature of modern business
competition makes software development a struggle for survival in an
unpredictable environment characterized by intense pressures for rapid
development; decreased time to market; flexible and easy-to-use applica-
tions; and low cost. It is now more important than ever for software
developers, project managers, and business organizations to understand
and implement diversified, multidisciplinary software development envi-
ronments in their organizations.

 

Strategic Software Engineering: an Interdisciplinary Approach

 

addresses these needs by offering a view of software engineering as a
strategic, business-oriented, interdisciplinary enterprise, rather than as a
primarily technical and scientifically focused process. We view software
technology as a tool for achieving business goals in collaboration with all
the affected stakeholder communities. Although we address many of the
technical and scientific aspects of development extensively, this is done
in a way that is broadly accessible. We critically review software devel-
opment models and processes. We consider how software has been
created in the past and with what shortcomings as well as what new
paradigms are emerging that reflect how development should be done.
We provide a strategic, business-oriented assessment of the forces that
have influenced the development of software process models in order to
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better understand what measures or directions should be taken to further
improve them. We extensively address the relation between problem-
solving techniques and strategies for effectively solving real-world prob-
lems. Finally, we consider the impact of interdisciplinary factors on soft-
ware development, including the critical role of people and financial
factors.

This book is designed for students, faculty, and practitioners with an
interest in a broad, eclectic, business-driven view of software engineering
principles, methodologies, and development models. The diverse back-
grounds of the authors, which encompass traditional computer science,
information systems, information technology, and business applications,
have helped us create an integrative approach that we believe is highly
compatible with the new trend towards interdisciplinary curricula in com-
puting and business schools in the United States and elsewhere. The book
is particularly suitable for upper level and graduate courses in software
engineering with a management information system, business, information
technology, or computer science emphasis. It should also serve as a useful
resource for business or systems analysts. Software project management
leaders in business organizations should find it a helpful reference in
contemporary areas such as software process diversity and interdisciplinary
software development.



 

xv

 

Introduction

 

This book has a focus different from those of other texts on software
engineering. It proposes and develops a view of software engineering as
a strategic, business-oriented, interdisciplinary enterprise, rather than as
the primarily technical or scientific process described in traditional pre-
sentations. We extensively address many of the technical and scientific
aspects of software development in a way that is accessible to a broad
audience. The discussion of strategic software engineering is divided into
three sections. Section 1 provides a detailed, critical review of software
development models and processes (Chapter 1 through Chapter 4). This
is then followed by a strategic, business-oriented assessment of how
process models have evolved over time and what directions should now
be taken to improve them (Chapter 5). Section 2 (Chapter 6 through
Chapter 10) focuses on the relation between problem-solving techniques
and strategies for effectively solving real-world problems. Section 3
addresses the impact of interdisciplinary factors on software development,
including the critical role of people and fiscal effects (Chapter 11 and
Chapter 12) and concludes with a brief look at so-called specialized
systems development (Chapter 13). An overview of each chapter follows.

Chapter 1 (“Software Development Strategies: Basic Planning and Con-
trol”) introduces and critiques the basic software development process
and the key risk-reduction models. We observe how these and later
software process models share (in varying degrees and evolving over
time) a number of characteristics, beginning with an emphasis on require-
ments engineering; the use of a multistage development decomposition
derived from the waterfall model; documentation requirements; stake-
holder involvement; project management; a consideration of objectives
related to economic or business constraints; and implicit or explicit adoption
of recognized best practices in development. Their shared characteristics
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reflect the universal human, technical, and economic constraints under
which software development operates. For example, recognition of best
practices is a recurrent theme in the evolution of every engineering field.
In software development, these practices include separation of concerns,
deferring design decisions when possible, focusing on stakeholder goals,
and, more recently, the application of use cases to identify requirements.

The historical evolution of process models has played a significant role
in how models have diversified over time, with later approaches building
on earlier ones and with technological advances enabling new approaches.
We consider first the basic life-cycle models that introduced structured
planning and development and applied basic engineering organizational
and planning principles to the development of software. The Waterfall
Model was the most influential of these. Incremental and iterative models
were introduced to reduce the cycle time for development. These include
the Evolutionary Development Model and the early Iterative Enhancement
Model, which served as a practical method for achieving stepwise refine-
ment. Incremental development facilitated early solution of implementa-
tion problems and reduced risk associated with the late integration of
components.

Investing in any business involves risk, as does developing a software
product. We thus next critique the basic models that addressed risk in
software development such as the prototyping and spiral models. Proto-
types are widely used in engineering; examples include rapid, throwaway,
exploratory, and embedded prototypes, etc., as well as techniques such
as the use of presentation prototypes, breadboards, mockups, and pilot
systems. Benefits of prototyping include obtaining early feedback from
users and motivating user involvement, which help to avoid failure of
user satisfaction.

The most famous risk reduction strategy is embodied in Boehm’s spiral
model, which relies heavily on prototyping but is also designed to allow
incorporating other process models into its cycles. Each spiral development
cycle is like a mini-life cycle with its deliverables and assurance processes
intended to minimize risk. We also consider the Win–Win spiral variant
that uses a stakeholder approach to determine the objectives–con-
straints–alternatives for each cycle of the spiral. Finally, we examine the
Cleanroom Model; this is based on incremental development under sta-
tistical quality control and formal correctness principles and uses statisti-
cally based software testing intended to yield a certifiably reliable software
product.

Chapter 2 (“Software Development Strategies: Tools, Objects, and
Reuse”) examines computer-supported tools for software development
and models that emphasize the fundamental concept or principle of
reusability. Reuse is a decisively important idea in software engineering
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because it reduces risk and development costs. The chapter describes
process models that capitalize on the idea of reuse, beginning with object
orientation. The central motivation underlying the use of objects is that
they represent a natural way to model phenomena and correspond to the
most fundamental of cognitive elements: the concept or object. The
conceptual nature of objects underlies their ability to be designed for
reuse. At one level, we consider how objects can be systemically used
throughout the development process.

We then provide an overview of the Rational Unified Process and its
comprehensive suite of CASE tools for object-oriented development. Com-
mercially available reusable system components or commercial off-the-
shelf components represent reuse at a different scale at a much higher
scale of functionality. Finally, even when objects or COTS components
are not applicable, for a large number of systems, the issue of reuse
presents itself in the reengineering of existing systems, which would be
totally prohibitive to develop 

 

ab

 

 

 

initio

 

. The large extant systems to which
this approach is applied are typically legacy systems and are effectively
recycled by being modified or adapted to update their performance
characteristics and interfaces. We also briefly touch on another important
instance of reuse: namely, the reuse of design patterns for solutions to
problems.

Chapter 3 (“Software Development Strategies: Process Improvement”)
examines the theme of software process improvement, in which the goal
is to take a proactive role in creating better software development models.
One approach to achieving this is to use simulation models to better
understand the internal dynamics of process models, such as how changes
in one process parameter can affect other process parameters. Another
approach is to address more explicitly and carefully the human factors
involved in development, including cognitive, psychological, and social
factors that come into play at different stages of development. The estab-
lishment of explicit standards for software development and for related
organizational and managerial practices, as is done in the Capability
Maturity Model, is a further tactic that has been taken to improve the
overall excellence with which software best practices are applied and
improved. Software development excellence can also be promoted by
improving the professional and technical abilities of the individual devel-
opers, as typified by Personal Software Process, and the teams to which
they belong. We consider each of these approaches.

Chapter 4 (“Software Development Strategies: Reinventing How It Is
Done”) examines a number of more recent trends in software process models.
An especially remarkable example is the open source movement, which
represents a paradigm shift in how software is developed. It even has some
of the characteristics of a disruptive technology—that is, a technological
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development emerging from outside the mainstream of scientific develop-
ment that radically challenges the existing technological paradigm. Agile
Development is not quite as radical but reflects a new order of lightweight
process model intended to reduce what some perceive as the unwieldy
process overhead in other approaches. Rapid Application Development has
a similar objective of expediting the return time on product delivery.

Workflow models, akin to the production line models common in
manufacturing, view business environments as networks of collaborating
agents in which information is transformed as it moves between agents.
They attempt to automate the enactment of these processes. Aspect-
oriented models address difficulties with object orientation that arise
because phenomena such as concurrency and scheduling tend to straddle
objects, making the application of the central principle of separation of
concerns problematic. Each model is part of a continuing exploration into
how to develop software systems effectively.

Chapter 5 (“An Assessment of Process Life-Cycle Models”) discusses
the purpose and role of software engineering processes. It includes
critiques of existing models and proposals for evaluating models. The
critical role of time as a factor in development is considered. The lack of
an adequate integration between software and hardware technology, on
the one hand, and business and social disciplines, on the other, is identified
as a persistent shortcoming undermining the ability to attack real-world
problems optimally. We then identify a series of questionable assumptions
that have affected the development of software process models, including
a tendency to assign primacy to the role of internal software factors; the
relative independence of software development from the business process;
separation of the software project as management enterprise from the
software development process; and a restrictive choice between process-
centered versus architecture-centered development. These assumptions
tend to reduce the role of people, money, interdisciplinary knowledge,
and business goals in terms of their impact on the problem solution.

The elements of a redefined software engineering process are then
identified based on the integration of critical activities; required major
interdisciplinary resources (people, money, data, exploratory and model-
ing tools, and methodologies); organizational goals; and the impact of
time on an ongoing roundtrip approach to business-driven problem solv-
ing. The redefinition includes limitations identified in the literature related
to business evaluation metrics, the process environment and external
drivers, and process continuation, as fundamentals of process definition.

Chapter 6 (“The Problem-Solving Process”) considers the relation
between classic problem-solving concepts and software development, par-
ticularly in a business environment. A basic point concerns the advantages
that accrue from exploiting diversity as a tool in problem solving when
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diversity refers to the differences in cultural or personal background;
professional experience; problem perspective; understanding; or technical
and disciplinary capability. Diversity is a frequently overlooked resource
that offers a unique opportunity for achieving a broader, more integrated
approach to solving problems. Failure to capitalize on it undermines the
ability of software development to address the complexity of real prob-
lems. A related issue is that, because of their technical background,
computer scientists may be prone to overemphasizing the centrality of
technical capability; however, the correct identification of business goals
is often the critical factor for effective development, with business goals
providing the criteria and framework according to which the suitability
of software systems can be properly assessed. Such an approach is user
centered or customer driven. It acknowledges the decisive importance of
user perception and assumes solutions should come from a thorough
understanding of user needs.

We examine the impact of problem-solving concerns and principles
on the development process because software development is closely
linked to the concepts and strategies of problem solving. A review is
presented of the basic ideas regarding problem solving and some of the
kinds of problems that arise specifically in business environments, such
as how to meet standards; selection from a set of alternative solutions;
satisfying customer expectations; goal evolution; and improving organiza-
tional process. Finally, a brief review of the theory of problem solving,
its concepts, methods, strategies, and their relation to approaches used in
software development is given, together with some classic approaches
used in business problem solving.

Chapter 7 (“Software Technology and Problem Solving”) examines how
the introduction of information processing has changed the way in which
people and organizations address problems. Chapter 6 considers how
problem-solving approaches are closely related to how software develop-
ment is done; Chapter 7 addresses how the availability of software tools
influences how problem solving is done. Software serves as the critical
enabling technology that automates routine problem-solving activities and
interactions, facilitates visualization, supports collocated and distant col-
laboration, etc. Because software is enabled by technology, advances in
problem solving have become coupled with the rapid advances in tech-
nology. Software tools are now pervasively used to support classic problem
solving tasks from data exploration to communication. A similar pervasive
adaptation of software and business processes is seen in the rapid evo-
lution of business operations represented by the e-business revolution,
which is reshaping entire industries.

We also consider the impact of the dramatically increasing portability
of computing on business processes and the effect of enhanced digitally
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driven connectivity on development issues such as product cycle time.
The flip side of the coin to the enabling power of computing technology
concerns its limitations. Although software has provided business manag-
ers with capabilities that enhance continual growth and created added
business value, revolutionizing communication, portability, and connec-
tivity, software does not represent a complete solution. The challenges to
software-driven approaches to problem solving include the diversity of
user requirements; the difficulty of capturing requirements; the complexity
of business and decision-making processes; the lack of business experi-
ence and background among software specialists and developers; and the
tight coupling between computer information systems and the people
who use them. We consider some of the difficulties involved in adapting
software to individual differences and changing organizational environ-
ments, as well as difficulties that arise because, naturally, end users are
not programmers.

We consider how the introduction of new software systems in complex
organizations is problematic for various interdisciplinary reasons. The
effective business value that a software system adds to business perfor-
mance tends to be neither explicitly addressed nor adequately quantified
because the traditional focus in software development is on technical
metrics intended to assure the technical quality of the software product.
We observe that, although project management and fiscally driven factors
are part of the software engineering process, they are often not well
integrated into the process. Thus, a gap remains between the discipline
of management information systems and the software development disci-
plines, with MIS looking at solutions from a managerial perspective and
technical concerns being more influential for software development.

Chapter 8 (“Evolution of Software Development Strategies”) further
examines how the focus in development has shifted from the technical
to the business context. The technical aspects of software development
have become increasingly easy. Frequently used code common to many
applications such as that for GUIs has already been developed. Web-based
collaborative environments provide excellent platforms for rapid commu-
nication among experts and developers independently of location. Increas-
ing automation enables even nontechnical users to customize applications
to meet special requirements or user preferences. The central challenge
to software development today is not to create new code, but to survive
an extremely competitive marketplace for software solutions that are on
time, on budget, and on target.

Other challenges include accommodating user power, market share,
the anytime–anywhere factor, return on investment, and the impact of
technology on competitive advantage in development. The close coupling
between software and business context is now recognized as a primary
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factor. This recognition has emerged gradually. In the early era of man-
agement isolation, attention was primarily devoted to the technical side
of software systems with little emphasis on the business side of develop-
ment strategy. During the era of business evaluation of software engineer-
ing, managers began to take control of the software process with
development performance assessed through the expected business out-
comes of the product. The current 

 

maturity era

 

 of software engineering
is characterized by a high degree of collaboration and partnership between
the computing and business domains. The rationale is to create value
from diverse needs, backgrounds, and interests in effective collaborative
environments. There is significant pressure to incorporate into software
development strategies exogenous concepts from financial, managerial,
and psychological perspectives, which are being recognized as critical in
development.

Chapter 9 (“Diversification of Problem-Solving Strategies in Software
Engineering”) examines factors that have promoted the diversification of
software process models. The intention is to understand more clearly the
problem-solving process in software engineering and to identify criteria
that can be used to evaluate alternative software-driven problem-solving
strategies for differing projects’ requirements. A review of software process
modeling is given first, followed by a discussion of process evaluation
techniques. A taxonomy for categorizing process models, based on estab-
lishing decision criteria, is identified that can guide selecting the appro-
priate model from a set of alternative models on the dual basis of the
process model characteristics and the software project needs. The idea is
to facilitate adaptability in the software process so that the process can
be adapted to special project needs.

The subject of Chapter 10 (“Strategies at the Problem-Engineering
Level”) is concerned with the correct and complete definition of problems.
In a business context, this includes recognizing the managerial, economic,
human, and technical aspects of the problem. This requires considering
all stakeholders—internal and external, individuals, groups, communities,
departments, partners, and other organizations. The expected outcome of
problem engineering is a problem definition that reduces uncertainty,
equivocality, and ambiguity to a minimum.

Basic methods that can identify relevant interdisciplinary resources
include reverse engineering of existing strategies and knowledge bases
and finding relevant resources—for example, by using problem decom-
position techniques appropriately. The important data collection phase
entails generating the stakeholders list; identifying the rationale for change;
measuring the risks of change; identifying the root causes of the dissat-
isfaction with the current situation; surveying for benchmarking and setting
evaluation criteria; identifying what the stakeholders are looking for in a
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solution as well as limitations on the solution; and identifying the tools
and techniques available for gathering requirements. After problem-solving
data has been carefully examined, verified, evaluated, and structured, it
is ready to be presented in a standardized or formal way.

Multidisciplinary thinking helps us understand problems better and
therefore solve problems more effectively. The previous chapters address
this at the 

 

process

 

 level, examining process structure, process models,
process activities, and problem analysis as basic components of the
problem-solving process. Chapter 11 (“People and Software Engineering”)
examines multidisciplinary drivers for development in terms of the 

 

people

 

dimension. Traditionally, software engineering has considered people as
a relevant resource only if they were explicitly involved in carrying out
software development tasks. In interdisciplinary software engineering, the
concept of people as a resource extends beyond those immediately
involved in development to all the individuals who play a significant role
in the problem-solving process, regardless of whether they are officially
affiliated with the development team. This inclusive concept of human
actors comprises those informal but critical human resources without
whose cooperation the problem cannot be adequately solved: those
engaged through a process of collaboration rather than formal affilia-
tion—stakeholders as customers, managers, and group clients.

The software business is no different from any traditional business:
one must invest money and assets in order to generate returns. Software
development represents a strategic investment whose purpose is to create
a marketable generic software solution or to solve an in-house business
problem. Thus, the production of software can be viewed as an economic
as well as an engineering process. Chapter 12 (“Economics and Software
Engineering”) examines various aspects of the role of money and its many
surrogates in software development.

To begin with, software-driven problem solving uses money as an
input resource to produce a solution. Money subsequently serves as a
key performance indicator calibrating the success of the solution or
product. However, money does not adequately reflect what is invested or
what is expected in return. Software investments entail capital costs,
development time, a variety of developer and managerial talents, devel-
opment effort, and so forth. The expected returns can be expressed in
terms of attaining the maximum possible value-creation objectives, includ-
ing market share, company and product image, technological leadership,
etc. This chapter discusses the economic aspects of software engineering
and the fundamental role that financial resources play in the software
problem-solving process. We also present a fairly detailed review of
software cost-development techniques such as COCOMO and the use of
function point analysis.
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Software development is a complex process driven by factors that are
related to problems as well as to solutions. The problem-related factors
determine the criteria for the characteristics of the expected solution and
help system designers tailor solutions to specific problems. The solution-
related factors delineate possible options, assist in making projections,
and facilitate scaling and mapping the solutions to problems. It remains
an open issue as to whether the preferred software engineering approach
should be to develop 

 

generic prescriptions

 

 for common problems (

 

gen-
eralization

 

) or derive 

 

domain-dependent solutions

 

 to specific problems
(

 

specialization

 

). Generic approaches are like general-purpose strategies
intended to give broad development guidance for an unrestricted class of
applications. Generic software development is an incomplete strategy for
solving problems because it only supplies guidance for solving problems,
not actual solutions to problems at hand. In contrast, specialized
approaches are tailored or adapted to a specific type of application. They
provide development guidance closely related to the kinds of problems
prominent in that category of application. Chapter 13 (“Specialized System
Development”) examines specialized systems, defining specialized system
development, its drivers, advantages and drawbacks, and explores the
different types of specialized system development.
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Chapter 1

 

Software Development 
Strategies: Basic Planning 

 

and Control

 

1.1 Introduction

 

Software engineering is a cognitive reaction to the complexity of software
development. It reflects the inevitable need for analysis and planning;
reliability and control of risk; and scheduling and coordination when
embarking on any complex human endeavor. The planning and organized
effort required in developing software products is not unlike that required
in many other activities. As a very simple example, one could compare
developing a software product to starting on a journey—both begin with
preparation. For a journey, the first decision is to decide the destination.
Then, before the journey begins, plans are made so as to arrive at the
destination within a reasonable time and at an acceptable cost, with an
understanding of the length and constraints of the journey. In doing this,
one may evaluate alternative routes to the destination, consider environ-
mental conditions, identify and evaluate potential risks or dangers, and
so on.

Similarly, developing a successful software solution involves establish-
ing a destination or product goal; carefully examining alternative designs
for the system; identifying potential risks; demarcating milestones along
the way; identifying what activities must be done in what sequence or
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those that may be done in parallel; and identifying needed resources—includ-
ing human resources, financial resources, information, tools, and strategies.
More complex endeavors require more complex planning. Pretested patterns
for performing activities, learned from experience and proven helpful, are
universally used in commerce and engineering.

For example, extensive standard protocols are followed when con-
structing a building. The purpose of the building and justification for
construction, its detailed architectural design plans, engineering and struc-
tural constraints, budget, and scheduling must be clarified or documented.
The building design may be highly original or it may rely on preexisting
design templates and even prefabricated components. Specific design
patterns proven to be useful as solution templates for different kinds of
problems may be drawn upon during the design stage of the development.
In architecture, such design templates vary with the building type and
use. Naturally, the stakeholders in the enterprise must be in agreement,
from the customer who has contracted for the building to the architect,
builder, and municipal agencies that enforce implementation standards
like zoning and building codes, etc.

In software engineering, a variety of similar development protocols or
models for organizing development effort have also evolved over time.
All these models share certain characteristics. They identify stakeholder
goals; specify key activities to be followed according to a certain sequence;
work within time constraints; and are based on what has been learned
from past experience. For example, at the design stage in software
engineering, comparable, successful, reusable design patterns have been
recognized, such as those compiled by the so-called Gang of Four (Gamma
et al. 1995), just as has been done in architecture.

Similarly, in software engineering, proven useful practices for solving
problems become part of so-called best practice, just as in other fields of
engineering. A wide array of strategies for organizing the process of
software development has emerged over the past four decades. In a sense,
these strategies represent pretested patterns for successful development
under different conditions. The strategies share generally similar objectives,
but reach their goals by different routes. These development strategies
are called 

 

software development life-cycle models

 

 or 

 

process models

 

. They
address in an encompassing way the entire, cradle-to-grave, software devel-
opment process. The notion of a software process model is more general
than the related idea of a method or technique, which tends to refer to
approaches or tools used in specific stages of the development process.

This chapter introduces and critiques the basic development process
and risk reduction models. We observe how these and later models share
(in varying degrees and evolving over time) a number of characteristics,
beginning with an emphasis on requirements engineering; the use of a
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multistage development decomposition derived from the Waterfall Model;
documentation requirements; stakeholder involvement; project manage-
ment; a consideration of objectives related to economic or business
constraints; and implicit or explicit adoption of recognized best practices
in development. Their shared characteristics reflect the universal human,
technical, and economic constraints under which development operates.
For example, recognition of best practices is a recurrent theme in the
evolution of every engineering field. In software development these prac-
tices include separation of concerns, deferring design decisions when
possible, focusing on stakeholder goals, and, more recently, the application
of use cases to identify requirements.

The historical evolution of software process models has played a
significant role in how models have diversified over time, with later
approaches building on earlier ones and technological advances enabling
new approaches. The basic life-cycle models that introduced structured
planning and development and applied basic engineering principles to
the development of software are considered first. The Waterfall Model
was the most influential of these. Incremental and iterative models were
introduced to reduce the cycle time for development. These include the
Evolutionary Development Model and the early Iterative Enhancement
Model, which served as a practical method for achieving step-wise refine-
ment. Incremental development facilitated early solution of implementa-
tion problems and reduced risk associated with the late integration of
components. Investing in any business involves risk, as does developing
a software product.

Thus, the chapter next critiques the basic models that addressed risk
in software development, such as the Prototyping and Spiral models.
Prototypes are widely used in engineering; examples include rapid, throw-
away, exploratory, embedded prototypes, etc., as well as techniques such
as the use of presentation prototypes, breadboards, mockups, and pilot
systems. Benefits of prototyping include obtaining early feedback from
users and motivating user involvement, which help to avoid failure of
user satisfaction. The most famous risk reduction strategy is Boehm’s Spiral
Model, which relies heavily on prototyping but is also designed to allow
incorporating other process models into its cycles. Each spiral development
cycle is like a mini-life cycle, with its deliverables and assurance processes
intended to minimize risk. The win–win spiral variant, which uses a
stakeholder approach to determine the objectives–constraints–alternatives
for each cycle of the spiral, will be considered. Finally, focus shifts to the
Cleanroom Model, which is based on incremental development under
statistical quality control and formal correctness principles; this model uses
statistically based software testing intended to yield a certifiably reliable
software product.
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1.2 Characteristics of Software Development Strategies

 

The software development process models described in this chapter
share a number of characteristics. These include an emphasis on the
role of requirements engineering; the use of a multistage decomposition
approach derived from the Waterfall Model; documentation require-
ments; stakeholder involvement; project management; objectives related
to economic or business constraints; and the implicit or explicit adoption
or embedding of recognized best practices. Each of these characteristics
will be considered.

All the models, aside from the primitive code-and-fix approach, are
problem-solving approaches that apply 

 

requirements engineering 

 

to help
solve problems based on varying degrees of problem specification. The
models implicitly or explicitly adopt some variation of the four-stage
Waterfall Model, partitioning the software development into phases such
as analysis, design, coding, and maintenance, although the strict linearity
of the sequence of stages may not be preserved. The models typically
rely heavily on documentation and conceptual artifacts such as diagrams
as tools for planning development, monitoring its progress, and assuring
its quality. The artifacts also provide a degree of traceability for the entire
development process, which is a precondition for system testing, modifi-
cation, and maintenance, as well as for process improvement.

The use of requirements engineering necessitates user or stakeholder
involvement to ensure that the software product is a valid solution to the
underlying problem; however, the level of stakeholder involvement varies
considerably across the approaches. Because software development strat-
egies are needed specifically for solving nontrivial problems, the process
models also require some type of project management in order to manage
the complexity of the development process efficiently. The problems
addressed by requirements engineering and software development arise
in business or organizational contexts in which the bottom line is to
produce a profitable software solution that satisfies customer needs in a
cost-effective manner and with appropriate quality. An efficient solution
to the problem adds economic value to the organization. The economic
success of an application is measured in terms of metrics such as profit
maximization, cost reduction (Boehm 1984), or customer satisfaction.
These economic goals are reflected or represented in software process
models in terms of project deadlines, budget constraints, and the efficient
use of resources (Liu & Horowitz 1989).

The shared characteristics of software process models reflect the shared
human, technical, and economic constraints under which the models
operate as they try to guide development projects in mapping application
problems to software-driven solution using an orchestrated set of tasks.
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This chapter briefly considers how these factors have persistently affected
process models:

� The need for a well-defined problem definition as an input to the
software development process underlies the need to use require-
ments engineering in process models. Indeed, the need for a well-
defined problem definition is what distinguishes the pre-software-
engineering era in which code-and-fix approaches prevailed from
that in which well-engineered solutions are derived from well-
understood problems. Also, increasing emphasis has been put on
clear problem definition combined with increasing user involve-
ment; the problems are recognized as user problems regardless of
whether the user is internal or external to an organization.

� The tasks needed to produce a well-engineered solution define
the second shared factor. Although the nomenclature and details
of task decomposition differ, the analysis–design–coding–test-
ing–maintenance paradigm appears in most models. However, the
relationships between the tasks vary substantially, with tasks
sequential in some models, iterative in others, functionally inde-
pendent or related by transformations, static or dynamic.

� The third shared factor is the role that stakeholders play throughout
the development process. Stakeholders can range from users of
the software product under development to individuals who decide
on the system’s requirements to system developers. This factor
represents the people dimension of the process and affects every
process phase, regardless of the degree of automation, because
people are never absent from the process.

� The fourth shared factor is the documentation deliverables that are
an essential feature of every software process model. Automated
mechanisms like CASE tools may reduce the number of manual
deliverables; however, these same tools can also increase the
overall amount of documentation. The IBM Cleanroom Model is
an example of a system in which automatic transformations across
process phases are done using mathematical specification tech-
niques rather than by referencing manual artifacts; this results in
a significant reduction of documentation, but does not eliminate it.

� The fifth shared characteristic is that the essential outcome of the
development process is economic value because no market exists
for economically infeasible software products. As a consequence,
cost-reduction and business benefits are the most common mea-
sures of effective software production, though this outcome may
encompass effects beyond the direct economic impact of the
product. The economic objective underscores the importance of
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project management in process modeling because efficient utiliza-
tion of resources requires effective project management.

A decisive, historically driven phenomenon that has affected the def-
inition of software models has been the recognition or discovery over
time of a variety of principles or best practices for software development
that have subsequently become embedded in development models. The
recognition of such best practices is a recurrent theme in the evolution
of every engineering field. Indeed, the best practices in each field often
echo those in other fields.

Perhaps the most basic best practice or principle is what is called
separation of concerns, which recommends intellectually segregating from
one another the consideration of different problem-solving issues. This
principle is reflected in the separate stages of the software life cycle, each
of which focuses on a different part of the development problem. The
life-cycle stages also reflect the practice of deferring decisions wherever
possible to keep the development options as flexible as possible. For
example, system design decisions are deferred until the issues of problem
analysis and specification are clarified, and so on. Another best practice,
related to the pivotal role of users, is to focus on the underlying product
objectives, concentrating on the goals of stakeholders rather than prema-
turely examining functional mechanisms for achieving those objectives.

The application of use cases during requirements analysis has also
become a recognized best practice in more recent models and is promi-
nently embedded in development models like the Rational Unified Process.
Of course, the stakeholder goals should drive the identification of the use
cases; these goals are more dispositive of what a product should do than
of the expected tasks a system should perform because goals are more
immediately related to stakeholder intent (Blank 2004).

Some specific best practices have been recognized for the systems
analysis stage. For example, in the case in which the system to be
developed is intended to replace an existing system, best practice recom-
mends not modeling the design of the computerized system on the existing
(nonautomated) system. Otherwise, one is likely to reify the structure of
the existing system, whose functions could probably be provided more
effectively using a design created with computer support in mind. The
reason for this is that in-place systems evolve to reflect or adapt to the
extant technological, human, and organizational context; a move to
(increased) computerization is almost certain to benefit from a very dif-
ferent system or workflow architecture (Blank 2004).

A notable instance of this practice is related to the increasing preference
for flat organizational hierarchies. The desired flattening can be achieved
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by eliminating or streamlining intermediate organizational layers using
computer support—a highly important design strategy called disinterme-
diation. Disintermediation refers to the elimination or reduction of third-
party intermediaries between the client or customer and the server or
supplier of goods or services. Such a supply-chain compression of inter-
mediaries is prominently applied in the Internet. Disintermediation is
widely recognized as a major factor in the productivity increases that have
resulted from computerization (Blank 2004).

The variation in their shared characteristics is the most important source
of variation among the software process models. However, in addition to
their shared elements, process models also exhibit a number of significant
differences rooted in factors like the enabling technology underlying the
model; the nature of the problems addressed or the problem-solving
approach adopted; interdisciplinary considerations; etc. A context diagram
illustrating the important factors affecting the diversity of process models
is given in Figure 1.1.

The historical evolution of models has played a major role in how
models have diversified over time. Naturally, ideas about how to define
models evolved, with later approaches building on earlier ones. Signifi-
cantly, technological advances enabled new approaches. For example,
RAD (Rapid Application Development) was enabled by the introduction
of CASE tools and 4GL techniques, and the development of the Internet
enabled or accelerated Web-based approaches such as the open source
movement. Indeed, some models have been based on the enabling
technology as the critical factor.

Models have also reflected underlying problem-solving approaches and
not just the general character of the problems. For example, some
approaches were based on structured design and others on object-oriented
design; some were linear and others iterative; some used sequential
workflows and others concurrent workflows. Dependency on the charac-
teristics of the problem-solving methodology naturally affects the kinds
of solutions produced because the problem-solving approach adopted by
a developer affects how the problem is modeled.

Approaches have also varied with the kind of problem addressed or the
problem domain, as well as problem size, structure, and complexity. Some
models have been tailored to specific problem domains, and others have
been kept relatively generic. Some models were developed with large systems
design in mind (DeRemer & Kron 1976); others were developed for small-
scale projects. Problem structure varied, often according to its relation to an
organizational pyramid; very structured problems arose at the operational
level of an organization, semistructured problems at middle-management
levels, and unstructured problems at the upper-management or strategic
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level. The native organizational level in turn affected the degree of problem
uncertainty and equivocality faced by developers (Daft & Lengel 1986).

Problem complexity is related to problem structure and size, and
software-related organizational effects, such as the recognized relation
between organizational complexity and the impact of technical change
(Keen 1981), affect problem complexity and model design. Process models
are strongly affected by what people believe to be the critical consider-
ations in managing development. Thus, some models have focused on
tasks and task decomposition as the essential element in solving problems,
and others have identified people as the essential element and taken a
people-centered approach to project management (Abdel–Hamid & Mad-
nick 1989). Risk management was the critical factor motivating the Spiral
Model. Interdisciplinary contributions have led to the inclusion of mana-
gerial (Abdel–Hamid & Madnick 1989); financial (Ropponen & Lyytinen
2000; Boehm 1984, 1988); and psychological factors (Leveson 2000) in

Figure 1.1 Context diagram for software process models.
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models. Behavioral and social considerations have been notable in recent
models and are a primary motivation for incorporating a system dynamics
view of software development in process modeling; earlier models that
lacked these enhancements were more static in structure (Abdel–Hamid
& Madnick 1989; Chase et al. 1994).

1.3 Life-Cycle Models
This section begins the discussion of the different major software devel-
opment process models. It reviews the basic life-cycle models that first
introduced structured planning and development and that applied basic
engineering principles to the development of software.

1.3.1 The Waterfall Model

The Waterfall Model (see Table 1.1) was one of the first and most
influential of the process models. Originating about 1970, it has had a
significant historical influence in the evolution of subsequent models and
has become the basis for most software acquisition standards (Boehm,
1988). This model was an improved version of an earlier process model
called the Nine-Phase, Stage-Wise Model (see Bennington 1956 or 1983
and Madhavji et al. 1994). The Nine-Phase Model was a one-directional,
sequential model that was enhanced by the waterfall model through the

Table 1.1 Profile of Waterfall Development Model

Category Specifics

Evolution of goals Solving stage-wise problems with feedback 
and explicitly planned development phases

Methodology Sequential and structured with feedback 
control

Technology Not critical

Critical factors Tasks such as requirements or specification 
and feasibility analysis and estimation

Interdisciplinary effects None

Behavioral considerations None

Problem nature Large-scale projects

Application domain General
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introduction of bidirectional relations between the successive model
stages, corresponding to feedback elements in the development process.

The Waterfall and the Stage-Wise models addressed problems that had
been recognized in the most primitive method, the so-called code-and-
fix approach, which merely iterated through a series of write-code and
fix-code steps. The problem with this rudimentary tactic was that after a
few iterations, the code would tend to become increasingly poorly struc-
tured and consequently increasingly expensive to fix. Furthermore, the
implemented products were often poorly matched to the user requirements
(Boehm 1988). These problems led to recognition of the need for explicit
model development phases as was done in the Nine-Phase Model.

Although the Waterfall Model emphasized the need for feedback
between stages, it used a relatively local type of feedback, confining “the
feedback to successive stages to minimize the expensive rework involved
in feedback across many stages” (Boehm 1988). The Waterfall Model also
introduced the notion of prototyping (Madhavji et al. 1994; Boehm 1988).
The partitioning of problems into manageable pieces was a significant
methodological advance, especially for the design of large or complex
systems, as was recognition of the need for feedback loops and the use
of basic prototyping in the software life cycle (Boehm 1988).

The different phases in the Waterfall Model incorporate the critical best
practice of separation of concerns mentioned previously. In this case, that
practice localizes a given class of problem solving issues to a particular
phase of the development life cycle. Each phase produces a document
as its product. The document summarizes the project work done up to
that point so that, after that phase, it is the document “consulted without
rethinking any of the decisions that went into it” (Hamlet & Maybee 2001).
This is characteristic of the principle of separation of concerns. It helps
the software developer maintain “intellectual control of the process” (Ham-
let & Maybee 2001). Indeed, the motivation underlying the problem
partitioning provided by the life cycle is to reduce the complexity of the
problem sufficiently so that the developer can gain a measure of intellec-
tual control of the problem. Of course, this also demands intellectual
discipline of the developers. They must resist the temptation to address
issues outside the current area of concern. For example, when addressing
database requirements with an end user, the developer must ignore such
out-of-phase issues as data storage representation.

The Waterfall Model was widely used because it formalized certain
elementary process control requirements. It provided an explicit schedule
that included quality-control steps at each process completion (Yamamichi
et al. 1996). Significantly, this model became “the basis for most software
acquisition standards in government and industry” (Boehm 1976, 1981,
1988). Later, in a related vein, the German defense organization introduced
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a modified version of the Waterfall in 1992 called the V-Shaped Model
(see Table 1.2). This model included validation and verification processes
by associating testing activities with the analysis and design phases.

According to standard terminology (IEEE 610.12-1990), verification
addresses whether a system was built or developed correctly, that is,
whether the partial products delivered at each stage satisfied the precon-
ditions defined at the start of that stage. Validation addresses whether the
right system was built in the sense of satisfying stakeholder goals. The V-
Shaped Model also clarified the iteration and reworking steps that tended
to be hidden in the Waterfall Model (Madhavji et al. 1994). Thus, it
provided the important managerial characteristic of accountability by
ensuring that earlier stages, such as requirements, high-level design, and
low-level design, were properly accounted for in the later compliance
stages of acceptance and integration testing and unit testing. Together
with project documentation, this helped guarantee traceability between
implementation and testing.

Shortcomings of the Waterfall Model included its lack of risk assess-
ment, slow or unresponsive structure, and its inadequacy for object
orientation. Furthermore, although the model created a project manage-
ment structure, it did not provide a guide for activity transformation across
phases, thus limiting its ability to handle changes arising during develop-
ment. Another limitation was the model’s view of the development process
as similar to a fixed, engineering-based, manufacturing process, rather
than a dynamic, problem-solving process that could evolve over time as

Table 1.2 Profile of V-Shaped Development Model

Category Specifics

Evolution of goals Modified version of Waterfall with increased 
focus on quality assurance and 
accountability across development phases

Methodology Sequential

Technology Not critical

Critical factors Traceability is established by linking 
development effects between later and 
earlier development phases

Interdisciplinary effects None

Behavioral considerations None

Problem nature Large-scale projects

Application domain General
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development experience was gained and learning occurred (Pfleeger
1998). The simple, bidirectional relationship between successive Waterfall
phases was insufficient to capture the learning that results from user
feedback and involvement.

Another concern was that the model’s mandated, document-driven
standards often compelled developers to produce “elaborate specifications
of poorly understood user interfaces and design-support functions,” which
was then too often followed by the “design and development of large
quantities of unusable code” (Boehm 1988). Boehm (1996) formulated
some of these criticisms in a particularly compelling manner. Concerning
the inadequacy of written specifications for characterizing the look and
feel of a user interface, he quipped that one “prototype is worth 100,000
words.” He also observed that the fixed requirements encouraged by the
document-driven character of the model tended to lead to so-called gold-
plating, which refers to inclusion in the system design of overly elaborate
or inessential functions. The fixed requirements also inclined towards rigid
point solutions, which are “optimized around the original problem state-
ment.” Boehm (1996) critically observed that the Waterfall’s milestones
were a misfit to an increasing number of project situations.

Humphrey and Kellner (1989) critiqued the model’s failure to address
the pervasiveness of change in software development; its unrealistically
linear and orderly sequence of software activities; its inability to accom-
modate developments like rapid prototyping or language advances
smoothly; and for providing “insufficient detail to support process opti-
mization.” The Waterfall documents used at the earlier specification and
design stages frequently lack a level of clarity sufficient to allow effective
fault discovery or ensure quality; the result is that errors may be overlooked
until final testing. At that late point, correction becomes much more
difficult with attendant complex revisions that tend to affect quality
adversely (Yamamichi et al. 1996). Despite its drawbacks, the Waterfall
Model remains the superclass of many process-modeling approaches in
software engineering. Its fundamental notions of problem and solution
decomposition and a sequential step-by-step approach with feedback can
be improved, but remain essential to managing the complexity of software
development.

Lott (1997) describes an interesting variant on the Waterfall, which
applies to situations for which the project is contracted incrementally. An
initial stage of the development scopes the work, identifies so-called thin
requirements, and possibly develops a basic interface prototype using a
rapid development tool such as Visual Basic, or even a model on paper.
The completion of this work constitutes the completion of the contract
up to that juncture. At this point, the developer or contractor relationship
can be terminated by either party. This strategy represents a software
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development version of due diligence under which, prior to committing
to an entire project, each side spends the requisite “time to fully understand
the people and the business” (Lott 1997).

Lott’s staged approach to waterfall-style development allows either
party to opt out of the arrangement at preidentified stages, a strategy
somewhat reminiscent of the risk-reduction approach used in the Spiral
Model. In contrast, in the conventional Waterfall Model, the contractors
and developers are essentially compelled “to estimate cost based on limited
information” (Lott 1997). This constraint can put either party at a disad-
vantage. In a fixed-price contract situation, the software developer assumes
most of the risk because underestimating cost may lead to a substantial
loss. In a time-and-materials contract, the customer for whom the software
is developed assumes most of the risk because he or she may pay
considerably more than expected if the estimated development costs are
exceeded. Risks associated with this approach include unstable budgets
and theft of intellectual property. Another risk is what some call (face-
tiously) “stealth technology transfer” in which the customer uses the
product and knowledge acquired in the first stage to acquire the devel-
oper’s expertise (Lott 1997).

1.3.2 Incremental and Iterative Models

Incremental and iterative models, also called phased development models
(Graham 1992), share the common objective of reducing the cycle time
for development. Although the terms tend to be used almost interchange-
ably, distinctions are sometimes made. Iteration entails, as the word
implies, a repeated series of attacks on a problem. Each attack or iteration
is like a miniature development life cycle. Iterative development tends to
mean developing a prototype of the entire product in the first phase and
then repeatedly improving the product in subsequent phases of successive
refinement until an effective system is created (Pfleeger 1998). The incre-
mental approach also enacts a series of iterations, but the successive
iterations are understood as adding incremental functionality to the prod-
uct. Incremental development tends to be viewed as building a part of
the intended system in each of a sequence of partial releases until the
entire system is completed.

The incremental and iterative models might be compared to depth-
first and breadth-first approaches. In a depth-first (incremental) approach,
a new functional behavior of the system is implemented in detail at each
stage. In a breadth-first (iterative) approach, the set of functions is initially
implemented in a broad but shallow manner; many functions are included
but only tentatively realized. These shallow functions are then refined as
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development proceeds. However, as already observed, the usage of these
terms is by no means consistent in the literature. For example, the Iterative
Enhancement Model of Basili and Turner (1975) is quite similar to the
incremental models that Graham (1992) reviewed. Similarly, although so-
called evolutionary development is usually viewed as an incremental
version of the Waterfall Model (Graham 1992), Pressman (1996) catego-
rized incremental development as a subclass of the Evolutionary Model.

Consider the Evolutionary Development Model, which was a reaction
to difficulties with the Waterfall Model (McCracken & Jackson 1982). In
this approach, “increments of system capability” are released (Boehm
1996) with subsequent stages of development based on user and developer
experience with earlier releases. The initial release of the system must not
be trivial and must provide “sufficient capability to serve as a basis for
user exercise and evaluation” (Boehm 1996). A potential difficulty with
evolutionary development is that the initial release may be so far off target
that users fail to use it and may even lose confidence in the entire
development process. Evolutionary Development also suffers from the
same tendency as the Waterfall Model by potentially creating an “inflexible
point-solution” (Boehm 1996), with the result, for example, that the initially
prescribed software architecture may not scale to the entire system.

As already observed, incremental development models develop the
entire system as a “series of partial products, generally with increasing
functionality” (Graham 1992). The idea is to develop a succession of small,
self-contained systems that eventually converge to a final completed
system. The delivery of such systems is said to be incremental if these
partial products are delivered to users as they are developed, which has
been called evolutionary delivery (Gilb 1988). The major advantage of
evolutionary delivery is the extensive opportunity provided for user feed-
back, thus allowing recommendations to be folded back into the devel-
opment process (Graham 1992).

Each incremental step must include not only implementation, but also
testing, documentation, and training. Indeed, each step is intended to
constitute a mini-life cycle, complete with its own functional product,
manuals, requirement specifications, review reports, etc. Incremental
development reflects a recognition that it is often only at the end of
development that one clearly realizes how a project should have been
defined, designed, and implemented in the first place. This applies to the
developer who creates the system as well as to the users who, when
finally seeing a completed system, may only then realize that this is not
the system that they had expected, even though they may have been
closely involved in specifying the system. Such surprising user behavior
can occur because, just as for the developer, “user knowledge also grows
throughout the development process” (Graham 1992).
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Of course, surprises could be avoided if the complete system specifi-
cations were frozen from the beginning as they are in the Waterfall Model,
but this would reduce the benefits that accrue from the growing user and
developer knowledge that occurs precisely as a consequence of the
incremental development. Another beneficial side effect of incremental or
evolutionary delivery is that it brings the new system into an organization
inch by inch, thereby decreasing organizational disruption and allowing
users to gain familiarity with the use and benefits of the system gradually,
without requiring a steep learning curve. This practice can significantly
promote user acceptance, a concern that is typically one of the key
problems in the successful adoption of new systems.

Graham (1992) contrasted incremental development unfavorably with
the monolithic character of the Waterfall Model. The Waterfall approach
fixes requirements, costs, and schedule at the earliest point in order to
be able to meet “contractual restrictions” (Graham 1992). The monolithic
life-cycle approach also postpones the major system test to the end of
development; because of the dual impact of the magnitude of testing and
scheduling deadlines, this can lead to an opportunistic contraction of the
system test. According to Graham, such a monolithic approach is suitable
only for “small systems, of short duration, where the requirements are
well known at the beginning of development and unlikely to change.”

It is important when doing incremental development to “keep the incre-
ments as small as possible, provided they will provide a useful function to
the users” (Graham 1992). The requirements must be frozen during each
incremental step; however, because the steps are incremental, unlike in the
Waterfall Model, this is comparable to freezing “ice cubes instead of icebergs”
(Graham 1992)—a droll analogy. Graham also alludes to Boehm’s classic
observation that “developing software requirements is like walking on water;
it’s easier if it’s frozen” (Graham 1992), observing in respect to incremental
development that “it is easier to freeze a pond than an ocean.”

Various strategies are possible for deciding which increments to
develop in which order. For example, critical tasks can be implemented
first to reduce development risk, or one may possibly develop interface
components to allow testing, or possibly important functional features to
support incremental product delivery. Graham recommends three guide-
lines: think small, think useful, and think complete. Think small refers to
developing as minimal an increment as possible to produce a partial
product. Think useful refers to the need to remember a key motivation
behind incremental development—that is, rapidly providing a benefit to
the user. Think complete refers to the intention that each incremental
phase should be treated as a small, self-contained life cycle.

Similar to the incremental development discussed by Graham, Basili and
Turner (1975) very early defined what they called iterative enhancement as
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a practical way to achieve step-wise refinement. A paradoxical or systemic
problem with step-wise refinement is that it side steps the dilemma that
it is difficult to identify a good design for a solution to a problem at the
beginning because the difficulties with a design only show up as the
implementation proceeds. As a response to this, Basili and Turner pro-
posed to develop the system through a series of subsystems; the emerging
system would be understood more thoroughly as the process pro-
ceeded—just like what happens in a learning process. This learning
process can be used to improve the design as the system is iteratively
extended through a sequence of partial systems, ultimately converging to
the complete solution. The outcome at each iterative step is a simple
extension of the functionality of the system or a redesign of the preceding
implementation “motivated by a better understanding of the problem,
obtained through the development process” (Basili & Turner 1975).

The developer begins with an implementation of a skeletal subproblem
and maintains a project control list identifying the remaining tasks needed
to complete the project. At any point in time, the control list “acts as a
measure of the distance between the current and the final implementation”
(Basili & Turner 1975). A good skeletal system should have several
characteristics. It should contain a good sample of the key desired system
functions. It should be “simple to understand and implement easily” and
the initial system should produce a “usable and useful product” for the
user. The implementation extension at each successive step should be
straightforward so as to be modified easily and thereby allow redesign
when difficulties or flaws are recognized. The project control list is
dynamically revised as the “successive implementations” are analyzed. The
idea is that the repeated analysis and redesign of an increasingly well-
understood system tends to lead to a reliable product. Thus, iterative
enhancement is not like the more familiar iterative refinement of an entire
problem solution, but iterative extension of the functionality of partial
systems as is done in incremental development.

Advantages of incremental development include:

� Improved development team morale
� Early solution of implementation problems
� Reduced risk of the disasters that occur because a system cannot

be developed as proposed or because of late integration of com-
ponents

� Improved maintenance
� Improved control of overengineering or gold-plating
� Measurement of productivity
� Estimation feedback
� Smoother staffing requirements
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It exploits the advantage of the partial systems developed to fix
unanticipated problems quickly and train users in parallel with software
improvement. This strategy can partition development work more effi-
ciently because each of the self-contained incremental stages requires a
similar mix of personnel because it constitutes a mini-life cycle (Graham
1992). It increases the ability to measure productivity more effectively by
doing so with respect to the release of meaningful partial products rather
than in terms of metrics such as the amount of code developed (Pfleeger
1998).

Difficulties with incremental and iterative development (see Table 1.3)
include hardware-related problems, life-cycle problems, management
problems, financial and contractual problems, and user–developer rela-
tionship problems (Graham 1992). For example, the hardware chosen for
the initial system will be based on specifications that have not yet been
finalized, with a corresponding increased risk to system development. The
response time of the initial simplified system may also be significantly
faster than the fully developed system, generating high initial expectations
from users, which may be subsequently disappointed as the system
extends and performance deteriorates under further development com-
plexity. Graham suggests circumventing this difficulty by using the artifice
of including “slowing-down system code” initially. The slowing code is
removed when the system is later performance tuned. Generally speaking,
incremental approaches require dealing with a great deal of uncertainty,
issues of configuration management, and organizational culture change.

The iterative approach serves as the strategic framework for the Unified
Process Model proposed by the UML object-oriented group at Rational
Rose and for many other software process improvement models such as
the Spiral Model. Because of their piecemeal character, the Iterative and

Table 1.3 Profiles of Incremental and Iterative Development Models

Category Specifics

Evolution of goals Reduce risk and improve user satisfaction

Methodology Iterative or incremental

Technology Can accelerate the process

Critical factors User feedback

Interdisciplinary effects Cognition

Behavioral considerations User expectations

Problem nature Smaller systems

Application domain General
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Incremental process models are often used by the Spiral Model, with
project risk reduced as each new increment or iteration is reviewed and
enhanced. Prototyping can play a significant role in Incremental and
Iterative development. These methods also overlap the Rapid Application
Development (RAD) approach because the latter shares the same goal of
reducing process cycle times. Applied in combination with CASE tools,
RAD and prototyping can be used to improve the efficiency of Incremental
and Iterative process models.

1.4 Risk-Reduction Models
Building a bridge or investing in a business involves a risk, as does
developing a software product. Just as with other enterprises, the product
may turn out to be harder to construct than expected—or even infeasi-
ble—or the market for the product may disappear. This section reviews
various models that address the issue of risk in software development.

1.4.1 The Prototyping Model

Prototypes are used in many engineering disciplines. Although what
constitutes a software or information systems prototype cannot be uniquely
defined, there are three readily identifiable characteristics. The prototype
should be able to (Alavi 1984; Lichter, Schneider–Hufschmidt, & Zullig-
hoven 1994):

� Be a temporary system
� Be designed rapidly
� Provide a tangible or visual expression of a proposed system

Prototyping (see Table 1.4) has been adopted in almost every process
model since the Waterfall Model and was even thought of as an extension
to the bidirectional, feedback-control feature of that model (Boehm 1988).
The prototyping approach usually involves building a small version of the
intended system prior to building the proposed complete system. This
allows developers an opportunity to work out the kinks in the specification
and design of the system before its full-scale development is attempted;
the expectation is that this will significantly reduce the risk of development.
The need for such risk reduction may derive from the novelty of the
application or because the user interface design requires user experience
and feedback based on the user’s live interaction with a tangible approx-
imation of the desired product (Graham 1992).
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Prototyping can be accomplished in various ways and (be forewarned)
they are not necessarily mutually exclusive. The terminology rapid pro-
totyping usually refers to the rapid development of a primitive system
based on the use of tools such as code generators or 4GL languages. So-
called “quick and dirty” or throwaway prototyping refers to situations in
which the prototype is discarded once development of the actual system
begins (Graham 1992). Alternatively, the prototype might sometimes be
used by a customer until the full system becomes available. Throwaway
prototypes do not have to be developed according to the same strict
process standards as those for an actual system. A throwaway prototype
is thus like an experimental system that is later replaced by an actual
production system (Alavi 1984). In terms of waterfall phases, throwaway
prototypes are most commonly used during the analysis or requirements
and design phases of development.

The term incorporated prototype refers to a prototype intended to be
included eventually in a real product in some fashion. In such a case, the
prototype development should follow normal development standards,
including the maintenance of appropriate documentation, testing, and so
on. If a sequence of prototypes is developed, then the development
process becomes similar to that used in incremental development as
described previously. One classification distinguishes five categories of
prototypes:

Table 1.4 Profile of Prototyping Development Model

Category Specifics

Evolution of goals Overcoming the risks of late implementation 
in long development cycles

Methodology Iterative

Technology Programming tools and languages to 
facilitate prototyping

Critical factors User feedback

Interdisciplinary effects Psychological; learning processes

Behavioral considerations Interactions with users; effects on user 
expectations

Problem nature Small-scale projects, but can be integrated 
with other large-scale oriented models

Application domain General
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� Exploratory prototyping refers to the use of prototyping as a tech-
nique for gathering and clarifying requirements (Floyd 1984). This
approach gives the developer a better understanding of the user’s
work problems and needs and helps the users clarify their require-
ments as well.

� Experimental prototyping is used as a testing or evaluation tech-
nique to verify whether the proposed system will meet user or
customer expectations, to determine system feasibility, or to
explore alternative solutions.

� Evolutionary prototyping is used to explore changing requirements
incrementally and adapt a system to them.

� Embedded prototyping refers to prototyping as a component of
another software development strategy. A convenient dichotomy
is between horizontal and vertical prototyping.

� In horizontal prototyping, most of the system functions are at least
nominally accessible, but only a few are actually operational. In
vertical prototyping, a narrow vertical slice of the system functions
is implemented.

Another dichotomy is between low-fidelity and high-fidelity prototyp-
ing. Low-fidelity prototyping simulates the proposed product in some very
rudimentary way—even by pencil and paper, or by slides (Nielsen 1990).
High-fidelity prototyping is intended to closely mimic the look and feel
and the responsiveness of the system, including its temporal delay char-
acteristics. However, it is generally not straightforward to mimic the
nonfunctional requirements of a system in a prototype (such as speed of
response) precisely because the prototype is only a draft implementation
of the system. Thus, its performance characteristics may not be at all
representative of the actual system; they may be possibly slower or faster
in terms of response.

Lichter et al. (1994) comment on the usefulness of a variety of other
kinds of prototypes such as presentation prototypes, breadboards, mock-
ups, and pilot systems for successful development. For example, a pre-
sentation prototype can serve a marketing purpose by illustrating to
potential users the expected system behavior. It provides users a concrete,
first look at a real version of the intended system. Breadboards help the
developers determine whether proposed technical characteristics of the
system will work. Mockups can determine whether the system will be
usable, for example, by tricking up an interface shell to give the user a
feel for the span of system functions and their accessibility. Pilot systems
provide essential system functions and, after a few evolutionary iterations,
can develop into the complete system.
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Prototypes can be coded in any language, but some special, high-
level languages are particularly relevant. Prolog is one example. Prolog
allows one to program the first-order predicate calculus and can be used
to help test the correctness of formal specifications. CASE, 4GL, user
interface generators, and visual programming tools such as Visual Basic
are other examples of enabling technologies. The use of reusable com-
ponents glued together to implement a prototype is another approach.
Shell scripts in UNIX, which allow the programmer to define interacting
collections of commands, are also powerful programming tools for rapid
prototyping.

Lichter et al. (1994) observed that prototyping reflects an evolutionary
view of software development. It is closely related to incremental devel-
opment except that, in prototyping, the development phase turn-around
time is reduced by the quick development of a primitive version of the
product. In contrast, in incremental approaches, the successive develop-
ment steps are kept short in time by restricting the augmented work
product of a given cycle to simple increments of system function.

Prototyping has been proposed for several purposes in process mod-
eling (Pfleeger 1998; Alavi 1984; Lichter et al. 1994). Thus, it can be used
as a generic tool in the development process. Pfleeger (1998) argued that
it could form the basis of a complete process model and proposed a
comprehensive prototyping model beginning with system requirements
and ending with a complete delivered system, with iterative revisions
implemented during the process. On the other hand, other studies have
contended that prototyping does not offer effective support for structuring
the software development process and is most appropriately used only
as an integrated part of the conventional software development life cycle
(Lichter et al. 1994).

Aside from being integrated with other process models, prototyping is
obviously especially helpful in model phases like requirements or in
assessing the feasibility of the entire development cycle for which it can
be used as an experimental tool. Minimally, prototyping is an option in
the case in which developers are dealing with “undecided users and
clarifying fuzzy requirements” or when there is a “need for experimentation
and learning before commitment of resources to development of a full-
scale system” (Alavi 1984). The Operational Specification Model of Zave
(1982, 1984) is a variation of prototyping based on the use of so-called
executable specifications, which allow testing incomplete, executable for-
mal specifications that can be dynamically extended by step-wise refine-
ment.

Some of the major benefits of prototyping (Lichter et al. 1994) include
the ability to:



24 � Strategic Software Engineering: An Interdisciplinary Approach

� Gain important feedback from users early in the development
process

� Provide a common baseline for users and developers to identify
problems and opportunities

� Motivate user involvement
� Help prevent misunderstanding between users and developers
� Strengthen working relationships between the users and developers 

Prototyping represents an experimental method for obtaining an under-
standing of a proposed system for the user and the developer. Timely
prototype development greatly increases project visibility in the user
organization by quickly providing a working system; helps the project
gain credibility with the prospective users; and gives the users a greater
sense of ownership or buy-in into the project because it allows their imme-
diate impact on the system design (Alavi 1984). The availability of a tangible
system cognitively facilitates user feedback because they can critique and
evaluate a tangible, existing system, rather than speculatively describe what
they need in a potential system. Early exposure to the prototype system also
tends to increase user utilization of the system (Alavi, 1984).

The prototype provides a common baseline in the sense of a “reference
point for both users and designers by which to identify problems and
opportunities early in the development process” (Alavi 1984). The inter-
action between developers and users that occurs as a result of discussions
of the prototype also tends to lead to “better communication and rapport,
and a better appreciation of each other’s jobs,” thereby enhancing the
working relationship between the two groups (Alavi 1984). These improve-
ments in user–developer dynamics are significant advantages, given the
recurrent behavioral problems between developers and users in systems
development. Furthermore, although prototyping is commonly perceived
to be more expensive, it addresses some of the limitations of the Waterfall
Model, such as an ability to deal with semistructured or nonstructured
requirements (Khalifa & Verner 2000).

Prototyping has been criticized for a variety of shortcomings (Alavi
1984), including:

� Leading users to overestimate the capabilities of a software product
� Difficulties in project management and control
� Difficulty in applying the technique to large systems design
� Potential difficulties in maintaining necessary user interest

The management difficulties arise partly from the difference between
the prototyping approach and the more well-defined life-cycle approaches:
system specifications evolve over the course of the project; users are more
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involved; and changes are more frequent. Management is consequently
complicated by the uncertainty of the development; the revisions to the
prototype or versions of the prototype; and the associated potential for
reduced development discipline, which is required in order to maintain
proper managerial control. Ironically, although the quick availability of a
responsive prototype can stimulate user interest, heightened interest may
decline precisely because “high priority user requirements” may have been
satisfied by the prototype (Alavi 1984).

1.4.2 The Spiral Model

In terms of software development, the term risk may be defined as the
state or property of a development project that, if ignored or left unre-
solved, will increase the likelihood of project failure (Ropponen & Lyytinen
2000). Alternatively, Boehm (1991) defined risk as “potential loss times
the probability of loss.” Perhaps one should call risk neither necessarily
a clear nor a present danger, but a threat nonetheless. Even a straightfor-
ward risk analysis of a basic problem may be quite complex. As an
illustration, consider the case of the risk involved if a firewall has a security
hole. A certain probability is that the hole will be detected by a potential
intruder and used for exploitation. Another probability is that the perpe-
trator or the intrusion will be detected. There is an estimated cost to the
intruder if detected as well as an estimated damage to the organization
if the perpetrator is successful (Walnau, Hissam, & Seacord 2002).

It is easy to see that, for a full-scale development project, a risk analysis
can be daunting. Risk is information dependent because the more certain
information is available about a project and its global context, the lower
the expectation of risk will be. Some recent investigators have considered
a more nuanced understanding of risk, differentiating among risk, uncer-
tainty, danger, and chance. Thus, Stahl, Lichtenstein, and Mangan (2003)
identify uncertainty as referring to the lack of knowledge of the future,
danger to factors beyond the control of the participants, and chance to
the possibility that future events may produce unforeseen opportunities
that can lead to a positive or negative reevaluation of the current project.
However, these terms do not have a uniformly agreed on meaning. Any
software development incurs a risk of failure because the system is large
or novel, or because resources may prove inadequate.

Addressing risk in software development has been an important driving
factor in the evolution of process models. Boehm (1984) seems to have
been the first to emphasize explicitly the importance of the concept of
risk factors in development, although previous models addressed risk
implicitly. In any case, the introduction of risk-driven models was a major
advance over the existing document-driven or code-driven models.
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In Boehm’s risk-focused Spiral Model (see Table 1.5), project develop-
ment consists of a series of Waterfall-like cycles. Each cycle addresses the
development of the software product at a further level of elaboration; the
cycle begins with an initial concept and progresses to the coding of
individual components. The Spiral Model is usually depicted as an expand-
ing spiral curve in contrast to the linear diagram of the classic Waterfall
Model. The Spiral embodies the idea that the model repeatedly circles
back again to a go or no-go decision on the project, based on repeatedly
revised understandings of the risk of the development.

The radial dimension of the Spiral reflects the project development
cost to date, increasing as the project progresses. The angular aspect of
the Spiral reflects the extent of completion of a particular cycle. Each
cycle consists of four phases: analysis; design; code; and test—just as the
entire Waterfall Model does. In each successive cycle, the developers
identify the objective of “the portion of the product being elaborated”
(Boehm 1988), as well as alternative implementations and constraints
under which the alternatives must operate. The developers then reevaluate
the alternatives with respect to the project’s objectives and constraints;
they identify potential sources of development risk or uncertainty for the
project and promising means for resolving or alleviating these risks.

The Spiral Model relies heavily on prototyping (Yamamichi et al. 1996)
and on concepts from software engineering economics to understand and
minimize development risk (Boehm, 1984). For example, the risk analysis
and resolution may entail prototyping or risk-resolution techniques such

Table 1.5 Profile of Spiral Development Model

Category Specifics

Evolution of goals Addressing risk assessment (inadequately 
handled in previous process models)

Methodology Iterative, with risk metrics and collaborative 
reevaluation

Technology Recent automated tools can facilitate model 
generation

Critical factors Risk management and collaboration

Interdisciplinary effects Economics, psychology, sociology

Behavioral considerations High level of user interaction especially in 
the win–win version

Problem nature Mainly large-scale projects with a high 
degree of uncertainty

Application domain General
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as benchmarking and simulation. If the performance characteristics of the
proposed system are decisive, then prototyping may be used to resolve
outstanding risk issues with the expectation that the prototype can exhibit
a solution that is “operationally useful and robust enough to serve as a
low-risk base for future product evolution” with subsequent phases also
evolving through a series of prototypes. If the performance risks are
decided to be acceptable or resolved and program development risks
come to predominate, then the next cycle of the spiral may follow a
waterfall approach. Yamamichi et al. (1996) describe the Spiral Model as
similar to a prototyping approach in which an initial software core or
kernel is repeatedly confirmed through testing as functions are added.
This makes the model quite effective in evaluating and verifying quality
and performance as development proceeds.

The model is highly flexible and designed for customization (Boehm
1988). It allows one to incorporate other process models (such as the
Waterfall, Evolutionary, Incremental, or Transform models) in an inclusive
framework driven by project requirements and the dual objective of
maximizing user satisfaction while minimizing development uncertainty.
As an example of the flexible choice of methodology at each phase, the
developers may choose to use simulation rather than prototyping to test
the feasibility of the project.

Alternative development models can be used as tools on an as-needed
basis rather than being adopted in their entirety. The Spiral Model illus-
trates how process models can be combined with one another to good
effect, such as by integrating prototyping (or, say, simulation) in order to
reduce risk. Additionally, formal methods can be combined with proto-
typing to further improve the quality of the process (Liu et al. 1998). In
fact, the Spiral Model can be used as a process-model generator by
combining it with a model decision table that automates guided decisions
on process selection (Boehm & Belz 1988).

The spiral model’s structure enforces close attention to user satisfaction
and approval as it iterates through the succession of cycles of validation
and verification. Each cycle closes with a review by the stakeholders of
the system being developed that has the objective of ensuring a consensus
that “all concerned parties are mutually committed to the approach for
the next phase” (Boehm 1988). The consensus points act as anchors or
project milestones. Furthermore, the stakeholder consensus entails agree-
ment not only on the plan for the following phase, but also on the
resources required to carry out the plan. These spiral risk-reduction
reviews can be as simple as a programmer walk-through or, at the other
extreme, may involve all classes of stakeholders from customers and users
to developers and maintainers. Boehm proposes a hypothesis-testing view
of the entire development process.
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The Spiral gets started with the hypothesis that a “particular operational
mission (or set of missions)” can be improved by a proposed software
effort. This hypothesis is then recurrently tested and perhaps modified as
the spiral develops, with termination of the development process if, at
any point, the hypothesis is shown to fail the test. The failure may well
be for exogenous reasons, such as because a window of opportunity for
the product passes or because a better product becomes available. Ter-
minologically, Boehm describes the model as comprising a succession of
different types of rounds in the spiral.

The startup round 0 consists of a preliminary feasibility study. The
following round 1 is the concept-of-operation round. Round 2 is a top-
level requirements specifications round. Succeeding rounds vary depend-
ing on the project. Eventually a finished system or product is produced;
however, because of the compromises and revisions made along the way,
it may vary considerably from the initial intention.

The Spiral Model inherits the advantages of the existing process models
that it incorporates, but tries to overcome their limitations by its persistent
focus on development risk management. Boehm (1988) claimed on the
basis of empirical experience at TRW that projects that used the system
increased productivity by 50 percent. Some difficulties are associated with
application of the model, however. For example, complications occur
when it is used in the context of contract-based software acquisition; in
which system specifications are agreed upon up front and consequently
the highly fixed specification-oriented Waterfall Model is favored. The
spiral approach also relies on experience with risk assessment and the
need for “explicit process guidance in determining [the] objectives, con-
straints, and alternatives” required for the next cycle of elaboration (Boehm
1996).

Boehm (1988) claimed that the spiral approach was adaptable to the
full range of software projects and flexible enough to dynamically accom-
modate a range of technical alternatives and user objectives. However,
the model’s risk classification needs further calibration to be more broadly
applicable. Boehm’s proposed list of risk-related factors in software devel-
opment was popular and widely adopted. However, Ropponen and Lyyt-
inen (2000) contend that these risk factors were excessively oriented
towards very large software systems and also lacked an adequate theo-
retical foundation in the sense that they were inductively derived. Boehm’s
list included factors that needed further resolution or decomposition; some
of the risks were not distinct from one another and thus covaried. Overall,
the risks had a preponderantly project management flavor. The connota-
tion of risk has been generally negative, but, more recently, so-called
opportunistic interpretations of risk have been considered (Smith, McKeen,
& Staples 2001). Stahl et al. (2003) examine the socially constructed nature
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of risk, its strong dependence on the perceptions of different classes of
stakeholders, and even the risk of overlooking risks.

In the course of several papers (Boehm & Bose 1994; Boehm 1988;
Boehm & Port 1999), Boehm and his colleagues extended the spiral model
to a variant called the Win–Win Spiral Model; this was intended to “con-
verge on a system’s next level objectives, constraints, and alternatives”
(Boehm 1988) using a so-called win–win stakeholder approach to deter-
mine the objectives–constraints–alternatives for each cycle of the spiral.
This approach entailed identifying the stakeholders of the system, deter-
mining their (win) conditions, and negotiating an agreed upon set of
objectives–constraints–alternatives. Figure 1.2 illustrates the process ele-
ments, including “identify next level stakeholders,” “identify stakeholders’
win conditions,” and “reconcile win conditions” (Boehm 1988). In a sense,
these steps define a “collaborative foundation for the model.” The modified
approach fills a critical gap in the original Spiral Model by providing a
means for resolving such fundamental questions as, “Where do the next-
level objectives and constraints come from?” and “How do you know
they’re the right ones?” (Boehm 1996).

Boehm’s (1996) win–win stakeholder approach is used to determine
three critical project milestones that together anchor the development of
the project: namely, life-cycle objectives, life-cycle architectures, and initial
operational capability. These milestones act as a set of reference points

Figure 1.2 Win–Win Spiral Model. (Adopted from Boehm, B., IEEE Computer, 
21(5), 61–72, 1988.)
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for critical management decisions. Boehm’s experience with projects that
used the Spiral Model had indicated to him that the likelihood of project
success or failure was closely connected with whether the project used
the equivalents of these milestones.

Identification of the life-cycle objectives (LCO) includes determining
top-level system objectives; the operational concept of the project; the
system requirements; the system and software architecture; the life-cycle
plan; and the feasibility rationale. The stakeholders must first concur on
the system objectives, including the system boundary. By definition, the
system environment lies outside the boundary and establishes key param-
eters; assumptions about users; data characteristics; workload; and inter-
operating system characteristics—all of which must be determined with
respect to their initial level as well as their expected evolution.

