
THE

The Art of Designing
Embedded Systems

The Art of Designing
Embedded Systems

Jack G. Ganssle

Newnes

BOSTON OXFORD AUCKLAND JOHANNESBURG MELBOURNE NEW DELHI

Newnes is an imprint of Butterworth-Heinemann.
Copyright 0 2000 by Butterworth-Heinemann

A member of the Reed Elsevier group
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, or other-
wise, without the prior written permission of the publisher.

130' Recognizing the importance of preserving what has been written,
Butterworth-Heinemann prints its books on acid-free paper whenever
possible.

Butterworth-Heinemann supports the efforts of American Forests and the
Global ReLeaf program in its campaign for the betterment of trees, forests.
and our environment.

Library of Congress Cataloging-in-Publication Data

Ganssle, Jack G.
The art of designing embedded systems I Jack G. Ganssle.

ISBN 0-7506-9869-1 (hc. : alk. paper)
1. Embedded computer systems-Design.

p. cm.

I. Title.
Tk7895.E42G36 1999 99-36724
004.16- dc2 1 CIP

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:
Manager of Special Sales
Butterworth-Heinemann
225 Wildwood Avenue
Woburn, MA 0 180 1-204 1
Tel: 781-904-2500
Fax: 78 1-904-2620

For information on all Butterworth-Heinemann publications available, contact our World
Wide Web home page at: http://www.newnespress.com

1 0 9 8 7 6 5 4 3

Printed in the United States of America

Dedicated to Graham and Kristy

Acknowledgments

Chapter 1 Introduction

Chapter 2 Disciplined Development

Chapter 3

Chapter 4

Chapter 5 Firmware Musings

Chapter 6 Hardware Musings

Chapter 7 Troubleshooting Tools

Chapter 8 Troubleshooting

Chapter 9 People Musings

Appendix A A Firmware Standards Manual

Appendix B A Drawing System

Stop Writing Big Programs!

Real Time Means Right Now

i

5

35

53

87

109

133

165

187

203

223

Index 23 7

Acknowledgments

I'd like to thank Pam Chester, my editor at Butterworth-Heinemann.
for her patience and good humor through the birthing of this book. And
thanks to Joe Beitzinger for his valuable comments on the initial form of
the book.

Finally, thanks to the many developers I've worked with over the
years, and the many more who have corresponded.

CHAPTER 1
Introduction

Any idiot can write code. Even teenagers can sling gates and PAL
equations around. What is it that separates us from these amateurs? Do
years of college necessarily make us professionals, or is there some other
factor that clearly delineates engineers from hackers? With the phrase
”sanitation engineer” now rooted in our lexicon, is the real meaning behind
the word engineer cheapened?

Other professions don’t suffer from such casual word abuse. Doctors
and lawyers have strong organizations that, for better or worse, have
changed the law of the land to keep the amateurs out. You just don’t find
a teenager practicing medicine, so “doctor” conveys a precise, strong
meaning to everyone.

Lest we forget, the 1800s were known as “the great age of the engi-
neer.” Engineers were viewed as the celebrities of the age, as the architects
of tomorrow, the great hope for civilization. (For a wonderful description
of these times, read Zsamard Kingdom Brunel, by L.T.C. Rolt.)

How things have changed!
Our successes at transforming the world brought stink and smog, fac-

tones weeping poisons, and landfills overflowing with products made
obsolete in the course of months. The Challenger explosion destroyed
many people’s faith in complex technology (which shows just how little
understanding Americans have of complexity). An odd resurgence of the
worship of the primitive is directly at odds with the profession we em-
brace. Declining test scores and an urge to make a lot of money now means
that U.S. engineering enrollments have declined 25% in the decade from
1988 to 1997.

1

2 THE ART OF DESIGNING EMBEDDED SYSTEMS

All in all, as Rodney Dangerfield says, “We just can’t get no
respect.”

It’s my belief that this attitude stems from a fundamental misunder-
standing of what an engineer is. We’re not scientists, trying to gain a new
understanding of the nature of the universe. Engineers are the world’s
problem solvers. We convert dreams to reality. We bridge the gap between
pure researchers and consumers.

Problem solving is surely a noble profession, something of impor-
tance and fundamental to the future viability of a complex society. Sup-
pose our leaders were as single-mindedly dedicated to problem solving as
is any engineer: we’d have effective schools, low taxation, and cities of
light and growth rather than decay. Perhaps too many of us engineers lack
the social nuances to effectively orchestrate political change, but there’s no
doubt that our training in problem solving is ultimately the only hope for
dealing with the ecological, financial, and political crises coming in the
next generation.

My background is in the embedded tool business. For two decades I
designed, built, sold, and supported development tools, working with thou-
sands of companies, all of whom were struggling to get an embedded prod-
uct out the door, on time and on budget. Few succeed. In almost all cases,
when the widget was finally complete (more or less; maintenance seems to
go on forever because of poor quality), months or even years late, the en-
gineers took maybe five seconds to catch their breath and then started on
yet another project. Rare was the individual who, after a year on a project,
sat and thought about what went right and wrong on the project. Even
rarer were the people who engaged in any sort of process improvement, of
learning new engineering techniques and applying them to their efforts.
Sure, everyone learns new tools (say, for ASIC and FPGA design), but few
understood that it’s just as important to build an effective way to design
products, as it is to build the product. We’re not applying our problem-
solving skills to the way we work.

In the tool business I discovered a surprising fact: most embedded de-
velopers work more or less in isolation. They may be loners designing all
of the products for a company, or members of a company’s design team.
The loner and the team are removed from others in the industry, so they de-
velop their own generally dysfunctional habits that go forever uncorrected.
Few developers or teams ever participate in industry-wide events or com-
municate with the rest of the industry. We, who invented the communica-
tions age, seem to be incapable of using it!

One effect of this isolation is a hardening of the development arter-
ies: we are unable to benefit from others’ experiences, so we work ever

Introduction 3

harder without getting smarter. Another is a feeling of frustration, of think-
ing, “What is wrong with us-why are our projects so much more a prob-
lem than anyone else’s?’ In fact, most embedded developers are in the
same boat.

This book comes from seeing how we all share the same problems
while not finding solutions. Never forget that engineering is about solving
problems . . . including the ones that plague the way we engineer!

Engineering is the process of making choices; make sure yours re-
flect simplicity, common sense, and a structure with growth, elegance, and
flexibility, with debugging opportunities built in.

In general, we all share these same traits and the inescapable prob-
lems that arise from them:

We jump from design to building too fast. Whether it’s writing
code or drawing circuits, the temptation to be doing rather than
thinking inevitably creates disaster.
We abdicate our responsibility to be part of the project’s manage-
ment. When we blindly accept a feature set from marketing we’re
inviting chaos: only engineering can provide a rational costhene-
fit tradeoff. Acceding to capricious schedules figuring that heroics
will save the day is simply wrong. When we’re not the boss, then
we simply must manage the boss: educate, cajole, and demonstrate
the correct ways to do things.
We ignore the advances made in the past 50 years of software en-
gineering, Most teams write code the way they did at age 15, when
better ways are well known and proven.
We accept lousy tools for lousy reasons. In this age of leases,
loans, and easy money, there’s always a way to get the stuff we
need to be productive. Usually a nattily attired accountant is the
procurement barrier, a rather stunning development when one re-
alizes that the accountant’s role is not to stop spending, but to
spend in a cost-effective manner. The basic lesson of the industrial
revolution is that capital investment is a critical part of corporate
success.
And finally, a theme I see repeated constantly is that of poor detail
management. Projects run late because people forget to do simple
things. Never have we had more detail management tools, from
PDAs to personal assistants to conventional Daytimers and Day
Runners. One afternoon almost a decade ago I looked up from a
desk piled high with scraps of paper listing phone calls and to-dos
and let loose a primal scream. At the time I went on a rampage,

4 THE ART OF DESIGNING EMBEDDED SYSTEMS

looking for some system to get my life organized so I knew what
to do when. For me, an electronic Daytimer--coupled with a de-
termination to use it every hour of every day-works. The first
thing that happens in the morning is the organizer pops up on my
screen, there to live all day long, checked and updated constantly.
Now I never (well, almost never) forget meetings or things I’ve
promised to do.

And so, I see a healthy engineering environment as the right mix of
technology, skills, and processes, all constantly evaluated and managed.

CHAPTER 2
Disciplined
Development

Sojiivare engineering is not a discipline, Its practitioners cannot
systematically make and fulfill promises to deliver sojhare systems
on time and fairly priced.

-Peter Denning

The seduction of the keyboard is the downfall of all too many em-
bedded projects.

Writing code is fun. It’s satisfying. We feel we’re making progress
on the project. Our bosses, all too often unskilled in the nuances of build-
ing firmware, look on approvingly, smiling that we’re clearly accomplish-
ing something worthwhile.

As a young developer working on assembly-language-based systems,
I learned to expect long debugging sessions. Crank some code, and figure
on months making it work. Debugging is hard work (but fun-it’s great to
play with the equipment all the time!), so I learned to budget 50% of the
project time to chasing down problems.

Years later, while making and selling emulators, I saw this pattern re-
peated, constantly, in virtually every company I worked with. In fact, this
very approach to building firmware is a godsend to the tool companies
who all thrive on developers’ poor practices and resulting sea of bugs.
Without bugs, debugger vendors would be peddling pencils.

A quarter century after my own first dysfunctional development pro-
jects, in my travels lecturing to embedded designers, I find the pattern re-
mains unbroken. The rush to write code overwhelms all common sense.

The overused word “process” (note that only the word is overused;
the concept itself is sadly neglected in the firmware world) has garnered
enough attention that some developers claim to have institutionalized a
reasonable way to create software. Under close questioning, though, the
majority of these admit to applying their rules in a haphazard manner.

5

6 THE ART OF DESIGNING EMBEDDED SYSTEMS

When the pressure heats up-the very time when sticking to a system that
works is most needed-most succumb to the temptation to drop the sys-
tems and just crank out code.

As you’re boarding a plane you overhear the pilot tell his right-
seater, “We’re a bit late today; let’s skip the take-off checklist.” Ab-
surd? Sure. Yet this is precisely the tack we take as soon as deadlines
loom; we abandon all discipline in a misguided attempt to beat our
code into submission.

Any Idiot Can Write Code

In their studies of programmer productivity, Tom DeMarco and Tim
Lister found that all things being equal, programmers with a mere
6 months of experience typically perform as well as those with a year, a
decade, or more.

As we developers age we get more experience-but usually the same
experience, repeated time after time. As our careers progress we justify our
escalating salaries by our perceived increasing wisdom and effectiveness.
Yet the data suggests that the value ofexperience is a myth.

Unless we’re prepared to find new and better ways to create
firmware, and until we implement these improved methods, we’re no more
than a step above the wild-eyed teen-aged guru who lives on Coke and
Twinkies while churning out astonishing amounts of code.

Any idiot can create code; professionals find ways to consistently
create high-quality sofhvare on time and on budget.

Firmware Is the Most Expensive Thing
in the Universe

Norman Augustine, former CEO of Lockheed Martin, tells a reveal-
ing story about a problem encountered by the defense community. A high-
performance fighter aircraft is a delicate balance of conflicting needs: fuel
range versus performance. Speed versus weight. It seemed that by the late
1970s fighters were at about as heavy as they’d ever be. Contractors, al-
ways pursuing larger profits, looked in vain for something they could add
that cost a lot, but that weighed nothing.

The answer: firmware. Infinite cost, zero mass. Avionics now ac-
counts for more than 40% of a fighter’s cost.

Disciplined Development 7

Two decades later nothing has changed. . . except that firmware is
even more expensive.

What Does Firmware Cost?

Bell Labs found that to achieve 1-2 defects per 1000 lines of code
they produce 150 to 300 lines per month. Depending on salaries and over-
head, this equates to a cost of around $25 to $50 per line of code.

Despite a lot of unfair bad press, IBM’s space shuttle control soft-
ware is remarkably error free and may represent the best firmware ever
written. The cost? $lo00 per statement, for no more than one defect per
10,000 lines.

Little research exists on embedded systems. After asking for a per-
line cost of firmware I’m usually met with a blank stare followed by an ab-
surdly low number. “$2 a line, I guess” is common. Yet, a few more
questions (How many people? How long from inception to shipping?) re-
veals numbers an order of magnitude higher.

Anecdotal evidence, crudely adjusted for reality, suggests that if you
figure your code costs $5 a line you’re lying-or the code is junk. At
$100/line you’re writing software documented almost to DOD standards.
Most embedded projects wind up somewhere in between, in the $2040/line
range. There are a few gurus out there who consistently do produce qual-
ity code much cheaper than this, but they’re on the 1% asymptote of the
bell curve. If you feel you’re in that select group-we all do-take data for
a year or two. Measure time spent on a project from inception to comple-
tion (with all bugs fixed) and divide by the program’s size. Apply your
loaded salary numbers (usually around twice the number on your pay-
check stub). You’ll be surprised.

Quality Is Nice. As Long As It’s Free

The cost data just described is correlated to a quality level. Since few
embedded folks measure bug rates, it’s all but impossible to add the qual-
ity measure into the anecdotal costs. But quality does indeed have a cost.

We can’t talk about quality without defining it. Our intuitive feel that
a bug-free program is a high-quality program is simply wrong. Unless
you’re using the Netscape “give it away for free and make it up in volume”
model, we write firmware for one reason only: profits. Without profits the
engineering budget gets trimmed. Without profits the business eventually
fails and we’re out looking for work.

8 THE ART OF DESIGNING EMBEDDED SYSTEMS

Happy customers make for successful products and businesses. The
customer’s delight with our product is the ultimate and only important
measure of quality.

Thus: the quality of a product is exactly what the customer says it is.
Obvious software bugs surely mean poor quality. A lousy user inter-

face equates to poor quality. If the product doesn’t quite serve the buyer’s
needs, the product is defective.

It matters little whether our code is flaky or marketing overpromised
or the product’s spec missed the mark. The company is at risk because of
a quality problem, so we’ve all got to take action to cure the problem.

No-fault divorce and no-fault insurance acknowledge the harsh real-
ities of trans-millennium life. We need a no-fault approach to quality as
well, to recognize that no matter where the problem came from, we’ve all
got to take action to cure the defects and delight the customer.

This means that when marketing comes in a week before delivery
with new requirements, a mature response from engineering is not a stream
of obscenities. Maybe . . .just maybe . . . marketing has a point. We make
mistakes (and spend heavily on debugging tools to fix them). So does mar-
keting and sales.

Substitute an assessment of the proposed change for curses. Quality
is not free. If the product will not satisfy the customer as designed, if it’s
not till a week before shipment that these truths become evident, then let
marketing et al. know the impact on the cost and the schedule.

Funny as the “Dilbert” comic strip is, it does a horrible disservice to
the engineering community by reinforcing the hostility between engineers
and the rest of the company. The last thing we need is more confrontation,
cynicism, and lack of cooperation between departments. We’re on a mis-
sion: make the customer happy! That’s the only way to consistently drive
up our stock options, bonuses, and job security.

Unhappily, “Dilbert” does portray too many companies all too accu-
rately. If your outfit requires heroics all the time, if there’s no (polite)
communication between departments, then something is broken. Fix it or
leave.

The CMM
Few would deny that firmware is a disaster area, with poor-quality

products getting to market late and over budget. Don’t become resigned to
the status quo. As engineers we’re paid to solve problems. No problem is
greater, no problem is more important, than finding or inventing faster,
better ways to create code.

Disciplined Development 9

The Software Engineering Institute’s (www.sei.cmu.edu) Capability
Maturity Model (CMM) defines five levels of software maturity and out-
lines a plan to move up the scale to higher, more effective levels:

1. hirial-Ad hoc and Chaotic. Few processes are defined, and suc-
cess depends more on individual heroic efforts than on following
a process and using a synergistic team effort.

2. Repeatable-Intuitive. Basic project management processes are
established to track cost, schedule, and functionality. Planning
and managing new products are based on experience with similar
projects.

3 . Defined-Standard and Consistent. Processes for management
and engineering are documented, standardized. and integrated
into a standard software process for the organization. All projects
use an approved, tailored version of the organization’s standard
software process for developing software.

4. Managed-Predictable. Detailed software process and product
quality metrics establish the quantitative evaluation foundation.
Meaningful variations in process performance can be distin-
guished from random noise, and trends in process and product
qualities can be predicted.

5. Optimizing-Charactenzed by Continuous Improvement. The or-
ganization has quantitative feedback systems in place to identif)
process weaknesses and strengthen them proactively. Project teams
analyze defects to determine their causes: software processes are
evaluated and updated to prevent known types of defects from
recurring.

Captain Tom Schorsch of the U.S. Air Force realized that the
CMM is just an optimistic subset of the true universe of develop-
ment models. He discovered the CIMM-Capability Immaturity
Model-which adds four levels from 0 to -3:

0. Negligenr-Indifference. Failure to allow successful devel-
opment process to succeed. All problems are perceived to be techni-
cal problems. Managerial and quality assurance activities are deemed
to be overhead and superfluous to the task of software development
process.

- 1 . Obstructive-Counterproductive. Counterproductive pro-
cesses are imposed. Processes are rigidly defined and adherence to
the form is stressed. Ritualistic ceremonies abound. Collective man-
agement precludes assigning responsibility.

10 THE ART OF DESIGNING EMBEDDED SYSTEMS

-2. Contemptuous-Arrogance. Disregard for good software
engineering institutionalized. Complete schism between software
development activities and software process improvement activities.
Complete lack of a training program.

-3. Undermining-Sabotage. Total neglect of own charter,
conscious discrediting of organization’s software process improve-
ment efforts. Rewarding failure and poor performance.

If you’ve been in this business for a while, this extension to the
CMM may be a little too accurate to be funny. . . .

The idea behind the CMM is to find a defined way to predictably
make good software. The words “predictable” and “consistently” are the
keynotes of the CMM. Even the most dysfunctional teams have occasional
successes-generally surprising everyone. The key is to change the way we
build embedded systems so we are consistently successful, and so we can
reliably predict the code’s characteristics (deadlines, bug rates, cost, etc.).

Figure 2-1 shows the result of using the tenants of the CMM in
achieving schedule and cost goals. In fact, level 5 organizations don’t al-
ways deliver on time. The probability of being on time, though, is high and
the typical error bands low.

Ddivcry Date

Improving the process improves the odds of meeting goals FIGURE 2-1
and narrows the error bands.

Disciplined Development 1 1

Compare this to the performance of a Level 1 (Initial) team. The
odds of success are about the same as at the craps tables in Las Vegas. A
1997 survey in EE Times confirms this data in their report that 80% of em-
bedded systems are delivered late.

One study of companies progressing along the rungs of the CMM
found the following per year results:

37% gain in productivity
18% more defects found pre-test
19% reduction in time to market
45% reduction in customer-found defects

It’s pretty hard to argue with results like these. Yet the vast majority
of organizations are at Level 1 (see Figure 2-2). In my discussions with
embedded folks, I’ve found most are only vaguely aware of the CMM. An
obvious moral is to study constantly. Keep up with the state of the art of
software development.

Figure 2-2 shows a slow but steady move from Level 1 to 2 and be-
yond, suggesting that anyone not working on their software processes will
be as extinct as the dinosaurs. You cannot afford to maintain the status quo
unless your retirement is near.

FIGURE 2-2 Over time companies are refining their development
processes.

12 THE ART OF DESIGNING EMBEDDED SYSTEMS

At the risk of being proclaimed a heretic and being burned at the
stake of political incorrectness, I advise most companies to be wary of
the CMM. Despite its obvious benefits, the pursuit of CMM is a difficult
road all too many companies just cannot navigate. Problems include the
following:

1. Without deep management commitment CMM is doomed to
failure. Since management rarely understands-or even cares
about-the issues in creating high-quality software, their tepid
buy-in all too often collapses when under fire from looming
deadlines.

2. The path from level to level is long and tortuous. Without a pas-
sionate technical visionary guiding the way and rallying the
troops, individual engineers may lose hope and fall back on their
old, dysfunctional software habits.

CMM is a tool. Nothing more. Study it. Pull good ideas from it. Pros-
elytize its virtues to your management. But have a backup plan you can re-
alistically implement now to start building better code immediately.
Postponing improvement while you “analyze options” or “study the field”
always leads back to the status quo. Act now!

Solving problems is a high-visibility process; preventing prob-
lems is low-visibility. This is illustrated by an old parable:

In ancient China there was a family of healers, one of whom
was known throughout the land and employed as a physician to a
great lord. The physician was asked which of his family was the
most skillful healer. He replied, “I tend to the sick and dying with
drastic and dramatic treatments, and on occasion someone is cured
and my name gets out among the lords.”

“My elder brother cures sickness when it just begins to take root,
and his skills are known among the local peasants and neighbors.”

“My eldest brother is able to sense the spirit of sickness and
eradicate it before it takes form. His name is unknown outside our
home.”

The Seven-Step Plan
Arm yourself with one tool-one tool only-and you can make huge

improvements in both the quality and delivery time of your next embedded
project.

Disciplined Development 13

That tool is an absolute commitment to make some small but basic

Given the will to change, here’s what you should do today

1. Buy and use a Version Control System.
2. Institute a Firmware Standards Manual.
3. Start a program of Code Inspections.
4. Create a quiet environment conducive to thinking.

More on each of these in a few pages. Any attempt to institute just
one or two of these four ingredients will fail. All couple synergistically to
transform crappy code to something you’ll be proud of‘.

changes to the way you develop code.

Once you’re up to speed on steps 1-4. add the following:

5. Measure your bug rates.
6. Measure code production rates.
7. Constantly study software engineering.

Does this prescription sound too difficult? I’ve worked with compa-
nies that have implemented steps 1-4 in one day! Of course they tuned the
process over a course of months. That, though, is the very meaning of the
word “process”-something that constantly evolves over time.

But the benefits accrue as soon as you start the process. Let’s look at
each step in a bit more detail.

Sfep 7: Buy and Use a VCS

Even a one-person shop needs a formal VCS (Version Control Sys-
tem). It is truly magical to be able to rebuild any version of a set of
firmware, even one many years old. The VCS provides a sure way to an-
swer those questions that pepper every bug discussion, such as “When did
this bug pop up?’

The VCS is a database hosted on a server. It’s the repository of all of
the company’s code, make files. and the other bits and pieces that make up
a project. There’s no reason not to include hardware files as well-
schematics, artwork, and the like.

A VCS insulates your code from the developers. It keeps people from
fiddling with the source; it gives you a way to track each and every change.
It controls the number of people working on modules, and provides mech-
anisms to create a single correct module from one that has been (in error)
simultaneously modified by two or more people.

Sure, you can sneak around the VCS, but like cheating on your taxes
there’s eventually a day of reckoning. Maybe you’ll get a few minutes of

14 THE ART OF DESIGNING EMBEDDED SYSTEMS

time savings up front. . . inevitably followed by hours or days of extra
time paying for the shortcut.

Never bypass the VCS. Check modules in and out as needed. Don’t
hoard checked-out modules “in case you need them.” Use the system as in-
tended, daily, so there’s no VCS cleanup needed at the project’s end.

The VCS is also a key part of the file backup plan. In my experience
it’s foolish to rely on the good intentions of people to back up religiously.
Some are passionately devoted; others are concerned but inconsistent. All
too often the data is worth more than all of the equipment in a building-
even more than the building itself. Sloppy backups spell eventual disaster.

I admit to being anal-retentive about backups. A fire that destroys all
of the equipment would be an incredible headache, but a guaranteed busi-
ness-buster is the one that smokes the data.

Yet, preaching about data duplication and implementing draconian
rules is singularly ineffective.

A VCS saves all project files on a single server, in the VCS database.
Develop a backup plan that saves the VCS files each and every night. With
the VCS there’s but one machine whose data is life and death for the com-
pany, so the backup problem is localized and tractable. Automate the
process as much as possible.

One Saturday morning I came into the office with two small
kids in tow. Something seemed odd, but my disbelief masked the
nightmare. Awakening from the fog of confusion I realized all of en-
gineering’s computers were missing! The entry point was a smashed
window in the back. Fearful there was some chance the bandits were
still in the facility I rushed the kids next door and called the cops.

The thieves had made off with an expensive haul of brand-new
computers, including the server that hosted the VCS and other criti-
cal files. The most recent backup tape, which had been plugged into
the drive on the server, was also missing.

Our backup strategy, though, included daily tape rotation into
a fireproof safe. After delighting the folks at Dell with a large emer-
gency computer order, we installed the one-day-old tape and came
back up with virtually no loss of data.

If you have never had an awful, data-destroying event occur,
just wait. It will surely happen. Be prepared.

Disciplined Development 1 5

Checkpoint Your Tools
An often overlooked characteristic of embedded systems is their as-

tonishing lifetime. It’s not unusual to ship a product for a decade or more.
This implies that you’ve got to be prepared to support old versions of every
product.

As time goes on, though, the tool vendors obsolete their compilers,
linkers, debuggers, and the like. When you suddenly have to change a
product originally built with version 2.0 of the compiler-and now only
version 5.3 is available-what are you going to do? The new version
brings new risks and dangers. At the very least it will inflict a host of un-
knowns on your product. Are there new bugs? A new code generator
means that the real-time performance of the product will surely differ. Per-
haps the compiled code is bigger, so it no longer fits in ROM.

It’s better to simply use the original compiler and linker throughout
the product’s entire lifecycle, so preserve the tools. At the end of a project
check all of the tools into the VCS. It’s cheap insurance.

When I suggested this to a group of engineers at a disk drive com-
pany, the audience cheered! Now that big drives cost virtually nothing,
there’s no reason not to go heavy on the mass storage and save everything.

A lot of vendors provide version control systems. One that’s cheap,
very intuitive, and highly recommended is Microsoft’s Sourcesafe.

The frenetic march of technology creates yet another problem
we’ve largely ignored: today’s media will be unreadable tomorrow.
Save your tools on their distribution CD-ROMs and surely in the not-
too-distant future CD-ROMs will be supplanted by some other, bet-
ter, technology. In time you’ll be unable to find a CD-ROM reader.

The VCS lives on your servers, so it migrates with the advance
of technology. If you’ve been in this field for a while, you’ve tossed
out each generation of unreadable media: can you find a drive that
will read an 8-inch floppy anymore? How about a 160K 5-inch disk?

Step 2: lnstitUfe a Firmware Standards Manual
You can’t write good software without a consistent set of code guide-

lines. Yet, the vast majority of companies have no standards-no written
and enforced baseline rules. A commonly cited reason is the lack of such

16 THE ART OF DESIGNING EMBEDDED SYSTEMS

standards in the public domain. So, I’ve removed this excuse by including
a firmware standard in Appendix A.

Not long ago there were so many dialects of German that people in
neighboring provinces were quite unable to communicate with each other,
though they spoke the same nominal language. Today this problem is man-
ifested in our code. Though the programming languages have international
standards, unless we conform to a common way of expressing our ideas
within the language, we’re coding in personal dialects. Adopt a standard
way of writing your firmware, and reject code that strays from the
standard .

The standard ensures that all firmware developed at your company
meets minimum levels of readability and maintainability. Source code has
two equally important functions: it must work, and it must clearly commu-
nicate how it works to a future programmer, or to the future version of
yourself. Just as standard English grammar and spelling make prose read-
able, standardized coding conventions illuminate the software’s meaning.

A peril of instituting a firmware standard is the wildly diverse opin-
ions people have about inconsequential things. Indentation is a classic ex-
ample: developers will fight for months over quite minor issues. The only
important thing is to make a decision. “We are going to indent in this man-
ner. Period.” Codify it in the standard, and then hold all of the developers
to those rules.

Step 3: Use Code Inspections

There is a silver bullet that can drastically improve the rate at which
you develop code while also reducing bugs. Though this bit of magic can
reduce debugging time by an easy factor of 10 or more, despite the fact that
it’s a technique well known since 1976, and even though neither tools nor
expensive new resources are needed, few embedded folks use it.

Formal Code Inspections are probably the most important tool you
can use to get your code out faster with fewer bugs. The inspection plays
on the well-known fact that “two heads are better than one.” The goal is to
identify and remove bugs before testing the code.

Those that are aware of the method often reject it because of the as-
sumed “hassle factor.” Usually few developers are aware of the benefits that
have been so carefully quantified over time. Let’s look at some of the data.

The very best of inspection practices yield stunning results. For ex-
ample, IBM manages to remove 82% of all defects before testing
even starts!

Disciplined Development 1 7

One study showed that, as a rule of thumb, each defect identified
during inspection saves around 9 hours of time downstream.
AT&T found inspections led to a 14% increase in productivity and
a tenfold increase in quality.
HP found that 80% of the errors detected during inspections were
unlikely to be caught by testing.
HP, Shell Research, Bell Northern, and AT&T all found inspec-
tions 20 to 30 times more efficient than testing in detecting errors.
IBM found that inspections gave a 23% increase in productivity
and a 38% reduction in bugs detected after unit test.

So, though the inspection may cost up to 20% more time up front, de-
bugging can shrink by an order of magnitude or more. The reduced num-
ber of bugs in the final product means you’ll spend less time in the
mind-numbing weariness of maintenance as well.

There is no known better way tofind bugs than through Code ln-
spections! Skipping inspections is a sure sign of the amateur firmware
jockey.

The Inspection Team
The best inspections come about from properly organized teams.

Keep management off the team. Experience indicates that when a manager
is involved usually only the most superficial bugs are caught, since no one
wishes to show the author to be the cause of major program defects.

Four formal roles exist: the Moderator, Reader, Recorder, and
Author.

The Moderator, always technically competent, leads the inspection
process. He or she paces the meeting, coaches other team members, deals
with scheduling a meeting place and disseminating materials before the
meeting, and follows up on rework (if any).

The Reader takes the team through the code by paraphrasing its op-
eration. Never let the Author take this role, since he may read what he
meant instead of what was implemented.

A Recorder notes each error on a standard form. This frees the other
team members to focus on thinking deeply about the code.

The Author’s role is to understand the errors and to illuminate un-
clear areas. As Code Inspections are never confrontational, the Author
should never be in a position of defending the code.

An additional role is that of Trainee. No one seems to have a clear
idea how to create embedded developers. One technique is to include new
folks (only one or two per team) into the Code Inspection. The Trainee

18 THE ART OF DESIGNING EMBEDDED SYSTEMS

then gets a deep look inside the company’s code, and an understanding of
how the code operates.

It’s tempting to reduce the team size by sharing roles. Bear in mind
that Bull HN found four-person inspection teams to be twice as efficient
and twice as effective as three-person teams. A Code Inspection with three
people (perhaps using the Author as the Recorder) surely beats none at all,
but do try to fill each role separately.

The Process
Code Inspections are a process consisting of several steps; all are re-

quired for optimal results. The steps, shown in Figure 2-3, are as follows:

Planning-When the code compiles cleanly (no errors or warning
messages), and after it passes through Lint (if used) the Author submits
listings to the Moderator, who forms an inspection team. The Moderator
distributes listings to each team member, as well as other related docu-
ments such as design requirements and documentation. The bulk of the
Planning process is done by the Moderator, who can use email to coordi-
nate with team members. An effective Moderator respects the time con-
straints of his or her colleagues and avoids interrupting them.

Overview-This optional step is a meeting when the inspection team
members are not familiar with the development project. The Author pro-

ers

FIGURE 2-3 The Code Inspection process.

Disciplined Development 19

vides enough background to team members to facilitate their understand-
ing of the code.

Preparation-Inspectors individually examine the code and related
materials. They use a checklist to ensure that they check all potential prob-
lem areas. Each inspector marks up his or her copy of the code listing with
suspected problem areas.

Inspection Meeting-The entire team meets to review the code. The
Moderator runs the meeting tightly. The only subject for discussion is the
code under review; any other subject is simply not appropriate and is not
allowed.

The person designated as Reader presents the code by paraphrasing
the meaning of small sections of code in a context higher than that of the
code itself. In other words, the Reader is translating short code snippets
from computer-lingo to English to ensure that the code’s implementation
has the correct meaning.

The Reader continuously decides how many lines of code to para-
phrase, picking a number that allows reasonable extraction of meaning.
Typically he’s paraphrasing two or three lines at a time. He paraphrases
every decision point, every branch, case, etc. One study concluded that
only 50% of the code gets executed during typical tests, so be sure the in-
spection looks at everything.

Use a checklist to be sure you’re looking at all important items. See
the “Code Inspection Checklist” for details. Avoid ad hoc nitpicking;
follow the firmware standard to guide all stylistic issues. Reject code that
does not conform to the letter of the standard.

Log and classify defects as Major or Minor. A Major bug is one that
could result in a problem visible to the customer. Minor bugs are those that
include spelling errors, noncompliance with the firmware standards, and
poor workmanship that does not lead to a major error.

Why the classification? Because when the pressure is on, when the
deadline looms near, management will demand that you drop inspections
as they don’t seem like “real work.” A list of classified bugs gives you the
ammunition needed to make it clear that dropping inspections will yield
more errors and slower delivery.

Fill out two forms. The “Code Inspection Checklist” is a summary of
the number of errors of each type that are found. Use this data to under-
stand the inspection process’s effectiveness. The “Inspection Error List”
contains the details of each defect requiring rework.

The code itself is the only thing under review; the author may not be
criticized. One way to defuse the tension in starting up new inspection

20 THE ART OF DESIGNING EMBEDDED SYSTEMS

processes (before the team members are truly comfortable with it) is to
have the Author supply a pizza for the meeting. Then he seems like the
good guy.

At this meeting, make no attempt to rework the code or to come up
with alternative approaches. Just find errors and log them; let the Author
deal with implementing solutions. The Moderator must keep the meeting
fast-paced and efficient.

Note that comment lines require as much review as code lines. Mis-
spellings, lousy grammar, and poor communication of ideas are as deadly
in comments as outright bugs in code. Firmware must work, and it must
also communicate its meaning. The comments are a critical part of this and
deserve as much attention as the code itself.

It’s worthwhile to compare the size of the code to the estimate origi-
nally produced (if any!) when the project was scheduled. If it varies sig-
nificantly from the estimate, figure out why, so you can learn from your
estimation process.

Limit inspection meetings to a maximum of two hours. At the con-
clusion of the review of each function decide whether the code should be
accepted as is or sent back for rework.

Rework-The Author makes all suggested corrections, gets a clean
compile (and Lint if used) and sends it back to the Moderator.

Follow-up-The Moderator checks the reworked code. Once the
Moderator is satisfied, the inspection is formally complete and the code
may be tested.

