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CHAPTER 1 
Introduction 

Any idiot can write code. Even teenagers can sling gates and PAL 
equations around. What is it that separates us from these amateurs? Do 
years of college necessarily make us professionals, or is there some other 
factor that clearly delineates engineers from hackers? With the phrase 
”sanitation engineer” now rooted in our lexicon, is the real meaning behind 
the word engineer cheapened? 

Other professions don’t suffer from such casual word abuse. Doctors 
and lawyers have strong organizations that, for better or worse, have 
changed the law of the land to keep the amateurs out. You just don’t find 
a teenager practicing medicine, so “doctor” conveys a precise, strong 
meaning to everyone. 

Lest we forget, the 1800s were known as “the great age of the engi- 
neer.” Engineers were viewed as the celebrities of the age, as the architects 
of tomorrow, the great hope for civilization. (For a wonderful description 
of these times, read Zsamard Kingdom Brunel, by L.T.C. Rolt.) 

How things have changed! 
Our successes at transforming the world brought stink and smog, fac- 

tones weeping poisons, and landfills overflowing with products made 
obsolete in the course of months. The Challenger explosion destroyed 
many people’s faith in complex technology (which shows just how little 
understanding Americans have of complexity). An odd resurgence of the 
worship of the primitive is directly at odds with the profession we em- 
brace. Declining test scores and an urge to make a lot of money now means 
that U.S. engineering enrollments have declined 25% in the decade from 
1988 to 1997. 

1 
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All in all, as Rodney Dangerfield says, “We just can’t get no 
respect.” 

It’s my belief that this attitude stems from a fundamental misunder- 
standing of what an engineer is. We’re not scientists, trying to gain a new 
understanding of the nature of the universe. Engineers are the world’s 
problem solvers. We convert dreams to reality. We bridge the gap between 
pure researchers and consumers. 

Problem solving is surely a noble profession, something of impor- 
tance and fundamental to the future viability of a complex society. Sup- 
pose our leaders were as single-mindedly dedicated to problem solving as 
is any engineer: we’d have effective schools, low taxation, and cities of 
light and growth rather than decay. Perhaps too many of us engineers lack 
the social nuances to effectively orchestrate political change, but there’s no 
doubt that our training in problem solving is ultimately the only hope for 
dealing with the ecological, financial, and political crises coming in the 
next generation. 

My background is in the embedded tool business. For two decades I 
designed, built, sold, and supported development tools, working with thou- 
sands of companies, all of whom were struggling to get an embedded prod- 
uct out the door, on time and on budget. Few succeed. In almost all cases, 
when the widget was finally complete (more or less; maintenance seems to 
go on forever because of poor quality), months or even years late, the en- 
gineers took maybe five seconds to catch their breath and then started on 
yet another project. Rare was the individual who, after a year on a project, 
sat and thought about what went right and wrong on the project. Even 
rarer were the people who engaged in any sort of process improvement, of 
learning new engineering techniques and applying them to their efforts. 
Sure, everyone learns new tools (say, for ASIC and FPGA design), but few 
understood that it’s just as important to build an effective way to design 
products, as it is to build the product. We’re not applying our problem- 
solving skills to the way we work. 

In the tool business I discovered a surprising fact: most embedded de- 
velopers work more or less in isolation. They may be loners designing all 
of the products for a company, or members of a company’s design team. 
The loner and the team are removed from others in the industry, so they de- 
velop their own generally dysfunctional habits that go forever uncorrected. 
Few developers or teams ever participate in industry-wide events or com- 
municate with the rest of the industry. We, who invented the communica- 
tions age, seem to be incapable of using it! 

One effect of this isolation is a hardening of the development arter- 
ies: we are unable to benefit from others’ experiences, so we work ever 
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harder without getting smarter. Another is a feeling of frustration, of think- 
ing, “What is wrong with us-why are our projects so much more a prob- 
lem than anyone else’s?’ In fact, most embedded developers are in the 
same boat. 

This book comes from seeing how we all share the same problems 
while not finding solutions. Never forget that engineering is about solving 
problems . . . including the ones that plague the way we engineer! 

Engineering is the process of making choices; make sure yours re- 
flect simplicity, common sense, and a structure with growth, elegance, and 
flexibility, with debugging opportunities built in. 

In general, we all share these same traits and the inescapable prob- 
lems that arise from them: 

We jump from design to building too fast. Whether it’s writing 
code or drawing circuits, the temptation to be doing rather than 
thinking inevitably creates disaster. 
We abdicate our responsibility to be part of the project’s manage- 
ment. When we blindly accept a feature set from marketing we’re 
inviting chaos: only engineering can provide a rational costhene- 
fit tradeoff. Acceding to capricious schedules figuring that heroics 
will save the day is simply wrong. When we’re not the boss, then 
we simply must manage the boss: educate, cajole, and demonstrate 
the correct ways to do things. 
We ignore the advances made in the past 50 years of software en- 
gineering, Most teams write code the way they did at age 15, when 
better ways are well known and proven. 
We accept lousy tools for lousy reasons. In this age of leases, 
loans, and easy money, there’s always a way to get the stuff we 
need to be productive. Usually a nattily attired accountant is the 
procurement barrier, a rather stunning development when one re- 
alizes that the accountant’s role is not to stop spending, but to 
spend in a cost-effective manner. The basic lesson of the industrial 
revolution is that capital investment is a critical part of corporate 
success. 
And finally, a theme I see repeated constantly is that of poor detail 
management. Projects run late because people forget to do simple 
things. Never have we had more detail management tools, from 
PDAs to personal assistants to conventional Daytimers and Day 
Runners. One afternoon almost a decade ago I looked up from a 
desk piled high with scraps of paper listing phone calls and to-dos 
and let loose a primal scream. At the time I went on a rampage, 
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looking for some system to get my life organized so I knew what 
to do when. For me, an electronic Daytimer--coupled with a de- 
termination to use it every hour of every day-works. The first 
thing that happens in the morning is the organizer pops up on my 
screen, there to live all day long, checked and updated constantly. 
Now I never (well, almost never) forget meetings or things I’ve 
promised to do. 

And so, I see a healthy engineering environment as the right mix of 
technology, skills, and processes, all constantly evaluated and managed. 



CHAPTER 2 
Disciplined 
Development 

Sojiivare engineering is not a discipline, Its practitioners cannot 
systematically make and fulfill promises to deliver sojhare systems 
on time and fairly priced. 

-Peter Denning 

The seduction of the keyboard is the downfall of all too many em- 
bedded projects. 

Writing code is fun. It’s satisfying. We feel we’re making progress 
on the project. Our bosses, all too often unskilled in the nuances of build- 
ing firmware, look on approvingly, smiling that we’re clearly accomplish- 
ing something worthwhile. 

As a young developer working on assembly-language-based systems, 
I learned to expect long debugging sessions. Crank some code, and figure 
on months making it work. Debugging is hard work (but fun-it’s great to 
play with the equipment all the time!), so I learned to budget 50% of the 
project time to chasing down problems. 

Years later, while making and selling emulators, I saw this pattern re- 
peated, constantly, in virtually every company I worked with. In fact, this 
very approach to building firmware is a godsend to the tool companies 
who all thrive on developers’ poor practices and resulting sea of bugs. 
Without bugs, debugger vendors would be peddling pencils. 

A quarter century after my own first dysfunctional development pro- 
jects, in my travels lecturing to embedded designers, I find the pattern re- 
mains unbroken. The rush to write code overwhelms all common sense. 

The overused word “process” (note that only the word is overused; 
the concept itself is sadly neglected in the firmware world) has garnered 
enough attention that some developers claim to have institutionalized a 
reasonable way to create software. Under close questioning, though, the 
majority of these admit to applying their rules in a haphazard manner. 

5 
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When the pressure heats up-the very time when sticking to a system that 
works is most needed-most succumb to the temptation to drop the sys- 
tems and just crank out code. 

As you’re boarding a plane you overhear the pilot tell his right- 
seater, “We’re a bit late today; let’s skip the take-off checklist.” Ab- 
surd? Sure. Yet this is precisely the tack we take as soon as deadlines 
loom; we abandon all discipline in a misguided attempt to beat our 
code into submission. 

Any Idiot Can Write Code 

In their studies of programmer productivity, Tom DeMarco and Tim 
Lister found that all things being equal, programmers with a mere 
6 months of experience typically perform as well as those with a year, a 
decade, or more. 

As we developers age we get more experience-but usually the same 
experience, repeated time after time. As our careers progress we justify our 
escalating salaries by our perceived increasing wisdom and effectiveness. 
Yet the data suggests that the value ofexperience is a myth. 

Unless we’re prepared to find new and better ways to create 
firmware, and until we implement these improved methods, we’re no more 
than a step above the wild-eyed teen-aged guru who lives on Coke and 
Twinkies while churning out astonishing amounts of code. 

Any idiot can create code; professionals find ways to consistently 
create high-quality sofhvare on time and on budget. 

Firmware Is the Most Expensive Thing 
in the Universe 

Norman Augustine, former CEO of Lockheed Martin, tells a reveal- 
ing story about a problem encountered by the defense community. A high- 
performance fighter aircraft is a delicate balance of conflicting needs: fuel 
range versus performance. Speed versus weight. It seemed that by the late 
1970s fighters were at about as heavy as they’d ever be. Contractors, al- 
ways pursuing larger profits, looked in vain for something they could add 
that cost a lot, but that weighed nothing. 

The answer: firmware. Infinite cost, zero mass. Avionics now ac- 
counts for more than 40% of a fighter’s cost. 
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Two decades later nothing has changed. . . except that firmware is 
even more expensive. 

What Does Firmware Cost? 

Bell Labs found that to achieve 1-2 defects per 1000 lines of code 
they produce 150 to 300 lines per month. Depending on salaries and over- 
head, this equates to a cost of around $25 to $50 per line of code. 

Despite a lot of unfair bad press, IBM’s space shuttle control soft- 
ware is remarkably error free and may represent the best firmware ever 
written. The cost? $lo00 per statement, for no more than one defect per 
10,000 lines. 

Little research exists on embedded systems. After asking for a per- 
line cost of firmware I’m usually met with a blank stare followed by an ab- 
surdly low number. “$2 a line, I guess” is common. Yet, a few more 
questions (How many people? How long from inception to shipping?) re- 
veals numbers an order of magnitude higher. 

Anecdotal evidence, crudely adjusted for reality, suggests that if you 
figure your code costs $5 a line you’re lying-or the code is junk. At 
$100/line you’re writing software documented almost to DOD standards. 
Most embedded projects wind up somewhere in between, in the $2040/line 
range. There are a few gurus out there who consistently do produce qual- 
ity code much cheaper than this, but they’re on the 1% asymptote of the 
bell curve. If you feel you’re in that select group-we all do-take data for 
a year or two. Measure time spent on a project from inception to comple- 
tion (with all bugs fixed) and divide by the program’s size. Apply your 
loaded salary numbers (usually around twice the number on your pay- 
check stub). You’ll be surprised. 

Quality Is Nice. As Long As It’s Free 

The cost data just described is correlated to a quality level. Since few 
embedded folks measure bug rates, it’s all but impossible to add the qual- 
ity measure into the anecdotal costs. But quality does indeed have a cost. 

We can’t talk about quality without defining it. Our intuitive feel that 
a bug-free program is a high-quality program is simply wrong. Unless 
you’re using the Netscape “give it away for free and make it up in volume” 
model, we write firmware for one reason only: profits. Without profits the 
engineering budget gets trimmed. Without profits the business eventually 
fails and we’re out looking for work. 
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Happy customers make for successful products and businesses. The 
customer’s delight with our product is the ultimate and only important 
measure of quality. 

Thus: the quality of a product is exactly what the customer says it is. 
Obvious software bugs surely mean poor quality. A lousy user inter- 

face equates to poor quality. If the product doesn’t quite serve the buyer’s 
needs, the product is defective. 

It matters little whether our code is flaky or marketing overpromised 
or the product’s spec missed the mark. The company is at risk because of 
a quality problem, so we’ve all got to take action to cure the problem. 

No-fault divorce and no-fault insurance acknowledge the harsh real- 
ities of trans-millennium life. We need a no-fault approach to quality as 
well, to recognize that no matter where the problem came from, we’ve all 
got to take action to cure the defects and delight the customer. 

This means that when marketing comes in a week before delivery 
with new requirements, a mature response from engineering is not a stream 
of obscenities. Maybe . . .just maybe . . . marketing has a point. We make 
mistakes (and spend heavily on debugging tools to fix them). So does mar- 
keting and sales. 

Substitute an assessment of the proposed change for curses. Quality 
is not free. If the product will not satisfy the customer as designed, if it’s 
not till a week before shipment that these truths become evident, then let 
marketing et al. know the impact on the cost and the schedule. 

Funny as the “Dilbert” comic strip is, it does a horrible disservice to 
the engineering community by reinforcing the hostility between engineers 
and the rest of the company. The last thing we need is more confrontation, 
cynicism, and lack of cooperation between departments. We’re on a mis- 
sion: make the customer happy! That’s the only way to consistently drive 
up our stock options, bonuses, and job security. 

Unhappily, “Dilbert” does portray too many companies all too accu- 
rately. If your outfit requires heroics all the time, if there’s no (polite) 
communication between departments, then something is broken. Fix it or 
leave. 

The CMM 
Few would deny that firmware is a disaster area, with poor-quality 

products getting to market late and over budget. Don’t become resigned to 
the status quo. As engineers we’re paid to solve problems. No problem is 
greater, no problem is more important, than finding or inventing faster, 
better ways to create code. 
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The Software Engineering Institute’s (www.sei.cmu.edu) Capability 
Maturity Model (CMM) defines five levels of software maturity and out- 
lines a plan to move up the scale to higher, more effective levels: 

1. hirial-Ad hoc and Chaotic. Few processes are defined, and suc- 
cess depends more on individual heroic efforts than on following 
a process and using a synergistic team effort. 

2. Repeatable-Intuitive. Basic project management processes are 
established to track cost, schedule, and functionality. Planning 
and managing new products are based on experience with similar 
projects. 

3 .  Defined-Standard and Consistent. Processes for management 
and engineering are documented, standardized. and integrated 
into a standard software process for the organization. All projects 
use an approved, tailored version of the organization’s standard 
software process for developing software. 

4. Managed-Predictable. Detailed software process and product 
quality metrics establish the quantitative evaluation foundation. 
Meaningful variations in process performance can be distin- 
guished from random noise, and trends in process and product 
qualities can be predicted. 

5. Optimizing-Charactenzed by Continuous Improvement. The or- 
ganization has quantitative feedback systems in place to identif) 
process weaknesses and strengthen them proactively. Project teams 
analyze defects to determine their causes: software processes are 
evaluated and updated to prevent known types of defects from 
recurring. 

Captain Tom Schorsch of the U.S. Air Force realized that the 
CMM is just an optimistic subset of the true universe of develop- 
ment models. He discovered the CIMM-Capability Immaturity 
Model-which adds four levels from 0 to -3: 

0. Negligenr-Indifference. Failure to allow successful devel- 
opment process to succeed. All problems are perceived to be techni- 
cal problems. Managerial and quality assurance activities are deemed 
to be overhead and superfluous to the task of software development 
process. 

- 1 .  Obstructive-Counterproductive. Counterproductive pro- 
cesses are imposed. Processes are rigidly defined and adherence to 
the form is stressed. Ritualistic ceremonies abound. Collective man- 
agement precludes assigning responsibility. 
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-2. Contemptuous-Arrogance. Disregard for good software 
engineering institutionalized. Complete schism between software 
development activities and software process improvement activities. 
Complete lack of a training program. 

-3. Undermining-Sabotage. Total neglect of own charter, 
conscious discrediting of organization’s software process improve- 
ment efforts. Rewarding failure and poor performance. 

If you’ve been in this business for a while, this extension to the 
CMM may be a little too accurate to be funny. . . . 

The idea behind the CMM is to find a defined way to predictably 
make good software. The words “predictable” and “consistently” are the 
keynotes of the CMM. Even the most dysfunctional teams have occasional 
successes-generally surprising everyone. The key is to change the way we 
build embedded systems so we are consistently successful, and so we can 
reliably predict the code’s characteristics (deadlines, bug rates, cost, etc.). 

Figure 2-1 shows the result of using the tenants of the CMM in 
achieving schedule and cost goals. In fact, level 5 organizations don’t al- 
ways deliver on time. The probability of being on time, though, is high and 
the typical error bands low. 

Ddivcry Date 

Improving the process improves the odds of meeting goals FIGURE 2-1 
and narrows the error bands. 
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Compare this to the performance of a Level 1 (Initial) team. The 
odds of success are about the same as at the craps tables in Las Vegas. A 
1997 survey in EE Times confirms this data in their report that 80% of em- 
bedded systems are delivered late. 

One study of companies progressing along the rungs of the CMM 
found the following per year results: 

37% gain in productivity 
18% more defects found pre-test 
19% reduction in time to market 
45% reduction in customer-found defects 

It’s pretty hard to argue with results like these. Yet the vast majority 
of organizations are at Level 1 (see Figure 2-2). In my discussions with 
embedded folks, I’ve found most are only vaguely aware of the CMM. An 
obvious moral is to study constantly. Keep up with the state of the art of 
software development. 

Figure 2-2 shows a slow but steady move from Level 1 to 2 and be- 
yond, suggesting that anyone not working on their software processes will 
be as extinct as the dinosaurs. You cannot afford to maintain the status quo 
unless your retirement is near. 

FIGURE 2-2 Over time companies are refining their development 
processes. 
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At the risk of being proclaimed a heretic and being burned at the 
stake of political incorrectness, I advise most companies to be wary of 
the CMM. Despite its obvious benefits, the pursuit of CMM is a difficult 
road all too many companies just cannot navigate. Problems include the 
following: 

1. Without deep management commitment CMM is doomed to 
failure. Since management rarely understands-or even cares 
about-the issues in creating high-quality software, their tepid 
buy-in all too often collapses when under fire from looming 
deadlines. 

2. The path from level to level is long and tortuous. Without a pas- 
sionate technical visionary guiding the way and rallying the 
troops, individual engineers may lose hope and fall back on their 
old, dysfunctional software habits. 

CMM is a tool. Nothing more. Study it. Pull good ideas from it. Pros- 
elytize its virtues to your management. But have a backup plan you can re- 
alistically implement now to start building better code immediately. 
Postponing improvement while you “analyze options” or “study the field” 
always leads back to the status quo. Act now! 

Solving problems is a high-visibility process; preventing prob- 
lems is low-visibility. This is illustrated by an old parable: 

In ancient China there was a family of healers, one of whom 
was known throughout the land and employed as a physician to a 
great lord. The physician was asked which of his family was the 
most skillful healer. He replied, “I tend to the sick and dying with 
drastic and dramatic treatments, and on occasion someone is cured 
and my name gets out among the lords.” 

“My elder brother cures sickness when it just begins to take root, 
and his skills are known among the local peasants and neighbors.” 

“My eldest brother is able to sense the spirit of sickness and 
eradicate it before it takes form. His name is unknown outside our 
home.” 

The Seven-Step Plan 
Arm yourself with one tool-one tool only-and you can make huge 

improvements in both the quality and delivery time of your next embedded 
project. 
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That tool is an absolute commitment to make some small but basic 

Given the will to change, here’s what you should do today 

1. Buy and use a Version Control System. 
2. Institute a Firmware Standards Manual. 
3. Start a program of Code Inspections. 
4. Create a quiet environment conducive to thinking. 

More on each of these in a few pages. Any attempt to institute just 
one or two of these four ingredients will fail. All couple synergistically to 
transform crappy code to something you’ll be proud of‘. 

changes to the way you develop code. 

Once you’re up to speed on steps 1-4. add the following: 

5. Measure your bug rates. 
6. Measure code production rates. 
7. Constantly study software engineering. 

Does this prescription sound too difficult? I’ve worked with compa- 
nies that have implemented steps 1-4 in one day! Of course they tuned the 
process over a course of months. That, though, is the very meaning of the 
word “process”-something that constantly evolves over time. 

But the benefits accrue as soon as you start the process. Let’s look at 
each step in a bit more detail. 

Sfep 7: Buy and Use a VCS 

Even a one-person shop needs a formal VCS (Version Control Sys- 
tem). It is truly magical to be able to rebuild any version of a set of 
firmware, even one many years old. The VCS provides a sure way to an- 
swer those questions that pepper every bug discussion, such as “When did 
this bug pop up?’ 

The VCS is a database hosted on a server. It’s the repository of all of 
the company’s code, make files. and the other bits and pieces that make up 
a project. There’s no reason not to include hardware files as well- 
schematics, artwork, and the like. 

A VCS insulates your code from the developers. It keeps people from 
fiddling with the source; it gives you a way to track each and every change. 
It controls the number of people working on modules, and provides mech- 
anisms to create a single correct module from one that has been (in error) 
simultaneously modified by two or more people. 

Sure, you can sneak around the VCS, but like cheating on your taxes 
there’s eventually a day of reckoning. Maybe you’ll get a few minutes of 
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time savings up front. . . inevitably followed by hours or days of extra 
time paying for the shortcut. 

Never bypass the VCS. Check modules in and out as needed. Don’t 
hoard checked-out modules “in case you need them.” Use the system as in- 
tended, daily, so there’s no VCS cleanup needed at the project’s end. 

The VCS is also a key part of the file backup plan. In my experience 
it’s foolish to rely on the good intentions of people to back up religiously. 
Some are passionately devoted; others are concerned but inconsistent. All 
too often the data is worth more than all of the equipment in a building- 
even more than the building itself. Sloppy backups spell eventual disaster. 

I admit to being anal-retentive about backups. A fire that destroys all 
of the equipment would be an incredible headache, but a guaranteed busi- 
ness-buster is the one that smokes the data. 

Yet, preaching about data duplication and implementing draconian 
rules is singularly ineffective. 

A VCS saves all project files on a single server, in the VCS database. 
Develop a backup plan that saves the VCS files each and every night. With 
the VCS there’s but one machine whose data is life and death for the com- 
pany, so the backup problem is localized and tractable. Automate the 
process as much as possible. 

One Saturday morning I came into the office with two small 
kids in tow. Something seemed odd, but my disbelief masked the 
nightmare. Awakening from the fog of confusion I realized all of en- 
gineering’s computers were missing! The entry point was a smashed 
window in the back. Fearful there was some chance the bandits were 
still in the facility I rushed the kids next door and called the cops. 

The thieves had made off with an expensive haul of brand-new 
computers, including the server that hosted the VCS and other criti- 
cal files. The most recent backup tape, which had been plugged into 
the drive on the server, was also missing. 

Our backup strategy, though, included daily tape rotation into 
a fireproof safe. After delighting the folks at Dell with a large emer- 
gency computer order, we installed the one-day-old tape and came 
back up with virtually no loss of data. 

If you have never had an awful, data-destroying event occur, 
just wait. It will surely happen. Be prepared. 
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Checkpoint Your Tools 
An often overlooked characteristic of embedded systems is their as- 

tonishing lifetime. It’s not unusual to ship a product for a decade or more. 
This implies that you’ve got to be prepared to support old versions of every 
product. 

As time goes on, though, the tool vendors obsolete their compilers, 
linkers, debuggers, and the like. When you suddenly have to change a 
product originally built with version 2.0 of the compiler-and now only 
version 5.3 is available-what are you going to do? The new version 
brings new risks and dangers. At the very least it will inflict a host of un- 
knowns on your product. Are there new bugs? A new code generator 
means that the real-time performance of the product will surely differ. Per- 
haps the compiled code is bigger, so it no longer fits in ROM. 

It’s better to simply use the original compiler and linker throughout 
the product’s entire lifecycle, so preserve the tools. At the end of a project 
check all of the tools into the VCS. It’s cheap insurance. 

When I suggested this to a group of engineers at a disk drive com- 
pany, the audience cheered! Now that big drives cost virtually nothing, 
there’s no reason not to go heavy on the mass storage and save everything. 

A lot of vendors provide version control systems. One that’s cheap, 
very intuitive, and highly recommended is Microsoft’s Sourcesafe. 

The frenetic march of technology creates yet another problem 
we’ve largely ignored: today’s media will be unreadable tomorrow. 
Save your tools on their distribution CD-ROMs and surely in the not- 
too-distant future CD-ROMs will be supplanted by some other, bet- 
ter, technology. In time you’ll be unable to find a CD-ROM reader. 

The VCS lives on your servers, so it migrates with the advance 
of technology. If you’ve been in this field for a while, you’ve tossed 
out each generation of unreadable media: can you find a drive that 
will read an 8-inch floppy anymore? How about a 160K 5-inch disk? 

Step 2: lnstitUfe a Firmware Standards Manual 
You can’t write good software without a consistent set of code guide- 

lines. Yet, the vast majority of companies have no standards-no written 
and enforced baseline rules. A commonly cited reason is the lack of such 
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standards in the public domain. So, I’ve removed this excuse by including 
a firmware standard in Appendix A. 

Not long ago there were so many dialects of German that people in 
neighboring provinces were quite unable to communicate with each other, 
though they spoke the same nominal language. Today this problem is man- 
ifested in our code. Though the programming languages have international 
standards, unless we conform to a common way of expressing our ideas 
within the language, we’re coding in personal dialects. Adopt a standard 
way of writing your firmware, and reject code that strays from the 
standard . 

The standard ensures that all firmware developed at your company 
meets minimum levels of readability and maintainability. Source code has 
two equally important functions: it must work, and it must clearly commu- 
nicate how it works to a future programmer, or to the future version of 
yourself. Just as standard English grammar and spelling make prose read- 
able, standardized coding conventions illuminate the software’s meaning. 

A peril of instituting a firmware standard is the wildly diverse opin- 
ions people have about inconsequential things. Indentation is a classic ex- 
ample: developers will fight for months over quite minor issues. The only 
important thing is to make a decision. “We are going to indent in this man- 
ner. Period.” Codify it in the standard, and then hold all of the developers 
to those rules. 

Step 3: Use Code Inspections 

There is a silver bullet that can drastically improve the rate at which 
you develop code while also reducing bugs. Though this bit of magic can 
reduce debugging time by an easy factor of 10 or more, despite the fact that 
it’s a technique well known since 1976, and even though neither tools nor 
expensive new resources are needed, few embedded folks use it. 

Formal Code Inspections are probably the most important tool you 
can use to get your code out faster with fewer bugs. The inspection plays 
on the well-known fact that “two heads are better than one.” The goal is to 
identify and remove bugs before testing the code. 

Those that are aware of the method often reject it because of the as- 
sumed “hassle factor.” Usually few developers are aware of the benefits that 
have been so carefully quantified over time. Let’s look at some of the data. 

The very best of inspection practices yield stunning results. For ex- 
ample, IBM manages to remove 82% of all defects before testing 
even starts! 
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One study showed that, as a rule of thumb, each defect identified 
during inspection saves around 9 hours of time downstream. 
AT&T found inspections led to a 14% increase in productivity and 
a tenfold increase in quality. 
HP found that 80% of the errors detected during inspections were 
unlikely to be caught by testing. 
HP, Shell Research, Bell Northern, and AT&T all found inspec- 
tions 20 to 30 times more efficient than testing in detecting errors. 
IBM found that inspections gave a 23% increase in productivity 
and a 38% reduction in bugs detected after unit test. 

So, though the inspection may cost up to 20% more time up front, de- 
bugging can shrink by an order of magnitude or more. The reduced num- 
ber of bugs in the final product means you’ll spend less time in the 
mind-numbing weariness of maintenance as well. 

There is no known better way tofind bugs than through Code ln-  
spections! Skipping inspections is a sure sign of the amateur firmware 
jockey. 

The Inspection Team 
The best inspections come about from properly organized teams. 

Keep management off the team. Experience indicates that when a manager 
is involved usually only the most superficial bugs are caught, since no one 
wishes to show the author to be the cause of major program defects. 

Four formal roles exist: the Moderator, Reader, Recorder, and 
Author. 

The Moderator, always technically competent, leads the inspection 
process. He or she paces the meeting, coaches other team members, deals 
with scheduling a meeting place and disseminating materials before the 
meeting, and follows up on rework (if any). 

The Reader takes the team through the code by paraphrasing its op- 
eration. Never let the Author take this role, since he may read what he 
meant instead of what was implemented. 

A Recorder notes each error on a standard form. This frees the other 
team members to focus on thinking deeply about the code. 

The Author’s role is to understand the errors and to illuminate un- 
clear areas. As Code Inspections are never confrontational, the Author 
should never be in a position of defending the code. 

An additional role is that of Trainee. No one seems to have a clear 
idea how to create embedded developers. One technique is to include new 
folks (only one or two per team) into the Code Inspection. The Trainee 
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then gets a deep look inside the company’s code, and an understanding of 
how the code operates. 

It’s tempting to reduce the team size by sharing roles. Bear in mind 
that Bull HN found four-person inspection teams to be twice as efficient 
and twice as effective as three-person teams. A Code Inspection with three 
people (perhaps using the Author as the Recorder) surely beats none at all, 
but do try to fill each role separately. 

The Process 
Code Inspections are a process consisting of several steps; all are re- 

quired for optimal results. The steps, shown in Figure 2-3, are as follows: 

Planning-When the code compiles cleanly (no errors or warning 
messages), and after it passes through Lint (if used) the Author submits 
listings to the Moderator, who forms an inspection team. The Moderator 
distributes listings to each team member, as well as other related docu- 
ments such as design requirements and documentation. The bulk of the 
Planning process is done by the Moderator, who can use email to coordi- 
nate with team members. An effective Moderator respects the time con- 
straints of his or her colleagues and avoids interrupting them. 

Overview-This optional step is a meeting when the inspection team 
members are not familiar with the development project. The Author pro- 

ers 

FIGURE 2-3 The Code Inspection process. 
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vides enough background to team members to facilitate their understand- 
ing of the code. 

Preparation-Inspectors individually examine the code and related 
materials. They use a checklist to ensure that they check all potential prob- 
lem areas. Each inspector marks up his or her copy of the code listing with 
suspected problem areas. 

Inspection Meeting-The entire team meets to review the code. The 
Moderator runs the meeting tightly. The only subject for discussion is the 
code under review; any other subject is simply not appropriate and is not 
allowed. 

The person designated as Reader presents the code by paraphrasing 
the meaning of small sections of code in a context higher than that of the 
code itself. In other words, the Reader is translating short code snippets 
from computer-lingo to English to ensure that the code’s implementation 
has the correct meaning. 

The Reader continuously decides how many lines of code to para- 
phrase, picking a number that allows reasonable extraction of meaning. 
Typically he’s paraphrasing two or three lines at a time. He paraphrases 
every decision point, every branch, case, etc. One study concluded that 
only 50% of the code gets executed during typical tests, so be sure the in- 
spection looks at everything. 

Use a checklist to be sure you’re looking at all important items. See 
the “Code Inspection Checklist” for details. Avoid ad hoc nitpicking; 
follow the firmware standard to guide all stylistic issues. Reject code that 
does not conform to the letter of the standard. 

Log and classify defects as Major or Minor. A Major bug is one that 
could result in a problem visible to the customer. Minor bugs are those that 
include spelling errors, noncompliance with the firmware standards, and 
poor workmanship that does not lead to a major error. 

Why the classification? Because when the pressure is on, when the 
deadline looms near, management will demand that you drop inspections 
as they don’t seem like “real work.” A list of classified bugs gives you the 
ammunition needed to make it clear that dropping inspections will yield 
more errors and slower delivery. 

Fill out two forms. The “Code Inspection Checklist” is a summary of 
the number of errors of each type that are found. Use this data to under- 
stand the inspection process’s effectiveness. The “Inspection Error List” 
contains the details of each defect requiring rework. 

The code itself is the only thing under review; the author may not be 
criticized. One way to defuse the tension in starting up new inspection 
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processes (before the team members are truly comfortable with it) is to 
have the Author supply a pizza for the meeting. Then he seems like the 
good guy. 

At this meeting, make no attempt to rework the code or to come up 
with alternative approaches. Just find errors and log them; let the Author 
deal with implementing solutions. The Moderator must keep the meeting 
fast-paced and efficient. 

Note that comment lines require as much review as code lines. Mis- 
spellings, lousy grammar, and poor communication of ideas are as deadly 
in comments as outright bugs in code. Firmware must work, and it must 
also communicate its meaning. The comments are a critical part of this and 
deserve as much attention as the code itself. 

It’s worthwhile to compare the size of the code to the estimate origi- 
nally produced (if any!) when the project was scheduled. If it varies sig- 
nificantly from the estimate, figure out why, so you can learn from your 
estimation process. 

Limit inspection meetings to a maximum of two hours. At the con- 
clusion of the review of each function decide whether the code should be 
accepted as is or sent back for rework. 

Rework-The Author makes all suggested corrections, gets a clean 
compile (and Lint if used) and sends it back to the Moderator. 

Follow-up-The Moderator checks the reworked code. Once the 
Moderator is satisfied, the inspection is formally complete and the code 
may be tested. 

Other Points 
One hidden benefit of Code Inspections is their intrinsic advertising 

value. We talk about software reuse, while all too often failing spectacu- 
larly at it. Reuse is certainly tough, requiring lots of discipline. One reason 
reuse fails, though, is simply because people don’t know a particular chunk 
of code exists. If you don’t know there’s a function on the shelf, ready to 
rock ’n’ roll, then there’s no chance you’ll reuse it. When four people in- 
spect code, four people have some level of buy-in to that software, and all 
four will generally realize the function exists. 

The literature is full of the pros and cons of inspecting code before 
you get a clean compile. My feeling is that the compiler is nothing more 
than a tool, one that very cheaply and quickly picks up the stupid, silly er- 
rors we all make. Compile first and use a Lint tool to find other problems. 
Let the tools-not expensive people-pick up the simple mistakes. 

I also helieve that the only good compile is a clean compile. No error 
messages. No warning messages. Warnings are deadly when some other 
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programmer, maybe years from now, tries to change a line. When pre- 
sented with a screen full of warnings, he’ll have no idea if these are normal 
or a symptom of a newly induced problem. 

Do the inspection post-compile but pre-test. Developers constantly 
ask if they can do “a bit” of testing before the inspection-surely only to 
reduce the embarrassment of finding dumb mistakes in front of their peers. 
Sorry, but testing first negates most of the benefits. First, inspection is the 
cheapest way to find bugs; the entire point of it is to avoid testing. Second, 
all too often a pre-tested module never gets inspected. “Well, that sucker 
works OK; why waste time inspecting it?” 

Tune your inspection checklist. As you learn about the types of de- 
fects you’re finding, add those to the checklist so the inspection process 
benefits from actual experience. 

Inspections work best when done quickly-but not too fast. Fig- 
ure 2-4 graphs percentage of bugs found in the inspection versus number 
of lines inspected per hour as found in a number of studies. It’s clear that 
at 500 lines per hour no bugs are found. At 50 lines per hour you’re 
working inefficiently. There’s a sweet spot around 150 lines per hour that 
detects most of the bugs you’re going to find, yet keeps the meeting 
moving swiftly. 

Code Inspections cannot succeed without a defined firmware stan- 
dard. The two go hand in hand. 
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FIGURE 2-4 Percentage of bugs found versus number of lines inspected 
per hour. 
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What does it cost to inspect code? We do inspections because 
they have a significant net negative cost. Yet sometimes manage- 
ment is not so sanguine; it helps to show the total cost of an inspec- 
tion assuming there’s no savings from downstream debugging. 

The inspection includes four people: the Moderator, Reader, 
Recorder, and Author. Assume (for the sake of discussion) that these 
folks average a $60,000 salary, and overhead at your company is 
100%. Then: 

One person costs: $120,000 = $60,000 x 
2 (overhead) 

One person costs: $58/hr = $120,000/2080 work 
hours /year 

Four people cost: $232/hr = $58/hr x 4 
Inspection cost/line: $1.54 = $232 per hour/l50 lines 

inspected per hour 

Since we know code costs $20-50 per line to produce, this 
$1.54 cost is obviously in the noise. 

For more information on inspections, check out Soware Inspection, 
Tom Gilb and Dorothy Graham, 1993, TJ Press (London), ISBN 0-201- 
63 18 1-4, and Software Inspection-An Industry Best Practice, David 
Wheeler, Bill Brykczynski, and Reginald Meeson, 1996 by IEEE Com- 
puter Society Press (CA), ISBN 0-8 186-7340-0. 

Step 4: Create a Quiet Work Znvironment 

For my money the most important work on software productivity in 
the last 20 years is DeMarco and Lister’s Peopleware (1987, Dorset House 
Publishing, New York). Read this slender volume, then read it again, and 
then get your boss to read it. 

For a decade the authors conducted coding wars at a number of dif- 
ferent companies, pitting teams against each other on a standard set of 
software problems. The results showed that, using any measure of per- 
formance (speed, defects, etc.), the average of those in the first quartile 
outperformed the average in the fourth quartile by a factor of 2.6. Surpris- 
ingly, none of the factors you’d expect to matter correlated to the best and 
worst performers. Even experience mattered little, as long as the program- 
mers had been working for at least 6 months. 
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Major 

Table 2- 1 Code Inspection Checklist 

Minor 

Code does not meet firmware standards 

Project: 

Author: 
Function Name: 

Date: 

Number of errors Error type 

Function size and complexity unreasonable 

Unclear expression of ideas in the code 

I I Poor encapsulation 

I I Function prototypes not correctly used 

I Data types do not match 

Uninitialized variables at start of function 

I I Uninitialized variables going into loops 

Poor logic-won’t function as needed 

Poor commenting 

Error condition not caught (e.g.. return codes from 

Switch statement without a default case (if only a subse 
malloc( I)? 

of the possible conditions used)? 

Incorrect syntax-such as proper use of =, =, &&, &, et( 

Non-reentrant code in dangerous places 

Slow code in an area where speed is important 

I Other I 
Other 

A Major bug is one that ifnot removed could result in a problem that 
the customer will see. Minor bugs are those that include spelling errors, 
non-compliance with the firmware standards, and poor workmanship that 
does not lead to a major error. 
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Table 2-2 Inspection Error List 

They did find a very strong correlation between the office environment 
and team performance. Needless interruptions yielded poor performance. 
The best teams had private (read “quiet”) offices and phones with “off” 
switches. Their study suggests that quiet time saves vast amounts of money. 

Think about this. The almost minor tweak of getting some quiet time 
can, according to their data, multiply your productivity by 260%! That’s an 
astonishing result. For the same salary your boss pays you now, he’d get 
almost three of you. 

The winners-those performing almost three times as well as the 
losers, had the following environmental factors: 
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Dedicated workspace 

1st quartile 4th quartile 

78 sq ft 46 sq ft 

Is it quiet? 
Is it private? 

Can you turn off phone? 

57% yes 29% yes 
62% yes 19% yes 

52% yes 10% yes 

Too many of us work in a sea of cubicles, despite the clear data show- 
ing how ineffective they are. It’s bad enough that there’s no door and no 
privacy. Worse is when we’re subjected to the phone calls of all of our 
neighbors. We hear the whispered agony as the poor sod in the cube next 
door wrestles with divorce. We try to focus on our work. . . but because 
we’re human, the pathos of the drama grabs our attention till we’re strain- 
ing to hear the latest development. Is this an efficient use of an expensive 
person’s time? 

Can you divert your calls? 

Frequent interruptions? 

One correspondent told of working for a Fortune 500 company 
when heavy hiring led to a shortage of cubicles for incoming pro- 
grammers. One was assigned a manager’s office, complete with 
window. Everyone congratulated him on his luck. Shortly a mainte- 
nance worker appeared-and boarded up the window. The office po- 
lice considered a window to be a luxury reserved for management, 
not engineers. 

Dysfunctional? You bet. 

76% yes 19% yes 

38% yes 76% yes 

Various studies show that after an interruption it takes, on average, 
around 15 minutes to resume a “state of flow”-where you’re once again 
deeply immersed in the problem at hand. Thus, if you are interrupted by 
colleagues or the phone three or four times an hour, you cannot get any 
creative work done! This implies that it’s impossible to do support and de- 
velopment concurrently. 

Yet the cube police will rarely listen to data and reason. They’ve in- 
vested in the cubes, and they’ve made a decision, by God! The cubicles are 
here to stay! 

This is a case where we can only wage a defensive action. Try to ed- 
ucate your boss, but resign yourself to failure. In the meantime, take some 
action to minimize the downside of the environment. Here are a few ideas: 
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Wear headphones and listen to music to drown out the divorce 
saga next door. 
Turn the phone off! If it has no “off” switch, unplug the damn 
thing. In desperate situations, attack the wire with a pair of wire 
cutters. Remember that a phone is a bell that anyone in the world 
can ring to bring you running. Conquer this madness for your most 
productive hours. 
Know your most productive hours. I work best before lunch; that’s 
when I schedule all of my creative work, all of the hard stuff. 1 
leave the afternoons free for low-IQ activities such as meetings, 
phone calls, and paperwork. 
Disable the email. It’s worse than the phone. Your two hundred 
closest friends who send the joke of the day are surely a delight, 
but if you respond to the email reader’s “bing” you’re little 
more than one of NASA’s monkeys pressing a button to get a 
banana. 
Put a curtain across the opening to simulate a poor man’s door. 
Since the height of most cubes is rather low, use a Velcro fastener 
or a clip to secure the curtain across the opening. Be sure others 
understand that when it’s closed you are not willing to hear from 
anyone unless it’s an emergency. 

An old farmer and a young farmer are standing at the fence 
talking about farm lore, and the old farmer’s phone starts to ring. 
The old farmer just keeps talking about herbicides and hybrids, 
until the young farmer interrupts “Aren’t you going to answer 
that?” 

“What fer?” says the old farmer. 
“Why, ’cause it’s ringing. Aren’t you going to get it?’ says the 

younger. 
The older farmer sighs and knowingly shakes his head. 

“Nope,” he says. Then he looks the younger in the eye to make sure 
he understands, “Ya see, I bought that phone for my convenience.” 

Never forget that the phone is a bell that anyone in the world 
can ring to make you jump. Take charge of your time! 

It stands to reason that we need to focus to think, and that we need to 
think to create decent embedded products. Find a way to get some privacy, 
and protect that privacy above all. 
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When I use the Peopleware argument with managers, they al- 
ways complain that private offices cost too much. Let’s look at the 
numbers. 

DeMarco and Lister found that the best performers had an aver- 
age of 78 square feet of private office space. Let’s be generous and 
use 100. In the Washington, DC, area in 1998, nice-very nice-full- 
service office space runs around $3O/square foot per year. 

Cost: 100 square feet: 

One engineer costs: 

$3000/yr = 100sqft x 

$120,000 = $60,000 x 
$30/ft/year 

2 (overhead) 

$3OO0/$120,000 
The office represents: 2.5% of cost of the worker = 

Thus, if the cost of the cubicle is zero, then only a 2.5% in- 
crease in productivity pays for the office! Yet DeMarco and Lister 
claim a 260% improvement. Disagree with their numbers? Even if 
the?, are off by an order of magnitude, a private ofice is 10 times 
cheaper than a cubicle. 

You don’t have to be a rocket scientist to see the true cost/ 
benefit of private offices versus cubicles. 

Step 5: Mearum Your Bug Rates 

Code Inspections are an important step in bug reduction. But bugs- 
some bugs-will still be there. We’ll never entirely eliminate them from 
firmware engineering. 

Understand, though, that bugs are a natural part of software develop- 
ment. He who makes no mistakes surely writes no code. Bugs-r defects, 
in the parlance of the software engineering community-are to be ex- 
pected. It’s OK to make mistakes, as long as we’re prepared to catch and 
correct these errors. 

Though I’m not big on measuring things, bugs are such a source of 
trouble in embedded systems that we simply have to log data about them. 
There are three big reasons for bug measurements: 

1. We find and fix them too quickly. We need to slow down and 
think more before implementing a fix. Logging the bug slows us 
down a trifle. 

2. A small percentage of the code will be junk. Measuring bugs helps 
us identify these functions so we can take appropriate action. 
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3. Defects are a sure measure of customer-perceived quality. Once a 
product ships, we’ve got to log defects to understand how well our 
firmware processes satisfy the customer-the ultimate measure of 
success. 

But first, a few words about “measurements.” 
It’s easy to take data. With computer assistance we can measure just 

about anything and attempt to correlate that data to forces as random as 
the wind. 

W. Edwards Deming, 1900-1993, quality-control expert, noted that 
using measurements as motivators is doomed to failure. He realized that 
there are two general classes of motivating factors: The first he called “in- 
trinsic.” These are things like professionalism, feeling like part of a team, 
and wanting to do a good job. “Extrinsic” motivators are those applied to 
a person or team, such as arbitrary measurements, capricious decisions, 
and threats. Extrinsic motivators drive out intrinsic factors, turning work- 
ers into uncaring automatons. This may or may not work in a factory en- 
vironment, but is deadly for knowledge workers. 

So measurements are an ineffective tool for motivation. 
Good measures promote understanding. They transcend the details 

and reveal hidden but profound truths. These are the sorts of measures we 
should pursue relentlessly. 

But we’re all very busy and must be wary of getting diverted by the 
measurement process. Successful measures have the following three char- 
acteri s ti cs : 

They’re easy to do. 
Each gives insight into the product andor processes. 
The measure supports effective change-making. If we take data 
and do nothing with it, we’re wasting our time. 

For every measure, think in terms of first collecting the data, then in- 
terpreting it to make sense of the raw numbers. Then figure on presenting 
the data to yourself, your boss, or your colleagues. Finally, be prepared to 
act on the new understanding. 

Stop, Look, Listen 
In the bad old days of mainframes, computers were enshrined in tech- 

nical tabernacles, serviced by a priesthood of specially vetted operators. 
Average users never saw much beyond the punch-card readers. 

In those days of yore an edit-execute cycle started with punching 
perhaps thousands of cards, hauling them to the computer center (being 
careful not to drop the card boxes; on more than one occasion I saw grad 
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students break down and weep as they tried to figure out how to order the 
cards splashed across the floor), and then waiting a day or more to see how 
the run went. Obviously, with a cycle this long, no one could afford to use 
the machine to catch stupid mistakes. We learned to “play computer” 
(sadly, a lost art) to deeply examine the code before the machine ever had 
a go at it. 

How things have changed! Found a bug in your code? No sweat-a 
quick edit, compile, and re-download takes no more than a few seconds. 
Developers now look like hummingbirds doing a frenzied edit-com- 
pile-download dance. 

It’s wonderful that advancing technology has freed us from the 
dreary days of waiting for our jobs to run. Watching developers work, 
though, I see we’ve created an insidious invitation to bypass thinking. 

How often have you found a problem in the code, and thought, “Uh, 
if I change this, maybe the bug will go away?” To me that’s a sure sign of 
disaster. If the change fails to fix the problem, you’re in good shape. The 
peril is when a poorly thought-out modification does indeed “cure” the de- 
fect. Is it really cured? Or did you just mask it? 

Unless you’ve thought things through, any change to the code is an 
invitation to disaster. 

Our fabulous tools enable this dysfunctional pattern of behavior. To 
break the cycle we have to slow down a bit. 

EEs traditionally keep engineering notebooks, bound volumes of 
numbered pages, ostensibly for patent protection reasons but more often 
useful for logging notes, ideas, and fixes. Firmware folks should do no less. 

When you run into a problem, stop for a few seconds. Write it down. 
Examine your options and list those as well. Log your proposed solution 
(see Figure 2-5). 

Keeping such a journal helps force us to think things through more 
clearly. It’s also a chance to reflect for a moment, and, if possible, come up 
with a way to avoid that sort of problem in the future. 

One colleague recently fought a tough problem with a wild 
pointer. While logging the symptoms and ideas for fixing the code, 
he realized that this particular flavor of bug could appear in all sorts 
of places in the code. Instead of just plodding on, he set up a logic 
analyzer to trigger on the wild writes . . . and found seven other 
areas with the same problem, all of which had not as yet exhibited a 
symptom. Now that’s what I call a great debug strategy-using ex- 
perience to predict problems! 
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FIGURE 2-5 A personal bug log. 

Identify Bad Code 
Barry Boehm found that typically 80% of the defects in a program 

are in 20% of the modules. IBM’s numbers showed that 57% of the bugs 
are in 7% of modules. Weinberg’s numbers are even more compelling: 
80% of the defects are in 2% of the modules. 

In other words, most of the bugs will be in a few modules orfinc- 
tions. These academic studies confirm our common sense. How many 
times have you tried to beat a function into submission, fixing bug after 
bug after bug, convinced that this one is (you hope!) the last? 

We’ve all also had that awful function that just simply stinks. It’s 
ugly. The one that makes you slightly nauseous every time you open it. A 
decent Code Inspection will detect most of these poorly crafted beasts, but 
if one slips through, we have to take some action. 

Make identifying bad code a priority. Then trash those modules and 
start over. 

It sure would be nice to have the chance to write every program twice: 
the first time to gain a deep understanding of the problem; the second to do 
it right. Reality’s ugly hand means that’s not an option. But the bad code, 
the code where we spend far too much time debugging, needs to be excised 
and redone. The data suggests we’re talking about recoding only around 5% 
of the functions-not a bad price to pay in the pursuit of quality. 

Boehm’s studies show that these problem modules cost, on average, 
four times as much as any other module. So, if we identify these modules 
(by tracking bug rates), we can rewrite them twice and still come out ahead! 
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Step 6: Measure Your Code Production Rates 

Schedules collapse for a lot of reasons. In the 50 years people have 
been programming electronic computers, we’ve learned one fact above 
all: without a clear project specification, any schedule estimate is nothing 
more than a stab in the dark. Yet every day dozens of projects start with lit- 
tle more definition than, “Well, build a new instrument kind of like the last 
one, with more features, cheaper, and smaller.” Any estimate made to a 
vague spec is totally without value. 

The corollary is that given the clear spec, we need time-sometimes 
lors of time-to develop an accurate schedule. It ain’t easy to translate a 
spec into a design, and then to realistically size the project. You simply 
cannot do justice to an estimate in two days, yet that’s often all we get. 

Further, managers must accept schedule estimates made by their peo- 
ple. Sure, there’s plenty of room for negotiation: reduce features, add re- 
sources, or permit more bugs (gasp!). Yet most developers tell me their 
schedule estimates are capriciously changed by management to reflect a 
desired end date, with no corresponding adjustments made to the project’s 
scope. 

The result is almost comical to watch, in a perverse way. Developers 
drown themselves in project management software, mousing milestone tri- 
angles back and forth to meet an arbitrary date cast in stone by manage- 
ment. The final printout may look encouraging, but generally gets the total 
lack of respect it deserves from the people doing the actual work. The 
schedule is then nothing more than dishonesty codified as policy. 

There’s an insidious sort of dishonest estimation too many of us en- 
gage in. It’s easy to blame the boss for schedule debacles, yet often we bear 
plenty of responsibility. We get lazy, and we don’t invest the same amount 
of thought, time, and energy into scheduling that we give to debugging. 
“Yeah, that section’s kind of like something I did once before” is, at best, 
just a start of estimation. You cannot derive time, cost, or size from such a 
vague statement . . . yet too many of us do. “Gee, that looks pretty easy- 
say a week” is a variant on this theme. 

Doing less than a thoughtful, thorough job of estimation is a form of 
self-deceit that rapidly turns into an institutionalized lie. “We’ll ship De- 
cember l ,” we chant, while the estimators know just how flimsy the frame- 
work of that belief is. Marketing prepares glossy brochures, technical pubs 
writes the manual, and production orders parts. December 1 rolls around, 
and, surprise! January, February, and March go by in a blur. Eventually 
the product goes out the door, leaving everyone exhausted and angry. Too 
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much of this stems from a lousy job done in the first week of the project 
when we didn’t carefully estimate its complexity. 

It’s time to stop the madness! 
We learn in school to practice top-down decomposition. Design the 

system, break each block into smaller chunks, and iterate until no part of 
the code is more than a page or two long. Then, and only then, can you un- 
derstand its complexity. We generally then take a reasonable guess: “This 
module will be 50 lines of code.” (Instead of lines of code, some compa- 
nies use function points or other units of measure.) 

Swell. Do this and you will still almost certainly fail. 
Few developers seem to understand that knowing code size-even if 

it were 100% accurate-is only half of the data absolutely required to pro- 
duce any kind of schedule. It’s amazing that somehow we manage to solve 
the equation 

development time = (program size in Lines of Code) 
x (time per Line of Code) 

when time-per-Line-of-Code is totally unknown. 
If you estimate modules in terms of lines of code (LOC), then you 

must know-exactly-the cost per LOC. Ditto for function points or any 
other unit of measure. Guesses are not useful. 

When I sing this song to developers, the response is always, “Yeah, 
sure, but I don’t have LOC data. . what do I do about the project I’m on 
today?’ There’s only one answer: sorry, pal-you’re outta luck. IBM’s 
LOC/month number is useless to you, as is one from the FAA, DOD, or 
any other organization. In the commercial world we all hold our code to 
different standards, which greatly skews productivity in any particular 
measure. 

You simply must measure how fast you generate embedded code, 
every single day, for the rest of your life. It’s like being on a diet-even 
when everything’s perfect, and you’ve shed those 20 extra pounds, you’ll 
forever be monitoring your weight to stay in the desired range. Start col- 
lecting the data today, do it forever, and over time you’ll find a model of 
your productivity that will greatly improve your estimation accuracy. 
Don’t do it, and every estimate you make will be, in effect, a lie-a wild, 
meaningless guess. 

Step 7: Consfanfly Study Software Engineering 

The last step is the most important. Study constantly. In the 50 years 
since ENIAC we’ve learned a lot about the right and wrong ways to build 
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software; almost all of the lessons are directly applicable to firmware 
development. 

How does an elderly, near-retirement doctor practice medicine? In 
the same way he did before World War 11, before penicillin? Hardly. Doc- 
tors spend a lifetime learning. They understand that lunch time is always 
spent with a stack of journals. 

Like doctors, we practice in a dynamic, changing environment. Un- 
less we master better ways of producing code we’ll be the metaphorical 
equivalent of the sixteenth-century medicine man, trepanning instead of 
practicing modern brain surgery. 

Learn new techniques. Experiment with them. Any idiot can write 
code; the geniuses are those who find better ways of writing code. 

One of the more intriguing approaches to creating a discipline 
of software engineering is the Personal Software Process, a method 
created by Watts Humphrey. An original architect of the CMM, 
Humphrey realized that developers need a method they can use now, 
without waiting for the CMM revolution to take hold at their com- 
pany. His vision is not easy, but the benefits are profound. Check out 
his A Discipline for  Software Engineering, Watts S. Humphrey, 
1995. Addison-Wesley. 

Summary 

With a bit of age (but less than anticipated maturity), it’s interesting 
to look back and to see how most of us form personalities very early in life, 
personalities with strengths and weaknesses that largely stay intact over the 
course of decades. 

The embedded community is composed of mostly smart, well-edu- 
cated people, many of whom believe in some sort of personal improve- 
ment. But, are we successful? How many of us live up to our New Year’s 
resolutions? 

Browse any bookstore. The shelves groan under self-help books. 
How many people actually get helped, or at least helped to the point of 
being done with a particular problem? Go to the diet section-I think there 
are more diets being sold than the sum total of national excess pounds. 
People buy these books with the best of intentions, yet every year Amer- 
ica gets a little heavier. 

Our desires and plans for self-improvement-at home or at the of- 
fice-are among the more noble human characteristics. The reality is that 
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we fail-a lot. It seems the most common way to compensate is a promise 
made to ourselves to “try harder” or to “do better.” It’s rarely effective. 

Change works best when we change the way we do things. Forget the 
vague promises-invent a new way of accomplishing your goal. Planning 
on reducing your drinking? Getting regular exercise? Develop a process 
that ensures that you’re meeting your goal. 

