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CHAPTER I

Introduction

Any idiot can write code. Even teenagers can sling gates and PAL
equations around. What is it that separates us from these amateurs? Do
years of college necessarily make us professionals, or is there some other
factor that clearly delineates engineers from hackers? With the phrasc
“sanitation engineer” now rooted in our lexicon, is the real meaning behind
the word engineer cheapened?

Other professions don’t suffer from such casual word abuse. Doctors
and lawyers have strong organizations that, for better or worse, have
changed the law of the land to keep the amateurs out. You just don’t find
a teenager practicing medicine, so “doctor” conveys a precise, strong
meaning to everyone.

Lest we forget, the 1800s were known as “the great age of the engi-
neer.” Engineers were viewed as the celebrities of the age, as the architects
of tomorrow, the great hope for civilization. (For a wonderful description
of these times, read Isamard Kingdom Brunel, by L.T.C. Rolt.)

How things have changed!

Our successes at transforming the world brought stink and smog, fac-
tories weeping poisons, and landfills overflowing with products made
obsolete in the course of months. The Challenger explosion destroyed
many people’s faith in complex technology (which shows just how little
understanding Americans have of complexity). An odd resurgence of the
worship of the primitive is directly at odds with the profession we em-
brace. Declining test scores and an urge to make a lot of money now means
that U.S. engineering enrollments have declined 25% in the decade from
1988 to 1997.
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All in all, as Rodney Dangerfield says, “We just can’t get no
respect.”

It’s my belief that this attitude stems from a fundamental misunder-
standing of what an engineer is. We’re not scientists, trying to gain a new
understanding of the nature of the universe. Engineers are the world’s
problem solvers. We convert dreams to reality. We bridge the gap between
pure researchers and consumers.

Problem solving is surely a noble profession, something of impor-
tance and fundamental to the future viability of a complex society. Sup-
pose our leaders were as single-mindedly dedicated to problem solving as
is any engineer: we’d have effective schools, low taxation, and cities of
light and growth rather than decay. Perhaps too many of us engineers lack
the social nuances to effectively orchestrate political change, but there’s no
doubt that our training in problem solving is ultimately the only hope for
dealing with the ecological, financial, and political crises coming in the
next generation.

My background is in the embedded tool business. For two decades I
designed, built, sold, and supported development tools, working with thou-
sands of companies, all of whom were struggling to get an embedded prod-
uct out the door, on time and on budget. Few succeed. In almost all cases,
when the widget was finally complete (more or less; maintenance seems to
go on forever because of poor quality), months or even years late, the en-
gineers took maybe five seconds to catch their breath and then started on
yet another project. Rare was the individual who, after a year on a project,
sat and thought about what went right and wrong on the project. Even
rarer were the people who engaged in any sort of process improvement, of
learning new engineering techniques and applying them to their efforts.
Sure, everyone learns new tools (say, for ASIC and FPGA design), but few
understood that it’s just as important to build an effective way to design
products, as it is to build the product. We’re not applying our problem-
solving skills to the way we work.

In the tool business I discovered a surprising fact: most embedded de-
velopers work more or less in isolation. They may be loners designing all
of the products for a company, or members of a company’s design team.
The loner and the team are removed from others in the industry, so they de-
velop their own generally dysfunctional habits that go forever uncorrected.
Few developers or teams ever participate in industry-wide events or com-
municate with the rest of the industry. We, who invented the communica-
tions age, seem to be incapable of using it!

One effect of this isolation is a hardening of the development arter-
ies: we are unable to benefit from others’ experiences, so we work ever
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harder without getting smarter. Another is a feeling of frustration, of think-
ing, “What is wrong with us—why are our projects so much more a prob-
lem than anyone else’s?” In fact, most embedded developers are in the
same boat.

This book comes from seeing how we all share the same problems
while not finding solutions. Never forget that engineering is about solving
problems . . . including the ones that plague the way we engineer!

Engineering is the process of making choices; make sure yours re-
flect simplicity, common sense, and a structure with growth, elegance, and
flexibility, with debugging opportunities built in.

In general, we all share these same traits and the inescapable prob-
lems that arise from them:

¢ We jump from design to building too fast. Whether it’s writing
code or drawing circuits, the temptation to be doing rather than
thinking inevitably creates disaster.

¢ We abdicate our responsibility to be part of the project’s manage-
ment. When we blindly accept a feature set from marketing we’re
inviting chaos: only engineering can provide a rational cost/bene-
fit tradeoff. Acceding to capricious schedules figuring that heroics
will save the day is simply wrong. When we’re not the boss, then
we simply must manage the boss: educate, cajole, and demonstrate
the correct ways to do things.

¢ We ignore the advances made in the past 50 years of software en-
gineering. Most teams write code the way they did at age 15, when
better ways are well known and proven.

e We accept lousy tools for lousy reasons. In this age of leases.
loans, and easy money, there’s always a way to get the stuff we
need to be productive. Usually a nattily attired accountant is the
procurement barrier, a rather stunning development when one re-
alizes that the accountant’s role is not to stop spending, but to
spend in a cost-effective manner. The basic lesson of the industrial
revolution is that capital investment is a critical part of corporate
success.

¢ And finally, a theme 1 see repeated constantly is that of poor detail
management. Projects run late because people forget to do simple
things. Never have we had more detail management tools, from
PDAs to personal assistants to conventional Daytimers and Day
Runners. One afternoon almost a decade ago I looked up from a
desk piled high with scraps of paper listing phone calls and to-dos
and let loose a primal scream. At the time I went on a rampage,
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looking for some system to get my life organized so I knew what
to do when. For me, an electronic Daytimer—coupled with a de-
termination to use it every hour of every day—works. The first
thing that happens in the morning is the organizer pops up on my
screen, there to live all day long, checked and updated constantly.
Now I never (well, almost never) forget meetings or things I've
promised to do.

And so, I see a healthy engineering environment as the right mix of
technology, skills, and processes, all constantly evaluated and managed.



CHAPTER 2

Disciplined
Development

Software engineering is not a discipline. Its practitioners cannot
svstematically make and fulfill promises to deliver software svstems
on time and fairly priced.

—Peter Denning

The seduction of the keyboard is the downfall of all too many em-
bedded projects.

Writing code is fun. It’s satisfying. We feel we’re making progress
on the project. Our bosses, all too often unskilled in the nuances of build-
ing firmware, look on approvingly, smiling that we’re clearly accomplish-
ing something worthwhile.

As a young developer working on assembly-language-based systems,
[ learned to expect long debugging sessions. Crank some code, and figure
on months making it work. Debugging is hard work (but fun—it’s great to
play with the equipment all the time!), so I learned to budget 50% of the
project time to chasing down problems.

Years later, while making and selling emulators, I saw this pattern re-
peated, constantly, in virtually every company I worked with. In fact, this
very approach to building firmware is a godsend to the tool companies
who all thrive on developers’ poor practices and resulting sea of bugs.
Without bugs, debugger vendors would be peddling pencils.

A quarter century after my own first dysfunctional development pro-
jects, in my travels lecturing to embedded designers, I find the pattern re-
mains unbroken. The rush to write code overwhelms all common sense.

The overused word “process” (note that only the word is overused:;
the concept itself is sadly neglected in the firmware world) has garnered
enough attention that some developers claim to have institutionalized a
reasonable way to create software. Under close questioning, though, the
majority of these admit to applying their rules in a haphazard manner.
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When the pressure heats up—the very time when sticking to a system that
works is most needed—most succumb to the temptation to drop the sys-
tems and just crank out code.

As you’re boarding a plane you overhear the pilot tell his right-
seater, “We’re a bit late today; let’s skip the take-off checklist.” Ab-
surd? Sure. Yet this is precisely the tack we take as soon as deadlines
loom; we abandon all discipline in a misguided attempt to beat our
code into submission.

Any Idiot Can Write Code

In their studies of programmer productivity, Tom DeMarco and Tim
Lister found that all things being equal, programmers with a mere
6 months of experience typically perform as well as those with a year, a
decade, or more.

As we developers age we get more experience—but usually the same
experience, repeated time after time. As our careers progress we justify our
escalating salaries by our perceived increasing wisdom and effectiveness.
Yet the data suggests that the value of experience is a myth.

Unless we’'re prepared to find new and better ways to create
firmware, and until we implement these improved methods, we’re no more
than a step above the wild-eyed teen-aged guru who lives on Coke and
Twinkies while churning out astonishing amounts of code.

Any idiot can create code; professionals find ways to consistently
create high-quality software on time and on budget.

Firmware Is the Most Expensive Thing
in the Universe

Norman Augustine, former CEO of Lockheed Martin, tells a reveal-
ing story about a problem encountered by the defense community. A high-
performance fighter aircraft is a delicate balance of conflicting needs: fuel
range versus performance. Speed versus weight. It seemed that by the late
1970s fighters were at about as heavy as they’d ever be. Contractors, al-
ways pursuing larger profits, looked in vain for something they could add
that cost a lot, but that weighed nothing.

The answer: firmware. Infinite cost, zero mass. Avionics now ac-
counts for more than 40% of a fighter’s cost.
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Two decades later nothing has changed . . . except that firmware is
even more expensive.

What Does Firmware Cost?

Bell Labs found that to achieve 1-2 defects per 1000 lines of code
they produce 150 to 300 lines per month. Depending on salaries and over-
head, this equates to a cost of around $25 to $50 per line of code.

Despite a lot of unfair bad press, IBM’s space shuttle control soft-
ware is remarkably error free and may represent the best firmware ever
written. The cost? $1000 per statement, for no more than one defect per
10,000 lines.

Little research exists on embedded systems. After asking for a per-
line cost of firmware I’m usually met with a blank stare followed by an ab-
surdly low number. “$2 a line, I guess” is common. Yet, a few more
questions (How many people? How long from inception to shipping?) re-
veals numbers an order of magnitude higher.

Anecdotal evidence, crudely adjusted for reality, suggests that if you
figure your code costs $5 a line you’re lying—or the code is junk. At
$100/line you're writing software documented almost to DOD standards.
Most embedded projects wind up somewhere in between, in the $20-40/line
range. There are a few gurus out there who consistently do produce qual-
ity code much cheaper than this, but they’re on the 1% asymptote of the
bell curve. If you feel you're in that select group—we all do—take data for
a year or two. Measure time spent on a project from inception to comple-
tion (with all bugs fixed) and divide by the program’s size. Apply your
loaded salary numbers (usually around twice the number on your pay-
check stub). You’ll be surprised.

Quality Is Nice...As Long As It's Free

The cost data just described is correlated to a quality level. Since few
embedded folks measure bug rates, it’s all but impossible to add the qual-
ity measure into the anecdotal costs. But quality does indeed have a cost.

We can’t talk about quality without defining it. Our intuitive feel that
a bug-free program is a high-quality program is simply wrong. Unless
you’re using the Netscape “give it away for free and make it up in volume™
model, we write firmware for one reason only: profits. Without profits the
engineering budget gets trimmed. Without profits the business eventually
fails and we’re out looking for work.
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Happy customers make for successful products and businesses. The
customer’s delight with our product is the ultimate and only important
measure of quality.

Thus: the qualiry of a product is exactly what the customer says it is.

Obvious software bugs surely mean poor quality. A lousy user inter-
face equates to poor quality. If the product doesn’t quite serve the buyer’s
needs, the product is defective.

It matters little whether our code is flaky or marketing overpromised
or the product’s spec missed the mark. The company is at risk because of
a quality problem, so we’ve all got to take action to cure the problem.

No-fault divorce and no-fault insurance acknowledge the harsh real-
ities of trans-millennium life. We need a no-fault approach to quality as
well, to recognize that no matter where the problem came from, we’ve all
got to take action to cure the defects and delight the customer.

This means that when marketing comes in a week before delivery
with new requirements, a mature response from engineering is not a stream
of obscenities. Maybe . . . just maybe . . . marketing has a point. We make
mistakes (and spend heavily on debugging tools to fix them). So does mar-
keting and sales.

Substitute an assessment of the proposed change for curses. Quality
is not free. If the product will not satisfy the customer as designed, if it’s
not till a week before shipment that these truths become evident, then let
marketing et al. know the impact on the cost and the schedule.

Funny as the “Dilbert” comic strip is, it does a horrible disservice to
the engineering community by reinforcing the hostility between engineers
and the rest of the company. The last thing we need is more confrontation,
cynicism, and lack of cooperation between departments. We’re on a mis-
sion: make the customer happy' That’s the only way to consistently drive
up our stock options, bonuses, and job security.

Unhappily, “Dilbert” does portray too many companies all too accu-
rately. If your outfit requires heroics all the time, if there’s no (polite)
communication between departments, then something is broken. Fix it or
leave.

The CMM

Few would deny that firmware is a disaster area, with poor-quality
products getting to market late and over budget. Don’t become resigned to
the status quo. As engineers we’re paid to solve problems. No problem is
greater, no problem is more important, than finding or inventing faster,
better ways to create code.
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The Software Engineering Institute’s (www.sei.cmu.edu) Capability
Maturity Model (CMM) defines five levels of software maturity and out-
lines a plan to move up the scale to higher, more effective levels:

1. Initial—Ad hoc and Chaotic. Few processes are defined, and suc-
cess depends more on individual heroic efforts than on following
a process and using a synergistic team effort.

2. Repeatable—Intuitive. Basic project management processes are
established to track cost, schedule, and functionality. Planning
and managing new products are based on experience with similar
projects.

3. Defined—Standard and Consistent. Processes for management
and engineering are documented, standardized. and integrated
into a standard software process for the organization. All projects
use an approved, tailored version of the organization’s standard
software process for developing software.

4. Managed—Predictable. Detailed software process and product
quality metrics establish the quantitative evaluation foundation.
Meaningful variations in process performance can be distin-
guished from random noise, and trends in process and product
qualities can be predicted.

5. Optimizing—Characterized by Continuous Improvement. The or-
ganization has quantitative feedback systems in place to tdentify
process weaknesses and strengthen them proactively. Project teams
analyze defects to determine their causes; software processes are
evaluated and updated to prevent known types of defects from
recurring.

Captain Tom Schorsch of the U.S. Air Force realized that the
CMM is just an optimistic subset of the true universe of develop-
ment models. He discovered the CIMM—Capability Immaturity
Model—which adds four levels from 0 to —3:

0. Negligent—Indifference. Failure to allow successful devel-
opment process to succeed. All problems are perceived to be techni-
cal problems. Managerial and quality assurance activities are deemed
to be overhead and superfluous to the task of software development
process.

—1. Obstructive—Counterproductive. Counterproductive pro-
cesses are imposed. Processes are rigidly defined and adherence to
the form is stressed. Ritualistic ceremonies abound. Collective man-
agement precludes assigning responsibility.
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—2. Contemptuous—Arrogance. Disregard for good software
engineering institutionalized. Complete schism between software
development activities and software process improvement activities.
Complete lack of a training program.

-3. Undermining—Sabotage. Total neglect of own charter,
conscious discrediting of organization’s software process improve-
ment efforts. Rewarding failure and poor performance.

If you’ve been in this business for a while, this extension to the
CMM may be a little too accurate to be funny. . . .

The idea behind the CMM is to find a defined way to predictably
make good software. The words “predictable” and “consistently” are the
keynotes of the CMM. Even the most dysfunctional teams have occasional
successes—generally surprising everyone. The key is to change the way we
build embedded systems so we are consistently successful, and so we can
reliably predict the code’s characteristics (deadlines, bug rates, cost, etc.).

Figure 2-1 shows the result of using the tenants of the CMM in
achieving schedule and cost goals. In fact, level 5 organizations don’t al-
ways deliver on time. The probability of being on time, though, is high and
the typical error bands low.

Aoh TargetDate

90 -
80 -

70 - r
60
50
40 -
30

FIGURE 2-1 Improving the process improves the odds of meeting goals
and narrows the error bands.

Probabliity

Delivery Date
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Compare this to the performance of a Level 1 (Initial) team. The
odds of success are about the same as at the craps tables in Las Vegas. A
1997 survey in EE Times confirms this data in their report that 80% of em-
bedded systems are delivered late.

One study of companies progressing along the rungs of the CMM
found the following per year results:

37% gain in productivity

18% more defects found pre-test

19% reduction in time to market

45% reduction in customer-found defects

It’s pretty hard to argue with results like these. Yet the vast majority
of organizations are at Level 1 (see Figure 2-2). In my discussions with
embedded folks, I've found most are only vaguely aware of the CMM. An
obvious moral is to study constantly. Keep up with the state of the art of
software development.

Figure 2-2 shows a slow but steady move from Level 1 to 2 and be-
yond, suggesting that anyone not working on their software processes will
be as extinct as the dinosaurs. You cannot afford to maintain the status quo
unless your retirement is near.

w1991
m1992
01993
m1994
m1995
1996
m1997

initid  Repeatable Defined Managed Optimizing

FIGURE 2-2 Over time companies are refining their development
processes.
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At the risk of being proclaimed a heretic and being burned at the
stake of political incorrectness, I advise most companies to be wary of
the CMM. Despite its obvious benefits, the pursuit of CMM is a difficult
road all too many companies just cannot navigate. Problems include the
following:

1. Without deep management commitment CMM is doomed to
failure. Since management rarely understands—or even cares
about—the issues in creating high-quality software, their tepid
buy-in all too often collapses when under fire from looming
deadlines.

2. The path from level to level is long and tortuous. Without a pas-
sionate technical visionary guiding the way and rallying the
troops, individual engineers may lose hope and fall back on their
old, dysfunctional software habits.

CMM is a tool. Nothing more. Study it. Pull good ideas from it. Pros-
elytize its virtues to your management. But have a backup plan you can re-
alistically implement now to start building better code immediately.
Postponing improvement while you “analyze options” or *study the field”
always leads back to the status quo. Act now!

Solving problems is a high-visibility process; preventing prob-
lems is low-visibility. This is illustrated by an old parable:

In ancient China there was a family of healers, one of whom
was known throughout the land and employed as a physician to a
great lord. The physician was asked which of his family was the
most skillful healer. He replied, “I tend to the sick and dying with
drastic and dramatic treatments, and on occasion someone is cured
and my name gets out among the lords.”

“My elder brother cures sickness when it just begins to take root,
and his skills are known among the local peasants and neighbors.”

“My eldest brother is able to sense the spirit of sickness and
eradicate it before it takes form. His name is unknown outside our
home.”

The Seven-Step Plan

Arm yourself with one tool—one tool only—and you can make huge
improvements in both the quality and delivery time of your next embedded
project.
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That tool is an absolute commitment to make some small but basic
changes to the way you develop code.
Given the will to change, here’s what you should do roday:

1. Buy and use a Version Control System.

2. Institute a Firmware Standards Manual.

3. Start a program of Code Inspections.

4. Create a quiet environment conducive to thinking.

More on each of these in a few pages. Any attempt to institute just
one or two of these four ingredients will fail. All couple synergistically to
transform crappy code to something you’ll be proud of.

Once you're up to speed on steps 1-4, add the following:

5. Measure your bug rates.
6. Measure code production rates.
7. Constantly study software engineering.

Does this prescription sound too difficult? I've worked with compa-
nies that have implemented steps 1-4 in one day! Of course they tuned the
process over a course of months. That, though, is the very meaning of the
word *‘process”—something that constantly evolves over time.

But the benefits accrue as soon as you start the process. Let’s look at
each step in a bit more detail.

Step 1: Buy and Use a VCS

Even a one-person shop needs a formal VCS (Version Control Sys-
tem). It is truly magical to be able to rebuild any version of a set of
firmware. even one many years old. The VCS provides a sure way to an-
swer those questions that pepper every bug discussion, such as “When did
this bug pop up?”

The VCS is a database hosted on a server. It’s the repository of all of
the company’s code, make files, and the other bits and pieces that make up
a project. There’s no reason not to include hardware files as well—
schematics, artwork, and the like.

A VCS insulates your code from the developers. It keeps people from
tiddling with the source; it gives you a way to track each and every change.
It controls the number of people working on modules, and provides mech-
anisms to create a single correct module from one that has been (in error)
simultaneously modified by two or more people.

Sure, you can sneak around the VCS, but like cheating on your taxes
there’s eventually a day of reckoning. Maybe you’ll get a few minutes of
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time savings up front . . . inevitably followed by hours or days of extra
time paying for the shortcut.