Other Points
One hidden benefit of Code Inspections is their intrinsic advertising

value. We talk about software reuse, while all too often failing spectacu-
larly at it. Reuse is certainly tough, requiring lots of discipline. One reason
reuse fails, though, is simply because people don’t know a particular chunk
of code exists. If you don’t know there’s a function on the shelf, ready to
rock ’n’ roll, then there’s no chance you’ll reuse it. When four people in-
spect code, four people have some level of buy-in to that software, and all
four will generally realize the function exists.

The literature is full of the pros and cons of inspecting code before
you get a clean compile. My feeling is that the compiler is nothing more
than a tool, one that very cheaply and quickly picks up the stupid, silly er-
rors we all make. Compile first and use a Lint tool to find other problems.
Let the tools-not expensive people-pick up the simple mistakes.

I also helieve that the only good compile is a clean compile. No error
messages. No warning messages. Warnings are deadly when some other

Disciplined Development 2 1

programmer, maybe years from now, tries to change a line. When pre-
sented with a screen full of warnings, he’ll have no idea if these are normal
or a symptom of a newly induced problem.

Do the inspection post-compile but pre-test. Developers constantly
ask if they can do “a bit” of testing before the inspection-surely only to
reduce the embarrassment of finding dumb mistakes in front of their peers.
Sorry, but testing first negates most of the benefits. First, inspection is the
cheapest way to find bugs; the entire point of it is to avoid testing. Second,
all too often a pre-tested module never gets inspected. “Well, that sucker
works OK; why waste time inspecting it?”

Tune your inspection checklist. As you learn about the types of de-
fects you’re finding, add those to the checklist so the inspection process
benefits from actual experience.

Inspections work best when done quickly-but not too fast. Fig-
ure 2-4 graphs percentage of bugs found in the inspection versus number
of lines inspected per hour as found in a number of studies. It’s clear that
at 500 lines per hour no bugs are found. At 50 lines per hour you’re
working inefficiently. There’s a sweet spot around 150 lines per hour that
detects most of the bugs you’re going to find, yet keeps the meeting
moving swiftly.

Code Inspections cannot succeed without a defined firmware stan-
dard. The two go hand in hand.

80

70

60

50

40

30

20

10

0
0 100 200 300 400 500 600 700 800

FIGURE 2-4 Percentage of bugs found versus number of lines inspected
per hour.

22 THE ART OF DESIGNING EMBEDDED SYSTEMS

What does it cost to inspect code? We do inspections because
they have a significant net negative cost. Yet sometimes manage-
ment is not so sanguine; it helps to show the total cost of an inspec-
tion assuming there’s no savings from downstream debugging.

The inspection includes four people: the Moderator, Reader,
Recorder, and Author. Assume (for the sake of discussion) that these
folks average a $60,000 salary, and overhead at your company is
100%. Then:

One person costs: $120,000 = $60,000 x
2 (overhead)

One person costs: $58/hr = $120,000/2080 work
hours /year

Four people cost: $232/hr = $58/hr x 4
Inspection cost/line: $1.54 = $232 per hour/l50 lines

inspected per hour

Since we know code costs $20-50 per line to produce, this
$1.54 cost is obviously in the noise.

For more information on inspections, check out Soware Inspection,
Tom Gilb and Dorothy Graham, 1993, TJ Press (London), ISBN 0-201-
63 18 1-4, and Software Inspection-An Industry Best Practice, David
Wheeler, Bill Brykczynski, and Reginald Meeson, 1996 by IEEE Com-
puter Society Press (CA), ISBN 0-8 186-7340-0.

Step 4: Create a Quiet Work Znvironment

For my money the most important work on software productivity in
the last 20 years is DeMarco and Lister’s Peopleware (1987, Dorset House
Publishing, New York). Read this slender volume, then read it again, and
then get your boss to read it.

For a decade the authors conducted coding wars at a number of dif-
ferent companies, pitting teams against each other on a standard set of
software problems. The results showed that, using any measure of per-
formance (speed, defects, etc.), the average of those in the first quartile
outperformed the average in the fourth quartile by a factor of 2.6. Surpris-
ingly, none of the factors you’d expect to matter correlated to the best and
worst performers. Even experience mattered little, as long as the program-
mers had been working for at least 6 months.

Disciplined Development 23

Major

Table 2- 1 Code Inspection Checklist

Minor

Code does not meet firmware standards

Project:

Author:
Function Name:

Date:

Number of errors Error type

Function size and complexity unreasonable

Unclear expression of ideas in the code

I I Poor encapsulation

I I Function prototypes not correctly used

I Data types do not match

Uninitialized variables at start of function

I I Uninitialized variables going into loops

Poor logic-won’t function as needed

Poor commenting

Error condition not caught (e.g.. return codes from

Switch statement without a default case (if only a subse
malloc(I)?

of the possible conditions used)?

Incorrect syntax-such as proper use of =, =, &&, &, et(

Non-reentrant code in dangerous places

Slow code in an area where speed is important

I Other I
Other

A Major bug is one that ifnot removed could result in a problem that
the customer will see. Minor bugs are those that include spelling errors,
non-compliance with the firmware standards, and poor workmanship that
does not lead to a major error.

24 THE ART OF DESIGNING EMBEDDED SYSTEMS

Table 2-2 Inspection Error List

They did find a very strong correlation between the office environment
and team performance. Needless interruptions yielded poor performance.
The best teams had private (read “quiet”) offices and phones with “off”
switches. Their study suggests that quiet time saves vast amounts of money.

Think about this. The almost minor tweak of getting some quiet time
can, according to their data, multiply your productivity by 260%! That’s an
astonishing result. For the same salary your boss pays you now, he’d get
almost three of you.

The winners-those performing almost three times as well as the
losers, had the following environmental factors:

Disciplined Development 25

Dedicated workspace

1st quartile 4th quartile

78 sq ft 46 sq ft

Is it quiet?
Is it private?

Can you turn off phone?

57% yes 29% yes
62% yes 19% yes

52% yes 10% yes

Too many of us work in a sea of cubicles, despite the clear data show-
ing how ineffective they are. It’s bad enough that there’s no door and no
privacy. Worse is when we’re subjected to the phone calls of all of our
neighbors. We hear the whispered agony as the poor sod in the cube next
door wrestles with divorce. We try to focus on our work. . . but because
we’re human, the pathos of the drama grabs our attention till we’re strain-
ing to hear the latest development. Is this an efficient use of an expensive
person’s time?

Can you divert your calls?

Frequent interruptions?

One correspondent told of working for a Fortune 500 company
when heavy hiring led to a shortage of cubicles for incoming pro-
grammers. One was assigned a manager’s office, complete with
window. Everyone congratulated him on his luck. Shortly a mainte-
nance worker appeared-and boarded up the window. The office po-
lice considered a window to be a luxury reserved for management,
not engineers.

Dysfunctional? You bet.

76% yes 19% yes

38% yes 76% yes

Various studies show that after an interruption it takes, on average,
around 15 minutes to resume a “state of flow”-where you’re once again
deeply immersed in the problem at hand. Thus, if you are interrupted by
colleagues or the phone three or four times an hour, you cannot get any
creative work done! This implies that it’s impossible to do support and de-
velopment concurrently.

Yet the cube police will rarely listen to data and reason. They’ve in-
vested in the cubes, and they’ve made a decision, by God! The cubicles are
here to stay!

This is a case where we can only wage a defensive action. Try to ed-
ucate your boss, but resign yourself to failure. In the meantime, take some
action to minimize the downside of the environment. Here are a few ideas:

26 THE ART OF DESIGNING EMBEDDED SYSTEMS

Wear headphones and listen to music to drown out the divorce
saga next door.
Turn the phone off! If it has no “off” switch, unplug the damn
thing. In desperate situations, attack the wire with a pair of wire
cutters. Remember that a phone is a bell that anyone in the world
can ring to bring you running. Conquer this madness for your most
productive hours.
Know your most productive hours. I work best before lunch; that’s
when I schedule all of my creative work, all of the hard stuff. 1
leave the afternoons free for low-IQ activities such as meetings,
phone calls, and paperwork.
Disable the email. It’s worse than the phone. Your two hundred
closest friends who send the joke of the day are surely a delight,
but if you respond to the email reader’s “bing” you’re little
more than one of NASA’s monkeys pressing a button to get a
banana.
Put a curtain across the opening to simulate a poor man’s door.
Since the height of most cubes is rather low, use a Velcro fastener
or a clip to secure the curtain across the opening. Be sure others
understand that when it’s closed you are not willing to hear from
anyone unless it’s an emergency.

An old farmer and a young farmer are standing at the fence
talking about farm lore, and the old farmer’s phone starts to ring.
The old farmer just keeps talking about herbicides and hybrids,
until the young farmer interrupts “Aren’t you going to answer
that?”

“What fer?” says the old farmer.
“Why, ’cause it’s ringing. Aren’t you going to get it?’ says the

younger.
The older farmer sighs and knowingly shakes his head.

“Nope,” he says. Then he looks the younger in the eye to make sure
he understands, “Ya see, I bought that phone for my convenience.”

Never forget that the phone is a bell that anyone in the world
can ring to make you jump. Take charge of your time!

It stands to reason that we need to focus to think, and that we need to
think to create decent embedded products. Find a way to get some privacy,
and protect that privacy above all.

Disciplined Development 27

When I use the Peopleware argument with managers, they al-
ways complain that private offices cost too much. Let’s look at the
numbers.

DeMarco and Lister found that the best performers had an aver-
age of 78 square feet of private office space. Let’s be generous and
use 100. In the Washington, DC, area in 1998, nice-very nice-full-
service office space runs around $3O/square foot per year.

Cost: 100 square feet:

One engineer costs:

$3000/yr = 100sqft x

$120,000 = $60,000 x
$30/ft/year

2 (overhead)

$3OO0/$120,000
The office represents: 2.5% of cost of the worker =

Thus, if the cost of the cubicle is zero, then only a 2.5% in-
crease in productivity pays for the office! Yet DeMarco and Lister
claim a 260% improvement. Disagree with their numbers? Even if
the?, are off by an order of magnitude, a private ofice is 10 times
cheaper than a cubicle.

You don’t have to be a rocket scientist to see the true cost/
benefit of private offices versus cubicles.

Step 5: Mearum Your Bug Rates

Code Inspections are an important step in bug reduction. But bugs-
some bugs-will still be there. We’ll never entirely eliminate them from
firmware engineering.

Understand, though, that bugs are a natural part of software develop-
ment. He who makes no mistakes surely writes no code. Bugs-r defects,
in the parlance of the software engineering community-are to be ex-
pected. It’s OK to make mistakes, as long as we’re prepared to catch and
correct these errors.

Though I’m not big on measuring things, bugs are such a source of
trouble in embedded systems that we simply have to log data about them.
There are three big reasons for bug measurements:

1. We find and fix them too quickly. We need to slow down and
think more before implementing a fix. Logging the bug slows us
down a trifle.

2. A small percentage of the code will be junk. Measuring bugs helps
us identify these functions so we can take appropriate action.

28 THE ART OF DESIGNING EMBEDDED SYSTEMS

3. Defects are a sure measure of customer-perceived quality. Once a
product ships, we’ve got to log defects to understand how well our
firmware processes satisfy the customer-the ultimate measure of
success.

But first, a few words about “measurements.”
It’s easy to take data. With computer assistance we can measure just

about anything and attempt to correlate that data to forces as random as
the wind.

W. Edwards Deming, 1900-1993, quality-control expert, noted that
using measurements as motivators is doomed to failure. He realized that
there are two general classes of motivating factors: The first he called “in-
trinsic.” These are things like professionalism, feeling like part of a team,
and wanting to do a good job. “Extrinsic” motivators are those applied to
a person or team, such as arbitrary measurements, capricious decisions,
and threats. Extrinsic motivators drive out intrinsic factors, turning work-
ers into uncaring automatons. This may or may not work in a factory en-
vironment, but is deadly for knowledge workers.

So measurements are an ineffective tool for motivation.
Good measures promote understanding. They transcend the details

and reveal hidden but profound truths. These are the sorts of measures we
should pursue relentlessly.

But we’re all very busy and must be wary of getting diverted by the
measurement process. Successful measures have the following three char-
acteri s ti cs :

They’re easy to do.
Each gives insight into the product andor processes.
The measure supports effective change-making. If we take data
and do nothing with it, we’re wasting our time.

For every measure, think in terms of first collecting the data, then in-
terpreting it to make sense of the raw numbers. Then figure on presenting
the data to yourself, your boss, or your colleagues. Finally, be prepared to
act on the new understanding.

Stop, Look, Listen
In the bad old days of mainframes, computers were enshrined in tech-

nical tabernacles, serviced by a priesthood of specially vetted operators.
Average users never saw much beyond the punch-card readers.

In those days of yore an edit-execute cycle started with punching
perhaps thousands of cards, hauling them to the computer center (being
careful not to drop the card boxes; on more than one occasion I saw grad

Disciplined Development 29

students break down and weep as they tried to figure out how to order the
cards splashed across the floor), and then waiting a day or more to see how
the run went. Obviously, with a cycle this long, no one could afford to use
the machine to catch stupid mistakes. We learned to “play computer”
(sadly, a lost art) to deeply examine the code before the machine ever had
a go at it.

How things have changed! Found a bug in your code? No sweat-a
quick edit, compile, and re-download takes no more than a few seconds.
Developers now look like hummingbirds doing a frenzied edit-com-
pile-download dance.

It’s wonderful that advancing technology has freed us from the
dreary days of waiting for our jobs to run. Watching developers work,
though, I see we’ve created an insidious invitation to bypass thinking.

How often have you found a problem in the code, and thought, “Uh,
if I change this, maybe the bug will go away?” To me that’s a sure sign of
disaster. If the change fails to fix the problem, you’re in good shape. The
peril is when a poorly thought-out modification does indeed “cure” the de-
fect. Is it really cured? Or did you just mask it?

Unless you’ve thought things through, any change to the code is an
invitation to disaster.

Our fabulous tools enable this dysfunctional pattern of behavior. To
break the cycle we have to slow down a bit.

EEs traditionally keep engineering notebooks, bound volumes of
numbered pages, ostensibly for patent protection reasons but more often
useful for logging notes, ideas, and fixes. Firmware folks should do no less.

When you run into a problem, stop for a few seconds. Write it down.
Examine your options and list those as well. Log your proposed solution
(see Figure 2-5).

Keeping such a journal helps force us to think things through more
clearly. It’s also a chance to reflect for a moment, and, if possible, come up
with a way to avoid that sort of problem in the future.

One colleague recently fought a tough problem with a wild
pointer. While logging the symptoms and ideas for fixing the code,
he realized that this particular flavor of bug could appear in all sorts
of places in the code. Instead of just plodding on, he set up a logic
analyzer to trigger on the wild writes . . . and found seven other
areas with the same problem, all of which had not as yet exhibited a
symptom. Now that’s what I call a great debug strategy-using ex-
perience to predict problems!

30 THE ART OF DESIGNING EMBEDDED SYSTEMS

FIGURE 2-5 A personal bug log.

Identify Bad Code
Barry Boehm found that typically 80% of the defects in a program

are in 20% of the modules. IBM’s numbers showed that 57% of the bugs
are in 7% of modules. Weinberg’s numbers are even more compelling:
80% of the defects are in 2% of the modules.

In other words, most of the bugs will be in a few modules orfinc-
tions. These academic studies confirm our common sense. How many
times have you tried to beat a function into submission, fixing bug after
bug after bug, convinced that this one is (you hope!) the last?

We’ve all also had that awful function that just simply stinks. It’s
ugly. The one that makes you slightly nauseous every time you open it. A
decent Code Inspection will detect most of these poorly crafted beasts, but
if one slips through, we have to take some action.

Make identifying bad code a priority. Then trash those modules and
start over.

It sure would be nice to have the chance to write every program twice:
the first time to gain a deep understanding of the problem; the second to do
it right. Reality’s ugly hand means that’s not an option. But the bad code,
the code where we spend far too much time debugging, needs to be excised
and redone. The data suggests we’re talking about recoding only around 5%
of the functions-not a bad price to pay in the pursuit of quality.

Boehm’s studies show that these problem modules cost, on average,
four times as much as any other module. So, if we identify these modules
(by tracking bug rates), we can rewrite them twice and still come out ahead!

Disciplined Development 3 1

Step 6: Measure Your Code Production Rates

Schedules collapse for a lot of reasons. In the 50 years people have
been programming electronic computers, we’ve learned one fact above
all: without a clear project specification, any schedule estimate is nothing
more than a stab in the dark. Yet every day dozens of projects start with lit-
tle more definition than, “Well, build a new instrument kind of like the last
one, with more features, cheaper, and smaller.” Any estimate made to a
vague spec is totally without value.

The corollary is that given the clear spec, we need time-sometimes
lors of time-to develop an accurate schedule. It ain’t easy to translate a
spec into a design, and then to realistically size the project. You simply
cannot do justice to an estimate in two days, yet that’s often all we get.

Further, managers must accept schedule estimates made by their peo-
ple. Sure, there’s plenty of room for negotiation: reduce features, add re-
sources, or permit more bugs (gasp!). Yet most developers tell me their
schedule estimates are capriciously changed by management to reflect a
desired end date, with no corresponding adjustments made to the project’s
scope.

The result is almost comical to watch, in a perverse way. Developers
drown themselves in project management software, mousing milestone tri-
angles back and forth to meet an arbitrary date cast in stone by manage-
ment. The final printout may look encouraging, but generally gets the total
lack of respect it deserves from the people doing the actual work. The
schedule is then nothing more than dishonesty codified as policy.

There’s an insidious sort of dishonest estimation too many of us en-
gage in. It’s easy to blame the boss for schedule debacles, yet often we bear
plenty of responsibility. We get lazy, and we don’t invest the same amount
of thought, time, and energy into scheduling that we give to debugging.
“Yeah, that section’s kind of like something I did once before” is, at best,
just a start of estimation. You cannot derive time, cost, or size from such a
vague statement . . . yet too many of us do. “Gee, that looks pretty easy-
say a week” is a variant on this theme.

Doing less than a thoughtful, thorough job of estimation is a form of
self-deceit that rapidly turns into an institutionalized lie. “We’ll ship De-
cember l ,” we chant, while the estimators know just how flimsy the frame-
work of that belief is. Marketing prepares glossy brochures, technical pubs
writes the manual, and production orders parts. December 1 rolls around,
and, surprise! January, February, and March go by in a blur. Eventually
the product goes out the door, leaving everyone exhausted and angry. Too

32 THE ART OF DESIGNING EMBEDDED SYSTEMS

much of this stems from a lousy job done in the first week of the project
when we didn’t carefully estimate its complexity.

It’s time to stop the madness!
We learn in school to practice top-down decomposition. Design the

system, break each block into smaller chunks, and iterate until no part of
the code is more than a page or two long. Then, and only then, can you un-
derstand its complexity. We generally then take a reasonable guess: “This
module will be 50 lines of code.” (Instead of lines of code, some compa-
nies use function points or other units of measure.)

Swell. Do this and you will still almost certainly fail.
Few developers seem to understand that knowing code size-even if

it were 100% accurate-is only half of the data absolutely required to pro-
duce any kind of schedule. It’s amazing that somehow we manage to solve
the equation

development time = (program size in Lines of Code)
x (time per Line of Code)

when time-per-Line-of-Code is totally unknown.
If you estimate modules in terms of lines of code (LOC), then you

must know-exactly-the cost per LOC. Ditto for function points or any
other unit of measure. Guesses are not useful.

When I sing this song to developers, the response is always, “Yeah,
sure, but I don’t have LOC data. . what do I do about the project I’m on
today?’ There’s only one answer: sorry, pal-you’re outta luck. IBM’s
LOC/month number is useless to you, as is one from the FAA, DOD, or
any other organization. In the commercial world we all hold our code to
different standards, which greatly skews productivity in any particular
measure.

You simply must measure how fast you generate embedded code,
every single day, for the rest of your life. It’s like being on a diet-even
when everything’s perfect, and you’ve shed those 20 extra pounds, you’ll
forever be monitoring your weight to stay in the desired range. Start col-
lecting the data today, do it forever, and over time you’ll find a model of
your productivity that will greatly improve your estimation accuracy.
Don’t do it, and every estimate you make will be, in effect, a lie-a wild,
meaningless guess.

Step 7: Consfanfly Study Software Engineering

The last step is the most important. Study constantly. In the 50 years
since ENIAC we’ve learned a lot about the right and wrong ways to build

Disciplined Development 33

software; almost all of the lessons are directly applicable to firmware
development.

How does an elderly, near-retirement doctor practice medicine? In
the same way he did before World War 11, before penicillin? Hardly. Doc-
tors spend a lifetime learning. They understand that lunch time is always
spent with a stack of journals.

Like doctors, we practice in a dynamic, changing environment. Un-
less we master better ways of producing code we’ll be the metaphorical
equivalent of the sixteenth-century medicine man, trepanning instead of
practicing modern brain surgery.

Learn new techniques. Experiment with them. Any idiot can write
code; the geniuses are those who find better ways of writing code.

One of the more intriguing approaches to creating a discipline
of software engineering is the Personal Software Process, a method
created by Watts Humphrey. An original architect of the CMM,
Humphrey realized that developers need a method they can use now,
without waiting for the CMM revolution to take hold at their com-
pany. His vision is not easy, but the benefits are profound. Check out
his A Discipline for Software Engineering, Watts S. Humphrey,
1995. Addison-Wesley.

Summary

With a bit of age (but less than anticipated maturity), it’s interesting
to look back and to see how most of us form personalities very early in life,
personalities with strengths and weaknesses that largely stay intact over the
course of decades.

The embedded community is composed of mostly smart, well-edu-
cated people, many of whom believe in some sort of personal improve-
ment. But, are we successful? How many of us live up to our New Year’s
resolutions?

Browse any bookstore. The shelves groan under self-help books.
How many people actually get helped, or at least helped to the point of
being done with a particular problem? Go to the diet section-I think there
are more diets being sold than the sum total of national excess pounds.
People buy these books with the best of intentions, yet every year Amer-
ica gets a little heavier.

Our desires and plans for self-improvement-at home or at the of-
fice-are among the more noble human characteristics. The reality is that

34 THE ART OF DESIGNING EMBEDDED SYSTEMS

we fail-a lot. It seems the most common way to compensate is a promise
made to ourselves to “try harder” or to “do better.” It’s rarely effective.

Change works best when we change the way we do things. Forget the
vague promises-invent a new way of accomplishing your goal. Planning
on reducing your drinking? Getting regular exercise? Develop a process
that ensures that you’re meeting your goal.

The same goes for improving your abilities as a developer. Forget the
vague promises to “read more books” or whatever. Invent a solution that
has a better chance of succeeding. Even better-steal a solution that works
from someone else.

Cynicism abounds in this field. We’re all self-professed experts of
development, despite the obvious evidence of too many failed projects.

I talk to a lot of companies who are convinced that change is impos-
sible; that the methods I espouse are not effective (despite the data that
shows the contrary), or that “management” will never let them take the
steps needed to effect change.

That’s the idea behind the “7 Steps.” Do it covertly, if need be; keep
management in the dark if you’re convinced of their unwillingness to use
a defined software process to create better embedded projects faster.

If management is enlightened enough to understand that the firmware
crisis requires change-and lots of it!-then educate them as you educate
yourself.

Perhaps an analogy is in order. The industrial revolution was
spawned by a lot of forces, but one of the most important was the concen-
tration of capital. The industrialists spent vast sums on foundries, steel
mills, and other means of production. Though it was possible to hand-craft
cars, dumping megabucks into assembly lines and equipment yielded
lower prices, and eventually paid off the investment in spades.

The same holds true for intellectual capital. Invest in the systems and
processes that will create massive dividends over time. If we’re unwilling
to do so, we’ll be left behind while others, more adaptable, put a few bucks
up front and win the software wars.

A final thought:
If you’re a process cynic, if you disbelieve all I’ve said in this

chapter, ask yourself one question: do I consistently deliver products
on time and on budget?

If the answer is no, then what are you doing about it?
I 1

CHAPTER 3
Stop Writing

Programs

The most important rule of software engineering is also the least
known: Complexity does not scale linearly with size.

For “complexity” substitute any difficult parameter, such as time re-
quired to implement the project, bugs, or how well the final product meets
design specifications (unhappily, meeting design specs is all too often un-
correlated with meeting customer requirements . . .).

So a 2000-line program requires more than twice as much develop-
ment time as one that’s half the size.

A bit of thought confirms this. Surely, any competent programmer
can write an utterly perfect five-line program in 10 minutes. Multiply the
five lines and the 10 minutes by a hundred; those of us with an honest
assessment of our own skills will have to admit the chances of writing a
perfect 500 line program in 16 hours are slim at best.

Data collected on hundreds of IBM projects confirm this. As systems
become more complex they take longer to produce, both because of the
extra size and because productivity falls dramatically:

(man-yrs) Lines of code produced per month

1
10
100
1000

439
220
110
55

Look closely at this data. Notice that there’s an order of magnitude
increase in delivery time simply due to the reduced productivity as the
project’s magnitude swells.

35

36 THE ART OF DESIGNING EMBEDDED SYSTEMS

COCOMO Data
Barry Boehm codified this concept in his Constructive Cost Model

(COCOMO). He found that

Effort to create a project = C x KLOC‘.

(KLOC means “thousands of lines of code.”)
Though the exact values of C and M vary depending on a number of

factors (e.g., real-time code is harder than that for the user interface), both
are always greater than 1.

A bit of algebra shows that, since M > 1, effort grows much faster
than the size of the program.

For real-time projects managed with the very best practices, C is typ-
ically 3.6 and M around 1.2. In embedded systems, which combine the
worst problems of real time with hardware dependencies, these coeffi-
cients are higher. Toss in the typical poor software practices of the em-
bedded industries and the M exponent can climb well above 1.5.

Suppose C = 1 and M = 1.4. At the risk of oversimplifying Boehm’s
model, we can still get an idea of the nonlinear growth of complexity with
program size as follows:

Lines of Effort Comments
code

10,000 25.1
20,000 66.3 Double size of code; effort goes up by 2.64
100,000 63 1 Size grows by factor of 10; effort grows by 25

So, in doubling the size of the program we incur 32% additional
overhead.

The human analogy of this phenomenon is the one so colorfully il-
lustrated by Fred Brooks in his The Mythical Man-Month (a must read for
all software folks). As projects grow, adding people has a diminishing re-
turn. One reason is the increased number of communications channels.
Two people can only talk to each other; there’s only a single comm path.
Three workers have three communications paths; four have six. In fact, the
growth of links is exponential: given n workers, there are (n2 - n)/2 links
between team members.

In other words, add one worker and suddenly he’s interfacing in n2
ways with the others. Pretty soon memos and meetings eat up the entire
work day.

The solution is clear: break teams into smaller, autonomous, and in-
dependent units to reduce these communications links.

Stop Writing Big Programs 37

Similarly, cut programs into smaller units. Since a large part of the
problem stems from dependencies (global variables, data passed between
functions, shared hardware, etc.), find a way to partition the program to
eliminate-or minimize-the dependencies between units.

Traditional computer science would have us believe the solution is
top-down decomposition of the problem, perhaps then encapsulating each
element into an OOP object. In fact, “top-down design,” “structured pro-
gramming,” and “OOP’ are the holy words of the computer vocabulary;
like fairy dust, if we sprinkle enough of this magic on our software all of
the problems will disappear.

I think this model is one of the most outrageous scams ever per-
petrated on the embedded community. Top-down design and OOP are
wonderful concepts, but are nothing more than a subset of our arsenal of
tools.

I remember interviewing a new college graduate, a CS major. It was
eerie, really, rather like dealing with a programmed cult member unthink-
ingly chanting the persuasion’s mantra. In this case, though, it was the
tenets of structured programming mindlessly flowing from his lips.

It struck me that programming has evolved from a chaotic “make it
work no matter what” level of anarchy to a pseudo-science whose precepts
are practiced without question. Problem Analysis, Top-Down Decomposi-
tion, 00P-all of these and more are the commandments of structured de-
sign, commandments we’re instructed to follow lest we suffer the pain of
failure.

Surely there’s room for iconoclastic ideas. I fear we’ve accepted
structured design, and all it implies, as a bedrock of our civilization, one
buried so deep we never dare to wonder if it’s only a part of the solution.

Top-down decomposition and OOP design are merely screwdrivers
or hammers in the toolbox of partitioning concepts.

Partitioning

Our goal in firmware design is to cheat the exponential in the CO-
COMO model, the exponential that also shows up in every empirical study
of software productivity. We need to use every conceivable technique to
flatten the curve, to move the M factor close to unity.

Top-down decomposition is a useful weapon in cheating the
COCOMO exponential, as is OOP design. In embedded systems we
have other possibilities denied to many people building desktop ap-
plications.

38 THE ART OF DESIGNING EMBEDDED SYSTEMS

Partition with Encapsulation

The OOP advocates correctly and profoundly point out the benefit of
encapsulation, to my mind the most important of the tripartite mantra en-
capsulation, inheritance, and polymorphism.

Above all, encapsulation means binding functions together with the
functions’ data. It means hiding the data so no other part of the program
can monkey with it. All access to the data takes place through function
calls, not through global variables.

Instead of reading a status word, your code calls a status function.
Rather than diddle a hardware port, you insulate the hardware from the
code with a driver.

Encapsulation works equally well in assembly language or in C++
(Figure 3-1). It requires a will to bind data withfunctions rather than any
particular language feature. C++ will not save the firmware world; encap-
sulation, though, is surely part of the solution.

One of the greatest evils in the universe, an evil in part responsible
for global warming, ozone depletion, and male pattern baldness, is the use
of global variables.

What’s wrong with globals? A partial list includes:

Any function, anywhere in the program, can change a global vari-
able at will. This makes finding why a global change is a night-
mare. Without the very best of tools you’ll spend too much time
finding simple bugs; time invested chasing problems will be all out
of proportion to value received.
Globals create tremendous reentrancy problems, as we’ll see in
Chapter 4.
While distance may make the heart grow fonder, it also clouds our
memories. A huge source of bugs is assigning data to variables de-
fined in a remote module with the wrong type, or over- and under-
running buffers as we lose track of their size, or forgetting to
null-terminate strings. If a variable is defined in its referring code,
it’s awfully hard to forget type and size info.

Every firmware standard-backed up by the rigorous checks of code
inspections-must set rules about global use. Though we’d like to ban
them entirely, the truth is that in real-time systems they are sometimes un-
avoidable. Nothing is faster than a global flag; when speed is truly an
issue, a few, a very few, globals may indeed be required. Restrict their use
to only a few critical areas. I feel that defining a global is such a source of
problems that the team leader should approve every one.

Stop Writing Big Programs 39

- text segment

; -get-cba-min-read a min value at (index) from the
; CBA buffer. Called by a C program with the (index)
; argument on the stack.

; Returns result in AX.

public -get-cba-min
- get-cba-min proc far

mov bx, SP
mov bx, [bx+4] ; bx= index in buf to read
add bx, cba-buf ; add offset to make addr
push ds
mov dx,buffer-seg ; point to the buffer seg
m o v es , dx
m o v ax, es : bx : read the min value
POP ds
retf
endp

- text ends

; CBA buffer, which is managed by the *-cba routines.
; Format: 100 entries, each of which looks like:
; buf+0 min value (word)
; buf+2 max value (word)
; buf+4 number of iterations (word)

- data segment para ‘DATA’
cba-bu f ds 100 * 6 ; CBA buffer
- data ends

FIWRE 3-1
not defined Public.

Encapsulation in assembly language. Note that the data is

40 THE ART OF DESIGNING EMBEDDED SYSTEMS

Among the great money-makers for ICE vendors are complex hard-
ware breakpoints, used most often for chasing down errant changes to
global variables. If you like globals, figure on anteing up plenty for tools.

There’s yet one more waffle on my anti-global crusade: device han-
dlers sometimes must share data stored in common buffers and the like.
We do not write a serial receive routine in isolation. It’s part of a fabric of
handlers that include input, output, initialization, and one or more interrupt
service routines (ISRs).

This implies something profound about module design. Write pro-
grams with lots and lots of modules! Don’t lump code into a handful of
5000-line files. Assign one module per logical function: for example, have
a single module (file) that includes all of the serial device handlers-nd
nothing else. Structurally it looks like:

public serial-in, serial-out,
serial-init
serial-in: code
serial-out: code
serial-init: code
serial-isr: code

buffer: data
status : data

The data items are filescopics-global to the module but private to
the rest of the system. I feel this tradeoff is needed in embedded systems
to reduce performance penalties of the noble but not-always-possible anti-
global tack.

private data

Partit;on with CPUS

Given that firmware is the most expensive thing in the universe, given
that the code will always be the most expensive part of the development ef-
fort, given that we’re under fire to deliver more complex systems to market
faster than ever, it makes sense in all but the most cost-sensitive systems to
have the hardware design fall out of software considerations. That is, design
the hardware in a way to minimize the cost of software development.

It’s time to reverse the conventional design approach, and let the
sofware drive the hardware design.

Consider the typical modern embedded system. A single CPU has the
metaphorical role of a mainframe computer: it handles all of the inputs and
outputs, runs application code, and services interrupts. Like the main-

Stop Writing Big Programs 41

frame, one CPU, one program, is doing many disparate activities that only
eventually serve a common goal.

Not enough horsepower? Toss in a 32-bitter. Crank up the clock rate.
Cut out wait states.

Why do we continue to emulate the antiquated notion of “big iron”-
even if the central machine is only an 805 l? Mainframes were long ago re-
placed by distributed workstations.

A single big CPU running the entire application implies that there’s
a huge program handling everything. We know that big programs are
bad-they cost too much to develop.

It’s usually cheaper to add more CPUs merely for the sake of simpli-
fying the software.

In the following table, “Effort” refers to development time as pre-
dicted by the COCOMO metric. The first two columns show the effort re-
quired to produce a single-CPU chunk of firmware of the indicated number
of lines of code. The next five columns show models of partitioning the
code over multiple CPUs-a “main” processor that runs the bulk of the ap-
plication code, and a number of quite small “extra” microcontrollers for
handling peripherals and similar tasks.

Single CPU 1 100,000 631

10.000 25

20.000 66

50,000 239

Multiple CPUs

#extra Total Effort

22000

54000 133

12 11oooo 353

Faster I

229

29%

40%

44%

Faster’

379,

65%

Clearly, total effort to produce the system decreases quite rapidly
when tasks are farmed out to additional processors, even though these
numbers include about 10% extra overhead to deal with interprocessor
communication. The “Faster’” column shows how much faster we can de-
liver the system as a result.