The stakeholders also define the operating concept by such means as
scenarios of use, using “prototypes, screen layouts, dataflow diagrams,
state transition diagrams, or other relevant representations.” The system
requirements thus defined are not fixed as they would be in the Waterfall
Model or other contract-driven approaches; instead, they represent only
stakeholder “concurrence on essential system features,” which are subject
to subsequent collaborative modification as opportunities or difficulties
arise. At least one feasible architectural definition must be identified to
demonstrate the ability of the plan to support system objectives. Consistent
with the Spiral Model’s risk-driven philosophy, if a viable architectural
option cannot be identified at this point, then the project should be
cancelled or its scope reworked. As a part of the life-cycle plan, stake-
holders are identified, including any organizations that supply major
systems with which the proposed system must interoperate. A simple
organizing principle that scales to small projects is the WWWWWHH
principle, which addresses:

� Why is the system being developed (objectives)?
� What is supposed to be done?
� When (milestones and schedules) is it supposed to be done?
� Who is responsible for a particular function?
� Where are they organizationally (responsibilities)?
� How will the work be done (approach)?
� How much of each kind of resource will be needed to do the

work (resources)? (Refer to Boehm, 1996.)

The life-cycle architecture (LCA) milestone primarily elaborates on the
LCO elements, including the system and software components, mediators
between these components, and constraints. It specifies, as necessary, off-
the-shelf or reusable software components, as well as performance
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attributes such as response time and reliability, and likely architectural
trends over time. This milestone should lead to stakeholder agreement on
the feasibility of the architecture and its compatibility with the stakeholder
life-cycle objectives. The life-cycle architecture should conclude with “all
the system’s major risks resolved or at least covered by an element of the
system’s risk management plan” (Boehm 1996). If the life-cycle architecture
milestone is considered unsatisfactory, this once again indicates that the
stakeholders must reconvene to work out a plan that meets the milestone
criteria.

Unlike the usual software project milestones, the LCO and LCA mile-
stones explicitly emphasize how specifications can meet system evolution,
i.e., they are not intended to be mere point-in-time snapshots. The
specifications are far more flexible in terms of how they can be defined;
for example, they can be prototypes or off-the-shelf products. The empha-
sis is consistently on the risk attached to the specifications rather than their
completeness. For example, critical interfaces should be completely
defined, but user interfaces are “less risky to define as prototypes” and
thus represent a less urgent consideration. The (cycle) process model used
is flexible: it may be Spiral or it may be the Waterfall or another method.
Most importantly, stakeholder concurrence on the milestones “establish[es]
mutual stakeholder buy-in to the plans and specifications, and enables a
collaborative, team approach to unanticipated setbacks rather than the
adversarial approach in most contract models” (Boehm 1996).

The initial operational capability (IOC) milestone occurs at the end
of the development cycle. This includes software preparation (software
support, documentation, licensing, etc.); site preparation (off-the-shelf
vendor arrangements); and user and maintainer preparation. The progres-
sion from LCA to IOC can be done using any suitable mix of models.
Boehm (1996) describes the successful application of the Win–Win Spiral
Model to a DoD (Department of Defense) project called STARS. The project
used a custom mix of software process models (Waterfall, Evolutionary,
Incremental, Spiral, and COTS) to suit different project needs.

1.4.3 The Cleanroom Model

The Cleanroom approach (see Table 1.6) to software engineering was
developed at IBM by Harlan Mills around 1982. It uses a team-oriented
model that focuses on enforcing the use of theoretically sound engineering
processes and practices. It has three foundations: incremental development
under statistical quality control; software development based on mathe-
matical principles; and software testing based on statistical principles. Its
quality-control-driven philosophy is intended to improve the manageability
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and predictability of the development process. Its formal mathematical
and correctness techniques are intended to ensure its validity.

The idea of the Cleanroom Model is that by developing software under
statistical guaranteed levels of quality control, one can produce a certifiably
reliable product that “exhibits zero failures in the field” (Oshana & Linger
1999). The approach puts an intense premium on “defect prevention,
effectively eliminating costly error removal phases (i.e., debugging)” in
order to produce “verifiably correct software parts” (Oshana & Linger
1999). Each incremental component is “measured and compared with
preestablished standards to determine whether or not the process is in
control” (Oshana & Linger 1999) before developers move onto the next
increment.

Rigorous intellectual control of the process is achieved by using ongo-
ing reviews by a small, highly qualified team and applying formal methods
at every incremental phase (Trammell, Binder, & Snyder 1992). This leads
to what is tantamount to an inductively established level of correctness
based on mathematical and statistical “certification of code increments as
they accumulate into a system” (Trammell et al. 1992). A central theme
is to develop modules correctly the first time and verify their correctness
even before (that’s right, before!) execution and testing; the idea is to
eliminate the need for expensive defect-treatment processes. Linger and
Trammell (1996) cite remarkable improvements in reliability for Clean-
room-designed systems. Oshana and Coyle (1997) describe a highly suc-
cessful application of Cleanroom techniques to a large-scale, real-time
system and claim that the intense emphasis on defining unambiguous and

Table 1.6 Profile of Cleanroom Development Model

Category Specifics

Evolution of goals Focus on accuracy, reliability, reducing 
ambiguity, incompleteness, inconsistency

Methodology Mathematical transformation and statistical 
testing of usage profiles

Technology Facilitated by software automation

Critical factors Specification language

Interdisciplinary effects Mathematical specification, statistical 
sampling, project management

Behavioral considerations Peer-review teams

Problem nature Complex systems

Application domain General
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complete requirements led to a significant reduction of risk. The approach
is applicable not only to newly developed systems, but also to legacy
environments by appropriately reengineering existing legacy components.

The testing process in Cleanroom is intended to demonstrate the
validity of the system under expected usage, rather than to detect and
remove defects. First, a highly detailed usage profile or specification is
defined; this serves as the basis for thorough random testing of the
intermediate products, with the final product therefore expected to rep-
resent a scientific level of quality certification. In fact, the performance of
the software on the tests is viewed as defining a statistical experiment in
which a thorough set of “test cases [is] randomly generated from the usage
model” (Oshana & Linger 1999). The test cases are selected to be a
statistically representative sample of the system’s expected usage, so the
testing is arguably as reliable as any statistical sampling process. This kind
of sampling is a realistic approach, given that exhaustive testing is almost
always computationally impossible because of the vast number of potential
test cases.

The software components are viewed as defining mathematical func-
tions in which the function domain is the set of possible input histories
and the function range is the set of all correct outputs. The functions are
described using different kinds of box structures. In an object-oriented
context, a so-called black box would correspond purely to the behavior
of an object; a state box would correspond to the object’s encapsulated
state data; and a clear box would correspond to the object’s methods.
The specifications of system functions and their design decompositions
are required to satisfy referential integrity, which means that the design
and the specification correspond to the same mathematical function. If
referential integrity is satisfied, then the design is a provably correct
implementation of the specification (Linger & Trammell 1996). The cor-
rectness is verified by the review teams by checking the correctness of
the effects of individual control structures, an approach that turns out to
be “remarkably effective in eliminating defects, and is a major factor in
the quality improvements achieved” (Linger & Trammell 1996).

The Cleanroom Development Architecture comprises 14 processes and
20 work products that, in combination, implement the development tech-
nology (Mills, Dyer, & Linger 1987). Just to give a sense of what is involved
in the development process these processes will be briefly mentioned.

� The Management Processes involve project planning; project man-
agement; performance improvement; and engineering change.

� The Specification Processes comprise requirements analysis; func-
tion specification; usage specification; architecture specification;
and increment planning.
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� The Development Processes consist of software reengineering;
increment design; and correctness verification.

� The Certification Processes are the usage modeling and test plan-
ning process and the statistical testing or certification process.

Linger and Trammell (1996) offer a detailed discussion of each Clean-
room process and process element. Some highlights will be discussed
briefly here.

� The performance improvement process is a reflection of the fact
that the Cleanroom process structure is not static, but explicitly
subjected to review and adjustment.

� In contrast, the engineering change process addresses modifications
with regard to the work product rather than the process. In
collaboration with the customer, the requirements analysis process
creates a software requirements document, which defines the sys-
tem function, usage, and environment and obtains customer agree-
ment.

� The function specification process transforms the requirements into
a mathematically precise form and completely specifies possible
customer usages.

� The usage specification process identifies users and their usage
scenarios and environments, as well as probability distributions for
software usage. This can help prioritize development and facilitate
scheduling and resource planning.

� The architectural specification process defines the conceptual
model for the architecture and spans the entire life cycle.

� Increment planning is a process that supervises a revisable strategy
for incremental development.

� The reengineering process adapts the system to reusable compo-
nents possibly developed outside the Cleanroom framework. In
such a case, the components are redesigned to Cleanroom stan-
dards or the Cleanroom software is protected from the preexisting
components through what amount to “firewalls.”

� As part of the increment design process, the development team
develops an increment, although the certification team first exe-
cutes the process.

� Using mathematical techniques, the development team performs
correctness verification during team reviews to ensure that the
software is a correct implementation of the specifications.

� The usage and test planning process refines the usage models,
defines the test plans, and statistically generates the test cases. In
principle, the usage model allows an unlimited number of test
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cases, but only a finite sample is derived from the usage model
on the basis of the usage probability distribution.

� The statistical testing and certification process then statistically
establishes the software’s “fitness for use.” Depending on the
certification results, testing can, for example, be continued, termi-
nated, or stopped to make engineering changes.

Like the Cleanroom Model, the Capability Maturity Model (CMM)
represents a carefully disciplined approach to software development.
However, CMM focuses on management of the entire development envi-
ronment or process in a team or organizational context, emphasizing
“process management and the principles and practices associated with
software process maturity.” In contrast, the Cleanroom Model focuses on
“rigorous engineering” and “enforces the mathematical basis of software
development and the statistical basis of software testing” (Oshana & Linger
1999). In fact, these are issues from which the CMM prescinds precisely
because it is intentionally “silent on the merits of various methods.”

Nonetheless, although differently oriented, the Cleanroom and Capa-
bility Maturity models are compatible and even complementary. Oshana
and Linger observe that the key process areas of the CMM can be largely
mapped to the activities in a Cleanroom environment. Thus, three of the
six level-2 CMM key process areas (software project tracking and oversight,
software project planning, and requirements management) are highly
consistent with Cleanroom processes. Five of the eight CMM level-3
process areas (peer reviews, intergroup communication, software product
engineering, integrated software management, and training program) are
closely consistent with Cleanroom activities. Finally, the level-4 KPAs
(software quality management and quantitative process management) and
the CMM level-5 KPA of defect prevention are consistent with Cleanroom
requirements.
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Chapter 2

Software Development 
Strategies: Tools, Objects, 
and Reuse

2.1 Introduction
This chapter examines computer support tools for software development
and models that emphasize reusability. The computer support tools are
called CASE tools and are particularly prominent in the Rational Unified
Process (RUP) Model considered. The concept of reusability is highly
compatible with object-based development models and is realized in a
different manner but at a much higher scale of functionality in the
application of commercial off-the-shelf components. The Reengineering
Model represents a different aspect of reusability in which entire systems
are effectively recycled by modification or adaptation.

2.2 CASE Tools
Fields such as mechanical and computer engineering or architecture use
computer-aided design (CAD) tools extensively to automate many parts
of the design processes in their fields. These tools can automate routine
tasks, check for consistencies, provide templates for design, etc. The
analogous tools in software development are called CASE tools, which
stands for computer-aided software engineering (see Table 2.1). These
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tools can assist developers throughout the development life cycle, although
they are more beneficial at some stages than at others. Tools used in the
early phases of the life cycle (analysis of requirements, specifications, and
design) are called upper CASE tools or front-end CASE tools; those used
during implementation and maintenance are called lower CASE tools or
back-end tools. CASE tools are currently available for every stage of the
development cycle, including:

� Project management tools for budgeting, scheduling, and metrics
� Tools for configuration management
� Various tools for analysis and design, such as data modeling and

interface development
� Tools that assist object orientation (OO) development
� Tools for testing, for formal methods, and for reengineering

CASE tools not only can speed up the development process, but they also
can provide machine-readable representations for process information that
can then be shared with other tools.

The earliest CASE tools facilitated the graphical structured analysis and
design techniques developed during the 1970s and originally implemented
in a cumbersome, manual manner. Automated tools for creating data flow
diagrams were developed during the early 1980s and they were soon
integrated with data dictionaries, thereby providing tools that could auto-
matically ensure that dictionaries and DFDs remained consistent. Soon so-
called synthesizers became available that further facilitated the DFD design

Table 2.1 Profile of CASE Tools-Based Development Models

Category
Specifics (CASE tools-based models or 
automated development models)

Evolution of goals Supportive to many other process models, 
especially the Rational Unified Process

Methodology Can use with any methodology

Technology Dependent on CASE tools

Critical factors Significantly improved if seated on top of a 
formal language such as UML

Interdisciplinary effects AI

Behavioral considerations None

Problem nature General

Application domain General
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process by supporting the development of hierarchically related DFDs.
CASE tools were also developed that supported transforming data flow
diagrams into structure charts (high-level module architecture hierarchies)
by assisting in the customary process of identifying the central transform
in the data flow diagram; demarcating system boundaries; and tracing
input and output streams to their highest levels of abstraction (see Hamlet
& Maybee, 2001, for a good overview of the process).

By the late 1980s automatic code generators and fourth-generation
languages (4GLs) that greatly simplified mapping design specifications
into code were developed (Barclay & Padusenko 1999). In particular, the
UNIX shell environment, combined with the UNIX pipe, also obviously
constituted a powerful fourth-generation language-like capability that had
the additional benefit of complete compatibility with the UNIX environ-
ment. Similar capabilities are available in DOS. Strictly speaking, fourth-
generation languages are not CASE tools because the user must specify
algorithms and data types; for CASE tools the user need only specify the
task. On the other hand, the domain of applicability of the CASE tool will
be much more limited than the 4GL.

CASE tools are also helpful for mocking up interfaces during the design
stage (Schaffer & Wolf 1991). Test scripting tools and test description
languages were developed to facilitate testing. Another important benefit
of CASE tools was their applicability to change management because they
could allow tracing the rippling effect of changes through a variety of
interrelated artifacts such as structure charts, DFDs, data dictionaries, and
process specifications. CASE tools also represent an important technology
for developing and maintaining Web sites (Jung & Winter 1998).

Part of the reason for the success of the CAD (computer-aided design)
tools that have been used so effectively in engineering fields is that they
were built on top of formal description languages. For example, in
computer engineering, standardized high-level hardware description lan-
guages (HDL) are available that can be used to describe the low-level
design of hardware systems. The descriptions are then used as input to
the CAD tool that automatically generates the corresponding circuit model,
even adapting the model to a particular technological realization like a
VLSI environment, and allowing simulated execution of the CAD produced
model. In the situation of CASE tools, the formal languages that under-
pinned the tool environment did not actually model the “semantics of a
design” as they did in engineering (Hamlet & Maybee 2001).

However, an important step in this direction has been the introduction
of the standardized universal modeling language (UML) in object-oriented
design. UML uses class diagrams to describe the relations between the
objects or classes in a problem. This language also has a version of usage
scenarios called use cases that represent “functional test cases of an
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important sequence of operations” intended to clarify what is happening
at the requirements level rather than at the code testing level (Hamlet &
Maybee 2001). A use case represents a sequence of acts or steps that
occur between a user (or actor) and the system when the user is trying
to enact one of the functionalities of the system. Use cases are not the
same as atomic actions provided by the system, but represent the enact-
ment of a sequence of steps that together comprise the elaboration of a
coherent user goal. UML sequence diagrams describe how objects imple-
ment a use case. CASE tools are also available that support the kinds of
role-playing by actors that occur in a use case.

Technology-enabled models include those based on automation using
CASE tools. Although traditional environments have been supported by
loosely coupled CASE tools that independently assisted in each phase of
the life cycle, later more sophisticated architectures have been introduced
that provide mechanisms for ensuring that tools are properly used and
that the user interface can support monitoring the actions of team members
as well as coordinating their activities in an integrated manner
(Ramanathan & Soumitra 1988). Their architecture uses a rule-based AI
(artificial intelligence) approach. The TAME process modeling approach
represented an outstanding advance in integrating process modeling with
product metrics and the computer-supported capabilities of CASE tools in
a comprehensive framework (Basili & Rombach 1988).

It is very significant that CASE tools can facilitate the analysis and
improvement of the software development process. For example, the goal
of so-called empirical software engineering is to improve the software
development process by empirically monitoring process artifacts that have
been created in an experimental development venue. Torii et al. (1999)
describe a system, GINGER2, that collects real-time process development
behavior in an experimental development context. The idea is that, by
collecting data and building a knowledge base during a test development
process, one can more accurately identify behavior patterns that can
ultimately help make process models better. Obviously, if the process life
cycle is extensively supported by CASE tools, many of the process artifacts
will be automated and so data about them can be collected more readily.

The kinds of experimental data that can be collected include data
about the CASE tools such as the average load on the tool program; data
about the tools’ artifacts like progressive frequent snapshots of source
code development; data sent back and forth between the developers and
the CASE tools; and even (remarkably) physiological data about the
developers such as eye-tracking, skin resistance, and three-dimensional
motion data. The idea is that the data can be used, for example, to identify
patterns that might be correlated with deleterious development behavior
such as bug creation so that programmers can be automatically warned
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if they are exhibiting a tell-tale pattern. This type of live empirical analysis
of the software process using CASE tools to capture experimental data for
the purpose of process analysis and improvement is called computer-aided
empirical software engineering (CAESE). It is reminiscent of the early
Taylorian approach to analyzing industrial work that led to the emergence
of the field of industrial engineering (Hamlet & Maybee 2001).

2.3 Object-Oriented and Reuse Models
The central motivation underlying the use of objects is that they represent
a natural way to model phenomena and correspond to the most funda-
mental of cognitive elements: the concept. The conceptual nature of
objects also underlies their ability to be designed for reuse. Reuse is a
decisively important idea in software engineering because it reduces risk
and development costs. This section describes process models that capi-
talize on the idea of reuse. At one level, it examines how objects can be
systemically used throughout the development process. An overview of
the Rational Unified Process and its comprehensive suite of tools for
object-oriented development is presented. Commercially available reusable
system components or commercial off-the-shelf (COTS) components rep-
resent reuse at a different scale. Finally, even when objects or COTS
components are not applicable, for a huge number of systems the issue
of reuse presents itself as the reengineering of existing systems that would
be totally prohibitive to develop ab initio.

Before proceeding, another important instance of reuse is briefly
addressed: the reuse of patterns of solutions to problems. Patterns for
problem solutions frequently repeat themselves. What have come to be
called design patterns represent abstractions or generic types of proven,
successful, standard software architectures for solving regularly recurring
problem types. Thus, design patterns represent a kind of reusable design
template. In the seminal book on the subject, Gamma et al. (1995), the
so-called “Gang of Four,” compiled over 20 standard design patterns for
software applications that had been developed and proven useful in
software engineering over the years. The book can be thought of as a
handbook of architectural patterns. The idea for this approach was partly
motivated by work done on the architectural design of buildings by
Christopher Alexander. The Gang of Four’s standard design patterns can
keep developers from “reinventing the wheel.” Perhaps equally signifi-
cantly, they can also serve as a standardized means of communication
among developers, enabling them to convey the nature of their solutions
accurately and succinctly to others.

The design patterns developed by Gamma et al. (1995) fall into three
broad categories: creational patterns; structural patterns; and behavioral
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patterns. Creational patterns include the abstract factory for building
related objects. Structural patterns include adapters, which adapt one class
to another class with which it might not be compatible by using a type
of wrapper and bridges for binding implementations. Behavioral patterns
include the chain of responsibility pattern in which requests are delegated
to appropriate services providers. The design patterns are like tried-and-
true templates for solving problems. They represent a significant advance
in facilitating and standardizing the architectural or system design phase
of software development.

2.3.1 Object-Oriented Models

Object-oriented techniques (see Table 2.2) can be used at different points
in the software life cycle, from problem analysis and requirements specifi-
cation to programming. At analysis, the result of an object-driven approach
is an object-oriented model of the application domain. At requirements, the
outcome is a description of the system to be designed in an object-oriented
manner. At implementation, the source programming is done using an object-
oriented programming language (Coad & Yourdon 1991).

Using a traditional software process model in conjunction with object-
oriented programming has little impact on the overall process structure
because the object-oriented aspects are subordinated to the classic devel-
opment framework. A typical example of this would be to develop a
system using the Waterfall Model with implementation done in an object-

Table 2.2 Profile of Object-Oriented Development Models

Category Specifics

Evolution of goals Promotes reusability through encapsulation 
and inheritance

Methodology Objects and components

Technology Computer-supported environments such as 
Rational Unified Process and automated tools 
such as DRAGOON are available; UML 
notation and tools

Critical factors Defining model objects and their interaction

Interdisciplinary effects None

Behavioral considerations None

Problem nature General

Application domain General
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oriented language such as C++, Java, or Smalltalk. When an object-oriented
design strategy is used, the system modules become classes or objects
that are defined, analyzed, associated, and aggregated using object-ori-
ented analysis, design, and implementation techniques and notations.
Examples of this approach include component-based process models,
COTS development, and the UML-based Rational Unified Process. These
strategies have gained considerable attention in rapid application devel-
opment because they can significantly improve productivity due to the
reusability of the objects or components. Furthermore, these approaches
can be extensively supported by CASE tools.

Consider an object-oriented approach to requirements and specifica-
tion. Requirements engineering entails identifying the requirements that
the user expects of a system and specifying those requirements in an
appropriate manner. The process involves the elicitation, specification,
and validation of stakeholder objectives for an application in a problem
domain. The requirements document tells what is acceptable to the user.
The correct requirements are critical because, without correctly identified
requirements, the project is doomed to failure and irrelevance. The spec-
ifications, on the other hand, must also accurately reflect what the user
wants, but they are primarily for the benefit of the developer.

Social or collaborative factors are involved in requirements gathering
because the elicitation of requirements is based on a cooperative social
interaction between the developers and users. The requirements can be
defined via use cases, with subsequent development iterations planned
around the use cases. The specifications can be represented by various
means: formal, informal, or based on natural language. Nonfunctional
requirements must also be addressed, including quality, reliability, usabil-
ity, and performance.

Typically, the specification aspect of requirements engineering has
been done using a structured approach based on data flow diagrams and
structure charts. However, this can also be done using an object-oriented
approach (Dawson & Swatman 1999). An object-oriented problem analysis
is first performed to understand the real-world problem domain. A domain
model is created to give a visual description of the partitioning of the
application domain into conceptual objects, which can be determined, for
example, from use cases. The emphasis on objects as opposed to functions
distinguishes object-oriented analysis from structured analysis; the focus
of the latter is on the identification of system functions rather than domain
objects. The purpose of the object analysis is to discover the objects in
the application domain and the information and behaviors needed by the
objects to meet the requirements. Blank (2004) observes that object-
oriented analysis and design depend critically on correctly “assigning
responsibilities to objects.”
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The system design phase involves creating a conceptual solution to
the problem that meets the requirements. This includes architectural,
database, and object design. Object-oriented design involves identifying
the software objects needed to fulfill the requirements analysis, including
their properties, methods, and how they interact or collaborate with one
another. Such objects are anticipated to be relatively stable throughout
development.

UML diagrammatic models or tools are widely used for describing
objects and their interactions. Static UML models are used to define the
objects, their properties, and relations. Dynamic UML models are used to
define the states of the objects, their state transitions, event handling, and
message passing. The interaction between the objects reflects the system
flow of control. UML collaboration diagrams are used to illustrate the
interactions between objects visually. UML sequence diagrams are used
to illustrate the interactions between objects arranged in a time sequence
(the sequence of messages between objects) and to clarify the logic of
use cases. These are examples of so-called interaction diagrams.

System sequence diagrams show the system events that the so-called
actors generate (see the RUP discussion for further details), their order
during a scenario, and the system responses to the events and their order.
A system sequence diagram is a visual illustration for the system responses
in the use case for a scenario; it describes the system operations triggered
by a use case (Blank 2004). UML activity diagrams are used to understand
the logic of use cases and business processes. Traditional state machine
diagrams illustrate the behavior of an object in response to events and
as a function of its internal state. For a further discussion of UML modeling,
refer to the section on the Rational Unified Process. Larman (2001) provides
an important treatment of UML and object-oriented analysis and design.
Incidentally, Liu et al. (1998) describe the application of SOFL (Structured
Object-Oriented Formal Language) for integrating structured and object-
oriented methodologies. SOFL combines static and dynamic modeling and
may potentially overcome some of the problems with formal methods
that have limited their use.

One can also model the entire development process in an object-
oriented way for such purposes as to apply automation for process
improvement (Riley 1994). In this perspective, the development process
is what is captured and formulated in an object-oriented manner. Riley
observed that current process descriptions are often “imprecise, ambigu-
ous, incomprehensible, or unusable,” and there is also frequently “a lack
of fidelity between actual behavior and a [development] organization’s
stated process.” To address this, he proposed an object-oriented approach
for modeling software processes based on a language called DRAGOON,
which is also object oriented.
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DRAGOON is used as a metamodeling language to represent the
process model. This type of process representation is intended to facilitate
improving process quality via automation. Riley claimed that his approach
avoided some of the drawbacks associated with process modeling tech-
niques based on functional approaches—such as structured analysis and
design for defining system data flows and control. The idea is that his
approach can be used to develop a theoretical model of software process,
including formalization, as well as support simulation and automated
enactment of processes.

Models like this are needed to develop life-cycle support environments
that can partially automate process enactment. Automation could help
ensure that processes were enacted in a standard manner by the individ-
uals and teams using the processes. This could allow “enforcement and
verification of the process and the unobtrusive collection of metrics,”
which could then be used to improve the process (Riley 1994). Riley’s
metamethod is based on a four-step approach:

1. Define an object-oriented process model
2. Specify the DRAGOON syntax for each model object
3. Develop object behavior models for DRAGOON
4. Develop object interaction models for the overall process

2.3.2 Rational Unified Process Model (RUP)

UML has become a widely accepted, standard notation for object-oriented
architecture and design. The widespread acceptance of UML allows devel-
opers to perform system design and provide design documentation in a
consistent and familiar manner. The standardization reduces the need for
developers to learn new notational techniques and improves communi-
cation among the development team and stakeholders. The Rational Rose
software suite is a GUI or visual modeling tool available from Rational
Software that lets developers model a problem, its design, implementation,
and indeed the entire development process, all the way through testing
and configuration management, using the UML notation. The Rational
suite is arguably one of the most important demonstrations of an approach
that reflects Osterweil’s famous aphorism that “software processes are
software, too” (Osterweil 1987).

Myriad sources of information about the Rational approach are available
in books and on the Internet. This development product is widely used,
especially for e-business applications. Krutchen (2003) provides an excel-
lent overview of the approach and its software engineering motivations.
Jacobson, Booch, and Rambaugh (1999) give a detailed description of the
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Rational Rose product and its associated development process. Tool men-
tors are provided with the actual product that can be used as a sort of
“electronic coach on software engineering” (Krutchen 2003). For a simple
but useful introductory tutorial about how to use at least a part of the
Rational Rose CASE tool, with detailed discussions and illustrations of the
Rose tools and windows for use case diagrams and class diagrams, see
cse.dmu.ac.uk/Modules. Refer to Booch, Jacobson, and Rumbaugh (1998)
for UML and Larman (2001) for UML object-based design and analysis.
The Web site, http://www.agilemodeling.com, provides useful guidelines
on UML diagramming tools.

The rational unified process (RUP) is built around visual software
support for what its designers believe are the essential best practices for
effective software development, namely:

� Iterative development. The iterative, Boehm-style, spiral approach
is intended to mitigate development risk by using a combination
of early implementation and requirements testing and modification
in order to expose requirements errors early.

� So-called requirements management. The management require-
ments objective specifically addresses evaluating and tracking the
effect of changes to the requirements.

� Use of component-based software architectures. Component-based
development allows the use (or reuse) of commercially available
system components and ultimately continuous (re)development,
but involves the complexities of gluing the components together.
This is also highly consistent with the fundamental principle of
separation of concerns.

� Use of tools that support visual design of the system, continuous
verification, and change management. Intelligently designed visual
modeling tools help manage and share development artifacts, allow
differing levels of design resolution, and support classic UML
artifacts such as cases and scenarios. Computer-supported testing
tools simplify verification. Automated coordination tools organize
the workflow of system requirements, a coordination that involves
a complex network of development activities and artifacts executed
by multiple development teams at possibly many sites, and coor-
dinate the process iterations and product releases.

The RUP constitutes a complete framework for software development.
The elements of the RUP (not of the problem being modeled) are the
workers who implement the development, each working on some cohesive
set of development activities and responsible for creating specific devel-
opment artifacts. A worker is like a role a member plays and the worker
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can play many roles (wear many hats) during the development. For
example, a designer is a worker and the artifact that the designer creates
may be a class definition. An artifact supplied to a customer as part of
the product is a deliverable. The artifacts are maintained in the Rational
Rose tools, not as separate paper documents. A workflow is defined as a
“meaningful sequence of activities that produce some valuable result”
(Krutchen 2003). The development process has nine core workflows:
business modeling; requirements; analysis and design; implementation;
test; deployment; configuration and change management; project manage-
ment; and environment. Other RUP elements, such as tool mentors,
simplify training in the use of the Rational Rose system. These core
workflows are spread out over the four phases of development:

� The inception phase defines the vision of the actual user end-
product and the scope of the project.

� The elaboration phase plans activities and specifies the architec-
ture.

� The construction phase builds the product, modifying the vision
and the plan as it proceeds.

� The transition phase transitions the product to the user (delivery,
training, support, maintenance).

In a typical two-year project, the inception and transition might take
a total of five months, with a year required for the construction phase
and the rest of the time for elaboration. It is important to remember that
the development process is iterative, so the core workflows are repeatedly
executed during each iterative visitation to a phase. Although particular
workflows will predominate during a particular type of phase (such as
the planning and requirements workflows during inception), they will also
be executed during the other phases. For example, the implementation
workflow will peak during construction, but it is also a workflow during
elaboration and transition. The goals and activities for each phase will be
examined in some detail. 

The purpose of the inception phase is achieving “concurrence among
all stakeholders” on the objectives for the project (Krutchen 2003). This
includes the project boundary and its acceptance criteria. Especially impor-
tant is identifying the essential use cases of the system, which are defined
as the “primary scenarios of behavior that will drive the system’s func-
tionality.” Based on the usual spiral model expectation, the developers
must also identify a candidate or potential architecture as well as dem-
onstrate its feasibility on the most important use cases. Finally, cost
estimation, planning, and risk estimation must be done. Artifacts produced
during this phase include the vision statement for the product; the business
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case for development; a preliminary description of the basic use cases;
business criteria for success such as revenues expected from the product;
the plan; and an overall risk assessment with risks rated by likelihood
and impact. A throw-away prototype may be developed for demonstration
purposes but not for architectural purposes.

The following elaboration phase “ensures that the architecture, require-
ments, and plans are stable enough, and the risks are sufficiently mitigated,
that [one] can reliably determine the costs and schedule” for the project.
The outcomes for this phase include an 80 percent complete use case
model, nonfunctional performance requirements, and an executable archi-
tectural prototype. The components of the architecture must be understood
in sufficient detail to allow a decision to make, buy, or reuse components,
and to estimate the schedule and costs with a reasonable degree of
confidence. Krutchen (2003) observes that “a robust architecture and an
understandable plan are highly correlated…[so] one of the critical qualities
of the architecture is its ease of construction.” Prototyping entails integrat-
ing the selected architectural components and testing them against the
primary use case scenarios.

The construction phase leads to a product that is ready to be deployed
to the users. The transition phase deploys a usable subset of the system
at an acceptable quality to the users, including beta testing of the product,
possible parallel operation with a legacy system that is being replaced,
and software staff and user training.

Software architecture is concerned with the major elements of the
design, including their structure, organization, and interfaces. The repre-
sentation of architecture traditionally uses multiple views—for example,
in the architectural plans for a building: floor plans, electrical layout,
plumbing, elevations, etc. (Krutchen 2003). The same holds for RUP
architectural plans, which include the logical view of the system, an
organized view of the system functionality, and concurrency issues.

RUP recommends a so-called 4 + 1 view of architecture. The logical
view addresses functional requirements. The implementation view
addresses the software module organization and issues such as reuse and
off-the-shelf components. The process view addresses concurrency,
response time, scalability, etc. The deployment view maps the components
to the platforms. The use-case view is initially used to define and design
the architecture, then subsequently to validate the other views. Finally, the
architecture is demonstrated by building it. This prototype is the most
important architectural artifact; the final system evolves from this prototype.

The RUP is driven by use cases that are used to understand a problem
in a way accessible to developers and users. A use case may be defined
as a “sequence of actions a system performs that yields an observable
result that is of value to a particular actor” (Krutchen 2003); an actor is
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any person or external system that interacts with the proposed system.
Put another way, a use case accomplishes an actor’s goal (Cockburn 1997).
The requirement that the action be useful to the end-user establishes an
appropriate level of granularity for the requirements so that they are
understandable and meaningful to the users.

Just as it is important to identify use cases by recognizing interactions
that create value for an actor, it is also important to define the cases from
the actor’s viewpoint and in the actor’s vocabulary—not from the system’s
viewpoint (Blank 2004). The flow of events that occurs during a use case
is defined using a natural language description of the actions that occur
between the system and the user. The situation in which the use case
pattern follows a normal, unexceptional flow of events is called the Happy
Path as the basic focus of attention. For example, consider a case
(described in Krutchen, 2003) in which the user is a client of a bank and
is using an automated teller machine (ATM). The flow of events that
transpires might be as follows:

1. (User): insert the bank card for the ATM to read and validate
2. (System): prompt user for personal PIN number, which the user

enters and the system validates 
3. (System): prompt user for requested services, such as withdrawal
4. (System): request amount to withdraw, user enters amount 
5. (System): request account type, user selects a type such as checking 
6. (System): perform validation of request for ID, PIN, amount, and

type through the ATM network
7. (System): query user for receipt
8. (System): tell user to remove card, verify removal
9. (System): dispense cash requested

10. (System): optionally print receipt

Another name for such use cases is scenarios. Successful concurrent
use case execution is initially ignored, but addressed later when nonfunc-
tional requirements are handled. The role of use cases in the process
workflows can be summarized as follows: use cases are an outcome of
the requirements workflow. Appropriate objects can be defined during
design by tracing through the use cases, and these cases then become
the basis for implementation. They are also obviously precisely what is
needed to define test cases.

2.3.3 Commercial Off-the-Shelf Model (COTS)

The component-based approach to development such as that represented
by the use of commercial off-the-shelf (COTS) products (see Table 2.3) is
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a good example of how object-oriented methodologies have dramatically
affected development strategies. COTS development reflects a radically
expanded concept of reuse in which proposed systems are configured
out of prebuilt components or subsystems. The software economics of
COTS components is very unlike that of custom-built components. Cost
estimates call for components that must be reused at least two or three
times to recoup the development expense (Walnau, Hissam, and Seacord
2002); however, commercial components can be reused thousands of times
by different developers.

The term COTS typically refers to a “software product, supplied by a
vendor, that has specific functionality as part of a system—a piece of
prebuilt software that is integrated into the system and must be delivered
with the system to provide operational functionality or to sustain mainte-
nance efforts” (Morisio et al. 2000). The COTS component is delivered in
binary form and has an interface that allows the product to be integrated
with other components. The packages used in COTS development permit
the rapid configuration of composite systems. However, the new paradigm
places a stiff premium on developers’ understanding the characteristics,
incompatibilities, and performance quality of these preexisting products.
Integrating the COTS approach into the different phases of the process
life-cycle model creates a new kind of development framework (Fox, Lantner,
and Marcom 1997) or life-cycle model (Braun 1999). However, in many
respects, the classic Boehm Spiral Model provides a good skeletal architecture
for the approach, although with a new emphasis on technology competence

Table 2.3 Profile of Commercial Off-the-Shelf (COTS) 
Development Models

Category Specifics

Evolution of goals Utilizing ready-made software solutions

Methodology Outsourcing and reusability to build cost-
effective systems

Technology Can be useful

Critical factors Ready-made reused applications and their 
properties

Interdisciplinary effects Economics; marketplace dependence

Behavioral considerations None

Problem nature Might be difficult to manage change in 
complex environments because of ongoing 
product evolution

Application domain Dependent on availability
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and the just-in-time learning and exploration of COTS components by the
developers (Walnau et al. 2002).

Studies by Forrester Research estimate that most European software
development will soon be component or COTS based. The same phe-
nomenon is occurring among U.S. defense contractors who, until relatively
recently, spent only a small portion (about 10 percent) of their budgets
on outsourcing component and subsystem requirements. Indeed, the
percentage of DoD outsourcing on COTS has increased to the point at
which it represents a substantial majority of development. The correspond-
ing success of COTS suppliers has been at least partially due to this
paradigm shift in the defense community. Other factors driving COTS
development are the increased pressure for shorter development times
and the expanding supply of standardized COTS products that facilitate
system integration (Fröberg 2002).

Carney (1997) identified several levels of COTS usage. The simplest is
the turnkey level in which a single COTS product is used and left unaltered.
The next is the intermediate level, in which a single COTS product is
integrated with other system components. The most advanced level occurs
when multiple peer COTS products are integrated in a single system. The
role of a software developer in a COTS development project is one of
identifying and acquiring appropriate prepackaged software components
and assembling those components to build or synthesize the desired
system. COTS software is offered in an increasing variety of types, ranging
from component-based software libraries to stand-alone applications.

The components come in many forms: complete applications (such as
Web browsers or servers); generic services (such as databases or geo-
graphic information systems); libraries of subroutines or abstract data
types; application generators; problem-oriented language processors; and
frameworks with plug-in classes or for which specific applications can be
addressed via parameterized choices (Gentleman 1997). The components
can be classified using the notions of a technology versus a product. A
component technology refers to all available COTS components, regardless
of vendor, that provide similar functionality (for example, the relational
database technology). A component product refers to all the functionally
similar COTS components offered by a particular vendor (Walnau et al.
2002).

Component-based efforts in which the developer can define the inter-
face differ fundamentally from development in which the component is
a given, as in the COTS approach. Although COTS is a component-based
approach, the key characteristic distinguishing COTS from other compo-
nent-based strategies is that COTS components are usually outsourced as
ready-to-use components developed by third parties rather than internally
developed. The developer typically does not have access to the COTS
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source code, is only one of many users of the COTS component, and
exercises little control over the subsequent version evolution or mainte-
nance of the COTS components. On the positive side, the vendor or
supplier is likely to be an expert in the implemented functionality, which
is relatively immediately available (Fröberg 2002). Refer to Figure 2.1 for
a schematic comparison of the traditional and the COTS approaches.

Morisio et al. (2000) analyzed the impact of COTS on traditional
software development in an empirical study of COTS usage in NASA
projects. They note that the requirements-gathering phase in COTS is
similar to the usual approach but includes an added step in which
candidate COTS products are identified and preliminarily evaluated—after
which some potential selections are designated. The evaluation involves
“prototyping, vendor demonstrations, and in-depth review of literature
such as manuals and user guides.” There is a certain which-comes-first-
the-chicken-or-the-egg aspect to the requirements analysis in COTS devel-
opment. Walnau et al. (2002) remark that predefining component interfaces
“practically guarantees that no components will be found.” The require-
ments objective changes from the traditional one of getting the require-
ments right (in collaboration with the stakeholders) to getting the right
requirements (in collaboration with the stakeholders and depending on
the available pool of vendor products). In other words, the commercial
components “condition the requirements.”

Realism compels the requirements engineer and the stakeholders to
distinguish carefully between what is absolutely needed for the proposed
system versus what is only preferential. To a real extent, the requirements
are discovered (or certainly) adapted during the COTS exploration process.
This is one reason why the spiral model supplies an appropriate framework

Figure 2.1 Traditional versus COTS approaches. (Adopted from Brownsword, 
Oberndorf, and Sledge, IEEE Software, Software Engineering Institute, 2000.)
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for COTS development. It recognized that stakeholders often do not
initially understand what they want out of a system, but only clarify their
requirements through a revelatory process of iterative prototype develop-
ment. In the COTS model, an ongoing dynamic exists between what the
users want (or think they want) and the characteristics of the available
COTS components (Walnau et al. 2002). Ironically, although the role of
the requirements engineer is more expansive than previously, the engineer
now has less control over the requirements because they are predeter-
mined by the characteristics of the available products. Procurement issues
are also far more prominent than in traditional environments, with new
issues such as “development fees for added requirements, licensing and
maintenance fees, and [for] sustaining engineering support.”

COTS development naturally places a far greater emphasis on integra-
tion efforts with a prominent role played by “glueware and interfaces as
dictated by the system architecture, operating system and hardware”
(Morisio et al. 2000). The integration of the COTS components obliges
developers to focus on properties of the components that are likely to
affect integration including “operational limitations, temporal behavior,
preconditions, robustness, and many forms of underlying assumptions on
the intended environment” (Fröberg 2002).

The determination of these component characteristics can be formida-
ble. The integration and testing phases generally must view the COTS
products as black boxes and put their primary focus on the inter face
glueware. The common lack of access to the source code of the COTS
components that makes them black boxes means that they lack appropriate
means of introspection, “so determining their behavioral properties, which
is necessary for reliability, predictability, security, and integration, requires
extensive testing” (Fröberg 2002). Ordinarily tangential support issues such
as the “availability of the vendor technical staff or Help Desk” become
far more critical than in traditional development (Morisio et al. 2000).
Indeed, this strong vendor dependence and interaction persist throughout
even the long-term maintenance stage of the life cycle.

Furthermore, in a system consisting of multiple COTS components,
maintenance integration will occur very frequently because new product
releases continually arrive for some component. Although traditional devel-
opment activities such as “coding, debugging, unit testing, and code
inspections” decline in magnitude and importance, new COTS-related
activities such as “product evaluations, product familiarization, vendor
interaction (of technical, administrative, and commercial kinds)” become
correspondingly prominent. Indeed, questions of project schedule and
cost are now driven by the vendor, who represents “the ultimate decision
maker on the functionalities available, the schedule for releases, the
architecture, the reliability level, the documentation, and the service level.”
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To implement COTS-based projects successfully, developers must be
willing to buy off on the restrictions imposed by the preexisting function-
alities of the available COTS products. Thus, a trade-off occurs between
the reductions in cost, development effort, and shortened schedule that
are derived from using COTS versus the resulting restrictions on function-
ality and heavy dependence on the vendor. Strategies that have been used
to reduce the risk in COTS development range from establishing a close
relationship with vendors to identifying contingency plans, such as having
an alternative choice of COTS or alternate plans for internal development,
if the first COTS alternative fails (Morisio et al. 2000). Other risks include
the impact of future vendor upgrades, backward compatibility of down-
stream releases, and even the long-term economic viability of the vendor
(Fröberg 2002).

Once COTS components have been integrated into the intended sys-
tem, there is a risk and also a likelihood of vendor lock. This refers to
the situation in which the cost of changing vendors is prohibitive because
of the risk of disruption that would occur if components from alternative
vendors were used as replacements as the vendor product lines evolve.
The risk is minimized when the substituted component is only a new
release of the product from the same vendor (Walnau et al. 2002). A
noteworthy disadvantage from a mission-critical viewpoint is the inability
of the developer to see into the COTS black box; this means that the
developer has only an opaque understanding of the COTS component.
On the other hand, if the product was produced by a reliable vendor, its
level of reliability may well significantly exceed that of an internally
developed component. Previous experience with the vendor and in-house
familiarity with the particular COTS product selected thus become impor-
tant factors in the process.

The decision to employ COTS as opposed to developing a system
internally involves technical and managerial issues. Morisio et al. (2000)
observe that “selecting a COTS approach means selecting a [set of] require-
ment(s) and assuming it to be available cheaper and faster”; however,
they claim that the decision to use COTS, as opposed to making a product
from scratch, is “often made implicitly” and may not be formalized or
rigorously analyzed from the viewpoint of cost and risks. A preliminary
first pass at the decision to use COTS may focus on nontechnical matters
such as the acceptability of the vendor and the flexibility of the developer’s
system requirements. Once a few potential COTS have been identified
and a deeper look taken at them, a more detailed feasibility study can
be made of the risks, effort, and architectures associated with each
candidate versus an internally built alternative.

The number of candidates examined for actual use must be kept small
because the cost of the in-depth examination required for the candidates
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is significant. Ideally, ongoing in-house technical expertise should maintain
an up-to-date understanding of what is available in the COTS marketplace.
There is a much stronger reliance than otherwise on in-house technology
competence. Achieving this competence is easier said than done, however,
because expertise on one vendor’s products is not portable to others and
new product releases can quickly date the expertise (Walnau et al. 2002).
Thus, a concomitant need exists for training or sustaining in-house per-
sonnel in technology competence.

Indeed, because completely current technology competence is a pro-
hibitive endeavor, COTS-based design involves not only ongoing learning
but also real-time exploration of component features and just-in-time
learning during development. The exploration must be deep and tangible.
The component should be installed in an appropriate test bed, configu-
ration options investigated, and documentation reviewed; even case stud-
ies that describe applications that used the component should be examined
and a toy application of the component implemented that illustrates the
kind of underlying capabilities or features in which one is interested
(Walnau et al. 2002). Technology competence is decisive to defining
requirements appropriately and to reducing the risks of design. Once
candidates have been examined, the preliminary make-versus-buy decision
can then be reexamined at a technically more informed level. However,
the design risks remain considerable and inevitable because the features
and behavior of the products may be misunderstood (Walnau et al. 2002).

The final requirements review is substantially more important than in
the traditional life cycle because of the abbreviated or accelerated analysis
of requirements typical of the beginning of a COTS development. A main
activity at the design stage is integrating the COTS products with internally
developed software. The subsequent design review may even lead to the
conclusion that it is problematic to integrate the selected COTS component
effectively, thus forcing a return to an earlier phase in which an alternative
COTS is examined. Software project management is strongly affected by
the introduction of these new tasks as well as by the common lack of
experience with estimating the scheduling requirements of these new
activities.

In comparing COTS-based development with proprietary in-house
development, one must keep in mind that a key advantage of the latter
is the latitude it provides for precise system specification in contrast with
the off-the-shelf acquisition of a component that, although it saves time
in development, “may require substantial effort in integration and perhaps
negotiation of the requirements” (Fröberg 2002). The available COTS
component interfaces may be restrictive and limited (Walnau et al. 2002).
They are typically non-negotiable as far as the vendors are concerned.
The interfaces may also be poorly described with important component
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properties obscured not only by the complexity of the component but
also by the fact that “we often do not discover which property is important
until the lack (or excess) of such a property becomes apparent” (Walnau
et al. 2002). The properties may be changed by the vendor without notice,
invalidating design assumptions and introducing almost random disrup-
tions into the development.

Indeed, market pressures exacerbate the need for COTS product
change and tend to compel vendors to differentiate their products, thus
artificially complicating integration and design complexity (Walnau et al.
2002). The products may be easy to integrate with products from the same
vendor but hard to integrate with products from other vendors; this is a
likely complication because the best functional choices are likely to be
spread over different vendors. Vendor support for integration complica-
tions may be unsatisfactory because the vendor may pass the buck to the
COTS product of another vendor with which integration is taking place.
These points demonstrate that, although the COTS component-based
approach does indeed nicely demonstrate the principle of separation of
concerns, it also seems to cede engineering design control over key
concerns—such as partitioning the system and defining interfaces—to
marketplace forces (Walnau et al. 2002). Furthermore, vendor control
largely supplants engineering control, and the scope of that dependency
is massive and includes whether support for features or even the product
will continue. Under this new regime, the old software development
factory model is no longer preeminent; rather, the marketplace rules.

2.3.4 The Reengineering Model

The Reengineering Process Model (see Table 2.4) originally emerged in
a business or organizational context as a response to the customary
business metrics of time, cost, and risk reduction. Reengineering is espe-
cially attractive in situations in which significant advances in existing
technologies have been made that may enable breakthroughs in the
performance or functionality of an existing system. Although reengineering
has influenced the software process modeling literature and some reengi-
neering models have been introduced, it has nonetheless been a somewhat
overlooked approach. This status is perhaps attributable to its relatively
recent introduction or to its categorization as a technique that usually
appears integrated with other process modeling approaches.

Somerville (2000) identifies three main phases in software reengineer-
ing: defining the existing system; understanding and transformation; and
reengineering the system. The process entails “taking existing legacy
systems and reimplementing them to make them more maintainable. As
part of this reengineering process, the system may be redocumented or
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restructured or even retranslated to a more modern programming lan-
guage.” The system may be implemented on a dif ferent architectural
platform and data may be “migrated to a different database management
system.” Pressman (1996) introduced a six-phase software reengineering
process model in which the phases worked together in a cyclical, iterative
fashion: inventory analysis; document restructuring; reverse engineering;
code and data restructuring; and forward engineering.

The Somerville and Pressman approaches emphasize the importance
of automatic techniques to make the development cost effective.

� An inventory analysis makes a detailed review of all existing
business applications with respect to their longevity, size, main-
tainability, and criticality.

� Reverse engineering refers to the attempt to extract and abstract
design information from the existing system’s source code; in other
words, it attempts to recover the design implemented in the code.
Reverse engineering uses the information about the system’s scope
and functionality provided by the inventory analysis.

� Forward engineering refers to the use of the process results or
products from the reverse engineering phase to develop the new
system. Obviously, one of the most common adaptations is the
development of new interactive interfaces. These may not precisely
match the characteristics of the old interface but may use new
styles of interaction instead.

Table 2.4 Profile of Reengineering Development Models

Category Specifics

Evolution of goals Cost-effective adaptation of pre-existing 
systems

Methodology Reverse engineering techniques to uncover 
original design

Technology Reengineering tools very useful

Critical factors Altering mission-critical service without 
shutdown

Interdisciplinary effects Modern business process engineering

Behavioral considerations Business constraints

Problem nature Complex legacy systems

Application domain General but more likely with legacy systems 
with maintenance and interface issues
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� Data reengineering refers to translation of the current model to
the target data model—for example, converting from flat tables or
a hierarchical organization to a relational data model.

� Redocumentation creates new system documentation from legacy
documentation according to an appropriate documentation stan-
dard.

� Restructuring transforms the structure and source code for the
system while “preserving the system’s external functional behavior”
(Olsem 1995).

Reengineered components can be constructed through the application of
an externally provided reengineering service, through reengineering tools,
or through COTS software if there is a fit between the available COTS
software and the reengineered need.

Olsem (1995) cites some of the reasons for reengineering an existing
system as: expediting the transition of legacy software to changing orga-
nizational requirements or standards; converting an existing system to
newer software technologies or paradigms (such as object oriented) and
platforms; and improving the maintainability of the software. Reduction
in the cost of maintenance is a major consideration because maintenance
costs are like the tail that wags the proverbial dog. For example, an
estimated 70 percent of the costs of DoD software activities is consumed
by maintenance (Olsem 1995). An interesting methodological observation
can be made here. Thus, if only 20 to 30 percent of software costs are
for development, even a radical increase in the efficiency of development
has only at most a 10 to 15 percent impact on costs. In contrast, given
the dominance of the maintenance cost, if a comparable improvement
were made in maintenance, an equivalent impact would yield an effect
on the order of 35 to 40 percent of overall expenditures.

Granted the aforementioned considerations, one may wonder why not
just redevelop the existing system, rather than trying to reengineer it?
Once again, Olsem (1995) reviews some of the key elements of the
rationale. First, legacy systems embody “critical corporate knowledge” and
it may be difficult or impossible to understand adequately the rationale
underlying the original system and its modifications because of insufficient
documentation and because the original developers of the system have
long since departed. Second, the sunk cost represented by the legacy
developments is also a critical factor; some estimates indicate that legacy
COBOL code alone reflects an investment on the order of a trillion dollars
(Olsem 1995). One does not just trash this magnitude of investment any
more than one would demolish Hoover dam. Finally and conversely, the
cost to develop reengineered code is recognized to be significantly less
than for newly developed code. Reengineering is also far more effective
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in terms of return on investment than another alternative of continuous
(system) improvement in which the maintenance operation is sharpened
by the use of improved tools and processes. As a demonstration of this,
consider that the National Institute of Standards and Technology’s famed
Baldridge Quality Awards for systems in which continuous improvement
was applied achieved an average savings of only about 5 to 12 percent,
as opposed to the impressive 150 to 200 percent savings reported for
reengineered applications.

The term business process reengineering (BPR) is derived from the
business management literature and should not be confused with software
process reengineering. Software reengineering refers to the reengineering
of components of an existing software system. Business process reengi-
neering, on the other hand, refers to the “fundamental rethinking and
radical redesign of business processes to achieve dramatic improvements
in critical, contemporary measures of performance, such as cost, quality,
service, and speed” (Hammer & Champy 1993). The two areas are obvi-
ously related in certain aspects of their objectives, but BPR addresses a
reorganization of business organizational structure, and software reengi-
neering addresses the redesign of a software system.

On the other hand, a causative relation exists between the two because
the need or desire to reengineer a business process will likely require a
redesign of that business’s software systems. However, the redesign may
be accomplished in other ways than by reengineering. For example, it
could be done by new development or redevelopment. Nonetheless,
reengineering is a very plausible alternative in such a scenario. The
reorganization of a business may involve its transformation from a con-
ventional vertically organized structure in a top-down fashion to a more
responsive, flatter organization. Software reengineering techniques can be
used to “capture the software design information” and break it up into
“functionally cohesive chunks” that can subsequently be “analyzed and
regrouped around the newly identified key business processes” (Olsem
1995), a technique called reaggregation.

Bianchi, Caivano, and Visaggio (2000) describe in detail the application
of a systematic reengineering methodology to a legacy system whose
performance had degraded. They define a legacy system as a system that
is still “operative and constitutes a useful and essential factor in the
organization’s business function” (Bianchi et al. 2000). As has been pre-
viously indicated, the importance of such legacy systems is well known.
Typically, because these systems evolve over the course of many years
under repeated maintenance modifications, their maintenance becomes
costly and system performance and quality tend to deteriorate over time.
These degenerative characteristics have sometimes been referred to as
aging symptoms (Visaggio 2001).
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One of the advantages of reengineering is that it can reverse aging
symptoms. Aging systems exhibit characteristic symptoms. One of these is
pollution, which refers to the presence of code or system features that are
no longer required for the present business purpose of the system. Another
interesting symptom is embedded knowledge, which refers to the fact that
the understanding of the application behavior has become embedded in the
system rather than available through the system documentation. Another
classic symptom is the significantly increased coupling between system
software components due to repeated long-term maintenance changes.

Because a legacy system is very often a mission-critical system, the
system cannot be shut down for any length of time while the newly
redesigned and implemented system is developed. In response to this
development constraint, Bianchi et al. (2000) propose that the reengineer-
ing process be iterative and gradual—done in such a way that the
reengineering required is handled in stages, with each stage applied to
only a narrow subsystem and the reengineering increment done as quickly
as possible. A consequence of this strategy is that legacy components and
reengineered components will coexist and must interoperate while the
system continues to be operational. The same restriction applies to any
newly introduced component or functions. One principle that guides the
reengineering process is that the legacy components should be reused to
the extent feasible because it is likely that “the maintenance team that
operated on the legacy system is also likely to operate on the reengineered
system and…it is therefore desirable to preserve such familiarity with the
system as is compatible with the updating process” (Bianchi et al. 2000).
Naturally, the revised documentation about the design of the system is
done as the system is reengineered.
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Chapter 3

Software Development 
Strategies: Process 
Improvement

3.1 Introduction
The theme of process improvement is to take a proactive role in creating
better software development models. One approach to achieving this is
to use simulation models to better understand the internal dynamics of
process models, such as how changes in one process parameter can affect
other process parameters. Another approach is to address more explicitly
and carefully the human factors involved in development, including cog-
nitive, psychological, and social factors that come into play at different
stages of development. The establishment of explicit standards for software
development and for related organizational and managerial practices, as
is done in the Capability Maturity Model, is a further tactic that has been
taken to improve the overall excellence with which software best practices
are applied and improved. Software development excellence can also be
promoted by improving the professional and technical abilities of the
individual developers, as typified by Personal Software Process, and the
teams to which they belong. Each of these approaches is considered in
this chapter.
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3.2 Productivity-Driven Dynamic Process Modeling
Abdel–Hamid and Madnick described a simulated approach to process
modeling in a series of papers in 1983, 1989, and 1991. Their research
represented an attempt to understand the impact of project management
and economic effects on software development by using simulation. They
examined the effect of management and process structure on team effec-
tiveness by designing a computer model of software project management
based on a systems dynamics methodology. The work was motivated by
a perceived fundamental shortcoming in previous research on software
project management: its “inability to integrate our knowledge of the
microcomponents of the software development process such as schedul-
ing, productivity, and staffing to derive implications about the behavior
of the total sociotechnical system” (Abdel–Hamid & Madnick 1989).

The 1989 article includes an intentionally simplified but nonetheless
instructive flow diagram of project management. In this model, people
and resources are first allocated, then simulated work is done and its
progress is monitored. A revised simulated estimate of the project com-
pletion date is made on the basis of progress so far, and resource allocation
is revised depending on the business requirements and the available
budget. The computer model allows one to address certain obvious
management concerns in an automated scenario-like fashion. For example,
suppose a project is behind schedule. Should the completion date be
revised, should new staff be added, or should existing staff work overtime?
Scenarios like this can be automatically implemented for each alternative.
Consider the perennial problem concerning the trade-off among quality
assurance, project completion time, and cost versus the “impact of different
effort distributions among project phases” (Abdel–Hamid & Madnick 1989).
The simple flow model can address these what-if’s too.

A more complete model incorporates additional organizational sub-
systems, including human resource management, software production,
process control, and planning and allows one to test scenarios experi-
mentally via the simulation and a built-in COCOMO style framework for
cost estimation. Modeling the impact of quality assurance procedures is
also an important ability of the model. The purpose of this work was to
understand how to improve productivity in software development by
understanding the dynamic inter-relations among key project elements
such as task management, team effectiveness, and quality control.

The system dynamics model can be used to examine the so-called
productivity paradox, which refers to the often disappointing lack of
improvement in software development productivity despite the application
of powerful new development techniques and automated support like
CASE tools. Abdel–Hamid (1996) observes that, although laboratory-scale
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experiments on the effect of using CASE tools often report dramatic
improvements in development productivity, actual results in field studies
of real development environments appear to reflect modest or no improve-
ment. The explanation for this phenomenon suggested by the systems
dynamics model is that the shortfall in performance improvement does
not reflect a failure in management implementation of design strategies,
but rather inherent complexities in the social system in which the devel-
opment is implemented.

Abdel–Hamid (1996) argues that predictably modeling the behavior of
the complex organizational systems underlying software development
requires using computer-based systems dynamics models to create micro-
worlds that are digital replicas of the organizations. The details of these
models must, of course, be defined or specified on the basis of close
empirical review and analysis of existing project management environ-
ments and statistical studies. In the absence of such simulation techniques,
the observed behavior of development environments may seem counter-
intuitive or puzzling and may exhibit unintended side effects.

The model applies Steiner’s (1972) theory of group productivity, which
computes actual productivity as potential productivity minus process
defects. The simulation models factors such as human resource manage-
ment, turnover rate, error rates, learning, development rate, workforce
level, schedule pressure, project task control, etc., with cost estimates
done using COCOMO—although simulation-driven variations of the
COCOMO estimation strategy and data are also used.

According to the Steiner theory, faulty processes are a key element in
explaining why group problem-solving processes fall short of their poten-
tial. The faulty processes that may detract from the potential productivity
of a system include so-called dynamic motivation factors and communi-
cation overhead. The dynamic motivation factors include things such as
the impact of schedule pressures on work and the effect of budget slack
(excess) on the temptation to gold-plate features or underwork. The
communication overhead is related to the requirements of intrateam
communications. The consequences of faulty processes are not always
clear. For example, schedule pressure can make personnel work harder;
however, more rapid work can also increase the likelihood of errors,
which can affect product quality or entail inefficient rework later in the
project.

The results of the simulated development indicated significant shortfalls
in productivity over what had been forecast on the basis of the standard
COCOMO model. One of the factors causing this was the result of a classic
staffing mistake: an initial underestimation of needed project resources
was followed (in the simulation) by a reactive, quick increase of resources
when the (simulated) project began to fall behind schedule. This generated
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(in the simulation) an equally classic disruptive effect. Namely, the added
personnel required learning to become familiar with the development
project and the correlated instruction had to be supplied by the current
project staff, thereby slowing down the development rather than expedit-
ing it. Communication costs also escalated as a result of the increased
staffing in the simulated developments.

Significantly, managerial productivity estimates could also affect the
outcomes by affecting how personnel spend their time. For example,
when there is “fat in the estimate, Parkinson’s law indicates that people
will use the extra time for training, personal activities…slack components
that can make up more than 20 percent of a person’s time on the job”
(Abdel–Hamid 1996). It is noteworthy that such overestimates can easily
become hardwired into the prediction process because the prediction
model is based on empirical data about productivity from past projects,
which can easily reify past development problems. This kind of misesti-
mate based on misunderstood prior experience represents a type of failure
to learn from the past. In a sense, a variant of the Heisenberg Uncertainty
Principle is at work here because of “the difficulty in separating the quality
of estimates from the effect of actions based on those estimates!” Addi-
tionally, cognitive errors like the saliency with which distinctive past events
stand out in memory also affect the interpretation of experience from
previous projects.

A major advantage of the system dynamics model is that it permits
computerized, simulated controlled experiments to test the impact of
different development strategies—that is, hypothesis-testing. With respect
to the productivity paradox, Abdel–Hamid suggests that a possible expla-
nation for the failure of productivity to increase adequately in response
in new technologies and methods may be what is referred to in engineering
as compensating feedback. This refers to a phenomenon in complex
systems in which potentially beneficial exogenous effects such as new
technologies produce “natural feedback effects within the intended system
that counteract the intended effect” of the external intervention.

3.3 Human Factors in Development Models
The role of human factors in models of the development process deserves
greater attention because technological considerations alone do not pro-
vide a comprehensive, deep model for software processes. Human factors
enter the picture in many ways. Thus, some software process models
address the impact of personal competence and behavior on software
development, such as discussed in Section 3.5. Other models, such as the
Capability Maturity Model (in Section 3.4), closely and formally address
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the team and organizational context in which a development process is
embedded. However, no comprehensive models systemically address the
development process from the viewpoint of the human actors engaged
in and implementing the process and its artifacts. Actually, this book tries
to fill this gap, at least partially, by broadly considering the impact on the
development process of cognitive problem-solving factors, stakeholder
roles and concerns, organizational context, and marketplace forces.

This section offers a brief overview of some of the human-centered
issues that affect the software process. For example, cognitive phenomena
affect how individuals (team members or stakeholders) think about a
problem and its solution. A cognitive perspective on development would
address how the people involved perceive, understand, and solve prob-
lems. At the group level, social and psychological factors affect group
behavior, such as how developers interact with one another as individuals
or as a team, but group cognition affects the collective analysis of problems
and group communication.

Human factors also have a role in the development process. The
structure and artifacts of a software process affect how the process is
enacted by developers and may, for example, affect their motivation. Most
familiar is the role of human factors as understood in Human–Computer
Interface (HCI) design, in which the concern is the human effectiveness
of the interface of a software product. The HCI perspective considers the
myriad cognitive and physiological factors that affect the successful design
of an interactive interface. Regardless of whether one approaches the issue
from a systems dynamics and managerial perspective (Abdel–Hamid &
Madnick 1989) or cognitive or psychological and sociological perspective
(Leveson 2000), the human element is important to appreciate.

Vennix (1999) describes some of the cognitive affects that affect the
development process, including the role of selective perception; cognitive
tendencies that incline one to oversimplify problems; the cognitive pre-
disposition not to learn from failures by inaccurately attributing them to
external forces rather than to acts of one’s own; and the existence of
unsurfaced or unspoken multiple interpretations in group cognition. The
cognitive accessibility of system specifications has an ongoing impact on
development. To simplify solving the kinds of problems that arise during
development, specifications should reflect a correct understanding of
human cognitive requirements.

Leveson (2000) adopts a cognitive engineering approach that defines
cognitive-friendly specifications called intent specifications, which are
based on “psychological principles of how people use specifications to solve
problems.” Although they combine mathematical and nonmathematical char-
acteristics, they are intended to be easily readable, understandable, and
useable by developers. In motivating the introduction of intent specifications,
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Leveson makes an interesting analogy between the role of control panels
in an industrial plant and software specifications. Control panels serve as
the interface between a computer operator and the plant’s system. Simi-
larly, “software requirements and design specifications are the interface
between the system designers and builders or builders and maintainers.”
These software specifications are intended to help the developers at
different stages of development (building, testing, debugging, maintaining,
etc.) “understand the system well enough to…find problems,” just as the
control panels are intended to help the plant operator understand the
plant well enough to identify and solve plant problems.

System specifications should be designed so as to make it easy for the
users of the specification to “extract and focus on the important information
for the specific task at hand” (Leveson 2000) without forcing the users of
the specification to adapt a particular, restricted mental model or problem-
solving strategy. Intent specifications are system specifications based on
so-called means–end abstractions in which, at each point in a hierarchical
view of the system, the “information at one level acts as the goals (the
ends) with respect to the model at the next lower level (the means).” In
this kind of hierarchy, the “current level specifies what, the level below
how, and the level above why” (Leveson, 2000; see also Rasmussen, 1986).
Intent specifications are intended to simplify the task of finding specific,
needed information; tracing relations between different instances of system
information; understanding the rational for the system design; and allowing
the user to shift attention to differing levels of detail at each intent level.

These specifications can facilitate the kind of zooming-in behavior
characteristic of expert problem solvers known to “spend a great deal of
their time analyzing the functional structure of a problem at a high level
of abstraction before narrowing in on more concrete details” (Leveson
2000). These higher, abstract states of the system are needed as a point
of reference for understanding erroneous behavior of the system because
higher level states describe how the system should be functioning—issues
relevant, for example, during debugging. Intent specification can support
a rational design philosophy with a smooth progression from system
requirements to component requirements, and all the way down to
implementation.

Visualization plays a key role in defining and understanding the artifacts
produced during development. Larkin and Simon (1987) did seminal work
on the relation between visualization and cognition. Effective visualizations
are known to improve learning and understanding; however, the research
on visualization has tended to focus on its use in data visualization. Dulac
et al. (2002) describe cognitively based interactive methods for helping
developers, domain experts, and other stakeholders navigate through
complex, visually presented software system specifications. The techniques
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are illustrated for a highly complex flight management system whose
formal specification was over 500 pages in length.

It is known that a variety of cognitively based cues can facilitate
effective visual representations. For example, the use of simple so-called
secondary perceptual cues such as indenting or layout conventions can
facilitate readability or clarify syntactic and semantic information. It may
also be useful to present the same information redundantly, using different
representations, with each representation simplifying some cognitive task.
Dulac et al. (2002) introduce a list of factors that characterize visualizations.
These include:

� Scope (focus on structure or focus on behavior of the system)
� Content (the entire model or the model with temporarily elided or

hidden parts)
� Selection strategy (based on dependencies between model ele-

ments or by eliding model elements)
� Annotation support (optional domain information added)
� Flexibility (allow different kinds of search strategies)
� Static or dynamic (a snapshot in time or dynamic visualizations

that illustrate behavior over time)

These characteristics can be used to categorize a particular visualization.
This in turn can help a visualization designer create alternative visualiza-
tions of a process—suggesting, for example, the recoding of an artifact
so that it focuses in one case on the structure of the system and, in
another, on the behavior of the system.

The study by Dulac et al. presents a number of relevant and interesting
visualizations, including question-based decision trees; inverse transition
diagrams that display the impossible transitions in a system; and sliced
diagrams that also allow selective dependency relations. These researchers
summarize a number of principles that can be used to evaluate and
formulate visualization aids. For example, they emphasize the importance
of minimizing the so-called semantic distance between “the model in the
system specification and the mental model of the system in the mind of
the users.” This increases not only the readability and reviewability of
specifications, but also the acceptance and usability of formal specifications
by stakeholders.

The structure of requirements visualizations should match as closely
as possible the structure of the problem. This is related to the notion of
cognitive fit (Vessey & Conger 1991), which emphasizes the impact of a
problem representation on how well problem tasks can be carried out. The
visualizations should support the most difficult tasks performed by the users;
therefore, this entails a task analysis of potential uses. Visualizations highlight
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some dependencies and suppress others; if the hidden dependencies may
be relevant, a visual way of surfacing their existence should be available.
Overall or gestalt views are needed to clarify global structures and rela-
tions. It should also be possible to adapt the representation of information
to facilitate different kinds of reasoning, thus reflecting the cognitive
principle that “the reasoning paradigm is distinct from the representation
paradigm” (Dulac et al. 2002).

Alertness to different “roles” may provide significant help in simplifying
representations. For example, in navigational control systems, the amount
of relevant behavior that must be considered can be greatly reduced by
using modes to partition the system into disjoint behaviors that are more
manageable cognitively. For example, in a flight system, the partitioning
modes could be landing mode versus cruising mode. Redundant encod-
ings, as mentioned previously, facilitate different kinds of information
access. For example, consider the elementary case of a table about classes,
times taught, and instructors. Ordered by class, the table simplifies iden-
tifying the different instructors for a class; ordered by instructor, it facilitates
identifying what classes a given instructor is teaching. Finally, it is very
useful to design visualizations to be able to show the impact of changes
and the indirect side effects of changes.

The interface to a system is how people gain access to the system’s
functionality, so effective interface design can make all the difference in
the success of a product. System design is not merely a question of
implementing needed functionality; it is equally about effectively imple-
menting user access to that functionality. Ineffective user interaction may
be the result of interface designs that impede users from developing
simple, accurate mental models for the interaction. Cognitive psychology
emphasizes the significance of cognitive models for explaining how people
interact with systems; users develop mental models of system behavior
and these guide their interaction with the system (Rushby 2001). Indeed,
so-called automation surprises occur when a cognitive mismatch is present
between system behavior and the user’s mental model of the system.