Never bypass the VCS. Check modules in and out as needed. Don’t
hoard checked-out modules “in case you need them.” Use the system as in-
tended, daily, so there’s no VCS cleanup needed at the project’s end.

The VCS is also a key part of the file backup plan. In my experience
it’s foolish to rely on the good intentions of people to back up religiously.
Some are passionately devoted; others are concerned but inconsistent. All
too often the data is worth more than all of the equipment in a building—
even more than the building itself. Sloppy backups spell eventual disaster.

I admit to being anal-retentive about backups. A fire that destroys all
of the equipment would be an incredible headache, but a guaranteed busi-
ness-buster is the one that smokes the data.

Yet, preaching about data duplication and implementing draconian
rules is singularly ineffective.

A VCS saves all project files on a single server, in the VCS database.
Develop a backup plan that saves the VCS files each and every night. With
the VCS there’s but one machine whose data is life and death for the com-
pany, so the backup problem is localized and tractable. Automate the
process as much as possible.

One Saturday morning I came into the office with two small
kids in tow. Something seemed odd, but my disbelief masked the
nightmare. Awakening from the fog of confusion I realized all of en-
gineering’s computers were missing! The entry point was a smashed
window in the back. Fearful there was some chance the bandits were
still in the facility I rushed the kids next door and called the cops.

The thieves had made off with an expensive haul of brand-new
computers, including the server that hosted the VCS and other criti-
cal files. The most recent backup tape, which had been plugged into
the drive on the server, was also missing.

Our backup strategy, though, included daily tape rotation into
a fireproof safe. After delighting the folks at Dell with a large emer-
gency computer order, we installed the one-day-old tape and came
back up with virtually no loss of data.

If you have never had an awful, data-destroying event occur,
just wait. It will surely happen. Be prepared.
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Checkpoint Your Tools

An often overlooked characteristic of embedded systems is their as-
tonishing lifetime. It’s not unusual to ship a product for a decade or more.
This implies that you’ve got to be prepared to support old versions of every
product.

As time goes on, though, the tool vendors obsolete their compilers,
linkers, debuggers, and the like. When you suddenly have to change a
product originally built with version 2.0 of the compiler—and now only
version 5.3 is available—what are you going to do? The new version
brings new risks and dangers. At the very least it will inflict a host of un-
knowns on your product. Are there new bugs? A new code generator
means that the real-time performance of the product will surely differ. Per-
haps the compiled code is bigger, so it no longer fits in ROM.

It’s better to simply use the original compiler and linker throughout
the product’s entire lifecycle, so preserve the tools. At the end of a project
check all of the tools into the VCS. It’s cheap insurance.

When I suggested this to a group of engineers at a disk drive com-
pany, the audience cheered! Now that big drives cost virtually nothing,
there’s no reason not to go heavy on the mass storage and save everything.

A lot of vendors provide version control systems. One that’s cheap,
very intuitive, and highly recommended is Microsoft’s SourceSafe.

The frenetic march of technology creates yet another problem
we’ve largely ignored: today’s media will be unreadable tomorrow.
Save your tools on their distribution CD-ROMs and surely in the not-
too-distant future CD-ROMs will be supplanted by some other, bet-
ter, technology. In time you’ll be unable to find a CD-ROM reader.

The VCS lives on your servers, so it migrates with the advance
of technology. If you've been in this field for a while, you’ve tossed
out each generation of unreadable media: can you find a drive that
will read an 8-inch floppy anymore? How about a 160K S-inch disk?

Step 2: Institute a Firmware Standards Manual

You can’t write good software without a consistent set of code guide-
lines. Yet, the vast majority of companies have no standards—no written
and enforced baseline rules. A commonly cited reason is the lack of such
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standards in the public domain. So, I've removed this excuse by including
a firmware standard in Appendix A.

Not long ago there were so many dialects of German that people in
neighboring provinces were quite unable to communicate with each other,
though they spoke the same nominal language. Today this problem is man-
ifested in our code. Though the programming languages have international
standards, unless we conform to a common way of expressing our ideas
within the language, we’re coding in personal dialects. Adopt a standard
way of writing your firmware, and reject code that strays from the
standard.

The standard ensures that all firmware developed at your company
meets minimum levels of readability and maintainability. Source code has
two equally important functions: it must work, and it must clearly commu-
nicate how it works to a future programmer, or to the future version of
yourself. Just as standard English grammar and spelling make prose read-
able, standardized coding conventions illuminate the software’s meaning.

A peril of instituting a firmware standard is the wildly diverse opin-
ions people have about inconsequential things. Indentation is a classic ex-
ample: developers will fight for months over quite minor issues. The only
important thing is to make a decision. “We are going to indent in this man-
ner. Period.” Codify it in the standard, and then hold all of the developers
to those rules.

Step 3: Use Code Inspections

There is a silver bullet that can drastically improve the rate at which
you develop code while also reducing bugs. Though this bit of magic can
reduce debugging time by an easy factor of 10 or more, despite the fact that
it’s a technique well known since 1976, and even though neither tools nor
expensive new resources are needed, few embedded folks use it.

Formal Code Inspections are probably the most important tool you
can use to get your code out faster with fewer bugs. The inspection plays
on the well-known fact that “two heads are better than one.” The goal is to
identify and remove bugs before testing the code.

Those that are aware of the method often reject it because of the as-
sumed “hassle factor.” Usually few developers are aware of the benefits that
have been so carefully quantified over time. Let’s look at some of the data.

¢ The very best of inspection practices yield stunning results. For ex-
ample, IBM manages to remove 82% of all defects before testing
even starts!
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e One study showed that, as a rule of thumb, each defect identified
during inspection saves around 9 hours of time downstream.

o AT&T found inspections led to a 14% increase in productivity and
a tenfold increase in quality.

s HP found that 80% of the errors detected during inspections were
unlikely to be caught by testing.

o HP, Shell Research, Bell Northern, and AT&T all found inspec-
tions 20 to 30 times more efficient than testing in detecting errors.

* IBM found that inspections gave a 23% increase in productivity
and a 38% reduction in bugs detected after unit test.

So, though the inspection may cost up to 20% more time up front, de-
bugging can shrink by an order of magnitude or more. The reduced num-
ber of bugs in the final product means you’ll spend less time in the
mind-numbing weariness of maintenance as well,

There is no known better way to find bugs than through Code In-
spections! Skipping inspections is a sure sign of the amateur firmware
jockey.

The Inspection Team

The best inspections come about from properly organized teams.
Keep management off the team. Experience indicates that when a manager
is involved usually only the most superficial bugs are caught, since no one
wishes to show the author to be the cause of major program defects.

Four formal roles exist: the Moderator, Reader, Recorder. and
Author.

The Moderator, always technically competent, leads the inspection
process. He or she paces the meeting, coaches other team members, deals
with scheduling a meeting place and disseminating materials before the
meeting, and follows up on rework (if any).

The Reader takes the team through the code by paraphrasing its op-
eration. Never let the Author take this role, since he may read what he
meant instead of what was implemented.

A Recorder notes each error on a standard form. This frees the other
team members to focus on thinking deeply about the code.

The Author’s role is to understand the errors and to illuminate un-
clear areas. As Code Inspections are never confrontational, the Author
should never be in a position of defending the code.

An additional role is that of Trainee. No one seems to have a clear
idea how to create embedded developers. One technique is to include new
folks (only one or two per team) into the Code Inspection. The Trainee
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then gets a deep look inside the company’s code, and an understanding of
how the code operates.

It’s tempting to reduce the team size by sharing roles. Bear in mind
that Bull HN found four-person inspection teams to be twice as efficient
and twice as effective as three-person teams. A Code Inspection with three
people (perhaps using the Author as the Recorder) surely beats none at all,
but do try to fill each role separately.

The Process
Code Inspections are a process consisting of several steps; all are re-
quired for optimal results. The steps, shown in Figure 2-3, are as follows:

Planning—When the code compiles cleanly (no errors or warning
messages), and after it passes through Lint (if used) the Author submits
listings to the Moderator, who forms an inspection team. The Moderator
distributes listings to each team member, as well as other related docu-
ments such as design requirements and documentation. The bulk of the
Planning process is done by the Moderator, who can use email to coordi-
nate with team members. An effective Moderator respects the time con-
straints of his or her colleagues and avoids interrupting them.

Overview—This optional step is a meeting when the inspection team
members are not familiar with the development project. The Author pro-

Planning moderator and author

Overview (optional) all team members

Preparation all team members

Inspection Meeting all team members
I—b Rework I author

L’ Follow-up moderator

FIGURE 2-3 The Code Inspection process.
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vides enough background to team members to facilitate their understand-
ing of the code.

Preparation—Inspectors individually examine the code and related
materials. They use a checklist to ensure that they check all potential prob-
lem areas. Each inspector marks up his or her copy of the code listing with
suspected problem areas.

Inspection Meeting—The entire team meets to review the code. The
Moderator runs the meeting tightly. The only subject for discussion is the
code under review; any other subject is simply not appropriate and is not
allowed.

The person designated as Reader presents the code by paraphrasing
the meaning of small sections of code in a context higher than that of the
code itself. In other words, the Reader is translating short code snippets
from computer-lingo to English to ensure that the code’s implementation
has the correct meaning.

The Reader continuously decides how many lines of code to para-
phrase, picking a number that allows reasonable extraction of meaning.
Typically he’s paraphrasing two or three lines at a time. He paraphrases
every decision poimt, every branch, case, etc. One study concluded that
only 50% of the code gets executed during typical tests, so be sure the in-
spection looks at everything.

Use a checklist to be sure you’re looking at all important items. See
the “Code Inspection Checklist” for details. Avoid ad hoc nitpicking;
follow the firmware standard to guide all stylistic issues. Reject code that
does not conform to the letter of the standard.

Log and classify defects as Major or Minor. A Major bug is one that
could result in a problem visible to the customer. Minor bugs are those that
include spelling errors, noncompliance with the firmware standards, and
poor workmanship that does not lead to a major error.

Why the classification? Because when the pressure is on, when the
deadline looms near, management will demand that you drop inspections
as they don’t seem like “real work.” A list of classified bugs gives you the
ammunition needed to make it clear that dropping inspections will yield
more errors and slower delivery.

Fill out two forms. The ““Code Inspection Checklist” is a summary of
the number of errors of each type that are found. Use this data to under-
stand the inspection process’s effectiveness. The “Inspection Error List”
contains the details of each defect requiring rework.

The code itself is the only thing under review; the author may not be
criticized. One way to defuse the tension in starting up new inspection
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processes (before the team members are truly comfortable with it) is to
have the Author supply a pizza for the meeting. Then he seems like the
good guy.

At this meeting, make no attempt to rework the code or to come up
with alternative approaches. Just find errors and log them; let the Author
deal with implementing solutions. The Moderator must keep the meeting
fast-paced and efficient.

Note that comment lines require as much review as code lines. Mis-
spellings, lousy grammar, and poor communication of ideas are as deadly
in comments as outright bugs in code. Firmware must work, and it must
also communicate its meaning. The comments are a critical part of this and
deserve as much attention as the code itself.

It’s worthwhile to compare the size of the code to the estimate origi-
nally produced (if any!) when the project was scheduled. If it varies sig-
nificantly from the estimate, figure out why, so you can learn from your
estimation process.

Limit inspection meetings to a maximum of two hours. At the con-
clusion of the review of each function decide whether the code should be
accepted as is or sent back for rework.

Rework—The Author makes all suggested corrections, gets a clean
compile (and Lint if used) and sends it back to the Moderator.

Follow-up—The Moderator checks the reworked code. Once the
Moderator is satisfied, the inspection is formally compiete and the code
may be tested.

Other Points

One hidden benefit of Code Inspections is their intrinsic advertising
value. We talk about software reuse, while all too often failing spectacu-
larly at it. Reuse is certainly tough, requiring lots of discipline. One reason
reuse fails, though, is simply because people don’t know a particular chunk
of code exists. If you don’t know there’s a function on the shelf, ready to
rock 'n’ roll, then there’s no chance you’ll reuse it. When four people in-
spect code, four people have some level of buy-in to that software, and all
four will generally realize the function exists.

The literature is full of the pros and cons of inspecting code before
you get a clean compile. My feeling is that the compiler is nothing more
than a tool, one that very cheaply and quickly picks up the stupid, silly er-
rors we all make. Compile first and use a Lint tool to find other problems.
Let the tools—not expensive people—pick up the simple mistakes.

I also believe that the only good compile is a clean compile. No error
messages. No warning messages. Warnings are deadly when some other
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programmer, maybe years from now, tries to change a line. When pre-
sented with a screen full of warnings, he’ll have no idea if these are normal
or a symptom of a newly induced problem.

Do the inspection post-compile but pre-test. Developers constantly
ask if they can do “a bit” of testing before the inspection—surely only to
reduce the embarrassment of finding dumb mistakes in front of their peers.
Sorry, but testing first negates most of the benefits. First, inspection is the
cheapest way to find bugs; the entire point of it is to avoid testing. Second,
all too often a pre-tested module never gets inspected. “Well, that sucker
works OK; why waste time inspecting it?”

Tune your inspection checklist. As you learn about the types of de-
fects you’re finding, add those to the checklist so the inspection process
benefits from actual experience.

Inspections work best when done quickly—but not too fast. Fig-
ure 2-4 graphs percentage of bugs found in the inspection versus number
of lines inspected per hour as found in a number of studies. It’s clear that
at 500 lines per hour no bugs are found. At 50 lines per hour you’re
working inefficiently. There’s a sweet spot around 150 lines per hour that
detects most of the bugs you’'re going to find, yet keeps the meeting
moving swiftly.

Code Inspections cannot succeed without a defined firmware stan-
dard. The two go hand in hand.

0 100 200 300 400 500 600 700 800

FIGURE 2-4 Percentage of bugs found versus number of lines inspected
per hour.
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What does it cost to inspect code? We do inspections because
they have a significant net negative cost. Yet sometimes manage-
ment is not so sanguine; it helps to show the total cost of an inspec-
tion assuming there’s no savings from downstream debugging.

The inspection includes four people: the Moderator, Reader,
Recorder, and Author. Assume (for the sake of discussion) that these
folks average a $60,000 salary, and overhead at your company is
100%. Then:

One person costs: $120,000 = $60,000 x
2 (overhead)

One person costs:  $58/hr = $120,000/2080 work
hours/year

Four people cost: $232/hr = $58/hr x 4

Inspection cost/line: $1.54 = $232 per hour/150 lines
inspected per hour

Since we know code costs $20-50 per line to produce, this
$1.54 cost is obviously in the noise.

For more information on inspections, check out Software Inspection,
Tom Gilb and Dorothy Graham, 1993, TJ Press (London), ISBN 0-201-
63181-4, and Software Inspection—An Industry Best Practice, David
Wheeler, Bill Brykczynski, and Reginald Meeson, 1996 by IEEE Com-
puter Society Press (CA), ISBN 0-8186-7340-0.

Step 4: Create a Quiet Work Environment

For my money the most important work on software productivity in
the last 20 years is DeMarco and Lister’s Peopleware (1987, Dorset House
Publishing, New York). Read this slender volume, then read it again, and
then get your boss to read it.

For a decade the authors conducted coding wars at a number of dif-
ferent companies, pitting teams against each other on a standard set of
software problems. The results showed that, using any measure of per-
formance (speed, defects, etc.), the average of those in the first quartile
outperformed the average in the fourth quartile by a factor of 2.6. Surpris-
ingly, none of the factors you’d expect to matter correlated to the best and
worst performers. Even experience mattered little, as long as the program-
mers had been working for at least 6 months.
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Table 2-1 Code Inspection Checklist

Project:

Author:

Function Name:

Date:

Number of errors

Error type

Major Minor

Code does not meet firmware standards

Function size and complexity unreasonable

Unclear expression of ideas in the code

Poor encapsulation

Function prototypes not correctly used

Data types do not match

Uninitialized variables at start of function

Uninitialized variables going into loops

Poor logic—won’t function as needed

Poor commenting

Error condition not caught (e.g., return codes from
malloc())?

Switch statement without a default case (if only a subset
of the possible conditions used)?

Incorrect syntax—such as proper use of ==, =, &&, &, etc.

Non-reentrant code in dangerous places

Slow code in an area where speed is important

Other

Other

A Major bug is one that if not removed could result in a problem that
the customer will see. Minor bugs are those that include spelling errors,
non-compliance with the firmware standards, and poor workmanship that
does not lead to a major error.
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Table 2-2 Inspection Error List

Project:
Author:
Function Name:
Date:

Rework Required?

Location Error description Major | Minor

They did find a very strong correlation between the office environment
and team performance. Needless interruptions yielded poor performance.
The best teams had private (read “quiet”) offices and phones with “off”
switches. Their study suggests that quiet time saves vast amounts of money.

Think about this. The almost minor tweak of getting some quiet time
can, according to their data, multiply your productivity by 260%! That’s an
astonishing result. For the same salary your boss pays you now, he’d get
almost three of you.

The winners—those performing almost three times as well as the
losers, had the following environmental factors:
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st quartile 4th quartile
Dedicated workspace 78 sq ft 46 sq ft
Is it quiet? 57% yes 29% yes
Is it private? 62% yes 19% yes
Can you turn off phone? 52% yes 10% yes
Can you divert your calls? | 76% yes 19% yes
Frequent interruptions? 38% yes 76% yes

Too many of us work in a sea of cubicles, despite the clear data show-
ing how ineffective they are. It’s bad enough that there’s no door and no
privacy. Worse is when we’re subjected to the phone calls of all of our
neighbors. We hear the whispered agony as the poor sod in the cube next
door wrestles with divorce. We try to focus on our work . . . but because
we're human, the pathos of the drama grabs our attention till we’re strain-
ing to hear the latest development. Is this an efficient use of an expensive
person’s time?

One correspondent told of working for a Fortune 500 company
when heavy hiring led to a shortage of cubicles for incoming pro-
grammers. One was assigned a manager’s office, complete with
window. Everyone congratulated him on his luck. Shortly a mainte-
nance worker appeared—and boarded up the window. The office po-
lice considered a window to be a luxury reserved for management,
not engineers.

Dysfunctional? You bet.

Various studies show that after an interruption it takes, on average,
around 15 minutes to resume a “state of flow”—where you’re once again
deeply immersed in the problem at hand. Thus, if you are interrupted by
colleagues or the phone three or four times an hour, you cannot get any
creative work done! This implies that it’s impossible to do support and de-
velopment concurrently.

Yet the cube police will rarely listen to data and reason. They’ve in-
vested in the cubes, and they’ ve made a decision, by God! The cubicles are
here to stay!

This is a case where we can only wage a defensive action. Try to ed-
ucate your boss, but resign yourself to failure. In the meantime, take some
action to minimize the downside of the environment. Here are a few ideas:
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* Wear headphones and listen to music to drown out the divorce
saga next door.

e Turn the phone off! If it has no “off” switch, unplug the damn
thing. In desperate situations, attack the wire with a pair of wire
cutters. Remember that a phone is a bell that anyone in the world
can ring to bring you running. Conquer this madness for your most
productive hours.

¢ Know your most productive hours. I work best before tunch; that’s
when I schedule all of my creative work, all of the hard stuff. I
leave the afternoons free for low-IQ activities such as meetings,
phone calls, and paperwork.

o Disable the email. It’s worse than the phone. Your two hundred
closest friends who send the joke of the day are surely a delight,
but if you respond to the email reader’s *bing” you’re little
more than one of NASA’s monkeys pressing a button to get a
banana.

» Put a curtain across the opening to simulate a poor man’s door.
Since the height of most cubes is rather low, use a Velcro fastener
or a clip to secure the curtain across the opening. Be sure others
understand that when it’s closed you are not willing to hear from
anyone unless it’s an emergency.

An old farmer and a young farmer are standing at the fence
talking about farm lore, and the old farmer’s phone starts to ring.
The old farmer just keeps talking about herbicides and hybrids,
until the young farmer interrupts “Aren’t you going to answer
that?”

“What fer?” says the old farmer.

“Why, ’cause it’s ringing. Aren’t you going to get it?” says the
younger.

The older farmer sighs and knowingly shakes his head.
“Nope,” he says. Then he looks the younger in the eye to make sure
he understands, “Ya see, I bought that phone for my convenience.”

Never forget that the phone is a bell that anyone in the world
can ring to make you jump. Take charge of your time!