But the numbers are computed using an exponent of 1.4 for M, which
is a result of creating a big, complicated real-time embedded system. It’s
reasonable to design a system with as few real-time constraints as possible
in the main CPU, allocating these tasks to the smaller and more tractable
extra controllers. If we then reduce M to 1.2 for the main CPU (Boehm’s
real-time number) and leave it at 1.4 for the smaller processors that are
working with fickle hardware. the numbers in the Faster2 column result.

42 THE ART OF DESIGNING EMBEDDED SYSTEMS

To put this in another context, getting a 1OOK LOC program to market
65% faster means we’ve saved over 200 man-months of development
(using the fastest of Bell Lab’s production rates), or something like $2
million.

Don’t believe me? Cut the numbers by a factor of 10. That’s still
$200,000 in engineering that does not have to get amortized into the cost
of the product. The product also gets to market much, much faster, and ide-
ally it generates substantially more sales revenue.

The goal is to flatten the curve of complexity. Figure 3-2 shows the
relative growth rates of effort-normalized to program size-for both ap-
proaches.

One CPU

Multiple CPUs

5000 10000 20000 50000 100000 200000

Lines of Code

FIGURE 3-2 Flattening the curve of complexity growth.

NRE versus COGS
Nonrecurring engineering costs (NRE costs) are the bane of

most technology managers’ lives. NRE is that cost associated with
developing a product. Its converse is the cost of goods sold (COGS),
a.k.a. recurring costs.

NRE costs are amortized over the life of a product in fact or in
reality. Mature companies carefully compute the amount of engi-
neering in the product-a car maker, for instance, might spend a bil-
lion bucks engineering a new model with a lifespan of a million
units sold; in this case the cost of the car goes up by $1000 to pay for

Stop Writing Sig Programs 43

the NRE. Smaller technology companies often act like cowboys and
figure that NRE is just the cost of doing business; if we are prof-
itable, then the product’s price somehow (!) reflects all engineering
expenses.

Increasing NRE costs drives up the product’s price (most likely
making it less competitive and thus reducing profits), or directly re-
duces profits.

Making an NRE versus COGS decision requires a delicate bal-
ancing act that deeply mirrors the nature of your company’s product
pricing. A $1 electronic greeting card cannot stand any extra com-
ponents; minimize COGS above all. In an automobile the quantities
are so large that engineers agonize over saving a foot of wire. The
converse is a one-off or short-production-run device. The slightest
development hiccup costs tens of thousands-easily-which will
have to be amortized over a very small number of units.

Sometimes it’s easy to figure the tradeoff between NRE and
COGS. You should also consider the extra complication of opportu-
nity costs-”If I do this, then what is the cost of not doing that?” As
a young engineer I realized that we could save about $5000 a year by
changing from EPROMS to masked ROMs. I prepared a careful
analysis and presented it to my boss, who instantly turned it down
because making the change would shut down my other engineering
activities for some time. In this case we had a tremendous backlog of
projects, any of which could yield more revenue than the measly $5K
saved. In effect, my boss’s message was, “You are more valuable
than what we pay you.” (That’s what drives entrepreneurs into busi-
ness-the hope they can get the extra money into their own pockets!)

Follow these guidelines to be successful in simplifying software

Break out nasty real-time hardware functions into independent
CPUs. Do interrupts come at 1000/second from a device? Partition
it to a controller and offload all of that ISR overhead from the main
processor.
Think microcontrollers, not microprocessors. Controllers are in-
herently limited in address space, which helps keep firmware size
under control. Controllers are cheap (some cost less than 40 cents
in quantity). Controllers have everything you need on one chip-
RAM, ROM, 110, etc.

through multiple CPUs:

44 THE ART OF DESIGNING EMBEDDED SYSTEMS

Think OTP-one-time programmable-or EEROM memory.
Both let you build and test the application without going to expen-
sive masked ROM. Quick to build, quick to bum, and quick to test.
Keep the size of the code in the microcontrollers small. A few
thousand lines is a nice, tractable size that even a single program-
mer working in isolation can create.
Limit dependencies. One beautiful benefit of partitioning code into
controllers is that you’re pin-limited-the handful of pins on the
chips acts as a natural barrier to complex communications and in-
teraction between processors. Don’t defeat this by layering a
hideous communications scheme on top of an elegant design.

Communications is always a headache in multiple-processor appli-
cations. Building a reliable parallel comm scheme beats Freddy Krueger
for a nightmare any day. Instead, use a standard, simple protocol such
as I’C. This is a two-wire serial protocol supported directly by many
controllers. It’s multi-master and multi-slave, so you can hang many
processors on one pair of 12C wires. With rates to 1 Mb/sec, there’s enough
speed for most applications. Even better: you can steal the code from
Microchip’s and National Semiconductor’s Web sites.

The hardware designers will object to adding processors, of course.
Just as firmware folks take pride in producing optimum code, our hardware
brethren, too, want an elegant, minimalist creation where there’s enough
logic to make the thing work, but nothing more. Adding hardware-which
has a cost-just to simplify the code seems like a terrible waste of
resources.

Yet we’ve been designing systems with extra hardware for decades.
There’s no reason we couldn’t build a software implementation of a
UART. “Bit banging” software has been around for years. Instead, most of
the time we’ll add the UART device to eliminate the nasty, inefficient
software solution.

One of Xerox’s copiers is a monster of a machine that does
everything but change the baby. An older design, it uses seven 8085s
tied together with a simple proprietary network. One handles the
paper mechanism, another the user interface, yet another error pro-
cessing. The boards are all pretty much the same, and no ROM ex-
ceeds 32k. The machine is amazingly complex and feature-rich . . .
but code sizes are tiny.

Stop Writing Big Programs 45

Purtition by Features
Carpenters think in terms of studs and nails, hammers and saws.

Their vision is limited to throwing up a wall or a roof. An architect, on the
other hand, has a vision that encompasses the entire structure-but more
importantly, one that includes a focus on the customer. The only mean-
ingful measure of the architect’s success is his customer’s satisfaction.

We embedded folks too often distance ourselves from the customer’s
wants and needs. A focus on cranking schematics and code will thwart us
from making the thousands of little decisions that transcend even the most
detailed specification. The only view of the product that is meanin&l is
rhe customer’s. Unless we think like the customer, we’ll be unable to sat-
isfy him. A hundred lines of beautiful C or lOOk of assembly-it’s all in-
visible to the people who matter most.

Instead of analyzing a problem entirely in terms of functions and mod-
ules, look at the product in the feature domain, since features are the cus-
tomer’s view of the widget. Manage the software using a matrix of features.

Table 3-1 shows the feature matrix for a printer. Notice that the first
few items are not really features; they’re basic, low-level functions re-
quired just to get the thing to start up, as indicated by the “Importance” fac-
tor of “required.”

Beyond these, though, are things used to differentiate the product
from competitive offerings. Downloadable fonts might be important, but do
not affect the unit’s ability to just put ink on paper. Image rotation, listed as
the least important feature, sure is cool, but may not always be required.

Table 3-1

Feature

Shell
RTOS

Keyboard handler
LED driver

Comm with host

Paper handling
Print engine
Downloadable fonts
Main 100 local fonts
Unusual local fonts
Image rotation

Importance

Required
Required

Required
Required

Required

Required
Required
Important
Important
Less important
Less important

Priority Complexity

500
(purchased)

300
500
4.000
2.000
I o.Oo0
I.000

6.000
10,000

3,000

46 THE ART OF DESIGNING EMBEDDED SYSTEMS

The feature matrix ensures we’re all working on the right part of the
project. Build the important things first! Focus on the basic system struc-
ture-get all of it working, perfectly-before worrying about less impor-
tant features. I see project after project in trouble because the due date
looms with virtually nothing complete. Perhaps hundreds of functions
work, but the unit cannot do anything a customer would find useful. De-
velopers’ efforts are scattered all over the project so that until everything
is done, nothing is done.

The feature matrix is a scorecard. If we adopt the view that we’re
working on the important stuff first, and that until a feature works perfectly
we do not move on, then any idiot-including those warming seats in mar-
keting-can see and understand the project’s status.

(The complexity rating shown is in estimated lines of code. LOC as
a unit of measure is constantly assailed by the software community. Some
push function points-unfortunately there are a dozen variants of this-as
a better metric. Most often people who rail against LOC as a measure in
fact measure nothing at all. I figure it’s important to measure something,
something easy to count, and LOC gives a useful if less than perfect as-
sessment of complexity.)

Most projects are in jeopardy from the outset, as they’re beset by a
triad of conflicting demands (Figure 3-3). Meeting the schedule, with a
high-quality product, that does everything the 24-year-old product man-
ager in marketing wants, is usually next to impossible.

Eighty percent of all embedded systems are delivered late. Lots and
lots of elements contribute to this, but we too often forget that when de-
veloping a product we’re balancing the schedule/quality/features mix. Cut
enough features and you can ship today. Set the quality bar to near zero

FIGURE 3-3 The twisted tradeoff

Stop Writing Big Programs 47

and you can neglect the hard problems. Extend the schedule to infinity and
the product can be perfect and complete.

Too many computer-based products are junk. Companies die or lose
megabucks as a result of prematurely shipping something that just does not
work. Consumers are frustrated by the constant need to reset their gadgets
and by products that suffer the baffling maladies of the binary age.

We’re also amused by the constant stream of announced-but-
unavailable products. Firms do quite exquisite PR dances to explain away
the latest delay; Microsoft’s renaming of a late Windows upgrade to “95”
bought them an extra year and the jeers of the world. Studies show that get-
ting to market early reaps huge benefits; couple this with the extreme costs
of engineering and it’s clear that “ship the damn thing” is a cry we’ll never
cease to hear.

Long-term success will surely result from shipping a qualify product
on rime. That means there’s only one leg of the twisted tradeoff left to fid-
dle. Cut a few of the less important features to get a first-class device to
market fast.

The computer age has brought the advent of the feature-rich product
that no one understands or uses. My cell phone’s “Function” key takes a
two-digit argument-one hundred user-selectable functions/features built
into this little marvel. Never use them, of course. I wish the silly thing
could reliably establish a connection! The design team’s vision was clearly
skewed in term of features over quality, to consumers’ loss.

If we’re unwilling to partition the product by features, and to build
the firmware in a clear, high-priority features-first hierarchy, we’ll be for-
ever trapped in an impossible balance that will yield either low quality or
late shipment. Probably both.

Use a feature matrix, implementing each in a logical order, and make
each one perfect before you move on. Then at any time management can
make a reasonable decision: ship a quality product now, with this feature
mix, or extend the schedule until more features are complete.

This means you must break down the code by feature, and only then
apply top-down decomposition to the components of each feature. It means
you’ll manage by feature, getting each done before moving on, to keep the
project’s status crystal clear and shipping options always open.

Management may complain that this approach to development is, in a
sense, planning for failure. They want it all: schedule, quality, and features.
This is an impossible dream! Good software practices will certainly help hit
all elements of the triad, but we’ve got to be prepared for problems.

Management uses the same strategy in making their projections. No
wise CEO creates a cash flow plan that the company must hit to survive:

48 THE ART OF DESIGNING EMBEDDED SYSTEMS

there’s always a backup plan, a fall-back position in case something unex-
pected happens.

So, while partitioning by features will not reduce complexity, it leads
to an earlier shipment with less panic as a workable portion of the product
is complete at all times.

In fact, this approach suggests a development strategy that maxi-
mizes the visibility of the product’s quality and schedule.

Develop Firmware Incrementally

Deming showed the world that it’s impossible to test quality into a
product. Software studies further demonstrate the futility of expecting test
to uncover huge numbers of defects in reasonable times-in fact, some
studies show that up to 50% of the code may never be exercised under a
typical test regime.

Yet test is a necessary part of software development.
Firmware testing is dysfunctional and unlikely to be successful when

postponed till the end of the project. The panic to ship overwhelms com-
mon sense; items at the end of the schedule are cut or glossed over. Test is
usually a victim of the panic.

Another weak point of all too many schedules is that nasty line item
known as “integration.” Integration, too, gets deferred to the point where
it’s poorly done.

Yet integration shouldn’t even exist as a line item. Integration im-
plies we’re only fiddling with bits and pieces of the application, ignoring
the problem’s gestalt, until very late in the schedule when an unexpected
problem (unexpected only by people who don’t realize that the reason for
test is to unearth unexpected issues) will be a disaster.

The only reasonable way to build an embedded system is to start in-
tegrating today, now, on the day you first crank a line of code. The biggest
schedule killers are unknowns; only testing and actually running code and
hardware will reveal the existence of these unknowns.

As soon as practicable, build your system’s skeleton and switch it on.
Build the startup code. Get chip selects working. Create stub tasks or call-
ing routines. Glue in purchased packages and prove to yourself that they
work as advertised and as required. Deal with the vendor, if trouble sur-
faces, now rather than in a last-minute debug panic when they’ve unex-
pectedly gone on holiday for a week.

This is a good time to slip in a ROM monitor, perhaps enabled by a
secret command set. It’ll come in handy when you least have time to add

Stop Writing Big Programs 49

one-perhaps in a panicked late-night debugging session moments before
shipping, or for diagnosing problems that creep up in the field.

In a matter of days or a week or two you’ll have a skeleton assem-
bled, a skeleton that actually operates in some very limited manner. Per-
haps it runs a null loop. Using your development tools, test this small scale
chunk of the application.

Start adding the lowest-level code, testing as you go. Soon your sys-
tem will have all of the device drivers in place (tested), ISRs (tested), the
startup code (tested), and the major support items such as comm packages
and the RTOS (again tested). Integration of your own applications code
can then proceed in a reasonably orderly manner, plopping modules into a
known-good code framework, facilitating testing at each step.

The point is to immediately build a framework that operates, and
then drop features in one at a time, testing each as it becomes available.
You’re testing the entire system, such as it is, and expanding those tests as
more of it comes together. Test and integration are no longer individual
milestones; they are part of the very fabric of development.

Success requires a determination to constantly test. Every day, or at
least every week, build the entire system (using all of the parts then avail-
able) and ensure that things work correctly. Test constantly. Fix bugs
immediately.

The daily or weekly testing is the project’s heartbeat. It ensures
that the system really can be built and linked. It gives a constant view
of the system’s code quality, and encourages early feature feedback
(a mixed blessing, admittedly-but our goal is to satisfy the customer,
even at the cost of accepting slips due to reengineering poor feature im-
plementation).

At the risk of sounding like a new-age romantic, someone working in
aromatherapy rather than pushing bits around, we’ve got to learn to deal
with human nature in the design process. Most managers would trade their
firstborn for an army of Vulcan programmers, but until the Vulcan econ-
omy collapses (“emotionless programmer, will work for peanuts and log-
ical discourse”), we’ll have to find ways to efficiently use humans, with all
of their limitations.

We people need a continuous feeling of accomplishment to feel e€-
fective and to be effective. Engineering is all about making things work;
it’s important to recognize this and create a development strategy that sat-
isfies this need. Having lots of little progress points, where we see our sys-
tem doing something, is tons more satisfying than coding for a year before
hitting the ON switch.

50 THE ART OF DESIGNING EMBEDDED SYSTEMS

A hundred thousand lines of carefully written and documented code
is nothing more than worthless bits until it’s tested. We hear “It’s done” all
the time in this field, where “done” might mean “vaguely understood” or
“coded.” To me “done” has one meaning only: “tested.”

Incremental development and testing, especially of the high-risk
areas such as hardware and communications, reduces risk tremendously.
Even when we’re not honest with each other (“Sure, I can crank this puppy
out in a week, no sweat”), deep down we usually recognize risk well
enough to feel scared. Mastering the complexities up front removes the
fear and helps us work confidently and efficiently.

Conquer the Impossible

Firmware people are too often treated as the scum of the earth, be-
cause their development efforts tend to trail everyone else’s. When the
code can’t be tested until the hardware is ready-and we know the hard-
ware schedule is bound to slip-then the software, already starting late,
will appear to doom the ship date.

Engineering is all about solving problems, yet sometimes we’re im-
mobilized like deer in headlights by the problems that litter our path. We
simply have to invent a solution to this dysfunctional cycle of starting
firmware testing late because of unavailable hardware!

And there are a lot of options.
One of the cheapest and most available tools around is the desktop

PC. Use it! Here are a few ways to conquer the “I can’t proceed because
the hardware ain’t ready” complaint.

One compelling reason to use an embedded PC in non-cost-sensi-
tive applications is that you can do much of the development on a
standard PC. If your project permits, consider embedding a PC
and plan on writing the code using standard desktop compilers and
other tools.
Write in C or C++. Cross-develop the code on a PC until hardware
comes on line. It’s amazing how much of the code you can get
working on a different platform. Using a processor-specific timer
or serial channel? Include conditional compilation switches to dis-
able the target YO and enable the PC’s equivalent devices. One de-
veloper I know tests more than 95% of his code on the PC this
way-and he’s using a PIC processor, about as dissimilar from a
PC as you can get.

Stop Writing Big Programs 51

Regardless of processor, build an I/O board that contains your
target-specific devices, such as ADS. There’s an up-front time
penalty incurred in creating the board; but the advantage is faster
code delivery with more of the bugs wrung out. This step also
helps prove the hardware design early-a benefit to everyone.

Summary

You’ll never flatten the complexity/size curve unless you use every
conceivable way to partition the code into independent chunks with no or
few dependencies.

Some of these methods include the following:

Partition by encapsulation
Partition by adding CPUs
Partition by using an RTOS (more in the next chapter)
Partition by feature management and incremental development
Finally, partition by top-down decomposition

CHAPTER 4
Real Time Means
Right Now!

We’re taught to think of our code in the procedural domain: that of
actions and effects. IF statements and control loops create a logical flow to
implement algorithms and applications. There’s a not-so-subtle bias in
college toward viewing correctness as being nothing more than stringing
the right statements together.

Yet embedded systems are the realm of real time, where getting the
result on time is just as important as computing the correct answer.

A hard real-time task or system is one where an activity simply must
be completed-always-by a specified deadline. The deadline may be a
particular time or time interval, or may be the arrival of some event. Hard
real-time tasks fail, by definition, if they miss such a deadline.

Notice that this definition makes no assumptions about the frequency
or period of the tasks. A microsecond or a week-if missing the deadline
induces failure, then the task has hard real-time requirements.

“Soft” real time, though, has a definition as weak as its name. By
convention it’s those class of systems that are not hard real time, though
generally there is some sort of timeliness requirement. If missing a dead-
line won’t compromise the integrity of the system, if generally getting the
output in a timely manner is acceptable, then the application’s real-time re-
quirements are “soft.” Sometimes soft real-time systems are those where
multi-valued timeliness is acceptable: bad, better, and best responses are
all within the scope of possible system operation,

53

54 THE ART OF DESIGNING EMBEDDED SYSTEMS

Interrupts

Most embedded systems use at least one or two interrupting devices.
Few designers manage to get their product to market without suffering
metaphorical scars from battling interrupt service routines (ISRs). For
some incomprehensible reason-perhaps because “real time” gets little
more than lip service in academia-most of us leave college without
the slightest idea of how to design, code, and debug these most important
parts of our systems. Too many of us become experts at ISRs the same way
we picked up the secrets of the birds and the bees-from quick conver-
sations in the halls and on the streets with our pals. There’s got to be a
better way!

New developers rail against interrupts because they are difficult to
understand. However, just as we all somehow shattered our parents’ nerves
and learned to drive a stick-shift, it just takes a bit of experience to become
a certified “master of interrupts.”

Before describing the “how,” let’s look at why interrupts are impor-
tant and useful. Somehow peripherals have to tell the CPU that they re-
quire service. On a UART, perhaps a character arrived and is ready inside
the device’s buffer. Maybe a timer counted down and must let the proces-
sor know that an interval has elapsed.

Novice embedded programmers naturally lean toward polled com-
munication. The code simply looks at each device from time to time, ser-
vicing the peripheral if needed. It’s hard to think of a simpler scheme.

An interrupt-serviced device sends a signal to the processor’s dedi-
cated interrupt line. This causes the processor to screech to a stop and in-
voke the device’s unique ISR, which takes care of the peripheral’s needs.
There’s no question that setting up an ISR and associated control registers
is a royal pain. Worse, the smallest mistake causes a major system crash
that’s hard to troubleshoot.

Why, then, not write polled code? The reasons are legion:

1. Polling consumes a lot of CPU horsepower. Whether the periph-
eral is ready for service or not, processor time-usually a lot of
processor time-is spent endlessly asking “Do you need service
yet?”

2. Polled code is generally an unstructured mess. Nearly every loop
and long complex calculation has a call to the polling routines so
that a device’s needs never remain unserviced for long. ISRs, on
the other hand, concentrate all of the code’s involvement with
each device into a single area. Your code is going to be a night-
mare unless you encapsulate hardware-handling routines.

Real Time Means Right Now! 55

3. Polling leads to highly variable latency. If the code is busy han-
dling something else (just doing a floating-point add on an 8-bit
CPU might cost hundreds of microseconds), the device is ignored.
Properly managed interrupts can result in predictable latencies of
no more than a handful of microseconds.

Use an ISR pretty much any time a device can asynchronously re-
quire service. I say “pretty much” because there are exceptions. As we’ll
see, interrupts impose their own sometimes unacceptable latencies and
overhead. I did a tape interface once, assuming the processor was fast
enough to handle each incoming byte via an interrupt. Nope. Only polling
worked. In fact. tuning the five instruction polling loops‘ speed ate up 3
weeks of development time.

Vectvring

Though interrupt schemes vary widely from processor to processor,
most modem chips use a variation of vectoring. Peripherals, whether ex-
ternal to the chip or internal (such as on-board timers), assert the CPU’s in-
terrupt input.

The processor generally completes the current instruction and stores
the processor’s state (current program counter and possibly flag register)
on the stack. The entire rationale behind ISRs is to accept, service, and re-
turn from the interrupt, all with no visible impact on the code. This is pos-
sible only if the hardware and software save the system’s context before
branching to the ISR.

It then acknowledges the interrupt, issuing a unique interrupt ac-
knowledge cycle recognized by the interrupting hardware. During this
cycle the device places an interrupt code on the data bus that tells the
processor where to find the associated vector in memory.

Now the CPU interprets the vector and creates a pointer to the inter-
rupt vector table, a set of ISR addresses stored in memory, It reads the ad-
dress and branches to the ISR.

Once the ISR starts, you, the programmer, must preserve the CPU’s
context (such as saving registers, restoring them before exiting). The ISR
does whatever it must, then returns with all registers intact to the normal
program flow. The main-line application never knows that the interrupt
occurred.

Figures 4- 1 and 4-2 show two views of how an x86 processor handles
an interrupt. When the interrupt request line goes high, the CPU completes
the instruction it’s executing (in this case at address 0100) and pushes the

56 THE ART OF DESIGNING EMBEDDED SYSTEMS

0100

Last instruction before intr ISR start
Pushes from intr Vector read

m
/ rd U U

I N T R i

7FFE 7FFC 7FFA I 0010 1 0012 I 0020

/intak

/wr U U U

FIGURE 4-1 Logic analyzer view of an interrupt.

return address (two 16-bit words) and the contents of the flag register. The
interrupt acknowledge cycle-wherein the CPU reads an interrupt number
supplied by the peripheral-is unique, as there’s no read pulse. Instead, in-
tack going low tells the system that this cycle is unique.

x86 processors multiply the interrupt number by four (left shifted
two bits) to create the address of the vector. A pair of 16-bit reads extracts
the 32-bit ISR address.

Important points:

The CPU chip’s hardware, once it sees the interrupt request signal,
does everything automatically, pushing the processor’s state, read-
ing the interrupt number, extracting a vector from memory, and
starting the ISR.
The interrupt number supplied by the peripheral during the ac-
knowledge cycle might be hardwired into the device’s brain, but

0100
7FFE
7FFC
7FFA
xxxx
0010
0012
read
0020

NOP Fetch <-- INTR REQ asserted
0102 Write <-- Return address pushed
0000 Write
- Write <-- Flags pushed
0010 INTA <-- Vector inserted
0020 Read <-- ISR Address (low) read
0000 Read <-- ISR Address (high)

PUSH Fetch <-- ISR starts

FIGURE 4-2 Real-time trace view of an interrupt.

Real Time Means Right Now! 57

more commonly it’s set up by the firmware. Forget to initialize the
device and the system will crash as the device supplies a bogus
number.
Some peripherals and interrupt inputs will skip the acknowledge
cycle because they have predetermined vector addresses.

9 All CPUs let you disable interrupts via a specific instruction (DI,
CLI, or something similar). Further, you can generally enable and
disable interrupts from specific devices by appropriately setting
bits in peripheral or interrupt control registers.

9 Before invoking the ISR the hardware disables or reprioritizes in-
terrupts. Unless your code explicitly reverses this, you’ll see no
more interrupts at this level.

At first glance the vectoring seems unnecessarily complicated. Its
great advantage is support for many varied interrupt sources. Each device
inserts a different vector; each vector invokes a different ISR. Your UART
Data-Ready ISR is called independently of the UART Transmit-
Buf fer-Full routine. The vectoring scheme also limits pin counts,
since it requires just one dedicated interrupt line.

Some CPUs sometimes directly invoke the ISR without vectoring.
This greatly simplifies the code, but unless you add a lot of manual pro-
cessing, it limits the number of interrupt sources a program can con-
veniently handle.

Interrupt Design Guidelines

While crummy code is just hard to debug, crummy ISRs are virtually
undebuggable. The software community knows it’s just as easy to write
good code as it is to write bad. Give yourself a break and design hardware
and software that eases the debugging process.

Poorly coded interrupt service routines are the bane of our industry.
Most ISRs are hastily thrown together, tuned at debug time to work, then
tossed in the “Oh my God, it works” pile and forgotten. A few simple rules
can alleviate many of the common problems.

First, don’t even consider writing a line of code for your new em-
bedded system until you lay out an interrupt map (Figure 4-3). List each
interrupt and give an English description of what the routine should do. In-
clude your estimate of the interrupt’s frequency. Figure the maximum,
worst-case time available to service each. This is your guide: exceed this
number, and the system stands no chance of functioning properly.

The map is a budget. It gives you an assessment of where interrupt-
ing time will be spent. Just as your own personal financial budget has a

58 THE ART OF DESIGNING EMBEDDED SYSTEMS

Latency Max-time Freq

lNTl 1 OOOusec 1 OOOusec
I NT2 1 OOusec 1 OOusec
I NT3 250usec 250usec
I NT4 15usec 1 OOusec
NMI 200usec 5OOusec once!

Description

timer
send data
Serial data in
write tape
System crash

FIGURE 4-3 An interrupt map.

degree of flexibility (spend too much on dinner this month and, assuming
you don’t abuse the credit cards, you’ll have to reduce spending some-
where else). Like any budget, it’s a condensed view of a profound reality
whose parameters your system must meet. One number only is cast in
stone: there’s only one second’s worth of compute time per second to get
everything done. You can tune execution time of any ISR, but be sure
there’s enough time overall to handle every device.

Approximate the complexity of each ISR. Given the interrupt rate,
with some idea of how long it’ll take to service each, you can assign pri-
orities (assuming your hardware includes some sort of interrupt controller).
Give the highest priority to things that must be done in staggeringly short
times to satisfy the hardware or the system’s mission (such as to accept
data coming in from a 1 Mb/sec source).

The cardinal rule of ISRs is to keep the handlers short. A long ISR
simply reduces the odds you’ll be able to handle all time-critical events in
a timely fashion. If the interrupt starts something truly complex, have the
ISR spawn off a task that can run independently. This is an area where an
RTOS is a real asset, as task management requires nothing more than a call
from the application code.

Short, of course, is measured in time, not in code size. Avoid loops.
Avoid long complex instructions (repeating moves, hideous math, and the
like). Think like an optimizing compiler: does this code really need to be
in the ISR? Can you move it out of the ISR into some less critical section
of code?

For example, if an interrupt source maintains a time-of-day clock,
simply accept the interrupt and increment a counter. Then return. Let some
other chunk of code-perhaps a non-real-time task spawned from the
ISR-worry about converting counts to time and day of the week.

Ditto for command processing. I see lots of systems where an ISR re-
ceives a stream of serial data, queues it to RAM, and then executes com-
mands or otherwise processes the data. Bad idea! The ISR should simply
queue the data. If time is really pressing &e., you need real-time response

Real Time Means Right Now! 59

to the data), consider using another task or ISR, one driven via a timer
that interrupts at the rate you consider “real time,” to process the queued
data.

An analogous rule to keeping ISRs short is to keep them simple.
Complex ISRs lead to debugging nightmares, especially when the tools
may be somewhat less than adequate. Debugging ISRs with a simple
BDM-like debugger is going to hurt-bad. Keep the code so trivial there’s
little chance of error.

An old rule of software design is to use one function (in this case the
serial ISR) to do one thing. A real-time analogy is to do things only when
they need to ger done, not at some arbitrary rate.

Reenable interrupts as soon as practical in the ISR. Do the hardware-
critical and non-reentrant things up front, then execute the interrupt enable
instruction. Give other ISRs a fighting chance to do their thing.

Fill all of your unused interrupt vectors with a pointer to a null rou-
tine (Figure 4-4). During debug, ulwwys set a breakpoint on this routine.
Any spurious interrupt, due to hardware problems or misprogrammed pe-
ripherals, will then stop the code cleanly and immediately, giving you a
prayer of finding the problem in minutes instead of weeks.

Hardwarre Issues

Lousy hardware design is just as deadly as crummy software. Mod-
ern high-integration CPUs such as the 68332,80186. and 2180 all include
a wealth of internal peripherals-serial ports, timers, DMA controllers,
etc. Interrupts from these sources pose no hardware design issues, since the
chip vendors take care of this for you. All of these chips, though, do per-
mit the use of external interrupt sources. There’s trouble in them thar ex-
ternal interrupts!

Vect- table:
d l
d l
dl
d l
d l
d l
d l
d l

s t a r t - u p
n u l 1-1 s r
nu 11-1 s r
t i m e r - i s r
s e r i a l - i n-i s r ;
s e r ia l -out- i s r ;
n u l l - i s r
n u l l - i s r

power up v e c t o r
unused v e c t o r
unused v e c t o r
main t i c k t i m e r ISR
s e r i a l r e c e i v e ISR
s e r i a l t r a n s m i t ISR
unused v e c t o r
unused v e c t o r

n u l l - i s r : ; s p u r i o u s i n t r r o u t i n e
i m p n u l l - i s r ; s e t BP h e r e !

FIGURE 4-4 Fill unused vectors with a pointer to null-isr, and set a
breakpoint there while debugging.

60 THE ART OF DESIGNING EMBEDDED SYSTEMS

The biggest issue is the generation of the INTR signal itself. Don’t sim-
ply pulse an interrupt input. Though some chips do permit edge-triggered in-
puts, the vast majority of them require you to assert and hold INTR until the
processor issues an acknowledgment, such as from the interrupt ACK pin.
Sometimes it’s a signal to drop the vector on the bus; sometimes it’s nothing
more than “Hey, I got the interrupt-you can release INTR now.”

As always, be wary of timing. A slight slip in asserting the vector can
make the chip wander to an erroneous address. If the INTR must be exter-
nally synchronized to clock, do exactly what the spec sheet demands.

If your system handles a really fast stream of data, consider adding
hardware to supplement the code. A data acquisition system I worked on
accepted data at a 20-microsecond rate. Each generated an interrupt, caus-
ing the code to stop what it was doing, vector to the ISR, push registers
like wild, and then reverse the process at the end of the sequence. If the
system was busy servicing another request, it could miss the interrupt al-
together.

A cheap 256-byte-deep FIFO chip eliminated all of the speed issues.
The hardware filled the FIFO without CPU intervention. It generated an in-
terrupt at the half-full point (modem FIFOs often have Empty, Half-Full,
and Full bits), at which time the ISR sucked data from the FIFO until it was
dry. During this process additional data might come along and be written
to the FIFO, but this happened transparently to the code.

Most designs seem to connect FULL to the interrupt line. Conceptu-
ally simple, this results in the processor being interrupted only after the en-
tire buffer is full. If a little extra latency causes a short delay before the
CPU reads the FIFO, then an extra data byte arriving before the FIFO is
read will be lost.

An alternative is EMPTY going not-true. A single byte arriving will
cause the micro to read the FIFO. This has the advantage of keeping the
FIFOs relatively empty, minimizing the chance of losing data. It also
makes a big demand on CPU time, generating interrupts with practically
every byte received.

Instead, connect HALF-FULL, if the signal exists on the FIFOs
you’ve selected, to the interrupt line. HALF-FULL is a nice compromise,
deferring processor cycles until a reasonable hunk of data is received, yet
leaving free buffer space for more data during the ISR cycles.

Some processors do amazing things to service an interrupt, stacking
addresses and vectoring indirectly all over memory. The ISR itself no
doubt pushes lots of registers, perhaps also preserving other machine in-
formation. If the HALF-FULL line generates the interrupt, then you have
the a priori information that lots of other data is already queued and wait-

Real Time Means Right Now! 61

ing for processor time. Save overhead by making the ISR read the FIFOs
until the EMPTY flag is set. You’ll have! to connect the EMPTY flag to a
parallel port so the software can read it, but the increase in performance is
well worth it.

In mission-critical systems it might also make sense to design a sim-
ple circuit that latches the combination of FULL and an incoming new data
item. This overflow condition could be disastrous and should be signaled
to the processor.

A few bucks invested in a FIFO may allow you to use a much slower,
and cheaper, CPU. Total system cost is the only price issue in embedded
design. If a $5 %bit chip with a $6 FIFO does the work of a $20 16-bitter
with double the RAM/ROM chips, it’s foolish to not add the extra part.

Figure 4-5 shows the result of an Intel study of serial receive interrupts
coming to a 386EX processor. At 530,000 baud-or around 53,000 charac-
ters per second-the CPU is almost completely loaded servicing interrupts.

Add a 16-byte FIFO and CPU loading declines to a mere 10%. That’s
a stunning performance improvement!

C or Assembly?

If you’ve followed my suggestions, you have a complete interrupt
map with an estimated maximum execution time for the ISR. You’re ready
to start coding . . . right?

If the routine will be in assembly language, convert the time to a
rough number of instructions. If an average instruction takes x microsec-
onds (depending on clock rate, wait states, and the like), then it’s easy to
get this critical estimate of the code’s allowable complexity.