Interestingly, although mental models of physical objects like buildings
are kinematic three-dimensional visualizations, the format of mental mod-
els for logical systems is not clearly understood—for example whether
they are akin to state transition diagrams or to “goal-oriented representa-
tions, e.g., chains of actions for satisfying specific goals” (Rushby 2001).
The mental models of users evolve over time as they gain greater familiarity
with the system. Cognitive processes involved in this evolution include
frequential and inferential simplification. Frequential simplification refers
to the process by which infrequently taken interactions are forgotten;
inferential simplification refers to the process in which similar interactions
are merged into prototypical rules where differences are blurred.
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Behavioral approaches have also been applied to enhance software
usability in the area of user interface design. Chase et al. (1994) apply a
technique based on a User Action Notation (UAN) to describe the coop-
erative behavior manifested by a user and an interface during an interac-
tion. The UAN descriptions can utilize scenarios, screen displays, and state
transition diagrams to characterize the interaction. The authors claim that
developing a model or representation of the user behavior exhibited in
an interface environment requires addressing the scope of interface activ-
ities, the content of the interface, and certain performance requirements.

In this case, scope refers to activities within the interface development
process such as task analysis and design. Content refers to the interaction
components being represented, including user definition; cognitive pro-
cesses; interface state; screen pictures; temporal relations; feedback display;
etc. Requirements refer to the qualities of the representation, including facility
attributes such as readability and learnability, extensibility, and expressive-
ness. The conclusions of an empirical analysis suggest that Chase and
colleagues’ method provides useful support for the interaction development
process. This work is generalized and applied to development process
artifacts in the previously cited work by Dulac et al. (2002).

Curtis, Krasner, and Iscoe (1988) defined a social-context model of a
software development process based on five “environmental” layers that
envelop a project. An initial tecadmin layer comprises the familiar software
process artifacts, constituencies, and the roles of the various players in
the development process. An individual layer concerns the attitudes,
opinions, and knowledge of the individuals involved in the project. A
team layer focuses on group dynamics. A company layer addresses orga-
nizational context such as political affects, organizational culture, structure,
and power. Finally, the business milieu layer addresses the organization’s
broader business environment or context. The contention is that the impact
of each layer is correlated to the size of the project.

McGrath (1997) applies the layered framework of Curtis et al. (1988)
to understanding various organizational affects that can (for example)
hinder the success of a software project, such as resistance to the changes
caused by a project. In terms of the company layer, for example, a project
is by no means a neutral entity. Thus, a project outcome may lead to a
“redistribution of power sources” (McGrath 1997) in which winners and
losers are found, the latter threatened with a real or perceived loss of
resources or control. On the other hand, with respect to the business
milieu layer, factors from competitive threats to market opportunities affect
the business case for the project, which in turn affects its resources,
staffing, deadlines, priority, etc.

The McGrath model formalizes these factors and concerns using a rule-
based Prolog-like entity relationship description that is intended to help
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predict likely sources of resistance to proposed changes. Formalisms are
also given that characterize the effect of system dynamics factors such as
deadlines and schedule pressures on productivity. This model is related
to the system-dynamics, project management model of Abdel–Hamid and
Madnick (1989) described in the previous section.

Following the social context model described in Curtis et al. (1988),
Curtis (1989) presents a rather cogent critique of the relation between
project stages and the behavior of individual developers. He observes
that, regardless of whether the model is the Sequential Waterfall, Iterative
Exploratory Prototyping, or the Spiral, these management abstractions,
although providing a way of “ordering, monitoring, and accounting for
what is happening in the project,” do not explain the design behavior of
individuals, which phenomenologically “is better characterized as oppor-
tunistic.” This opportunistic pattern of behavior is exactly what is to be
expected from cognitive research on planning, which indicates that
“designers move back and forth across levels of abstraction ranging from
application domain issues to detailed design and even coding issues.”
These variations in the behavior of developers are not triggered by timeline
events, such as crossing project stage boundaries, but are recognized when
problems are identified, regardless of the level of abstraction.

Thus, from a behavioral and cognitive view, the software tools that
designers use should be designed to be compatible with how designers
and developers actually behave, as opposed to managerial templates for
how the process is supposed to work. The implication is that software
tools should allow designers to “rapidly switch levels of abstraction in the
artifact and support the opportunistic exploration of design concepts”
(Curtis 1989). This is similar to what is described in the recommendations
by Leveson (2000). In particular, problems related to the “thin spread of
application domain knowledge, fluctuating and conflicting requirements,
and communication and coordination breakdown” must be analyzed in
behavioral terms rather than in terms of software life-cycle artifacts.

The demands of domain knowledge strongly affect the developers,
who may require considerable learning time and effort to become ade-
quately familiar with the application domain—an expenditure that can be
easily ignored in planning. The customer is similarly subject to the same
learning requirements, which also perturb the process through specifica-
tion changes and their impacts. Collaboration among the designers entails
extensive communication to ensure design issues are understood in a
consistent manner by different individuals; tools that support this com-
munication and coordination are at least as essential as tools that support
transformation of artifacts.

Other behavioral factors such as the competence and training of the
developers are well known to be critical to successful development; they
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depend on processes that reside outside the normal life-cycle purview,
like recruiting and continual growth in technical competency. In other
words, the development of people is an ongoing part of a continuous,
nonterminating, global software process in an organization.

3.4 The Capability Maturity Model
A set of quality assurance standards was originally developed by the
International Standards Organization (ISO) under the designation ISO 9000
in 1987 and revised subsequently in 1994 and 2000. The purpose of these
standards was to define the quality system that a business or industrial
organization would need to follow to ensure the consistency and quality
of its products. A procedure for certifying that a business met these
standards was also established so that potential customers would have
some confidence in the organization’s processes and products. The Capa-
bility Maturity Model developed by the Software Engineering Institute (SEI)
at Carnegie–Mellon University is a model for identifying the organizational
processes required to ensure software process quality.

The Capability Maturity Model (CMM) (see Table 3.1) is a multistaged,
process definition model intended to characterize and guide the engineer-
ing excellence or maturity of an organization’s software development
processes. The Capability Maturity Model: Guidelines for Improving the
Software Process (1995) contains an authoritative description. See also
Paulk et al. (1993) and Curtis, Hefley, and Miller (1995) and, for general

Table 3.1 Profile of Capability Maturity Model

Category Specifics

Evolution of goals Evaluating and improving an organization’s 
software development process quality

Methodology Capability Maturity Model standards and 
organizational levels

Technology Automated software development tools

Critical factors Predictability in software development

Interdisciplinary effects Project management

Behavioral considerations Organizational behavior

Problem nature Midrange to large-scale problems

Application domain General
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remarks on continuous process improvement, Somerville, Sawyer, and
Viller (1999) (see Table 3.2). The model prescribes practices for “planning,
engineering, and managing software development and maintenance” and
addresses the usual goals of organizational system engineering processes:
namely, “quality improvement, risk reduction, cost reduction, predictable
process, and statistical quality control” (Oshana & Linger 1999).

However, the model is not merely a program for how to develop
software in a professional, engineering-based manner; it prescribes an
“evolutionary improvement path from an ad hoc, immature process to a
mature, disciplined process” (Oshana & Linger 1999). Walnau, Hissam,
and Seacord (2002) observe that the ISO and CMM process standards
“established the context for improving the practice of software develop-
ment” by identifying roles and behaviors that define a software factory.

The CMM identifies five levels of software development maturity in an
organization:

� At level 1, the organization’s software development follows no
formal development process.

� The process maturity is said to be at level 2 if software management
controls have been introduced and some software process is fol-
lowed. A decisive feature of this level is that the organization’s
process is supposed to be such that it can repeat the level of
performance that it achieved on similar successful past projects.
This is related to a central purpose of the CMM: namely, to improve
the predictability of the development process significantly. The

Table 3.2 Profile of Process Improvement Models

Category Specifics

Evolution of goals Assessing and improving software product 
quality

Methodology Mainly CMM and ISO standards

Technology Becoming strongly correlated with software 
automation

Critical factors Customer satisfaction

Interdisciplinary effects Industrial engineering and marketing

Behavioral considerations Play important role

Problem nature Large systems

Application domain General
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major technical requirement at level 2 is incorporation of config-
uration management into the process. Configuration management
(or change management, as it is sometimes called) refers to the
processes used to keep track of the changes made to the devel-
opment product (including all the intermediate deliverables) and
the multifarious impacts of these changes. These impacts range
from the recognition of development problems; identification of
the need for changes; alteration of previous work; verification that
agreed upon modifications have corrected the problem and that
corrections have not had a negative impact on other parts of the
system; etc.

� An organization is said to be at level 3 if the development process
is standard and consistent. The project management practices of
the organization are supposed to have been formally agreed on,
defined, and codified at this stage of process maturity.

� Organizations at level 4 are presumed to have put into place
qualitative and quantitative measures of organizational process.
These process metrics are intended to monitor development and
to signal trouble and indicate where and how a development is
going wrong when problems occur.

� Organizations at maturity level 5 are assumed to have established
mechanisms designed to ensure continuous process improvement
and optimization. The metric feedbacks at this stage are not just
applied to recognize and control problems with the current project
as they were in level-4 organizations. They are intended to identify
possible root causes in the process that have allowed the problems
to occur and to guide the evolution of the process so as to prevent
the recurrence of such problems in future projects, such as through
the introduction of appropriate new technologies and tools.

The higher the CMM maturity level is, the more disciplined, stable,
and well-defined the development process is expected to be and the
environment is assumed to make more use of “automated tools and the
experience gained from many past successes” (Zhiying 2003). The staged
character of the model lets organizations progress up the maturity ladder
by setting process targets for the organization. Each advance reflects a
further degree of stabilization of an organization’s development process,
with each level “institutionaliz[ing] a different aspect” of the process
(Oshana & Linger 1999).

Each CMM level has associated key process areas (KPA) that correspond
to activities that must be formalized to attain that level. For example, the
KPAs at level 2 include configuration management, quality assurance,
project planning and tracking, and effective management of subcontracted
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software. The KPAs at level 3 include intergroup communication, training,
process definition, product engineering, and integrated software manage-
ment. Quantitative process management and development quality define
the required KPAs at level 4. Level 5 institutionalizes process and tech-
nology change management and optimizes defect prevention.

The CMM model is not without its critics. For example, Hamlet and
Maybee (2001) object to its overemphasis on managerial supervision as
opposed to technical focus. They observe that agreement on the relation
between the goodness of a process and the goodness of the product is
by no means universal. They present an interesting critique of CMM from
the point of view of the so-called process versus product controversy. The
issue is to what extent software engineers should focus their efforts on
the design of the software product being developed as opposed to the
characteristics of the software process used to develop that product.

The usual engineering approach has been to focus on the product,
using relatively straightforward processes, such as the standard practice
embodied in the Waterfall Model, adapted to help organize the work on
developing the product. A key point of dispute is that no one has really
demonstrated whether a good process leads to a good product. Indeed,
good products have been developed with little process used, and poor
products have been developed under the guidance of a lot of purportedly
good processes. Furthermore, adopting complex managerial processes to
oversee development may distract from the underlying objective of devel-
oping a superior product.

Hamlet and Maybee (2001) agree that, at the extremes of project size,
there is no particular argument about the planning process to follow. They
observe that for small-scale projects, the cost of a heavy process manage-
ment structure far outweighs the benefits; however, for very large-scale
projects that will develop multimillion-lines systems with long lifetimes,
significant project management is clearly a necessity. However, in the
midrange of projects with a few hundred thousand lines of code, the
trade-offs between the “managed model” of development and the “tech-
nical model” in which the management hierarchy is kept to an absolute
minimum are less obvious; indeed, the technical model may possibly be
the superior and more creative approach.

Bamberger (1997), one of the authors of the Capability Maturity Model,
addresses what she believes are some misconceptions about the model.
For example, she observes that the motivation for the second level, in
which the organization must have a “repeatable software process,” arises
as a direct response to the historical experience of developers when their
software development is “out of control” (Bamberger 1997). Often this is
for reasons having to do with configuration management—or mismanage-
ment! Among the many symptoms of configuration mismanagement are:
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confusion over which version of a file is the current official one; inad-
vertent side effects when repairs by one developer obliterate the changes
of another developer; inconsistencies among the efforts of different devel-
opers; etc.

A key appropriate response to such actual or potential disorder is to
get control of the product and the “product pieces under development”
(configuration management) by (Bamberger 1997):

� Controlling the feature set of the product so that the “impact[s] of
changes are more fully understood” (requirements management)

� Using the feature set to estimate the budget and schedule while
“leveraging as much past knowledge as possible” (project planning)

� Ensuring schedules and plans are visible to all the stakeholders
(project tracking)

� Ensuring that the team follows its own plan and standards and
“corrects discrepancies when they occur” (quality assurance)

Bamberger contends that this kind of process establishes the “basic stability
and visibility” that are the essence of the CMM repeatable level.

3.5 Personal and Team Software Development Models
Process improvement models such as the Capability Maturity Model usually
address development at the team or organizational level, but the quality
and delay problems associated with software development often reflect
and derive from the competence and behavior of individual developers.
Researchers like Boehm have long emphasized the decisive impact of the
capabilities of the individuals implementing a project. However, in addition
to attempting to staff a project with the most capable people available,
how does one optimize the people associated with a project? Obviously,
the answer is that it is essential to improve the competence and discipline
of individuals at the level of their personal development behavior.

The Personal Software Process model (PSP) (see Table 3.3) developed
by Watts Humphrey (1995, 1997) of the Software Engineering Institute is
an important step in this direction. It attempts to guide individual devel-
opers in sharpening the discipline with which they approach software
development. Just like the Capability Maturity Model at the organizational
level (in which Humphrey was also a major influence), the PSP model
uses a stage-wise approach aimed at gradually improving individual behav-
ior by progressing through a multilevel set of standards. In fact, the PSP
model was developed to support the CMM because the latter ultimately
depends on the competence and professionalism of the practitioners to
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be effective (Humphrey 1996). The PSP approach represents a continuation
of the quality assurance work of Deming (1982) and, ultimately, Taylor’s
original time and motion studies that established scientific management.
Although Taylor’s work addressed the efficiency with which manual tasks
could be done, intellectual tasks such as those done in programming also
lend themselves to measurement, analysis, and optimization (Drucker
1999).

The idea of the Personal Software Process is to allow software engineers
to plan and track the quality of their work so that they can produce better
quality products (Ferguson et al. 1997). It requires developers to plan
their work beforehand, monitor their time and effort, and log the errors
that they make. An essential benefit of the process is the relatively prompt
feedback that the developers get from the data that they collect on their
performance. At the initial level 0.1, developers record the time that a
particular activity takes and log errors. These are used to set a baseline
benchmark for improvement. At level 1, individuals record process prob-
lems that they face and learn to use historically based regression estimates
for work size. At level 1.1, developers address personal schedule estima-
tion. At level 2, individuals develop their “personal design and code review
checklists” (Ferguson et al. 1997). At level 2.1, they learn “design speci-
fication techniques and ways to prevent defects.” Finally, at level 3,
developers become conversant with verification techniques.

Defect monitoring and removal is a key element in the process. Indeed,
a central belief is that “defect management is a software engineer’s personal
responsibility. If you introduce a defect, it is your responsibility to find

Table 3.3 Profile of Personal and Team Development Models

Category Specifics

Evolution of goals Improving personal ability and discipline in 
software processes

Methodology Monitoring personal and organizational 
people processes

Technology Maturity model approach

Critical factors Human assets

Interdisciplinary effects Human resources management, workforce 
development, and cognitive psychology

Behavioral considerations Personal practice

Problem nature General

Application domain General
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and fix it” (Humphrey 1996). People learn to keep track of the phases in
which defects were introduced or “injected” and removed; how long it
took to fix them; and descriptions of the type of defect. The types can
range from documentation errors, instruction syntax errors, change man-
agement errors, etc.

The fundamental measure of quality is the “yield,” defined as “the
percentage of defects found and fixed before the engineer starts to compile
and test the program” (Humphrey 1996). Evidence suggests a high corre-
lation between the number of defects found at compilation and the number
of errors detected during system test. Similarly, it appears that a significant
correlation exists between the number of errors at test and the number
of defects subsequently found by users. Empirical studies at the SEI suggest
a 30 to 40 percent improvement in the ability of developers to estimate
the size of a prospective effort and the time required. Even better results
have been reported for improvements in testing, with a 60 to 70 percent
reduction in testing time and defects.

The clerical form-filling demands imposed by the PSP requirement for
developers to monitor their work in order to create benchmarks for
gauging improvement have met with some criticism (Johnson & Disney
1998). However, despite concerns, the authors concluded that the PSP
model more than compensated for the extra overhead incurred in terms
of improvements in design quality, defect removal, and the ability to
estimate project size and time. Furthermore, the availability of automated
applications to support the data gathering mitigates the clerical demands.
Johnson and Disney (1998) also suggest that external measures of improve-
ment, such as the acceptance test defect density, are more accurate measures
of the impact of the PSP model. The actual PSP metrics may not always be
calculated accurately, even in an automated framework; nonetheless, the
external test metrics demonstrate the effect of the approach.

Zhong, Madhavji, and Emam (2000) try to identify and test the impact
of specific aspects of personal processes in order to understand how one
can systematically improve these processes. They examine productivity
factors that underlie global factors such as defect density (Dd), defect
removal rate (Drr), and productivity in terms of lines of code per hour
(LOC/h). Their objective is to get beyond viewing the PSP model as a
black box by addressing “detailed factors underlying personal processes
and affecting product quality and productivity.” The primitive factors that
they consider include measures such as the average number of develop-
ment phases (Abtk) that must be backtracked to detect a defect. A
backtracking activity might range from an extensive effort starting at the
first compile and going back through code review, code, design review,
design, and planning in order to identify the source of a problem, or it
might involve a more local backup of a few steps.
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Zhong and colleagues (2000) claim that it is important to study the
“low-level details of a personal software process…because they give a
deeper insight into what drives process improvement.” For example, the
smaller the backtracking depth Abtk is to the development phase where
errors were injected into the product, the more quickly and easily errors
can be detected, resulting in better productivity.

Another metric that these researchers examine is the appraisal-to-failure
Ratio (A/FR), defined as the “time spent in design review and code review
as a percentage of the time spent in compile and test.” A high A/FR ratio
may reflect an excessive level of review or merely reflect quick repairs
identified early in the project. Their small-scale study found that Drr
increases with A/FR. They conclude that a high value of Drr suggests that
“defects are fixed closer to their source, implying that software is high in
quality at release time.” However, the two metrics should be kept in
balance because, beyond a certain point, higher values of A/FR will not
positively affect Drr.

The metric Dds (number of defects removed per thousand lines of
code developed) appeared closely related to “yield” (the percentage of
defects removed before the first compile). It appears that a low Dds value
in the context of a low yield value may reflect poor code quality combined
with poor defect detection. This provides a certain kind of guidance for
developers in interpreting how to allocate their time. The tentative con-
clusion is that although further study is required to see what the typical
A/FR ratio should be, this ratio is a “useful guide for personal practice”
and provides a relevant metric to evaluate one’s development behavior.

Furthermore, Abtk and A/FR are inversely related, so a “decrease in
Abtk might contribute to an increase in Drr and LOC/h.” The rationale is
that Abtk tends to be small when the defects detected are related to the
current or recent development phases; thus, they can be removed more
readily, leading to an improvement in other cost-related metrics like
LOC/h.

The development of human resources is increasingly recognized as an
essential element in improving the outcomes of software development
processes. For example, the Japanese version of continuous process
improvement, called Kaizen, uses a strategy for quality enhancement
based on viewing human resources as an organization’s most important
asset (Bandinelli et al. 1995). The idea of designing Human Resource
Management Systems (HRMS) that systematically enhance the performance
of teams and that place special emphasis on the human assets of an
organization is related to the people concerns underlying the Personal
Software Process Model.

Türetken and Demirörs (2002) review such an approach implemented in
application software called Oracle and derived from the People Capability
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Maturity Model (Curtis et al. 1995). This approach views an organization
as having five possible levels of process maturity with respect to its people
management processes; each level is associated with a set of workforce
practices called key process areas. These levels mimic those used in the
Capability Maturity Model with level 1 representing no or minimal attention
to HR processes. In a level-2 process (repeatable) the objective is to
establish practices that can be continually improved. The associated key
process areas include the work environment, communication, staffing,
performance management, and training. The objectives of the communi-
cation process include ensuring that the social environment of an orga-
nization fosters interaction and improves the ability of the workers to
share information and coordinate activities. The performance management
process sets suitable metrics or criteria for team and individual perfor-
mance, thus allowing feedback and continuous performance improvement.

In a level-3 process (defined level), the objective is for the organization
to identify its “core competencies and plans, and tailor and execute its
defined workforce practices to enhance its capabilities in the core com-
petencies required by its business environment. The organization tailors
its workforce activities for developing and rewarding these core compe-
tencies” (Türetken & Demirörs 2002). At this level, the Competency
Development Process persistently seeks to improve the workforce’s ability
to perform its required tasks. The organization also seeks to establish a
“participatory culture…to ensure a flow of information within the organi-
zation, to incorporate the knowledge of individuals into decision-making
processes, and to gain their support for commitments. Establishing such
a participatory culture lays the foundation for building high-performance
teams.” Human resource or team development models such as the People
Capability Maturity Model and personal professional improvement models
such as the Personal Software Process can be combined to address the
requirements and opportunities for effectively applying process modeling
concepts at the individual and group or organizational levels.
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Chapter 4

Software Development 
Strategies: Reinventing 
How It Is Done

4.1 Introduction
This chapter examines a number of more recent trends in software process
models. Especially remarkable is the open source movement, which
represents a paradigm shift in how software is developed and even has
some of the characteristics of a disruptive technology. Agile development
is not quite as radical but reflects a new order of lightweight process
models intended to reduce what some perceive as the unwieldy process
overhead in other approaches. Rapid Application Development has a
similar objective of expediting the return time on product delivery. Work-
flow models, akin to the production line models common in manufactur-
ing, view business environments as networks of collaborating agents in
which information is transformed as it moves between agents. They
attempt to automate the enactment of these processes. Aspect-oriented
models address difficulties with object orientation that arise because
phenomena such as concurrency and scheduling tend to straddle objects,
making the application of the central principle of separation of concerns
problematic. Each model is part of a continuing exploration into how to
develop software systems effectively.
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4.2 Open Source Model
Open source software (see Table 4.1) is software with a source code
available to users under the conditions provided for in a license with
terms specified in a standard contract by the Open Source Initiative. Under
an open source license, the user of the software is free to modify the
software and redistribute the modified version. This license cannot dis-
criminate against any class of users. Any derivative modified software must
also be recursively redistributable and subsequent derivative works must
also be allowed. The open source licensing arrangement is called the Gnu
General Public License.

The idea of open source should not be confused with shareware,
which does not require open source code and ultimately expects the user
to purchase it. Open source is also different from freeware, which is
released as binary executables and is not readily modifiable. It is also not
like use-restricted software such as Netscape, which although free, can
only be redistributed free to nonprofit organizations. The open source
movement offers significant potential for addressing certain elements of
the perennial software crisis, especially in those quintessential problem
areas in which the speed and cost of software development and the quality
of the software produced are critical. Refer to the Web site, www.open-
source.org, as a basic source for information on the open source movement.

Classic examples of open source software include Linux, the Apache
Web server, BIND (the software that underlies the domain name service

Table 4.1 Profile of Open Source Development Models

Category Specifics

Evolution of goals Need for high-quality, reliable code, faster 
development, and open standards

Methodology Asynchronous computer-supported 
collaboration on incremental releases over 
the Internet

Technology Internet communication and distribution

Critical factors Experienced professional developers

Interdisciplinary effects Business model impact and legal restrictions

Behavioral considerations Enthusiasm and need

Problem nature Large system applications

Application domain System infrastructure and development tools
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for the Web), and the scripting language Perl. Another phenomenally
successful instance of open source is the Mozilla source code underlying
the Netscape browser. In fact, its open source character was instrumental
in enabling Netscape to maintain and increase the market share for its
browser. As Feller and Fitzgerald (2000) observe in their review article on
the open source paradigm, some of the technological drivers behind open
source development include “the need for more robust code, faster devel-
opment cycles, higher standards of quality, reliability and stability, and
more open standards/platforms,” all of which are core issues in the
software crisis.

The power of the “methodology” underlying open source development
is based on the opportunities for massive parallel development made
possible by computer-supported collaboration over the Internet. In a sense,
the massive parallel development represented by open source overturns
Brooks’ classic warning that “adding manpower to a late software project
makes it later.” Instead, it is precisely the application of an enormous
number of developers that gives the method its potency. For example,
Feller and Fitzgerald (2000) observe that the Linux kernel, which is one
of the best known results of open source development, was built using
over 1000 developers working in a globally distributed, asynchronous
environment.

At least as important, open source developers or contributors like those
involved in Linux tend to be highly experienced professional programmers.
In terms of the product niche that they serve, open source products “are
typically development tools, back-office services and applications, and
infrastructural and networking utilities” in which “performance and reli-
ability are critical factors.” Furthermore, the products selected for devel-
opment are “chosen by technically aware IT personnel” (Feller & Fitzgerald
2000) who are driven by issues of reliability and robustness and are far
less attracted to software as a result of mere marketing appeals or fads.

Despite its revolutionary attitude to development cost and proprietary
or intellectual property rights, the business model implications of open
source indicate that it arguably exhibits a far more rational correlation
between the costs of development versus the cost of maintenance. Feller
and Fitzgerald (2000) observe that between 70 to 80 percent of software
costs are traditionally associated with the postdevelopment, maintenance
phase of the software life cycle. However, the traditional model for
development cost allocation, which places a premium price on proprietary
software, “does not reflect the reality of the cost distribution in practice”
(Feller & Fitzgerald 2000).

In terms of how open source works as a viable business model, the
thing to keep in mind is that “even if the software is free, customers are
willing to pay for convenience and a brand they can trust.” The practice
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in successful open source companies like Red Hat is adapted to this
asymmetric or skewed cost phenomenon. The software distribution costs
imposed by such companies are free or nominal, but users pay for the
quality of the subsequent maintenance. Furthermore, it is possible for
businesses to exploit the capabilities provided by free software by, for
example, “develop[ing] and sell[ing] software that runs ‘on top of’ free
software” (Hamlet & Maybee 2001).

Interestingly, the benefits of open source are especially strong when
the project is large, and might, in a traditional environment, incur sub-
stantial management overhead and when the specifications or require-
ments for the application are emergent—a likely circumstance in current
corporate environments. Indeed, open source development has an almost
magical power. Its “modus operandi of frequent, incremental releases
encourages adaptation and mutation, and the asynchronous collaboration
of developers means that OSS projects achieve an agility of which cor-
porations often only dream. Geographically, OSS is characterized by
massive distribution, with teams, community, and peer groups defined by
virtual, rather than physical, boundaries” (Feller & Fitzgerald 2000).

As Hamlet and Maybee (2001) observe, “businesses can muster only
small teams to develop and test their code, [but] the entire world of
[computer] enthusiasts and developers is available to write and test free
software.” Open source software may represent a so-called disruptive
technology (Clayton 2000)—that is, a technological development that
emerges from outside the mainstream of scientific development and rad-
ically challenges the existing technological paradigm. In this case, that
paradigm is the traditional proprietary approach to software development.
Disruptive technologies tend to shatter the conventional wisdom because
they require businesses dominant under the old technology to change
dramatically what they do. In other words, the entire development para-
digm must be rethought.

4.3 Agile Software Development
The “Agile Manifesto” of Beck et al. (2001) and the seminal book by Kent
Beck (2000), Extreme Programming Explained, express some of the defin-
ing characteristics of agile development (see Table 4.2). These include an
emphasis on people and their interactions—as opposed to formal devel-
opment processes and development tools; an emphasis on ongoing inter-
actions and collaboration with customers—as opposed to more legalistic
contract-driven negotiations; and an emphasis on the ability to make
dynamic responses to change—as opposed to following frozen plans
rigidly. Cockburn and Highsmith (2001) observe that agile development
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is dominated by the twin objectives of making software development
teams more effective by reducing “the cost of moving information between
people” and reducing “the elapsed time between making a decision” and
“seeing the consequences of that decision.”

Many of the ways for simplifying communication are straightforward
and traditional. For example, a standard tactic is to co-locate team members
as much as possible, preferably using old-fashioned, face-to-face commu-
nication as opposed to electronic collaborative exchanges. In the extreme
programming version of agile development, a core practice is to use a
technique called pair programming in which a pair of programmers
actually shares the same computer and collaborates in real time (Williams
& Kessler 2003). Under such circumstances, it is essential for the human
relations among team members to be as amicable as possible. The “social
lubricant” of amicability helps foster a sense of community, which greatly
enhances the likelihood that members will feel comfortable and mutually
trusting enough to exchange vital project-related information freely.

Another principle of agile programming is its strong emphasis on the
importance of the individual and team talents (Cockburn & Highsmith
2001). Agile development places a high premium on “individual compe-
tency as a critical factor in project success.” This reflects Boehm’s (2002)
principle of emphasizing the pivotal role of superior expertise: use better
and fewer people. This principle is applied regardless of the variant of
agile development used; whether that is Scrum, Adaptive Software Devel-
opment (ASD), or Feature-Driven Development, the emphasis tends to be
“on people and their talent, skill, and knowledge.” The operative phrase
is that “people trump politics” (Cockburn & Highsmith 2001).

Table 4.2 Profile of Agile Development Models

Category Specifics

Evolution of goals Improve responsiveness and reduce 
turnaround time on development decisions

Methodology Incremental development of working 
software; pair programming

Technology UML tools

Critical factors Individual competency and mutual trust

Interdisciplinary effects Human relations and management practices

Behavioral considerations Intense and close people interaction required

Problem nature General

Application domain Smaller projects
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The characteristics that help make a development model more agile
include techniques to reduce risk; interaction with customers; using peo-
ple-oriented management practices; a certain style of iterative develop-
ment; adaptive teams; and a thoroughgoing emphasis on developing
working software (Dagnino 2002). In particular, plans and designs are
refined as work progresses and the problem requirements become better
understood. Techniques such as continuous testing and the already men-
tioned pair-programming reduce the amount of testing needed. The gen-
eration of planning artifacts is kept to a minimum and working software
is delivered incrementally and frequently from the beginning. As Dagnino
strikingly observes, in an agile environment, “working software is the
primary measure of progress. A working system at the end of each cycle
is the primary measure of progress in the project.” Beck (2000) makes a
related point: “code is the one artifact that development absolutely cannot
live without.”

As indicated, plans and requirements emerge as the work progresses.
Team members are chosen for their skills and versatility. User experts are
considered as core members of an effective agile team. The user works
with the team to hone the product over time, through intimate, ongoing,
daily interaction with the development team. Cohn and Ford (2003)
observe that “agile processes do not have separate coding and testing
phases; rather, code written during an iteration must be tested and
debugged during that iteration. Testers and programmers work more
closely and earlier in an agile process than in other processes.”

Evolutionary development models are compatible with an agile
approach, but they are certainly not identical to agile models as they
stand. First of all, the evolutionary models place a substantially greater
emphasis on continuously updating documentation throughout the pro-
cess. For example, in evolutionary models, considerable effort is expended
documenting changing requirements. Furthermore, evolutionary testing
tends to occur at the end of the development life cycle, with the result
that “the time and effort devoted to testing the software become very
limited” (Dagnino 2002). Such practices would need to be revised to make
the evolutionary model more agile.

Dagnino (2002) observes that the “most obvious difference between
plan-driven life-cycle models and agile development is that agile models
are less document oriented and place more emphasis on code develop-
ment.” This researcher describes the degree of planning, defined as the
“amount of documentation, schedules, specification of roles and respon-
sibilities, work breakdowns, procedures, reporting,” and so on, as a
continuum. At one end lies the practice of undisciplined hacking, which
in a sense corresponds to an extreme version of agile development in
which almost no planning is used. This naturally presents unacceptable
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development risks and is known from long experience to generate systems
that are typically not maintainable.

The amount of planning done progresses from this kind of undisci-
plined hacking at one end of the spectrum through the more disciplined
approaches represented by Extreme Programming and Scrum. These latter
approaches generate code from the very start, but in contrast to unpro-
fessional hacking, they exhibit a significant degree of planning. Towards
the increased planning end of the spectrum are plan-driven methodologies
such as milestone and risk-driven models, and then milestone plan-driven
models which subject projects to increasing levels of control.

Agile development is based on iterative, incremental delivery “as a
response to changing and emergent requirements” (Dagnino 2002). In
order to keep development risk under control, the emphasis is on frequent
inspection of the work product to ensure that the product meets user
expectations as well as to be able to respond quickly and adaptively to
better understood requirements or changing conditions. One of the tech-
niques for reducing risk is the use of ongoing risk mitigation meetings,
which are usually on a weekly basis. The testing is also persistent and
ongoing as code is developed. Acceptance tests are designed in collabo-
ration with the customer. As the user experts observe the evolving devel-
opment and system, they can identify which of their r equests or
requirements do not work as well as expected. They can also rapidly
identify where the developers have misunderstood the user requirements.

In the Scrum model of agile development, the work is broken into a
series of steps called sprints. Prior to each sprint, developers meet with
the customer to identify and prioritize the work to be done in the
upcoming sprint. Within the time period of a sprint, teams meet daily.
Upon completion of a sprint, the development team “delivers a potentially
shippable product increment” (Cohn & Ford 2003). Incidentally, the term
scrum comes from the sport of rugby where it refers to a group that
cooperatively pushes the “football” down the field. The initial phase of
development is based on meetings with users during which the desired
system characteristics or so-called features are identified. These features
are then reviewed to estimate the scope, risk, and resource characteristics
of the project. Acceptance tests are developed for each feature requirement
prior to initiating coding and the tests are jointly reviewed with the
customer, who prioritizes the features. The outcome of the first feature
development phase is a preliminary prototype that is reviewed, evaluated,
commented on, and modified or accepted by the user.

The agile models are relatively lightweight in terms of their learning
requirements. This simplicity has important psychological and cognitive
advantages because it reduces “potentially demotivating work and over-
head” (Dagnino 2002). From a managerial perspective, organizational
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practices in an agile development environment tend to emphasize a
collaborative style rather than the more traditional command-and-control
approach. In terms of scale, agile practices are usually applied in smaller
projects in which work can be accomplished by teams of ten or fewer
people. The agile model, as the name implies, is not intended to be
predictive so much as adaptive and more focused on the people involved
in the development than on the development process. Expedited decision-
making, shared objectives, and a high degree of mutual trust (Dagnino
2002) are a sine qua non of the process.

The dynamic manner in which product requirements emerge is another
distinctive aspect. The agile approach facilitates early release of products
to market. This gives a competitive advantage in terms of market impact
and also, perhaps even more critically in development terms, allows real
feedback from real users, reflecting what might be called “continuous
emerging of requirements” (Dagnino 2002). In fact, the objective is to
attain “short release cycles with fully functioning code.” The agile team
structure reflects this dynamic environment in the teams’ self-organizing
behaviors. They self-adapt to the emerging product requirements, guided
by the objective of finding the “best way to convert requirements and
technology into product increments” (Dagnino 2002).

4.4 Rapid Application Development (RAD) Models
Rapid Application Development (see Table 4.3), a term introduced by
Martin (1991), is intended to improve the productivity of development
and delivery times for applications. Agarwal et al. (2000) claim that
“growing evidence supports RAD as an order of magnitude improvement
in the speed of software construction.” Of course, such improvements
would be meaningful only if the applications also exhibited “reusability
and maintainability so that total life-cycle costs are reduced” (Agarwal et
al. 2000).

RAD bears a superficial resemblance to open source development. In
both approaches, users play a more prominent role and product versions
are released more frequently. However, the differences are even more
notable. Most obviously, the open source availability of program code is
not an issue in the RAD environment, but is a defining feature of the
open source environment. The scale of the projects to which the
approaches are applied also differs significantly. Open source applications
are often mission critical; typically involve a large number of developers;
and expect a large audience of users. Open source applications tend to
revolve around infrastructure software; in contrast, RAD applications tend
to be for single-user, stand-alone products (Feller & Fitzgerald 2000). Users
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play a major role in each of these approaches; however, users are involved
even in coding in the case of OSS, but this is not so for RAD.

The development tools are also very different; RAD tools emphasize
the user interface, in contrast to the frequently algorithmically complex
problems addressed in open source development. The attitude towards
requirements is substantially different too. In open source, the require-
ments are under continual development, but in RAD the intended system
ultimately has a stable set of requirements, which may have been finalized
relatively early at the initial prototype stage. As Feller and Fitzgerald (2000)
observe, in RAD prototypes are used to pin down the specification of
requirements and “become part of the final project.”

The RAD methodology is similar to the iterative and spiral models of
software development, but it emphasizes development tools that facilitate
“speedy object development [and building] graphical user interfaces and
reusable code for client/server applications” (Agarwal et al. 2000). RAD
tools include support for multitier architectures, visual programming, and
object-oriented design, and emphasize reusability and the object- or mes-
sage-passing model. The three broad classes of RAD tools are roughly
correlated with project management issues, development issues, and mod-
eling. The project management tools assist in problems such as configu-
ration and development team management. The development tools
support screen organization, GUI development, and software to support
testing and debugging. The modeling tools support data and business
process modeling.

Table 4.3 Profile of Rapid Application Development Model

Category Specifics

Evolution of goals High-speed adaptation of the Waterfall Model

Methodology Rapid linear sequential development and 
reuse

Technology Important influence

Critical factors Cycle time reduction and reusable program 
components

Interdisciplinary effects None

Behavioral considerations None

Problem nature Good for small systems but need sufficient 
human resources for large scalable systems

Application domain May not be appropriate for high-performance 
systems, for high technical risks, or when a 
system cannot be properly modularized
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A key issue in RAD development is “how to incorporate RAD tools
into an IS shop’s tool kit” (Agarwal et al. 2000), an issue with strong
managerial and personnel aspects. This is a nontrivial matter because the
successful application of RAD technologies requires buy-in from the
developers that cannot be coerced or mandated. A number of cognitive
factors affect the likelihood that tools such as those required in RAD will in
fact be used by the developers for whom they are intended. First of all, a
developer must be convinced that the cost-benefit analysis balance favors
the new tool’s ability to make a real impact on development. The perceived
gain must be enough to overcome the initial hurdles represented by the
adoption and learning barriers. This perception or belief is in turn critically
affected by the “perceived cognitive effort necessary to effectively utilize the
new tool.” This belief is affected by the actual or “perceived congruence of
[the] new technology with preferred methods of accomplishing tasks.”

Thus, the three key criteria influencing prospective adopters corre-
spond to the relative advantage of the new methodology; its ease of use;
and its cognitive compatibility. These criteria are decisive determinants of
cognitive perceptions and useful predictors of adoptive success. A devel-
oper’s prior personal experience affects how difficult it will be for the
individual to adapt to the new methodology. One implication of this,
according to Agarwal et al. (2000), is that senior developers, who are
presumably more experienced and comfortable with existing methodolo-
gies, may be more likely to “have more difficulty accepting new devel-
opment paradigms” such as RAD. These researchers observe that, although
programmers with mainframe programming experience may tend to have
a negative perception about the benefits of RAD methodology, this has
not been found to be true of those with experience in client and server
environments. The attitudinal characteristics of early adapters can also be
brought to bear. It is known that “early adapters” of technologies tend to
be positive with regard to RAD methods. Such individuals are typically
personally innovative and can act as “change agents” whose adaptiveness
can help diffuse the RAD technology through an organization.

A common shortcoming in how developers utilize RAD tools is selective
preference for which tool features are emphasized. Agarwal et al. (2000)
claim that “systems developers appear to be utilizing the features of the
tool that allow them to deliver systems in a speedy manner, but are not
fully utilizing the features that contribute to longer term quality and
maintainability of systems.” This observation is consistent with the most
common managerial motivation for introducing RAD technology: the
increasing pressure for rapid application deployment, combined with
industry-wide interest in applying these tools. For example, RAD meth-
odology and tools allow system developers to provide demo systems to
users very rapidly, with a consequent disincentive for developers to hone
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the system and business model design more carefully. An ironic reason
for this tendency is the shared expectation that design and specification
errors can be caught later and addressed at that point, which seems (to
quote Casey Stengle) like “déjà vu all over again”; design practice has
been retrojected to the early days of on-the-fly design and implementation.

Overall, the negative behaviors associated with RAD include a proclivity
to focus on the RAD development tools while underemphasizing the RAD
modeling tools and generally exhibiting a decreased level of systems
analysis, specification, and planning. Agarwal et al. (2000) observe that
this tends to “subvert good development practices” ranging from placing
an undue major “emphasis on system construction, [to] not enough on
domain analysis.” RAD also appears to predispose developers to avoid
seeking out “errors and misspecifications early in the development cycle.”
Obviously, managers must be on guard against such pitfalls.

4.5 Workflow Application Models
Traditional business organizations structure work around functions, but
the relationship between those work functions is typically not adequately
taken into account (Weske 2000). This omission leads to process ineffi-
ciencies for reasons ranging from waiting time delays to redundant work.
In contrast, in a process-oriented view of business operations, the focus
is on the entire production process rather than merely the separate,
individual functions performed during the process. This perspective is a
familiar one in manufacturing environments in which the production line
model is the central point of reference, rather than in an organization
based around individual functions.

The process orientation is dominant in the case of information pro-
cesses, which include, for example, the systems for processing insurance
claims in a business context or for enrolling students in a university in
an academic context. In a business environment, information processes
are of fundamental importance, often involving the “mission-critical pro-
cesses of an organization” (Weske 2000). Information (business) processes
may be partially or fully automated and manage the processing and flow
of information in an organization. The actual formulation and establish-
ment of these business processes is done by domain experts. Workflow
models of information systems view enterprises as a network of collabo-
rating agents (Jeusfeld & deMoor 2001) in which informational transactions
or tasks are “passed from one participant to another according to a set
of procedural rules” (Allen 2001).

A workflow may be defined as a set of “basic work steps called activities
which are carried out by processing entities that are either humans or
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software systems” (Kradolfer 2000). Kradolfer classifies workflows as ad
hoc, collaborative, administrative, or production workflows depending on
their characteristics.

� Ad hoc and collaborative workflows involve human actors collab-
orating on a goal, but with few if any defined procedures for
interaction. These workflows differ in the level of business value
that they produce. Ad hoc workflows typically handle low business
value activities such as scheduling an interview. Collaborative
workflows typically handle high business value activities like pre-
paring product documentation. These workflows can be supported
by groupware such as conferencing systems, email, calendaring
tools, etc.

� Administrative workflows refer to low business value administrative
domain chains of activities such as purchase-order processing.

� Production workflows, on the other hand, refer to high value core
business processes, such as insurance claims handling or loan
processing in the case of a bank. These workflows correspond to
the central, value-producing activities of the business.

Another category is that of transactional workflows, which are required
to operate correctly even when concurrency effects and failures are
present, such as travel reservation systems involving timed resources such
as flight and hotel reservations. If the workflow activities are carried out
by humans, the workflow is said to be human oriented; in system-oriented
workflows, the activities are carried out by computers.

Workflow processes can be computer supported by workflow manage-
ment systems. Kradolfer (2000) observes that the “basic idea in workflow
management is to capture formal descriptions of business processes and
to support the automatic enactment of the processes based on these formal
descriptions.” Workflow management systems can be used to implement
business processes more effectively and flexibly than approaches that
hard-code the business processes in the component systems. The devel-
opment of such workflow management applications may be considered
as a special, but widely applicable, class of software engineering appli-
cations. The basic steps involved in developing workflow applications are
information gathering; business process modeling; and workflow model-
ing.

The underlying business processes are first modeled using business
process modeling tools in order to understand and possibly reengineer
the business process. The business tools are not intended to create a
model that supports automation of the workflow process. Rather, the
business models focus on the “application-oriented point of view, whereas
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workflow modeling focuses on the technological aspects of the application
process and its organizational and technical environment” (Weske 2000).
The workflow model of the business process formally specifies the process
and contains sufficiently detailed information to allow the business process
to be automated. The workflow model enhances the business model to
incorporate any additional information needed to permit the business
process to be controlled automatically by a workflow management system.
Furthermore, any application-specific information irrelevant to workflow
management is pruned from the model. The workflow model is defined
using a workflow language and is then implemented in a workflow
management system and, finally, deployed (Weske 2000).

Weske (2000) describes the workflow application development in terms
of a six-phased development cycle. It begins with a survey phase of the
existing process, which generates an as-is business process model. A design
phase follows that refines the as-is model to reflect the updated business
goals in order to create a to-be business model. This model is then
enhanced with the technical information needed to support the workflow
management system producing a to-be workflow model. At this point, if
the problem is judged amenable to workflow technology, a workflow
language is selected to define the workflow. During the next phase, a
workflow management system is selected based on constraints that involve
integration, interaction, development, and run-time criteria. Then, the
workflow model is implemented according to the rules of the selected
workflow management system. Subsequently, laboratory and field tests
are done on the system.

The development of workflow applications differs from typical software
development in a number of significant ways. For example, the constraints
imposed by existing legacy systems and the granularity of such systems
must be addressed at an early stage. Their integration into the workflow
is critical to the success of a workflow project (Weske 2000). Selection of
a workflow management system is also tricky because it may be nontrivial
to fit available systems to the application requirements (Weske 2000).
Prototyping is an important technique in developing workflow environ-
ments because, as usual, it increases the likelihood of user acceptance;
allows early detection of technical problems; and helps determine the
feasibility of the workflow approach to the application.

Workflow system development tends to be susceptible to performance
problems that are not recognized until field tests, when they are finally
identified under the stress of heavy case loads. This is unsurprising because
workflow systems typically have extremely intense performance require-
ments such as very high reliability demands (such as 24/7 availability)
and extensive fault tolerance requirements. An important area of recent
workflow management research is how to modify running workflow



100 � Strategic Software Engineering: An Interdisciplinary Approach

environments dynamically (Weske 2000) and, in particular, how to inte-
grate legacy systems (which are usually the oldest, most reliable, and
mission-critical components of the software environment). One integration
technique uses so-called wrappers. A wrapper is defined as a software
layer that “hides the particularities of the legacy system and presents a
clean interface” to an external system like a workflow management system
(Weske 2000).

The workflow model can be defined using concepts derived from a
workflow metamodel, of which there are two kinds. The first type focuses
on the network of communications that occur between the actors in the
workflow. An example is the model proposed by Winograd and Flores
(1987), which viewed the activities as initiated by customer requests whose
satisfaction requirements were then negotiated with the actor that per-
formed the request. However, activity-based models are the more common
workflow metamodel. These provide a number of capabilities (Kradolfer
2000), including:

� Detailed modeling of the worksteps executed by the processors
or actors

� Hierarchically nesting workflows for top-down refinement
� Identifying the agents that perform the activities
� Representing workflow control and data flow
� Assigning activities to agents

The metamodels follow a variety of different paradigms. Those that
emphasize the flow of control include models based on rules, states, logic,
events, or scripting language; Petri nets; etc. (Kradolfer 2000). The objec-
tive of a workflow metamodel is to support workflow enactment—that is,
actual coordinated execution of the workflow activities. In schedule-based
metamodels, requests for execution of different types of workflow activities
are submitted to a workflow engine, which interprets the requests and
then “interacts with the processing entities [to ensure] that the activities
are executed as prescribed by the workflow type” (Kradolfer 2000). The
Workflow Management System must be able to address the distribution
of workload to processors; availability of processors; rework requirements
when activities are implemented incorrectly; etc.

Weske and colleagues (1999) provide reference models for software
engineering and business process reengineering and describe a reference
model for workflow application development processes (WADP). This
generic model is intended to avoid or minimize difficulties that arise in
workflow projects, but the authors underscore that, with respect to effec-
tive implementation, there is no substitute for knowledgeable managers,
skilled developers, and efficient users. Furthermore, tailoring the reference



Software Development Strategies: Reinventing How It Is Done � 101

model to individual projects requires additional overhead. The objective
of standardization of workflow management is addressed by the Workflow
Management Coalition, established in 1993, whose goal is “to establish
standards to enable interoperability among different workflow manage-
ment systems” (Kradolfer 2000).

4.6 Aspect-Oriented Development
Object-oriented programming is best adapted to applications in which the
interfaces between the objects are relatively simple. However, in the case
of distributed and concurrent systems such as “scheduling, synchroniza-
tion, fault tolerance, security, testing and verification, [phenomena] are all
expressed in such a way that they tend to cut across different objects.”
This lack of locality tends to undermine the preconditions necessary for
the object-oriented paradigm to be successful, so its potential benefits are
reduced. Critically, although the key issue of “separation of concerns is at
the heart of software development,” how to accomplish this separation under
such circumstances has not yet been resolved at a methodological level.

The traditional approach to designing software systems has been to
focus on partitioning the systems along functional lines and identifying
maximally independent functions that can then be implemented with a
minimum of cross-dependence. This functional approach is now widely
supported by existing programming environments and design paradigms,
which provide for modular units for functionality and components using
mechanisms such as procedures for functions and objects or classes for
components. In many cases, important system properties do not align
naturally with the natural functional components in systems (Constan-
tinides et al. 2000). This can occur for objects in object-oriented program-
ming whenever important system properties are not naturally localized to
objects. Other system phenomena that exhibit nonlocal characteristics
include resource allocation; exception handling; persistence; communica-
tion; replication; coordination; memory management; and real-time con-
straints (Constantinides et al. 2000).

Kiczales et al. (1997) defined aspects as “system properties that cut
across functional components, increasing their interdependencies.” This
cross-functional behavior leads to implementation difficulties such as the
so-called code-tangling problem. Code tangling undermines the originally
intended modularity of the system design and degrades the quality of the
resulting software. Aspect-Oriented Software Architecture (see Table 4.4)
is a design strategy that tries to address the design and implementation
complications associated with such interdependencies by explicitly intro-
ducing aspects as system characteristics. These characteristics straddle the
functional divisions of a system and of OO components.
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For example, in an object-oriented environment, the source code that
provides the ability to distribute a system across multiple hosts may
straddle multiple object-oriented classes and methods. Murphy, Walker,
and Baniassad (1999) observed how the design decisions required in such
environments may “cross-cut the structure chosen to provide a system’s
functionality.” The purpose of aspect-oriented programming is to facilitate
a modular expression of these design decisions in the actual code. The
general idea of such a programming approach is as follows. One begins
by using a “component language to describe the basic functionality of the
system.” Then, an aspect language is used “to describe the different cross-
cutting properties.” The partial products that result from this preliminary
separation of concerns are then combined using a so-called aspect weaver,
which combines the components and the aspects into a cohesive system.

One of the issues that arise during this integration process is whether
the weaving should be done in a static or dynamic manner. Under static
weaving, the system’s source code is modified “by inserting aspect-specific
statements at join points” (Constantinides et al. 2000) in an inline manner.
Murphy and colleagues (1999) conducted a preliminary empirical study
to determine the benefits of aspect-oriented programming and its impact
on the design process. Their tentative conclusion was that, at least for
some small-scale studies, in cases when “an aspect language matched a
design concern, such as concurrency, the language provided a vocabulary
for expressing and reasoning about that concern.” However, when there
was a poor match between the expressiveness of the aspect language and

Table 4.4 Profile of Aspect-Oriented Development Model

Category Specifics

Evolution of goals How to design effectively when system 
functions are not localized in objects

Methodology Aspect-Oriented Software Architecture

Technology Development tools such as aspect weavers

Critical factors Identify properties or functions that cross-cut 
objects or components

Interdisciplinary effects None

Behavioral considerations None

Problem nature Synchronization, coordination, 
communication, real-time constraints, etc.

Application domain Distributed and concurrent systems
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the aspect concerns that arose in the project, the aspect language could
even exacerbate the complexity of the design.

Constantinides et al. (2000) specifically considered the case of a con-
currently shared object. From the point of view of software abstraction,
such an object exhibits some type of functional behavior, but the object
also requires synchronization and scheduling because it is concurrently
shared. The synchronization and scheduling characteristics or phenomena
of the system can be interpreted as aspects of the concurrent system.
Thus, the synchronization requirement determines which methods and
when methods should be enabled or disabled.

In order to accomplish this, the authors viewed the synchronization
abstraction as “composed of guards and postactions” (Constantinides et
al. 2000). One significant observation was that “the activation order of the
aspects is the most important part in order to verify the semantics of the
system.” For example, the synchronization aspect had to be verified before
the scheduling aspect because a “reverse in the order of activation may
violate the semantics.” The authors also introduced a so-called Aspect
Moderator Framework, which was based on the idea of “defining assertions
(preconditions and postconditions) as a set of design principles.” They
observed that this approach is in the spirit of design by contract, in which
a “software system is viewed as a set of communicating components
whose interaction is based on precisely defined specification of the mutual
obligations known as contracts. These contracts govern the interaction of
the element with the rest of the world.”
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Chapter 5

An Assessment of Process 
Life-Cycle Models

5.1 Introduction
This chapter discusses the essential purposes and roles of software engi-
neering processes. It begins with critiques of existing models and general
proposals that have been made for assessing and evaluating models. The
critical role of time as a factor in development is considered, including
not only the various scheduling constraints on time to develop but also
the business-driven parameter of time to market. The lack of an adequate
integration between software and hardware technology, on the one hand,
and business and social disciplines, on the other, is identified as a persistent
shortcoming undermining the ability of the development process to attack
real-world problems optimally.

Next, a series of questionable assumptions that have af fected the
historical development of software process models are considered, includ-
ing suppositions about the primacy of the role of internal software factors;
the relative independence of software development from the business
process; separation of the software project as management enterprise from
the software process; and a choice between process-centered versus
architecture-centered development. These assumptions have illegitimately
constrained and reduced the fundamental role that must be played by
people, money, interdisciplinary knowledge, and business goals in terms
of their impact on effective problem solution.
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The elements of a redefined software engineering process are then
identified based on the integration of critical process tasks or activities;
required major interdisciplinary resources (people, money, data, explor-
atory and modeling tools, and methodologies); organizational goals; and
the impact of time as components of an ongoing roundtrip approach to
business-driven problem solving. The redefinition addresses limitations
identified in the literature related to business evaluation metrics; the
process environment and external drivers; and process continuation, as
fundamental to process definition.

The idea of a software process model that fits every project seems far-
fetched because any project has so many aspects that it is difficult to
capture every potential aspect in a single perspective (Liu & Horowitz
1989). However, this has not prevented the development of process models
that have attempted to capture the essential benefits of previous software
models in a unified manner. Humphrey (1988) observed that “since the
software engineering process used for a specific project should reflect
[that project’s] particular needs, a framework is needed to provide con-
sistency between projects.” Liu and Horowitz (1989) argued against uni-
fication in models, but proposed essential features that every successful
model should have. These included the ability to: describe the develop-
ment process as a design process; address parallel processing in large-
scale projects; map the diverse set of conditions that exist prior to
development activities; debug the process by locating failed activities and
resources; and allocate sufficient resources for each activity in the devel-
opment project.

Some have argued against attempting to structure and manage the
software development process because of the overwhelming differences
that exist across different projects, firms, and cultures; however, Blackburn,
Scudder, and Van Wassenhove (1996) argued to the contrary, observing
that worldwide similarities in management of the process are more prev-
alent than differences. Considerable effort has been made to establish
custom solutions based on existing process models. Although few of these
efforts have tried to tailor or match process models to specific project
needs, many have attempted to provide evaluation criteria or metrics;
mechanisms for evolution and improvement; unified frameworks or tax-
onomies; and supporting tools and environments. Others studies have
tried to address the general issue of process description or abstraction by
constructing a conceptual process framework, rather than by evaluating
existing process models (Armitage & Kellner 1994). These have served as
a basis for the process representation or transformation that have assisted
in the review, development, and improvement of process models. An
understanding of these efforts will contribute to one of the main objectives,
which is to build a more comprehensive taxonomy of process models.
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In an overall sense, process models are used to enable effective
communication; facilitate process reuse; support process evolution; and
facilitate process management.

� Humphrey and Kellner (1989) suggested that, to evaluate the
effectiveness of a process model, one should consider its ability
to represent the real-world application as well as the way in which
work is actually done; provide a flexible, understandable, and
powerful framework for representing and improving the software
development process; and be refineable or resolvable to any
required level of detail or specification

� Curtis, Kellner, and Over (1992) identified five uses for process
models: facilitating human understanding and communication; sup-
porting process improvement; supporting process management;
automating process guidance; and automating execution support.
All of these uses can also be considered as evaluation criteria for
process models as well.

� Sutton (1988) asserted that, for a process model to be effective, it
must exhibit “multidimensional” characteristics, including the ability
for decomposition adequately to capture the details of the work
to be done; the ability to provide complete coverage of all the
activities of the software life cycle; the ability to reflect the distrib-
uted nature of the development process including the potential for
sequential and parallel processing; and the ability to incorporate
related interdisciplinary models from areas such as project and
configuration management, software evaluation, and software
acquisition into a single system development.

� Madhavji and colleagues (1994) proposed a method for eliciting
and evaluating process models that entailed understanding the
organizational environment (organizational, process, and project
issues); defining objectives, including model and project-oriented
objectives; planning the elicitation strategy; developing process
models; validating process models; analyzing process models; post-
analysis; and packaging. According to these authors, the basic
reasons for using software process models were to produce soft-
ware of high quality that met budget and time requirements and
to do so as far as possible by means of automated tools.

� Khalifa and Verner (2000) focused on the Waterfall and prototype
models in their empirical study, emphasizing the factors driving
the usage of specific process models: depth and breadth of use
and facilitating conditions (the size of the development team,
organizational support, and the speed with which new methodol-
ogies were adopted).
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� According to Boehm and Belz (1990), the critical process aspects
were requirements growth; the need to understand complex
requirements; the need for robustness; available technology; and
architectural understanding. They used these as a baseline for a
software process model elicitation procedure.

� Blackburn et al. (1996) identified the five most influential factors
in the development process as development time; project charac-
teristics; team size; allocation of time in project stages; and devel-
opment language selection. The approach was based on a strong
correlation between process optimization and software product
metrics from a project management prospective.

Madhavji et al. observed that recognized benefits of life-cycle models
included the ability to enhance process understanding; determine global
activities; reduce cost; improve quality, methods, and tool effectiveness;
and improve stakeholder satisfaction. Using estimation techniques, the
models addressed problems of resource management such as time and
manpower. They also provided predictive capabilities with respect to
primary performance measures and captured some of the variability and
uncertainty associated with the software development process (Martin &
Raffo 1997). However, the models tended to fall short on overall problem
comprehension, detailed description, and the ability to adapt or tailor to
changing project requirements. They focused more on product engineering
than the many elemental process building blocks essential to project
management and control (Curtis et al. 1992). 

Krasner et al. (1992) criticized the models for their tendency to “focus
on series of artifacts that exist at the end of phases of the life cycles,
rather than on the processes that are conducted to create the artifacts” in
the first place. According to Madhavji et al., these traditional process
models led to low software process maturity and difficulties in managing
and controlling software processes. Their over-reliance on the Waterfall
Model encumbered them with its negative side effects, such as enforcing
one-way development by managers; inhibiting creativity based on design
and requirements trade-off; and corrupting measurement and tracking
systems in processes (Humphrey & Kellner 1989). The conventional mod-
els also tended to impose extensive documentation requirements without
providing commensurate added value (Krasner et al. 1992).

Humphrey and Kellner (1989) attributed the problems with conven-
tional process models to inaccurate representations on their part of the
behavioral aspects of what occurs during software development because
of an overly intense focus on task sequencing. Boehm (1996), on the
other hand, attributed their weaknesses to factors such as a lack of user-
interface prototyping; fixed requirements; inflexible point solutions; high-risk



An Assessment of Process Life-Cycle Models � 109

downstream capabilities; and off-target initial releases. According to
Boehm, recognition of such problems “led to the development of alter-
native process models such as risk-driven, reuse-driven, legacy-driven,
demonstration-driven, design-to-COT-driven, and incremental, as well as
hybrids of any of these with the waterfall or evolutionary development
models.”

Ropponen and Lyytinen (2000) elaborate on the need for risk man-
agement in process model assessment, including risks related to scheduling
and timing; system functionality; subcontracting; requirements management;
resource usage and performance, and personal management. Madhavji et
al. proposed combining process-detailed understanding and process sup-
port to address change or volatility in process-centered software environ-
ments. They identified several categories or perspectives from which a
process model could be viewed in terms of its static and dynamic prop-
erties: process steps; artifacts; roles; resources; and constraints.

The analysis by Martin & Raffo (1997) recognized two major approaches
in software development: process models and system dynamics. The latter
is important in developing an intuitive understanding of how a project
will behave under different management polices and alternatives and
benefits significantly from simulation techniques. Abdel–Hamid and Mad-
nick (1989) used system dynamics to model project risks such as delays,
pressures, and unknown problems at different project levels; however,
Raffo and Martin expanded this idea by introducing a continuous simu-
lation framework (1997) that was consistent with the process improvement
paradigm inspired by the CMM model (Martin & Raffo 1997; Paulk et al.
1993). Indeed, Boehm recognized the Abdel–Hamid and Madnick model
as a realistic contribution to quantitative models of software project dynam-
ics, although he was still concerned about the lack of a quantitative model
of software life-cycle evolution (Boehm 1984). Clearly, project manage-
ment and software economics perspectives have gained greater attention
as critical elements in the assessment of process models.

Some of the research on model assessment has focused on classifying
process models. Blum (1994) arranged development methods according
to a matrix, depending on their focus of interest (the problem or product
involved) and the form of representation used (conceptual or formal).
Boehm & Port (1999) and Boehm & Belz (1990) addressed the conflicts
that occur when a combination of product, process, property, and success
models is adopted, leading to model clashes. They proposed a taxonomy
of model clashes in an effort to resolve the resulting conflicts.

Over the past decade, the trend towards process improvement has
been increasing and turning away from fixed, conventional process mod-
els. Thus, Bandinelli et al. (1995) observed that “there has been an
increasing interest in the development of frameworks and guidelines to
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support the evaluation of software process maturity and to identify strat-
egies and key areas of improvement.” These authors built on experiences
learned from the Capability Maturity Model, Bootstrap, Kaizen, QIP, SPMS,
and other models in developing a feedback-loop model for software
development organizations.

The model was intended to address problems with discrepancies;
descriptions; comprehension; visibility; and traceability among the different
process forms (desired, perceived, observed, and actual process). They
used the feedback-loop model as a baseline in experiments aimed at
improving process maturity. Two inferences can be made from their
research. A process model is no longer a fixed model that fits in with a
fixed problem definition, but instead dynamically evolves over time in
response to changes in the problem until at some point it stabilizes.
Second, the ability to capture a real-world situation (actual process) was
and still is the most significant issue in assessing process models. The
closer that a representation is to the actual situation, the more likely it is
to be effective.

Basili and Rombach (1988) proposed the improvement-oriented TAME
process model, which is based on a goal–question–metrics (GQM)
approach. It includes separate components for characterizing the current
status of a project environment; integrating planning for improvement into
the execution of projects; executing the construction and analysis of
projects; recording project experiences into an experience base; and
distributing information across the model and its components. They claim
such component integration distinguishes their model from traditional
process models that have only partially addressed such issues. They assert
that even recently developed process models have not been able to
“completely integrate all their individual components in a systematic way
that would permit sound learning and feedback for the purpose of project
control and improvement of corporate experience.”

Kadary and colleagues (1989) raised important questions about the
need for or even possibility of a generic paradigm for software life cycles,
aspects of such a generic model, and its potential role in industrial practice.
Their challenge is difficult because the issue is not yet well structured
and one can think of many alternatives that need further testing and
assessment.

The research on assessments may be summarized as follows:

� Metric-oriented assessments framed or synthesized processes and
provided standards and metrics for further process enhancement
and evaluation, as described in the work of Humphrey & Kellner
(1989); Sutton (1988); and Curtis et al. (1992). The metrics took
the form of factors or goals, as in Boehm and Belz (1990); Madhavji
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et al. (1994); Khalifa and Verner (2000); and Blackburn et al. (1996).
Some assessments suggested elicitation procedures or plans as well
(Jaccheri, Picco, & Lago 1998; Madhavji et al. 1994).

� Unified model or taxonomy-driven assessments surveyed as many
models as possible in an attempt to build a classification or tax-
onomy (Blum 1994) or make comprehensive conclusions regarding
a unified process model derived through a broad selection and
understanding of process models (Jacobson et al. 1999).

� Process improvement assessments come from the perspective that
existing models are insufficient and need enhancements and new
architectures, as described in Bandinelli et al. (1995); Basili and
Rombach (1988); El-Emam and Birk (2000); and Baumert (1994).
The Capability Maturity Model has been the official reference
platform for this approach, in addition to efforts to integrate it with
ISO9000 standards. Some of the assessments have focused on
dramatic change rather than incremental development.

� Tool support and software environment-based assessments incor-
porated automated tools into process modeling. Some have even
proposed frameworks for process model generation (Boehm &
Belz 1990). These approaches have focused more on software
development environments and included tool support to build
more sophisticated process models using CASE tools and automa-
tion, as described in Osterweil (1997) and Ramanathan and Soumi-
tra (1988). This and the process improvement category overlap
substantially.

5.2 The Dimension of Time
Time has been the critical factor in software development from its begin-
nings; the original motivation for interest in computing was the computer’s
ability to carry out tasks faster than could be done otherwise. Computer
hardware provided fast processing power and high-speed memories pro-
vided fast storage; software adapted this technology to the needs of
individuals and organizations to address problems in a timely manner. It
took only a while to recognize that building effective software required
more than just the time needed to write the source code for a software
product. Experience underscored the obvious: software was only valuable
when it met people’s needs and created value. Software came to be viewed
as a system that emerged during the course of multiple, evolutionary,
interdisciplinary life-cycle phases, rather than a one-shot effort composed
from a largely technical perspective.

Accordingly, the objective of development shifted dramatically, from
saving time in the short term to saving time in the long term, with software
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production recognized as a lengthy process that was engaged in devel-
oping solutions compliant with stakeholder requirements. This decisive
attitudinal change was the first step in transitioning software development
from coding to engineering, where business goals drove software con-
struction and not vice versa.

Of course, the short-term effect of the time factor was not cost free.
Software economics has underscored the importance of the time value of
money in assessing the actual costs and benefits of a software project in
terms of discounted cash flow, net present value, return on investment,
and break-even analysis. Additionally, business and technology have
undergone dramatic—even revolutionary—changes during the historic
time-line of software development, creating new demands and facilitating
new capabilities. From any perspective, time repeatedly plays a key role
in software development and its evolution.

Thus, a firm’s failure to respond to new business requirements within
an adequate time to market can result in serious loses in sales and market
share; failing to exploit new enabling technologies can allow advantageous
advances to be exploited by competitors. Although it is derived from a
business context, this time-to-market notion now plays a major role in
software process paradigms. The implication is that short-term cycle time
must become shorter and, at the same time, the features and expected
quality of the final system must be retained. This is the new challenge faced
by software development: building quality systems faster. The required
acceleration of the software development process entails an extensive body
of methodologies and techniques such as reusability; CASE tools; parallel
development; and innovative approaches to project management.

5.3 The Need for a Business Model 
in Software Engineering

 Software engineering faces several dilemmas. It has comprehensive goals,
but limited tools. It demands broad perspectives, but depends on narrowly
focused practitioners. It places a high premium on quality, but often has
insufficient inputs to its problem-solving process. As a field, software engi-
neering has yet to define theories and frameworks that adequately combine
the disciplines of software and hardware technology with related business
and social science disciplines to attack real-world problems optimally. Despite
advances, software engineering tends to remain code driven and is burdened
in testing for bugs, program errors, and verification, even though reusable
objects, reusable applications, and CASE tools have long been available.

The engineering of software entails inviting software technology to
help tackle human problems rather than just shoehorning human problems
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into a software solution. This requires reordering the relation between
people and computers; computer programs are understood to play an
important but limited role in problem-solving strategy. Such an approach
to software engineering would still be software driven in the sense that
it was driven by the need to develop software for automated as opposed
to manual problem solving; however, it would view problems and evaluate
solutions from a broadly interdisciplinary perspective in which software
was understood and used as a tool.

Requirements engineering is supposed to address the problem part of
software engineering, but it is part of the traditional view that looks at
the problem-solving process as a phase in the software development life
cycle, rather than at the software development life-cycle as part of the
problem-solving process. The software development life cycle never ends
with a solution, but only with a software product. Although one may
assume that a software product should be the solution, in practice this
never happens because software systems are only part of a total organi-
zational context or human system; one cannot guarantee that these solu-
tions are effective independently of their context.

5.4 Classic Invalid Assumptions
Four unspoken assumptions that have played an important role in the
history of software development are considered next.

5.4.1 First Assumption: Internal or External Drivers

The first unspoken assumption is that software problems are primarily
driven by internal software factors. Granted this supposition, the focus of
problem solving will necessarily be narrowed to the software context,
thereby reducing the role of people, money, knowledge, etc. in terms of
their potential to influence the solution of problems. Excluding the people
factor reduces the impact of disciplines such as management (people as
managers); marketing (people as customers); and psychology (people as
perceivers). Excluding the money factor reduces the impact of disciplines
such as economics (software in terms of business value cost and benefit);
financial management (software in terms of risk and return); and portfolio
management (software in terms of options and alternatives). Excluding
the knowledge factor reduces the impact of engineering; social studies;
politics; language arts; communication sciences; mathematics; statistics;
and application area knowledge (accounting, manufacturing, World Wide
Web, government, etc).
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It has even been argued that the entire discipline of software engi-
neering emerged as a reaction against this assumption and represented
an attempt to view software development from a broader perspective.
Examples range from the emergence of requirements engineering to the
spiral model to human–computer interaction (HCI). Nonetheless, these
developments still viewed non-software-focused factors such as ancillary
or external drivers and failed to place software development in a com-
prehensive, interdisciplinary context. Because software development prob-
lems are highly interdisciplinary in nature, they can only be understood
using interdisciplinary analysis and capabilities. In fact, no purely technical
software problems or products exist because every software product is a
result of multiple factors related to people, money, knowledge, etc., rather
than only to technology.