It stands to reason that we need to focus to think, and that we need to
think to create decent embedded products. Find a way to get some privacy,
and protect that privacy above all.
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When I use the Peopleware argument with managers, they al-
ways complain that private offices cost too much. Let’s look at the
numbers.

DeMarco and Lister found that the best performers had an aver-
age of 78 square feet of private office space. Let’s be generous and
use 100. In the Washington, DC, area in 1998, nice—very nice—full-
service office space runs around $30/square foot per year.

Cost: 100 square feet: $3000/yr = 100 sq ft x
$30/ft/year

One engineer costs: $120,000 = $60,000 x
2 (overhead)

The office represents: 2.5% of cost of the worker =
$3000/$120,000

Thus, if the cost of the cubicle is zero, then only a 2.5% in-
crease in productivity pays for the office! Yet DeMarco and Lister
claim a 260% improvement. Disagree with their numbers? Even if
they are off by an order of magnitude, a private office is 10 times
cheaper than a cubicle.

You don’t have to be a rocket scientist to see the true cost/
benefit of private offices versus cubicles.

Step 5: Measure Your Bug Rates

Code Inspections are an important step in bug reduction. But bugs—
some bugs—will still be there. We’ll never entirely eliminate them from
firmware engineering.

Understand, though, that bugs are a natural part of software develop-
ment. He who makes no mistakes surely writes no code. Bugs—or defects,
in the parlance of the software engineering community—are to be ex-
pected. It’s OK to make mistakes, as long as we’re prepared to catch and
correct these errors.

Though I'm not big on measuring things, bugs are such a source of
trouble in embedded systems that we simply have to log data about them.
There are three big reasons for bug measurements:

1. We find and fix them too quickly. We need to slow down and
think more before implementing a fix. Logging the bug slows us
down a trifle.

2. A small percentage of the code will be junk. Measuring bugs helps
us identify these functions so we can take appropriate action.
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3. Defects are a sure measure of customer-perceived quality. Once a
product ships, we’ve got to log defects to understand how well our
firmware processes satisfy the customer—the ultimate measure of
Success.

But first, a few words about “measurements.”

It’s easy to take data. With computer assistance we can measure just
about anything and attempt to correlate that data to forces as random as
the wind.

W. Edwards Deming, 1900-1993, quality-control expert, noted that
using measurements as motivators is doomed to failure. He realized that
there are two general classes of motivating factors: The first he called “in-
trinsic.” These are things like professionalism, feeling like part of a team,
and wanting to do a good job. “Extrinsic” motivators are those applied to
a person or team, such as arbitrary measurements, capricious decisions,
and threats. Extrinsic motivators drive out intrinsic factors, turning work-
ers into uncaring automatons. This may or may not work in a factory en-
vironment, but is deadly for knowledge workers.

So measurements are an ineffective tool for motivation.

Good measures promote understanding. They transcend the details
and reveal hidden but profound truths. These are the sorts of measures we
should pursue relentlessly.

But we’re all very busy and must be wary of getting diverted by the
measurement process. Successful measures have the following three char-
acteristics:

e They’re easy to do.

¢ Each gives insight into the product and/or processes.

o The measure supports effective change-making. If we take data
and do nothing with it, we’re wasting our time.

For every measure, think in terms of first collecting the data, then in-
terpreting it to make sense of the raw numbers. Then figure on presenting
the data to yourself, your boss, or your colleagues. Finally, be prepared to
act on the new understanding.

Stop, Look, Listen

In the bad old days of mainframes, computers were enshrined in tech-
nical tabernacles, serviced by a priesthood of specially vetted operators.
Average users never saw much beyond the punch-card readers.

In those days of yore an edit-execute cycle started with punching
perhaps thousands of cards, hauling them to the computer center (being
careful not to drop the card boxes; on more than one occasion I saw grad
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students break down and weep as they tried to figure out how to order the
cards splashed across the floor), and then waiting a day or more to see how
the run went. Obviously, with a cycle this long, no one could afford to use
the machine to catch stupid mistakes. We learned to “play computer”
(sadly, a lost art) to deeply examine the code before the machine ever had
agoatit,

How things have changed! Found a bug in your code? No sweat—a
quick edit, compile, and re-download takes no more than a few seconds.
Developers now look like hummingbirds doing a frenzied edit-com-
pile—download dance.

It’s wonderful that advancing technology has freed us from the
dreary days of waiting for our jobs to run. Watching developers work,
though, I see we’ve created an insidious invitation to bypass thinking.

How often have you found a problem in the code, and thought, “Uh,
if I change this, maybe the bug will go away?” To me that’s a sure sign of
disaster. If the change fails to fix the problem, you’re in good shape. The
peril is when a poorly thought-out modification does indeed “cure” the de-
fect. Is it really cured? Or did you just mask it?

Unless you’ve thought things through, any change to the code is an
invitation to disaster.

Our fabulous tools enable this dysfunctional pattern of behavior. To
break the cycle we have to slow down a bit.

EEs traditionally keep engineering notebooks, bound volumes of
numbered pages, ostensibly for patent protection reasons but more often
useful for logging notes, ideas, and fixes. Firmware folks should do no less.

When you run into a problem, stop for a few seconds. Write it down.
Examine your options and list those as well. Log your proposed solution
(see Figure 2-5).

Keeping such a journal helps force us to think things through more
clearly. It’s also a chance to reflect for a moment, and, if possible, come up
with a way to avoid that sort of problem in the future.

One colleague recently fought a tough problem with a wild
pointer. While logging the symptoms and ideas for fixing the code,
he realized that this particular flavor of bug could appear in all sorts
of places in the code. Instead of just plodding on, he set up a logic
analyzer to trigger on the wild writes . . . and found seven other
areas with the same problem, all of which had not as yet exhibited a
symptom. Now that’s what I call a great debug strategy—using ex-
perience to predict problems!
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FIGURE 2-5 A personal bug log.

Identify Bad Code

Barry Boehm found that typically 80% of the defects in a program
are in 20% of the modules. IBM’s numbers showed that 57% of the bugs
are in 7% of modules. Weinberg’s numbers are even more compelling:
80% of the defects are in 2% of the modules.

In other words, most of the bugs will be in a few modules or func-
tions. These academic studies confirm our common sense. How many
times have you tried to beat a function into submission, fixing bug after
bug after bug, convinced that this one is (you hope!) the last?

We’ve all also had that awful function that just simply stinks. It’s
ugly. The one that makes you slightly nauseous every time you open it. A
decent Code Inspection will detect most of these poorly crafted beasts, but
if one slips through, we have to take some action.

Make identifying bad code a priority. Then trash those modules and
start over.

It sure would be nice to have the chance to write every program twice:
the first time to gain a deep understanding of the problem; the second to do
it right. Reality’s ugly hand means that’s not an option. But the bad code,
the code where we spend far too much time debugging, needs to be excised
and redone. The data suggests we’re talking about recoding only around 5%
of the functions—not a bad price to pay in the pursuit of quality.

Boehm’s studies show that these problem modules cost, on average,
Sour times as much as any other module. So, if we identify these modules
(by tracking bug rates), we can rewrite them twice and still come out ahead!
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Step 6: Measure Your Code Production Rates

Schedules collapse for a lot of reasons. In the 50 years people have
been programming electronic computers, we’ve learned one fact above
all: without a clear project specification, any schedule estimate is nothing
more than a stab in the dark. Yet every day dozens of projects start with lit-
tle more definition than, “Well, build a new instrument kind of like the last
one, with more features, cheaper, and smaller.” Any estimate made to a
vague spec is totally without value.

The corollary is that given the clear spec, we need time—sometimes
lots of time—to develop an accurate schedule. It ain’t easy to translate a
spec into a design, and then to realistically size the project. You simply
cannot do justice to an estimate in two days, yet that’s often all we get.

Further, managers must accept schedule estimates made by their peo-
ple. Sure, there’s plenty of room for negotiation: reduce features, add re-
sources, or permit more bugs (gasp!). Yet most developers tell me their
schedule estimates are capriciously changed by management to reflect a
desired end date, with no corresponding adjustments made to the project’s
scope.

The result is almost comical to watch, in a perverse way. Developers
drown themselves in project management software, mousing milestone tri-
angles back and forth to meet an arbitrary date cast in stone by manage-
ment. The final printout may look encouraging, but generally gets the total
lack of respect it deserves from the people doing the actual work. The
schedule is then nothing more than dishonesty codified as policy.

There’s an insidious sort of dishonest estimation too many of us en-
gage in. It’s easy to blame the boss for schedule debacles, yet often we bear
plenty of responsibility. We get lazy, and we don’t invest the same amount
of thought, time, and energy into scheduling that we give to debugging.
“Yeah, that section’s kind of like something I did once before” is, at best,
just a start of estimation. You cannot derive time, cost, or size from such a
vague statement . . . yet too many of us do. “Gee, that looks pretty easy—
say a week” is a variant on this theme.

Doing less than a thoughtful, thorough job of estimation is a form of
self-deceit that rapidly turns into an institutionalized lie. “We’ll ship De-
cember 1,” we chant, while the estimators know just how flimsy the frame-
work of that belief is. Marketing prepares glossy brochures, technical pubs
writes the manual, and production orders parts. December 1 rolls around,
and, surprise! January, February, and March go by in a blur. Eventually
the product goes out the door, leaving everyone exhausted and angry. Too
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much of this stems from a lousy job done in the first week of the project
when we didn’t carefully estimate its complexity.

It’s time to stop the madness!

We learn in school to practice top-down decomposition. Design the
system, break each block into smaller chunks, and iterate until no part of
the code is more than a page or two long. Then, and only then, can you un-
derstand its complexity. We generally then take a reasonable guess: “This
module will be 50 lines of code.” (Instead of lines of code, some compa-
nies use function points or other units of measure.)

Swell. Do this and you will still almost certainly fail.

Few developers seem to understand that knowing code size—even if
it were 100% accurate—is only half of the data absolutely required to pro-
duce any kind of schedule. It’s amazing that somehow we manage to solve
the equation

development time = (program size in Lines of Code)
x (time per Line of Code)

when time-per-Line-of-Code is totally unknown.

If you estimate modules in terms of lines of code (LOC), then you
must know—exactly—the cost per LOC. Ditto for function points or any
other unit of measure. Guesses are not useful.

When I sing this song to developers, the response is always, “Yeah,
sure, but I don’t have LOC data . . what do I do about the project ’'m on
today?” There’s only one answer: sorry, pal-——you’re outta luck. IBM’s
LOC/month number is useless to you, as is one from the FAA, DOD, or
any other organization. In the commercial world we all hold our code to
different standards, which greatly skews productivity in any particular
measure.

You simply must measure how fast you generate embedded code,
every single day, for the rest of your life. It’s like being on a diet—even
when everything’s perfect, and you’ve shed those 20 extra pounds, you’ll
forever be monitoring your weight to stay in the desired range. Start col-
lecting the data today, do it forever, and over time you’ll find a model of
your productivity that will greatly improve your estimation accuracy.
Don’t do it, and every estimate you make will be, in effect, a lie—a wild,
meaningless guess.

Step 7: Constantly Study Software Engineering

The last step is the most important. Study constantly. In the 50 years
since ENIAC we’ve learned a lot about the right and wrong ways to build
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software; almost all of the lessons are directly applicable to firmware
development.

How does an elderly, near-retirement doctor practice medicine? In
the same way he did before World War II, before penicillin? Hardly. Doc-
tors spend a lifetime learning. They understand that lunch time is always
spent with a stack of journals.

Like doctors, we practice in a dynamic, changing environment. Un-
less we master better ways of producing code we’ll be the metaphorical
equivalent of the sixteenth-century medicine man, trepanning instead of
practicing modern brain surgery.

Learn new techniques. Experiment with them. Any idiot can write
code; the geniuses are those who find better ways of writing code.

One of the more intriguing approaches to creating a discipline
of software engineering is the Personal Software Process, a method
created by Watts Humphrey. An original architect of the CMM,
Humphrey realized that developers need a method they can use now,
without waiting for the CMM revolution to take hold at their com-
pany. His vision is not easy, but the benefits are profound. Check out
his A Discipline for Software Engineering, Watts S. Humphrey,
1995. Addison-Wesley.

Summary

With a bit of age (but less than anticipated maturity), it’s interesting
to look back and to see how most of us form personalities very early in life,
personalities with strengths and weaknesses that largely stay intact over the
course of decades.

The embedded community is composed of mostly smart, well-edu-
cated people, many of whom believe in some sort of personal improve-
ment. But. are we successful? How many of us live up to our New Year’s
resolutions?

Browse any bookstore. The shelves groan under self-help books.
How many people actually get helped, or at least helped to the point of
being done with a particular problem? Go to the diet section—I think there
are more diets being sold than the sum total of national excess pounds.
People buy these books with the best of intentions, yet every year Amer-
ica gets a little heavier.

Our desires and plans for self-improvement—at home or at the of-
fice—are among the more noble human characteristics. The reality is that
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we fail—a lot. It seems the most common way to compensate is a promise
made to ourselves to “try harder” or to “do better.” It’s rarely effective.

Change works best when we change the way we do things. Forget the
vague promises—invent a new way of accomplishing your goal. Planning
on reducing your drinking? Getting regular exercise? Develop a process
that ensures that you’re meeting your goal.

The same goes for improving your abilities as a developer. Forget the
vague promises to “read more books” or whatever. Invent a solution that
has a better chance of succeeding. Even better—steal a solution that works
from someone else.

Cynicism abounds in this field. We’re all self-professed experts of
development, despite the obvious evidence of too many failed projects.

I talk to a lot of companies who are convinced that change is impos-
sible; that the methods I espouse are not effective (despite the data that
shows the contrary), or that “management” will never let them take the
steps needed to effect change.

That’s the idea behind the “7 Steps.” Do it covertly, if need be; keep
management in the dark if you’re convinced of their unwillingness to use
a defined software process to create better embedded projects faster.

If management is enlightened enough to understand that the firmware
crisis requires change—and lots of it'—then educate them as you educate
yourself.

Perhaps an analogy is in order. The industrial revolution was
spawned by a lot of forces, but one of the most important was the concen-
tration of capital. The industrialists spent vast sums on foundries, steel
mills, and other means of production. Though it was possible to hand-craft
cars, dumping megabucks into assembly lines and equipment yielded
lower prices, and eventually paid off the investment in spades.

The same holds true for intellectual capital. Invest in the systems and
processes that will create massive dividends over time. If we’'re unwilling
to do so, we’ll be left behind while others, more adaptable, put a few bucks
up front and win the software wars.

A final thought:

If you’re a process cynic, if you disbelieve all I’ve said in this
chapter, ask yourself one question: do I consistently deliver products
on time and on budget?

If the answer is no, then what are you doing about it?




CHAPTER 3

Stop Writing
Big Programs

The most important rule of software engineering is also the least
known: Complexity does not scale linearly with size.

For “complexity” substitute any difficult parameter, such as time re-
quired to implement the project, bugs, or how well the final product meets
design specifications (unhappily, meeting design specs is all too often un-
correlated with meeting customer requirements . . .).

So a 2000-line program requires more than twice as much develop-
ment time as one that’s half the size.

A bit of thought confirms this. Surely, any competent programmer
can write an utterly perfect five-line program in 10 minutes. Multiply the
five lines and the 10 minutes by a hundred; those of us with an honest
assessment of our own skills will have to admit the chances of writing a
perfect 500 line program in 16 hours are slim at best.

Data collected on hundreds of IBM projects confirm this. As systems
become more complex they take longer to produce, both because of the
extra size and because productivity falls dramatically:

(man-yrs) Lines of code produced per month
] 439

10 220

100 110

1000 55

Look closely at this data. Notice that there’s an order of magnitude
increase in delivery time simply due to the reduced productivity as the
project’s magnitude swells.

35
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COCOMO Data

Barry Boehm codified this concept in his Constructive Cost Model
(COCOMO). He found that

Effort to create a project = C x KLOCM.

(KLOC means “thousands of lines of code.”)

Though the exact values of C and M vary depending on a number of
factors (e.g., real-time code is harder than that for the user interface), both
are always greater than 1.

A bit of algebra shows that, since M > 1, effort grows much faster
than the size of the program.

For real-time projects managed with the very best practices, C is typ-
ically 3.6 and M around 1.2. In embedded systems, which combine the
worst problems of real time with hardware dependencies, these coeffi-
cients are higher. Toss in the typical poor software practices of the em-
bedded industries and the M exponent can climb well above 1.5.

Suppose C = | and M = 1 .4. At the risk of oversimplifying Boehm’s
model, we can still get an idea of the nonlinear growth of complexity with
program size as follows:

Lines of Effot Comments
code

10,000 25.1
20,000 66.3  Double size of code; effort goes up by 2.64
100,000 631 Size grows by factor of 10; effort grows by 25

So, in doubling the size of the program we incur 32% additional
overhead.

The human analogy of this phenomenon is the one so colorfully il-
lustrated by Fred Brooks in his The Mythical Man-Month (a must read for
all software folks). As projects grow, adding people has a diminishing re-
turn. One reason is the increased number of communications channels.
Two people can only talk to each other; there’s only a single comm path.
Three workers have three communications paths; four have six. In fact, the
growth of links is exponential: given n workers, there are (n? — n)/2 links
between team members.

In other words, add one worker and suddenly he’s interfacing in n?
ways with the others. Pretty soon memos and meetings eat up the entire
work day.

The solution is clear: break teams into smaller, autonomous, and in-
dependent units to reduce these communications links.
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Similarly, cut programs into smaller units. Since a large part of the
problem stems from dependencies (global variables, data passed between
functions, shared hardware, etc.), find a way to partition the program to
eliminate—or minimize—the dependencies between units.

Traditional computer science would have us believe the solution is
top-down decomposition of the problem, perhaps then encapsulating each
element into an OOP object. In fact, “top-down design,” “structured pro-
gramming,” and “OOP” are the holy words of the computer vocabulary;
like fairy dust, if we sprinkle enough of this magic on our software all of
the problems will disappear.

I think this model is one of the most outrageous scams ever per-
petrated on the embedded community. Top-down design and OOP are
wonderful concepts, but are nothing more than a subset of our arsenal of
tools.

I remember interviewing a new college graduate, a CS major. It was
eerie, really, rather like dealing with a programmed cult member unthink-
ingly chanting the persuasion’s mantra. In this case, though, it was the
tenets of structured programming mindlessly flowing from his lips.

[t struck me that programming has evolved from a chaotic “make it
work no matter what” level of anarchy to a pseudo-science whose precepts
are practiced without question. Problem Analysis, Top-Down Decomposi-
tion, OOP—all of these and more are the commandments of structured de-
sign, commandments we're instructed to follow lest we suffer the pain of
failure.

Surely there’s room for iconoclastic ideas. I fear we’ve accepted
structured design, and all it implies, as a bedrock of our civilization, one
buried so deep we never dare to wonder if it’s only a part of the solution.

Top-down decomposition and QOP design are merely screwdrivers
or hammers in the toolbox of partitioning concepts.

Partitioning

Our goal in firmware design is to cheat the exponential in the CO-
COMO model, the exponential that also shows up in every empirical study
of software productivity. We need to use every conceivable technique to
flatten the curve, to move the M factor close to unity.

Top-down decomposition is a useful weapon in cheating the
COCOMO exponential, as is OOP design. In embedded systems we
have other possibilities denied to many people building desktop ap-
plications.
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Partition with Encapsulation

The OOP advocates correctly and profoundly point out the benefit of
encapsulation, to my mind the most important of the tripartite mantra en-
capsulation, inheritance, and polymorphism.

Above all, encapsulation means binding functions together with the
functions’ data. It means hiding the data so no other part of the program
can monkey with it. All access to the data takes place through function
calls, not through global variables.

Instead of reading a status word, your code calls a status function.
Rather than diddle a hardware port, you insulate the hardware from the
code with a driver.

Encapsulation works equally well in assembly language or in C++
(Figure 3-1). It requires a will to bind data with functions rather than any
particular language feature. C++ will not save the firmware world; encap-
sulation, though, is surely part of the solution.

One of the greatest evils in the universe, an evil in part responsible
for global warming, ozone depletion, and male pattern baldness, is the use
of global variables.

What’s wrong with globals? A partial list includes:

* Any function, anywhere in the program, can change a global vari-
able at will. This makes finding why a global change is a night-
mare. Without the very best of tools you’ll spend too much time
finding simple bugs; time invested chasing problems will be all out
of proportion to value received.