The same goes for improving your abilities as a developer. Forget the 
vague promises to “read more books” or whatever. Invent a solution that 
has a better chance of succeeding. Even better-steal a solution that works 
from someone else. 

Cynicism abounds in this field. We’re all self-professed experts of 
development, despite the obvious evidence of too many failed projects. 

I talk to a lot of companies who are convinced that change is impos- 
sible; that the methods I espouse are not effective (despite the data that 
shows the contrary), or that “management” will never let them take the 
steps needed to effect change. 

That’s the idea behind the “7 Steps.” Do it covertly, if need be; keep 
management in the dark if you’re convinced of their unwillingness to use 
a defined software process to create better embedded projects faster. 

If management is enlightened enough to understand that the firmware 
crisis requires change-and lots of it!-then educate them as you educate 
yourself. 

Perhaps an analogy is in order. The industrial revolution was 
spawned by a lot of forces, but one of the most important was the concen- 
tration of capital. The industrialists spent vast sums on foundries, steel 
mills, and other means of production. Though it was possible to hand-craft 
cars, dumping megabucks into assembly lines and equipment yielded 
lower prices, and eventually paid off the investment in spades. 

The same holds true for intellectual capital. Invest in the systems and 
processes that will create massive dividends over time. If we’re unwilling 
to do so, we’ll be left behind while others, more adaptable, put a few bucks 
up front and win the software wars. 

A final thought: 
If you’re a process cynic, if you disbelieve all I’ve said in this 

chapter, ask yourself one question: do I consistently deliver products 
on time and on budget? 

If the answer is no, then what are you doing about it? 
I 1 



CHAPTER 3 
Stop Writing 

Programs 

The most important rule of software engineering is also the least 
known: Complexity does not scale linearly with size. 

For “complexity” substitute any difficult parameter, such as time re- 
quired to implement the project, bugs, or how well the final product meets 
design specifications (unhappily, meeting design specs is all too often un- 
correlated with meeting customer requirements . . .). 

So a 2000-line program requires more than twice as much develop- 
ment time as one that’s half the size. 

A bit of thought confirms this. Surely, any competent programmer 
can write an utterly perfect five-line program in 10 minutes. Multiply the 
five lines and the 10 minutes by a hundred; those of us with an honest 
assessment of our own skills will have to admit the chances of writing a 
perfect 500 line program in 16 hours are slim at best. 

Data collected on hundreds of IBM projects confirm this. As systems 
become more complex they take longer to produce, both because of the 
extra size and because productivity falls dramatically: 

(man-yrs) Lines of code produced per month 

1 
10 
100 
1000 

439 
220 
110 
55 

Look closely at this data. Notice that there’s an order of magnitude 
increase in delivery time simply due to the reduced productivity as the 
project’s magnitude swells. 

35 
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COCOMO Data 
Barry Boehm codified this concept in his Constructive Cost Model 

(COCOMO). He found that 

Effort to create a project = C x KLOC‘. 

(KLOC means “thousands of lines of code.”) 
Though the exact values of C and M vary depending on a number of 

factors (e.g., real-time code is harder than that for the user interface), both 
are always greater than 1. 

A bit of algebra shows that, since M > 1, effort grows much faster 
than the size of the program. 

For real-time projects managed with the very best practices, C is typ- 
ically 3.6 and M around 1.2. In embedded systems, which combine the 
worst problems of real time with hardware dependencies, these coeffi- 
cients are higher. Toss in the typical poor software practices of the em- 
bedded industries and the M exponent can climb well above 1.5. 

Suppose C = 1 and M = 1.4. At the risk of oversimplifying Boehm’s 
model, we can still get an idea of the nonlinear growth of complexity with 
program size as follows: 

Lines of Effort Comments 
code 

10,000 25.1 
20,000 66.3 Double size of code; effort goes up by 2.64 
100,000 63 1 Size grows by factor of 10; effort grows by 25 

So, in doubling the size of the program we incur 32% additional 
overhead. 

The human analogy of this phenomenon is the one so colorfully il- 
lustrated by Fred Brooks in his The Mythical Man-Month (a must read for 
all software folks). As projects grow, adding people has a diminishing re- 
turn. One reason is the increased number of communications channels. 
Two people can only talk to each other; there’s only a single comm path. 
Three workers have three communications paths; four have six. In fact, the 
growth of links is exponential: given n workers, there are (n2 - n)/2 links 
between team members. 

In other words, add one worker and suddenly he’s interfacing in n2 
ways with the others. Pretty soon memos and meetings eat up the entire 
work day. 

The solution is clear: break teams into smaller, autonomous, and in- 
dependent units to reduce these communications links. 
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Similarly, cut programs into smaller units. Since a large part of the 
problem stems from dependencies (global variables, data passed between 
functions, shared hardware, etc.), find a way to partition the program to 
eliminate-or minimize-the dependencies between units. 

Traditional computer science would have us believe the solution is 
top-down decomposition of the problem, perhaps then encapsulating each 
element into an OOP object. In fact, “top-down design,” “structured pro- 
gramming,” and “OOP’ are the holy words of the computer vocabulary; 
like fairy dust, if we sprinkle enough of this magic on our software all of 
the problems will disappear. 

I think this model is one of the most outrageous scams ever per- 
petrated on the embedded community. Top-down design and OOP are 
wonderful concepts, but are nothing more than a subset of our arsenal of 
tools. 

I remember interviewing a new college graduate, a CS major. It was 
eerie, really, rather like dealing with a programmed cult member unthink- 
ingly chanting the persuasion’s mantra. In this case, though, it was the 
tenets of structured programming mindlessly flowing from his lips. 

It struck me that programming has evolved from a chaotic “make it 
work no matter what” level of anarchy to a pseudo-science whose precepts 
are practiced without question. Problem Analysis, Top-Down Decomposi- 
tion, 00P-all of these and more are the commandments of structured de- 
sign, commandments we’re instructed to follow lest we suffer the pain of 
failure. 

Surely there’s room for iconoclastic ideas. I fear we’ve accepted 
structured design, and all it implies, as a bedrock of our civilization, one 
buried so deep we never dare to wonder if it’s only a part of the solution. 

Top-down decomposition and OOP design are merely screwdrivers 
or hammers in the toolbox of partitioning concepts. 

Partitioning 

Our goal in firmware design is to cheat the exponential in the CO- 
COMO model, the exponential that also shows up in every empirical study 
of software productivity. We need to use every conceivable technique to 
flatten the curve, to move the M factor close to unity. 

Top-down decomposition is a useful weapon in cheating the 
COCOMO exponential, as is OOP design. In embedded systems we 
have other possibilities denied to many people building desktop ap- 
plications. 
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Partition with Encapsulation 

The OOP advocates correctly and profoundly point out the benefit of 
encapsulation, to my mind the most important of the tripartite mantra en- 
capsulation, inheritance, and polymorphism. 

Above all, encapsulation means binding functions together with the 
functions’ data. It means hiding the data so no other part of the program 
can monkey with it. All access to the data takes place through function 
calls, not through global variables. 

Instead of reading a status word, your code calls a status function. 
Rather than diddle a hardware port, you insulate the hardware from the 
code with a driver. 

Encapsulation works equally well in assembly language or in C++ 
(Figure 3-1). It requires a will to bind data withfunctions rather than any 
particular language feature. C++ will not save the firmware world; encap- 
sulation, though, is surely part of the solution. 

One of the greatest evils in the universe, an evil in part responsible 
for global warming, ozone depletion, and male pattern baldness, is the use 
of global variables. 

What’s wrong with globals? A partial list includes: 

Any function, anywhere in the program, can change a global vari- 
able at will. This makes finding why a global change is a night- 
mare. Without the very best of tools you’ll spend too much time 
finding simple bugs; time invested chasing problems will be all out 
of proportion to value received. 
Globals create tremendous reentrancy problems, as we’ll see in 
Chapter 4. 
While distance may make the heart grow fonder, it also clouds our 
memories. A huge source of bugs is assigning data to variables de- 
fined in a remote module with the wrong type, or over- and under- 
running buffers as we lose track of their size, or forgetting to 
null-terminate strings. If a variable is defined in its referring code, 
it’s awfully hard to forget type and size info. 

Every firmware standard-backed up by the rigorous checks of code 
inspections-must set rules about global use. Though we’d like to ban 
them entirely, the truth is that in real-time systems they are sometimes un- 
avoidable. Nothing is faster than a global flag; when speed is truly an 
issue, a few, a very few, globals may indeed be required. Restrict their use 
to only a few critical areas. I feel that defining a global is such a source of 
problems that the team leader should approve every one. 
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- text segment 

; -get-cba-min-read a min value at (index) from the 
; CBA buffer. Called by a C program with the (index) 
; argument on the stack. 

; Returns result in AX. 

public -get-cba-min 
- get-cba-min proc far 

mov bx, SP 
mov bx, [bx+4] ; bx= index in buf to read 
add bx, cba-buf ; add offset to make addr 
push ds 
mov dx,buffer-seg ; point to the buffer seg 
m o v  es , dx 
m o v  ax, es : bx : read the min value 
POP ds 
retf 
endp 

- text ends 

; CBA buffer, which is managed by the *-cba routines. 
; Format: 100 entries, each of which looks like: 
; buf+0 min value (word) 
; buf+2 max value (word) 
; buf+4 number of iterations (word) 

- data segment para ‘DATA’ 
cba-bu f ds 100 * 6 ; CBA buffer 
- data ends 

FIWRE 3-1 
not defined Public. 

Encapsulation in assembly language. Note that the data is 
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Among the great money-makers for ICE vendors are complex hard- 
ware breakpoints, used most often for chasing down errant changes to 
global variables. If you like globals, figure on anteing up plenty for tools. 

There’s yet one more waffle on my anti-global crusade: device han- 
dlers sometimes must share data stored in common buffers and the like. 
We do not write a serial receive routine in isolation. It’s part of a fabric of 
handlers that include input, output, initialization, and one or more interrupt 
service routines (ISRs). 

This implies something profound about module design. Write pro- 
grams with lots and lots of modules! Don’t lump code into a handful of 
5000-line files. Assign one module per logical function: for example, have 
a single module (file) that includes all of the serial device handlers-nd 
nothing else. Structurally it looks like: 

public serial-in, serial-out, 
serial-init 
serial-in: code 
serial-out: code 
serial-init: code 
serial-isr: code 

buffer: data 
status : data 

The data items are filescopics-global to the module but private to 
the rest of the system. I feel this tradeoff is needed in embedded systems 
to reduce performance penalties of the noble but not-always-possible anti- 
global tack. 

private data 

Partit;on with CPUS 

Given that firmware is the most expensive thing in the universe, given 
that the code will always be the most expensive part of the development ef- 
fort, given that we’re under fire to deliver more complex systems to market 
faster than ever, it makes sense in all but the most cost-sensitive systems to 
have the hardware design fall out of software considerations. That is, design 
the hardware in a way to minimize the cost of software development. 

It’s time to reverse the conventional design approach, and let the 
sofware drive the hardware design. 

Consider the typical modern embedded system. A single CPU has the 
metaphorical role of a mainframe computer: it handles all of the inputs and 
outputs, runs application code, and services interrupts. Like the main- 
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frame, one CPU, one program, is doing many disparate activities that only 
eventually serve a common goal. 

Not enough horsepower? Toss in a 32-bitter. Crank up the clock rate. 
Cut out wait states. 

Why do we continue to emulate the antiquated notion of “big iron”- 
even if the central machine is only an 805 l?  Mainframes were long ago re- 
placed by distributed workstations. 

A single big CPU running the entire application implies that there’s 
a huge program handling everything. We know that big programs are 
bad-they cost too much to develop. 

It’s usually cheaper to add more CPUs merely for the sake of simpli- 
fying the software. 

In the following table, “Effort” refers to development time as pre- 
dicted by the COCOMO metric. The first two columns show the effort re- 
quired to produce a single-CPU chunk of firmware of the indicated number 
of lines of code. The next five columns show models of partitioning the 
code over multiple CPUs-a “main” processor that runs the bulk of the ap- 
plication code, and a number of quite small “extra” microcontrollers for 
handling peripherals and similar tasks. 

Single CPU 1 100,000 631 

10.000 25 

20.000 66 

50,000 239 

Multiple CPUs 

#extra Total Effort 

22000 

54000 133 

12 11oooo 353 

Faster I 

229 

29% 

40% 

44% 

Faster’ 

379, 

65% 

Clearly, total effort to produce the system decreases quite rapidly 
when tasks are farmed out to additional processors, even though these 
numbers include about 10% extra overhead to deal with interprocessor 
communication. The “Faster’” column shows how much faster we can de- 
liver the system as a result. 

But the numbers are computed using an exponent of 1.4 for M, which 
is a result of creating a big, complicated real-time embedded system. It’s 
reasonable to design a system with as few real-time constraints as possible 
in the main CPU, allocating these tasks to the smaller and more tractable 
extra controllers. If we then reduce M to 1.2 for the main CPU (Boehm’s 
real-time number) and leave it at 1.4 for the smaller processors that are 
working with fickle hardware. the numbers in the Faster2 column result. 
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To put this in another context, getting a 1OOK LOC program to market 
65% faster means we’ve saved over 200 man-months of development 
(using the fastest of Bell Lab’s production rates), or something like $2 
million. 

Don’t believe me? Cut the numbers by a factor of 10. That’s still 
$200,000 in engineering that does not have to get amortized into the cost 
of the product. The product also gets to market much, much faster, and ide- 
ally it generates substantially more sales revenue. 

The goal is to flatten the curve of complexity. Figure 3-2 shows the 
relative growth rates of effort-normalized to program size-for both ap- 
proaches. 

One CPU 

Multiple CPUs 

5000 10000 20000 50000 100000 200000 

Lines of Code 

FIGURE 3-2 Flattening the curve of complexity growth. 

NRE versus COGS 
Nonrecurring engineering costs (NRE costs) are the bane of 

most technology managers’ lives. NRE is that cost associated with 
developing a product. Its converse is the cost of goods sold (COGS), 
a.k.a. recurring costs. 

NRE costs are amortized over the life of a product in fact or in 
reality. Mature companies carefully compute the amount of engi- 
neering in the product-a car maker, for instance, might spend a bil- 
lion bucks engineering a new model with a lifespan of a million 
units sold; in this case the cost of the car goes up by $1000 to pay for 
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the NRE. Smaller technology companies often act like cowboys and 
figure that NRE is just the cost of doing business; if we are prof- 
itable, then the product’s price somehow (!) reflects all engineering 
expenses. 

Increasing NRE costs drives up the product’s price (most likely 
making it less competitive and thus reducing profits), or directly re- 
duces profits. 

Making an NRE versus COGS decision requires a delicate bal- 
ancing act that deeply mirrors the nature of your company’s product 
pricing. A $1 electronic greeting card cannot stand any extra com- 
ponents; minimize COGS above all. In an automobile the quantities 
are so large that engineers agonize over saving a foot of wire. The 
converse is a one-off or short-production-run device. The slightest 
development hiccup costs tens of thousands-easily-which will 
have to be amortized over a very small number of units. 

Sometimes it’s easy to figure the tradeoff between NRE and 
COGS. You should also consider the extra complication of opportu- 
nity costs-”If I do this, then what is the cost of not doing that?” As 
a young engineer I realized that we could save about $5000 a year by 
changing from EPROMS to masked ROMs. I prepared a careful 
analysis and presented it to my boss, who instantly turned it down 
because making the change would shut down my other engineering 
activities for some time. In this case we had a tremendous backlog of 
projects, any of which could yield more revenue than the measly $5K 
saved. In effect, my boss’s message was, “You are more valuable 
than what we pay you.” (That’s what drives entrepreneurs into busi- 
ness-the hope they can get the extra money into their own pockets!) 

Follow these guidelines to be successful in simplifying software 

Break out nasty real-time hardware functions into independent 
CPUs. Do interrupts come at 1000/second from a device? Partition 
it to a controller and offload all of that ISR overhead from the main 
processor. 
Think microcontrollers, not microprocessors. Controllers are in- 
herently limited in address space, which helps keep firmware size 
under control. Controllers are cheap (some cost less than 40 cents 
in quantity). Controllers have everything you need on one chip- 
RAM, ROM, 110, etc. 

through multiple CPUs: 
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Think OTP-one-time programmable-or EEROM memory. 
Both let you build and test the application without going to expen- 
sive masked ROM. Quick to build, quick to bum, and quick to test. 
Keep the size of the code in the microcontrollers small. A few 
thousand lines is a nice, tractable size that even a single program- 
mer working in isolation can create. 
Limit dependencies. One beautiful benefit of partitioning code into 
controllers is that you’re pin-limited-the handful of pins on the 
chips acts as a natural barrier to complex communications and in- 
teraction between processors. Don’t defeat this by layering a 
hideous communications scheme on top of an elegant design. 

Communications is always a headache in multiple-processor appli- 
cations. Building a reliable parallel comm scheme beats Freddy Krueger 
for a nightmare any day. Instead, use a standard, simple protocol such 
as I’C. This is a two-wire serial protocol supported directly by many 
controllers. It’s multi-master and multi-slave, so you can hang many 
processors on one pair of 12C wires. With rates to 1 Mb/sec, there’s enough 
speed for most applications. Even better: you can steal the code from 
Microchip’s and National Semiconductor’s Web sites. 

The hardware designers will object to adding processors, of course. 
Just as firmware folks take pride in producing optimum code, our hardware 
brethren, too, want an elegant, minimalist creation where there’s enough 
logic to make the thing work, but nothing more. Adding hardware-which 
has a cost-just to simplify the code seems like a terrible waste of 
resources. 

Yet we’ve been designing systems with extra hardware for decades. 
There’s no reason we couldn’t build a software implementation of a 
UART. “Bit banging” software has been around for years. Instead, most of 
the time we’ll add the UART device to eliminate the nasty, inefficient 
software solution. 

One of Xerox’s copiers is a monster of a machine that does 
everything but change the baby. An older design, it uses seven 8085s 
tied together with a simple proprietary network. One handles the 
paper mechanism, another the user interface, yet another error pro- 
cessing. The boards are all pretty much the same, and no ROM ex- 
ceeds 32k. The machine is amazingly complex and feature-rich . . . 
but code sizes are tiny. 
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Purtition by Features 
Carpenters think in terms of studs and nails, hammers and saws. 

Their vision is limited to throwing up a wall or a roof. An architect, on the 
other hand, has a vision that encompasses the entire structure-but more 
importantly, one that includes a focus on the customer. The only mean- 
ingful measure of the architect’s success is his customer’s satisfaction. 

We embedded folks too often distance ourselves from the customer’s 
wants and needs. A focus on cranking schematics and code will thwart us 
from making the thousands of little decisions that transcend even the most 
detailed specification. The only view of the product that is meanin&l is 
rhe customer’s. Unless we think like the customer, we’ll be unable to sat- 
isfy him. A hundred lines of beautiful C or lOOk of assembly-it’s all in- 
visible to the people who matter most. 

Instead of analyzing a problem entirely in terms of functions and mod- 
ules, look at the product in the feature domain, since features are the cus- 
tomer’s view of the widget. Manage the software using a matrix of features. 

Table 3-1 shows the feature matrix for a printer. Notice that the first 
few items are not really features; they’re basic, low-level functions re- 
quired just to get the thing to start up, as indicated by the “Importance” fac- 
tor of “required.” 

Beyond these, though, are things used to differentiate the product 
from competitive offerings. Downloadable fonts might be important, but do 
not affect the unit’s ability to just put ink on paper. Image rotation, listed as 
the least important feature, sure is cool, but may not always be required. 

Table 3-1 

Feature 

Shell 
RTOS 

Keyboard handler 
LED driver 

Comm with host 

Paper handling 
Print engine 
Downloadable fonts 
Main 100 local fonts 
Unusual local fonts 
Image rotation 

Importance 

Required 
Required 

Required 
Required 

Required 

Required 
Required 
Important 
Important 
Less important 
Less important 

Priority Complexity 

500 
(purchased) 

300 
500 
4.000 
2.000 
I o.Oo0 
I.000 

6.000 
10,000 

3,000 
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The feature matrix ensures we’re all working on the right part of the 
project. Build the important things first! Focus on the basic system struc- 
ture-get all of it working, perfectly-before worrying about less impor- 
tant features. I see project after project in trouble because the due date 
looms with virtually nothing complete. Perhaps hundreds of functions 
work, but the unit cannot do anything a customer would find useful. De- 
velopers’ efforts are scattered all over the project so that until everything 
is done, nothing is done. 

The feature matrix is a scorecard. If we adopt the view that we’re 
working on the important stuff first, and that until a feature works perfectly 
we do not move on, then any idiot-including those warming seats in mar- 
keting-can see and understand the project’s status. 

(The complexity rating shown is in estimated lines of code. LOC as 
a unit of measure is constantly assailed by the software community. Some 
push function points-unfortunately there are a dozen variants of this-as 
a better metric. Most often people who rail against LOC as a measure in 
fact measure nothing at all. I figure it’s important to measure something, 
something easy to count, and LOC gives a useful if less than perfect as- 
sessment of complexity.) 

Most projects are in jeopardy from the outset, as they’re beset by a 
triad of conflicting demands (Figure 3-3). Meeting the schedule, with a 
high-quality product, that does everything the 24-year-old product man- 
ager in marketing wants, is usually next to impossible. 

Eighty percent of all embedded systems are delivered late. Lots and 
lots of elements contribute to this, but we too often forget that when de- 
veloping a product we’re balancing the schedule/quality/features mix. Cut 
enough features and you can ship today. Set the quality bar to near zero 

FIGURE 3-3 The twisted tradeoff 
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and you can neglect the hard problems. Extend the schedule to infinity and 
the product can be perfect and complete. 

Too many computer-based products are junk. Companies die or lose 
megabucks as a result of prematurely shipping something that just does not 
work. Consumers are frustrated by the constant need to reset their gadgets 
and by products that suffer the baffling maladies of the binary age. 

We’re also amused by the constant stream of announced-but- 
unavailable products. Firms do quite exquisite PR dances to explain away 
the latest delay; Microsoft’s renaming of a late Windows upgrade to “95” 
bought them an extra year and the jeers of the world. Studies show that get- 
ting to market early reaps huge benefits; couple this with the extreme costs 
of engineering and it’s clear that “ship the damn thing” is a cry we’ll never 
cease to hear. 

Long-term success will surely result from shipping a qualify product 
on rime. That means there’s only one leg of the twisted tradeoff left to fid- 
dle. Cut a few of the less important features to get a first-class device to 
market fast. 

The computer age has brought the advent of the feature-rich product 
that no one understands or uses. My cell phone’s “Function” key takes a 
two-digit argument-one hundred user-selectable functions/features built 
into this little marvel. Never use them, of course. I wish the silly thing 
could reliably establish a connection! The design team’s vision was clearly 
skewed in term of features over quality, to consumers’ loss. 

If we’re unwilling to partition the product by features, and to build 
the firmware in a clear, high-priority features-first hierarchy, we’ll be for- 
ever trapped in an impossible balance that will yield either low quality or 
late shipment. Probably both. 

Use a feature matrix, implementing each in a logical order, and make 
each one perfect before you move on. Then at any time management can 
make a reasonable decision: ship a quality product now, with this feature 
mix, or extend the schedule until more features are complete. 

This means you must break down the code by feature, and only then 
apply top-down decomposition to the components of each feature. It means 
you’ll manage by feature, getting each done before moving on, to keep the 
project’s status crystal clear and shipping options always open. 

Management may complain that this approach to development is, in a 
sense, planning for failure. They want it all: schedule, quality, and features. 
This is an impossible dream! Good software practices will certainly help hit 
all elements of the triad, but we’ve got to be prepared for problems. 

Management uses the same strategy in making their projections. No 
wise CEO creates a cash flow plan that the company must hit to survive: 
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there’s always a backup plan, a fall-back position in case something unex- 
pected happens. 

So, while partitioning by features will not reduce complexity, it leads 
to an earlier shipment with less panic as a workable portion of the product 
is complete at all times. 

In fact, this approach suggests a development strategy that maxi- 
mizes the visibility of the product’s quality and schedule. 

Develop Firmware Incrementally 

Deming showed the world that it’s impossible to test quality into a 
product. Software studies further demonstrate the futility of expecting test 
to uncover huge numbers of defects in reasonable times-in fact, some 
studies show that up to 50% of the code may never be exercised under a 
typical test regime. 

Yet test is a necessary part of software development. 
Firmware testing is dysfunctional and unlikely to be successful when 

postponed till the end of the project. The panic to ship overwhelms com- 
mon sense; items at the end of the schedule are cut or glossed over. Test is 
usually a victim of the panic. 

Another weak point of all too many schedules is that nasty line item 
known as “integration.” Integration, too, gets deferred to the point where 
it’s poorly done. 

Yet integration shouldn’t even exist as a line item. Integration im- 
plies we’re only fiddling with bits and pieces of the application, ignoring 
the problem’s gestalt, until very late in the schedule when an unexpected 
problem (unexpected only by people who don’t realize that the reason for 
test is to unearth unexpected issues) will be a disaster. 

The only reasonable way to build an embedded system is to start in- 
tegrating today, now, on the day you first crank a line of code. The biggest 
schedule killers are unknowns; only testing and actually running code and 
hardware will reveal the existence of these unknowns. 

As soon as practicable, build your system’s skeleton and switch it on. 
Build the startup code. Get chip selects working. Create stub tasks or call- 
ing routines. Glue in purchased packages and prove to yourself that they 
work as advertised and as required. Deal with the vendor, if trouble sur- 
faces, now rather than in a last-minute debug panic when they’ve unex- 
pectedly gone on holiday for a week. 

This is a good time to slip in a ROM monitor, perhaps enabled by a 
secret command set. It’ll come in handy when you least have time to add 



Stop Writing Big Programs 49 

one-perhaps in a panicked late-night debugging session moments before 
shipping, or for diagnosing problems that creep up in the field. 

In a matter of days or a week or two you’ll have a skeleton assem- 
bled, a skeleton that actually operates in some very limited manner. Per- 
haps it runs a null loop. Using your development tools, test this small scale 
chunk of the application. 

Start adding the lowest-level code, testing as you go. Soon your sys- 
tem will have all of the device drivers in place (tested), ISRs (tested), the 
startup code (tested), and the major support items such as comm packages 
and the RTOS (again tested). Integration of your own applications code 
can then proceed in a reasonably orderly manner, plopping modules into a 
known-good code framework, facilitating testing at each step. 

The point is to immediately build a framework that operates, and 
then drop features in one at a time, testing each as it becomes available. 
You’re testing the entire system, such as it is, and expanding those tests as 
more of it comes together. Test and integration are no longer individual 
milestones; they are part of the very fabric of development. 

Success requires a determination to constantly test. Every day, or at 
least every week, build the entire system (using all of the parts then avail- 
able) and ensure that things work correctly. Test constantly. Fix bugs 
immediately. 

The daily or weekly testing is the project’s heartbeat. It ensures 
that the system really can be built and linked. It gives a constant view 
of the system’s code quality, and encourages early feature feedback 
(a mixed blessing, admittedly-but our goal is to satisfy the customer, 
even at the cost of accepting slips due to reengineering poor feature im- 
plementation). 

At the risk of sounding like a new-age romantic, someone working in 
aromatherapy rather than pushing bits around, we’ve got to learn to deal 
with human nature in the design process. Most managers would trade their 
firstborn for an army of Vulcan programmers, but until the Vulcan econ- 
omy collapses (“emotionless programmer, will work for peanuts and log- 
ical discourse”), we’ll have to find ways to efficiently use humans, with all 
of their limitations. 

We people need a continuous feeling of accomplishment to feel e€- 
fective and to be effective. Engineering is all about making things work; 
it’s important to recognize this and create a development strategy that sat- 
isfies this need. Having lots of little progress points, where we see our sys- 
tem doing something, is tons more satisfying than coding for a year before 
hitting the ON switch. 
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A hundred thousand lines of carefully written and documented code 
is nothing more than worthless bits until it’s tested. We hear “It’s done” all 
the time in this field, where “done” might mean “vaguely understood” or 
“coded.” To me “done” has one meaning only: “tested.” 

Incremental development and testing, especially of the high-risk 
areas such as hardware and communications, reduces risk tremendously. 
Even when we’re not honest with each other (“Sure, I can crank this puppy 
out in a week, no sweat”), deep down we usually recognize risk well 
enough to feel scared. Mastering the complexities up front removes the 
fear and helps us work confidently and efficiently. 

Conquer the Impossible 

Firmware people are too often treated as the scum of the earth, be- 
cause their development efforts tend to trail everyone else’s. When the 
code can’t be tested until the hardware is ready-and we know the hard- 
ware schedule is bound to slip-then the software, already starting late, 
will appear to doom the ship date. 

Engineering is all about solving problems, yet sometimes we’re im- 
mobilized like deer in headlights by the problems that litter our path. We 
simply have to invent a solution to this dysfunctional cycle of starting 
firmware testing late because of unavailable hardware! 

And there are a lot of options. 
One of the cheapest and most available tools around is the desktop 

PC. Use it! Here are a few ways to conquer the “I can’t proceed because 
the hardware ain’t ready” complaint. 

One compelling reason to use an embedded PC in non-cost-sensi- 
tive applications is that you can do much of the development on a 
standard PC. If your project permits, consider embedding a PC 
and plan on writing the code using standard desktop compilers and 
other tools. 
Write in C or C++. Cross-develop the code on a PC until hardware 
comes on line. It’s amazing how much of the code you can get 
working on a different platform. Using a processor-specific timer 
or serial channel? Include conditional compilation switches to dis- 
able the target YO and enable the PC’s equivalent devices. One de- 
veloper I know tests more than 95% of his code on the PC this 
way-and he’s using a PIC processor, about as dissimilar from a 
PC as you can get. 
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Regardless of processor, build an I/O board that contains your 
target-specific devices, such as ADS. There’s an up-front time 
penalty incurred in creating the board; but the advantage is faster 
code delivery with more of the bugs wrung out. This step also 
helps prove the hardware design early-a benefit to everyone. 

Summary 

You’ll never flatten the complexity/size curve unless you use every 
conceivable way to partition the code into independent chunks with no or 
few dependencies. 

Some of these methods include the following: 

Partition by encapsulation 
Partition by adding CPUs 
Partition by using an RTOS (more in the next chapter) 
Partition by feature management and incremental development 
Finally, partition by top-down decomposition 





CHAPTER 4 
Real Time Means 
Right Now! 

We’re taught to think of our code in the procedural domain: that of 
actions and effects. IF statements and control loops create a logical flow to 
implement algorithms and applications. There’s a not-so-subtle bias in 
college toward viewing correctness as being nothing more than stringing 
the right statements together. 

Yet embedded systems are the realm of real time, where getting the 
result on time is just as important as computing the correct answer. 

A hard real-time task or system is one where an activity simply must 
be completed-always-by a specified deadline. The deadline may be a 
particular time or time interval, or may be the arrival of some event. Hard 
real-time tasks fail, by definition, if they miss such a deadline. 

Notice that this definition makes no assumptions about the frequency 
or period of the tasks. A microsecond or a week-if missing the deadline 
induces failure, then the task has hard real-time requirements. 

“Soft” real time, though, has a definition as weak as its name. By 
convention it’s those class of systems that are not hard real time, though 
generally there is some sort of timeliness requirement. If missing a dead- 
line won’t compromise the integrity of the system, if generally getting the 
output in a timely manner is acceptable, then the application’s real-time re- 
quirements are “soft.” Sometimes soft real-time systems are those where 
multi-valued timeliness is acceptable: bad, better, and best responses are 
all within the scope of possible system operation, 

53 
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Interrupts 

Most embedded systems use at least one or two interrupting devices. 
Few designers manage to get their product to market without suffering 
metaphorical scars from battling interrupt service routines (ISRs). For 
some incomprehensible reason-perhaps because “real time” gets little 
more than lip service in academia-most of us leave college without 
the slightest idea of how to design, code, and debug these most important 
parts of our systems. Too many of us become experts at ISRs the same way 
we picked up the secrets of the birds and the bees-from quick conver- 
sations in the halls and on the streets with our pals. There’s got to be a 
better way! 

New developers rail against interrupts because they are difficult to 
understand. However, just as we all somehow shattered our parents’ nerves 
and learned to drive a stick-shift, it just takes a bit of experience to become 
a certified “master of interrupts.” 

Before describing the “how,” let’s look at why interrupts are impor- 
tant and useful. Somehow peripherals have to tell the CPU that they re- 
quire service. On a UART, perhaps a character arrived and is ready inside 
the device’s buffer. Maybe a timer counted down and must let the proces- 
sor know that an interval has elapsed. 

Novice embedded programmers naturally lean toward polled com- 
munication. The code simply looks at each device from time to time, ser- 
vicing the peripheral if needed. It’s hard to think of a simpler scheme. 

An interrupt-serviced device sends a signal to the processor’s dedi- 
cated interrupt line. This causes the processor to screech to a stop and in- 
voke the device’s unique ISR, which takes care of the peripheral’s needs. 
There’s no question that setting up an ISR and associated control registers 
is a royal pain. Worse, the smallest mistake causes a major system crash 
that’s hard to troubleshoot. 

Why, then, not write polled code? The reasons are legion: 

1. Polling consumes a lot of CPU horsepower. Whether the periph- 
eral is ready for service or not, processor time-usually a lot of 
processor time-is spent endlessly asking “Do you need service 
yet?” 

2. Polled code is generally an unstructured mess. Nearly every loop 
and long complex calculation has a call to the polling routines so 
that a device’s needs never remain unserviced for long. ISRs, on 
the other hand, concentrate all of the code’s involvement with 
each device into a single area. Your code is going to be a night- 
mare unless you encapsulate hardware-handling routines. 
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3. Polling leads to highly variable latency. If the code is busy han- 
dling something else (just doing a floating-point add on an 8-bit 
CPU might cost hundreds of microseconds), the device is ignored. 
Properly managed interrupts can result in predictable latencies of 
no more than a handful of microseconds. 

Use an ISR pretty much any time a device can asynchronously re- 
quire service. I say “pretty much” because there are exceptions. As we’ll 
see, interrupts impose their own sometimes unacceptable latencies and 
overhead. I did a tape interface once, assuming the processor was fast 
enough to handle each incoming byte via an interrupt. Nope. Only polling 
worked. In fact. tuning the five instruction polling loops‘ speed ate up 3 
weeks of development time. 

Vectvring 

Though interrupt schemes vary widely from processor to processor, 
most modem chips use a variation of vectoring. Peripherals, whether ex- 
ternal to the chip or internal (such as on-board timers), assert the CPU’s in- 
terrupt input. 

The processor generally completes the current instruction and stores 
the processor’s state (current program counter and possibly flag register) 
on the stack. The entire rationale behind ISRs is to accept, service, and re- 
turn from the interrupt, all with no visible impact on the code. This is pos- 
sible only if the hardware and software save the system’s context before 
branching to the ISR. 

It then acknowledges the interrupt, issuing a unique interrupt ac- 
knowledge cycle recognized by the interrupting hardware. During this 
cycle the device places an interrupt code on the data bus that tells the 
processor where to find the associated vector in memory. 

Now the CPU interprets the vector and creates a pointer to the inter- 
rupt vector table, a set of ISR addresses stored in memory, It reads the ad- 
dress and branches to the ISR. 

Once the ISR starts, you, the programmer, must preserve the CPU’s 
context (such as saving registers, restoring them before exiting). The ISR 
does whatever it must, then returns with all registers intact to the normal 
program flow. The main-line application never knows that the interrupt 
occurred. 

Figures 4- 1 and 4-2 show two views of how an x86 processor handles 
an interrupt. When the interrupt request line goes high, the CPU completes 
the instruction it’s executing (in this case at address 0100) and pushes the 
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0100 

Last instruction before intr ISR start 
Pushes from intr Vector read 

m 
/ rd U U 

I N T R  i 

7FFE 7FFC 7FFA I 0010 1 0012 I 0020 

/intak 

/wr U U U 

FIGURE 4-1 Logic analyzer view of an interrupt. 

return address (two 16-bit words) and the contents of the flag register. The 
interrupt acknowledge cycle-wherein the CPU reads an interrupt number 
supplied by the peripheral-is unique, as there’s no read pulse. Instead, in- 
tack going low tells the system that this cycle is unique. 

x86 processors multiply the interrupt number by four (left shifted 
two bits) to create the address of the vector. A pair of 16-bit reads extracts 
the 32-bit ISR address. 

Important points: 

The CPU chip’s hardware, once it sees the interrupt request signal, 
does everything automatically, pushing the processor’s state, read- 
ing the interrupt number, extracting a vector from memory, and 
starting the ISR. 
The interrupt number supplied by the peripheral during the ac- 
knowledge cycle might be hardwired into the device’s brain, but 

0100 
7FFE 
7FFC 
7FFA 
xxxx 
0010 
0012 
read 
0020 

NOP Fetch <-- INTR REQ asserted 
0102 Write <-- Return address pushed 
0000 Write 
- Write <-- Flags pushed 
0010 INTA <-- Vector inserted 
0020 Read <-- ISR Address (low) read 
0000 Read <-- ISR Address (high) 

PUSH Fetch <-- ISR starts 

FIGURE 4-2 Real-time trace view of an interrupt. 
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more commonly it’s set up by the firmware. Forget to initialize the 
device and the system will crash as the device supplies a bogus 
number. 
Some peripherals and interrupt inputs will skip the acknowledge 
cycle because they have predetermined vector addresses. 

9 All CPUs let you disable interrupts via a specific instruction (DI, 
CLI, or something similar). Further, you can generally enable and 
disable interrupts from specific devices by appropriately setting 
bits in peripheral or interrupt control registers. 

9 Before invoking the ISR the hardware disables or reprioritizes in- 
terrupts. Unless your code explicitly reverses this, you’ll see no 
more interrupts at this level. 

At first glance the vectoring seems unnecessarily complicated. Its 
great advantage is support for many varied interrupt sources. Each device 
inserts a different vector; each vector invokes a different ISR. Your UART 
Data-Ready ISR is called independently of the UART Transmit- 
Buf fer-Full routine. The vectoring scheme also limits pin counts, 
since it requires just one dedicated interrupt line. 

Some CPUs sometimes directly invoke the ISR without vectoring. 
This greatly simplifies the code, but unless you add a lot of manual pro- 
cessing, it limits the number of interrupt sources a program can con- 
veniently handle. 

Interrupt Design Guidelines 

While crummy code is just hard to debug, crummy ISRs are virtually 
undebuggable. The software community knows it’s just as easy to write 
good code as it is to write bad. Give yourself a break and design hardware 
and software that eases the debugging process. 

Poorly coded interrupt service routines are the bane of our industry. 
Most ISRs are hastily thrown together, tuned at debug time to work, then 
tossed in the “Oh my God, it works” pile and forgotten. A few simple rules 
can alleviate many of the common problems. 

First, don’t even consider writing a line of code for your new em- 
bedded system until you lay out an interrupt map (Figure 4-3). List each 
interrupt and give an English description of what the routine should do. In- 
clude your estimate of the interrupt’s frequency. Figure the maximum, 
worst-case time available to service each. This is your guide: exceed this 
number, and the system stands no chance of functioning properly. 

The map is a budget. It gives you an assessment of where interrupt- 
ing time will be spent. Just as your own personal financial budget has a 
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Latency Max-time Freq 

lNTl 1 OOOusec 1 OOOusec 
I NT2 1 OOusec 1 OOusec 
I NT3 250usec 250usec 
I NT4 15usec 1 OOusec 
NMI 200usec 5OOusec once! 

Description 

timer 
send data 
Serial data in 
write tape 
System crash 

FIGURE 4-3 An interrupt map. 

degree of flexibility (spend too much on dinner this month and, assuming 
you don’t abuse the credit cards, you’ll have to reduce spending some- 
where else). Like any budget, it’s a condensed view of a profound reality 
whose parameters your system must meet. One number only is cast in 
stone: there’s only one second’s worth of compute time per second to get 
everything done. You can tune execution time of any ISR, but be sure 
there’s enough time overall to handle every device. 

Approximate the complexity of each ISR. Given the interrupt rate, 
with some idea of how long it’ll take to service each, you can assign pri- 
orities (assuming your hardware includes some sort of interrupt controller). 
Give the highest priority to things that must be done in staggeringly short 
times to satisfy the hardware or the system’s mission (such as to accept 
data coming in from a 1 Mb/sec source). 

The cardinal rule of ISRs is to keep the handlers short. A long ISR 
simply reduces the odds you’ll be able to handle all time-critical events in 
a timely fashion. If the interrupt starts something truly complex, have the 
ISR spawn off a task that can run independently. This is an area where an 
RTOS is a real asset, as task management requires nothing more than a call 
from the application code. 

Short, of course, is measured in time, not in code size. Avoid loops. 
Avoid long complex instructions (repeating moves, hideous math, and the 
like). Think like an optimizing compiler: does this code really need to be 
in the ISR? Can you move it out of the ISR into some less critical section 
of code? 

For example, if an interrupt source maintains a time-of-day clock, 
simply accept the interrupt and increment a counter. Then return. Let some 
other chunk of code-perhaps a non-real-time task spawned from the 
ISR-worry about converting counts to time and day of the week. 

Ditto for command processing. I see lots of systems where an ISR re- 
ceives a stream of serial data, queues it to RAM, and then executes com- 
mands or otherwise processes the data. Bad idea! The ISR should simply 
queue the data. If time is really pressing &e., you need real-time response 
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to the data), consider using another task or ISR, one driven via a timer 
that interrupts at the rate you consider “real time,” to process the queued 
data. 

An analogous rule to keeping ISRs short is to keep them simple. 
Complex ISRs lead to debugging nightmares, especially when the tools 
may be somewhat less than adequate. Debugging ISRs with a simple 
BDM-like debugger is going to hurt-bad. Keep the code so trivial there’s 
little chance of error. 

An old rule of software design is to use one function (in this case the 
serial ISR) to do one thing. A real-time analogy is to do things only when 
they need to ger done, not at some arbitrary rate. 

Reenable interrupts as soon as practical in the ISR. Do the hardware- 
critical and non-reentrant things up front, then execute the interrupt enable 
instruction. Give other ISRs a fighting chance to do their thing. 

Fill all of your unused interrupt vectors with a pointer to a null rou- 
tine (Figure 4-4). During debug, ulwwys set a breakpoint on this routine. 
Any spurious interrupt, due to hardware problems or misprogrammed pe- 
ripherals, will then stop the code cleanly and immediately, giving you a 
prayer of finding the problem in minutes instead of weeks. 

Hardwarre Issues 

Lousy hardware design is just as deadly as crummy software. Mod- 
ern high-integration CPUs such as the 68332,80186. and 2180 all include 
a wealth of internal peripherals-serial ports, timers, DMA controllers, 
etc. Interrupts from these sources pose no hardware design issues, since the 
chip vendors take care of this for you. All of these chips, though, do per- 
mit the use of external interrupt sources. There’s trouble in them thar ex- 
ternal interrupts! 

Vect- table:  
d l  
d l  
dl 
d l  
d l  
d l  
d l  
d l  

s t a r t - u p  
n u l  1-1 s r 
nu 11-1 s r 
t i m e r - i s r  
s e  r i  a l - i  n-i s r ; 
s e  r ia l -out- i  s r ; 
n u l l - i s r  
n u l l - i s r  

power up v e c t o r  
unused v e c t o r  
unused v e c t o r  
main t i c k  t i m e r  ISR 
s e r i a l  r e c e i v e  ISR 
s e r i a l  t r a n s m i t  ISR 
unused v e c t o r  
unused v e c t o r  

n u l l - i s r  : ; s p u r i o u s  i n t r  r o u t i n e  
i m p  n u l l - i s r  ; s e t  BP h e r e !  

FIGURE 4-4 Fill unused vectors with a pointer to null-isr, and set a 
breakpoint there while debugging. 
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The biggest issue is the generation of the INTR signal itself. Don’t sim- 
ply pulse an interrupt input. Though some chips do permit edge-triggered in- 
puts, the vast majority of them require you to assert and hold INTR until the 
processor issues an acknowledgment, such as from the interrupt ACK pin. 
Sometimes it’s a signal to drop the vector on the bus; sometimes it’s nothing 
more than “Hey, I got the interrupt-you can release INTR now.” 

As always, be wary of timing. A slight slip in asserting the vector can 
make the chip wander to an erroneous address. If the INTR must be exter- 
nally synchronized to clock, do exactly what the spec sheet demands. 

If your system handles a really fast stream of data, consider adding 
hardware to supplement the code. A data acquisition system I worked on 
accepted data at a 20-microsecond rate. Each generated an interrupt, caus- 
ing the code to stop what it was doing, vector to the ISR, push registers 
like wild, and then reverse the process at the end of the sequence. If the 
system was busy servicing another request, it could miss the interrupt al- 
together. 

A cheap 256-byte-deep FIFO chip eliminated all of the speed issues. 
The hardware filled the FIFO without CPU intervention. It generated an in- 
terrupt at the half-full point (modem FIFOs often have Empty, Half-Full, 
and Full bits), at which time the ISR sucked data from the FIFO until it was 
dry. During this process additional data might come along and be written 
to the FIFO, but this happened transparently to the code. 

Most designs seem to connect FULL to the interrupt line. Conceptu- 
ally simple, this results in the processor being interrupted only after the en- 
tire buffer is full. If a little extra latency causes a short delay before the 
CPU reads the FIFO, then an extra data byte arriving before the FIFO is 
read will be lost. 

An alternative is EMPTY going not-true. A single byte arriving will 
cause the micro to read the FIFO. This has the advantage of keeping the 
FIFOs relatively empty, minimizing the chance of losing data. It also 
makes a big demand on CPU time, generating interrupts with practically 
every byte received. 

Instead, connect HALF-FULL, if the signal exists on the FIFOs 
you’ve selected, to the interrupt line. HALF-FULL is a nice compromise, 
deferring processor cycles until a reasonable hunk of data is received, yet 
leaving free buffer space for more data during the ISR cycles. 

Some processors do amazing things to service an interrupt, stacking 
addresses and vectoring indirectly all over memory. The ISR itself no 
doubt pushes lots of registers, perhaps also preserving other machine in- 
formation. If the HALF-FULL line generates the interrupt, then you have 
the a priori information that lots of other data is already queued and wait- 
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ing for processor time. Save overhead by making the ISR read the FIFOs 
until the EMPTY flag is set. You’ll have! to connect the EMPTY flag to a 
parallel port so the software can read it, but the increase in performance is 
well worth it. 

In mission-critical systems it might also make sense to design a sim- 
ple circuit that latches the combination of FULL and an incoming new data 
item. This overflow condition could be disastrous and should be signaled 
to the processor. 

A few bucks invested in a FIFO may allow you to use a much slower, 
and cheaper, CPU. Total system cost is the only price issue in embedded 
design. If a $5 %bit chip with a $6 FIFO does the work of a $20 16-bitter 
with double the RAM/ROM chips, it’s foolish to not add the extra part. 

Figure 4-5 shows the result of an Intel study of serial receive interrupts 
coming to a 386EX processor. At 530,000 baud-or  around 53,000 charac- 
ters per second-the CPU is almost completely loaded servicing interrupts. 

Add a 16-byte FIFO and CPU loading declines to a mere 10%. That’s 
a stunning performance improvement! 

C or Assembly? 

If you’ve followed my suggestions, you have a complete interrupt 
map with an estimated maximum execution time for the ISR. You’re ready 
to start coding . . . right? 

If the routine will be in assembly language, convert the time to a 
rough number of instructions. If an average instruction takes x microsec- 
onds (depending on clock rate, wait states, and the like), then it’s easy to 
get this critical estimate of the code’s allowable complexity. 
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FIGURE 4-5 Baud rates versus CPU utilization. On the left, a con- 
ventional connection uses 90% of the CPU to service 530k baud inputs. 
On the right, with a FIFO the processor is 10% loaded at the same rate. 
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C is more problematic. In fact, there’s no way to scientifically write 
an interrupt handler in C! You have no idea how long a line of C will take. 
You can’t even develop an estimate as each line’s time varies wildly. A 
string compare may result in a runtime library call with totally unpre- 
dictable results. A FOR loop may require a few simple integer compar- 
isons or a vast amount of processing overhead. 

And so, we write our C functions in a fuzz of ignorance, having no 
concept of execution times until we actually run the code. If it’s too slow, 
well, just change something and try again! 

I’m not recommending that ISRs not be coded in C. Rather, this is 
more of a rant against the current state of compiler technology. Years ago 
assemblers often produced t-state counts on the listing files, so you could 
easily figure how long a routine ran. Why don’t compilers do the same for 
us? Though there are lots of variables (that string compare will take a vary- 
ing amount of time depending on the data supplied to it), certainly many C 
operations will give deterministic results. It’s time to create a feedback 
loop that tells us the cost, in time and bytes, for each line of code we write, 
before burning ROMs and starting test. 

Until compilers improve, use C if possible, but look at the code gen- 
erated for a typical routine. Any call to a runtime routine should be imme- 
diately suspect, as that routine may be slow or non-reentrant, two deadly 
sins for ISRs. Look at the processing overhead-how much pushing and 
popping takes place? Does the compiler spend a lot of time manipulating 
the stack frame? You may find one compiler pitifully slow at interrupt han- 
dling. Either try another, or switch to assembly. 

Despite all of the hype you’ll read in magazine ads about how 
vendors understand the plight of the embedded developer, the plain 
truth is that the compiler vendors all uniformly miss the boat. Mod- 
em C and C++ compilers are poorly implemented in that they give us 
no feedback about the real-time nature of the code they’re producing. 

The way we write performance-bound C code is truly astound- 
ing. Write some code, compile and run it . . . and if it’s not fast 
enough, change something-anything-and try again. The compiler 
has so distanced us from the real-time nature of the code that we’re 
left to make random changes in a desperate attempt to get the tool to 
produce faster code. 

A much more reasonable approach would be to get listings 
from the compiler with typical per-statement execution times. An 
ideal listing might resemble 
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2 5 0 - 2 7 5  nsec for(i=O; i<count; ++i) 
5 0 8 - 5 8 0  nsec {if (start-count ! =  

end-c oun t ) 
2 5 0  nsec end_point=head; 

I 

where a range of values cover possible differences in execution 
paths depending on how the statement operates (for example, if the 
FOR statement iterates or terminates). 

To get actual times, of course, the compiler needs to know a lot 
about our system, including clock rates and wait states. Another op- 
tion is to display T states, or even just number of instructions exe- 
cuted (since that would give us at least some sort of view of the 
code’s performance in the time domain). 

Vendors tell me that cache, pipelines, and prefetchers make 
modeling code performance too difficult. I disagree. Most small em- 
bedded CPUs don’t have these features, and of them, only cache is 
truly tough to model. 

Please, Mr. Compiler Vendor, give us some sort of indication 
about the sort of performance we can expect! Give us a clue about 
how long a runtime routine or floating-point operation takes. 

A friend told me how his DOD project uses an antique lan- 
guage called CMSP. The compiler is so buggy they have to look for 
bugs in the assembly listing after each and every compile-and then 
make a more or less random change and recompile, hoping to lure 
the tool into creating correct code. I laughed until I realized that’s 
exactly the situation we’re in when using a high-quality C compiler 
in performance-bound applications. 

Be especially wary of using complex data structures in ISRs. Watch 
what the compiler generates. You may gain an enormous amount of per- 
formance by sizing an array at an even power of 2, perhaps wasting some 
memory, but avoiding the need for the compiler to generate complicated 
and slow indexing code. 

An old software adage recommends coding for functionality first, 
and speed second. Since 80% of the speed problems are usually in 20% of 
the code, it makes sense to get the system working and then determine 
where the bottlenecks are. Unfortunately, real-time systems by their nature 
usually don’t work at all if things are slow. You’ve often got to code for 
speed up front. 
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If the interrupts are coming fast-a term that is purposely vague and 
qualitative, measured by experience and gut feel-then I usually just take 
the plunge and code the ISR in assembly. Why cripple the entire system 
because of a little bit of interrupt code? If you’ve broken the ISRs into 
small chunks, so the real-time part is small, then little assembly will be 
needed. Code the slower ISRs in C. 

Debugging INT/INTA Cycles 
Lots of things can and will go wrong long before your ISR has a 

chance to exhibit buggy behavior. Remember that most processors service 
an interrupt with the following steps: 

1. 
2. 

3. 
4. 
5. 

6. 

The device hardware generates the interrupt pulse. 
The interrupt controller (if any) prioritizes multiple simultaneous 
requests and issues a single interrupt to the processor. 
The CPU responds with an interrupt acknowledge cycle. 
The controller drops an interrupt vector on the databus. 
The CPU reads the vector and computes the address of the user- 
stored vector in memory. It then fetches this value. 
The CPU pushes the current context, disables interrupts, and 
jumps to the ISR. 

Interrupts from internal peripherals (those on the CPU itself) usually 
won’t generate an external interrupt acknowledge cycle. The vectoring is 
handled internally and invisibly to the wary programmer, tools in hand, 
trying to discover his system’s faults. 

A generation of structured programming advocates has caused many 
of us to completely design the system and write all of the code before de- 
bugging. Though this is certainly a nice goal, it’s a mistake for the low-level 
drivers in embedded systems. I believe in an early wrestling match with the 
system’s hardware. Connect an emulator and exercise the I/O ports. They 
never behave quite as you expected. Bits might be inverted or transposed, 
or maybe there are a dozen complex configuration registers that need to be 
set up. Work with your system, understand its quirks, and develop notes 
about how to drive each YO device. Use these notes to write your code. 

Similarly, start prototyping your interrupt handlers with a hollow 
shell of an ISR. You’ve got to get a lot of things right just to get the ISR to 
start. Don’t worry about what the handler should do until you have it at 
least being called properly. 

Set a breakpoint on the ISR. If your shell ISR never gets called, and 
the system doesn’t crash and burn, most likely the interrupt never makes it 
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to the CPU. If you were clever enough to fill the vector table’s unused en- 
tries with pointers to a null routine, watch for a breakpoint on that function. 
You may have misprogrammed the table entry or the interrupt controller, 
which would then supply a wrong vector to the CPU. 

If the program vectors to the wrong address, then use a logic analyzer 
or emulator’s trace to watch how the CPU services the interrupt. Trigger 
collection on the interrupt itself, or on any read from the vector table in 
RAM. You should see the interrupt controller drop a vector on the bus. Is 
it the right one? If not, perhaps the interrupt controller is misprogrammed. 

Within a few instructions (if interrupts are on) look for the read from 
the vector table. Does it access the right table address? If not, and if the 
vector was correct, then either you’re looking at the wrong system inter- 
rupt, or there’s a timing problem in the interrupt acknowledge cycle. Break 
out the logic analyzer and check this carefully. 

Hit the databooks and check the format of the table’s entries. On an 
x86-style processor, four bytes represent the ISR’s offset and segment ad- 
dress. If these are in the wrong order-and they often are-there’s no 
chance your ISR will execute. 

Frustratingly often the vector is fine; the interrupt just does not occur. 
Depending on the processor and peripheral mix, only a handful of things 
could be wrong: 

Did you enable interrupts in the main routine? Without an E1 in- 
struction, no interrupt will ever occur. One way of detecting this is 
to sense the CPU’s INTR input pin. If it’s asserted all of the time, 
then generally the chip has all interrupts disabled. 
Does your I/O device generate an interrupt? It’s easy to check this 
with external peripherals. 
Have you programmed the device to allow interrupt generation? 
Most CPUs with internal peripherals allow you to selectively dis- 
able each device’s interrupt generation; quite often you can even 
disable parts of this (such as allow interrupts on “received data” 
but not on “data transmitted”). 