5.4.2 Second Assumption: Software or Business Processes

A second significant unspoken assumption has been that the software
development process is independent of the business processes in organiza-
tions. This assumption implied that it was possible to develop a successful
software product independently of the business environment or the busi-
ness goals of a firm. This led most organizations and business firms to
separate software development work, people, architecture, and planning
from business processes. This separation not only isolated the software-
related activities, but also led to different goals, backgrounds, configurations,
etc. for software as opposed to business processes. As a consequence,
software processes tended to be driven by their internal purposes, which
were limited to product functionality and not to product effectiveness.

This narrow approach had various negative side effects on software
development. For example, the software process was allowed to be
virtually business free. Once the product was finalized, it was tested and
validated only for functionality, as opposed to being verified for conformity
to stakeholder goals. As a result, even if the product did not effectively
solve the underlying business problems or create a quantifiable business
value for the organization, it could still pass its test. Because software
development was not synchronized with the business process, software
problems could be “solved” without actually solving business problems.

5.4.3 Third Assumption: Processes or Projects

A third unspoken assumption was that the software project was separate
from the software process. Thus, a software process was understood as
reflecting an area of computer science concern, but a software project
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was understood as a business school interest. If one were a computer
science specialist, one would view a quality software product as the
outcome of a development process that involved the use of good algo-
rithms, data base deign, and code. If one were an MIS specialist, one
would view a successful software system as the result of effective software
economics and software management.

This dichotomy ignored the fact that the final product was identical
regardless of who produced it or how it was produced. The assumption
reinforced the unwise isolation of project management from the software
development process, thus increasing the likelihood of product failure. In
contrast to this assumption, interdisciplinary thinking combines the process
with the project; computer science with the MIS approach; and software
economics with software design and implementation in a unified approach.
Just as in the case of the earlier assumptions, this assumption overlooks
the role of business in the software development process.

5.4.4 Fourth Assumption: Process Centered or 
Architecture Centered

There are currently two broad approaches in software engineering; one is
process centered and the other is architecture centered. In process-centered
software engineering, the quality of the product is seen as emerging from
the quality of the process. This approach reflects the concerns and interests
of industrial engineering, management, and standardized or systematic
quality assurance approaches such as the Capability Maturity Model and
ISO. The viewpoint is that obtaining quality in a product requires adopting
and implementing a correct problem-solving approach. If a product con-
tains an error, one should be able to attribute and trace it to an error that
occurred somewhere during the application of the process by carefully
examining each phase or step in the process.

In contrast, in architecture-centered software engineering, the quality
of the software product is viewed as determined by the characteristics of
the software design. Studies have shown that 60 to 70 percent of the faults
detected in software projects are specification or design faults. Because
these faults constitute such a large percentage of all faults within the final
product, it is critical to implement design-quality metrics. Implementing
design-quality assurance in software systems and adopting proper design
metrics have become key to the development process because of their
potential to provide timely feedback. This allows developers to reduce
costs and development time by ensuring that the correct measurements
are taken from the very beginning of the project before actual coding
commences. Decisions about the architecture of the design have a major
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impact on the behavior of the resulting software—particularly the extent
of development required; reliability; reusability; understandability; modi-
fiability; and maintainability of the final product, characteristics that play
a key role in assessing overall design quality.

However, an architecture-centered approach has several drawbacks.
In the first place, one only arrives at the design phase after a systematic
process. The act or product of design is not just a model or design
architecture or pattern, but a solution to a problem that must be at least
reasonably well defined. For example, establishing a functional design
can be done by defining architectural structure charts, which in turn are
based on previously determined data flow diagrams, after which a trans-
formational or transitional method can be used to convert the data flow
diagrams into structure charts. The data flow diagrams are outcomes of
requirements analysis process based on a preliminary inspection of project
feasibility. Similarly, designing object-oriented architectures in UML
requires first building use-case scenarios and static object models prior to
moving to the design phase.

A further point is that the design phase is a process involving archi-
tectural, interface, component, data structure, and database design (logical
and physical). The design phase cannot be validated or verified without
correlating or matching its outputs to the inputs of the software develop-
ment process. Without a process design, one could end up building a
model, pattern, or architecture that was irrelevant or at least ambivalent
because of the lack of metrics for evaluating whether the design was
adequate. In a comprehensive process model, such metrics are extracted
from predesign and postdesign phases. Finally, a process is not merely a
set of documents, but a problem-solving strategy encompassing every step
needed to achieve a reliable software product that creates business value.
A process has no value unless it designs quality solutions.

5.5 Implications of the New Business Model
The following consequences result when one refocuses from engineering
software for the sake of the technological environment to engineering
software for people’s sake:

� Solutions will evolve only from carefully understood problems. The
resulting solutions will be guided by their originating problems
and considered successful only if they are able to solve those
problems. The solution is never solely the software product, but
everything needed to solve the problem.
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� Problems will not be defined in terms of what the people want
the software to do for them. Problem definition will address the
relevant human needs regardless of the role of the software in
meeting those needs. Subsequent to an interdisciplinary definition
of the problem, an interdisciplinary solution will be proposed that
will utilize the available, relevant human, financial, informational,
technological, and software resources.

� The iterative software development process will become part of
the synchronized business process and will in turn deliver business
process total solutions. Thus, the business process will shape the
software process in terms of its goals, metrics, and requirements.

5.6 Role of the Problem-Solving Process 
in This Approach

A solution represents the final output from a problem-solving process. To
obtain reliable solutions, the problem-solving process must receive all the
requisite inputs. The more comprehensive, carefully defined and well-
established these inputs are, the more effective the solutions will be.
Regardless of whether one uses a manual or computerized system to
tackle a problem, the problem-solving process can properly operate only
when it has sufficient relevant data, a well-defined problem, and appro-
priate tools.

5.6.1 Data

The importance of data, raw facts, or statistical summaries of raw facts in
solving problems is decisive for the scientific method. Obviously, without
adequate data, it is difficult to measure or estimate the “distance” from
the current situation to a desired situation. Two basic problems that arise
with data are:

� Data may be insufficient to provide a deep understanding of a
problem domain or situation. It is hard to establish a solid point
of reference in the context of insufficient data. Ambiguity may be
substantial and uncertainty exacerbated.

� Data may be excessive, making it difficult to identify or distinguish
which data is relevant or significant to the problem under consid-
eration. An excess of data can lead to time wasted pursuing false
directions, thus causing delays in solution and possibly allowing
further development of system-degrading problems.
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Defining an accurate context for business problems is critical to identifying
and obtaining relevant data. Effective data capture requires data collection
and data mining. Appropriate tools are needed to ensure the quality and
speed of the collection and mining processes. In data collection, relevant
data is explored to provide a comprehensive picture of the problems; this
requires creative thinking and the use of diverse resources, disciplines, and
skills. Interdisciplinary tools are essential. In data mining, the collected data
is further examined and filtered to obtain the significant data. Once again,
interdisciplinary tools are essential to extracting the relevant data.

5.6.2 Problem Definition

Once sufficient data is available, problems may at least potentially be
properly defined. Problem definition is the foundation of an effective
problem-solving process. It entails structuring, interpreting, and analyzing
data. Subsequent to the initial data analysis, one can arrive at a reliable
problem definition that captures the essential aspects of the situation.
Problem definition depends heavily on data, so if data is inaccurate,
incomplete, irrelevant, or insufficient, problems cannot be appropriately
defined. On the other hand, determining which data to seek depends on
the problem’s initial definition, which sets the context or circumstance in
which data is gathered.

5.6.3 Tools and Capabilities

Tools can support the problem and solution level of the problem-solving
process, helping to automate and accelerate the entire process. Given
adequate tools, accurate and reliable data can be determined and main-
tained. Tools can assist in data mining raw facts and elicit the important,
relevant data. In the present context, tools encompass all the available
capabilities that can be brought to bear during a problem-solving process;
these tools are as critical as a knowledge base and personnel abilities.
CASE tools are popular because of their applicability in the software
development process, but the role of tools transcends software develop-
ment. They encompass analysis, design, and implementation and extend
to support the entire business process of an organization.

Interdisciplinary thinking is a necessity because a one-sided view of
a problem will not reveal a comprehensive picture of a business or
organizational problem. In an interdisciplinary approach to problem solv-
ing, a comprehensive diagnosis of the business problem is an essential
part of the process. Interdisciplinary thinking not only permits a full
analysis of a business problem, but also enables problem-solvers to take
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advantage of existing interdisciplinary abilities. An understanding of dif-
ferent disciplines is the basic enabling factor that allows incorporation of
interdisciplinary thinking in problem solving. Bringing this knowledge to
bear requires identifying and eliminating sources of ignorance about a
problem. Interdisciplinary thinking also reflects an appreciation of the role
of diversity. In fact, it can be viewed as a means for integrating diversity
in a productive and effective manner. It allows recognition, measurement,
and utilization of differences in terms of their positive role in problem
solving. The following sections identify how ignorance and diversity
influence problem solving.

5.7 Redefining the Software Engineering Process
The definition of the development process has long been disputed in
software engineering literature. Computer scientists tend to view the
process as one of providing a theoretical framework with the objective
of systematically producing cost-effective software products. Project man-
agers view the process as a way of partitioning projects into activities to
provide guidelines for project managers. The problem with both views is
their narrow focus on the activities that should be involved and on how
the activities should be ordered or scheduled. Both views lack effective
ways for optimizing the process to achieve real-world problem solving,
which requires additional components beyond those that organize an
identified set of activities in a particular order. These components include:

� A means for evaluating the process against the business goals of
an organization

� A means for recognizing and responding to the diverse environ-
mental, external, or interdisciplinary factors in the context of which
the process functions or operates

� A means for identifying in what way the different process activities
are interrelated or interdependent in terms of fulfilling organiza-
tional goals

Although many efforts have been made to establish or define metrics
for assessing the quality of the software process and product, these metrics
never seem to be part of the underlying process definition and rarely
have clear connections to the external drivers in the surrounding envi-
ronment. Consequently, software process definitions have generally lacked
environmental interactivity and business purpose, although there have
been some notable exceptions. For example, the Capability Maturity Model
approach was introduced by the Software Engineering Institute partially
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in an attempt to define a process model responsive to changes and
pressures from environmental factors. Overall, however, most approaches
have paid little attention to ensuring that interdisciplinary resources are
integrated into software process activities to advance business processes
and goals.

5.7.1 Round-Trip Problem-Solving Approach

The software engineering process represents a round-trip framework for
problem solving in a business context in several senses.

� The software engineering process is a problem-solving process entail-
ing that software engineering should incorporate or utilize the prob-
lem-solving literature regardless of its interdisciplinary sources.

� The value of software engineering derives from its success in
solving business and human problems. This entails establishing
strong relationships between the software process and the business
metrics used to evaluate business processes in general.

� The software engineering process is a round-trip approach. It has
a bidirectional character, which frequently requires adopting for-
ward and reverse engineering strategies to restructure and reengi-
neer information systems. It uses feedback control loops to ensure
that specifications are accurately maintained across multiple pro-
cess phases; reflective quality assurance is a critical metric for the
process in general.

� The nonterminating, continuing character of the software develop-
ment process is necessary to respond to ongoing changes in
customer requirements and environmental pressures.

5.7.2 Activities

The software engineering process comprises a set of interrelated activities
that mutually require and support each another. Although the activities
vary in terms of their names, labels, degrees of abstraction, or resolution,
they always include the following steps:

� A well-defined process and project, as well as a well-defined
problem identified through diagnosis and analysis

� A well-defined solution obtained through design and software
architecture and based on the problem definition

� An accurate and precise execution of the defined solution obtained
through implementation and installation
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� Well-defined testing processes that use business and quality assur-
ance metrics: testing, validation, verification, and quality assurance

� Continual improvement or adjustment of the implemented solution
in response to customers, changes, competition, reengineering, and
maintenance

5.7.3 Goals

The software engineering process must be guided, assessed, and evaluated
by ongoing references to the business goals of an organization, which
guide the entire process from beginning to end. These define the business
case and provide the foundation for the requirements analysis process.
They determine the economic and organizational feasibility of the software
project. They serve as metrics to assess the performance and quality of
the process and of the generated solution. Finally, they motivate continual
improvement in the software engineering process.

5.7.4 Interdisciplinary Resources

The software engineering process integrates and uses interdisciplinary
resources to execute its activities and meet its goals. Interdisciplinary
resources encompass multiple disciplines and a diverse range of knowl-
edge about people, money, data, tools, application knowledge, method-
ologies, time, and goals. This inclusive approach implies effectively
executing each activity in the process and requires appropriate consider-
ation of the pertinent interdisciplinary resources. Utilization of interdisci-
plinary resources is closely related to process performance and product
quality. Failure to integrate interdisciplinary resources can significantly
affect the success of process or project management, accuracy in problem
definition, and the effectiveness of the final solution. The integration of
interdisciplinary resources represents a critical recognition: namely, the
importance of interdisciplinary thinking in software engineering in contrast
to the prevailing attitude in conventional approaches. Interdisciplinary
resources encompass multiple disciplines and a diverse range of knowl-
edge about people; money; data; tools; application knowledge; method-
ologies; time; and goals, as described earlier.

5.7.5 Time

The software engineering process depends on time as a critical asset as
well as a constraint or restriction on the process. Time can be a hurdle
for organizational goals, effective problem solving, and quality assurance.
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Managed effectively, time can support the competitive advantage of an
organization, but time is also a limitation, restricting or stressing quality
and imposing an obstacle to efficient problem solving. Time is the major
concern of various stakeholders in the software engineering process, from
users, customers, and business managers to software developers and
project managers.

Time is closely correlated with money and cost, tools, and the char-
acteristics of development methodologies like Rapid Application Devel-
opment that aim primarily at reducing time and accelerating the software
engineering process. These methodologies exhibit characteristics such as
reusability, which emphasizes avoiding reinventing the wheel, object-
oriented analysis, design, and implementation. Examples include assembly
from reusable components and component-based development; business
objects; distributed objects; object-oriented software engineering and
object-oriented business process reengineering; utilizing unified modeling
languages (UML); and commercial-off-the-shelf software. Other character-
istics are automation (via CASE tools); prototyping; outsourcing; extreme
programming; and parallel processing.

A redefined software engineering process must integrate the critical
activities; major interdisciplinary resources (people, money, data, tools,
and methodologies); organizational goals; and time in an ongoing round-
trip approach to business-driven problem solving. This redefinition must
address limitations identified in the literature related to business metrics,
the process environment and external drivers, and process continuation,
as fundamentals of process definition. A conceptual framework should
emphasize the following characteristics for interdisciplinary software engi-
neering. It must address exploring resources, external drivers, and diversity
in the process environment to optimize the development process. It must
overcome knowledge barriers in order to establish interdisciplinary skills
in software-driven problem-solving processes. It must recognize that orga-
nizational goals determine the desired business values, which in turn
guide, test, and qualify the software engineering process.

The process activities are interrelated and not strictly sequential. Irrel-
evant activities not related to or that do not add value to other activities
should be excluded. The optimized software engineering process must
be iterative in nature with the degree of iteration ranging from internal
feedback control to continual process improvement. The software engi-
neering process is driven by time, which is a critical factor for goals;
competition; stakeholder requirements; change; project management;
money; evolution of tools; and problem-solving strategies and methodol-
ogies.
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Chapter 6

The Problem-Solving 
Process

6.1 Introduction
This chapter considers the relation between classic problem-solving con-
cepts and software development, particularly in a business environment.
A basic point concerns the advantages that accrue from exploiting diversity
as a tool in problem solving, where diversity refers to the differences in
cultural or personal background; professional experience; problem per-
spective; understanding; or technical and disciplinary capability. Diversity
is a frequently overlooked resource that offers a unique opportunity for
achieving a broader, more integrated approach to solving problem. Failure
to capitalize on it undermines the ability of software development to
address the complexity of real problems.

A related issue is that, because of their technical background, computer
scientists may overemphasize the centrality of technical capability, but the
correct identification of business goals is often the critical factor for
effective development, with business goals providing the criteria and
framework according to which the suitability of software systems can be
properly assessed. Such an approach is user centered, or customer driven.
It acknowledges the decisive importance of user perception and assumes
solutions should come from a thorough understanding of user needs.

This chapter examines the impact of problem-solving concerns and
principles on the development process because software development is
closely linked to the concepts and strategies of problem solving. A review
is presented of the basic ideas regarding problem solving and some of
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the kinds of problems that arise specifically in business environments,
such as how to meet standards; selection from a set of alternative solutions;
satisfying customer expectations; goal evolution; and improving organiza-
tional process. Finally, a brief review of the theory of problem solving,
its concepts, methods, strategies, and their relation to approaches used in
software development is given, together with some classic approaches
used in business problem solving.

Problem solving can benefit greatly from incorporating an appreciation
for diversity as a core value. In human terms, diversity manifests itself in
the form of differences in cultural or personal background; professional
experience; problem perspective; understanding; or technical capability.
Although diversity has historically often precipitated conflict and exclusion,
from a problem-solving point of view, it presents an irreplaceable oppor-
tunity to develop broader, more encompassing, and integrated approaches
to solving problems. By learning to view diversity as an asset rather than
as a barrier or obstacle, one can become motivated to understand problems
in an interdisciplinary manner and to capitalize on the ability of diversity
to identify and enable the creation of better solutions.

A diversity-driven framework can allow one to discover more aspects of
a problem or solution than might have otherwise been recognized in a more
unilateral or monochromatic framework. Clearly, such exposed or emergent
issues should not be precluded from consideration and exploitation merely
because of their interdisciplinary origin or character. A diversity-driven atti-
tude may complicate the problem-solving process; however, this merely
reflects the fact that previously unidentified aspects of a problem or sources
for its solution are being recognized, accepted, and dealt with.

Consider, for example, the case of a business that uses software systems
at every level of its manufacturing and sales processes. Suppose that the
business has funded the development of an expensive software system
intended to support its basic business functions; however, the cost of
development has considerably exceeded its forecast benefits. The com-
pany’s managers had assumed the new software would solve their business
problems. The system’s software developers had assumed the application
would be successful because they had previously worked successfully
with clients from similar industries. However, despite extensive commu-
nication between both sides, a standard framework that could be used as
a common basis for solving the business problems encountered was never
adopted. The software developers viewed the problem from a technical
perspective, expecting a minimal need to tailor the product to the com-
pany’s specific requirements. The company’s managers conceived of the
product as a software system that would operate like a black box gener-
ating the desired results when the needed inputs were provided.
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The complexity of the real problem exceeded the capabilities of the
software system. Here were hidden details, lurking behind the scenes,
inadequately understood or recognized, and appreciated only by company
workers, technicians, or administrative staff. Interdisciplinary factors con-
tributed to problems in the business processes, encompassing financial,
managerial, technical, psychological, legal, societal and educational issues.
The background of the developers was not adequate to understanding
the role of these problem factors in creating complexity. The managers
never realized that the software solution could be so limited and inflexible,
and they failed to grasp how much more time and money was required
to have the system up and running as expected.

The company is the client, so arguably the software development team
bears the brunt of the responsibility for resolving the problems. However,
the software development process is tightly and inextricably coupled with
business processes. The development team’s expertise and training were
not developed for the purpose of understanding the big picture view of
a business problem. Simply put, the team’s academic and professional
preparation focused on how to solve well-structured problems that could
be handled by developing appropriate software systems. As a conse-
quence, the developers solved problems as perceived and not necessarily
problems as they actually exist in an organizational context.

The business managers failed to appreciate that anything less than
their complete and ongoing involvement could undermine the success of
the software project. In fact, the entire organization should have been
involved because every functional department of the organization would
be affected by the software system under development; all those to be
affected could have contributed to a more effective analysis of the business
processes of the organization. An enterprisewide approach to problem
solving was not done in this hypothetical company, resulting in an
unsuccessful and cost-ineffective software solution.

Project management represents another interdisciplinary factor in soft-
ware development. For example, reports from studies such as that of Glass
(1998) indicate that almost 40 percent of software faults could be avoided
by appropriate scheduling, thus reducing stress on the developers and
also expediting the process. An additional one-third of problems can be
attributed to human factors rather than to technical difficulties. The com-
bined effects thus indicate that about 70 percent of all faults are directly
related to project management. Figure 6.1 depicts the multidimensional
character of business problems in terms of four underlying requirements:
operational; human driven; business; and technical, as well as the impact
of the degree of problem complexity. This ranges from the structured
problems that arise at the operational level to the ill-structured problems
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arising at the strategic level of organizations, which affect the proper
understanding of a business problem.

Computer scientists have in the past overemphasized the centrality of
technical capability. Development time and ef fort were thus often
expended in solving misperceived problems or providing software solu-
tions to problems that did not need an automated approach. In such
situations, misdirected software development not only wastes time, but
may also exacerbate existing problems or introduce new ones. Of course,
there have been many successful applications that reflected a thorough
understanding of user requirements and organizational context or culture.
However, these applications are not as well represented in the literature
as they should be, so the replication of such accomplishments is hindered.
Indeed, research or theoretical literature that situates such best practice
within the context of a comprehensive and systematic framework for
problem solving is currently rather limited.

The present chapter has the objective of introducing software engi-
neering from such a comprehensive or global prospective. Rather than
taking a highly focused, specialized approach, it will broadly address
“computerization” as an enabling tool that assists in creating business
value for any kind of organization. The software engineering literature is

Figure 6.1 Multidimensional view of business problem (rarely realized by soft-
ware developers).
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replete with frameworks and studies; however, most software development
publications have tended to address the software crisis as a reaction to
software project failures, instead of focusing on the underlying issues of
business value that constitute the main rationale for using software.

Software systems introduced a new element in the historical evolution
of problem solving. They provided new ways to accelerate, validate,
communicate, secure, and enrich business problem solving. Using software
systems, businesses could be monitored, understood, and controlled better.
However, none of these outcomes is guaranteed without the proper use
of software in terms of effective, efficient problem solving. Thus, the
identification of business goals is the most appropriate perspective from
which to view, evaluate, and apply software. Business goals provide the
criteria and framework according to which software systems can be
properly assessed. These goals should be the basic metric or measure of
the distance from a problem to its solution. When business goals are
accomplished more effectively, the distance becomes smaller.

Software should be viewed in this context as a capability that better
enables businesses by bridging the gap between business problems and
their solutions. Whenever software engineering is viewed as separate from
business goals and strategies, the paradoxical outcome is that software
may be improved without any corresponding impact on the value that
the software is supposed to create for businesses. Software improvement
is not the ultimate goal of software development. Understanding this
relationship between business and software is the correct starting point
for developing business software and the essential foundation for estab-
lishing more effective software engineering frameworks.

6.2 What Is a Problem?
The way to solve a problem is first to understand it. A problem exists
whenever a gap is present between an initial or current state and a desired
or goal state (Hewett 1995). Equivalently, a problem exists when a
difference exists between an existing situation and a desired situation
(Pounds 1967). These definitions imply that, by reducing the difference,
a problem is solved or at least ameliorated. The process of problem
reduction refers to the approach in which problems are partitioned or
broken into smaller problems and perhaps iteratively further decomposed
until one eventually arrives at reduced problems that can be easily or
more readily handled. Such problem reduction is a core strategy in
problem solving.

A more contextual way of looking at problem solving is as the
difference between things as perceived versus things as derived (Gause
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& Weinberg 1990). This is a user-centered or customer-driven approach
because it acknowledges the decisive importance of user perception and
assumes solutions should come from a thorough understanding of user
needs. Acknowledging actual user needs can prevent developing expen-
sive or unneeded solutions or solutions for the wrong problem.

A situation is problematic when things are not what one would like
them to be but is not quite sure what to do about it (Eden, Jones, & Sims
1983). This definition views problems from a psychological or cognitive
prospective, which involves uncertainty and equivocality as major mani-
festations of problems. Any situation in which an expected level of
performance is not achieved and the cause of the unacceptable perfor-
mance is unknown can also be considered problematic (Kepner & Tregoe
1981). This definition views the desired situation as a fixed reference
standard or metric. It is derived from the feedback control-loop concept
in engineering in which an existing situation and a desired standard are
continuously compared. For control purposes in engineering, a problem
is defined as a circumstance in which a change must be made to the
current process to return it to an acceptable level. A problem occurs when
a standard or metric has declined compared to a previous high point or
agreed-upon standard. Problems are recognized when improvements are
needed within the existing situation to return it to an original expectation.

A problem involves a situation in which a decision-making individual,
group, or team has alternative courses of action available; the choice made
can have a significant impact, but the decision-maker has some doubt as
to which alternative should be selected (Ackoff 1981). This definition
views a problem as a selection process among competing alternatives. It
assumes that the alternatives are available and implies that the desired
approach may be to use a set of weighted criteria to quantify the com-
parison process to reach an optimum solution.

Although many definitions for the word problem can be found in the
literature, all of them depend on the notion of a difference, as illustrated
in Figure 6.2. First, some difference is required to have a problem;
otherwise, no problem exists and it is a waste of resources to solve
nonexisting or misunderstood problems. The difference may be a desirable

Figure 6.2 The problem-solving process from initial situation to final goal.
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intermediate goal that leads to new, better goals, as can be seen in
continuous and continual improvement approaches to problem solving.
The difference may not exist in an initial situation because problems may
not only reflect failures in existing situations, but may also arise because
of evolution in a situation. For example, a difference can arise from a
change in goals as well as from a decrease in satisfaction with an initial
state. In business, a change in goals may reflect a change in experience;
available tools and technology; policies and methods; market share; or
the overall business environment.

A well-defined problem statement contains three principal elements:
goal, givens, and unknowns; these are shaped by the process of problem
solving into a solution. A problem may also contain additional important
elements that must be recognized and defined, such as conditions, con-
straints, and operators. Identifying a problem’s goal, givens, unknowns,
conditions, and constraints, based on the current representation of the
problem, is the first step in problem solving. One then proceeds to solve
a problem by redefining it into subproblems and restating the goal in
terms of subgoals (Duncker 1945; Newell and Simon 1972; Wickelgren
1974; Rubinstein 1975; Mayer 1983; Rist 1986). The most common termi-
nology for problem solving is defined next, following Polya (1945),
Duncker (1945), Newell and Simon (1972), Wickelgren (1974), Rubinstein
(1975), and Mayer (1983).

A goal is what one wants to accomplish. It must be extracted from a
problem statement by the problem solver and then represented appropri-
ately. A well-defined problem statement begins with a representation of
the specific facts that must be identified prior to solving the problem;
these are known as the problem givens. Problem unknowns are then
identified and detailed. These are particular things that must be found out
or resolved in order to accomplish the goal. As an example, consider the
problem of sorting a list. The given is the unsorted list. The goal is to
rearrange the list so that it is sorted. The unknown is the sorted list.

Conditions and constraints are qualifying factors that must be taken
into consideration when solving a problem. Conditions tend to be logical
restrictions, and constraints tend to be quantitative restrictions. Constraints
include restrictions on the types of operators that can be used, their
frequency, the conditions under which they can be used, or the sequence
that they must follow (Wickelgren 1974; Mayer 1983). Subgoals are iden-
tified by restating the problem goal in terms of subproblem goals. The
classic divide-and-conquer approach with step-wise refinement is one
common method for identifying and integrating subgoals (Wirth 1971).

The stages of problem solving fall within the core of the software
process stages (Page–Jones 1988), linking problem-solving methodologies
and program development tasks. The problem-solving model defined by
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Polya (1945)—to understand the problem, devise a plan, carry out the
plan, and look back—is used as an example. Problem recognition, feasi-
bility study, and requirements analysis are initial stages in the software
process, and contribute mainly to understanding the problem, its needs,
and scope. Design specification constitutes planning the solution. Imple-
mentation and integration are equivalent to carrying out the plan. Testing
is performed by reviewing what was produced and done to solve the
problem, and deployment presents the solution. Maintenance and retire-
ment are postdeployment stages of the software process, essentially con-
stituting the beginning of a new problem.

Obviously, a close relationship exists between software engineering
and problem solving. For example, in the context of learning program-
ming, beginners are frequently taught problem-solving techniques, even
more so than being exposed to software engineering principles. One
motivation is that, for those with little previous exposure to programming
or problem solving, software engineering may represent a formidable,
complex methodology; thus, learning general problem-solving methods
provides a sensible compromise. The combination of problem solving
with instruction in programming then affords many of the benefits pro-
vided by a basic understanding of software engineering, but without its
attendant complexity.

Algorithmic problem solving, which is basic to programming and
software engineering, uses techniques (such as subproblem decomposi-
tion) and facts (such as givens and unknowns) to produce an outline of
steps leading to a problem solution. Programming is a kind of problem
solving that requires representing solutions to problems in a coded manner
suitable for processing by a computer. The relationship between problem
solving and programming is simple: an algorithm is a precise step-by-step
outline to solve a well-defined problem; a program is a sequence of
syntactically and semantically correct instructions forming a solution for
a problem. At a more advanced level, software engineers are trained in
the details of software engineering methodologies that have been devel-
oped over the last 20 to 30 years.

One can identify five types of problems that occur in business envi-
ronments: problems of meeting standards; of selection between alterna-
tives; of customer satisfaction; of goal achievement; and of goal evolution.
These problem types, illustrated in Figure 6.3, are discussed in detail next.

6.2.1 Problems of Meeting Standards

This type of problem is typically associated with fixed goals and is based
on factual findings or empirical studies, as may occur in science or in
business. The fixed goals may be related to adopted standards for an
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industry or be internal to an organization. The main characteristic of this
type of problem is the long-term adoption of the goal. Examples range
from controlling production lines in manufacturing processes, to adoption
of ISO 9000 standards (ISO refers to the International Organization for
Standardization—a consortium of the national standards institutes from
140 countries with a central office in Geneva that coordinates the system
and publishes the finished standards), to feedback control in a manage-
ment process based on fixed metrics for financial performance in terms
of return on investment (ROI) or break-even point analysis (BEP).

6.2.2 Problems of Selection between Alternatives

This type of problem involves a composition of goals and alternatives in
which the goals are usually specified in terms of weighted criteria. An
evaluation matrix is constructed to quantify the comparison process and
evaluate results quantitatively. The major difference involved in this type
of problem is the availability of competitive alternatives. Often, the avail-
ability of a benchmark reference is beneficial to the evaluation process.
Examples include selection of a best investment project, of a best pur-
chasing offer, and of the best solution for a specific problem.

6.2.3 Problems of Customer Satisfaction

This type of problem overlaps the previous types but differs in that
customer satisfaction can be identified as an independent goal regardless
of the other goals adopted by an organization because organizational
goals do not necessarily cohere with customer needs or requirements.
Customers exhibit a broad range of needs, including psychological, social,
financial, work-related, and personal requirements that go well beyond

Figure 6.3 Types of problems based on different approaches in problem definition.
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the traditional business goals derived from the marketing and finance
domains. Thoroughly meeting customer expectations may be incompatible
with or contradictory to achieving the tangible business values of an
organization, so creation of a win–win solution may be problematic.

6.2.4 Problems of Goal Achievement

This type of problem is similar to those associated with standards, but
with two differences: it can change over the short term and the learning
process, which is tightly coupled with the evolution of business experience
and best practices, significantly affects these goals. Despite this, the goals
persist until existing goals prove to be outdated or external environments
trigger a movement toward new goals. Examples of such semifixed goals
are the internal goals of business firms derived from their prior experience.

6.2.5 Problems of Goal Evolution

The major distinguishing characteristic for this type of problem is the
existence of a formal process of continuous improvement in an organi-
zation. The goals associated with these problems are constantly tested,
validated, and improved in an iterative fashion. Therefore, the goals are
continually changing based on performance results; competitive advan-
tage; profitability; productivity; innovation; and similar aspects of a busi-
ness environment. Examples occur in the practices of research and
development teams and in the continuous improvement approaches found
in quality management and business process reengineering.

6.3 What Is Problem Solving?
Interest in problem solving is not recent; formulations and developments
that still affect current problem-solving methods reach back into antiquity.
The work of Rene Descartes (1596–1650) on geometry was a milestone
(Rubinstein 1975; Grabiner 1995). In his Discourse on Method, Descartes
(1637) observed that the problem solver must go about things in the right
way and must use the right method to arrive at a solution; otherwise,
nothing will be discovered. Earlier, there was Alkowarazmi (A.D. 825),
from whose name comes the word algorithm (Rosen 1995). Originally,
Euclid’s (300 B.C.) Elements were seminal for the systematic development
of the scientific enterprise (Rosen 1995) and much later provided Descartes
with the first problem on which he applied his new “method” (Grabiner
1995).
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6.3.1 Models of Problem Solving

Deek (1997) reviewed a variety of different models of problem solving
developed in the 20th century. The two earliest methods were introduced
by Dewey (1910) and Wallas (1926) and represent opposite approaches.
Dewey’s approach essentially articulates a scientific method for problem
solving; Wallas’ represents a nonsystematic, creative view of problem
solving. Models developed by subsequent researchers combined elements
of both approaches. Principal among these was the method proposed and
elaborated on in Polya’s famous treatises on problem solving. The Polya
model (1945, 1962) represents a problem-solving method that was exten-
sively illustrated and supported by mathematical examples and docu-
mented in a series of books. Independently, Johnson’s model (1955) refers
to Wallas, and Kingsley and Garry’s model (1957) elaborates on Dewey, with
independent but similar models proposed in Osborn (1953) and Parnes
(1967). Neither Johnson nor Kingsley and Garry introduced significant
improvements over their predecessors. Despite the independence of these
several methods, they were basically consistent in their approach—an impor-
tant indication of the stability of the methodology over time.

A distinctive approach was introduced by Simon (1960), who viewed
the process of problem solving as representing the interaction of a col-
lection of cognitive abilities that included intelligence, design, choice, and
implementation. More recently, methods were developed to provide math-
ematics, science, and engineering students with a method for problem
solving. Generally, these models resolved the problem-solving process
into a more finely specified process than those of earlier methods. Notable
among these models is the work of Rubinstein (1975), who introduced
an element of reservation. Reservation refers to withholding judgment at
the problem-understanding stage in which one looks at possible solutions
before finalizing the problem statement; a similar withholding of commit-
ment occurs at the final problem solution stage. In other respects Rubin-
stein’s method represents the standard view. Other popular methods are
those of Stepien, Gallagher, and Workman (1993); Etter (1995); Meier,
Hovde, and Meier (1996); and Hartman (1996), who presented models
that basically follow the Polya model without significant change.

These problem-solving methodologies have stabilized over time,
become clearer, and are demonstrably cognitively natural. The fact that
the methods have settled down to a well agreed-upon and detailed form
indicates that they provide a reliable theoretical framework for the present
work. The naturalness of the methods, in the sense of psychological
spontaneity, has been established (Duncker 1945; Newell & Simon 1972;
Chi, Glaser, & Rees 1982) using thinking-aloud verbalization, protocol
analysis, and related experimental techniques.
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Newell and Simon did a careful phenomenological analysis, closely
observing and monitoring how students thought about problems while
attempting to solve them. The process that they identified was very similar
to the methods reviewed, consisting of a series of stages. The problem
solvers began by trying to understand what was expected of them and
by gathering and organizing information. Facts about the problem were
then used to examine and plan possible solutions. The plan was then
refined, tentatively executed, and tested. If the putative solution was not
confirmed, it was modified or new solutions were generated and the
process was repeated.

In terms of tasks and procedures, problem solving can be defined as
the process by which a situation is analyzed and solutions are formed to
solve a problem, with steps taken to resolve, eliminate, or mitigate the
problem. The current problem and situation are analyzed, potential solu-
tions are generated, and a workable solution is determined and put into
place. Problem solving is the process of analyzing situations of uncertainty
to produce actual improvements or changes in the situation. In terms of
methods and techniques, problem solving can be viewed as the strategy
adopted to tackle problems to bridge the gap between one’s current
circumstances and a desired one.

Therefore, it is critical to determine existing capabilities (what we have)
as well as requirements (what we need) to establish an effective foundation
for problem solving. The “what we have” encompasses the enabling tools
and the existing system. It has multiple roles. It reveals the true distance
between the as-is (existing) system and the to-be system (the goal). It
also helps to reach those goals through understanding requirements and
exploiting capabilities. Without accurately identifying what is needed, there
is neither a goal to achieve nor a problem to solve. If properly selected and
carefully applied, strategies are the methods that make these theories work.

The problem-solving process, as illustrated in Figure 6.4, comprises
many different elements that can be used in varying degrees, depending
on the nature of problem to be solved. Typical elements include:

� Problem definition
� Situation analysis
� Idea generation
� Analysis of ideas
� Decision-making
� Determining the steps to be taken to introduce the solution into

the workplace

Different problems require different uses of these elements, possibly in
different orders or to different degrees. The structure of the process can
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vary greatly across different problems. One may need to make many
attempts at problem definition to help establish the real question if the
nature of the underlying problem is unclear.

6.3.2 Commonalities in Problem-Solving Models

One can identify a shared or common integrated model for problem
solving based on the models just reviewed. Although the general form of
the methodology is clear, it is beneficial to synthesize these methods into
a common model of problem solving. The goal is to articulate the essential
features of these problem-solving approaches and to provide an estab-
lished, recognized framework, which can serve as the basis for a problem-
solving method that can be adapted for program development. An inte-
grated view of problem solving includes:

� Understanding and defining the problem
� Developing a plan for solving the problem
� Designing and implementing the plan to produce a solution
� Verifying and presenting the results

A synthetic view of the tasks involved by these objectives follows.
The key recommendations of the different methods concerning prob-

lem understanding and definition include the following. The essential
ingredients were identified by Polya: state the question and identify the
goal, givens, unknowns, and conditions. Kingsley and Garry and Osborn

Figure 6.4 The problem-solving process.
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and Parnes emphasized producing a representation of the problem. Polya’s
method is one such representation, although others are possible. Simon
underscores the ability to recognize that a problem exists in the first place.
This is easily bypassed as an issue in academic contexts when people are
first exposed to problem-solving techniques. Thus, in elementary appli-
cations such as for novices at programming, problems are identified and
a preliminary formulation is given.

Rubinstein’s exhortation to defer details is implicitly addressed by any
of the methods because a method, by definition, encourages caution and
clarification, constraining the impulse to charge blindly ahead. It is a good
recommendation to keep in mind throughout the entire process of problem
solving. Hartman recommends using diagrammatic cognitive aids and
performing an initial search for concepts relevant to an effective solution.
Stepien and colleagues recommend collaboration or discussing the prob-
lem with others. Overall, at this point, one seeks to understand and
produce a description of the problem, gathering all relevant information
(goal, givens, unknowns, conditions, and constraints). The objective is to
identify and organize the pertinent facts about the problem and to ignore
inessential aspects.

Regarding solution planning, the different methods include two key
recommendations: identify alternative solutions and devise a plan. Almost
all the methods explicitly emphasize the necessity of generating alternative
solutions, which are then evaluated and one selected. Dewey early rec-
ognized the necessity of identifying several possible alternative solutions.
Etter and Kingsley–Garry emphasize the explicit evaluation of alternatives
prior to selection. Polya, in contrast, recommends examining similar or
simpler problems and restating the problem. Though apparently different,
this is in fact just a more fundamental recommendation than “finding an
alternative solution” because it provides an actual technique for generating
solutions by generating and examining simpler or alternative problems
that one may be able to solve and whose solutions can then be adapted
to the current problem. This provides a technique for accomplishing what
Wallas, and later Johnson, recommended: gain insight into the problem
and discover a solution, or for Rubinstein’s recommendation to change
the frame of reference and search for solution patterns.

Once a solution is selected, Polya provides the most inclusive recom-
mendation: devise a plan by outlining a potential solution and breaking
the problem into parts. The outline or plan for a solution is a high-level
view of the solution that serves several purposes. It helps ensure the
coherence of the implemented solution and its fidelity to the objective of
the original problem by deferring premature or distracting immersion in
implementation details. Once a high-level view is defined, the next logical
step is to refine the plan by breaking the plan, problem, and solution
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into parts. Possible alternatives are assessed and a strategy for solving the
problem is devised. The solution becomes more manageable when the
problem is reformulated into a set or series of smaller subproblems.
Therefore, the goal is refined into subgoals that are more easily achieved
and the tasks to accomplish each subgoal are defined.

Regarding solution design and implementation, most of the methods
explicitly emphasize the necessity to select a solution from the generated
alternatives that is then refined and produced. The essential tasks were
clearly stated by Polya in his carry-out-plan recommendation: refine and
transform the plan into a solution and decompose tasks. The other
methods also call for refinement, decomposition, and transformation (a
form of implementation). For example, Kingsley and Garry, Osborn and
Parnes, and Etter emphasize refining the solution; Rubinstein calls for
transformations to simplify the process and Hartman recommends parti-
tioning the problem into parts. In summary, the plan devised earlier must
be implemented in order to produce the desired outcome. This is done
by refining and transforming the plan into a solution to the problem. The
transformation from a high-level solution outline to a precise solution may
require further decomposition of subgoals, reorganization, and specifica-
tion of an explicitly stated solution.

Regarding solution verification and presentation, the different methods
include two standard recommendations: verifying the product and evalu-
ating the process. All of the methods explicitly emphasize the necessity
for verifying solutions, beginning with the early work of Dewey and Wallas
and expanded upon by Polya, who refers to this as “looking back.” This
verification procedure includes testing the accuracy of results and the
effectiveness and performance characteristics of the solution. Many meth-
ods, particularly Hartman’s, additionally and separately emphasize the
evaluation of the solution method and its suitability for other problems.
This is the key to long-term productivity in problem solving because it
brings the issue of ongoing learning explicitly into the picture. In other
words, the process of solution should not only solve the problem at hand,
but should also enhance one’s ability to solve related problems in the
future and improve one’s adeptness at and experience with the problem-
solving methodology. Stepien and colleagues and Meier et al. emphasize
sharing and reporting results.

With the increasing emphasis on collaboration and the vastly expanded
power to disseminate information in real time almost transparently pro-
vided by the Internet, the importance of the reporting phase is increasingly
prominent. In summary, the main purpose of this objective is to produce
an answer consistent with the goal of the problem. Therefore, the problem
solver must look back and verify the correctness of the solution and
evaluate the process of solution. This is done by testing the solution and
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examining the results. An equally important objective is to learn from the
problem-solving experience, acquiring knowledge and skills that can be
transferred to other problem-solving situations. Finally, the solution and
the results are presented in a readable and organized manner.

6.3.3 Complex Management-Driven Strategies

Problem-solving strategies are the methods or approaches that people use
to tackle problems. They are sometimes called problem-solving schemas.
A problem-solving schema is an organized body of knowledge or infor-
mation about the properties of a particular type of problem and the
operations or steps required to solve it that is built by problem solvers.
Hewett (1995) suggests that expert problem solvers develop a set of
familiar problem schemas that are retained and called into play during
problem-solving situations. In some familiar cases, schemas are activated
without conscious efforts, providing reasonably efficient methods for
solving commonly encountered problems. In more complex problem-
solving situations, deliberate strategies and specific tactics are needed.
Some of these strategies and heuristics are discussed next.

6.3.3.1 Problem Reduction (Decomposition)

Problem reduction is a strategic approach to managing complexity. A
widely known method for solving large and complex problems is to split
them into simpler problems and then iteratively apply this process until
the subproblems are reduced to a level of complexity at which they are
easily solved or at least exhibit an irreducible level of difficulty. This
paradigm for solving problems is called problem reduction. In it, a problem
in a given domain is decomposed into a structured set of subproblems
in the same domain. As already indicated, each subproblem is evaluated
(as illustrated in Figure 6.5) for suitability to be further decomposed until
each subproblem is determined solvable. This problem reduction paradigm
has been successfully applied to problems in a variety of application
domains and in many phases of the process in which a top-down decision-
making strategy is applicable (Porvin, Reynolds, & Maletic 1991).

6.3.3.2 Reusable Subproblems and Solutions

Despite its appeal, problem reduction can be expensive if the need arises
to revise projects on a regular basis or invest additional resources in new
projects. Often, the same process must be done repeatedly for a similar type
of problem with only minor differences. As a result, problem reduction may
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cost even more over time as problems become more complex. One
important approach to handling the side effects of problem reduction is
to build reusable subproblems and solutions, instead of continually rein-
venting a related system reductive hierarchy. Such reusable subproblems
and solutions can be stored in a components library and retrieved as
required. As illustrated in Figure 6.6, complete solutions can then be
obtained by using and reassembling appropriate subsolution compo-
nents—an object-oriented approach that has achieved widespread popu-
larity.

Building reusable components (class objects) can be done in a top-
down fashion by means of specifications or in a bottom-up fashion by
means of generalizations. Object-oriented technology reflects the preva-
lence of natural objects and functionally cohesive systems in the real world
and the creation of artificial objects and constructs in domains such as
engineering and mathematics. This technology is also consistent with an
understanding of human cognitive psychology and is used in software
systems and businesses as a technique for defining business processes in
terms of “business objects.”

6.3.3.3 Problem Expansion (Composition)

Problem reduction approaches may contain the hidden assumption that
a problem has been fully understood and only needs to be analyzed by
decomposition. This is often not true for problems of an interdisciplinary
nature with root causes that must be carefully investigated. As discussed,
business processes can be viewed from different perspectives, all of which

Figure 6.5 The decomposition of a problem.
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may be essential. In fact, missing any aspects of the larger business picture
can result in ineffective problem solving.

A broader view of the problem may take the approach to solving a
problem in a different, more relevant direction. An encompassing view
of problem solving depends on a thorough analysis of stakeholder require-
ments and is also related to the interdisciplinary tools and knowledge
used in recognizing the overall picture. The major difficulty in this
approach is its dependence on a highly skilled organization with extensive
and comprehensive human resource backgrounds and for innovative
technical tools that incorporate a variety of techniques. Figure 6.7 illustrates
the process of knitting together the interrelated aspects of a problem, from
different perspectives, into a comprehensive solvable component.

6.3.3.4 Problem Misrepresentation 
How problems are viewed is critical to how they are solved. Placing a
problem in its correct context can make a difference in one’s ability to
solve it. Misrepresenting a problem results in unsuccessful solutions.
Difficulties of problem misrepresentation can take several forms:

� Language ambiguity: using precise language in addressing a prob-
lem is essential. Vague language leads to ambiguity in understand-
ing and ineffective and misleading communication.

Figure 6.6 The problem-solving process using reusable components.
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� Comprehension: examining all the aspects of the problem is impor-
tant. In many situations, a lack of problem knowledge or a mis-
understanding of problem scope can distort recognition of a
problem’s complexity. Although the components of the problem
may still be identified, other essential factors may be overlooked
or ignored.

� Preposition: applying a previous solution derived for similar prob-
lems to a current problem is an important heuristic; however, doing
so prematurely can lead to a prebiased perception that can nega-
tively affect a complete understanding of the problem.

� Context: putting a problem in its correct context by looking at the
problem from a technical as well as a human perspective can
facilitate solving the problem.

� Standardization: standardizing problem presentation and adopting
appropriate notations and modeling techniques can result in
improved communication among problem solvers at different lev-
els.

6.3.4 Strategies Driven by Task Structuring

These strategies are reflected in the topology of the path followed to solve
a problem, independently of the tasks carried out or how they are
composed or decomposed. The four basic modeling structures used in
solving problems are the linear, iterative, parallel, and dynamic problem-
solving strategies.

Figure 6.7 The problem expansion process.
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6.3.4.1 Linear Problem-Solving Strategies

Linear strategies can be unidirectional or bidirectional. The corresponding
linear solution path may be a straight-line path, a step-wise path, or a V-
shaped path; it always has an open end indicating a time limitation for
this type of strategy. Figure 6.8 shows a straight-line path for linear
solution. Tasks are carried out sequentially with each task dependent on
a proceeding one. In certain instances, variations of a linear structure
allow a feedback control loop to exist between tasks, thus increasing the
degree of interactivity between tasks and phases.

6.3.4.2 Iterative Problem-Solving Strategies

These strategies are often associated with continuous improvement and
quality assurance approaches. The problem-solving topology is repre-
sented by a cycle (see Figure 6.9). The topology may include a single
continuous cycle or multiple cycles in which external cycles emerge from
internal ones. Although tasks in iterative approaches are still organized in
a sequential order, this sequence is continual and does not stop at a fixed
point in time. The iterative strategy may, however, be used as a part of
a linear strategy.

Figure 6.8 The linear problem-solving process (straight line).

Figure 6.9 The iterative problem-solving process.
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6.3.4.3 Parallel Problem-Solving Strategies

The parallel strategy is a technique for reducing cycle time for the problem-
solving process. Unlike the sequential order for executing tasks, parallel
tasks are assigned to parallel production lines in which all lines are
processed simultaneously and independently. Of course, mixtures of par-
allel and sequential organizations are possible, with some portions of the
process executed in parallel and eventually merging or synchronizing into
a subsequent phase that depends for its initiation on completion of these
earlier parallel phases. The most general form of such a topology is
represented by an a-cyclic digraph (see Figure 6.10).

6.3.4.4 Dynamic Problem-Solving Strategy

In this approach, tasks are not organized in a regular or static shape but
are dynamically structured based on interactions and interrelations
between tasks.

6.3.5 Capabilities-Driven Strategies

Capability-driven strategies are determined by available or already incor-
porated resources. Although lack of capabilities may indicate a limitation
or constraint on problem solving, the proper utilization of in-house or
outsourced resources can expand organizational goals and optimize prob-
lem-solving performance. Technological capabilities are considered the
most rapidly growing factor in problem-solving strategies because com-
puterization can produce a notable difference in timing, control, compe-
tition, and solution quality. Knowledge-based expert systems, Internet
repositories and search tools, and CASE (computer-aided software engi-
neering) tools are important examples of these capabilities.

Figure 6.10 The parallel problem-solving process.
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6.4 What Is a Solution?
A solution constitutes a final step in the problem-solving process. Ideally,
when solutions are finalized, goals should have been achieved and the
problem should have been mitigated. Typically, this is an outcome that
exists only in theory. Practically, when a solution is realized, new phases
in the problem-solving process, such as evaluation, validation, and veri-
fication, are activated. Although problem-solving strategies present vehi-
cles to reduce errors and establish problem needs, the practical
implementation of a solution is the ultimate way in which to verify its
correctness.

6.4.1 Problems and Solutions in Context of the Old 
Business Environment

Many current organizational techniques for business problem-solving can
be attributed, independently of the nature of the business, to the so-called
old factory model described by Adam Smith. In 1776, Smith published his
famous treatise “The Wealth of Nations,” in which he described the
management technique called “division of labor.” This approach to prob-
lem solving—for example, in the context of a manufacturing environ-
ment—consisted of breaking problems into small units and allocating each
unit to a human resource.

Smith described how a factory that made pins was restructured using
this principle. Instead of having each worker make pins, the factory had
been organized so that each worker specialized in one small part of the
pin-making process. As a result, fewer workers could produce more pins
than when each had to build the entire pin. The goal was higher pro-
ductivity. Smith’s approach encompassed fundamental notions such as the
division of labor, departmentalization, and specialization. Various indus-
tries, from software development to airplane manufacturing, are still using
Smith’s approach in partitioning work and running the manufacturing
processes.

Frederick Taylor (1856–1915) advanced this approach in the late 1800s
by refining Smith’s model with a scientific analysis that quantitatively
examined work breakdown structures. Taylor’s work revolutionized busi-
ness by introducing the concept of the production line. The result was
increased levels of productivity as well as greater and more systematic
partitioning of work. Key elements of Taylor’s contributions included
standardizing work; unifying the methods used to perform tasks; matching
workers with tasks; and constant overseeing of work. Henry Fayol
(1841–1925) was Taylor’s successor in management theory and introduced
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additional principles, such as organizing management by essential functions;
utilizing line-staff organization charts; and emphasizing an underlying
chain of command, formal authority policies, and the importance of a
narrow span of control.

Max Weber in his “Theory of Social and Economic Organization” (1947)
modeled the premise of administration in terms of an ideal bureaucracy
based on rational, legal-authority systems. His principles were also rooted
in the division of labor model. He believed that organizations gain legit-
imacy when they become rational and that this results in ensuring
resources and support and building trust. So-called human relations theory
later insisted that the productivity of workers is not affected solely by
financial considerations. According to Mayo (1933), the informal organi-
zation of the workplace environment, social norms, acceptance, and the
sentiments of a group are also critical factors of individual work behavior.
Maslow (1943), McGregor (1960), Herzberg (1966), and others emphasized
social relations in organizations and understanding that the social and
emotional needs of workers and managers are important factors in man-
aging organizations effectively.

After World War II, a pervasive and dominant trend was to solve
business problems using quantifiable techniques; this trend emerged from
the highly successful application of scientific modeling techniques in
military applications during the war. This quantitative approach shifted
the focus from decomposition theories to representative quantities, statis-
tics, mathematical models, and operations research—all of which man-
agement information systems incorporated. The systems approach defined
organizations as open systems that constantly interact with the external
environment via inputs (resources and information); undergo transforma-
tion processes to produce outputs (products, services, information); and
incorporate feedback.

Forrester’s (1973) system dynamics, developed around 1960, involved
exploring the “flows” within an organizational system. Forrester was
especially concerned with feedback loops and the fuzzy behavior that
occurs when a system acts in contrast to what common sense predicts.
In the 1950s, Peter Drucker introduced a comprehensive strategy for
business problem solving called “management by objectives” (MOB),
which included key concepts such as setting measurable goals for each
employee; directing employee goals towards organizational goals; and
periodically reviewing progress.

Edward Deming in the 1940s introduced a comprehensive theory called
“total quality management” (TQM) based on the following principle: the
basic goal in a business organization should be to work continuously
towards bridging the gap between the desired goals and the actual
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performance of the organization. According to TQM, customers—not
producers—are the major drivers in product specification, and a customer
can be defined as anyone upon whom the organization’s product or
service has an impact. The term quality is used in a broad sense to refer
to the quality of the entire business system and not merely the quality of
the end product or service produced by the organization.

The total quality movement arose partly as a reaction to the way in
which some Japanese companies had demonstrated an ability consistently
to create products quickly and with predictably high quality. Some analysts
attributed this success to the adoption by these Japanese enterprises of
the methods of the American management theorist Deming (1902–1993);
others attributed it to a characteristic of Japanese culture. Total quality
was adopted with considerable enthusiasm and some success. ISO 9000
evolved from TQM and became a standard for quality assurance. TQM
views business problem solving from a comprehensive viewpoint in which
all parts of an organization are responsible for maintaining the business
system quality. According to TQM theorists, maintaining the quality of the
system is the only way in which to ensure the ability to provide quality
products and services consistently. Management commitment is essential
to the success of the TQM process.

Over time, the complexity of business environments has dramatically
increased. The partitioning of large business tasks has led to large numbers
of functional departments with correspondingly smaller divisions. Manu-
facturing tasks been partitioned and fragmented, as have administrative,
professional, and managerial tasks. The execution of individual tasks may
have been made more efficient; however, the organization as a whole
may have become less effective because of the delays, bottlenecks, and
problems that occurred as work subproducts moved from worker to
worker across organizational functions and divisions. The complexity
caused by this fragmentation in the evolving business model created
difficulties such as increased management costs and overhead as business
firms attempted to plan and control increasingly large and fragmented
organizations. A list of anomalies includes:

� Error rates increased due to the successive stages of production.
� A high degree of error rates had an increasingly significant impact

on the quality of services and products.
� Delays and bottlenecks in the increasingly complicated process

lengthened the cycle time of business processes as tasks moved
through increasingly long chains of functions.

� Business organizations became overly large, overmanaged, bureau-
cratized, and departmentalized. Thus, organizations became inflex-
ible and less responsive to the challenges of competitive markets.
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The consequences of fragmentation and complication in business firm
organization provided a strong motivation to rethink and redesign orga-
nizations to eliminate unnecessary work and to design businesses for
flexibility and cost reduction. In 1990, Michael Hammer wrote an article
called “Reengineering Work: Don’t Automate, Obliterate,” in the Harvard
Business Review, that introduced the concept of reengineering. After study-
ing the customary or standard way in which American businesses tended
to be organized, Hammer concluded that, for the most part, they followed
Adam Smith’s principles (alluded to earlier). After two centuries of the
division-of-labor era, Smith’s principles exhibited limitations and lacked
effectiveness. The resulting business models left firms with a hierarchical
management; increasing specialization of workers; detachment from prod-
ucts, services, and customers; and an increasingly bureaucratic operation;
these made it difficult for organizations to compete and handle business
demands.

6.4.2 Problems and Solutions in Context 
of the Information Age

Existing economic and management theories are subject to adjustment
because of the information technology revolution that has empowered
individuals and groups. Innovative solutions to problems are enabled by
the availability of advanced, powerful technology to accelerate a business
process or to make products or services more accessible. The major effects
of the use of information technology in businesses include new oppor-
tunities in sales and marketing; rapid product development and abbrevi-
ated product life cycles; changes in management methods and techniques;
and reshaping of organizational structures to respond to global and local
needs.

The role of information technology and associated IT staff is becoming
more significant in organizations as information becomes one of the most
important assets in business. The development of the Internet has also
changed how organizations operate. Treese and Stewart (1994) underscore
the convergence of the global Internet with commerce as fundamentally
altering the business landscape. Dougherty (1997) observes that the Web
is now part of any business and of the business infrastructure and has
become a catalyst for change. Problem solving is the actual job of business
management. Information technology plays a significant role in tackling
business problems, but software alone cannot do the job. It must be
incorporated into a comprehensive, enterprisewide, problem-solving
framework in order to deal with the essential aspects of business problems
and to tailor software systems to suit the actual needs of organizations.
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Chapter 7

Software Technology and 
Problem Solving

7.1 Introduction
Information technology has ubiquitously influenced business and affected
management approaches to problem solving. A key manifestation of this
technology is the software technology that has pervaded all aspects of
life, from household appliances to entertainment devices, communication
media, productivity toolware, learning systems, and portable devices that
operate under the control of embedded, factory preprogrammed chips
with settings and parameters controllable through easy-to-use user inter-
faces. The quintessential software characteristics of flexibility and adapt-
ability have enabled manufacturers to create customized systems that
respond to changing customer needs and allow tailoring technology to
endlessly diverse business requirements. Problem-solving strategies
increasingly depend on software technology as an enabling mechanism
and for facilitating decision-making processes. In this context, software
technology includes the complete software environment utilized in prob-
lem solving, covering application systems, the knowledge base, hardware
facilities, and technical resources.

The introduction of information processing has changed the way in
which people and organizations address problems. The previous chapter
considered how problem-solving approaches are closely related to how
software development is done. This chapter considers how the availability
of software tools influences how problem solving is done. Software serves
as the critical enabling technology that automates routine problem-solving
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activities and interactions, facilitates visualization, supports collocated and
distant collaboration, etc.

Because software is enabled by technology, advances in problem
solving have become coupled with the rapid advances in technology.
Software tools are now pervasively used to support classic problem-solving
tasks from data exploration to communication. A similar pervasive adap-
tation of software and business processes is seen in the rapid reconcep-
tualization of business operations reflected in the e-business revolution
that is reshaping entire industries. The impact of the dramatically increasing
portability of computing on business processes and the affect of enhanced
digitally driven connectivity on development issues such as product cycle
time will also be considered.

The flip side of the coin to the enabling power of computing technology
concerns its limitations. Although software has provided business manag-
ers with capabilities that enhance continual growth, thus creating added
business value and revolutionizing communication, portability, and con-
nectivity, software does not represent a complete solution. The challenges
to software-driven approaches to problem solving include:

� Diversity of user requirements
� Difficulty of capturing requirements
� Complexity of business and decision-making processes
� Lack of business experience and background among software

specialists and developers
� Tight coupling between computer information systems and the

people who use them

Some of the difficulties involved in adapting software to individual
differences and changing organizational environments are identified, as
well as difficulties that arise because, naturally, end users are not pro-
grammers. Consideration is also given to the fact that the introduction of
new software systems in complex organizations is problematic for various
interdisciplinary reasons. The effective business value that a software
system adds to business performance tends to be neither explicitly
addressed nor adequately quantified because the traditional focus in
software development has been on technical metrics intended to assure
the technical quality of the software product. Although project manage-
ment and fiscally driven factors are part of the software engineering
process, they are often not well integrated into the process. Thus, a gap
remains between the discipline of management information systems and
the software development disciplines; MIS looks at solutions from a
managerial perspective, but for software development, technical concerns
are more influential.
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7.2 Software Technology as Enabling Business 
Tool—What Computers Can Do

The application of software technology to problem solving exhibits char-
acteristics that are fundamental to business organizations. Software tech-
nology allows for the acceleration of the problem-solving process by
automating tasks and reducing the need for repetition. This can lead to
reducing human errors significantly and thus to more reliable solutions.
From a human factors viewpoint, software technology

� Helps visualize problems so that they can be understood globally
and intuitively and controlled effectively

� Facilitates communication among problem solvers and creates a
collaborative environment for dealing with tasks, documents, con-
ditions, and events allowing for the recording of knowledge and
experiences

� Frees the problem-solving process from dependency on location,
distance, or time

� Provides effective tools for collecting and analyzing data and for
data mining

The specific impacts of software technology on business are elaborated
in the following sections.

7.2.1 Exponential Growth in Capability
According to Moore’s law, the density of digital chips doubles approxi-
mately every 18 months but cost remains constant, thus increasing com-
puting power but not price. This in turn fuels software technology as
software applications become increasingly powerful based on ever faster
hardware platforms. No other problem-solving tool exists whose power
expands so rapidly yet remains so cheap. When the objective is to reduce
business product development cycle time under the constraint of limited
financial resources, computer technology allows solutions in less time and
with lower cost. Due to this correlation with technology, the issue of the
development of problem solving is coupled with technological forecasting
for the computer industry. Next, the implications for business problem
solving of the evolving power of computing will be considered.

7.2.2 Business Problem-Solving Optimization
As people solve problems, they rely on computer hardware and software
to store and retrieve data; explore solution alternatives; use communication
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technology to interact with others; utilize perceived if–then rules to make
decisions; and process data, knowledge, and techniques to implement
solutions. Software technology can shorten this process, potentially trans-
lating it into a single application requiring only a single stage of inputs
with solutions delivered rapidly.

Database management systems and information retrieval systems can
serve as dynamic relational memories that not only store and retrieve data,
but also link related components together. Memory and retrieval systems
may be supplemented by the ability to recognize manual inputs using
techniques such as optical character recognition or voice recognition
technology. Expert and AI-based systems can harness the knowledge
developed by experts, and Web-based applications can facilitate almost
instantaneous communication, dramatically enhancing the ability to col-
laborate with widely distributed team members and other human
resources. Web applications can also serve as a repository to store, retrieve,
and search for data and information. The navigation power of the Web
transfers market power from producers and vendors to customers and
helps suppliers to provide better quality products with shorter turnaround.
Software technology has enabled breakthrough transformations in busi-
nesses and provided benefits that have included:

� Simplification of business structures
� Removal of unnecessary processes
� Overall quality improvement
� Reduction in time to market
� Organizational flexibility
� Cost reduction
� Bringing the benefits of a more innovative business culture

7.2.3 The E-Business Revolution

Metcalfe’s law observes that networks increase in value with each addi-
tional node (user) in proportion to the square of the number of users.
This relationship follows because, with n nodes directly or indirectly
interconnected, n(n – 1)/2 total possible interconnections are available.
The telephone network is a classic instance of the effect of this kind of
utility behavior. When the network is small, its overall value is relatively
limited. As the network encompasses more users, its benefit grows dis-
proportionately, with the individual benefit growing linearly in the number
of users, n, and the total network benefit growing quadratically in n.

E-business illustrates the impact of networking power on industry. E-
business led to the generation of value-chain partnerships, new ways of
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interacting with customers and new services. This e-transformation intro-
duced the concept of a virtual organization to business. One consequence
is the acceleration of the decision–making process. E-transformation
removed or changed the character of business boundaries, including those
between the inside and outside of a company, and opened companies to
partnerships from unexpected sources, including new relationships with
partners, providers, and even competitors. Moreover, e-business capabil-
ities enabled an integrated back-end–front-end architecture that allows
online sales and physical activities to support each other in an almost
real-time manner.

Web-enabled business processes in the network economy include front-
end functions that cover business-to-customer transactions and back-end
transactions that define relationships with vendors and partners. This includes
interfunctional processes for internal data exchanges, viewing a business as
having customers at both ends of its processes, and ensuring objectives are
driven by customer satisfaction (Grover, Fiedler, & Teng 1994). Successful
technological, Web-engineered processes triggered by the Internet have
contributed to business the ability to slash inventories; customize products;
bridge the communication gap between suppliers and individual customers;
and even design personalized products that can be ordered online. All of
these are part of the networked business process (Roberts 2000).

The general pattern of prior economic revolutions is recurring in the
case of e-business: an enabling technology (Web engineering) has allowed
the creation of a new (business) process that has sparked a global
economic transformation (e-commerce). In commerce, such business pro-
cesses can create an entirely new environment. Web-specific business
processes transcend political, cultural, and social divisions to permit
dynamic types of interaction between organizations and individuals when
anyone anywhere can purchase or sell anything to anyone anywhere
anytime via the Web.

Enabling Web solutions in businesses can reshape the entire business
operation. The production process can be viewed from point of origin to
point of delivery; emails generate inquiries and response turn-around
accelerates (Roberts 2000). Therefore, efficient product management
becomes a primary concern of the business process. Studies indicate that
organizational strategy and sound management techniques result in quality
products and profits (Elzinga et al. 1995) and thus are integral to the
business process. However, continuous improvement is only sustainable
given endurance in the technology transformation, and Web-engineering
business processes are currently among the decisive factors.

Research also indicates that increased competitiveness is the greatest
anticipated benefit of e-commerce as it improves products and makes
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enterprises more effective and, thus, more competitive (Lederer, Mirchan-
dani, & Sims 1997). With respect to user relationships, integrating business
processes with the Internet leads to far greater transparency between
customers and suppliers (Roberts 2000). This confirms that user satisfaction
is the most widely used single measure of information technology success
(Grover et al. 1994). The literature on e-business suggests overall that an
efficient business process in this environment can be achieved when
processes are Web driven (or engineered): they are more competitive and
more concerned with user relationships and satisfaction, and they require
efficient product management.

Despite these revolutionary developments, the historic baseline for
business remains the same as it has always been. In the final analysis,
income statements and balance sheets remain the fundamental gauges or
metrics of business performance. Mass manufacturing profoundly altered
business processes, but the fundamental operations of business remained
largely the same. Issues such as maintaining market share; ensuring
adequate capitalization; sustaining profitability; controlling costs; and moti-
vating workforces have always been primary challenges to managers. The
same is true in the Web economy. Management strategies must therefore
reconcile this global impact with the perennial need to keep their orga-
nizations growing and profitable.

7.2.4 Portability Power

One of the most notable characteristics of organizational problem solving
is its frequent dependence on physical (as opposed to digital) resources:
people, places, devices, connections, and work-flow documents; these
extensively bind the problem-solving process to these resources. These
bonds can restrict the ability of organizations to take advantage of oppor-
tunities that arise, for example, outside regular operating hours or beyond
the physical location of the organization.

Information and software technology help transcend these boundaries
by giving employees, decision-makers, and customers increased flexibility.
Whether through LANs or wireless connections, one can be connected to
the business environment regardless of location, time, or local technical
infrastructure. Executive or expert systems that handle structured as well
as routine connection problems provide backup for the communication
and decision-making link. For example, online dynamic databases elim-
inate the need for live contact to check inventory or to process orders.
Workflow application technology can support business processes and
eliminate the need for physical paperwork through the use of smart
digital archiving, thus reducing unnecessary organizational expense.
These capabilities or opportunities can be further extended through



Software Technology and Problem Solving � 161

portable devices such as laptops, PDAs, Internet-ready cell phones, optical
scanners, etc.

Some conceptual and technological overlap exist between portability
and the e-business transformation. However, portability focuses on
expanding an organization’s ability to work without physical limits, and
e-business is related to extending external relationships with partners,
vendors, and customers beyond traditional frameworks. E-business is
Internet enabled; portability utilizes the Web and other technological
capabilities in which information can be transported.

7.2.5 Connectivity Power

Software technology facilitates communication between devices in a mul-
timedia fashion. A computer can be attached to a digital camcorder, TV,
printer, scanner, external storage device, PDA, or another networked
computer and to the Internet simultaneously. The architectural strategy of
integrating these capabilities within a single platform can add more than
mere entertainment or aesthetic value to business exchanges. It can lead
to an environment in which the cycle time and costs of the business
processes can be reduced via an all-in-one architecture. Multimedia data
can be captured immediately, edited as required, stored on an electronic
portable device, or sent to a vendor, customer, or business partner in
almost real time.

Previously, such work required several departments, staff time, expe-
rience, and financial and technical resources. With the ability to represent
and communicate multimedia information via a connected device with
adequate software drivers installed, a well-equipped laptop can reproduce
the functionality of an entire office or even an organization. Connectivity
power provides unusual solutions to businesses such as manufacturing,
engineering, medicine, and sports, as well as many other application
domains in which demand for digital image processing, data mining, and
feedback control is high.

7.3 Software Technology as a Limited Business 
Tool—What Computers Cannot Do

Software technology enables businesses to solve problems more efficiently
than otherwise; however, as with any tool, it has its limitations. Solving
business problems involves many considerations that transcend hardware
or software capabilities; thus, software solutions can only become effective
when they are placed in the context of a more general problem-solving
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strategy. Software solutions should be seen as essential tools in problem
solving that are to be combined with other interdisciplinary tools and
capabilities. This kind of interoperation can be achieved by integrating
such tools with the software development process. Additionally, the soft-
ware development process can also be used as a part of a larger problem-
solving process that analyzes business problems and designs and generates
working solutions with maximum business value. Some examples of this
are discussed in the following sections.