* Globals create tremendous reentrancy problems, as we’ll see in
Chapter 4.

o While distance may make the heart grow fonder, it also clouds our
memories. A huge source of bugs is assigning data to variables de-
fined in a remote module with the wrong type, or over- and under-
running buffers as we lose track of their size, or forgetting to
null-terminate strings. If a variable is defined in its referring code,
it’s awfully hard to forget type and size info.

Every firmware standard—backed up by the rigorous checks of code
inspections—must set rules about global use. Though we’d like to ban
them entirely, the truth is that in real-time systems they are sometimes un-
avoidable. Nothing is faster than a global flag; when speed is truly an
issue, a few, a very few, globals may indeed be required. Restrict their use
to only a few critical areas. I feel that defining a global is such a source of
problems that the team leader should approve every one.
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_text segment

; _get_cba_min—-read a min value at (index) from the
; CBA buffer. Called by a C program with the {(index)
; argument on the stack.

; Returns result in AX.

public _get_cba_min
_get_cba_min proc far

mov bx, sp
mov bx, [bx+4] ; bx= index in buf to read
add bx, cba_buf ; add offset to make addr
push ds
mov dx,buffer_seg ; point to the buffer seg
mov es,dx
mov ax,es:bx ; read the min value
pop ds
retf
endp
_text ends

; CBA buffer, which is managed by the *_cba routines.
; Format: 100 entries, each of which looks like:

; buf+0 min value (word)

; buf+2 max value (word)

; buf+4 number of iterations (word)

’

_data segment para ‘DATA’
cba_buf ds 100 * 6 ; CBA buffer
_data ends

FIGURE 3-1 Encapsulation in assembly language. Note that the data is
not defined Public
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Among the great money-makers for ICE vendors are complex hard-
ware breakpoints, used most often for chasing down errant changes to
global variables. If you like globals, figure on anteing up plenty for tools.

There’s yet one more waffle on my anti-global crusade: device han-
dlers sometimes must share data stored in common buffers and the like.
We do not write a serial receive routine in isolation. It’s part of a fabric of
handlers that include input, output, initialization, and one or more interrupt
service routines (ISRs).

This implies something profound about module design. Write pro-
grams with lots and lots of modules! Don’t lump code into a handful of
5000-line files. Assign one module per logical function: for example, have
a single module (file) that includes all of the serial device handlers—and
nothing else. Structurally it looks like:

public serial_in, serial_out,
serial_init
serial_in: code
serial_out: code
serial_init: code
serial_isr: code

private data
buffer: data
status: data

The data items are filescopics—global to the module but private to
the rest of the system. I feel this tradeoff is needed in embedded systems
to reduce performance penalties of the noble but not-always-possible anti-
global tack.

Partition with CPUs

Given that firmware is the most expensive thing in the universe, given
that the code will always be the most expensive part of the development ef-
fort, given that we’re under fire to deliver more complex systems to market
faster than ever, it makes sense in all but the most cost-sensitive systems to
have the hardware design fall out of software considerations. That is, design
the hardware in a way to minimize the cost of software development.

It’s time to reverse the conventional design approach, and ler the
software drive the hardware design.

Consider the typical modern embedded system. A single CPU has the
metaphorical role of a mainframe computer: it handles all of the inputs and
outputs, runs application code, and services interrupts. Like the main-



Stop Writing Big Programs 41

frame, one CPU, one program, is doing many disparate activities that only
eventually serve a common goal.

Not enough horsepower? Toss in a 32-bitter. Crank up the clock rate.
Cut out wait states.

Why do we continue to emulate the antiquated notion of “big iron”™—
even if the central machine is only an 8051? Mainframes were long ago re-
placed by distributed workstations.

A single big CPU running the entire application implies that there’s
a huge program handling everything. We know that big programs are
bad——they cost too much to develop.

It’s usuaily cheaper to add more CPUs merely for the sake of simpli-
tying the software.

In the following table, “Effort” refers to development time as pre-
dicted by the COCOMO metric. The first two columns show the effort re-
quired to produce a single-CPU chunk of firmware of the indicated number
of lines of code. The next five columns show models of partitioning the
code over multiple CPUs—a “main” processor that runs the bulk of the ap-
plication code, and a number of quite small “extra” microcontrollers for
handling peripherals and similar tasks.

Single CPU Multiple CPUs
LOC Effort | Main | LOC/extra | #extra | Total Effort | Faster! | Faster’
LOC | CPU CPUs LOC
10.000 |25 6000 | 2500 2 11000 19 22% 37%
20.000 | 66 12000 ( 2500 4 22000 | 47 29% 489
50,000 | 239 24000 | 5000 6 54000 143 40% 57%
100.000 | 631 50000 | 5000 12 110000 | 353 449% 65%

Clearly, total effort to produce the system decreases quite rapidly
when tasks are farmed out to additional processors, even though these
numbers include about 10% extra overhead to deal with interprocessor
communication. The “Faster!” column shows how much faster we can de-
liver the system as a result.

But the numbers are computed using an exponent of 1.4 for M, which
is a result of creating a big, complicated real-time embedded system. It’s
reasonable to design a system with as few real-time constraints as possible
in the main CPU, allocating these tasks to the smaller and more tractable
extra controllers. If we then reduce M to 1.2 for the main CPU (Boehm’s
real-time number) and leave it at 1.4 for the smaller processors that are
working with fickle hardware, the numbers in the Faster? column result.
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To put this in another context, getting a 100K LOC program to market
65% faster means we’ve saved over 200 man-months of development
(using the fastest of Bell Lab’s production rates), or something like $2
million.

Don’t believe me? Cut the numbers by a factor of 10. That’s still
$200,000 in engineering that does not have to get amortized into the cost
of the product. The product also gets to market much, much faster, and ide-
ally it generates substantially more sales revenue.

The goal is to flatten the curve of complexity. Figure 3-2 shows the
relative growth rates of effort—normalized to program size—for both ap-
proaches.

One CPU

Multiple CPUs

Normalized Effort

5000 10000 20000 50000 100000 200000
Lines of Code

FIGURE 3-2 Flattening the curve of complexity growth.

NRE versus COGS

Nonrecurring engineering costs (NRE costs) are the bane of
most technology managers’ lives. NRE is that cost associated with
developing a product. Its converse is the cost of goods sold (COGS),
a.k.a. recurring costs.

NRE costs are amortized over the life of a product in fact or in
reality. Mature companies carefully compute the amount of engi-
neering in the product—a car maker, for instance, might spend a bil-
lion bucks engineering a new model with a lifespan of a million
units sold; in this case the cost of the car goes up by $1000 to pay for
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the NRE. Smaller technology companies often act like cowboys and
figure that NRE is just the cost of doing business; if we are prof-
itable, then the product’s price somehow (!) reflects all engineering
expenses.

Increasing NRE costs drives up the product’s price (most likely
making it less competitive and thus reducing profits), or directly re-
duces profits.

Making an NRE versus COGS decision requires a delicate bal-
ancing act that deeply mirrors the nature of your company’s product
pricing. A $1 electronic greeting card cannot stand any extra com-
ponents; minimize COGS above all. In an automobile the quantities
are so large that engineers agonize over saving a foot of wire. The
converse is a one-off or short-production-run device. The slightest
development hiccup costs tens of thousands—easily—which will
have to be amortized over a very small number of units.

Sometimes it’s easy to figure the tradeoff between NRE and
COGS. You should also consider the extra complication of opportu-
nity costs—"If I do this, then what is the cost of not doing that?”” As
a young engineer I realized that we could save about $5000 a year by
changing from EPROMS to masked ROMs. I prepared a careful
analysis and presented it to my boss, who instantly turned it down
because making the change would shut down my other engineering
activities for some time. In this case we had a tremendous backlog of
projects, any of which could yield more revenue than the measly $5K
saved. In effect, my boss’s message was, “You are more valuable
than what we pay you.” ( That’s what drives entrepreneurs into busi-
ness—the hope they can get the extra money into their own pockets!)

Follow these guidelines to be successful in simplifying software
through multiple CPUs:

¢ Break out nasty real-time hardware functions into independent
CPUs. Do interrupts come at 1000/second from a device? Partition
it to a controller and offload all of that ISR overhead from the main
processor.

o Think microcontrollers, not microprocessors. Controllers are in-
herently limited in address space, which helps keep firmware size
under control. Controllers are cheap (some cost less than 40 cents
in quantity). Controllers have everything you need on one chip—
RAM, ROM, I/O, etc.
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* Think OTP—one-time programmable—or EEROM memory.
Both let you build and test the application without going to expen-
sive masked ROM. Quick to build, quick to burn, and quick to test.

o Keep the size of the code in the microcontrollers small. A few
thousand lines is a nice, tractable size that even a single program-
mer working in isolation can create.

¢ Limit dependencies. One beautiful benefit of partitioning code into
controllers is that you’re pin-limited—the handful of pins on the
chips acts as a natural barrier to complex communications and in-
teraction between processors. Don’t defeat this by layering a
hideous communications scheme on top of an elegant design.

Communications is always a headache in multiple-processor appli-
cations. Building a reliable paralle] comm scheme beats Freddy Krueger
for a nightmare any day. Instead, use a standard, simple protocol such
as I2C. This is a two-wire serial protocol supported directly by many
controllers. It’s multi-master and multi-slave, so you can hang many
processors on one pair of I2C wires. With rates to 1 Mb/sec, there's enough
speed for most applications. Even better: you can steal the code from
Microchip’s and National Semiconductor’s Web sites.

The hardware designers will object to adding processors, of course.
Just as firmware folks take pride in producing optimum code, our hardware
brethren, too, want an elegant, minimalist creation where there’s enough
logic to make the thing work, but nothing more. Adding hardware—which
has a cost—just to simplify the code seems like a terrible waste of
resources.

Yet we’ve been designing systems with extra hardware for decades.
There’s no reason we couldn’t build a software implementation of a
UART. “Bit banging” software has been around for years. Instead, most of
the time we’ll add the UART device to eliminate the nasty, inefficient
software solution.

One of Xerox’s copiers is a monster of a machine that does
everything but change the baby. An older design, it uses seven 8085s
tied together with a simple proprietary network. One handles the
paper mechanism, another the user interface, yet another error pro-
cessing. The boards are all pretty much the same, and no ROM ex-
ceeds 32k. The machine is amazingly complex and feature-rich . . .
but code sizes are tiny.




Stop Writing Big Programs 45

Partition by Features

Carpenters think in terms of studs and nails, hammers and saws.
Their vision is limited to throwing up a wall or a roof. An architect, on the
other hand, has a vision that encompasses the entire structure—but more
importantly, one that includes a focus on the customer. The only mean-
ingful measure of the architect’s success is his customer’s satisfaction.

We embedded folks too often distance ourselves from the customer’s
wants and needs. A focus on cranking schematics and code will thwart us
from making the thousands of little decisions that transcend even the most
detailed specification. The only view of the product that is meaningful is
the customer’s. Unless we think like the customer, we’ll be unable to sat-
isfy him. A hundred lines of beautiful C or 100k of assembly—it’s all in-
visible to the people who matter most.

Instead of analyzing a problem entirely in terms of functions and mod-
ules, look at the product in the feature domain, since features are the cus-
tomer’s view of the widget. Manage the software using a matrix of features.

Table 3-1 shows the feature matrix for a printer. Notice that the first
few items are not really features; they’re basic, low-level functions re-
quired just to get the thing to start up, as indicated by the “Importance” fac-
tor of “required.”

Beyond these, though, are things used to differentiate the product
from competitive offerings. Downloadable fonts might be important, but do
not affect the unit’s ability to just put ink on paper. Image rotation, listed as
the least important feature, sure is cool, but may not always be required.

Table 3-1
Feature Importance Priority Complexity
Shell Required 500
RTOS Required (purchased)
Keyboard handler Required 300
LED driver Required 500
Comm with host Required 4.000
Paper handling Required 2.000
Print engine Required 10.000
Downloadable fonts Important 1 1,000
Main 100 local fonts Important 2 6.000
Unusual local fonts Less important 3 10,000
Image rotation Less important 4 3,000
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The feature matrix ensures we’re all working on the right part of the
project. Build the important things first! Focus on the basic system struc-
ture—get all of it working, perfectly—before worrying about less impor-
tant features. I see project after project in trouble because the due date
looms with virtually nothing complete. Perhaps hundreds of functions
work, but the unit cannot do anything a customer would find useful. De-
velopers’ efforts are scattered all over the project so that until everything
is done, nothing is done.

The feature matrix is a scorecard. If we adopt the view that we're
working on the important stuff first, and that until a feature works perfectly
we do not move on, then any idiot—including those warming seats in mar-
keting—can see and understand the project’s status.

(The complexity rating shown is in estimated lines of code. LOC as
a unit of measure is constantly assailed by the software community. Some
push function points—unfortunately there are a dozen variants of this—as
a better metric. Most often people who rail against LOC as a measure in
fact measure nothing at all. 1 figure it’s important to measure something,
something easy to count, and LOC gives a useful if less than perfect as-
sessment of complexity.)

Most projects are in jeopardy from the outset, as they're beset by a
triad of conflicting demands (Figure 3-3). Meeting the schedule, with a
high-quality product, that does everything the 24-year-old product man-
ager in marketing wants, is usually next to impossible.

Eighty percent of all embedded systems are delivered late. Lots and
lots of elements contribute to this, but we too often forget that when de-
veloping a product we’re balancing the schedule/quality/features mix. Cut
enough features and you can ship today. Set the quality bar to near zero

schedule

quality features

FIGURE 3-3 The twisted tradeoff.
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and you can neglect the hard problems. Extend the schedule to infinity and
the product can be perfect and complete.

Too many computer-based products are junk. Companies die or lose
megabucks as a result of prematurely shipping something that just does not
work. Consumers are frustrated by the constant need to reset their gadgets
and by products that suffer the baffling maladies of the binary age.

We’re also amused by the constant stream of announced-but-
unavailable products. Firms do quite exquisite PR dances to explain away
the latest delay; Microsoft’s renaming of a late Windows upgrade to *“95”
bought them an extra year and the jeers of the world. Studies show that get-
ling to market early reaps huge benefits; couple this with the extreme costs
of engineering and it’s clear that “ship the damn thing” is a cry we’ll never
cease to hear.

Long-term success will surely result from shipping a quality product
on time. That means there’s only one leg of the twisted tradeoff left to fid-
dle. Cut a few of the less important features to get a first-class device to
market fast.

The computer age has brought the advent of the feature-rich product
that no one understands or uses. My cell phone’s “Function” key takes a
two-digit argument—one hundred user-selectable functions/features built
into this little marvel. Never use them, of course. I wish the silly thing
could reliably establish a connection! The design team’s vision was clearly
skewed in term of features over quality, to consumers’ loss.

If we’re unwilling to partition the product by features, and to build
the firmware in a clear, high-priority features-first hierarchy, we’ll be for-
ever trapped in an impossible balance that will yield either low quality or
late shipment. Probably both.

Use a feature matrix, implementing each in a logical order, and make
each one perfect before you move on. Then at any time management can
make a reasonable decision: ship a quality product now, with this feature
mix, or extend the schedule until more features are complete.

This means you must break down the code by feature, and only then
apply top-down decomposition to the components of each feature. It means
you’ll manage by feature, getting each done before moving on, to keep the
project’s status crystal clear and shipping options always open.

Management may complain that this approach to development is, in a
sense, planning for failure. They want it all: schedule, quality, and features.
This is an impossible dream! Good software practices will certainly help hit
all elements of the triad, but we’ve got to be prepared for problems.

Management uses the same strategy in making their projections. No
wise CEO creates a cash flow plan that the company must hit to survive;
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there’s always a backup plan, a fall-back position in case something unex-
pected happens.

So, while partitioning by features will not reduce complexity, it leads
to an earlier shipment with less panic as a workable portion of the product
is complete at all times.

In fact, this approach suggests a development strategy that maxi-
mizes the visibility of the product’s quality and schedule.

Develop Firmware Incrementally

Deming showed the world that it’s impossible to test quality into a
product. Software studies further demonstrate the futility of expecting test
to uncover huge numbers of defects in reasonable times—in fact, some
studies show that up to 50% of the code may never be exercised under a
typical test regime.

Yet test is a necessary part of software development,

Firmware testing is dysfunctional and unlikely to be successful when
postponed till the end of the project. The panic to ship overwhelms com-
mon sense; items at the end of the schedule are cut or glossed over. Test is
usually a victim of the panic.

Another weak point of all too many schedules is that nasty line item
known as “integration.” Integration, too, gets deferred to the point where
it’s poorly done.

Yet integration shouldn’t even exist as a line item. Integration im-
plies we’re only fiddling with bits and pieces of the application, ignoring
the problem’s gestalt, until very late in the schedule when an unexpected
problem (unexpected only by people who don’t realize that the reason for
test is to unearth unexpected issues) will be a disaster.

The only reasonable way to build an embedded system is to start in-
tegrating today, now, on the day you first crank a line of code. The biggest
schedule killers are unknowns; only testing and actually running code and
hardware will reveal the existence of these unknowns.

As soon as practicable, build your system’s skeleton and switch it on.
Build the startup code. Get chip selects working. Create stub tasks or call-
ing routines. Glue in purchased packages and prove to yourself that they
work as advertised and as required. Deal with the vendor, if trouble sur-
faces, now rather than in a last-minute debug panic when they’ve unex-
pectedly gone on holiday for a week.

This is a good time to slip in a ROM monitor, perhaps enabled by a
secret command set. It’ll come in handy when you least have time to add
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one—perhaps in a panicked late-night debugging session moments before
shipping, or for diagnosing problems that creep up in the field.

In a matter of days or a week or two you’ll have a skeleton assem-
bled, a skeleton that actually operates in some very limited manner. Per-
haps it runs a null loop. Using your development tools, test this small scale
chunk of the application.

Start adding the lowest-level code, testing as you go. Soon your sys-
tem will have all of the device drivers in place (tested), ISRs (tested), the
startup code (tested), and the major support items such as comm packages
and the RTOS (again tested). Integration of your own applications code
can then proceed in a reasonably orderly manner, plopping modules into a
known-good code framework, facilitating testing at each step.

The point is to immediately build a framework that operates, and
then drop features in one at a time, testing each as it becomes available.
You're testing the entire system, such as it is, and expanding those tests as
more of it comes together. Test and integration are no longer individual
milestones; they are part of the very fabric of development.

Success requires a determination to constantly test. Every day, or at
least every week, build the entire system (using all of the parts then avail-
able) and ensure that things work correctly. Test constantly. Fix bugs
immediately.

The daily or weekly testing is the project’s heartbeat. It ensures
that the system really can be built and linked. It gives a constant view
of the system’s code quality, and encourages early feature feedback
(a mixed blessing, admittedly—but our goal is to satisfy the customer,
even at the cost of accepting slips due to reengineering poor feature im-
plementation).

At the risk of sounding like a new-age romantic, someone working in
aromatherapy rather than pushing bits around, we’ve got to learn to deal
with human nature in the design process. Most managers would trade their
firstborn for an army of Vulcan programmers, but until the Vulcan econ-
omy collapses (“emotionless programmer, will work for peanuts and log-
ical discourse”), we’ll have to find ways to efficiently use humans, with all
of their limitations.

We people need a continuous feeling of accomplishment to feel ef-
fective and to be effective. Engineering is all about making things work;
it’s important to recognize this and create a development strategy that sat-
isfies this need. Having lots of little progress points, where we see our sys-
tem doing something, is tons more satisfying than coding for a year before
hitting the ON switch.
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A hundred thousand lines of carefully written and documented code
is nothing more than worthless bits until it’s tested. We hear “It’s done” all
the time in this field, where “done” might mean “vaguely understood” or
“coded.” To me “done” has one meaning only: “tested.”

Incremental development and testing, especially of the high-risk
areas such as hardware and communications, reduces risk tremendously.
Even when we’re not honest with each other (“Sure, I can crank this puppy
out in a week, no sweat”), deep down we usually recognize risk well
enough to feel scared. Mastering the complexities up front removes the
fear and helps us work confidently and efficiently.

Conquer the Impossible

Firmware people are too often treated as the scum of the earth, be-
cause their development efforts tend to trail everyone else’s. When the
code can’t be tested until the hardware is ready—and we know the hard-
ware schedule is bound to slip—then the software, already starting late,
will appear to doom the ship date.