Modern peripherals are often incredibly complex. Motorola’s TPU, 
for example, has an entire book dedicated to its use. Set one bit in one reg- 
ister to the wrong value, and it won’t generate the interrupt you are look- 
ing for. 

It’s not uncommon to see an interrupt work perfectly once, and then 
never work again. The only general advice is to be sure your ISR reenables 
interrupts before returning. Then look into the details of your processor 
and peripherals. 
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Some, such as the 280, have an external interrupt daisy chain that 
serves as a priority encoder. Look at these lines with a scope. If you see the 
daisy chain set to a zero, it’s a sure indication that one device did not see 
the end-of-interrupt sequence. On the Z80 and Z 180 processors this is pro- 
vided by executing the RET1 instruction. Use a normal return instruction 
by mistake and you’ll never get another interrupt. 

Intel’s x86 family is often used with an 8259 interrupt controller. 
Some of the embedded CPUs in this family have 8259-like controllers 
built into the processor. If you forget to issue an EO1 (end of interrupt) 
command to the 8259 when the ISR is complete, you’ll get that one inter- 
rupt only. 

You may need to service the peripherals as well before another in- 
terrupt comes along. Depending on the part, you may have to read registers 
in the peripheral to clear the interrupt condition. UARTs and timers usually 
require this. Some have peculiar requirements for clearing the interrupt 
condition, so be sure to dig deeply into the databook. 

Finding Missing Interrupts 

A device that parses a stream of incoming characters will probably 
crash very obviously if the code misses an interrupt or two. One that counts 
interrupts from an encoder to measure position may only exhibit small 
precision errors, a tough thing to find and troubleshoot. 

Having worked on a number of systems using encoders as position 
sensors, I’ve developed a few tricks over the years to find these missing 
pulses. 

You can build a little circuit using a single up/down counter that 
counts every interrupt and that decrements the count on each interrupt ac- 
knowledge. If the counter always shows a value of zero or one, everything 
is fine. 

Most engineering labs have counters-test equipment that just accu- 
mulates pulse counts. I have a scope that includes a counter. Use two of 
these, one on the interrupt pin and another on the interrupt acknowledge 
pin. The counts should always be the same. 

You can build a counter by instrumenting the ISR to increment a 
variable each time it starts. Either show this value on a display, or probe 
the variable using your debugger. 

If you know the maximum interrupt rate, use a performance analyzer 
to measure the maximum time in the ISR. If this exceeds the fastest inter- 
rupts, there’s very likely a latent problem waiting to pounce. 
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Most of these sorts of difficulties stem from slow ISRs, or from code 
that leaves interrupts off for too long. Be wary of any code that executes a 
disable-interrupt instruction. There’s rarely a good reason for it; this is 
usually an indication of sloppy software. 

It’s rather difficult to find a chunk of code that leaves interrupts off. 
The ancient 8080 had a wonderful pin that showed interrupt state all of the 
time. It was easy to watch this on the scope and look for interrupts that 
came during that period. Now, having advanced so far, we have no such 
easy troubleshooting aids. About the best one can do is watch the INTR 
pin. If it stays asserted for long periods of time, and if it’s properly de- 
signed (i.e., stays asserted until INTA), then interrupts are certainly off. 

One design rule of thumb will help minimize missing interrupts: 
reenable interrupts in ISRs at the earliest safe spot. 

Reentrancy Problems 

Well-designed interrupt handlers are largely reentrant. Reentrant 
functions-a.k.a. “pure code”-are often falsely thought to be any code 
that does not modify itself. Too many programmers feel that if they sim- 
ply avoid self-modifying code, their routines are guaranteed to be reen- 
trant, and thus interrupt-safe. Nothing could be further from the truth. 

A function is reentrant if, while it is being executed, it can be rein- 
voked by itself, or by any other routine. 

Suppose your main-line routine and the ISRs are all coded in C. The 
compiler will certainly invoke runtime functions to support floating-point 
math, VO, string manipulations, etc. If the runtime package is only par- 
tially reentrant, then your ISRs may very well corrupt the execution of the 
main line code. This problem is common, but is virtually impossible to 
troubleshoot, since symptoms result only occasionally and erratically. 
There’s nothing more ulcer-inducing than isolating a bug that manifests it- 
self only occasionally, and with totally different characteristics each time. 

Sometimes we’re tempted to cheat and write a nearly pure routine. If 
your ISR merely increments a global 32-bit value, maybe to maintain time, 
it would seem legal to produce code that does nothing more than a quick 
and dirty increment. Beware! Especially when writing code on an 8- or 16- 
bit processor, remember that the C compiler will surely generate several 
instructions to do the deed. On a 186, the construct ++j might produce 

mov ax, [ j l  
add ax,l ; increment low part of j 
mov [ j l  ,ax 



68 THE ART OF DESIGNING EMBEDDED SYSTEMS 

mov ax, [ j + l l  
adc ax, 0 ; prop carry t o  high pa r t  of j 
m o v  [ j + l l  , ax  

An interrupt in the middle of this code will leave j just partially 
changed: if the ISR is reincarnated with j in transition, its value will surely 
be corrupt. Or, if other routines use the variable, the ISR may change its 
value at the same time other code tries to make sensible use of it. 

The first solution is to avoid global variables! Globals are an abomi- 
nation, a sure source of problems in any system, and an utter nightmare in 
real-time code. Never, ever pass data between routines in globals unless 
the following three conditions are fulfilled: 

Reentrancy issues are dealt with via some method, such as dis- 
abling interrupts around their use-though I do not recommend 
disabling interrupts cavalierly, since that affects latency. 
The globals are absolutely needed because of a clear performance 
issue. Most alternatives do impose some penalty in execution time. 
The global use is limited and well documented. 

Inside of an ISR, be wary of any variable declared as a static. Though 
statics have their uses, the ISR that reenables interrupts, and then is inter- 
rupted before it completes, will destroy any statics declared within. 

In 1997, on a dare, I examined firmware embedded in 23 completed 
products, all of which were shipping to customers. Every one had this par- 
ticular problem! Interestingly, the developers of 70% of the projects ad- 
mitted to infrequent, unexplainable crashes or other odd behavior. One 
frustrated engineer revealed that his product burped almost hourly, a symp- 
tom “corrected” (perhaps “masked” would be a better term) by adding a 
very robust watchdog timer circuit. This particularly bad system, which 
had the reentrancy problem inside an ISR, also had the fastest interrupt rate 
of any of the products examined. 

This suggests using a stress test to reveal latent reentrancy defects. 
Crank up the interrupt rates! If the timer comes once per second, try driv- 
ing it every millisecond and see how the system responds. Assuming per- 
formance issues don’t crash the code, this simple test often shows a horde 
of hidden flaws. 

Even the perfectly coded reentrant ISR leads to problems. If such a 
routine runs so slowly that interrupts keep giving birth to additional copies 
of it, eventually the stack will fill. Once the stack bangs into your variables, 
the program is on its way to oblivion. You must ensure that the average in- 



Real Time Means Right Now! 69 

terrupt rate is such that the routine will return more often than it is invoked. 
Again, use the stress test! 

Avoid NMI 

Reserve NMI-the non-maskable interrupt-for a catastrophe such 
as the apocalypse. Power-fail, system shutdown, and imminent disaster are 
all good things to monitor with NMI. Timer or UART interrupts are not. 

When I see an embedded system with the timer tied to NMI, I know. 
for sure, that the developers found themselves missing interrupts. NMI 
may alleviate the symptoms, but only masks deeper problems in the code 
that must be cured. 

NMI will break even well-coded interrupt handlers, since most ISRs 
are non-reentrant during the first few lines of code where the hardware is 
serviced. NMI will thwart your stack-management efforts as well. 

If you’re using NMI, watch out for electrical noise! NMI is usually 
an edge-triggered signal. Any bit of noise or glitching will cause perhaps 
hundreds of interrupts. Since it cannot be masked, you’ll almost certainly 
cause a reentrancy problem. I make it a practice to always properly termi- 
nate the CPU’s NMI input via an appropriate resistor network. 

NMI mixes poorly with most tools. Debugging any ISR-NMI or 
otherwise-is exasperating at best. Few tools do well with single stepping 
and setting breakpoints inside of the ISR. 

Breakpoint Problems 

Using any sort of debugging tool, suppose you set a breakpoint where 
the ISR starts, and then start single stepping through the code. All is well. 
since by definition interrupts are off when the routine starts. Soon, though, 
you’ll step over an E1 instruction or its like. Suddenly, all hell breaks lose. 

A regularly occurring interrupt such as a timer tick comes along 
steadily, perhaps dozens or hundreds of times per second. Debugging at 
human speeds means the ISR will start over while you’re working on a 
previous instantiation. Pressing the “single step” button might make the 
ISR start, but then itself be interrupted and restarted, with the final stop due 
to your high-level debug command coming from this second incarnation. 

Oddly, the code seems to execute backwards. Consider the case of 
setting two breakpoints-the first at the start of the ISR and the second 
much later into the routine. Run to the first breakpoint, stop, and then re- 
sume execution. The code may very well stop at the same point, the same 
first breakpoint, without ever going to the second. Again, this is simply due 
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to the human-speed debugging that gives interrupting hardware a chance to 
issue yet another request while the code’s stopped at the breakpoint. 

In the case of NMI, though, disaster strikes immediately, since there 
is no interrupt-safe state. The NMI is free to reoccur at any time, even in 
the most critical non-reentrant parts of the code, wreaking havoc and 
despair. 

A lot of applications now just can’t survive the problems inherent in 
using breakpoints. After all, stopping the code stops everything; your en- 
tire system shuts down. If your code controls a moving robot arm, for ex- 
ample, and you stop the code as the arm starts moving, it will keeping 
going and going and going . . . until something breaks or a limit switch is 
actuated. Years ago I worked on a 14-ton steel gauge; a 280 controlled the 
motion of this monster on railroad tracks. Hit a breakpoint and the system 
ran off the end of the tracks! 

Datacomm is another problem area. Stop the code via a breakpoint, 
with data packets still streaming in, and there’s a good chance the receiv- 
ing device will time out and start transmitting retry requests. 

Though breakpoints are truly wonderful debugging aids, they are like 
Heisenberg’s uncertainty principle: the act of looking at the system 
changes it. You can cheat Heisenberg-at least in debugging embedded 
code!-by using real-time trace, a feature available on all emulators and 
some smart logic analyzers. 

Trace collects the execution stream of the code in real time, without 
slowing or altering the flow. It’s a completely nonintrusive way of view- 
ing what happens. 

Trace changes the philosophy of debugging. No longer does one stop 
the code, examine various registers and variables, and then timidly step 
along. With trace your program is running at full tilt, a breakneck pace that 
trace does nothing to alter. You capture program flow, and then examine 
what happened, essentially looking into the past as the code continues on 
(Figure 4-6). 

Trace shows only what happens on the bus. You can view neither reg- 
isters nor variables unless an instruction reads or writes them to memory. 
Worse, C’s stack-based design often makes it impossible to view variables 
that were captured. You may see the transactions (pushes and pops), but the 
tool may display neither the variable name nor the data in its native type. 

With millions of instructions every second, it’s clearly impossible to 
capture your program’s entire execution stream. Nor is it desirable, as a 
trace buffer a hundred million frames deep is simply too much data to 
plow through. Pick an emulator that offers flexible triggers-breakpoint- 
like resources that start and stop trace collection. 
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-00432 03f80333 d88e MOV DS,BX 
'-00431 03f80335 55 PUSH EBF 
'CDEMON: 269 mme-led{ 1, 
,-00430 03f80336 ffff62eB CALL NEAR PTR CS:-158 
C D E M O N '  355 void mme-led{ 1 
1-00417 03f8029d 56 PUSH ESI 
1-00415 03f8029e 57 PUSH ED1 
&DEMON' 3 6 4  ; I c e: maskbi 
:-00415 0 3 f 8 0 2 9 f  be MOV ES1,SOO 
E-00408 0 3 f 8 0 2 a 4  31 XOR D I , D I  

eb JMP SHORT 41 
83 CMP EDI .SO8 

FIGURE 4-6 ISR trace collection on an emulator. 

1-00402 03f802d4 d27c J L  SHORT -46 
CDEMON 3 6 6  led port[i++] = ' 1 ' ;  I 1-0039'3 03f 802a8 f9S9- MOV CX,DI 

Are the triggers a pain to set up? Most emulators offer special menus 
with dozens of trigger configuration options. Although this is essential for 
finding the most obscure bugs, it is just too much work for the usual de- 
bugging scenario, where you simply want to start collection when source 
module line 124 executes. Simple triggers should be as convenient as 
breakpoints, set perhaps via a right mouse click. 

The moral is: trace is the right debugging tool, but keep ISRs simple. 
Minimize their complexity to maximize their debuggability. 

Easy ISR Debugging 

What's the fastest way to debug an ISR? 
Don't. 
If your ISR is only 10 or 20 lines of code, debug by inspection. Don't 

Keep the handler simple and short. If it fails to operate correctly, a 
fire up all kinds of complex and unpredictable tools. 

few minutes reading the code will usually uncover the problem. 
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After 25 years of building embedded systems I’ve learned that long 
ISRs are a bad thing, and a symptom of poor code. Keep ’em short, keep 
’em simple. 

Measuring Performance 

In my opinion, the debates about the relative speeds of C versus as- 
sembly, or C versus C++, are meaningless. All performance issues are 
nothing but a smokescreen unless you’re willing to take qualitative mea- 
surements to replace the fog of speculation with the insight of facts. 

Amateurs moan and speculate about performance, making random 
stabs at optimizing code. Professionals take measurements, only then de- 
ciding what action, if any, is appropriate. 

If the ISR is not fast enough, your system will fail. Unfortunately, 
few of the developers I talk to have any idea what “fast enough” means. 
Unless you generate the interrupt map I’ve discussed, only random luck 
will save you from speed problems. 

When designing the system, answer two questions: how fast is fast 
enough? How will you know if you’ve reached this goal? 

Some people are born lucky. Not me. I’ve learned that nature is per- 
verse and will get me if it can. Call it high-tech paranoia. Plan for prob- 
lems, and develop solutions for those problems before they occur. Assume 
each ISR will be too slow, and plan accordingly. 

A performance analyzer will instantly show the minimum, maxi- 
mum, and average execution time required by your code, including your 
ISRs (Figure 4-7). There’s no better tool for finding real-time speed issues. 

Guesstimating Performance 

In 1967 Keuffel & Esser (the greatest of the slide rule companies) 
commissioned a study of the future. They predicted that by 2067 we’d see 
three-dimensional TVs and cities covered by majestic domes. The study 
somehow missed the demise of the slide rule (their main product) within 5 
years. 

Our need to compute, to routinely deal with numbers, led to the in- 
vention of dozens of clever tools, from the abacus to logarithm tables to the 
slide rule. All worked in concert with the user’s brain, in an iterative, back- 
and-forth process that only slowly produced answers. 

Now even grade-school children routinely use graphing calculators. 
The device assumes the entire job of computation and sometimes even data 
analysis. What a marvel of engineering! Powered by nothing more than a 
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FIGURE 4-7 A performance analyzer‘s output. 

stream of photons, pocket-sized, and costing virtually nothing, our elec- 
tronic creations give us astonishing new capabilities. 

Those of us who spend our working lives parked in front of comput- 
ers have even more powerful computational tools. The spreadsheet is a 
multidimensional version of the hand calculator, manipulating thousands 
of formulas and numbers with a single keystroke. Excel is one of my fa- 
vorite engineering tools. It lets me model weird systems without writing a 
line of code, and tune the model almost graphically. Computational tools 
have evolved to the point where we no longer struggle with numbers; in- 
stead, we ask complex “what-if ” questions. 

Network computing lets us share data. We pass spreadsheets and 
documents among co-workers with reckless abandon. In my experience, 
big, widely shared spreadsheets are usually incorrect. Someone injects a 
row or column, forgetting to adjust a summation or other formula. The data 
at the end is so complex, based on so many intermediate steps, that it’s 
hard to see if it’s right or wrong. . . so we assume it’s right. This is the 
dark side of a spreadsheet: no other tool can make so many incorrect cal- 
culations so fast. 

Mechanical engineers now use finite element analysis to predict the 
behavior of complex structures under various stresses. The computer mod- 
els a spacecraft vibrating as it is boosted to orbit, giving the designers in- 
sight into its strength without the need to run expensive tests on shakers. 
Yet, finite element analysis is so complex, with millions of interrelated 
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calculations! How do they convince themselves that a subtle error isn’t 
lurking in the model? As with subtle errors hidden in large spreadsheets, 
the complexity of the calculations removes the element of “feel.” Is that 
complex carbon-fiber structure strong enough when excited at 20 Hz? 
Only the computer knows for sure. 

The modern history of engineering is one of increasing abstraction 
from the problem at hand. The C language insulates us from the tedium of 
assembly, which itself removes us from machine code. Digital ICs protect 
us from the very real analog behavior of each of the millions of transistors 
encapsulated in the chip. When we embed an operating system into a prod- 
uct, we’re given a wealth of services we can use without really under- 
standing the how and why of their operation. 

Increasing abstraction is both inevitable and necessary. An example 
is the move to object-oriented programming, and more importantly, soft- 
ware reuse, which will-someday-lead to “software ICs” whose opera- 
tion is as mysterious as today’s giant LSI devices, yet that elegantly and 
cheaply solve some problem. 

But, abstraction comes at a price. In too many cases we’re losing the 
“feel” of the problem. Engineering has always been about building things, 
in the most literal of contexts. Building, touching, and experiencing failure 
are the tactile lessons that bum themselves into the wiring of our brains. 
When we delve deeply into how and why things work, when we get burned 
by a hot resistor, when we’ve had a tantalum capacitor installed backwards 
explode in our face, when a CMOS device fails from excessive undershoot 
on an input, we develop our own rules of thumb that give us a new under- 
standing of electronics. Book learning tells us what we need to know. Han- 
dling components and circuits builds a powerful subconscious knowledge 
of electronics. 

A friend who earns his keep as a consultant sometimes has to admit 
that a proposed solution looks good on paper, but just does not feel right. 
Somehow we synthesize our experience into an emotional reaction as pow- 
erful and immediate as any other feeling. I’ve learned to trust that initial 
impression, and to use that bit of nausea as a warning that something is not 
quite right. The ground plane on that PCB just doesn’t look heavy enough. 
The capacitors seem a long way from the chips. That sure seems like a long 
cable for those fast signals. Gee, there’s a lot of ringing on that node. 

Practical experience has always been an engineer’s stock-in-trade. 
We learn from our successes and our failures. This is nothing new. Accord- 
ing to Cathedral, Forge and Waterwheel (Frances and Joseph Gies, 1994, 
HarperCollins, New York), in the Middle Ages “Engineers had some 
command of geometry and arithmetic. What they lacked was engineering 
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theory, in place of which they employed their own experience, that of their 
colleagues, and rule of thumb.” 

The flip side of a “feel” for a problem is an ability to combine that 
feeling with basic arithmetic skills to very quickly create a first approxi- 
mation to a solution, something often called “guesstimating.” This won- 
derful word combines “guess”-based on our engineering feel for a 
problem-and “estimate”-a partial analytical solution. 

Guesstimates are what keep us honest: “200,000 bits per second 
seems kind of fast for an 8-bit micro to process” (this is the guess part); 
“Why, that’s 1/200,000 or 5 microseconds per bit” (the estimate part). 
Maybe there’s a compelling reason why this guesstimate is incorrect, but 
it flags an area that needs study. 

In 1995 an Australian woman swam the 110 miles from Havana to 
Key West in 24 hours. Public Radio reported this information in breathless 
excitement, while I was left baffled. My guesstimate said this is unlikely. 
That’s a 4.5 MPH average, a pace that’s hard to beat even with a brisk 
walk, yet the she maintained this for a solid 24 hours. 

Maybe swimmers are speedier than I’d think. Perhaps the Gulf 
Stream spun off a huge gyre, a rotating current that gave her a remarkable 
boost in the right direction. I’m left puzzled, as the data fails my guessti- 
mating sense of reasonableness. And so, though our sense of “feel” can 
and should serve as a measure against which we can evaluate the mounds 
of data tossed our way each day, it is imperfect at best. 

The art of “guesstimating” was once the engineer’s most basic tool. 
Old engineers love to point to the demise of the slide rule as the culprit. 
“Kids these days,” they grumble. Slide rules forced one to estimate the so- 
lution to every problem. The slide rule did force us to have an easy famil- 
iarity with numbers and with making coarse but rapid mental calculations. 

We forget, though, just how hard we had to work to get anything 
done! Nothing beats modem technology for number crunching, and I’d 
never go back. Remember that the slide rule forced us to estimate all an- 
swers; the calculator merely allows us to accept any answer as gospel with- 
out doing a quick mental check. 

We need to grapple with the size of things, every day and in every ave- 
nue. A million times a million is, well, The gigahertz is a period of one 
nanosecond. A speed of 4.5 miles per hour seems high for a swimmer. It’s 
unlikely your interrupt service routine will complete in 2 microseconds. 

We’re building astonishing new products, the simplest of which have 
hundreds of functions requiring millions of transistors. Without our amaz- 
ing tools and components, those things that abstract us from the worries of 
biasing each individual transistor, we’d never be able to get our work done. 
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Though the abstraction distances us from how things work, it enables us to 
make things work in new and wondrous ways. 

The art of guesstimating fails when we can’t or don’t understand the 
system. Perhaps in the future we’ll need computer-aided guesstimating 
tools, programs that are better than feeble humans at understanding vast in- 
terlocked systems. Perhaps this will be a good thing. Maybe, like double- 
entry bookkeeping, a computerized guesstimator will at least allow a 
cross-check on our designs. 

When I was a nerdy kid in the 196Os, various mentors steered me to 
vacuum tubes long before I ever understood semiconductors. A tube is 
wonderfully easy to understand. Sometimes you can quite literally see the 
blue glow of electrons splashing off the plate onto the glass. The warm 
glow of the filaments, the visible mesh of the control grids, always con- 
jured a crystal-clear mental image of what was going on. 

A 100,000-gate ASIC is neither warm nor clear. There’s no emo- 
tional link between its operation and your understanding of it. It’s a pla- 
tonic relationship at best. 

So, what’s an embedded engineer to do? How can we reestablish this 
“feel” for our creations, this gut-level understanding of what works and 
what doesn’t? 

The first part of learning to guesstimate is to gain an intimate under- 
standing of how things work. We should encourage kids to play with tech- 
nology and science. Help them get their hands greasy. It matters little if 
they work on cars, electronics, or in the sciences. Nurture that odd human 
attribute that couples doing with learning. 

The second part of guesstimation is a quick familiarity with math. 
Question engineers (and your kids) deeply about things. “Where did that 
number come from?” “Do you believe it . . . and why?’ 

Work on your engineer’s understanding of orders of magnitude. It’s 
astonishing how hard some people work to convert frequency to period, 
yet this is the most common calculation we do in computer design. If you 
know that a microsecond is a megahertz, a millisecond is 1000 Hz, you’ll 
never spend more than a second getting a first-approximation conversion. 

The third ingredient is to constantly question everything. As the 
bumper sticker says, “Question authority.” As soon as the local expert 
backs up his opinion with numbers, run a quick mental check. He’s prob- 
ably wrong. 

In To Engineer Is Human (1982, Random House, New York), author 
Henry Petroski says, “Magnitudes come from afeel for the problem, and 
do not come automatically from machines or calculating contrivances.” 
Well put, and food for thought for all of us. 
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A simple CPU has very predictable timing. Add a prefetcher or 
pipeline and timing gets fuzzier, but still is easy to figure within 10 or 20%. 
Cache is the wildcard, and as cache size increases, determinism dimin- 
ishes. Thankfully, today few small embedded CPUs have even the small- 
est amount of cache. 

Your first weapon in the performance arsenal is developing an un- 
derstanding of the target processor. What can it do in one microsecond? 
One instruction? Five? Some developers use very, very slow clocks when 
not much has to happen-ne outfit I know runs the CPU (in a spacecraft) 
at 8 kHz until real speed is needed. At 8 kHz they get maybe 1000 in- 
structions per second. Even small loops become a serious problem. Un- 
derstanding the physics-a perhaps fuzzy knowledge of just what the CPU 
can do at this clock rate-means the big decisions are easy to make. 

Estimation is one of engineering’s most important tools. Do you 
think the architect designing a house does a finite element analysis to fig- 
ure the size of the joists? No! He refers to a manual of standards. A 15-foot 
unsupported span typically uses joists of a certain size. These estimates. 
backed up with practical experience, ensure that a design, while perhaps 
not optimum, is adequate. 

We do the same in hardware engineering. Electrons travel at about 
one or two feet per nanosecond, depending on the conductor. It’s hard to 
make high-frequency first harmonic crystals, so use a higher order har- 
monic. Very small PCB tracks are difficult to manufacture reliably. All of 
these are ingredients of the “practice” of the art of hardware design. None 
of these are tremendously accurate: you can, after all, create one-mil tracks 
on a board for a ton of money. The exact parameters are fuzzy, but the gen- 
eral guidelines are indeed correct. 

So, too, for software engineering. We need to develop a sense of the 
art. A 68HC16, at 16 MHz, runs so many instructions per second (plus or 
minus). With this particular compiler you can expect (more or less) this 
sort of performance under these conditions. 

Data, even fuzzy data, lets us bound our decisions, greatly improving 
the chances of success. The alternative is to spend months and years gen- 
erating a mathematically precise solution-which we won’t do--or to bum 
incense and pray . . . the usual approach. 

Experiment. Run portions of the code. Use a stopwatch-metaphor- 
ical or otherwise-to see how it executes. Buy a performance analyzer or 
simply instrument sections of the firmware to understand the code’s per- 
formance. 

The first time you do this you’ll think, “This is so cool,” and you’ll 
walk away with a clear number: xxx microseconds for this routine. With 
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time you’ll develop a sense of speed. “You know, integer compares are 
pretty damn fast on this system.” Later-as you develop a sense of the 
art-you’ll be able to bound things. “Nah, there’s no way that loop can 
complete in 50 microseconds.” 

This is called experience, something that we all too often acquire 
haphazardly. We plan our financial future, we work daily with our kids on 
their homework, even remember to service the lawnmower at the begin- 
ning of the season, yet neglect to proactively improve our abilities at work. 

Experience comes from exposure to problems and from learning 
from them. A fast, useful sort of performance expertise comes from ex- 
trapolating from a current product to the next. Most of us work for a com- 
pany that generally sells a series of similar products. When it’s time to 
design a new one, we draw from the experience of the last, and from the 
code and design base. Building version 2.0 of a widget? Surely you’ll use 
algorithms and ideas from 1.0. Use 1.0 as a testbed. Gather performance 
data by instrumenting the code. 

Always close the feedback loop! When any project is complete, 
spend a day learning about what you did. Measure the performance of the 
system to see just how accurate your processor utilization estimates were. 
The results are always interesting and sometimes terrifying. If, as is often 
the case, the numbers bear little resemblance to the original goals, then fig- 
ure out what happened, and use this information to improve your estimat- 
ing ability. Without feedback, you work forever in the dark. Strive to learn 
from your successes as well as your failures. 

Track your system’s performance all during the project’s develop- 
ment, so you’re not presented with a disaster two weeks before the sched- 
uled delivery. It’s not a bad idea to assign CPU utilization specifications to 
major routines during overall design, and then track these targets as you do 
the schedule. Avoid surprises with careful planning. 

A lot of projects eventually get into trouble by overloading the 
processor. This is always discovered late in the development, during de- 
bugging or final integration, when the cost of correcting the problem is at 
the maximum. Then a mad scramble to remove machine cycles begins. 

We all know the old adage that 80% of the processor burden lies in 
20% of the code. It’s important to find and optimize that 20%, not some 
other section that will have little impact on the system’s overall per- 
formance. Nothing is worse than spending a week optimizing the wrong 
routine! 

If you understand the design, if you have a sense of the CPU. you’ll 
know where that 20% of the code is before you write a line. Knowledge is 
power. 
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Learn about your hardware. Pure software types often have no idea 
that the CPU is actively working against them. I talked to an engineer 
lately who was moaning about how slow his new 386EX-based instrument 
runs. He didn’t know that the 386EX starts with 3 1 wait states and so had 
never reprogrammed it to a saner value. 

A Poor Man‘s Perfomrance Analyzer 

Do keep in tune with the embedded tool industry’s wide range of 
performance-analyzing devices. But don’t fail to take detailed measure- 
ments just because such a tool is not available. An oscilloscope coupled 
to a few spare output bits can be a very effective and cheap performance 
analyzer. 

Whether you’re working on an 8-bit microcontroller or a 32-bit 
VME-based system, always dedicate one or two parallel YO bits to de- 
bugging. That is, have the hardware designers include a couple of output 
bits just for sofrware debugging purposes. The cost is vanishingly small; 
the benefits often profound. 

Suppose you’d like to know an ISR’s (or any other sort of routine’s) 
precise execution time. Near the beginning of the routine set a debug out- 
put bit high; just before exiting return the bit to a zero. For example: 

ISR-entry: 
push all registers 
set output bit high 
service interrupt 
reset output bit 
pop registers 
return 

Put one scope probe on the bit. You’ll see a pattern that might re- 
semble that in Figure 4-8. The ISR is executing when the signal is high. 

In this example we see two invocations of the ISR. The first time 
(note that the time base setting is 2 msec/division), the routine runs for a bit 
over 3 msec. Next time (presumably the routine includes conditional 
code), it runs for under 1 msec. 

We also clearly see a 14-msec period between executions. If these 
two samples are indicative of the system’s typical operation, the total CPU 
overhead dedicated to this one interrupt is (3 msec+l msec)/l4 msec. or 
29%. 

Crank up the scope’s time base and you can measure the ISR’s exe- 
cution time to any desired level of precision. 
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FIGURE 4-8 Measuring an ISR’s execution time. 

When I see a 29% CPU loading for a single ISR, I immediately won- 
der why the ISR takes so much time. It violates my commonsense, guess- 
timating feel for how a system should behave. In a very simple, lightly 
loaded system 29% might make sense; for more complex systems this 
seems like a lot. 

A single debug bit provides a wealth of timing information. Another 
example is Figure 4-9, which shows an interrupt’s latency. Though chip 
vendors spec interrupt latency in terms of the time the hardware needs to rec- 
ognize the external event, to firmware folks a more useful measure is time- 
from-input to the time we’re doing something useful, which may be many 
dozens of clock cycles. The multiple levels of vectoring needed by the aver- 
age processor, plus important housekeeping such as context pushing, are all 
ultimately overhead incurred before the code starts doing something useful. 

Unhappily, this definition is rather slippery, as it depends on the be- 
havior of the entire system. An ISR that leaves interrupts disabled in- 
creases latency for every other task. Latency on a complex system is 
virtually impossible to predict, so take some measurements on time-criti- 
cal interrupts. 

The figure’s bottom trace is the assertion of an active low interrupt. 
The top trace shows a debug bit the ISR drives high. Here we see almost 
50 psec of latency between the device requesting service and the ISR start- 
ing (measured as the time from /INTR falling to the debug bit rising). 

Fifty microseconds again violates my commonsense feel for how 
systems should operate. The number may be right. . . or it may indicate 
that some other task is hogging time. 
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FIGURE 4-9 Measuring interrupt latency. 

Perhaps an even more profound measurement is the system’s total 
idle time. Is the CPU 100% loaded? 90%? Without this knowledge you 
cannot reliably tell the boss, “Sure, we can add that feature.” 

Instead of driving the debug bit in ISRs, toggle it in the idle loop. Ap- 
plications based on RTOSs often don’t use idle loops, so create a low-pri- 
ority idle task that runs when there’s nothing to do. 

The instrumented idle loop looks like this: 

idle : 
drive debug bit high 
drive debug bit low 
look for something to do 
jump to idle 

While the idle loop runs, the debug bit toggles up and down at a high 
rate of speed (see Figure 4-10). If you turn the scope’s time base down 
(to more time per division), the toggling bit looks more like hash (Figure 
4-1 l), with long down periods indicating that the code is no longer in the 
idle loop. In this example about a third of the processing time is unused. 

If an interrupt occurs after setting the bit high, but before returning it 
to zero, then the “busy” interval will look like a one on the scope and not 
the zero indicated in Figure 4-11. “Idle” times are those where you see 
hash-the signal rapidly cycling up and down. “Busy” times are those 
where the signal is a steady one or zero. 

Too many developers fall into the serendipity school of debugging. 
They feel that if the system works and meets external specifications, it’s 
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FIGURE 4-10 An idle loop quickly toggles the debug b i t .  . . until there’s 
something to do! 

ready to ship. Wrong. Hardware engineers stress their creations by run- 
ning them over a temperature range. We should do the same, instrument- 
ing our code or otherwise using performance-measuring tools, to be quite 
sure the system has sufficient margins. It’s trivial to take quite accurate 
performance data. 

The RTOS 

Whenever an application manages multiple processes and devices, 
whenever one handles a variety of activities, an RTOS is a logical tool that 
lets us simplify the code and help it run better. 

Consider the difficulty of building, say, a printer. Without an RTOS, 
one monolithic hunk of code would have to manage the door switches and 
paper feeding and communications and the print engine-all at the same 
time. Add an RTOS, and individual tasks each manage one of these activ- 
ities; except for some status information, no task needs to know much 
about what any other one is doing. In this case the RTOS allows us to par- 
tition our code in the time domain (each of these activities is running con- 
currently) and procedurally (each task handles one thing). 

An important truism of software engineering is that code complex- 
ity-and thus development time-grows much faster than program size. 
Any mechanism that segments the code into many small independent 
pieces reduces the complexity; after all, this is why we write with lots of 
functions and not one huge main() program. Clever partitioning yields bet- 
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ter programs faster, and the RTOS is probably the most important way to 
partition code in the time dimension. 

At its simplest level, an RTOS is a context switcher. You break your 
application into multiple tasks and allow the RTOS to execute the tasks in 
a manner determined by its scheduling algorithm. A round-robin scheduler 
typically allocates more or less fixed chunks of time to the tasks, execut- 
ing each one for a few milliseconds or so before suspending it and going 
to the next ready task in the queue. In this way all tasks get their fair shot 
at some CPU time. 

Another sort of scheduler is one using RMA-rate monotonic analy- 
sis. If the CPU is not completely performance bound, it’s sometimes pos- 
sible to guarantee hard real-time response by giving each task a priority 
inversely proportional to the task’s period. 

Regardless of scheduling mechanism, all RTOSs include priority 
schemes so you can statically and dynamically cause the context switcher 
to allocate more or less time to tasks. Important or time-critical activities 
get first shot at running. Less important housekeeping tasks run only as 
time allows. Your code sets the priorities; the RTOS takes care of starting 
and running the tasks. 

If context switching were the only benefit of an RTOS, then none 
would be more than a few hundred bytes in size. Novice users all too often 
miss the importance of the sophisticated messaging mechanisms that are a 
standard part of all commercial operating systems. Queues and mailboxes 
let tasks communicate safely. 
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“Safely” is important, as global variables, the old standby of the des- 
perate programmer, are generally a Bad Idea and are deadly in any inter- 
rupt-driven system. We all know how globals promote bugs by being 
available to every function in the code; with multitasking systems they lead 
to worse conflicts as several tasks may attempt to modify a global all at the 
same time. 

Instead, the operating system’s communications resources let you 
cleanly pass a message without fear of its corruption by other tasks. Prop- 
erly implemented code lets you generate the real-time analogy of OOP’s 
first tenet: encapsulation. Keep all of the task’s data local, bound to the 
code itself, and hidden from the rest of the system. 

For instance, one challenge faced by many embedded systems is 
managing system status info. Generally, lots and lots of different inputs, 
from door switches to the results of operator commands, affect total status. 
Maintain the status in a global data structure and you’ll surely find it ham- 
mered by multiple tasks. Instead, bind the data to a task, and let other tasks 
set and query it via requests sent through queues or mailboxes. 

Is this slower than using a global? Sure. It uses more memory, too. 
Just as we make some compromises in selecting a compiler over an as- 
sembler, proper use of an RTOS trades off a bit of raw CPU horsepower 
for better code that’s easier to understand and maintain. 

Most operating systems give you tools to manage resources. Surely 
it’s a bad idea for multiple tasks to communicate with a UART or similar 
device simultaneously. One way to control this is to lock the resource- 
often using a semaphore or other RTOS-supplied mechanism-so only 
one task at a time can access the device. 

Resource locking and priority systems lead to one of the perils of 
real-time systems: priority inversion. This is the deadly condition where a 
low-priority task blocks a ready and willing high-priority task. 

Suppose the system is more or less idle. A background, perhaps 
unimportant, task asks for and gets exclusive access to a comm port. It’s 
locked now, dedicated to the task until released. Suddenly an oh-my-god 
interrupt occurs that starts off the system’s highest priority and most criti- 
cal task. It, too, asks for exclusive comm port access, only to be denied that 
by the OS since the resource is already in use. The high-priority task is in 
control; the lower one can’t run, and can’t complete its activity and thus re- 
lease the comm port. The least important activity of all has blocked the 
most important! 

Most operating systems recognize the problem and provide a work- 
around. For example in VxWorks you can use their mutual exclusion sem- 
aphores to enable “priority inheritance.” The task that locks the resource 
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runs at the priority of the highest priority task that is blocked on the same 
resource. This permits the normally less important task to complete. so it 
can unlock the resource and allow the high-priority task to do its thing. 

If you’re not using an RTOS in your embedded designs today, you 
surely will be tomorrow. Get familiar with the concepts, as designing task- 
ing code requires a somewhat different view-the time domain view- 
than conventional procedural programming. Check out Jean LaBrosse’s 
free uC/OS; the companion book is as good an introduction to using an 
RTOS as you’re likely to find. See www.ucos-ii.com. 

Improvements to these tools come almost daily. Keep on top of the 
field to avoid the fate of the dinosaurs. 





CHAPTER 5 
Firmware Musings 

Hacking Peripheral Drivers 

Experienced software engineers find no four-letter word more offen- 
sive than “hack.” We believe that only amateurs, with more enthusiasm 
than skill, hack code. 

Yet hacking is indeed a useful tool in limited circumstances. 
This is not a rant against software methodologies-far from it. I 

think, though, a clever designer will identify risk areas and take steps to 
mitigate those risks early in a development program. Sometimes cranking 
code, maybe even lousy code, and diddling with it is the only way to fig- 
ure out how to efficiently move forward. 

No part of the firmware is more fraught with risks and unknowns 
than the peripheral drivers. Don ’t assume you are smart enough to create 
complex hardware drivers correctly the first time! Plan for problems in- 
stead of switching on the usual panic mode at debug time. 

Before writing code, before playing with the hardware, build a shell 
of an executable using the tools allocated for the project. Use the same 
compiler, locator (if any). linker, and startup code. Create the simplest of 
programs, nothing more than the startup code and a null loop in main() (or 
its equivalent, when you’re working in another language). 

If the processor has internal chip-selects, figure out how to program 
these and include the setups in your startup code. Then, make the null loop 
work. This gives you confidence in the system’s skeleton, and more im- 
portantly creates a backbone to plug test code into. 

87 
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Next, create a single, operating, interrupt service routine. You’re 
going to have to do this sooner or later anyway; swallow the bitter pill up 
front. 

Identify every hardware device that needs a driver. This may even 
include memory, where (as with Flash) your code must do something 
to make it operate. Make a list, check it twice-LEDs, displays, timers, 
serial channels, DMA, communications controllers-include each com- 
ponent. 

Surely you’ll use a driver for each, though in some cases the driver 
may be segmented into several hunks of code, such as a couple of ISRs, a 
queue handler, and the like. 

Next, set up a test environment for fiddling with the hardware. Use an 
emulator, a ROM monitor, or any tool that lets you start and stop the code. 
Manually exercise the ports (issue inputs and outputs to the device). 

Gain mastery of each component by making it do something. Don’t 
write code at this point-use your tool’s input/output commands. If the 
port is a stack of LEDs, figure out how to toggle each one on and off. It’s 
kind of fun, actually, to watch your machinations affect the hardware! 

This is the time to develop a deep understanding of the device. All 
too often the documentation will be incomplete or just plain wrong. Bits 
inverted and transposed. Incorrect register addresses. You’ll never find 
these problems via the normal design-code-inspect-debug cycle. Only 
playing with the devices-hacking !-with a decent debugging tool will 
unveil the peripheral’s mysteries. 

If you can’t speak the hardware lingo, working with a part that has 
100 “easy-to-set-up” registers will be impossible. If you are a hardware ex- 
pert, dealing with these complex parts is merely a nightmare. Count on 
agony when the databook for a lousy timer weighs a couple of pounds. 

Adopt a philosophy of creating a stimulus, then measuring the sys- 
tem’s response with an appropriate tool. 

Figures 5-1 and 5-2 illustrate this principle. The debugger’s (in this 
case, driving an emulator) low-level commands configure the timer inside 
a 386EX. The response, measured on a scope, shows how the timer be- 
haves with the indicated setup. 

Using a serial port? Connect a terminal and learn how to transmit a 
single character. Again, manually set up the registers (carefully docu- 
menting what you did), using parameters extracted from the databook, 
using the tool’s output command to send characters. Lots of things can go 
wrong with something as complicated as a UART, so I like to instrument 
its output with a scope. If the baud rate is incorrect, a terminal will merely 
display scrambled garbage; the scope will clearly show the problem. 
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1 bl 
1 M  

X d t l  
xdh, set port 
xdh, set port 
$xdb> set port 
,xdb> set port 
xdb) set part 
,xdb) set p r t  
xdb> sat part 
'xdb> - 

UxfR34-0x80 
OxfO43-Ox30 
Oxf043-0x42 
Oxf043-0x82 
Oxf040-55 
Oxf040-55 
Oxf834-0 

FIGURE 5-1 Hacking a peripheral driver. 

Then write a shell of a driver in the selected language. Take the in- 
formation gleaned from the databook and proven in your experiments to 
work, and codify it in code once and for all. Test the driver. Get it right! 

Now you've successfully created a module that handles that hard- 
ware device. 

Master one portion of a device at a time. On a UART, for example, 
figure out how to transmit characters reliably and document what you 

FIGURE 5-2 Hacking a peripheral driver. FIGURE 5-2 Hacking a peripheral driver. 
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did, before you move on to receiving. Segment the problem to keep things 
simple. 

If only we could live with simple programmed inputs and outputs! 
Most nontrivial peripherals will operate in an interrupt-driven mode. Add 
ISRs, one at a time, testing each one, for each part of the device. For ex- 
ample, with the UART, completely master interrupt-driven transmission 
before moving on to interrupting reception. 

Again, with each small success immediately create, compile, and test 
code before you’ve forgotten the tricks required to make the little beast op- 
erate properly. Databooks are cornucopias of information and misinfor- 
mation; it’s astonishing how often you’ll find a bit documented incorrectly. 
Don’t rely on frail memory to preserve this information. Mark up the book, 
create and test the code, and move on. 

Some devices are simply too complex to yield to manual testing. An 
Ethernet driver or an IEEE-488 port both require so much setup that there’s 
no choice but to initially write a lot of code to preset each internal register. 
These are the most frustrating sorts of devices to handle, as all too often 
there’s little diagnostic feedback-you set a zillion registers, burn some in- 
cense, and hope it flies. 

If your driver will transfer data using DMA, it still makes sense to 
first figure out how to use it a byte at a time in a programmed VO mode. 
Be lazy-it’s just too hard to master the DMA, interrupt completion rou- 
tines, and the part itself all at once. Get single-byte transfers working be- 
fore opening the Pandora’s box of DMA. 

In the “make it work’ phase we usually succumb to temptation and 
hack away at the code, changing bits just to see what happens. The docu- 
mentation generally suffers. Leave a bit of time before wrapping up each 
completed routine to tune the comments. It’s a lot easier to do this when 
you still remember what happened and why. 

More than once I’ve found that the code developed this way is ugly. 
Downright lousy, in fact, as coding discipline flew out the window during 
the bit-tweaking frenzy. The entire point of this effort is to master the de- 
vice (first) and create a driver (second). Be willing to toss the code and 
build a less offensive second iteration. Test that too, before moving on. 

Selecting Stack Size 

With experience, one learns the standard, scientific way to compute 

Unhappily. if your guess is too small the system will erratically and 
the proper size for a stack Pick a size at random and hope. 
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maybe infrequently crash in horrible ways. And RAM is still an expensive 
resource, so erring on the side of safety drives recurring costs up. 

With an RTOS the problem is multiplied, since every task has its own 
stack. 

It’s feasible, though tedious, to compute stack requirements when 
coding in assembly language by counting calls and pushes. C-and even 
worse, C++-obscures these details. Runtime calls further distance our 
understanding of stack use. Recursion, of course, can blow stack require- 
ments sky-high. 

Any of a number of problems can cause the stack to grow to the point 
where the entire system crashes. It’s tough to go back and analyze the fail- 
ure after the crash, as the program will often write all over itself or the vari- 
ables, removing all clues. 

The best defense is a strong offense. Odds are your stack estimate 
will be wrong, so instrument the code from the very beginning so you’ll 
know, for sure, just how much stack is needed. 

In the startup code or whenever you define a task, fill the task’s stack 
with a unique signature such as Ox55AA (Figure 5-3). Then, probe the 
stacks occasionally using your debugger and see just how many of the as- 
signed locations have been used (the Ox55AA will be gone). 

Knowledge is power. 
Also consider building a stack monitor into your code. A stack mon- 

itor is just a few lines of assembly language that compares the stack pointer 

+- Top 

FIGURE 5-3 Proactively fill the stack with Ox55AA to find overrun prob- 
lems. Note that the lower three words have been unused. 
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to some limit you’ve set. Estimate the total stack use, and then double or 
triple the size. Use this as the limit. 

Put the stack monitor into one or more frequently called ISRs. Jump 
to a null routine, where a breakpoint is set, when the stack grows too big. 

Be sure that the compare is “fuzzy.” The stack pointer will never ex- 
actly match the limit. 

By catching the problem before a complete crash, you can analyze 
the stack’s contents to see what led up to the problem. You may see an 
ISR being interrupted constantly (that is, a lot of the stack’s addresses be- 
long to the ISR). This is a sure indication of code that’s too slow to keep 
up with the interrupt rate. You can’t simply leave interrupts disabled 
longer, as the system will start missing them. Optimize the algorithm and 
the code in that ISR. 

The Curse of Malloc( ) 

Since the stack is a source of trouble, it’s reasonable to be paranoid 
and not allocate buffers and other sizable data structures as automatics. 
Watch out! Malloc( ), a quite logical alternative, brings its own set of prob- 
lems. A program that dynamically allocates and frees lots of memory-es- 
pecially variably-sized blocks-will fragment the heap. At some point it’s 
quite possible to have lots of free heap space, but so fragmented that rnal- 
loc( ) fails. 

If your code does not check the allocation routine’s return code to 
detect this error, it will fail horribly. Of course, detecting the error will 
also no doubt result in a horrible failure, but gives you the opportunity to 
show an error code so you’ll have a chance of understanding and fixing the 
problem. 

If you chose to use malloc(), always check the return value and 
safely crash (with diagnostic information) if it fails. 

Garbage collection-which compacts the heap from time to time-is 
almost unknown in the embedded world. It’s one of Java’s strengths and 
weaknesses, as the time spent compacting the heap generally shuts down 
all tasking. Though there’s lots of work going on developing real-time 
garbage collection, as of this writing there is no effective approach. 

Sometimes an RTOS will provide alternative forms of malloc( ), 
which let you specify which of several heaps to use. If you can constrain 
your memory allocations to standard-sized blocks, and use one heap per 
size, fragmentation won’t occur. 

One option is to write a replacement function of the form pmalloc 
(heap-number). You defined a number of heaps, each one of which has a 
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dedicated allocation size. Heap 1 might return a 2000-byte buffer, heap 2 
100 bytes, and so on. You then constrain allocations to these standard-size 
blocks to eliminate the fragmentation problem. 

When using C, if possible (depending on resource issues and proces- 
sor limitations), always include Walter Bright’s MEM package (www. 
snippets.org/mem.txt) with the code, at least for debugging. MEM provides 
the following: 

ISO/ANSI verification of allocatiodreallocation functions 
Logging of all allocations and frees 
Verifications of frees 
Detection of pointer over- and under-runs 
Memory leak detection 
Pointer chechng 
Out-of-memory handling 

Banking 

When asked how much money is enough, Nelson Rockefeller re- 
portedly replied, “Just a little bit more.” We poor folks may have trouble 
understanding his perspective, but all too often we exhibit the same re- 
sponse when picking the size of the address space for a new design. Given 
that the code inexorably grows to fill any allocated space, “just a little 
more” is a plea we hear from the software people all too often. 

Is the solution to use 32-bit machines exclusively, cramming a full 4 
GB of RAM into our cost-sensitive application in the hopes that no one 
could possibly use that much memory? 

Though clearly most systems couldn’t tolerate the costs associated 
with such a poor decision, an awful lot of designers take a middle tack. se- 
lecting high-end processors to cover their posterior parts. 

A 32-bit CPU has tons of address space. A 16-bitter sports (generally) 
1 to 16 Mb. It’s hard to imagine needing more than 16 Mb for a typical em- 
bedded app; even 1 Mb is enough for the vast majority of designs. 

A typical &bit processor, though, is limited to 64k. Once this was an 
ocean of memory we could never imagine filling. Now C compilers let us 
reasonably produce applications far more complex than we dreamed of 
even a few years ago. Today the midrange embedded systems I see usually 
bum up something between 64k and 256k of program and data space-too 
much for an 8-bitter to handle without some help. 

If horsepower were not an issue, I’d simply toss in an 80188 and 
profit from the cheap 8-bit bus that runs 16-bit instructions over 1 Mb of 
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address space. Sometimes this is simply not an option; an awful lot of us 
design upgrades to older systems. We’re stuck with tens of thousands of 
lines of “legacy” code that are too expensive to change. The code forces us 
to continue using the same CPU. Like taxes, programs always get bigger, 
demanding more address space than the processor can handle. 

Perhaps the only solution is to add address bits. Build an external 
mapper using PLDs or discrete logic. The mapper’s outputs go into high- 
order address lines on your RAM and ROM devices. Add code to remap 
these lines, swapping sections of program or data in and out as required. 

Logics/ to Physics/ 
Add a mapper, though, and you’ll suddenly be confronted with two 

distinct address spaces that complicate software design. 
The first is the physical space-the entire universe of memory on 

your system. Expand your processor’s 64k limit to 256k by adding two ad- 
dress lines, and the physical space is 256k. 

Logical addresses are the ones generated by your program, and 
thence asserted onto the processor’s bus. Executing a MOV A,(OFFFF) in- 
struction tells the processor to read from the very last address in its 64k 
logical address space. External banking hardware can translate this to some 
other address, but the code itself remains blissfully unaware of such ac- 
tions. All it knows is that some data comes from memory in response to the 
OFFFF placed on the bus. The program can never generate a logical ad- 
dress larger than 64k (for a typical &bit CPU with 16 address lines). 

This is very much like the situation faced by 80x86 assembly- 
language programmers: 64k segments are essentially logical spaces. You 
can’t get to the rest of physical memory without doing something; in this 
case reloading a segment register. 

Conversely, if there’s no mapper, then the physical and logical spaces 
are identical. 

Hardware Issues 
Consider doubling your address space by taking advantage of proces- 

sor cycle types. If the CPU differentiates memory reads from fetches, you 
may be able to easily produce separate data and code spaces. The 68000’s 
seldom-used function codes are for just this purpose, potentially giving it 
distinct 16-Mb code and data spaces. 

Writes should clearly go to the data area (you’re not writing self- 
modifying code, are you?). Reads are more problematic. It’s easy to dis- 
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tinguish memory reads from fetches when the processor generates a fetch 
signal for every instruction byte. Some processors (e.g., the 280) produce 
a fetch only on the read of the first byte of a multiple byte opcode; subse- 
quent ones all look the same as any data read. Forget trying to split the 
memory space if cycle types are not truly unique. 

When such a space-splitting scheme is impossible, then build an ex- 
ternal mapper that translates address lines. However, avoid the temptation 
to simply latch upper address lines. Though it’s easy to store A16, A17, 
et al. in an output port, every time the latch changes the entire program gets 
mapped out. Though there are awkward ways to write code to deal with 
this, add a bit more hardware to ease the software team’s job. 

Design a circuit that maps just portions of the logical space in and 
out. Look at software requirements first to see what hardware configura- 
tion makes sense. 

Every program needs access to a data area that holds the stack and 
miscellaneous variables. The stack, for sure, must always be visible to the 
processor so calls and returns function. Some amount of “common” pro- 
gram storage should always be mapped in. The remapping code, at least, 
should be stored here so that it doesn’t disappear during a bank switch. De- 
sign the hardware so these regions are always available. 

Is the address space limitation due to an excess of code or of data? 
Perhaps the code is tiny, but a gigantic array requires tons of RAM. 
Clearly, you’ll be mapping RAM in and out, leaving one area of ROM- 
enough to store the entire program-always in view. An obese program 
yields just the opposite design. In either of these cases a logical address 
space split into three sections makes the most sense: common code (always 
visible, containing runtime routines called by a compiler and the mapping 
code), mapped code or data, and common RAM (stack and other critical 
variables needed all the time). 

For example, perhaps oo00 to 03FFF is common code. 4000 to 7FFF 
might be banked code: depending on the setting of a port it could map to 
almost any physical address. 8000 to FFFF is then common RAM. 

Sure, you can use heroic programming to simplify the hardware. I 
think it’s a mistake, as the incremental parts cost is minuscule compared to 
the increased bug rate implicit in any complicated bit of code. It is possi- 
ble-and reasonable-to remove one bank by copying the common code 
to RAM and executing it there, using one bank for both common code and 
data. 

It’s easy to implement a three-bank design. Suppose addresses are 
arranged as in the previous example. A0 to A14 go to the RAM, which is 
selected when A15 = 1. 
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Turn ROM on when A15 is low. Run A0 to A14 into the ROM. As- 
suming we’re mapping a 128k x 8 ROM into the 32k logical space, gener- 
ate a fake A15 and A16 (simple bits latched into an output port) that go to 
the ROM’s A15 and A16 inputs. However, feed these through AND gates. 
Enable the gates only when A15 = 0 (RAM off) and A14 = 1 (bank area 
enabled). 

RAM is, of course, selected with logical addresses between 8000 and 
FFFF. Any address under 4000 disables the gates and enables the first 
4000 locations in ROM. When A14 is a one, whatever values you’ve stuck 
into the fake A15 and A16 select a chunk of ROM 4000 bytes long. 

The virtue of this design is its great simplicity and its conservation of 
ROM-there are no wasted chunks of memory, a common problem with 
other mapping schemes. 

Occasionally a designer directly generates chip selects (instead of 
extra address lines) from the mapping output port. I think this is a mistake. 
It complicates the ROM select logic. Worse, sometimes it’s awfully hard 
to make your debugging tools understand the translation from addresses to 
symbols. By translating addresses you can provide your debugger with a 
logical-to-physical translation cheat sheet. 

The S o h a r e  

In assembly language you control everything, so handling banked 
memory is not too difficult. The hardest part of designing remappable code 
is figuring out how to segment the banks. Casual calling of other routines 
is out, as you dare not call something not mapped in. 

Some folks write a bank manager that tracks which routines are cur- 
rently located in the logical space. All calls, then, go through the bank 
manager, which dynamically brings routines in and out as needed. 

If you were foresighted enough to design your system around a real- 
time operating system (RTOS), then managing the mapper is much sim- 
pler. Assign one task per bank. Modify the context switcher to remap 
whenever a new task is spawned or reawakened. 