100 12

10

8

6

4

0 9600
0 38400
0 57600
rn 115200
rn 230400

80

60

40

20 2

0 0

FIGURE 4-5 Baud rates versus CPU utilization. On the left, a con-
ventional connection uses 90% of the CPU to service 530k baud inputs.
On the right, with a FIFO the processor is 10% loaded at the same rate.

62 THE ART OF DESIGNING EMBEDDED SYSTEMS

C is more problematic. In fact, there’s no way to scientifically write
an interrupt handler in C! You have no idea how long a line of C will take.
You can’t even develop an estimate as each line’s time varies wildly. A
string compare may result in a runtime library call with totally unpre-
dictable results. A FOR loop may require a few simple integer compar-
isons or a vast amount of processing overhead.

And so, we write our C functions in a fuzz of ignorance, having no
concept of execution times until we actually run the code. If it’s too slow,
well, just change something and try again!

I’m not recommending that ISRs not be coded in C. Rather, this is
more of a rant against the current state of compiler technology. Years ago
assemblers often produced t-state counts on the listing files, so you could
easily figure how long a routine ran. Why don’t compilers do the same for
us? Though there are lots of variables (that string compare will take a vary-
ing amount of time depending on the data supplied to it), certainly many C
operations will give deterministic results. It’s time to create a feedback
loop that tells us the cost, in time and bytes, for each line of code we write,
before burning ROMs and starting test.

Until compilers improve, use C if possible, but look at the code gen-
erated for a typical routine. Any call to a runtime routine should be imme-
diately suspect, as that routine may be slow or non-reentrant, two deadly
sins for ISRs. Look at the processing overhead-how much pushing and
popping takes place? Does the compiler spend a lot of time manipulating
the stack frame? You may find one compiler pitifully slow at interrupt han-
dling. Either try another, or switch to assembly.

Despite all of the hype you’ll read in magazine ads about how
vendors understand the plight of the embedded developer, the plain
truth is that the compiler vendors all uniformly miss the boat. Mod-
em C and C++ compilers are poorly implemented in that they give us
no feedback about the real-time nature of the code they’re producing.

The way we write performance-bound C code is truly astound-
ing. Write some code, compile and run it . . . and if it’s not fast
enough, change something-anything-and try again. The compiler
has so distanced us from the real-time nature of the code that we’re
left to make random changes in a desperate attempt to get the tool to
produce faster code.

A much more reasonable approach would be to get listings
from the compiler with typical per-statement execution times. An
ideal listing might resemble

Real Time Means Right Now! 63

2 5 0 - 2 7 5 nsec for(i=O; i<count; ++i)
5 0 8 - 5 8 0 nsec {if (start-count ! =

end-c oun t)
2 5 0 nsec end_point=head;

I

where a range of values cover possible differences in execution
paths depending on how the statement operates (for example, if the
FOR statement iterates or terminates).

To get actual times, of course, the compiler needs to know a lot
about our system, including clock rates and wait states. Another op-
tion is to display T states, or even just number of instructions exe-
cuted (since that would give us at least some sort of view of the
code’s performance in the time domain).

Vendors tell me that cache, pipelines, and prefetchers make
modeling code performance too difficult. I disagree. Most small em-
bedded CPUs don’t have these features, and of them, only cache is
truly tough to model.

Please, Mr. Compiler Vendor, give us some sort of indication
about the sort of performance we can expect! Give us a clue about
how long a runtime routine or floating-point operation takes.

A friend told me how his DOD project uses an antique lan-
guage called CMSP. The compiler is so buggy they have to look for
bugs in the assembly listing after each and every compile-and then
make a more or less random change and recompile, hoping to lure
the tool into creating correct code. I laughed until I realized that’s
exactly the situation we’re in when using a high-quality C compiler
in performance-bound applications.

Be especially wary of using complex data structures in ISRs. Watch
what the compiler generates. You may gain an enormous amount of per-
formance by sizing an array at an even power of 2, perhaps wasting some
memory, but avoiding the need for the compiler to generate complicated
and slow indexing code.

An old software adage recommends coding for functionality first,
and speed second. Since 80% of the speed problems are usually in 20% of
the code, it makes sense to get the system working and then determine
where the bottlenecks are. Unfortunately, real-time systems by their nature
usually don’t work at all if things are slow. You’ve often got to code for
speed up front.

64 THE ART OF DESIGNING EMBEDDED SYSTEMS

If the interrupts are coming fast-a term that is purposely vague and
qualitative, measured by experience and gut feel-then I usually just take
the plunge and code the ISR in assembly. Why cripple the entire system
because of a little bit of interrupt code? If you’ve broken the ISRs into
small chunks, so the real-time part is small, then little assembly will be
needed. Code the slower ISRs in C.

Debugging INT/INTA Cycles
Lots of things can and will go wrong long before your ISR has a

chance to exhibit buggy behavior. Remember that most processors service
an interrupt with the following steps:

1.
2.

3.
4.
5.

6.

The device hardware generates the interrupt pulse.
The interrupt controller (if any) prioritizes multiple simultaneous
requests and issues a single interrupt to the processor.
The CPU responds with an interrupt acknowledge cycle.
The controller drops an interrupt vector on the databus.
The CPU reads the vector and computes the address of the user-
stored vector in memory. It then fetches this value.
The CPU pushes the current context, disables interrupts, and
jumps to the ISR.

Interrupts from internal peripherals (those on the CPU itself) usually
won’t generate an external interrupt acknowledge cycle. The vectoring is
handled internally and invisibly to the wary programmer, tools in hand,
trying to discover his system’s faults.

A generation of structured programming advocates has caused many
of us to completely design the system and write all of the code before de-
bugging. Though this is certainly a nice goal, it’s a mistake for the low-level
drivers in embedded systems. I believe in an early wrestling match with the
system’s hardware. Connect an emulator and exercise the I/O ports. They
never behave quite as you expected. Bits might be inverted or transposed,
or maybe there are a dozen complex configuration registers that need to be
set up. Work with your system, understand its quirks, and develop notes
about how to drive each YO device. Use these notes to write your code.

Similarly, start prototyping your interrupt handlers with a hollow
shell of an ISR. You’ve got to get a lot of things right just to get the ISR to
start. Don’t worry about what the handler should do until you have it at
least being called properly.

Set a breakpoint on the ISR. If your shell ISR never gets called, and
the system doesn’t crash and burn, most likely the interrupt never makes it

Real Time Means Right Now! 65

to the CPU. If you were clever enough to fill the vector table’s unused en-
tries with pointers to a null routine, watch for a breakpoint on that function.
You may have misprogrammed the table entry or the interrupt controller,
which would then supply a wrong vector to the CPU.

If the program vectors to the wrong address, then use a logic analyzer
or emulator’s trace to watch how the CPU services the interrupt. Trigger
collection on the interrupt itself, or on any read from the vector table in
RAM. You should see the interrupt controller drop a vector on the bus. Is
it the right one? If not, perhaps the interrupt controller is misprogrammed.

Within a few instructions (if interrupts are on) look for the read from
the vector table. Does it access the right table address? If not, and if the
vector was correct, then either you’re looking at the wrong system inter-
rupt, or there’s a timing problem in the interrupt acknowledge cycle. Break
out the logic analyzer and check this carefully.

Hit the databooks and check the format of the table’s entries. On an
x86-style processor, four bytes represent the ISR’s offset and segment ad-
dress. If these are in the wrong order-and they often are-there’s no
chance your ISR will execute.

Frustratingly often the vector is fine; the interrupt just does not occur.
Depending on the processor and peripheral mix, only a handful of things
could be wrong:

Did you enable interrupts in the main routine? Without an E1 in-
struction, no interrupt will ever occur. One way of detecting this is
to sense the CPU’s INTR input pin. If it’s asserted all of the time,
then generally the chip has all interrupts disabled.
Does your I/O device generate an interrupt? It’s easy to check this
with external peripherals.
Have you programmed the device to allow interrupt generation?
Most CPUs with internal peripherals allow you to selectively dis-
able each device’s interrupt generation; quite often you can even
disable parts of this (such as allow interrupts on “received data”
but not on “data transmitted”).

Modern peripherals are often incredibly complex. Motorola’s TPU,
for example, has an entire book dedicated to its use. Set one bit in one reg-
ister to the wrong value, and it won’t generate the interrupt you are look-
ing for.

It’s not uncommon to see an interrupt work perfectly once, and then
never work again. The only general advice is to be sure your ISR reenables
interrupts before returning. Then look into the details of your processor
and peripherals.

66 THE ART OF DESIGNING EMBEDDED SYSTEMS

Some, such as the 280, have an external interrupt daisy chain that
serves as a priority encoder. Look at these lines with a scope. If you see the
daisy chain set to a zero, it’s a sure indication that one device did not see
the end-of-interrupt sequence. On the Z80 and Z 180 processors this is pro-
vided by executing the RET1 instruction. Use a normal return instruction
by mistake and you’ll never get another interrupt.

Intel’s x86 family is often used with an 8259 interrupt controller.
Some of the embedded CPUs in this family have 8259-like controllers
built into the processor. If you forget to issue an EO1 (end of interrupt)
command to the 8259 when the ISR is complete, you’ll get that one inter-
rupt only.

You may need to service the peripherals as well before another in-
terrupt comes along. Depending on the part, you may have to read registers
in the peripheral to clear the interrupt condition. UARTs and timers usually
require this. Some have peculiar requirements for clearing the interrupt
condition, so be sure to dig deeply into the databook.

Finding Missing Interrupts

A device that parses a stream of incoming characters will probably
crash very obviously if the code misses an interrupt or two. One that counts
interrupts from an encoder to measure position may only exhibit small
precision errors, a tough thing to find and troubleshoot.

Having worked on a number of systems using encoders as position
sensors, I’ve developed a few tricks over the years to find these missing
pulses.

You can build a little circuit using a single up/down counter that
counts every interrupt and that decrements the count on each interrupt ac-
knowledge. If the counter always shows a value of zero or one, everything
is fine.

Most engineering labs have counters-test equipment that just accu-
mulates pulse counts. I have a scope that includes a counter. Use two of
these, one on the interrupt pin and another on the interrupt acknowledge
pin. The counts should always be the same.

You can build a counter by instrumenting the ISR to increment a
variable each time it starts. Either show this value on a display, or probe
the variable using your debugger.

If you know the maximum interrupt rate, use a performance analyzer
to measure the maximum time in the ISR. If this exceeds the fastest inter-
rupts, there’s very likely a latent problem waiting to pounce.

Real Time Means Right Now! 67

Most of these sorts of difficulties stem from slow ISRs, or from code
that leaves interrupts off for too long. Be wary of any code that executes a
disable-interrupt instruction. There’s rarely a good reason for it; this is
usually an indication of sloppy software.

It’s rather difficult to find a chunk of code that leaves interrupts off.
The ancient 8080 had a wonderful pin that showed interrupt state all of the
time. It was easy to watch this on the scope and look for interrupts that
came during that period. Now, having advanced so far, we have no such
easy troubleshooting aids. About the best one can do is watch the INTR
pin. If it stays asserted for long periods of time, and if it’s properly de-
signed (i.e., stays asserted until INTA), then interrupts are certainly off.

One design rule of thumb will help minimize missing interrupts:
reenable interrupts in ISRs at the earliest safe spot.

Reentrancy Problems

Well-designed interrupt handlers are largely reentrant. Reentrant
functions-a.k.a. “pure code”-are often falsely thought to be any code
that does not modify itself. Too many programmers feel that if they sim-
ply avoid self-modifying code, their routines are guaranteed to be reen-
trant, and thus interrupt-safe. Nothing could be further from the truth.

A function is reentrant if, while it is being executed, it can be rein-
voked by itself, or by any other routine.

Suppose your main-line routine and the ISRs are all coded in C. The
compiler will certainly invoke runtime functions to support floating-point
math, VO, string manipulations, etc. If the runtime package is only par-
tially reentrant, then your ISRs may very well corrupt the execution of the
main line code. This problem is common, but is virtually impossible to
troubleshoot, since symptoms result only occasionally and erratically.
There’s nothing more ulcer-inducing than isolating a bug that manifests it-
self only occasionally, and with totally different characteristics each time.

Sometimes we’re tempted to cheat and write a nearly pure routine. If
your ISR merely increments a global 32-bit value, maybe to maintain time,
it would seem legal to produce code that does nothing more than a quick
and dirty increment. Beware! Especially when writing code on an 8- or 16-
bit processor, remember that the C compiler will surely generate several
instructions to do the deed. On a 186, the construct ++j might produce

mov ax, [j l
add ax,l ; increment low part of j
mov [j l ,ax

68 THE ART OF DESIGNING EMBEDDED SYSTEMS

mov ax, [j + l l
adc ax, 0 ; prop carry t o high pa r t of j
m o v [j + l l , ax

An interrupt in the middle of this code will leave j just partially
changed: if the ISR is reincarnated with j in transition, its value will surely
be corrupt. Or, if other routines use the variable, the ISR may change its
value at the same time other code tries to make sensible use of it.

The first solution is to avoid global variables! Globals are an abomi-
nation, a sure source of problems in any system, and an utter nightmare in
real-time code. Never, ever pass data between routines in globals unless
the following three conditions are fulfilled:

Reentrancy issues are dealt with via some method, such as dis-
abling interrupts around their use-though I do not recommend
disabling interrupts cavalierly, since that affects latency.
The globals are absolutely needed because of a clear performance
issue. Most alternatives do impose some penalty in execution time.
The global use is limited and well documented.

Inside of an ISR, be wary of any variable declared as a static. Though
statics have their uses, the ISR that reenables interrupts, and then is inter-
rupted before it completes, will destroy any statics declared within.

In 1997, on a dare, I examined firmware embedded in 23 completed
products, all of which were shipping to customers. Every one had this par-
ticular problem! Interestingly, the developers of 70% of the projects ad-
mitted to infrequent, unexplainable crashes or other odd behavior. One
frustrated engineer revealed that his product burped almost hourly, a symp-
tom “corrected” (perhaps “masked” would be a better term) by adding a
very robust watchdog timer circuit. This particularly bad system, which
had the reentrancy problem inside an ISR, also had the fastest interrupt rate
of any of the products examined.

This suggests using a stress test to reveal latent reentrancy defects.
Crank up the interrupt rates! If the timer comes once per second, try driv-
ing it every millisecond and see how the system responds. Assuming per-
formance issues don’t crash the code, this simple test often shows a horde
of hidden flaws.

Even the perfectly coded reentrant ISR leads to problems. If such a
routine runs so slowly that interrupts keep giving birth to additional copies
of it, eventually the stack will fill. Once the stack bangs into your variables,
the program is on its way to oblivion. You must ensure that the average in-

Real Time Means Right Now! 69

terrupt rate is such that the routine will return more often than it is invoked.
Again, use the stress test!

Avoid NMI

Reserve NMI-the non-maskable interrupt-for a catastrophe such
as the apocalypse. Power-fail, system shutdown, and imminent disaster are
all good things to monitor with NMI. Timer or UART interrupts are not.

When I see an embedded system with the timer tied to NMI, I know.
for sure, that the developers found themselves missing interrupts. NMI
may alleviate the symptoms, but only masks deeper problems in the code
that must be cured.

NMI will break even well-coded interrupt handlers, since most ISRs
are non-reentrant during the first few lines of code where the hardware is
serviced. NMI will thwart your stack-management efforts as well.

If you’re using NMI, watch out for electrical noise! NMI is usually
an edge-triggered signal. Any bit of noise or glitching will cause perhaps
hundreds of interrupts. Since it cannot be masked, you’ll almost certainly
cause a reentrancy problem. I make it a practice to always properly termi-
nate the CPU’s NMI input via an appropriate resistor network.

NMI mixes poorly with most tools. Debugging any ISR-NMI or
otherwise-is exasperating at best. Few tools do well with single stepping
and setting breakpoints inside of the ISR.

Breakpoint Problems

Using any sort of debugging tool, suppose you set a breakpoint where
the ISR starts, and then start single stepping through the code. All is well.
since by definition interrupts are off when the routine starts. Soon, though,
you’ll step over an E1 instruction or its like. Suddenly, all hell breaks lose.

A regularly occurring interrupt such as a timer tick comes along
steadily, perhaps dozens or hundreds of times per second. Debugging at
human speeds means the ISR will start over while you’re working on a
previous instantiation. Pressing the “single step” button might make the
ISR start, but then itself be interrupted and restarted, with the final stop due
to your high-level debug command coming from this second incarnation.

Oddly, the code seems to execute backwards. Consider the case of
setting two breakpoints-the first at the start of the ISR and the second
much later into the routine. Run to the first breakpoint, stop, and then re-
sume execution. The code may very well stop at the same point, the same
first breakpoint, without ever going to the second. Again, this is simply due

70 THE ART OF DESIGNING EMBEDDED SYSTEMS

to the human-speed debugging that gives interrupting hardware a chance to
issue yet another request while the code’s stopped at the breakpoint.

In the case of NMI, though, disaster strikes immediately, since there
is no interrupt-safe state. The NMI is free to reoccur at any time, even in
the most critical non-reentrant parts of the code, wreaking havoc and
despair.

A lot of applications now just can’t survive the problems inherent in
using breakpoints. After all, stopping the code stops everything; your en-
tire system shuts down. If your code controls a moving robot arm, for ex-
ample, and you stop the code as the arm starts moving, it will keeping
going and going and going . . . until something breaks or a limit switch is
actuated. Years ago I worked on a 14-ton steel gauge; a 280 controlled the
motion of this monster on railroad tracks. Hit a breakpoint and the system
ran off the end of the tracks!

Datacomm is another problem area. Stop the code via a breakpoint,
with data packets still streaming in, and there’s a good chance the receiv-
ing device will time out and start transmitting retry requests.

Though breakpoints are truly wonderful debugging aids, they are like
Heisenberg’s uncertainty principle: the act of looking at the system
changes it. You can cheat Heisenberg-at least in debugging embedded
code!-by using real-time trace, a feature available on all emulators and
some smart logic analyzers.

Trace collects the execution stream of the code in real time, without
slowing or altering the flow. It’s a completely nonintrusive way of view-
ing what happens.

Trace changes the philosophy of debugging. No longer does one stop
the code, examine various registers and variables, and then timidly step
along. With trace your program is running at full tilt, a breakneck pace that
trace does nothing to alter. You capture program flow, and then examine
what happened, essentially looking into the past as the code continues on
(Figure 4-6).

Trace shows only what happens on the bus. You can view neither reg-
isters nor variables unless an instruction reads or writes them to memory.
Worse, C’s stack-based design often makes it impossible to view variables
that were captured. You may see the transactions (pushes and pops), but the
tool may display neither the variable name nor the data in its native type.

With millions of instructions every second, it’s clearly impossible to
capture your program’s entire execution stream. Nor is it desirable, as a
trace buffer a hundred million frames deep is simply too much data to
plow through. Pick an emulator that offers flexible triggers-breakpoint-
like resources that start and stop trace collection.

Real Time Means Right Now! 71

-00432 03f80333 d88e MOV DS,BX
'-00431 03f80335 55 PUSH EBF
'CDEMON: 269 mme-led{ 1,
,-00430 03f80336 ffff62eB CALL NEAR PTR CS:-158
C D E M O N ' 355 void mme-led{ 1
1-00417 03f8029d 56 PUSH ESI
1-00415 03f8029e 57 PUSH ED1
&DEMON' 3 6 4 ; I c e: maskbi
:-00415 0 3 f 8 0 2 9 f be MOV ES1,SOO
E-00408 0 3 f 8 0 2 a 4 31 XOR D I , D I

eb JMP SHORT 41
83 CMP EDI .SO8

FIGURE 4-6 ISR trace collection on an emulator.

1-00402 03f802d4 d27c J L SHORT -46
CDEMON 3 6 6 led port[i++] = ' 1 ' ; I 1-0039'3 03f 802a8 f9S9- MOV CX,DI

Are the triggers a pain to set up? Most emulators offer special menus
with dozens of trigger configuration options. Although this is essential for
finding the most obscure bugs, it is just too much work for the usual de-
bugging scenario, where you simply want to start collection when source
module line 124 executes. Simple triggers should be as convenient as
breakpoints, set perhaps via a right mouse click.

The moral is: trace is the right debugging tool, but keep ISRs simple.
Minimize their complexity to maximize their debuggability.

Easy ISR Debugging

What's the fastest way to debug an ISR?
Don't.
If your ISR is only 10 or 20 lines of code, debug by inspection. Don't

Keep the handler simple and short. If it fails to operate correctly, a
fire up all kinds of complex and unpredictable tools.

few minutes reading the code will usually uncover the problem.

72 THE ART OF DESIGNING EMBEDDED SYSTEMS

After 25 years of building embedded systems I’ve learned that long
ISRs are a bad thing, and a symptom of poor code. Keep ’em short, keep
’em simple.

Measuring Performance

In my opinion, the debates about the relative speeds of C versus as-
sembly, or C versus C++, are meaningless. All performance issues are
nothing but a smokescreen unless you’re willing to take qualitative mea-
surements to replace the fog of speculation with the insight of facts.

Amateurs moan and speculate about performance, making random
stabs at optimizing code. Professionals take measurements, only then de-
ciding what action, if any, is appropriate.

If the ISR is not fast enough, your system will fail. Unfortunately,
few of the developers I talk to have any idea what “fast enough” means.
Unless you generate the interrupt map I’ve discussed, only random luck
will save you from speed problems.

When designing the system, answer two questions: how fast is fast
enough? How will you know if you’ve reached this goal?

Some people are born lucky. Not me. I’ve learned that nature is per-
verse and will get me if it can. Call it high-tech paranoia. Plan for prob-
lems, and develop solutions for those problems before they occur. Assume
each ISR will be too slow, and plan accordingly.

A performance analyzer will instantly show the minimum, maxi-
mum, and average execution time required by your code, including your
ISRs (Figure 4-7). There’s no better tool for finding real-time speed issues.

Guesstimating Performance

In 1967 Keuffel & Esser (the greatest of the slide rule companies)
commissioned a study of the future. They predicted that by 2067 we’d see
three-dimensional TVs and cities covered by majestic domes. The study
somehow missed the demise of the slide rule (their main product) within 5
years.

Our need to compute, to routinely deal with numbers, led to the in-
vention of dozens of clever tools, from the abacus to logarithm tables to the
slide rule. All worked in concert with the user’s brain, in an iterative, back-
and-forth process that only slowly produced answers.

Now even grade-school children routinely use graphing calculators.
The device assumes the entire job of computation and sometimes even data
analysis. What a marvel of engineering! Powered by nothing more than a

Real Time Means Right Now! 73

i t $ IJIIC, 374 9 X US 715 152 US 550 UE4 US 1 1013 rri; OUCU2 3 45
sril Clli’ (72C 192 US 1 421 rnS 1 070 rnS 2 141 IT& 00CI32 38’3
snkUlJi[1 UXU m5 L l.iLrn5 1 Lllbrn5 j L1L rrb ULlLUL 1 33
snl O c l 3 1421 rnS 2822rnS 2121 rnS 4243mS OUC02 1 76

6 w k O U 4 l 1782rnS 3534rnS 2658rnS 5315mS U0CO2 121
&nkOOt;[2121 rnS 4223mS 3172rnS 6344nd OK02 164
Esnb OU6l 2452rnS 4933mS 3 i 0 8 r n ~ 7415mS nucn2 308

2822mS 5 624 rnS 4223mS 8 446 rrS OOCO2 351
3182rnS 6335mS 4759rnS 9517nd OOC02 396
i w 4 n U s 24~110~s 2 4 8 0 0 ~ s 3 9 6 0 0 ~ s n o m 302

37c o I 6 US 720 132 US 545 I 04 US I 090 m5 nocoz 3 45
~ ~ I I O ~ U S 143UmS 1nslrnS 2162rr6 nncn2 390

1 n i n m s 21?1rnS 1596mS 3171mS noco: I 3 2
143116 2832mS 2132mS 4264mS U0C02 177
1771 rnS 3 523mS 2647mS 5 293 mS OOC02 1 20
2132mS 1 2 3 1 m S 3183mS 6366mS OOCO2 265

FIGURE 4-7 A performance analyzer‘s output.

stream of photons, pocket-sized, and costing virtually nothing, our elec-
tronic creations give us astonishing new capabilities.

Those of us who spend our working lives parked in front of comput-
ers have even more powerful computational tools. The spreadsheet is a
multidimensional version of the hand calculator, manipulating thousands
of formulas and numbers with a single keystroke. Excel is one of my fa-
vorite engineering tools. It lets me model weird systems without writing a
line of code, and tune the model almost graphically. Computational tools
have evolved to the point where we no longer struggle with numbers; in-
stead, we ask complex “what-if ” questions.

Network computing lets us share data. We pass spreadsheets and
documents among co-workers with reckless abandon. In my experience,
big, widely shared spreadsheets are usually incorrect. Someone injects a
row or column, forgetting to adjust a summation or other formula. The data
at the end is so complex, based on so many intermediate steps, that it’s
hard to see if it’s right or wrong. . . so we assume it’s right. This is the
dark side of a spreadsheet: no other tool can make so many incorrect cal-
culations so fast.

Mechanical engineers now use finite element analysis to predict the
behavior of complex structures under various stresses. The computer mod-
els a spacecraft vibrating as it is boosted to orbit, giving the designers in-
sight into its strength without the need to run expensive tests on shakers.
Yet, finite element analysis is so complex, with millions of interrelated

74 THE ART OF DESIGNING EMBEDDED SYSTEMS

calculations! How do they convince themselves that a subtle error isn’t
lurking in the model? As with subtle errors hidden in large spreadsheets,
the complexity of the calculations removes the element of “feel.” Is that
complex carbon-fiber structure strong enough when excited at 20 Hz?
Only the computer knows for sure.

The modern history of engineering is one of increasing abstraction
from the problem at hand. The C language insulates us from the tedium of
assembly, which itself removes us from machine code. Digital ICs protect
us from the very real analog behavior of each of the millions of transistors
encapsulated in the chip. When we embed an operating system into a prod-
uct, we’re given a wealth of services we can use without really under-
standing the how and why of their operation.

Increasing abstraction is both inevitable and necessary. An example
is the move to object-oriented programming, and more importantly, soft-
ware reuse, which will-someday-lead to “software ICs” whose opera-
tion is as mysterious as today’s giant LSI devices, yet that elegantly and
cheaply solve some problem.

But, abstraction comes at a price. In too many cases we’re losing the
“feel” of the problem. Engineering has always been about building things,
in the most literal of contexts. Building, touching, and experiencing failure
are the tactile lessons that bum themselves into the wiring of our brains.
When we delve deeply into how and why things work, when we get burned
by a hot resistor, when we’ve had a tantalum capacitor installed backwards
explode in our face, when a CMOS device fails from excessive undershoot
on an input, we develop our own rules of thumb that give us a new under-
standing of electronics. Book learning tells us what we need to know. Han-
dling components and circuits builds a powerful subconscious knowledge
of electronics.

A friend who earns his keep as a consultant sometimes has to admit
that a proposed solution looks good on paper, but just does not feel right.
Somehow we synthesize our experience into an emotional reaction as pow-
erful and immediate as any other feeling. I’ve learned to trust that initial
impression, and to use that bit of nausea as a warning that something is not
quite right. The ground plane on that PCB just doesn’t look heavy enough.
The capacitors seem a long way from the chips. That sure seems like a long
cable for those fast signals. Gee, there’s a lot of ringing on that node.

Practical experience has always been an engineer’s stock-in-trade.
We learn from our successes and our failures. This is nothing new. Accord-
ing to Cathedral, Forge and Waterwheel (Frances and Joseph Gies, 1994,
HarperCollins, New York), in the Middle Ages “Engineers had some
command of geometry and arithmetic. What they lacked was engineering

Real Time Means Right Now! 75

theory, in place of which they employed their own experience, that of their
colleagues, and rule of thumb.”

The flip side of a “feel” for a problem is an ability to combine that
feeling with basic arithmetic skills to very quickly create a first approxi-
mation to a solution, something often called “guesstimating.” This won-
derful word combines “guess”-based on our engineering feel for a
problem-and “estimate”-a partial analytical solution.

Guesstimates are what keep us honest: “200,000 bits per second
seems kind of fast for an 8-bit micro to process” (this is the guess part);
“Why, that’s 1/200,000 or 5 microseconds per bit” (the estimate part).
Maybe there’s a compelling reason why this guesstimate is incorrect, but
it flags an area that needs study.

In 1995 an Australian woman swam the 110 miles from Havana to
Key West in 24 hours. Public Radio reported this information in breathless
excitement, while I was left baffled. My guesstimate said this is unlikely.
That’s a 4.5 MPH average, a pace that’s hard to beat even with a brisk
walk, yet the she maintained this for a solid 24 hours.

Maybe swimmers are speedier than I’d think. Perhaps the Gulf
Stream spun off a huge gyre, a rotating current that gave her a remarkable
boost in the right direction. I’m left puzzled, as the data fails my guessti-
mating sense of reasonableness. And so, though our sense of “feel” can
and should serve as a measure against which we can evaluate the mounds
of data tossed our way each day, it is imperfect at best.

The art of “guesstimating” was once the engineer’s most basic tool.
Old engineers love to point to the demise of the slide rule as the culprit.
“Kids these days,” they grumble. Slide rules forced one to estimate the so-
lution to every problem. The slide rule did force us to have an easy famil-
iarity with numbers and with making coarse but rapid mental calculations.

We forget, though, just how hard we had to work to get anything
done! Nothing beats modem technology for number crunching, and I’d
never go back. Remember that the slide rule forced us to estimate all an-
swers; the calculator merely allows us to accept any answer as gospel with-
out doing a quick mental check.

We need to grapple with the size of things, every day and in every ave-
nue. A million times a million is, well, The gigahertz is a period of one
nanosecond. A speed of 4.5 miles per hour seems high for a swimmer. It’s
unlikely your interrupt service routine will complete in 2 microseconds.

We’re building astonishing new products, the simplest of which have
hundreds of functions requiring millions of transistors. Without our amaz-
ing tools and components, those things that abstract us from the worries of
biasing each individual transistor, we’d never be able to get our work done.

76 THE ART OF DESIGNING EMBEDDED SYSTEMS

Though the abstraction distances us from how things work, it enables us to
make things work in new and wondrous ways.

The art of guesstimating fails when we can’t or don’t understand the
system. Perhaps in the future we’ll need computer-aided guesstimating
tools, programs that are better than feeble humans at understanding vast in-
terlocked systems. Perhaps this will be a good thing. Maybe, like double-
entry bookkeeping, a computerized guesstimator will at least allow a
cross-check on our designs.

When I was a nerdy kid in the 196Os, various mentors steered me to
vacuum tubes long before I ever understood semiconductors. A tube is
wonderfully easy to understand. Sometimes you can quite literally see the
blue glow of electrons splashing off the plate onto the glass. The warm
glow of the filaments, the visible mesh of the control grids, always con-
jured a crystal-clear mental image of what was going on.

A 100,000-gate ASIC is neither warm nor clear. There’s no emo-
tional link between its operation and your understanding of it. It’s a pla-
tonic relationship at best.

So, what’s an embedded engineer to do? How can we reestablish this
“feel” for our creations, this gut-level understanding of what works and
what doesn’t?

The first part of learning to guesstimate is to gain an intimate under-
standing of how things work. We should encourage kids to play with tech-
nology and science. Help them get their hands greasy. It matters little if
they work on cars, electronics, or in the sciences. Nurture that odd human
attribute that couples doing with learning.

The second part of guesstimation is a quick familiarity with math.
Question engineers (and your kids) deeply about things. “Where did that
number come from?” “Do you believe it . . . and why?’

Work on your engineer’s understanding of orders of magnitude. It’s
astonishing how hard some people work to convert frequency to period,
yet this is the most common calculation we do in computer design. If you
know that a microsecond is a megahertz, a millisecond is 1000 Hz, you’ll
never spend more than a second getting a first-approximation conversion.

The third ingredient is to constantly question everything. As the
bumper sticker says, “Question authority.” As soon as the local expert
backs up his opinion with numbers, run a quick mental check. He’s prob-
ably wrong.

In To Engineer Is Human (1982, Random House, New York), author
Henry Petroski says, “Magnitudes come from afeel for the problem, and
do not come automatically from machines or calculating contrivances.”
Well put, and food for thought for all of us.

Real Time Means Right Now! 77

A simple CPU has very predictable timing. Add a prefetcher or
pipeline and timing gets fuzzier, but still is easy to figure within 10 or 20%.
Cache is the wildcard, and as cache size increases, determinism dimin-
ishes. Thankfully, today few small embedded CPUs have even the small-
est amount of cache.

Your first weapon in the performance arsenal is developing an un-
derstanding of the target processor. What can it do in one microsecond?
One instruction? Five? Some developers use very, very slow clocks when
not much has to happen-ne outfit I know runs the CPU (in a spacecraft)
at 8 kHz until real speed is needed. At 8 kHz they get maybe 1000 in-
structions per second. Even small loops become a serious problem. Un-
derstanding the physics-a perhaps fuzzy knowledge of just what the CPU
can do at this clock rate-means the big decisions are easy to make.

Estimation is one of engineering’s most important tools. Do you
think the architect designing a house does a finite element analysis to fig-
ure the size of the joists? No! He refers to a manual of standards. A 15-foot
unsupported span typically uses joists of a certain size. These estimates.
backed up with practical experience, ensure that a design, while perhaps
not optimum, is adequate.

We do the same in hardware engineering. Electrons travel at about
one or two feet per nanosecond, depending on the conductor. It’s hard to
make high-frequency first harmonic crystals, so use a higher order har-
monic. Very small PCB tracks are difficult to manufacture reliably. All of
these are ingredients of the “practice” of the art of hardware design. None
of these are tremendously accurate: you can, after all, create one-mil tracks
on a board for a ton of money. The exact parameters are fuzzy, but the gen-
eral guidelines are indeed correct.

So, too, for software engineering. We need to develop a sense of the
art. A 68HC16, at 16 MHz, runs so many instructions per second (plus or
minus). With this particular compiler you can expect (more or less) this
sort of performance under these conditions.

Data, even fuzzy data, lets us bound our decisions, greatly improving
the chances of success. The alternative is to spend months and years gen-
erating a mathematically precise solution-which we won’t do--or to bum
incense and pray . . . the usual approach.