Engineering is all about solving problems, yet sometimes we’re im-
mobilized like deer in headlights by the problems that litter our path. We
simply have to invent a solution to this dysfunctional cycle of starting
Jfirmware testing late because of unavailable hardware!

And there are a lot of options.

One of the cheapest and most available tools around is the desktop
PC. Use it! Here are a few ways to conquer the “I can’t proceed because
the hardware ain’t ready” complaint.

o One compelling reason to use an embedded PC in non-cost-sensi-
tive applications is that you can do much of the development on a
standard PC. If your project permits, consider embedding a PC
and plan on writing the code using standard desktop compilers and
other tools.

* Write in C or C++. Cross-develop the code on a PC until hardware
comes on line. It’s amazing how much of the code you can get
working on a different platform. Using a processor-specific timer
or serial channel? Include conditional compilation switches to dis-
able the target I/O and enable the PC’s equivalent devices. One de-
veloper I know tests more than 95% of his code on the PC this
way—and he’s using a PIC processor, about as dissimilar from a
PC as you can get.
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s Regardless of processor, build an I/O board that contains your
target-specific devices, such as A/Ds. There’s an up-front time
penalty incurred in creating the board; but the advantage is faster
code delivery with more of the bugs wrung out. This step also
helps prove the hardware design early—a benefit to everyone.

Summary

You’ll never flatten the complexity/size curve unless you use every
conceivable way to partition the code into independent chunks with no or
few dependencies.

Some of these methods include the following:

* Partition by encapsulation

* Partition by adding CPUs

Partition by using an RTOS (more in the next chapter)
Partition by feature management and incremental development
Finally, partition by top-down decomposition






CHAPTER 4

Real Time Means
Right Now!

We’re taught to think of our code in the procedural domain: that of
actions and effects. IF statements and control loops create a logical flow to
implement algorithms and applications. There’s a not-so-subtle bias in
college toward viewing correctness as being nothing more than stringing
the right statements together.

Yet embedded systems are the realm of real time, where getting the
result on time is just as important as computing the correct answer.

A hard real-time task or system is one where an activity simply must
be completed—always—by a specified deadline. The deadline may be a
particular time or time interval, or may be the arrival of some event. Hard
real-time tasks fail, by definition, if they miss such a deadline.

Notice that this definition makes no assumptions about the frequency
or period of the tasks. A microsecond or a week—if missing the deadline
induces failure, then the task has hard real-time requirements.

“Soft” real time, though. has a definition as weak as its name. By
convention it’s those class of systems that are not hard real time, though
generally there is some sort of timeliness requirement. If missing a dead-
line won’t compromise the integrity of the system, if generally getting the
output in a timely manner is acceptable, then the application’s real-time re-
quirements are “soft.” Sometimes soft real-time systems are those where
multi-valued timeliness is acceptable: bad, better, and best responses are
all within the scope of possible system operation.

53
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Interrupts

Most embedded systems use at least one or two interrupting devices.
Few designers manage to get their product to market without suffering
metaphorical scars from battling interrupt service routines (ISRs). For
some incomprehensible reason—perhaps because “real time” gets little
more than lip service in academia—most of us leave college without
the slightest idea of how to design, code, and debug these most important
parts of our systems. Too many of us become experts at ISRs the same way
we picked up the secrets of the birds and the bees—from quick conver-
sations in the halls and on the streets with our pals. There’s got to be a
better way!

New developers rail against interrupts because they are difficult to
understand. However, just as we all somehow shattered our parents’ nerves
and learned to drive a stick-shift, it just takes a bit of experience to become
a certified “master of interrupts.”

Before describing the “how,” let’s look at why interrupts are impor-
tant and useful. Somehow peripherals have to tell the CPU that they re-
quire service. On a UART, perhaps a character arrived and is ready inside
the device’s buffer. Maybe a timer counted down and must let the proces-
sor know that an interval has elapsed.

Novice embedded programmers naturally lean toward polled com-
munication. The code simply looks at each device from time to time, ser-
vicing the peripheral if needed. It’s hard to think of a simpler scheme.

An interrupt-serviced device sends a signal to the processor’s dedi-
cated interrupt line. This causes the processor to screech to a stop and in-
voke the device’s unique ISR, which takes care of the peripheral’s needs.
There’s no question that setting up an ISR and associated control registers
is a royal pain. Worse, the smaillest mistake causes a major system crash
that’s hard to troubleshoot.

Why, then, not write polled code? The reasons are legion:

1. Polling consumes a lot of CPU horsepower. Whether the periph-
eral is ready for service or not, processor time—usually a lot of
processor time—is spent endlessly asking “Do you need service
yet?”

2. Polled code is generally an unstructured mess. Nearly every loop
and long complex calculation has a call to the polling routines so
that a device’s needs never remain unserviced for long. ISRs, on
the other hand, concentrate all of the code’s involvement with
each device into a single area. Your code is going to be a night-
mare unless you encapsulate hardware-handling routines.
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3. Polling leads to highly variable latency. If the code is busy han-
dling something else (just doing a floating-point add on an 8-bit
CPU might cost hundreds of microseconds), the device is ignored.
Properly managed interrupts can result in predictable latencies of
no more than a handful of microseconds.

Use an ISR pretty much any time a device can asynchronously re-
quire service. | say “pretty much” because there are exceptions. As we'll
see, interrupts impose their own sometimes unacceptable latencies and
overhead. I did a tape interface once, assuming the processor was fast
enough to handle each incoming byte via an interrupt. Nope. Only polling
worked. In fact. tuning the five instruction polling loops™ speed ate up 3
weeks of development time.

Vectoring

Though interrupt schemes vary widely from processor to processor,
most modern chips use a variation of vectoring. Peripherals, whether ex-
ternal to the chip or internal (such as on-board timers), assert the CPU’s in-
terrupt input.

The processor generally completes the current instruction and stores
the processor’s state (current program counter and possibly flag register)
on the stack. The entire rationale behind ISRs is to accept, service, and re-
turn from the interrupt, all with no visible impact on the code. This is pos-
sible only if the hardware and software save the system’s context before
branching to the ISR.

It then acknowledges the interrupt, issuing a unique interrupt ac-
knowledge cycle recognized by the interrupting hardware. During this
cycle the device places an interrupt code on the data bus that tells the
processor where to find the associated vector in memory.

Now the CPU interprets the vector and creates a pointer to the inter-
rupt vector table, a set of ISR addresses stored in memory. It reads the ad-
dress and branches to the ISR.

Once the ISR starts, you, the programmer, must preserve the CPU’s
context (such as saving registers, restoring them before exiting). The ISR
does whatever it must, then returns with all registers intact to the normal
program flow. The main-line application never knows that the interrupt
occurred.

Figures 4-1 and 4-2 show two views of how an x86 processor handles
an interrupt. When the interrupt request line goes high, the CPU completes
the instruction it’s executing (in this case at address 0100) and pushes the
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FIGURE 4-1 logic analyzer view of an interrupt.

return address (two 16-bit words) and the contents of the flag register. The
interrupt acknowledge cycle—wherein the CPU reads an interrupt number
supplied by the peripheral—is unique, as there’s no read pulse. Instead, in-
tack going low tells the system that this cycle is unique.

x86 processors multiply the interrupt number by four (left shifted
two bits) to create the address of the vector. A pair of 16-bit reads extracts
the 32-bit ISR address.

Important points:

* The CPU chip’s hardware, once it sees the interrupt request signal,
does everything automatically, pushing the processor’s state, read-
ing the interrupt number, extracting a vector from memory, and
starting the ISR.

e The interrupt number supplied by the peripheral during the ac-
knowledge cycle might be hardwired into the device’s brain, but

0100 NOP Fetch <—- INTR REQ asserted

TFFE 0102 Write <—= Return address pushed
TFFC 0000 Write

7FFA — Write <—= Flags pushed

XKXXXK 0010 INTA <—- Vector inserted

0010 0020 Read <—— ISR Address (low) read
0012 0000 Read <—- ISR Address (high)
read

0020 PUSH Fetch <—- ISR starts

FIGURE 4-2 Realtime trace view of an interrupt.
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more commonly it’s set up by the firmware. Forget to initialize the
device and the system will crash as the device supplies a bogus
number.

¢ Some peripherals and interrupt inputs will skip the acknowledge
cycle because they have predetermined vector addresses.

» All CPUs let you disable interrupts via a specific instruction (DI,
CLI, or something similar). Further, you can generally enable and
disable interrupts from specific devices by appropriately sefting
bits in peripheral or interrupt control registers.

* Before invoking the ISR the hardware disables or reprioritizes in-
terrupts. Unless your code explicitly reverses this, you'll see no
more interrupts at this level.

At first glance the vectoring seems unnecessarily complicated. Its
great advantage is support for many varied interrupt sources. Each device
inserts a different vector; each vector invokes a different ISR. Your UART
Data_Ready ISR is called independently of the UART Transmit_
Buffer_Full routine. The vectoring scheme also limits pin counts,
since it requires just one dedicated interrupt line.

Some CPUs sometimes directly invoke the ISR without vectoring.
This greatly simplifies the code, but unless you add a lot of manual pro-
cessing, it limits the number of interrupt sources a program can con-
veniently handle.

Interrupt Design Guidelines

While crummy code is just hard to debug, crummy ISRs are virtually
undebuggable. The software community knows it’s just as easy to write
good code as it is to write bad. Give yourself a break and design hardware
and software that cases the debugging process.

Poorly coded interrupt service routines are the bane of our industry.
Most ISRs are hastily thrown together, tuned at debug time to work, then
tossed in the “Oh my God, it works™ pile and forgotten. A few simple rules
can alleviate many of the common problems.

First, don’t even consider writing a line of code for your new em-
bedded system until you lay out an interrupt map (Figure 4-3). List each
interrupt and give an English description of what the routine should do. In-
clude your estimate of the interrupt’s frequency. Figure the maximum,
worst-case time available to service each. This is your guide: exceed this
number, and the system stands no chance of functioning properly.

The map is a budget. It gives you an assessment of where interrupt-
ing time will be spent. Just as your own personal financial budget has a
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Latency Max-time Freq Description
INT1 1000usec  1000usec  timer
INT2 100usec 100usec  send data
INT3 250usec 250usec  Serial data in
INT4 15usec 100usec  write tape
NMI 200usec  500usec once! System crash

FIGURE 4-3 An interrupt map.

degree of flexibility (spend too much on dinner this month and, assuming
you don’t abuse the credit cards, you’ll have to reduce spending some-
where else). Like any budget, it’s a condensed view of a profound reality
whose parameters your system must meet. One number only is cast in
stone: there’s only one second’s worth of compute time per second to get
everything done. You can tune execution time of any ISR, but be sure
there’s enough time overall to handle every device.

Approximate the complexity of each ISR. Given the interrupt rate,
with some idea of how long it’ll take to service each, you can assign pri-
orities (assuming your hardware includes some sort of interrupt controller).
Give the highest priority to things that must be done in staggeringly short
times to satisfy the hardware or the system’s mission (such as to accept
data coming in from a 1 Mb/sec source).

The cardinal rule of ISRs is to keep the handlers short. A long ISR
simply reduces the odds you’ll be able to handle all time-critical events in
a timely fashion. If the interrupt starts something truly complex, have the
ISR spawn off a task that can run independently. This is an area where an
RTOS is a real asset, as task management requires nothing more than a call
from the application code.

Short, of course, is measured in time, not in code size. Avoid loops.
Avoid long complex instructions (repeating moves, hideous math, and the
like). Think like an optimizing compiler: does this code really need to be
in the ISR? Can you move it out of the ISR into some less critical section
of code?

For example, if an interrupt source maintains a time-of-day clock,
simply accept the interrupt and increment a counter. Then return. Let some
other chunk of code—perhaps a non-real-time task spawned from the
ISR—worry about converting counts to time and day of the week.

Ditto for command processing. I see lots of systems where an ISR re-
ceives a stream of serial data, queues it to RAM, and then executes com-
mands or otherwise processes the data. Bad idea! The ISR should simply
queue the data. If time is really pressing (i.e., you need real-time response
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to the data), consider using another task or ISR, one driven via a timer
that interrupts at the rate you consider “real time,” to process the queued
data.

An analogous rule to keeping ISRs short is to keep them simple.
Complex ISRs lead to debugging nightmares, especially when the tools
may be somewhat less than adequate. Debugging ISRs with a simple
BDM-like debugger is going to hurti—bad. Keep the code so trivial there’s
little chance of error.

An old rule of software design is to use one function (in this case the
serial ISR) to do one thing. A real-time analogy is to do things only when
they need to get done, not at some arbitrary rate.

Reenable interrupts as soon as practical in the ISR. Do the hardware-
critical and non-reentrant things up front, then execute the interrupt enable
instruction. Give other ISRs a fighting chance to do their thing.

Fill all of your unused interrupt vectors with a pointer to a null rou-
tine (Figure 4-4). During debug, always set a breakpoint on this routine.
Any spurious interrupt, due to hardware problems or misprogrammed pe-
ripherals, will then stop the code cleanly and immediately, giving you a
prayer of finding the problem in minutes instead of weeks.

Hardware Issues

Lousy hardware design is just as deadly as crummy software. Mod-
ern high-integration CPUs such as the 68332, 80186, and Z180 all include
a wealth of internal peripherals—serial ports, timers, DMA controllers,
etc. Interrupts from these sources pose no hardware design issues, since the
chip vendors take care of this for you. All of these chips, though, do per-
mit the use of external interrupt sources. There’s trouble in them thar ex-
ternal interrupts!

Vect_table:
dl start_up 7 power up vector
dl null_isr 7 unused vector
dl null_isr : unused vector
dl timer_isr ! main tick timer ISR
dl serial_in_isr : serial receive ISR
dl serial out_isr ; serial transmit ISR
di null_isr ¢ unused vector
dl null_isr ; unused vector
null_1isr: ;! spurious intr routine
jmp null_isr ; set BP here!

FIGURE 4-4 Fill unused vectors with a pointer to null_isr, and set a
breakpoint there while debugging.
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The biggest issue is the generation of the INTR signal itself. Don’t sim-
ply pulse an interrupt input. Though some chips do permit edge-triggered in-
puts, the vast majority of them require you to assert and hold INTR until the
processor issues an acknowledgment, such as from the interrupt ACK pin.
Sometimes it’s a signal to drop the vector on the bus; sometimes it’s nothing
more than “Hey, I got the interrupt—you can release INTR now.”

As always, be wary of timing. A slight slip in asserting the vector can
make the chip wander to an erroneous address. If the INTR must be exter-
nally synchronized to clock, do exactly what the spec sheet demands.

If your system handles a really fast stream of data, consider adding
hardware to supplement the code. A data acquisition system I worked on
accepted data at a 20-microsecond rate. Each generated an interrupt, caus-
ing the code to stop what it was doing, vector to the ISR, push registers
like wild, and then reverse the process at the end of the sequence. If the
system was busy servicing another request, it could miss the interrupt al-
together.

A cheap 256-byte-deep FIFO chip eliminated all of the speed issues.
The hardware filled the FIFO without CPU intervention. It generated an in-
terrupt at the half-full point (modern FIFOs often have Empty, Half-Full,
and Full bits), at which time the ISR sucked data from the FIFO until it was
dry. During this process additional data might come along and be written
to the FIFO, but this happened transparently to the code.

Most designs seem to connect FULL to the interrupt line. Conceptu-
ally simple, this results in the processor being interrupted only after the en-
tire buffer is full. If a little extra latency causes a short delay before the
CPU reads the FIFO, then an extra data byte arriving before the FIFO is
read will be lost.

An alternative is EMPTY going not-true. A single byte arriving will
cause the micro to read the FIFO. This has the advantage of keeping the
FIFOs relatively empty, minimizing the chance of losing data. It also
makes a big demand on CPU time, generating interrupts with practically
every byte received.

Instead, connect HALF-FULL, if the signal exists on the FIFOs
you've selected, to the interrupt line. HALF-FULL is a nice compromise,
deferring processor cycles until a reasonable hunk of data is received, yet
leaving free buffer space for more data during the ISR cycles.

Some processors do amazing things to service an interrupt, stacking
addresses and vectoring indirectly all over memory. The ISR itself no
doubt pushes lots of registers, perhaps also preserving other machine in-
formation. If the HALF-FULL line generates the interrupt, then you have
the a priori information that lots of other data is already queued and wait-
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ing for processor time. Save overhead by making the ISR read the FIFOs
until the EMPTY flag is set. You’ll have to connect the EMPTY flag to a
parallel port so the software can read it, but the increase in performance is
well worth it.

In mission-critical systems it might also make sense to design a sim-
ple circuit that latches the combination of FULL and an incoming new data
item. This overflow condition could be disastrous and should be signaled
to the processor.

A few bucks invested in a FIFO may allow you to use a much slower,
and cheaper, CPU. Total system cost is the only price issue in embedded
design. If a $5 8-bit chip with a $6 FIFO does the work of a $20 16-bitter
with double the RAM/ROM chips, it’s foolish to not add the extra part.

Figure 4-5 shows the result of an Intel study of serial receive interrupts
coming to a 386EX processor. At 530,000 baud—or around 53,000 charac-
ters per second—the CPU is almost completely loaded servicing interrupts.

Add a 16-byte FIFO and CPU loading declines to a mere 10%. That’s
a stunning performance improvement!

C or Assembly?

If you’ve followed my suggestions, you have a complete interrupt
map with an estimated maximum execution time for the ISR. You’re ready
to start coding . . . right?

If the routine will be in assembly language, convert the time to a
rough number of instructions. If an average instruction takes x microsec-
onds (depending on clock rate, wait states, and the like), then it’s easy to
get this critical estimate of the code’s allowable complexity.
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FIGURE 4-5 Baud rates versus CPU utilization. On the left, a con-
ventional connection uses 90% of the CPU to service 530k baud inputs.
On the right, with a FIFO the processor is 10% loaded at the same rate.
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C is more problematic. In fact, there’s no way to scientifically write
an interrupt handler in C! You have no idea how long a line of C will take.
You can’t even develop an estimate as each line’s time varies wildly. A
string compare may result in a runtime library call with totally unpre-
dictable results. A FOR loop may require a few simple integer compar-
isons or a vast amount of processing overhead.

And so, we write our C functions in a fuzz of ignorance, having no
concept of execution times until we actually run the code. If it’s too slow,
well, just change something and try again!

I’'m not recommending that ISRs not be coded in C. Rather, this is
more of a rant against the current state of compiler technology. Years ago
assemblers often produced t-state counts on the listing files, so you could
easily figure how long a routine ran. Why don’t compilers do the same for
us? Though there are lots of variables (that string compare will take a vary-
ing amount of time depending on the data supplied to it), certainly many C
operations will give deterministic results. It’s time to create a feedback
loop that tells us the cost, in time and bytes, for each line of code we write,
before burning ROMs and starting test.

Until compilers improve, use C if possible, but look at the code gen-
erated for a typical routine. Any call to a runtime routine should be imme-
diately suspect, as that routine may be slow or non-reentrant, two deadly
sins for ISRs. Look at the processing overhead—how much pushing and
popping takes place? Does the compiler spend a lot of time manipulating
the stack frame? You may find one compiler pitifully slow at interrupt han-
dling. Either try another, or switch to assembly.

Despite all of the hype you’ll read in magazine ads about how
vendors understand the plight of the embedded developer, the plain
truth is that the compiler vendors all uniformly miss the boat. Mod-
ern C and C++ compilers are poorly implemented in that they give us
no feedback about the real-time nature of the code they’re producing.

The way we write performance-bound C code is truly astound-
ing. Write some code, compile and run it. .. and if it's not fast
enough, change something—anything—and try again. The compiler
has so distanced us from the real-time nature of the code that we’'re
left to make random changes in a desperate attempt to get the tool to
produce faster code.

A much more reasonable approach would be to get listings
from the compiler with typical per-statement execution times. An
ideal listing might resemble
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250-275 nsec for(1=0; i<count; ++1i)

508-580 nsec {if (start_count !=
end_count)

250 nsec end_point=head;

}

where a range of values cover possible differences in execution
paths depending on how the statement operates (for example, if the
FOR statement iterates or terminates).