7.3.1 People Have Different Needs That Change over Time

Software technology is limited in its ability to recognize the application
or cognitive stylistic differences of individuals or to adapt to the variety
of individual needs and requirements. These differences among individuals
have multiple causes and include:

� Use of different cognitive styles when approaching problem solving
� Variations in background, experience, levels and kinds of educa-

tion, and, even more broadly, diversity in culture, values, attitudes,
ethical standards, and religions

� Different goals, ambitions, and risk-management strategies
� Assorted levels of involvement and responsibilities in the business

organization’s process

A software system is designed once to work with the entire business
environment all the time. However, organizational needs are not stable
and can change for many reasons—even over short periods of time—due
to changes in personnel, task requirements, educational or training level,
or experience. Designing a software system that can adjust, customize, or
personalize to such a diversity of needs and variety of cognitive styles in
different organizations and dispersed locations is an immense challenge.
It entails building a customizable software system and also necessitates a
continuous development process to adapt to ongoing changes in the
nature of the environment.

7.3.2 Most Users Do not Understand Computer Languages

A software solution can only be considered relevant and effective after
one has understood the actual user problems. The people who write the
source code for computer applications use technical languages to express
the solution and, in some cases, they do not thoroughly investigate
whether their final product reflects what users asked for. The final product
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is expected to convert or transform the user’s language and expectations
in a way that realizes the system’s requirements. Otherwise, the system
will be a failure in terms of meeting its stated goals appropriately and
will fail its validation and verification criteria.

In a utopian environment, end-users could become sufficiently knowl-
edgeable in software development environments and languages so that
they could write their software to ensure systems were designed with
their own real needs in mind. Of course, by the very nature of the division
of expertise, this could rarely happen and so the distance in functional
intention between user languages and their translation into programming
languages is often considerable. This creates a barrier between software
solutions reaching their intended market and users and customers finding
reliable solutions.

In many ways, the ideal scenario, in which one approached system
design and development from a user point of view, was one of the driving
rationales behind the original development of the software engineering
discipline. Software engineering was intended as a problem-solving frame-
work that could bridge the gap between user languages (requirements)
and computer languages (the final product or source code). In software
engineering, the user’s linguistic formulation of a problem is first under-
stood and then specified naturally, grammatically, diagrammatically, math-
ematically, or even automatically; then, it is translated into a preliminary
software architecture that can be coded in a programming language. Thus,
the underlying objective in software engineering is that the development
solutions be truly reflective of user or customer needs.

7.3.3 Decisions and Problems—Complex and Ill Structured

The existence of a negative correlation between organizational complexity
and the impact of technical change (Keen 1981) is disputed. More complex
organizations have more ill-structured problems (Mitroff & Turoff 1973).
Consequently, their technical requirements in terms of information systems
become harder to address. On the other hand, information technology
may allow a complex organization to redesign its business processes so
that it can manage complexity more effectively (Davenport & Stoddard
1994).

On balance, a negative correlation is likely in complex organizations
for many reasons. First, the complexity of an organization increases the
degree of ambiguity and equivocality in its operations (Daft & Lengel
1986). Many organizations will not invest resources sufficient to carry out
an adequately representative analysis of a problem. Therefore, requirement
specifications tend to become less accurate and concise. Implementing a
system based on a poor systems analysis increases the likelihood of failure
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as well as the likelihood of a lack of compatibility with the organization’s
diverse or competing needs. A demand for careful analysis and feasibility
studies to allow a thorough determination of requirements might bring
another dimension of complexity to the original problem.

Second, technology faces more people-based resistance in complex
organizations (Markus 1983). This can occur because a newly introduced
system has not been well engineered according to accurate requirements
in the first place, as well as because of the combination of social,
psychological, and political factors found in complex organizations. One
further factor complicating the effective delivery of computerized systems
in large projects is the time that it takes to get key people involved.

Finally, there are obvious differences in the rate of growth for complex
organizations and information technology. Although information technol-
ogy advances rapidly, complex organizations are subject to greater inertia
and thus may change relatively slowly. Subsequently, incorporating or
synthesizing technical change into an organization becomes a real chal-
lenge for individuals and departments and is affected by factors such as
adaptability, training, the ability to upgrade, and maintainability. For such
reasons, one expects a negative correlation between organizational com-
plexity and the impact of technical change in terms of applying software
technology and achieving intended organizational outcomes.

7.3.4 Businesses View Software Technology as a Black Box 
for Creating Economic Value

Although software systems play a significant role in business organizations
in terms of business added value, the traditional focus of many organiza-
tions has been on their role in cost reduction because software automation
can reduce error, minimize effort, and increase productivity. Innovative
applications can enable organizations to achieve more than traditional
software goals, including the ability to compete more effectively, maximize
profitability, and solve complex business problems.

Business goals extend beyond direct financial benefits to include
operational metrics involving customer satisfaction, internal processes, and
an organization’s innovation and improvement activities. Indeed, such
operational measures drive future financial performance (Van Der Zee &
De Jong 1999). Efficiency, quality, and market share and penetration are
other important goals and measures of business vitality (Singleton, McLean,
& Altman 1988) that can be dramatically improved by software systems.
Moreover, research has shown that organizational performance can be
maximized by clearly recognizing the interdependence between social
and technological subsystems (Ryan & Harrison 2000). Software systems
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with Web capabilities can enhance business added value even more
effectively through their ability to reach customers, affiliate with partners,
and enrich information (Evans & Wurster 1999).

Although some small organizations use software systems only as one
of many tools to achieve financial goals, many organizations have become
partially or totally dependent on software systems. Comprehensive soft-
ware solutions are becoming the standard in many large organizations in
which carefully thought out, unified software architectures are used to
address business problems in levels of complexity that range from the
operational to upper management and strategic levels.

When an organization decides to assess whether it should develop a
software system, a feasibility study is usually carried out to compare costs
to benefits. Based on evaluating the appropriate organizational criteria
and financial metrics, managers can decide whether to move affirmatively
towards selecting an information system from among various alternative
options. Organizations look at software as a tool that can make their
businesses better, their customers happier, and their shareholders wealth-
ier. Three criteria used in recent research on assessing business value for
IT-based systems are productivity, business profitability, and consumer
surplus (Hitt & Brynjolfsson 1996 and 1997).

However, when a software system is being developed, the effective
business value that it adds to the business performance of an organization
tends to be neither explicitly addressed nor adequately quantified. In
general, the focus in software development is generally on technical
metrics intended to assure the quality of the software product, mainly in
terms of its reliability characteristics. This is because software value is
typically measured in terms of its intangible rather than tangible benefits
on business. If a software system is reliable and robust, is tested, and can
be maintained efficiently, it is assumed that it has a business value
regardless of the resultant business outcomes. The overall business effect
on value is rarely considered, nor is the distance between the potential
value of a system and its realized value (Davern & Kauffman 2000).

Requirements validation is also an important metric when building
software systems; however, the traditional forms of requirements focus on
direct users’ needs and overlook business value in terms of comprehensive
and quantifiable measurements. Although project management and fiscally
driven factors are part of the software engineering process, they are often
not integrated well into the process. Moreover, a gap remains between
the discipline of management information systems and the software devel-
opment disciplines: MIS looks at solutions from a managerial perspective,
but technical concerns are more influential for software development. The
direct connection between software development and business perfor-
mance is inadequate and is not well quantified or recognized as a core
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concept. It is important to bridge this gap and identify the business value
of software systems in terms of business metrics that are quantitative
representations of business attributes (Krueger 1992).

Identifying business metrics for software systems will not only change
how software systems are evaluated, but can also help improve the
development process by more accurately mapping it to actual business
goals and generating greater synchronization with business processes in
organizations. When the development process becomes tightly coupled
with business goals and metrics, business results will determine the
feasibility of the process. Within this theoretical framework, technical
metrics can only play the role of intervening variables (where applicable).
Once these conditions are met, management by business results will be
the driving force in the software development process (Singleton et al.
1988). This is increasingly important in an environment in which greater
focus is put on the quality of products and services and total quality
management and continuous improvement have become a necessity. A
software system unable to deliver competitive-quality business value at
the end of the value chain will no longer be an option.

Figure 7.1 depicts the interactive relationship between the software
development process and business performance in general and in an e-
business context. On the one hand, software systems are developed
through a process and should be continually improved and tailored to
adapt to changes in business requirements and environments. On the
other hand, business goals are the critical measures of business perfor-
mance, and thus business goals are the final evaluation criteria for business
performance. Such business goals are called metrics when they become
quantifiable as positive or negative indicators of business success. In such
a framework, business performance can be categorized using two kinds

Figure 7.1 Relationships between the software development process and busi-
ness performance.
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of measures: general measures and e-measures. The arrows in Figure 7.1
are bidirectional because they reflect the mutual influences between the
initial two variables of this framework. Business goals should be triggered
to guide an optimal software development process. Thus, this framework
represents a view of the initial impact of business metrics on the devel-
opment process.

The effect of the development process on business performance is also
a key concern. Although many problem-solving strategies are used in soft-
ware process modeling, the overall software process can be viewed in terms
of certain basic elements or resources, such as activities, time, people,
technology, and money. To reduce costs or increase benefits, one can think
of combining activities; minimizing the cycle time; reducing the number of
staff involved; maximizing profit; restructuring the composition of capital
and finance; managing risk; or utilizing more technology. When the software
process is reconsidered in these terms, business performance and metrics
become the decisive driving force for building software process models.

Consequently, the software process has two related roles. The first role
is internal: to assure software project payoff with better return on the
information system investment, as discussed earlier. The second is external:
the software process should make an actual difference in business per-
formance. The first role has been addressed extensively in the software
development and project management literature. However, few research
efforts have been dedicated to the study of the external impact of the
software process on business performance. In fact, these roles should
always be combined because external impacts cannot be studied without
considering internal impacts. Figure 7.2 depicts this dual approach.

This view represents the integration of the process and project themes
and describes the evolution of software process models over the last
several decades. Business value has always been embedded implicitly or
explicitly in almost every progress in software process modeling. Minimi-
zation of time was behind the Rapid Application Development (RAD) and
prototyping models. Risk control and reduction were major issues behind
spiral models. The efficient use of human resources lies behind the
dynamic models. The impact of user involvement in software process
models reflects the importance of customer influence. Achieving compet-
itive advantage in software systems is a key business value related to
users and customers. However, little empirical examination of the affect
of the different problem solving strategies adopted in software process
models takes place.

The interdependencies between the software process and business
performance must be a key issue. The former is driven by the need for
business value, and the latter in turn depends more than ever on software.
Although the need to integrate or synchronize the software process with
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the business process is increasing, some organizations do not need even
to separate these processes. This is particularly so for virtual organizations,
which have little physical existence. Associated important research ques-
tions include:

� Investigating the components of the business value of general
software systems and of Web-based software systems

� Determining how this business value can help define more realistic
metrics for software systems and the relation between the software
process and the business process

� Determining the software process factors that are most responsible
for adding business value to a firm and the difference between
the problem-solving strategies embedded in software process mod-
els in terms of their impact on business value

� Determining how business value can drive the structure of the
software process model

� Determining how the relation between the software process and
the business process can be affected by increasing dependency on
software systems

� Determining how e-business solutions will contribute to this

7.3.5 Computers Cannot Work without People

Functional examination of any software system points to a high correlation
with and dependence on people. The software development process is

Figure 7.2 Dual role of the software process.
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composed of people from end to end. This encompasses users, analysts,
project managers, software engineers, customers, programmers, and other
stakeholders. Computer systems are human inventions and do not function
or interact without human input. Some manifestations of this dependency
are:

� Software applications are produced by people and are based on
people needs.

� Software applications that do not create value will not survive in
the marketplace.

� Computers cannot elastically adjust to real situations (they work
with preexisting code and prescribed user inputs).

� Computers do not think; in terms of expertise, they reflect if–then
inputs or stored knowledge-based experiences.

� The main goal of software technology is to solve the problems of
people.

This dependency on the human environment makes the automation that
computers facilitate meaningless without human involvement and under-
scores the limits of computer systems. It also highlights the central role
that people play in making software technology an effective tool for
producing desired outcomes.

7.4 A View of Problem Solving and 
Software Engineering

Earlier sections presented a view of problem solving utilizing software
technology and the impact of global problem-solving strategies on soft-
ware-driven problem-solving strategies. They illustrated how global prob-
lem solving can apply a software-driven approach to enhance the
efficiency of problem solving. The effectiveness of these approaches on
business performance in terms of the business value created and software
project optimization achieved was projected. Business value and project
performance metrics were used to guide and reengineer the software-
driven process modeling and the global problem-solving approaches.

This multidimensional, interactive, bidirectional view of global problem
solving, software-driven problem solving, and business value is illustrated
in the diagram in Figure 7.3. The software engineering literature has
approached problem solving as a way of solving software problems. The
view proposed here, as illustrated in this figure, uses an interdisciplinary
approach to solving business problems in terms of software-driven tech-
nologies, tools, and capabilities. The objective is to create business value
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rather than merely to overcome software development problems whose
solution may not correspond to the creation of any business value.

Different factors have contributed to how business problems are solved.
The introduction of information processing changed the way in which
people address problems. Subsequently, software became an essential
element of any problem solution for organizations. Software has provided
business managers with capabilities that enhance continual growth, created
added business value, and revolutionized communication, portability, and
connectivity; however, software does not represent a complete solution.
The challenges to software-driven approaches to problem solving include:

� Diversity of user requirements
� Difficulty of capturing requirements
� Complexity of business and decision-making processes
� Lack of business experience and background among software

specialists and developers
� Tight coupling between computer information systems and the

people who use them

Software engineering is the science of computer-driven problem solv-
ing. The authors view software engineering processes as a preliminary
background that needs to be appropriated and then enhanced to provide

Figure 7.3 Interdisciplinary approach to problem solving.
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a comprehensive and problem-solving approach. This view combines
business, technology, and other relevant domains into an interdisciplinary
framework for solving business problems.
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Chapter 8

Evolution of Software 
Development Strategies

8.1 Introduction
Software has altered how business is done, increased productivity, facil-
itated learning, and provided ubiquitous connectivity in every aspect of
life. It has redefined geographic boundaries, accelerated the pace of
business events, and helped people everywhere overcome social and
cultural barriers. The underlying value of software lies in its ability to
implement solutions to problems. The technical aspects of software devel-
opment have become ever easier by building on the increasing automation
available to developers that enables even nontechnical users to modify
and customize applications to meet special requirements or user prefer-
ences. Creating a software application now requires less effort and time
than in the early periods of software development. This progress can be
attributed to a variety of factors.

Much of the frequently used code common to many applications has
already been developed, so there is no need to reinvent it. The graphical
user interface components available today in almost every development
environment are an obvious example. The development of object-oriented
programming languages and environments has provided very effective
techniques for code reuse and distribution. For example, in current pro-
gram development environments, many functions are available in pre-
defined system libraries. The role of a programmer then consists largely
of extending existing code to suit new applications. External or internal
CASE tools can reduce coding time by automation, code generators, and
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reverse engineering. Popular examples of external CASE tools include
Power Designer, MS Visio Enterprise, and Designer 2000; examples of
internal CASE tools include MS Access and Dream Weaver MX.

Web-based collaborative environments have provided an excellent
platform for rapid, virtual communication among experts and developers,
regardless of the physical location of the participants. Open-source devel-
opment is a singular example of the potential of this concept. Rapid
application development strategies have been widely adopted to reduce
the lead time between the initial investigation and design phases and the
later implementation phase. Examples range from concurrent development
to evolutionary or throwaway prototyping to agile methodologies such as
XP and SCRUM.

Although they have been available for quite a while, code generators are
playing an important role in advancing the state of software development.
Such tools are, in a sense, capable of transforming nonprogrammers into
professional programmers; however, they depend on defining appropriate
and unambiguous specifications, the creation of which may be similar in
complexity to the difficulty of writing and verifying a program. A variety of
design and analysis tools that generate code is currently available.

The actual advantage of code generators lies in their ability to allow
developers to focus on the business problem rather than on coding. An
error in identifying the business problem or process to be solved has the
potentially most serious effects, so that is the most appropriate place to
allocate maximum effort. The code produced by automatic generators may
not be optimal—any more than the intermediate, assembly, or machine
code created by compilers or assemblers would be. However, just as for
those tools, the product of the automatic tools has a consistent quality,
will be syntactically correct, and is on average as good as the kind of
code generated by an average competent programmer.

8.2 Current Challenges to Software Development
The key challenge to software development today is not in creating new
code, but in surviving an extremely competitive marketplace, which
imposes stringent demands for software solutions that are on time, on
budget, and on target. Other major challenges that software development
encounters include:

� User power and authority. Business users and individual users are
more powerful, experienced, and selective.

� Market share. Competitors are more aggressive, innovative, and
knowledgeable.
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� Killer applications. Applications are more customizable, interactive,
dynamic, and stylish.

� The anytime–anywhere factor. Applications accommodate Web-
based and wireless environments and an increasing number of
portable devices.

� The return on investment (ROI) factor. Software is viewed as a true
investment, not just a technical activity, and therefore is evaluated
in terms of the value created rather than the functionality delivered.

� The technology factor. From CASE and Web-based tools to soft-
ware–hardware integration to multimedia tools and applications,
software technology evolves at an extremely rapid rate with which
it is not easy to keep pace; nonetheless, it is essential to explore
and understand such developments because new technologies can
add significant competitive advantage if properly used.

These challenges have created a new view of software development that
reveals a potential paradigm shift in software development ownership
from technical individuals to management and business. This shift not
only has motivated managers to adapt and take greater responsibility for
managing the software development process, but also has motivated
technical developers to increase their interdisciplinary skills to be better
able to handle the business and human aspects of problems. Consequently,
greater demands have been placed on software engineering education to
extend its reach beyond traditional program development to develop an
understanding of business-driven, total-solution approaches.

8.3 Competing Views of Software Development
Software and the business context are closely interconnected. They sig-
nificantly affect each other’s effectiveness, evolution, and structure, a view
that reflects current realities and is often referred to as the tightly coupled
relationship between software and business. A loosely coupled relation-
ship between software and business is an alternative view that believes
software is partially related to business, but not largely driven by it. This
alternate view can be distinguished by two contrary perspectives:

� Business can make software better. In this view, software develop-
ers recognize opportunities for added business value. The software
is initially developed independently of specific business needs, but
is better appreciated in the context of delivering specific business
value. This extends the traditional view of software engineering to
include the impact of management information systems on software
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development. The inclusion of business metrics for evaluating the
quality of software development reflects an awareness of this view.

� Software can make business better. In this view, a business recog-
nizes an opportunity to apply software capabilities. The software
is developed as a response to business needs, but only when
business sees it as representing an opportunity for new business
outcomes. According to this view, software is a valuable accessory
to business. The applications are developed for specific needs.
However, the software is not considered as a strategic value, even
though the applications are recognized as supportive of business
success. This view is disputable today: “Increasingly, software plays
a strategic role in controlling and managing systems. Software is
not just getting bigger; it is a crucial part of the products and
services in almost all industries” (Humphrey 2002).

An isolationist or exceptional perspective is the technical one that often
considers software as independent of business. This view implies that
software can be successfully developed independently of business con-
cerns. This autonomous attitude has been the traditional view in software
engineering until recently. To the typical developer, software refers to the
quality of the source code and algorithms that reflect the developers’
technical skills. However, to the rest of the world, software is an end-user
product that only makes sense when it adds a value to a business or to
individual needs.

In fact, most users only interact with the front end of software systems
and care little about how that software is technically developed or how
it works internally. For most users, software is a black box. Indeed, if
software ceases to be a black box, it usually means it is not performing
its intended function, which ought to be transparent. Users of a product
are uninterested in how a product is manufactured or how it actually
works, unless some technical specifications are known to be tightly
coupled with the desired features of the product, such as reliability and
speed. The difference in nongeneric software applications is that users
are actually involved in the cotechnical phases of the software develop-
ment life cycle, such as analysis, design, and testing.

A similarly autonomous view considers business as independent of
software. This belief contends that business can operate successfully
without software. This attitude is noncontextual because it assumes a
hypothetical world of guaranteed market share and zero risks in which
no competitors use software for competitive advantage. If such conditions
did exist and management ignored the potential cost reductions and
revenue generation from using software, business could survive without
software engagement. Of course, this is now impossible because software
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is no longer an option and competition is the major driving force in almost
every business domain.

8.4 The Engineering of Software
The software engineering discipline emerged from the crisis of software
development during the 1960s and the 1970s as a reaction to software
project failures; economic losses; delays in schedules; increasingly com-
petitive markets; and an increasing demand for functionality, quality, and
reliability at the least possible cost. Today, software engineering still
remains an emerging discipline, but it shows increasing maturity. As with
other engineering domains, the engineering of software is invariably
coupled with four key elements:

� Appropriateness: finding the best solution for a problem
� Value maximization: maximizing the value of the solution provided
� Effective strategy: adopting an effective strategy to develop the

solution
� Modeling: designing a visual picture of a solution prior to its

implementation

An Institute of Electrical and Electronics Engineers (IEEE) definition of
software engineering says that it is “the application of a systematic,
disciplined, quantifiable approach to the development, operation, and
maintenance of software.” The discipline encompasses frameworks, meth-
odologies, techniques, and tools tailored to solve business problems.
Although the software engineering discipline evolved academically out of
departments of computer science, it has been influenced by other disci-
plines such as management, economics, and psychology. Over time, the
impact of these disciplines on software engineering has redefined its
character and broadened its scope to address more general objectives,
especially in the business domain.

Today, many business schools and business practitioners view software
engineering as part of a larger set of strategies for dealing with business
problems in which the software development process is considered an
essential element and critical success factor for the entire enterprise. Thus,
as it has matured, software engineering has expanded beyond the confines
of computer science to encompass a broader, interdisciplinary arena, in
theory and in its applications.

To appreciate the breadth of software engineering, it is worthwhile to
identify the disciplines with which it shares elements. These include, in
addition to computer science, mathematics; computer engineering; industrial
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engineering; systems engineering; economics; management and manage-
ment science; cognitive science; psychology; and human factors studies.
The impacts of these disciplines have been important driving factors in
the evolution of diverse software-driven problem-solving strategies for
software process life-cycle models. Three successive layers or dimensions
to software engineering might be thought of as:

� The horizontal dimension. This refers to effective software-driven
problem-solving strategies and how they can be tailored to solve
diverse business problems and meet various project needs. Exam-
ples include the Waterfall Model, the Spiral Model, prototyping, etc.

� The vertical dimension. This refers to the common components or
phases of these strategies and how they can be ef ficiently
addressed. Examples include the feasibility study phase, require-
ments analysis phase, design phase, implementation phase, main-
tenance phase, etc.

� The methodological dimension. This refers to the methods and
techniques that can mediate the successful implementation of these
problem-solving strategies and the common phases of the strate-
gies. Examples include the structured-oriented methodology, the
object-oriented methodology, CASE tools, etc.

8.5 The Process and the Model
Software engineering originated in early attempts by developers and
theoreticians to provide guidelines for documenting program develop-
ment. Initially, process flow charts were introduced for documenting
manual business processes in the 1950s, when hardware suppliers began
to offer guidance documentation to their clients. A process flow chart
provided a high-level conceptual definition for an overall system process
in terms of activities and roles. It visually recorded what happened in a
business process: the sequence of activities, decisions, and actions of the as-
is system and the to-be system alike, whether the system is providing products
or offering services. The process flow chart is generally used in project
documentation to help model the system before actual implementation.

By the mid-1960s, the provision of standardized, in-house methods for
creating quality applications had already become a major concern for
many organizations. Approaches were defined to identify how quality
software production could be achieved in organizations. Because most
applications at the time were produced under in-house development
conditions, neither true standardization nor effective quality was realisti-
cally attainable for software applications. Indeed, the mix of new
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approaches and recommendations arguably only added further confusion
and contributed to the crisis in the software industry.

By 1968, the recognition that a software crisis existed motivated the
NATO Science Committee to sponsor two conferences to address the
situation. These conferences, held in October 1968 and October 1969, led
to significant outcomes. These included proposals for establishing sound
engineering principles (methods) to economically obtain reliable software
solutions that worked on real machines (Bauer 1972). This was to be
accomplished by applying the principles of computer science and math-
ematics to developing cost-effective solutions to software problems and
standardizing generic application components or notations so that they
could be reused in other applications.

According to Osterweil (1997), a process is a natural transformation
across activities needed to build an application from a known set of
requirements or, as defined by the IEEE, a “sequence of steps performed
for a given purpose” (IEEE-STD-610) (Paulk et al. 1993). A software process
can be defined as a set of activities, methods, practices, and transformations
used to develop and maintain software and the associated products, e.g.,
project plans, design documents, code, test cases, and user manuals (Paulk
et al. 1993).

Alternatively, a software process is “the technical and management
framework established for applying tools, methods, and people to the
software task” (Humphrey & Kellner 1989). Software development embod-
ies a process that transforms ideas, needs, and requirements into appli-
cation programs. A process model can be defined as a specification of a
real-world software process (Jaccheri, Picco, & Lago 1998). The term
software development life cycle (SDLC) refers to the process and model
used to develop software systems and describes the process that devel-
opers take in moving from problems to solutions.

A process can be characterized by a range of characteristics, from its
complexity (Bandinelli et al. 1995), to its dynamic behavior, its activities,
and how difficult it is to understand. A process may be discrete or
continuous, sequential or nonsequential, hierarchal or distributed, or based
on human action or routine computerized activities (Sutton 1988). Because
processes often cross organizational functional or departmental bound-
aries, they lead to a description of organizational operations that identifies
not only who is doing what, but also how and when these operations
are accomplished. Thus, value-adding business processes represent the
core to understanding business process re-engineering (Nissen 1994). The
reliability and consistency of an organization’s software process definition
depends on an organization’s maturity (Paulk et al. 1993). Furthermore,
a software process must be continually improved by evaluating quantitative
data about the performance of an organization’s processes in order to
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guide its adoption of new information technologies and enhancement of
the current process structure intelligently (Bandinelli et al. 1995).

Software product quality results from a combination of factors involving
not only the product being developed but also the process that develops
that product (Pressman 1996). As Jaccheri et al. (1998) observe, software
processes are highly complex activities that affect critical factors such as
final product quality and costs, so process control is essential. Effective
process control is not intended merely for preventive maintenance or
corrective action, but also for forecasting, scheduling, and reliability engi-
neering, and to ensure quality assurance. In fact, controlling a process so
that it attains the desired project objectives is the common, shared intention
behind every process model approach.

Process control involves managing people, time, resources, and risks
to make software production feasible and reliable. It is inextricably related
to product metrics because defining software product metrics is the most
obvious measurable way to achieve efficient control. These metrics also
depend on project goals, a notion that can be formally addressed such
as by the TAME method in a goal/question/metric approach (GQM) (Basili
& Rombach 1988). Process models are obviously affected by the mecha-
nisms for control and the software process concept overlaps project
management in terms of control strategies and techniques.

It is essential to understand the interdisciplinary nature of software
process control for the simple reason that tunnel-vision focusing on only
one aspect of software process control will increase the chance of failure
in software products. Such narrow approaches have in the past often
resulted in a fundamental lack of understanding of the software develop-
ment process and thus precipitated an increasing demand for a compre-
hensive approach in process models (Abdel–Hamid & Madnick 1989).
Finance and economics, for example, are areas with impacts on the
software process because they address project feasibility, cost estimation,
risk assessment, productivity, planning, and control. Thus, integrating
economics with process modeling helps provide an evaluation framework
that can take into consideration the technical and fiscal aspects of a
situation, especially in situations constrained by limited resources (Boehm
1984a,b).

Another aspect of the process concept is the cognitive aspect of
modeling. Whether one adopts a managerial or technical approach to
modeling software processes (Jaccheri et al. 1998), a model is an abstract
representation of reality that is used to reduce the complexity of under-
standing or interacting with the modeled phenomenon by eliminating details
that do not affect the phenomenon’s relevant behavior (Curtis, Krasner, &
Iscoe 1988). This notion is essential for effective process modeling analysis
because models reflect the elements that their formulators believe are
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needed to understand or predict the phenomenon modeled. Thus, reverse
engineering helps reveal the ideas or strategies behind existing process
models.

8.6 Progression in Software Engineering Strategies
Software engineering originally emerged as a response to the software
development crisis of the 1960s. It subsequently evolved as an engineering-
like response to project failures, serious economic losses, scheduling
delays, competitive markets, and increasingly demanding customers look-
ing for functionality, quality, and reliability at minimum cost. The current
state of software engineering strategies is the result of sustained progress
as described in the following subsections.

8.6.1 The Era of Management Isolation

In the era of management isolation, considerable effort was devoted to
optimizing the technical side of software systems with relatively little
emphasis on the business side of software as part of the development
strategy. This can be attributed to the backgrounds of software engineers
of that period, who were primarily computer scientists and mathematicians.
This was to be expected at that time because business managers had little
or no involvement in the software development process; the entire soft-
ware development process was directed, designed, implemented, and
evaluated by technical specialists who dealt primarily with issues of
automation.

A typical scenario for this era was for a business problem to be
described quickly by a customer (or organization) while the software
development team asked specific questions about the nature of the prob-
lem. The business representatives were then informed how long the
software development process was estimated to last. Until the system was
actually implemented, management involvement was limited to this extent
unless a need for further information arose. This era was distinguished
by the complete dependence of the business user on the computer
professional. If the project overran an estimated schedule, the business
users or company managers were relatively powerless except for expres-
sions of dissatisfaction with service (Thomsett 2002).

In many cases, the resulting software solutions created more problems
than they solved. For developers, software was naturally viewed as a goal
rather than as a tool used to solve business problems in a way that should
bring measurable value to a business. This period also witnessed the birth
of the software life-cycle concept, with appropriate underlying technologies
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for each stage of the cycle. This was also the first time during which
software development was viewed as a problem-solving process from a
broader scientific perspective; it was seen a process governed by general
rules that manifested itself in a tendency towards formalizing software
development at increasing levels of rigor.

During this era, sequential and structured life-cycle models character-
ized the way in which software development was perceived, structured,
and visualized. This structured approach reflected or imitated the organi-
zational charts in conventional management structures in organizations
according to which businesses were run by top-level management direc-
tives. Strong emphasis was placed on centralized control and closely
restricted flexibility for middle and operational management.

� Duration: 1960s to late 1970s
� Technology: large computers
� Management/business involvement: lack of involvement and

dependency on computer professionals
� Software development process: the value of software is in the soft-

ware 
� Nature of applications: large systems and structured problems

(transaction-processing applications were common)
� Team structure: 100 percent technical team
� Process life-cycle models developed: Waterfall Model

8.6.2 The Era of Traditional Software Engineering

The development process was still under the relatively complete control
of software professionals, but user and management participation was
greater. Feedback loops were incorporated following the engineering
model with quality measured as the distance between actual and desired
results. This was seen in the modified versions of the Waterfall Model,
which incorporated bidirectional relationships between different phases
of the development. Examples of such modified models included waterfalls
with overlapping phases and with subprojects.

The period still exhibited limited user inputs at the analysis and testing
phases. Team structures sometimes allowed business specialists to repre-
sent the business requirements, but these specialists as yet had no clearly
designated responsibilities, with a resulting lack of effectiveness.

Because the major challenge for software developers was to deliver a
working system with appropriate functionality, little or no attention was
given to measuring the business performance characteristics of the system.
Correspondingly, there was a strong proclivity to test and evaluate infor-
mation systems from a purely technical perspective regardless of their
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business value. Even when management desired to investigate the financial
performance of an information system, often the software-related back-
grounds among potential overseers or investigators were insufficient to
carry out this role effectively.

� Duration: mid to late 1970s
� Technology: database, networking, and communications technology
� Management/business involvement: management or business

involvement restricted to initial systems analysis, system testing,
and documentation, but this involvement is on the terms of soft-
ware professionals; bureaucracy marks this era

� Software development process: business metrics were implicitly
incorporated with the emergence of more disciplined approaches
to software development, project management, and quality assur-
ance; yet, no incorporation of human-driven factors (social and
political issues) was visible

� Nature of applications: management information systems (MIS) and
decision support systems (DSS)

� Team structure: technical but sometimes allowing business analysts
to get involved

� Process life-cycle models developed: modified waterfall models

8.6.3 The Era of Business Evaluation of Software Engineering

Software developers realized that computers did not solve business prob-
lems independently because those problems required more than technical
skills. However, in this era, business managers also began to take control
of software development. Although development teams were still techni-
cally oriented, their performance was assessed through the putative busi-
ness outcomes that their products would bring, which included return on
investment, net present value, break-even point, risk minimization, cus-
tomer satisfaction, and added value for the long run.

This period also saw the birth of software economics. Information
economics, which had begun to receive serious attention in the 1960s,
played a significant role in the evolution of software economics. The roots
of software economics go back to early 1970s (Boehm & Sullivan 2000).
A fundamental difficulty with software economics is that most software
engineers are unlikely to understand enterprise-level, value-creation objec-
tives, and top and middle management often do not realize the success
criteria for software development or how investments at the technical level
are linked to value creation. One can argue that the inadequate financial
education for software developers contributed significantly to the software
crisis phenomena from the 1960s through the early 1980s. Despite this,
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the degree of internal involvement by business people was still limited.
In fact, because those in control were not actually part of the process,
this created new problems between technical and business domains due
to incongruent goals and disparate interests and backgrounds.

� Duration: during the 1980s
� Technology: PC computing
� Management/business involvement: the beginning of the strategic

alignment between business and software development
� Software development process: viewed as a critical investment in

the organization that should be carefully evaluated from a business
prospective

� Nature of applications: desktop applications, packages, generic
applications for organizations and individuals

� Team structure: still technical but monitored by business managers;
new responsibilities are strictly enforced in terms of feasibility
studies, marketing vision, and customer service and support

� Process life-cycle models developed: Spiral Model

8.6.4 Maturity Era: the Era of Business-Driven 
Software Engineering

This era is distinguished by a high degree of collaboration and partnership
between the computing and business domains in which systems are
analyzed and designed in joint application sessions. The rationale is to
create value from diverse needs, backgrounds, and interests in well-
managed, collaborative environments. The following characteristics distin-
guish this period:

The use of software process models and integrated environments
(analyzing and supporting human factors)

Software process (process programming, Capability Maturity Model
(CMM) by Software Engineering Institute)

Software Process Improvement
Integrated environments (tool integration)
Analyzing and supporting human factors (protocol analysis of human

factors, communication support for consensus making and infor-
mation exchange)

Object-oriented technologies (object modeling, design patterns, appli-
cation frameworks, software components)

Distributed computing (concurrent object-oriented languages, distrib-
uted object-oriented languages, middleware, software agents, busi-
ness objects, object-oriented business process reengineering)
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Web-engineering (e-business applications, distributed collaborative
software development, open-source software development, remote
software testing and maintenance)

Agile development methodologies (radical project management,
extreme programming, lean development)

� Duration: during the 1990s and on
� Technology: the Internet
� Management/business involvement: management partners with

development teams in the software development process; high
degree of user involvement in every phase

� Software development process: value creation-driven software process
� Nature of applications: Web-based, wireless, hardware–software

combinations, enterprise-driven integration, heavy focus on user
interface and real-time systems

� Team structure: interdisciplinary and tailored to the different needs
of the various phases of the development process

� Process life-cycle models developed: Evolutionary Delivery, RPM
Iterative Development, many versions of RAD, COTS, Agile, etc.

8.6.5 Characteristics of Current Software Development

There is currently significant pressure to incorporate exogenous factors
and concepts in software development strategies. The presumption is that
these concepts will balance the relationship between humans and
machines. The social sciences have increasingly come to bear as the
software industry recognized the relevance of software economics and
human computer interaction (HCI), and financial, managerial, and psy-
chological perspectives were recognized as important factors in software
development. Extensive research, including field and laboratory studies,
is being undertaken to explore the relation or correlation between software
technology and its effectiveness in the real world. Another positive out-
come has been the higher degree of interaction between computer and
social scientists over the last two decades; this has enabled computer
scientists to better appreciate the human, social, and organizational ele-
ments in the software development equation.

Software applications have evolved from isolated systems such as word
processors, spreadsheets, and databases into networked tools that have
radically and pervasively altered conventional business processes. Software
was once primarily used to address well-structured data processing prob-
lems such as document and spreadsheet generation; however, software
products are increasingly integrated into unstructured, day-to-day business
operations. The expanded use and capabilities of these tools have enabled
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the design of reengineered business processes, allowing organizations to
simplify business procedures and reduce cycle time. Developing software
in this environment is an entirely different experience and requires syn-
chronizing software and business processes with emerging information
technologies.

An examination of software systems reveals characteristics that distin-
guish current information systems applications and software products from
those of an earlier generation. Most current software applications are Web
enabled or Web based; many interface with dynamic databases that are
updated in little or real-time. Increasingly, the tendency is to build cross-
platform software products that work with any operating system or envi-
ronment, as well as truly evolutionary software products that have no
final release version. Hardware has become more as well as less tightly
coupled with innovative software applications; the user interface has
become a major factor and rules for navigation, interactivity, and enhanced
functionality are key elements for success.

Wireless and portable applications are gaining in importance, and
issues of privacy and security are increasingly important criteria for devel-
opment success. Personalization and customization also play an increas-
ingly prominent role in the competitive advantage of software products;
the presentation of facts, concepts, and ideas is now often accomplished

Figure 8.1 Traditional and interdisciplinary software engineering.
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through rich multimedia rather than unadorned text. The all-in-one or
one-stop-shop concept has become a target for developing stand-alone
and e-business applications alike and applications have become smarter,
learn user patterns, memorize activities, provide feedback, measure per-
formance, and track progress.

Enterprise application integration is designed to allow different depart-
ments to interoperate so that business processes can smoothly cut across
multiple departments. Such applications also enable the enterprise to
integrate its processes with partners, suppliers, and different levels of
customers in the value chain. Finally, user interface design is increasingly
becoming a critical factor in assessing the effectiveness of software prod-
ucts. Figure 8.1 illustrates the old approach to software engineering, in
which emphasis was primarily given to processes associated with software,
versus the latest interdisciplinary approach, in which human and business
aspects play a major role in the problem-solving process.
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Chapter 9

Diversification 
of Problem-Solving 
Strategies in Software 
Engineering

9.1 Introduction
This chapter examines factors that have promoted the diversification of
software process models. The intention is to understand more clearly the
problem-solving process in software engineering and to identify criteria
that can be used to evaluate alternative software-driven problem-solving
strategies for differing project requirements. A review of software process
modeling is given first, followed by a discussion of process evaluation
techniques. A taxonomy for categorizing process models, based on estab-
lishing decision criteria, is identified that can guide selecting the appro-
priate model from a set of alternatives on the basis of model characteristics
and software project needs. These criteria can facilitate adaptability in the
software process so that the process can be “altered or adapted to suit a
set of special needs or purposes” (Basili & Rombach 1988).

The factors that have contributed to the diversification of software
process models have often been related to the expansion in goals and
capabilities in the software industry. The expanding goals that emerge
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from new stakeholder requirements drive problem-related factors; the
growth in software capability—which reflects the impact of emerging
technologies, evolving methodologies, and increasing interdisciplinary
impacts—drives solution-related factors. The impact of historical develop-
ment and problem- and solution-related factors not only helps explain
the changes that have occurred in process modeling but can also help
project or forecast future developments in process modeling.

Figure 9.1 illustrates how the arrow of time continually pushes evolu-
tion in software process modeling and increased diversification of soft-
ware-driven problem-solving strategies. The causative forces involve
factors ranging from increased software development experience and more
interdisciplinary background among software engineers to the degree of
problem complexity; organizational goals; availability of technology; and
changing cognitive styles in problem solving. Regarding the latter, for
example, differing cognitive styles and paradigms of cognitive experience
exist in every discipline and practice.

For example, in the domain of management information systems, an
in-depth understanding of its models, cognitive activities, skills, and knowl-
edge can lead to improved approaches for developing information systems
and allow problems to be solved more creatively and efficiently (Benbasat
& Taylor 1983). Bottom-up, reverse engineering of models (Tilley 1998)
and cognate approaches may uncover original system design intentions.
They can then be helpful when exploring the relationship among models
in a specific discipline and can lead to establishing clearer frameworks
for understanding.

Figure 9.1 Process diversity as a function of problem and solution-related factors 
that evolve over time.
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9.2 Understanding Diversification 
in Software Engineering

At the problem level, the roots of diversification include:

� Scope and complexity of problems
� Types of requirements and forms of problems
� Need to learn and apply new capabilities
� Challenges of continuous change
� Impact of the consumer economy and interdisciplinary effects
� Development of e-business applications
� Multiplicity of stakeholders, project team skills, background

requirements, and business goals

At the solution level, diversity has been driven by variations in:

� Project management approaches
� General standards
� Quality-assurance standards
� Hardware and software tools
� Networking tools
� Data mining and automation tools
� Nature, scope, and domain of applications
� Need for business-driven software engineering
� Secure software engineering
� “Killer” applications
� Mobile or wireless software engineering

9.2.1 Driving Forces of Diversity in Development Strategies

Diversity is a prevalent characteristic of the software process modeling
literature. This reflects the evolution in software development in response
to changes in business requirements, technological capabilities, method-
ologies, and developer experience. Process diversity also reflects the
changing dimensions of project requirements, with process models matur-
ing over time in their ability to address evolving project requirements.
Diversification is also driven by the increasing importance of interdisci-
plinary views in modeling software processes. Figure 9.2 describes the
combined effect of such temporal and interdisciplinary effects.

The temporal parameter is correlated with greater demands and
changes that require ongoing adaptation and increased complexity. Time
also introduces greater capabilities that afford better problem analysis and
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resources. There are numerous examples of measures that change through
the development of increased capabilities, including methodology, tech-
nology, experience, and interdisciplinary impact, as illustrated in Table 9.1.

Figure 9.2 Impact of time and interdisciplinary impacts on the evolution of 
process modeling.

Table 9.1 Measures of Evolution in Software Process Modeling

Aspect Illustrations from the Literature

Structure Shift from sequential architectures in Waterfall Model to 
iterative architectures in spiral and prototyping models

Degree of 
control

Formal specifications—as in IBM Cleanroom—enable more 
validation and verification for user requirements as 
opposed to early traditional methods

Integration Rational unified process and win–win spiral models offer 
comprehensive frameworks in which several process 
models were utilized

Automation COTS, Cleanroom, the TAME and dynamic models utilize 
the emergence of CASE tools and simulation technologies 
to automate the development process

Visualization The move from structured modeling paradigms to object-
oriented modeling and use-case-driven paradigms enables 
greater visualization, especially with the availability of 
advanced modeling packages and simulation software

Evolutionary 
Models

Spiral 
Models

Dynamic 
Models

Quality- 
Based 
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Industrial 
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Technological capabilities seem to have the most influence on process
modeling in terms of their impact on process automation, visualization, and
degree of process control. Thus, although early process models were manual
and sequential in structure, this changed with the introduction of fourth-
generation techniques and languages. Process technology enabled the sup-
port of the rapid application development needed for iterative approaches
with their greater emphasis on risk minimization and user satisfaction.

Time also increases the accumulated pool of experience in process
modeling development. The movement from the traditional waterfall to
the V-shaped model, or from the conventional spiral to the win–win spiral
model over the decades are examples of the effect of accumulated
experience on process modeling structure and definition. This capability
measure is also a function of problem-related factors, with increases in
problem complexity and business requirements affecting the collective
pool of experience and altering how problems were solved.

The type of methodology adopted also has considerable impact on
process modeling evolution. For instance, an object-oriented methodology
supports the architecture-centric approach in rational unified process
models in terms of structure, automation, and visualization, as distin-
guished from process-oriented methodologies. Although these two meth-
odologies exhibit generic conceptual similarities in the earlier phases of
the process model, they become more differentiated as implementation-
related factors are considered or techniques and representational con-
structs are utilized (Agarwal, De, & Sinha 1999). The SOFL model of Liu
and colleagues (1998) presents an integrated approach that adopts struc-
tured methodologies in the requirements phases and object-oriented meth-
odologies in the design and implementation phases. The adopted
methodology can be driven by quality assurance and associated with the
evaluation of software systems. Gradual improvement approaches such
as TQM view problems differently than highly dynamic approaches such
as BPR (business resource planning). For gradual improvement, SEI-CMM;
the Kaizen approach; QIP; and the BUTD approach have been introduced
with significant effects on structuring and automating the development
process (Bandinelli et al. 1995).

The software field originated with little attention paid to human factors.
The importance of social context disciplines was only later appreciated,
driven particularly by the increasingly widespread awareness of the high
failure rate of software projects and its relation, at least in part, to social
science-related factors. At that point, human factors began to be accom-
modated more seriously—for example, through the use of systems dynam-
ics modeling and greater attention to cognitive effects and behavioral
models. This reflected a more interdisciplinary understanding of software
problem solving (Boehm, 1984).
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Economic considerations were more systematically addressed by incor-
porating risk management in the prototyping, spiral, and other iterative
process models; they were manifested in the development process with
increased attention to feasibility assessment, cost estimation, risk assess-
ment, productivity, and control. Industrial engineering and operations
research are examples of other interdisciplinary influences affecting the
evolution of process modeling. The application of quality-assurance stan-
dards to business processes is one example. Software modeling, in terms
of development structure and process visualization, has also been affected
by the increasing impact of customers on business. Thus, iterative struc-
tures substantially escalate user involvement and customer–developer com-
munication becomes more effective with greater visualization. Thus,
customer considerations have significantly affected process evolution.
However, it is worth noting that working with small systems entails a
different experience than working with large systems because modular-
ization is not reliable without tailored approaches (DeRemer & Kron 1976).
A schematic representation of drivers for the evolution of software process
modeling is shown in Figure 9.3.

Several implications are worth noting here. For one, it is clear that the
arrow of time is critically correlated with advances in software process
modeling. Indeed, most of the influential drivers in process modeling
evolution are time dependent, although time is inadequate to explain all
the variation. Time can be thought of as a necessary requirement for
problem- and solution-related drivers, acting as a trigger and a constraint.
Although problem-related factors have been essential to precipitating
changes, the availability of resources and capabilities (solution-related
drivers) have had even greater impact on this evolution. This can be
attributed to the impact of capabilities on problem-related factors. Thus,
problem- and solution-related factors are not mutually exclusive, but
depend on one other. The degree of automation, control, and integration
and the extent to which changes in process structure take place can be
used as measures of the evolution of software process modeling.

Another consideration has been the increasing degree of visualization
provided for process models. Initial models, like the Waterfall, Evolu-
tionary, and Spiral models, had a static view of the software development
process, but later behavioral models explicitly portrayed the dynamic
character of real-world software development processes. Indeed, with
process improvement models and state-of-the-art advances in CASE tool
technology, one is now able to monitor the development process in a
multidimensional view, including full simulation of the dynamic behavior
of the process. This advances the goal of efficiently controlling the
software process. Figure 9.4 describes this evolution in visualization
capability.
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Figure 9.3 Schematic representation of drivers for software process modeling.

Figure 9.4 Evolutions of software process model capabilities for visualizing real-
world development.
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9.3 The Hidden Value of Differences
Paradoxically, diversity can be acquired through inheritance as well as by
overriding the presuppositions that derive from inheritance. Cultural dif-
ferences are examples of inherited characteristics that affect the degree
of diversification in an environment. Scientific, social, political, psycho-
logical, philosophical, experiential, and other dif ferences modulate
acquired diversity through exposure to values, education, involvement,
and interaction. Amid such diversity, commonly shared human needs play
a unifying role. Conventional problem solving addresses problems by
trying to eliminate the sources of contradiction; integrative problem-solving
approaches try to capitalize on differences to obtain optimized solutions.
Conventional problem solving eliminates or minimizes the other (the
difference) in favor of specialization; cutting-edge problem solving incor-
porates (integrates) the other by inclusion.

Obviously, not every kind of difference can or should become a factor
in a problem-solving strategy. Some differences may reflect contradictory
facts or disputes about fundamentals, some of which may be irrelevant
to the issue at hand. However, the idea of integrating differences rather
than removing them is worthwhile if the legitimacy and relevance of the
differences have been established. The key to distinguishing between
negative differences (which ought to be excluded) and positive differences
(which ought to be integrated) is to determine whether the differences
are valuable and relevant. If they are, they should be utilized, not ignored
or eliminated. Many modalities affect the status or interpretation of differ-
ences, for example:

� The simultaneity factor. Some differences can appear contradictory
when they occur simultaneously, but are actually complementary
when placed in sequential order on a timeline. For example,
consider a false dichotomy such as whether analysis or design,
process or architecture is more important in software development.
Of course, when analysis and design are viewed as phases in a
unified life cycle, each one is as important as the other. A business
firm needs to diagnose a problem before providing an architecture
for its solution, and an architecture needs to be tailored to a
particular case. On the other hand, a good analysis is worthless if
it is followed by a poor design.

� The unique answer factor. Differences can appear contradictory if
only one element of a situation is taken as representative of the
entire situation. This leaves no room for other contributing factors
and no way to find relationships between diverse differences. For
example, is a problem a technical or a business problem? Recognizing
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that a situation may arise from business as well as technical errors
is totally different from understanding the issue from only a single
perspective. Different elements can contribute to a complete picture
and they may interact with or complement each other. Thus, a
technical problem may affect business factors and business factors
may create technical problems. The failure of a commercial Website
to generate revenue may have been caused by inadequate technical
support, which led to frustrated customers. A lack of appropriate
budgeting may in turn have been responsible for the shortfall in
technical support.

9.4 Integration—Not Differentiation
What is really needed in solving a problem is to find out whether the
relevant differences or diversities can or should be made to work together.
The purpose in integrating differences is not only to ensure resolution of
contradictory or conflicting factors. Indeed, diverse elements may not even
be able to function independently of one another, and eliminating one
element in favor of another may introduce other problems. To illustrate
the integration of differences, consider another false dichotomy posed by
the following question: “Which is more important: the process or the
project?” This is a misguided alternative because it implies differentiation
is the only choice and that integration is out of the question. In fact, no
process exists without a project and no project can have a successful
outcome without the guidance provided by a systematic problem-solving
process. Thus, the project and the process must be integrated, combined,
or synthesized—not differentiated in an exclusionary sense by sacrificing
one element for the other.

In problem solving, it is tactically unwise to give priority to differen-
tiation over integration because this tends to predispose developers to
ignore or postpone examining the relationships among differences until
they are compelled to do so by a roadblock in the solution effort. If
differentiation is done first, a roadblock may occur after initial progress
has been made in solving a problem when a difficulty related to some
defect in the tentative solution is recognized. In this case, the process will
be forced to backtrack, retracing its steps to determine what went wrong.
By contrast, if one examines the potential benefit of integrating differences
before selecting one of the apparent “alternatives,” the risk can be reduced.
Thus, a differentiation-first approach is more likely to entail a costly restruc-
turing of an entire effort in order to debug and correct a faulty process, but
an integration-first approach may require only a preliminary inquiry and
relatively primitive tests to evaluate the potential benefits of integration.
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9.4.1 Investing in Diversification

Diversity is an organizational asset. It embodies the hidden value of
differences: a value that is frequently underestimated, underutilized, or
obscured in traditional approaches. Appreciating diversity is the only way
in which one can successfully implement interdisciplinary thinking in
software engineering. The purpose of investing in diversity is ultimately
to exploit and incorporate the interdisciplinary knowledge that it repre-
sents into a unified problem-solving framework. Diversity investment leads
to a wider understanding of the role of diversity in software engineering
and bringing it to bear on issues identified during the problem-solving
process. It also implies identifying new, unrecognized, or underutilized
areas of knowledge and exploring new aspects of problem definition.

One venue for doing this is by incorporating diverse requirements and
capabilities into problem solving so that it is tailored to various kinds of
business problems and project goals. For example, investment in diversity
can be implemented by establishing training programs that prepare
employees to think in an interdisciplinary way; to understand diversity;
and to learn to incorporate diverse sources and types of knowledge to
construct a broad-based approach to problem solving.

9.4.2 Factors That Affect Interdisciplinary Ignorance

For present purposes, the term ignorance refers to a lack of data or the
presence of inaccurate data in a circumstance in which such a lack hinders
the proper understanding and definition of business and human problems.
Ignorance in this sense includes lack of knowledge about available infor-
mation as well as about adequate or effective tools. This results in a
problem-solving process that may have unreliable or insufficient inputs.
Understanding the sources and varieties of ignorance can help reduce the
failure rate in problem-solving processes. Just as in the case of domain
knowledge, domain or process ignorance is also an interdisciplinary
phenomenon; thus, overcoming this kind of ignorance requires an inter-
disciplinary response. Although a thorough grasp of a problem area and
the solution domain results in success, ignorance masks or obscures the
real situation and thus broadens the distance between actual problems
and their appropriate solutions. The many sources of ignorance include
unreliable sources of information; partial knowledge; lack of communica-
tion; and interorganizational ignorance.

9.4.2.1 Unreliable Sources of Information

This category includes inadequately accountable sources of information.
Examples range from unconfirmed, inconsistent, suspicious, or doubtful
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resources to resources that are untrustworthy or lack qualification. Clearly,
determining whether a resource is reliable requires examining the quality
and credibility of the data and the data carrier; even computerized systems
can be based on incorrect formulas, programming bugs, and inaccurate
entries. Interdisciplinary capabilities are needed to eliminate or disqualify
unreliable resources and to rate or rank sources, which can be human,
digital, or hardcopy sources. For example, one can estimate the reliability
of a human source by examining characteristics of subjects such as their
skills, psychology, physiological criteria, etc. Technical testing may be
required if data is delivered by electronic media. If a source involves
specialized information, domain knowledge and expertise in the area may
be needed to evaluate its reliability.

9.4.2.2 Partial Knowledge

This refers to aspects of an issue that have not been revealed (so-called
in-breadth ignorance) or information about a specific aspect of an issue
that is left incomplete (so-called in-depth ignorance). This type of igno-
rance may even derive from a complacent or self-satisfied attitude—“what
we do not know does not exist.”

In-breadth ignorance assumes that information can be gathered using
only one or two paths of knowledge, with other aspects of the problem
not even considered for relevancy. Failure to recognize all the dimensions
of an issue can result in solving the wrong problem and thus leaving the
real problem unsolved. For example, although the infamous Y2K problem
was at one level a technical problem, it had in fact many managerial
aspects. For example, solving the technical dimension of Y2K was
arguably easier than finding sufficient staff capable of reviewing systems
for relevant bugs. In this situation, because of the intense demand for
qualified staff, managing the available human resources became a real
challenge. The “technical” problem was indeed interdisciplinary, like
most business problems.

In-depth ignorance may recognize the relevant aspects of an issue but
not study them thoroughly enough to understand them effectively. For
example, when considering the e-business readiness of a certain organi-
zation, a company may be deemed well prepared in terms of Web
presence, design, and infrastructure, but may have overlooked the need
to train and prepare its staff for the demands of e-business. Staff training
is a key ingredient of e-business readiness—at least as critical as technical
skills, written policies, or strategies. E-business needs to begin with solid
technical preparation, but in the long run it requires sufficient staff support,
involvement, and understanding. In-depth coverage means that each
dimension or component of an issue is studied and analyzed fully.
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9.4.2.3 Lack of Communication

Lack of communication is a major source of ignorance. Communication
narrows the distance between the various elements of the problem in
question. Lack of communication originates in factors such as failure to
contact the stakeholders in a business problem; not using effective com-
munication techniques; or not being able to carry out an efficient com-
munication process. The effects of a lack of communication can be
summarized as follows:

� Ignorance of lack of sources. Communication is the primary method
for acquiring data from existing or prospective sources. Lack of
communication reduces or omits sources of information.

� Extracontextual ignorance. Communication can ease tension
between conflicting parties and improve common understanding.
This is beneficial when gathering reliable data. Furthermore, the
more that data resides outside an organizational context, the more
difficult it is to obtain. Communication encourages an amicable
and mutually accessible environment in which differences can be
viewed as sources of data and knowledge. This also creates oppor-
tunities for transferring and exchanging data.

� Ignorance of lack of communication channels. Without appropriate
communication channels, it is often difficult to deliver timely or
on-time data. Late data delivery can make the problem-solving
process less effective. This is especially important in achieving
competitive advantage and responding to urgent situations.

� Differentiation ignorance. The current trend in business is to learn
from competitors and to seek partnerships to achieve common
goals. It is known that integrative approaches facilitate more effec-
tive problem solving roles in terms of gathering reliable data,
compared to nonintegrative, differentiating approaches. Commu-
nication is the cornerstone for facilitating any integrative process.

9.4.2.4 Interorganizational Ignorance

The value of knowledge stems from its usability and adaptability, not from
its mere existence. To be valuable, information or data must add value
to an organization and to its problem-solving processes. Otherwise, it is
tantamount to a form of double ignorance in which people do not know
what they know but assume that they do (or, they do not know that they
do not know). This can make knowledge expensive if one is in possession
of unused data, or make an organization a victim of knowledge utilization
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delays that result from a lack of awareness or ignorance of ignorance.
Knowledge-based ignorance can hide weakness behind apparent strength
and business sickness behind an apparently healthy organization. This
source of ignorance has many manifestations and degrees and even low
levels can be damaging and costly.

Consider, for example, the sales transactions that a department store
conducts with its customers on a daily basis. If this accumulated daily
data is only stored until the end of the year and then used solely for
purposes related to taxes and inventory, the opportunity to apply such
critical information may have been permanently lost. For example, applied
in a timely fashion, the daily data could have been utilized for a variety
of purposes—including tracking inventory in order to avoid going below
a repurchase point. If data is not processed on time for such tracking
purposes, business sales can suffer because of out-of-stock occurrences
on key saleable items, possibly resulting in a loss of strategic clients,
alliances, or business partners. Ignorance at the inventory level can block
a business from operating, partially or totally in a very short time. There-
fore, even though this type of ignorance is associated with a low level of
the structured business process, lack of use has a potential for major
impact and so represents a serious risk.

Studying customer behavior in a manner that measures customer
requirements on an accurate, predictive basis is another example of the
applicability of such low-level data. Without analyzing daily sales data
statistically, it may be impossible to cluster customers, products, or sales
points so that the store can prosper and maintain its competitive advantage.
Ignorance at the customer satisfaction level may not preclude a business
from continuing operation, but it may put such a business at a competitive
disadvantage. The level of risk of ignorance in this situation may be
moderate, but the long-term effects may be critical. This situation belongs
to the branch-level management class of business processes.

Conducting ongoing cost-benefit analysis to measure financial perfor-
mance and to control share profit is also an important issue. Absence of
knowledge critical to supporting decision-making processes may prevent
an organization from effectively supporting strategic management deci-
sions. Such knowledge is of strategic value and can only be derived from
daily transactional data. A lack of knowledge of what is happening on a
given day may be minimal in terms of risk; however, in the long term,
this may mask critical risk factors lurking behind the scene that can lead
to business failure.

Although many levels of ignorance are linked simply to lack of data,
information, or knowledge, some ignorance can be attributed to vague,
surface, or unused knowledge. Examples include:
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� Unprocessed data. Data that is not transformed into useful infor-
mation in the right form, at the right time, and provided to the
right people represents unprocessed data. Unprocessed data makes
what we know less effective, but still expensive. Many organiza-
tions are excellent at gathering data, but fail to relate it to their
problems because they do not convert it to other, more meaningful
forms of information or knowledge.

� Unused data. When data is not used to solve problems, it amounts
to an absence of data. Unused data, regardless of its level of
transformation or meaningfulness, merely represents an added cost
created by careless business behavior. If this is related to data that
has not been processed, it is a waste of time and money. If it is
related to processed data known to be useful, then retaining this
data without further examination or resolution is a problem and
contributes to wasted time and resources. If data is unused due to
lack of managerial commitment and despite the established value
of the data, this transcends mere normal ignorance and rises to
the level of culpable ignorance. Deliberate or culpable ignorance
represents a type of business malfeasance.

� Untailored data. Utilizing data effectively requires an accurate
problem definition, just as medication makes no sense without a
proper prior diagnosis. Thus, understanding the problem and the
solution domain is as important as knowledge of the data.

� Vague data. Data may be too low quality to be considered for
processing. This is a case of ignorance of the data that one has.
Such data may be uncertain, unconfirmed, unclear, or undefined,
or need proper translation or adequate clarification. If the data is
processed despite its errors or uncertainties, unreliable outcomes
and inefficiencies in decision-making result.

� Politically based ignorance. Organizational politics can play a
destructive role in obtaining reliable data. If nonscientific, nonra-
tional, or biased motivations are behind the selection of data, this
may preclude obtaining critical data. Such politically selected data
cannot be considered representative. The excluded data may con-
tain contradicting facts, clarifying statistics, or a more complete
picture. Intentional and biased ignorance of this type affects the
problem-solving process negatively. There must be a legitimate
and objective reason, not based on political or economic interest,
to justify exclusion of data. Biases are another kind of filter blocking
accurate data acquisition; they represent a kind of color-blindness
in viewing facts in which the interpretation of the data depends
on whether it supports a position held in advance. This attitude
inhibits seeing other viewpoints merely because they are the view-
points of others.
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� Technically based ignorance. This refers to the lack of reliable tools
that enable us to see, understand, and interpret phenomena cor-
rectly. Ignorance is strongly tied to such lack of tool support. One
cannot be expected to make sense of data without reliable tools.
When tools are unavailable, one should anticipate that the data
may not be processed at all; may not be processed on time; may
not be processed accurately; may be lost or destroyed due to lack
of storage tools; may be used only at lower levels of management;
or may not be recognized as enabling decision-making processes.

� Statistically based ignorance. This refers to a failure to establish
the right relationship between things in an interconnected envi-
ronment. Ignorance is often not so much a failure to collect data,
as a failure to explore the data or see how data is interconnected.
For example, a change in organizational effectiveness that occurs
in parallel with a newly adopted style of management may not be
coincidental. Viewing data as isolated bits of information without
making the effort to observe its correlations or interrelationships
is a type of ignorance. The effectiveness of the problem-solving
process strongly depends on the ability to observe, discover, or
predict relationships between variables in an organizational context.

� Illusion-based ignorance. Data is not always transparent; it may
mask deception, illusion, imagination, or tricks that create false
impressions. Major national corporations have gone belly-up as the
result of this kind of ignorance. In order to distinguish facts from
illusions, caution must be exercised when viewing available data.
Figure 9.5 illustrates factors that influence interdisciplinary igno-
rance.

9.5 Diversity in Problem Solver Skills at the Project 
Management Level

Little empirical evidence is available about the skills required for a project
manager to be successful or how the training or experience of managers
affects the success of the projects that they supervise. However, there
does seem to be a consensus on the kinds of skills required at a very
high level, with technical competence a “given” for project managers;
naturally, however, technical competence alone is not enough to be a
successful project manager.

In addition, it is recognized that project managers also need various
soft skills, including managerial and leadership abilities, relationship and
interpersonal skills, and negotiation and sales skills (Moore 1996; Pressman
1996, 1998; Tatnall & Shackleton 1996; Bach 1997; Phillips 1999; Haggerty
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2000; Potts 2000; Smith 2000; Reel 1999). Moore also observes that it is
not enough to possess the skills: a project manager must understand how
and where to apply different skills.

How skills are acquired is another important issue. Training project
managers and software engineers can be a complex process. Learning the
formal theory, techniques, and software needed to manage a project
properly, as well as gaining experience from hands-on work and case
studies, have value. Also, software managers are sometimes thrown into
situations for which they are unprepared, leading to project failure. The
consensus is that formal project management education alone does not
produce effective managers (Pressman 1996, 1998; Liu et al. 1998; Moore
1996; Tatnall & Shackleton 1996; Bach 1997; Phillips 1999; Reel 1999; Potts
2000; Smith 2000). Tatnall and Shackleton identify a key problem with
traditional education: formal education often involves a fixed scenario,
unlike the case with real problems in which scenarios change dynamically.

9.6 Diversity as Value-Adding Tool in Problem Analysis
In business terms, human diversity has often been viewed as merely a
phenomenon in the context of which individuals or peoples of different

Figure 9.5 Factors that influence interdisciplinary ignorance.
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ethnicities, backgrounds, races, languages, or religions can at best learn
to interact together in open or closed communities. However, it is gradually
being recognized that human diversity can have different effects, depend-
ing on how it is approached. For example, if one looks at differences as
problems (which will be referred to as activating differences), then one
might try to mitigate the problems by eliminating or reducing the differ-
ences. Denoting the different characteristics by X and Y, the result of an
activating-differences approach might be characterized as X – Y = Z, where
the outcome Z is the result of excluding Y from X, or X from Y.

Alternatively, certain differences could be respected, tolerated, or
accepted, in the manner of an agreement or arrangement (which will be
referred to as neutralizing differences). The result of a neutralizing-
differences approach might be characterized as X + Y = X + Y, corre-
sponding to the situation in which X and Y coexist without producing
the added value that could arise if positive interaction or cross-fertilization
took place. Finally, differences can be recognized as a source of potential
added value when differences make a positive contribution (which will
be referred to as optimizing differences). The result of an optimizing
differences approach might be characterized as X + Y = Z, where diverse
patterns X and Y lead to a new pattern Z as the result of a positive
interaction between X and Y. Table 9.2 illustrates the three approaches.

What kinds of diversity or difference can add value? The answer
depends on the nature of the differences and on the effort applied to
understanding them. The term differences as used here is not unequivocal;
indeed, differences may be perceived as such only because of the language
used to describe them. In modern businesses environments, difference or
diversification is sought out because it can substantially enhance the quality
of work and add significant value to problem-solving approaches. In order
to add tangible value to a process, diversification can be optimized with
respect to the following categories:

� Complementary differences (diversity of components or ingredi-
ents) refers to elements that complete the picture when added

Table 9.2 Levels and Types of Diversity Deployment

Type of Difference Deployment Representation Explanation

Difference activation X – Y = Z Diversity seen as 
potential problem

Difference neutralization X + Y = X + Y Diversity tolerated but 
not capitalized on

Difference optimization X + Y = Z Diversity properly 
deployed to create value
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together. This includes the different parts of a whole; different
views of an object or issue; different dimensions of a structure;
and different steps of a process or procedure. These types of
differences can be used to add value and can be reproduced,
reused, or instantiated to further enhance added value.

� Interactive differences (diversity of relationships) refers to elements
that add value because of how they interact with one another.

� Differences of degree, level, or version (diversity of inheritance)
refers to elements that are apparently different, but really only
reflect differences of degree or level, or represent versions under
a more comprehensive superclass.

In the case of software engineering, the different components of
software engineering knowledge (theory, methods, techniques) and the
different software engineering practices that tailor knowledge to specific
requirements can add value to the problem-solving process (output or
TO-BE). Furthermore, diversified resources can also add value to software
engineering knowledge and to best practices (input or AS-IS). Thus,
diversification can affect the AS-IS and the TO-BE levels of problem
engineering. Existing differences can be brought together at the AS-IS
level. For instance, diversified findings with regard to an existing system
can be integrated in a complementary or interactive fashion. New inter-
disciplinary resources can be incorporated to enhance the proper definition
of existing business problems at the TO-BE level.
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Chapter 10

Strategies at the Problem 
Engineering Level

10.1 Introduction
Charles Kettering once said that “a problem well stated is a problem half
solved.” Problem engineering is concerned with the correct and complete
definition of problems. Problem definition entails gathering the necessary
problem-related data, processing this data effectively, and then generating
a statement that accurately characterizes the problem. Particularly in a
business environment, problem engineering goes far beyond the limited
formulation of a problem definition in a number of ways.

The definition produced by problem engineering must be comprehen-
sive in the sense that all aspects of the business problem must be identified
and recognized. This includes the managerial, economic, human, and
technical aspects of the problem. All the stakeholders of the business
problem must be considered, including internal and external stakeholders,
individuals, groups, communities, departments, partners, and other orga-
nizations. All essential versions, degrees, and levels of the problem must
be reviewed, including degrees of problem complexity and levels of
problem interaction with the different managerial entities in an organiza-
tional structure.

Problem engineering is expected to produce a problem definition that
reduces uncertainty, equivocality, and ambiguity to the lowest feasible
level. It must avoid overlap between problem definition and solution
definition, as well as with the later design, implementation, and testing
phases of the software development life cycle, which should not be
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confused with problem definition. The definition must be stated clearly,
using any appropriate tools to express the problem. The problem definition
must be verified and tested to ensure that the problem has been clearly
understood.

Problem engineering must distinguish between problem symptoms and
root causes. The risk of defining a business problem improperly should
be assessed and a plan should be ready to minimize risk. Finally, problem
definition involves utilizing tools to carry out a full-scale problem analysis.
These tools include traditional and modern requirements-gathering tech-
niques and CASE tools, as well as the use of interdisciplinary experts and
knowledge; interdisciplinary resources; empirical studies; and tools that
can be applied to help investigate problems carefully.

10.2 Identifying Interdisciplinary Resources and 
Comprehensive Problem Identification

The use of computers is increasing throughout industry as rapidly as it
ever has and computer scientists with interdisciplinary interests are assist-
ing other disciplines to use this information technology more effectively
to solve problems and address new challenges (Grasso & Nelson 1997).
As Hyde, Gay, & Utter (1979) have observed, every discipline has its own
perspective as to what constitutes problem solving. Thus, it is important
to understand how to discover appropriate interdisciplinary resources for
attacking problems. Two basic methods that can be applied to identify
relevant interdisciplinary resources effectively will be considered. The first
method uses the reverse engineering of existing strategies and knowledge
bases. The second involves finding relevant resources and performing
problem decomposition for every phase identified in the problem identi-
fication process. These methods are explained in the following sections.