Experiment. Run portions of the code. Use a stopwatch-metaphor-
ical or otherwise-to see how it executes. Buy a performance analyzer or
simply instrument sections of the firmware to understand the code’s per-
formance.

The first time you do this you’ll think, “This is so cool,” and you’ll
walk away with a clear number: xxx microseconds for this routine. With

78 THE ART OF DESIGNING EMBEDDED SYSTEMS

time you’ll develop a sense of speed. “You know, integer compares are
pretty damn fast on this system.” Later-as you develop a sense of the
art-you’ll be able to bound things. “Nah, there’s no way that loop can
complete in 50 microseconds.”

This is called experience, something that we all too often acquire
haphazardly. We plan our financial future, we work daily with our kids on
their homework, even remember to service the lawnmower at the begin-
ning of the season, yet neglect to proactively improve our abilities at work.

Experience comes from exposure to problems and from learning
from them. A fast, useful sort of performance expertise comes from ex-
trapolating from a current product to the next. Most of us work for a com-
pany that generally sells a series of similar products. When it’s time to
design a new one, we draw from the experience of the last, and from the
code and design base. Building version 2.0 of a widget? Surely you’ll use
algorithms and ideas from 1.0. Use 1.0 as a testbed. Gather performance
data by instrumenting the code.

Always close the feedback loop! When any project is complete,
spend a day learning about what you did. Measure the performance of the
system to see just how accurate your processor utilization estimates were.
The results are always interesting and sometimes terrifying. If, as is often
the case, the numbers bear little resemblance to the original goals, then fig-
ure out what happened, and use this information to improve your estimat-
ing ability. Without feedback, you work forever in the dark. Strive to learn
from your successes as well as your failures.

Track your system’s performance all during the project’s develop-
ment, so you’re not presented with a disaster two weeks before the sched-
uled delivery. It’s not a bad idea to assign CPU utilization specifications to
major routines during overall design, and then track these targets as you do
the schedule. Avoid surprises with careful planning.

A lot of projects eventually get into trouble by overloading the
processor. This is always discovered late in the development, during de-
bugging or final integration, when the cost of correcting the problem is at
the maximum. Then a mad scramble to remove machine cycles begins.

We all know the old adage that 80% of the processor burden lies in
20% of the code. It’s important to find and optimize that 20%, not some
other section that will have little impact on the system’s overall per-
formance. Nothing is worse than spending a week optimizing the wrong
routine!

If you understand the design, if you have a sense of the CPU. you’ll
know where that 20% of the code is before you write a line. Knowledge is
power.

Real Time Means Right Now! 79

Learn about your hardware. Pure software types often have no idea
that the CPU is actively working against them. I talked to an engineer
lately who was moaning about how slow his new 386EX-based instrument
runs. He didn’t know that the 386EX starts with 3 1 wait states and so had
never reprogrammed it to a saner value.

A Poor Man‘s Perfomrance Analyzer

Do keep in tune with the embedded tool industry’s wide range of
performance-analyzing devices. But don’t fail to take detailed measure-
ments just because such a tool is not available. An oscilloscope coupled
to a few spare output bits can be a very effective and cheap performance
analyzer.

Whether you’re working on an 8-bit microcontroller or a 32-bit
VME-based system, always dedicate one or two parallel YO bits to de-
bugging. That is, have the hardware designers include a couple of output
bits just for sofrware debugging purposes. The cost is vanishingly small;
the benefits often profound.

Suppose you’d like to know an ISR’s (or any other sort of routine’s)
precise execution time. Near the beginning of the routine set a debug out-
put bit high; just before exiting return the bit to a zero. For example:

ISR-entry:
push all registers
set output bit high
service interrupt
reset output bit
pop registers
return

Put one scope probe on the bit. You’ll see a pattern that might re-
semble that in Figure 4-8. The ISR is executing when the signal is high.

In this example we see two invocations of the ISR. The first time
(note that the time base setting is 2 msec/division), the routine runs for a bit
over 3 msec. Next time (presumably the routine includes conditional
code), it runs for under 1 msec.

We also clearly see a 14-msec period between executions. If these
two samples are indicative of the system’s typical operation, the total CPU
overhead dedicated to this one interrupt is (3 msec+l msec)/l4 msec. or
29%.

Crank up the scope’s time base and you can measure the ISR’s exe-
cution time to any desired level of precision.

80 THE ART OF DESIGNING EMBEDDED SYSTEMS

FIGURE 4-8 Measuring an ISR’s execution time.

When I see a 29% CPU loading for a single ISR, I immediately won-
der why the ISR takes so much time. It violates my commonsense, guess-
timating feel for how a system should behave. In a very simple, lightly
loaded system 29% might make sense; for more complex systems this
seems like a lot.

A single debug bit provides a wealth of timing information. Another
example is Figure 4-9, which shows an interrupt’s latency. Though chip
vendors spec interrupt latency in terms of the time the hardware needs to rec-
ognize the external event, to firmware folks a more useful measure is time-
from-input to the time we’re doing something useful, which may be many
dozens of clock cycles. The multiple levels of vectoring needed by the aver-
age processor, plus important housekeeping such as context pushing, are all
ultimately overhead incurred before the code starts doing something useful.

Unhappily, this definition is rather slippery, as it depends on the be-
havior of the entire system. An ISR that leaves interrupts disabled in-
creases latency for every other task. Latency on a complex system is
virtually impossible to predict, so take some measurements on time-criti-
cal interrupts.

The figure’s bottom trace is the assertion of an active low interrupt.
The top trace shows a debug bit the ISR drives high. Here we see almost
50 psec of latency between the device requesting service and the ISR start-
ing (measured as the time from /INTR falling to the debug bit rising).

Fifty microseconds again violates my commonsense feel for how
systems should operate. The number may be right. . . or it may indicate
that some other task is hogging time.

Real Time Means Right Now! 81

FIGURE 4-9 Measuring interrupt latency.

Perhaps an even more profound measurement is the system’s total
idle time. Is the CPU 100% loaded? 90%? Without this knowledge you
cannot reliably tell the boss, “Sure, we can add that feature.”

Instead of driving the debug bit in ISRs, toggle it in the idle loop. Ap-
plications based on RTOSs often don’t use idle loops, so create a low-pri-
ority idle task that runs when there’s nothing to do.

The instrumented idle loop looks like this:

idle :
drive debug bit high
drive debug bit low
look for something to do
jump to idle

While the idle loop runs, the debug bit toggles up and down at a high
rate of speed (see Figure 4-10). If you turn the scope’s time base down
(to more time per division), the toggling bit looks more like hash (Figure
4-1 l), with long down periods indicating that the code is no longer in the
idle loop. In this example about a third of the processing time is unused.

If an interrupt occurs after setting the bit high, but before returning it
to zero, then the “busy” interval will look like a one on the scope and not
the zero indicated in Figure 4-11. “Idle” times are those where you see
hash-the signal rapidly cycling up and down. “Busy” times are those
where the signal is a steady one or zero.

Too many developers fall into the serendipity school of debugging.
They feel that if the system works and meets external specifications, it’s

82 THE ART OF DESIGNING EMBEDDED SYSTEMS

FIGURE 4-10 An idle loop quickly toggles the debug b i t . . . until there’s
something to do!

ready to ship. Wrong. Hardware engineers stress their creations by run-
ning them over a temperature range. We should do the same, instrument-
ing our code or otherwise using performance-measuring tools, to be quite
sure the system has sufficient margins. It’s trivial to take quite accurate
performance data.

The RTOS

Whenever an application manages multiple processes and devices,
whenever one handles a variety of activities, an RTOS is a logical tool that
lets us simplify the code and help it run better.

Consider the difficulty of building, say, a printer. Without an RTOS,
one monolithic hunk of code would have to manage the door switches and
paper feeding and communications and the print engine-all at the same
time. Add an RTOS, and individual tasks each manage one of these activ-
ities; except for some status information, no task needs to know much
about what any other one is doing. In this case the RTOS allows us to par-
tition our code in the time domain (each of these activities is running con-
currently) and procedurally (each task handles one thing).

An important truism of software engineering is that code complex-
ity-and thus development time-grows much faster than program size.
Any mechanism that segments the code into many small independent
pieces reduces the complexity; after all, this is why we write with lots of
functions and not one huge main() program. Clever partitioning yields bet-

Real Time Means Right Now! 83

ter programs faster, and the RTOS is probably the most important way to
partition code in the time dimension.

At its simplest level, an RTOS is a context switcher. You break your
application into multiple tasks and allow the RTOS to execute the tasks in
a manner determined by its scheduling algorithm. A round-robin scheduler
typically allocates more or less fixed chunks of time to the tasks, execut-
ing each one for a few milliseconds or so before suspending it and going
to the next ready task in the queue. In this way all tasks get their fair shot
at some CPU time.

Another sort of scheduler is one using RMA-rate monotonic analy-
sis. If the CPU is not completely performance bound, it’s sometimes pos-
sible to guarantee hard real-time response by giving each task a priority
inversely proportional to the task’s period.

Regardless of scheduling mechanism, all RTOSs include priority
schemes so you can statically and dynamically cause the context switcher
to allocate more or less time to tasks. Important or time-critical activities
get first shot at running. Less important housekeeping tasks run only as
time allows. Your code sets the priorities; the RTOS takes care of starting
and running the tasks.

If context switching were the only benefit of an RTOS, then none
would be more than a few hundred bytes in size. Novice users all too often
miss the importance of the sophisticated messaging mechanisms that are a
standard part of all commercial operating systems. Queues and mailboxes
let tasks communicate safely.

84 THE ART OF DESIGNING EMBEDDED SYSTEMS

“Safely” is important, as global variables, the old standby of the des-
perate programmer, are generally a Bad Idea and are deadly in any inter-
rupt-driven system. We all know how globals promote bugs by being
available to every function in the code; with multitasking systems they lead
to worse conflicts as several tasks may attempt to modify a global all at the
same time.

Instead, the operating system’s communications resources let you
cleanly pass a message without fear of its corruption by other tasks. Prop-
erly implemented code lets you generate the real-time analogy of OOP’s
first tenet: encapsulation. Keep all of the task’s data local, bound to the
code itself, and hidden from the rest of the system.

For instance, one challenge faced by many embedded systems is
managing system status info. Generally, lots and lots of different inputs,
from door switches to the results of operator commands, affect total status.
Maintain the status in a global data structure and you’ll surely find it ham-
mered by multiple tasks. Instead, bind the data to a task, and let other tasks
set and query it via requests sent through queues or mailboxes.

Is this slower than using a global? Sure. It uses more memory, too.
Just as we make some compromises in selecting a compiler over an as-
sembler, proper use of an RTOS trades off a bit of raw CPU horsepower
for better code that’s easier to understand and maintain.

Most operating systems give you tools to manage resources. Surely
it’s a bad idea for multiple tasks to communicate with a UART or similar
device simultaneously. One way to control this is to lock the resource-
often using a semaphore or other RTOS-supplied mechanism-so only
one task at a time can access the device.

Resource locking and priority systems lead to one of the perils of
real-time systems: priority inversion. This is the deadly condition where a
low-priority task blocks a ready and willing high-priority task.

Suppose the system is more or less idle. A background, perhaps
unimportant, task asks for and gets exclusive access to a comm port. It’s
locked now, dedicated to the task until released. Suddenly an oh-my-god
interrupt occurs that starts off the system’s highest priority and most criti-
cal task. It, too, asks for exclusive comm port access, only to be denied that
by the OS since the resource is already in use. The high-priority task is in
control; the lower one can’t run, and can’t complete its activity and thus re-
lease the comm port. The least important activity of all has blocked the
most important!

Most operating systems recognize the problem and provide a work-
around. For example in VxWorks you can use their mutual exclusion sem-
aphores to enable “priority inheritance.” The task that locks the resource

Real Time Means Right Now! 85

runs at the priority of the highest priority task that is blocked on the same
resource. This permits the normally less important task to complete. so it
can unlock the resource and allow the high-priority task to do its thing.

If you’re not using an RTOS in your embedded designs today, you
surely will be tomorrow. Get familiar with the concepts, as designing task-
ing code requires a somewhat different view-the time domain view-
than conventional procedural programming. Check out Jean LaBrosse’s
free uC/OS; the companion book is as good an introduction to using an
RTOS as you’re likely to find. See www.ucos-ii.com.

Improvements to these tools come almost daily. Keep on top of the
field to avoid the fate of the dinosaurs.

CHAPTER 5
Firmware Musings

Hacking Peripheral Drivers

Experienced software engineers find no four-letter word more offen-
sive than “hack.” We believe that only amateurs, with more enthusiasm
than skill, hack code.

Yet hacking is indeed a useful tool in limited circumstances.
This is not a rant against software methodologies-far from it. I

think, though, a clever designer will identify risk areas and take steps to
mitigate those risks early in a development program. Sometimes cranking
code, maybe even lousy code, and diddling with it is the only way to fig-
ure out how to efficiently move forward.

No part of the firmware is more fraught with risks and unknowns
than the peripheral drivers. Don ’t assume you are smart enough to create
complex hardware drivers correctly the first time! Plan for problems in-
stead of switching on the usual panic mode at debug time.

Before writing code, before playing with the hardware, build a shell
of an executable using the tools allocated for the project. Use the same
compiler, locator (if any). linker, and startup code. Create the simplest of
programs, nothing more than the startup code and a null loop in main() (or
its equivalent, when you’re working in another language).

If the processor has internal chip-selects, figure out how to program
these and include the setups in your startup code. Then, make the null loop
work. This gives you confidence in the system’s skeleton, and more im-
portantly creates a backbone to plug test code into.

87

88 THE ART OF DESIGNING EMBEDDED SYSTEMS

Next, create a single, operating, interrupt service routine. You’re
going to have to do this sooner or later anyway; swallow the bitter pill up
front.

Identify every hardware device that needs a driver. This may even
include memory, where (as with Flash) your code must do something
to make it operate. Make a list, check it twice-LEDs, displays, timers,
serial channels, DMA, communications controllers-include each com-
ponent.

Surely you’ll use a driver for each, though in some cases the driver
may be segmented into several hunks of code, such as a couple of ISRs, a
queue handler, and the like.

Next, set up a test environment for fiddling with the hardware. Use an
emulator, a ROM monitor, or any tool that lets you start and stop the code.
Manually exercise the ports (issue inputs and outputs to the device).

Gain mastery of each component by making it do something. Don’t
write code at this point-use your tool’s input/output commands. If the
port is a stack of LEDs, figure out how to toggle each one on and off. It’s
kind of fun, actually, to watch your machinations affect the hardware!

This is the time to develop a deep understanding of the device. All
too often the documentation will be incomplete or just plain wrong. Bits
inverted and transposed. Incorrect register addresses. You’ll never find
these problems via the normal design-code-inspect-debug cycle. Only
playing with the devices-hacking !-with a decent debugging tool will
unveil the peripheral’s mysteries.

If you can’t speak the hardware lingo, working with a part that has
100 “easy-to-set-up” registers will be impossible. If you are a hardware ex-
pert, dealing with these complex parts is merely a nightmare. Count on
agony when the databook for a lousy timer weighs a couple of pounds.

Adopt a philosophy of creating a stimulus, then measuring the sys-
tem’s response with an appropriate tool.

Figures 5-1 and 5-2 illustrate this principle. The debugger’s (in this
case, driving an emulator) low-level commands configure the timer inside
a 386EX. The response, measured on a scope, shows how the timer be-
haves with the indicated setup.

Using a serial port? Connect a terminal and learn how to transmit a
single character. Again, manually set up the registers (carefully docu-
menting what you did), using parameters extracted from the databook,
using the tool’s output command to send characters. Lots of things can go
wrong with something as complicated as a UART, so I like to instrument
its output with a scope. If the baud rate is incorrect, a terminal will merely
display scrambled garbage; the scope will clearly show the problem.

Firmware Musings 89

1 bl
1 M

X d t l
xdh, set port
xdh, set port
$xdb> set port
,xdb> set port
xdb) set part
,xdb) set p r t
xdb> sat part
'xdb> -

UxfR34-0x80
OxfO43-Ox30
Oxf043-0x42
Oxf043-0x82
Oxf040-55
Oxf040-55
Oxf834-0

FIGURE 5-1 Hacking a peripheral driver.

Then write a shell of a driver in the selected language. Take the in-
formation gleaned from the databook and proven in your experiments to
work, and codify it in code once and for all. Test the driver. Get it right!

Now you've successfully created a module that handles that hard-
ware device.

Master one portion of a device at a time. On a UART, for example,
figure out how to transmit characters reliably and document what you

FIGURE 5-2 Hacking a peripheral driver. FIGURE 5-2 Hacking a peripheral driver.

90 THE ART OF DESIGNING EMBEDDED SYSTEMS

did, before you move on to receiving. Segment the problem to keep things
simple.

If only we could live with simple programmed inputs and outputs!
Most nontrivial peripherals will operate in an interrupt-driven mode. Add
ISRs, one at a time, testing each one, for each part of the device. For ex-
ample, with the UART, completely master interrupt-driven transmission
before moving on to interrupting reception.

Again, with each small success immediately create, compile, and test
code before you’ve forgotten the tricks required to make the little beast op-
erate properly. Databooks are cornucopias of information and misinfor-
mation; it’s astonishing how often you’ll find a bit documented incorrectly.
Don’t rely on frail memory to preserve this information. Mark up the book,
create and test the code, and move on.

Some devices are simply too complex to yield to manual testing. An
Ethernet driver or an IEEE-488 port both require so much setup that there’s
no choice but to initially write a lot of code to preset each internal register.
These are the most frustrating sorts of devices to handle, as all too often
there’s little diagnostic feedback-you set a zillion registers, burn some in-
cense, and hope it flies.

If your driver will transfer data using DMA, it still makes sense to
first figure out how to use it a byte at a time in a programmed VO mode.
Be lazy-it’s just too hard to master the DMA, interrupt completion rou-
tines, and the part itself all at once. Get single-byte transfers working be-
fore opening the Pandora’s box of DMA.

In the “make it work’ phase we usually succumb to temptation and
hack away at the code, changing bits just to see what happens. The docu-
mentation generally suffers. Leave a bit of time before wrapping up each
completed routine to tune the comments. It’s a lot easier to do this when
you still remember what happened and why.

More than once I’ve found that the code developed this way is ugly.
Downright lousy, in fact, as coding discipline flew out the window during
the bit-tweaking frenzy. The entire point of this effort is to master the de-
vice (first) and create a driver (second). Be willing to toss the code and
build a less offensive second iteration. Test that too, before moving on.

Selecting Stack Size

With experience, one learns the standard, scientific way to compute

Unhappily. if your guess is too small the system will erratically and
the proper size for a stack Pick a size at random and hope.

Firmware Musings 91

maybe infrequently crash in horrible ways. And RAM is still an expensive
resource, so erring on the side of safety drives recurring costs up.

With an RTOS the problem is multiplied, since every task has its own
stack.

It’s feasible, though tedious, to compute stack requirements when
coding in assembly language by counting calls and pushes. C-and even
worse, C++-obscures these details. Runtime calls further distance our
understanding of stack use. Recursion, of course, can blow stack require-
ments sky-high.

Any of a number of problems can cause the stack to grow to the point
where the entire system crashes. It’s tough to go back and analyze the fail-
ure after the crash, as the program will often write all over itself or the vari-
ables, removing all clues.

The best defense is a strong offense. Odds are your stack estimate
will be wrong, so instrument the code from the very beginning so you’ll
know, for sure, just how much stack is needed.

In the startup code or whenever you define a task, fill the task’s stack
with a unique signature such as Ox55AA (Figure 5-3). Then, probe the
stacks occasionally using your debugger and see just how many of the as-
signed locations have been used (the Ox55AA will be gone).

Knowledge is power.
Also consider building a stack monitor into your code. A stack mon-

itor is just a few lines of assembly language that compares the stack pointer

+- Top

FIGURE 5-3 Proactively fill the stack with Ox55AA to find overrun prob-
lems. Note that the lower three words have been unused.

92 THE ART OF DESIGNING EMBEDDED SYSTEMS

to some limit you’ve set. Estimate the total stack use, and then double or
triple the size. Use this as the limit.

Put the stack monitor into one or more frequently called ISRs. Jump
to a null routine, where a breakpoint is set, when the stack grows too big.

Be sure that the compare is “fuzzy.” The stack pointer will never ex-
actly match the limit.

By catching the problem before a complete crash, you can analyze
the stack’s contents to see what led up to the problem. You may see an
ISR being interrupted constantly (that is, a lot of the stack’s addresses be-
long to the ISR). This is a sure indication of code that’s too slow to keep
up with the interrupt rate. You can’t simply leave interrupts disabled
longer, as the system will start missing them. Optimize the algorithm and
the code in that ISR.

The Curse of Malloc()

Since the stack is a source of trouble, it’s reasonable to be paranoid
and not allocate buffers and other sizable data structures as automatics.
Watch out! Malloc(), a quite logical alternative, brings its own set of prob-
lems. A program that dynamically allocates and frees lots of memory-es-
pecially variably-sized blocks-will fragment the heap. At some point it’s
quite possible to have lots of free heap space, but so fragmented that rnal-
loc() fails.

If your code does not check the allocation routine’s return code to
detect this error, it will fail horribly. Of course, detecting the error will
also no doubt result in a horrible failure, but gives you the opportunity to
show an error code so you’ll have a chance of understanding and fixing the
problem.

If you chose to use malloc(), always check the return value and
safely crash (with diagnostic information) if it fails.

Garbage collection-which compacts the heap from time to time-is
almost unknown in the embedded world. It’s one of Java’s strengths and
weaknesses, as the time spent compacting the heap generally shuts down
all tasking. Though there’s lots of work going on developing real-time
garbage collection, as of this writing there is no effective approach.

Sometimes an RTOS will provide alternative forms of malloc(),
which let you specify which of several heaps to use. If you can constrain
your memory allocations to standard-sized blocks, and use one heap per
size, fragmentation won’t occur.

One option is to write a replacement function of the form pmalloc
(heap-number). You defined a number of heaps, each one of which has a

Firmware Musings 93

dedicated allocation size. Heap 1 might return a 2000-byte buffer, heap 2
100 bytes, and so on. You then constrain allocations to these standard-size
blocks to eliminate the fragmentation problem.

When using C, if possible (depending on resource issues and proces-
sor limitations), always include Walter Bright’s MEM package (www.
snippets.org/mem.txt) with the code, at least for debugging. MEM provides
the following:

ISO/ANSI verification of allocatiodreallocation functions
Logging of all allocations and frees
Verifications of frees
Detection of pointer over- and under-runs
Memory leak detection
Pointer chechng
Out-of-memory handling

Banking

When asked how much money is enough, Nelson Rockefeller re-
portedly replied, “Just a little bit more.” We poor folks may have trouble
understanding his perspective, but all too often we exhibit the same re-
sponse when picking the size of the address space for a new design. Given
that the code inexorably grows to fill any allocated space, “just a little
more” is a plea we hear from the software people all too often.

Is the solution to use 32-bit machines exclusively, cramming a full 4
GB of RAM into our cost-sensitive application in the hopes that no one
could possibly use that much memory?

Though clearly most systems couldn’t tolerate the costs associated
with such a poor decision, an awful lot of designers take a middle tack. se-
lecting high-end processors to cover their posterior parts.

A 32-bit CPU has tons of address space. A 16-bitter sports (generally)
1 to 16 Mb. It’s hard to imagine needing more than 16 Mb for a typical em-
bedded app; even 1 Mb is enough for the vast majority of designs.

A typical &bit processor, though, is limited to 64k. Once this was an
ocean of memory we could never imagine filling. Now C compilers let us
reasonably produce applications far more complex than we dreamed of
even a few years ago. Today the midrange embedded systems I see usually
bum up something between 64k and 256k of program and data space-too
much for an 8-bitter to handle without some help.

If horsepower were not an issue, I’d simply toss in an 80188 and
profit from the cheap 8-bit bus that runs 16-bit instructions over 1 Mb of

94 THE ART OF DESIGNING EMBEDDED SYSTEMS

address space. Sometimes this is simply not an option; an awful lot of us
design upgrades to older systems. We’re stuck with tens of thousands of
lines of “legacy” code that are too expensive to change. The code forces us
to continue using the same CPU. Like taxes, programs always get bigger,
demanding more address space than the processor can handle.

Perhaps the only solution is to add address bits. Build an external
mapper using PLDs or discrete logic. The mapper’s outputs go into high-
order address lines on your RAM and ROM devices. Add code to remap
these lines, swapping sections of program or data in and out as required.

Logics/ to Physics/
Add a mapper, though, and you’ll suddenly be confronted with two

distinct address spaces that complicate software design.
The first is the physical space-the entire universe of memory on

your system. Expand your processor’s 64k limit to 256k by adding two ad-
dress lines, and the physical space is 256k.

Logical addresses are the ones generated by your program, and
thence asserted onto the processor’s bus. Executing a MOV A,(OFFFF) in-
struction tells the processor to read from the very last address in its 64k
logical address space. External banking hardware can translate this to some
other address, but the code itself remains blissfully unaware of such ac-
tions. All it knows is that some data comes from memory in response to the
OFFFF placed on the bus. The program can never generate a logical ad-
dress larger than 64k (for a typical &bit CPU with 16 address lines).

This is very much like the situation faced by 80x86 assembly-
language programmers: 64k segments are essentially logical spaces. You
can’t get to the rest of physical memory without doing something; in this
case reloading a segment register.

Conversely, if there’s no mapper, then the physical and logical spaces
are identical.

Hardware Issues
Consider doubling your address space by taking advantage of proces-

sor cycle types. If the CPU differentiates memory reads from fetches, you
may be able to easily produce separate data and code spaces. The 68000’s
seldom-used function codes are for just this purpose, potentially giving it
distinct 16-Mb code and data spaces.

Writes should clearly go to the data area (you’re not writing self-
modifying code, are you?). Reads are more problematic. It’s easy to dis-

Firmware Musings 95

tinguish memory reads from fetches when the processor generates a fetch
signal for every instruction byte. Some processors (e.g., the 280) produce
a fetch only on the read of the first byte of a multiple byte opcode; subse-
quent ones all look the same as any data read. Forget trying to split the
memory space if cycle types are not truly unique.

When such a space-splitting scheme is impossible, then build an ex-
ternal mapper that translates address lines. However, avoid the temptation
to simply latch upper address lines. Though it’s easy to store A16, A17,
et al. in an output port, every time the latch changes the entire program gets
mapped out. Though there are awkward ways to write code to deal with
this, add a bit more hardware to ease the software team’s job.

Design a circuit that maps just portions of the logical space in and
out. Look at software requirements first to see what hardware configura-
tion makes sense.

Every program needs access to a data area that holds the stack and
miscellaneous variables. The stack, for sure, must always be visible to the
processor so calls and returns function. Some amount of “common” pro-
gram storage should always be mapped in. The remapping code, at least,
should be stored here so that it doesn’t disappear during a bank switch. De-
sign the hardware so these regions are always available.

Is the address space limitation due to an excess of code or of data?
Perhaps the code is tiny, but a gigantic array requires tons of RAM.
Clearly, you’ll be mapping RAM in and out, leaving one area of ROM-
enough to store the entire program-always in view. An obese program
yields just the opposite design. In either of these cases a logical address
space split into three sections makes the most sense: common code (always
visible, containing runtime routines called by a compiler and the mapping
code), mapped code or data, and common RAM (stack and other critical
variables needed all the time).

For example, perhaps oo00 to 03FFF is common code. 4000 to 7FFF
might be banked code: depending on the setting of a port it could map to
almost any physical address. 8000 to FFFF is then common RAM.

Sure, you can use heroic programming to simplify the hardware. I
think it’s a mistake, as the incremental parts cost is minuscule compared to
the increased bug rate implicit in any complicated bit of code. It is possi-
ble-and reasonable-to remove one bank by copying the common code
to RAM and executing it there, using one bank for both common code and
data.

It’s easy to implement a three-bank design. Suppose addresses are
arranged as in the previous example. A0 to A14 go to the RAM, which is
selected when A15 = 1.

96 THE ART OF DESIGNING EMBEDDED SYSTEMS

Turn ROM on when A15 is low. Run A0 to A14 into the ROM. As-
suming we’re mapping a 128k x 8 ROM into the 32k logical space, gener-
ate a fake A15 and A16 (simple bits latched into an output port) that go to
the ROM’s A15 and A16 inputs. However, feed these through AND gates.
Enable the gates only when A15 = 0 (RAM off) and A14 = 1 (bank area
enabled).

RAM is, of course, selected with logical addresses between 8000 and
FFFF. Any address under 4000 disables the gates and enables the first
4000 locations in ROM. When A14 is a one, whatever values you’ve stuck
into the fake A15 and A16 select a chunk of ROM 4000 bytes long.

The virtue of this design is its great simplicity and its conservation of
ROM-there are no wasted chunks of memory, a common problem with
other mapping schemes.

Occasionally a designer directly generates chip selects (instead of
extra address lines) from the mapping output port. I think this is a mistake.
It complicates the ROM select logic. Worse, sometimes it’s awfully hard
to make your debugging tools understand the translation from addresses to
symbols. By translating addresses you can provide your debugger with a
logical-to-physical translation cheat sheet.

The S o h a r e

In assembly language you control everything, so handling banked
memory is not too difficult. The hardest part of designing remappable code
is figuring out how to segment the banks. Casual calling of other routines
is out, as you dare not call something not mapped in.

Some folks write a bank manager that tracks which routines are cur-
rently located in the logical space. All calls, then, go through the bank
manager, which dynamically brings routines in and out as needed.

If you were foresighted enough to design your system around a real-
time operating system (RTOS), then managing the mapper is much sim-
pler. Assign one task per bank. Modify the context switcher to remap
whenever a new task is spawned or reawakened.

Many tasks are quite small-much smaller than the size of the logi-
cal banked area. Use memory more efficiently by giving tasks two bank-
ing parameters: the bank number associated with the task, and a starting
offset into the bank. If the context switcher both remaps and then starts the
task at the given offset, you’ll be able to pack multiple tasks per bank.

Some C compilers come with built-in banking support. Check with
your vendor. Some will completely manage a multiple bank system, auto-
matically remapping as needed to bring code in and out of the logical

Firmware Musings 97

address space. Figure on making a few patches to the supplied remapping
code to accommodate your unique hardware design.

In C or assembly, using an RTOS or not, be sure to put all of your in-
terrupt service routines and associated vectors in a common area. Put the
banking code there as well, along with all frequently used functions (when
you’re using a compiler, put the entire runtime package in unmapped
memory).

As always, when designing the hardware carefully document the ap-
proach you’ve selected. Include this information in the banking routine so
some poor soul several years in the future has a fighting chance to figure
out what you’ve done.

And, if you are using a banking scheme, be sure that the tools provide
intelligent support. Quite a few 8-bit emulators, for example, do have extra
address bits expressly for working in banked hardware. This means you
can download code and even set breakpoints in banked areas that may not
be currently mapped into the logical address space.

But be sure the emulator works properly with the compiler or assem-
bler to give real source-level support in banked regions. If the compiler and
emulator don’t work together to share the physical and logical addresses of
every line of code and every globaktatic variable, the “source” debugger
will show nothing more useful than disassembled instructions. That’s a
terrible price to pay: in most cases you’ll be well advised to find a more
debuggable CPU.

Predicting ROM Requirements

It‘s rather astonishing how often we run into the same problem. yet
take no action to deal with the issue once and for all. One common prob-
lem that drives managers wild is the old “running out of ROM space” rou-
tine-generally the week before shipping.

For two reasons it’s very difficult to predict ROM requirements in the
project’s infancy. First, too many of us write code before we’ve done a
complete and thoughtful analysis of the project’s size. If you’re not esti-
mating code size (in lines of code or numbers of function points or a sim-
ilar metric), then you’re simply not a professional software engineer.

Second. we’re generally not sure how to correlate a line of C to a
number of bytes of machine code. Historical data is most useful if you‘ve
worked with the specific CPU and compiler in the past.

Regardless, when you start coding, maintain a spreadsheet that pre-
dicts the project’s size. As a professional you’ve done the best possible job
estimating the functions’ sizes (in LOC, lines of code). List this data.

98 THE ART OF DESIGNING EMBEDDED SYSTEMS

Module

Skeleton
RTOS

Whenever you complete a function, append the incremental size of
the executable to the spreadsheet. Figure 5 - 4 shows an example, including
each function, with estimated and actual LOC counts, and compiled sizes.

Any idiot-r at least any idiot with an engineering degree-can
then write an equation that creates an average size of an LOC in bytes, and
another that predicts total system size based on estimated LOC.

Make sure your calculations do not include the bare system skele-
ton-the C startup code and a null main() function-since the first line of
C brings in the runtime package.

Est LOC Act LOC Size

300 3 10 21,123
3423 1 1,872

RAM Diagnostics

Beyond software errors lurks the specter of a hardware failure that
causes our correct code to die, possibly creating a life-threatening horror,
or maybe just infuriating a customer. Many of us write diagnostic code to
help contain the problem. Much of the resulting code just does not address
failure modes.

Obviously, a RAM problem will destroy most embedded systems.
Errors reading from the stack will surely crash the code. Problems, espe-
cially intermittent ones, in the data areas may manifest bugs in subtle ways.
Often you’d rather have a system that just doesn’t boot, rather than one that
occasionally returns incorrect answers.

TIMER-ISR

ATOD-ISR

TOD
PRINT-E

50 34 534
75 58 798
120 114 998
80 98 734

RD-ATOD
COMM-SER I90 I I I

40

Bytes/LOC 4.01
Est Size 36580

Firmware Musings 99

Some embedded systems are pretty tolerant of memory problems. We
hear of NASA spacecraft from time to time whose core or RAM develops
a few bad bits, yet somehow the engineers patch their code to operate
around the faulty areas, uploading the corrections over the distances of bil-
lions of miles.

Most of us work on systems with far less human intervention. There
are no teams of highly trained personnel anxiously monitoring the health
of each part of our products. It’s our responsibility to build a system that
works properly when the hardware is functional.

In some applications, though, a certain amount of self-diagnosis ei-
ther makes sense or is required; critical life-support applications should use
every diagnostic concept possible to avoid disaster due to a submicron
RAM imperfection.

So, the first rule about diagnostics in general, and RAM tests in par-
ticular, is to clearly define your goals. Why run the test? What will the re-
sult be? Who will be the unlucky recipient of the bad news in the event an
error is found, and what do you expect that person to do?

Will a RAM problem kill someone? If so, a very comprehensive test.
run regularly, is mandatory.