To get actual times, of course, the compiler needs to know a lot
about our system, including clock rates and wait states. Another op-
tion is to display T states, or even just number of instructions exe-
cuted (since that would give us at least some sort of view of the
code’s performance in the time domain).

Vendors tell me that cache, pipelines, and prefetchers make
modeling code performance too difficult. I disagree. Most small em-
bedded CPUs don’t have these features, and of them, only cache is
truly tough to model.

Please, Mr. Compiler Vendor, give us some sort of indication
about the sort of performance we can expect! Give us a clue about
how long a runtime routine or floating-point operation takes.

A friend told me how his DOD project uses an antique lan-
guage called CMSP. The compiler is so buggy they have to look for
bugs in the assembly listing after each and every compile—and then
make a more or less random change and recompile, hoping to lure
the tool into creating correct code. I laughed until I realized that’s
exactly the situation we’re in when using a high-quality C compiler
in performance-bound applications.

Be especially wary of using complex data structures in ISRs. Watch
what the compiler generates. You may gain an enormous amount of per-
formance by sizing an array at an even power of 2, perhaps wasting some
memory, but avoiding the need for the compiler to generate complicated
and slow indexing code.

An old software adage recommends coding for functionality first,
and speed second. Since 80% of the speed problems are usually in 20% of
the code, it makes sense to get the system working and then determine
where the bottlenecks are. Unfortunately, real-time systems by their nature
usually don’t work at all if things are slow. You’ve often gor to code for
speed up front.



64 THE ART OF DESIGNING EMBEDDED SYSTEMS

If the interrupts are coming fast—a term that is purposely vague and
qualitative, measured by experience and gut feel—then I usually just take
the plunge and code the ISR in assembly. Why cripple the entire system
because of a little bit of interrupt code? If you've broken the ISRs into
small chunks, so the real-time part is small, then little assembly will be
needed. Code the slower ISRs in C.

Debugging INT/INTA Cycles

Lots of things can and will go wrong long before your ISR has a
chance to exhibit buggy behavior. Remember that most processors service
an interrupt with the following steps:

1. The device hardware generates the interrupt pulse.

2. The interrupt controller (if any) prioritizes multiple simultaneous
requests and issues a single interrupt to the processor.

. The CPU responds with an interrupt acknowledge cycle.

. The controller drops an interrupt vector on the databus.

. The CPU reads the vector and computes the address of the user-
stored vector in memory. It then fetches this value.

6. The CPU pushes the current context, disables interrupts, and

jumps to the ISR.

W W

Interrupts from internal peripherals (those on the CPU itself ) usually
won’t generate an external interrupt acknowledge cycle. The vectoring is
handled internally and invisibly to the wary programmer, tools in hand,
trying to discover his system’s faults.

A generation of structured programming advocates has caused many
of us to completely design the system and write all of the code before de-
bugging. Though this is certainly a nice goal, it’s a mistake for the low-level
drivers in embedded systems. I believe in an early wrestling match with the
system’s hardware. Connect an emulator and exercise the I/O ports. They
never behave quite as you expected. Bits might be inverted or transposed,
or maybe there are a dozen complex configuration registers that need to be
set up. Work with your system, understand its quirks, and develop notes
about how to drive each I/O device. Use these notes to write your code.

Similarly, start prototyping your interrupt handlers with a hollow
shell of an ISR. You’ve got to get a lot of things right just to get the ISR to
start. Don’t worry about what the handler should do until you have it at
least being called properly.

Set a breakpoint on the ISR. If your shell ISR never gets called, and
the system doesn’t crash and burn, most likely the interrupt never makes it
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to the CPU. If you were clever enough to fill the vector table’s unused en-
tries with pointers to a null routine, watch for a breakpoint on that function.
You may have misprogrammed the table entry or the interrupt controller,
which would then supply a wrong vector to the CPU.

If the program vectors to the wrong address, then use a logic analyzer
or emulator’s trace to watch how the CPU services the interrupt. Trigger
collection on the interrupt itself, or on any read from the vector table in
RAM. You should see the interrupt controller drop a vector on the bus. s
it the right one? If not, perhaps the interrupt controller is misprogrammed.

Within a few instructions (if interrupts are on) look for the read from
the vector table. Does it access the right table address? If not, and if the
vector was correct, then either you're looking at the wrong system inter-
rupt, or there’s a timing problem in the interrupt acknowledge cycle. Break
out the logic analyzer and check this carefully.

Hit the databooks and check the format of the table’s entries. On an
x86-style processor, four bytes represent the ISR’s offset and segment ad-
dress. If these are in the wrong order—and they often are—there’s no
chance your ISR will execute.

Frustratingly often the vector is fine; the interrupt just does not occur.
Depending on the processor and peripheral mix, only a handful of things
could be wrong:

* Did you enable interrupts in the main routine? Without an EI in-
struction, no interrupt will ever occur. One way of detecting this is
to sense the CPU’s INTR input pin. If it’s asserted all of the time,
then generally the chip has all interrupts disabled.

s Does your I/O device generate an interrupt? It’s easy to check this
with external peripherals.

* Have you programmed the device to allow interrupt generation?
Most CPUs with internal peripherals allow you to selectively dis-
able each device’s interrupt generation; quite often you can even
disable parts of this (such as allow interrupts on “received data”
but not on *‘data transmitted™).

Modern peripherals are often incredibly complex. Motorola’s TPU,
for example, has an entire book dedicated to its use. Set one bit in one reg-
ister to the wrong value, and it won’t generate the interrupt you are look-
ing for.

It’s not uncommon to see an interrupt work perfectly once, and then
never work again. The only general advice is to be sure your ISR reenables
interrupts before returning. Then look into the details of your processor
and peripherals.
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Some, such as the Z80, have an external interrupt daisy chain that
serves as a priority encoder. Look at these lines with a scope. If you see the
daisy chain set to a zero, it’s a sure indication that one device did not see
the end-of-interrupt sequence. On the Z80 and Z180 processors this is pro-
vided by executing the RETI instruction. Use a normal return instruction
by mistake and you’ll never get another interrupt.

Intel’s x86 family is often used with an 8259 interrupt controller.
Some of the embedded CPUs in this family have 8259-like controllers
built into the processor. If you forget to issue an EOI (end of interrupt)
command to the 8259 when the ISR is complete, you’ll get that one inter-
rupt only.

You may need to service the peripherals as well before another in-
terrupt comes along. Depending on the part, you may have to read registers
in the peripheral to clear the interrupt condition. UARTS and timers usually
require this. Some have peculiar requirements for clearing the interrupt
condition, so be sure to dig deeply into the databook.

Finding Missing Interrupts

A device that parses a stream of incoming characters will probably
crash very obviously if the code misses an interrupt or two. One that counts
interrupts from an encoder to measure position may only exhibit small
precision errors, a tough thing to find and troubleshoot.

Having worked on a number of systems using encoders as position
sensors, I've developed a few tricks over the years to find these missing
pulses.

You can build a little circuit using a single up/down counter that
counts every interrupt and that decrements the count on each interrupt ac-
knowledge. If the counter always shows a value of zero or one, everything
is fine.

Most engineering labs have counters—test equipment that just accu-
mulates pulse counts. I have a scope that includes a counter. Use two of
these, one on the interrupt pin and another on the interrupt acknowledge
pin. The counts should always be the same.

You can build a counter by instrumenting the ISR to increment a
variable each time it starts. Either show this value on a display, or probe
the variable using your debugger.

If you know the maximum interrupt rate, use a performance analyzer
to measure the maximum time in the ISR. If this exceeds the fastest inter-
rupts, there’s very likely a latent problem waiting to pounce.
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Most of these sorts of difficulties stem from slow ISRs, or from code
that leaves interrupts off for too long. Be wary of any code that executes a
disable-interrupt instruction. There’s rarely a good reason for it; this is
usually an indication of sloppy software.

It’s rather difficult to find a chunk of code that leaves interrupts off.
The ancient 8080 had a wonderful pin that showed interrupt state all of the
time. It was easy to watch this on the scope and look for interrupts that
came during that period. Now, having advanced so far, we have no such
easy troubleshooting aids. About the best one can do is watch the INTR
pin. If it stays asserted for long periods of time, and if it’s properly de-
signed (i.e., stays asserted until INTA), then interrupts are certainly off.

One design rule of thumb will help minimize missing interrupts:
reenable interrupts in ISRs at the earliest safe spot.

Reentrancy Problems

Well-designed interrupt handlers are largely reentrant. Reentrant
functions-—a.k.a. “pure code”—are often falsely thought to be any code
that does not modify itself. Too many programmers feel that if they sim-
ply avoid self-modifying code, their routines are guaranteed to be reen-
trant, and thus interrupt-safe. Nothing could be further from the truth.

A function is reentrant if, while it is being executed, it can be rein-
voked by itself, or by any other routine.

Suppose your main-line routine and the ISRs are all coded in C. The
compiler will certainly invoke runtime functions to support floating-point
math, I/O, string manipulations, etc. If the runtime package is only par-
tially reentrant, then your ISRs may very well corrupt the execution of the
main line code. This problem is common, but is virtually impossible to
troubleshoot, since symptoms result only occasionally and erratically.
There’s nothing more ulcer-inducing than isolating a bug that manifests it-
self only occasionally, and with totally different characteristics each time.

Sometimes we're tempted to cheat and write a nearly pure routine. If
your ISR merely increments a global 32-bit value, maybe to maintain time,
it would seem legal to produce code that does nothing more than a quick
and dirty increment. Beware! Especially when writing code on an 8- or 16-
bit processor, remember that the C compiler will surely generate several
instructions to do the deed. On a 186, the construct ++j might produce

mov ax, [j]
add ax, 1 ; increment low part of j
mov [§]1,ax
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mov ax, [J+1]
adc ax, 0 ; prop carry to high part of j
mov [J+1],ax

An interrupt in the middle of this code will leave j just partially
changed; if the ISR is reincarnated with j in transition, its value will surely
be corrupt. Or, if other routines use the variable, the ISR may change its
value at the same time other code tries to make sensible use of it.

The first solution is to avoid global variables! Globals are an abomi-
nation, a sure source of problems in any system, and an utter nightmare in
real-time code. Never, ever pass data between routines in globals unless
the following three conditions are fulfilled:

s Reentrancy issues are dealt with via some method, such as dis-
abling interrupts around their use—though I do not recommend
disabling interrupts cavalierly, since that affects latency.

» The globals are absolutely needed because of a clear performance
issue. Most alternatives do impose some penalty in execution time.

¢ The global use is limited and well documented.

Inside of an ISR, be wary of any variable declared as a static. Though
statics have their uses, the ISR that reenables interrupts, and then is inter-
rupted before it completes, will destroy any statics declared within.

In 1997, on a dare, | examined firmware embedded in 23 completed
products, all of which were shipping to customers. Every one had this par-
ticular problem! Interestingly, the developers of 70% of the projects ad-
mitted to infrequent, unexplainable crashes or other odd behavior. One
frustrated engineer revealed that his product burped almost hourly, a symp-
tom “corrected” (perhaps “masked” would be a better term) by adding a
very robust watchdog timer circuit. This particularly bad system, which
had the reentrancy problem inside an ISR, also had the fastest interrupt rate
of any of the products examined.

This suggests using a stress test to reveal latent reentrancy defects.
Crank up the interrupt rates! If the timer comes once per second, try driv-
ing it every millisecond and see how the system responds. Assuming per-
formance issues don’t crash the code, this simple test often shows a horde
of hidden flaws.

Even the perfectly coded reentrant ISR leads to problems. If such a
routine runs so slowly that interrupts keep giving birth to additional copies
of it, eventually the stack will fill. Once the stack bangs into your variables,
the program is on its way to oblivion. You must ensure that the average in-
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terrupt rate is such that the routine will return more often than it is invoked.
Again, use the stress test!

Avoid NMI

Reserve NMI—the non-maskable interrupt—for a catastrophe such
as the apocalypse. Power-fail, system shutdown, and imminent disaster are
all good things to monitor with NMI. Timer or UART interrupts are not.

When I see an embedded system with the timer tied to NMI, I know.
for sure, that the developers found themselves missing interrupts. NMI
may alleviate the symptoms, but only masks deeper problems in the code
that must be cured.

NMI will break even well-coded interrupt handlers, since most ISRs
are non-reentrant during the first few lines of code where the hardware is
serviced. NMI will thwart your stack-management efforts as well.

If you’re using NMI, watch out for electrical noise! NMI is usually
an edge-triggered signal. Any bit of noise or glitching will cause perhaps
hundreds of interrupts. Since it cannot be masked, you’ll almost certainly
cause a reentrancy problem. I make it a practice to always properly termi-
nate the CPU’s NMI input via an appropriate resistor network.

NMI mixes poorly with most tools. Debugging any ISR—NMI or
otherwise—is exasperating at best. Few tools do well with single stepping
and setting breakpoints inside of the ISR.

Breakpoint Problems

Using any sort of debugging tool, suppose you set a breakpoint where
the ISR starts, and then start single stepping through the code. All is well.
since by definition interrupts are off when the routine starts. Soon, though,
you'll step over an EI instruction or its like. Suddenly, all hell breaks lose.

A regularly occurring interrupt such as a timer tick comes along
steadily, perhaps dozens or hundreds of times per second. Debugging at
human speeds means the ISR will start over while you’re working on a
previous instantiation. Pressing the “single step” button might make the
ISR start, but then itself be interrupted and restarted, with the final stop due
to your high-level debug command coming from this second incarnation.

Oddly, the code seems to execute backwards. Consider the case of
setting two breakpoints—the first at the start of the ISR and the second
much later into the routine. Run to the first breakpoint, stop, and then re-
sume execution. The code may very well stop at the same point, the same
first breakpoint, without ever going to the second. Again, this is simply due
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to the human-speed debugging that gives interrupting hardware a chance to
issue yet another request while the code’s stopped at the breakpoint.

In the case of NMI, though, disaster strikes immediately, since there
is no interrupt-safe state. The NMI is free to reoccur at any time, even in
the most critical non-reentrant parts of the code, wreaking havoc and
despair.

A lot of applications now just can’t survive the problems inherent in
using breakpoints. After all, stopping the code stops everything; your en-
tire system shuts down. If your code controls a moving robot arm, for ex-
ample, and you stop the code as the arm starts moving, it will keeping
going and going and going . . . until something breaks or a limit switch is
actuated. Years ago | worked on a 14-ton steel gauge; a Z80 controlled the
motion of this monster on railroad tracks. Hit a breakpoint and the system
ran off the end of the tracks!

Datacomm is another problem area. Stop the code via a breakpoint,
with data packets still streaming in, and there’s a good chance the receiv-
ing device will time out and start transmitting retry requests.

Though breakpoints are truly wonderful debugging aids, they are like
Heisenberg’s uncertainty principle: the act of looking at the system
changes it. You can cheat Heisenberg—at least in debugging embedded
code!—by using real-time trace, a feature available on all emulators and
some smart logic analyzers.

Trace collects the execution stream of the code in real time, without
slowing or altering the flow. It’s a completely nonintrusive way of view-
ing what happens.

Trace changes the philosophy of debugging. No longer does one stop
the code, examine various registers and variables, and then timidly step
along. With trace your program is running at full tilt, a breakneck pace that
trace does nothing to alter. You capture program flow, and then examine
what happened, essentially looking into the past as the code continues on
(Figure 4-6).

Trace shows only what happens on the bus. You can view neither reg-
isters nor variables unless an instruction reads or writes them to memory.
Worse, C’s stack-based design often makes it impossible to view variables
that were captured. You may see the transactions (pushes and pops), but the
tool may display neither the variable name nor the data in its native type.

With millions of instructions every second, it’s clearly impossible to
capture your program’s entire execution stream. Nor is it desirable, as a
trace buffer a hundred million frames deep is simply too much data to
plow through. Pick an emulator that offers flexible triggers—breakpoint-
like resources that start and stop trace collection.
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Execution Trace |asm] total: 65936 display: 506 0
CDEMON: 265 void far timer0_isr({void)

-00483 03{80328 60 PUSHAD

-00463 03£80329 06 PUSH E35

-00456 03f8032a al0f PUSH F3 f
~00455 03f8032c a80f PUSH G35

2 —_rT—r =

~-00436 03£8032f 0038bBe&s MOV AX,K 50038
-00432 03£60333 dgéB8e= MOV D5, AKX
-00431 03£803365 55 PUSH EEP
CDEMON: 269 nove_led();

—00430 03£80336 ffffe2e8.. CALL NEAR PTR CS:-158
CDEMON: 358 void move led()

-00417 03£8029d 56 PUSH ESI

-00415 03£802% 57 PUSH EDI 4
LCDEMON: 364 for (maskbit = 008, 2 = 0 ;: 1 < 8; naskbi |
-00415 03£8029f 000008be. MOV ESI,$00000008 |
-00408 03f802ad f£31 HOR DI,DI |
-00407 03f802a6 29eb JHP SKHORT 41 =
-00405 03£802d1 08f£83 CHP EDI, 802 e |
-00402 03f802d4 d27c JL SHORT -46 |
CDEMON: 366 led_port[i++] = '|': |
-00399 03f802a8 £989 MOV CX,DI i |
-D039%97 03f802aa 47 INC EDI |
-00397 03f802ab 000481ck. . MOV BYTE PTR DS:4[ECX].S7c {
CDEMON: 367 led_port[i++] = (pattern & maskbit) 7?2
-00393 03£802b2 f989 MOV ECX.EDI 7 |
~00392 D3£802bh4 47 INC EDI |
-00392 03£802b5 001e3585. . TEST DWORD PTR DS:[SUDUDDUle],ES'%
-00388 03f802bb 0774 JE SHORT 7

-00382 03£602c4 000020L8.. MOV EAX,$00000020

FIGURE 4-6 ISR trace collection on an emulator.

Are the triggers a pain to set up? Most emulators offer special menus
with dozens of trigger configuration options. Although this is essential for
finding the most obscure bugs, it is just too much work for the usual de-
bugging scenario, where you simply want to start collection when source
module line 124 executes. Simple triggers should be as convenient as
breakpoints, set perhaps via a right mouse click.

The moral is: trace is the right debugging tool, but keep ISRs simple.
Minimize their complexity to maximize their debuggability.

Easy ISR Debugging

What’s the fastest way to debug an ISR?

Don’t.

If your ISR is only 10 or 20 lines of code, debug by inspection. Don’t
fire up all kinds of complex and unpredictable tools.

Keep the handler simple and short. If it fails to operate correctly, a
few minutes reading the code will usually uncover the problem.
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After 25 years of building embedded systems I've learned that long
ISRs are a bad thing, and a symptom of poor code. Keep 'em short, keep
’em simple.

Measuring Performance

In my opinion, the debates about the relative speeds of C versus as-
sembly, or C versus C++, are meaningless. All performance issues are
nothing but a smokescreen unless you’re willing to take qualitative mea-
surements to replace the fog of speculation with the insight of facts.

Amateurs moan and speculate about performance, making random
stabs at optimizing code. Professionals take measurements, only then de-
ciding what action, if any, is appropriate.

If the ISR is not fast enough, your system will fail. Unfortunately,
few of the developers I talk to have any idea what *“fast enough™ means.
Unless you generate the interrupt map I've discussed, only random luck
will save you from speed problems.

When designing the system, answer two questions: how fast is fast
enough? How will you know if you’ve reached this goal?

Some people are born lucky. Not me. I’ve learned that nature is per-
verse and will get me if it can. Call it high-tech paranoia. Plan for prob-
lems, and develop solutions for those problems before they occur. Assume
each ISR will be too slow, and plan accordingly.

A performance analyzer will instantly show the minimum, maxi-
mum, and average execution time required by your code, including your
ISRs (Figure 4-7). There’s no better tool for finding real-time speed issues.

Guesstimating Performance

In 1967 Keuffel & Esser (the greatest of the slide rule companies)
commissioned a study of the future. They predicted that by 2067 we’d see
three-dimensional TVs and cities covered by majestic domes. The study
somehow missed the demise of the slide rule (their main product) within 5
years.

Our need to compute, to routinely deal with numbers, led to the in-
vention of dozens of clever tools, from the abacus to logarithm tables to the
slide rule. All worked in concert with the user’s brain, in an iterative, back-
and-forth process that only slowly produced answers.