10.2.1 The Reverse Engineering Method

The reverse engineering method is defined by Buss and Henshaw (1991)
as the process of analyzing a subject system to identify its components
and their interrelationships and to create a representation of the system
in another form or at a higher level of abstraction. The reverse engineering
method can be carried out following the process depicted in Figure 10.1.
Existing or legacy problem-solving experiences and outcomes (AS-IS)
should be analyzed and then reverse engineered to extract their interdis-
ciplinary resources. This will yield a detailed, in-depth synopsis of existing
resources. The extracted interdisciplinary resources should then be reused,
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extended, and enhanced to support the new vision of the problem-solving
process. A new (TO-BE) understanding of this process is created, iteratively
extended, and updated to respond to changes in business requirements
and technological capabilities. This process entails a dynamic response to
varying requirements that adjusts according to the changed environment.

10.2.2 The Problem Decomposition Method

Problem decomposition serves two major functions. The first function or
purpose is to exploit the advantage obtained by breaking bigger problems
into appropriately defined smaller problems; this makes the problem
complexity more manageable. The second purpose is to take advantage
of the fact that the solutions from the smaller decomposed problems can
be reused to help solve other problems (Jackson & Jackson 1996), and
can exploit previously solved smaller problems. The problem decompo-
sition method is illustrated in Figure 10.2 applied to the question or
“problem” of problem identification. Problem identification is shown here
as decomposed into three smaller, sequential subproblems or phases
consisting of data collection, data processing, and an information presen-
tation phase. These three phases characterize the typical problem identi-
fication process in problem engineering and are discussed in the next
sections.

Figure 10.1 Identifying interdisciplinary resources to create new vision in prob-
lem identification
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10.3 Data Collection Phase
In the early phases of requirements engineering, a large, diverse body of
detail about the problem domain is gathered and must be organized
according to some useful structural decomposition related to the problem
domain (Maiden & Sutcliffe 1996). The data collection phase gathers data
using different techniques. Broadly speaking, this phase has eight different
elements:

� Generate stakeholders list: addresses the question of who is inter-
ested in this particular problem-solving process

� Rationale for change: identifies why these stakeholders are dissat-
isfied with the current situation

� Measure risks of change: identifies those aspects of the current
situation that are still considered to be good or satisfactory

� Thorough diagnosis: identifies the root causes of the dissatisfaction
with the current situation

� Survey for benchmarking and setting evaluation criteria: identifies
the experience of others in the same problem domain and sector,
as well as one’s own experiences and those of competitors, cus-
tomers, and employees

� Initial functional requirements: identifies what the stakeholders
are looking for in a solution

� Initial nonfunctional requirements: identifies limitations on the
solution

� Tools identification and allocation: identifies the tools and tech-
niques available to gather requirements

10.3.1 Generate Stakeholders

The generate-stakeholders phase is concerned with identifying the stake-
holders who are interested in the particular problem solving process.
These include those who cause change as well as those affected by it.

Figure 10.2 The basic phases in the problem identification process.
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All the stakeholders of the problem must be considered, including internal
and external stakeholders, individuals, groups, or other organizations. The
adequate, mutual, and sometimes opportune interaction of relevant stake-
holders is of very high importance in the problem-solving and require-
ments engineering process (Sharp, Finkelstein, & Galal 1999). Proper
identification is important; excluding a key stakeholder can undermine
the process of problem solving because the relevant entities that can affect
or be affected by the solution to the problem may be missed. Identifying
stakeholders is also important in order to manage the quality attributes
of the system under development—attributes related to “stakeholder-
centric” conditions on the system (Preiss & Wegmann 2001).

10.3.1.1 Interdisciplinary Perspective

Stakeholder management allows the different members of an organization
to improve their ability to work towards the common goals of the software
development project; it is a form of collaborative management. Through
this modality one tries to bring together the different stakeholders who
are interested in and contribute to the planned change (particularly the
end-users) around the specific project, for the purpose of identifying and
acknowledging their differing perspectives. This collaboration helps
develop an understanding of the details of the stakeholder needs and
their requirements for the project and helps align the actions of individual
stakeholders towards their shared goals. The process of identifying stake-
holders also helps to build trust between the developers and end-users.
This in turn helps generate the ability of the organization to sustain project
commitment.

The task of identifying these stakeholder needs is not an easy one. In
particular, it is not merely a matter of identifying the different stakeholders
involved. It is also necessary to understand their specific requirements
and how the manifold requirements of different stakeholders influence
and interact with each other. In the end, tone must devise a plan to
resolve any conflict in these competing requirements. A poor analysis of
these relationships may lead to a failure in the entire problem-solving
process (Robinson & Volkov 1997).

10.3.2 Rationale for Change

The rationale for change phase is concerned with identifying why stake-
holders are dissatisfied with the current situation and why there is a
perceived need to produce an alternative to the status quo. The weak-
nesses in the current situation need to be sought out and explicated in
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order to produce a careful analysis that accurately identifies the root causes
of the perceived need or desire for change. This part of the analysis is
essential to preventing or minimizing the likelihood of similar situations
recurring in the future, as well as for correcting the recognized weaknesses
in the present situation. In terms of software projects, these weaknesses
or shortcomings are characterized by a potentially large set of attributes.
The attributes must be chosen to address stakeholder needs, expectations,
and aspirations. Therefore, it is necessary to understand the utility of a
given project as perceived by its stakeholders (Giesen & Volker 2002).

10.3.2.1 Interdisciplinary Perspective

Dissatisfaction can arise from many sources. Dissatisfaction from a man-
agerial viewpoint can be measured in terms of a failure to achieve
organizational goals, failure to reduce cycle time, failure to increase
productivity, lack of support for the decision-making process, etc. Dissatis-
faction from an economic viewpoint can be measured in terms of a low
return on investment (ROI), unacceptable results on net present values, high
break-even point levels, a high degree of risk compared to the ROI, etc.

Dissatisfaction can be quantified through an empirical or statistical
viewpoint. These views may be derived from experimental and field
studies that reveal a failure of existing systems and identify the factors of
dissatisfaction in organizational groups or systems. An empirical study can
help quantify the evaluation of current systems and provide statistical
evidence of the causes of system problems.

A human-engineering and psychological perspective can also identify
sources of dissatisfaction. These can be measured in terms of human-
factor goals such as the time necessary to learn how to use an environment;
the speed of performance of the environment; rate of errors by users;
retention over time; subjective satisfaction; and human–computer interac-
tion or cognitive-based factors (Shneiderman 1987). Dissatisfaction from
a technological viewpoint can be evaluated in terms of systems reliability,
software quality, functionality, maintainability, performance, etc. Finally,
dissatisfaction from a marketing viewpoint can be evaluated in terms of
costs, channels of distribution, competition, promotion and prices, etc.
(Applegate, McFarlan, & McKenney 1999).

10.3.3 The Measurement of Risks of Change

The measurement of the risks of change is concerned with identifying
aspects of the current environment that are considered satisfactory, accept-
able, or good. This is essential because every change has an associated
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risk. A risk analysis is always prudent before formal actions are taken
toward any change. It is mandatory to assess the risk of alternatives to
try to minimize problematic consequences. This is an essential element
in maintaining the overall quality of the software development cycle,
which is recognized as decisively affecting the quality of the final software
product (Lam & Shankararaman 1998). Thus, although it may be advan-
tageous or even essential to modify or change a system, it may not always
be necessary to alter the existing system significantly. Indeed, it is often
only necessary to fine-tune the current system to solve the perceived
problems.

10.3.3.1 Interdisciplinary Perspective

Migrating to a new system always involves potential dangers, so it is not
enough to evaluate a new system based only on its new features. It is
also necessary to look at potential disadvantages of the change in terms
of a risk of losing current functionalities or advantages. A new system
requires added investment in terms of time, money, and effort, so its
development should be undertaken only after positively establishing value
creation by the new system. Just as in medicine, the first principle is to
“do no harm” to the “patient.”

In some cases, the existing system may need to be reengineered, still
maintaining the advantages of the current system. Examining the positive
aspects of the current system can introduce an interdisciplinary perspective
in the same way as when assessing sources of dissatisfaction. Thus, the
current and proposed systems should be thoroughly analyzed and eval-
uated. Because of the interdisciplinary underpinnings of any complex
system, proposals for changing such systems will potentially add com-
plexity to the system. An ad hoc or uncoordinated approach to managing
change is inadequate for such situations; well-planned, thoroughly inves-
tigated, and focused attention on aspects of the change is necessary to
increase the likelihood of a successful outcome from the change (Small
& Downey 2001).

10.3.4 Thorough Diagnosis

The thorough-diagnosis phase is concerned with identifying the root
causes of dissatisfaction with the current situation. A detailed and step-
by-step diagnosis should be undertaken to understand the cause and effect
of the current deficiencies. The diagnosis should involve detailed elabo-
ration of the factors causing the dissatisfaction. Sometimes, the presence
of a particular factor is required, yet the interaction of that factor with
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another factor may cause a problem. In such cases, one needs to nullify
the effect of the interaction of the factors, rather than eliminate the factors
altogether. Thus, a deep diagnosis is crucial to creating a workable,
effective solution to the problem.

10.3.4.1 Interdisciplinary Perspective

Problem engineers are like physicians: they need to carry out a thorough
diagnosis of a case to prescribe an appropriate treatment and must
distinguish between the symptoms and the root cause of the disorder. A
solution is useless unless it solves the right problem. Often, the cause of
a problem may appear to be technical, but is actually human driven, or
vice versa. To understand the causes of a problem, the problem engineer
needs adequate domain knowledge. Business problems are usually inter-
disciplinary; thus, a diverse background is essential, just as in the case of
a physician who must appreciate the variety of factors that can contribute
to an understanding of a specific case, help provide an effective solution,
or even refer a patient to another physician.

10.3.5 Survey for Benchmarking and Setting 
Evaluation Criteria

Jones (1995) defines a benchmark as a collection of quantitative data used
in comparing different organizations’ practices and results. Benchmarking
can also be done using qualitative data. The survey-of-benchmarking and
setting-evaluation-criteria phase is concerned with identifying the experi-
ence of others in the same problem domain or sector, as well as one’s
own prior experiences, and those of competitors, customers, and employ-
ees. This involves identifying the positive aspects or advantages of these
related experiences (which may then be included in the new solution) as
well as the negative ones (which may be excluded from the solution).
The Software Engineering Institute’s (SEI) Capability Maturity Model (CMM)
is an example of a qualitative benchmark that evaluates the performance
of a software production organization on a five-point scale (Jones 1995).

10.3.6 Initial Functional Requirements

The initial functional requirements phase is concerned with identifying
the needs of the stakeholders—the aspects and functionalities for which
they are looking in the solution. Functional requirements are the end
features that users want to see in a system. Often, prospective users of a
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system fail to illustrate specific functional requirements and instead define
requirements on a compound system. Such requirements are deficient in
explicitly stating what precisely the proposed system is supposed to do;
therefore, they can portray an incomplete picture for developing the
system (Kaindl, Kramer, & Kacsich 1998). Stakeholders can be a highly
diversified group with disparate requirements. Defining all their diverse
functional requirements at an early stage is important for effective problem
solving because how a solution is evaluated as successful depends on
whether the solution responds to the requirements of all its users.

10.3.6.1 Interdisciplinary Perspective

Functional requirements are the capabilities that software solutions provide
for their users. Stakeholders are naturally diversified and represent inter-
disciplinary viewpoints and their requirements will reflect this diversity,
so it is natural to expect many categories of functional requirements. One
such category is management-based requirements. Organizations develop
strategic goals that evolve over time due to changes in the business’ nature,
competition, market needs, and other pressures emanating from within
the organization or the external environment.

Functional requirements should reflect these goals and provide the
ability to customize solutions to fit new demands. It is critical to understand
the interorganizational structure so that the requirements can represent
needs at different management levels, both horizontally and vertically.
Horizontal requirements should meet departmental needs; vertical require-
ments should match the needs of upper, middle, and operational man-
agement. Management requirements include enhancing the ability to plan,
control, coordinate, and evaluate business processes. They also include
enabling the organization to manage, allocate, and utilize its resources
effectively. Marketing requirements affect managerial needs because they
are vital to accomplishing strategic goals.

An organization’s economic requirements are important for understand-
ing the business model according to which a company creates its financial
value. Organizations have varied models or methods for making money;
thus, functional requirements will reflect the strategies that a company
uses to reduce costs; increase productivity; accelerate the cycle time of
business processes; maximize profit; reach new customers; and achieve
competitive advantage. Functional requirements at the economic level
should include methods of monitoring, controlling, and evaluating the
economic growth and performance of the business firm.

Technical requirements entail addressing the organization’s software
technology-related problems, such as lack of system reliability; poor
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functionality; absence of referential integrity; vulnerability in terms of
security; low rate of productivity; bad error handling; unsuccessful user
interface design; or slow communications. Technical problems have an
impact on business performance and thus problem solvers must define
the technical requirements clearly and precisely.

Businesses operate in an environment that is continually affected by
human behavior. Accordingly, human-based requirements address the
human-related aspects of the business problem, including its societal,
psychological, political, legal, educational, behavioral, and environmental
requirements. These requirements may be harder to identify because they
are not normally specifiable in an explicit, quantifiable format. They
require problem solvers to be knowledgeable in a range of areas to be
able to identify and categorize them efficiently.

10.3.7 Initial Nonfunctional Requirements

The initial nonfunctional requirements phase is concerned with identifying
the boundaries of the solution. Despite intensive efforts, it may be impos-
sible to devise a comprehensive or totally satisfactory solution to a prob-
lem. The possibility of external factors affecting the operation of the
solution is always present, as well as the possibility of loopholes, limita-
tions, or bugs remaining unsolved. A solution may turn out to work only
under certain constraints. Nonfunctional requirements do not identify
direct operational actions of the system and do not possess any working
features. Rather, they specify the system performance characteristics
required for acceptance of the system by its stakeholders. A careful analysis
and definition of these nonfunctional requirements is essential for correctly
formulating a solution.

10.3.7.1 Interdisciplinary Perspective

Nonfunctional requirements are provisions that impose no demands on
the direct functionalities of the software solution but impose external
demands on the context, environment, or platform in which the system
will carry out its operations. In other words, these requirements are
properties that the product must have. They often overlap with functional
requirements because the boundary between the two can be difficult to
determine precisely and tend to be highly interdisciplinary because the
system environment is usually diverse.

Nonfunctional requirements can be categorized in a variety of ways.
One such category is management-driven nonfunctional requirements.
This includes organizational requirements such as strategies; policies;
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formal procedures; time consideration requirements; total quality manage-
ment requirements; performance requirements; and marketing and stan-
dards requirements. Technically driven nonfunctional requirements form
another category. These include requirements for implementation; effi-
ciency; hardware; software (operating system, browser, DBMS, etc.); space;
and reliability. Environmentally driven nonfunctional requirements
include legal and ethical requirements; legislative and regulatory require-
ments; and privacy and safety requirements. Supply chain management
nonfunctional requirements include logistical requirements; delivery
requirements; order fulfillment requirements; partnership requirements;
and portability requirements.

10.3.8 Tools Identification and Allocation

The tool identification and allocation phase is concerned with identifying
the tools and techniques available to gather the requirements. Techniques
used to gather requirements vary from the traditional to the modern. Some
of these use advanced technologies such as joint application design (JAD),
and others use simple methods such as interviews.

10.3.8.1 Interdisciplinary Perspective

Using interdisciplinary capacities can provide extensive support to the
requirements gathering and determination process. Although this support
can make a significant difference, the availability of the tools and tech-
niques is the determining factor. Many of these techniques require mul-
tidisciplinary knowledge, so background plays a significant role in
facilitating such capabilities. This part of the requirements collection phase
can overlap with the next, the data-processing phase.
Traditional information-gathering techniques include questionnaires; inter-
views; document archaeology; protocol analysis; and observation of pat-
terns and structures. Modern techniques include brainstorming; cognitive
maps; use-case scenarios; story boarding; snow cards; business event
workshops; electronic requirements; video; prototyping; role playing; and
CASE tools. The various types of CASE tools may include:

� Information engineering
� Process modeling and management
� Project planning
� Risk analysis
� Project management
� Requirements tracing
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� Metrics and management
� Documentation
� System software
� Quality assurance
� Database management
� Software configuration management
� Analysis and design
� Interface design and development
� Prototyping
� Programming
� Integration and testing
� Static analysis
� Dynamic analysis
� Text management
� Client or server testing
� Reengineering

10.4 Data-Processing Phase
Data gathered in the data collection phase must be further investigated,
evaluated, mined, prioritized, and structured. Clearly, interdisciplinary
skills and backgrounds come into play in a significant way here as well.
Because requirements vary widely across interorganizational levels and
specialties, processing requirements data implies producing different ver-
sions of outputs that can be tailored to different kinds of needs. This
requires data mining and structuring requirements to reflect the desire of
each level of management, each department, and each specific category
and subcategory of organizational goals and demands. Sometimes, even
this level of specificity is not sufficient and requirements must be person-
alized to suit the requests of individuals, groups, or units in the organi-
zation with very specific needs and expectations from the software
solution. The data-processing phase consists of the following subphases
(see Figure 10.3).

Figure 10.3 Subphases of the requirements gathering process.
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10.4.1 Validation and Verification Subphase

In software engineering, validation and verification have different conno-
tations. Validation refers to the need to make sure that the right product
is built: the product that stakeholders desire. One achieves this by matching
the model against the specified problem. Verification implies that the
model should be compared internally with itself. Its data must be subjected
to quality assurance tests to ensure that identified requirements are accu-
rately represented. In other words, the requirements must reflect what
stakeholders want. This effort is made to ensure that functional and
nonfunctional requirements have been completely established. The data
should map solution requirements to the problem specification. This
involves the refinement of data by means of quantitative and qualitative
evaluation techniques such as statistics, data mining, and protocol analysis.
Programming is a problem-solving process, so determining the validity of
the solution is part of this process; thus, integration of validation with
software development is crucial for success (Adrion, Branstad, & Cherni-
avsky 1982).

10.4.1.1 Interdisciplinary Perspective

Research methods, statistics, and data mining are useful tools for quanti-
tative evaluation of requirements. Cognitive psychology, psycholinguistics,
and human–computer interaction can be helpful in protocol analysis as
qualitative methods for assessing system requirements.

10.4.2 Refinement Subphase

Requirements are further fine-tuned to exclude any that may be recognized
as unneeded or to include additional requirements as needed. Those
deemed to be irrelevant, redundant, mixed, or nonsignificant should be
excluded. After detailed review, requirements overlooked or unrecognized
in previous rounds can be included in this subphase.

10.4.2.1 Interdisciplinary Perspective

Overlooking the multidisciplinary aspects of business problems can lead
to missing organizationally significant requirements. Thus, carrying out an
interdisciplinary review of business problems can reveal further require-
ments needing consideration. The different stakeholders in a business
process generate or pose different requirements pertinent to the stake-
holders’ specific domains. These disparate needs may have interaction
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effects with each other that may, in turn, precipitate additional require-
ments arising from this mutual interaction. Thus, a further, second-order
analysis may identify supplementary requirements to be gathered and
recorded.

The requirements may overlap significantly and these redundancies or
incompatibilities need to be pruned. Exclusion of irrelevant requirements
is as important as capturing significant requirements for the cohesiveness
of the model developed. This kind of refinement process can be viewed
as a backtracking-based review, process steps are retraced to carefully
reexamine the steps covered so far for the purpose of bridging any gaps
and discarding unnecessary details.

10.4.3 Data Mining Subphase

Requirements vary broadly as one crosses the boundaries in an organiza-
tion, so different versions of outputs need to be produced to cater to the
different stakeholders. Requirements must be grouped, categorized, struc-
tured, and redefined in order to generate organizationally meaningful
output that reflects the needs of each level of management, each division,
and the varying classes of stakeholders. The requirements at this level are
fully integrated in the software development process to guide the next
steps effectively and efficiently.

10.4.3.1 Interdisciplinary Perspective

Software applications evolve continually as the result of bug patches,
functionality upgrades, and security updates. During this updating process,
the original system requirements mutate as well. Readjusting the require-
ments is a challenge. The rationale underlying an application’s motivating
design and development is distributed or scattered between the application
source code and stakeholders (El-Ramly, Stroulia, & Sorenson 2002).
Interdisciplinary skills can provide criteria that help structure, group,
prioritize, and make sense of these requirements. Requirements of a similar
nature are grouped together in order to form an overall structure that
represents the functional as well as nonfunctional requirements of the
users. This helps formulate a cohesive set of requirements.

10.5 Information Presentation Phase
After problem-solving data has been carefully examined, verified, evalu-
ated, and structured, it is ready to be presented in a standardized or formal
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way. Formal methods of presentation vary from one organization to
another based on local standards. Requirements can be represented in a
natural language or using mathematical and graphical models. Natural
language provides an avenue for informal representation and helps in
communicating information uniformly among people with different back-
grounds. However, relying on natural languages imposes the danger of
ambiguity and imprecision (Meyer 1985). Mathematical models provide a
formal way to represent requirements, but can be abstruse and thus
difficult for nonexperts in this domain to understand. Graphical models
such as the Unified Modeling Language (UML) bridge this gap. UML is a
standardized language for specifying, visualizing, constructing, and docu-
menting the intricacies of software systems and for modeling business
processes and other nonsoftware systems.

10.6 Strategies in Software Engineering
The issues considered in this chapter raise important questions about
software engineering, such as the role strategies that should play, or
whether the discipline should be viewed as providing a handbook of
prescriptions for software-driven problem solving. Is software engineering
supposed to be a dynamic, knowledge-based engine that provides strat-
egies and approaches to problem solving? Is it an input to the problem-
solving process? Is it an output of extensive experience in and knowledge
of problem solving? Is it some combination of these? Some of the literature
on software engineering presents it as solely an input to the problem-
solving process or a guide for producing successful software solutions.
Bruckhaus (1992) observed that, as knowledge of how to create software
evolved, the term “software engineering” was introduced and reflected
the belief that sound engineering approaches should be applied to the
development of software. It is now widely agreed that, to produce high-
quality software products, one needs to engineer the software processes
well, by means of software engineering methods, tools, and techniques.

Overall, software engineering tends to be understood as an input to
the problem-solving process that provides a roadmap for software devel-
opment problem solving. There are several consequences to this view.
Software engineering is seen as a fixed, standardized discipline that evolves
slowly, a view reflected in the often repetitious or redundant character of
recent software engineering methods. One could argue that software
engineering should provide a TO-BE approach rather than an AS-IS
approach to problem solving. One way to improve the effectiveness of
software engineering would be to ensure that it dynamically adapts to
change. Tracking and monitoring change would then become essential
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components of software engineering. An adaptive response to dynamic
requirements that adjusts according to changing environments can lead
to a better solution.

The theory of software engineering adjudicates the reliability of soft-
ware processes and products; however, software engineering is rarely
evaluated, as demonstrated by the general lack of empirical studies of
software development. Because software engineering provides standards,
descriptions, and characterizations of what and how software solutions
should be carried out, it is viewed as an AS-IS discipline. However, the
processes that it proposes rely on many hidden assumptions and uncertain
evidence. Software engineering theories are often not supported by sci-
entific proof that justifies them or the extent to which they should be
used. Such a justification must go beyond feasibility studies to include
empirical evidence gathered from experimental investigations.

The assumption that the field of software engineering is largely the
outcome of the application of limited, disciplinary sources—an assumption
reflected in the separation in software engineering of the systems analysis
and design domains—is flawed and inaccurate. To the contrary, the
literature of software engineering strongly reflects the cumulative impact
of challenges and changes in business requirements and technology. The
interdisciplinary impact of these forces on software engineering is evident.
Despite this, the recognition of the multidisciplinary character of software
engineering, in a manner that would more effectively promote the inclu-
sion of and interaction with other disciplines as part of a well-defined
strategy, still remains problematic.

These issues reveal the difficulties associated with viewing software
engineering from a purely input perspective. When viewed as input,
software engineering cannot effectively solve problems using static struc-
tures, approaches, and strategies. It needs to expand continually to reflect
developing needs and requirements, changes, challenges, and opportuni-
ties in the scientific and business worlds. Problem solving in the real
world is too complex for a fixed theory tailored to specific situations and
environments that arose at particular times. Software engineering must be
viewed as more akin to a knowledge-base or inference engine that
provides problem-solving support. The underlying objective is to maintain
a result-driven structure—one that includes knowledge and tailorability,
and alternates between input and output roles. In other words, software
engineering should be a dynamic structure capable of adaptively solving
business problems efficiently, accurately, and reliably. Such a result-driven
model is illustrated in Figure 10.4.

Figure 10.4 shows how software engineering can be viewed as a TO-
BE approach, as opposed to a traditional AS-IS approach. In the TO-BE
approach, software engineering strategies develop iteratively, gathering
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more knowledge of methods, techniques, and tools, in order to respond
to changes, adapt to new situations, utilize interdisciplinary resources, and
produce better problem-solving strategies.
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Chapter 11

People and Software 
Engineering

11.1 Introduction
Multidisciplinary thinking helps us understand problems better and there-
fore solve problems more effectively. Previous chapters have illustrated
this at the process level and examined process structure, process models,
process activities, and problem analysis as initial components of the
problem-solving process. This chapter considers multidisciplinary thinking
at the resource level, specifically in terms of its people dimension (see
Figure 11.1).

Traditionally, software engineering has considered people as a resource
only if they were explicitly involved in carrying out software development
tasks—analysis to design to implementation. In interdisciplinary software
engineering, the concept of people as a resource extends beyond those
who are immediately involved to encompass all the individuals who play
a significant role in the problem-solving process, regardless of whether
they are officially affiliated with the development team. This more inclusive
concept comprises those informal but nonetheless critical human resources
without whose cooperation the problem cannot be adequately solved:
informal resources engaged through a process of collaboration rather than
formal affiliation. Examples of collaborative human resources include such
stakeholders as customers, managers, and group clients.
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11.2 Interdisciplinary Background
Advantages of an interdisciplinary approach in helping to redefine the
role of human resources in the problem-solving process include:

� Representation and structure. This refers to representing and
restructuring the resources of software engineering to allow better
use of human talents, techniques, and knowledge as explicit oper-
ational components of a unified problem-solving framework. The
concept of people in conventional software engineering has gen-
erally been problematic because of its diffuseness, which makes
it hard for beginners to appreciate, and illusive, which makes it
hard for practitioners to apply effectively.

� Relevance and knowledge. Expanding understanding of the prob-
lem relevance of people allows one to apply a broader variety of
techniques and knowledge to problem solving. Recognizing that
people are a software development resource entails an understand-
ing of project management. Recognizing that people are customers
entails an understanding of marketing and consumer cognitive
psychology. Recognizing that people are managers entails under-
standing the skills needed for managers to run a project success-
fully. Recognizing that people participate in interacting groups
entails understanding group communication, social psychology,
and even political science.

Figure 11.1 People in the software development process.

People DataMethodologiesToolsMoney

Problem Solution
Project 

Management Analysis CodingDesign

InstallationTeachingMaintenance

Organizational 
Goal

Time

Time

Management



People and Software Engineering � 231

� Extended knowledge. This refers to applying an extended knowl-
edge base to the entire problem-solving process, thus allowing the
problem to be viewed from many alternative angles so that the
solution receives a sufficiently broad analysis.

11.3 The Importance of People in the 
Problem-Solving Process

People are at the core of problem solving because business problems are
solved by people for people. The problem solvers are not just the software
developers; business problem solving is collaborative and requires ongoing
management support, commitment, and understanding. It also requires
significant cooperation from the relevant organizational units and employ-
ees of a business. In some cases, an organization may constitute a team
to work formally with a development group. This is especially so for
software solutions that must comply with organizational quality manage-
ment rules and standards. The structure of the group and its efficiency of
communications, style of management, and cohesiveness are critical factors
in the effectiveness of the team.

11.3.1 The Roles of Users in Problem Definition

The term user is too narrow to reflect adequately the variety of stake-
holders who can affect or be affected by the evolution of a problem’s
definition and its eventual solution. Figure 11.2 provides an overview of
the kinds of people involved in this process.

At the staff level, for example, many kinds of direct and indirect users
need to be considered. A system operator, responsible for inputting and
updating data, monitoring progress, and generating reports, represents the
simplest example of a direct staff user. Salesmen interoperate with systems
at a mobile or remote level in order to access inventory, check prices,
and close deals. Inventory personnel track data, input updates, and initiate
new requests. The accounting department interacts with the system at the
financial level. Marketing, legal, personnel, and other administrative
departments also input relevant data, output reports, and monitor progress
from their specialized perspectives. System engineers, database managers,
and software or hardware specialists use the system and view its problem
domain from very different viewpoints.

The current or potential customers of an enterprise are also key
stakeholders and may be direct or indirect users of a system. A user
receiving only outputs from a system, such as payroll reports or account
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statements, is indirectly using the system through other direct users (cor-
porate employees). When customers interact directly with the system, their
desired level of involvement in the problem definition becomes more
critical. With the increasing availability of competitive, Web-based support
services, the growing number of computer- and Web-literate customers,
and the low cost of using Web services, more customers are shifting from
indirect patterns of usage to direct usage of computer systems.

In fact, in an effort to reduce operational costs, many businesses are
substituting automatic, dynamic Web services for employees. This has
significantly increased the direct customer use of software systems. The
customers involved may be individuals, groups, or business customers;
each type imposes its own kind of varying system requirements. For
example, a software solution that accommodates the functionality of a
university registrar system imposes quite different requirements than would
a business-to-business relationship between a pair of organizations.

Management is another major category of stakeholder. As used here,
the term ranges from operational supervisors, to middle managers, to
strategic decision makers. Each level of management deals with a different
kind or degree of problem definition and complexity, which in turn

Figure 11.2 People involved in the problem definition and problem-solving pro-
cesses.
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strongly affects the nature of their expectations about solutions. As indi-
cated previously, problem complexity is typically low at the operational
level because operational problems are likely to be well structured;
however, at the tactical and strategic management levels, problems tend
to be semistructured or ill structured. Management requirements vary
widely from department to department because their variation in needs
and different contexts lead to diverse problem definition views.

Thus, financial managers want systems that help assess the financial
performance of the organization. Research and development managers
want the ability to examine the quality of products and services and track
operational costs throughout an organization. Production managers want
software solutions that support resource planning in terms of required
labor and materials and that assist them in reducing errors and maximizing
productivity. Marketing managers look forward to software solutions that
provide descriptive and inferential statistics across geographic locations,
and among various salesmen and different products and brands.

The business partners or collaborators in the supply chain are other
essential stakeholders. Many organizations currently link their corporate
intranets to extranet systems accessible to their business partners. Although
security and privacy considerations apply, these extranets can be extended
to larger geographic or metropolitan areas through metronets. Defining a
problem at an intranet level is obviously less complex than defining a
problem at a metronet or global level, and the risks involved may have
a very different character.

Investors and owners are also significant stakeholders who make
demands on a system in terms of financial goals, net present values, break-
even points, and return on investment. Experts and consultants are another
stakeholder class who can strongly affect problem definition. Whether
experts are sought from within an organization or from outside, their
experiences make their viewpoints of key value to the entire process,
possibly representing the difference between project success or failure
and minimally offering insights that can save time and money.

11.4 Human-Driven Software Engineering
The most critical resource in the problem-solving process is people.
Whether they are staff members, customers, managers, partners, investors,
or experts and whether their involvement is direct or indirect, their role
in functional and interface requirements at the problem definition and
solution construction levels is essential. Thus, if one is to achieve success
across the software development process, the following people-driven
issues must be addressed effectively:
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� Stakeholders. The various requirements of all the stakeholders must
be satisfied.

� Customers. To attract customers away from alternatives, the product
must not just be competitive and of high quality, it must also be
in time to market, have appropriately attractive features, and be
priced well.

� Development team. It is a given that the development team must
be qualified and skilled, but the team must also have sufficient
multidisciplinary skills to truly meet the underlying project require-
ments.

� Project manager. The project manager must have interdisciplinary
skills beyond the customary prerequisite ability to manage, coor-
dinate, control, plan, and communicate effectively.

� Partners. Partners are an essential part of supply chain manage-
ment. The partners may be identified as stakeholders or as a
component of supply chain management.

� Groups. There are groups of developers, groups of customers,
groups of managers, and so on. These groups must all exhibit
successful communication, collaboration, and management mech-
anisms.

To utilize human resources efficiently, one must identify and locate
the people who are important to truly understanding a problem and
assisting in its solution; who are able to document the information needed
in order to build a knowledge inventory for the entire problem-solving
process; and who can bring this information to bear to guide the proposed
solution of the problem. One must also obtain feedback in order to validate
and verify that needs and expectations are reflected in the proposed
solution. In addition, it is necessary to train those who will work on the
development team or collaborate at the organizational level to accomplish
the system goals and deliver the expected business value. Figure 11.3
illustrates the role of the people factor in the problem-solving process.

11.5 The People Factor—Multidisciplinary Aspects
The multidisciplinary aspects of the people factor manifest themselves at
the problem and the solution level. At the problem level, the issue is
which people-related disciplines can help one better understand the
underlying problem. At the solution level, the main concerns are the
people-related disciplines that enable one to address problem solving
better. Table 11.1 offers an overview of these issues.
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11.5.1 People as Project Managers

Project management is increasingly important in enterprises because enter-
prises are more than ever affected by IT issues and capabilities. During the
decade of the 1990s, organizational success became decisively dependent

Figure 11.3 The people factor in the problem-solving process.
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on information systems, making successful IT projects a required common
denominator for overall business success. Despite this, many organizations
experienced a high failure rate in IT projects, which made the improvement
of IT project management even more critical. However, although extensive
research and development of new methodologies for IT projects was
conducted during this period, little corresponding improvement appeared
to take place in IT development. The implication is that IT pr oject
management is not a simple matter of identifying requisite skills and
applying methodologies, but an emerging discipline that still demands
extensive further research.

Before proceeding, it is necessary to recap briefly what a project is.
A project can be thought of as a group of tasks and activities performed
within a definable period and meeting a specific set of objectives. A project
involves a temporary assemblage of resources brought together to solve
a specific problem. Tatnall and Shackleton (1995), Rosenau (1998), and
Meredith and Mantel (1995) identify several characteristic features of
projects. Projects are unique. The degree of uniqueness may vary, but all
projects are essentially one-of-a-kind, nonrecurring undertakings.

Projects vary in size but exhibit characteristics that distinguish them
from other types of work efforts. For example, projects have specific
objectives, must be completed within a given budget, and are carried out
by teams. The assignment of people to a project team may be on a full-
time or part-time basis, depending on the specific needs of the project.
Projects must be completed within a specific time period and have well-
defined beginnings and ends. Correct project definition is critical to project
management. The project definition helps establish a clear scope for the
project and serves as a basis for project planning.

The steps needed to define a project begin with describing the oppor-
tunities that brought about the project in the first place; supplying a
description of the background that established the need for the project;
and then defining the goals for the project. After identifying the stake-
holders and available resources, one must also identify any related projects
that will affect or be affected by the project under consideration. One
then identifies the criteria for deciding whether a project is viable, including
understanding project constraints, assumptions, and risks, as well as the
implication of such constraints and assumptions for the project risks.

Project management can be defined as a set of principles, methods,
tools, and techniques for planning, organizing, staffing, directing, and
controlling project-related activities in order to achieve project objectives
within time and under cost and performance constraints. The project
management process faces the often daunting task of assembling a project
team that has the expertise needed to implement a project; establishing
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the technical objectives of the project; dynamically managing changes in
order to meet requirements; and planning and controlling the project so
that it completes on schedule and within budget. Project management is
applicable in any situation in which resources must be efficiently applied
to achieve demanding goals under significant time and cost constraints,
and serious ramifications will occur if the expected results are not met
on time, on budget, at required standards, and to stakeholder satisfaction.
One can classify project management activities according to the phase of
the project:

� Project conception. The purpose of the conceptual phase is to
determine the feasibility of the project. Objectives are examined
in the context of the business environment, alternatives are defined
and evaluated, and preliminary estimates of cost, schedule, and
risk are done. This phase culminates in a decision as to whether
to proceed with the project.

� Planning. The performance, cost, and schedule estimates are
refined to a point at which detailed plans for project execution
can be made. Budgets and schedules are developed, the project
team is formed, and a project management system is established
to guide the management of the project.

� Execution. The program manager’s responsibility is to manage the
resources necessary to accomplish the objectives. The emphasis of
responsibilities shifts from planning to control.

� Termination. The project activities are phased out. This can be
triggered by premature termination or by successful achievement
of the goals. In either case, certain activities are necessary to wrap
up the project.

The success of project management depends on factors ranging from
managerial leadership and the availability of business and technical doc-
uments that properly establish and communicate plans, to organizational
or institutional support for developing the managerial skills that enhance
people and project management. The most frequently cited management-
related difficulties in project management include poorly defined goals
and specifications; lack of an adequate project plan; and unrealistic dead-
lines and budgets.

The effectiveness of the project manager is critical to project success.
The qualities that a project manager must possess include an understanding
of negotiation techniques, communication and analytical skills, and req-
uisite project knowledge. Control variables that are decisive in predicting
the effectiveness of a project manager include the manager’s competence



238 � Strategic Software Engineering: An Interdisciplinary Approach

as a communicator, skill as a negotiator, and leadership excellence, and
whether he or she is a good team worker and has interdisciplinary skills.
Project mangers are responsible for directing project resources and devel-
oping plans, and must be able to ensure that a project will be completed
in a given period of time. They play the essential role of coordinating
between and interfacing with customers and management. Project mangers
must be able to

� Optimize the likelihood of overall project success
� Apply the experiences and concepts learned from recent projects

to new projects
� Manage the project’s priorities
� Resolve conflicts
� Identify weaknesses in the development process and in the solution
� Identify process strengths upon completion of the project
� Expeditiously engage team members to become informed about

and involved in the project

Studies of project management in Mateyaschuk (1998), Sauer, Johnston,
and Liu (1998), and Posner (1987) identify common skills and traits deemed
essential for effective project managers, including:

� Leadership
� Strong planning and organizational skills
� Team-building ability
� Coping skills
� The ability to identify risks and create contingency plans
� The ability to produce reports that can be understood by business

managers
� The ability to evaluate information from specialists
� Flexibility and willingness to try new approaches

Feeny and Willcocks (1998) claim that the two main indicators of a
project manager’s likely effectiveness are prior successful project experi-
ence and the manager’s credibility with stakeholders. The underlying
rationale for this is that such conditions, taken together, help ensure that
the project manager has the necessary skills to execute a project and see
it through to completion and that the business stakeholders will continue
to support the project; see also Mateyaschuk (1998) and Weston & Stedman
(1998a,b). Research also suggests that the intangibility, complexity, and
volatility of project requirements have a critical impact on the success of
software project managers.
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11.6 The Team Factor
A team can be defined as a group of individuals who have been organized
for the purpose of working together to achieve a set of objectives that
cannot be effectively achieved by the individuals working alone. The
effectiveness of a team may be measured in terms ranging from its
outcomes to customer acceptance, team capability, and individual satis-
faction. Organizational and individual inputs significantly affect the team’s
inputs. The team work process is characterized by the efforts exerted
towards the goal; the knowledge and skills utilized; the strategy adopted;
and the dynamics of the group. Team construction and management are
a critical challenge in software-driven problem solving. They require:

� Goal identification
� Strategy definition
� Task management
� Time management
� Allocation of resources
� Interdisciplinary team composition
� Span of control
� Training
� Team communication
� Team cohesiveness
� Quality assurance and evaluation

The main characteristics of successful teams include:

� Shared goal. There must be a shared awareness of the common
team goal among all the team members. This shared goal is the
objective that directs, guides, and integrates the individual efforts
to achieve the intended results.

� Effective collaboration. A team must work as a team. This entails
collaborating, individuals making contributions, exchanging their
ideas and knowledge, and building interpersonal relationships and
trust. The project environment should facilitate and encourage
effective collaboration and interoperation.

� Individual capabilities. Each team member must be trained and
guided so as to be able to cooperate with the other team members
towards the common goal.

Some other characteristics of well-functioning teams include:

� Sharing the mission and goal
� Disseminating complete information about schedules, activities and

priorities



240 � Strategic Software Engineering: An Interdisciplinary Approach

� Developing an understanding of the roles of each team member
� Communicating clear definitions of authority and decision-making

lines
� Understanding the inevitability of conflicts and the need to resolve

them
� Efficiently utilizing individual capabilities
� Effectively deploying meetings
� Accurately evaluating the performance of each team member
� Continually updating individual skills to meet evolving needs

Additional indicators of effective operation include a high level of
project management involvement and participation; a focus on purpose;
shared responsibilities; a high degree of communication; strategically
oriented thinking; and rapid response to challenges and opportunities.
These team performance characteristics require every team member to
contribute ideas; operate in an environment that contains a diversity of
skills; appreciate the contributions of others; share knowledge; actively
inquire to enhance understanding; participate energetically; and exercise
flexibility.

11.7 The Customer Factor
It is a truism that, in a customer-focused economy, software engineering
must also be customer driven. This section considers some characteristics
and techniques typical of a customer-driven software development envi-
ronment. These include:

� Customer-driven development is requirements intensive and fea-
tures driven. Because customer needs are the highest priority, they
must be carefully gathered, identified, specified, visualized, and
internally prioritized among themselves. As a consequence, require-
ments engineering becomes the key strategic phase across the
software engineering process.

� Customer-driven development is iterative in nature. Iterative devel-
opment is essential because it allows extensive feedback and
development response to the feedback.

� Customer-driven development aims to develop killer applications.
The only way to survive in a highly competitive market is to
develop winning applications—not ordinary applications that
merely pass the test of basic viability.

� Customer-driven development strongly values time to market. Time
means opportunity, so applications must be engineered expedi-
tiously enough to capture time-dependent marketing opportunities.
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� Customer-driven development attempts to achieve multistakeholder
satisfaction via win–win situations. Every software development
activity involves many participants, each of whom has his or her
goals and views of what constitutes value; therefore, the effective
reconciliation of conflicts over system requirements becomes a key
factor in assuring customer satisfaction.

� Customer-driven development focuses on quality in products and
services. Quality assurance implies managing software processes in
such a way that the developer and the customer are satisfied with
the quality and consistency of the goods or services produced or
provided.

� Customer-driven development views customers as partners—not
merely as buyers. In order to assure that customer expectations are
met, customers should team up with developers at each phase of
the software development process. This can significantly minimize
risk and reduce cycle time throughout the development process.

� Customer-driven development is customizable, personalized, and
adaptable to individual needs and changes in needs. No two busi-
nesses or individuals are identical (demands and needs vary and
evolve even across a single organization), so recognizing individual
differences and organizational diversity is crucial to providing
effective solutions.

� Customer-driven development is driven by cognitive psychology.
Cognitive psychology can be thought of as the language for the
source code of the software customer’s mind. Therefore, a cus-
tomer-driven software development approach should examine the
extent to which software design accurately reflects the needs of
customers as perceived by the customers.

� Customer-driven development is informative and accessible.
Designing a software solution in the “customer age” requires full
customer service and support in terms of well-documented help,
interactive Web assistance, and state-of-the-art means of commu-
nication. Applications that do not provide support information are
subject to customer complaints, dissatisfaction, and rejection.

� Security and privacy are concerns in any customer-driven solution.
To earn customer trust, software engineers must design reliable
systems that are less likely to be vulnerable to privacy invasions
or security hackers. Security and privacy are key concerns of
software customers.
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Chapter 12

Economics and 
Software Engineering

12.1 Introduction
The software business is no different from any traditional business: one
must invest money and assets in order to generate returns. Software
development represents a strategic investment whose purpose is to create
a marketable generic software solution or to solve an in-house business
problem. Morrissey and Wu (1979) observed that the production of soft-
ware can be viewed as an economic as well as an engineering process.
To begin with, software-driven problem solving uses money as an input
resource in order to produce a solution. Money subsequently serves as a
key performance indicator calibrating the success of the solution or
product. However, money does not adequately represent what is invested
or what is expected in return. Software investments entail capital costs,
time, a variety of developer and managerial talents, development effort,
and so forth. The returns expected can be expressed in terms of attaining
the maximum possible value-creation objectives, including market share,
company and product image, technological leadership, etc.

This chapter discusses the economic aspects of software engineering
and the fundamental role that financial resources play in the software
problem-solving process. It also presents a fairly detailed review of soft-
ware cost development techniques such as the Constructive Cost Model
(COCOMO) and the use of function point analysis.
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Erdogmus et al. (2002) described software development as an ongoing
investment activity in which developers and managers continually make
investment decisions requiring the expenditure of resources such as time,
talent, and money. They viewed the overriding purpose of this activity as
geared towards maximizing business added value, subject to its equitable
dispersement among the participating stakeholders. Money plays a role
in every aspect of the problem-solving process. Business problems often
originate from money-related causes and may be resolved or ameliorated
by efficient management of financial resources such as cost-cutting or
increasing productivity. Because money is affected by time and delays,
secondary effects are related to the time value of money (TVM). Money
is needed to manage, hire, and train the human resources needed to do
development and is used to purchase systems, software, equipment, and
supplies. It is the basic reference metric used to evaluate whether a solution
accomplishes the intended organizational goals.

12.2 Economics and the Development of Software
Although most definitions of software engineering describe the discipline
in terms of cost effectiveness, budget considerations, and customer ori-
entation, the software engineering literature generally does not adequately
address these concepts or the magnitude of their impact. For example, a
review of 16 texts on software architecture and object-oriented design
turned up only two books that even included the word cost in the index
(Boehm & Sullivan 1999). Major economic concepts, such as production
points, economies of scale, net present value, marginal analysis, or statis-
tical decision theory, were not mentioned in the software engineering
literature for decades after the emergence of the discipline. Cost estimation
approaches took a long time to appear; benefit estimation approaches are
only now beginning to be considered.

The area of economics called information economics, which first
received serious attention in the 1960s, played a major role in the devel-
opment of software economics. Software economics goes back to the early
1970s with Sharpe’s (1972) publication of The Economics of Computers,
which briefly addressed cost estimation and referred to the seminal study
in this regard done by the System Development Corporation (SDC) of the
U.S. Air Force. The SDC study formulated a linear regression model for
cost estimation based on an extensive empirical analysis of software
development projects. Although the model was not especially accurate, it
nonetheless did serve as a foundation for subsequent cost estimation
models (Boehm & Sullivan 1999).
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One barrier to applying software economics more widely has been
the fact that software engineers may be unlikely to understand enterprise-
level value-creation objectives and may lack formal business training. On
the other hand, top and middle management may not understand the
criteria for the success of a software development project or the relation
between business value creation and investments made at the technical
development level. Indeed, the lack of financial education among software
developers was arguably a significant contributing factor to the software
crisis phenomenon of the 1960s through the early 1980s. The major
challenge facing software developers during that period was to deliver a
working system with appropriate functionality, so often little attention was
given to measuring the business performance of such systems. Instead,
the strong (even prevalent) propensity was to test and evaluate (for
example) information systems from a solely technical perspective regard-
less of their business value. Even when management wanted to investigate
the financial performance or impact of an information system, it often
lacked sufficient software-related background to carry out that task effec-
tively.

This missing link between finance awareness and software develop-
ment has had unfortunate consequences for a variety of reasons. For
example, actual financial planning or assessment often does not occur
prior to starting software development because a detailed feasibility study
may not be carried out. This situation can lead to extremely poor project
management caused by the resulting high levels of uncertainty and equiv-
ocality. Furthermore, business evaluation for an information system may
not be conducted even after the software system is developed except for
its evaluation via traditional technical metrics. This has the paradoxical
result that the software product may be successfully verified, validated,
and deployed even though it actually adds no significant value to an
organization.

Additionally, when decisions are made during the design stage, alter-
native options or sufficient flexibility may not be provided to meet
potential challenges resulting from ongoing market dynamics. Because
business metrics may not even be considered in guiding modular designs
and phased project structures, management may fail to stop or terminate
projects even when new information would indicate the projects have
manifested a low probability of achieving success in a timely fashion.
Another point is that conflicts among the decision-makers are more likely
to occur because of the lack of adequate, value-driven guidance for
resolving arguments—for example, which technical conditions are more
appropriate or which decision best creates the desired value for an
organization.
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Furthermore, the use of technical measurements to define the criteria
for the success of software development and production is neither suffi-
cient nor effective. Although metrics and measurements must provide
criteria relevant to building and evaluating software systems, such criteria
make no sense if they merely lead to the delivery of bug-free systems
that add little or no business value. Finally, there has been a recurrent
failure to utilize not only powerful new technologies, but also organiza-
tional tools, regulations, tax, market, and other mechanisms and structures
within the context of which the software is developed and used (Boehm
& Sullivan 1999). This failure extends to the ineffective use of important
capabilities provided by the wider economic environment, such as the
ability to exploit third-party components or buying and selling software
risk through marketplace instruments.

12.3 The Rationale for Software Economics
Software cannot be engineered without using business metrics to guide
its technical requirements and measure its success. Indeed, the originating
idea behind software engineering was to bridge the gap between software
technology and business in terms of cost effectiveness and return on
investment. Therefore, any discussion of traditional software engineering
concepts such as scheduling, planning, quality assurance, validation, ver-
ification, testing, or development strategies is meaningless without linking
it to relevant business values. In order to establish such linkages, one
must systematically incorporate software economics throughout the entire
software development process, although the work done so far to realize
this goal has been limited.

The reasons for demanding a significant focus on software economics
are clear. These include the fact that the dynamics of technology innovation
have become focused on highly competitive commercial markets. Value
measurement and value creation have also become more complex because
of the increasing importance of time to market and other market-related
factors. Business firms are also more critically dependent on software-
enabled change than ever before. Not only does software development
need to satisfy business metrics to deliver value, but business processes
must also be software-enabled to create value. There is an increasing need
to establish a comprehensive approach that articulates the impact of
software-driven investments across an organization into a single frame-
work—as opposed to approaches that only address partial software
expenses that lead to ineffective global investment patterns (Boehm &
Sullivan 1999).
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Another factor is the state of permanent or continual change in the
business world and technology that leads to unpredictable risks during
software development and the software product life cycle. Thus, demand
for reliable strategies able to deal with uncertainty, lack of knowledge,
and competition are in demand. Such strategies are important to creating
and maximizing value. The complexity of value is another reason for
developing dynamic strategies. Change is the driving factor behind many
risks and has also made the measurement of value more complex than
ever.

Figure 12.1 depicts a framework for the relationship among three major
variables in software economics: technical criteria; quality of design deci-
sion-making; and enterprise-level value maximization. The framework is
based on the idea that guidance on enterprise-level value maximization
can enhance technical metrics and criteria as well as help establish
improved business metrics. This integrated approach criteria can improve
the quality of design decision-making in software development. This in
turn can enable management to act and react in a dynamic and flexible
manner and respond more effectively to changes in the market. Value
creation can be seen, for example, in canceling a failure option before it
is released; searching for a real opportunity option; or creating a new
prospective opportunity option.

12.4 The Influence of Software Economics 
on Software Engineering

A serious need exists to develop additional business metrics that can
measure, guide, structure, and evaluate software development; however,
conventional software economics has already left its imprint on software
engineering. Table 12.1 illustrates a number of widely used software

Figure 12.1 Framework for relation among technical criteria, design decision-
making, and enterprise-level value maximization in software development.
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Table 12.1 Software Engineering Techniques That Reflect 
Software Economics 

No.
Economic 
Fundamental

Affected Mainstream 
Software Engineering 
Technique Rationale

1 Statistical decision 
theory

Software risk 
management

Buying information 
to reduce risk 
(prototyping, 
testing, formal 
verification) 
(Boehm & Sullivan, 
1999)

2 Risk and product 
value 
considerations 

Spiral, iterative and 
evolutionary 
development models

Sequence 
increments of 
capability

3 Basic economics Software reuse Productivity and cost 
reduction 

4 Net present value, 
return on 
investment, and 
break-even point 
analysis 

Economic feasibility 
study in project 
management 

Evaluating software 
investment in 
advance in terms of 
cost-benefit 
analysis

5 Satisfying 
multistakeholder
s criteria

Participatory design
Join application design
Stakeholder win–win 

requirements 
engineering

Shared-based value 
as opposed to 
win–lose and 
lose–lose situations

6 Dramatic 
reduction in 
cycle time 

Extreme programming Adopting cost 
minimization 
strategies

7 Opportunity cost Rapid application 
development (RAD)

Rapidly bringing 
product to market 
considering the 
opportunity cost of 
delay in shipping a 
product in a 
competitive market 
place

8 Minimal cost 
strategy

COCOMO and most 
other cost and 
schedule estimation 
models

Capturing direct 
resources required 
to develop a project
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engineering techniques that implicitly reflect the influence of fundamental
concepts from software economics.

12.5 Software Economics
Maximization of value at the enterprise level is ultimately the decisive
criterion for determining how scarce resources are to be invested because,
at the end of the day, creating value is the only justification for incurring
expenses. Although a reduction in cost or an increase in benefits may
enhance the value of an organization, the mere implementation of a cost
reduction does not automatically lead to value creation. Furthermore, value
transcends direct financial effects and includes nonmonetary benefits such
as organizational prestige, workforce morale, or even amelioration of
societal problems. Such indirect benefits are usually called intangibles and
may ultimately lead to an indirect financial return on the original investment.
This section provides a brief overview of some of the fundamentals of
software economics as a guide to its application in software development.

12.5.1 Value Maximization

Value maximization is traditionally related to profit maximization. In micro-
economics, profit maximization is typically used as the target metric for

9 Time-to-market 
factor

COCOMO II extension 
(CORADMO)

Support reasoning in 
regard to rapid 
schedules for 
smaller projects

10 Productivity Component-based 
development

Commercial off the 
shelf (COTS)

Very high-level 
languages (VHLL)

Systems of systems
CASE tools-supported 

development

Boosting software 
productivity to 
reduce cost, time, 
and human 
resources

Table 12.1 Software Engineering Techniques That Reflect 
Software Economics (continued)

No.
Economic 
Fundamental

Affected Mainstream 
Software Engineering 
Technique Rationale
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a business; value maximization emphasizes the effective utilization of
capital resources with minimum regard for time-related considerations.
For example, a project manager could easily increase profits in a local
time frame by eliminating activities in research and development that
might be considered of lower priority. Of course, this may work in the
short run, but it is not likely to be in the best long-term interests of the
organization. This is especially the case in a software development context,
so it is important to account for such effects in any realistic measure of
value maximization. In particular, two major effects that should be
addressed are uncertainty and timing. Profit maximization is also incom-
pletely addressed unless consideration is given to shareholder wealth
maximization as a key factor in measuring maximization of value for a
firm, project, or investment.

The concept of value in the business or organizational sense has
become increasingly complex because of the impact of highly competitive
business markets. The sources of value include:

� Conventional value creation via current configurations. This refers
to the present value of uncertain future gains through cash flow
streams from consistent traditional sales. Value at this level is
created by producing profit based on current configurations.

� Realistic options value creation via new configurations. This refers
to potential gains from the exercise of realistic options. Real options
are not limited to current configurations; potential opportunities
are more significant. However, such opportunities require new
configurations to take advantage of them. In software development,
this implies the ability to change software, architecture, and tech-
nical properties in order to be able to enter new markets.

� Value creation via process reengineering. This refers to reengineer-
ing design processes to enable effective competition. This can
significantly accelerate the speed of product innovation and even
have a significant impact on the economy and technology.

� Value creation via enhancing decision flexibility. This refers to
selecting and integrating process models to create value in the
form of decision flexibility. This allows restructuring, redirecting,
canceling, or modifying phased project structures or modular
designs in order to meet time-to-market requirements. Decision
flexibility can be achieved through mechanisms such as options
pricing, by applying utility theory, and by using dynamic dis-
counted cash flow.

� Value creation via portfolio management. This refers to creating a
portfolio of realistic options through a specific modular design. To
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create value from such an approach, its benefits must be greater
than the investment in the architecture or process used to produce
it. An alternative is to evaluate possible portfolios corresponding
to different modularizations.

� Value creation via nonmonetary results. In modern economics,
value is not measured purely in terms of money. Money is used
in many cases as a critical enabler to create value in other domains
such as safety, employee morale, or in situations that can have a
positive impact on society. Some of the highest ranked profit-
making companies do not value money as their highest goal.

12.5.2 Evaluating Investment Options

Every software project can be considered as representing an option that
can be initiated, cancelled, modified, or adopted. In deciding whether to
undertake a project, it is critical to evaluate its prospective financial
performance. Projects are evaluated as investments because they involve
costs and benefits; thus, the objective is to analyze the ability of the project
to maximize value for the business firm. A criterion used to evaluate
project or investment alternatives or options should include a method to:
distinguish between what is accepted and what is rejected; be able to
resolve choices among alternatives; be applicable in all cases; assign a
higher value for options that generate better, quicker profits; and be able
to rank options based on their potential performance.

Because the evaluation of investment alternatives is considered a
decision support issue applied prior to project initiation, one is most likely
to find this topic under the capital budgeting area in finance literature.
The methods used to evaluate and compare projects and investment
options can be classified into two categories: projects that have equal
risks and projects that have different risks.

12.5.2.1 Projects with Equal Risks

This category can be further subdivided into two classes. The first concerns
the evaluation of projects with a high degree of certainty and no consid-
eration given to the time value of money. The two basic evaluation criteria
for this category are the pay-back period and the accounting rate of return.
The second class concerns the evaluation of projects with a low degree
of certainty for which one does consider the time value of money. The two
widely used methods for evaluating investment projects and options under
this category are net present value (NPV) and return on investment (ROI).
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12.5.2.2 Projects with Different Risks

This category can also be subdivided into two classes (see Figure 12.2).
The first concerns methods for modifying the rate of discounted cash flow.
This encompasses four methods for evaluating investment projects: Capital
Asset Pricing Model (CAPM); modifying discount price; sensitivity analysis;
and simulation. The second class concerns methods for modifying cash
flows.

12.6 Risk and Return
Investment is made in order to obtain a return. Of course, there is no
free lunch and thus return is always acquired at some risk and is threatened
by the possibility that something may go wrong. Regardless of the nature
or cause of the failure, the chance of failure is called risk. In financial
terms, risk is defined as the probability that the actual return will be lower
than the expected return. The greater the risk involved, the greater the
return expected in the event that things go well.

Important relevant concepts are the operating leverage and the finan-
cial leverage. Operating leverage is fixed operating costs divided by total
operating costs. The total operating cost includes fixed and variable costs.
Financial leverage is the degree to which a business is exploiting its
borrowed money. Companies with high leverage may incur higher risks;
however, a higher degree of financial leverage is not always injurious

Figure 12.2 Taxonomy of capital budgeting techniques in finance.
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because it can increase the stakeholder ROI. Risk is frequently coupled
with other characteristics that qualify its meaning: expectation, deviation,
probability, and uncertainty, which are defined as follows:

� Expectations. Risk concerns what might happen in the future. Even
though risk is related to the future, its estimation or (risk) assess-
ment is based entirely on past or current experiences. This assess-
ment involves analysis, forecasting, and planning—none of which
can succeed without appropriate data. Thus, data about prior or
existing experience forms the basis for any risk assessment.

� Deviation. Because risk is focused on problem, error, or failure, it
can only be examined when metrics and checkpoints are in place.
Risk requires that an organization or business firm has already set
its goals clearly and precisely. Such tactical or strategic goals are
the basis for metrics and measurements. Risks are viewed in terms
of the extent to which future results may deviate from the goals
or metrics of an organization.

� Probability. Risk is about what events can possibly happen and
what the probability of the occurrence of the events is. High risks
are those that combine the most severe adverse consequences with
the highest probability of occurrence. Probability expresses risk in
a quantitative fashion, allowing statistics to be used intensively to
weigh, prioritize, and manage risks.

� Uncertainty. As a rule of thumb, one cannot control things that
one ignores. Lack of knowledge and conflicting or confusing
information lead to uncertainty and enhance the expectation of
risk. Uncertainty is usually defined as the expected fluctuation or
volatility in the cash flow of an investment option according to
some probability distribution. However, some financial resources
differentiate between risk and uncertainty according to the extent
to which each reflects realistic historical data or even personal
speculation. In this sense, risk relies on historical data, as opposed
to uncertainty, which is more tied to personal expectations.

For a practical or applicable understanding of the concept of risk,
consider an informal definition of risk as the possibility of the occurrence
of events that are hard to predict and can have adverse effects or
consequences on business and software processes. Actual return refers
to the return on the investment that actually takes place at the end of a
period of time. Expected return refers to the return that an investor anticipates
to occur at the end of a period of time viewed from the investor’s perspective
at day zero. Two factors make risk more significant: probability and magni-
tude. These relate to the following important questions:



254 � Strategic Software Engineering: An Interdisciplinary Approach

� How risky is a project? This refers to the degree of volatility as
measured statistically.

� What is the magnitude of the adverse effects that result from risk?
This refers to the nature of the effects that may result from risks.

12.7 Traditional Software Economics
The traditional or conventional approach used in software economics has
several characteristic features largely focused on cost-benefit analysis. Little
consideration is given to risk identification or minimization and clearer
emphasis is put on cost estimation than on benefits analysis and estimates.
Generally, benefits are not well addressed in classical software economics
literature and few connections are available between business and tech-
nical metrics in evaluating software systems. In fact, it is rare to find any
focus on business metrics. Additionally, benefits are generally only mea-
sured at the financial or tangible level; competition is not viewed as a
driving force in software design decisions, so time-to-market strategies are
not incorporated; and the conventional approach offers no clear strategy
for addressing the impact of changes in business and technology.

12.7.1 Problems with Conventional Software Economics

One of the most fundamental considerations in software economics con-
cerns risk and return. A serious problem with traditional approaches is
that they frequently assume equal risks between competing options or
projects. Consequently, they rely on non-risk-sensitive measurements such
as net present value (NPV). Another problem is that even the newer
approaches that do include risk in their evaluations fail to distinguish
between systematic and nonsystematic risks. Systematic risks cause vola-
tility in the expected rate of return to all existing or suggested investment
projects across an entire industry. Systematic risks are often called undi-
versified risks because they cannot be eliminated or reduced by diversifi-
cation. On the other hand, nonsystematic risks cause volatility in the
expected rate of return to all existing or suggested investment projects
only in a specific firm or across a particular business domain. Such
nonsystematic risks are often called diversified risks because the risk can
be eliminated by diversification.

12.8 Software Cost
Cost may be defined as the total amount of money, time, and resources
associated with an activity that, in the context of software engineering,
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encompasses problem solving and software development processes. Cost
is a strategic concept in software development for the following reasons:

� Project management. Estimating cost is critical to correctly carrying
out project management activities such as scheduling, planning,
and control.

� Feasibility study. Making investment decisions about software
projects requires a full cost breakdown and analysis. The identified
recurring and one-time costs are included in a financial feasibility
study in terms of a cost-benefit analysis.

� Cost reduction. Because software engineering proposes to provide
cost-effective software solutions to business problems, many pro-
cesses and project-related activities are designed or reengineered
to achieve cost minimization.

� Evaluating business performance. Cost is an essential ingredient in
calculating many of the financial ratios introduced earlier and is
used to evaluate financial performance for a business firm.

� Leverage. Cost plays a significant role in operating as well as
financial leverage with respect to risk and return. Relying on fixed
costs as opposed to variable costs can boost operating leverage,
and financing with high-percentage, debt-based costs may boost
financial leverage.

12.8.1 Cost Estimation

More projects are doomed to failure by poor cost and scheduling estimates
than by technical, political, or organizational problems. It should therefore
be no surprise that few companies appreciate that software cost estimating
can be a science and not merely a rough art. In fact, it is known that
software cost estimation is able to predict development life cycle costs
and schedules accurately and consistently for a wide array of software
projects. Estimating software costs typically involves trying to model the
effect of the following factors: the complexity of the software project; the
size of the project; the effort needed to complete the project; the time
needed to complete it; and the risk of failure and uncertainties involved.

Of course, any predictive model that intends to project development
costs and time must combine such putative driving factors into an algo-
rithm. A relatively direct algorithm is one based on formulae with param-
eters that can be statistically estimated fr om previous project or
organizational experience, or possibly from a functional decomposition
analysis of the project to be done. However it is done, that parametric
formula then defines the predictive model. The important factor of risk
has still not been adequately incorporated in most cost estimation models
for software systems.
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Despite some differences, the cost estimation models tend to be more
or less based on the following kinds of relationships:

� Complexity determines size: that is, the complexity of the project
determines the software size in terms of kilolines of code (KLOC).

� Size determines effort: that is, the KLOC determines the effort
required for the project in staff-months with a given level of
productivity.

� Effort determines time: that is, the predicted effort determines the
time required for a project for a given mode or model.

� Effort determines the number of people required: that is, the effort
for a project determines the number of people required, assuming
the prior existence of a trained, full-time, software development
team.

The initial estimates of the software development cost of a project are
sometimes called investment appraisals and act as key elements of a
feasibility analysis. Although an extensive body of knowledge on cost
estimation techniques exists, most of these techniques explicitly or implic-
itly view cost as a function of project complexity. In Boehm’s (1981) early
COCOMOs, complexity referred to the project size or program size, which
was assumed to be estimated in KLOC. In later estimation models and
COCOMO II, complexity was recognized as a combined function of the
inputs, outputs, interfaces, files, and queries required by a software system.
This complexity estimate was then adjusted based on a variety of added-
complexity factors with the final estimate obtained using parameters from
a standard table.

The calculations in a basic cost estimation model are straightforward.
They estimate the required project effort in terms of the man-months
required for the project. The term man-months (also referred to as staff-
months) means the number of months required to complete the entire
project, assuming that a single person were to carry out the mission. This
variable is the reference variable for all the software cost estimating
models, especially those that derive from Boehm’s (1981) well-known
Constructive Cost Model.

COCOMO estimates the total effort in staff-months using two variables:
how many thousands of lines of source code (KSLOC) the programmers
must develop and what effort is required per KSLOC (the linear produc-
tivity factor). Combining these variables gives the staff-months of effort
required for the project. This is generally a reasonable estimate if the
project is relatively small. For larger project sizes, a size penalty factor is
incorporated, which may be quadratic in the team size.
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The outputs from a COCOMO analysis give the estimated total effort
(in staff-months); the project schedule (in months); and the staff require-
ments for the project (in terms of the number of personnel). In later
COCOMO models, the effort, schedule, and staff estimates are broken out
or distributed for each of the project phases. Hamlet and Maybee (2001)
very simply and insightfully illustrate the handiness of such basic
COCOMO guidelines. For example, they summarily observe that

Projects in the range of 100,000 LOC take about two years to
complete, and the required effort is about 20 percent for require-
ments/specification, 50 percent for design/coding, 30 percent
for test. The staffing and distribution of schedule depend more
on the type of project but is about 500 total man-months, but
this is distributed 30:40:30 percent among the phases.

The total effort for a project depends significantly on the type or so-
called mode of the project (semidetached, embedded, or organic, as
described later). For example, the most complex type—an embedded
project—may require three times as much effort as does the least complex
type of project—the organic type. On the other hand, although the level of
effort varies significantly with the project type or mode, the distribution of
that effort over the various project phases is relatively invariant in the project
type. However, this is not the case for the project schedule. For example,
in an embedded project, the requirement or specification phase may take
twice as much time (as the organic mode), but may spend only 70 percent
as much time on the design or coding phase (Hamlet & Maybee 2001).

This kind of rationally based planning estimate is extremely useful for
giving managers and engineers a persuasive grasp of the likely resource
requirements of a project. Indeed, it provides a software engineer who is
interfacing with management a singular opportunity to have a major impact
on his work environment with very little effort—almost a pencil and paper
calculation. The projections can also be used for understanding the impli-
cations of various scenarios. For example, Hamlet & Maybee (2001)
mention the following instructive illustration.

Suppose management wants a project to be completed in nine months
rather than the two years initially forecast by the COCOMO model. To
accomplish that, the initial 20 percent of the effort required for require-
ments and specification, applied to the approximately 500 man-months
originally estimated by the model, will imply that about 100 man-months
will have to be accomplished for the project just in those first three months
(20 percent of 500). Because this effort is indeed spread over three months,
the staff requirement will be for 30 people. Even more people will be
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needed later during the even more effort-intensive design and code phase,
for which similar calculations will indicate that a total of 80 staff will be
required. As an additional complication, assuming a management-to-staff
ratio of (say) eight to one, these 80 people will entail a further addition
of ten new managerial resources to the project. Furthermore, even such
an expedited model estimate is only a lower bound on the required
resources because it completely ignores the unavoidable pitfalls that will
be encountered in trying to parallelize activities that may not really lend
themselves to parallelization.

The parameters used in the classic COCOMO model are, of course,
not pulled out of thin air. Rather, they are based on a detailed statistical
analysis that was originally developed by Boehm using extensive historical
project data for 63 software development projects undertaken at TRW.
The value of this type of estimation model is clear. It uses simple, statistically
validated correlations between project resources (such as time, effort, and
people) and project type and size to project the key manpower, schedule,
and total time requirements for a project in a relatively simple way that
can be easily implemented by COCOMO estimation software. The model
has the advantage of being highly transparent and can help provide an
intuitive understanding of the impact of different factors on the effort that
will be needed to be expended.

COCOMO is the most widely used model to estimate the cost and
schedule of a software development project. Its estimate is based on the
size of the software to be developed. The COCOMO model is categorized
into three levels: basic; intermediate; and detailed. These three categories
have different degrees of precision (or at least of model specificity) and
involve different levels of cost factors. The basic COCOMO model sepa-
rates software development into three kinds or modes and provides
different equations for each to estimate the project cost and schedule.
The modes (as mentioned earlier) are organic, embedded, and semide-
tached.