Many tasks are quite small-much smaller than the size of the logi- 
cal banked area. Use memory more efficiently by giving tasks two bank- 
ing parameters: the bank number associated with the task, and a starting 
offset into the bank. If the context switcher both remaps and then starts the 
task at the given offset, you’ll be able to pack multiple tasks per bank. 

Some C compilers come with built-in banking support. Check with 
your vendor. Some will completely manage a multiple bank system, auto- 
matically remapping as needed to bring code in and out of the logical 
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address space. Figure on making a few patches to the supplied remapping 
code to accommodate your unique hardware design. 

In C or assembly, using an RTOS or not, be sure to put all of your in- 
terrupt service routines and associated vectors in a common area. Put the 
banking code there as well, along with all frequently used functions (when 
you’re using a compiler, put the entire runtime package in unmapped 
memory). 

As always, when designing the hardware carefully document the ap- 
proach you’ve selected. Include this information in the banking routine so 
some poor soul several years in the future has a fighting chance to figure 
out what you’ve done. 

And, if you are using a banking scheme, be sure that the tools provide 
intelligent support. Quite a few 8-bit emulators, for example, do have extra 
address bits expressly for working in banked hardware. This means you 
can download code and even set breakpoints in banked areas that may not 
be currently mapped into the logical address space. 

But be sure the emulator works properly with the compiler or assem- 
bler to give real source-level support in banked regions. If the compiler and 
emulator don’t work together to share the physical and logical addresses of 
every line of code and every globaktatic variable, the “source” debugger 
will show nothing more useful than disassembled instructions. That’s a 
terrible price to pay: in most cases you’ll be well advised to find a more 
debuggable CPU. 

Predicting ROM Requirements 

It‘s rather astonishing how often we run into the same problem. yet 
take no action to deal with the issue once and for all. One common prob- 
lem that drives managers wild is the old “running out of ROM space” rou- 
tine-generally the week before shipping. 

For two reasons it’s very difficult to predict ROM requirements in the 
project’s infancy. First, too many of us write code before we’ve done a 
complete and thoughtful analysis of the project’s size. If you’re not esti- 
mating code size (in lines of code or numbers of function points or a sim- 
ilar metric), then you’re simply not a professional software engineer. 

Second. we’re generally not sure how to correlate a line of C to a 
number of bytes of machine code. Historical data is most useful if you‘ve 
worked with the specific CPU and compiler in the past. 

Regardless, when you start coding, maintain a spreadsheet that pre- 
dicts the project’s size. As a professional you’ve done the best possible job 
estimating the functions’ sizes (in LOC, lines of code). List this data. 
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Module 

Skeleton 
RTOS 

Whenever you complete a function, append the incremental size of 
the executable to the spreadsheet. Figure 5 -  4 shows an example, including 
each function, with estimated and actual LOC counts, and compiled sizes. 

Any idiot-r at least any idiot with an engineering degree-can 
then write an equation that creates an average size of an LOC in bytes, and 
another that predicts total system size based on estimated LOC. 

Make sure your calculations do not include the bare system skele- 
ton-the C startup code and a null main() function-since the first line of 
C brings in the runtime package. 

Est LOC Act LOC Size 

300 3 10 21,123 
3423 1 1,872 

RAM Diagnostics 

Beyond software errors lurks the specter of a hardware failure that 
causes our correct code to die, possibly creating a life-threatening horror, 
or maybe just infuriating a customer. Many of us write diagnostic code to 
help contain the problem. Much of the resulting code just does not address 
failure modes. 

Obviously, a RAM problem will destroy most embedded systems. 
Errors reading from the stack will surely crash the code. Problems, espe- 
cially intermittent ones, in the data areas may manifest bugs in subtle ways. 
Often you’d rather have a system that just doesn’t boot, rather than one that 
occasionally returns incorrect answers. 

TIMER-ISR 

ATOD-ISR 

TOD 
PRINT-E 

50 34 534 
75 58 798 
120 114 998 
80 98 734 

RD-ATOD 
COMM-SER I90 I I I 

40 

Bytes/LOC 4.01 
Est Size 36580 
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Some embedded systems are pretty tolerant of memory problems. We 
hear of NASA spacecraft from time to time whose core or RAM develops 
a few bad bits, yet somehow the engineers patch their code to operate 
around the faulty areas, uploading the corrections over the distances of bil- 
lions of miles. 

Most of us work on systems with far less human intervention. There 
are no teams of highly trained personnel anxiously monitoring the health 
of each part of our products. It’s our responsibility to build a system that 
works properly when the hardware is functional. 

In some applications, though, a certain amount of self-diagnosis ei- 
ther makes sense or is required; critical life-support applications should use 
every diagnostic concept possible to avoid disaster due to a submicron 
RAM imperfection. 

So, the first rule about diagnostics in general, and RAM tests in par- 
ticular, is to clearly define your goals. Why run the test? What will the re- 
sult be? Who will be the unlucky recipient of the bad news in the event an 
error is found, and what do you expect that person to do? 

Will a RAM problem kill someone? If so, a very comprehensive test. 
run regularly, is mandatory. 

Is such a failure merely a nuisance? For instance, if it keeps a cell 
phone from booting, if there’s nothing the customer can do about the fail- 
ure anyway, then perhaps there’s no reason for doing a test. As a consumer 
I could care less why the damn phone stopped working . . . if it’s dead, I’ll 
take it in for repair or replacement. 

Is production tes t -or  even engineering test-the real motivation for 
writing diagnostic code? If so, then define exactly what problems you’re 
looking for and write code that will find those sorts of troubles. 

Next, inject a dose of reality into your evaluation. Remember that 
today’s hardware is often very highly integrated. In the case of a micro- 
controller with on-board RAM, the chances of a memory failure that does- 
n’t also kill the CPU is small. Again, if the system is a critical life-support 
application it may indeed make sense to run a test, as even a minuscule 
probability of a fault may spell disaster. 

Does it make sense to ignore RAM failures? If your CPU has an il- 
legal instruction trap, there’s a pretty good chance that memory prob- 
lems will cause a code crash you can capture and process. If the chip 
includes protection mechanisms (like the x86 protected mode), count on 
bad stack reads immediately causing protection faults your handlers can 
process. Perhaps RAM tests are simply not required, given these extra 
resources. 
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InveHing Bits 

Most diagnostic code uses the simplest of tests-writing alternating 
0x55 and OxAA values to the entire memory array, and then reading the 
data to ensure that it remains accessible. It’s a seductively easy approach 
that will find an occasional problem (like someone forgot to load all of the 
RAM chips), but that detects few real-world errors. 

Remember that RAM is an array divided into columns and rows. Ac- 
cesses require proper chip selects and addresses sent to the array-and not 
a lot more. The OxWOxAA symmetrical pattern repeats massively all over 
the array; accessing problems (often more common than defective bits in 
the chips themselves) will create references to incorrect locations, yet al- 
most certainly will return what appears to be correct data. 

Consider the physical implementation of memory in your embedded 
system. The processor drives address and data lines to RAM-in a 16-bit 
system there will surely be at least 32 of these. Any short or open on this 
huge bus will create bad RAM accesses. Problems with the PC board are 
far more common than internal chip defects, yet the Ox55/OxAA test is sin- 
gularly poor at picking up these, the most likely, failures. 

Yet the simplicity of this test and its very rapid execution have made 
it an old standby that’s used much too often. Isn’t there an equally simple 
approach that will pick up more problems? 

If your goal is to detect the most common faults (PCB wiring errors 
and chip failures more substantial than a few bad bits here or there), then 
indeed there is. Create a short string of almost random bytes that you re- 
peatedly send to the array until all of memory is written. Then, read the 
array and compare against the original string. 

I use the phrase “almost random” facetiously, but in fact it hardly 
matters what the string is, as long as it contains a variety of values. It’s best 
to include the pathological cases, such as 00, Oxaa, 0x55, and Oxff. The 
string is something you pick when writing the code, so it is truly not ran- 
dom, but other than these four specific values, you fill the rest of it with 
nearly any set of values, since we’re just checking basic writehead func- 
tions (remember: memory tends to fail in fairly dramatic ways). I like to 
use very orthogonal values-those with lots of bits changing between suc- 
cessive string members-to create big noise spikes on the data lines. 

To make sure this test picks up addressing problems, ensure that the 
string’s length is not a factor of the length of the memory array. In other 
words, you don’t want the string to be aligned on the same low-order ad- 
dresses, which might cause an address error to go undetected. Since the 
string is much shorter than the length of the RAM array, you ensure that it 
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repeats at a rate that is not related to the rowkolumn configuration of the 
chips. 

For 64k of RAM, a string 257 bytes long is perfect: 257 is prime, and 
its square is greater than the size of the RAM array. Each instance of the 
string will start on a different low-order address. Also, 257 has another 
special magic: you can include every byte value (00 to Oxff) in the string 
without effort. Instead of manually creating a string in your code, build it 
in real time by incrementing a counter that overflows at 8 bits. 

Critical to this, and every other RAM test algorithm, is that you write 
the pattern to all of RAM before doing the read test. Some people like to 
do nondestructive RAM tests by testing one location at a time, then restor- 
ing that location’s value, before moving on to the next one. Do this and 
you’ll be unable to detect even the most trivial addressing problem. 

This algorithm writes and reads every RAM location once, so it’s 
quite fast. Improve the speed even more by skipping bytes, perhaps writ- 
ing and reading every 3rd or 5th entry. The test will be a bit less robust, yet 
will still find most PCB and many RAM failures. 

Some folks like to run a test that exercises each and every bit in their 
RAM array. Though I remain skeptical of the need, since most semicon- 
ductor RAM problems are rather catastrophic, if you do feel compelled to 
run such a test, consider adding another iteration of the algorithm just de- 
scribed, with all of the data bits inverted. 

Noise Issues 
Large RAM arrays are a constant source of reliability problems. It’s 

indeed quite difficult to design the perfect RAM system, especially with 
the minimal margins and high speeds of today’s 16- and 32-bit systems. If 
your system uses more than a couple of RAM parts, count on spending 
some time qualifying its reliability via the normal hardware diagnostic 
procedures. Create software RAM tests that hammer the array mercilessly. 

Probably one of the most common forms of reliability problems with 
RAM arrays is pattern sensitivity. Now, this is not the famous pattern 
problems of yore, where the chips (particularly DRAMS) were sensitive to 
the groupings of ones and zeroes. Today the chips are just about perfect in 
this regard. No, today pattern problems come from poor electrical charac- 
teristics of the PC board, decoupling problems, electrical noise, and inad- 
equate drive electronics. 

PC boards were once nothing more than wiring platforms, slabs of 
tracks that propagated signals with near-perfect fidelity. With very high- 
speed signals, and edge rates (the time it takes a signal to go from a zero to 
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a one or back) under a nanosecond, the PCB itself assumes all of the char- 
acteristics of an electronic component-one whose virtues are almost all 
problematic. It’s a big subject [read High Speed Digital Design-A Hund- 
book ofBluck Magic,  by Howard Johnson and Martin Graham (1993 PTR 
Prentice Hall, NJ) for the canonical words of wisdom on this subject], but 
suffice it to say that a poorly designed PCB will create RAM reliability 
problems. 

Equally important are the decoupling capacitors chosen, as well as 
their placement. Inadequate decoupling will create reliability problems as 
well. 

Modern DRAM arrays are massively capacitive. Each address line 
might drive dozens of chips, with 5 to 10 pF of loading per chip. At high 
speeds the drive electronics must somehow drag all of these pseudo- 
capacitors up and down with little signal degradation. Not an easy job! 
Again, poorly designed drivers will make your system unreliable. 

Electrical noise is another reliability culprit, sometimes in unex- 
pected ways. For instance, CPUs with multiplexed addreddata buses use 
external address latches to demux the bus. A signal, usually named ALE 
(Address Latch Enable) or AS (Address Strobe), drives the clock to these 
latches. The tiniest, most miserable amount of noise on ALE/AS will 
surely, at the time of maximum inconvenience, latch the data part of the 
cycle instead of the address, Other signals are also vulnerable to small 
noise spikes. 

Unhappily, all too often common RAM tests show no problem when 
hidden demons are indeed lurking. The algorithm I’ve described, as well as 
most of the others commonly used, trade off speed against comprehen- 
siveness. They don’t pound on the hardware in a way designed to find 
noise and timing problems. 

Digital systems are most susceptible to noise when large numbers of 
bits change all at once. This fact was exploited for data communications 
long ago with the invention of the Gray code, a variant of binary counting 
where no more than one bit changes between codes. Your worst night- 
mares of RAM reliability occur when all of the address and/or data bits 
change suddenly from zeroes to ones. 

For the sake of engineering testing, write RAM test code that exploits 
this known vulnerability. Write Oxffff to Ox0000 and then to Oxffff, and 
do a read-back test. Then write zeroes. Repeat as fast as your loop will let 
you go. 

Depending on your CPU, the worst locations might be at OxOOff and 
0x0100, especially on 8-bit processors that multiplex just the lower 8 ad- 
dress lines. Hit these combinations hard as well. 
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Other addresses often exhibit similar pathological behavior. Try 
0x5555 and Oxaaaa, which also have complementary bit patterns. 

The trick is to write these patterns back-to-back. Don’t test all of 
RAM, with the understanding that both OxoooO and Oxffff will show up in 
the test. You’ll stress the system most effectively by driving the bus mas- 
sively up and down all at once. 

Don’t even think about writing this sort of code in C. Any high-level 
language will inject too many instructions between those that move the bits 
up and down. Even in assembly the processor will have to do fetch cycles 
from wherever the code happens to be, which will slow down the pound- 
ing and make it a bit less effective. 

There are some tricks, though. On a CPU with a prefetcher (all x86. 
68k, etc.) try to fill the execution pipeline with code, so the processor does 
back-to-back writes or reads at the addresses you’re trying to hit. And, use 
memory-to-memory transfers when possible. For example: 

m o v  si, Oxaaaa 
m o v  di, 0x5555 
m o v  [si], Oxff 
m o v  [dil, [si1 ; read f f O O  f r o m  Oaaaa 

; and then write it 
; to 05555 

DRAMs have memories rather like mine-after 2 to 4 milliseconds 
go by, they will probably forget unless external circuitry nudges them with 
a gentle reminder. This is known as “refreshing” the devices and is a crit- 
ical part of every DRAM-based circuit extant. 

More and more processors include built-in refresh generators, but 
plenty of others still rely on rather complex external circuitry. Any failure 
in the refresh system is a disaster. 

Any RAM test should pick up a refresh fault-shouldn’t it? After all, 
it will surely take a lot longer than 2-4 msec to write out all of the test val- 
ues to even a 64k array. 

Unfortunately, refresh is basically the process of cycling address 
lines to the DRAMs. A completely dead refresh system won’t show up 
with the test indicated, since the processor will be memly cycling address 
lines like crazy as it writes and reads the devices. There’s no chance the 
test will find the problem. This is the worst possible situation: the process 
of running the test camouflages the failure! 

The solution is simple: After writing to all of memory, just stop tog- 
gling those pesky address lines for a while. Run a tight do-nothing loop for 
a while ( v e y  tight. . . the more instructions you execute per iteration, the 
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more address lines will toggle), and only then do the read test. Reads will 
fail if the refresh logic isn’t doing its thing. 

Though DRAMS are typically specified at a 2- to 4-msec maximum 
refresh interval, some hold their data for surprisingly long times. When 
memories were smaller and cells larger, each had so much capacitance that 
you could sometimes go for dozens of seconds without losing a bit. 
Today’s smaller cells are less tolerant of refresh problems, so a 1- to 2-sec- 
ond delay is probably adequate. 

A Few Notes on Sohare Prototyping 

As a teenaged electronics technician I worked for a terribly under- 
capitalized small company that always spent tomorrow’s money on 
today’s problems. There was no spare cash to cover risks. As is so often the 
case, business issues overrode common sense and the laws of physics: all 
prototypes simply had to work, and were in fact shipped to customers. 

Years ago I carried this same dysfunctional approach to my own 
business. We prototyped products, of course, but did so leaving no room 
for failure. Schedules had no slack; spare parts were scarce, and people 
heroically overcame resource problems. In retrospect this seems silly, 
since by definition we create prototypes simply because we expect mis- 
takes, problems, and, well. . . failure. 

Can you imagine being a civil engineer? Their creations-a bridge, a 
building, a major interchange-are all one-off designs that simply must 
work correctly the first time. We digital folks have the wonderful luxury of 
building and discarding trial systems. 

Software, though, looks a lot like the civil engineer’s bridge. Costs 
and time pressures mean that code prototypes are all too rare. We write the 
code and knock out most of the bugs. Version 1.0 is no more than a first 
draft, minus most of the problems. 

Though many authors suggest developing version 1.0 of the soft- 
ware, then chucking it and doing it again, now correctly, based on what 
was learned from the first go-around, I doubt that many of us will often 
have that opportunity. The 1990s are just too frantic, workforces too thin, 
and time-to-market pressures too intense. The old engineering adage “If 
the damn thing works at all, ship it,” once only a joke, now seems to be the 
industry’s mantra. 

Besides-who wants to redo a project? Most of us love the challenge 
of making something work, but want to move on to bigger and better 
things, not repeat our earlier efforts. 
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Even hardware is moving away from conventional prototypes. Re- 
programmable logic means that the hardware is nothing more than soft- 
ware. Slap some smart chips on the board and build the first production 
run. You can (hopefully) tune the equations to make the system work de- 
spite interconnect problems. 

We‘re paid to develop firmware that is correct-r at least correct 
enough-to form a final product, first time, every time. We’re the high- 
tech civil engineers, though at least we have the luxury of fixing mistakes 
in our creations before releasing the product to the cruel world of users. 

Though we’re supposed to build the system right the first time. we’re 
caught in a struggle between the computer‘s need for perfect instructions. 
and marketing’s less-than-clear product definitions. The B-schools are 
woefully deficient in teaching their students-the future product defin- 
ers-about the harsh realities of working in today’s technological envi- 
ronment. Vague handwaving and whiteboard sketches are not a product 
spec. They need to understand that programmers must be unfailingly pre- 
cise and complete in designing the code. Without a clear spec, the pro- 
grammers themselves, by default. must create the spec. 

Most of us have heard the “but that’s not what I wanted’ response 
from management when we demo our latest creation. All too often the cus- 
tomer-management, your boss. or the end user-doesn‘t really know 
what they want until they see a working system. It’s clearly a Catch-22 
situation. 

The solution is a prototype of the system’s software. running a min- 
imal subset of the application’s functionality. This is not a skeleton of the 
final code, waiting to be fleshed out after management puts in their two 
cents. I’m talking about truly disposable code. 

Most embedded systems do possess some sort of look and feel, 
despite the absence of a GUI. Even the light-up sneakers kids wear (which, 
I‘m told, use a microcontroller from Microchip) have at least a “look.” 
How long should the light be on? Is it a function of acceleration? If I were 
designing such a product, I’d run a cable from the sneaker to a develop- 
ment system so I could change the LED’s parameters in seconds while the 
MBAs argue over the correct settings. 

“Wait,” you say. “We can’t do that here! We n l w z y  ship our code!” 
Though this is the norm, I’m running into more and more embedded de- 
velopers who have been so badly burned by inadequate/incorrect specifi- 
cations that even management grudgingly backs up their rapid prototyping 
efforts. However, any prototype will fail unless the goals are clearly 
spelled out. 
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The best prototype spec is one that models risk factors in the final 
product. Risk comes in far too many flavors: user interface (human inter- 
action with the unit, response speed), development problems (tools, code 
speed, code size, people skill sets), “science” issues (algorithms, data re- 
duction, sampling intervals), final system cost (some complex sum of en- 
gineering and manufacturing costs), time to market, and probably other 
items as well. 

A prototype may not be the appropriate vehicle for dealing with all 
risk factors. For example, without building the real system it’ll be tough to 
extrapolate code speed and size from any prototype. 

The first ground rule is to define the result you’re looking for. Is it to 
perfect a data reduction algorithm? To get consensus on a user interface? 
Focus with unerring intensity on just that result. Ignore all side issues. 
Build just enough code to get the desired result. Real systems need a spec 
that defines what the product does; a rapid prototype needs a spec that 
spells out what won’t be in it. 

More than anything you need a boss who shields you from creeping 
featurism. We know that a changing spec is the bane of real systems; 
surely it’s even more of a problem in a quick-turn model system. 

Then you’ll need an understanding of what decisions will be made as 
a result of the prototype. If the user interface will be pretty much constant 
no matter what turns up in the modeling phase, hey-just jump into final 
product development. If you know the answer, don’t ask the question! 

Define the deadline. Get a prototype up and running at warp speed. 
Six months or a year of fiddling around on a model is simply too long. The 
raison d’ztre for the prototype is to identify problems and make changes. 
Get these decisions made early by producing something in days or weeks. 
Develop a schedule with many milestones where nondevelopers get a 
chance to look at the product and fiddle with it a bit. 

For a prototype where speed and code size are not a problem, I like 
to use really high-level “languages” like Basic. Excel. Word macros. The 
goal is to get something going now. Use every tool, no matter how much 
it offends your sensibilities, to accomplish that mission. 

Does your product have a GUI? Maybe a control panel? Look at 
products like those available from National Instruments and IoTech. These 
companies provide software that lets you produce “virtual instruments” by 
clicking and dragging knobs, displays, and switches around on a PC’s 
screen. Couple that to standard data acquisition boards and a bit of code in 
Basic or C, and you can produce models of many sorts of embedded sys- 
tems in hours. 
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The cost of creating a virtual model of your product, using purchased 
components, is immeasurably small compared to that of designing, build- 
ing, and troubleshooting real hardware and software. Though there’s no 
way to avoid building hardware at some point, count on adding months to 
a project when a new board design is required. 

Another nice feature of doing a virtual model of the product is the 
certainty of creating worthless code. You’ll focus on the real issues-the 
ones identified in your prototyping goals-and not the problems of creat- 
ing documented, portable, well-structured software. The code will be no 
more than the means to the end. You’ll toss the code as casually as the 
hardware folks toss prototype PC boards. 

I mentioned using Excel. Spreadsheets are wonderful tools for eval- 
uating the product’s science. Unsure about the behavior of a data-smooth- 
ing algorithm? Fiddling with a fuzzy-logic design? Wondering how much 
precision to carry? Create a data set and put it in your trusty spreadsheet. 
Change the math in seconds; graph the results to see what happens. Too 
many developers write a ton of embedded code, only to spend months tun- 
ing algorithms in the unforgiving environment of an 8051 with limited 
memory. 

Though a spreadsheet masks the calculations’ speed, you can indeed 
get some sort of final complexity estimate by examining the equations. If 
the algorithm looks terribly slow, work within the forgiving environment 
of the spreadsheet to develop a faster approach. We all know, though too 
often ignore, the truth that the best performance enhancements come from 
tuning the algorithm, not the code. 

Though the PC is a great platform for modeling, do consider using 
current company products as prototype platforms. Often new products are 
derivatives of older ones. You may have a lot of extant hardware and soft- 
ware-that works!-in a system on the shelf. Be creative and use every re- 
source available to get the prototype up and running. 

Toss out the standards manual. Use every trick in the book to get it 
done fast. Do code in small functions to get something testable quickly, 
and to minimize the possibility of making big mistakes. 

There’s a secret benefit to using cruddy “languages” for software 
prototypes: write your proto code in Visual Basic, say, and no matter how 
hard management screams, it simply cannot be whisked off into the prod- 
uct as final code. Clever language selection can break the dysfunctional 
last-minute conversion of test code to final firmware. 
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All of us have worked with that creative genius who can build 
anything, who pounds out a thousand lines of code a day, but who 
can never seem to complete a project. Worse-the fast coder who 
spends eons debugging the megabyte of firmware he wrote on a 
Jolt-driven all-nighter. Then there are the folks who produce work- 
ing code devoid of documentation, who develop rashes or turn into 
Mr. Hyde when told to add comments. 

We struggle with these folks, plead with them, send them to 
seminars, lead by example, all too often without success. Some of 
them are prima donnas who should probably get the ax. Others are 
really quite good, but simply lack the ability to deal with detail. . . 
which is essential since, in a released product, every lousy bit must 
be right. 

These are the ideal prototype developers. Bugs aren’t a big 
issue in a model, and documentation is less than important. The pro- 
totype lets them exercise their creative zeal, while its limited scope 
means that problems are not important. Toss Twinkies and caffeine 
into their lair and stand back. You’ll get your system fast, and they’ll 
be happy employees. Use the more disciplined team members to get 
the bugless real product to market. 

Part of management is effectively using people’s strengths 
while mitigating their weaknesses. Part of it is also giving the work- 
ers a break once in a while. No one can crank out 70-hour weeks for- 
ever without cracking. 



CHAPTER 6 
Hardware Musings 

Debuggable Designs 

An unhappy reality of our business is that we’ll surely spend lots of 
time-far too much time-debugging both hardware and firmware. For 
better or worse, debugging consumes project-months with reckless aban- 
don. It’s usually a prime cause of schedule collapse, disgruntled team 
members, and excess stomach acid. 

Yet debugging will never go away. Practicing even the very best de- 
sign techniques will never eliminate mistakes. No one is smart enough to 
anticipate every nuance and implication of each design decision on even a 
simple little 4k 8051 product; when complexity soars to hundreds of thou- 
sands of lines of code coupled to complex custom ASICs we can only be 
sure that bugs will multiply like rabbits. 

We know, then, up front when making basic design decisions that in 
weeks or months our grand scheme will go from paper scribbles to hard- 
ware and software ready for testing. It behooves us to be quite careful with 
those initial choices we make, to be sure that the resulting design isn’t an 
undebuggable mess. 

Test Points Galore 

Always remember that, whether you’re working on hardware or 
firmware problems, the oscilloscope is one of the most useful of all de- 
bugging tools. A scope gives instant insight into difficult code issues such 
as operation of I/O ports, ISR sequencing, and performance problems. 

1 09 
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Yet it’s tough to probe modern surface-mount designs. Those tiny 
whisker-thin pins are hard enough to see, let alone probe. Drink a bit of 
coffee and you’ll dither the scope connection across three or four pins. 

The most difficult connection problem of all is getting a good 
ground. With speeds rocketing toward infinity the scope will show garbage 
without a short, well-connected ground, yet this is almost impossible when 
the IC’s pin is finer than a spiderweb. 

So, when laying out the PCB add lots of ground points scattered all 
over the board. You might configure these to accept a formal test point. Or, 
simply put holes on the board, holes connected to the ground plane and 
sized to accept a resistor lead. Before starting your tests, solder resistors 
into each hole and cut off the resistor itself, leaving just a half-inch stub of 
stiff wire protruding from the board. Hook the scope’s oversized ground 
clip lead to the nearest convenient stub. 

Figure on adding test points for the firmware as well. For example, 
the easiest way to measure the execution time of a short routine is to tog- 
gle a bit up for the duration of the function. If possible, add a couple of par- 
allel YO bits just in case you need to instrument the code. 

Add test points for the critical signals you know will be a problem. 
For example: 

Boot loads are always a problem with downloadable devices 
(Flash, ROM-loaded FPGAs, etc.). Put test points on the critical 
load signals, as you’ll surely wrestle with these a bit. 

9 The basic system timing signals all need test points: read, write, 
maybe wait, clock, and perhaps CPU status outputs. All system 
timing is referenced to these, so you’ll surely leave probes con- 
nected to those signals for days on end. 
Using a watchdog timer? Always put a test point on the time-out 
signal. Better, use an LED on a latch. You’ve got to know when 
the watchdog goes off, as this indicates a serious problem. Simi- 
larly, add a jumper to disable the watchdog, as you’ll surely want 
it off when working on the code. 
With complex power-management strategies, it’s a good idea to 
put test points on the reset pin, battery signals, and the like. 

When using PLDs and FPGAs, remember that these devices incor- 
porate all of the evils of embedded systems with none of the remedies we 
normally use: the entire design, perhaps consisting of tens of thousands of 
gates, is buried behind a few tens of pins. There’s no good way to get “in- 
side the box” and see what happens. 
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Some of these devices do support a bit of limited debugging using a 
serial connection to a pseudo-debug port. In such a case, by all means add 
the standard connector to your PCB! Your design will not work right off 
the bat; take advantage of any opportunity to get visibility into the part. 

Also plan to dedicate a pin or two in each FPGA/PLD for debugging. 
Bring the pins to test points. You can always change the logic inside the 
part to route critical signal to these test points, giving you some limited 
ability to view the device’s operation. 

Similarly, if the CPU has a BDM or JTAG debugging interface, put 
a BDWJTAG connector on the PCB, even if you’re using the very best 
emulators. For almost zero cost you may save the project whedif the ICE 
gives trouble. 

Very small systems often just don’t have room for a handful of test 
points. The cost of extra holes on ultra-cheap products might be prohibi- 
tive. I always like to figure on building a real, honest, prototype first, one 
that might be a bit bigger and more expensive than the production version. 
The cost of doing an extra PCB revision (typically $lo00 to $2000 for 
5-day turnaround) is vanishingly small compared to your salary! 

When management screams about the cost of test points and extra 
connectors, remember that you do not have to load these components dur- 
ing the production run. Install them on the prototypes, leaving them off the 
bill of materials. Years later, when the production folks wonder about all 
of the extra holes, you can knowingly smile and remember how they once 
saved your butt. 

Resistors 

When I was a young technician, my associates and I arrogantly be- 
lieved we could build anything with enough 10k resistors and duct tape. 
Now it seems that even simple electronic toys use several million transis- 
tors encased in tiny SMT packages with hundreds of hairlike leads; no one 
talks about discrete components anymore. Yet no matter how digital our 
embedded designs get, we can never avoid certain fundamental electrical 
properties of our circuits. 

For example, somehow the digital age has an ever-increasing need 
for resistors-so many, in fact, that most “discrete” resistors are now usu- 
ally implemented in a monolithic structure, like an SIP, not so different 
from the ICs they are tied to. 

Too often we spend our time carefully analyzing the best way to use 
a modern miracle of integration only to casually select discrete compo- 
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nents because they are, well, boring. Who can get worked up over 
the lowly carbon resistor? You can’t even buy them one at a time any 
more. At Radio Shack they come paired in bright decorator packages for 
an outrageous sum. 

Back when I was in the emulator business we dealt with a lot of user 
target systems that, because of poor resistor choices, drove the tools out of 
their minds. Consider one typical example: a unit based on an 8-MHz 
80188, memory and VO all connected in a carefully thought-out manner. 
Power and ground distribution were well planned; noise levels were satis- 
fyingly low. And yet . . . the only tool that seemed to work for debugging 
code was a logic analyzer. Every emulator the poor designer tested failed 
to run the code properly. Even a ROM emulator gave erratic results. 

Though the emulator wouldn’t run the user’s code, it did show an im- 
mediate service of the non-maskable interrupt-which wasn’t used in the 
system. (Note: When things get weird, always turn to your emulator’s 
trace feature, which will capture weirdness like no other tool.) 

A little further investigation revealed that the NMI input (which is ac- 
tive high on the 188) was tied low through a 47k resistor. 

Now, the system ran fine with a ROM and processor on the board. I 
suppose the 47k pull-down was at least technically legitimate. A few 
microamps of leakage current out of the input pin through 47k yields a nice 
legal logic zero. Yet this 47k was too much resistance when any sort of 
tool was installed, because of the inevitable increase in leakage current. 

Was the design correct because it violated none of Intel’s design 
specs? I maintain that the specs are just the starting point of good design 
practice. Never, ever, violate one. Never, ever, assume that simply meet- 
ing spec is adequate. 

A design is correct only if it reliably satisfies all intended applica- 
tions-including the first of all applications, debugging hardware and soft- 
ware. If something that is technically correct prevents proper debugging, 
then there is surely a problem. 

Pull-down resistors are often a source of trouble. It’s practically im- 
possible to pull down an LS input (leakage is so high the resistor value must 
be frighteningly low). Though CMOS inputs leak very little, you must be 
aware of every potential application of the circuit, including that of plug- 
ging tools in. The solution is to avoid pull-downs wherever possible. 

In the case of a critical edge-triggered (read “really noise sensitive”) 
input such as NMI, you simply should never pull it low. Tie it to ground. 
Otherwise, switching noise may get coupled into the input. Even worse, 
every time you lay out the PC board, the magnitude of the noise problem 
can change as the tracks move around the board. 
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Be conservative in your designs, especially when a conservative ap- 
proach has no downside. If any input must be zero all of the time, simply 
tie it to ground and never again worry about it. I think folks are so used to 
adding pull-ups all over their boards that they design in pull-downs 
through the force of habit. 

Once in a while the logic may indeed need a pull-down to deal with 
unusual YO bits. Try to come up with a better design. 

(The only exception is when you plan to use automatic test equip- 
ment to diagnose board faults. ATE gear injects signals into each node, so 
you’ll often need to use a resistor pull-down in place of a ground. Use a 
small-really small, like 220 ohms-value.) 

Though pull-downs are always problematic, well-designed boards 
use plenty of pull-up resistors-some to bias unused inputs, others to deal 
with signals and busses that tristate, and some to put switches and other in- 
puts into known one states. 

The biggest problem with pull-ups is using values that are too low. A 
lOOk pull-up will in fact bias that CMOS gate properly, but creates a cir- 
cuit with a terribly high impedance. Why not change to 10k? You buy an 
order of magnitude improvement in impedance and noise immunity, yet 
typically use no additional current since the gate requires only microamps 
of bias. 

Vcc from a decent power supply is essentially a low-impedance con- 
nection to ground. Connect a lOOk pull-up to a CMOS gate and the input is 
lOOk away from ground, power, and everything else-you can overcome a 
lOOk resistance by touching the net with a finger. A 10k resistor will over- 
power any sort of leakage created by fingers, humidity, and other effects. 

Besides, that low-impedance connection will maintain a proper state 
no matter what tools you use. In the case of NMI from the example above, 
the tools weakly pulled NMI high so they could run standalone (without 
the target); the 47k resistor was too high a value to overcome this slight 
amount of bias. 

If you are pulling up a signal from off-board, by all means use a very 
low value of resistance. The pull-up can act as a termination as well as a 
provider of a logic one, but the characteristic impedance of any cable is 
usually on the order of hundreds of ohms. A lOOk pull-up is just too high 
to provide any sort of termination, leaving the input subject to cross cou- 
pling and noise from other sources. A lk resistor will help eliminate tran- 
sients and crosstalk. 

Remember that you may not have a good idea what the capacitance 
of the wiring and other connections will be. A strong pull-up will reduce 
capacitive time constant effects. 
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Unused Inputs 

Once upon a time, back before CMOS logic was so prevalent, you 
could often leave unused inputs dangling unconnected and reasonably ex- 
pect to get a logic one. Still, engineers are a conservative lot, and most 
were careful to tie these spare pins to logic one or zero conditions. 

But what exactly is a logic one? With 74LS logic it’s unwise to use 
Vcc as an input to any gate. Most LS devices will happily tolerate up to 7 
volts on Vcc before something fails, while the input pins have an absolute 
maximum rating of around 5.5 volts. Connecting an input to Vcc creates a 
circuit where small power glitches that the devices can tolerate may blow 
input transistors. It’s far better (when using LS) to connect the input to Vcc 
through a resistor, thus limiting input current and yielding a more power- 
tolerant design. 

Modern CMOS logic in most of its guises has the same absolute 
maximum rating for Vcc as for the inputs, so it’s perfectly reasonable to 
connect input pins directly to Vcc-if you’re sure that production will 
never substitute an LS equivalent for the device you’ve called out. 

CMOS does require that every unused input be pulled to a valid logic 
zero or one to avoid generating an SCR latchup condition. 

Fast CMOS logic (like 74FCT) switches so quickly, even at very low 
clock rates, that glitches with Fourier components into billions of cycles 
per second are not uncommon. Reduce noise susceptibility by tying your 
logic zeroes and ones directly to the power and ground planes. 

And yet . . . one must balance the rules of good design with practical 
ways to make a debuggable system. A thousand years ago circuits used 
vacuum tubes mounted on a metal chassis. All connections were made by 
point-to-point wiring, so making engineering changes during prototype 
checkout must have been pretty easy. Later, transistors and ICs lived on PC 
boards, but incorporating modifications was still pretty simple. Now we’re 
faced with whisker-thin leads on surface-mount components, with 8- and 
10-layer boards where most tracks are buried under layers of epoxy and out 
of reach of our X-Acto knives. If we tie every unused input, even on our 
spare gates, to a solid power or ground connection, it’ll be awfully hard to 
cut the connection free to tie it somewhere else. Lifting the pins on those 
spare gates might be a nightmare. 

One solution is to build the prototype boards a little differently than 
the production versions. I look at a design and try to identify areas most 
likely to require cutting and pasting during checkout. A prime example is 
the programmable device-PALS or FPGAs or whatever. Bitter experi- 
ence has taught me that probably I’ll forget a crucial input to that PAL, or 
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that 1’11 need to generate some nastily complex waveform using a spare 
output on the FPGA. 

Some engineers figure that if they socket the programmable logic, they 
can lift pins and tack wires to the dangling input or output. I hate this solu- 
tion. Sometimes it takes an embarrassing number of tries to get a complex 
PAL right-each time you must remove the device, bend the leads back to 
program it, and then reinstall the mods. (An alternative is to put a socket in 
the socket and lift the upper socket’s leads.) When the device is PLCC or an- 
other, non-DIP package, it’s even harder to get access to the pins. 

So I leave all unused inputs on these devices unconnected when 
building the prototype, unfortunately creating a window of vulnerability to 
SCR latchup conditions. Then it’s easy to connect mod wires to the un- 
connected pins. When the first prototype is done I’ll change the schematic 
to properly tie off the unused inputs so prototype 2 (or the production unit) 
is designed correctly. 

In years of doing this I have never suffered a problem from SCR 
latchup due to these dangling pins. The risk is always there, lurking and 
waiting for an unusual ESD or perhaps even a careless ungrounded finger 
biasing an input. 

I do tie spare gate inputs to ground, even with the first run of boards. 
It just feels a little too dangerous to leave an unconnected 74HC74 lead 
dangling. However, if at all possible, I have the person doing the PCB lay- 
out connect these grounds on the bottom layer so that a few quick strokes 
of the X-Acto knife can free them to solve another “whoops.” 

In designs that use through-hole parts, by all means leave just a little 
extra room around each chip so you can socket the parts on the prototype. 
It’s a lot easier to pull a connected pin from a socket than to cut it free from 
the board. 

Clocks 

For a number of years embedded systems lived in a wonderful era of 
compatibility. Just about all the signals on any logic board were relatively 
slow and generally TTL compatible. This lulled designers into a feeling of 
security, until far too many of us started throwing digital ICs together 
without considering their electrical characteristics. If a one is 2.4 volts and 
a zero 0.7, if we obey simple fanout rules, and as long as speeds are under 
10 MHz or so, this casual design philosophy works pretty well. Unfortu- 
nately, today’s systems are not so benign. 

In fact, few microprocessors have ever exclusively used TTL levels. 
Surprise! Pull out a data sheet on virtually any microprocessor and look at 
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the electrical specs page-you know, the section without coffee spills or 
solder stains. Skip over those 300 tattered pages about programming in- 
ternal peripherals, bypass the pizza-smeared pinout section, and really look 
at those one or two pristine pages of DC specifications. 

Most CPUs accept TTL-level data and control inputs. Few are happy 
with TTL on the clock and/or reset inputs. Each chip has different re- 
quirements, but in a quick look through the data books I came up with the 
following: 

8086: Minimum Vih on clock: Vcc - 0.8 
386: Minimum Vih on clock: Vcc - 0.8 at 20 MHz, 3.7 volts at 25 
and 33 MHz 
280: Minimum Vih on clock: Vcc - 0.6 
805 1: Minimum Vih on clock and reset: 2.5 volts 

In other words, connect your clock and maybe reset input to a normal 
TTL driver, and the CPU is out of spec. The really bad news is that these 
chips are manufactured to behave far better than the specs, so often they’ll 
run fine despite illegal inputs. If only they failed immediately on any vio- 
lation of specifications! Then, we’d find these elusive problems in the lab, 
long before shipping a thousand units into the field. 

Fully 75% of the systems I see that use a clock oscillator (rather than 
a crystal) violate the clock minimum high-voltage requirement. It’s scary 
to think we’re building a civilization around embedded systems that, well, 
may be largely misdesigned. 

If you drive your processor’s clock with the output of a gate or flip- 
flop, be sure to use a device with true CMOS voltage levels. 74HCT or 
74ACTECT are good choices. Don’t even consider using 74LS without at 
least a heavy-duty pull-up resistor. 

Those little 14-pin silver cans containing a complete oscillator are a 
good choice . . . if you read the data sheet first. Many provide TTL levels 
only. I’m not trying to be alarmist here, but look in the latest DigiKey cat- 
alog-they sell dozens of varieties of CMOS and TTL parts. 

Clocks must be clean. Noise will cause all sorts of grief on this most 
important signal. It’s natural to want to use a Thevenin termination to more 
or less match impedance on a clock routed over a long PCB trace or even 
off board. Beware! Thevenin terminations (typically a 220-ohm resistor 
to +5 and a 270 to ground) will convert your carefully crafted CMOS level 
to TTL. 

Use series damping resistors to reduce the edge rate if noise is a prob- 
lem. A pull-up might help with impedance matching if the power supply 
has a low impedance (as it should). 
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A better solution is to use clock-shaping logic near the processor it- 
self. If the clock is generated a long way away, use a CMOS hysteresis cir- 
cuit (such as a 74HCT14) to clean it up. The extra logic adds delay, 
though. If your system requires clock synchronization, then use a special 
low-skew clock driver made for that purpose. 

In slower systems-under 20 MHz or so-I prefer to design circuits 
that don’t depend on a synchronous clock. What happens if you change to 
a second sourced processor with slightly different timing? Keep lots of 
margin. 

Never drive a critical signal such as clock off board without buffer- 
ing. There are a very few absolutely critical signals in any system that must 
be noise-free. Examine your design and determine what these are, and take 
appropriate steps. Clock, of course, is the first that comes to mind. Another 
is ALE (Address Latch Enable), used on processors with a multiplexed ad- 
dresddata bus. A tiny bit of noise on ALE can cause your address register 
to latch in the middle of a data cycle, driving an incorrect address to the 
memories. 

OK-so now your voltage levels are right. Go back to the data sheet 
and make sure the clock’s timing is in spec. 

The 8088 requires a 33% clock duty cycle. Sure, it’s a little odd, but 
this is a fundamental rule of nature to 8088 designers. Other chips have 
tight duty cycle requirements as well. 

Rise and fall times are just as important, though difficult to design 
for. Some chips have minimum rise/fall time requirements! It’s awfully 
hard to predict the rise/fall time for a track routed all over the board. That’s 
one attraction of microprocessors with a clock-out signal. Provide a decent 
clock-input to the chip, connect nothing to this line other than the proces- 
sor, and then drive clock-out all over the board. 

Motorola’s 68HC16 pulls a really neat trick. You can use a 32,768- 
Hz standard watch crystal to clock the device. An internal PLL multiplies 
this to 16 MHz or whatever, and drives a clock output to feed to the rest of 
the board. This gets around many of the clock problems and gives a “free” 
accurate time-of-day clock source. 

Reset 

The processor’s reset input is another source of trouble. Like clock. 
some processors have unusual input voltage requirements for reset. Be 
wary. 

Other chips require synchronous circuits. The old 2280 had a very 
odd timing spec, clearly spelled out in the documentation, that everyone ig- 
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nored only to find massive troubles getting the CPU to start. I think every 
single 2280 design in the world suffered from this particular ill at one time 
or another. 

Sometimes slew rate is an issue. The old RC startup circuit generates 
a long ramp that some processors cannot tolerate. You might want to feed 
it into a circuit with hysteresis, like a Schmidt Trigger, to clean up the 
ramp. 

The more complex CPUs require a long time after power-up to sta- 
bilize their internal logic. Reset cannot be unasserted until this interval 
goes by. Further complicating this is the ramp-up time of the system power 
supply, as the CPU will not start its power-up sequence until the supply is 
at some predefined level. The 386, for example, requires 219 clock cycles 
if the self-test is initiated before it is ready to run. 

Think about it: in a 386 system four events are happening at once. 
The power supply is coming up. The CPU is starting its internal power-up 
sequence. The clock chip is still stabilizing. The reset circuit is getting 
ready to unassert reset. How do you guarantee that everything happens 
to spec? 

The solution is a long time delay on reset, using a circuit that doesn’t 
start timing out until the power supply is stable. Motorola, Dallas, and oth- 
ers sell wonderful little reset devices that clamp until the supply hits 4.5 
volts or so. Use these in conjunction with a long time constant so the 
processor, power supply, and clocks are all stable before reset is released. 

When Intel released the 188XL they subtly changed the timing re- 
quirements of reset from that of the 188. Many embedded systems didn’t 
function with this “compatible” part simply because they weren’t compliant 
with the new chip’s reset spec. The easy solution is a three-pin reset clamp. 

The moral? Always read the data sheets. Don’t skip over the electri- 
cal specifications with a mighty yawn. Those details make the difference 
between a reliable production product and a life of chasing mysterious 
failures. 

One of my favorite bumper stickers reads “Question Authority.” It’s 
a noble sentiment in almost all phases of life . . . but not in designing em- 
bedded systems, Obey the specifications listed in the chip vendors’ 
datasheets ! 

If you’ve read many annual reports from publicly held companies, 
you know that the real meat of their condition is contained in the notes. 
This is just as true in a chip’s data sheet. It seems no one specifies sink and 
source current for a microprocessor’s output, but the specification of the 
device’s Vol and Voh will always reference a note that gives the test con- 
dition. This is generally a safe maximum rating. 
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With watchdog timers and other circuits connected to reset inputs, be 
wary of small timing spikes. I spent several frustrating days working with 
an AMD part that sometimes powered up oddly, running most instructions 
fine but crashing on others. The culprit was a subnanosecond spike on the 
reset input, one too fast to see on a 100-MHz scope. 

Homemade battery-backed-up SRAh4 circuits often contain reset- 
related design flaws. The battery should take over, maintaining a small bias 
to the RAM’S Vcc pins, when main power fails. That’s not enough to avoid 
corrupting the memory’s contents, though. 

As power starts to ramp down, the processor may run crazy for a 
while, possibly creating errant writes that destroy vast amounts of carefully 
preserved data in the RAM. The solution is to clamp the chip’s reset input 
as soon as power falls below the part’s minimum Vcc (typically 4.75 volts 
on a 5-volt part). 

With reset properly asserted, Vcc now at zero, and the battery pro- 
viding a bit of RAM support, be sure that the chip select and write lines to 
the RAM are in guaranteed “idle” states. You may have to use a small pull- 
up resistor tied to the battery, but be wary of discharging the battery 
through the resistor when the system is operating normally. 

And be sure you can actually pull the line up despite the fact that the 
driver will experience Vcc’s from +5 to zero as power fails. The cleanest 
solution is to avoid the problem entirely by using a RAM with an active 
high chip select, which you clamp to zero as soon as Vcc falls out of spec. 

Despite our apparent digital world, the harsh reality is that every 
component we use pushes electrons around. Electrical specifications are 
every bit as important to us as to an analog designer. This field is still elec- 
tronic engineering tilled with all of the tradeoffs associated with building 
things electronic. Ignore those who would have you believe that designing 
an embedded system is nothing more than slapping logic blocks together. 

Small CPUs 

Shhhh! Listen to the hum. That’s the sound of the incessant informa- 
tion processing that subtly surrounds us, that keeps us warm, washes our 
clothes, cycles water to the lawn, and generally makes life a little more tol- 
erable. It’s so quiet and keeps such a low profile that even embedded de- 
signers forget how much our lives are dominated by data processing. Sure, 
we rail at the banks’ mainframes for messing up a credit report while the 
fridge kicks into auto-defrost and the microwave spits out another meal. 

The average house has some 40 to 50 microprocessors embedded in 
appliances. There’s neither central control nor networking: each quietly 
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goes about its business, ably taking care of just one little function. This is 
distributed processing at its best. 

Billions and billions of 4- to 16-bit micros find their way into our 
lives every year, yet mostly we hear of the few tens of millions that reside 
on our desktops. 

Now, I’d never give up that zillion-MIP little beauty I’m hunched 
over at the moment. We all crave more horsepower to deal with Micro- 
soft’s latest cycle-consuming application. I’m just getting tired of 32-bit 
hype for embedded applications. Perhaps that 747 display controller or 
laser printer needs the power. Surely, though, the vast majority of applica- 
tions do not. 

A 4-bit controller that formed the basis for a calculator started this in- 
dustry, and in many ways we still use tiny processors in these minimal ap- 
plications. That is as it should be: use appropriate technology for the job at 
hand. 

Derivatives of some of the earliest embedded CPUs still dominate the 
market. Motorola’s 6805 is a scaled up 6800 which competed with the 
8080 back in the embedded Dark Ages. The 805 1 and its variants are based 
on the almost 20-year-old 8048. 

8051s, in particular, have been the glue of this industry, corre- 
sponding to the analog world’s old 741 op amp or the 555 timer. You find 
them everywhere. Their price, availability, and on-board EPROM made 
them the natural choice for applications requiring anywhere from just a 
hint of computing power to fairly substantial controllers with limited user 
interfaces. 

Now various vendors have migrated this architecture to the 16-bit 
world. I can’t help but wonder if this makes sense, as scaling a CPU, while 
maintaining backward compatibility, drags lots of unpleasant baggage 
along. Applications written in assembly may benefit from the increased 
horsepower; those coded in C may find that changing processor families 
buys the most bang for the buck. 

Microchip, Atmel, and others understand that the volume part of the 
embedded industry comes from tiny little CPUs scattered with reckless 
abandon into every corner of the world. These are cool parts! The smaller 
members offer a minimum amount of compute capability that is ideal for 
simple, cost-sensitive systems. Higher-end versions are well suited for 
more complicated control applications. 

Designers seem to view these CPUs as something other than com- 
puters. “Oh, yeah, we tossed in a couple of PIC16s to handle the mi- 
croswitches,” the engineer relates, as if the part were nothing more than a 
PAL. This is a bit different from the bloodied, battered look you’ll get from 
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the haggard designer trying to ship a 68030-based controller. The micro- 
controller is easy to use simply because it is stuffed into easy applications. 

L.A. Gear sells sneakers that blink an LED when you walk. A 
PIC16CSx powers these for months or years without any need to replace 
the battery. Scientists tag animals in the wild with expendable subcuta- 
neous tracking devices powered by these parts. In Chapter 4 I mentioned 
the benefit of adding small CPUs just to partition the code. There are other 
compelling reasons as well. 

A friend developing instruments based on a 32-bit CPU discovered 
that his PLDs don’t always properly recover from brown-out conditions. 
He stuffed a $2 controller on the board to properly sequence the PLD’s 
reset signals, ensuring recovery from low-voltage spikes. The part cost 
virtually nothing, required no more than a handful of lines of code, and oc- 
cupied the board space of a small DIP. Though it may seem weird to use a 
full computer for this trivial function, it’s cheaper than a PAL. 

Not that there’s anything wrong with PALs. Nothing is faster or bet- 
ter at dealing with complex combinatorial logic. Modem super-fast ver- 
sions are cheap (we pay $12 in singles for a 7-nanosecond 22V10) and 
easy to use, and their reprogrammability is a great savior of designs that 
aren’t quite right. PALs, though, are terrible at handling anything other 
than simple sequential logic. The limited number of registers and clocking 
options means you can’t use them for complicated decision making. PLDs 
are better, but when speed is not critical a computer chip might be the sim- 
plest way to go. 

As the industry matures, lots of parts we depend on become obsolete. 
One acquaintance found the UART his company depended on no longer 
available. He built a replacement in a PIC16C74, which was pin-compati- 
ble with the original UART, saving the company expensive redesigns. 

In the good old days of microcomputing, hardware engineers also 
wrote and debugged all of the system’s code. Most systems were small 
enough that a single, knowledgeable designer could take the project from 
conception to final product. In the realm of small, tractable problems like 
those just described, this is still the case. Nothing measures up to the pride 
of being solely responsible for a successful product; I can imagine how the 
designer’s eyes must light up when he sees legions of kids skipping down 
the sidewalk flashing their L.A. Gears at the crowds. 

Part of the recent success of these parts comes from the aggressive 
use of Flash and One-Time Programmable (OTP) program memory. OTP 
memory is simply good old-fashioned EPROM, though the parts come 
without an erasure window. That small quartz opening typical of EPROMs 
and many PLDs is very expensive to manufacture. You can program the 
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memory on any conventional device programmer, but, since there’s no 
window, you can never erase it. When it’s time to change the code, you’ll 
toss the part out. 

Intel sold OTP versions of their EPROMs many years ago, but they 
never caught on. A system that uses discrete memory devices-RAM, 
ROM, and the like-has intrinsically higher costs than one based on a mi- 
crocontroller. In a system with $100 of parts, the extra dollar or two needed 
to use erasable EPROMs (which are very forgiving of mistakes) is small. 

The dynamics are a bit different with a minimal system. If the entire 
computer is contained in a $2 part, adding a buck for a window is a huge 
cost hit. OTP starts to make quite a bit of sense, assuming your code will 
be stable. 

This is not to diminish Flash memory, which has all of the benefits of 
OTP, though sometimes with a bit more cost. 

Using either technology, the code can be cast in concrete in small ap- 
plications, since the entire program might require only tens to hundreds of 
statements. Though I have to plead guilty to one or two disasters where it 
seemed there were more bugs than lines of code, a program this small, 
once debugged and thoroughly tested, holds little chance of an obscure 
bug. The risk of going with OTP is pretty small. 

You can’t pick up a magazine without reading about “time to mar- 
ket.” Managers want to shrink development times to zero. One obvious so- 
lution is to replace masked ROMs with their OTP equivalents, as 
producing a processor with the code permanently engraved in a metaliza- 
tion layer takes months . . . and suffers from the same risk factors as does 
OTP. The masked part might be a bit cheaper in high volumes, but this 
price advantage doesn’t help much if you can’t ship while waiting for parts 
to come in. 

Part of the art of managing a business is to preserve your options as 
long as possible. Stuff happens. You can’t predict everything. Given op- 
tions, even at the last minute, you have the flexibility to adapt to problems 
and changing markets. For example, some companies ship multiple ver- 
sions of a product, differing only in the code. A Flash or OTP part lets 
them make a last-minute decision, on the production floor, about how 
many of a particular widget to build. If you have a half million dollars tied 
up in inventory of masked parts, your options are awfully limited. 

Part of the 805 1’s success came from the wide variety of parts avail- 
able. You could get EPROM or masked versions of the same part. Low- 
volume applications always took advantage of the EPROM version. OTP 
reduces the costs of the parts significantly, even when you’re only build- 
ing a handful. 
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Microcontrollers do pose special challenges for designers. Since a 
typical part is bounded by nothing more than I/O pins, it’s hard to see 
what’s going on inside. Nohau, Metalink, and others have made a great liv- 
ing producing tools designed specifically to peer inside of these devices, 
giving the user a sort of window into his usually closed system. 

Now, though, as the price of controllers slides toward zero and the 
devices are hence used in truly minimal applications, I hear more and more 
from people who get by without tools of any sort. While it’s hard to con- 
done shortchanging your efficiency to save a few dollars, it’s equally hard 
to argue that a 50-line program needs much help. You can probably eye- 
ball it to perfection on the first or second iteration. Again, appropriate 
technology is the watchword; 5000 lines of assembly language on a 6805 
will force you to buy decent debuggers . . . and, I’d hope, a C compiler. 