Now even grade-school children routinely use graphing calculators.
The device assumes the entire job of computation and sometimes even data
analysis. What a marvel of engineering! Powered by nothing more than a
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Mecrformance Analysis Window h _-|

Min Max Total
5.052 uS 5.052 us AC.06EmS  96.00S mS
374976uS 72515245 550.064uS  1.100mS
720192u5 14201 mS 1.070mS 2141 w5 00002
1.U8U ms 2332 ma 1.6l mS 3212 ms U2
1421 mS 2.822mS 2121 mS 424306 0OCO2
1.782 m§ 354 mS 2.658mS 5365ms 00002
2121 mS 4223 mS 3172mS £.344mS  00COZ
2482 mS 4,933 mS 3.708mS 7415 m5  00C0Z
2822 mS £.624 mS 4.222m8% 2446 S Q0CO2
3182 mS £.335 mS 4.799mS 3517 mS  0OCOZ
1984005 24.800u5 2480005 43600.5  QOCO2
370016 w3 720,192 u3 545104 us 1.030ms  GOC0Z
TN10408  1.430wS 1.081 mS 2162mS  Q0OCOZ
1.070 m$ 2121 m3 1598 mS 3191 mE  0ODCOZ
1431 mS 2832 m5 2132m5 4264 m5 (002
1.771 mS 3523 ms 2.647 mS 5.293mA  OCOZ
2132 mS A.234 5 3183ms E2EEm5  DOCOZ
2471 S 4.923mS 3697 m3 7334 mS 00002
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FIGURE 4-7 A performance analyzer's output.

stream of photons, pocket-sized, and costing virtually nothing, our elec-
tronic creations give us astonishing new capabilities.

Those of us who spend our working lives parked in front of comput-
ers have even more powerful computational tools. The spreadsheet is a
multidimensional version of the hand calculator, manipulating thousands
of formulas and numbers with a single keystroke. Excel is one of my fa-
vorite engineering tools. It lets me model weird systems without writing a
line of code, and tune the model almost graphically. Computational tools
have evolved to the point where we no longer struggle with numbers; in-
stead, we ask complex “what-if ” questions.

Network computing lets us share data. We pass spreadsheets and
documents among co-workers with reckless abandon. In my experience,
big, widely shared spreadsheets are usually incorrect. Someone injects a
row or column, forgetting to adjust a summation or other formula. The data
at the end is so complex, based on so many intermediate steps, that it’s
hard to see if it’s right or wrong . . . so we assume it’s right. This is the
dark side of a spreadsheet: no other tool can make so many incorrect cal-
culations so fast.

Mechanical engineers now use finite element analysis to predict the
behavior of complex structures under various stresses. The computer mod-
els a spacecraft vibrating as it is boosted to orbit, giving the designers in-
sight into its strength without the need to run expensive tests on shakers.
Yet, finite element analysis is so complex, with millions of interrelated
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calculations! How do they convince themselves that a subtle error isn’t
lurking in the model? As with subtle errors hidden in large spreadsheets,
the complexity of the calculations removes the element of “feel.” Is that
complex carbon-fiber structure strong enough when excited at 20 Hz?
Only the computer knows for sure.

The modern history of engineering is one of increasing abstraction
from the problem at hand. The C language insulates us from the tedium of
assembly, which itself removes us from machine code. Digital ICs protect
us from the very real analog behavior of each of the millions of transistors
encapsulated in the chip. When we embed an operating system into a prod-
uct, we're given a wealth of services we can use without really under-
standing the how and why of their operation.

Increasing abstraction is both inevitable and necessary. An example
is the move to object-oriented programming, and more importantly, soft-
ware reuse, which will—someday—Ilead to “software ICs” whose opera-
tion is as mysterious as today’s giant LSI devices, yet that elegantly and
cheaply solve some problem.

But, abstraction comes at a price. In too many cases we're losing the
“feel” of the problem. Engineering has always been about building things,
in the most literal of contexts. Building, touching, and experiencing failure
are the tactile lessons that burn themselves into the wiring of our brains.
When we delve deeply into how and why things work, when we get burned
by a hot resistor, when we’ve had a tantalum capacitor installed backwards
explode in our face, when a CMOS device fails from excessive undershoot
on an input, we develop our own rules of thumb that give us a new under-
standing of electronics. Book learning tells us what we need to know. Han-
dling components and circuits builds a powerful subconscious knowledge
of electronics.

A friend who earns his keep as a consultant sometimes has to admit
that a proposed solution looks good on paper, but just does not feel right.
Somehow we synthesize our experience into an emotional reaction as pow-
erful and immediate as any other feeling. I've learned to trust that initial
impression, and to use that bit of nausea as a warning that something is not
quite right. The ground plane on that PCB just doesn’t look heavy enough.
The capacitors seem a long way from the chips. That sure seems like a long
cable for those fast signals. Gee, there’s a lot of ringing on that node.

Practical experience has always been an engineer’s stock-in-trade.
We learn from our successes and our failures. This is nothing new. Accord-
ing to Cathedral, Forge and Waterwheel (Frances and Joseph Gies, 1994,
HarperCollins, New York), in the Middle Ages “Engineers had some
command of geometry and arithmetic. What they lacked was engineering
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theory, in place of which they employed their own experience, that of their
colleagues, and rule of thumb.”

The flip side of a “feel” for a problem is an ability to combine that
feeling with basic arithmetic skills to very quickly create a first approxi-
mation to a solution, something often called “guesstimating.” This won-
derful word combines “guess”—based on our engineering feel for a
problem—and “‘estimate”—a partial analytical solution.

Guesstimates are what keep us honest: “200,000 bits per second
seems kind of fast for an 8-bit micro to process” (this is the guess part);
“Why, that’s 1/200,000 or 5 microseconds per bit” (the estimate part).
Maybe there’s a compelling reason why this guesstimate is incorrect. but
it flags an area that needs study.

In 1995 an Australian woman swam the 110 miles from Havana to
Key West in 24 hours. Public Radio reported this information in breathless
excitement, while I was left baffled. My guesstimate said this is unlikely.
That’s a 4.5 MPH average, a pace that’s hard to beat even with a brisk
walk, yet the she maintained this for a solid 24 hours.

Maybe swimmers are speedier than I'd think. Perhaps the Gulf
Stream spun off a huge gyre, a rotating current that gave her a remarkable
boost in the right direction. I'm left puzzled, as the data fails my guessti-
mating sense of reasonableness. And so, though our sense of “feel” can
and should serve as a measure against which we can evaluate the mounds
of data tossed our way each dayi, it is imperfect at best.

The art of “guesstimating” was once the engineer’s most basic tool.
Old engineers love to point to the demise of the slide rule as the culprit.
“Kids these days,” they grumble. Slide rules forced one to estimate the so-
lution to every problem. The slide rule did force us to have an easy famil-
iarity with numbers and with making coarse but rapid mental calculations.

We forget. though, just how hard we had to work to get anything
done! Nothing beats modern technology for number crunching, and I'd
never go back. Remember that the slide rule forced us to estimate all an-
swers; the calculator merely allows us to accept any answer as gospel with-
out doing a quick mental check.

We need to grapple with the size of things, every day and in every ave-
nue. A million times a million is, well, 10'2. The gigahertz is a period of one
nanosecond. A speed of 4.5 miles per hour seems high for a swimmer. It’s
unlikely your interrupt service routine will complete in 2 microseconds.

We’re building astonishing new products, the simplest of which have
hundreds of functions requiring millions of transistors. Without our amaz-
ing tools and components, those things that abstract us from the worries of
biasing each individual transistor, we’d never be able to get our work done.
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Though the abstraction distances us from how things work, it enables us to
make things work in new and wondrous ways.

The art of guesstimating fails when we can’t or don’t understand the
system. Perhaps in the future we’ll need computer-aided guesstimating
tools, programs that are better than feeble humans at understanding vast in-
terlocked systems. Perhaps this will be a good thing. Maybe, like double-
entry bookkeeping, a computerized guesstimator will at least allow a
cross-check on our designs.

When I was a nerdy kid in the 1960s, various mentors steered me to
vacuum tubes long before I ever understood semiconductors. A tube is
wonderfully easy to understand. Sometimes you can quite literally see the
blue glow of electrons splashing off the plate onto the glass. The warm
glow of the filaments, the visible mesh of the control grids, always con-
jured a crystal-clear mental image of what was going on.

A 100,000-gate ASIC is neither warm nor clear. There's no emo-
tional link between its operation and your understanding of it. It's a pla-
tonic relationship at best.

So, what’s an embedded engineer to do? How can we reestablish this
“feel” for our creations, this gut-level understanding of what works and
what doesn’t?

The first part of learning to guesstimate is to gain an intimate under-
standing of how things work. We should encourage kids to play with tech-
nology and science. Help them get their hands greasy. It matters little if
they work on cars, electronics, or in the sciences. Nurture that odd human
attribute that couples doing with learning.

The second part of guesstimation is a quick familiarity with math.
Question engineers (and your kids) deeply about things. “Where did that
number come from?” “Do you believe it . . . and why?”

Work on your engineer’s understanding of orders of magnitude. It’s
astonishing how hard some people work to convert frequency to period,
yet this is the most common calculation we do in computer design. If you
know that a microsecond is a megahertz, a millisecond is 1000 Hz, you’ll
never spend more than a second getting a first-approximation conversion.

The third ingredient is to constantly question everything. As the
bumper sticker says, “Question authority.” As soon as the local expert
backs up his opinion with numbers, run a quick mental check. He's prob-
ably wrong.

In To Engineer Is Human (1982, Random House, New York), author
Henry Petroski says, “Magnitudes come from a feel for the problem, and
do not come automatically from machines or calculating contrivances.”
Well put, and food for thought for all of us.
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A simple CPU has very predictable timing. Add a prefetcher or
pipeline and timing gets fuzzier, but still is easy to figure within 10 or 20%.
Cache is the wildcard, and as cache size increases, determinism dimin-
ishes. Thankfully, today few small embedded CPUs have even the small-
est amount of cache.

Your first weapon in the performance arsenal is developing an un-
derstanding of the target processor. What can it do in one microsecond?
One instruction? Five? Some developers use very, very slow clocks when
not much has to happen—one outfit [ know runs the CPU (in a spacecraft)
at 8 kHz until real speed is needed. At 8 kHz they get maybe 1000 in-
structions per second. Even small loops become a serious problem. Un-
derstanding the physics—a perhaps fuzzy knowledge of just what the CPU
can do at this clock rate—means the big decisions are easy to make.

Estimation is one of engineering’s most important tools. Do you
think the architect designing a house does a finite element analysis to fig-
ure the size of the joists? No! He refers to a manual of standards. A 15-foot
unsupported span typically uses joists of a certain size. These estimates.
backed up with practical experience, ensure that a design, while perhaps
not optimum, is adequate.

We do the same in hardware engineering. Electrons travel at about
one or two feet per nanosecond, depending on the conductor. It’s hard to
make high-frequency first harmonic crystals. so use a higher order har-
monic. Very small PCB tracks are difficult to manufacture reliably. All of
these are ingredients of the “practice” of the art of hardware design. None
of these are tremendously accurate: you can, after all, create one-mil tracks
on a board for a ton of money. The exact parameters are fuzzy, but the gen-
eral guidelines are indeed correct.

So, too, for software engineering. We need to develop a sense of the
art. A 68HCI6, at 16 MHz, runs so many instructions per second (plus or
minus). With this particular compiler you can expect (more or less) this
sort of performance under these conditions.

Data, even fuzzy data, lets us bound our decisions, greatly improving
the chances of success. The alternative is to spend months and years gen-
erating a mathematically precise solution—which we won’t do—or to burn
incense and pray . . . the usual approach.

Experiment. Run portions of the code. Use a stopwatch—metaphor-
ical or otherwise—to see how it executes. Buy a performance analyzer or
simply instrument sections of the firmware to understand the code’s per-
formance.

The first time you do this you’ll think, “This is so cool,” and you’ll
walk away with a clear number: xxx microseconds for this routine. With
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time you’ll develop a sense of speed. “You know, integer compares are
pretty damn fast on this system.” Later—as you develop a sense of the
art—you’ll be able to bound things. “Nah, there’s no way that loop can
complete in 50 microseconds.”

This is called experience, something that we all too often acquire
haphazardly. We plan our financial future, we work daily with our kids on
their homework, even remember to service the lawnmower at the begin-
ning of the season, yet neglect to proactively improve our abilities at work.

Experience comes from exposure to problems and from learning
from them. A fast, useful sort of performance expertise comes from ex-
trapolating from a current product to the next. Most of us work for a com-
pany that generally sells a series of similar products. When it’s time to
design a new one, we draw from the experience of the last, and from the
code and design base. Building version 2.0 of a widget? Surely you’ll use
algorithms and ideas from 1.0. Use 1.0 as a testbed. Gather performance
data by instrumenting the code.

Always close the feedback loop! When any project is complete,
spend a day learning about what you did. Measure the performance of the
system to see just how accurate your processor utilization estimates were.
The results are always interesting and sometimes terrifying. If, as is often
the case, the numbers bear little resemblance to the original goals, then fig-
ure out what happened, and use this information to improve your estimat-
ing ability. Without feedback, you work forever in the dark. Strive to learn
from your successes as well as your failures.

Track your system’s performance all during the project’s develop-
ment, so you’re not presented with a disaster two weeks before the sched-
uled delivery. It’s not a bad idea to assign CPU utilization specifications to
major routines during overall design, and then track these targets as you do
the schedule. Avoid surprises with careful planning.

A lot of projects eventually get into trouble by overloading the
processor. This is always discovered late in the development, during de-
bugging or final integration, when the cost of correcting the problem is at
the maximum. Then a mad scramble to remove machine cycles begins.

We all know the old adage that 80% of the processor burden lies in
20% of the code. It’s important to find and optimize that 20%, not some
other section that will have little impact on the system’s overall per-
formance. Nothing is worse than spending a week optimizing the wrong
routine!

If you understand the design, if you have a sense of the CPU, you’ll
know where that 20% of the code is before you write a line. Knowledge is
power.
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Learn about your hardware. Pure software types often have no idea
that the CPU is actively working against them. I talked to an engincer
lately who was moaning about how slow his new 386EX-based instrument
runs. He didn’t know that the 386EX starts with 31 wait states and so had
never reprogrammed it to a saner value.

A Poor Man’s Performance Analyzer

Do keep in tune with the embedded tool industry’s wide range of
performance-analyzing devices. But don’t fail to take detailed measure-
ments just because such a tool is not available. An oscilloscope coupled
to a few spare output bits can be a very effective and cheap performance
analyzer.

Whether you’re working on an 8-bit microcontroller or a 32-bit
VME-based system, always dedicate one or two parallel I/O bits to de-
bugging. That is, have the hardware designers include a couple of output
bits just for software debugging purposes. The cost is vanishingly small;
the benefits often profound.

Suppose you’d like to know an ISR’s (or any other sort of routine’s)
precise execution time. Near the beginning of the routine set a debug out-
put bit high; just before exiting return the bit to a zero. For example:

ISR_entry:
push all registers
set output bit high
service interrupt
reset output bit
pop registers
return

Put one scope probe on the bit. You’ll see a pattern that might re-
semble that in Figure 4-8. The ISR is executing when the signal is high.

In this example we see two invocations of the ISR. The first time
(note that the time base setting is 2 msec/division), the routine runs for a bit
over 3 msec. Next time (presumably the routine includes conditional
code), it runs for under 1 msec.

We also clearly see a 14-msec period between executions. If these
two samples are indicative of the system’s typical operation, the total CPU
overhead dedicated to this one interrupt is (3 msec+1 msec)/14 msec, or
29%.

Crank up the scope’s time base and you can measure the ISR’s exe-
cution time to any desired level of precision.
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FIGURE 4-8 Measuring an ISR’s execution time.

When I see a 29% CPU loading for a single ISR, [ immediately won-
der why the ISR takes so much time, It violates my commonsense, guess-
timating feel for how a system should behave. In a very simple, lightly
loaded system 29% might make sense; for more complex systems this
seems like a lot.

A single debug bit provides a wealth of timing information. Another
example is Figure 4-9, which shows an interrupt’s latency. Though chip
vendors spec interrupt latency in terms of the time the hardware needs to rec-
ognize the external event, to firmware folks a more useful measure is time-
from-input to the time we’re doing something useful, which may be many
dozens of clock cycles. The multiple levels of vectoring needed by the aver-
age processor, plus important housekeeping such as context pushing, are all
ultimately overhead incurred before the code starts doing something usetul.

Unhappily, this definition is rather slippery, as it depends on the be-
havior of the entire system. An ISR that leaves interrupts disabled in-
creases latency for every other task. Latency on a complex system is
virtzally impossible to predict, so take some measurements on time-criti-
cal interrupts.

The figure’s bottom trace is the assertion of an active low interrupt.
The top trace shows a debug bit the ISR drives high. Here we see almost
50 usec of latency between the device requesting service and the ISR start-
ing (measured as the time from /INTR falling to the debug bit rising).

Fifty microseconds again violates my commonsense feel for how
systems should operate. The number may be right . . . or it may indicate
that some other task is hogging time.
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FIGURE 4-9 Measuring interrupt latency.

Perhaps an even more profound measurement is the system’s total
idle time. Is the CPU 100% loaded? 90%? Without this knowledge you
cannot reliably tell the boss, “Sure, we can add that feature.”

Instead of driving the debug bit in ISRs, toggle it in the idle loop. Ap-
plications based on RTOSs often don’t use idle loops, so create a low-pri-
ority idle task that runs when there’s nothing to do.

The instrumented idle loop looks like this:

idle:
drive debug bit high
drive debug bit low
look for something to do
jump to idle

While the idle loop runs, the debug bit toggles up and down at a high
rate of speed (see Figure 4-10). If you turn the scope’s time base down
(to more time per division), the toggling bit looks more like hash (Figure
4-11), with long down periods indicating that the code is no longer in the
idle loop. In this example about a third of the processing time is unused.

If an interrupt occurs after setting the bit high, but before returning it
to zero, then the “busy” interval will look like a one on the scope and not
the zero indicated in Figure 4-11. “Idle” times are those where you see
hash—the signal rapidly cycling up and down. “Busy” times are those
where the signal is a steady one or zero.

Too many developers fall into the serendipity school of debugging.
They feel that if the system works and meets external specifications, it’s
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FIGURE 4-10 An idle loop quickly toggles the debug bit . . . until there’s
something to dol!

ready to ship. Wrong. Hardware engineers stress their creations by run-
ning them over a temperature range. We should do the same, instrument-
ing our code or otherwise using performance-measuring tools, to be quite
sure the system has sufficient margins. It’s trivial to take quite accurate
performance data.

The RTOS

Whenever an application manages multiple processes and devices,
whenever one handles a variety of activities, an RTOS is a logical tool that
lets us simplify the code and help it run better.

Consider the difficulty of building, say, a printer. Without an RTOS,
one monolithic hunk of code would have to manage the door switches and
paper feeding and communications and the print engine—all at the same
time. Add an RTOS, and individual tasks each manage one of these activ-
ities; except for some status information, no task needs to know much
about what any other one is doing. In this case the RTOS allows us to par-
tition our code in the time domain (each of these activities is running con-
currently) and procedurally (each task handles one thing).

An important truism of software engineering is that code complex-
ity—and thus development time—grows much faster than program size.
Any mechanism that segments the code into many small independent
pieces reduces the complexity; after all, this is why we write with lots of
functions and not one huge main() program. Clever partitioning yields bet-
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FIGURE 4-11 Measuring system idle time.

ter programs faster, and the RTOS is probably the most important way to
partition code in the time dimension.

At its simplest level, an RTOS is a context switcher. You break your
application into multiple tasks and allow the RTOS to execute the tasks in
a manner determined by its scheduling algorithm. A round-robin scheduler
typically allocates more or less fixed chunks of time to the tasks, execut-
ing each one for a few milliseconds or so before suspending it and going
to the next ready task in the queue. In this way all tasks get their fair shot
at some CPU time.

Another sort of scheduler is one using RMA—rate monotonic analy-
sis. If the CPU is not completely performance bound, it’s sometimes pos-
sible to guarantee hard real-time response by giving each task a priority
inversely proportional to the task’s period.

Regardless of scheduling mechanism, all RTOSs include priority
schemes so you can statically and dynamically cause the context switcher
to allocate more or less time to tasks. Important or time-critical activities
get first shot at running. Less important housekeeping tasks run only as
time allows. Your code sets the priorities; the RTOS takes care of starting
and running the tasks.