� Organic projects are relatively simple software development
projects that can be efficiently undertaken and developed by small
project teams. This type of project is usually undertaken in house
by a team that has a detailed knowledge of the working domain
of the product to be developed and of the relation of the product
to organizational goals. The requirements and other processes
involved in this type of project are flexible and are usually nego-
tiated and adjusted on a fairly regular basis during the product
development cycle. The software size is typically at most 50,000
delivered source lines and the project application is typically not
innovative.
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� Embedded projects, on the other hand, are complex projects in
which software development is done under a set of complex
hardware, software, and functional constraints. The project team
must adhere to rigid requirements and possibly stringent regula-
tions, and may possibly face significant uncertainties in problem
definition. Embedded projects are typically “embedded” in larger,
preexisting systems or environments. A classic example is a military
application for an embedded navigational system. A complex bank-
ing system is another example. If the product is new or original,
then the development team involved in the project may not have
extensive experience with the environment and thus the system
may require intense design. The project may have considerable
scope and require scientific innovation.

� Semidetached projects lie between organic and embedded projects
in complexity and their size is usually no more than 300,000
delivered source lines. The software requirements are also a mix-
ture, lying between the rigid requirements of an embedded project
and the flexible requirements of an organic project. The develop-
ment teams also have members with a mix of experience levels.

The basic COCOMO model required an estimate of effort for development
that was measured in man-months (PM). It used the following empirically
derived formula to estimate effort:

Effort = a × (KDSI)b

where the term KDSI denotes thousands of delivered source instructions.
Thus, only source lines that are delivered as a product are considered;
other lines (e.g., test drivers, support software) are excluded from this
scope. To estimate the software product development schedule in months,
the basic COCOMO model uses the formula:

Schedule = c × (Effort)d

Table 12.2 gives the equations for estimating development effort and
developments schedule using values of a, b, c, and d corresponding to
the types or modes of a project. 

The intermediate COCOMO model is an extension of the basic
COCOMO model. The basic COCOMO estimates are not as accurate
because the basic model uses only two cost factors: the size of the project
(in KDSI) and the level of project development (organic, embedded, or
semidetached). In intermediate COCOMO, the same basic types of for-
mulae for the model are used, but the coefficients for the effort equation
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change. An additional 15 cost factors or cost drivers are used as cost
predictor variables. These new cost factors presumably increase the pre-
cision with which effort and cost can be estimated.

The factors involve the product characteristics, characteristics of the
development personnel, nature of the computing environment, and project
factors. The complete list of these factors is as follows. Under the product
attributes, Boehm (1981) included the complexity of the product; the size
of its data base; and its required software reliability. Run-time performance
and memory or storage constraints; volatility of the virtual environment;
and required turnaround time fall under hardware attributes. Personnel
attributes include analyst and software engineer capabilities; application
and language experience; and machine experience. Under pr oject
attributes, the factors are the use of software tools; engineering methods;
and development schedule. These additional cost factors are quantified
and then multiplied to give an effort adjustment factor (EAF) whose typical
values are in the range from 0.9 to 1.4. The effort equation for the
intermediate model becomes:

Effort = EAF × a × (KDSI)b

The effort equations for the different modes of the intermediate
COCOMO model are given in Table 12.3. Notice the difference in the
linear constant multipliers between the EAF table and the basic COCOMO
table. The coefficient changes (which appear to move in the opposite
direction to what one might expect) are compensated for by the estimated
EAF factor.

Under the intermediate COCOMO model, the estimator assigns a rating
to each cost factor on the scale of “very low,” “low,” “nominal,” “high,”
“very high,” or “extra high.” These ratings are given in a table provided
by COCOMO, which is not discussed here in detail but correlates each
rating with a numeric value. For example, under product attributes, the
complexity scores range from 0.70 (“very low”) to 1.65 (“extra high”).
Under personnel attributes, the capability of the team analysts ranges from
1.46 to 0.71. Under programmer capability, the factors range from 1.42

Table 12.2 Estimating Development Effort and Development Schedule

Project type Effort (in person months) Schedule (in months)

Organic 2.4 × (KDSI)1.05 2.5 × (effort)0.38

Semidetached 3.0 × (KDSI)1.12 2.5 × (effort)0.35

Embedded 3.6 × (KDSI)1.20 2.5 × (effort)0.32
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(“low”) to 0.70 (“high”). Incidentally, whether the factors increase or
decrease in numerical value as one ranges from “very low” to “extra high”
depends on the nature of the factor’s effect. Thus, “low” complexity should
obviously decrease the expected EAF, so the corresponding numerical
value should be relatively low.

On the other hand, for programmer capability, a “low” skill rating for
capability would imply a relative higher value for the expected EAF, at
which the numerical values start off with higher numerical values (the
“low” rating is 1.42) and end up with lower numerical values (the “high”
rating is 0.70). This is as should be expected because the less capable a
programmer team is, the longer the project will take. Normal or nominal
values are all 1.0.

The overall adjustment factor is obtained by multiplying all the numer-
ical values. If it is assumed that the additional cost factors were nominal,
then all adjustment factors would become 1. This would mean that the
EAF would be equal to 1 and the effort equation would become the same
as in the basic COCOMO model. Obviously, the model provided by
intermediate COCOMO is more complex than the basic model. Despite
this greater modeling detail, some researchers, such as Kemerer (1987)
and Fenton & Pfleeger (1997), argue that the increased model complexity
does not necessarily lead to better estimates because many of the factors
are interdependent and are difficult to estimate objectively.

The detailed COCOMO model represents a further enhancement and
builds on the intermediate model by using different effort multipliers for
each phase of the project. The life cycle is assumed to have six phases:
requirement gathering and analysis; product design; detailed design; cod-
ing and unit testing; integration; and test and maintenance. Estimates for
the requirements analysis phase and for the maintenance phase are carried
out separately using a method different from those for the estimates for the
first four phases—product design through integration and testing (which are
collectively called the development phases). The detailed COCOMO model
provides more accurate estimates because it takes into consideration the fact
that cost factors vary from one phase of the product life cycle to another.
Two elementary examples of COCOMO-style calculations follow.

Table 12.3 Intermediate COCOMO Model

Project type Effort (in person months)

Organic EAF × 3.2 × (KDSI)1.05

Semidetached EAF × 3.0 × (KDSI)1.12

Embedded EAF × 2.8 × (KDSI)1.20
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Sample Problem

Suppose a project requires building a Web development system estimated
at 25,000 lines of code. Using the Basic COCOMO model, calculate how
many man-months of effort this would take under the following scenarios:

1. The project complexity is simple and its size is relatively small.
2. The project size is large and the project must be developed under

a set of complex hardware, software, and functional constraints.

Solution

1. The estimate for the relatively small, simple project is:

Effort = 2.4 × KDSI.05 = 2.4 × (25)1.05 = 70.5 staff-months.

Observe that the value 25 is used rather than 25,000 because the
size metric is in thousands of lines of code.

2. The estimate for the large project is:

Effort = 3.6 × KDSI.20 = 3.6 × (25)1.20 = 171.3 staff-months

Sample Problem

Suppose the project in the previous example (simple project) is rated as
“extra high” for the cost factor of “complexity” (effort multiplier = 1.65),
and “low” for the cost factor of “programmer capability” (effort multiplier
= 1.17), and all the other cost factors are rated as nominal. Calculate the
effort.

Solution

This uses the intermediate COCOMO model in which the effort multipliers
are used to calculate the EAF, which is subsequently applied in the effort
equation. Thus:

EAF = 1.65 × 1.17 = 1.93

The effort equation for the intermediate model is given by:

Effort = EAF × a × (KDSI)b

Because the complexity factor is “high,” the project is assumed to be of
embedded mode. For embedded projects, effort equals:
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Effort = EAF × 3.2 × (KDSI)1.20

Effort = 1.93 × 3.2 × (25)1.20

= 288.5 staff-months

In the last decade or so, software development techniques have
changed significantly. These changes have made application of the original
COCOMO model presented above more problematic and less suitable. In
the 1990s, an expanded model, COCOMO II, was developed (Boehm et
al. 1997). This model reflects process developments in software practice
since the original 1981 model was presented and is based on the data
from 83 projects. It reflects the new emphasis on software reuse, object-
oriented development, and the use of off-the-shelf components. COCOMO
II has three staged models for estimation:

� The application composition model (for example, at a prototyping
stage) can be used to clarify risk, particularly as pertaining to
performance, system interaction, and technology maturity. It is
based on measures such as the number of screens and objects
used and their complexity.

� The early design model (for use when architectural alternatives are
considered) can be used to clarify the choice of system and
software architecture and the overall operational concept of the
system.

� The postarchitecture model (when the project is to be developed)
is used during the development and subsequent maintenance
phases of the project.

The COCOMO model is critically dependent on the estimated size of
the project in terms of the number of lines of code. This arguably just
exchanges one problem (effort estimation) for another (size estimation).
An approach called function point analysis can be used to estimate size
on the basis of the number and type of functions that the system imple-
ments (Bell 2000). Function points can be identified as follows. For
example, in a system with a graphical interface, a particular screen may
display information about an inventory part: its price, functionality, man-
ufacturer, the number in stock, etc. Such a screen represents what might
be thought of as a unit of functionality provided by the system. This
function point is an example of what is called a user-provided output
unit of functionality. Other output functional units could be system
reports, error messages, etc.
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In function point analysis, each element contributes a count of one to
the functional complexity of the system. The user outputs are triggered
by user queries. Each different type of user query also contributes to the
function count. Similarly, the back-end files that the system accesses
contribute one count per file. Each distinct type of user input that provides
application data to the system also adds to the function count. Finally,
each system interface with an external system is counted. In COCOMO
II, each separate type of function count is weighted depending on its
complexity, which is evaluated as simple, average, or complex, with a
numerical score assigned to each.

For example, user inputs are rated as simple (weight 3), average (weight
4), or complex (weight 6) and then their counts are scaled accordingly.
There are similar weights for each of the other types of function counts. An
overall weighted function count, FP, is then calculated using the formula:

FP = (weighted total count)* 0.01 C + 0.65)

where the variable C is an estimate of the overall technical complexity of
the function points to be defined.

To calculate C, one sums the estimates of the technical complexity of
each individual function, rating each function type on a scale from 0 to
5. The rating is guided or determined by factors such as the system’s
expected reliability and recovery requirements; performance criticality;
complexity of the system inquiries; whether the software product is
expected to be reusable; ease-of-use requirements; etc. Finally, to estimate
the number of lines of code, one multiplies FP by a factor that depends
on the programming language used. Conversion tables such as those in
Jones (1996) can be used to map function points to the number of
programming language lines, for example. Other software cost estimation
techniques are available. These include:

� Making an estimate based on the judgment of an expert in the
area of development

� Estimation on the basis of analogy with related applications that
have been previously completed

� Bottom-up estimation based on estimates of the cost of components
of the system

� Top-down estimation based on the overall logical functions pro-
vided by the system rather than by analyzing the components that
implement those logical functions

Each of these approaches has certain advantages and disadvantages.
See Boehm (1981) and Shaw (1995) for further discussion. Regardless of
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the method used, the cost estimation process is an ongoing one that must
be continued and clarified as the project progresses to ensure that the
project stays within budget, or to understand what factors may require
the budget to be realigned.
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Chapter 13

Specialized System 
Development

13.1 Introduction
Software development is a complex process driven by problem- and
solution-related factors. The problem-related factors determine the criteria
for the characteristics of the expected solution and help system designers
tailor solutions to specific problems. The solution-related factors delineate
possible options, assist in making projections, and facilitate scaling and
mapping the solutions to problems. It remains an open issue as to whether
the preferred software engineering approach should be to develop generic
prescriptions for common problems (generalization) or derive domain-
dependent solutions to specific problems (specialization). Generic
approaches can be thought of as general-purpose strategies intended to
give overall development guidance for an unrestricted range of applica-
tions. In contrast, specialized approaches are closely tailored or adapted
to a specific type of application. They provide development guidance that
is closely related to the kinds of problems that are prominent, essential,
or difficult in that category of application.

According to one viewpoint, software engineering should be under-
stood as a standardized response to software development based on the
use of generic methodologies and strategies. It thus stands in contrast to
the nonsystematic, informal approaches that characterized early software
development. Standardization implies that one uses generic rules, proce-
dures, theories, and notations. These are characteristics that mark mile-
stones in the development of any scientific discipline.
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With the advent of standardization, software development underwent
a paradigm shift. It moved from trial-and-error experimentation to the
beginnings of scientific maturity; from the nonstandardized representation
and implementation of concepts to unified modeling and cross-platform
independence; and from vaguely stated economic considerations to well-
defined, software-driven business models. However, a one-size-fits-all
viewpoint has not proved practical in real software development (Glass
2000). No single methodology is appropriate for every case. No strategy
works perfectly for every problem. No off-the-shelf prescription is directly
applicable without addressing scalability, tailorability, or customization.
Approaches that fit specific situations do not necessarily fit them all the
time because change is a constant and organizational and business needs
evolve alongside innovation and emerging technologies. Thus, a balanced
approach between generalization and specialization seems to be the best
way to achieve effective software development.

This chapter examines specialized system development, an increasingly
important approach that has been generally overlooked in the software
engineering literature since the discipline’s inception. Generic software
development provides only an incomplete strategy (Vessey & Glass 1998)
for solving problems because it only supplies guidance for solving prob-
lems but not actual solutions to problems at hand. Scalability, tailorability,
and specialization have become key issues in the software industry and
software engineering research. Furthermore, even general applications are
not actually generic, with many current applications supporting customi-
zation features.

Additionally, these systems are released in different versions that range
from the standard release to professional and enterprise editions suitable
for a broad range of needs and problem complexity. Such applications
also evolve over time to reflect changes in business requirements and
technological capabilities. This chapter defines specialized system devel-
opment, discusses its drivers, describes its advantages and disadvantages,
and explores the different types of specialized system development. It
also considers the need for specialized system development.

13.2 Principles of Specialized System Development
According to the Merriam–Webster dictionary, to specialize means to
concentrate one’s efforts on a special activity or field or to modify in an
adaptive manner. Concentration provides greater attention to detail—in
principle, allowing more efficient problem solving. Specialization links
theory with practice, making the theory more meaningful. Specialized
system development involves developing software systems within the
context of a relatively narrow focus, although the focus can vary.
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The focus can be an application domain, a phase of the development
life cycle, or a specific software development methodology. An example
of an application-domain focus is software development for pervasive
computing applications, including wireless and portable systems. An exam-
ple of a development phase focus is systems development with a special
emphasis on project management, requirements analysis, or architectural
design—as opposed to generic software engineering. An example of a
methodology focus is systems development using structured or object-
oriented strategies. This last specialization in methodology can span a
wide range of approaches and tools, including software development
process models (problem-solving strategies), CASE tools, and implemen-
tation techniques.

Application-focused software development is currently the most fre-
quently used type of specialized system development in the software
industry. It broadly falls under two categories: application-oriented devel-
opment and infrastructure-oriented development, each of which may have
a problem focus or a solution focus. The problem focus can be based on
the industry involved or the application domain. The solution focus can
be based on custom development, package development, or development
aid (Glass & Vessey 1998).

13.2.1 The Roots of Specialized System Development

The history of specialized system development is closely coupled with
the evolution of computer hardware and technological advancement. It
spans four distinguishable eras:

� Domain dependent, which preceded the development of software
methodologies

� Domain independent, which saw the emergence of software devel-
opment methodologies

� Generic applications, which was marked by methodology-intensive
software development

� Return to application-focused development, which represents a
postmethodology software development period

13.2.1.1 Domain-Dependent Era: Before Software 
Development Methodology

In the period from 1955 to 1965, computer hardware depended on the
specific application domain. Thus, it was virtually impossible to develop
business and scientific or military applications on the same machine.
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Problem-oriented languages like FORTRAN, COBOL, and ALGOL were
developed during this period to provide software with a measure of
platform independence compatible with the requirements of new com-
puters. The domain-specific focus was a major element in building suc-
cessful software systems. Entire new computing disciplines emerged to
support these applications, including numerical analysis programming for
military and scientific applications and information retrieval for business
applications (Vessey 1997).

13.2.1.2 Domain-Independent Era: Early Software 
Development Methodology

In the period from 1964 to 1980, more powerful machines such as the
IBM 360 were introduced, including the lower mid-range model 40 and
the model 67, shipped with hardware to support virtual memory. The
IBM 360 allowed scientific and commercial or business applications—pre-
viously restricted to different hardware platforms—to coexist on a single
machine, partly through the implementation of multiple types of arithmetic
instructions in the hardware. The sociology of software development was
strongly influenced by the 360’s ability to eliminate the machine-based
separation between scientific and business applications. Generic applica-
tions became possible when the software business became independent
of hardware vendors. Competitive advantage in software development
became directly proportional to the interdependency of standards, hard-
ware, and platforms. This period also saw many attempts to institutionalize
application-independent software development strategies (Vessey 1997)
and provided the foundation for the next era of methodology-intensive
software development.

13.2.1.3 Generic Applications Era: Methodology-Intensive 
Software Development

The period from 1980 to 1995 saw the birth and evolution of desktop PC
and laptop computing. With the increasingly widespread availability of
computers and their increased user-friendliness, user involvement became
more prevalent. The availability of technology also facilitated automation
efforts in software implementation and nontechnical users became more
active participants in the process (Glass 1998). Intuitive, user-friendly
graphical use interfaces (GUIs) replaced the obscure demands imposed
by JCL (job control language), thereby moving human computer interaction
(HCI) to a higher level. Attempts at developing application-dependent
software (such as fourth-generation languages, rule-based languages, and
simulation languages) were also carried out (Vessey 1997).
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13.2.1.4 Return to Application-Focused Development Era: 
Software Development Postmethodology

In the period from 1995 to the present, networked hardware architecture
became the dominant driver. The development of Web-based applications
was the milestone distinguishing this period. This was correlated with:

� Emergence of Web-driven tools and programming languages
(HTML, Java, Java Script, XML, VML)

� Introduction of user-friendly Web interfaces such as Internet brows-
ers and email agents

� Emergence of Web-based software engineering as a software devel-
opment methodology

� Increased demand for software that balanced speed and quality
� Closer synchronization between business processes and software

evolution

13.2.2 Generic versus Specialized Development

The shift from domain-specific to application-independent computers was
a decisive event in the history of software development. The subsequent
deployment of application-independent computers in desktop and note-
book computing represented yet another milestone, marking a shift
towards generic infrastructure systems, applications, and components. This
deployment led to several notable advantages:

� Portability. Software applications can be accessed virtually anytime
and anywhere because of the development of generic Web-based
downloading and installation protocols.

� Compatibility. A single operating system can now host a vast
number of applications regardless of their originating vendors.
Generic operating systems are a central repository for shared
components across applications.

� Reusability. One application or one module can be used across
computer models, organizations, and user groups. It can be dis-
tributed over an organizational network or the World Wide Web.
It can also be reused to develop new releases of software imple-
mentations. Furthermore, with modifications through built-in pref-
erences and options, the same application can be customized or
tailored to a variety of individual needs.

� Ease of training. Generic applications are easier to learn because
of their availability, and training material is inexpensive (or even
free) due to the use of mass production techniques.
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� Cost effectiveness. Because operational costs are generally lower
with mass production and sales volume is usually high, products
can be sold at competitive prices to end-users.

Generic applications also have noteworthy disadvantages. For example,
such applications are based on the assumption that individuals and orga-
nizations have no significant differences that require special adaptability
or scalability. This assumption applies also to generic methodologies or
strategies for software development. Generic methodologies are rarely
adapted to the type or size of the project, the technological environment,
or organizational settings. These methodologies are one-dimensional
approaches, often not mirroring a particular organization’s social, political,
and organizational development dimensions (Avison & Fitzgerald 2003).
Generic applications also assume that businesses or individuals should be
able to adapt to the infrastructure and functionalities of the generic
application with limited provision for change. Although this assumption
may be valid within one application domain, it may be highly ineffective
for another.

Additionally, the assumption that business processes can be easily
modified to fit a generic software product is unrealistic and can prove
costly. The diversity of goals, market demands, stakeholder requirements,
architectural specifications, nonfunctional requirements, and organizational
cultures across business domains and specializations can make generic
development strategies impractical. Indeed, for some organizations, the
effect of adopting a particular generic methodology that fails to yield
expected outcomes may be a wholesale rejection of methodologies in
general (Avison & Fitzgerald 2003). Agile software development is one
reaction to this phenomenon.

13.2.3 The Problem-Solving Context in Specialized 
System Development

Because software development tries to solve problems, it is important to
view specialized system development in a problem-solving context. Solv-
ing problems always involves two elements: the ability to comprehend
the problem and the ability to solve it. Accordingly, specialized system
development may be problem focused or solution driven. The types of
problem and the solution strategies in software engineering vary, so it is
essential to have an effective understanding of this variety for successful
specialized system development.

Specialized system developers face several challenges (see Figure 13.1).
One is to understand how specialization in identifying problem charac-
teristics can help in evaluating existing options, in selecting the most
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appropriate options, and in using domain analysis and requirements
engineering to develop effective solutions. Another challenge is how
software products or solutions can be adequately used, reused, custom-
ized, personalized, reengineered, or redeveloped based on application-
driven or domain-specific specialization. How specialization in the prob-
lem, method, product, or domain analysis can assist in the proper selection
or successful construction of computer-based solutions that utilize suitable
methods, process models, techniques, and tools is yet another challenge.

Examination of problem and solution diversity reveals three factors
decisive in specialized system development: the characteristics of the
system to be developed and of its anticipated users; solution-driven
capabilities, experience, and knowledge; and the characteristics of system
developers.

13.2.3.1 Characteristics of System

This is a problem-focused category. The diversity of software systems in
terms of size; complexity; time constraints; scope; underlying technology;
business goals; and problem environment are determinative for this cat-
egory. The problems with which one deals range from structured problems
at the operational levels of organizations to semistructured ones at the
tactical level to ill-structured problems at the top-management or strategic

Figure 13.1 Generic and specialized software development in the problem-solv-
ing context.
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level (corresponding to vertical specialization). Problem specialization may
be between organizations within the same industry; across industries
(external horizontal specialization); or within the same organization but
across its various functional departments or key business processes (inter-
nal horizontal specialization).

13.2.3.2 Characteristics of Expected Users

This is also a problem-focused category. Some relevant issues are the age
of user considerations; gender considerations; purpose of using the system
(personal versus business); user background (technical versus nontechni-
cal users); and user environment. The user environment includes but is
not limited to culture; language; geographic location; technical; financial
resources; human resources; and legal or ethical issues. Each of these
introduces specific needs in system development and triggers specific
specializations in response to those needs.

13.2.3.3 Solution–Driven Capabilities, Experience and Knowledge

System specialization in this category is based on tools and resources
rather than on the application domain. These include capabilities affecting
numerous specializations in the solution area:

� Capabilities and experience in project management tools
� Requirements analysis techniques
� Architectural models
� User interface approaches
� Database management strategies
� Implementation languages
� Development tools
� Development methodologies
� Process models

13.3 Application-Based Specialized Development
Several examples of specialized development are considered in this sec-
tion: pervasive computing; real-time software; Web-based applications;
and security-driven software.

13.3.1 Pervasive Software Development

Pervasive computing has arisen as the result of the convergence of three
traditional computing specializations (personal, networking, and embedded



Specialized System Development � 275

systems). This has introduced the era of mobile computing, wireless
devices, PDAs, pocket PCs, and tablet PCs, all of which are examples of
pervasive computing products. Software applications are important com-
ponents of these products and the distinctive nature of these applications
presents new challenges to software development. Pervasive applications
are distinguished by their ubiquity, interconnectedness, and dynamism.
The applications are expected to be embedded, distributed, nonintrusive,
and cost effective (Ciarletta & Dima 2000). As a result, system architecture,
security, and software economics are especially significant issues in per-
vasive software engineering.

A conceptual model, proposed by Ciarletta & Dima (2000), partitions
the aspects of pervasive systems development into four layers: physical,
resource, abstract, and intentional. Table 13.1 illustrates the roles of each
of these layers in specialized pervasive system development.

Effective m-commerce application can be deployed only if sufficient
network reliability and redundancy are available. M-commerce (mobile
commerce) applications require a unique blend of knowledge and need-
specific networking support to be effective (Kalakota, Varshney, & Vetter
2000), including wireless quality of service (QoS); efficient location man-
agement; and reliable and survivable networking. Varshney and Vetter
(2000, 2001) describe a four-level framework that may provide a process
for developing effective m-commerce applications:

� M-commerce applications. These applications modify e-commerce
applications for a mobile environment.

� Wireless user infrastructure. The new m-commerce applications
should support the capabilities of user infrastructures. For example,
such applications must be effective for mobile devices such as
PDAs and cell phones.

� Mobile middleware. The new m-commerce applications must have
superior response time and reliability when deployed because the
middleware will be used to connect e-commerce applications with
different wireless networks.

� Wireless network infrastructure. Networking requirements need to
be satisfied by the m-commerce applications deployed. Such
requirements include quality of service; network reliability; location
management; roaming across multiple networks; and multicast
support.

13.3.2 Real-Time Software Development

Real-time software development originated in the 1970s and continues to
evolve today. The development of real-time systems requires consideration
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Table 13.1 Roles of Pervasive Systems Development Layers

Layer Rationale
Software Development 
Ramifications 

Physical The flow of control in 
pervasive applications 
may depend on signals 
received from or sent to 
the user’s physical 
location.

Excellent software 
architecture is 
ineffective in pervasive 
devices unless it is well 
supported by hardware 
design that mirrors the 
physical characteristics 
of human behavior.

Designing effective hardware 
architectures is crucial to 
software design because 
software effectiveness 
depends on hardware usability 
and hardware is irreplaceable 
(in contrast with desktop 
computing).

Resource Corresponds to the 
infrastructure of 
pervasive software 
applications: operating 
systems, logical devices, 
system APIs, user 
interface, network 
protocol

ROM-based operating systems 
must be reliable at early 
releases because it will be 
prohibitively costly to make 
upgrades thereafter.

System resources must be 
matched to user goals and 
needs.

User interfaces must be 
intuitive and consistent. They 
must accommodate user 
languages and physical 
limitations.

Networking features should be 
automatically available, self-
configuring, and compatible 
with existing technology.

System storage must enable 
users to access, retrieve, and 
organize information in a way 
that suits their requirements.

The execution environment and 
volatile memory should be 
responsive and provide speed 
and sense of control via 
multithreading and 
multitasking.
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of three basic issues (Felder 2002): the complexity of timing, which is
recognized at the higher requirements specification level; resource con-
straints, which are addressed at lower design levels; and scheduling
constraints, which are addressed at lower design levels.

Gaulding and Lawson (1976) described a disciplined engineering
approach to real-time software development focused on a process design
methodology. The basis of their approach was a process performance
requirement, a document that described the interfaces to the software;
software functional and performance requirements; operating rules; and
the data processor hardware description. The objective of process design
engineering was to develop an automated approach to the evolutionary
design, implementation, and testing of real-time software. Gaulding and
Lawson defined the crucial aspects of real-time software development as
consisting of four core features:

� Transformational technology for enabling traceable transformation
from functional requirements to a software structure for a given
computer

Table 13.1 Roles of Pervasive Systems Development Layers (continued)

Layer Rationale
Software Development 
Ramifications 

Abstract Represents the direct 
software application that 
the user will use

Maintaining compatibility 
between the user’s mental 
model and expectations and 
the application logic “state”

Shorter time frames are 
available to pervasive system 
users for learning about the 
system, compared with 
desktop users.

More difficult physical 
conditions are encountered by 
mobile users of pervasive 
systems.

User involvement and 
participation is much more 
critical in pervasive 
applications than traditional 
applications.

Intentional Represents the user’s 
goals and purposes in 
using the pervasive 
system

Analyzing the system to 
determine user goals and 
designing the system to fulfill 
these goals
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� Architectural approach, which required top-down design, imple-
mentation, and testing techniques supported by a single process
design language

� Simulation technology, which provided the ability to evaluate trial
designs for real-time software processes

� Supporting tools used to automate such functions as requirements
traceability; configuration management; library management; sim-
ulation control; and data collection and analysis

Gomaa (1986) proposed an early software development life-cycle
method for real-time systems that attempted to tailor generic software
development methodology to the special needs of real-time software
development. Table 13.2 overviews Gomaa’s method and its phases and
applications.

13.3.3 Web–Based Software Development

Web-based software development is growing faster than any other appli-
cation domain. Software systems with Web capabilities are more likely to
maximize added value for a business effectively because of the dramati-
cally greater connectivity that they provide to customers and partners and
because of their ability to enrich the business process with information
(Evans & Wurster 1999). Hitt and Brynjolfsson (1996) identify the three
key criteria for assessing the business value of IT-based systems as
productivity, business profitability, and consumer surplus.

Web applications have caused traditional business goals to be broad-
ened to encompass new measures of customer satisfaction, enhance
internal processes, and elevate an organization’s technological innovation
activities. These measures are closely related to an organization’s financial
performance (Van Der Zee & De Jong 1999). Efficiency, quality, market
share, and market penetration have emerged as important measures and
goals of business (Singleton, McLean, & Altman 1988) upon which Web-
based systems can have a significant impact. These developments have
motivated businesses to adopt Internet/intranet information systems in
their environments and to introduce management techniques that align
the new technologies with their organizational structures.

13.3.3.1 E-business Software Systems

Web-based software development has intensified the demand for quality
and reliability. Successfully configuring Web applications requires careful
attention to several strategies that allow a business to leverage its Web
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engineering for a competitive advantage. Development teams, legacy
systems, value chains, and business integration and management structures
underlie these strategies. Thus:

� Skills, structure and management of the development team. The
availability of skilled staff for Web-driven software development
projects is known to boost performance significantly. Training
programs and availability of resources strongly affect the quality
of e-business applications by helping to reduce the development
time needed to tailor solutions to application needs. Ef fective
management can compose the right team structure, capitalizing on
the synergy of a diversified set of abilities.

� Legacy applications. The scope and domain of legacy systems
shape the strategies needed to solve e-business software problems.
The existence of a negative correlation between organizational
complexity and the impact of technological change is disputable
(Keen 1981); the issue is obscured by the fact that the more
complex an organization is, the more ill structured are its business
problems (Mitroff & Turoff 1973). Even though this affects the
ability to tackle such problems smoothly, information technology
enables a complex organization to redesign its business processes
so that it can manage business process complexity more effectively
(Davenport & Stoddard 1994).

� Value chain and logistics management. The value chain refers to
the set of activities that a business implements in order to achieve
its objectives through a process of adding values as activities
progress from one business phase to another. E-business applica-
tions use Internet technology to support products and services that
require the integration of business processes and the logistics of
end-users and original suppliers. Effective management of the
entire process can significantly enhance value for consumers by
organizing, coordinating, and controlling supply chain activities
and logistics (Turban et al. 2000). The context determines the
requisite criteria for effective Web-based development, including
its flexibility, level of quality, dependability, agility, and efficiency.
The closeness of the process to optimality can be measured in
terms of its ability to deliver the right product at the right time at
each level of the supply chain (Vokurka, Gail, & Carl 2002). The
value chain concept can be further applied to help design decision
support systems, which enhance the decision-making process at
the tactical and strategic management levels (Haavengen, Olsen,
& Sena 1996). Electronic product development (EPD) is another
aspect of e-business growth that relies on a holistic understanding
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Table 13.2 Life-Cycle Phases for Real Time Software Systems 

Phase Phase Definition Phase Application

Requirements 
analysis and 
specification

As in other approaches, 
the user requirements 
are analyzed, and 
system specifications 
are formulated that 
elaborate on these 
requirements.

State transition diagrams 
describe transitions between 
system states. Object-
oriented UML-based state 
transition diagrams carry out 
this technique more 
effectively.

Any operator interaction with 
the system should also be 
explicitly specified.

Throwaway rapid-prototyping 
techniques have proven to 
be extremely effective in 
requirements analysis for 
real-time systems.

System design Although the system is 
structured into tasks 
as in other software 
systems, real-time 
systems are designed 
with a specific focus 
on concurrent 
processes and task 
interfaces. 

The asynchronous nature of 
the functions within the 
system is a key characteristic 
that affects decomposing 
real-time software systems 
into concurrent tasks.

Data-flow and event-trace 
diagrams are effective 
techniques in mapping this 
phase.

Task design Each task is structured 
into modules and 
module interfaces are 
defined.

Task-structure charts with 
intensive project and team 
management elements are 
essential to carry out task 
design efficiently.

Module 
construction

Detailed design, 
coding, and unit 
testing of each module 
are carried out.

This is similar to module 
construction in other system 
development approaches.

Task and 
system 
integration

Modules are integrated 
and tested to form 
tasks, which are in turn 
gradually integrated 
and tested to form the 
total system.

Incremental system 
development is used to 
achieve task and system 
integration.
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of the entire product value chain (customers, designers, suppliers,
manufacturers, and logistics providers) to help provide more suc-
cessful mass customization (Helander & Jiao 2000).

� Aligning e-business applications with organizational goals. E-busi-
ness solutions can be very effective in serving organizational goals
and marketing requirements. Strategies that integrate the Internet
with traditional system capabilities can create advantages for exist-
ing corporations (Porter 2001). E-business software systems depend
on the internal preparation of the company, as well as on the
readiness of its customers and suppliers to engage in electronic
interactions. An appropriate commitment of resources to a business
problem can allow management to create value that boosts business
readiness for e-commerce challenges (Barua et al. 2001). E-com-
merce solutions link customers, suppliers, partners, and interorga-
nizational departments in one or more unified value chains. If these
links are not properly managed and efficiently aligned in synchro-
nized frameworks, delays will occur, costs may exceed profits, and
financial loss and customer dissatisfaction may result.

Other factors that may indirectly affect the success of e-business appli-
cations are supply chain management (SCM) and enterprise resource man-
agement (ERM), which help explain the impact of legacy business
applications on successful e-business development. By better understanding

System testing The whole system or 
major subsystems are 
tested to verify 
conformance with 
functional 
specifications. To 
achieve greater 
objectivity, system 
testing is best 
performed by 
independent test 
teams.

Automated testing is widely 
used for real-time systems.

Acceptance 
testing

This is performed by 
the user.

Extends user involvement to 
the validation and 
verification stages after 
system delivery.

Table 13.2 Life-Cycle Phases for Real Time Software Systems 

Phase Phase Definition Phase Application



282 � Strategic Software Engineering: An Interdisciplinary Approach

customer and supplier needs, as well as the effect of current business
processes on the overall methods of supply chain and resource manage-
ment, one can flexibly apply information technology to reengineer busi-
ness processes (Daoud 2000).

13.3.3.2 Object-Oriented Development for Web Applications

Gellersen and Gaedke (1999) propose a Web composition model that uses
an object-oriented approach to Web development based on Web imple-
mentation models. Their model is intended to provide object-oriented
capabilities such as reusability, inheritance, improved modifiability, and
extensibility to developers. Conallen (1999) addresses object-oriented Web
application architecture using a UML-based approach, which facilitates
managing complexity for Web applications and enhances reusability. Con-
allen’s approach incorporates CASE tool support and integrates three
models of Web application architecture: the business model, navigation
model, and implementation model.

13.3.3.3 Customizable Web Applications

Several approaches have been proposed for modeling and implementing
customizable Web applications; all of them share characteristics for Web
development environments that explicitly consider user context for cus-
tomization (Kappel, Retschitzegger, & Schwinger 2000). This reflects the
attractiveness of personalization for individuals and classes of users and
includes network and device contexts. The network context is related to
network settings; the device context is based on multidelivery of different
devices or classes of devices. However, these have different levels of
location context (related to mobile computing and portability) and tem-
poral context (based on time constraints).

13.3.4 Security-Driven Software Development

Software systems have evolved into global, networked infrastructures;
multidimensional databases; and enterprise data warehouses that inter-
connect individuals; businesses; organizations; competing supply chains;
numerous mobile and wireless applications; and even nations. Software
engineering typically views security as one measure of quality and reli-
ability in software products. It addresses the security issue as part of risk
analysis, seeking to minimize the likelihood of intrusions, attacks, hacking,
or fraud in information systems. The security of contemporary software
applications is a critical element of business survival, given, for example,
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the need to protect organizational strategic assets such as information. In
e-commerce, customers are more aware than ever of the ramifications of
unsecured personal or private information and more likely to trust busi-
nesses with strong security measures, policies, and standards.

The area of information systems security has evolved across paradigms
and strategies (Siponen 2002). These range from the generic, based on
common sense, to the specific, which is based on organizational culture
and needs, as summarized in Table 13.3. Security-driven systems are
receiving greater attention in current software development strategies.
Reengineering existing systems adds security features; creates security-
based applications to ensure security in systems (such as antiviruses and
firewalls); adds features that enhance the privacy of individuals; and builds
surveillance-based applications that can help detect and protect against
crime and terrorism. Computer vision, image processing, and multimedia-
based technologies play a significant role in these applications.

As with all forms of software development, the design of such systems
is not without challenges. The trade-off between open communication
channels and the potential for security threats through these same channels
is one example. The remaining parts of this section present a framework
for dealing with security considerations in the software development
process, particularly in terms of the analysis and design of such systems.

13.3.4.1 Security-Driven Requirements Analysis

Because most of the software engineering literature was written prior to
the era of the Web, the investigation of system vulnerabilities was often
not explicitly or carefully addressed. The rapid spread of Web-driven
applications and infrastructures has changed this situation. For example,
in terms of security, Web connectivity has increased public access to
information, but has also exposed the same information and information
systems to greater risks and vulnerabilities (Deswarte 1997). In updated
software engineering methodologies reflecting the need for software sys-
tems to comply with internal and external security standards, the specifi-
cation of security requirements is handled at the analysis phase as part
of the nonfunctional requirements of the system.

Sommerville (2005) classified security requirements as external, non-
functional safety and privacy requirements. Although this categorization
is generally reasonable, it needs to be qualified to reflect the fact that
even functional requirements should be guided by security metrics. Oth-
erwise, an incorrect specification may even exacerbate system vulnerabil-
ities. Furthermore, added or flexible requirements can also expose a system
to unexpected risks (Smith 1991; Pfleeger 1997). Security-driven require-
ments analysis involves defining security objectives; setting their metrics;
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identifying potential risks; investigating vulnerabilities; creating what-if
scenarios; reviewing current requirements; and reformulating requirements
to reflect the input of the analysis phase. The output of the analysis
becomes the guideline for designing a security-driven solution. Figure 13.2
shows an overview of a security-oriented requirements process.

Security objectives are usually defined on the basis of organizational
standards; the nature of the underlying technology; the magnitude of the
anticipated threat; and the risk to the organization of a given type of
threat. Security breaches are highly unpredictable and their nature and
scope change over time; thus, organizations need to adapt to new threats
and be able to adjust their objectives to meet the demands of new
challenges. Once the objectives have been determined, quantitative and
qualitative measurements should be derived to establish evaluation metrics
that can be used to verify the quality of software products in terms of
the security requirements. The major task in security-driven analysis is to
identify potential security risks or threats. Risk assessment is essential and
must reflect the fact that an organization may be attacked from inside or
outside its network (Swiler et al. 2001).

Identifying potential security risks involves investigating system vul-
nerabilities. Vulnerabilities can be associated with intentional and unin-
tentional factors. Unintentional factors are related to human mistakes;
exceptional hazards in the environment; system failures; gaps in hardware
or software design; or bad requirements specifications. External factors
contribute to the existence of vulnerabilities, but the analysis, design,
implementation, and usability of the system enable the vast majority of
security threats in most organizations. For example, a problem in data
collection, data entry, data distribution, referential integrity, or authoriza-
tion can result in breaches that put data at risk. The growing concern
about infrastructure vulnerabilities, in which as much damage can be done

Figure 13.2 Security-driven requirements analysis process.
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with a keyboard as with a bomb (Baskerville 1993), is an important issue
for organizational management. Tracing and tracking leaks, security gaps,
and security-related problems across the software development process
are ways to ensure security in software systems. The traceability process
shown in Figure 13.3 provides a strategy for a software engineering
approach to system security via traceability analysis.

Intentional factors that threaten system security include data theft; data
abuse; source code theft; deliberate data manipulation; data tampering;
malicious damage; viruses and attacks; cyber crimes; terror attacks; and
miscellaneous computer crimes. Computer crimes range from using the
computer or computer network as a target to using a computer as a medium
(i.e., giving misleading information) to using computers as planning or
deception tools (Turban, Rainer, & Potter 2002). One of the current, serious
challenges for information systems is to discover how information and
communication technologies can contribute to public safety (Shneiderman
2002). Recent efforts focus on enhancing security at the technical level
(network-based security) while paying some attention to security at the
analysis and architectural levels.

Antiterror system development relies not only on solution-focused
capabilities, but also on a deeper understanding of the problem domain
by studying the attacker’s behavior (Erland & Olovsson 1997). System
vulnerabilities or security gaps in an information system provide oppor-
tunities to carry out attacks or steal critical information. Identifying and
securing these gaps will minimize potential risks. Holmes (2001) points
out the need to assess the motives for breaching system security in order
to protect and then manage the systems infrastructure in accordance with
the assessed vulnerabilities. Salenger (1997) relates the level of organiza-
tional Internet security to the relative “functional uses” of the Internet.

Figure 13.3 A software engineering approach to systems security via traceability 
analysis.
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Demuth and Rieke (2000) emphasize that engineering secure systems
requires managing infrastructure vulnerability.

Models suggested for designing a secure environment (Salter et al.
1998) include the adversary, vulnerabilities, and methodology models. The
adversary model is based on understanding the motives for potential
threats: what the perpetrators of the threat want to do and what they can
do. The vulnerabilities model identifies three basic steps in any successful
attack: analyzing the targeted system to identify its weaknesses; quietly
gaining access to the system (stealth); and executing the security attack.
The methodology model categorizes attacks based on their characteristics
and aims to find effective, protective countermeasures. The adversary
model is based on information gathering and the vulnerabilities model is
driven by risk analysis. The methodology model depends on designing a
procedure for response and recovery.

13.3.4.2 Security-Driven Systems Design

The design of security-focused solutions for software systems can be done
at two different levels: conceptual and technical. The conceptual level
provides the architectural foundation for the technical level. The key
concept for security-focused architectures is the use of defense strategies.
The ability of a software system to withstand threats is closely related to
its ability to reduce vulnerabilities and provide protection shields that
prevent, eliminate, or deal effectively with breaches and attacks. Figure
13.4 illustrates this approach in terms of a seven-layer conceptual model
for defense strategies for security-focused system design.

In the layered model, five key defense strategies (prevention control,
detection, limitation, recovery, and correction) are used separately or in
combination to minimize system vulnerabilities or system weaknesses
(Turban et al. 2002). Naturally, prevention control is the most effective
strategy, whether it prevents human error, external attack, or unauthorized
use. Access control also plays a significant role in this defense strategy.
Figure 13.5 provides a basic taxonomy of the various types of security
controls in software systems. An intrusion detection system (IDS) is a
system that can distinguish authorized uses, misuses, or abuses of com-
puters by authorized users or external perpetrators. Intrusions can be
classified into three categories: single-intruder signal terminal (SIST), sin-
gle-intruder multiple terminal (SIMT) and multiple-intruder multiple ter-
minal (MIMT) (Puketza et al. 1996).

Object-oriented and component-based architectures have been shown
to be maintainable structures. One key reason is that they allow easy
replacement of defective components. Distributed-object architecture and
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Figure 13.4 Seven-layer conceptual model for defense strategies in security-
focused system design.

Figure 13.5 A basic taxonomy for security control techniques in software sys-
tem. (Based on Turban, E. et al. Electronic Commerce: a Management Perspective. 
Englewood Cliffs, NJ: Prentice Hall, 2002.)
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design standards provide an adequate level for generic distributed appli-
cations. However, these are only the first steps in building application-
specific software architectures for achieving overall system development
objectives. Although commercial enterprise application integration (EAI)
tools and workflow management system (WFMS) products can help
advance basic distributed standards to a commercial level, they remain
far below the mission-critical needs of business and information security
processes. System designers should employ security solutions that rein-
force each other, define secure relationships based on trust, and use
protective countermeasures to prevent attacks.

Effective database and network design play a crucial role in reducing
system vulnerabilities. For instance, cryptographic protocol design is cited
frequently in the literature as a source of distributed system vulnerabilities.
Analysis and design techniques have proven useful in detecting protocol
vulnerabilities (Stubblebine & Wright 2002). Cybenko and Jiang (2000)
examined the vulnerabilities of the Internet and proposed a six-stage
protection process to counteract malicious use.

� The first essential step in the process of protecting infrastructures
and increasing awareness of emerging threats is the application of
information-gathering techniques. These techniques include the use
of intelligence reports, the analysis of unusual incidents, and auto-
mated information harvesting from the Web and Web news services.

� The second essential step in the process is a thorough risk assessment
of the current system to identify vulnerable areas. This risk assessment
includes modeling an attack, modeling failure of the main system,
and modeling subsidiary failures due to main system failures.

� The third step is interdiction, which includes being able to make
use of currently available prevention methods.

� The fourth step is detection of attacks through early warning
systems and monitoring resources. Monitoring subsystems are able
to take actions while an attack is underway, whereas a warning
system can attempt to prevent an attack before it happens (Salter
et al. 1998).

� The fifth step is implemention of a proper response procedure
once an attack has been acknowledged. Response procedures are
what Cybenko and Jiang (2000) call “forensic challenges”; they can
only be implemented when an attack is already underway. Once
an attack is detected, the system should be able to trace the attack.

� The final stage in the Cybenko–Jiang approach is recovery, which
includes learning from the attack and documenting its character-
istics in a knowledge base for future reference.
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The importance of specialized system development has increased as
the significance of scalability and tailorability in software development (as
opposed to generic strategies and approaches) has been better recognized.
The theoretical foundations of specialized system development will con-
tinue to evolve, providing new challenges and opportunities to the soft-
ware engineering community. The future of R&D in this area is a matter
of concern for government, industry, and academia alike. For example,
the government’s role in encryption of information on the Internet is
crucial (Fox 2001).

Some of the intelligence issues and policies to be further addressed
(Artz 2001; Wilson 2000; Zorpette 2002) include the human role in infor-
mation analysis, gaps in technical intelligence, and cooperation between
organizations and services that collect intelligence. It is necessary to define
the role of government as well as to develop a clearer definition of
organizational roles. Salenger (1997) claims that the level of security
implemented by an organization is proportional to its size and income.
This phenomenon is partly a result of the fact that larger companies have
the human, technical, and financial resources required to establish and
operate a secure Internet environment—resources that smaller companies
may lack. Improved protocols for defining and enforcing security standards
are expected to continue to emerge as security threats persist.
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Glossary

4GL Acronym for fourth generation language. A 4GL is designed to be
more accessible to nonprogrammers, require less programming skill,
be easier to learn, and be more graphical than 3GL tools. 4GLs may
provide database access, query languages, screen definition capability,
graphics generation ability, and spreadsheets. Languages like C++ are
called 3GL. The GL level of a software product tends to be used to
indicate how leading edge a product is in a marketing sense. 5GL
tools include knowledge-based capability, expert system behavior, and
inference engine capability. See the NASA software engineering site
study brief by Amy Parra for a useful discussion.

Actor UML terminology for a role a user plays in a system. The role is
like a hat that the user wears. The user may wear many hats.

Actual Retur n The return that actually takes place at the end of a period
of time as opposed to the expected return that was anticipated to be
made.

Agile Development This model emphasizes people with skilled exper-
tise and their interactions and ongoing collaboration with customers,
rather than formal development processes. Refer to the Agile Manifesto
of Beck (2001)—www.agilemanifesto.org—for a statement of purpose.

Aging Symptoms Degenerative characteristics caused by the changes
in systems as a result of long-term, repeated maintenance that com-
plicates ongoing maintenance and degrades system performance.

Algorithm A well-defined, step-by-step procedure for solving a prob-
lem. According to the NIST dictionary, a computable set of steps to
achieve a desired result. Algorithms may be deterministic, probabilistic,
heuristic, on-line, etc.
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ASCII Acronym for American Standard Code for Information Exchange.
An ASCII code is the standard bit representation for a list of alpha-
numeric, special, and control characters. The alphanumeric characters
are for modern English Roman alphabet upper and lower case letters
and decimal digits. ASCII was established as a standard in order to
achieve character level interoperability or compatibility between dif-
ferent types of data processing equipment. The Unicode representation
is used to represent characters in all human languages.

AS-IS Business Model This refers to the current state or practices of a
business system or to a view or understanding of an existing system,
as opposed to a prospective or TO-BE system.

Aspect-Oriented Development Addresses the difficulties caused by
aspects, which are system properties that exhibit a lack of locality
(such as occurs in phenomena like coordination, scheduling, fault
tolerance, etc.), which in turn undermines the separation of concerns
that is critical to object-oriented design.

Baldridge National Quality A war d National award given to manufac-
turing and services businesses, healthcare and educational organiza-
tions for outstanding accomplishments in the areas of “leadership,
strategic planning, customer and market focus, information and anal-
ysis, human resources focus, process management, and business
results” (NIST Web site) and administered by the National Institute of
Standards and Technology. It is intended to encourage organizations
to improve their competitiveness by “delivering ever improving value
to customers and improving overall organizational performance”
(NIST).

Best Practice Proven practices in a particular field or in a given context
like software engineering that experience has shown are most effective
at achieving a desired result. Best practices are assumed to be widely
used by the relevant community and evolve over time. The CMM
model is intended as a measure, reference model, or standard recog-
nizing and certifying the application of best practices in software
development. An example of a promising best practice is the use of
design patterns in OO design.

Black Box A view of a system in which only inputs and their corre-
sponding output responses are known and define the system behavior.
The box that represents the system is called black because there is
no internal view into how the system operates. Black boxes are one
of several types of boxes, such as clear boxes and state boxes, used
in the Cleanroom model.

Breadboar d A type of prototype used to determine if the proposed
technical characteristics of a system work.
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Break-Even Point Analysis (BEP) The point at which profits equal
losses or at which expenses equal revenues, or total costs and revenues
are equal. How much income a business needs to stay at a given
level of profit. Break-even point analysis is different from the payback
period, which is the period required to recover an investment.

BPR Acronym for Business Process Re-Engineering. The idea comes from
the business management literature. It refers to the critical examination,
analysis, restructuring, and radical redesign and reorganization of
business processes in order to achieve dramatic improvements in
performance.

Business Pr ocess Modeling The business process can be modeled
graphically with flowchart like diagrams that include symbols for
activities, object and control flows, and split or join and merge oper-
ations. The objective is to describe the logic of a business operation
carefully. UML activity diagrams can also be used for this purpose.
Business models are used to document the as-is system in BPR and
to specify workflows for workflow management systems.

Capital Budgeting This refers to a management technique or approach
that organizations use to make decisions on long-term investments.
Capital budgeting projects are expected to produce positive cash flows
at some future point. The decision to accept or reject a capital
budgeted project depends on the outcome of an analysis of the
projected capital cost of the project and cash flows generated by it.

CASE Acronym for Computer Aided Software Engineering. This refers to
the use of automated computer support tools in the different phases
of the software development process. Many CASE tools are commer-
cially available. A comprehensive collection of CASE tools is used in
the Rational Unified Process model supported by Rational Rose.

Class Diagrams A type of UML diagram used to describe the relations
between the classes (objects) in a problem. The box elements in the
diagram indicate the name, attributes, and methods of a class. Instead
of the attributes and methods, a more conceptual approach will list
just the responsibilities of the named class, as is done in the so-called
Class Responsibility Collaborator approach.

Cleanr oom Model The Cleanroom Model of software development
combines incremental development with statistically tested modules
and formal correctness techniques to ensure validity of the system
developed. It can be applied to new and existing systems. The
objective is to produce certifiable systems with zero defects in the field.

CMM The Capability Maturity Model (CMM or SEI-CMM) is a model for
judging the maturity of the software processes of an organization and
for identifying the key practices required to increase the maturity of
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these processes. This was developed by the Software Engineering
Institute at Carnegie Mellon University.

COCOMO Model Acronym for Constructive Cost Model. Project cost,
time, and schedule estimation model developed by Boehm, based on
estimates of program size and complexity, and later on the proposed
functionality.

Code  and Fix Primitive presoftware-engineering approach to software
development based on a succession of write-code or fix-code steps.

Cognitive Fit The idea that the external representation of a problem
and the problem-solving task together affect how a problem is solved;
also, an approach in which the goal is to match, as closely as possible,
the representation to the task and the user. The expectation is that
there should be a harmonious fit among three parameters: the user’s
cognitive skills, the task, and the representation of the task (as pre-
sented to the user).

Collaboration This refers to working collectively with others in order
to achieve an objective. In a software development context, the
collaborators include stakeholders, users, developers, affiliates, process
owners, and external agencies.

Collaboration Diagram UML diagrams that visually depict the interac-
tion between objects in terms of the sequenced messages between
the objects. They combine information in the class, use case, and
sequence diagrams. Unlike sequence diagrams, they do not explicitly
indicate time, but numerically sequence messages in their order of
execution.

Compensating Feedback A systems dynamics effect in complex sys-
tems according to which potentially beneficial changes, like the appli-
cation of a new technology, produce feedback effects that counteract
or undermine the anticipated impact of the intervention.

Conditions and Constraints Qualifying factors that must be taken into
consideration when solving a problem. Conditions tend to be logical
restrictions, and constraints tend to be quantitative restrictions or
restrictions on how or when things can be done.

Continuous Quality Impr ovement (CQI) A management approach to
improving development processes by analyzing their capabilities using
quality assessments and improving the processes repeatedly and incre-
mentally to increase customer satisfaction. When defined standards
are met, new goals are established to further enhance quality, but if
standards are not met, corrective strategies are devised and executed
to meet standards and to make improvements.

COTS Acronym for Commercial Off-the-Shelf Software. This develop-
ment model is based on the use of ready-made, commercially available
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software components that can be integrated to form a complete system
and are delivered with the system.

Coupling This refers to the degree of connectedness between compo-
nents, modules, or subsystems of a system. A low level of coupling
is preferred in the design of a system because it tends to reduce the
ripple effect of changes made in one subsystem, as well as allowing
the parallel development of the subsystems. The converse concept is
cohesion, which refers to the internal functional coherence of a
subsystem.

Danger This refers to a type of development risk due to factors beyond
the control of the participants.

Data Abstraction In imperative programming languages like C, this
refers to the functional definition of modular operations on data
structures like (linked list) insertion or deletion without regard to how
the function is actually implemented. In object orientation, an object
encapsulates the data and the methods associated with the object,
with the data representation and method implementation details hid-
den and inaccessible except through the protocol provided by the
object’s public methods.

Data Dictionaries A dictionary with the definitions of all the data
elements in a system. It should be arranged alphabetically or with an
appropriate search engine; the terms should be defined in natural
language in nontechnical terms; the legal values of elements should
be defined.

Data Flow Diagrams (DFD) Directed graph-like diagrams that show
the flow of data or information between processes or data transforms
(depicted as bubbles) that functionally transform the data (depicted
as labels on the directed edges). The diagrams also show sources,
sinks, and stores of information. This is the fundamental modeling
tool in the classic structures’ analysis or design methodology. As
opposed to flowcharts, which emphasize flow of control, DFDs
emphasize the flow of data, with the execution order of processes
resolved only later in the design.

Degr ee of Liquidity A fundamental characteristic of a healthy business
firm is the ability to pay its accounts payable as they become due
using its funds or resources. This is called the firm’s degree of liquidity.

Design by Contract An approach that views a software system as a set
of communicating components whose interaction is based on precisely
defined specifications of the mutual obligations among the compo-
nents, which are known as contracts.

Design Patter ns Generic, reusable design templates or types of proven,
successful, standard software architectures for solving certain classes
of regularly recurring problem; introduced by the Gang of Four.
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Design Specifi cation The detailed planning of the solution for a given
problem.

Differ ences The distinctions underlying diversity. So-called positive dif-
ferences should be integrated or included in a problem analysis or
solution. Negative differences should be excluded. Differences viewed
as a potential source of added value are called optimizing differences.
Differences that are merely accepted or tolerated are called neutralizing
differences. Differences that are viewed as a source of problems or
difficulties are called activating differences.

Disinter mediation The elimination of intermediaries between a server
of resources and a client requesting resources. This design tactic is a
decisive factor in the productivity improvements that have resulted
from computerization and is prominently exemplified in many Internet
business applications.

Disruptive T echnology A technological development that emerges
from outside the mainstream of scientific development and radically
challenges the existing technological paradigm. Open source devel-
opment is arguably such a paradigm in the field of software devel-
opment.

Diversity Diversity is the organizational asset that embodies the hidden
value of interdisciplinary, experiential, cultural, social, and psycholog-
ical differences. Utilizing diversity is the key to incorporating interdis-
ciplinary thinking in software engineering to enable a broad-based
approach to development problem solving.

Diversity in Softwar e Engineering Integrative or diversity-driven
problem-solving approaches capitalize on beneficial differences in
order to obtain optimized solutions, in contrast to conventional prob-
lem solving, which addresses problems that try to eliminate sources
of contradiction.

Divide  and Conquer The problem-solving strategy in which a problem
is separated or partitioned into subproblems, which are more readily
solved separately and whose solutions can be combined to solve the
original problem.

DoD Acronym for Department of Defense.
Domain Model This term is used in many different ways. A common

use is to refer to a conceptual, object-oriented model of an application
domain. Requirements for a system can be thought of as composed
of a domain model combined with use cases and a user interface
definition. The model identifies the scope of the domain and its
information objects. The domain model is built as the result of a
domain analysis. Refer to the CMM http://www.sei.cmu.edu/domain-
engineering/ for useful discussion.
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EBIT Acronym for Earnings before Interest and Taxation. This is a
financial measure defined as the profit of an organization including
operating and nonoperating earnings, before subtracting interest and
income taxes. It is also known as operating leverage.

Embedded Knowledge A term used in reengineering. It refers to the
fact that the knowledge or understanding of a legacy system’s behavior
has become embedded in the system rather than being available
through the system documentation.

Embedded Pr ototype Refers to prototyping when it is considered as a
component of another software development strategy.

Enterprise Resour ce Management (ERM) Software that helps man-
age an organization’s resources, including basic applications such as
general ledger, accounts payable and receivable, manufacturing, inven-
tory, and human resources.

Equivocality Uncertainty about the meaning of information. A common
technique for resolving the uncertainty is to use negotiation to identify
a consensus interpretation.

Evolutionary Development A reaction to limitations of the waterfall
model in which increments of system capability are released and the
successive stages of development are based on user and developer
experience with earlier stages; the initial release provides enough
capability to serve as a basis for user evaluation.

Executable Specifi cations Formal specifications that can be executed
and dynamically extended by step-wise refinement, as in Zave’s oper-
ational specification model.

Expected Retur n This refers to the return an investor anticipates occur-
ring at the end of a period of time viewed from the investor’s
perspective at day zero.

Experimental Pr ototype The use of prototyping as a testing or evalu-
ation technique to verify whether a proposed system will meet user
or customer expectations, to determine system feasibility, or to explore
alternative solutions.

Exploratory Pr ototype The use of prototyping as a technique for
gathering and clarifying requirements.

Extr eme Pr ogramming A type of agile development that places a
strong emphasis on pair programming. The approach is described in
Beck’s well-known book, Extreme Programming Explained.

Feedback Contr ol Loop A situation in which signals or controls caused
by a system are fed back into the system to govern, control, or modify
its dynamic behavior. In a software model, the comparison between
an existing, intended outcome and a desired outcome, especially
between successive stages of the life cycle, used to modify or correct
the development.
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Forwar d Engineering The use of the process results from reverse
engineering to develop a new system. One of the most common
adaptations is the development of new interactive interfaces, which
may use new styles of interaction instead of the existing style of
interface.

Freewar e Software provided free by its author but on which the author
retains the copyright.

Frequential Simplifi cation The cognitive effect by which infrequently
taken interactions or effects tend to be forgotten.

Function Point Units of functionality in a program or system used in
estimation models like COCOMO to estimate project size.

Gang of Four A famous group of four software engineers who compiled
over 20 design templates that have proven to be effective, reusable
design patterns.

Gluewar e Internally developed software that allows the correct integra-
tion of COTS-based software systems by resolving mismatches
between components or with the application and platform. For exam-
ple, wrappers that encapsulate a data source to make it more com-
patible with a COTS component are a type of glueware.

Goal An objective to accomplish. Elicitation and continuous clarification
of stakeholder goals is central in software development.

Gold-Plating The inclusion in a system design of overly elaborate func-
tions that are not significantly connected to stakeholder goals.

Happy Path The scenario in a use case that follows a normal, unex-
ceptional flow of events.

HCI Acronym for Human Computer Interaction. The study of how
humans interact with computers. HCI is a discipline now that deals
with the design, evaluation, and implementation of interactive com-
puting systems for human use and the study of the major phenomena
that surround them.

High-Fidelity Pr ototyping Intended to mimic the look and feel and
responsiveness of a system including its delay characteristics.

Horizontal Pr ototyping A type of prototyping in which most system
functions are at least nominally accessible but only a few are actually
operational.

Horizontal Specialization Specialization across various functional
departments or business needs within an organization or across various
domains of an industry or between industries.

IBM 360 System IBM computers introduced in the period from 1966 to
1980, which allowed scientific and business applications to be done
on the same machine by providing binary as well as decimal arithmetic
instructions.
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Identifi cation of Business Goals The most appropriate context for
viewing, evaluating, and utilizing software. These provide the criteria
and framework in reference to which software systems can be
assessed.

IEEE Acronym for Institute of Electrical and Electronics Engineers, a U.S.-
based organization that defines standards for electronics and comput-
ing; also, professional organization to promote development and appli-
cation of electrotechnology.

Ignorance In the context of software development, this refers to lack
of data or to inaccurate data that prevents business and human
problems from being well defined or well understood. Ignorance in
this sense includes lack of knowledge about available, adequate, or
effective tools.

In-Br eadth Ignorance Refers to an assumption that development issues
can be adequately captured using only one or two paths of knowledge
with other aspects of the problem not considered for possible rele-
vancy.

In-Depth Ignorance The case in which, although the relevant aspects
of an issue may be considered, they are not studied adequately enough
to capture the aspects effectively.

Incorporated Pr ototype A prototype intended to be included eventu-
ally in some fashion in a real product. In such a case, prototype
development should follow normal development standards including
maintenance of appropriate documentation, testing, and so on.

Incr emental Development Similar to iterative development, but suc-
cessive iterations tend to be understood as adding new, incremental
functionality to the product—as building a part of the intended system
in each of a sequence of partial releases until the entire system is
completed.

Infer ential Simplifi cation The cognitive process by which similar
interactions or event series are merged into single, prototypical rules
in which differences between the similar cases are blurred.

Infrastructur e Vulnerabilities Points of weakness and security gaps
in the physical or logical architecture of an information system that
create open opportunities for intrusion or theft of critical information.

Initial Operational Capability A milestone in Boehm’s spiral model at
the end of the development cycle that includes software preparation
(software support, documentation, licensing, etc), site preparation (off-
the-shelf vendor arrangements), and user and maintainer preparation.

Intangibles Nonmonetary benefits that may lead to an indirect financial
return on an original investment, in contrast to tangible benefits.
However, even though intangibles are nonfinancial, they may be
measurably related to important business objectives.
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Intent Specifi cations Specifications based on the psychological and
cognitive factors involved in how people use specifications to solve
problems.

Inverse T ransition Diagrams Transition diagrams that display the
impossible transitions in a system, as opposed to ordinary transitions
that depict the allowed transitions in a system. These can be useful
as a data visualization tool.

ISO 9000 Standar ds The ISO refers to the International Organization
for Standardization, which is a consortium of the national standards
institutes from over 140 countries with a central organization in
Geneva, Switzerland, that coordinates the system and publishes fin-
ished standards. Its basic purpose is “to facilitate the international
coordination and unification of industrial standards” (www.iso.org).

Iterative Development This development model creates a product in
a series of development iterations beginning with a prototype of the
entire product at the first iteration and then successively refining the
partial product in subsequent iterations.

Iterative Enhancement The development model of Basili and Turner
(1975), which develops a system as a series of subsystems with the
emerging system and the originating problem more thoroughly under-
stood as the process proceeds—similar to what happens in a learning
process.

Kaizen Japanese for improvement. This refers to the Japanese business
version of continuous improvement in the processes and practices of
managers and workers. Its maintenance objective aims to maintain
existing technological and managerial standards at their current level,
but requires management establishment and enforcement of Standard
Operating Procedures (SOPs). Its improvement objective seeks to
improve the current standards continuously via kaizen-level adjust-
ments (small, repeated, incremental changes) or by innovation (major
change).

Key Pr ocess Ar eas (KP A) Related sets of software practices associated
with each of the successive layers of the Capability Maturity Model.

Killer Apps Applications so effective that they potentially alter a market.
Hardware killer apps have ranged from the light bulb and Xerox
copier to the PC. In software, they must be customizable, interactive,
dynamic, and stylish. Software examples are Web tools like Google
and GUI Web browsers, sites like e-bay, and user environments like
Windows. Lotus 1-2-3 was the software killer app that drove the market
for the PC in the early 1980s.

Knowledge -Based Expert Systems Expert systems that use the
encoded human knowledge or expertise in their databases as rules
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or data that can be automatically and appropriately invoked by an
inference engine when solving a problem.

LAN Acronym for Local Area Network. A network of computers inter-
connected for geographically local communication. A LAN usually
spans a small area like a single building or group of buildings.

Legacy Systems Established computer systems (hardware and software
applications) in a company. Legacy systems typically perform mission-
critical operations in organizations over a period of many years with
the result that replacing them can be detrimental or disruptive to a
company’s routine work flows. Legacy systems can be updated par-
ticularly by using reengineering techniques.

Life-Cycle Ar chitectur e Spiral model milestone that elaborates on the
life cycle objective elements, including system and software compo-
nents, mediators between these components, and constraints, off-the-
shelf or reusable software components, attributes like response time
and reliability, and likely architectural trends over time. This milestone
should lead to stakeholder agreement on the feasibility of the archi-
tecture and its compatibility with the stakeholder life-cycle objectives.

Life-Cycle Model This refers in an encompassing way to the entire,
cradle-to-grave, software development process and recognizes the
natural separate stages in this process.

Lightweight Models Models like agile development that are intended
to reduce the perceived unwieldy process overhead in other
approaches.

Lower CASE Tools Computer support tools for the implementation, test-
ing, and maintenance phases of the software life cycle. Also called
back-end CASE tools.

Low-Fidelity Pr ototyping Type of prototyping that simulates the pro-
posed product in some very rudimentary way—even by pencil and
paper or by slides.

Make-versus-Buy Decision The decision as to whether some desired
application functionality should be purchased as a prebuilt product
from a vendor or developed in house.

Metcalfe’s Law The idea that the value of a network increases in value
with each additional node (or user) in proportion to the square of
the number of users.

Metrics Business goals when they become quantifiable as positive or
negative indicators of business success. These can include product or
services quality, customer satisfaction, etc. These supplement back-
ward-looking financial measures like ROI and are expected to be
related to factors that drive future performance.

Mockup A prototype used to determine the usability of a system such
as the span and access to the prospective system’s potential functions.
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Modular Pr ogramming In this programming paradigm, a programming
task is subdivided into logical subtasks or modules. Each module’s
function and interface are carefully defined before detailed program-
ming is begun. The program is viewed as a set of interacting functions,
each of which performs a single, well-defined, cohesive task, with
low coupling (or side effects) between the functions. The approach
is basically procedural rather than object oriented.

Moor e’s Law The empirically observed phenomenon that, because of
technological developments, digital chip density doubles every 18
months, but cost remains constant, thus increasing computing power
but not price.

NPV Acronym for Net Present Value. Based on the standard financial
method for calculating the present value of a financial stream, com-
pares the value of money now with the value of money in the future
by discounting that future value. It is applied in capital budgeting as
the present value of a project’s cash in-flow minus the present value
of the project’s cash out-flow.

Object -Oriented Design (OOD) The methodology used to develop an
object-oriented model of a software application.

Old Factory Model The approach to problem solving in a manufactur-
ing environment that consisted of breaking a manufacturing problem
into small units and allocating each unit to a separate human actor
or resource (Smith, 1776).

Open Sour ce Development Software development philosophy that
encourages use and improvement of software written by volunteers
that allows anyone to copy and modify the source code.

Open Systems A system whose interface specifications are completely
defined, publicly available, and maintained through an open group
consensus. Systems that constantly interact with the external environ-
ment.

Operating Leverage The effect of a change in total sales on earnings
before interest and taxes (EBIT). Operating leverage also refers to the
portion of a business’s costs that are fixed rather than variable. The
higher a business’s operating leverage is, the greater is the impact of
an increase in sales on income (after the break-even point has
occurred).

Pair Pr ogramming Extreme programming technique in which a pair
of programmers shares the same computer and collaborates in real-
time.

Par eto Distribution A probability distribution followed by many social
phenomena. Zipf’s law is a discrete version of this. Related to the so-
called 80–20 rule, according to which 80 percent of the cases are
driven by 20 percent of the causes for many economic phenomena.
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Named after Pareto, a 19th century Italian economist who noted that
in Italy, 80 percent of the land was owned by 20 percent of the
population. A similar exhibit would be that 80 percent of sales are to
20 percent of a company’s clients.

Par eto Impr ovement A change that improves the utility of one partic-
ipant without decreasing the utility of any other participants. This is
frequently used as a metric for measuring the effectiveness of an
economic situation.

PDA Personal digital assistant.
People Capability Maturity Model An organizational change model

designed to guide systems and software organizations in attracting,
motivating, and retaining technical staff.

Personal Softwar e Pr ocess A stage-wise model for improvement of
developer behavior originated by Watts Humphrey of the SEI, which
attempts to guide individual developers in sharpening the discipline
and practices that they apply in software development.