You can often bring up a microcontroller-based design without a 
logic analyzer, since there’s no bus to watch. Some people even replace the 
scope with nothing more than a logic probe. 

An army of tool vendors supply very low-cost solutions to deal with 
the particular problems posed by microcontrollers. You have options-lots 
of them-when using any reasonable controller-far more than if you de- 
cide to embed a SPARC into your system. 

Some companies cater especially to the low end. Most do a great job, 
despite the low cost. I recently looked at Byte Craft’s array of compilers 
for microcontrollers from Microchip, Motorola, and National. Despite the 
limited address spaces of some of these parts, it’s clear a decent C compiler 
can produce very efficient code. 

One friend cross-develops his microcontroller code on a PC. Using C 
frees him from most processor dependencies; compile-time switches select 
between the PC’s timer/UART, etc., and that contained in the controller. 
He manages to debug more than 80% of the code with no target hardware. 

Working in a shop using mostly midrange processors, I’m amazed at 
the amount of fancy equipment we rely on, and am sometimes a bit wist- 
ful for those days of operating out of a garage with not much more than a 
soldering iron, a logic probe, and a thinking cap. Clearly, the vibrant action 
in the controller market means that even small, under- or uncapitalized 
businesses still can come out with competitive products. 

Watchdog Timers 

I’m constantly astonished by the utter reliability of computers. While 
people complain and fume about various PC crashes and other frustra- 
tions, we forget that the machine executes millions of instructions per 
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second, even when sitting in an idle loop. Smaller device geometries mean 
that sometimes only a handful of electrons represent a one or zero. A 
single-bit failure, for a fleetingly transient bit of time, is disaster. 

Yet these failures and glitches are exceedingly rare. Our embedded 
systems, and even our desktop computers, switch trillions of bits without 
the slightest problem. 

Problems can and do occur, though, due more often to hardware or 
software design flaws than to glitches. A watchdog timer (WDT) is a good 
defense for all but the smallest of embedded systems. It’s a mechanism that 
restarts the program if the software runs amok. 

The WDT usually resets the processor once every few hundred milli- 
seconds unless reset. It’s up to the firmware to reinitialize the watchdog 
timer, restarting the timing interval. The code tickles the timer frequently, 
restarting the countdown interval. A code crash means the timer counts 
down without interruption; at time-out, hardware resets the CPU, ideally 
bringing the system back on-line. 

The first rule of watchdog design is to drive the CPU’s reset in- 
put, not an interrupt (such as NMI). A WDT time-out means that some- 
thing awful happened, something that may have left the CPU in an unpre- 
dictable scrambled state. Only RESET is guaranteed to bring the part back 
on-line. 

The non-maskable interrupt is seductive to some designers, espe- 
cially when the pin is unused and there’s a chance to save a few gates. For 
better or worse, NMI-and all other interrupt inputs-is not fail-safe. Con- 
fused internal logic will shut down NMI response on some CPUs. 

On other chips a simple software problem can render the non-mask- 
able interrupt unusable. The 68K, for example, will crash if the stack 
pointer assumes an odd value. If you rely on the WDT to save the day, dri- 
ving an interrupt while SP is odd results in a double bus fault, which puts 
the CPU in a dead state until it’s reset. 

Next, think through the litigation potential of your system. Life- 
threatening failure modes mean you’ve got to beware of simple watchdog 
timers! If a single I/O instruction successfully keeps the WDT alive, then 
there’s a real chance that the code might crash but continue to tickle the 
timer. Some companies (Toshiba, for example) require a more complex se- 
quence of commands to the timer; it’s equally easy to create a PLD your- 
self that requires a fiendishly complex WDT sequence. 

It’s also a very bad idea to put the WDT reset code inside of an in- 
terrupt service routine. It’s always intriguing, while debugging, to find 
your code crashed but one or more ISRs still functioning. Perhaps the ser- 
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ial receive routine still accepts characters and echoes them to the sender. 
After all, the ISR by definition runs independently of the rest of the code, 
so will often continue to function when other routines die. If your WDT 
tickler stays alive as the world collapses around the rest of the code, then 
the watchdog serves no useful purpose. 

This problem multiplies in a system with an RTOS, as a reliable 
watchdog monitors all of the tasks. If some of the tasks die but others stay 
alive-perhaps tickling the WDT-then the system’s operation is at best 
degraded. 

In this case write the WDT code as its own task, driven by a timer. 
All other tasks send messages to the watchdog process, indicating “I’m 
alive.” Only when the WDT activity sees that all tasks that should have 
checked in are indeed operating does it service the watchdog. If you use 
RTOS-supplied messaging to communicate the tasks’ health-rather than 
dreaded though easy global variables-there’s little chance that errant 
code overwriting RAM can create a false indication that all’s OK. 

Suppose the WDT does indeed find a fault and resets the CPU. Then 
what? A simple reset and restart may not be safe or wise. 

One system uses very high-energy gamma rays to measure the thick- 
ness of steel. A hardware problem led to a series of watchdog time-outs. I 
watched, aghast, as this system cycled through WDT resets about once a 
second, each time opening the safety shield around the gamma ray source! 
The technicians were understandably afraid to approach close enough to 
yank the power cord. 

If you cannot guarantee that the system will be safe after the watch- 
dog fires, then you simply must add hardware to put it in a reasonable, non- 
dangerous, mode. 

Even units that have no safety issues suffer from poorly thought-out 
WDT designs. A sensor company complained that their products were get- 
ting slower. Over time, and with several thousand units in the field, re- 
sponse time to user inputs degraded noticeably. A bit of research showed 
that their system’s watchdog properly drove the CPU’s reset signal, and 
the code then recognized a warm boot, going directly to the application 
with no indication to the users that the time-out had occurred. We tracked 
the problem down to a floating input on the CPU that caused the software 
to crash-up to several thousand times per second. The processor 
was spending most of its time resetting, leading to apparently slow user 
response. 

If your system recovers automatically from a WDT time-out, add an 
LED or status display so users-or at least the programmers!-know that 
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the system had an unexpected reset. Don’t use a bit of clever watchdog 
code to compensate for software or hardware glitches. 

Should embedded systems have a reset switch? 
It seems almost traditional to put a reset switch on the back 

panel of an embedded system. When something horrible happens, hit 
the reset and retry! Doesn’t this make the customer feel that we don’t 
trust our own products? Electronic systems never had reset switches 
until the introduction of the microprocessor. Why add them now? 

A reset switch is no substitute for flaky hardware. It’s pretty 
easy (or, at least possible) to design robust, reliable microprocessor 
circuits. Any failure is most likely to be a hard fault that a simple 
reset will not cure. 

This argument implies that a reset switch is mostly useful to 
cure software bugs. We have a choice of writing 100% reliable code 
or adding some sort of an escape hatch for the user. I hereby pro- 
claim, “We shall all now write correct code.” 

The problem is now cured. 
OK, so perhaps a bug just might creep in once in a while. My 

feeling is that a reset switch is still a mistake. It conveys the message 
that no one really trusts the product. It’s much better to include a 
very robust watchdog timer that asserts a good, hard reset when 
things fall apart. The code might still be unreliable, but at least we’re 
not announcing to the world that bugs are perhaps rampant. Re- 
member when Microsoft eliminated the Unexpected Application 
Error message from Windows 3.1 . . . by renaming it? 

No watchdog is perfect, but even a simple one will catch 99% of 
all possible code crashes. Combine this percentage with the (ideally) 
low probability of a software crash, and the watchdog failure rate falls 
to essentially zero. 

Making PCBs 

In the bad old days we created wire-wrapped prototypes because they 
were faster to make than a PCB, and a lot cheaper. This is no longer the 
case. Except for the very smallest boards, the cost of labor is so high that 
it’s hard to get a wire-wrapped prototype made for less than $500 to sev- 
eral thousand dollars. Turnaround time is easily a week. 
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Cheap autorouting software means any engineer can design a PCB in 
a matter of a couple of days-and you’ll have to do this eventually any- 
way, so it’s not wasted time. Dozens of outfits will convert your design to 
a couple of PCBs in under a week for a very reasonable price. How much? 
Figure $looCrl500 for a 50-square-inch 4- to 6-layer board, with one- 
week turnaround. 

It’s magic. Modem your board design to the vendor, and days later 
FedEx delivers your custom design, ready for assembly and test. 

PCBs are much quieter, electrically, than their wire-wrapped 
brethren. With fast rise times and high clock rates, noise is a significant 
problem even in small embedded designs. I’ve seen far too many cases of 
“Well, it doesn’t work reliably, but that’s probably due to the wire wrap. 
It’ll probably get better when we go to PC.” These are clearly cases where 
the prototype does not accomplish its prime objective: identify and fix all 
risk factors. 

Always build your prototype on a PCB, never on wirewrap or other 
impedance-challenged technologies. And figure on using a multilayer de- 
sign, with unadulterated power and ground planes. Modem logic is just too 
fast, too noisy, and too intolerant of ground bounce and other impedance 
issues to try and mix power and signals on any PCB layer. 

The best source for information about speed and noise issues on PC 
boards is High Speed Digital Design-A Handbook of Black Magic, by 
Howard Johnson and Martin Graham (1993, PTR Prentice Hall, NJ). This 
is a must-read for all digital engineers. If you felt that your college elec- 
tromagnetics was a flunk-out course, one you squeaked through, fear not. 
The authors do use plenty of math, but their prose descriptions are so lucid 
you’ll gain a lot of insight by just reading the words and shpping over the 
equations. 

Design your prototype PCB with room for mistakes. Designing a 
pure surface-mount board? These usually use tiny vias (the holes between 
layers) to increase the density. Think about what happens during the pro- 
totyping phase: you’ll make design changes, inevitably implemented by a 
maze of wires. It’s impossible to run insulated wire through the tiny holes! 
Be sure to position a number of unusually large vias (say, 0.03 I ”) around 
the board that can act as wiring channels between the component and cir- 
cuit sides of the board. 

Add pads for extra chips; there’s a good chance you’ll have to 
squeeze another PAL in somewhere. My latest design was so bad I had to 
glue on five extra chips. Guess who felt like an idiot for a few days. . . . 

Always build at least two copies of each prototype PCB. One may lag 



128 THE ART OF DESIGNING EMBEDDED SYSTEMS 

the other in engineering modifications, but you’ll have options if (when) 
the first board smokes. Anyone who has been at this for a while has blown 
up a board or two. 

I generally buy three blank prototype PCBs, assemble two, and use 
the third to see where tracks run. Though sometimes you’ll have to go back 
to the artwork to find inner tracks, it sure is handy to have the spare blank 
board on the bench during debug. 

It’s scary how often the firmware group receives a piece of 
“functional” prototype hardware from the designers accompanied 
by nothing more than the schematics-schematics that are usually 
incomprehensible to the software folks. made even more abstruse by 
massive use of PLDs and similar functional blocks plopped down on 
the page, with perhaps hundreds of connections. They are documen- 
tation black holes-every signal goes in, and presumably something 
comes out, but without the designer’s suite of design tools even the 
brightest firmware person will never make sense of the design. 

Where does one draw the line between the responsibilities of 
the hardware designers and those of the firmware folks? Should the 
designers include device drivers? Seems reasonable to me, since 
surely they did indeed at least hack together a bit of code to test each 
device. Why not structure the development plan to make this test 
code part of the framework of the final software? The hardware 
tends to be so complex now that it’s unfair to give “naked iron” to 
the software people. At the very least, deliver low-level drivers with 
well-defined interfaces. 

If you live and breathe hardware only, do talk to your software 
counterparts. You may be surprised to learn that all too often your 
cool new product makes debugging the code practically impossible. 
Poor design decisions might seriously affect the firmware schedule. 
All embedded people must understand that their creation does not 
exist in isolation; the code and the chips all function together, to 
form the seamless gestalt that (you hope) delights the user. 

Changing PCBs 

After spending a couple of months writing code, it’s a bit of a shock 
to come back to the hardware world. Fixing bugs is a real pain! Instead of 
a quick editkompile, you’ve got to break out a soldering iron, wire, parts, 
and then manipulate a pin that might be barely visible. 
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PALS, FPGAs, and PLDs all ease this process to some extent. Many 
changes are not much more difficult than editing and recompiling a file. It 
is important to have the right tools available: your frustration level will 
skyrocket if the PAL burner is not right at the bench. 

FPGAs that are programmed at boot time via a ROM download usu- 
ally have a debugging mechanism-a serial connection from the device to 
your PC, so you can develop the logic in a manner analogous to using a 
ROM emulator. Be sure to put the special connector on your design, and 
buy the little adapter and cable. Burning ROMs on each iteration is a ter- 
rible waste of time. 

PLDs often come like EPROMs, in ceramic packages with quartz 
erasure windows. These are great. . . if you were clever enough either to 
socket the parts, or to have left room around the part for a socket. 

On through-hole designs I generally have the technicians load sock- 
ets for every part on the prototype. I want to replace suspected failed de- 
vices quickly, without spending a lot of time agonizing over “Is it really 
dead?’ 

Sockets also greatly ease making circuit modification. With an 8- 
layer board it’s awfully hard to know where to cut a track that snakes be- 
tween layers and under components. Instead, remove the pin from the 
socket and wire directly to it. 

You can’t lift pins on programmable parts, as the device programmer 
needs all of them inserted when reburning the equations. Instead, stack 
sockets. Insert a spare socket between the part and the socket soldered on 
the board. Bend the pins up on this one. All too often the metal on the 
upper socket will, despite the bent-out pin, still short to the socket on the 
bottom. Squish the metal in the bottom socket down into the plastic to 
eliminate this hard-to-find problem. 

Surface-mount parts are much more problematic. Get a good set of 
dental tools and a very fine soldering iron, so you can pry up pins as 
needed. You’ll need a bright light with magnifier, a steady hand, and ab- 
stinence from coffee. A decent surface-mount rework machine (such as 
from Pace Electronics) is essential; get one that vectors hot air around the 
IC’s pins. Don’t even try to use conventional solder on fine-pitch parts; use 
solder paste instead, and keep it fresh (usually it’s best stored in a fridge). 

Since SMT is so tough, I always make prototype boards with tracks 
on the outer layers. Sure, the final version might reverse this (power and 
ground outside to reduce emissions), but reverse the layering during 
debug. It’s easy to cut tracks with an X-Acto knife. 

Every engineer needs at least two X-Acto knives. One is for finger- 
nail cleaning, cutting open envelopes, and tossing at the dartboard. The 
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other is only for PCB work and always has a new, sharp blade. Keep 50 or 
100 spare blades in your drawer, since PCB work invariably breaks the 
very sharp and very essential pointy end off in no time. 

Planning 

Engineers have managers, who “run” projects, ensuring that re- 
sources are available when needed, negotiate deadlines and priorities with 
higher-ups, and guide/mentor the developers toward producing a decent 
product on time. Planning is one of any manager’s main goals. Too often, 
though, managers do planning that more properly belongs to the engineers. 
You know more about what your project needs than your boss ever will; 
it’s silly, and unfair, to expect him to deal with all of the details. 

There are many great justifications for a project running late. In en- 
gineering it’s usually impossible to predict all of the technical problems 
you’ll encounter! However, lousy planning is simply an unacceptable, 
though all too common, reason. 

I think engineers spend too much time doing, and not enough time 
thinking about doing. Try spending two hours every Monday morning 
planning the next week and the next month. What projects will you be 
working on? What’s their status? What is the most important thing you 
need to do to get the projects done? Focus on the desired goal, and figure 
out what you need to do to get there. Do you need to order parts? Tools? 
Does some of your test equipment need repair or calibration? 

Find the critical paths and do what’s required to clear the road ahead. 
Few engineers do this effectively; learn how, and you’ll be in much higher 
demand. 

When you’re developing a rush project (all projects are rush pro- 
jects . . .), the first design step is a block diagram of the each board. From 
this you’ll create the schematic, then do a PCB layout, create a bill of 
materials, and finally, order parts for the prototype. 

Not. The worst thing you can do is have a very expensive quick-turn 
PCB arrive, with all of the components still on back order. The technicians 
will snicker about your “hurry up and wait” approach, and management 
will be less than thrilled to spend heavily for fast-turn boards that idle 
away the weeks on a shelf. 

Buy the parts first, before your design is complete. Surely you’ll 
know what all of the esoteric parts are-the CPU, odd analog components, 
sensors, and the like. These are likely to be the hardest and slowest to get, 
so put them on order immediately. 
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The nickel and dime components, such as gates and PALS, resistors 
and capacitors, are hard to pin down until the schematic is complete. These 
should mostly be in your engineering spares closet. Again, part of planning 
is making sure your lab has the basic stuff needed for doing the job, from 
soldering irons to engineering spares. Make sure you have a good selection 
of the sort of components your company regularly uses, and avoid the 
temptation to use new parts unless there’s a good reason. 





CHAPTER 7 
Troubleshooting Tools 

Developers expect long, painful debugging sessions. We plunge into 
system debug without thinking through the benefits and perils of this step, 
and as a result generally wind up in a nightmare of bugs and schedule 
panics. 

As discussed in Chapter 2, a careful program of Code Inspections 
will eliminate 70 to 80% of the bugs in a system before the first bit of test- 
ing commences. The same chapter also shows how a careful developer can 
count and manage bugs to identify bad code and take appropriate action 
early. 

An HP study concluded that the debugging process itself is flawed, as 
it generally exercises only half of the code. That is, no one is smart enough 
to construct a test that checks every possible IF-THEN condition, each 
CASE in a SWITCH statement. This surely reinforces the need for Code 
Inspections, but clearly even Inspections combined with test will result in 
substantial chunks of untested-and thus buggy4ode.  

~ 

The math is simple. Most code runs around a 5% bug rate after 
compiler-found syntax errors are corrected. A little 10,000-line pro- 
gram will typically have about 500 bugs before inspection and test. 
Code Inspections will identify about 70 to 80% of these, leaving 
some 100 still latent. Test, then, is our last defense against shipping 
a bug-ridden product . . . but test only exercises half the code, leav- 
ing 50 bugs still in the finished unit! 

133 
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This is clearly unacceptable. There are a few solutions: 

1. Single-step though all of the code. Keep a listing handy, on 
paper, and check off each branch and decision node as you 
step through it, running tests until every bit of code has 
been executed. The downside of this, of course, is that sin- 
gle-stepping destroys the real-time nature of most embed- 
ded systems. 

2. Construct tests guaranteed to run through every decision 
node. This means modifying the test procedure after you’ve 
written the firmware to ensure that the tests are robust 
enough to run through every node. 

3. Buy a fancy tool. Applied Microsystems and HP both make 
code coverage tools that identify unexecuted lines of code, 
watching system operation in real time. These tools serve as 
a complement to option 2, as you’ll still have to construct 
appropriate tests. Still, if bugs are unacceptable, then the 
fancy tools are probably necessary to ensure quality. 

No management techniques or methodologies will ever eliminate the 
need for test and debug. The late, great Deming taught the world that it’s 
impossible to test quality into a system; quality is a characteristic of the de- 
sign, not of our ability to find and fix bugs. Yet no matter how elegant the 
design, test is always important, always a crucial validation of the code. 

Tools 

Your lovingly crafted, finely tuned masterpiece of engineering will 
not work. Period. Sometimes it’s a little frightening when we discover the 
real scope of our errors in a design. How often have you thought, in a bleak 
moment of despair, “I’ll never make this stupid thing work!” 

But that’s why we build prototypes. Prototypes are not expected to 
work at first. Electronics engineering is perhaps one of the last great areas 
where we can and should build test systems that are meant to be thrown 
away once their contribution to the design process is done. 

Although this is no excuse for doing a sloppy job of design, expect 
problems. Develop an engineering strategy that expects problems as part of 
the design process, rather as a reaction to (surprise!) a mistake. Set up a 
system where you extract every bit of meaning from problems and their 
eventual solutions. Don’t be like the engineer who finds a mistake, cuts 
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and pastes a repair . . . and then forgets to document it, dooming himself or 
some other poor soul to troubleshooting the same symptom all over again. 

Above all, don’t plunge into the troubleshooting madness too 
quickly. Debugging some embedded projects can take months. Invest time 
up front to organize your workbench, acquire the tools, and learn to use 
them effectively. 

Who built the first lathe? The first oscilloscope? It’s hard to conceive 
how these pioneers bootstrapped their efforts, somehow breaking the cycle 
of needing equipment X to produce equipment X. Though this surely 
proves that modem tools are dispensable, only a fool would wish to repeat 
the designers’ Herculean efforts. 

Select and buy a tool for one reason only: to save time! Since this is 
a rapidly evolving field, expect to continuously invest in new equipment 
that keeps you maximally productive. Surely no one would advocate using 
286 computers in a Pentium world, yet far too many companies sentence 
their engineers to hard labor by refusing to upgrade scopes, compilers, and 
emulators when advancing technology obsoletes the old. 

Every bookstore is crammed with volumes of sage advice for getting 
more from each hour. Never forget that the fundamental rule of time man- 
agement is to work smart; in the computer business, delegate as much as 
possible to your electronic servants that cost so little compared to an engi- 
neer’s salary. 

Debuggers-of every i l k - d o  one fundamental thing: provide visi- 
bility into your system. Features vary, but all we ask of a debugger is, “Tell 
me what is going on.” Sometimes we’re interested in procedural flow (sin- 
gle-stepping, breakpointing); other times it’s function timing or depen- 
dencies or memory allocation. Regardless, we simply expect our tools to 
reveal hidden system behavior. Only after we see what’s going on can we 
use our brains to understand “why that happened,” and then apply a fix. 

Before talking about specific tools, let’s look at the features we’d like 
to see in any sort of debugger (see Figure 7-l), and only then see how the 
tools match feature requirements. 

Source-level debugging-If you write in C, debug in C. There is no 
more important feature than an environment that lets you debug in the 
same context in which you originally wrote the code. If the debugging 
tools won’t automatically call up the appropriate source files showing 
where the current program counter lies, then count on long, painful days of 
despair trying to make things work. 

Tools, after all, are the intelligent assistants that provide us a level of 
abstraction between the awful bits and bytes the computer uses and our code. 
The source-level debugger is the critical ingredient that connects us to the 
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Overlay RAM 
Shadow RAM 

Hardware breakpoints 

Feature 

Event triggers I Yes I Yes 

Yes No No No Yes 

Some No No No No 
Yes Some No No Some 

Complex breakpoints 

Time stamps 

Execution timers 

Yes No No Yes No 
Yes No No Yes No 

Yes No No Yes No 

- 

Nonintrusive access 

cost 

FIGURE 7-1 Typical features of debugging tools. 

Yes Yes No Yes No 

Very high Cheap Cheap High Cheap 

tool itself (emulator, ROM monitor, etc.) and our original source code. Hit 
a breakpoint, and the debugger will highlight the current address in the 
current source file. You view your original source code with comments. 
The debugger shows data items in their native type (ints as decimal inte- 
gers, floats as floating-point numbers, strings as ASCII text), not as raw, 
impossible-to-decipher hex codes. 

The source-level debugger is a program that runs on the PC and that 
communicates with the emulator or whatever. It’s an essential part of a 
professional debug environment. 

If your toolchain won’t include a decent source debugger, triple your 
debugging time, since most of your effort will be spent in the unrewarding 
(and, frankly, stupid) task of correlating bits and bytes to source code. 

Nonintrusive access-Nonintrusive access means the tool “gets 
inside the head” of your target system without consuming the target’s 
memory, peripherals, o r  any other resources. 
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As CPUs get more complex, though, all tools have more restrictions 
that you, the user, must understand. If the part has cache, will the tool work 
with cache enabled? A more insidious-and common-problem stems 
from pins shared between several functions. If address line 18, for exam- 
ple, can be changed to a timer output under program control, will the em- 
ulator gork? Call the vendor and ask for the “restriction list” before buying 
any debugging tool. 

Real-time trace-Trace captures the execution stream of your code 
in real time, displaying it in the original C or C++ source. Trace depths are 
measured in frames, where one frame is one memory or I/O transaction- 
thus, a single instruction may eat up several frames of storage. 

Trace width is given in bits, and generally includes the address, data, 
and some of the control busses, perhaps also with external inputs (to show 
how the code and hardware synchronize), and timing information. Widths 
vary from 32 bits to more than 100. 

Trace is most useful for capturing real-time code-such as the 
execution of an ISR-without slowing the system at all. It’s generally non- 
intrusive. 

Trace is mostly associated with logic analyzers and emulators. Be 
aware that as CPUs get more complex, many emulators capture only the 
address bus in the trace buffer. . . which means you’ll have no view of the 
data transactions associated with the code. 

Evenr triggers andfilters-Event triggers start and stop trace acqui- 
sition. You define a condition (say, “when foobar = 23”); in real time the 
tool detects that condition and starts/stops the trace collection. Filters in- 
clude or exclude cycles from the trace buffer (it makes little sense, for ex- 
ample, to acquire the execution of a delay routine). 

Even with the hundreds of thousands of trace frames offered by some 
devices, there’s never enough depth to collect more than a tiny bit of the 
code’s operation. Triggers and filters let you specify exactly what gets 
captured. The skillful use of triggers and filters reduces your need for deep 
trace and greatly reduces the amount of acquired data you’ll have to sift 
through. 

Overlay RAM-also known as emulation RAM-though physically 
inside of an emulator, is mapped into the target processor’s address space. 
Overlay RAM replaces the ROM or Flash on your system so you can 
quickly download updated code as bugs are discovered and repaired. ICES 
provide great latitude in mapping this RAM, so you can change between 
the emulator’s memory and target memory with fine granularity. A singu- 
lar benefit of overlay is that you can often start testing your code before the 
target hardware is available. 
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Today’s Flash-based systems might seem to eliminate the need for 
overlay, but in fact Flash programs more slowly than RAM, leading to 
longer download times. 

Shadow RAM-When the emulator updates the source debugger’s 
windows, it interrupts the execution of your code to extract data from reg- 
isters, YO, and memory-an interruption that can take from microseconds 
to milliseconds. Shadow RAM is a duplicate address space that contains a 
current image of your data that the tool can access without interrupting tar- 
get operation. 

Hardware breakpoints-Breakpoints stop program execution at a de- 
fined address, without corrupting the CPU’s context. A software break- 
point replaces the instruction at the breakpoint address with a one 
byte/word “call.” There’s no hardware cost, so most debuggers implement 
hundreds or thousands. Hardware breakpoints are those implemented 
in the tool’s logic, often with a big RAM array that mirrors the target 
processor’s address space. Hardware breakpoints don’t change the target 
code; thus, they work even when you’re debugging firmware burned in 
ROM. 

Some pathological algorithms defy debugging with software break- 
points. A ROM test routine, for example, might CRC the code itself; if the 
debugger changes the code for the sake of the breakpoint, the CRC will 
fail. There’s no such restriction with a hardware breakpoint. 

Hardware breakpoints do come at a cost, though, so some tools offer 
lots of breakpoints, with a few implemented in hardware and the bulk in 
software. 

Complex breakpoints-Simple BPs stop the program only on an in- 
struction fetch (“stop when line 124 is fetched”). Their complex cousins, 
though, halt execution on data accesses (“stop when 1234 is written to foo- 
bar”). They’ll also allow some number of nested levels (“stop when routine 
activate-led occurs after led-off called”). Though some tools offer quite a 
diverse mix of nesting levels, few developers ever use more than two. 

Desktop debuggers such as that supplied with Microsoft’s VC++ 
usually offer complex breakpoints-but they do not run in real time, and 
they impose significant performance penalties. Part of the cost of an ICE 
is in the hardware required to do breakpoints in real time. 

It’s important to understand that a simple hardware or software 
breakpoint stops your code before the instruction is executed. Complex 
BPs, especially when set on data accesses, stop execution after the in- 
struction completes. On processors with prefetchers it’s not unusual for the 
complex breakpoint to skid a bit, stopping execution several instructions 
later. 
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Time stumping-Emulators and logic analyzers often include time 
information in the trace buffer. Time stamps usually eat up about 32 bits of 
trace width. Combined with the trace system’s triggers, it’s easy to perform 
quite involved timing measurements. 

Emulators 

In-Circuit Emulators (ICEs) have always been the choice weapons in 
the war on bugs. Yet, for as long as I can remember pundits have been pre- 
dicting their death. Though it seems as quaint as IBM’s 1950s prediction 
that the worldwide market for computers was merely a couple of dozen, in 
fact 20 years ago many people believed that the 4-MHz 280 would spell 
doom for ICEs. “4 MHz is just too fast,” they proclaimed. “No one can run 
those speedy signals down a cable.” 

Time proved them wrong, of course. Today’s units run at 60+ MHz 
on processors with single-clock memory cycles, an astonishing achieve- 
ment. 

Is an end yet in sight? I believe so, though the limiting frequency is a 
bit hazy. Today’s approach of putting all or much of the ICE’S electronics 
on the pod removes the cabling and bus driver problems, but electrons do 
move at a finite speed and even the fastest of circuits have nonzero propa- 
gation delays. 

CPU vendors squeeze the last bit of clock rates from their creations 
partly by tuning their chips ever more exquisitely to the rest of the system’s 
memory and YO. Clearly, an intrusion by any sort of development tool will 
at best be problematic. Yes, today’s Pentium emulators do work. Will to- 
morrow’s units be able to handle the continued push into stratospheric 
clock rates? I have doubts. 

Packages are creating another sort of problem. Heat, speed, and size 
constraints have yielded a proliferation of packaging styles that challenge 
any sort of probing for debugging. If you’ve ever tried to use a scope on a 
208-pin PQFP device or, worse, a 100-pin TQFP, you know what I mean. 
Yes, some tremendously innovative probing systems exist-notably those 
from Emulation Technology and HP. Despite these, it’s still difficult at 
best to establish a reliable connection between a target CPU and any sort 
of hardware debugger, from a voltmeter to an ICE. 

Surface-mount devices have exposed pins that you at least have a 
prayer of getting to. Newer devices don’t. The BGA (Ball Grid Array) 
package, which is suddenly gaining favor, connects to a PC board via hun- 
dreds of little bumps on the underside of the package-where they are 
completely inaccessible. Other technologies bond the silicon itself under a 
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dab of epoxy directly to the board. All of these trends offer various system 
benefits; all make it difficult or impossible to troubleshoot software and 
hardware. 

OK, you smirk, these issues only apply to the high end of the embed- 
ded market, where clock rates-and production costs-soar with the eagles. 
Other, subtle influences, though, are wreaking havoc on the low end. 

Take microcontrollers, for example. These CPUs have ROM and 
RAM on-board, giving a very simple, very inexpensive one-chip solution 
for simple 8- and 16-bit applications. The 8051 is the classic example of 
this, and indeed has been an amazing success that has survived 20 years of 
assault by other, perhaps more capable, processors. 

Single-chip solutions are tough to debug, though, since the on-board 
memory means there’s generally no addreddata bus coming to the outside 
world. An extreme example is Microchip’s 8-pin PIC part. Eight pins! 

Various debugging solutions exist, but the traditional solution is the 
bond-out chip, a special version of the processor, with extra pins that bring 
all important signals to the outside world, especially those oh-so-critical 
address and data lines needed to track program execution. With a proper 
bond-out-based ICE you can track everything the code does, in real time, 
with no compromises. Perfect, no? 

Well, a few wrinkles are starting to surface. For one, the chip vendors 
hate making bond-outs. The market is essentially zero, yet every time the 
processor’s mask gets revised a new bond-out is needed. In the old days 
chip vendors swallowed hard, but did make them reasonably available. 

Now this is less common. With the 386EX (which is not a micro- 
controller, but which benefits from a bond-out) Intel announced that only 
a handful of vendors would get access to the special version of the part, 
probably to some extent increasing the cost of tools. Is this an indication of 
the beginning of the end of generally available bond-out parts? 

Sometimes the bond-out is not kept to current mask revisions. I know 
of at least one case where a vendor provides bond-outs that will not run at 
full speed, essentially removing the critical visibility of real-time execution 
from developers. This situation puts you in the awful conundrum of de- 
ciding, “Should I buy an expensive tool. . . that forces me to run at half 
speed, no doubt destroying all timing relationships?” 

Sometimes-often-the bond-outs will not run at reduced voltages. 
Your 3-volt system might require a pod that is a convoluted mix of 3- and 
5-volt technologies, creating additional propagation delays as voltages get 
translated. In effect, a nonintrusive tool becomes subtly more intrusive, in 
ways that are hard to predict. Voltages are declining fast-some CPUs 
now run at sub-1-volt levels-so the problem can only get worse. 
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A very scary development is the incredible proliferation of CPUs. 
Vendors are proud of their ability to crank out a new chip by pressing a few 
buttons on a CAD system, changing the mix of peripherals and memory, 
producing variant number 214 in a particular processor family. Variants 
are a sign of a good, healthy line of parts (look at that mind-boggling array 
of 8051 parts), but are a nightmare for tool vendors. Each requires new 
hardware, software, support, evaluation boards, and the like. In the “good 
old days,” when we saw only a few new parts per year per family, support 
was easy to find. Now my friends who make microcontroller tools com- 
plain of the frantic pace needed to support even a subset of the parts. 

As a tool consumer you probably don’t care about the woes of the 
vendors. But part proliferation creates a problem that hits a bit closer to 
home: for any specific variant there may only be a handful of customers. 
Tool support may never exist for that part if vendors feel there’s not a big 
enough market. An odd fact of the tool market (from compilers to ICES) is 
that the health of the market is a function of the number of customers using 
a chip, not the number of chips used. CPU vendors are happy to get one or 
two huge design wins, say an automotive company that sucks up millions 
of parts per year. Tool folks might only sell a couple of units to such a cus- 
tomer, far too few to pay their huge development costs. 

Yet, despite the problems inherent with any tool so closely coupled 
to the CPU, the ICE is without a doubt the most powerful and most useful 
tool we have for debugging an embedded system. Only an ICE gives a 
nonintrusive real-time view of the firmware’s operation. 

Why use an ICE? 

If your target hardware is not perfect, most other tools will not 
function well. An ICE is probably the most useful tool around 
for finding and troubleshooting hardware as well as software 
problems. 
The ICE uses no target resources. In general, all ROM. RAM, and 
interrupts will be untouched. 
There is no better way to debug real-time code than using trace 
coupled with extensive triggering capabilities. The emulator cap- 
tures the busses, and, in conjunction with the source-level debug- 
ger, correlates raw bus activity to your C source files. 

Emulator downsides include: 

No tool is more expensive than an emulator. 
As discussed earlier, speed and mechanical issues mean that some 
systems will just not be candidates for emulator-based debugging. 
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ICES can be finicky beasts to tame. With a hundred or more con- 
nections to your target hardware, the smallest bit of dirt, vibration, 
or bad luck can cause erratic operation that will drive your devel- 
opers out of their minds. For this reason I always recommend sol- 
dering the emulator to an SMT part, rather than using a clip-on 
connection. Find a reliable hook-up scheme early, to avoid infinite 
frustration later. 

BDMs 

CPU cores hidden away inside ASICs give fabulously small systems, 
yet that buried processor is all but impossible to probe. Couple bus cycles 
within fractions of a nanosecond to a peripheral and you leave no margin 
for your tools. One-off CPUs, whether from burying a VHDL virtual 
processor inside a high-integration part, or from the huge explosion of de- 
rivatives of popular parts, are often tool orphans. Tool vendors, after all, 
won’t invest huge sums in developing products for a particular CPU unless 
they see a large, healthy market for their offerings. 

Even seemingly boring issues such as device packaging further iso- 
late us from the processor. If we can’t probe it, we can’t see what’s going 
on. We lose the visibility needed to find bugs. 

The trend is to separate run control from real-time trace. “Run 
control” means those simple debugging features that we’d expect even in 
nonembedded work: simple breakpoints, single-stepping, and access 
to processor resources, memory, and peripherals. Probably 95% of all 
debugging uses nothing more than these relatively simple features. Trace, 
though, demands real-time access to the entire data, address, and control 
busses, and so is generally a rather thorny and expensive part of any 
emulator. 

But the promise of a serial debugger remains seductive, given that 
just a few wires replace the hundreds of connections used by an emulator 
or logic analyzer. Motorola recognized this early on and created the Back- 
ground Debug Mode (BDM), a feature first found on the 683xx and 
68HC 16 processors, since extended and incorporated on many other chips. 

BDM is a bit of specialized debugging hardware built right into the 
chip (Figure 7-2). Transistors are so cheap it makes sense to build a debug 
interface into even production chips. Clearly this overcomes one major ob- 
jection of bond-outs: the “stepping level” of the production IC is always 
identical to the debug part. , . because they are one and the same. 

BDMs eliminate all speed and packaging issues. As part of the sili- 
con, the debugger runs as fast as the chip; the interface to the outside world 
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FIGURE 7-2 A BDM/JTAG debugger adds logic on the CPU itself. 

is inherently not coupled to raw processor speed. Connection problems go 
away, since you just run a few CPU pins to a special debug connector. 

Implementations vary, but a processor with BDM dedicates a few 
pins to a serial debugging channel (though sometimes other functions 
might be multiplexed onto them). Customers demand high-speed screen 
updates, so this is a synchronous communications scheme that includes a 
clock pin, supporting serial speeds beyond 1 Mbps. 

Development tool vendors sell you a connection to this channel, 
ranging from a high-end very fast link to something no more complicated 
than a two-IC interface to a PC’s comm port . . . and, of course, a source- 
level debugger. The software interfaces to your code and formats your re- 
quests to single-step or display data to meta-commands transmitted to the 
CPU chip (on the BDM link). 

The original BDM implementation shared microcode with the proces- 
sor’s main execution stream. Commands processed by the debug link thus 
stopped normal program execution. Although this was tolerable for simple 
applications, users of real-time operating systems, in particular, wished to 
examine and alter system state without bringing the entire program to its 
knees. BDM+, on the ColdFire CPUs, uses a totally independent set of 
hardware to allow concurrent program execution and debugging. 

MIPS, Intel, TI, and others provide serial debugging via various ex- 
tensions of the JTAG (Joint Test Access Group) standard (IEEE 1149.1). 
JTAG, too, is a synchronous serial interface, one originally defined to pro- 
mote testability of complex boards. Though the implementation details 
differ from those for BDM, in all significant user respects it offers the 
same sort of functionality and level of complexity. 

BDM and JTAG hardware on board the processor can’t waste tran- 
sistors, as ultimately increasing the chip’s complexity drives the cost of the 
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part up. Most implementations, therefore, rely on software rather than 
hardware breakpoints. That is, the source debugger that drives the BDM/ 
JTAG port sets a breakpoint by replacing the first byte or word of the in- 
struction’s opcode with a special instruction that places the chip in debug 
mode. This is much like ROM monitors that use an illegal opcode or sim- 
ilar instruction to invoke a breakpoint handler. 

Most of the interfaces, though, also have a hardware breakpoint input 
pin. Drive this line high and the CPU halts execution of the firmware. 
Some vendors offer quite elaborate bus monitors (for those target systems 
that indeed have a viewable bus) that support complex break conditions 
(“break when routine ’ timer-isr ’ called after variable foobar writ- 
ten”). This is where ICE meets BDM, as quite a bit of ICE-like hardware 
is required. 

So, the upside of a BDM or JTAG debugger boils down to this: 

A debugger on-board the chip eliminates all speed issues. It func- 
tions despite cache’s complications. Even when the CPU is hidden 
in a huge ASIC, if just a few pins come out for the serial debugger, 
then designers will have some ability to troubleshoot their code. 
JTAGBDM lets you set simple breakpoints, single-step, and ex- 
amine and change memory and VO . . . in short, everything you 
can do with a normal PC design environment, such as Microsoft’s 
Visual C++. 
BDM-like solutions are a reasonable subset of a debugging 
methodology. They’re so inexpensive that every developer can 
have the toolset. Some tool vendors properly promote these as 
nothing more than debugging adjuncts, devices designed for work- 
ing on certain non-real-time sections of code. Their message is to 
“use the right tool for the right job-a BDM where it makes sense, 
and a full-function emulator for real-time troubleshooting.” 

Given that run control offers basic system access, breakpoints, and 
the like, what do we lose when we chose one of these over an ICE? 

Emulation RAM does not exist on BDMs. No serial debugger now 
extant or proposed offers any sort of memory that replaces your 
system ROM. To download code, you can relink so the code exe- 
cutes from your system RAM area, assuming there’s plenty of free 
RAM space, or replace your ROM chips with RAM, which depend- 
ing on your system design may or may not be possible. Another 
option is to mix tools, using a ROM emulator; download code to the 
emulator and test it via the BDWJTAG port. 
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Breakpoints, too, will not have the power and sophistication you 
may be used to with an ICE. Most such debuggers won’t permit 
nested complex conditions, or pass counters, or even hardware (as 
opposed to software) breakpoints. 
Trace is probably the biggest loss when moving from an ICE to a 
serial debugger. Some tool companies have married logic analyz- 
ers to run control BDWJTAG devices. The result is a trace-like 
output. . . but only in the cases where the CPU busses are avail- 
able and probeable. However, a lot of work is now taking place to 
add limited trace capabilities to these products. 

ROM Monitors 

The oldest of embedded tools is still a viable and useful option for 
many projects. The ROM monitor is nothing more than a little bit of code 
that is linked into your target firmware. You allocate a communications 
port to the tool; it uses this port to interpret commands from the source de- 
bugger hosted on your PC. 

The ROM monitor is generally a rather simple bit of code. It sends 
register and memory info to the PC and accepts downloaded code from the 
same source. Breakpoints are simple address-only types. 

ROM monitors have the following wonderful attributes: 

They’re cheap! The ROM monitor is a simple bit of code. Most of 
the cost of the debugger will be in the source-level debugger. 
The tool has no physical connection problems. Stick it in any sys- 
tem, no matter how fine the SMT pins or how deeply buried the 
CPU core lies. 
Speed problems just don’t exist, since the monitor is just software 
running concurrently with the rest of your code. 

The downsides to ROM monitors include: 

The tool requires exclusive access to a communications port; if a 
ROM monitor is in your future, be sure to add an extra comm port 
to the hardware just for the sake of the tool. 
The ROM monitor will consume other target resources such as 
ROM and RAM, and maybe some interrupts. In a big 32-bit sys- 
tem this is rarely a problem. If you’re worlung in a 4k address 
space, these resources are usually too scarce to dedicate to the tool. 
There’s always a setupkonfiguration problem, as you’ve got to 
link the tool into your code and connect it to your proprietary com- 
munications port. 
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The ROM monitor will not work if the hardware is broken. 
Real-time instrumentation is weak. You just won’t find trace or 
timing data in any ROM monitor product. 

ROM Emulators 

A significant problem with conventional emulators is that they are 
CPU-specific. Change from a 68332 to a 68340 and, even though the 
processor’s architecture doesn’t change, you’ll need a new emulator-r at 
least a new multi-thousand-dollar pod. ROM emulators, instead, connect to 
your target system via a memory socket. They consist of a RAM array that 
mimics the ROM chip . . . while allowing you to download new code in a 
heartbeat. The serial port is built into the unit itself. 

ROM emulators are so inexpensive that even when using some other 
debugging tool I keep a few around for those unexpected problems that al- 
ways seem to surface. 

ROM emulators continue to play an important role in embedded de- 
velopment for the following reasons: 

As ROM replacements they offer convenient overlay RAM. Espe- 
cially in smaller systems, this may be critical so you can download 
code, rather than bum a dozen ROMs an hour. 
Most are very inexpensive-some go for just a few hundred dol- 
lars. This means every developer can have a reasonable debugging 
tool at hand. 
ROM emulators are processor-independent. The source debugger 
may change as you move from a 68000 to a 186, but the hardware 
element remains unchanged. 
Few, if any, target resources are required. 

Problems include: 

Just as with an ICE, speed is an ever-increasing concern. 
The physical connection to the target system might be difficult if 
you’re emulating SMT ROM devices. As with ICES, many ven- 
dors do offer innovative connection strategies, but bear in mind 
that making a reliable connection may be difficult. 
The ROM socket does not provide any convenient way to set 
breakpoints! About half of the vendors do offer a breakpoint strat- 
egy; be sure the one you select won’t leave you breakpoint- 
starved. 
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OrCillO~opeS 

Emulators, ROM monitors, and the like are great for viewing your 
code from the perspective of the CPU. Their tentacles into your target sys- 
tem stop at the CPU socket, so events occurring beyond that point (say, in 
an YO device) are almost invisible. You can see the IN and OUT instruc- 
tions and the transferred data, but it’s pretty hard to check out timing rela- 
tionships, or how the software interacts with the hardware. 

Sure, most of these tools have external inputs that you can couple to 
any point in the system. Few programmers use them. Perhaps this is be- 
cause the display is so static. You have to actively recollect data and then 
tediously sort it all out. For example, if you feed an external input to a real- 
time trace buffer, you’ll collect tons of bus activity that may or may not be 
important. 

If all you really care about is the relationship between two events 
(say, a switch closure and the resultant interrupt), why dig through thou- 
sands of cycles? It is important to arm ourselves with as many tools as pos- 
sible. No one tool is perfect for every problem. 

One of my all-time favorite software debugging tools is the oscillo- 
scope, colloquially known as the “scope.” Hardware guys seem to have a 
scope attached as a pseudopod to one arm. Any development lab is invari- 
ably filled with benches of scope-happy troubleshooters probing the mys- 
teries of some electronic marvel. The software community seems less 
comfortable with this tool, which is a shame because it can painlessly yield 
crucial information about the operation of your code. 

A scope is really nothing more than a device that displays one or 
more signals. Most can simultaneously show two independent values. 

The scope’s raison d’etre is displaying the signals’ voltage (ampli- 
tude) over time. 

A simple time-varying signal is the power coming from your wall 
outlet. This is a 60-Hz sine wave (i.e., the voltage smoothly rises from 0 to 
120 and back to zero again 60 times a second). It moves too fast to follow 
with a voltmeter. On a scope display, the waveform’s voltage at any point 
in time is crystal clear. 

Software folks used to working with only a keyboard are sometimes 
intimidated by the sea of knobs on any decent scope’s front panel. A bit of 
experience makes working with this tool natural. 

From the user’s standpoint the average scope has three major sec- 
tions. A “vertical” amplifier sets the display’s up/down limits. The “hori- 
zontal’’ portion controls the beam’s lefvright scanning. “Trigger” circuitry 
synchronizes the scan to your input waveform. 
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Given that the scope is a general-purpose tool used by RF engineers, 
digital computer designers, and even software gurus, it has to accept a 
wide range of inputs. Computer people work mostly with 5-volt levels 
(Le., a zero is about 0 volts; a one is 3 to 5 volts). Audio engineers might 
need to measure millivolt levels. Your embedded system probably detects 
or generates some sort of real-world data, which is probably not in the 
0- to 5-volt scale. 

Thus, the scope’s Vertical section is born. The run-of-the-mill two- 
channel scope has two identical vertical sections. 

A BNC connector (like the kind used in thin Ethernet applications) 
connects to the scope probe. The signal sensed by the probe runs to the ver- 
tical amplifier, which increases the input from perhaps a few volts to sev- 
eral hundred, which is ultimately applied to the plates in the CRT. 

Like any good amplifier, each vertical channel has an amplitude con- 
trol (i.e., the same thing as a volume control in your stereo). Unlike a vol- 
ume control, it has an exact calibration associated with each position. Set 
the knob to, say, 2 volts/division, and a 4-volt signal will move the beam 
up two divisions. Divisions are denoted by a grid of boxes on the CRT so 
you can easily measure levels. 

Each channel has a “position” control that lets you move the rest po- 
sition of the beam up or down to the most convenient point. If you wanted 
to measure voltage, with no signal applied, set the beam right on one of the 
division marks on the screen. Then, count how many boxes the waveform 
occupies. Convert divisions to voltage using the setting of the amplitude 
control. 

The position control lets you move the beam all the way off the 
screen. It can be pretty challenging to find the damn beam at times, so a 
“beam find” button brings it into view, giving you an idea which way to 
move the position controls. 

A channel selector lets you put either channel 1 or channel 2 on 
the screen. Most software work involves measuring the relationship be- 
tween two inputs, so you’ll select “both.” Two sweeps will pop up. Use 
the two sets of amplitude and position knobs to control each channel 
independently. 

Controlling up and down beam deflection is only half of the problem. 
The Horizontal Amplifier sweeps the dot back and forth across the screen. 
Note that you only see the left-to-right deflection; the return sweep is very 
fast and is never displayed. 

In software debugging I hardly ever care about amplitude, since 
mostly I’m looking for the input’s shape or duration. If the amplitude is 
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wrong, generally there is a hardware problem. I set up the vertical controls 
just to get a decent-sized waveform and then mostly ignore them. 

Timing, though, is always crucial. The horizontal system doesn’t just 
randomly move the beam back and forth; it does so in a highly regular and 
measurable manner. 

Generally the biggest knob on a scope is the one labeled something 
like “TimeDivision.” Try cranking it through all of its positions. Go all the 
way counterclockwise: the beam will be a single dot, either stopped or 
moving very slowly to the right. 

As with the amplitude control, this switch is calibrated. The slowest 
sweep rates (all the way counterclockwise) might be as much as 5 seconds 
per division. Slowly rotate the knob and watch as the dot picks up speed. 
5 sec/div, 2 sec/div, 1, .5, .2, .l-pretty soon the dot will be moving so fast 
it will start to look like a line. Rotate it all the way. Now, the dot is mov- 
ing at perhaps 50 nanoseconds per division. That’s fast! 

The horizontal system is frequently called the “time base,” because it 
provides all basic timing functions to the scope. 

A cardiac monitor is nothing more than a specialized oscilloscope. A 
very slowly moving beam shows the patient’s heart rate. The signal beats 
only 70 timedsec, so a slow rate is best to represent the input. 

Suppose the signal moves not at 70 beatdsec, but at 7 million (say, 
for a hummingbird on speed). At the slow sweep rate of the cardiac mon- 
itor the beam will move up and down so fast compared to the left-to-right 
sweep that a band of light will appear. You’ll see no recognizable signal. 
Crank up the sweep rate. The band will eventually resolve itself into the 
familiar cardiological shape. At first, the signal will be all squished to- 
gether. Perhaps three beats will be in each division. Rotate the knob again. 
Now, only one beat is in a division. With each rotation the horizontal 
image expands. With each rotation you can still measure the beat fre- 
quency by counting divisions and applying the Timemivision parameter 
listed on the control. 

The Horizontal control, then, lets you pick a sweep rate that generates 
a recognizable picture of the signal you are measuring. 

There’s always one little detail to complicate matters. So far we’ve 
ignored the issue of synchronizing the sweep to the signal. 

In the case of the cardiac input, suppose on one sweep the beam starts 
off on the left side of the screen when the signal is halfway up the slope, 
and the next sweep starts when the input is at 0 volts. The position of the 
display will shift left or right on every sweep, creating an image impossi- 
ble to focus on. 
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Unless the sweep starts at the same point on the input signal each 
time, the display will look like a meaningless jumble. In the bad old days 
before trigger circuits, people tried to tune the sweep frequency to exactly 
match the input, but this is hard to do at best, and is pretty much impossi- 
ble with digital circuits. 

The modern solution is the third component of any decent scope. 
The “Trigger” controls let you pick the sweep starting point. 

Generally, selector switches let you pick AC or DC coupling, trigger 
level, holdoff, slope, and trigger source selection. The correct procedure 
is to select a reasonable source (channel 1 or 2: which one do you want to 
use to start the sweep?), and then start twiddling knobs until the display 
stabilizes. 

Sure, it makes sense to follow some semblance of a procedure. Select 
a (+) slope if you want to see the upgoing edge of the input at the very left 
side of the screen. Select (-) slope to position the downgoing edge there. 

Start twiddling with the holdoff control set to OFF (usually all the 
way counterclockwise). Most of the magic will be in the Trigger knob, 
which requires a delicacy of touch that takes some practice to develop. 

Triggering on any repetitive signal is pretty easy, because the differ- 
ences from sweep to sweep are small. Digital signals are more challenging. 
A constantly changing pulse stream is all but impossible to capture on a 
scope. 

Scoping Tricks 
One of the worst mistakes we make is neglecting probes. Crummy 

probes will turn that wonderful 1-GHz instrument into junk. Managers 
hate to spend a lot on probes when they see them drooling onto the floor, 
mixed with all of the other debris. Worse, we always immediately lose the 
tips and other accessories acquired at great expense, and so connect to a 
node using a 12-inch clip lead hastily purchased at Radio Shack. 

Then. after destroying a couple of chips by accidentally shorting 
things to ground with that nice alligator ground clip mounted on the probe, 
we tear it off in frustration, losing it as well. Tip: If you really don’t intend 
to use the ground connection, clip that alligator lead to itself, keeping it out 
of harm’s way but instantly available for use. 

Take care of your probes. Keep them off the floor; don’t let your chair 
roll over the leads, squishing the coax and changing its impedance. Buy de- 
cent ones before every probe in the shop falls apart. After trying all of the 
cheap varieties found in general electronic catalogs, I now swallow hard and 
spend the $150 needed to get high-quality probes from Tektronix or HP. 
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Here’s another tip: When you’re using a scope, if a signal looks 
weird, maybe there’s something wrong! Avoid the temptation to rational- 
ize the problem. Instead of blaming the signal on a lousy ground, quickly 
connect that ground clip and test your assumption. 

Never accept something that looks awful. Either convince yourself 
that it’s actually OK, or find the source of the problem. 

Walk through your lab. You’ll find that most of the digital folks have 
their vertical amplifiers set to 2 volts/division, which eases displaying two 
traces simultaneously. Unfortunately, too many of us seem to think the 
vertical gain knob is welded into position. It’s hard to distinguish a valid 
zero from one drooling just a little too high with so little resolution. Flip to 
1 V/division occasionally to make sure that zero is legitimate. 

Every instrument is a lying beast, a source of both information and 
disinformation. The scope is no exception. A 100-MHz scope will show 
even a perfect 50-MHz clock as a sine wave, not in its true square form. 
Digital scopes exhibiting aliasing sweep too slowly (below the Nyquist 
limit) for a given signal, and that 50-MHz clock may look like a perfect 
1 -kHz signal, causing the inexperienced engineer to go crazy searching for 
a problem that just does not exist. Try this experiment: measure a 10- or 
20-MHz clock on a digital scope. Crank the sweep rate slower and slower. 
You’ll inevitably reach a point where the scope shows a near-perfect 
square wave several orders of magnitudes slower than the actual clock fre- 
quency. This is an example of aliasing, where the scope’s sampling rate 
yields an altogether incorrect display. I’m sure many folks have heard a 
claim such as, “This 16-MHz oscillator is running at 16 kHz! Can you be- 
lieve it?” Don’t. Check your settings first. 

We digital folks deal in ones and zeroes . . . and tristates. Each con- 
dition means something. When troubleshooting, you’ve got to know which 
of these three (not two) states a node is in. Our best tool is the scope, yet it 
is inherently incapable of distinguishing the tristate condition. 

In the good old days of LS technology you could be pretty sure a tri- 
stated signal would show up at around 1.5 volts-somewhere between a 
zero and a one. With CMOS this assurance is gone, yet most engineers 
blithely continue to assume that zero volts means zero. It just ain’t so. 

My solution is a little tool I made: a 1 k resistor with a clip lead on 
each end. Mine is nicely soldered together and covered with insulation to 
avoid shorts. To tell the difference between a legal state and high imped- 
ance, clip the tool to the node and alternately touch the other end to Vcc 
and then ground. If the node moves more than a trifle, something is wrong. 
The scope, plus my tool, lets me identify all three possible states. Without 
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the tool I’m guessing, and guessing while troubleshooting always sends 
you down time-consuming blind alleys. 