If context switching were the only benefit of an RTOS, then none
would be more than a few hundred bytes in size. Novice users all too often
miss the importance of the sophisticated messaging mechanisms that are a
standard part of all commercial operating systems. Queues and mailboxes
let tasks communicate safely.
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“Safely” is important, as global variables, the old standby of the des-
perate programmer, are generally a Bad Idea and are deadly in any inter-
rupt-driven system. We all know how globals promote bugs by being
available to every function in the code; with multitasking systems they lead
to worse conflicts as several tasks may attempt to modify a global all at the
same time.

Instead, the operating system’s communications resources let you
cleanly pass a message without fear of its corruption by other tasks. Prop-
erly implemented code lets you generate the real-time analogy of OOP’s
first tenet: encapsulation. Keep all of the task’s data local, bound to the
code itself, and hidden from the rest of the system.

For instance, one challenge faced by many embedded systems is
managing system status info. Generally, lots and lots of different inputs,
from door switches to the results of operator commands, affect total status.
Maintain the status in a global data structure and you’ll surely find it ham-
mered by multiple tasks. Instead, bind the data to a task, and let other tasks
set and query it via requests sent through queues or mailboxes.

Is this slower than using a global? Sure. It uses more memory, too.
Just as we make some compromises in selecting a compiler over an as-
sembler, proper use of an RTOS trades off a bit of raw CPU horsepower
for better code that’s easier to understand and maintain.

Most operating systems give you tools to manage resources. Surely
it’s a bad idea for multiple tasks to communicate with a UART or similar
device simultaneously. One way to control this is to lock the resource—
often using a semaphore or other RTOS-supplied mechanism—so only
one task at a time can access the device.

Resource locking and priority systems lead to one of the perils of
real-time systems: priority inversion. This is the deadly condition where a
low-priority task blocks a ready and willing high-priority task.

Suppose the system is more or less idle. A background, perhaps
unimportant, task asks for and gets exclusive access to a comm port. It’s
locked now, dedicated to the task until released. Suddenly an oh-my-god
interrupt occurs that starts off the system’s highest priority and most criti-
cal task. It, too, asks for exclusive comm port access, only to be denied that
by the OS since the resource is already in use. The high-priority task is in
control; the lower one can’t run, and can’t complete its activity and thus re-
lease the comm port. The least important activity of all has blocked the
most important!

Most operating systems recognize the problem and provide a work-
around. For example in VxWorks you can use their mutual exclusion sem-
aphores to enable “priority inheritance.” The task that locks the resource
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runs at the priority of the highest priority task that is blocked on the same
resource. This permits the normally less important task to complete, so it
can unlock the resource and allow the high-priority task to do its thing.

If you’re not using an RTOS in your embedded designs today, you
surely will be tomorrow. Get familiar with the concepts, as designing task-
ing code requires a somewhat different view—the time domain view—
than conventional procedural programming. Check out Jean LaBrosse’s
free uC/OS; the companion book is as good an introduction to using an
RTOS as you're likely to find. See www.ucos-ii.com.

Improvements to these tools come almost daily. Keep on top of the
field to avoid the fate of the dinosaurs.






CHAPTER 5
Firmware Musings

Hacking Peripheral Drivers

Experienced software engineers find no four-letter word more offen-
sive than “hack.” We believe that only amateurs, with more enthusiasm
than skill, hack code.

Yet hacking is indeed a useful tool in limited circumstances.

This is not a rant against software methodologies—far from it. I
think, though, a clever designer will identify risk areas and take steps to
mitigate those risks early in a development program. Sometimes cranking
code, maybe even lousy code, and diddling with it is the only way to fig-
ure out how to efficiently move forward.

No part of the firmware is more fraught with risks and unknowns
than the peripheral drivers. Don’t assume you are smart enough to create
complex hardware drivers correctly the first time! Plan for problems in-
stead of switching on the usual panic mode at debug time.

Before writing code, before playing with the hardware, build a shell
of an executable using the tools allocated for the project. Use the same
compiler, locator (if any). linker, and startup code. Create the simplest of
programs, nothing more than the startup code and a null loop in main() (or
its equivalent, when you're working in another language).

If the processor has internal chip-selects, figure out how to program
these and include the setups in your startup code. Then, make the null loop
work. This gives you confidence in the system’s skeleton, and more im-
portantly creates a backbone to plug test code into.

87
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Next, create a single, operating, interrupt service routine. You're
going to have to do this sooner or later anyway; swallow the bitter pill up
front.

Identify every hardware device that needs a driver. This may even
include memory, where (as with Flash) your code must do something
to make it operate. Make a list, check it twice—LEDs, displays, timers,
serial channels, DMA, communications controllers—include each com-
ponent.

Surely you’ll use a driver for each, though in some cases the driver
may be segmented into several hunks of code, such as a couple of ISRs, a
queue handler, and the like.

Next, set up a test environment for fiddling with the hardware. Use an
emulator, a ROM monitor, or any tool that lets you start and stop the code.
Manually exercise the ports (issue inputs and outputs to the device).

Gain mastery of each component by making it do something. Don’t
write code at this point—use your tool’s input/output commands. If the
port is a stack of LEDs, figure out how to toggle each one on and off. It’s
kind of fun, actually, to watch your machinations affect the hardware!

This is the time to develop a deep understanding of the device. All
too often the documentation will be incomplete or just plain wrong. Bits
inverted and transposed. Incorrect register addresses. You'll never find
these problems via the normal design—code—inspect—debug cycle. Only
playing with the devices—hacking!—with a decent debugging tool will
unveil the peripheral’s mysteries.

If you can’t speak the hardware lingo, working with a part that has
100 “easy-to-set-up” registers will be impossible. If you are a hardware ex-
pert, dealing with these complex parts is merely a nightmare. Count on
agony when the databook for a lousy timer weighs a couple of pounds.

Adopt a philosophy of creating a stimulus, then measuring the sys-
tem’s response with an appropriate tool.

Figures 5-1 and 5-2 illustrate this principle. The debugger’s (in this
case, driving an emulator) low-level commands configure the timer inside
a 386EX. The response, measured on a scope, shows how the timer be-
haves with the indicated setup.

Using a serial port? Connect a terminal and learn how to transmit a
single character. Again, manually set up the registers (carefully docu-
menting what you did), using parameters extracted from the databook,
using the tool’s output command to send characters. Lots of things can go
wrong with something as complicated as a UART, so I like to instrument
its output with a scope. If the baud rate is incorrect, a terminal will merely
display scrambled garbage; the scope will clearly show the problem.
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FIGURE 5-1 Hacking a peripheral driver.

Then write a shell of a driver in the selected language. Take the in-
formation gleaned from the databook and proven in your experiments to
work, and codify it in code once and for all. Test the driver. Get it right!

Now you’ve successfully created a module that handies that hard-
ware device.

Master one portion of a device at a time. On a UART, for example,
figure out how to transmit characters reliably and document what you

FIGURE 5-2 Hacking a peripheral driver.
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did, before you move on to receiving. Segment the problem to keep things
simple.

If only we could live with simple programmed inputs and outputs!
Most nontrivial peripherals will operate in an interrupt-driven mode. Add
ISRs, one at a time, testing each one, for each part of the device. For ex-
ample, with the UART, completely master interrupt-driven transmission
before moving on to interrupting reception.

Again, with each small success immediately create, compile, and test
code before you’ve forgotten the tricks required to make the little beast op-
erate properly. Databooks are cornucopias of information and misinfor-
mation; it’s astonishing how often you’ll find a bit documented incorrectly.
Don’t rely on frail memory to preserve this information. Mark up the book,
create and test the code, and move on.

Some devices are simply too complex to yield to manual testing. An
Ethernet driver or an IEEE-488 port both require so much setup that there’s
no choice but to initially write a lot of code to preset each internal register.
These are the most frustrating sorts of devices to handle, as all too often
there’s little diagnostic feedback—you set a zillion registers, burn some in-
cense, and hope it flies.

If your driver will transfer data using DMA, it still makes sense to
first figure out how to use it a byte at a time in a programmed /O mode.
Be lazy—it’s just too hard to master the DMA, interrupt completion rou-
tines, and the part itself all at once. Get single-byte transfers working be-
fore opening the Pandora’s box of DMA.

In the “make it work” phase we usually succumb to temptation and
hack away at the code, changing bits just to see what happens. The docu-
mentation generally suffers. Leave a bit of time before wrapping up each
completed routine to tune the comments. It’s a lot easier to do this when
you still remember what happened and why.

More than once I’ ve found that the code developed this way is ugly.
Downright lousy, in fact, as coding discipline flew out the window during
the bit-tweaking frenzy. The entire point of this effort is to master the de-
vice (first) and create a driver (second). Be willing to toss the code and
build a less offensive second iteration. Test that too, before moving on.

Selecting Stack Size

With experience, one learns the standard, scientific way to compute
the proper size for a stack: Pick a size at random and hope.
Unhappily, if your guess is too small the system will erratically and
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maybe infrequently crash in horrible ways. And RAM is still an expensive
resource, so erring on the side of safety drives recurring costs up.

With an RTOS the problem is multiplied, since every task has its own
stack.

It’s feasible, though tedious, to compute stack requirements when
coding in assembly language by counting calls and pushes. C—and even
worse, C++—obscures these details. Runtime calls further distance our
understanding of stack use. Recursion, of course, can blow stack require-
ments sky-high.

Any of a number of problems can cause the stack to grow to the point
where the entire system crashes. It’s tough to go back and analyze the fail-
ure after the crash, as the program will often write all over itself or the vari-
ables, removing all clues.

The best defense is a strong offense. Odds are your stack estimate
will be wrong, so instrument the code from the very beginning so you’ll
know, for sure, just how much stack is needed.

In the startup code or whenever you define a task, fill the task’s stack
with a unique signature such as Ox5S5AA (Figure 5-3). Then, probe the
stacks occasionally using your debugger and see just how many of the as-
signed locations have been used (the 0x55AA will be gone).

Knowledge is power.

Also consider building a stack monitor into your code. A stack mon-
itor is just a few lines of assembly language that compares the stack pointer

goaB |« 7T

2B3B
47DC
99A5
1234
55AA
55AA
55aA

FIGURE 5-3 Proactively fill the stack with Ox55AA to find overrun prob-
lems. Note that the lower three words have been unused.
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to some limit you’ve set. Estimate the total stack use, and then double or
triple the size. Use this as the limit.

Put the stack monitor into one or more frequently called ISRs. Jump
to a null routine, where a breakpoint is set, when the stack grows too big.

Be sure that the compare is “fuzzy.” The stack pointer will never ex-
actly match the limit.

By catching the problem before a complete crash, you can analyze
the stack’s contents to see what led up to the problem. You may see an
ISR being interrupted constantly (that is, a lot of the stack’s addresses be-
long to the ISR). This is a sure indication of code that’s too slow to keep
up with the interrupt rate. You can’t simply leave interrupts disabled
longer, as the system will start missing them. Optimize the algorithm and
the code in (hat ISR.

The Curse of Malloc()

Since the stack is a source of trouble, it’s reasonable to be paranoid
and not allocate buffers and other sizable data structures as automatics.
Watch out! Malloc(), a quite logical alternative, brings its own set of prob-
lems. A program that dynamically allocates and frees lots of memory—es-
pecially variably-sized blocks—will fragment the heap. At some point it’s
quite possible to have lots of free heap space, but so fragmented that mal-
loc() fails.

If your code does not check the allocation routine’s return code to
detect this error, it will fail horribly. Of course, detecting the error will
also no doubt result in a horrible failure, but gives you the opportunity to
show an error code so you’ll have a chance of understanding and fixing the
problem.

If you chose to use malloc(), always check the return value and
safely crash (with diagnostic information) if it fails.

Garbage collection—which compacts the heap from time to time—is
almost unknown in the embedded world. It’s one of Java’s strengths and
weaknesses, as the time spent compacting the heap generally shuts down
all tasking. Though there’s lots of work going on developing real-time
garbage collection, as of this writing there is no effective approach.

Sometimes an RTOS will provide alternative forms of malloc(),
which let you specify which of several heaps to use. If you can constrain
your memory allocations to standard-sized blocks, and use one heap per
size, fragmentation won'’t occur.

One option is to write a replacement function of the form pmalloc
(heap_number). You defined a number of heaps, each one of which has a
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dedicated allocation size. Heap 1 might return a 2000-byte buffer, heap 2
100 bytes, and so on. You then constrain allocations to these standard-size
blocks to eliminate the fragmentation problem.

When using C, if possible (depending on resource issues and proces-
sor limitations), always include Walter Bright's MEM package (www.
snippets.org/mem.txt) with the code, at least for debugging. MEM provides
the following:

s ISO/ANSI verification of allocation/reallocation functions
s Logging of all allocations and frees

Verifications of frees

Detection of pointer over- and under-runs

Memory leak detection

* Pointer checking

¢ QOut-of-memory handling

Banking

When asked how much money is enough, Nelson Rockefeller re-
portedly replied, “Just a little bit more.” We poor folks may have trouble
understanding his perspective, but all too often we exhibit the same re-
sponse when picking the size of the address space for a new design. Given
that the code inexorably grows to fill any allocated space, “just a little
more” is a plea we hear from the software people all too often.

Is the solution to use 32-bit machines exclusively, cramming a full 4
GB of RAM into our cost-sensitive application in the hopes that no one
could possibly use that much memory?

Though clearly most systems couldn’t tolerate the costs associated
with such a poor decision, an awful lot of designers take a middle tack, se-
lecting high-end processors to cover their posterior parts.

A 32-bit CPU has tons of address space. A 16-bitter sports (generally)
| to 16 Mb. It’s hard to imagine needing more than 16 Mb for a typical em-
bedded app: even 1 Mb is enough for the vast majority of designs.

A typical 8-bit processor, though, is limited to 64k. Once this was an
ocean of memory we could never imagine filling. Now C compilers let us
reasonably produce applications far more complex than we dreamed of
even a few years ago. Today the midrange embedded systems I see usually
burn up something between 64k and 256k of program and data space—too
much for an 8-bitter to handle without some help.

If horsepower were not an issue, I'd simply toss in an 80188 and
profit from the cheap 8-bit bus that runs 16-bit instructions over | Mb of
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address space. Sometimes this is simply not an option; an awful lot of us
design upgrades to older systems. We’re stuck with tens of thousands of
lines of “legacy” code that are too expensive to change. The code forces us
to continue using the same CPU. Like taxes, programs always get bigger,
demanding more address space than the processor can handle.

Perhaps the only solution is to add address bits. Build an external
mapper using PLDs or discrete logic. The mapper’s outputs go into high-
order address lines on your RAM and ROM devices. Add code to remap
these lines, swapping sections of program or data in and out as required.

Logical fo Physical

Add a mapper, though, and you’ll suddenly be confronted with two
distinct address spaces that complicate software design.

The first is the physical space—the entire universe of memory on
your system. Expand your processor’s 64k limit to 256k by adding two ad-
dress lines, and the physical space is 256k.

Logical addresses are the ones generated by your program, and
thence asserted onto the processor’s bus. Executing a MOV A (OFFFF) in-
struction tells the processor to read from the very last address in its 64k
logical address space. External banking hardware can translate this to some
other address, but the code itself remains blissfully unaware of such ac-
tions. All it knows is that some data comes from memory in response to the
OFFFF placed on the bus. The program can never generate a logical ad-
dress larger than 64k (for a typical 8-bit CPU with 16 address lines).

This is very much like the situation faced by 80x86 assembly-
language programmers: 64k segments are essentially logical spaces. You
can’t get to the rest of physical memory without doing something; in this
case reloading a segment register.

Conversely, if there’s no mapper, then the physical and logical spaces
are identical.

Hardware Issues

Consider doubling your address space by taking advantage of proces-
sor cycle types. If the CPU differentiates memory reads from fetches, you
may be able to easily produce separate data and code spaces. The 68000 s
seldom-used function codes are for just this purpose, potentially giving it
distinct 16-Mb code and data spaces.

Writes should clearly go to the data area (you’re not writing self-
modifying code, are you?). Reads are more problematic. It's easy to dis-
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tinguish memory reads from fetches when the processor generates a fetch
signal for every instruction byte. Some processors (e.g., the Z80) produce
a fetch only on the read of the first byte of a multiple byte opcode; subse-
quent ones all look the same as any data read. Forget trying to split the
memory space if cycle types are not truly unique.

When such a space-splitting scheme is impossible, then build an ex-
ternal mapper that translates address lines. However, avoid the temptation
to simply latch upper address lines. Though it’s easy to store A16, Al7,
et al. in an output port, every time the latch changes the entire program gets
mapped out. Though there are awkward ways to write code to deal with
this, add a bit more hardware to ease the software team’s job.

Design a circuit that maps just portions of the logical space in and
out. Look at software requirements first to see what hardware configura-
tion makes sense.

Every program needs access to a data area that holds the stack and
miscellaneous variables. The stack, for sure, must always be visible to the
processor so calls and returns function. Some amount of “common” pro-
gram storage should always be mapped in. The remapping code, at least,
should be stored here so that it doesn’t disappear during a bank switch. De-
sign the hardware so these regions are always available.

Is the address space limitation due to an excess of code or of data?
Perhaps the code is tiny, but a gigantic array requires tons of RAM.
Clearly, you’ll be mapping RAM in and out, leaving one area of ROM—
enough to store the entire program—always in view. An obese program
yields just the opposite design. In either of these cases a logical address
space split into three sections makes the most sense: common code (always
visible, containing runtime routines called by a compiler and the mapping
code), mapped code or data, and common RAM (stack and other critical
variables needed all the time).

For example, perhaps 0000 to O3FFF is common code. 4000 to 7FFF
might be banked code; depending on the setting of a port it could map to
almost any physical address. 8000 to FFFF is then common RAM.

Sure, you can use heroic programming to simplify the hardware. [
think it’s a mistake, as the incremental parts cost is minuscule compared to
the increased bug rate implicit in any complicated bit of code. It is possi-
ble—and reasonable—to remove one bank by copying the common code
to RAM and executing it there, using one bank for both common code and
data.

It’s easy to implement a three-bank design. Suppose addresses are
arranged as in the previous example. AO to Al14 go to the RAM, which is
selected when A15 = 1.
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Turn ROM on when A5 is low. Run A0 to Al4 into the ROM. As-
suming we’re mapping a 128k x 8 ROM into the 32k logical space, gener-
ate a fake A15 and A 16 (simple bits latched into an output port) that go to
the ROM’s A15 and A16 inputs. However, feed these through AND gates.
Enable the gates only when A15 = 0 (RAM off ) and A14 = 1 (bank area
enabled).

RAM is, of course, selected with logical addresses between 8000 and
FFFF. Any address under 4000 disables the gates and enables the first
4000 locations in ROM. When A 14 is a one, whatever values you’ve stuck
into the fake A15 and A16 select a chunk of ROM 4000 bytes long.

The virtue of this design is its great simplicity and its conservation of
ROM-—there are no wasted chunks of memory, a common problem with
other mapping schemes.

Occasionally a designer directly generates chip selects (instead of
extra address lines) from the mapping output port. I think this is a mistake.
It complicates the ROM select logic. Worse, sometimes it’s awfully hard
to make your debugging tools understand the translation from addresses to
symbols. By translating addresses you can provide your debugger with a
logical-to-physical translation cheat sheet.

The Software

In assembly language you control everything, so handling banked
memory is not too difficult. The hardest part of designing remappable code
is figuring out how to segment the banks. Casual calling of other routines
is out, as you dare not call something not mapped in.

Some folks write a bank manager that tracks which routines are cur-
rently located in the logical space. All calls, then, go through the bank
manager, which dynamically brings routines in and out as needed.

If you were foresighted enough to design your system around a real-
time operating system (RTOS), then managing the mapper is much sim-
pler. Assign one task per bank. Modify the context switcher to remap
whenever a new task is spawned or reawakened.

Many tasks are quite small—much smaller than the size of the logi-
cal banked area. Use memory more efficiently by giving tasks two bank-
ing parameters: the bank number associated with the task, and a starting
offset into the bank. If the context switcher both remaps and then starts the
task at the given offset, you’ll be able to pack multiple tasks per bank.

Some C compilers come with built-in banking support. Check with
your vendor. Some will completely manage a multiple bank system, auto-
matically remapping as needed to bring code in and out of 