Is such a failure merely a nuisance? For instance, if it keeps a cell
phone from booting, if there’s nothing the customer can do about the fail-
ure anyway, then perhaps there’s no reason for doing a test. As a consumer
I could care less why the damn phone stopped working . . . if it’s dead, I’ll
take it in for repair or replacement.

Is production tes t -or even engineering test-the real motivation for
writing diagnostic code? If so, then define exactly what problems you’re
looking for and write code that will find those sorts of troubles.

Next, inject a dose of reality into your evaluation. Remember that
today’s hardware is often very highly integrated. In the case of a micro-
controller with on-board RAM, the chances of a memory failure that does-
n’t also kill the CPU is small. Again, if the system is a critical life-support
application it may indeed make sense to run a test, as even a minuscule
probability of a fault may spell disaster.

Does it make sense to ignore RAM failures? If your CPU has an il-
legal instruction trap, there’s a pretty good chance that memory prob-
lems will cause a code crash you can capture and process. If the chip
includes protection mechanisms (like the x86 protected mode), count on
bad stack reads immediately causing protection faults your handlers can
process. Perhaps RAM tests are simply not required, given these extra
resources.

100 THE ART OF DESIGNING EMBEDDED SYSTEMS

InveHing Bits

Most diagnostic code uses the simplest of tests-writing alternating
0x55 and OxAA values to the entire memory array, and then reading the
data to ensure that it remains accessible. It’s a seductively easy approach
that will find an occasional problem (like someone forgot to load all of the
RAM chips), but that detects few real-world errors.

Remember that RAM is an array divided into columns and rows. Ac-
cesses require proper chip selects and addresses sent to the array-and not
a lot more. The OxWOxAA symmetrical pattern repeats massively all over
the array; accessing problems (often more common than defective bits in
the chips themselves) will create references to incorrect locations, yet al-
most certainly will return what appears to be correct data.

Consider the physical implementation of memory in your embedded
system. The processor drives address and data lines to RAM-in a 16-bit
system there will surely be at least 32 of these. Any short or open on this
huge bus will create bad RAM accesses. Problems with the PC board are
far more common than internal chip defects, yet the Ox55/OxAA test is sin-
gularly poor at picking up these, the most likely, failures.

Yet the simplicity of this test and its very rapid execution have made
it an old standby that’s used much too often. Isn’t there an equally simple
approach that will pick up more problems?

If your goal is to detect the most common faults (PCB wiring errors
and chip failures more substantial than a few bad bits here or there), then
indeed there is. Create a short string of almost random bytes that you re-
peatedly send to the array until all of memory is written. Then, read the
array and compare against the original string.

I use the phrase “almost random” facetiously, but in fact it hardly
matters what the string is, as long as it contains a variety of values. It’s best
to include the pathological cases, such as 00, Oxaa, 0x55, and Oxff. The
string is something you pick when writing the code, so it is truly not ran-
dom, but other than these four specific values, you fill the rest of it with
nearly any set of values, since we’re just checking basic writehead func-
tions (remember: memory tends to fail in fairly dramatic ways). I like to
use very orthogonal values-those with lots of bits changing between suc-
cessive string members-to create big noise spikes on the data lines.

To make sure this test picks up addressing problems, ensure that the
string’s length is not a factor of the length of the memory array. In other
words, you don’t want the string to be aligned on the same low-order ad-
dresses, which might cause an address error to go undetected. Since the
string is much shorter than the length of the RAM array, you ensure that it

Firmware Musings 101

repeats at a rate that is not related to the rowkolumn configuration of the
chips.

For 64k of RAM, a string 257 bytes long is perfect: 257 is prime, and
its square is greater than the size of the RAM array. Each instance of the
string will start on a different low-order address. Also, 257 has another
special magic: you can include every byte value (00 to Oxff) in the string
without effort. Instead of manually creating a string in your code, build it
in real time by incrementing a counter that overflows at 8 bits.

Critical to this, and every other RAM test algorithm, is that you write
the pattern to all of RAM before doing the read test. Some people like to
do nondestructive RAM tests by testing one location at a time, then restor-
ing that location’s value, before moving on to the next one. Do this and
you’ll be unable to detect even the most trivial addressing problem.

This algorithm writes and reads every RAM location once, so it’s
quite fast. Improve the speed even more by skipping bytes, perhaps writ-
ing and reading every 3rd or 5th entry. The test will be a bit less robust, yet
will still find most PCB and many RAM failures.

Some folks like to run a test that exercises each and every bit in their
RAM array. Though I remain skeptical of the need, since most semicon-
ductor RAM problems are rather catastrophic, if you do feel compelled to
run such a test, consider adding another iteration of the algorithm just de-
scribed, with all of the data bits inverted.

Noise Issues
Large RAM arrays are a constant source of reliability problems. It’s

indeed quite difficult to design the perfect RAM system, especially with
the minimal margins and high speeds of today’s 16- and 32-bit systems. If
your system uses more than a couple of RAM parts, count on spending
some time qualifying its reliability via the normal hardware diagnostic
procedures. Create software RAM tests that hammer the array mercilessly.

Probably one of the most common forms of reliability problems with
RAM arrays is pattern sensitivity. Now, this is not the famous pattern
problems of yore, where the chips (particularly DRAMS) were sensitive to
the groupings of ones and zeroes. Today the chips are just about perfect in
this regard. No, today pattern problems come from poor electrical charac-
teristics of the PC board, decoupling problems, electrical noise, and inad-
equate drive electronics.

PC boards were once nothing more than wiring platforms, slabs of
tracks that propagated signals with near-perfect fidelity. With very high-
speed signals, and edge rates (the time it takes a signal to go from a zero to

102 THE ART OF DESIGNING EMBEDDED SYSTEMS

a one or back) under a nanosecond, the PCB itself assumes all of the char-
acteristics of an electronic component-one whose virtues are almost all
problematic. It’s a big subject [read High Speed Digital Design-A Hund-
book ofBluck Magic, by Howard Johnson and Martin Graham (1993 PTR
Prentice Hall, NJ) for the canonical words of wisdom on this subject], but
suffice it to say that a poorly designed PCB will create RAM reliability
problems.

Equally important are the decoupling capacitors chosen, as well as
their placement. Inadequate decoupling will create reliability problems as
well.

Modern DRAM arrays are massively capacitive. Each address line
might drive dozens of chips, with 5 to 10 pF of loading per chip. At high
speeds the drive electronics must somehow drag all of these pseudo-
capacitors up and down with little signal degradation. Not an easy job!
Again, poorly designed drivers will make your system unreliable.

Electrical noise is another reliability culprit, sometimes in unex-
pected ways. For instance, CPUs with multiplexed addreddata buses use
external address latches to demux the bus. A signal, usually named ALE
(Address Latch Enable) or AS (Address Strobe), drives the clock to these
latches. The tiniest, most miserable amount of noise on ALE/AS will
surely, at the time of maximum inconvenience, latch the data part of the
cycle instead of the address, Other signals are also vulnerable to small
noise spikes.

Unhappily, all too often common RAM tests show no problem when
hidden demons are indeed lurking. The algorithm I’ve described, as well as
most of the others commonly used, trade off speed against comprehen-
siveness. They don’t pound on the hardware in a way designed to find
noise and timing problems.

Digital systems are most susceptible to noise when large numbers of
bits change all at once. This fact was exploited for data communications
long ago with the invention of the Gray code, a variant of binary counting
where no more than one bit changes between codes. Your worst night-
mares of RAM reliability occur when all of the address and/or data bits
change suddenly from zeroes to ones.

For the sake of engineering testing, write RAM test code that exploits
this known vulnerability. Write Oxffff to Ox0000 and then to Oxffff, and
do a read-back test. Then write zeroes. Repeat as fast as your loop will let
you go.

Depending on your CPU, the worst locations might be at OxOOff and
0x0100, especially on 8-bit processors that multiplex just the lower 8 ad-
dress lines. Hit these combinations hard as well.

Firmware Musings 103

Other addresses often exhibit similar pathological behavior. Try
0x5555 and Oxaaaa, which also have complementary bit patterns.

The trick is to write these patterns back-to-back. Don’t test all of
RAM, with the understanding that both OxoooO and Oxffff will show up in
the test. You’ll stress the system most effectively by driving the bus mas-
sively up and down all at once.

Don’t even think about writing this sort of code in C. Any high-level
language will inject too many instructions between those that move the bits
up and down. Even in assembly the processor will have to do fetch cycles
from wherever the code happens to be, which will slow down the pound-
ing and make it a bit less effective.

There are some tricks, though. On a CPU with a prefetcher (all x86.
68k, etc.) try to fill the execution pipeline with code, so the processor does
back-to-back writes or reads at the addresses you’re trying to hit. And, use
memory-to-memory transfers when possible. For example:

m o v si, Oxaaaa
m o v di, 0x5555
m o v [si], Oxff
m o v [dil, [si1 ; read f f O O f r o m Oaaaa

; and then write it
; to 05555

DRAMs have memories rather like mine-after 2 to 4 milliseconds
go by, they will probably forget unless external circuitry nudges them with
a gentle reminder. This is known as “refreshing” the devices and is a crit-
ical part of every DRAM-based circuit extant.

More and more processors include built-in refresh generators, but
plenty of others still rely on rather complex external circuitry. Any failure
in the refresh system is a disaster.

Any RAM test should pick up a refresh fault-shouldn’t it? After all,
it will surely take a lot longer than 2-4 msec to write out all of the test val-
ues to even a 64k array.

Unfortunately, refresh is basically the process of cycling address
lines to the DRAMs. A completely dead refresh system won’t show up
with the test indicated, since the processor will be memly cycling address
lines like crazy as it writes and reads the devices. There’s no chance the
test will find the problem. This is the worst possible situation: the process
of running the test camouflages the failure!

The solution is simple: After writing to all of memory, just stop tog-
gling those pesky address lines for a while. Run a tight do-nothing loop for
a while (v e y tight. . . the more instructions you execute per iteration, the

104 THE ART OF DESIGNING EMBEDDED SYSTEMS

more address lines will toggle), and only then do the read test. Reads will
fail if the refresh logic isn’t doing its thing.

Though DRAMS are typically specified at a 2- to 4-msec maximum
refresh interval, some hold their data for surprisingly long times. When
memories were smaller and cells larger, each had so much capacitance that
you could sometimes go for dozens of seconds without losing a bit.
Today’s smaller cells are less tolerant of refresh problems, so a 1- to 2-sec-
ond delay is probably adequate.

A Few Notes on Sohare Prototyping

As a teenaged electronics technician I worked for a terribly under-
capitalized small company that always spent tomorrow’s money on
today’s problems. There was no spare cash to cover risks. As is so often the
case, business issues overrode common sense and the laws of physics: all
prototypes simply had to work, and were in fact shipped to customers.

Years ago I carried this same dysfunctional approach to my own
business. We prototyped products, of course, but did so leaving no room
for failure. Schedules had no slack; spare parts were scarce, and people
heroically overcame resource problems. In retrospect this seems silly,
since by definition we create prototypes simply because we expect mis-
takes, problems, and, well. . . failure.

Can you imagine being a civil engineer? Their creations-a bridge, a
building, a major interchange-are all one-off designs that simply must
work correctly the first time. We digital folks have the wonderful luxury of
building and discarding trial systems.

Software, though, looks a lot like the civil engineer’s bridge. Costs
and time pressures mean that code prototypes are all too rare. We write the
code and knock out most of the bugs. Version 1.0 is no more than a first
draft, minus most of the problems.

Though many authors suggest developing version 1.0 of the soft-
ware, then chucking it and doing it again, now correctly, based on what
was learned from the first go-around, I doubt that many of us will often
have that opportunity. The 1990s are just too frantic, workforces too thin,
and time-to-market pressures too intense. The old engineering adage “If
the damn thing works at all, ship it,” once only a joke, now seems to be the
industry’s mantra.

Besides-who wants to redo a project? Most of us love the challenge
of making something work, but want to move on to bigger and better
things, not repeat our earlier efforts.

Firmware Musings 105

Even hardware is moving away from conventional prototypes. Re-
programmable logic means that the hardware is nothing more than soft-
ware. Slap some smart chips on the board and build the first production
run. You can (hopefully) tune the equations to make the system work de-
spite interconnect problems.

We‘re paid to develop firmware that is correct-r at least correct
enough-to form a final product, first time, every time. We’re the high-
tech civil engineers, though at least we have the luxury of fixing mistakes
in our creations before releasing the product to the cruel world of users.

Though we’re supposed to build the system right the first time. we’re
caught in a struggle between the computer‘s need for perfect instructions.
and marketing’s less-than-clear product definitions. The B-schools are
woefully deficient in teaching their students-the future product defin-
ers-about the harsh realities of working in today’s technological envi-
ronment. Vague handwaving and whiteboard sketches are not a product
spec. They need to understand that programmers must be unfailingly pre-
cise and complete in designing the code. Without a clear spec, the pro-
grammers themselves, by default. must create the spec.

Most of us have heard the “but that’s not what I wanted’ response
from management when we demo our latest creation. All too often the cus-
tomer-management, your boss. or the end user-doesn‘t really know
what they want until they see a working system. It’s clearly a Catch-22
situation.

The solution is a prototype of the system’s software. running a min-
imal subset of the application’s functionality. This is not a skeleton of the
final code, waiting to be fleshed out after management puts in their two
cents. I’m talking about truly disposable code.

Most embedded systems do possess some sort of look and feel,
despite the absence of a GUI. Even the light-up sneakers kids wear (which,
I‘m told, use a microcontroller from Microchip) have at least a “look.”
How long should the light be on? Is it a function of acceleration? If I were
designing such a product, I’d run a cable from the sneaker to a develop-
ment system so I could change the LED’s parameters in seconds while the
MBAs argue over the correct settings.

“Wait,” you say. “We can’t do that here! We n l w z y ship our code!”
Though this is the norm, I’m running into more and more embedded de-
velopers who have been so badly burned by inadequate/incorrect specifi-
cations that even management grudgingly backs up their rapid prototyping
efforts. However, any prototype will fail unless the goals are clearly
spelled out.

106 THE ART OF DESIGNING EMBEDDED SYSTEMS

The best prototype spec is one that models risk factors in the final
product. Risk comes in far too many flavors: user interface (human inter-
action with the unit, response speed), development problems (tools, code
speed, code size, people skill sets), “science” issues (algorithms, data re-
duction, sampling intervals), final system cost (some complex sum of en-
gineering and manufacturing costs), time to market, and probably other
items as well.

A prototype may not be the appropriate vehicle for dealing with all
risk factors. For example, without building the real system it’ll be tough to
extrapolate code speed and size from any prototype.

The first ground rule is to define the result you’re looking for. Is it to
perfect a data reduction algorithm? To get consensus on a user interface?
Focus with unerring intensity on just that result. Ignore all side issues.
Build just enough code to get the desired result. Real systems need a spec
that defines what the product does; a rapid prototype needs a spec that
spells out what won’t be in it.

More than anything you need a boss who shields you from creeping
featurism. We know that a changing spec is the bane of real systems;
surely it’s even more of a problem in a quick-turn model system.

Then you’ll need an understanding of what decisions will be made as
a result of the prototype. If the user interface will be pretty much constant
no matter what turns up in the modeling phase, hey-just jump into final
product development. If you know the answer, don’t ask the question!

Define the deadline. Get a prototype up and running at warp speed.
Six months or a year of fiddling around on a model is simply too long. The
raison d’ztre for the prototype is to identify problems and make changes.
Get these decisions made early by producing something in days or weeks.
Develop a schedule with many milestones where nondevelopers get a
chance to look at the product and fiddle with it a bit.

For a prototype where speed and code size are not a problem, I like
to use really high-level “languages” like Basic. Excel. Word macros. The
goal is to get something going now. Use every tool, no matter how much
it offends your sensibilities, to accomplish that mission.

Does your product have a GUI? Maybe a control panel? Look at
products like those available from National Instruments and IoTech. These
companies provide software that lets you produce “virtual instruments” by
clicking and dragging knobs, displays, and switches around on a PC’s
screen. Couple that to standard data acquisition boards and a bit of code in
Basic or C, and you can produce models of many sorts of embedded sys-
tems in hours.

Firmware Musings 107

The cost of creating a virtual model of your product, using purchased
components, is immeasurably small compared to that of designing, build-
ing, and troubleshooting real hardware and software. Though there’s no
way to avoid building hardware at some point, count on adding months to
a project when a new board design is required.

Another nice feature of doing a virtual model of the product is the
certainty of creating worthless code. You’ll focus on the real issues-the
ones identified in your prototyping goals-and not the problems of creat-
ing documented, portable, well-structured software. The code will be no
more than the means to the end. You’ll toss the code as casually as the
hardware folks toss prototype PC boards.

I mentioned using Excel. Spreadsheets are wonderful tools for eval-
uating the product’s science. Unsure about the behavior of a data-smooth-
ing algorithm? Fiddling with a fuzzy-logic design? Wondering how much
precision to carry? Create a data set and put it in your trusty spreadsheet.
Change the math in seconds; graph the results to see what happens. Too
many developers write a ton of embedded code, only to spend months tun-
ing algorithms in the unforgiving environment of an 8051 with limited
memory.

Though a spreadsheet masks the calculations’ speed, you can indeed
get some sort of final complexity estimate by examining the equations. If
the algorithm looks terribly slow, work within the forgiving environment
of the spreadsheet to develop a faster approach. We all know, though too
often ignore, the truth that the best performance enhancements come from
tuning the algorithm, not the code.

Though the PC is a great platform for modeling, do consider using
current company products as prototype platforms. Often new products are
derivatives of older ones. You may have a lot of extant hardware and soft-
ware-that works!-in a system on the shelf. Be creative and use every re-
source available to get the prototype up and running.

Toss out the standards manual. Use every trick in the book to get it
done fast. Do code in small functions to get something testable quickly,
and to minimize the possibility of making big mistakes.

There’s a secret benefit to using cruddy “languages” for software
prototypes: write your proto code in Visual Basic, say, and no matter how
hard management screams, it simply cannot be whisked off into the prod-
uct as final code. Clever language selection can break the dysfunctional
last-minute conversion of test code to final firmware.

108 THE ART OF DESIGNING EMBEDDED SYSTEMS

All of us have worked with that creative genius who can build
anything, who pounds out a thousand lines of code a day, but who
can never seem to complete a project. Worse-the fast coder who
spends eons debugging the megabyte of firmware he wrote on a
Jolt-driven all-nighter. Then there are the folks who produce work-
ing code devoid of documentation, who develop rashes or turn into
Mr. Hyde when told to add comments.

We struggle with these folks, plead with them, send them to
seminars, lead by example, all too often without success. Some of
them are prima donnas who should probably get the ax. Others are
really quite good, but simply lack the ability to deal with detail. . .
which is essential since, in a released product, every lousy bit must
be right.

These are the ideal prototype developers. Bugs aren’t a big
issue in a model, and documentation is less than important. The pro-
totype lets them exercise their creative zeal, while its limited scope
means that problems are not important. Toss Twinkies and caffeine
into their lair and stand back. You’ll get your system fast, and they’ll
be happy employees. Use the more disciplined team members to get
the bugless real product to market.

Part of management is effectively using people’s strengths
while mitigating their weaknesses. Part of it is also giving the work-
ers a break once in a while. No one can crank out 70-hour weeks for-
ever without cracking.

CHAPTER 6
Hardware Musings

Debuggable Designs

An unhappy reality of our business is that we’ll surely spend lots of
time-far too much time-debugging both hardware and firmware. For
better or worse, debugging consumes project-months with reckless aban-
don. It’s usually a prime cause of schedule collapse, disgruntled team
members, and excess stomach acid.

Yet debugging will never go away. Practicing even the very best de-
sign techniques will never eliminate mistakes. No one is smart enough to
anticipate every nuance and implication of each design decision on even a
simple little 4k 8051 product; when complexity soars to hundreds of thou-
sands of lines of code coupled to complex custom ASICs we can only be
sure that bugs will multiply like rabbits.

We know, then, up front when making basic design decisions that in
weeks or months our grand scheme will go from paper scribbles to hard-
ware and software ready for testing. It behooves us to be quite careful with
those initial choices we make, to be sure that the resulting design isn’t an
undebuggable mess.

Test Points Galore

Always remember that, whether you’re working on hardware or
firmware problems, the oscilloscope is one of the most useful of all de-
bugging tools. A scope gives instant insight into difficult code issues such
as operation of I/O ports, ISR sequencing, and performance problems.

1 09

110 THE ART OF DESIGNING EMBEDDED SYSTEMS

Yet it’s tough to probe modern surface-mount designs. Those tiny
whisker-thin pins are hard enough to see, let alone probe. Drink a bit of
coffee and you’ll dither the scope connection across three or four pins.

The most difficult connection problem of all is getting a good
ground. With speeds rocketing toward infinity the scope will show garbage
without a short, well-connected ground, yet this is almost impossible when
the IC’s pin is finer than a spiderweb.

So, when laying out the PCB add lots of ground points scattered all
over the board. You might configure these to accept a formal test point. Or,
simply put holes on the board, holes connected to the ground plane and
sized to accept a resistor lead. Before starting your tests, solder resistors
into each hole and cut off the resistor itself, leaving just a half-inch stub of
stiff wire protruding from the board. Hook the scope’s oversized ground
clip lead to the nearest convenient stub.

Figure on adding test points for the firmware as well. For example,
the easiest way to measure the execution time of a short routine is to tog-
gle a bit up for the duration of the function. If possible, add a couple of par-
allel YO bits just in case you need to instrument the code.

Add test points for the critical signals you know will be a problem.
For example:

Boot loads are always a problem with downloadable devices
(Flash, ROM-loaded FPGAs, etc.). Put test points on the critical
load signals, as you’ll surely wrestle with these a bit.

9 The basic system timing signals all need test points: read, write,
maybe wait, clock, and perhaps CPU status outputs. All system
timing is referenced to these, so you’ll surely leave probes con-
nected to those signals for days on end.
Using a watchdog timer? Always put a test point on the time-out
signal. Better, use an LED on a latch. You’ve got to know when
the watchdog goes off, as this indicates a serious problem. Simi-
larly, add a jumper to disable the watchdog, as you’ll surely want
it off when working on the code.
With complex power-management strategies, it’s a good idea to
put test points on the reset pin, battery signals, and the like.

When using PLDs and FPGAs, remember that these devices incor-
porate all of the evils of embedded systems with none of the remedies we
normally use: the entire design, perhaps consisting of tens of thousands of
gates, is buried behind a few tens of pins. There’s no good way to get “in-
side the box” and see what happens.

Hardware Musings 1 1 1

Some of these devices do support a bit of limited debugging using a
serial connection to a pseudo-debug port. In such a case, by all means add
the standard connector to your PCB! Your design will not work right off
the bat; take advantage of any opportunity to get visibility into the part.

Also plan to dedicate a pin or two in each FPGA/PLD for debugging.
Bring the pins to test points. You can always change the logic inside the
part to route critical signal to these test points, giving you some limited
ability to view the device’s operation.

Similarly, if the CPU has a BDM or JTAG debugging interface, put
a BDWJTAG connector on the PCB, even if you’re using the very best
emulators. For almost zero cost you may save the project whedif the ICE
gives trouble.

Very small systems often just don’t have room for a handful of test
points. The cost of extra holes on ultra-cheap products might be prohibi-
tive. I always like to figure on building a real, honest, prototype first, one
that might be a bit bigger and more expensive than the production version.
The cost of doing an extra PCB revision (typically $lo00 to $2000 for
5-day turnaround) is vanishingly small compared to your salary!

When management screams about the cost of test points and extra
connectors, remember that you do not have to load these components dur-
ing the production run. Install them on the prototypes, leaving them off the
bill of materials. Years later, when the production folks wonder about all
of the extra holes, you can knowingly smile and remember how they once
saved your butt.

Resistors

When I was a young technician, my associates and I arrogantly be-
lieved we could build anything with enough 10k resistors and duct tape.
Now it seems that even simple electronic toys use several million transis-
tors encased in tiny SMT packages with hundreds of hairlike leads; no one
talks about discrete components anymore. Yet no matter how digital our
embedded designs get, we can never avoid certain fundamental electrical
properties of our circuits.

For example, somehow the digital age has an ever-increasing need
for resistors-so many, in fact, that most “discrete” resistors are now usu-
ally implemented in a monolithic structure, like an SIP, not so different
from the ICs they are tied to.

Too often we spend our time carefully analyzing the best way to use
a modern miracle of integration only to casually select discrete compo-

1 12 THE ART OF DESIGNING EMBEDDED SYSTEMS

nents because they are, well, boring. Who can get worked up over
the lowly carbon resistor? You can’t even buy them one at a time any
more. At Radio Shack they come paired in bright decorator packages for
an outrageous sum.

Back when I was in the emulator business we dealt with a lot of user
target systems that, because of poor resistor choices, drove the tools out of
their minds. Consider one typical example: a unit based on an 8-MHz
80188, memory and VO all connected in a carefully thought-out manner.
Power and ground distribution were well planned; noise levels were satis-
fyingly low. And yet . . . the only tool that seemed to work for debugging
code was a logic analyzer. Every emulator the poor designer tested failed
to run the code properly. Even a ROM emulator gave erratic results.

Though the emulator wouldn’t run the user’s code, it did show an im-
mediate service of the non-maskable interrupt-which wasn’t used in the
system. (Note: When things get weird, always turn to your emulator’s
trace feature, which will capture weirdness like no other tool.)

A little further investigation revealed that the NMI input (which is ac-
tive high on the 188) was tied low through a 47k resistor.

Now, the system ran fine with a ROM and processor on the board. I
suppose the 47k pull-down was at least technically legitimate. A few
microamps of leakage current out of the input pin through 47k yields a nice
legal logic zero. Yet this 47k was too much resistance when any sort of
tool was installed, because of the inevitable increase in leakage current.

Was the design correct because it violated none of Intel’s design
specs? I maintain that the specs are just the starting point of good design
practice. Never, ever, violate one. Never, ever, assume that simply meet-
ing spec is adequate.

A design is correct only if it reliably satisfies all intended applica-
tions-including the first of all applications, debugging hardware and soft-
ware. If something that is technically correct prevents proper debugging,
then there is surely a problem.

Pull-down resistors are often a source of trouble. It’s practically im-
possible to pull down an LS input (leakage is so high the resistor value must
be frighteningly low). Though CMOS inputs leak very little, you must be
aware of every potential application of the circuit, including that of plug-
ging tools in. The solution is to avoid pull-downs wherever possible.

In the case of a critical edge-triggered (read “really noise sensitive”)
input such as NMI, you simply should never pull it low. Tie it to ground.
Otherwise, switching noise may get coupled into the input. Even worse,
every time you lay out the PC board, the magnitude of the noise problem
can change as the tracks move around the board.

Hardware Musings 1 13

Be conservative in your designs, especially when a conservative ap-
proach has no downside. If any input must be zero all of the time, simply
tie it to ground and never again worry about it. I think folks are so used to
adding pull-ups all over their boards that they design in pull-downs
through the force of habit.

Once in a while the logic may indeed need a pull-down to deal with
unusual YO bits. Try to come up with a better design.

(The only exception is when you plan to use automatic test equip-
ment to diagnose board faults. ATE gear injects signals into each node, so
you’ll often need to use a resistor pull-down in place of a ground. Use a
small-really small, like 220 ohms-value.)

Though pull-downs are always problematic, well-designed boards
use plenty of pull-up resistors-some to bias unused inputs, others to deal
with signals and busses that tristate, and some to put switches and other in-
puts into known one states.

The biggest problem with pull-ups is using values that are too low. A
lOOk pull-up will in fact bias that CMOS gate properly, but creates a cir-
cuit with a terribly high impedance. Why not change to 10k? You buy an
order of magnitude improvement in impedance and noise immunity, yet
typically use no additional current since the gate requires only microamps
of bias.

Vcc from a decent power supply is essentially a low-impedance con-
nection to ground. Connect a lOOk pull-up to a CMOS gate and the input is
lOOk away from ground, power, and everything else-you can overcome a
lOOk resistance by touching the net with a finger. A 10k resistor will over-
power any sort of leakage created by fingers, humidity, and other effects.

Besides, that low-impedance connection will maintain a proper state
no matter what tools you use. In the case of NMI from the example above,
the tools weakly pulled NMI high so they could run standalone (without
the target); the 47k resistor was too high a value to overcome this slight
amount of bias.

If you are pulling up a signal from off-board, by all means use a very
low value of resistance. The pull-up can act as a termination as well as a
provider of a logic one, but the characteristic impedance of any cable is
usually on the order of hundreds of ohms. A lOOk pull-up is just too high
to provide any sort of termination, leaving the input subject to cross cou-
pling and noise from other sources. A lk resistor will help eliminate tran-
sients and crosstalk.

Remember that you may not have a good idea what the capacitance
of the wiring and other connections will be. A strong pull-up will reduce
capacitive time constant effects.

1 14 THE ART OF DESIGNING EMBEDDED SYSTEMS

Unused Inputs

Once upon a time, back before CMOS logic was so prevalent, you
could often leave unused inputs dangling unconnected and reasonably ex-
pect to get a logic one. Still, engineers are a conservative lot, and most
were careful to tie these spare pins to logic one or zero conditions.

But what exactly is a logic one? With 74LS logic it’s unwise to use
Vcc as an input to any gate. Most LS devices will happily tolerate up to 7
volts on Vcc before something fails, while the input pins have an absolute
maximum rating of around 5.5 volts. Connecting an input to Vcc creates a
circuit where small power glitches that the devices can tolerate may blow
input transistors. It’s far better (when using LS) to connect the input to Vcc
through a resistor, thus limiting input current and yielding a more power-
tolerant design.

Modern CMOS logic in most of its guises has the same absolute
maximum rating for Vcc as for the inputs, so it’s perfectly reasonable to
connect input pins directly to Vcc-if you’re sure that production will
never substitute an LS equivalent for the device you’ve called out.

CMOS does require that every unused input be pulled to a valid logic
zero or one to avoid generating an SCR latchup condition.

Fast CMOS logic (like 74FCT) switches so quickly, even at very low
clock rates, that glitches with Fourier components into billions of cycles
per second are not uncommon. Reduce noise susceptibility by tying your
logic zeroes and ones directly to the power and ground planes.

And yet . . . one must balance the rules of good design with practical
ways to make a debuggable system. A thousand years ago circuits used
vacuum tubes mounted on a metal chassis. All connections were made by
point-to-point wiring, so making engineering changes during prototype
checkout must have been pretty easy. Later, transistors and ICs lived on PC
boards, but incorporating modifications was still pretty simple. Now we’re
faced with whisker-thin leads on surface-mount components, with 8- and
10-layer boards where most tracks are buried under layers of epoxy and out
of reach of our X-Acto knives. If we tie every unused input, even on our
spare gates, to a solid power or ground connection, it’ll be awfully hard to
cut the connection free to tie it somewhere else. Lifting the pins on those
spare gates might be a nightmare.

One solution is to build the prototype boards a little differently than
the production versions. I look at a design and try to identify areas most
likely to require cutting and pasting during checkout. A prime example is
the programmable device-PALS or FPGAs or whatever. Bitter experi-
ence has taught me that probably I’ll forget a crucial input to that PAL, or

Hardware Musings 1 15

that 1’11 need to generate some nastily complex waveform using a spare
output on the FPGA.

Some engineers figure that if they socket the programmable logic, they
can lift pins and tack wires to the dangling input or output. I hate this solu-
tion. Sometimes it takes an embarrassing number of tries to get a complex
PAL right-each time you must remove the device, bend the leads back to
program it, and then reinstall the mods. (An alternative is to put a socket in
the socket and lift the upper socket’s leads.) When the device is PLCC or an-
other, non-DIP package, it’s even harder to get access to the pins.

So I leave all unused inputs on these devices unconnected when
building the prototype, unfortunately creating a window of vulnerability to
SCR latchup conditions. Then it’s easy to connect mod wires to the un-
connected pins. When the first prototype is done I’ll change the schematic
to properly tie off the unused inputs so prototype 2 (or the production unit)
is designed correctly.

In years of doing this I have never suffered a problem from SCR
latchup due to these dangling pins. The risk is always there, lurking and
waiting for an unusual ESD or perhaps even a careless ungrounded finger
biasing an input.

I do tie spare gate inputs to ground, even with the first run of boards.
It just feels a little too dangerous to leave an unconnected 74HC74 lead
dangling. However, if at all possible, I have the person doing the PCB lay-
out connect these grounds on the bottom layer so that a few quick strokes
of the X-Acto knife can free them to solve another “whoops.”

In designs that use through-hole parts, by all means leave just a little
extra room around each chip so you can socket the parts on the prototype.
It’s a lot easier to pull a connected pin from a socket than to cut it free from
the board.

Clocks

For a number of years embedded systems lived in a wonderful era of
compatibility. Just about all the signals on any logic board were relatively
slow and generally TTL compatible. This lulled designers into a feeling of
security, until far too many of us started throwing digital ICs together
without considering their electrical characteristics. If a one is 2.4 volts and
a zero 0.7, if we obey simple fanout rules, and as long as speeds are under
10 MHz or so, this casual design philosophy works pretty well. Unfortu-
nately, today’s systems are not so benign.

In fact, few microprocessors have ever exclusively used TTL levels.
Surprise! Pull out a data sheet on virtually any microprocessor and look at

1 16 THE ART OF DESIGNING EMBEDDED SYSTEMS

the electrical specs page-you know, the section without coffee spills or
solder stains. Skip over those 300 tattered pages about programming in-
ternal peripherals, bypass the pizza-smeared pinout section, and really look
at those one or two pristine pages of DC specifications.

Most CPUs accept TTL-level data and control inputs. Few are happy
with TTL on the clock and/or reset inputs. Each chip has different re-
quirements, but in a quick look through the data books I came up with the
following:

8086: Minimum Vih on clock: Vcc - 0.8
386: Minimum Vih on clock: Vcc - 0.8 at 20 MHz, 3.7 volts at 25
and 33 MHz
280: Minimum Vih on clock: Vcc - 0.6
805 1: Minimum Vih on clock and reset: 2.5 volts

In other words, connect your clock and maybe reset input to a normal
TTL driver, and the CPU is out of spec. The really bad news is that these
chips are manufactured to behave far better than the specs, so often they’ll
run fine despite illegal inputs. If only they failed immediately on any vio-
lation of specifications! Then, we’d find these elusive problems in the lab,
long before shipping a thousand units into the field.