You can use a variation of this approach when troubleshooting an in- 
termittent problem. If the silly thing refuses to fail when you’re working on 
it-a sure bet, given the perversity of nature-run your fingers over the 
board’s pins. A purely digital board should continue to run despite the 
slight impedance changes brought about by your fingers, yet these may be 
enough to drive a floating pin to the other state, possibly creating the fail- 
ure you are looking for. 

On SMT boards it’s tough to get at a device’s pins. If there’s one pin 
you are suspicious of, touch it with an X-Acto knife. The sharp blade will 
precisely align with any tiny pin, and its metal handle will conduct your 
body impedance to the node. Sometimes 1’11 connect my trusty pull- 
up/pull-down clip lead to the knife itself to exercise the node more deter- 
ministically. 

No scope will give decent readings on high-speed digital data unless 
it is properly grounded. I can’t count the times technicians have pointed 
out a clock improperly biased 2 volts above ground, convinced they found 
the fault in a particular system, only to be bemused and embarrassed when 
a good scope ground showed the signal in its correct 0- to 5-volt glory. 

Yet most scope probes come with crummy little ground lead alliga- 
tor clips that are impossible to connect to an IC. Designers all too often in- 
sert a clip lead in series just to get a decent “grabber” end. Those extra 6 to 
12 inches of ground lead will corrupt your display, sometimes to such an 
extent that the waveform is illegible. Cut the alligator clip off the probe and 
solder a micro grabber on in its place. 

Ask an experienced scoper to work with you for a couple of hours. 
Have the mentor randomly shuffle the controls; then try to bring the dis- 
play back and stabilize it. Try probing around a battery-operated radio 
(where there are no dangerous voltage levels!). Look at signals. Fiddle 
with the trigger controls and time base to stabilize and examine them. 

Fancy Tools, Big Bucks? 

As an ex-tool vendor I can’t count the times I’ve heard, “Well, we re- 
ally need decent equipment, but my boss won’t let me spend the money.” 

It matters little what equipment we’re talking about. Once I wrote an 
offhand comment about companies who won’t upgrade computers. An 
avalanche of email filled my electronic in-box, from developers saddled 
with 386-class machines in the Pentium age. We live in front of our com- 
puters, spending hours per day with them. It’s incomprehensible to me that 
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a business won’t provide very expensive engineers new machines every two 
years. I’ve seen compile times shr ink  from tens of minutes to tens of sec- 
onds when transitioning just one generation of computers; surely this trans- 
lates immediately into real payroll savings and faster development times! 

Yes, we have an insatiable appetite for new goodies. Glittering new 
scopes, emulators, logic analyzers, and software tools fill our thoughts 
much as kids dream of Tonkas and Barbies. Very often, though, the gap 
between what we want and what we get is as wide as the Grand Canyon. 

Now, I know the cost and scarcity of capital. Just try going to the 
bank, hat humbly in hand, looking for working capital when you really 
need it. Venture capital is the seed of high tech, but is much less available 
than people realize. 

There’s never enough money, especially in smaller businesses, so 
every decision is a financial tradeoff between competing needs. 

I also know the cost of payroll. It’s by far the biggest expense in most 
technology businesses. Yet many managers view payroll as a sunk cost. 
Years ago my boss told me, “I have to pay you anyway, but to buy that 
scope costs me real money.” 

Well, no, actually, he didn’t have to pay me or any of the engineers. 
He had options: do less engineering with fewer people and save on salary. 
Use us inefficiently and ignore the costs. Work to improve our efficiency 
and either get products out faster or get the same work done with fewer 
people. 

This concept of payroll as a fixed cost is a myth, one that destroys too 
many technology companies. Managers do have the ability to manage this 
cost, the biggest one of all, effectively. It’s not easy and it’s never “done”; 
effective management requires an intimate understanding of the processes 
involved, a willingness to experiment and tune, and a dedication to a 
never-ending quest to find lots of 1 and 2% improvements, as the magic 
20% efficiency improvements are indeed rare. 

Our culture of absorbing payroll as a fixed expense means we battle 
for weeks over $lO,OOO tool costs while ignoring, or accepting, $1 million 
in salary costs. 

Perhaps this is symptomatic of uninformed managers and exhibits it- 
self in every area of development. One friend who makes a living design- 
ing products as a contractor tells me story after story of companies that 
happily spend a quarter million dollars on tooling for the product’s plastic 
box, yet balk at a quote for $30k in custom firmware. 

I see an increasing number of companies embracing the noble ideal 
of “doing more with less” without understanding that sometimes spending 
a bit on tools is the fastest route to that ideal. 
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You can’t pick up a trade magazine today without seeing the indus- 
try’s mantra-Time To Market-gracing every article and ad. All sorts 
of studies indicate that getting a product out first is the best way to gain 
market share and profitability. Whether this is true or not makes little dif- 
ference; the important point is that management has universally bought 
into the concept, leaving it up to engineering to somehow “make it so.” 

The time-to-market furor explains surveys that show development 
time to be the number one priority of many engineering departments, with 
cost usually running third after quality. Whether we agree with the goals or 
not, it is at least a reasonable ranking of priorities. 

Get it done fast. Do a good job. And then worry about costs. These 
are the constraints we’re working under, in order. 

But we can’t develop a realistic plan without considering all of the 
facts. One is that salaries continue to rise, especially now, and especially 
for highly trained and scarce engineers. None of us can control this. 

Fast, gotta be fast. Cheap, too-somehow we have to save bucks 
wherever we can. OK. . . now what? 

Astonishingly, more and more companies are making decisions like: 
no tools. Poor tools. Or, let’s pick a chip that has no tools, or for which de- 
cent tools are a but a dream. 

How on earth are we supposed to be fast with inadequate tools? 
Won’t costs skyrocket as we spend more time struggling to find bugs- 
bugs that are more evasive than ever as products get more complex-using 
what amounts to toys? 

In the face of increasing salaries, more complex products, and tem- 
fying schedules, all too often the question “How are we going to get the 
work done?’ never gets answered honestly. 

Yet, as you read this today, hundreds of companies pursue develop- 
ment strategies that are doomed to cost too much and take too long. Some 
use custom microprocessors-for good reasons and bad-and build their 
own compilers and debuggers. I’m not saying this is necessarily wrong; 
it’s just costly. Some of these businesses understand and manage the is- 
sues; others just yell louder at the developers to meet the schedule. 

I’ve seen months spent gluing CPUs inaccessibly into the core of a 
monster ASIC, without the least thought given to debugging . . . and then 
the hardware guys present the firmware folks with this fait accompli and 
only two months left in the schedule. 

We must look at the technology challenges posed by the parts we 
choose, and then at our options for building the system and then finding 
bugs. We must find or invent ways of achieving our fast-quality+heap 
goals before committing to a difficult or impossible technology. 
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And, management must understand that time costs money-real 
money, not just sunk costs. Further, crummy development environments 
never yield faster product introductions. 

This is not a Dilbert-like rant against managers. We’re all infatuated 
with the latest technology, and we all are convinced that, this time, bugs 
won’t be as big of a problem as last time. 

Embedded processors will continue to get faster and more highly in- 
tegrated-and will generally become much tougher to work on than those 
of yesteryear. That’s a fact as sure as salary inflation and time-to-market 
pressures . 

It’s largely up to the developers doing the work to educate manage- 
ment, and to make intelligent decisions yielding debuggable products. 

Often we are perceived as wanting everything without decent justifi- 
cations. Faster computers, private offices, better software tools. Without 
educating our bosses about how these things save them money, we’ll lose 
most battles. 

A common joke is the “capital equipment justification,” all too often 
more an exercise in creative writing than in fact gathering and analysis. 
Sometimes tool vendors will present you with spreadsheets of savings 
from using their latest widget, but none of us really trusts these figures. It’s 
far better to use hard-hitting, quantitative data accumulated from your own 
hard-won experience. Don’t have any? Shame on you! 

One well-known bug reducer is recording each bug, stopping and 
thinking for a few seconds about how you could have avoided making the 
mistake in the first place. Take this a step further and think through (and 
record!) how you found it, using what tools. Log it all in an engineering 
notebook as you work; it’s a matter of a few seconds’ time, yet will help 
you improve the way you work. This notebook will also serve as the raw 
data for your cost justifications. If that cruddy freeware compiler gener- 
ated a bad opcode that took a day to find, a little math quickly will show 
how much money a multi-thousand-dollar commercial package would 
save. 

As you educate management, educate yourself, and remember those 
lessons when you’re the boss! 

Years ago I worked for a small, 100-person outfit that experienced a 
wealth of financial difficulties. Half of the phone calls were from angry 
creditors. The bank was perpetually on the brink of closing us down. Still, 
our small engineering group always had a reasonable set of tools. Good 
scopes then cost upwards of $lO,OOO, a lot of money in 1975 dollars. We 
even managed to get one of Intel’s first microprocessor development sys- 
tems. Though we engineers had to cajole and plead with management for 
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the tools, we did get them, and developed an expectation that we’d always 
have access to whatever the job needed. 

Then I started consulting. 
Suddenly, those wonderful tools we had so long taken for granted 

were no long available. My partner and I shared an old Tektronix 545 
scope (that used vacuum tubes-you know, those glass-shelled things with 
filaments and high voltages). We scraped up enough money to build an 
emulator-such as it was-from mail-ordered Multibus boards. A $400 
CRT terminal and daisy-wheel printer were all we could afford in the way 
of new capital equipment. 

We learned all sorts of ways to extract information from systems, 
pouring loads of time into projects instead of cash. 

Then I met a fellow whose high-school kid had a lab of sorts in his 
home. He had a new Tektronix scope! I was flabbergasted. Though the unit 
wasn’t top-of-the-line, it sure beat the antique I was saddled with. 

A few discreet questions turned up the fact that he rented the scope, 
for a lousy $50 a month. Somehow it had never occurred to me that there 
were options other than coming up with thousands in cash. This kid had 
shown me that the quest to obtain the right tools is aproblem, one like any 
other problem we run into in engineering and life, one that takes a bit of 
creative energy to solve. 

Ain’t America grand? Easy credit, available to practically any warm 
body, means we can satisfy practically any whim . . . as far too many of us 
do until the inevitable day of reckoning comes. 

Look at the computers advertised in any PC magazine. Every ad has 
a caption giving the low, low monthly payment they’ll require. If your 
business has any income at all, then the hundred a month or so for a high- 
end machine is a pittance. 

Test equipment vendors all offer similar plans. You’d be surprised 
how low the monthly payments on a scope are, when spread over three to 
five years. 

Most companies will bend over backwards to finance your purchase. 
Those that have no in-house financing ability work with third-party finan- 
cial outfits. Test equipment companies really want you to have their latest 
widget, and they’ll do practically anything to help you purchase it. 

Renting is a traditional means to get access to equipment for short pe- 
riods of time. However, unless you’re quite convinced that the project will 
end as planned, be wary of rentals. Few short-term projects fail to increase 
in scope and duration. Since rentals generally cost around 10% of the 
unit’s purchase price per month, once the project slips more than a quarter, 
you may have been better off buying than renting. 
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Leases are the most attractive way to get equipment you can’t afford 
to buy outright. A lease with buyout clause is nothing more than a financed 
purchase. It may have certain tax benefits as well, though this part of the 
law changes constantly. 

Even for a single scope you can get leases amortized over practically 
any amount of time. Three years is a common period. The monthly pay- 
ment will be something like 3% of the unit’s purchase price per month. A 
$5000 logic analyzer will set you back around $200 per month. For less 
than your car payment you can get a nice scope and logic analyzer. Unlike 
the car, neither will wear out before the payments are up. 

Sometimes it makes sense just to purchase gear outright, especially 
since the IRS permits you to expense $17,500 of capital equipment per 
year. When cash is tight, consider getting used, refurbished test equip- 
ment. A number of outfits sell reconditioned gear for around 50 cents on 
the dollar. Good test equipment lasts almost forever. 

One acquaintance has just a shell of a company, a so-called “virtual 
corporation” that changes dynamically as business ebbs and flows. He 
shares an office suite with other like-structured organizations. All are in 
the digital business and use a common lab area with shared test equipment. 
For small outfits, this is a neat way to make the dollar go a lot further. 

Tool Woes 

After reading the glossy brochures and hearing the promises of suited 
tool salespeople, you’re no doubt convinced that their latest widget will 
solve all of your debugging problems in a flash. 

Not. 
Be wary of putting too much faith in the power of tools. Too many 

engineers, burned by previous projects, do a good job of surveying the tool 
market and selecting a reasonable development environment, but then put 
all their hopes of debugging salvation in the toolchain. 

The fact is, vendors tend to overpromise and underdeliver. Perhaps 
not maliciously, but their advertisements do play into our desperate 
searches for solutions. The embedded tool business is a very fragmented 
market. With hundreds of extant microprocessors, the truth is that typically 
only dozens to (maybe) a couple of thousand users exist for any single tool. 
With such a small user base, bugs and problems are de rigueur. 

I write this as an ex-tool vendor who strongly believes that an im- 
portant component of productivity comes from using a first-class develop- 
ment environment. But, as an ex-vendor, all too often I saw engineers who 
expected that spending five or ten thousand on the gadget would miracu- 
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lously solve most problems. It just ain’t so. Buy the right tools, but under- 
stand their inherent limitations. 

Overcome limitations with clever designs, using a deep understand- 
ing of where the problems come from. Here’s a collection of ideas drawn 
from bitter experience: 

Reliable Connections 

In the good old days microprocessors came in only a few packages. 
DIP, PGA, or PLCC, these parts were designed for through-hole PC boards 
with the expectation that, at least for prototyping, designers would socket 
the processor. Isolating or removing the part for software development re- 
quired nothing more than the industry-standard chip puller (a bent paper 
clip or small screwdriver). 

Now tiny PQFP and TQFP packages essentially cannot be removed 
for the convenience of the software group. Once you reflow a 100-pin de- 
vice onto the board, it’s essentially there forever. 

Part of the drive toward TQFP is the increasing die complexity. That 
tiny device is far more than a microprocessor; it’s a pretty big chunk of 
your system. The CPU core is surrounded with a sea of peripherals-and 
sometimes even memory. Replace the device with a development system, 
and the tool will have to replace both the core and all of those high-inte- 
gration devices. 

Take heart! Most semiconductor vendors are aware of the problem 
and take great pains to provide work-arounds. 

There’s no cheap cure for the purely mechanical problem of con- 
necting a tool to those whisker-thin pins, but at least the industry’s con- 
nector folks sell clips that snap right over the soldered-on processor. The 
clip translates those SMT leads to a PC board with a PGA or header array 
that your tools can plug into. Before starting any design, get a copy of Em- 
ulation Technology’s catalog. Though their products are horrifically ex- 
pensive, they offer a very wide range of adapters and connection strategies. 

Another good source for connection ideas is the logic analyzer arena. 
Both HP and Tektronix are starting to standardize their analyzer cables on 
AMP’s “Mictor” connector, a very small, very high-density, controlled 
impedance device. If you surround your CPU with Mictors (being careful 
to match the pinouts used by the analyzer vendors), then probing becomes 
trivial: just plug the analyzer cables in directly. If you’re frustrated with 
logic analysis because of the agony of connecting 50 or 100 little clip leads 
(half of which pop off at inconvenient times), take heart, as the Mictor goes 
directly into the main analyzer cables, bypassing the clips altogether. 
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A Canadian company had a PCMCIA-based product whose CPU’s 
whisker-thin TQFP leads defeated every ICE connection attempt. Their 
wonderfully clever solution was to design the card with a large extra con- 
nector-a 100-pin header-to which all of the CPU signals went. This, of 
course, doubled the size of the board. The connector sat at the far side of 
the board, outside of the PCMCIA’s nominal form factor (i.e., when the 
board was plugged into a laptop computer, the connector protruded into 
space outside of the PC). The engineers ensured that the connector’s pinout 
exactly matched that of the emulator they selected, so the ICE’S pod 
plugged in with no adaptors or other reliability reducers. When it came 
time to ship the product they cut the connector off, and the board down to 
size, with a bandsaw. Production versions, of course, were proper-sized 
cards without the connector. 

If your product uses a card cage, no doubt the board-to-board spac- 
ing is insanely tight. Too often extender cards don’t work, since the CPU 
becomes unstable driving the extra long lines. Just debugging the hardware 
is hard enough-try slipping a scope probe in between boards! It’s not un- 
usual to see a card with a dozen wires hastily soldered on. snaked out to 
where the scope or logic analyzer can connect. 

Why make life so hard? Either design a robust processor board that 
works properly on an extender, or come up with a mechanical strategy that 
lets you put the CPU near the end of the cage, with the cage’s metal covers 
removed, so you and the software people can gain the access so essential 
to high-productivity debugging. 

One DOD system’s card cage is so tightly packed into the rack of 
equipment that the developers could only remove the “wrong” (i.e., circuit) 
side of the card cage cover. Their solution: solder the processor socket on 
the circuit side of the board, and then make a pin swapping jig for the logic 
analyzer. Using a ROM emulator in a similarly tight situation? Consider 
the same trick, inverting one or more ROM sockets. 

Make sure the CPU (when using an ICE or logic analyzer) or ROM 
sockets (ROM emulator) are positioned so it’s possible to connect the tool. 
Be sure the chip’s orientation matches that needed by the emulator or an- 
alyzer. 

Nonintrusive Myths 
Debugging tool vendors all promote the myth of “nonintrusive 

tools.” In fact, we demand just the opposite-what could be more intru- 
sive, after all, than hitting a breakpoint? 

Other forms of intrusion are less desirable but inevitable as the hard- 
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ware pushes the envelope of physical possibilities. If you don’t recognize 
these realities and deal with them early, your system will be virtually 
undebuggable. 

Don’t push the timing margins. All emulators eat nanoseconds. With 
no margin the tool will just not work reliably. I’ve seen quite a few designs 
that consume every bit of the read cycle. Some designers convince them- 
selves that this is fine-the timing specs are worst-case scenarios met at 
max or min temperatures, leaving a bit of wiggle room for the tool. As 
speeds increase, though, IC vendors leave ever less slop in their specifica- 
tions. It’s dangerous to rely on a hope and a prayer. 

Before designing hardware, talk to the tool vendor to learn how much 
margin to assign to the debugger. Typically it makes sense to leave around 
5 nsec available in read and write cycle timing. Wait states are another 
constant source of emulator issues, so give the tool a break and ease off on 
the times by four or five nanoseconds there, as well. 

Fact: if you don’t leave sufficient margin, the system will be virtually 
undebuggable. Now, BDMs and ROM monitors will generally work in 
marginless designs, but you’ll give up the ability to bring up dead hard- 
ware and track real-time firmware flow. 

Be wary of pull-up resistors. CMOS’s infinite input impedance lures 
us into using lots of ohms for the pull-ups. Remember, though, that when 
you connect any sort of tool to the system, you’ll change the signal load- 
ing. Perhaps the tool uses a pull-down to bias unused inputs to a safe value, 
or the signal might go to more than one gate, or to a buffer with wildly dif- 
ferent characteristics than used on your design. I prefer to keep pull-ups to 
10k or less so the system will run the same with and without an emulator 
installed. 

If you use pull-down resistors (perhaps to bias an unused node such 
as an interrupt input to zero, while allowing automatic test equipment to 
properly bias the node in production test), remember that the tool may in- 
deed have a weak pull-up associated with that signal. Use too high of a re- 
sistance and the tool’s internal pull-up may overcome your pull-down. I 
never exceed 220 ohms on pull-downs. 

Synchronous memory circuits defeat some emulators. These designs 
ignore the processor’s read and write outputs, instead deriving these criti- 
cal signals from status outputs and the clock phase. Vadem, for example, 
makes chip sets based on NEC’s V30 whose synchronous timing is fa- 
mously difficult for ICES. 

This sort of timing creates a dilemma for ICE vendors. What sorts of 
signals should the emulator drive when the unit is stopped at a breakpoint? 
A logical choice is to drive nothing: put read, write, and all other control 
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signals to an idle, nonactive state. This confuses the state machine used in 
the synchronous timing circuits, though; generally the state machine will 
not recover properly when emulation resumes, and thus generates incorrect 
reads and writes. 

Most emulators cannot afford to completely idle the bus, anyway, as 
it’s important to echo DMA and refresh cycles to the target system at all 
times. 

Since the processor in the ICE usually runs a little control program 
when sitting still at a breakpoint, another option is to echo these readlwrite 
cycles to the bus. That keeps the state machine alive, but destroys the in- 
tegrity of the user’s system because internal emulator write cycles trash 
user memory and YO. 

Another possibility is to echo the cycles, but fake out write cycles. 
When the emulator’s CPU issues a write, the ICE drives an artificial read 
to the target. Unhappily, on many chips read and write cycles have some- 
what different timing, which may confuse the user’s state machine. 

None of these solutions will work on all CPUs and in all user sys- 
tems. If you really feel compelled to use a synchronous memory design. 
talk to the emulator vendor and see how they handle cycle echoing at a 
breakpoint. 

Consider adding an extra input to your state machine that the emula- 
tor can drive with its “stopped” signal and that shuts down memory reads 
and writes. Talk timing details with the vendor to ensure that their 
“stopped” output comes in time to gate off your logic. 

Add Debugging Resources 

Debugging always steals too much time from the schedule. This fact 
implies that we’ve got to anticipate problems when designing the hard- 
ware, and take every action possible to ease troubleshooting. 

Always-unless your system is so cost constrained that a buck is a 
huge deal-add an extra output port to the system, one dedicated just to de- 
bugging. Why? 

As we saw in Chapter 4, a very effective and inexpensive way to 
measure system performance is to instrument your code. Add a 
line that sets a b i t -on  this YO port-high when in an ISR to mea- 
sure ISR time. Diddle another YO bit in the idle loop to measure 
overall system loading. 
Toggle one of the bits when the system resets. As I said in Chap- 
ter 6, a watchdog time-out is a serious event. If your system auto- 
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matically recovers from the watchdog reset, you surely need some 
way, during debug, to see that the time-out occurred. 
When your tools are not working well, or perhaps you’ve simply 
lost faith in them, you can still track overall program flow by as- 
signing an 8-bit number to each important function. Output this 
number to the debug port when the function starts. Collect the data 
in the logic analyzer and you’ll instantly see what executes when, 
and for how long. 
Connect one or more of the more YO bits to LEDs, and instrument 
the code to signal system state. Most tools do a poor job of read- 
ing out state; generally you’ll have to stop the code or something 
similar. The LED bank instantly shows things like, “It’s doing 
WHAT???!!!!!” 

If your main debug strategy revolves around a full-blown emulator, 
if at all possible go ahead and add the BDM or JTAG connector (if the 
CPU supports it). The cost is vanishingly small, and the option of doing 
BDM debugging when the ICE falls flat or fails may save a lot of money 
and time. 

Conversely, if a BDM will be the main tool, add a connector (like the 
Mictor) so that you can connect a logic analyzer for tracking real-time 
events. It’s so terribly difficult to use analyzers via their standard multitude 
of clips that we leave it as a last resort; if it’s easy to connect, we’ll use the 
tool at the appropriate times. 

ROM Burnout 

Remember that every tool affects system operation in some manner. 
Never wait until the night before shipping to test the system from ROM. 
Make burning a ROM or loading the Flash a regular part of the test proce- 
dure. 

Debugging tools invariably have a different size of emulation 
RAM than your target system’s ROM space (this is true using an 
ICE or a ROM emulator, or even if you relink your code to run 
from your system RAM area). If the code grows to exceed target 
ROM space, it may run just fine from the (probably bigger) emu- 
lation RAM area. 
The compiler’s runtime package or constants might be improperly 
initialized. Many C compilers require a startup procedure that 
copies some critical variables to RAM. When you’re debugging, 
you’ll generally replace system ROM with RAM merely to support 
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quick code downloads. If the initialize is not correct, since you’re 
debugging from RAM things may work just fine . . . until that first 
ROM bum. 
Often hardware problems mean that the ROM sockets on your 
target just don’t function properly. This may be due to wiring or 
design problems . . . or even to buggy code. An improperly con- 
figured chip select signal, for example, may not create any prob- 
lems working from emulation RAM, but will crash the code after 
the ROM burn. 

Be wary of the converse situation: the code runs fine from ROM but 
not from emulation RAM. All too often a wandering pointer causes erratic 
writes over ROM space, surely a very bad thing. This happens so often that 
we should take a defensive posture and regularly look for such problems. 
Depending on your tools, this is pretty trivial: 

Many emulators support modes that will automatically watch for 
writes to code space. If the tool doesn’t explicitly include such a 
resource, you can still usually configure one of the complex break- 
points to break on any “write to address between X and Y,” where 
X and Y represent the range of addresses of code. 
Occasionally checksum your code. That is, download the code and 
compute a checksum of the image using the tool’s checksum com- 
mand. Run the application for a while and recompute the check- 
sum. Any change generally indicates a serious problem. 
Wandering pointers are such a common problem, and are so diffi- 
cult to find, that there’s a lot to be said for leaving a logic analyzer 
connected that’s configured to watch for errant memory accesses. 
The wonderful triggering capability of these tools means it’s easy 
to set up multiple conditions that watch for any stupid memory ac- 
cess. What do I mean by “stupid’? A write to code space. A fetch 
from data areas. Any access to unused memory. Trigger on these 
three conditions and you’ll catch a huge percentage of wandering 
pointers. 





CHAPTER 8 
Troubleshooting 

There comes a time in any project when your new design, both hard- 
ware and software, is finally assembled, awaiting your special expertise to 
”make it work.” Sometimes it seems like the design end of this business is 
the easy part; troubleshooting and debugging can make even the toughest 
engineer a Maalox addict. 

You can’t fix any embedded system without the right world view: a 
zeitgeist of suspicion tempered by trust in the laws of physics, curiosity 
dulled only by the determination to stay focused on a single problem, and 
a zealot’s regard for the scientific method. 

Perhaps these are successful characteristics of all who pursue the 
truth. In a world where we are surrounded by complexity, where we deal 
daily with equipment and systems only half-understood, it seems wise 
to follow understanding by an iterative loop of focus, hypothesis, and 
experiment. 

Too many engineers fall in love with their creations only to be con- 
tinually blindsided by the design’s faults. They are quick to overtly or sub- 
consciously assume that the problem is due to the software (and vice 
versa), the lousy chips, or the power company, when simple experience 
teaches us that any new design is rife with bugs. 

Assume it’s broken. Never figure anything is working right until 
proven by repeated experiment; even then, continue to view the “fact” that 
it seems to work with suspicion. Bugs are not bad; they’re merely a test of 
your troubleshooting ability. 

Armed with a healthy skeptical attitude, the basic philosophy of de- 
bugging any system is to follow these steps: 

165 
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For (i=O; i< # findable bugs; i++) 

while (bug(i) ) 
{ 

I 
Observe the behavior to find the apparent bug; 
Observe collateral behavior to gain as much 
information as possible about the bug; 
Round up the usual suspects; 
Generate a hypothesis; 
Generate an experiment to test the hypothesis; 
Fix the bug; 

I ;  
1 ;  

Now you’re ready to start troubleshooting, right? Wrong! Stop a 
minute and make sure you have good access to the system. No matter how 
minor the problem seems to be, troubleshooting is like a bog we all get 
trapped in for far too long. Take a minute to ease your access to the system. 

Do you have extender cards if they’re needed to scope any point on 
the board(s)? How about special long cables to reach the boards once they 
are extended? 

If there’s no convenient point to reliably clip on the scope’s ground 
lead, solder a resistor lead onto the board so you’re not fumbling with 
leads that keep popping off. 

Some systems have signals that regulate major operating modes. Sol- 
der a resistor lead on these points as well, as you’ll surely be scoping them 
at some point. This small investment in time up front will pay off in spades 
later. 

Use the advice in the last chapter to ensure that your software is as 
probeable as the hardware. 

Let’s cover each step of the troubleshooting sequence in detail. 
Step 1: Observe the behavior tofind the apparent bug. 
In other words, determine the bug’s symptoms. Remember always 

that many problems are subtle and exhibit themselves via a confusing set 
of symptoms. The fact that the first digit of the LCD fails to display may 
not be a useful symptom-but the fact that none of the digits work may 
mean a lot. 

Step 2: Observe collateral behavior to gain as much information as 
possible about the bug. 

Does the LCD’s problem correlate to a relay clicking in? Try to avoid 
studying a bug in isolation, but at the same time be wary of trying to fix too 
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many bugs at the same time. When ROM accesses are unreliable and the 
front panel display is not bright enough, address one of these problems at 
a time. No one is smart enough to deal with multiple bugs all at once-un- 
less they are all manifestations of something more fundamental. 

Step 3: Round up the usual suspects. 
Lots of computer problems stem from the same few sources. Clocks 

must be stable and must meet very specific timing and electrical specs . . . 
or all bets are off. Reset too often has unusual timing parameters. When 
things are just “weird,” take a minute to scope all critical inputs to the 
microprocessor, such as clock, HOLD, READY, and RESET. 

Never, never, never forget to check Vcc. Time and time again I’ve 
seen systems that don’t run right because the 5-volt supply is really only 
putting out 4.5, or 5.6. or 5 volts with lots of ripple. The systems come in 
after their designers spent weeks sweating over some obscure problem that 
in fact never existed, but was simply the ghostly incarnation of the more 
profound power-supply issue. 

Step 4: Generate a hypothesis. 
“Shotgunners” are those poor fools who address problems by sim- 

ply changing things-ICs, designs, PAL equations-without having a 
rationale for the changes. Shotgunning is for amateurs. It has no place in 
a professional engineering lab. And, as noted in Chapter 2, the software 
equivalent of shotgunning is making changes without a deep under- 
standing of the bug. Use an engineering notebook to break the vicious 
“change/test” cycle. 

Before changing things, formulate a hypothesis about the cause of the 
bug. You probably don’t have the information to do this without gathering 
more data. Use a scope, emulator, or logic analyzer to see exactly what’s 
going on; compare that to what you think should happen. Generate a the- 
ory about the cause of the bug from the difference in these. 

Sometimes you’ll have no clue what the problem might be. Checking 
the logical places might not generate much information. Or, a grand fail- 
ure such as an inability to boot is so systemic that it’s hard to tell where to 
start looking. Sometimes, when the pangs of desperation set in. it’s worth- 
while to scope around the board practically at random. You might find a 
floating line, an unconnected ground pin, or something unexpected. Scope 
around, but always be on the prowl for a working hypothesis. 

Step 5 ;  Generate an experiment to test the hypothesis. 
Construct an experiment to prove or disprove your hypothesis. Most 

of the time this gets resolved in the process of gathering data to come up 
with the theory in the first place. For example. if the emulator reads all 
ones from a programmed ROM. a reasonable hypothesis is that CS or OE 
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is not toggling. Scoping the pins will prove this one way or the other, 
though now you’ll need another hypothesis and experiment to figure out 
why the selects are not where you expect to see them. 

Sometimes, though, the hypothesis-experiment model should be 
much less casually applied. When Intel started shipping the XL version of 
the 186 (supposedly compatible with the older series), I had a system that 
just would not start with this version of the CPU. Scoping around showed 
the processor to be stuck in a weird tristate, though all of its inputs seemed 
reasonable. One hypothesis was that the 186XL was not coming out of 
reset properly, an awfully hard thing to capture since reset is a basically 
non-scopable one-time event. We finally built a system to reset the proces- 
sor repeatedly, to give us something to scope. The experiment proved the 
hypothesis, and a fix was easy to design. 

Note that an alternative would have been to glue in a new reset circuit 
from the start to see if the problem went away. Problems that mysteriously 
go away tend to mysteriously come back; unless you can prove that the 
change really fixed the problem, there may still be a time bomb lurking. 

Occasionally the bug will be too complicated to yield to such casual 
troubleshooting. If the timing of a PAL will have to be adjusted, before 
you wildly make changes visualize the new timing in your mind or on 
a sheet of graph paper. Will it work? It’s much faster to think out the 
change than to actually implement i t .  . . and perhaps troubleshoot it all 
over again. 

Rapid troubleshooting is as important as accurate troubleshooting. 
Decide what your experiment will be, and then stop and think it through 
once again. What will this test really prove? I like experiments with binary 
results-the signal is there or it is not, or it meets specified timing or it 
does not-since either result gives me a direction to proceed. Binary re- 
sults have another benefit: sometimes they let you skip the experiment al- 
together! Always think through the actions you’ll take ufrer the experiment 
is complete, since sometimes you’ll find yourself taking the same path re- 
gardless of the result, making the experiment superfluous. 

If the experiment is a nuisance to set up, is there a simpler approach? 
Hooking up 50 logic analyzer probes or digging through a million trace 
cycles is rather painful if you can get the same information in some easier 
way. I’d hate to be in a lab without a logic analyzer, since they are so use- 
ful for so many things . . . but I try to keep it as the tool of last resort, since 
most often it’s possible to construct an easier experiment that is complete 
in a fraction of the time it takes to connect the LA. 

Don’t be so enamored of your new grand hypothesis that you miss 
data that might disprove it! The purpose of a hypothesis is simply to 
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crystallize your thinking-if it is right, you’ll know what step to take next. 
If it’s wrong, collect more data to formulate yet another theory. 

Step 6: Fix the bug. 
There’s more than one way to fix a problem. Hanging a capacitor on 

a PAL output to skew it a few nanoseconds is one way: another is to adjust 
the design to avoid the race condition entirely. 

Sometimes a quick and dirty fix might be worthwhile to avoid getting 
hung up on one little point if you are after bigger game. Always. always re- 
visit the kludge and reengineer it properly. Electronics has an unfortunate 
tendency to work in the engineering lab and not go wrong until the 5000th 
unit is built. If a fix feels bad, or if you have to furtively look over your 
shoulder and glue it in when no one is looking, then it is bad. 

Finally: never, ever, fix the bug and assume it’s OK because the 
symptom has disappeared. Apply a little common sense and scope the sig- 
nals to make sure you haven’t serendipitously fixed the problem by creat- 
ing a lurking new one. 

Speed Up by Slowing Down 

There he sits. . . the organization’s engineering guru, respected but 
somewhat feared because of his arcane knowledge. His desk is a foot deep 
in paper, the lab bench a mess of old food containers and smoldering sol- 
der drippings. Tools and resistor clippings threaten to short out any test 
system carelessly placed on the bench. Wires crisscross every square inch 
of tabletop-scope probes, clip leads, RS-232 cables-all going some- 
where . . . though perhaps no one really knows their destination. 

Ask the guru for a piece of paper and be prepared to wait. He burrows 
frantically through the mess. Usually the paper never comes to light. It’s 
lost. Don’t worry, though-he’ll recreate it for you as soon as he has a 
chance. Probably the PAL equations he’ll come up with will be about 
right, but if they’re not-no problem! He’s already debugged that circuit 
twice, so he’s quite the expert. 

Too many managers tolerate this level of chaos. Me, I’m a reformed 
lab pig. My 12-step recovery program revolved around living in tiny 
places-a VW microbus, many boats-which force you to be organized 
simply to deal with the incredible lack of living space. There’s no room to 
be a slob on a small sailboat! Fortunately, my personal quest for organiza- 
tion rolled over into the lab when I discovered just how much time I saved 
by putting things where they belong. 

Mess and clutter quite simply decrease productivity. Those few min- 
utes a day spent putting things away save hours of searching. Sweep the 
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solder drippings and wire segments off the bench once in a while and your 
incidence of catastrophic failures will plunge dramatically. 

An organized lab promotes correctness. How many times have you 
seen engineering changes that never quite made it into production because 
someone forgot to write them down? Or because the notation was made on 
the comer of a napkin that was accidentally used to wipe up a spill and then 
thrown away? 

When starting to debug a new project, remove everything from the 
bench and sweep it clean. A quick wipe with a damp cloth removes those 
accumulated coffee stains. Then, put everything not absolutely needed 
back on the shelves. This is the unique chance we get once in a while to re- 
move the clutter, so be relentless. 

Any embedded project will require at least a computer and a scope. 
Decide what test equipment you’ll use continuously, and which will be 
used only on an as-needed basis. All too often even a simple embedded sys- 
tem has some sort of communications link requiring an extra computer as a 
source of data. I like to use a laptop for this as it requires little bench space. 

Be sure you can easily reach the computer’s frequently used connec- 
tors. If two different devices must share an RS-232 port, buy a switch box 
and reduce the wear and tear on connectors . . . and your back. 

Don’t work with unacceptable power distributions. Too many of us 
spend half our lives swapping power plugs. Buy outlet strips or wire up a 
decent source of AC mains to your test bench. 

Miles and Beryl Smeaton sailed their aging boat around Cape Horn 
many years ago with expert boatbuilder John Guzzwell as crew. When the 
boat flipped in 30-foot seas and the hull cracked open, Guzzwell was 
shocked to discover that all of the Smeaton’s tools were rusty and dull. As 
water poured in he carefully sharpened and cleaned the tools before un- 
dertaking the repairs that eventually saved their lives. 

The moral is to buy good tools and take care of them. You’ll live with 
those dikes and needle-nose pliers for weeks on end. Buy cheap stuff and 
your blood pressure will skyrocket every time you can’t clip a lead close 
to the board. Keep them organized-get a little toolbox to keep them from 
falling onto the floor and getting lost. 

How is your soldering equipment? A vacuum desolderer is great for 
making large-scale changes, but during prototyping I find it’s often easier 
just to hack away at the board, mounting chips on top of chips and using 
plenty of blue wire. 

During the first few days (or weeks) of bringing up a new embedded 
system I often find myself making lots of little modifications to the system. 
A hot iron always at hand is critical. After things start to more or less 
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work, I start testing VO interfaces by writing low-level drivers and exer- 
cising the code, making software and hardware changes in parallel as 
needed. The code changes much faster than the wiring, so it seems waste- 
ful to keep an iron hot all the time. Several companies sell neat $30 cord- 
less soldering irons that heat in seconds, the ideal thing for those infrequent 
modifications. 

Being an immensely stupid person, I require vast quantities of clip 
leads. Most of my ideas are wrong, so I save a ton of time by using a clip 
lead to try a design change and see what happens. 

Clip leads have a very short lifetime in a development lab. Accidentally 
connect Vcc to ground and the plastic tip melts horribly. I hate it when that 
happens. We used to send a runner to Radio Shack occasionally to replenish 
our supply but found that “the Shack” couldn’t keep up with our needs. 

It’s better to buy 100 clips at a time and have a high-school kid sol- 
der up 50 leads. You’ll have an infinite supply for a while, and may help a 
fledgling engineer find his true vocation. (Bring a part-timer in from your 
local high school to help maintain the lab. The cost is minuscule, the lab 
will be better off for it, and you’ll show one more kid that there are alter- 
natives to slinging burgers.) 

Be sure your lab area is set up to ensure that you can also do serious 
software development! Clearly, your computer must include the properly 
installed compilers and assemblers needed for the project. Just as impor- 
tant as quality hand tools are the debuggers, make utilities, and other soft- 
ware resources needed to quickly and painlessly write, compile, and test 
the code. Set up the environment with a Make utility so you can com- 
pile/assemble without twiddling compiler switches. 

Hardware design requires as much software support as does the 
firmware. PALS, PLDs, and FPGAs let you create much of the hardware 
design late in the game and so are a wonderful thing. Be sure your bench 
is set up with all of the tools you need to edit and compile these. 

Documentation 

All too often the frenetic pace of debugging hardware tempts us to be 
less than careful about writing down changes. Resist this temptation. Your 
company is paying you to debug a prototype for one reason only: so it can 
be turned into a working production system. If you carelessly forget to 
document modifications, the company will need at least one additional 
PCB revision, which you’ll have to debug all over again. This is a terrible 
waste of money. A wise manager of such a documentation-free engineer 
will either retrain or fire the individual. 
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Avoid taking notes on scraps of paper. The best solution is a meticu- 
lously maintained engineering notebook. Write everything down, clearly 
and concisely. The good nuns of my grammar school all but committed 
suicide over their failed attempts to teach me penmanship, so such clarity 
is a particular headache for me. I’ve learned to slow down and print, since 
most of the time I can’t read my own script. 

Some engineers document directly into a computer file. If your envi- 
ronment is so perfect that you can always seamlessly switch to the editor, 
perhaps this works-if you keep backups. In most cases, though, being 
stuck in a program you can’t exit forces you to make notes on paper. 

Use one set of schematics to record changes. This is your master de- 
velopment drawing set. Staple them together and clearly label them as 
your masters. 

When creating the schematics, go ahead and add comments, just as 
we do in the code. For example, document how things work. 

For all off-page connections, document what page the connection 
goes to. 

Whenever you add a part whose Vcc and GND connections are not 
obvious, provide a comment that indicates how power and ground connect. 
Power connections are as important as the logic, so someone who’s trou- 
bleshooting will surely need to check these at some time. Without on- 
schematic notes they’ll be forced to go to the databooks. 

Similarly, for those nasty parts with pins protruding on all four sides, 
add a schematic note that indicates where pin 1 is located, and how the part 
is numbered (CW or CCW). Also, add tick-marks on the silk screen for 
every fifth pin on large parts. It makes it so much easier to find pin 143. . . . 

Assumptions 

A misspent youth of blaring rock ’n’ roll left my hearing somewhat 
impaired, but helped formulate, of all things, my philosophy of trou- 
bleshooting digital systems. The title of the Firesign Theatre’s “Every- 
thing You Know Is Wrong’’ album should be our modern anthem for 
making progress in the lab. 

I hate getting called into a troubleshooting session and finding that 
the engineer “knows” that x, y, and z are not part of the problem at hand. 
Everything you know is wrong! Is that 5-volt supply really 5 volts at the 
PCB? What makes you think ground goes to the chips-when a single part 
has 5 or 10 ground connections, make sure all of them are connected. 
Could the system be dead because there’s no clock signal? Are you sure 
the design isn’t really working-could your experiment be flawed? 
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Another example: suppose your system runs fine at 10 MHz but 
never at 20. Obviously you’d put a 20-MHz clock source in and pursue the 
problem. Every once in a while, go back to 10 MHz just to be sure the 
symptom has not changed. You could spend a lot of time developing a 
hypothesis about 20 versus 10 operation, when the 10-MHz test results 
might actually be a fluke. 

Assume nothing. Test everything. The PCB may have manufacturing 
errors on internal layers. Power and ground may not be on the pins you ex- 
pect-particularly on newer high-density SMT parts. Signals labeled with- 
out an inversion bar may actually be active low. You might have ROMs 
mixed up. Perhaps someone loaded the wrong parts on the board. 

Never blindly trust your test equipment-know how each instrument 
works and what its limitations are. If two signals seem impossibly skewed 
by 15 nsec on the logic analyzer, make sure this is not an artifact of setting 
it to sample too slowly. When your 100-MHz scope shows a perfectly 
clean logic level, remember that undetected but virulent strains of 1-nsec 
glitches can still be running merrily around your circuit. 

When you do see a glitch, one that seems impossible given the 
circuit design, remember that manufacturing shorts can do strange things 
to signals. Is the part hot? A simple finger test may be a good short in- 
dicator. 

On its final spectacular descent to Mars in 1997, the Mars 
Pathfinder spacecraft experienced a series of watchdog time-outs. 
The robustly designed code recovered quickly, averting disaster. 

Engineers later diagnosed and fixed the code, uploading 
patches across 40 million miles of hostile vacuum. Interestingly 
enough, they found that exactly the same WDT time-outs had been 
noted during prelaunch testing, here on Earth. The testers had attrib- 
uted the rare resets to “glitches” and ignored the problem. 

Now, some “glitches” have physical manifestations. In one 
system the timer chip went into an insane mode, where it would for 
no apparent reason stop outputting pulses. The problem was a reset, 
which I knew because only a reset-or magic (never to be dis- 
counted)-could cause the problem. 

The culprit was a glitch on the reset line, created by the fast 
logic of the emulator’s pod driving the unmatched impedance of the 
customer’s two-layer PC board. A simple resistor termination cured 
the problem. 
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On another system the processor’s internal VO lost its con- 
figuration every few minutes; all of the internal registers changed to 
default states, yet the program continued to run fine, though all sys- 
tem I/O was idled. 

The culprit was again a reset glitch. In this case the pulse was 
created by PCB crosstalk. Only one nanosecond wide, it was too 
short to catch reliably on a 500-MHz logic analyzer. We sampled 
dozens of the erratic resets, eventually creating a statistical view of 
the glitch. 

Though every processor has a minimum reset time at least 
several clocks long, even very short glitches can drive CPUs and 
peripherals into bizarre modes. The trick is identifying the source 
of the problem. . . and never ignoring erratic results or hard-to- 
diagnose symptoms. 

Bob Pease, of analog design fame, recommends, “When things 
are acting funny, measure the amount of funny.” 

Diagnose all glitches. If the system behaves oddly, something 
is wrong. Find the problem, or your customer will. 

Learn to Estimate 
At the peril of sounding like one of the ancients, I do miss the culture 

of the slide rule. Though accurate answers might have been elusive, we did 
learn to estimate the answer for every problem before attempting a solu- 
tion. Alas, it’s a skill that is fading away. 

Calculator abuse-computing without thinking-is now too in- 
grained in our society to waste effort fighting. Bummer. Other instruments, 
though, also tempt us to mentally coast, to do things without thinking. 
Take the scope: I can’t count the times an engineer mentioned that he sees 
the signal . . . but has no idea, when I ask, about the width of the pulse. Is 
it 1 nsec? 1 p e c ?  Perhaps a second wide? 

Timing is critical in computers, yet too many of us use the scope as a 
sort of logic probe. “Hey, the signal is there!” Which signal? If you expect 
a lO-psec pulse every msec, then any deviation from that norm is simply 
wrong. Know what to expect, and then ensure that the waveforms are ap- 
proximately correct. A misused scope will generate a morass of misinfor- 
mation. 

Estimate the performance of firmware before writing it. Sure, it’s 
tough to know how many microseconds an as-yet-unwritten function will 
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chew up, but you can use your general knowledge of systems to make 
some ballpark estimates about where problems will occur. 

For example, a fast serial link might overrun a busy CPU. Estimate! 
A 38,400-baud link carries about 4000 charactershec, or one character per 
250 psec. That is not a lot of time for any CPU, particularly the typical 
embedded 8-bitter. Your processor will be pretty busy servicing the data. 
If it’s polled, then only heroic efforts will keep you within the 250-psec 
timing margin. 

Suppose you chose to implement the serial receive routine as an 
ISR-what is the overhead? An assembly routine to queue incoming data 
will need a dozen or two instructions, each of which will no doubt burn up 
two or three machine cycles. Surely you know roughly how long a ma- 
chine cycle takes (including wait states) for your system. . . don’t you? 
Given this information, you can get a reasonable timing estimate before 
writing a line of code. 

Recently an engineer told me, “That initialization loop is clearly the 
problem.” Oh yeah? He was looking for something burning up almost a 
second of time, when clearly, regardless of processor, l000h memory zero- 
ing iterations will run in a few milliseconds. Use your tools, one of which 
is your brain, to make sure you are addressing the real problems. 

Recently I saw a technician troubleshooting a board that exhibited 
multiple problems. One chip was hot enough to fry eggs, yet he chose to 
work on another, “unrelated” symptom. Dumb move-surely the part was 
ready to self-destruct. which surely would create yet more grief for the 
poor tech. 

Always check a bare PC board fresh from the fab for a short between 
Vcc and ground. Because there are so many access points for these two 
“nodes.” they’re the easiest to short. If there is a short, connect the bare 
board to a honking power supply and run some current through the short. 
You’ll either blow it or you’ll be able to find it using the “burn your fin- 
ger” heat test. Either way, you’ll locate the short. 

Then, before you load all of the parts onto the PCB, think deeply 
about what subset of components are really needed to start testing. Load 
only those required. When you’ve got a dozen parts hanging on a bus, it’s 
hell to find the one that asserts the wrong signal at the wrong time. It’s far 
more efficient to load parts only as required, populating the board slowly 
in step with your testing, to make it easy to find the culprit in multiple- 
enable situations. 

I like to power boards from a current-limited lab supply that has an 
ammeter. I look at the current from time to time to make sure I’m not doing 
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anything expensively stupid. (And I load the power supply components 
first, testing that part of the circuit before adding the real logic.) 

It’s a good idea to be on the lookout for excessive heat, especially 
now that so many components are surface-mounted and tough to change 
when you blow them up. 

All semiconductor devices generate some heat; big CPUs can pro- 
duce quite a bit. A really hot device, one that you can’t keep your finger on, 
is usually screaming for help. Excessive heat may indicate an SCR latchup 
condition due to ground bounce or a floating input. 

Less dramatic overheating, much harder to detect without a lot of 
practice, often indicates a design flaw. Your finger can give important 
clues about the design. If two devices try to drive the bus at the same time, 
they’ll overheat. 

Be careful how you apply your personal temperature sensor. I’ve 
found that my calloused forefinger is insulated enough to protect me 
from bad burns when a part is unexpectedly frying. Thus, I gingerly 
touch each part; if it seems reasonably cool, I’ll then use the much-more- 
sensitive back of my hand to try to determine if the chip is running hot- 
ter than it should. It’s surprising how much information you can get with 
a little experience. 

When starting out debugging a very fast system, crank the clock rate 
down to absurdly low levels. Fix the easy stuff-logic errors and the like- 
before tackling high-speed timing. Why deal with a vast ocean of troubles 
simultaneously? 

When you do find the problem, and then make a change, sometimes 
the modification won’t help. Before doing anything, double-check the 
change. Did you solder the wire to the right pin? The right IC? We tend 
to program ourselves to look for hard problems instead of the all-too- 
common simple mistakes. 

Plan ahead. Think before doing. Don’t try something without know- 
ing what the possible outcomes are . . . and without having some idea what 
you’ll do for any of those outcomes. You may find that the next step will 
be the same regardless of the results of the experiment. In this case, save 
time and do something else. 

The best troubleshooters are closet chess grand masters. They think 
many steps ahead. 

The most effective troubleshooting tool is a keen eye. With a work- 
ing design, most problems stem from poor manufacturing. How many of 
us have spent hours troubleshooting a board, only to find a missing chip? 
Perhaps the wrong part is installed, or the correct one upside-down. 
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In smaller companies engineering is often production’s backup for 
troubleshooting. Don’t accept boards unless a technician has performed a 
careful visual inspection first. 

Then, inspect it yourself. It’s far faster to find most manufacturing 
defects by eye than by component-level diagnosis. Look for those missing 
and backwards chips. Check soldering and solder splashes. 

Inspect soldering on through-hole boards using a not-terribly sharp 
pointer, such as an awl. Move it along every pin, using it as a guide for 
your eye (which will otherwise quickly tire looking at a sea of pins). Scan 
the board one chip at a time, working in a logical progression from one 
side of the board to the other. Look for unsoldered and poorly soldered 
pins, as well as solder splashes. If it looks bad, it is. 

PC board defects are the most frustrating of all problems. Despite 
modern quality-control processes, they are still far too common. Keep the 
PCB artwork around as a reference, so you can see where the tracks run 
when it’s time to fix a short or a design problem. 

Often a new design suffers from a problem you just know you can 
cure by grounding a signal. Be wary of using a clip lead as a grounder: 
high-speed signals will see the lead’s inductance as a high impedance. The 
ground end will be at ground, for sure. The signal end may not look much 
different than without the clip lead attached. Edges are so fast now, even 
in slow systems, that wires no longer act like wires. Solder a short-very 
short-run to ground. perhaps using a discarded resistor lead. I have found 
that grounding via a clip lead now only works on DC signals. Realize that 
a wire is not a wire, but is a complex transmission line whose characteris- 
tics will confound your common sense. 

Use all of your tools. One Tektronix scope has a neat digital 
counter. I’ve used it for tough hardwarehoftware troubleshooting prob- 
lems. Unsure if an interrupt comes as often as it should? The counter will 
tell you without a doubt how many come along. Wondering if all inter- 
rupts get serviced? Put one counter on the interrupt line, and another on 
the acknowledge, and see that the values are identical. 

Computer systems will crash and bum from a single event. Though 
digital scopes are wonderful at capturing single-shot signals, it’s usually 
much easier to work with a problem that repeats itself, often, so you can 
run tests at will. A logic analyzer excels at finding these one-time prob- 
lems, but most won’t help much with electrical issues (say, marginal sig- 
nal levels). 

Always be on the lookout for ways to cause these events to repeat. 
For example, the easiest way to troubleshoot reset problems is to use a 
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pulse generator to reset a dead CPU repeatedly, so you can scope the reset 
sequence. 

Years ago we used a shortwave radio to listen to the operation of our 
system’s code. With a little experience we knew what sort of noise to 
expect in each of the instrument’s important operating modes. With the 
volume turned to a quiet murmur, any change in its buzz instantly signaled 
trouble. Troubleshooting is a multisensory experience. Wait! What’s that? 
It smells like a resistor burning . . . a wire-wound, by its odor. . . . The 
game’s afoot! 

Scope Debugging 

A lot of developers on a tight budget debug with a scope almost ex- 
clusively. Personally, I think this is as bad as never using one. You won’t 
get source-level debugging, which pretty much rules it out for applications 
written in high-level languages. 

A scope complements your tools. By itself it is inadequate; in con- 
junction with the rest of the toolchain it is invaluable. 

Just knowing how to press the buttons is not enough. That’s a little 
like considering yourself educated because you can recite poetry in a lan- 
guage you don’t understand. It’s important to know how and when to use 
the scope, and what tricks you can play to pry the maximum amount of in- 
formation from buggy code. 

Is your program running at all? Some embedded systems don’t re- 
ally do anything. They just sit quietly, monitoring some value, and pro- 
duce an output only if some unlikely or infrequent event occurs. Without 
blinking LEDs, are you really sure the unit is alive? Sure, you can use an 
emulator or logic analyzer and collect trace data, but the scope provides 
an easier alternative. Checking for “aliveness” is the simplest scope oper- 
ation, requiring the use of only a single channel and only seconds of setup 
time. 

Though you can scope the microprocessor’s data, address, and con- 
trol busses, it’s rather hard to decide if the CPU is running wild, or if it is 
doing what you’d expect. Data and address lines are notoriously ugly, even 
in well-behaved systems. 

The best solution is to probe the chip selects to your critical YO de- 
vices. If the code is polling these, there’s a good chance it is running. If you 
wrote the code, you probably have a pretty good idea how often the code 
should go to the I/O, which gives a baseline to compare against. 

The first program I write on new hardware always looks something 
like: 
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loop : ou t  ( s o m e s o r t ) ,  (some-data) 
j mp loop 

Based on the clock rate it’s easy to figure the time between OUTS. I’ll 
scope the VO line (whatever it is called: IORQ, W O ,  etc.), make sure the 
chip selects are there, and that they are spaced about right. If the system 
can run this loop, 90% of the time the kernel of the hardware (CPU, ROM, 
RAM, etc.) is functioning properly. 

RS-232 is one of the biggest headaches around. It seems no serial 
port or routine ever works quite right at first. If you are coding a comm 
function that just doesn’t seem to be working, use a scope to see if at least 
data is moving around. 

Pins 2 and 3 of the RS-232 connector (for both the 9- and 25-pin ver- 
sions) have the serial streams. Put a probe on each of the pins to see if there 
is any activity. RS-232 usually uses 12- to 15-volt levels, so be sure to 
crank the volts/division control to the 5- or IO-volt position. If you see no 
data, then the hardware or the code is broken. 

Debugging serial code often involves a lot of interrupt fiddling, 
queue management, etc. I typically connect a scope more or less penna- 
nently to the serial lines so I’ll know instantly if comm shuts down. 

It pays to be a little suspicious of your hardware platform when work- 
ing with early prototype systems. Being able to run a few checks yourself 
will saves a lot of finger pointing and aggravation. especially at 3 A.M. 
when your boss is screaming for results. 