Pervasive Computing The convergence of three traditional computing
specializations (personal, networked, and embedded) to produce a
new computing model marked by wireless and portable hardware
and software. Numerous computing devices that can be easily accessed
and are mobile or embedded in an environment and part of a
ubiquitous network are characteristic.

Pilot System A type of prototype that provides essential system func-
tions and, after some evolutionary iterations, can develop into a
complete system.

Point Solution A solution optimized around an original problem state-
ment and that therefore may be inadequately robust to changes in
the problem definition.

Presentation Pr ototyping Provides users a concrete, first look at a real
version of the intended system. It can serve a marketing purpose by
exhibiting the expected system behavior to potential users.

Probability Expresses risk in a quantitative fashion, letting statistics be
used intensively to weigh, prioritize, and manage risks.

Problem The difference between an existing situation and a desired
situation.

Problem Engineering Refers to correct problem definition. Problem
definition entails gathering necessary problem-related data, processing
this data effectively, and then generating a statement that accurately
characterizes a business problem.

Problem Givens A representation of the specific facts that must be
identified prior to solving the problem.
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Problem Solving The process by which a situation is analyzed and
solutions are formed to solve a problem, with steps taken to resolve,
eliminate, or mitigate the problem.

Problem-Solving Model An understanding of the problem, devising a
plan, carrying out the plan, and looking back.

Problem-Solving Schema An organized body of knowledge or infor-
mation that problem solvers build about the properties of a particular
type of problem and the operations or steps required to solve it.

Problem Unknowns The detailed, particular things about a problem
that must be discovered to accomplish the problem-solving goal.

Process Series of actions or operations directed toward a particular
result.

Process Design Engineering The use of an automated engineering
approach for the evolutionary design, implementation, and testing of
real-time software.

Process Model A specification of a real-world software process.
Productivity Paradox Refers to the real or perceived lack of improve-

ment in software development productivity despite the application of
powerful new development techniques and automated support such
as CASE tools.

Program A sequence of syntactically and semantically correct instruc-
tions forming a solution for a problem.

Programming by Imitation An approach in which an AI-based system
is expected to generate an algorithm and its code on the basis of a
worked specific example of the algorithm to be implemented.

Project Management The management of the people, budget, and
money resources, schedule, and scope of a project. The project
manager is responsible and accountable for the project success and
must have the authority to direct the project so that it achieves its
intended result.

Protocol Analysis The technique of eliciting verbal descriptions of
thought processes (thinking out loud) from problem solvers in order
to analyze and understand objectively what is happening in those
processes. The subjects do not explain what they are doing or why.
They merely verbally express what is going on in their minds as they
solve a task.

Prototyping An approach that usually involves building a small version
of an intended system prior to building the proposed complete system,
thus allowing developers to work out kinks in a specification and
design before full-scale development to reduce development risk
significantly.
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Rapid Application Development (RAD) A development paradigm
that allows higher quality products to be developed faster, though
often requiring compromises in adherence to requirements.

Rapid Pr ototyping A prototyping approach in which rapid develop-
ment is achieved with the use of tools like code generators or 4GL
languages.

Rational Unifi ed Pr ocess A visual modeling tool from Rational Soft-
ware that lets developers model the solution of a problem throughout
the life cycle, from analysis, design, and implementation, through
testing and configuration management using the UML notation.

Reach Refers to the degree of customer involvement or productivity.
Reengineering A development approach that reimplements existing

legacy maintenance characteristics. The system may be redocumented,
restructured, and retranslated to a more current language or platform,
and data may be migrated to a newer database system. Automated
tools are required to make the development cost effective.

Refactoring Modifying the structure of the code of a system without
changing the system’s functional behavior by using small incremental
changes that are meticulously tested at each step.

Refer ential Integrity Term used in Cleanroom Model that requires that
the design and specification correspond to the same mathematical
function. If referential integrity is satisfied, then the design is a provably
correct implementation of the specification.

Release Used in various ways. The first release of a software product
that has been tested just by its developers is called alpha software.
Software that has been alpha tested, is expected to have more bugs
than a regular release, and is released to only a particular set of users
who will test it is called a beta release.

Requir ements Engineering The process of identifying, organizing, and
accurately representing the user requirements so that these can be
correctly implemented into systems built to meet those requirements.

Retur n on Investment (ROI) This financial ratio is the ratio of net
profit to investment. It is a commonly used fiscal metric or figure of
merit for guiding capital investment decisions. It compares the net
benefits of a project to its total cost.

Reverse Engineering The process of analyzing a subject system to
identify its components and their interrelationships in order to create
representations of the system in another form or at a higher level of
abstraction (Buss & Henshaw, 1991). The process of extracting and
abstracting design information from an existing system’s source code.
The process aims to recover the design implemented in the code,
taking as its point of departure information about the system’s scope
and functionality provided by a system inventory analysis.
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Risk A state or property of a development project that, if ignored or
left unresolved, will increase the likelihood of project failure; or in
Boehm’s terms: potential loss × probability of loss. Risk may be generic
(such as confusion about requirements) or project specific (such as
vendor failure to deliver a COTS component).

Round-Trip Engineering The idea in this paradigm is that changes to
the model of a system should be automatically reflected in the source
code and, conversely, changes to the source code for a system should
also automatically update the design model for the system. This
reduces the tendency to make ad hoc changes directly to the code
rather than through the model. Automated tools that support this kind
of change management process are available.

Scalability The ability to increase the number of users, volume of
transactions, or demand on a system greatly without needing to make
changes to the architectural design of the system, though supplemental
hardware may need to be added to the environment. This is an
especially important consideration for evaluating hardware and soft-
ware for rapidly expanding enterprises.

Scenario See also use case; a basic tool informally expressed in English
used to structure user requirements. A set of scenarios can be com-
bined to form a use case. For example, one of the scenarios in a use
case is the happy path, in which the expected actor goal is obtained
without complication. Failure scenarios are also included, as well as
scenarios that represent exceptional situations requiring special han-
dling to complete the use case.

SCRUM A model of agile development in which work is broken into a
series of steps called sprints. Prior to each sprint, developers meet
with the customer to identify and prioritize the work to be done in
the upcoming sprint. During the sprint, teams meet daily. On the
completion of a sprint, the development team delivers a potentially
shippable product increment.

SEI Acronym for Software Institute of Engineering at Carnegie–Mellon
University, which developed and updates the Capability Maturity
Model.

Semantic Distance The cognitive gap between the model of a system
specification and the mental model of the system in the minds of its
users.

Separation of Concer ns Partitioning a problem in such a way that the
separate parts can be discussed relatively independently of one
another. This is one of the most basic principles of effective problem
solving and of software engineering.

Sequence Diagrams UML sequence diagrams are used to illustrate the
interactions between objects arranged in a time sequence (the
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sequence of messages between objects) and to clarify the logic of use
cases. They are similar to collaboration diagrams, but accentuate the
message sequence more than the objects involved in the messages.

Shar ewar e This is so-called try-before-you-buy software. It is usually
delivered digitally free of charge to the user, but the user is expected
(on the basis of an honor system) to pay some small amount for the
product after a trial usage period. After payment, the user’s copy is
typically registered with the distributor. At purchase, a more complete
version of the product may be supplied. Updates and some level of
assistance may be provided. The shareware product is copyrighted so
the user cannot redistribute it as his or her own. An important
advantage of this business model is the direct relationship between
the user and the developer, rather than through an intermediary in a
retail outlet.

Softwar e Development Life Cycle (SDLC) This is about the process
and model used to develop software systems. It describes the route
that leads developers from problems to solutions. SDLC describes stages
involved in an information system development project, from an initial
feasibility study to the completed project onto maintenance stage.

Softwar e Development Life-Cycle Models These are strategies that
represent pretested patterns for successful software development
under different conditions. The strategies share the same objective but
reach their goal by different approaches.

Softwar e Engineering According to the IEEE Standard Computer Dic-
tionary (1990), “The application of a systematic, disciplined, quanti-
fiable approach to development, operation, and maintenance of
software, that is, the application of engineering to software.”

Solution The final step in the problem-solving process.
Specialize According to the Merriam-Webster dictionary, to “specialize”

is to concentrate one’s efforts in a special activity or field or to change
in an adaptive manner.

Spiral Model Development model due to Boehm that builds a product
in cycles of development with an emphasis on risk reduction. Each
cycle consists of analysis, design, code, test—just like the entire
waterfall model. The model repeatedly cycles back to a go or no-go
decision based on repeatedly revised understandings of the risk of
the development. It relies heavily on prototyping and software engi-
neering economics to understand and minimize development risk.

Standar d Framework Framework that could be used as a common
basis for solving the business problems encountered.

Stealth T echnology T ransfer The risk that a customer uses the product
and knowledge acquired in the first stage of a thin requirements
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development merely to acquire the developer’s expertise rather than
evaluate the continuance of the project in good faith.

Structur ed Pr ogramming A style of implementing programming con-
trol logic approach that restricts the flow of control to sequences,
structured loops like while’s, repeat’s, and for-loops, and if–then–else
statements; this avoids or dramatically reduces the use of arbitrary
branches such as in unrestricted goto’s. In the Dijkstra version of
structured programming, programs are decomposed into parts that
have a single entry and a single exit. Dijkstra’s paradigm was used
particularly to establish the formal correctness of programs.

Subgoals The restatement of the problem goal in terms of subproblem
goals.

Successive Refi nement The successive refinement of the functions or
modules of a system until elements are reached that perform single
coherent functions and can be coded as single units.

Supply Chain Management (SCM) The process of efficiently coordi-
nating the flow of resources like material, information, and money as
they move from an original source to an end user (such as from
supplier, to manufacturer, to wholesaler, to retailer, to user). This
involves overseeing relationships with vendors and consumers, con-
trolling inventory, forecasting demand, and keeping a close vigil at
every link in the supply chain, from supplier to manufacturer to
wholesaler to retailer to consumer.

System Dynamics A computer simulation approach to understanding
the behavior of complex systems of interacting components, with a
particular emphasis on feedback loops, delay effects, and recursive
or circular causality.

System Sequence Diagram UML diagrams depict events input from a
source external to a system that generate a system response. Thus,
they show the system events that actors generate and their order
during a scenario, and the system responses to the events and their
order.

System Specialization The concentration on unique problems and the
techniques for comprehending and solving them.

Tangibles Direct financial benefits on an original investment. Indirect
benefits are usually called intangibles.

Taylorian Appr oach The time-and-motion analysis and decomposition
of industrial tasks into their smallest constituent components, intro-
duced to improve manufacturing efficiency by Frederick Taylor in
studies that established scientific management. This type of analysis
is a basic paradigm in the field of industrial engineering.

Testing Process of reviewing what was produced and done to solve the
problem. Software testing establishes the correctness, reliability, usabil-
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ity, etc. In addition to testing expected cases, a classic way to test
code is to stress it by testing at its limits or boundaries. Types of
testing include system function testing, unit and integration testing,
and user acceptance testing.

Thin Requir ements A term used in Lott’s variation of the waterfall
model that refers to the use of limited, sparse system requirements
that, when implemented, constitute the completion of the product up
to that point. Further development can then be vetoed by either of
the parties—the developer or the client.

Thr owaway Pr ototyping In this approach, the prototype is discarded
when development of the actual system begins. The prototyping is
employed to simulate the product under development and to refine
the design during the development cycle.

Time Sharing An operating system capability that allows multiple users
to run different tasks concurrently, on a single processor (via time-
sliced process scheduling) or in parallel on many processors. It allows
the appearance of simultaneous service to the concurrent users. It
differs from multitasking (which refers to tasks as its reference) and
instead refers to the support provided to multiple simultaneous users.

Time Value of Money (TVM) Refers to the fact that money received in
the present moment is more valuable than the same amount received
at some future period by a factor that reflects the amount of interest
that could be earned on the money by that time. It reflects the impact
of expected inflation and the risk of default. Related terms are present
value (of a future amount) and the future value (of a present amount).

TO-BE Business Model The intended or desired state of a business sys-
tem.

Total Quality Management (TQM) A structured set of management
practices followed throughout an organization aimed at satisfying all
the stakeholders, internal, and external customers, by striving for
continuous improvement, integrating the business environment with
development, focusing on quality assurance and building quality into
products in accord with customer wants, even changing the organi-
zational culture. It requires continuing improvement of processes,
services, and products.

UML Acronym for Unified Modeling Language. UML is the leader in
modeling languages used for specifying and documenting the artifacts
of software development process and has become the de facto stan-
dard. The set of tools available from Rational software are the most
widely used.

Uncertainty The type of risk that refers to lack of knowledge of the
future.
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Unpr ocessed Data Data that is not transformed into useful information,
in the correct form, at the right time, and to the right people is
unprocessed data.

Unused Data When data is not used to solve problems, it amounts to
an absence of data.

Upper CASE Tools Computer support tools for the requirements, spec-
ification, and design phases of the software life cycle. Also called
front-end CASE tools.

Usage Pr ofi le Term used in the Cleanroom model in which the test
cases are selected to be a statistically representative sample of a
system’s expected usage, so the testing is expected to be as reliable
as a statistical sampling process.

Use Case A single task performed by a user of a system that produces
a result useful to the actual goals of the user. The outcome must
satisfy some user intent, not merely be a partial step along the way
towards a user goal. For example, just logging onto a system is not
a use case because the logon merely represents a means to an end.
The actual objective is to do something useful on the system. The use
case diagram is a UML tool for specifying the user goals of a system.
The use case diagram graphically depicts the use cases and the actors
(see beginning of glossary) where the actor can be another system.

User Action Notation (UAN) Description of the cooperative behavior
manifested between a user and an interface during an interaction. The
UAN descriptions can utilize scenarios, screen displays, and state
transition diagrams to characterize the interaction.

V-Shaped Model Modified version of the waterfall model that added
validation and verification processes by associating testing activities
with the analysis and design phases.

Vague Data Data that is too low in quality. Such data may be uncertain,
unconfirmed, unclear, undefined, or need proper translation or ade-
quate clarification.

Validation Process of determining whether a proposed system was
correctly implemented as opposed to determining whether the system
proposed was the correct system to solve a problem.

Verifi cation Process of determining whether a proposed system is the
right system to satisfy stakeholder goals.

Vertical Pr ototyping Type of prototyping in which a narrow vertical
slice of the system functions is implemented.

Vertical Specialization Specialization in the different levels of problem
complexity across the intraorganizational pyramid from operational to
top management.
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WWWWWHH Principle An organizing principle of Boehm that
addresses the why, what, when, who, where, how, and how much
of software development.

Water fall Model The most fundamental version of a software develop-
ment life-cycle model used in software engineering. The waterfall is
a generally linear, sequential development model with distinct goals
and deliverables for each stage of development: analysis, design,
coding, testing, and maintenance. Once a stage is completed, the
development proceeds to the next stage with an expectation of min-
imal loop-backs to earlier completed stages.

Weak Strategy Generic approaches in problem solving that are not
tailored to specific problem domains.

Well-Defi ned Pr oblem Statement This statement contains three prin-
cipal elements: goal, givens, and unknowns, which are shaped by the
process of problem solving into a solution.

Win –Win Spiral Model Version of spiral model based on using so-
called stakeholder win–win approach to determine the objectives–con-
straints–alternatives for each cycle of the spiral. This entails identifying
the stakeholders of the system, determining their (win) conditions, and
negotiating an agreed upon set of objectives–constraints–alternatives.

Workfl ow Enactment Coordinated execution of workflow activities
supported by a workflow metamodel.

Workfl ow Engine Software in a workflow management system that
interprets the requests for execution of different types of workflow
activities and interacts with the processing entities to ensure the
activities are executed as prescribed according to the workflow type.

Workfl ow Management System Systems that support the automatic
enactment of business processes based on formal descriptions of those
processes. They also address the distribution of workload to proces-
sors, availability of processors, rework requirements when activities
are implemented incorrectly, etc.

Workfl ow Model An information systems model that views an enter-
prise as a network of collaborating agents in which informational
transactions or tasks are passed between participants according to a
set of procedural rules.





 

315

 

Author Index

 

A

 

Abdel-Hamid, T.
1983, 66
1989, 10, 11, 66, 69, 74, 109, 180
1991, 66
1996, 66, 67, 68

Abts, C., 

 

see

 

 Boehm, B., et al., 1997
Ackoff, R.L., 132
Adrion, W.V., 221
Agarwal, R., 193
Agarwal, R., et al., 94, 95, 96, 97
Alavi, M., 20, 21, 23, 24
Allen, R., 97
Altman, E.N., 164, 166, 278
Applegate, L.M., 214
Armitage, J.W., 106
Arnold, P., 

 

see

 

 Krasner, H., et al.
Artz, D., 290
Avison, D., 272

 

B

 

Bach, J., 203, 204
Bader, A., 

 

see

 

 Constantinides, C.A., et al.
Bamberger, J., 78, 79
Bandinelli, S., et al., 82, 109, 111, 179, 180, 

193
Baniassad, E.L.A., 102
Barclay, S., 41
Barua, A., et al., 281
Basili, V.R., 16, 18, 42, 110, 111, 180, 189, 

(

 

see also

 

 Morisio, et al.)
Baskerville, R., 286

Bauer, F.L., 179
Baumert, J.H., 111
Beck, K., 92
Beck, K., et al., 90
Bell, D., 263
Belz, F.C., 27, 108, 109, 110, 111
Benbasat, I., 190
Bennington, H.D., 11
Bianchi, A., 61, 62
Binder, L.H., 32
Birk, A., 111
Blackburn, J.D., 106, 108, 111
Blank, G., 8, 9, 45, 46, 51
Blum, B.I., 109, 111
Boehm, B., (

 

see also

 

 Erdogmus, et al.)
1976, 12
1981, 12, 256, 260, 264
1984, 6, 10, 25, 26, 109, 180, 193
1988, 10, 11, 12, 14, 20, 26, 27, 28, 29
1991, 25
1996, 14, 16, 28, 29, 30, 31, 108
2002, 91
and Belz, F.C., 1988, 27
and Belz, F.C., 1990, 108, 109, 110, 111
and Bose, P., 1994, 29
and Port, D., 1999, 29, 109
and Sullivan, K.J., 1999, 244, 246
and Sullivan, K.J., 2000, 183

Boehm, B., et al., 1997, 263
Booch, G., 47, 48, 111
Bose, P., 29
Branstad, M.A., 221

 

AU3939_Index.fm  Page 315  Thursday, April 7, 2005  5:46 PM



 

316

 

�

 

Strategic Software Engineering: An Interdisciplinary Approach

 

Braun, C.L., 52
Brownsword, L., 54
Bruckhaus, T., 223, (

 

see also

 

 Madhavji, N.H., 
et al.)

Bruner, C., 

 

see

 

 Elzinga, D.J., et al.
Brynjolfsson, E., 165, 278
Buss, E., 210

 

C

 

Caivano, D., 61, 62
Carl, M., 279
Carney, D., 53
Chakerian, S., 

 

see

 

 Swiler, L., et al.
Champy, J., 61
Chase, J.D., et al., 11, 73
Cherniavsky, J.C., 221
Chi, M.T.H., 1982, 137
Chrissis, M., 

 

see

 

 Paulk, M.C., et al.
Chung, H., 

 

see

 

 Turban, E., et al.
Chung, M., 

 

see

 

 Puketza, N., et al.
Ciarletta, L., 275
Clark, B., 

 

see

 

 Boehm, B., et al., 1997
Clayton, C., 90
Coad, P., 44
Cockburn, A., 51, 90, 91
Cohn, M., 92, 93
Conallen, J., 282
Condon, S.E., 

 

see

 

 Morisio, et al.
Conger, S., 71
Constantinides, C.A., et al., 101, 102, 103
Coyle, F.P., 32
Curtis, B., 73, 74, 180, (

 

see also

 

 Paulk, M.C., 
et al.)

Curtis, W., 75, 83, 107, 108, 110
Cybenko and Jiang, 2000, 289

 

D

 

Daft, R.L., 10, 163
Dagnino, A., 92, 93, 94
Daoud, F., 282
Davenport, T., 279
Davenport, T.H., 163
Davern, M.J., 165
Dawson, L., 45
De, P., 193
De Jong, B., 164, 278
Deek, F.P., 137
Deming, W.E., 80
Demirörs, O., 82, 83
deMoor, A., 97
Demuth, T., 287

DeRemer, F., 9, 194
Descartes, R., 136
Deswarte, Y., 283
Devnani-Chulani, S., 

 

see

 

 Boehm, B., et al., 
1997

Dewey, J., 137, 140, 141
Dima, A., 275
Disney, A.M., 81
Dougherty, D., 151
Downey, E.A., 215
Drucker, P.F., 80
Dulac, N., et al., 70, 71, 72, 73
Duncker, K., 133, 137
Dyer, M., 33

 

E

 

Eden, C., 132
El-Emam, K., 81, 82, 111
Ellis, D., 

 

see

 

 Swiler, L., et al.
Elrad, T.H., 

 

see

 

 Constantinides, C.A., et al.
El-Ramly, M., 222
Elzinga, D.J., et al., 159
Erdogmus, et al., 244
Erland, J., 286
Ett, W.H., 

 

see

 

 Krasner, H., et al.
Etter, D.M., 137, 140, 141
Evans, P., 165, 278
Even-Tsur, D., 

 

see

 

 Kadary, V., et al.

 

F

 

Fayad, M.E., 

 

see

 

 Constantinides, C.A., et al.
Feeny, D., 238
Felder, M., 277
Feller, J., 89, 90, 94, 95
Fenton, N.E., 261
Ferguson, P., et al., 80
Fiedler, K., 159, 160
Finkelstein, A., 213
Fitzgerald, B., 89, 90, 94, 95
Fitzgerald, G., 272
Flores, I., 100
Floyd, C., 22
Ford, D., 92, 93
Forrester, J.W., 149
Fox, G., 52
Fox, R., 290
Fröberg, J., 53, 54, 55, 56, 57
Fuggetta, A., 

 

see

 

 Bandinelli, S., et al.

 

G

 

Gaedke, M., 282

 

AU3939_Index.fm  Page 316  Thursday, April 7, 2005  5:46 PM



 

Author Index

 

�

 

317

 

Gail, M., 279
Galal, G., 213
Gallagher, S.A., 137, 140, 141
Gamma, E., et al., 4, 43–44
Garry, R., 137, 139–140, 141
Gaulding, S.N., 277
Gause, D., 131–132
Gay, B., 210
Gellersen, H., 282
Gentleman, W.M., 53
Giesen, J., 214
Gilb, T., 16
Glaser, R., 137
Glass, R., 268, 269, 270
Glass, R.L., 129, 268
Goesmann, T., 

 

see

 

 Weske, M., et al.
Gomaa, H., 278
Grabiner, J.V., 136
Graham, D., 15, 16, 17, 19, 20, 21
Grasso, M.A., 210
Grover, V., 159, 160

 

H

 

Haavengen, B., 279
Haggerty, N., 203–204
Halperin, N., 

 

see

 

 Kadary, V., et al.
Hamlet, D., 12, 41, 42, 43, 78, 90, 257
Hammer, M., 61, 151
Harrison, D.A., 164
Harrison, W., 

 

see

 

 Erdogmus, et al.
Hartman, H., 137, 140, 141
Hartson, H.R., 

 

see

 

 Chase, J.D., et al.
Hefley, W.E., 75, 83
Helander, M., 281
Helm, R., 

 

see

 

 Gamma, E., et al.
Henshaw, H., 210
Herzberg, G.F., 149
Hewett, T.T., 131, 142
Highsmith, J., 90, 91
Hissam, S.A., 25, 52, 53, 54, 55, 56, 57, 58, 76
Hitt, L., 165
Hitt, L.M., 278
Hix, D., 

 

see

 

 Chase, J.D., et al.
Hoeltje, D., 

 

see

 

 Madhavji, N.H., et al.
Holmes, N., 286
Holten, R., 

 

see

 

 Weske, M., et al.
Hong, W., 

 

see

 

 Madhavji, N.H., et al.
Horak, T., 

 

see

 

 Elzinga, D.J., et al.
Horowitz, E., 1989, 6, 106
Ho-Stuart, C., 

 

see

 

 Liu, S., et al.
Hovde, R., 137, 141

Humphrey, W. 2002, 176
Humphrey, W.S., (

 

see also

 

 Ferguson, P., et al.)
1988, 106
1989, 14, 107, 108, 110, 179
1995, 79
1996, 80, 81
1997, 79

Hyde, D., 210

 

I

 

Institute of Electrical and Electronics 
Engineers (IEEE), 13, 179

International Standards Organization (ISO), 
75, 111

Irwin, J., 

 

see

 

 Kiczales, G., et al.
Iscoe, N., 73, 74, 180

 

J

 

Jaccheri, M.L., 111, 179, 180
Jackson, D., 211
Jackson, M., 211
Jackson, M.A., 16
Jacobson, I., 47, 48, 111
Jayesh, P., 

 

see

 

 Agarwal, R., et al.
Jeusfeld, M., 97
Jiao, J., 281
Johnson, D.M., 137, 140
Johnson, P.M., 81
Johnson, R., 

 

see

 

 Gamma, E., et al.
Johnston, K., 238
Jones, C., 216, 264
Jones, S., 132
Jung, R., 41

 

K

 

Kacsich, R., 217
Kadary, V., et al., 110
Kaindl, H., 217
Kalakota, R., 275
Kappel, G., 282
Kauffman, R.J., 165
Keen, P., 163, 279
Keen, P.G.W., 10
Kellner, M.I.

1989, 14, 107, 108, 110, 179
1992, 107, 108, 110
1994, 106

Kemerer, C.F., 261
Kepner, C.H., 132
Kessler, R., 91
Khajenoorl, S., 

 

see

 

 Ferguson, P., et al.

 

AU3939_Index.fm  Page 317  Thursday, April 7, 2005  5:46 PM



 

318

 

�

 

Strategic Software Engineering: An Interdisciplinary Approach

 

Khalifa, M., 24, 107, 111
Kiczales, G., et al., 101
King, D., 

 

see

 

 Turban, E., et al.
Kingsley, H.L., 137, 139–140, 141
Koenig, S., 

 

see

 

 Kadary, V., et al.
Konana, P., 

 

see

 

 Barua, A., et al.
Kradolfer, M., 98, 100, 101
Kraft, S.E., 

 

see

 

 Morisio, et al.
Kramer, S., 217
Krasner, H., 73, 74, 180
Krasner, H., et al., 108
Kron, H.K., 9, 194
Krueger, C.W., 166
Krutchen, P., 47, 48, 49, 50–51

 

L

 

Lago, P., 111, 179, 180
Lam, W., 215
Lamping, J., 

 

see

 

 Kiczales, G., et al.
Lantner, K., 52
Larkin, J.H., 70
Larman, C., 46, 48
Lavazza, L., 

 

see

 

 Bandinelli, S., et al.
Lawson, J.D., 277
Lederer, A.L., 160
Lee, C.-Y., 

 

see

 

 Elzinga, D.J., et al.
Lee, J., 

 

see

 

 Turban, E., et al.
Lengel, R.H., 10, 163
Leveson, N., 

 

see

 

 Dulac, N., et al.
Leveson, N.G., 10, 69, 70, 74
Lichtenstein, Y., 25, 28
Lichter, H., et al., 20, 22, 23
Linehan, J., 

 

see

 

 Krasner, H., et al.
Linger, R., 32, 33, 35, 76, 77
Linger, R.C., 33, 34
Liu, L., 6, 106, 238
Liu, S., et al., 27, 46, 193, 204
Loi, M., 

 

see

 

 Bandinelli, S., et al.
Loingtier, J., 

 

see

 

 Kiczales, G., et al.
Lopes, C., 

 

see

 

 Kiczales, G., et al.
Lott, C., 14, 15
Lynch, J., 

 

see

 

 Agarwal, R., et al.
Lyytinen, K., 10, 25, 28, 109

 

M

 

Madhavji, N., 81, 82
Madhavji, N.H., et al., 11, 12, 13, 107, 108, 

110–111
Madnick, S.E.

1983, 66
1989, 10, 11, 66, 69, 74, 109, 180
1991, 66

Maeda, C., 

 

see

 

 Kiczales, G., et al.
Maiden, N.A.M., 212
Maletic, J.I., 142
Mangan, A., 25, 28
Mantel, S.J., 236
Marcom, S., 52
Markus, M.L., 164
Martin, J., 94
Martin, M., 108, 109
Maslow, A.H., 149
Mateyaschuk, J., 238
Matsumoto, K., 

 

see

 

 Torii, K., et al.
Matvya, A., 

 

see

 

 Ferguson, P., et al.
Maybee, J., 12, 41, 42, 43, 78, 90, 257
Mayer, R.E., 133
Mayo, E., 149
McCracken, D.D., 16
McFarlan, F.W., 214
McGrath, G., 73
McGregor, D., 149
McKeen, J.D., 28
McKenney, J.L., 214
McLean, E.R., 164, 166, 278
Meier, R., 137, 141
Meier, S., 137, 141
Mendhekar, A., 

 

see

 

 Kiczales, G., et al.
Meredith, J.R., 236
Meyer, B., 223
Miller, S., 75, 83
Mills, H., 31
Mills, H.D., 33
Mirchandani, D.A., 160
Mitroff, I., 163, 279
Moore, G., 203, 204
Morisio, et al., 52, 54, 55, 56
Morrissey, J., 243
Mukherjee, B., 

 

see

 

 Puketza, N., et al.
Murphy, G.C., 102

 

N

 

Nakakoji, K., 

 

see

 

 Torii, K., et al.
Nelson, M.R., 210
Netinant, P., 

 

see

 

 Constantinides, C.A., et al.
Newell, A., 133, 137, 138
Nielsen, J., 22
Nissen, M.E., 179

 

O

 

Obendorf, T., 54
Offutt, A.J., 

 

see

 

 Liu, S., et al.
Ohba, M., 

 

see

 

 Liu, S., et al.
Olovsson, T., 286

 

AU3939_Index.fm  Page 318  Thursday, April 7, 2005  5:46 PM



 

Author Index

 

�

 

319

 

Olsem, M., 60, 61
Olsen, D., 279
Olsson, R., 

 

see

 

 Puketza, N., et al.
Osborn, A.F., 137, 139–140, 141
Oshana, R., 32, 33, 35, 76, 77
Osterweil, L., 47
Osterweil, L.J., 111, 179
Over, J., 107, 108, 110

 

P

 

Padusenko, S., 41
Page-Jones, M., 133
Parnes, S.J., 137, 140, 141
Parra, A.T., 

 

see

 

 Morisio, et al.
Paulk, M.C., et al., 75, 109, 179
Pfleeger, C.P., 283
Pfleeger, S.L., 15, 19, 23, 261
Philips, C., 

 

see

 

 Swiler, L., et al.
Phillips, B.P., 203, 204
Picco, G.P., 111, 179, 180, (

 

see also

 

 
Bandinelli, S., et al.)

Polya, G., 133, 134, 137, 139, 140–141
Port, D., 29, 109
Porter, M.E., 281
Porvin, S., 142
Posner, B.Z., 238
Potter, R., 286
Potts, K., 204
Pounds, W.P., 131
Preiss, O., 213
Pressman, R., 203, 204
Pressman, R.S., 16, 59, 180
Puketza, N., et al., 287

 

R

 

Raffo, R.H., 108, 109
Rainer, K., 286
Ramanathan, J., 42, 111
Rasmussen, J., 70
Reel, J.S., 204
Rees, E., 137
Reifer, D.J., 

 

see

 

 Erdogmus, et al.
Retschitzegger, W., 282
Reynolds, R.G., 142
Rieke, A., 287
Riley, J.D., 46, 47
Rist, R.S., 133
Roberts, A., 159, 160
Robinson, W.N., 213
Rombach, H.D., 42, 110, 111, 180, 189
Ropponen, J., 10, 25, 28, 109
Rosen, K.H., 136

Rosenau, M.D., 236
Rubinstein, M., 133, 136, 137, 140, 141
Rumbaugh, J., 47, 48, 111
Rushby, J., 72
Ryan, S.D., 164

 

S

 

Salenger, D., 286, 290
Salter, C., et al., 287, 289
Sauer, C., 238
Sawyer, I.P., 76
Saydjari, O., 

 

see

 

 Salter, C., et al.
Schaffer, E., 41
Schneider-Hufschmidt, M., 

 

see

 

 Lichter, H., et 
al.

Schneier, B., 

 

see

 

 Salter, C., et al.
Schulman, R.S., 

 

see

 

 Chase, J.D., et al.
Schwinger, W., 282
Scudder, G.D., 106, 108, 111
Seacord, R.C., 25, 52, 53, 54, 55, 56, 57, 58, 

76
Seaman, C.B., 

 

see

 

 Morisio, et al.
Sena, J., 279
Shackleton, P., 203, 204, 236
Shankararaman, V., 215
Sharp, H., 213
Sharpe, W.R., 244
Shaw, M., 264
Shima, K., 

 

see

 

 Torii, K., et al.
Shneiderman, B., 214, 286
Simon, H.A., 70, 133, 137, 138, 140
Sims, D., 132
Sims, K., 160
Singleton, J.P., 164, 166, 278
Sinha, A.P., 193
Siponen, M., 283
Sledge, C.A., 54
Small, A.W., 215
Smith, A., 148, 151
Smith, G., 204
Smith, G.W., 283
Smith, H.A., 28
Snyder, C.E., 32
Sommerville, I., 58, 76, 283
Sorenson, P., 222
Soumitra, S., 42, 111
Stahl, B.C., 25, 28
Staples, D.S., 28
Stedman, C., 238
Steiner, I., 67
Stepien, W.J., 137, 140, 141
Stewart, L.C., 151

 

AU3939_Index.fm  Page 319  Thursday, April 7, 2005  5:46 PM



 

320

 

�

 

Strategic Software Engineering: An Interdisciplinary Approach

 

Stoddard, D., 279
Stoddard, D.B., 163
Storey, M.A., 

 

see

 

 Dulac, N., et al.
Striemer, R., 

 

see

 

 Weske, M., et al.
Stroulia, E., 222
Stubblebine, S., 289
Sullivan, K.J., 183, 244, 246, (

 

see also

 

 
Erdogmus, et al.)

Sun, Y., 

 

see

 

 Liu, S., et al.
Sutcliffe, A.G., 212
Sutton, W.L., 107, 110, 179
Swatman, P., 45
Swiler, L., et al., 285

 

T

 

Takada, S., 

 

see

 

 Torii, K., et al.
Takada, Y., 

 

see

 

 Torii, K., et al.
Tanniru, M., 

 

see

 

 Agarwal, R., et al.
Tatnall, A., 203, 204, 236
Taylor, R.N., 190
Teng, J., 159, 160
Thomsett, R., 181
Tilley, S.R., 190
Tirrel, J., 

 

see

 

 Krasner, H., et al.
Torii, K., et al., 42
Trammell, C.J., 32, 33, 34
Treese, G.W., 151
Tregoe, B.B., 132
Turban, E., 286
Turban, E., et al., 279, 287
Türetken, O., 82, 83
Turner, A. J., 16, 18
Turoff, M., 163, 279

 

U

 

Utter, D., 210

 

V

 

Van Der Zee, J.T.M., 164, 278
Van Wassenhove, L.N., 106, 108, 111
Varshney, U., 275
Vennix, J.A.M., 69
Verner, J.M., 24, 107, 111
Vessey, I., 71, 268, 269, 270
Vetter, R., 275
Viguier, T., see Dulac, N., et al.

Viller, S., 76
Visaggio, G., 61, 62
Vlissides, J., see Gamma, E., et al.
Vokurka, R., 279
Volker, A., 214
Volkov, S., 213

W
Walker, R.J., 102
Wallas, G., 137, 140, 141
Wallner, J., see Salter, C., et al.
Walnau, K.C., 25, 52, 53, 54, 55, 56, 57, 58, 76
Weber, C.V., see Paulk, M.C., et al.
Weber, M., 947, 149
Wegmann, A., 213
Weinberg, G., 131–132
Weske, M., 97, 99, 100
Weske, M., et al., 100
Weston, S., 238
Whinston, A., see Barua, A., et al.
Wickelgren, W.A., 133
Willcocks, L., 238
Williams, L., 91
Wilson, C., 290
Winograd, T., 100
Winter, R., 41
Wirth, N., 133
Wolf, M., 41
Workman, D., 137, 140, 141
Wright, R., 289
Wu, L.S., 243
Wurster, T., 278
Wurster, T.S., 165

Y
Yamamichi, N., et al., 12, 14, 26, 27
Yin, F., see Barua, A., et al.
Yourdon, E., 44

Z
Zave, P., 23
Zhang, K., see Puketza, N., et al.
Zhiying, Z., 77
Zhong, X., 81, 82
Zorpette, G., 290
Zullighoven, H., see Lichter, H., et al.

AU3939_Index.fm  Page 320  Thursday, April 7, 2005  5:46 PM



321

Subject Index

A
A/FR (appraisal-to-failure ratio), 82
Abstract factory pattern, 44
Abtk (average number of development 

phases), 81, 82
Accountability, 13
Activation, difference, 205
Activities element, 48–49, 120–121
Activity based models, 100
Activity diagrams, UML, 46
Actor, 42, 50–51
Actual return, 253
Ad hoc workflow, 98
Adapter pattern, 44
Adaptive Software Development, 91
Adjustment factor, overall, 261
Administrative workflow, 98
Agile development, 90–94, 272

characteristics of, 91–92
and evolutionary development, 92
iterative, 93
learning requirement in, 93–94
and plan driven life cycle models, 92–93
profile of, 91

Agile Manifesto, 90
Aging symptoms, 61
Aging systems, reversing, 62
Alexander, Christopher, 43
ALGOL, 269–270
Algorithm, 134, (see also Problem solving 

process)
derivation of word, 136

Alkowarazmi, 136
Alternatives, selection between, 135
Analysis, and selection, 140
Analysis-design-coding-testing-maintenance 

paradigm, 7
Antiterror system development, 286–287
Apache Web server, 88–89
Application based specialized development, 

274–278
Application focused software development, 

271
Appraisal-to-failure ratio (A/FR), 82
Architectural definition, 30
Architecture centered approach, 115–116
Archiving, digital, 160
Artifacts element, 48–49
Artificial intelligence approach, 42
AS IS business model, 210, 223–225
Aspect(s), 101
Aspect oriented development, 101–103

goals of, 102
profile of, 102
static and dynamic, 102–103

Aspect Oriented Software Architecture, 101
Aspect weaver, 102
Assumptions, invalid, 113–116
Automation surprises, 72
Average number of development phases 

(Abtk), 81, 82

B
Behavior, individual design, 74

AU3939_Index.fm  Page 321  Thursday, April 7, 2005  5:46 PM



322 � Strategic Software Engineering: An Interdisciplinary Approach

Behavioral approaches, to interface design, 
73

Behavioral patterns, 44
Benchmark, 216
Benchmarking survey, 216
Best practices, 8, 48
BIND, 88–89
Black box, 33
Bootstrap, 110
Box structures, 33
Breadboard, 22
Bridge pattern, 44
Business metrics, identification of, 166
Business performance evaluation, 255
Business process reengineering (BPR), 61, 

179–181
Business software

economic value of, 164–168
evolution of, 173–188
limitations of, 161–169
problem solving aspects of, 157–161
references on, 171

Business value, (see Economic value)

C
CAESE (computer aided empirical software 

engineering), 42–43
Capability driven problem solving, 147, 

189–190, 274
Capability Maturity Model: Guidelines for 

Improving the Software Process 
(1995), 75

Capability Maturity Model (CMM), 35, 68–69, 
75–79, 110, 111

critiques and capabilities of, 78–79
key process areas of, 77–78
levels of development maturity in, 76–77
profile of, 75
as qualitative benchmark, 216

Capability ratings, programmer, 261
Capital budgeting, 251–252
Carry-out plan, 141
CASE tools, 7, 9, 39–64, 147

advantages of, 41
in analysis of development process, 

42–43
and automatic code generators, 41
data flow diagrams using, 40–41
early, 40–41
and fourth generation languages, 41
lower, 40

popular, 174
profile of, 40
in prototype modeling, 23
upper, 40

Centrality, of technical capability, 130
Chain of responsibility pattern, 44
Chance, 25
Change

rationale for, 213–214
risks of, 214–215

Change management, 77
best practice, 48

Class diagrams, 41–42
Class objects, 143
Cleanroom Development Architecture, 

33–34
Cleanroom model, 7, 31–35

function description in, 33
intellectual control of, 32–33
process highlight of, 34–35
profile of, 32
validation in, 33

Clear box, 33
COBOL, 269–270
COCOMO (constructive cost model), 243

basic, 259
calculations in, 256
detailed, 261
expanded, 263–265
intermediate, 259–261
levels of, 258–259

estimation process in, 259–265
managerial use of, 257–258
modes of project development in, 

257–259
output of, 257
parameters of, 258
sample problems using, 262–263
value of, 258
variables in, 256–257

COCOMO (constructive cost model) II, 
263–265

Code-and-fix approach, 12
Code generators, 174
Code-tangling, 101
Cognitive factors, in development process, 

69–70, 162, 180–181
Cognitive psychology, 72
Cognitively based cues, 71
Collaboration, effective, 239
Collaboration diagrams, UML, 46

AU3939_Index.fm  Page 322  Thursday, April 7, 2005  5:46 PM



Subject Index � 323

Collaborative workflow, 98
Communication enablement, by process 

model, 106
Communication failure, 200
Compatibility, of applications, 271
Compensating feedback, 68
Competition, market, and software 

development, 174–175
Complementary differences, 205–206
Complex problem solving, 142–145
Complexity, and project size, 256
Complexity, of business environment, 

150–151
Component based software architecture, 

best practice, 48
Component library, 143, 144
Component product, 53
Component technology, 53
Comprehension, problem, 145
Computer aided empirical software 

engineering (CAESE), 42–43
Computer aided software engineering 

(CASE), 39–64, (see also CASE 
tools)

Computing power, and business problems 
solving, 157–158

Conceptual process framework, 106
Condition(s), 133
Configuration management, 77, 79
Connectivity, and cost reduction, 161
Constraint(s), 133
Construction phase, 49, 50
Content, in interface development, 73
Context, problem, 145
Continuous simulation framework, 109
Continuous system improvement, 61
Contracts, 103
Cost, software, 254–255
Cost drivers, 260
Cost effectiveness, of applications, 272
Cost estimation, software, 255–265, (see also 

COCOMO (constructive cost 
model))

Cost factor ratings, 260–261
Cost reduction, 255
COTS (commercial off-the-shelf) model(s), 

51–58
compared with in-house development, 

57–58
components of, 53
decision to use, factors in, 56–57

description of, 52–53
impact of, in software development, 

53–54
integration and testing in, 55–56
levels of usage of, 53
and other component based approaches, 

differences, 53–54
product implementation based on, 56
profile of, 52
requirements development using, 54–55
requirements review using, 57
and technology competence, 57
vendor lock in, 56
worldwide use of, 53

Coupling, 62
Creational patterns, 44
Cryptographic protocol design, 289
Customer driven development, 240–241
Customer satisfaction, 135–136, 234
Customization, of software, 162

D
Danger, 25
Data collection, 117–118, 200–203, 212–220
Data flow diagrams, automated tools for, 

40–41
Data mining, 222
Data processing, 220–222
Data reengineering, 60
Database(s), online access to updates, 160
Database management systems, 158
Defect density (Dd), 81
Defect management, 80–81
Defect removal rate (Drr), 81, 82
Deferring decisions, 8
Delivery, of systems, 16
Deming, Edward, 149, 150
Department of Defense

maintenance costs of software in, 60
use of COTS development, 53

Descartes, Rene, 136
Design, and implementation, 141
Design behavior, individual, 74
Design by contract, 103
Design patterns, 43–44
Designer 2000, 174
Development process, (see Process 

model(ing); Software 
development)

Development protocols, 4
Development team, (see Team)

AU3939_Index.fm  Page 323  Thursday, April 7, 2005  5:46 PM



324 � Strategic Software Engineering: An Interdisciplinary Approach

Deviation, 253
Disintermediation, 9
Disruptive technology, 90
Dissatisfaction, perspectives on, 214
Diversity

and management skills, 203–204
as organizational asset, 198
references on, 206–207
in software evolution, 189–196 (see also 

Evolution)
as value addition, 204–206
value of, 196–203

Diversity deployment, 204–206
Diversity driven framework, 127–130
Division of labor model, 148, 149, 151
Documentation, 6, 7
Domain dependent software development, 

269–270
Domain independent software 

development, 270
Domain knowledge, 74
Domain model, 45
DRAGOON, 46–47
Dream Weaver MX, 174
Drr (defect removal rate), 81, 82
Due diligence, 15
Dynamic problem solving, 147

E
e-business, and networking power, 158–160
e-business applications, and organizational 

goals, 281
e-business software development, 278–282
Economic goals, 6
Economic requirements, 217
Economic value, 7–8

and business software, 164–168
and information technology 

improvement, studies, 165
maximization of, 249–251
as rationale for software, 130–131, 

175–176
Economics, of Computers (1972), 244
Economics, software, 183–184, 194, 243–246

business metrics of, 247–249
cost estimation in, 254–265
and finance awareness, 245–246
framework of, 247
investment option evaluation in, 251–252
rationale for, 246–247

references on, 265
risk and return in, 252–254
and software engineering, 247–249
traditional, 254
value maximization in, 249–251

Effort adjustment factor (EAF), 260
Effort estimation, 257, 260

formula for, 259
Elaboration phase, 49, 50
Electronic product development, 279, 281
Embedded knowledge, 62
Embedded projects, 259
Embedded prototyping, 22
Empirical software engineering, 42
Engineering, (see Business process 

reengineering; Reengineering; 
Reengineering process model; 
Reverse engineering; Software 
engineering)

Enterprise application integration, 187, 289
Enterprise resource management, 281–282
Environmental requirements, 219
Euclid, 136
Evaluation criteria, setting, 216
Event flow, 51
Evolution, software, 5, 9, 173–188, 189–207, 

(see also Software engineering)
economic factors in, 194
interdisciplinary elements in, 191–193, 

196–207
measures of, 192
methodology in, 193
problem solving in, 189–207 (see also 

Problem solving process(es))
specialized, 269–271
time element in, 191–193, 194
visualization in, 194, 195

Evolutionary development, 16–17
Evolutionary prototyping, 22
Executable specifications, 23
Expectations, risk and, 253
Expected return, 253
Experimental data capture, 42–43
Experimental prototyping, 22
Expert systems, knowledge based, 147
Exploratory prototyping, 22
Extended knowledge, 231
External software drivers, assumptions 

about, 113–114
Extreme Programming Explained, 90

AU3939_Index.fm  Page 324  Thursday, April 7, 2005  5:46 PM



Subject Index � 325

F
Factory model, of business, 148
Faulty processes, 67–68
Fayol, Henry, 148–149
Feasibility study, 255
Feature driven development, 91
Financial leverage, 252–253
Flat organizational hierarchies, 8–9
Flow, organizational, 149
FORTRAN, 270
Forward engineering, 59
Fourth generation languages (4GL), 9, 270

and CASE tools, 41
in prototype modeling, 23

Freeware, 88
Frequential simplification, 72
Function count, 264
Function point analysis, 263–264
Functional requirements, initial, 216–218

G
Gang of Four, 4, 43–44
Generic application software development, 

270
Generic applications, aspects of, 271–272
GINGER2, 42
Gnu General Public License, 88
Goal(s), 121, 133

achieving, 136
evolution of, 136
expanding, 189–190
shared, 239

Goal-question-metrics (GQM) approach, 
111, 180

Gold-plating, 14
Graphical user interface (GUI), 270
Group productivity, 67–68

H
Hammer, Michael, 151
Happy Path, 51
Hardware description languages (HDL), 41
High fidelity prototyping, 22
Horizontal dimension, of software 

engineering, 178
Horizontal prototyping, 22
Human aspect(s), (see also Interdisciplinary 

resources)
behavioral approach as, 73–75
cognitive factors as, 69–70
competence and training as, 74–75

customer needs as, 240–241
domain knowledge as, 74
individual design behavior as, 74
as organizational factors, 73–74
in problem definition, 231–233
of project management, 235–238
social context as, 73
of software development, 65, 68–75, 

168–169, 193, 229–242
specification clarity as, 70
of team development, 239–240
visualization and cognition as, 70–72

Human-computer interface, 69, 185, 270
Human requirements, 218
Human resource management systems, 

82–83

I
IBM 360 computer, 270
IBM Cleanroom model, 7, (see also 

Cleanroom model)
IEEE-STD-610, 13, 179
Ignorance, interdisciplinary, 198–203, 204
Improvement models, (see Process 

improvement model(s))
In-house technology competence, 57
Inception phase, 49–50
Incorporated prototype, 21
Incremental and iterative development, 

15–20
advantages of, 16, 18–19
disadvantages of, 19
evolutionary delivery in, 16
iterative enhancement in, 17–18
order of increments in, 17
profile of, 19
project control list in, 18
and prototype modeling, 23

Individual capabilities, 239
Individual competency, 91
Inferential simplification, 72
Information Age, problem solving in, 151
Information economics, 244–246
Information presentation, 222–223
Information processes, 97
Information retrieval systems, 158
Information technology, and effect on 

business, 151
Inheritance, differences of, 206
Initial functional requirements, 216–218
Initial nonfunctional requirements, 218–219

AU3939_Index.fm  Page 325  Thursday, April 7, 2005  5:46 PM



326 � Strategic Software Engineering: An Interdisciplinary Approach

Initial operational capability (IOC), 31
Intangibles, 249
Intent specifications, 70
Interactive differences, 206
Interdisciplinary ignorance, 198–203, 204
Interdisciplinary perspectives, 213, 214, 215, 

216, 217–218, 218–219, 219–220, 
221–223

Interdisciplinary resources, (see also Human 
aspect)

and diversity of process models, 
191–193, 197–203

in problem engineering, 210–212
in problem solving, 127–130
in software engineering, 118–119, 121, 

175, 180, 185–187, 230–231, 
234–235

Interface, system, 72
Interface design, behavioral approaches, 73
Internal software drivers, assumptions 

about, 113–114
International Organization for 

Standardization, 135, (see also ISO 
9000 standards)

Internet, (see also Web entries)
networking power of, 158–160
and operation of organizations, 151

Internet repositories, 147
Internet search tools, 147
Intrusion detection system, 287
Invalid assumptions, 113–116
Inventory analysis, 59
Investment appraisals, 256
Investment options, evaluating, 251–252
ISO 9000 standards, 75, 111, 135

evolution of, 150
Iterative development, 15, (see also 

Incremental and iterative 
development)

Iterative development, best practice, 48
Iterative enhancement, 17–18
Iterative problem solving, 146

J
Job control language, 270

K
Kaizen, 82, 110, 193
KDSI (thousands of delivered source 

instructions), 259
Kettering, Charles, 209

Key process areas (KPAs), 77–78
Kilolines of code, 256

L
Lack of communication, 200
Language ambiguity, 144–145
Laptop computers, 270
Legacy systems
and e-business software development, 279
reengineering, 58–62
Leverage, 252–253, 255
Life cycle architecture (LCA), 30–31
Life cycle models, 3–38, (see also Process 

model(ing))
Life cycle objectives (LCO), 30, 31
Life cycle plan, 30
Linear problem solving, 146
Linear productivity factor, 256
Linguistic formulation, in software 

engineering, 163
Linux, 88–89
LOC/h (productivity metric), 81, 82
Low fidelity prototyping, 22

M
m-commerce applications, 275
Make-versus-buy decision, 57–58
Man-months, 256
Management, project, 6, 129–130, 234, 

235–238
activities in, 237
definition of, 236–237
success of, factors in, 237–238

Management based requirements, 217
Management by objectives, 149
Management driven problem solving, 

142–145, 232–233
diversity in, 203–204

Management isolation, era of, 181–182
Management requirements, 218–219
Managerial productivity, 68
Maturity era, of software engineering, 

184–185
Mental modeling, for logical systems, 72
Metcalfe’s law, 158
Methodological dimension, of software 

engineering, 178, 193
Metric oriented assessments, 110–111
Metrics, business, 146, 166

reflecting software economics, 247–249
Mobile middleware, 275
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Mockup, 22
Modes, of project development, 257–259
Mozilla, 89
MS Access, 174
MS Visio Enterprise, 174
Multimedia capability, in business problem 

solving, 161

N
NASA, COTS usage in, 54
NATO Science Committee conferences 

(1968, 1969), 179
Net present value, 251, 254
Networked hardware architecture, 271
Networking power, 158–160
Neutralization, difference, 205
Nine-Phase Model, 11–12
Nonfunctional requirements, initial, 218–219

O
Object oriented development, 43–47, 

173–174
for entire development process, 46–47
profile of, 44
in requirements and specification, 45
in system design, 46
and UML diagramming, 46
for Web applications, 282

Open source development, 9, 88–90, 174
profile of, 88

Open Source Initiative, 88
Operating concept, 30
Operating leverage, 252–253
Operational Specification Model, 23
Optimization, difference, 205
Organic projects, 258
Organizational complexity, and technology 

impact, 163–164
Output unit of functionality, 263

P
Pair programming, 91
Parallel problem solving, 147
Partial knowledge, 199
People Capability Maturity Model (1995), 

82–83
People dimension, 229, (see also Human 

aspect)
People oriented software development, 

116–117
Perl, 89

Personal computers, 270
Personal Software Process, 79, 81

aspect identification in, 81–82
clerical demands in using, 81
goals of, 80–81
human resource management and, 82–83
low level details of, 82
metrics of, 81–82
profile of, 80
quality measurement in, 81

Pervasive software development, 274–275
layers of, 276–277

Physiologic data, collection of, 42–43
Pilot system, 22
Planning estimates, 257–258, (see also 

COCOMO (constructive cost 
model))

Point solutions, 14, 16
Pollution, 62
Portability

in business problem solving, 160–161, 
186–187

of software applications, 271
Power Designer, 174
Preposition, 145
Presentation, information, 222–223
Presentation prototype, 22
Probability, 253
Problem(s)

complexity of, 10–11
composition of, 143–144
customer satisfaction, 135–136
definition of, 7, 118, 132–133, 135, 

231–233 (see also Problem 
engineering)

expansion of, 143–144, 145
goal achievement, 136
goal evolution, 136
misrepresentation of, 144–145
reduction of, 142–143
in selecting alternatives, 135
solution of, 148–151 (see also Problem 

solving process(es))
standards, 134–135
statement of, 133
types of, 134–136

Problem decomposition, 142–143, 210, 211
Problem engineering, 209–226

data collection in, 212–220
data processing in, 220–222
definition of problem in, 209–212
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interdisciplinary resources in, 210–212
references on, 225–226

Problem solving context, in specialized 
system development, 272–274

Problem solving process(es), 9–10, 117–119, 
127–153

algorithmic, 134
capability determination in, 138
capability driven, 147
common elements in, 139–142
complex, 142–145
defining, 136, 138
diversity and evolution of, 189–207
elements of, 138–139
interdisciplinary, 127–130, 196–207
linguistic formulation in, 162–163
management driven, 142–145
at management level, 203–204
models of, 137–139
multidimensional, 127–130
perception in, 131–134
redefining, 119–122
references for, 152–153
requirements in, 138
software enablement of, 155–161
and software engineering, 169–171
software limitations in, 161–169
solution by, 148–151
solution design and implementation in, 

141
solution verification and presentation in, 

141–142
solutions analysis and selection in, 140
stages of, 133–134
statement of problem or goal in, 133, 

139–140
task structured, 145–147
terminology of, 133

Process(es), 4, 179
IEEE definition of, 179
management of, 180
problem solving, 9–10, 117–119, 127–153 

(see also Problem solving process)
reengineering, 179–181
references on, 35–38, 187–188
software, 179–181

and business process reengineering, 
179–181

characteristics of, 179–180
cognitive aspect of, 180–181
interdisciplinary nature of, 180

management of, 180
and model development, 179, 

181–187 (see also Process 
model(ing))

Process centered approach, 115–116
Process evolution, 106
Process flow charts, 178
Process improvement assessments, 111
Process improvement model(s), 65, 109–110, 

117–124
Capability Maturity, 75–79
dynamic and productivity driven, 66–68
human factors in, 65, 68–75, 168–169
for individual and team development, 

79–83
profile of, 76
quality assurance standards for, 75–79

references on, 83–85
Process model(ing), 3–38, 178–181

agile, 90–94
approaches to, 109
aspect oriented, 101–103
assessment/evaluation of, 105–124
assumptions regarding, 105, 113–116
CASE tool analysis of, 42–43 (see also 

CASE tools)
characteristics of, 6–11
classifying, 109
Cleanroom, 31–35
cognitive aspects of, 69–70, 162, 180–181
commercial off-the-shelf (COTS), 51–58
consistencies in, 106
context diagram for, 10
data and collection for, 117–118
definition of, 4, 179
drivers of, 195
effectiveness of, 106–109
evolution of, 5, 9, 173–188, 189–207 (see 

also Evolution; Software 
development; Software 
engineering)

evolution of diversity in, 189–207 (see 
also Evolution)

factors affecting, 7–8
generic, 110–111
human aspects of, 65, 68–75, 168–169
improvement model(s) for, 65, 109–124

Capability Maturity, 75–79
dynamic and productivity driven, 

66–68
individual and team, 79–83
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profile of, 76
quality assurance standards for, 75–79

incremental and iterative, 15–20
invalid assumptions in, 113–116
life cycle, 3–20
object oriented, 43–47, 173–174
open source, 88–90
people oriented, 116–117
problem solving processes in, 9–10, 

117–119, 127–153 (see also 
Problem solving process(es))

properties of, static and dynamic, 109
prototype, 20–25
purposes of, 107
quality assurance standards for, 75–79
rapid application, 94–97
rational unified, 8, 47–51
recent trends in, 87–104
redefining, 119–122
reengineering, 58–62
references on, 35–38, 83–85, 103–104
risk reduction, 20–35, 109
Spiral, 25–31
time element in, 111–112
validation and verification in, 13, 27, 33
variation in, 9–10
Waterfall, 11–15
workflow application, 97–101

Process versus product controversy, 78
Process versus software project, 114–115
Product goal, establishing, 3–4
Production line, 148–149
Production workflow, 98
Productivity factors, 81–82
Productivity metric (LOC/h), 81, 82
Productivity paradox, 66–68
Project(s), 236
Project control list, 18
Project management, 6, 129–130, 234, 

235–238, 255
activities in, 237
definition of, 236–237
success of, factors in, 237–238

Prolog, in prototype modeling, 23
Prototype(s), 5

categories of, 21–22
Prototype modeling, 12, 20–21

as baseline reference, 24
business value of, 167
categories of prototypes in, 21–22
coding languages in, 23

effectiveness of, 23–25
and iterative development, 20, 23
low fidelity and high fidelity, 22
profile of, 21
rapid, 21
in Spiral model, 26–27
throwaway, 21
uses of, 23

Q
QIP, 110, 193
Quality, of software product, 180
Quality assurance standards, ISO, 75
Quantitative business models, 149

R
Radial dimension, 26
Rapid application development (RAD), 9, 

94–97, 174
adaptation to, 96
business value of, 167
method of, 95
negative aspects of, 97
and open source development, 

comparisons, 94–95
profile of, 95
and prototyping, 20
tool use in, 96–97
tools of, 95

Rapid prototyping, 21
Rational Rose software, 19, 47–48

introductory tutorial on, 48
Rational unified process (RUP), 8, 47–51

architecture views in, 50
best practices in, 48
elements of, 48–49
phases in, 49–50
use cases in, 50–51

Rationale for change, 213–214
Reaggregation, 61
Real time software development, 275–278

life cycle phases in, 280–281
Redefinition, of software development, 

119–122
Redocumentation, 60
Reduction, problem, 142–143
Reengineering, 151
Reengineering process model, 58–62

automatic techniques in, 59–60
and business process reengineering, 

61–62
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components of, 60
phases in, 58–59
profile of, 59
reasons for use of, 60–61
versus redevelopment, 60–61
in reversing aging systems, 62

Referential integrity, 33
Refinement, in problem engineering, 

221–222
Relevance, and knowledge, 230
Representation, and structure, 230
Requirements

functional, 216–218
non functional, 218–219

Requirements engineering, 6, 73, 162–163
Requirements management, best practice, 48
Requirements validation, and business 

value, 165–166
Requirements visualization, 71–72
Reservation, 137
Restructuring, 60
Return, risk and, 252–254
Return on investment (ROI), 175, 214
Reusable subproblems, 142–143, 144
Reuse, of applications, 271
Reuse models, 43
Reverse engineering, 59, 190, 210–211
Risk(s), 25

in problem engineering, 214–215
security, identifying, 285–287
in software development, 20, 25–27, 

109
models for reducing, 20–35
opportunistic interpretation of, 28–29

in software economics, 251–254
Risk of ignorance, 201
ROI (return on investment), 175, 214
Roles, and representations, 72
Round-trip problems solving, 120
Rounds, of Spiral model, 28
Rule based languages, 270
RUP, (see Rational unified process)

S
Scenario, 51
Schedule estimation, 257, 260

formula for, 259
Scope, in interface development, 73
SCRUM, 91, 93
SDLC, (see Software development life cycle)
Security control techniques, 288

Security development, 282–283
designing, 287–290
generations of, 284
requirements analysis for, 283–287

Semantic distance, 71
Semidetached projects, 259
Separation of concerns, 8
Sequence diagram(s), UML, 42, 46
Shared goal, 239
Shareware, 88
Simulation languages, 270
Simultaneity factor, 196
Single intruder multiple terminal, 287
Single intruder signal terminal, 287
Skeletal subproblems, 18
Slowing code, 19
Smith, Adam, 148, 151
Social context model, 73
Social relations, in organizations, 149
SOFL (Structured Object Oriented Formal 

Language), 46, 193
Soft skills, 203–204
Software crisis (1968), 179
Software development, 112–113, 181–187

application focused, 271
assumptions made in, 113–116
autonomous views of, 176–177
best practices for, 48
in business context, 175–176
and business value, 164–168
challenges to, 174–175
cognitive aspects of, 69–70, 162, 180–181
current, 185–187
definition of, 4, 179
diversity in, 189–207
domain dependent, 269–270
domain independent, 270
economics of, 244–246 (see also 

Economics)
engineering role in, 177–188 (see also 

Software engineering)
evolution of, 5, 9, 173–188, 189–207, 

269–270 (see also Evolution)
generic application, 270
human aspects and resources in, 65, 

68–75, 168–169, 229–242
improving process of, 65–85, 112–124 

(see also Process improvement 
model(s))

models of, 3–38, 65–85 (see also Process 
model(ing))
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object oriented and reuse, 43–62 (see also 
COTS (commercial off-the-shelf) 
model(s); Object oriented 
development; Rational Unified 
Process; Reengineering process 
model)

people oriented, 116–117
process models in, 3–38, 65–85 (see also 

Process model(ing))
assessing, 105–112
risk in, 25–27 (see also Risk)
specialized, 267–292 (see also Specialized 

system development)
time element in, 111–112 (see also Time 

element)
tools of, 39–43 (see also CASE tools)
trends in, 87–104 (see also Software 

engineering)
Software development life cycle (SDLC), 4, 

179, (see also Process model(ing))
Software economics, 183–184, 185
Software engineering, 3, 177–187

in 1960s to 1970s, 181–182
in 1970s (mid to late), 182–183
in 1980s, 183–184
in 1990s, 184–185
in 2000s, 185–187
business driven, 184–185
business evaluation in, 183–184
dimensions of, 178
dynamics of, 225
economic aspects of, 243–265 (see also 

Economics)
empirical, 42
human aspect of, 229–242
IEEE definition of, 177
interdisciplinary, 118–119, 121, 175, 180, 

185–187
key elements of, 177
in management isolation, 181–182
problem solving in, 169–171, 189–207 

(see also Problem engineering; 
Problem solving process(es))

process and modeling in, 178–181 (see 
also Process model(ing))

process progression in, 181–187
redefining, 119–122
references on, 187–188
resource restructuring in, 230–231
scope of, 177–178, 223–225
traditional, 182–183

Software Engineering Institute (SEI), (see 
Capability Maturity Model)

Software-environment based  assessments, 
111

Software process(es), 179–181
versus business process, 114
and business process reengineering, 

179–181
characteristics of, 179–180
cognitive aspect of, 180–181
interdisciplinary nature of, 180
management of, 180
and model development, 179, 181–187 

(see also Process model(ing))
versus software project, 114–115

Software technology
advantages and disadvantages of, 

155–156 (see also Tools)
as business tool, 157–161
and problem solving, 155–171

Solution, problem, 148–151, (see also 
Problem solving process)

Solution driven capabilities, 274
Specialized system development, 267–268

application based, 274–278
evolution of, 269–271
focus of, 268–269
generic development versus, 272–273
pervasive, 274–275
problem solving context in, 272–274
real time, 275–278
references on, 290–292
for security, 282–290
Web based, 278–282

Specifications, system, clarity of, 70
Spiral model, 19–20, 25–31

angular aspect of, 26
attributes of, 26–27
customization with, 27
effectiveness of, 28–29
flexibility of, 28–29
process model generation with, 27
profile of, 26
project development in, 26
prototyping in, 26–27
radial dimension of, 26
startup round of, 28
validation and verification in, 27
variants of, 29–31
win-win, 29–30

SPMS, 110
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Sprints, 93
Staff-months, 256
Staff requirement estimation, 257
Stage-Wise Model, 11, 12
Staged approach, 15
Stakeholder(s)

generation of, in problem engineering, 
212–213

goals of, 8, 29–30, 234
interdisciplinary perspectives of, 213
involvement of, 6, 7, 231–233

Standardization, presentation, 145
Standardization of work, 148–149
Standards, meeting, 134–135
STARS project (Dept of Defense), 31
State machine diagrams, 46
Statement, problem, 133, 139–140, 209–212
Static weaving, 102
Stealth technology transfer, 15
Structural patterns, 44
Structured Object Oriented Formal Language 

(SOFL), 46, 193
Subproblems, 140–141

reusable, 142–143, 144
Sunk cost, 60
Supply chain management, 281–282
Supply chain requirements, 219
Synchronization abstraction, 103
System Development Corporation study, of 

software economics, 244
System dynamics, 109
System objectives, 30
System sequence diagrams, 46
Systemic risks, 254

T
Talent, emphasis on, 91
TAME process, 42, 111, 180
Task structured problem solving, 145–147
Taxonomy driven assessments, 111
Taylor, Frederick, 148
Team, development, 239

skills and management, in e-business 
software development, 278–282

Team development process, 79, 81, 234
aspect identification in, 81–82
clerical demands in, 81
goals of, 80–81
human resources in, 82–83, 91, 239–240
low level details of, 82
metrics of, 81–82

profile of, 80
quality measurement in, 81

Team talent, 91
Technical requirements, 217–218, 219
Technologic capabilities, 147, (see also 

Tools)
Technology competence, 57
Theory of Social and Economic 

Organization, 149
Thin requirements, 14–15
Thorough diagnosis, in problem 

engineering, 215–216
Throwaway prototyping, 21
Time element, 121–122

in diversity of process models, 191–193
in software development, 111–112

Time to market, 112
Time value of money, 244
TO BE business model, 99, 211, 223–225
Tools, software development, 39–43, 

118–119
automated, data flow diagrams, 40–41
CASE, 42–43 (see also CASE tools)

and fourth generation languages, 41
rapid application development, 95, 96–97

Tools identification, and allocation, 219–220
Total quality management (TQM), 149–150, 

193
Training, in generic applications, 271
Transactional workflow, 98
Transition phase, 49
Turnkey level, 53

U
Uncertainty, 25, 253
Undiversified risks, 254
Unified modeling language (UML), 41–42, 

46
acceptance and use of, 47
activity diagrams in, 46
collaboration diagrams in, 46
sequence diagrams in, 46

Unified Process Model, 19–20
Unique answer factor, 196–197
UNIX shell environment, 41
UNIX shell scripts, in prototype modeling, 

23
Unreliable information sources, 198–199
Usage profile, 33
Use case(s), 8, 42

definition of, 50–51
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in rational unified process, 50–51
systems operations triggered by, 46

User, in problem definition, 231–233
User action notation (UAN), 73
User interface, 264
User interface generators, in prototype 

modeling, 23
User language, and computer language, 

162–163

V
V-Shaped Model, 13
Validation, and verification, 13

best practice, 48
and presentation, 141–142
in problem engineering, 221
process model, 13, 27, 33

Value chain, and logistics management, 279, 
281

Vendor lock, 56
Vertical dimension, of software engineering, 

178
Vertical prototyping, 22
Visual Basic, 14–15

in prototype modeling, 23
Visual design, best practice, 48
Visualization

and cognition, 70–72
factors characterizing, 71
and process model evolution, 194, 

195

W
Waterfall Model, 6, 11–15

disadvantages of, 13–14
documentation in, 12
modified version of, 12–13
process control formalization in, 12–13

profile of, 11
variants of, 14–15

Wealth of Nations, 148
Web applications, 158, 186, 271

customized, 282
development of, 278–282
object oriented development for, 282
security for, 282–290

Web collaboration, 174
Web engineering, 159
Web interfaces, 271
Weber, Max, 149
Win-win Spiral model, 29–30
Win-win stakeholder approach, 29–30
Wireless network infrastructure, 275
Wireless user infrastructure, 275
Worker element, 48–49
Workflow(s), 49, 97–98

types of, 98
Workflow application, 97–101

business process modeling in, 98–99
development cycle of, 99
and legacy systems, 100
reference model for, 100–101
technology of, 160
and typical development, comparisons, 

99–100
Workflow enactment, 100
Workflow engine, 100
Workflow Management Coalition, 101
Workflow management systems, 98, 289
Workflow metamodel(s), 100
Wrapper, 100
Wrapper pattern, 44
WWWWWHH principle, 30

Y
Yield, 81

and defect removal rate, 82
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