Fully 75% of the systems I see that use a clock oscillator (rather than
a crystal) violate the clock minimum high-voltage requirement. It’s scary
to think we’re building a civilization around embedded systems that, well,
may be largely misdesigned.

If you drive your processor’s clock with the output of a gate or flip-
flop, be sure to use a device with true CMOS voltage levels. 74HCT or
74ACTECT are good choices. Don’t even consider using 74LS without at
least a heavy-duty pull-up resistor.

Those little 14-pin silver cans containing a complete oscillator are a
good choice . . . if you read the data sheet first. Many provide TTL levels
only. I’m not trying to be alarmist here, but look in the latest DigiKey cat-
alog-they sell dozens of varieties of CMOS and TTL parts.

Clocks must be clean. Noise will cause all sorts of grief on this most
important signal. It’s natural to want to use a Thevenin termination to more
or less match impedance on a clock routed over a long PCB trace or even
off board. Beware! Thevenin terminations (typically a 220-ohm resistor
to +5 and a 270 to ground) will convert your carefully crafted CMOS level
to TTL.

Use series damping resistors to reduce the edge rate if noise is a prob-
lem. A pull-up might help with impedance matching if the power supply
has a low impedance (as it should).

Hardware Musings 1 17

A better solution is to use clock-shaping logic near the processor it-
self. If the clock is generated a long way away, use a CMOS hysteresis cir-
cuit (such as a 74HCT14) to clean it up. The extra logic adds delay,
though. If your system requires clock synchronization, then use a special
low-skew clock driver made for that purpose.

In slower systems-under 20 MHz or so-I prefer to design circuits
that don’t depend on a synchronous clock. What happens if you change to
a second sourced processor with slightly different timing? Keep lots of
margin.

Never drive a critical signal such as clock off board without buffer-
ing. There are a very few absolutely critical signals in any system that must
be noise-free. Examine your design and determine what these are, and take
appropriate steps. Clock, of course, is the first that comes to mind. Another
is ALE (Address Latch Enable), used on processors with a multiplexed ad-
dresddata bus. A tiny bit of noise on ALE can cause your address register
to latch in the middle of a data cycle, driving an incorrect address to the
memories.

OK-so now your voltage levels are right. Go back to the data sheet
and make sure the clock’s timing is in spec.

The 8088 requires a 33% clock duty cycle. Sure, it’s a little odd, but
this is a fundamental rule of nature to 8088 designers. Other chips have
tight duty cycle requirements as well.

Rise and fall times are just as important, though difficult to design
for. Some chips have minimum rise/fall time requirements! It’s awfully
hard to predict the rise/fall time for a track routed all over the board. That’s
one attraction of microprocessors with a clock-out signal. Provide a decent
clock-input to the chip, connect nothing to this line other than the proces-
sor, and then drive clock-out all over the board.

Motorola’s 68HC16 pulls a really neat trick. You can use a 32,768-
Hz standard watch crystal to clock the device. An internal PLL multiplies
this to 16 MHz or whatever, and drives a clock output to feed to the rest of
the board. This gets around many of the clock problems and gives a “free”
accurate time-of-day clock source.

Reset

The processor’s reset input is another source of trouble. Like clock.
some processors have unusual input voltage requirements for reset. Be
wary.

Other chips require synchronous circuits. The old 2280 had a very
odd timing spec, clearly spelled out in the documentation, that everyone ig-

1 18 THE ART OF DESIGNING EMBEDDED SYSTEMS

nored only to find massive troubles getting the CPU to start. I think every
single 2280 design in the world suffered from this particular ill at one time
or another.

Sometimes slew rate is an issue. The old RC startup circuit generates
a long ramp that some processors cannot tolerate. You might want to feed
it into a circuit with hysteresis, like a Schmidt Trigger, to clean up the
ramp.

The more complex CPUs require a long time after power-up to sta-
bilize their internal logic. Reset cannot be unasserted until this interval
goes by. Further complicating this is the ramp-up time of the system power
supply, as the CPU will not start its power-up sequence until the supply is
at some predefined level. The 386, for example, requires 219 clock cycles
if the self-test is initiated before it is ready to run.

Think about it: in a 386 system four events are happening at once.
The power supply is coming up. The CPU is starting its internal power-up
sequence. The clock chip is still stabilizing. The reset circuit is getting
ready to unassert reset. How do you guarantee that everything happens
to spec?

The solution is a long time delay on reset, using a circuit that doesn’t
start timing out until the power supply is stable. Motorola, Dallas, and oth-
ers sell wonderful little reset devices that clamp until the supply hits 4.5
volts or so. Use these in conjunction with a long time constant so the
processor, power supply, and clocks are all stable before reset is released.

When Intel released the 188XL they subtly changed the timing re-
quirements of reset from that of the 188. Many embedded systems didn’t
function with this “compatible” part simply because they weren’t compliant
with the new chip’s reset spec. The easy solution is a three-pin reset clamp.

The moral? Always read the data sheets. Don’t skip over the electri-
cal specifications with a mighty yawn. Those details make the difference
between a reliable production product and a life of chasing mysterious
failures.

One of my favorite bumper stickers reads “Question Authority.” It’s
a noble sentiment in almost all phases of life . . . but not in designing em-
bedded systems, Obey the specifications listed in the chip vendors’
datasheets !

If you’ve read many annual reports from publicly held companies,
you know that the real meat of their condition is contained in the notes.
This is just as true in a chip’s data sheet. It seems no one specifies sink and
source current for a microprocessor’s output, but the specification of the
device’s Vol and Voh will always reference a note that gives the test con-
dition. This is generally a safe maximum rating.

Hardware Musings 1 19

With watchdog timers and other circuits connected to reset inputs, be
wary of small timing spikes. I spent several frustrating days working with
an AMD part that sometimes powered up oddly, running most instructions
fine but crashing on others. The culprit was a subnanosecond spike on the
reset input, one too fast to see on a 100-MHz scope.

Homemade battery-backed-up SRAh4 circuits often contain reset-
related design flaws. The battery should take over, maintaining a small bias
to the RAM’S Vcc pins, when main power fails. That’s not enough to avoid
corrupting the memory’s contents, though.

As power starts to ramp down, the processor may run crazy for a
while, possibly creating errant writes that destroy vast amounts of carefully
preserved data in the RAM. The solution is to clamp the chip’s reset input
as soon as power falls below the part’s minimum Vcc (typically 4.75 volts
on a 5-volt part).

With reset properly asserted, Vcc now at zero, and the battery pro-
viding a bit of RAM support, be sure that the chip select and write lines to
the RAM are in guaranteed “idle” states. You may have to use a small pull-
up resistor tied to the battery, but be wary of discharging the battery
through the resistor when the system is operating normally.

And be sure you can actually pull the line up despite the fact that the
driver will experience Vcc’s from +5 to zero as power fails. The cleanest
solution is to avoid the problem entirely by using a RAM with an active
high chip select, which you clamp to zero as soon as Vcc falls out of spec.

Despite our apparent digital world, the harsh reality is that every
component we use pushes electrons around. Electrical specifications are
every bit as important to us as to an analog designer. This field is still elec-
tronic engineering tilled with all of the tradeoffs associated with building
things electronic. Ignore those who would have you believe that designing
an embedded system is nothing more than slapping logic blocks together.

Small CPUs

Shhhh! Listen to the hum. That’s the sound of the incessant informa-
tion processing that subtly surrounds us, that keeps us warm, washes our
clothes, cycles water to the lawn, and generally makes life a little more tol-
erable. It’s so quiet and keeps such a low profile that even embedded de-
signers forget how much our lives are dominated by data processing. Sure,
we rail at the banks’ mainframes for messing up a credit report while the
fridge kicks into auto-defrost and the microwave spits out another meal.

The average house has some 40 to 50 microprocessors embedded in
appliances. There’s neither central control nor networking: each quietly

120 THE ART OF DESIGNING EMBEDDED SYSTEMS

goes about its business, ably taking care of just one little function. This is
distributed processing at its best.

Billions and billions of 4- to 16-bit micros find their way into our
lives every year, yet mostly we hear of the few tens of millions that reside
on our desktops.

Now, I’d never give up that zillion-MIP little beauty I’m hunched
over at the moment. We all crave more horsepower to deal with Micro-
soft’s latest cycle-consuming application. I’m just getting tired of 32-bit
hype for embedded applications. Perhaps that 747 display controller or
laser printer needs the power. Surely, though, the vast majority of applica-
tions do not.

A 4-bit controller that formed the basis for a calculator started this in-
dustry, and in many ways we still use tiny processors in these minimal ap-
plications. That is as it should be: use appropriate technology for the job at
hand.

Derivatives of some of the earliest embedded CPUs still dominate the
market. Motorola’s 6805 is a scaled up 6800 which competed with the
8080 back in the embedded Dark Ages. The 805 1 and its variants are based
on the almost 20-year-old 8048.

8051s, in particular, have been the glue of this industry, corre-
sponding to the analog world’s old 741 op amp or the 555 timer. You find
them everywhere. Their price, availability, and on-board EPROM made
them the natural choice for applications requiring anywhere from just a
hint of computing power to fairly substantial controllers with limited user
interfaces.

Now various vendors have migrated this architecture to the 16-bit
world. I can’t help but wonder if this makes sense, as scaling a CPU, while
maintaining backward compatibility, drags lots of unpleasant baggage
along. Applications written in assembly may benefit from the increased
horsepower; those coded in C may find that changing processor families
buys the most bang for the buck.

Microchip, Atmel, and others understand that the volume part of the
embedded industry comes from tiny little CPUs scattered with reckless
abandon into every corner of the world. These are cool parts! The smaller
members offer a minimum amount of compute capability that is ideal for
simple, cost-sensitive systems. Higher-end versions are well suited for
more complicated control applications.

Designers seem to view these CPUs as something other than com-
puters. “Oh, yeah, we tossed in a couple of PIC16s to handle the mi-
croswitches,” the engineer relates, as if the part were nothing more than a
PAL. This is a bit different from the bloodied, battered look you’ll get from

Hardware Musings 1 2 1

the haggard designer trying to ship a 68030-based controller. The micro-
controller is easy to use simply because it is stuffed into easy applications.

L.A. Gear sells sneakers that blink an LED when you walk. A
PIC16CSx powers these for months or years without any need to replace
the battery. Scientists tag animals in the wild with expendable subcuta-
neous tracking devices powered by these parts. In Chapter 4 I mentioned
the benefit of adding small CPUs just to partition the code. There are other
compelling reasons as well.

A friend developing instruments based on a 32-bit CPU discovered
that his PLDs don’t always properly recover from brown-out conditions.
He stuffed a $2 controller on the board to properly sequence the PLD’s
reset signals, ensuring recovery from low-voltage spikes. The part cost
virtually nothing, required no more than a handful of lines of code, and oc-
cupied the board space of a small DIP. Though it may seem weird to use a
full computer for this trivial function, it’s cheaper than a PAL.

Not that there’s anything wrong with PALs. Nothing is faster or bet-
ter at dealing with complex combinatorial logic. Modem super-fast ver-
sions are cheap (we pay $12 in singles for a 7-nanosecond 22V10) and
easy to use, and their reprogrammability is a great savior of designs that
aren’t quite right. PALs, though, are terrible at handling anything other
than simple sequential logic. The limited number of registers and clocking
options means you can’t use them for complicated decision making. PLDs
are better, but when speed is not critical a computer chip might be the sim-
plest way to go.

As the industry matures, lots of parts we depend on become obsolete.
One acquaintance found the UART his company depended on no longer
available. He built a replacement in a PIC16C74, which was pin-compati-
ble with the original UART, saving the company expensive redesigns.

In the good old days of microcomputing, hardware engineers also
wrote and debugged all of the system’s code. Most systems were small
enough that a single, knowledgeable designer could take the project from
conception to final product. In the realm of small, tractable problems like
those just described, this is still the case. Nothing measures up to the pride
of being solely responsible for a successful product; I can imagine how the
designer’s eyes must light up when he sees legions of kids skipping down
the sidewalk flashing their L.A. Gears at the crowds.

Part of the recent success of these parts comes from the aggressive
use of Flash and One-Time Programmable (OTP) program memory. OTP
memory is simply good old-fashioned EPROM, though the parts come
without an erasure window. That small quartz opening typical of EPROMs
and many PLDs is very expensive to manufacture. You can program the

122 THE ART OF DESIGNING EMBEDDED SYSTEMS

memory on any conventional device programmer, but, since there’s no
window, you can never erase it. When it’s time to change the code, you’ll
toss the part out.

Intel sold OTP versions of their EPROMs many years ago, but they
never caught on. A system that uses discrete memory devices-RAM,
ROM, and the like-has intrinsically higher costs than one based on a mi-
crocontroller. In a system with $100 of parts, the extra dollar or two needed
to use erasable EPROMs (which are very forgiving of mistakes) is small.

The dynamics are a bit different with a minimal system. If the entire
computer is contained in a $2 part, adding a buck for a window is a huge
cost hit. OTP starts to make quite a bit of sense, assuming your code will
be stable.

This is not to diminish Flash memory, which has all of the benefits of
OTP, though sometimes with a bit more cost.

Using either technology, the code can be cast in concrete in small ap-
plications, since the entire program might require only tens to hundreds of
statements. Though I have to plead guilty to one or two disasters where it
seemed there were more bugs than lines of code, a program this small,
once debugged and thoroughly tested, holds little chance of an obscure
bug. The risk of going with OTP is pretty small.

You can’t pick up a magazine without reading about “time to mar-
ket.” Managers want to shrink development times to zero. One obvious so-
lution is to replace masked ROMs with their OTP equivalents, as
producing a processor with the code permanently engraved in a metaliza-
tion layer takes months . . . and suffers from the same risk factors as does
OTP. The masked part might be a bit cheaper in high volumes, but this
price advantage doesn’t help much if you can’t ship while waiting for parts
to come in.

Part of the art of managing a business is to preserve your options as
long as possible. Stuff happens. You can’t predict everything. Given op-
tions, even at the last minute, you have the flexibility to adapt to problems
and changing markets. For example, some companies ship multiple ver-
sions of a product, differing only in the code. A Flash or OTP part lets
them make a last-minute decision, on the production floor, about how
many of a particular widget to build. If you have a half million dollars tied
up in inventory of masked parts, your options are awfully limited.

Part of the 805 1’s success came from the wide variety of parts avail-
able. You could get EPROM or masked versions of the same part. Low-
volume applications always took advantage of the EPROM version. OTP
reduces the costs of the parts significantly, even when you’re only build-
ing a handful.

Hardware Musings 123

Microcontrollers do pose special challenges for designers. Since a
typical part is bounded by nothing more than I/O pins, it’s hard to see
what’s going on inside. Nohau, Metalink, and others have made a great liv-
ing producing tools designed specifically to peer inside of these devices,
giving the user a sort of window into his usually closed system.

Now, though, as the price of controllers slides toward zero and the
devices are hence used in truly minimal applications, I hear more and more
from people who get by without tools of any sort. While it’s hard to con-
done shortchanging your efficiency to save a few dollars, it’s equally hard
to argue that a 50-line program needs much help. You can probably eye-
ball it to perfection on the first or second iteration. Again, appropriate
technology is the watchword; 5000 lines of assembly language on a 6805
will force you to buy decent debuggers . . . and, I’d hope, a C compiler.

You can often bring up a microcontroller-based design without a
logic analyzer, since there’s no bus to watch. Some people even replace the
scope with nothing more than a logic probe.

An army of tool vendors supply very low-cost solutions to deal with
the particular problems posed by microcontrollers. You have options-lots
of them-when using any reasonable controller-far more than if you de-
cide to embed a SPARC into your system.

Some companies cater especially to the low end. Most do a great job,
despite the low cost. I recently looked at Byte Craft’s array of compilers
for microcontrollers from Microchip, Motorola, and National. Despite the
limited address spaces of some of these parts, it’s clear a decent C compiler
can produce very efficient code.

One friend cross-develops his microcontroller code on a PC. Using C
frees him from most processor dependencies; compile-time switches select
between the PC’s timer/UART, etc., and that contained in the controller.
He manages to debug more than 80% of the code with no target hardware.

Working in a shop using mostly midrange processors, I’m amazed at
the amount of fancy equipment we rely on, and am sometimes a bit wist-
ful for those days of operating out of a garage with not much more than a
soldering iron, a logic probe, and a thinking cap. Clearly, the vibrant action
in the controller market means that even small, under- or uncapitalized
businesses still can come out with competitive products.

Watchdog Timers

I’m constantly astonished by the utter reliability of computers. While
people complain and fume about various PC crashes and other frustra-
tions, we forget that the machine executes millions of instructions per

124 THE ART OF DESIGNING EMBEDDED SYSTEMS

second, even when sitting in an idle loop. Smaller device geometries mean
that sometimes only a handful of electrons represent a one or zero. A
single-bit failure, for a fleetingly transient bit of time, is disaster.

Yet these failures and glitches are exceedingly rare. Our embedded
systems, and even our desktop computers, switch trillions of bits without
the slightest problem.

Problems can and do occur, though, due more often to hardware or
software design flaws than to glitches. A watchdog timer (WDT) is a good
defense for all but the smallest of embedded systems. It’s a mechanism that
restarts the program if the software runs amok.

The WDT usually resets the processor once every few hundred milli-
seconds unless reset. It’s up to the firmware to reinitialize the watchdog
timer, restarting the timing interval. The code tickles the timer frequently,
restarting the countdown interval. A code crash means the timer counts
down without interruption; at time-out, hardware resets the CPU, ideally
bringing the system back on-line.

The first rule of watchdog design is to drive the CPU’s reset in-
put, not an interrupt (such as NMI). A WDT time-out means that some-
thing awful happened, something that may have left the CPU in an unpre-
dictable scrambled state. Only RESET is guaranteed to bring the part back
on-line.

The non-maskable interrupt is seductive to some designers, espe-
cially when the pin is unused and there’s a chance to save a few gates. For
better or worse, NMI-and all other interrupt inputs-is not fail-safe. Con-
fused internal logic will shut down NMI response on some CPUs.

On other chips a simple software problem can render the non-mask-
able interrupt unusable. The 68K, for example, will crash if the stack
pointer assumes an odd value. If you rely on the WDT to save the day, dri-
ving an interrupt while SP is odd results in a double bus fault, which puts
the CPU in a dead state until it’s reset.

Next, think through the litigation potential of your system. Life-
threatening failure modes mean you’ve got to beware of simple watchdog
timers! If a single I/O instruction successfully keeps the WDT alive, then
there’s a real chance that the code might crash but continue to tickle the
timer. Some companies (Toshiba, for example) require a more complex se-
quence of commands to the timer; it’s equally easy to create a PLD your-
self that requires a fiendishly complex WDT sequence.

It’s also a very bad idea to put the WDT reset code inside of an in-
terrupt service routine. It’s always intriguing, while debugging, to find
your code crashed but one or more ISRs still functioning. Perhaps the ser-

Hardware Musings 125

ial receive routine still accepts characters and echoes them to the sender.
After all, the ISR by definition runs independently of the rest of the code,
so will often continue to function when other routines die. If your WDT
tickler stays alive as the world collapses around the rest of the code, then
the watchdog serves no useful purpose.

This problem multiplies in a system with an RTOS, as a reliable
watchdog monitors all of the tasks. If some of the tasks die but others stay
alive-perhaps tickling the WDT-then the system’s operation is at best
degraded.

In this case write the WDT code as its own task, driven by a timer.
All other tasks send messages to the watchdog process, indicating “I’m
alive.” Only when the WDT activity sees that all tasks that should have
checked in are indeed operating does it service the watchdog. If you use
RTOS-supplied messaging to communicate the tasks’ health-rather than
dreaded though easy global variables-there’s little chance that errant
code overwriting RAM can create a false indication that all’s OK.

Suppose the WDT does indeed find a fault and resets the CPU. Then
what? A simple reset and restart may not be safe or wise.

One system uses very high-energy gamma rays to measure the thick-
ness of steel. A hardware problem led to a series of watchdog time-outs. I
watched, aghast, as this system cycled through WDT resets about once a
second, each time opening the safety shield around the gamma ray source!
The technicians were understandably afraid to approach close enough to
yank the power cord.

If you cannot guarantee that the system will be safe after the watch-
dog fires, then you simply must add hardware to put it in a reasonable, non-
dangerous, mode.

Even units that have no safety issues suffer from poorly thought-out
WDT designs. A sensor company complained that their products were get-
ting slower. Over time, and with several thousand units in the field, re-
sponse time to user inputs degraded noticeably. A bit of research showed
that their system’s watchdog properly drove the CPU’s reset signal, and
the code then recognized a warm boot, going directly to the application
with no indication to the users that the time-out had occurred. We tracked
the problem down to a floating input on the CPU that caused the software
to crash-up to several thousand times per second. The processor
was spending most of its time resetting, leading to apparently slow user
response.

If your system recovers automatically from a WDT time-out, add an
LED or status display so users-or at least the programmers!-know that

126 THE ART OF DESIGNING EMBEDDED SYSTEMS

the system had an unexpected reset. Don’t use a bit of clever watchdog
code to compensate for software or hardware glitches.

Should embedded systems have a reset switch?
It seems almost traditional to put a reset switch on the back

panel of an embedded system. When something horrible happens, hit
the reset and retry! Doesn’t this make the customer feel that we don’t
trust our own products? Electronic systems never had reset switches
until the introduction of the microprocessor. Why add them now?

A reset switch is no substitute for flaky hardware. It’s pretty
easy (or, at least possible) to design robust, reliable microprocessor
circuits. Any failure is most likely to be a hard fault that a simple
reset will not cure.

This argument implies that a reset switch is mostly useful to
cure software bugs. We have a choice of writing 100% reliable code
or adding some sort of an escape hatch for the user. I hereby pro-
claim, “We shall all now write correct code.”

The problem is now cured.
OK, so perhaps a bug just might creep in once in a while. My

feeling is that a reset switch is still a mistake. It conveys the message
that no one really trusts the product. It’s much better to include a
very robust watchdog timer that asserts a good, hard reset when
things fall apart. The code might still be unreliable, but at least we’re
not announcing to the world that bugs are perhaps rampant. Re-
member when Microsoft eliminated the Unexpected Application
Error message from Windows 3.1 . . . by renaming it?

No watchdog is perfect, but even a simple one will catch 99% of
all possible code crashes. Combine this percentage with the (ideally)
low probability of a software crash, and the watchdog failure rate falls
to essentially zero.

Making PCBs

In the bad old days we created wire-wrapped prototypes because they
were faster to make than a PCB, and a lot cheaper. This is no longer the
case. Except for the very smallest boards, the cost of labor is so high that
it’s hard to get a wire-wrapped prototype made for less than $500 to sev-
eral thousand dollars. Turnaround time is easily a week.

Hardware Musings 127

Cheap autorouting software means any engineer can design a PCB in
a matter of a couple of days-and you’ll have to do this eventually any-
way, so it’s not wasted time. Dozens of outfits will convert your design to
a couple of PCBs in under a week for a very reasonable price. How much?
Figure $looCrl500 for a 50-square-inch 4- to 6-layer board, with one-
week turnaround.

It’s magic. Modem your board design to the vendor, and days later
FedEx delivers your custom design, ready for assembly and test.

PCBs are much quieter, electrically, than their wire-wrapped
brethren. With fast rise times and high clock rates, noise is a significant
problem even in small embedded designs. I’ve seen far too many cases of
“Well, it doesn’t work reliably, but that’s probably due to the wire wrap.
It’ll probably get better when we go to PC.” These are clearly cases where
the prototype does not accomplish its prime objective: identify and fix all
risk factors.

Always build your prototype on a PCB, never on wirewrap or other
impedance-challenged technologies. And figure on using a multilayer de-
sign, with unadulterated power and ground planes. Modem logic is just too
fast, too noisy, and too intolerant of ground bounce and other impedance
issues to try and mix power and signals on any PCB layer.

The best source for information about speed and noise issues on PC
boards is High Speed Digital Design-A Handbook of Black Magic, by
Howard Johnson and Martin Graham (1993, PTR Prentice Hall, NJ). This
is a must-read for all digital engineers. If you felt that your college elec-
tromagnetics was a flunk-out course, one you squeaked through, fear not.
The authors do use plenty of math, but their prose descriptions are so lucid
you’ll gain a lot of insight by just reading the words and shpping over the
equations.

Design your prototype PCB with room for mistakes. Designing a
pure surface-mount board? These usually use tiny vias (the holes between
layers) to increase the density. Think about what happens during the pro-
totyping phase: you’ll make design changes, inevitably implemented by a
maze of wires. It’s impossible to run insulated wire through the tiny holes!
Be sure to position a number of unusually large vias (say, 0.03 I ”) around
the board that can act as wiring channels between the component and cir-
cuit sides of the board.

Add pads for extra chips; there’s a good chance you’ll have to
squeeze another PAL in somewhere. My latest design was so bad I had to
glue on five extra chips. Guess who felt like an idiot for a few days. . . .

Always build at least two copies of each prototype PCB. One may lag

128 THE ART OF DESIGNING EMBEDDED SYSTEMS

the other in engineering modifications, but you’ll have options if (when)
the first board smokes. Anyone who has been at this for a while has blown
up a board or two.

I generally buy three blank prototype PCBs, assemble two, and use
the third to see where tracks run. Though sometimes you’ll have to go back
to the artwork to find inner tracks, it sure is handy to have the spare blank
board on the bench during debug.

It’s scary how often the firmware group receives a piece of
“functional” prototype hardware from the designers accompanied
by nothing more than the schematics-schematics that are usually
incomprehensible to the software folks. made even more abstruse by
massive use of PLDs and similar functional blocks plopped down on
the page, with perhaps hundreds of connections. They are documen-
tation black holes-every signal goes in, and presumably something
comes out, but without the designer’s suite of design tools even the
brightest firmware person will never make sense of the design.

Where does one draw the line between the responsibilities of
the hardware designers and those of the firmware folks? Should the
designers include device drivers? Seems reasonable to me, since
surely they did indeed at least hack together a bit of code to test each
device. Why not structure the development plan to make this test
code part of the framework of the final software? The hardware
tends to be so complex now that it’s unfair to give “naked iron” to
the software people. At the very least, deliver low-level drivers with
well-defined interfaces.

If you live and breathe hardware only, do talk to your software
counterparts. You may be surprised to learn that all too often your
cool new product makes debugging the code practically impossible.
Poor design decisions might seriously affect the firmware schedule.
All embedded people must understand that their creation does not
exist in isolation; the code and the chips all function together, to
form the seamless gestalt that (you hope) delights the user.

Changing PCBs

After spending a couple of months writing code, it’s a bit of a shock
to come back to the hardware world. Fixing bugs is a real pain! Instead of
a quick editkompile, you’ve got to break out a soldering iron, wire, parts,
and then manipulate a pin that might be barely visible.

Hardware Musings 129

PALS, FPGAs, and PLDs all ease this process to some extent. Many
changes are not much more difficult than editing and recompiling a file. It
is important to have the right tools available: your frustration level will
skyrocket if the PAL burner is not right at the bench.

FPGAs that are programmed at boot time via a ROM download usu-
ally have a debugging mechanism-a serial connection from the device to
your PC, so you can develop the logic in a manner analogous to using a
ROM emulator. Be sure to put the special connector on your design, and
buy the little adapter and cable. Burning ROMs on each iteration is a ter-
rible waste of time.

PLDs often come like EPROMs, in ceramic packages with quartz
erasure windows. These are great. . . if you were clever enough either to
socket the parts, or to have left room around the part for a socket.

On through-hole designs I generally have the technicians load sock-
ets for every part on the prototype. I want to replace suspected failed de-
vices quickly, without spending a lot of time agonizing over “Is it really
dead?’

Sockets also greatly ease making circuit modification. With an 8-
layer board it’s awfully hard to know where to cut a track that snakes be-
tween layers and under components. Instead, remove the pin from the
socket and wire directly to it.

You can’t lift pins on programmable parts, as the device programmer
needs all of them inserted when reburning the equations. Instead, stack
sockets. Insert a spare socket between the part and the socket soldered on
the board. Bend the pins up on this one. All too often the metal on the
upper socket will, despite the bent-out pin, still short to the socket on the
bottom. Squish the metal in the bottom socket down into the plastic to
eliminate this hard-to-find problem.

Surface-mount parts are much more problematic. Get a good set of
dental tools and a very fine soldering iron, so you can pry up pins as
needed. You’ll need a bright light with magnifier, a steady hand, and ab-
stinence from coffee. A decent surface-mount rework machine (such as
from Pace Electronics) is essential; get one that vectors hot air around the
IC’s pins. Don’t even try to use conventional solder on fine-pitch parts; use
solder paste instead, and keep it fresh (usually it’s best stored in a fridge).

Since SMT is so tough, I always make prototype boards with tracks
on the outer layers. Sure, the final version might reverse this (power and
ground outside to reduce emissions), but reverse the layering during
debug. It’s easy to cut tracks with an X-Acto knife.

Every engineer needs at least two X-Acto knives. One is for finger-
nail cleaning, cutting open envelopes, and tossing at the dartboard. The

130 THE ART OF DESIGNING EMBEDDED SYSTEMS

other is only for PCB work and always has a new, sharp blade. Keep 50 or
100 spare blades in your drawer, since PCB work invariably breaks the
very sharp and very essential pointy end off in no time.

Planning

Engineers have managers, who “run” projects, ensuring that re-
sources are available when needed, negotiate deadlines and priorities with
higher-ups, and guide/mentor the developers toward producing a decent
product on time. Planning is one of any manager’s main goals. Too often,
though, managers do planning that more properly belongs to the engineers.
You know more about what your project needs than your boss ever will;
it’s silly, and unfair, to expect him to deal with all of the details.

There are many great justifications for a project running late. In en-
gineering it’s usually impossible to predict all of the technical problems
you’ll encounter! However, lousy planning is simply an unacceptable,
though all too common, reason.

I think engineers spend too much time doing, and not enough time
thinking about doing. Try spending two hours every Monday morning
planning the next week and the next month. What projects will you be
working on? What’s their status? What is the most important thing you
need to do to get the projects done? Focus on the desired goal, and figure
out what you need to do to get there. Do you need to order parts? Tools?
Does some of your test equipment need repair or calibration?

Find the critical paths and do what’s required to clear the road ahead.
Few engineers do this effectively; learn how, and you’ll be in much higher
demand.

When you’re developing a rush project (all projects are rush pro-
jects . . .), the first design step is a block diagram of the each board. From
this you’ll create the schematic, then do a PCB layout, create a bill of
materials, and finally, order parts for the prototype.

Not. The worst thing you can do is have a very expensive quick-turn
PCB arrive, with all of the components still on back order. The technicians
will snicker about your “hurry up and wait” approach, and management
will be less than thrilled to spend heavily for fast-turn boards that idle
away the weeks on a shelf.

Buy the parts first, before your design is complete. Surely you’ll
know what all of the esoteric parts are-the CPU, odd analog components,
sensors, and the like. These are likely to be the hardest and slowest to get,
so put them on order immediately.

Hardware Musings 1 3 1

The nickel and dime components, such as gates and PALS, resistors
and capacitors, are hard to pin down until the schematic is complete. These
should mostly be in your engineering spares closet. Again, part of planning
is making sure your lab has the basic stuff needed for doing the job, from
soldering irons to engineering spares. Make sure you have a good selection
of the sort of components your company regularly uses, and avoid the
temptation to use new parts unless there’s a good reason.

CHAPTER 7
Troubleshooting Tools

Developers expect long, painful debugging sessions. We plunge into
system debug without thinking through the benefits and perils of this step,
and as a result generally wind up in a nightmare of bugs and schedule
panics.

As discussed in Chapter 2, a careful program of Code Inspections
will eliminate 70 to 80% of the bugs in a system before the first bit of test-
ing commences. The same chapter also shows how a careful developer can
count and manage bugs to identify bad code and take appropriate action
early.

An HP study concluded that the debugging process itself is flawed, as
it generally exercises only half of the code. That is, no one is smart enough
to construct a test that checks every possible IF-THEN condition, each
CASE in a SWITCH statement. This surely reinforces the need for Code
Inspections, but clearly even Inspections combined with test will result in
substantial chunks of untested-and thus buggy4ode.

~

The math is simple. Most code runs around a 5% bug rate after
compiler-found syntax errors are corrected. A little 10,000-line pro-
gram will typically have about 500 bugs before inspection and test.
Code Inspections will identify about 70 to 80% of these, leaving
some 100 still latent. Test, then, is our last defense against shipping
a bug-ridden product . . . but test only exercises half the code, leav-
ing 50 bugs still in the finished unit!

133

134 THE ART OF DESIGNING EMBEDDED SYSTEMS

This is clearly unacceptable. There are a few solutions:

1. Single-step though all of the code. Keep a listing handy, on
paper, and check off each branch and decision node as you
step through it, running tests until every bit of code has
been executed. The downside of this, of course, is that sin-
gle-stepping destroys the real-time nature of most embed-
ded systems.

2. Construct tests guaranteed to run through every decision
node. This means modifying the test procedure after you’ve
written the firmware to ensure that the tests are robust
enough to run through every node.

3. Buy a fancy tool. Applied Microsystems and HP both make
code coverage tools that identify unexecuted lines of code,
watching system operation in real time. These tools serve as
a complement to option 2, as you’ll still have to construct
appropriate tests. Still, if bugs are unacceptable, then the
fancy tools are probably necessary to ensure quality.

No management techniques or methodologies will ever eliminate the
need for test and debug. The late, great Deming taught the world that it’s
impossible to test quality into a system; quality is a characteristic of the de-
sign, not of our ability to find and fix bugs. Yet no matter how elegant the
design, test is always important, always a crucial validation of the code.

Tools

Your lovingly crafted, finely tuned masterpiece of engineering will
not work. Period. Sometimes it’s a little frightening when we discover the
real scope of our errors in a design. How often have you thought, in a bleak
moment of despair, “I’ll never make this stupid thing work!”

But that’s why we build prototypes. Prototypes are not expected to
work at first. Electronics engineering is perhaps one of the last great areas
where we can and should build test systems that are meant to be thrown
away once their contribution to the design process is done.

Although this is no excuse for doing a sloppy job of design, expect
problems. Develop an engineering strategy that expects problems as part of
the design process, rather as a reaction to (surprise!) a mistake. Set up a
system where you extract every bit of meaning from problems and their
eventual solutions. Don’t be like the engineer who finds a mistake, cuts

Troubleshooting Tools 135

and pastes a repair . . . and then forgets to document it, dooming himself or
some other poor soul to troubleshooting the same symptom all over again.