To a software person, the true value of a scope lies in its ability to 
measure the relationship between two signals. Though it’s easy to apply a 
pair of inputs to the channel 1 and 2 vertical amplifiers, you must give 
some thought to setting up the scope’s trigger system to get meaningful 
results. 

Suppose your code should respond to an interrupt by driving a pattern 
of bits out some port, but for some reason the pattern never seems to ap- 
pear. What’s wrong? 

Either the code never even tries to access the port, or it is sending the 
wrong data. Multiple causes branch from each of these possibilities, but 
before you can make further decisions, you’ll need more information. 

The first step is to look at the chip select pin on the YO device. If it 
is toggling, then at least something in the software is accessing it. 

Determining if the correct data is going out is a bit more difficult. If 
the device is one of the common ultracomplex high-integration chips, like 
an IEEE-488 controller, you’ll have to look at the data going to it during 
the YO cycle. 
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This is the trick to effective scope use. A data bus is always ex- 
tremely busy. No one is smart enough to drop a probe on it and figure out 
what is going on. You must look at the bus at a particular instant in time- 
in this case, during the time the I/O write is in process. 

In this case, put the chip select on channel 1. Use the trigger controls 
to trigger the scope (i.e., start the sweep) when the select comes along. 
Thus, select a trigger source of channel 1, and a trigger slope of (-) if the 
chip select goes low when it is active (usually the case). Twiddle the trig- 
ger level and time/division knobs to get a nice-looking pulse on the screen. 

Now, connect the channel 2 probe to a data bus pin on the YO device. 
Start with data bit 0. Look at the two signals on the CRT and note the state 
of channel 2 when the chip select is active. The data bus might look horri- 
ble, with ramping levels and all kinds of nonsense, but during the chip se- 
lect period it will be either high or low. Note the state. Check each bit in 
succession, logging the pattern. 

The result? You’ll find out exactly what data was transferred to the 
device, and can use this information to shed some light on what the code 
must be doing. 

The whole field of digital logic is based on presenting the correct data 
at the correct time. When you look at the confusing mess on the scope dis- 
play, remember that it really doesn’t matter what is up there, except during 
that short period of interest. 

You can use this technique to add a “virtual debugging port” to any 
embedded system. Sometimes I’ll design a system to include an extra 8-bit 
parallel port that drives LEDs. Then I can instrument my program to send 
patterns out to the displays, so I can see just what the code is doing. I’ll put 
out a different lamp combination for each interrupt service routine, each 
main operating mode, etc. If things change so quickly that I can’t see the 
LEDs blink, I watch the port with a scope. 

The problem is that no boss likes to add special hardware to a system 
to ease debugging. One solution is to write the codes out to a nonexistent 
port, capturing the data on the scope instead of LEDs. 

Frequently the YO decoder has spare outputs; chip selects that were 
not needed. Use this unallocated “port” as the virtual debug address. Feed 
it into channel 1, and trigger the scope on this signal. Scope the data bus 
with channel 2. The YO write to the virtual port will not affect the system, 
but it will give you a convenient way to trigger the scope. The data bus’s 
contents during the write is the value your instrumented software is send- 
ing out. 

Chapter 7 describes scopes in general; another very handy attribute of 
better oscilloscopes is delayed sweep. Just as any decent scope has at least 
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two vertical channels, most include two time bases as well. Seems odd, 
doesn’t it? Double vertical channels intuitively make sense. since each 
probe picks off a different sense point. Time, though, always flows in the 
same direction at the same rate, so a single axis is all that makes sense. 

Novice scope users understand the operation of time base A: crank 
the time/division knob to the right and the signal on the screen expands in 
size. Rotate it to the left and the signal shrinks, but much more history (Le.. 
more microseconds of data) appears. 

Time base B is a bit more mysterious. If enabled, it doesn’t start until 
sometime after time base A begins. Try it on your scope: select “Both” (or 
“A intensified by B”) and select a sweep rate faster than that used by A. 
You’ll see a highlighted section of the trace whose width is determined by 
B’s sweep rate, and whose starting position is a function of the delay time 
knob. 

Switching from “Both” to “B” shows just the intensified part of the 
sweep: the part controlled by time base B. In effect, you’ve picked out and 
blown up a portion of the normal sweep. It’s like a zoom control-and you 
can select the zoom factor using the sweep time. and the “pan position,” or 
starting location, using the delay time adjustment. 

Suppose you want to look at something that occurs a long time after 
a trigger event. Using these zoom controls you can get a very high- 
resolution view of that event-even when time base A is set to a very slow 
rate. 

Delayed sweep is always accompanied by a second trigger system. 
Most of us have developed callouses twiddling the trigger level control in 
an effort to obtain stable scope displays. Any instrument with dual time 
bases will come with a second of these knobs to set the trigger point of the 
B channel. 

(Note: Newer scopes, like the MSO series from HP, remove most of 
the uncertainty from setting trigger levels because they show an arrow on 
the waveform indicating the exact voltage setting of the trigger level con- 
trol. It’s a great time-saver.) 

The second trigger is important when working on digital signals that 
usually have unstable time relationships. Set the A trigger to start the 
sweep (as always), position the intensified part of the sweep to some point 
b<fire the section you’d like to zoom on, and then adjust trigger B until the 
bright portion starts exactly on the event of interest. 

This procedure guarantees that even though the second trigger event 
moves around with relationship to trigger A, you’ll see a stable scope dis- 
play after selecting the B time base. In effect you’ve qualified trigger B by 
trigger A. and you can hope you’re zeroing in on the area needing study. 
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Delayed sweep is essential when working on any embedded sys- 
tem-let’s look at a couple of cases. 

Suppose your microprocessor crashes immediately after RESET. 
Traditional troubleshooting techniques call for hooking up the logic ana- 
lyzer and laboriously examining all of the data and address lines. Person- 
ally, I find this to be too much trouble. Worse yet, it tends to obscure 
“electrical” problems: the analyzer might translate marginal ones and ze- 
roes into what look like legal digital levels. Logic analyzers are great for 
purely digital problems, but any problem at power-up can easily be related 
to signal levels. 

Only a scope gives you a view of those crucial signal levels that can 
cause so much trouble. Trigger channel 1 on the RESET input and probe 
around with channel 2. Look at READ: every processor starts off with a 
read cycle to grab the first instruction or startup vector. You may find a 
puzzling phenomenon: if the reset is provided by a source asynchronous to 
the processor’s clock (as is the case with an RC circuit, a Vcc clamp, and 
even with many watchdog timers), READ will bounce around with re- 
spect to RESET. You’ll never get a nice high-resolution view of READ 
this way. 

Triggering off READ will not help. You need to catch thefirsr read 
after reset (to look at the first instruction fetch), not any arbitrary incarna- 
tion of the signal . . . and no doubt there will be millions of reads between 
resets. 

The answer is delayed sweep. Put RESET into the scope’s external 
trigger input and fiddle the knobs until you get a stable trigger. (I like to put 
one scope channel on the external trigger while doing this initial setup to 
make sure the trigger is doing what I expect.) Then connect channel 1 to 
your processor’s READ output and crank the time base until it appears 
over toward the right side of the display. Go to delayed (A intensified by 
B) mode, and rotate the B time base trigger adjustment until the bright part 
of the trace starts on the leading edge of the bouncing READ signal. 

At this point time base A starts the sweep going on the asynchronous 
RESET, and time base B triggers the intensified part of the sweep when the 
first READ comes along. Flip the Horizontal Mode switch to B (to show 
only the intensified part of the sweep-that part after the B trigger), and a 
jitter-free READ will be on the left part of the screen. Cool, huh? 

With the now stabilized scope display you can use channel 2 to look 
at the data lines, ROM chip selects, and other signals during the read cycle. 
It becomes a simple matter to see if the first instruction gets fetched 
correctly. A lot has to be perfect for this to happen. Very often a power-up 
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problem comes from a bad data line, chip select, or buffer problem, any of 
which is trivial to find with the scope triggered properly. 

This example shows how a few seconds of button twiddling can re- 
solve two asynchronous signals on the scope display. 

When your system seems crashed, it’s often hard to guess exactly 
what the program is doing. Is the main loop running correctly? Is it stuck 
waiting for input from a UART? 

Instead of reaching for the logic analyzer, 1’11 usually put on a think- 
ing cap and speculate about what could be going on. For example, in a sys- 
tem that regularly polls a UART, it takes but a few seconds to check the 
VO port’s chip select to see if the code is hitting that pin. If so, there’s a 
pretty good chance the main loop is at least running. 

When a series of UO operations happen sequentially you can use de- 
layed sweep to examine each event in detail. For instance, the code to pro- 
gram a Zilog SCC (Serial Communications Controller-a do-everything 
serial link) sends many, many bytes to the same port. Triggering a scope on 
these port writes will display a jumble of mixed-up cycles. Delayed sweep, 
though, lets you trigger on the first write to the port, and then display the 
particular write you’d like to see. 

Trigger channel A on the first write. (Use the Trigger Holdoff control 
to restrict triggering to burst events.) Set the sweep rate of channel B to 
something faster than channel A. Then use the delay time control to scroll 
through as many port writes as necessary to find the event causing grief. In 
this example, the delayed sweep lets you see a high-resolution view of 
events that may be widely separated in time. 

Use a variation of this technique to troubleshoot many hardware/ 
software integration issues. If your system has an unused I/O select-say, 
an output of an VO decoder-seed the code with reads or writes to this 
port. Trigger time base A from this select, and then use delayed sweep to 
zoom in on an enhanced view of problem areas. 

Summary-Bringing Up a New System 

So there it is, your new creation, now glittering as a real bit of hard- 
ware instead of some abstract scribbles on the CAD screen. Flip on the 
power switch. . . and surely it’ll continue staring dumbly back at you, 
doing nothing, dead and awaiting your magic healing touch. Whatcha 
gonna do? 

First, before loading the parts, ohm Vcc to GND on the PCB. Any 
short means there’s a problem with the board. 
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Next, load just enough parts to test the system’s kernel. This includes 
the CPU (or maybe a socket if you’re using an ICE), ROM, RAM, and de- 
coders. Since microprocessor-based systems all use a CPU surrounded by 
dozens of chips all hanging on a common bus, the failure of any of which 
can cause problems, it makes sense to bring up your embedded system by 
testing the simplest sections of the hardware first. 

Now stop and inspect the board carefully. Look for shorts and opens, 
and everything that looks a bit odd. Are all of the parts oriented properly? 
Are the right parts installed in the right locations? It’s hell to find these 
sorts of problems by conventional troubleshooting techniques, so a few 
minutes spent inspecting may yield tremendous dividends. 

Connect power, if at all possible, using a lab supply that has an am- 
meter. Check the meter: if it’s way out of line of what you’d expect, then 
something serious is wrong. Stop and find the problem. 

Now check the voltage and stability of Vcc on the target system. 
Never neglect this step, and always repeat it if weird, unexplainable things 
seem to be happening. A +5 supply that is even a half-volt low can cause 
all sorts of erratic operations that are all but impossible to troubleshoot. 
Check this with the scope’s vertical channel on the 1 volt per division set- 
ting so you can measure the supply accurately. 

Next, check the clock signal to the microprocessor. Clocks are a con- 
stant source of problems. As processor speeds increase, chip vendors are 
tightening specs and reducing margins. Yet even now most designers ig- 
nore the electrical characteristics of this all-important signal. If the CPU 
uses a crystal instead of a clock module, check the clock-out pin to make 
sure that it is indeed running at the correct frequency. A PCB layout prob- 
lem, incorrect cut of crystal, or other problem can make the CPU start at 
some harmonic of the desired frequency. Again, look at this with the scope 
on the 1 volt per division setting so you can really see the clock’s shape 
and voltage levels. 

Test the CPU’s RESET input next. This critical signal must be in an 
unasserted state except at power-up and reset time. If RESET is low, some- 
thing is wrong. 

With the basic signals correct, it’s time to look at the address and data 
busses. You’ll have two basic choices: use a tool such as an ICE or BDM, 
or fudge it with a bit of cleverness. Either way, check every address and 
data line at each chip. 

Many ICES and BDMs will let you issue a repeating write command 
that sends known data to all memory locations. It may be called a “Fill”; 
tell the tool to fill memory from 0 to infinity, over and over and over. Con- 
nect a scope to each address line and be sure that they sequence in order. 
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Don’t have an adequate tool? Don’t despair. Most CPUs include a 
single-byte or one-word software interrupt instruction that will serve 
equally well. Remove all memory chips (or disable them by putting their 
control signals to idle states), and pull the data bus to the value of the in- 
terrupt instruction. For example, on any x86 processor, INT3 (OxCC) is a 
one-byte interrupt. Z80/180 systems use RST7 (OxFF). Motorola proces- 
sors usually have a breakpoint or illegal instruction trap that works equally 
well. 

By pulling the data bus to this one-byte/word instruction, you’ve 
made it impossible for the CPU to do anything but run that particular 
opcode. The processor will blindly follow your will by executing the 
interrupt. 

It will push the system context onto the stack (never doing a POP or 
Return), so the stack will march down to zero, and then roll over. Trigger 
your scope on the processor’s WRITE line, and watch the addresses as the 
stack pointer marches along. What we’ve done is force the CPU to produce 
every possible address, in a controlled manner, while not assuming that 
any ROM or RAM location works! 

Once the ROM works, it seems logical to assume that the code will 
run . . . doesn’t it? Well, no. Things can and do go wrong when running 
code, so it makes sense to spend a few minutes trying a simple execution 
test before getting carried away burning complex things into ROM. 

At the processor’s startup location, bum the simple loop described 
earlier (OUT to a port, with a JMP back to the OUT) into ROM (or Flash, 
if you’re using it). Odds are the loop will run correctly, since we’ve already 
checked the busses. Trigger a scope on the write pulse (generated by the 
OUT) and see that it comes at a rate correlated to your clock speed. 

Next, get RAM working. Bum a bit of code that sets up the RAM 
chip select (if required) and that writes a location in RAM, reading the 
value back. With the scope, you’ll be able to watch the transaction to en- 
sure that the data comes out of RAM just as it goes in. Again, since the 
address bus was tested, there’s no need to do an extensive test. 

With working RAM and ROM, it’s time to get your real software de- 
bugging tools going. If you’re using a ROM monitor, build a serial port 
driver and link it all together. A ROM emulator should just plug in and 
play, now that the system’s kernel is alive. An ICE or BDM, of course, will 
work even without an operating kernel. 

Using your debugger, check the YO using the hacking techniques 
outlined in Chapter 5. 





CHAPTER 9 
People Musings 

Managing Yourself and Others 

Anyone can crank code or draw logic diagrams. Truly gifted engi- 
neers are those who predictably deliver quality products on time, on budget, 
that meet the specs. 

Raw inspiration accounts for a tiny fraction of the effort needed to be 
constantly successful. An awful lot of what we do boils down to finding a 
reasonable formula for success and then following that formula relent- 
lessly. Sure, we should experiment with it, tune things as needed, but dis- 
aster is guaranteed when we abandon the process and just start hammering 
out code and drawings. 

Chapter 2 presented and described seven steps that are fundamental 
to getting decent products out. Sometimes it’s hard to translate ideas into 
daily action plans. It’s even more difficult to audit one’s performance in 
the chaos of a project, one that is surely constrained to the breaking point 
by schedule pressures. 

So here’s a “Weekly Audit,” a checklist the wise developer will con- 
sult to ensure that the processes are effective and actually being used. 
Check it weekly, perhaps every Friday morning, without fail. 

As I mentioned in the very first chapter of this book, use a Daytimer 
or similar time management tool as an electronic nag to remind you to do 
the right things at the right time. Have the Daytimer pop up a reminder to 
run the audit weekly. Depend on memory and you’ll surely forget. 

187 
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Version Control System 

Yes 

Yes No Does each developer have only those modules 

No Are all source code and related files managed by a 
networked VCS? 

absolutely needed checked out (answer “no” if they 
hoard checked-out modules)? 
Has the VCS been backed up every day this week? 
Are the backups stored in a safe place? 

Yes 

If any Nos circled: What action will you take today to solve the 
problem? 

No 

Firmware Standards 

Yes No 

Yes No 

Yes No 

Yes No 
Yes No 

Yes No 
Yes No 

Is the Firmware Standards Manual the bible for all 
development (answer “no” if it’s stored in a musty 
closet like a demented nephew, paraded out for show 
once in a while)? 
Is every function and module held to the Standards 
Manual, as audited by Code Inspections? 
Do all developers buy into the Standard (answer “no” 
if they constantly squabble over the contents of the 
Standard)? 
Was every bit of code tested this week inspected first? 
Do all Inspection teams keep and use standard forms 
for tracking the number and type of each defect? 
Do the teams all use an Inspection Checklist? 
Do all of the developers buy into the need for Code 
Inspections? 

Ifany Nos circled: What action will you take today to solve the 
problem ? 

Bug Management 

Yes No Are the developers all using engineering notebooks to 

Yes 

Yes No Are bad modules identified and rewritten? 
Yes No 

control and log defects? 
For code being tested, is every bug logged and 
counted? 

Are more than 5% of the modules falling into the 
“bad” category? 

No 
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Yes Have bug lists been abandoned (Le., bugs fixed as they 
appear)? 

Yes No For released products: is every bug being systematically 
tracked? 

!f any Nos circled: What action will you take today to solve the 

No 

problem ? 

Tools 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Yes No 

Are the development tools stable (answer “no” if 
they’re effectively held together with baling wire and 
duct tape)? 
Are all processes automated (compile, link, make, 
debugger initial configuration load)? 
Does every developer have reasonable access to the 
tools (answer “no” if people are waiting for access)? 
Are hand tools, clip leads. and the like in good 
condition? 
Are there adequate supplies of logic analyzer clips 
and the like? 
Is the “bozo” bit reset (answer “no” if anyone is 
doing something stupid, like holding systems together 
with propped-up books, or building 3-D clip-leaded 
prototypes that look like works of modern sculpture)? 

I f  any Nos circled: What action will you take today to sohv the 
problem ? 

Tracking Development Rates 

Yes No Is every engineer filling out time cards accurately? 
(Answer “no” if this is a mad scramble at the end of 
the week, which indicates you’ll never learn how long 
it takes to build a product or write a line of code.) 

project for a few hours) tracked? 
Yes No Is every diversion (such as switching to another 

Ifany Nos circled: What action will you take today to solve the 
problem ? 

Work Environment 

Yes No Does each developer know his or her most productive 
time, and then use that time wisely (answer “no” if 
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developers don’t close their doors or otherwise warn 
off interruptions during these hours)? 
Does every developer turn off the phone for at least 
several hours a day during their productive time? 
Do developers limit time they leave their email reader 
on‘? 
If cubicles are the norm, does each developer do 
something (e.g., wear headphones) to limit noise 
distractions? 

Yes 

Yes 

Yes 

No 

No 

No 

Ifany Nos circled: What action bz-il l  you take today to solile the 
problem ? 

Critical Paths 

What action can you take today to make sure everyone has what 
they need to be successful next week? 
What action can you take next week to make sure everyone has 
what they need to be successful next month? 

Note that each category concludes with the important admonition: do 
something today to clear the roadblock. Don’t defer action; it’s much eas- 
ier to correct a project when it first starts to veer off course than after 
months of dysfunctional development have left their scars. 

Boss Management 

Management is the art of combining resources in innovative ways to 
get a desired outcome. In our industry this outcome is some blend of fea- 
tures, quality, and schedule. 

Yet schedule is the usual battleground between managers and the 
managed. When management distorts or destroys your careful estimate. or 
beats you into agreeing to one that cannot possibly happen. failure is cer- 
tain. Period. Yet this practice is the norm. 

People ask me constantly how they can better estimate the time a 
project will take. When I probe. usually I find that dates are assigned 
capriciously by marketing or upper management. These engineers don’t 
really want to know how to better estimate their schedules; they’re look- 
ing for a silver bullet. a bit of magic that will let them shoehorn their 
project into an impossible time frame. Magic and estimation are two 
very different things. 

Bosses complain that the engineers pad their estimates so much that 
there simply must be fat. They feel justified in whacking off a month or 
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two. Or, there are those who feel an aggressive schedule inspires harder 
work-possibly true, but only when “aggressive” is not confused with 
“impossible.” 

My feeling is that if there’s no mutual trust between workers and 
management, the employment situation is dysfunctional and should be ter- 
minated. Professionals-us !-are paid for doing the work and for making 
reasonable technical recommendations. We may be wrong sometimes, but 
a healthy work environment recognizes the strengths and weakness of each 
professional. If your boss thinks you’re an idiot, or refuses to trust your 
judgment, search the employment ads. 

Too many bosses have little or no experience in managing software 
projects. The news they get is invariably bad-the project will take six 
months longer than hoped-yet it generally comes with no options, no de- 
cisions that he can make to achieve the sort of balance between product 
and delivery. 

It’s critical that we learn to manage our bosses. When presenting bad 
news, be sure you give options. “We can deliver on time but without these 
features, or 6 months late with everything, or on time but with lots of 
bugs. . . .” An intelligent analysis of choices, presented clearly. will help 
get your message across. 

We need to develop trust with our superiors by educating them about 
development issues, by being right (meeting our own predictions), and by 
communicating clearly. 

We’ve got to avoid quoting a long, arbitrary time impact as a knee- 
jerk reaction to any change request. 

Too many developers react to a manager’s request by obfuscating the 
facts. A schedule question gets answered with a long discourse peppered 
with obscure acronyms and a detailed analysis of the technology involved. 
In most cases your boss will not be as good as you are at cranking code or 
designing FPGA equations. The boss is paid to manage, not do. We’re paid 
to do, and to communicate clearly to the rest of the organization. When 
talking to the boss, talk his lingo, not the language of ones and zeroes. 

If we expect to be treated honestly and with respect, we have to re- 
ciprocate accordingly. 

Just as it takes time and many projects to get the data you need to be 
an accurate estimator, educating the boss and creating trust can be a very 
slow process. So slow, in fact, that you must remember that sooner or later 
the boss will die or move on . . . and you’ll be in charge. Then remember. 
Treat your people with trust and respect, and teach them what you’ve 
learned about scheduling. 
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Evolution is a great thing. Perhaps the firmware industry will mature 
as new generations of people learn to do things correctly, and then slowly 
replace the dinosaurs now all too often at the top. 

Managing the Feedback Loop 

The last step in most projects is the one we dread the most-assign- 
ing the blame. Who is responsible for the late delivery? Why didn’t we 
meet the specification document? Who let costs spiral out of control? 

The developers, that’s who. When management sheds blame like a 
duck repels water, we wonder why we got into such an unforgiving 
profession. 

Something happened in this country in the past couple of decades, 
something scary for the future. We’ve become intolerant of failure. In 
1967 a horrible fire consumed the Apollo 1 spacecraft and three astro- 
nauts. An investigation found, and corrected, numerous problems. There 
was never a serious question about carrying on. 

In the 1980s, when the Challenger blew up, commentators asked 
what NASA was doing to ensure that such a tragedy would never happen 
again. Huh? Sitting on 6 million pounds of explosive and you want a guar- 
antee that the system was foolproof? Even my car is not totally reliable. 
There are no guarantees, yet society seems to expect miracles from us, the 
technology gurus. 

Consider the Superconducting Supercollider. If scientists could 
promise a practical result, or perhaps only promise finally resolving the 
issue of the Higgs particle, then maybe the SSC would be something more 
than an abandoned hole in the ground. Fear of failure sent the politicians 
fleeing. Yes, it was very, very expensive. I was angered, though, by the 
national lack of understanding that, in science, failure is an element of 
success. We learn by trying a lot of things; with luck, a few pan out. From 
each defeat we have the possibility of crawling toward success. 

As developers, we’ve got to learn to manage both failure and success. 
Our companies are demanding more from us every day. Downsizing and 
increasingly frenetic time-to-market pressures mean that Joe Engineer 
must take advantage of every opportunity to learn. 

Yet there is no Embedded University. We’re mostly educated 
via OJT, a haphazard and inefficient way of learning. Few of us are privi- 
leged to work with a mentor of stature, so the best we can do is to exam- 
ine the results of everything we do, with a critical, unbiased eye toward 
improving our skills, and improving the processes used to develop our 
products. 
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Does this scenario sound familiar? A small team starts a project with 
great hopes and enthusiasm. Along the way problems crop up. Sales 
changes the features. Management reduces the product’s cost. Schedules 
slip when compiler bugs appear. Code grows bigger than expected. Real- 
time response isn’t adequate, so the engineers start burning the midnight 
oil, making heroic changes to get the system out, but schedules slip more, 
tempers flare, and when the product finally ships no one is speaking to 
each other. 

A week later the developers are embroiled in another product, again 
starting with high hopes, and again doomed to encounter the same rather 
small yet common set of problems that cause late delivery. 

Sliding into middle age one has the chance to observe patterns in 
one’s life, patterns we seem to repeat over and over. Einstein said, “Doing 
the same things over and over, and expecting different results each time, is 
clearly insane.” 

Yet most engineering efforts exhibit this insanity. Careening from 
project to project, perhaps learning a little along the way but repeating the 
same tired old patterns, is clearly dysfunctional. 

In most organizations the engineering managers are held accountable 
for getting the products out in the scheduled time, at a budgeted cost, with 
a minimal number of bugs. These are noble, important goals. 

How often, though, are the managers encouraged-no, required-to 
improve the process of designing products? 

The Total Quality movement in many companies seems to have by- 
passed engineering altogether. Every other department is held to the cold 
light of scrutiny, its processes tuned to minimize wasted effort. Engineer- 
ing has a mystique of dealing with unpredictable technologies and work- 
ers immune to normal management controls. Why can’t R&D be improved 
just like production and accounting? 

Now, new technologies are a constant in this business. These tech- 
nologies bring risks, risks that are tough to identify, let alone quantify. 
We’ll always be victims of unpredictable problems. 

Worse, software is very difficult to estimate. Few of us have the lux- 
ury of completely and clearly specifying a project before we start. Even 
fewer don’t suffer from creeping featurism as the project crawls toward 
completion. 

Unfortunately, most engineering departments use these problems as 
excuses for continually missing goals and deadlines. The mantra “Engi- 
neering is an art, not a science” weaves a spell that the process of devel- 
opment doesn’t lend itself to improvement. 

Phooey. 
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Engineering management is about removing obstacles to success. 
Mentoring the developers. Acquiring needed resources. 

It’s also about closing feedback loops. Finding and removing dys- 
functional patterns of operation. Discovering new, better ways to get the 
work done. 

Doing things the same old way is a prescription for getting the same 
old results. 

It’s infuriating that typical projects fizzle out in a last-minute crunch 
of bug fixes, followed by the immediate startup of a new development 
effort. Nothing could be dumber. 

Did you learn anything doing the project? Did your co-workers? Is 
there any chance some bit of wisdom could be extracted from its successes 
and failures-a bit of wisdom that may save your butt in the future? Why 
do we careen right into the next project, hoping to avoid disaster by sheer 
hard work, instead of taking a moment to take a deep breath, gather our 
wits, and understand what we’ve learned? 

Engineering managers simply must allocate time for a careful post- 
mortem analysis of each and every project. Once the pressure of the ship 
date is gone, all of the team members should work toward extracting every 
bit of learning from the development effort. 

Usually we casually pick up some wisdom even without a formal 
postmortem. This is the basis for “experience,” a virtue acquired by mak- 
ing mistakes. I’ll never forget shoehorning an RTOS into an almost com- 
plete system more than a decade ago. Putting it in after 20,000 lines of 
code were written hurt so badly I swore I’d never start a system like that 
again without installing an RTOS as the first software component. This bit 
of wisdom came in exactly the same way kids learn not to touch a hot 
stove: pain. I believe we can do better than learning by acquiring scars. 

A formal postmortem analysis has one goal: squeeze every bit of 
learning from the just-completed project. Wring it dry, extracting infor- 
mation to compress the acquisition of “experience” as much as possible. 

The postmortem is not a forum for assigning blame. When I started 
conducting these at my last company, the engineers immediately became 
paranoid, thinking that this was the chance for management to “get” them, 
in writing, in a venue visible to all employees. 

If blame must be given, then do it privately and constructively. Non- 
constructive criticism is a waste of time, to be used only when firing the 
offending employee (if then). 

Similarly, the postmortem shouldn’t be used as a staging area for the 
engineers’ complaints against management. When there are valid concerns 
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(for example, schedule slippages due to changing specs), then these should 
be coldly, accurately documented in a form that’s useful to all involved. 
No whining allowed. 

No, a successful postmortem is an unemotional, nonconfrontational, 
reasoned, thoughtful process. It works when all participants buy into the 
idea that improvement is important and possible. 

I feel that a successful postmortem results in a written document that 
will be preserved with other engineering materials, perhaps in a drawing 
system. The document is important, as it’s a formal analysis of ways of 
doing engineering better. Just as a contract is a written version of an infor- 
mal understanding, the postmortem report codifies the information. 

A great postmortem results in a report that’s eminently readable, that 
even people not involved with the project can understand. File these to- 
gether and give them to all new hires to give them “virtual experience.” 

The document is a critical look at every part of the project (Figure 
9-1). Did the specifications change often? How often, and what was the 
real impact on the project? Were the tools up to snuff? What other tool- 
chains could you have used, and why didn’t you? Did real-time problems 
cause trouble? Did you badly estimate the scope of the system. . . and if 
so, why? 

Never forget to look at the skills of all of the players. Did a new lan- 
guage no one really understood create problems? Perhaps new hires just 
didn’t understand the company’s technology. 

Structure the report as a series of recommendations. “The tools 
sucked” is useless. Better: “The selected CPU had no real tool support. 
Next time pick a chip with at least two different ICES and three compilers 
so we have options.” 

1 Product 

Code inspections Quahtyldesign 

Change control Team burnout How we did it 
Change frenzy 
People avadability 

Hardware design 

Perform mce 

FIGURE 9-1 Areas a post mortem should cover 
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A classic complaint at the end of any project is that creeping fea- 
turism inflated the spec. The post mortem must address this, in a quanti- 
tative way. No: “Marketing kept changing the specs” may be accurate, 
but leaves a manager no specific information useful to the next project. 
Better: “Four spec changes, with a total impact of 23 additional devel- 
opment days, accounted for 60% of the schedule slip. All changes made 
sense in terms of the goals. Unhappily, management forgot the impact 
and kept the same schedule. Next time get their approval in writing for 
the slip.” 

The goal is not to find failure, but to find answers. Successes are 
every bit as important to understand, so you can capitalize on them next 
time. 

No one person is smart enough to find solutions to all problems. The 
document should be input to a brainstorming meeting where your col- 
leagues hash out better ways to perform next time. Feed these ideas, where 
appropriate, back into the document. 

The only bad postmortem is one that’s not honest and thoughtful. Do 
assess yourselves without beating each other up-no matter how badly 
things went. But be intolerant of flippant, whiny, or unreflective post 
mortems. If a team member is unable or unwilling to look for ways to im- 
prove the organization, especially in this nonthreatening context, then that 
person is simply not suited to a career in this fast-changing industry. At 
least not with me. 

A post mortem without specific quantifiable data is a waste of time. 
“Well, we ran somewhat late and were over budget” is useless informa- 
tion. “We finished early and saved a ton of money” is just as bad. You 
can’t take action, or learn things, without knowing the specifics of the 
situation. 

But our memories are notoriously unreliable. During a six-month 
project lots of things happen, good and bad. Many dates might be missed 
and many met. By the time you’re analyzing the results of the project, 
there’s no way you’ll remember-accurately-even a few of these. 

Preserve the data, so during the post mortem you’ll have the accurate 
information you need to produce useful recommendations. The engineer- 
ing notebook, which I’ve endorsed throughout this book, is a logical place 
to record all of this information. 

Too many people feel that college is the end of education. It’s just the 
start. We’ve all got to struggle forever to learn more and to improve. Read- 
ing, studying, seminars, trade shows are all important ingredients. Equally 
important is self- and organizational examination, looking for good things 
to emulate and bad things to fix. 
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Degrees 

A friend went away to college at age 18, for the first time leaving 
home behind. A scholarship program lined his pockets with cash, enough 
to pay for tuition, room, and board for a full year. 

A few months later he was out, expelled for nonpayment of all fees 
and a GPA that rivaled those of the students in Animal House. The money 
somehow turned into parties-parties that kept him a long way from class. 

Today he’s a successful mechanical engineer. With no degree he 
managed to apprentice himself to a startup, and to parlay that job into oth- 
ers where his skills showed through, and where enlightened bosses gave 
him the title and the work he’s so adept at. 

Over the years I’ve known others with similar stories, many of which 
ended on not-so-happy notes. The draft during the Vietnam era was, in a 
way, a tough burden for many smart people. They came back older, per- 
haps with families they had to support, and somehow never made it back 
to college. Many of these people became technicians, bringing their mili- 
tary training to a practical civilian use. Some managed to work themselves 
up to engineering status. Others were not so lucky. 

My dad breezed through MIT on a full scholarship. Graduating with 
a feeling that his prestigious scholarship made him very special, he started 
working in aerospace. The company put him on the production line for six 
months, riveting airplanes together. In those days this outfit put all new 
engineers in production to teach them the difference between theory and 
practicality. He came out of it with a new appreciation for what works 
and for the problems associated with manufacturing, I’ve always thought 
this an especially enlightened way to introduce new graduates to the harsh 
realities of the physical world. 

Most of today’s new engineering graduates do have some experience 
with tools and methods. Schools now have them build things, test things, 
and in general act like real engineers. Still, it seems the practical aspects 
are subjugated to theoretical ones. You really don’t know much about pro- 
gramming until you’ve completely hosed a 10,000-line project, and you 
know little about hardware until you’ve designed, built, and somehow 
troubleshot a complex board. 

Experience is a critical part of the engineering education, one that’s 
pretty much impossible to impart in the environment of a university. We’re 
still much like the blacksmith of old, who started his career as an appren- 
tice, and who ended it working with apprentices, training them over the 
truth of a hot fire. Book learning is very important, but in the end we’re 
paid for what we can do. 
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In my career I’ve worked with lots of engineers, most with sheep- 
skins, but many without. Both groups have had winners and losers. The 
non-degreed folks, though, generally come up a very different path, earn- 
ing their “engineering” title only after years as a technician. This career 
path has a tremendous amount of value, as it’s tempered in the forge of 
more hands-on experience than most of their BSEE-laden bosses. 

Technicians are masters of making things. They are expert solder- 
ers-something far too few engineers ever master. A good tech can bum a 
PAL, assemble a board, and use a milling machine. The best-those bound 
for an engineering career-are wonderfully adept troubleshooters, masters 
of the scope. Since technicians spend their daily lives working intimately 
with circuits, some develop an uncanny understanding of electronic 
behavior. 

Some companies won’t let engineers touch a product. A tech is the 
developer’s hands and senses. Though the engineer knows more about 
what the system should do, I imagine the techs have a deeper understand- 
ing of what it does do. 

Too many of us view our profession parochially, somehow feeling 
that college is the only route to design. Part of this probably stems from the 
education itself, where instructors without doctorates cannot become full 
professors. Some comes from our fascination with honors and fancy cer- 
tificates. Doctors and lawyers plaster degrees and awards over the walls to 
impress clients . . . which implies that we, the public, are indeed impressed 
by these paper honors. 

These same doctors and lawyers have very effective professional as- 
sociations that limit entry into the field to those people with a degree- 
from a school approved by the association. It’s a clever way to maximize 
salaries through anticompetitive measures. 

Electronics is very different. We’re in a much younger field, where a 
bit of the anarchy of the Wild West still reigns. More so than in other pro- 
fessions, we’re judged on our ability and our performance. If you can crank 
working designs out at warp speed, then who cares what your scholastic 
record shows? 

And yet, our creations get more complex every day. A 1975-era em- 
bedded system pushed the edge of technology at 4 MHz, yet required little 
of the theoretical knowledge we got in college. One needed the ability to 
read a data book, the experience to know how to create circuits, and the 
ability to make the silly thing work. 

Today’s designs are different. We battle Maxwell’s equations every 
time we propagate a fast signal more than a few inches. Our products’ 
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algorithms rely on Fourier transforms and other advanced mathematical 
concepts. After resisting all of the math they fed us, now I feel a little bit 
like the teenager coming of age-our  professors, like our parents, were 
right after all! 

Other neglected parts of a college education are becoming important. 
One of the most crucial: writing skills. Engineers are notoriously poor 
communicators, yet we’re the folks building the communications age. 
After decades of decline, writing has assumed a new importance in the 
form of email. We’re judged by our composition skills every time we toss 
off a message. 

Of course, few engineering programs focus on writing. It’s as if the 
intent is to produce development androids without the skills needed to “in- 
terface” with the rest of the world. 

Occasionally we hear talk of turning engineering education into more 
of a vocational program. Train students to design systems and nothing 
else! The model fits well into the 1990s’ frenetic preoccupation with get- 
ting results today, and the future be damned. If we agree that a tech, who 
has a VoTech-like education, could be a good engineer, then perhaps 
there’s value to revolutionizing our schools. 

Yet, I worry for the future of our profession. Several forces are shap- 
ing profound and scary changes. 

The first is simply the breathtaking rate of change. Every three years 
or so it seems we’re in a totally new sort of technology. This will only ac- 
celerate, which means the engineer of the future will either have a three- 
year career, or will become adept at anticipating and embracing change. 
More than anything, it means we have to reeducate ourselves daily. 

Yet I talk to engineers every day who spend little to no time keeping 
current. 

Time to market is another force that will change the profession. 
When you’re designing a product, there’s no time to learn how to do it, or 
to master the product’s technology. Companies want experts now. Yet how 
can you be an expert at new technology? This is one reason we see so 
many consultants working in development efforts-they (effectively or 
otherwise) bring new knowledge to bear immediately. Enlightened man- 
agement will find a way to transfer this knowledge to the core employees. 
Sadly, too many can’t see beyond getting the product out the door, never 
investing in growing their skill sets. 

Finally, we see a serious pigeonholing of skills. Are you good at x? 
Then do x! Do it forever! We can always get a new lud to work on the next 
project-after all, you’re the x expert! 
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The complexity of software will only make this worse. Design a 
product, get it out the door, and there’s a good chance you’ll be involved 
in its maintenance forever. 

You’ve got to take charge of your career. Manage it. Keep learning 
and stretching your skill set. 

But I wonder how many techs-turned-engineers have the background 
to keep up in this rapidly advancing world. Similarly, I wonder how many 
college-educated designers remember enough math to understand what’s 
going on. I did a survey recently of several graduate engineers. None could 
integrate a simple function. None remembered much about the transfer 
function of a transistor. Though these were digital folks who work with 
ICs, does this mean that the background and the theory drummed into 
them so long ago is worthless? Does it imply that only the youngest, those 
who haven’t had time to forget, should work on the newest and the most 
complex systems? 

I wish I knew the answer. I’ve tried not to discriminate on the basis 
of a degree, having had some wonderful experiences with very smart, very 
hard-working people who became engineers by the force of their will. But 
over time I see fewer of these. More and more rksumks are filled with BS, 
CS, several minors, one or more masters, and the like. There’s a competi- 
tive pressure that raises the stakes in job seeking. If one degree is good, we 
seem to think more is better. 

Clearly, any large organization will screen non-degreed people out 
before they can demonstrate their (possibly) astonishing abilities. 

Engineering is a very diverse discipline. We need thinkers and doers, 
inventors and implementers, designers and troubleshooters. Sometimes 
one person contains all of these skills, though more often a team comes to- 
gether to complement each other’s skills. The whole is greater than the 
parts. 

When it’s time to hire, most of us look for the standard require- 
ments, probably including some sort of degree. I like to use the SWAN 
model: Smart, Works hard, Ambitious, and Nice. Though hard to gauge at 
an interview, these qualities almost guarantee a decent worker. When hir- 
ing a nun-entry-level person, the SWAN model, coupled with what 
they’ve done in the past, is a far better indicator of success than any 
sheepskin. 

As someone who rejects our fascination with form over substance, I 
think that good, non-degreed engineers are a valuable asset only a fool 
would reject. However, not getting a degree is clearly a mistake. One just 
cannot compete in the job market without this prerequisite. I know-I 
dropped out of college three courses short of a BSEE. 
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Older folks who, by circumstance or bad planning, did not complete 
college should look at other degree options. Check out High Technology 
Degree Alternatives, by Joel Butler (ISBN 0-9 12045-61 -2). 1994, Profes- 
sional Publications. It's full of ideas about getting a degree without quit- 
ting your job or spending a lot of money. 





A Standards 
Monual 

Every day we make a choice: create firmware in a consistent, repeat- 
able way, or just crank out code as whim dictates. Though it is possible to 
build successful products using chaotic and ill-disciplined methods, two 
generations of research shows that ad hoc development ultimately results 
in poor code delivered late. 

No firmware organization can seriously consider itself “professional” 
unless it has a set of standards to which all code is held. Those standards 
must be in writing and absolutely clear. Developers must buy into the con- 
cept of using standards-or be retrained or replaced. Period. Code inspec- 
tions insure every bit of software is audited to the standard. 

Use the following standard intact, or modify it to suit your re- 
quirements. Feel free to download the machine-readable version from 
www.ganssle.com/ades/fsm. html. 

Scope 

This document defines the standard way all programmers will create 
embedded firmware. Every programmer is expected to be intimately fa- 
miliar with the Standard, and to understand and accept these requirements. 
All consultants and contractors will also adhere to this Standard. 

The reason for the Standard is to insure all company-developed 
firmware meets minimum levels of readability and maintainability. 
Source code has two equally important functions: it must work, and it 
must clearly communicate how it works to a future programmer or the 
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future version of yourself. Just as standard English grammar and spelling 
make prose readable, standardized coding conventions ease readability of 
one’s firmware. 

Part of every code review is to insure the reviewed modules and func- 
tions meet the requirements of the Standard. Code that does not meet this 
Standard will be rejected. 

We recognize that no Standard can cover every eventuality. There 
may be times where it makes sense to take exception to one or more of the 
requirements incorporated in this document. Every exception must meet 
the following requirements: 

Clear Reasons-Before making an exception to the Standard, the 
programmer(s) will clearly spell out and understand the reasons in- 
volved, and will communicate these reasons to the project man- 
ager. The reasons must involve clear benefit to the project and/or 
company; stylistic motivations, or programmer preferences and 
idiosyncrasies are not adequate reasons for making an exception. 
Approval-The project manager will approve all exceptions made. 
Documentation-The effected module or function will have the 
exception clearly documented in the comments, so during code 
reviews and later maintenance, the current and future technical 
staff understand the reasons for the exception, and the nature of the 
exception. 

Projects 
Directory Structure 

To simplify use of a version control system, and to deal with unex- 
pected programmer departures and sicknesses, every programmer involved 
with each project will maintain identical directory structures for the source 
code associated with the project. 

The general “root” directory for a project takes the form: 
/proj ec ts/proj ec t-namehorn-name 
where 

“/projects” is the root of all firmware developed by the company. 
By keeping all projects under one general directory, version control 
and backup are simplified and reduce the size of the computer’s 
root directory. 
“/project-name’’ is the formal name of the project under develop- 
ment. 



A Firmware Standards Manual 205 

"/ram-name" is the name of the ROM the code pertains to. One 
project may involve several microprocessors, each of which has 
its own set of ROMs and code. Or a single project may have 
multiple binary images, each of which goes into its own set of 
ROMs. 

Required directories: 

/projects/project-name/tools--compilers. linkers, assemblers used 
by this project. All tools will be checked into the VCS so in 5 to 
10 years, when a change is required, the (now obsolete and un- 
obtainable) tools will still be around. It’s impossible to recompile 
and retest the project code every time a new version of the com- 
piler or assembler comes out; the only alternative is to preserve 
old versions, forever, in the VCS. 

/projects/project-name/rom-name/headers-all header files, such 
as .h or assemble include files, go here. 

/projects/project-namehorn-name/source-source code. This may 
be further broken down into header, C, and assembly directories. 
The MAKE files are also stored here. 

/projects/project-name/rom-name/object-object code, including 
compiler/assembler objects and the linked and located binaries. 

/projects/project-namehorn-namehest-This directory is the one, 
and only one, that is not checked into the VCS and whose 
subdirectory layout is entirely up to the individual programmer. 
It contains work-in-progress, which is generally restricted to a 
single module. When the module is released to the VCS or the 
rest of the development team, the developer must clean out the 
directory and eliminate any file that is duplicated in the VCS. 

Version File 

Each project will have a special module that provides firmware version 
name, version date, and part number (typically the part number on the ROM 
chips). This module will list, in order (with the newest changes at the top of 
the file), all changes made from version to version of the released code. 

Remember that the production or repair departments may have to sup- 
port these products for years or decades. Documentation gets lost and ROM 
labels may come adrift. To make it possible to correlate problems to ROM 
versions, even after the version label is long gone, the version file should 
generate only one bit of “code”-a string that indicates, in ASCII, the cur- 
rent ROM version. Some day in the future a technician-or yourself!-may 
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then be able to identify the ROM by dumping the ROM’s contents. An ex- 
ample definition is: 

# undef VERSION 
# define VERSION “Version 1.30” 

Example: 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* Version Module-Project SAMPLE 

* Copyright 1997 Company 
* All Rights Reserved 

* The information contained herein is confidential 
* property of Company. The use, copying, transfer 
* or 
* disclosure of such information is prohibited 
* except 
* by express written agreement with Company. 

# undef VERSION 
# define VERSION “Version 1.30” 
* 12/18/97-Version 1.3-ROM ID 78-130 

* 

* 

* 

* Modified module AD-TO-D to fix 
* 
* 

scaling 
algorithm; instead of y=mx, it 

* now 
* computes y=mx+b. 
* 10/29/97-Version 1.2-ROM ID 78-120 
* Changed modules DISPLAY-LED and 
* READ-DI P 
* to incorporate marketing’s 
* request for a 
* diagnostics mode. 
* 09/03/97-Version 1.1-ROM ID 78-110 
* Changed module ISR to properly 
* handle 
* non-reentrant math problem. 
* 07/12/97-Version 1.0-ROM ID 78-100 
* Initial release 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Make and Proiect Files 

Every executable will be generated via a MAKE file, or the equiva- 
lent supported by the tool chain selected. The MAKE file includes all of 
the information needed to automatically build the entire ROM image. This 
includes compiling and assembling source files, linking, locating (if 
needed), and whatever else must be done to produce a final ROM image. 

An alternative version of the MAKE file may be provided to gener- 
ate debug versions of the code. Debug versions may include special diag- 
nostic code, or might have a somewhat different format of the binary 
image for use with debugging tools. 

In integrated development environments (like Visual C++) specify a 
PROJECT file that is saved with the source code to configure all MAKE- 
like dependencies. 

In no case is any tool ever to be invoked by typing in a command, as 
invariably command line arguments “accumulate” over the course of a 
project . . . only to be quickly forgotten once version 1.0 ships. 

Sfartup Code 

Most ROM code, especially when a C compiler is used, requires an 
initial startup module that sets up the compiler’s runtime package and ini- 
tializes certain hardware on the processor itself, including chip selects, 
wait states, etc. 

Startup code generally comes from the compiler or locator vendor, 
and is then modified by the project team to meet specific needs of the pro- 
ject. It is invariably compiler- and locator-specific. Therefore, the first 
modification made to the startup code is an initial comment that describes 
the version numbers of all tools (compiler, assembler, linker, and locator) 
used. 

Vendor-supplied startup code is notoriously poorly documented. To 
avoid creating difficult-to-track problems, never delete a line of code from 
the startup module. Simply comment out unneeded lines, being careful to 
put a note in that you were responsible for disabling the specific lines. This 
will ease re-enabling the code in the future (for example, if you disable the 
floating point package initialization, one day it may need to be brought 
back in). 

Many of the peripherals may be initialized in the startup module. Be 
careful when using automatic code generation tools provided by the 
processor vendor (tools that automate chip select setup, for example). 
Since many processors boot with RAM chip selects disabled, always in- 
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clude the chip select and wait state code in-line (not as a subroutine). Be 
careful to initialize these selects at the very top of the module, to allow fu- 
ture subroutine calls to operate, and since some debugging tools will not 
operate reliably until these are set up. 

Stack and Heap Issues 

Always initialize the stack on an even address. Resist the temptation 
to set it to a odd value like Oxffff, since on a word machine an odd stack 
will cripple system performance. 

Since few programmers have a reasonable way to determine maxi- 
mum stack requirements, always assume your estimates will be incorrect. 
For each stack in the system, make sure the initialization code fills the en- 
tire amount of memory allocated to the stack with the value 0x55. Later, 
when debugging, you can view the stack and detect stack overflows by 
seeing no blocks of 0x55 in that region. Be sure, though, that the code that 
fills the stack with 0x55 automatically detects the stack’s size, so a late 
night stack size change will not destroy this useful tool. 

Embedded systems are often intolerant of heap problems. Dynami- 
cally allocating and freeing memory may, over time, fragment the heap to 
the point that the program crashes due to an inability to allocate more 
RAM. (Desktop programs are much less susceptible to this as they typi- 
cally run for much shorter periods of time.) 

So, be wary of the use of the malloc() function. When using a new 
tool chain examine the malloc function, if possible, to see if it implements 
garbage collection to release fragmented blocks (note that this may bring 
in another problem, as during garbage collection the system may not be re- 
sponsive to interrupts). Never blindly assume that allocating and freeing 
memory is cost- or problem-free. 

If you chose to use malloc(), always check the return value and safely 
crash (with diagnostic information) if it fails. 

When using C, if possible (depending on resource issues and pro- 
cessor limitations), always include Walter Bright’s MEM package (www. 
snippets.org/mem.txt) with the code, at least for the debugging. 

MEM provides: 

ISO/ANSI verification of allocationheallocation functions 
Logging of all allocations and frees 
Verifications of frees 
Detection of pointer over- and under-runs. 



A Firmware Standards Manual 209 

Memory leak detection 
Pointer checking 
Out of memory handling 

Modules 
General 

A Module is a single file of source code that contains one or 
more functions or routines, as well as the variables needed to support the 
functions. 

Each module contains a number of reluted functions. For instance, an 
A/D converter module may include all A/D drivers in a single file. Group- 
ing functions in this manner makes it easier to find relevant sections of 
code, and allows more effective encapsulation. 

Encapsulation-hiding the details of a function’s operation, and 
keeping the variables used by the function local-is absolutely essential. 
Though C and assembly language don’t explicitly support encapsulation, 
with careful coding you can get all of the benefits of this powerful idea as 
do people using OOP languages. 

In C and assembly language you can define all variables and RAM 
inside the modules that use those values. Encapsulate the data by defining 
each variable for the scope of the functions that use these variables only. 
Keep them private within the function, or within the module, that uses 
them. 

Modules tend to grow large enough that they are unmanageable. 
Keep module sizes under loo0 lines to insure tools (source debuggers, 
compilers, etc.) are not stressed to the point they become slow or unreli- 
able, and to ease searching. 

Templar fes 

To encourage a uniform module look and feel, create module tem- 
plates named “module-temp1ate.c” and “module-template.asm,” stored in 
the source directory, that become part of the code base maintained by the 
VCS. Use one of these files as the base for all new modules. The module 
template includes a standardized form for the header (the comment block 
preceding all code), a standard spot for file includes and module-wide 
declarations, function prototypes and macros. The templates also include 
the standard format for functions. 

Here’s the template for C code: 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* Module name: 

* Copyright 1997 Company as an unpublished work. 
* All Rights Reserved. 

* The information contained herein is confidential 
* property of Company. The use, copying, transfer 
* or 
* disclosure of such information is prohibited 
* except 
* by express written agreement with Company. 

* First written on xxxxx by xxxx. 

* Module Description: 
* (fill in a detailed description of the module’s 
* function here). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ *  Include section 
* Add all #includes here 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ *  Defines section 
* Add all #defines here 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/ *  Function Prototype Section 
* Add prototypes for all functions called by this 
* module, with the exception of runtime routines. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

* 

* 

* 

* 

* 

* 

* 

The template includes a section defining the general layout of func- 
tions, as follows: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* Function name : TYPE foo(TYPE argl, TYPE arg2) 
* returns : return value description 



A Firmware Standards Manual  21 1 

* argl : description 
* arg2 : description 
* Created by : author’s name 
* Date created : date 
* Description : detailed description 
* Notes : restrictions, odd modes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The template for assembly modules is: 

Module name: 

Copyright 1997 Company as an unpublished work. 
All Rights Reserved. 

The information contained herein is confidential 
property of Company. The use, copying, transfer 
disclosure of such information is prohibited 
except by express written agreement with Company. 

First written on xxxxx by xxxx. 

Module Description: 
(fill in a detailed description of the module 
here). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Include section 
; Add all ‘includes” here 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The template includes a section defining the general layout of func- 
tions, as follows: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Routine name : foobar 
; returns : return value(s) description 
; argl : description of arguments 
; arg2 : description 
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; Created by : author’s name 
; Date created : date 
; Description : detailed description 
; Notes : restrictions, odd modes 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

Module Names 

Though long module names are a wonderful aid to identifying what- 
goes-where, all too many compilers and debuggers don’t properly handle 
names longer than 8 characters. In some cases this may be a fault inherent 
in the object file format or a debugging file. Limit names to 8 characters 
or less. 

Never include the project’s name or acronym as part of each module 
name. It’s much better to use separate directories for each project. 

Big projects may require many dozens of modules; scrolling through 
a directory listing looking for the one containing function main() can be 
frustrating and confusing. Therefore store function main() in a module 
named main.c or main.asm. 

File extensions will be: 

C Source Code 
C Header File 
Assembler files 
Assembler include files 
Object Code 
Libraries 
Shell Scripts 
Directory Contents 
Build rules for make 

Fi1eName.c 
FileName. h 
FileName.asm 
FileNamehc 
FileName.obj 
FileName.lib 
FileName. bat 
README 
Project . mak 

Variables 

Names 

Regardless of language, use long names to clearly specify the vari- 
able’s meaning. If your tools do not support long names, get new tools. 

Separate words within the variables by underscores. Do not use cap- 
ital letters as separators. Consider how much harder IcantReadThis is on 
the eyes versus I-can-read-this. 
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The ANSI C specification restricts the use of names that begin with 
an underscore and either an uppercase letter or another underscore 
(-[A-Z-][O-9A-Za-z-]). Much compiler runtime code also starts with lead- 
ing underscores. To avoid confusion, never name a variable or function 
with a leading underscore. 

These names are also reserved by ANSI for its future expansion: 

E[O-9A-Z] [0-9A-Za-z] * 
is[a-z][O-9A-Za-z]* 
to[a-z] [O-9A-Za-z]* 
LC-[O-9A-Za-z-] * 
SIG[-A-Z] [0-9A-Za-z-l* 
str[a-z] [0-9A-Za-z-]* 
mem[a-z] [0-9A-Za-z-] * 
wc s [ a-z] [0-9A-Za-z-] * 

errno values 
Character classification 
Character manipulation 
Locale 
Signals 
String manipulation 
Memory manipulation 
Wide character manipulation 

Global Variarbles 
All too often C and especially assembly programs have one huge 

module with all of the variable definitions. Though it may seem nice to 
organize variables in a common spot, the peril is these are all then global 
in scope. Global variables are responsible for much undebuggable code, 
reentrancy problems, global warming, and male pattern baldness. Avoid 
them! 

Real time code may occasionally require a few-and only a few- 
global variables to insure reasonable response to external events. Every 
global variable must be approved by the project manager. 

When globals are used, put all of them into a single module. They are 
so problematic that it's best to clearly identify the sin via the name globa1s.c 
or globals.asm. 

Portcrbility 

Don't assume that the address of an int object is also the address of 
its least-significant byte. This is not true on big-endian machines. Thus, 
don't make the following mistake: 

int c; 
while ( ( c  = getchar()) ! =  EOF) 
writelfile-descriptor, &c, 1); 
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Functions 

Regardless of language, keep functions small! The ideal size is less 
than a page; in no case should a function ever exceed two pages. Break 
large functions into several smaller ones. 

The only exception to this rule is the very rare case where real time 
constraints (or sometimes stack limitations) mandate long sequences of in- 
line code. The project manager must approve all such code. . . but first 
look hard for a more structured alternative! 

Explicitly declare every parameter passed to each function. Clearly 
document the meaning of the parameter in the comments. 

Define a prototype for every called function, with the exception of 
those in the compiler’s runtime library. Prototypes let the compiler catch 
the all-too-common errors of incorrect argument types and improper num- 
bers of arguments. They are cheap insurance. 

In general, function names should follow the variable naming proto- 
col. Remember that functions are the “verbs” in programs-they do things. 
Incorporate the concept of “action words” into the variables’ names. For 
example, use “read-A/D” instead of “A/D-data,” or “send-to-LCD’ in- 
stead of “LCD-out.” 

Interrupt Sewice Routines 

ISRs, though usually a small percentage of the code, are often the 
hardest bits of firmware to design and debug. Crummy ISRs will destroy 
the project schedule! 

Decent interrupt routines, though, require properly designed hard- 
ware. Sometimes it’s tempting to save a few gates by letting the external 
device just toggle the interrupt line for a few microseconds. This is unac- 
ceptable. Every interrupt must be latched until acknowledged, either by 
the processor’s interrupt-acknowledge cycle (be sure the hardware acks 
the proper interrupt source), or via a handshake between the code and the 
hardware. 

Use the non-maskable interrupt only for catastrophic events, like the 
apocalypse or imminent power failure. Many tools cannot properly debug 
NMI code. Worse, NMI is guaranteed to break non-reentrant code. 

If at all possible, design a few spare I/O bits in the system. These are 
tremendously useful for measuring ISR performance. 

Keep ISRs short! Long (too many lines of code) and slow are the 
twins of ISR disaster. Remember that long and slow may be disjoint; a five- 
line ISR with a loop can be as much of a problem as a loop-free 500-line 
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routine. When an ISR grows too large or too slow, spawn another task and 
exit. Large ISRs are a sure sign of a need to include an RTOS. 

Budget time for each ISR. Before writing the routine, understand just 
how much time is available to service the interrupt. Base all of your cod- 
ing on this, and then measure the resulting ISR performance to see if you 
met the system’s need. Since every interrupt competes for CPU resources, 
that slow ISR that works is just as buggy as one with totally corrupt code. 

Never allocate or free memory in an ISR unless you have a clear un- 
derstanding of the behavior of the memory allocation routines. Garbage 
collection or the ill-behaved behavior of many runtime packages may 
make the ISR time non-deterministic. 

On processors with interrupt vector tables, fill every entry of the 
table. Point those entries not used by the system to an error handler, so 
you’ve got a prayer of finding problems due to incorrectly programmed 
vectors in peripherals. 

Though non-reentrant code is always dangerous in a real-time sys- 
tem, it’s often unavoidable in ISRs. Hardware interfaces, for example, are 
often non-reentrant. Put all such code as close to the beginning of the ISR 
as possible, so you can then re-enable interrupts. Remember that as long as 
interrupts are off the system is not responding to external requests. 

Comments 

Code implements an algorithm; the comments communicate the 
code’s operation to yourself and others. Adequate comments allow you to 
understand the system’s operation without having to read the code itself. 

Write comments in clear English. Use the sentence structure Miss 
Grandel tried to pound into your head in grade school. Avoid writing the 
Great American Novel; be concise yet explicit . . . but be complete. 

Avoid long paragraphs. Use simple sentences: noun, verb, object. 
Use active voice: “Start-motor actuates the induction relay after a 4 second 
pause.” Be complete. Good comments capture everything important about 
the problem at hand. 

Use proper case. Using all caps or all lowercase simply makes the 
comments harder to read. 

Enter comments in C at block resolution and when necessary to clar- 
ify a line. Don’t feel compelled to comment each line. It is much more nat- 
ural to comment groups of lines which work together to perform a macro 
function. However, never assume that long variable names create “self- 
documenting code.” Self-documenting code is an oxymoron, so add 
comments where needed to make the firmware’s operation crystal clear. It 
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should be possible to get a sense of the system’s operation by reading only 
the comments. 

Explain the meaning and function of every variable declaration. 
Every single one. Explain the return value, if any. Long variable names are 
merely an aid to understanding; accompany the descriptive name with a 
deep, meaningful, prose description. 

Comment assembly language blocks and any line that is not crystal 
clear. The worst comments are those that say “move AX to BX’  on a 
MOV instruction! Reasonable commenting practices will yield about one 
comment on every other line of assembly code. 

Though it’s useful to highlight sections of comments with strings of 
asterisks, never have characters on the right side of a block of comments. 
It’s too much trouble to maintain proper spacing as the comments later 
change. In other words, this is not allowed: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* This comment incorrectly uses right-hand * 
* asterisks * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The correct form is: 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* This comment does not use right-hand 
* asterisks 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Coding Conventions 

No line may ever be more than 80 characters. 
Don’t use absolute path names when including header files. Use the 

form #include <module/name> to get public header files from a 
standard place. 

Never, ever use “magic numbers.” Instead, first understand where the 
number comes from, then define it in a constant, and then document your 
understanding of the number in the constant’s declaration. 

Spacing and hdentation 

Put a space after every keyword, unless a semicolon is the next char- 
acter, but never between function names and the argument list. 
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Put a space after each comma in argument lists and after the semi- 
colons separating expressions in a for statement. 

Put a space before and after every binary operator (like +, -, etc.). 
Never put a space between a unary operator and its operand (e.g., unary 
minus). 

Put a space before and after pointer variants (star, ampersand) in de- 
clarations. Precede pointer variants with a space, but have no following 
space, in expressions. 

Indent C code in increments of two spaces. That is, every indent level 
is two, four, six, etc. spaces. Indent with spaces, never tabs. 

Always place the # in a preprocessor directive in column I .  

Never nest IF statements more than two deep; deep nesting quickly 
becomes incomprehensible. It’s better to call a function, or even better to 
replace complex IFs with a SWITCH statement. 

Place braces so the opening brace is the last thing on the line, and 
place the closing brace first, like: 

if (result > a-to-d) { 

do a bunch of stuff 
1 

Note that the closing brace is on a line of its own. except when it is 

do I 

followed by a continuation of the same statement, such as: 

body of the loop 
} while (condition); 

When an i f -else statement is nested in another i f statement, al- 
ways put braces around the i f -el se to make the scope of the first i f 
clear. 

When splitting a line of code, indent the second line like this: 

function(f1oat argl, int arg2, long arg3, 
int arg4) 

if (long-variable-name && constant-of-some-sort == 
2 

&& another-condition) 
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Use too many parentheses. Never let the compiler resolve prece- 

Never make assignments inside i f  statements. For example, don’t 
dence; explicitly declare precedence via parentheses. 

write: 

if ((foo = (char * )  malloc(sizeof *foo)) == 0 )  
fatal ( “virtual memory exhausted” ) ; 

instead. write: 

foo = (char * )  malloc(size0f *fool; 
if (foo == 0 )  

fatal ( “virtual memory exhausted” 1 

If you use # i f def to select among a set of configuration options, 
add a final #else clause containing an #error directive so that the 
compiler will generate an error message if none of the options has been 
defined: 

#ifdef sun 
#define USE-MOTIF 
#elif hpux 
#define USE-OPENLOOK 
#else 
#error unknown machine type 
#endif 

Assembly Formatting 

Tab stops in assembly language are as follows: 

Tab 1: column 8 
Tab 2: column 16 
Tab 3: column 32 

Note that these are all in increments of 8, for editors that don’t sup- 
port explicit tab settings. A large gap-16 columns-is between the 
operands and the comments. 

Place labels on lines by themselves, like this: 

label : 
mov rl, r2 ; rl=pointer to I/O 
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Precede and follow comment blocks with semicolon lines: 

; Comment block that shows how comments stand 
; out from the code when preceded and followed by 
; “blank“ lines. 

Never run a comment between lines of code. For example, do not 
write like this: 

mov rl, r2 ; Now we set rl to the value 
add r3, [data] ; we read back in read-ad 

Instead, use either a comment block, or a line without an instruction, 
like this: 

mov rl, r2 ; Now we set rl to the value 

add r3, [datal 
; we read back in read-ad 

Be wary of macros. Though useful, macros can quickly obfuscate 
meaning. Do pick very meaningful names for macros. 

Tools 
Computers 

Do all PC-hosted development on machines running Windows 95 or 
NT only, to insure support for long file names, and to give a common OS 
between all team members. 

If development under a DOS environment is required, do it in a Win 
95/NT DOS window. 

Maintain every bit of code under a version control system. In addi- 
tion, the current compiler, assembler, linker, locator (if any) and debug- 
ger(s) will be checked into the VCS. Products have lifetimes measured in 
years or even decades, while tools tend to last months at best before new 
versions appear. It’s impossible to recompile and retest all of the product 
code just because a new compiler version is out, so you’ve got to save the 
toolchain, under VCS lock and key. 

The only downside of including tools in the VCS files is the additional 
disk space required. Disks are cheap; when more free space is required sim- 
ply buy a larger disk. It’s false economy to limp by with inadequate disk 
space. 
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Compilers et a/. 
Leave all compiler, assembler, and linker warnings and error mes- 

sages enabled. The module is unacceptable until it compiles cleanly, with 
no errors or warning messages. In the future a warning may puzzle a pro- 
grammer, wasting time as he attempts to decide if it’s important. 

Write all C code to the ANSI standard. Never use vendor-defined 
extensions, which create problems when changing compilers. 

Never, ever, change the language’s syntax or specification via macro 
substitutions. 

Debugging 

You have a choice: plan for bugs before writing the code, and build a 
debuggable product, or (surprise!) find bugs during test in a system that is 
impossible or difficult to troubleshoot. Expect bugs, and be bug-proactive 
in your design. 

If at all possible, in all systems with a parts cost over a handful of dol- 
lars, allocate at least two, preferably more, parallel YO bits to trouble- 
shooting. Use these bits to measure ISR time (set one high on ISR entry 
and low on exit; measure time high on a scope), time consumed by other 
functions, idle time, and even entry/exit to functions. 

If possible, include a spare serial port in the design. Then add a mon- 
itor-preferably a commercial product, but at least a low-level monitor 
that gives you some access to your code and hardware. 

Debugging tools are notoriously problematic-unreliable, buggy, 
with long repair times. As CPU speeds increase the problems increase. Yet 
these tools are indispensable. Select a dual, complementary, debugging 
toolchain: perhaps an emulator and a monitor. Or an emulator and a back- 
ground debugger. Be sure that both sets of tools use a common GUI. This 
will minimize the time needed to switch between tools, and will insure 
there will be no file conversion problems (debuggers use many hundreds 
of incompatible debug file formats). 

When selecting tools, evaluate the following items: 

Support-is the vendor responsive and knowledgeable? Is the ven- 
dor likely to be around in a few months or years? If the unit fails, 
what is the guaranteed repair time? 
Intrusion-how much does the tool intrude on the system’s oper- 
ation? What is the impact on debugging strategies and develop- 
ment time? 
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Does the tool run at full target speed, or will you have to slow 
things down? What is the impact? 
Will the mechanical connection between the tool and the target be 
reliable? It’s quite tough to get a decent connection to many mod- 
ern SMT and BGA processors. 
IntenuptsDMA-Will the tool let you debug ISRs? Are interrupts/ 
DMA ever disabled unexpectedly? If the tool does not respond to 
intermpts/DMA when stopped at a breakpoint (very common), will 
this have a deleterious effect on your debugging? 
Tasking-If the product uses an RTOS, the tool must provide 
some support for that RTOS. Insure that the debugger itself is 
aware of the RTOS, and can display important task constructs in 
a high-level format. What happens if you set a breakpoint on a 
t a s k 4 0  the others continue to run? If not, what impact will this 
have on your development? 
Internal peripherals-Is the tool aware of the CPU’s internal pe- 
ripherals? Many are; they let you look at the function of the periph- 
erals at a very high level. Do timers stop running at a breakpoint 
(common)? Will this cause development problems? 

Be wary of doing all of your development with the tool’s down- 
loader. Burn a ROM from time to time to make sure the code itself runs 
properly from ROM, and to insure the product properly addresses the 
ROMs. 

Leave all debugging resources in the product when it ships. Disable 
them via a software flag so they lie latent, ready for action in case of a 
problem. Remember the Mars Pathfinder: JPL diagnosed and fixed a pri- 
ority inversion bug while the unit was on Mars, using the RTOS’s trace 
debug feature, which had been left in the product. 





APPENDIX B 
A Simple Drawing 
System 

Just as firmware standards give a consistent framework for creating 
and managing code, a drawing system organizes hardware documentation. 
Most middle- to large-sized firms have some sort of drawing system in 
place; smaller companies, though, need the same sort of management tool. 

Use the following standard intact or modified to suit your require- 
ments. Feel free to download the machine-readable version from www. 
ganssle.com/ades/dwg.html. 

Scope 

This document describes a system that: 

guarantees everyone has, and uses, accurate engineering docu- 
ments. 
manages storage of such documents and computer files to make 
their backup easy and regular. 
manages the current configuration of each product. 

The system outlined is primarily a method to describe exactly what 
goes into each product through a system of drawings. A top-level configu- 
ration drawing points to lower-level drawings, each of which points to spe- 
cific parts and/or even lower-level drawings. After following the “pointer 
chain” all the way down to the lowest level, one will have access to: 

Complete assembly drawings including mod lists. 
A complete parts list. 

223 
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By reference, to other engineering documents like schematics and 
source files. 

The system works through a network of Bills of Materials (BOMs), 
each of which includes the pointers to other drawings, or the part numbers 
of bit pieces to buy and build. 

Our primary goal is to build and sell products, so the drawing system 
is tailored to give production all of the information needed to manufacture 
the latest version of a product. However, keeping in mind that we must 
maintain an auditable trail of engineering support information, the system 
always contains a way to access the latest such information. 

Drawings and Drawing Storage 

Definitions 

The term “drawing” includes any sort of documentation required to 
assemble and maintain the products. Drawings can include schematics, 
BOMs, assembly drawings, PAL and code source files, etc. 

A “Part” is anything used to build a product. Parts include bit pieces 
like PC boards and chips, and may even include programmed PALS and 
ROMs. A part may be described on a drawing by a part number (like 
74HCT74), or by a drawing number (in the case of something we build or 
contract to build). 

Druwing Notes 

Every drawing has a drawing number associated with it. This number 

Company documentation: WOO1 to W 9 9  
Configuration drawings: W500 to #0999 
Product line “A”: #lo00 to #1999 
Product line “B”: #2000 to #2999 
Product line “C”: #3000 to #3999 

Every drawing has a revision letter associated with it, and marked 
clearly upon it. Revision letters start with the letter ‘A’ and proceed to ‘Z’. 
If there are more than 26 revisions, after ‘2’ comes ‘AA’, then ‘AB’, etc. 

The first release of any drawing is to be marked revision ‘A’. There 
are to be no drawings with no revision letters. 

Every drawing will have the date of the revision clearly marked upon 
it, with the engineer’s initials or name. 

is organized by product series, as follows: 
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Every drawing will have a master printed out and stored in the 
MASTERS file. The engineer releasing the drawing or the revision will 
stamp the Master with a red MASTER stamp, and will fill in a date field 
on that stamp. 

Though in many cases both electronic and paper copies of drawings 
(like for a schematic) exist, the paper copy is always considered the 
MASTER. 

Drawing numbers are always four-digit numerics, prefixed by the “#” 
character. 

Storage 

All Master drawings and related documentation will be stored in the 
central repository. Master computer files will be stored on network drive in 
a directory (described later). 

Everyone will have access to Master drawings and files. These are to 
be used for reference only; no one may take a Master drawing from the 
central repository for any purpose except for the following: 

Drawings may be removed to be photocopied. They must be returned 
immediately (within 30 minutes) to the central repository. 

Drawings may be removed by an engineer for the sole reason of 
updating them, to incorporate ECOs or otherwise improve their accuracy. 
However, drawings may be removed only if they will be immediately up- 
dated; you may not pull a Master and “forget” about it for a few days. It 
is anticipated that, since most of our drawings are generated electroni- 
cally, a master will usually just be removed and replaced by a new version. 
See “Obsolete Drawings” for rules regarding the disposition of obsoleted 
drawings. 

Artwork may be removed to be sent out for manufacturing. However, 
all POs sent to PC vendors must require “return of artwork and all films.” 
He who pulls the artwork or film is responsible to see that the PO has this 
information. Returned art must be immediately refiled. 

All drawings will be stored in file folders in a “Master Drawing” file 
cabinet. Those that are too big to store (like D size drawings) will be 
folded. Drawings will be filed numerically by drawing number. 

Artwork will be stored in a flatfile, stored within their protective 
paper envelopes. Every piece of artwork and film will have a drawing 
number and revision marked on both the adfilm, and on the envelope. If 
it is not convenient to make the art marking electronically, then use a 
magic marker. 
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Storage-Obsoleted Drawings 

Every Master drawing that is obsoleted will be removed from the cur- 
rent Master file and moved to an Obsolete file. Obsoleted drawings will be 
filed numerically by drawing number. Where a drawing has been obsoleted 
more than once, each old version will be substored by version letter. 

The Master will be stamped with a red OBSOLETE stamp. Enter the 
date the drawing is canceled next to the stamp. Thus, every Obsolete draw- 
ing will have two red stamps: MASTER (with the original release date) 
and OBSOLETE (with the cancellation date). 

If old ECOs are associated with the Obsoleted drawing, be sure they 
remain attached to it when it is moved to the Obsolete file. 

Obsoleted artwork and films will be immediately destroyed. 
Sometimes one makes a small modification to a Master drawing to 

incorporate an ECO-say, if a hand-drawn PC board assembly drawing 
changes slightly. In this case duplicate the Master before making the change, 
stamp the duplicate OBSOLETE, and file the duplicate. 

The reason for saving old drawings is to preserve historical informa- 
tion that might be needed to update/fix an old unit. 

Master Drawing Book 

Whenever a drawing is released or updated, the Master Drawing Book 
will be modified by the releasing engineer to reflect the new information. 

The Master Drawing Book is a looseleaf binder stored and kept with 
the Master drawing file. The Master Drawing Book lists every drawing we 
have by number and its current revision level. In addition, if one or more 
ECOs is current against a drawing, it will be listed along with a brief one- 
line description of what the ECO is for. 

Just as important, the Master Drawing Book lists the name of the 
electronic version of a drawing. This name is always the name of the file(s) 
on the network drive, with the associated directory path listed. 

Note that the “Dash Number” (described later under “Bills of Mate- 
rials”) is not included in the list, since one drawing might have many dash 
numbers. 

Dwg # Revision Rev date Title Filename 

#lo00 A 8- 1-97 Prod A BOM PRODA-ASSY 

Thus, the drawing list looks like: 

ECO: PRODA.A.3 Stabilize clock PROD AECO . A 
ECO: PR0DA.A. 1 Secure cables PRODAEC0.A 

#loo1 B 8-2-97 Prod A Baseplate PRODA-BASE 
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As drawings are updated the ECOs will no longer apply, and should 
then be removed from the book. 

Note that after each BOM drawing number there is a list of dash 
numbers that describe what each configuration of the drawing is. 

A section at the end of the book will contain descriptions of “Spe- 
cials”-units we do something weird to to make a customer happy. If we 
give someone a special PAL, document it with the source code and notes 
about the unit’s serial number, date, etc. A copy of this goes in the unit’s 
folder. It is the responsibility of the technician to insure that the folder and 
Master Drawing Book are updated with “special” information. 

The Master Drawing Book master copy will be stored as file name 
ENGINEER\DOCS\MDB.DOC. and is maintained in Word. 

Configuration Drawings 

Every product will have a Configuration Drawing associated with it. 

Currently, the following Configuration Drawings should be supported: 
These Drawings essentially identify what goes into the shipping box. 

Dwg # Description 

#050 1 
-1 
-2 
-3 
#I0502 
W503 
-1  
-2 
-3 

Product A 
256k RAM option 
1 Mb RAM option 
50 MHz option 
Product B 
Product C 
256k RAM option 
1 Mb RAM option 
50 MHz option 

The “dash numbers” are callouts to Bills of Materials for variations 
on a standard theme. 

The Configuration Drawing is a BOM (see section on BOMs). As 
such, it calls out everything shipped to the customer. Items to be included 
in the Configuration Drawing include: 

The unit itself (perhaps with dash numbers as above) 
Manual (with version number) 
Software disk 
Paper warranty notice 
FCC notice 
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Thus, starting with the Configuration Drawing, anyone can follow 
the “pointer trail” of BOMs and parts/drawings to figure out how to buy 
everything needed to make a unit, and then how to put it together. 

Bills of Materials 

A Bill of Material (BOM) lists every part needed for a subassembly. 
The Drawing System really has only three sorts of drawings: BOMs, 

drawings for piece parts, and other engineering documentation. A piece 
part drawing is just like a part: it is something we build or buy and incor- 
porate into a subassembly. As such, every piece part drawing is called out 
on a BOM, as is every piece part we purchase (like a 74HCT74). The part 
number of a piece part made from a drawing is just the drawing number 
itself. So, if drawing #1122 shows how to mill the product’s baseplate, 
calling out part #1122 refers to this part. 

“Other engineering documentation” refers to schematics, test proce- 
dures, modification drawings, ROMPAL drawings, and assembly draw- 
ings (pictorial representations of how to put a unit together). None of these 
call out parts to buy, and therefore are always referenced on any BOM with 
a quantity of 0. 

A piece part drawing can never refer to other parts; it is just one 
“thingy.” A BOM always refers to other parts, and is therefore a collection 

One BOM might call out another BOM. For example, the product A 
top-level BOM might call out parts (like the unit’s box), drawings (like the 
baseplate), and a number of other BOMs (one per circuit board). In other 
words, one BOM can call out another as a part (i.e., a subassembly). 

Though all BOMs have conventional four-digit drawing numbers, 
everything that refers to a BOM does so by appending a “dash number.” 
That is, BOM #I234 is never called out on some higher-level drawing as 
“#1234”; rather, it would be “#1234-1” or “#1234-2”, etc. 

The dash number has two functions. First, it identifies the called out 
item as yet another subassembly. Any time you see a number with the dash 
number like this, you know that item is a subassembly. 

The second reason is more important. The dash numbers let one 
drawing refer to several variations on a design. For example, if the BOM 
for the “Option A Memory Board” is drawing # low,  then #1000-1 might 
refer to 128k RAM and #1000-2 to 1 Mb RAM. The design is the same, so 
we might as well use the same drawings. The configuration is just a little 
different; one drawing can easily call out both configurations. 

A good way to view the drawing system is as a matrix of pointers. 

of parts. 
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The Top Level Configuration Drawing (which is really a BOM) calls out 
subassemblies by referring to each with a drawing number with a dash suf- 
fix-a sort of pointer. Each subassembly contains pointers to parts or more 
levels of indirection to further BOMs. This makes it easy to share drawings 
between projects; you just have to monkey with the pointers. The dash 
numbers insure that every configuration of a project is documented, not 
just the overall PC layout. 

BOM Format 

BOMs are never “pictures” of anything-they are always just Bills of 
Materials (Le., parts lists). The parts list includes every part needed to 
build that subassembly. Some of the parts might refer to further sub- 
assemblies. 

The parts list of the BOM has the following fields: 

Item number (starting at 1 and working up) 
Quantity used, by dash number 
Part (or drawing) number 
Description 
Reference tie., U number or whatever) 

Here is an example of a BOM #IOOO, with three dash number options. 
This is a portion of a memory option board BOM with several different 
memory configurations: 

I tern 

I 

3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 

7 

Qty 
-1 
#1000-1 

1 
8 
1 
8 

1 
L 

Part # 

-2 -3 

#1000-2 
## 1000-3 

#1892 
#I234 
# I 1 1 1  

1 I #I221 
8 8 Apl123 
1 1 74F373 

8 621 128 
2 624000 

62256 

APC3322 

Description 

OPTION board 256k 
OPTION board 1 mb 
OPTION board 4 mb 
OPTION ass’y 
OPTION schematic 
Test Procedure 
OPTION PCB 
32 pin socket 
IC 
Static RAM 
Static RAM 
Static RAM 
Jumper 

2 2 APC3322 Jumper 

Ref 

u1-8 
u10 
u1-8 
U1-8 
u1-2 
J1,2 
J3,4 
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First, note that each of the three BOM types (Le., dash numbers) is 
listed at the beginning of the parts list. A column is assigned to each dash 
number; the quantities needed for a particular dash number are in this col- 
umn. That is, there is a “quantity” column for each BOM type. 

The first three entries, one per dash number, simply itemize what 
each dash number is. The quantity must be zero. 

Each dash number column contains all quantity information to make 
that particular variation of the BOM. 

Next, notice that drawing “#1892” is called out with a quantity of 0. 
Drawing #1892 shows how the parts are stuffed into the board, and is 
essential to production. However, it cannot call parts that must be bought, 
so it always has a quantity of 0. 

The schematic and test procedure are listed, even though these are 
not really needed to build the unit. This is how all non-production engi- 
neering documents are linked into the system. All schematics, test proce- 
dures, and other engineering documentation that we want to preserve 
should be listed, but the quantity column should show 0. Notice also that a 
drawing number is assigned even to the test procedure. This insures that 
the test procedure is linked into the system and maintained properly. 

The first column is the “item number.” One number is assigned to 
each part, starting from 1 and working up. This is used where a mechani- 
cal drawing points out an item; in this case the item number would be in a 
circle, with an arrow pointing to the part on the drawing. It forms a cross 
reference between the pictorial stuffing drawing and the parts list. In 
most cases most item numbers will not have a corresponding circle on the 
drawing. 

All jumpers that are inserted in the board are listed along with how 
they should be inserted (by the reference designator). This is the only doc- 
umentation about board jumpering we need to generate. 

Note that no modifications to the PCBs are listed. PC board modifi- 
cations are to be listed on a separate “Mod” drawing, which is also refer- 
enced with a quantity of zero on the BOM. 

ROMs and PALS 

Every ROM and PAL used in a unit will be called out by two entries 
in the parts list columns of the PC board BOM. The first entry calls out the 
device part number (like GAL22V10) and associated data so purchasing 
can buy the part. The second entry, which must follow right after the first, 
calls out a ROM or PAL BOM. 
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The ROM or PAL BOM will be called out with quantity of 0. This 
procedure really violates the definition of the drawing system, but it dras- 
tically reduces the number of drawings needed by production to build a 
unit. 

On the PC board BOM, the callout for a ROM or PAL will look like: 

Item Qty Part # Description Ref 

I 1 GAL22V10 PAL U19 
2 0 #1234-1 (MASTERSU’RODAW-Ul9.PDS) B9 

Thus, the first entry tells us what to buy and where to put it; the sec- 
ond refers to engineering documentation and the current checksum. For a 
ROM, list the version number instead of the checksum. The description 
field for the part must also include the ROM or PAL’S file name in paren- 
theses, with directory on the lab computer. 

ROMs, PALS, and SLD will be defined via BOMs, since these ele- 
ments are really composed of potentially numerous sets of documentation. 
The ROM/PAL/SLD drawing will form the basic linkage to all source 
code files used in their creation. 

The primary component of a PALEOM drawing is of course the de- 
vice itself. Other rows will list the files needed to build the ROM or PAL. 

Where two ROMs are derived from one set of code (like EVEN and 
ODD ROMs), these will both be on the same drawing. 

An example ROM follows: 

Item Qty Part# Description Ref 

- 1  
1 1234- 1 64 1 80 P-bd ROM U9 

1 27256- 10 EPROM, 100 nsec 
2 PRODA.MAK-make file proda\code 

Note that in this part list the EPROM itself is called out by conven- 
tional part number, but the quantity is 0 (since a quantity was called out on 
the PC board BOM that referenced this drawing). 

A ROM, PAL, or SLD drawing calls out the ingredients of the de- 
vice. In this case, the software’s MAKE is listed so there’s a reference 
from the hardware design to the firmware configuration. 

If other engineering documentation exists, it should be referred to as 
well. This could include code descriptions, etc. 

The last column contains the directory where these things are stored 
on the network drive. 
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The goal of including all of this information is to form one repository 
which includes pointers to all important parts of the component. 

ROM and PAL File Names 

All PALs and ROMs will have filenames defined by the conventions 

PALs are named: <board>-UcU numben.J<checksum> 
ROMs are named: <board>-UcU numben.Vcversion> 
Thus, you can tell a ROM from a PAL from the extension, whose 

Legal <board> names are: (limited to one character) 

M - main board 
P - option A board 
T - option B board 

Examples: 

M-U 10.JAB 
M-U 1 .J 12 

outlined here. 

first character is a V for a ROM or a J for a PAL. 

main board, U10, checksum=AB 
main board, U 1, checksum= 12 

Engineering Change Orders (ECOs) 

ECOs will be issued as required, in a timely fashion to insure all 
manufacturing and engineering needs are satisfied. 

Every ECO is assigned against a drawing, not against a problem. 
You may have to issue several ECOs for one problem, if the change affects 
more than one drawing. 

The reason for issuing perhaps several ECOs (one per drawing) is 
twofold. First, production builds units from drawings. They should not 
have to cross reference to find how to handle drawings. Secondly, engi- 
neering modifies drawings one at a time. All of the information needed to 
fix a drawing must be associated with the drawing in one place. 

Each ECO will be attached to the affected drawing with a paperclip. 
The ECO stays attached only as long as the drawing remains incorrect. 
Thus, if you immediately fix the master (say, change the PAL checksum 
on the drawing), then the ECO will be attached to the newly Obsoleted 
Master, and filed in the Obsolete file. 

If the ECO is not immediately incorporated into, say, a schematic, 
then the person issuing the ECO will pencil the change onto the Master 
drawing, so the schematic always reflects the way the unit is currently 
built. 
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In addition, if the ECO is not immediately incorporated into the 
drawing, the engineer issuing the ECO will mark the Master Drawing 
Book with the ECO and a brief description of the reason for the ECO, as 
follows: 

Dwg # Title Revision Rev Date Filename 

ECO: PRODA.A.3 Stabilize clk PRODA.A.3 
ECO: PR0DA.A. 1 Secure cables PR0DA.A. 1 

#3000 ProdABOM A 8- 1-97 PRODA-ASSY 

Note that the filename of the ECO is included in the Master Drawing 
Book. 

When the ECO is incorporated into the drawing, remove the ECO an- 
notation from the Master Drawing Book, as it is no longer applicable. 

NEVER change a drawing without looking in the master repository 
to see if other ECOs are outstanding against the drawing. 

Every change gets an ECO, even if the change is immediately incor- 
porated into a drawing. In this case, follow the procedure for obsoleting 
a drawing. This provides a paper audit trail of changes, so we can see why a 
change was made, and what the change was. 

Every ECO will result in incrementing the version numbers of all af- 
fected drawings. This includes the Configuration drawing as well. To keep 
things simple, you do not have to issue an ECO to increment the Configu- 
ration version number. We do want this incremented, though, so we can 
track revision levels of the products. Add a line to the Master Drawing 
Book listing the reason for the change and the new revision level of the 
Configuration, as well as a list of affected drawings. This forms back 
pointers to old drawings and versions. Though we remove old ECO history 
from our drawings, never remove it from the Configuration drawing’s 
Master Drawing Book entry, as this will show the product’s history. 

The Master Drawing Book entry for an ECO’d Configuration draw- 
ing will look like: 

Dwg # Revision Rev date Title 

W600 A 8- 1-97 Prod A Configuration PRODA-ASSY 

Filename 

B 8-2-97 Mod clock circuit to be more stable 

C 8-3-97 Secure cables better 
( 1OOO- 1, 1234 modified) 

Sometimes a proposed ECO may not be acceptable to production. 
For example, a proposed mod may be better routed to different chip pins. 
Therefore, the engineer making an ECO must consult with production 
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before releasing the ECO. (This avoids a formal (and slow) system of 
controlled ECO circulation.) 

A decision must be made as to how critical the ECO is to production. 
The engineer issuing the ECO is authorized to shut down production, if 
necessary, to have the ECO incorporated in units currently being built. 

Thus, to issue an ECO: 

Fill out the ECO form, one per drawing, and distribute it to pro- 
duction and all affected engineers. 
If you don’t immediately fix the drawing, clip it to the affected 
drawing and mark the Master Drawing Book as described. 
If necessary, pencil the changes onto the Master drawing. 
Increment the Configuration Drawing version number immedi- 
ately. Add a line to the Master Drawing Book after the Configura- 
tion drawing entry describing the reason for the change, and listing 
the affected drawings. 
If the change is a mod, consult with production on the proposed 
routing of the mod. 
If the change is critical, instruct production to incorporate it into 
current work-in-progress. 
Remember that most likely several drawings will be affected: a 
new mod will affect the schematic and the BOM that shows the 
mod list. 

To incorporate an ECO into a drawing: 

Make whatever changes are needed to incorporate ALL ECOs 
clipped to that drawing. 
Revise the version letter upwards. 
Generate a new Master drawing, and Obsolete the old Master. 
Delete the ECO file from the network drive. 
Revise the Version letter on the Configuration drawing. 

Responsi bilities 
The engineer making a change is responsible to insure that change is 

propagated into the drawing system, and that the information is dissemi- 
nated to all parties. He/she is responsible for filing the drawings, removing 
and refiling obsoleted drawings, stamping MASTER or OBSOLETE, etc. 

The engineer making the change must update production’s master 
ROMPAL computer with current programming files, and the drawings 
with checksums and versions as appropriate. The engineer must immedi- 
ately also update the network drive, and pass out ECOs. 
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Nothing in this precludes the use of clerical staff to help. However, 
final responsibility for correctness lies with the engineer making changes. 

The Master Drawing Book does contains information about “Spe- 
cials” we’ve produced. The manufacturing technician is responsible to 
insure that all appropriate information is saved both in this Book and in 
the unit’s folder. 

The production lab MUST maintain an accurate, neat book of 
CURRENT BOMs, to insure the units are built properly. Every change 
will result in an ECO; the lab must file that promptly. 
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Code Inspections (continued) 
miscellaneous points, 20-22 
overview, 18-19 
planning, 18 
preparation, 19 
rework, 20 

teams, 17-18 
Code production rates, measuring one’s, 

Codes, create, compile, and test, 90 
Coding conventions, 216-19 

assembly formatting, 218-19 
C formatting, 2 17-1 8 
general, 216 
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Compiler vendors, 6 2 4 3  
Compilers, 220 
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size, 35 
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Connections, reliable, 158-59 
cost 
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simplifying software through multiple, 

4 3 4  
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Debug bit, 80 
Debuggers 
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JTAG (Joint Test Access Group), 144 

Debugging, 220-21 
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Debugging resources, add, 161-62 
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of, 193 

correct, 112 
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Devices 

manual testing of, 90 
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overheating, 176 
refreshing, 103 
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Directory structure, 204-5 
Discipline, engineering is very diverse, 

Disciplined development, 5-34 
DMA (direct memory access), 90, 161 
Documentation, 17 1-72 
DRAMS (dynamic random-access mem- 

Drawing Book, Master, 226-27 
Drawing system, simple, 223-35 

200 

ones), 102-3 

BOMs (Bills of Materials), 228-30 
Configuration Drawing, 227-28 
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drawings and drawing storage, 224-26 
ECOs (Engineering Change Orders). 
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ROM and PAL file names, 232 
ROMs and PALS, 230-32 

Drivers, hacking peripheral, 87-90 
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Electrical noise, 102 
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232-34 

Encapsulation, partitioning with, 38-40 
Environment, creating quiet work, 22-27 
EO1 (end of interrupt), 66 
EPROMs (erasable programmable read- 

Equipment 
only memories), 121-22, 129 

capital, 155 
leasing, 157 
soldering, 170 

Estimate, learn to, 174-78 
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Event, data-destroying, 14 
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practical. 73 
value of, 6 
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break down codes by, 47 
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close, 78 
managing, 192-96 
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21 

coding conventions, 216-19 
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C formatting, 2 17-1 8 
general, 216 
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functions, 214 
institute, 15-16 
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214-15 
modules, 209-1 2 

general, 209 
names, 2 12 
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projects, 204-9 
directory structure, 204-5 
heap issues. 208-9 
make files, 207 
project files, 207 
stack issues, 208-9 
startup code, 207-8 
version file, 205-6 
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tools, 2 19-2 1 

compilers, 220 
computers, 219 
debugging, 220-2 1 

variables, 212-13 
global, 2 13 
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portability, 2 I3 
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Formatting, assembly, 218-19 
FPGAs (field-programmable gate ar- 

Functions. 214 
rays), 129 

most of bugs will be in few, 30 
and reentrants, 67 
using to do one thing, 59 

Gate, CMOS, 113 
Glitches, diagnose all, 174 
Global variables, 68,213 
Globals, 38 
Grounders, using clip leads as, 177 
Guesstimating, 75-76 

Hacking peripheral drivers, 87-90 
Handlers, keep short, 58 
Hardware 

breakpoints, 40, 138 
is moving away from conventional 

prototypes, 105 
issues, 59-61,94-96 

changing PCBs (printed circuit 
boards), 128-30 

clocks, 115-17 
debuggable designs, 109-1 I 
making PCBs (printed circuit 

planning, 130-3 1 
reset, 117-19 
resistors, 1 11-13 
small CPUs, 1 19-23 
unused inputs, 114-15 
watchdog timers, 123-26 

boards), 126-28 

Hardware design, let software drive, 40 
Heap issues, 208-9 
Heat, being on lookout for excessive, 176 

Human nature and design process, 49 
See also Overheating 

ICES (In-Circuit Emulators), 139, 184 
ICs (integrated circuits) 

See also Chips 
software, 74 

Idle loops, 81-82 
Idle time, 8 1 
Impossible, conquer, 50-5 1 
Inheritance, 38 

Inputs 
unused, 114-15 

leave unconnected when building 

Inspection team, keep management off, 

Inspections, use Code, 16-22 
INTANTA cycles, debugging, 64-66 
Integration, 48 
Intempt map, lay out, 57-58 
Interruptions from work, 25 
Interrupts; See also ISRs (interrupt ser- 

vice routines), 54-64 
C or assembly languages, 6 1-64 
design guidelines, 57-59 
finding missing, 66-67 
hardware issues, 59-61 
from internal peripherals, 64 
latency of, 80 
vectoring, 55-57 

prototypes, 1 15 

17 

INTR signal, generation of, 60 
ISRs (interrupt service routines), 40, 

approximate complexity of, 58 
cardinal rule of, 58 
easy debugging, 71-72 
keeping simple, 59 
using complex data structures in, 63 

54-55,57,214-15 

JTAG (Joint Test Access Group), 143, 

and BDM (Back-ground Debug) 

debuggers, 144 

162 

hardware, 143-44 

Keyboard, seduction of, 5 
Knives, X-Acto, 129-30, 152 
Knowledge is power, 9 1 

Languages 
assembly, 61-64 
C, 61-64 
CMSP, 63 
writing shells of drivers in selected, 89 

LCDs (liquid crystal displays), 166 
Leads, clip, 17 1 
Leasing most attractive way to get equip- 

ment, 157 
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LEDs (light-emitting diodes), 12 1, 178 
LOC (lines of code), 46,97-98 
Logic 

analyzers, 158 
clock-shaping, 117 
CMOS, 114 

Logical address, 94 
Loops, idle, 8 1-82 
LS (large-scale) technology, 15 1 

Make files, 207 
Malloc( ), curse of. 92-93 
Management 

boss, 190-92 
defined, 190 
engineering, 194 
keep off inspection team, 17 
of oneself, 187-90 

Managers, Peopleware argument with, 

Manual, institute firmware standards, 

Manual testing of devices, 90 
Map, lay out interrupt, 57-58 
Market, Time To, 154, 199 
Mars Pathfinder spacecraft, 173-74 
Master Drawing Book, 226-27 
Matrix, feature, 46-47 
Media, will unreadable tomorrow, 15 
Memory 

OTP (One-Time Programmable) 

problems, 99 

27 

15-16 

program, 12 1-22 

Microcontrollers, 123, 140 
Midrange processors, 123 
Models of products, virtual, 107 
Moderator defined, 17 
Module design, something profound 

Module names, 2 12 
Modules 

about. 40 

defined, 209 
most of bugs will be in few, 30 

Money, time costs, 155 
Monitors 

ROM, 145-46 
watchdog, 125 

Myths, nonintrusive, 159-61 

Names, ROM and PAL file, 232 
Network computing lets users share data. 

NMIs (non-maskable interrupts). 
73 

112-13, 124 
avoiding, 69 
reoccurs at any time. 70 

electrical, 102 
issues, 101-4 
when digital systems are most suscep- 

Noise 

tible to, 102 
Nonintrusive access, 136-37 
Nonintrusive myths, 159-61 
NRE costs (nonrecurring engineering 

costs), 42-43 
NRE versus COGS, 42-43 
Numbers, interpreting raw, 28 

OOPS (object-oriented programs), 37, 84 
Operating systems give tools to manage 

Oscilloscopes; See also Scopes; Scoping 

favorite software debugging tools, 147 
and timing, 149 
triggering signals, 150 

resources, 84 

tricks, 147-52 

OTP (One-Time Programmable) pro- 
gram memory, 12 1-22 

Output bits for debugging purposes, 79 
Overheating devices, 176 
Overlay RAM, 137-38 

PAL file names, ROM and, 232 
PAL (programmable array logic), 12 1. 

129, 167-69 

Partitioning, 37-48 
and ROMs, 230-32 

with CPUs, 4 W  
with encapsulation, 38-40 
by features, 45-48 

Parts, surface-mount, 129 
Pattern sensitivity, 101 
Payroll as fixed cost, 153 
PCBs (printed circuit boards), 101-2, 

I IO, 126-28 
changing, 128-30 
defects, 177 
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PCMCIA (Portable Computer Memory 
Card International Association), 
159 

People musings, 187-20 1 
boss management, 190-92 
degrees, 197-201 
managing feedback loop, 192-96 
managing oneself and others, 187-90 

bug management, 188-89 
critical paths, 190 
firmware standards, 188 
tools, 189 
tracking development rates, 189 
version control system, 188 
work environment, 189-90 

Peopleware (DeMarco and Lister), 22 
Peopleware argument with managers, 

Performance 
27 

analyzer, 79-82 
guesstimating, 72-79 
measuring, 72-82 

Peripherals 
drivers 

87 
fraught with risks and unknowns, 

hacking, 87-90 
incredibly complex, 65 
interrupts from internal, 64 

Personal Software Process, 33 
Physical space, 94 
Plan ahead, 176 
Planning, 130-3 1 

Polled code, writing, 54-55 
Polymorphism, 38 
Ports 

using serial, 88 
virtual debugging, 180 

analysis, 194-95 

PLDs, 121,128-29 

Post mortem 

Probes, take care of oscilloscope, 150 
Problems 

breakpoint, 69-7 1 
datacomm, 70 
expect, 134 
reentrancy, 67-69 

Problems, solving, 2, 12 
Production rates, measuring one's code, 

Productivity, 35 
Products 

3 1-32 

customers and views of, 45 
improving process of designing, 193 
quality of, 8 
virtual models of, 107 

Products, shipping quality, 47 
Profession, worry for future of engineer- 

Professionals creating software, 6 
Program size, code complexity grows 

much faster than, 82-83 
Programming languages; See Languages 
Programming, structured, 37 
Programs, stop writing big, 35-5 1 

ing, 199 

COCOMO (Constructive Cost Model) 

conquer impossible, 50-5 1 
develop firmware incrementally, 

partitioning, 3748 

data, 36-37 

48-50 

Project files, 207 
Prototype code, writing in Visual Basic, 

Prototype developers, ideal, 108 
Prototypes, 106, 134 

1 07 

hardware is moving away from con- 
ventional, 105 

of system's software, 105 
Prototyping, notes on software, 104-8 
Pull-down resistors, 112-13, 160 
Pull-up resistors, 113, 160 

Quality 
is nice, 7-8 
of products, 8 

Quality products, shipping on time, 47 

RAM (random-access memory), 58, 

diagnostics, 98- 104, 100-101 
99-103, 119, 185 

inverting bits, 100-101 
noise issues, 101-4 

emulation, 137-38 
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overlay, 137-38 
shadow, 138 

Reader defined, 17 
Real-time trace, 137 
Recorder defined, 17 
Reentrancy problems, 67-69 
Refreshing devices, 103 
Renting equipment, 156 
Reset, 117-19 

glitches, 173-74 
time delay on, 118 

pull-down, 112-13, 160 
Resistors, 1 1 1-1 3 

pull-up, 113, 160 
Resources, operating systems give tools 

to manage, 84 
Responsibilities, simple drawing system, 

234-35 
Results, define, 106 
Rise and fall times, 117 
RMAs (rate monotonic analysis) and 

ROM emulators. 1 12, 146 
ROMs (read-only memories), 129, 

schedulers, 83 

I85 
monitors, 1 4 5 4 6  
and PAL file names, 232 
and PALS. 230-32 
requirements, 97-98 

around, 179 
RS-232, one of biggest headaches 

RTOSs (real-time operating systems), 
81-85.96, 125, 194 

is context switcher, 83 
using, 85 

SCC (Serial Communications 
Controller), Zilog, 183 

Schedulers and RMAs, 83 
Schedules, 190 

collapse of, 3 1 
Schematics, 128 
Scopes; See also Oscilloscopes 

debugging by, 178-83 
grounding, 152 
simple drawing system, 223-24 
tricks to effective uses, 180 

Scoping tricks, 15C52 
SCR latchup, 115 
SCR (silicon controlled rectifier), 114 
Sensitivity, pattern, 101 
Serial ports, using, 88 
Seven-step plan, 12-33 

buying and using VCS (Version Con- 

constantly study software engineering, 

creating quiet work environment, 
22-27 

instituting firmware standards manual, 
15-16 

measuring one’s 

trol System), 13-1 5 

3 2-3 3 

bug rates, 27-30 
code production rates, 3 1-32 

using Code Inspections, 16-22 
Shadow RAM, 138 
Shorts, 175 
Signals 

generation of INTR. 60 
triggering, 150 

SMT (surface-mount technology). 129. 

Sockets. 129 
Software 

142. 152 

debugging, 79 
drives hardware design, 40 
engineering, 32-33 
ICs, 74 
professionals creating, 6 
prototypes of system’s. 105 
prototyping, 104-8 
simplifying through multiple CPUs. 

UART bit banging, 44 

levels of, 9 

equipment, 170 
inspecting, 177 

Source debugger, 97 
Source-level debugging, 135-36 
Space, physical, 94 
Spacecraft, Mars Pathfinder, 173-74 
Spikes, timing, 119 

43-44 

Software maturity. CMM defines five 

Soldering 
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Spreadsheets, 107 
SRAM (static random-access memory), 

119 
Stack 

issues, 208-9 
size, 90-92 

Stamping, time, 139 
Startup code, 207-8 
Stimulus, creating, 88 
Structured programming, 37 
SWAN (Smart, Works hard, Ambitious, 

and Nice) model, 200 
Sweep, delayed, 180-82 
Switches and embedded systems, 126 
System 

bringing up new, 183-85 
total idle time of, 8 1 

System status info, embedded systems 
and managing, 84 

System’s performance, tracking, 78 
System’s response, measuring, 88 

Target processor, developing understand- 

Teams, Code Inspections, 17-18 
Technicians 

Technology, LS, 15 1 
Templates, 209-12 
Test equipment, never blindly trust, 173 
Testing 

ing of, 77 

turned-engineers, 200 

daily or weekly, 49 
everything, 173 
firmware, 48 
points, 109-1 1 
success requires determination to 

constantly, 49 
Think, need to focus to, 26 
Time 

costs money, 155 
idle, 81 
to market, 154, 199 
real, 53-85 

avoiding NMI (non-maskable inter- 

breakpoint problems, 69-7 1 
debugging INTANTA cycles, 64-66 
easy ISR debugging, 71-72 

rupt), 69 

finding missing interrupts, 66-67 
interrupts, 54-64 
measuring performance, 72-82 
reentrancy problems, 67-69 
RTOS, 82-85 

stamping, 139 
Timers, watchdog, 123-26 
Timing 

details, 161 
is critical in computers, 174 
and oscilloscopes, 149 
spikes, 119 

Tool vendors, debugging, 1 5 9 4 1  
Tool woes, 157-63 

add debugging resources, 161-62 
nonintrusive myths, 159-61 
reliable connections, 158-59 
ROM burnout, 16243 

checkpointing, 15 
CMMs (Capability Maturity Models) 

are, 12 
compilers, 220 
computers, 219 
debugging, 220-2 1 
quest to obtain right, 156 
scope complements, 178 
troubleshooting, 133-63 

Tools, 134-52 

BDMs (Back-ground Debug 
Modes), 1 4 2 4 5  

cost of, 152-57 
emulators, 1 3 9 4 2  
fancy, 152-57 
oscilloscopes, 147-52 
ROM emulators, 146 
ROM monitors, 1 4 5 4 6  
tool woes, 157-63 

use all, 177 
Tools to manage resources, operating 

Top-down design, 37 
TQFP, 158 
Traces, 80 

systems give, 84 

change philosophy of debugging, 70 
real-time, 137 

Trigger levels, 18 1 
Triggering signals, 150 
Triggers, event, 137 
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Troubleshooters, best, 176 
Troubleshooting. 165-85 

bringing up new system, 183-85 
scope debugging. 178-83 
sequence, 1 6 M 9  

fix bug, 169 
generate experiment to test hypothe- 

generate hypothesis, I67 
observe behavior to find apparent 

observe collateral behavior, 166-67 
round up usual suspects, 167 

speed up by slowing down, 169-78 
assumptions, 172-74 
documentation, 17 1-72 
learn to estimate, 174-78 

BDMs (Back-ground Debug 
Modes). 14235 

emulators, 1 3 9 4 2  
oscilloscopes, 147-52 
ROM emulators, 146 
ROM monitors, 145-46 
scoping tricks, 150-52 

sis. 16749 

bug, 166 

tools, 1 3 3 4 3  

Trust between workers and management. 

TTL (transistor-transistor logic), 1 15-16 
191 

UARTs (universal asynchronous re- 
ceiver-transmitters), 54, 57, 66, 
121. 183 

bit banging software. 44 
Understanding, good measures promote, 

28 

Variables, 212-13 
avoiding global, 68 
declared as static. 68 
global. 2 13 
names, 212-13 
portability, 213 

VCS (Version Control System), 13-15, 
205 

Vectoring, 55-57 
Vendors, compiler, 6 2 4 3  
Version file, 2 0 5 4  
Virtual corporation, I57 
Virtual debugging port. 180 
Virtual instruments, IO6 
Virtual models of products, 107 
Visual Basic, writing prototype code in. 

I07 

Watchdog 
design, 124 
monitors, 125 
timers, 123-26 

and safety issues, 125 
WDTs (watchdog timers), 123-26 

Weekly audit, 187 
Work 

environment, 22-27 
interruptions from, 25 

Workers and management, trust between, 

Writing 
191 

few engineering programs focus on. 

polled code, 54-55 

COCOMO (Constructive Cost Model) 

conquer impossible, 50-5 I 
develop firmware incrementally, 

partitioning, 3 7 4 8  

199 

Writing big programs, stop, 35-5 I 

data. 36-37 

48-50 

X- Acto knives, 129-30. I52 

280 processors, 66 
Z I80 processors, 66. I 17-1 8 
Zilog SCC (Serial Communications 

Controller), 183 









ELECTRONICS / CIRCUIT DESIGN 

*’ JACK GANSSLE 
Practical advice from a well-respected author 
Commonsense approach to better, faster design processes 
A philosophy of development, not a cookbook of ”how to build X” 
Integrated coverage of hardware design and sohare code 
In-depth discussion of real-time and performance issues 

Design better embedded systems faster, using the ideas presented in Th 4 
Embedded Systems. Whether you’re working with hardware or software, Mr. Ganssle’s 
unique approach to design is guaranteed to keep you interested and learning. 

The Ar t  of Designing Ernbedded Systems is part primer and part re 
needs of practicing embedded engineers in mind. Embedded systems 
hoc development process. This book lays out a very simple seven-s 
development under control. There are 110 formal methodologies that take months to master; the 

Most designers aren’t aware of the scary fact that code complexity-and thus dedules- 
grow much faster than code size. The book details a number of ways to#nearize ,I-- eom- 
plexitybize curve to help get products to market faster. 

Hardware and software can never be designed in isolation from each other, which IS a theme 
that the author addresses throughout the book. Mr. Ganssle shows how to get better, more ink- 
grated code and hardware designs, and then how to troubleshoot the inevitable problems. 

plans and ideas are immediately useful. 3 

Finally, the book recognizes that we all work in an environment populated with bosses and 
coworkers. The Art  of Designing Embedded Syems-discusses ways to deal with these people, 
to further your career, and to build a fun environment condqive to creative work. 

JACK GANSSLE is  the Principal Consultant of The roupf“an independent consulting firm 
for embedded applications. He has foundedfNktuccessful electronics companies and has been 
a contributing editor for EDN, Embedded Systems Pmgmmming, and Ocean Navigator maga- 
zines. He also sits on the board of the Embedded 9ystems Conference. He is the author of an 
earlier book on progra 
ded systems conferences 

RELATED Embedded Sys 

Stuart Ball ISBN 0-7506-7234-X pb 352 pp. 

‘F Debugging Embedded Microprocessor Systems * Stuart Ball ISBN 0-7506-9990-6 pb 272 pp. 

http: Newnes A n  imprint //www. of Butterworth-Heinemann newnespress.com I .. 1 I .. I 


	Cover
	Frontmatter
	Half Title Page
	Title Page
	Copyright
	Table of Contents
	Acknowledgments

	Chapter 1: Introduction
	Chapter 2: Disciplined Development
	Any Idiot Can Write Code
	Firmware Is the Most Expensive Thing in the Universe
	What Does Firmware Cost?
	Quality Is Nice... As Long As It’s Free
	The CMM
	Summary

	Chapter 3: Stop Writing Big Programs
	COCOMO Data
	Partitioning
	Develop Firmware Incrementally
	Conquer the Impossible
	Summary

	Chapter 4: Real Time Means Right Now!
	Interrupts
	Debugging INT/INTA Cycles
	Finding Missing Interrupts
	Reentrancy Problems
	Avoid NMI
	Breakpoint Problems
	Easy ISR Debugging
	Measuring Performance
	The RTOS

	Chapter 5: Firmware Musings
	Hacking Peripheral Drivers
	Selecting Stack Size
	The Curse of Malloc( )
	Banking
	Predicting ROM Requirements
	RAM Diagnostics
	A Few Notes on Software Prototyping

	Chapter 6: Hardware Musings
	Debuggable Designs
	Resistors
	Unused Inputs
	Clocks
	Reset
	Small CPUs
	Watchdog Timers
	Making PCBs
	Changing PCBs
	Planning

	Chapter 7: Troubleshooting Tools
	Tools
	Fancy Tools, Big Bucks?
	Tool Woes

	Chapter 8: Troubleshooting
	Speed Up by Slowing Down
	Scope Debugging
	Summary - Bringing Up a New System

	Chapter 9: People Musings
	Managing Yourself and Others
	Boss Management
	Managing the Feedback Loop
	Degrees

	Backmatter
	Appendix A A Firmware Standards Manual
	Appendix B A Simple Drawing System
	Index

	Back Cover