Above all, don’t plunge into the troubleshooting madness too
quickly. Debugging some embedded projects can take months. Invest time
up front to organize your workbench, acquire the tools, and learn to use
them effectively.

Who built the first lathe? The first oscilloscope? It’s hard to conceive
how these pioneers bootstrapped their efforts, somehow breaking the cycle
of needing equipment X to produce equipment X. Though this surely
proves that modem tools are dispensable, only a fool would wish to repeat
the designers’ Herculean efforts.

Select and buy a tool for one reason only: to save time! Since this is
a rapidly evolving field, expect to continuously invest in new equipment
that keeps you maximally productive. Surely no one would advocate using
286 computers in a Pentium world, yet far too many companies sentence
their engineers to hard labor by refusing to upgrade scopes, compilers, and
emulators when advancing technology obsoletes the old.

Every bookstore is crammed with volumes of sage advice for getting
more from each hour. Never forget that the fundamental rule of time man-
agement is to work smart; in the computer business, delegate as much as
possible to your electronic servants that cost so little compared to an engi-
neer’s salary.

Debuggers-of every i l k - d o one fundamental thing: provide visi-
bility into your system. Features vary, but all we ask of a debugger is, “Tell
me what is going on.” Sometimes we’re interested in procedural flow (sin-
gle-stepping, breakpointing); other times it’s function timing or depen-
dencies or memory allocation. Regardless, we simply expect our tools to
reveal hidden system behavior. Only after we see what’s going on can we
use our brains to understand “why that happened,” and then apply a fix.

Before talking about specific tools, let’s look at the features we’d like
to see in any sort of debugger (see Figure 7-l), and only then see how the
tools match feature requirements.

Source-level debugging-If you write in C, debug in C. There is no
more important feature than an environment that lets you debug in the
same context in which you originally wrote the code. If the debugging
tools won’t automatically call up the appropriate source files showing
where the current program counter lies, then count on long, painful days of
despair trying to make things work.

Tools, after all, are the intelligent assistants that provide us a level of
abstraction between the awful bits and bytes the computer uses and our code.
The source-level debugger is the critical ingredient that connects us to the

136 THE ART OF DESIGNING EMBEDDED SYSTEMS

Overlay RAM
Shadow RAM

Hardware breakpoints

Feature

Event triggers I Yes I Yes

Yes No No No Yes

Some No No No No
Yes Some No No Some

Complex breakpoints

Time stamps

Execution timers

Yes No No Yes No
Yes No No Yes No

Yes No No Yes No

-

Nonintrusive access

cost

FIGURE 7-1 Typical features of debugging tools.

Yes Yes No Yes No

Very high Cheap Cheap High Cheap

tool itself (emulator, ROM monitor, etc.) and our original source code. Hit
a breakpoint, and the debugger will highlight the current address in the
current source file. You view your original source code with comments.
The debugger shows data items in their native type (ints as decimal inte-
gers, floats as floating-point numbers, strings as ASCII text), not as raw,
impossible-to-decipher hex codes.

The source-level debugger is a program that runs on the PC and that
communicates with the emulator or whatever. It’s an essential part of a
professional debug environment.

If your toolchain won’t include a decent source debugger, triple your
debugging time, since most of your effort will be spent in the unrewarding
(and, frankly, stupid) task of correlating bits and bytes to source code.

Nonintrusive access-Nonintrusive access means the tool “gets
inside the head” of your target system without consuming the target’s
memory, peripherals, o r any other resources.

Troubleshooting Tools 137

As CPUs get more complex, though, all tools have more restrictions
that you, the user, must understand. If the part has cache, will the tool work
with cache enabled? A more insidious-and common-problem stems
from pins shared between several functions. If address line 18, for exam-
ple, can be changed to a timer output under program control, will the em-
ulator gork? Call the vendor and ask for the “restriction list” before buying
any debugging tool.

Real-time trace-Trace captures the execution stream of your code
in real time, displaying it in the original C or C++ source. Trace depths are
measured in frames, where one frame is one memory or I/O transaction-
thus, a single instruction may eat up several frames of storage.

Trace width is given in bits, and generally includes the address, data,
and some of the control busses, perhaps also with external inputs (to show
how the code and hardware synchronize), and timing information. Widths
vary from 32 bits to more than 100.

Trace is most useful for capturing real-time code-such as the
execution of an ISR-without slowing the system at all. It’s generally non-
intrusive.

Trace is mostly associated with logic analyzers and emulators. Be
aware that as CPUs get more complex, many emulators capture only the
address bus in the trace buffer. . . which means you’ll have no view of the
data transactions associated with the code.

Evenr triggers andfilters-Event triggers start and stop trace acqui-
sition. You define a condition (say, “when foobar = 23”); in real time the
tool detects that condition and starts/stops the trace collection. Filters in-
clude or exclude cycles from the trace buffer (it makes little sense, for ex-
ample, to acquire the execution of a delay routine).

Even with the hundreds of thousands of trace frames offered by some
devices, there’s never enough depth to collect more than a tiny bit of the
code’s operation. Triggers and filters let you specify exactly what gets
captured. The skillful use of triggers and filters reduces your need for deep
trace and greatly reduces the amount of acquired data you’ll have to sift
through.

Overlay RAM-also known as emulation RAM-though physically
inside of an emulator, is mapped into the target processor’s address space.
Overlay RAM replaces the ROM or Flash on your system so you can
quickly download updated code as bugs are discovered and repaired. ICES
provide great latitude in mapping this RAM, so you can change between
the emulator’s memory and target memory with fine granularity. A singu-
lar benefit of overlay is that you can often start testing your code before the
target hardware is available.

138 THE ART OF DESIGNING EMBEDDED SYSTEMS

Today’s Flash-based systems might seem to eliminate the need for
overlay, but in fact Flash programs more slowly than RAM, leading to
longer download times.

Shadow RAM-When the emulator updates the source debugger’s
windows, it interrupts the execution of your code to extract data from reg-
isters, YO, and memory-an interruption that can take from microseconds
to milliseconds. Shadow RAM is a duplicate address space that contains a
current image of your data that the tool can access without interrupting tar-
get operation.

Hardware breakpoints-Breakpoints stop program execution at a de-
fined address, without corrupting the CPU’s context. A software break-
point replaces the instruction at the breakpoint address with a one
byte/word “call.” There’s no hardware cost, so most debuggers implement
hundreds or thousands. Hardware breakpoints are those implemented
in the tool’s logic, often with a big RAM array that mirrors the target
processor’s address space. Hardware breakpoints don’t change the target
code; thus, they work even when you’re debugging firmware burned in
ROM.

Some pathological algorithms defy debugging with software break-
points. A ROM test routine, for example, might CRC the code itself; if the
debugger changes the code for the sake of the breakpoint, the CRC will
fail. There’s no such restriction with a hardware breakpoint.

Hardware breakpoints do come at a cost, though, so some tools offer
lots of breakpoints, with a few implemented in hardware and the bulk in
software.

Complex breakpoints-Simple BPs stop the program only on an in-
struction fetch (“stop when line 124 is fetched”). Their complex cousins,
though, halt execution on data accesses (“stop when 1234 is written to foo-
bar”). They’ll also allow some number of nested levels (“stop when routine
activate-led occurs after led-off called”). Though some tools offer quite a
diverse mix of nesting levels, few developers ever use more than two.

Desktop debuggers such as that supplied with Microsoft’s VC++
usually offer complex breakpoints-but they do not run in real time, and
they impose significant performance penalties. Part of the cost of an ICE
is in the hardware required to do breakpoints in real time.

It’s important to understand that a simple hardware or software
breakpoint stops your code before the instruction is executed. Complex
BPs, especially when set on data accesses, stop execution after the in-
struction completes. On processors with prefetchers it’s not unusual for the
complex breakpoint to skid a bit, stopping execution several instructions
later.

Troubleshooting Tools 139

Time stumping-Emulators and logic analyzers often include time
information in the trace buffer. Time stamps usually eat up about 32 bits of
trace width. Combined with the trace system’s triggers, it’s easy to perform
quite involved timing measurements.

Emulators

In-Circuit Emulators (ICEs) have always been the choice weapons in
the war on bugs. Yet, for as long as I can remember pundits have been pre-
dicting their death. Though it seems as quaint as IBM’s 1950s prediction
that the worldwide market for computers was merely a couple of dozen, in
fact 20 years ago many people believed that the 4-MHz 280 would spell
doom for ICEs. “4 MHz is just too fast,” they proclaimed. “No one can run
those speedy signals down a cable.”

Time proved them wrong, of course. Today’s units run at 60+ MHz
on processors with single-clock memory cycles, an astonishing achieve-
ment.

Is an end yet in sight? I believe so, though the limiting frequency is a
bit hazy. Today’s approach of putting all or much of the ICE’S electronics
on the pod removes the cabling and bus driver problems, but electrons do
move at a finite speed and even the fastest of circuits have nonzero propa-
gation delays.

CPU vendors squeeze the last bit of clock rates from their creations
partly by tuning their chips ever more exquisitely to the rest of the system’s
memory and YO. Clearly, an intrusion by any sort of development tool will
at best be problematic. Yes, today’s Pentium emulators do work. Will to-
morrow’s units be able to handle the continued push into stratospheric
clock rates? I have doubts.

Packages are creating another sort of problem. Heat, speed, and size
constraints have yielded a proliferation of packaging styles that challenge
any sort of probing for debugging. If you’ve ever tried to use a scope on a
208-pin PQFP device or, worse, a 100-pin TQFP, you know what I mean.
Yes, some tremendously innovative probing systems exist-notably those
from Emulation Technology and HP. Despite these, it’s still difficult at
best to establish a reliable connection between a target CPU and any sort
of hardware debugger, from a voltmeter to an ICE.

Surface-mount devices have exposed pins that you at least have a
prayer of getting to. Newer devices don’t. The BGA (Ball Grid Array)
package, which is suddenly gaining favor, connects to a PC board via hun-
dreds of little bumps on the underside of the package-where they are
completely inaccessible. Other technologies bond the silicon itself under a

140 THE ART OF DESIGNING EMBEDDED SYSTEMS

dab of epoxy directly to the board. All of these trends offer various system
benefits; all make it difficult or impossible to troubleshoot software and
hardware.

OK, you smirk, these issues only apply to the high end of the embed-
ded market, where clock rates-and production costs-soar with the eagles.
Other, subtle influences, though, are wreaking havoc on the low end.

Take microcontrollers, for example. These CPUs have ROM and
RAM on-board, giving a very simple, very inexpensive one-chip solution
for simple 8- and 16-bit applications. The 8051 is the classic example of
this, and indeed has been an amazing success that has survived 20 years of
assault by other, perhaps more capable, processors.

Single-chip solutions are tough to debug, though, since the on-board
memory means there’s generally no addreddata bus coming to the outside
world. An extreme example is Microchip’s 8-pin PIC part. Eight pins!

Various debugging solutions exist, but the traditional solution is the
bond-out chip, a special version of the processor, with extra pins that bring
all important signals to the outside world, especially those oh-so-critical
address and data lines needed to track program execution. With a proper
bond-out-based ICE you can track everything the code does, in real time,
with no compromises. Perfect, no?

Well, a few wrinkles are starting to surface. For one, the chip vendors
hate making bond-outs. The market is essentially zero, yet every time the
processor’s mask gets revised a new bond-out is needed. In the old days
chip vendors swallowed hard, but did make them reasonably available.

Now this is less common. With the 386EX (which is not a micro-
controller, but which benefits from a bond-out) Intel announced that only
a handful of vendors would get access to the special version of the part,
probably to some extent increasing the cost of tools. Is this an indication of
the beginning of the end of generally available bond-out parts?

Sometimes the bond-out is not kept to current mask revisions. I know
of at least one case where a vendor provides bond-outs that will not run at
full speed, essentially removing the critical visibility of real-time execution
from developers. This situation puts you in the awful conundrum of de-
ciding, “Should I buy an expensive tool. . . that forces me to run at half
speed, no doubt destroying all timing relationships?”

Sometimes-often-the bond-outs will not run at reduced voltages.
Your 3-volt system might require a pod that is a convoluted mix of 3- and
5-volt technologies, creating additional propagation delays as voltages get
translated. In effect, a nonintrusive tool becomes subtly more intrusive, in
ways that are hard to predict. Voltages are declining fast-some CPUs
now run at sub-1-volt levels-so the problem can only get worse.

Troubleshooting Tools 14 1

A very scary development is the incredible proliferation of CPUs.
Vendors are proud of their ability to crank out a new chip by pressing a few
buttons on a CAD system, changing the mix of peripherals and memory,
producing variant number 214 in a particular processor family. Variants
are a sign of a good, healthy line of parts (look at that mind-boggling array
of 8051 parts), but are a nightmare for tool vendors. Each requires new
hardware, software, support, evaluation boards, and the like. In the “good
old days,” when we saw only a few new parts per year per family, support
was easy to find. Now my friends who make microcontroller tools com-
plain of the frantic pace needed to support even a subset of the parts.

As a tool consumer you probably don’t care about the woes of the
vendors. But part proliferation creates a problem that hits a bit closer to
home: for any specific variant there may only be a handful of customers.
Tool support may never exist for that part if vendors feel there’s not a big
enough market. An odd fact of the tool market (from compilers to ICES) is
that the health of the market is a function of the number of customers using
a chip, not the number of chips used. CPU vendors are happy to get one or
two huge design wins, say an automotive company that sucks up millions
of parts per year. Tool folks might only sell a couple of units to such a cus-
tomer, far too few to pay their huge development costs.

Yet, despite the problems inherent with any tool so closely coupled
to the CPU, the ICE is without a doubt the most powerful and most useful
tool we have for debugging an embedded system. Only an ICE gives a
nonintrusive real-time view of the firmware’s operation.

Why use an ICE?

If your target hardware is not perfect, most other tools will not
function well. An ICE is probably the most useful tool around
for finding and troubleshooting hardware as well as software
problems.
The ICE uses no target resources. In general, all ROM. RAM, and
interrupts will be untouched.
There is no better way to debug real-time code than using trace
coupled with extensive triggering capabilities. The emulator cap-
tures the busses, and, in conjunction with the source-level debug-
ger, correlates raw bus activity to your C source files.

Emulator downsides include:

No tool is more expensive than an emulator.
As discussed earlier, speed and mechanical issues mean that some
systems will just not be candidates for emulator-based debugging.

142 THE ART OF DESIGNING EMBEDDED SYSTEMS

ICES can be finicky beasts to tame. With a hundred or more con-
nections to your target hardware, the smallest bit of dirt, vibration,
or bad luck can cause erratic operation that will drive your devel-
opers out of their minds. For this reason I always recommend sol-
dering the emulator to an SMT part, rather than using a clip-on
connection. Find a reliable hook-up scheme early, to avoid infinite
frustration later.

BDMs

CPU cores hidden away inside ASICs give fabulously small systems,
yet that buried processor is all but impossible to probe. Couple bus cycles
within fractions of a nanosecond to a peripheral and you leave no margin
for your tools. One-off CPUs, whether from burying a VHDL virtual
processor inside a high-integration part, or from the huge explosion of de-
rivatives of popular parts, are often tool orphans. Tool vendors, after all,
won’t invest huge sums in developing products for a particular CPU unless
they see a large, healthy market for their offerings.

Even seemingly boring issues such as device packaging further iso-
late us from the processor. If we can’t probe it, we can’t see what’s going
on. We lose the visibility needed to find bugs.

The trend is to separate run control from real-time trace. “Run
control” means those simple debugging features that we’d expect even in
nonembedded work: simple breakpoints, single-stepping, and access
to processor resources, memory, and peripherals. Probably 95% of all
debugging uses nothing more than these relatively simple features. Trace,
though, demands real-time access to the entire data, address, and control
busses, and so is generally a rather thorny and expensive part of any
emulator.

But the promise of a serial debugger remains seductive, given that
just a few wires replace the hundreds of connections used by an emulator
or logic analyzer. Motorola recognized this early on and created the Back-
ground Debug Mode (BDM), a feature first found on the 683xx and
68HC 16 processors, since extended and incorporated on many other chips.

BDM is a bit of specialized debugging hardware built right into the
chip (Figure 7-2). Transistors are so cheap it makes sense to build a debug
interface into even production chips. Clearly this overcomes one major ob-
jection of bond-outs: the “stepping level” of the production IC is always
identical to the debug part. , . because they are one and the same.

BDMs eliminate all speed and packaging issues. As part of the sili-
con, the debugger runs as fast as the chip; the interface to the outside world

Troubleshooting Tools 143

I data bus

clock
serial-in
serial-out

FIGURE 7-2 A BDM/JTAG debugger adds logic on the CPU itself.

is inherently not coupled to raw processor speed. Connection problems go
away, since you just run a few CPU pins to a special debug connector.

Implementations vary, but a processor with BDM dedicates a few
pins to a serial debugging channel (though sometimes other functions
might be multiplexed onto them). Customers demand high-speed screen
updates, so this is a synchronous communications scheme that includes a
clock pin, supporting serial speeds beyond 1 Mbps.

Development tool vendors sell you a connection to this channel,
ranging from a high-end very fast link to something no more complicated
than a two-IC interface to a PC’s comm port . . . and, of course, a source-
level debugger. The software interfaces to your code and formats your re-
quests to single-step or display data to meta-commands transmitted to the
CPU chip (on the BDM link).

The original BDM implementation shared microcode with the proces-
sor’s main execution stream. Commands processed by the debug link thus
stopped normal program execution. Although this was tolerable for simple
applications, users of real-time operating systems, in particular, wished to
examine and alter system state without bringing the entire program to its
knees. BDM+, on the ColdFire CPUs, uses a totally independent set of
hardware to allow concurrent program execution and debugging.

MIPS, Intel, TI, and others provide serial debugging via various ex-
tensions of the JTAG (Joint Test Access Group) standard (IEEE 1149.1).
JTAG, too, is a synchronous serial interface, one originally defined to pro-
mote testability of complex boards. Though the implementation details
differ from those for BDM, in all significant user respects it offers the
same sort of functionality and level of complexity.

BDM and JTAG hardware on board the processor can’t waste tran-
sistors, as ultimately increasing the chip’s complexity drives the cost of the

144 THE ART OF DESIGNING EMBEDDED SYSTEMS

part up. Most implementations, therefore, rely on software rather than
hardware breakpoints. That is, the source debugger that drives the BDM/
JTAG port sets a breakpoint by replacing the first byte or word of the in-
struction’s opcode with a special instruction that places the chip in debug
mode. This is much like ROM monitors that use an illegal opcode or sim-
ilar instruction to invoke a breakpoint handler.

Most of the interfaces, though, also have a hardware breakpoint input
pin. Drive this line high and the CPU halts execution of the firmware.
Some vendors offer quite elaborate bus monitors (for those target systems
that indeed have a viewable bus) that support complex break conditions
(“break when routine ’ timer-isr ’ called after variable foobar writ-
ten”). This is where ICE meets BDM, as quite a bit of ICE-like hardware
is required.

So, the upside of a BDM or JTAG debugger boils down to this:

A debugger on-board the chip eliminates all speed issues. It func-
tions despite cache’s complications. Even when the CPU is hidden
in a huge ASIC, if just a few pins come out for the serial debugger,
then designers will have some ability to troubleshoot their code.
JTAGBDM lets you set simple breakpoints, single-step, and ex-
amine and change memory and VO . . . in short, everything you
can do with a normal PC design environment, such as Microsoft’s
Visual C++.
BDM-like solutions are a reasonable subset of a debugging
methodology. They’re so inexpensive that every developer can
have the toolset. Some tool vendors properly promote these as
nothing more than debugging adjuncts, devices designed for work-
ing on certain non-real-time sections of code. Their message is to
“use the right tool for the right job-a BDM where it makes sense,
and a full-function emulator for real-time troubleshooting.”

Given that run control offers basic system access, breakpoints, and
the like, what do we lose when we chose one of these over an ICE?

Emulation RAM does not exist on BDMs. No serial debugger now
extant or proposed offers any sort of memory that replaces your
system ROM. To download code, you can relink so the code exe-
cutes from your system RAM area, assuming there’s plenty of free
RAM space, or replace your ROM chips with RAM, which depend-
ing on your system design may or may not be possible. Another
option is to mix tools, using a ROM emulator; download code to the
emulator and test it via the BDWJTAG port.

Troubleshooting Tools 145

Breakpoints, too, will not have the power and sophistication you
may be used to with an ICE. Most such debuggers won’t permit
nested complex conditions, or pass counters, or even hardware (as
opposed to software) breakpoints.
Trace is probably the biggest loss when moving from an ICE to a
serial debugger. Some tool companies have married logic analyz-
ers to run control BDWJTAG devices. The result is a trace-like
output. . . but only in the cases where the CPU busses are avail-
able and probeable. However, a lot of work is now taking place to
add limited trace capabilities to these products.

ROM Monitors

The oldest of embedded tools is still a viable and useful option for
many projects. The ROM monitor is nothing more than a little bit of code
that is linked into your target firmware. You allocate a communications
port to the tool; it uses this port to interpret commands from the source de-
bugger hosted on your PC.

The ROM monitor is generally a rather simple bit of code. It sends
register and memory info to the PC and accepts downloaded code from the
same source. Breakpoints are simple address-only types.

ROM monitors have the following wonderful attributes:

They’re cheap! The ROM monitor is a simple bit of code. Most of
the cost of the debugger will be in the source-level debugger.
The tool has no physical connection problems. Stick it in any sys-
tem, no matter how fine the SMT pins or how deeply buried the
CPU core lies.
Speed problems just don’t exist, since the monitor is just software
running concurrently with the rest of your code.

The downsides to ROM monitors include:

The tool requires exclusive access to a communications port; if a
ROM monitor is in your future, be sure to add an extra comm port
to the hardware just for the sake of the tool.
The ROM monitor will consume other target resources such as
ROM and RAM, and maybe some interrupts. In a big 32-bit sys-
tem this is rarely a problem. If you’re worlung in a 4k address
space, these resources are usually too scarce to dedicate to the tool.
There’s always a setupkonfiguration problem, as you’ve got to
link the tool into your code and connect it to your proprietary com-
munications port.

146 THE ART OF DESIGNING EMBEDDED SYSTEMS

The ROM monitor will not work if the hardware is broken.
Real-time instrumentation is weak. You just won’t find trace or
timing data in any ROM monitor product.

ROM Emulators

A significant problem with conventional emulators is that they are
CPU-specific. Change from a 68332 to a 68340 and, even though the
processor’s architecture doesn’t change, you’ll need a new emulator-r at
least a new multi-thousand-dollar pod. ROM emulators, instead, connect to
your target system via a memory socket. They consist of a RAM array that
mimics the ROM chip . . . while allowing you to download new code in a
heartbeat. The serial port is built into the unit itself.

ROM emulators are so inexpensive that even when using some other
debugging tool I keep a few around for those unexpected problems that al-
ways seem to surface.

ROM emulators continue to play an important role in embedded de-
velopment for the following reasons:

As ROM replacements they offer convenient overlay RAM. Espe-
cially in smaller systems, this may be critical so you can download
code, rather than bum a dozen ROMs an hour.
Most are very inexpensive-some go for just a few hundred dol-
lars. This means every developer can have a reasonable debugging
tool at hand.
ROM emulators are processor-independent. The source debugger
may change as you move from a 68000 to a 186, but the hardware
element remains unchanged.
Few, if any, target resources are required.

Problems include:

Just as with an ICE, speed is an ever-increasing concern.
The physical connection to the target system might be difficult if
you’re emulating SMT ROM devices. As with ICES, many ven-
dors do offer innovative connection strategies, but bear in mind
that making a reliable connection may be difficult.
The ROM socket does not provide any convenient way to set
breakpoints! About half of the vendors do offer a breakpoint strat-
egy; be sure the one you select won’t leave you breakpoint-
starved.

Troubleshooting Tools 147

OrCillO~opeS

Emulators, ROM monitors, and the like are great for viewing your
code from the perspective of the CPU. Their tentacles into your target sys-
tem stop at the CPU socket, so events occurring beyond that point (say, in
an YO device) are almost invisible. You can see the IN and OUT instruc-
tions and the transferred data, but it’s pretty hard to check out timing rela-
tionships, or how the software interacts with the hardware.

Sure, most of these tools have external inputs that you can couple to
any point in the system. Few programmers use them. Perhaps this is be-
cause the display is so static. You have to actively recollect data and then
tediously sort it all out. For example, if you feed an external input to a real-
time trace buffer, you’ll collect tons of bus activity that may or may not be
important.

If all you really care about is the relationship between two events
(say, a switch closure and the resultant interrupt), why dig through thou-
sands of cycles? It is important to arm ourselves with as many tools as pos-
sible. No one tool is perfect for every problem.

One of my all-time favorite software debugging tools is the oscillo-
scope, colloquially known as the “scope.” Hardware guys seem to have a
scope attached as a pseudopod to one arm. Any development lab is invari-
ably filled with benches of scope-happy troubleshooters probing the mys-
teries of some electronic marvel. The software community seems less
comfortable with this tool, which is a shame because it can painlessly yield
crucial information about the operation of your code.

A scope is really nothing more than a device that displays one or
more signals. Most can simultaneously show two independent values.

The scope’s raison d’etre is displaying the signals’ voltage (ampli-
tude) over time.

A simple time-varying signal is the power coming from your wall
outlet. This is a 60-Hz sine wave (i.e., the voltage smoothly rises from 0 to
120 and back to zero again 60 times a second). It moves too fast to follow
with a voltmeter. On a scope display, the waveform’s voltage at any point
in time is crystal clear.

Software folks used to working with only a keyboard are sometimes
intimidated by the sea of knobs on any decent scope’s front panel. A bit of
experience makes working with this tool natural.

From the user’s standpoint the average scope has three major sec-
tions. A “vertical” amplifier sets the display’s up/down limits. The “hori-
zontal’’ portion controls the beam’s lefvright scanning. “Trigger” circuitry
synchronizes the scan to your input waveform.

148 THE ART OF DESIGNING EMBEDDED SYSTEMS

Given that the scope is a general-purpose tool used by RF engineers,
digital computer designers, and even software gurus, it has to accept a
wide range of inputs. Computer people work mostly with 5-volt levels
(Le., a zero is about 0 volts; a one is 3 to 5 volts). Audio engineers might
need to measure millivolt levels. Your embedded system probably detects
or generates some sort of real-world data, which is probably not in the
0- to 5-volt scale.

Thus, the scope’s Vertical section is born. The run-of-the-mill two-
channel scope has two identical vertical sections.

A BNC connector (like the kind used in thin Ethernet applications)
connects to the scope probe. The signal sensed by the probe runs to the ver-
tical amplifier, which increases the input from perhaps a few volts to sev-
eral hundred, which is ultimately applied to the plates in the CRT.

Like any good amplifier, each vertical channel has an amplitude con-
trol (i.e., the same thing as a volume control in your stereo). Unlike a vol-
ume control, it has an exact calibration associated with each position. Set
the knob to, say, 2 volts/division, and a 4-volt signal will move the beam
up two divisions. Divisions are denoted by a grid of boxes on the CRT so
you can easily measure levels.

Each channel has a “position” control that lets you move the rest po-
sition of the beam up or down to the most convenient point. If you wanted
to measure voltage, with no signal applied, set the beam right on one of the
division marks on the screen. Then, count how many boxes the waveform
occupies. Convert divisions to voltage using the setting of the amplitude
control.

The position control lets you move the beam all the way off the
screen. It can be pretty challenging to find the damn beam at times, so a
“beam find” button brings it into view, giving you an idea which way to
move the position controls.

A channel selector lets you put either channel 1 or channel 2 on
the screen. Most software work involves measuring the relationship be-
tween two inputs, so you’ll select “both.” Two sweeps will pop up. Use
the two sets of amplitude and position knobs to control each channel
independently.

Controlling up and down beam deflection is only half of the problem.
The Horizontal Amplifier sweeps the dot back and forth across the screen.
Note that you only see the left-to-right deflection; the return sweep is very
fast and is never displayed.

In software debugging I hardly ever care about amplitude, since
mostly I’m looking for the input’s shape or duration. If the amplitude is

Troubleshooting Tools 149

wrong, generally there is a hardware problem. I set up the vertical controls
just to get a decent-sized waveform and then mostly ignore them.

Timing, though, is always crucial. The horizontal system doesn’t just
randomly move the beam back and forth; it does so in a highly regular and
measurable manner.

Generally the biggest knob on a scope is the one labeled something
like “TimeDivision.” Try cranking it through all of its positions. Go all the
way counterclockwise: the beam will be a single dot, either stopped or
moving very slowly to the right.

As with the amplitude control, this switch is calibrated. The slowest
sweep rates (all the way counterclockwise) might be as much as 5 seconds
per division. Slowly rotate the knob and watch as the dot picks up speed.
5 sec/div, 2 sec/div, 1, .5, .2, .l-pretty soon the dot will be moving so fast
it will start to look like a line. Rotate it all the way. Now, the dot is mov-
ing at perhaps 50 nanoseconds per division. That’s fast!

The horizontal system is frequently called the “time base,” because it
provides all basic timing functions to the scope.

A cardiac monitor is nothing more than a specialized oscilloscope. A
very slowly moving beam shows the patient’s heart rate. The signal beats
only 70 timedsec, so a slow rate is best to represent the input.

Suppose the signal moves not at 70 beatdsec, but at 7 million (say,
for a hummingbird on speed). At the slow sweep rate of the cardiac mon-
itor the beam will move up and down so fast compared to the left-to-right
sweep that a band of light will appear. You’ll see no recognizable signal.
Crank up the sweep rate. The band will eventually resolve itself into the
familiar cardiological shape. At first, the signal will be all squished to-
gether. Perhaps three beats will be in each division. Rotate the knob again.
Now, only one beat is in a division. With each rotation the horizontal
image expands. With each rotation you can still measure the beat fre-
quency by counting divisions and applying the Timemivision parameter
listed on the control.

The Horizontal control, then, lets you pick a sweep rate that generates
a recognizable picture of the signal you are measuring.

There’s always one little detail to complicate matters. So far we’ve
ignored the issue of synchronizing the sweep to the signal.

In the case of the cardiac input, suppose on one sweep the beam starts
off on the left side of the screen when the signal is halfway up the slope,
and the next sweep starts when the input is at 0 volts. The position of the
display will shift left or right on every sweep, creating an image impossi-
ble to focus on.

150 THE ART OF DESIGNING EMBEDDED SYSTEMS

Unless the sweep starts at the same point on the input signal each
time, the display will look like a meaningless jumble. In the bad old days
before trigger circuits, people tried to tune the sweep frequency to exactly
match the input, but this is hard to do at best, and is pretty much impossi-
ble with digital circuits.

The modern solution is the third component of any decent scope.
The “Trigger” controls let you pick the sweep starting point.

Generally, selector switches let you pick AC or DC coupling, trigger
level, holdoff, slope, and trigger source selection. The correct procedure
is to select a reasonable source (channel 1 or 2: which one do you want to
use to start the sweep?), and then start twiddling knobs until the display
stabilizes.

Sure, it makes sense to follow some semblance of a procedure. Select
a (+) slope if you want to see the upgoing edge of the input at the very left
side of the screen. Select (-) slope to position the downgoing edge there.

Start twiddling with the holdoff control set to OFF (usually all the
way counterclockwise). Most of the magic will be in the Trigger knob,
which requires a delicacy of touch that takes some practice to develop.

Triggering on any repetitive signal is pretty easy, because the differ-
ences from sweep to sweep are small. Digital signals are more challenging.
A constantly changing pulse stream is all but impossible to capture on a
scope.

Scoping Tricks
One of the worst mistakes we make is neglecting probes. Crummy

probes will turn that wonderful 1-GHz instrument into junk. Managers
hate to spend a lot on probes when they see them drooling onto the floor,
mixed with all of the other debris. Worse, we always immediately lose the
tips and other accessories acquired at great expense, and so connect to a
node using a 12-inch clip lead hastily purchased at Radio Shack.

Then. after destroying a couple of chips by accidentally shorting
things to ground with that nice alligator ground clip mounted on the probe,
we tear it off in frustration, losing it as well. Tip: If you really don’t intend
to use the ground connection, clip that alligator lead to itself, keeping it out
of harm’s way but instantly available for use.

Take care of your probes. Keep them off the floor; don’t let your chair
roll over the leads, squishing the coax and changing its impedance. Buy de-
cent ones before every probe in the shop falls apart. After trying all of the
cheap varieties found in general electronic catalogs, I now swallow hard and
spend the $150 needed to get high-quality probes from Tektronix or HP.

Troubleshooting Tools 1 5 1

Here’s another tip: When you’re using a scope, if a signal looks
weird, maybe there’s something wrong! Avoid the temptation to rational-
ize the problem. Instead of blaming the signal on a lousy ground, quickly
connect that ground clip and test your assumption.

Never accept something that looks awful. Either convince yourself
that it’s actually OK, or find the source of the problem.

Walk through your lab. You’ll find that most of the digital folks have
their vertical amplifiers set to 2 volts/division, which eases displaying two
traces simultaneously. Unfortunately, too many of us seem to think the
vertical gain knob is welded into position. It’s hard to distinguish a valid
zero from one drooling just a little too high with so little resolution. Flip to
1 V/division occasionally to make sure that zero is legitimate.

Every instrument is a lying beast, a source of both information and
disinformation. The scope is no exception. A 100-MHz scope will show
even a perfect 50-MHz clock as a sine wave, not in its true square form.
Digital scopes exhibiting aliasing sweep too slowly (below the Nyquist
limit) for a given signal, and that 50-MHz clock may look like a perfect
1 -kHz signal, causing the inexperienced engineer to go crazy searching for
a problem that just does not exist. Try this experiment: measure a 10- or
20-MHz clock on a digital scope. Crank the sweep rate slower and slower.
You’ll inevitably reach a point where the scope shows a near-perfect
square wave several orders of magnitudes slower than the actual clock fre-
quency. This is an example of aliasing, where the scope’s sampling rate
yields an altogether incorrect display. I’m sure many folks have heard a
claim such as, “This 16-MHz oscillator is running at 16 kHz! Can you be-
lieve it?” Don’t. Check your settings first.

We digital folks deal in ones and zeroes . . . and tristates. Each con-
dition means something. When troubleshooting, you’ve got to know which
of these three (not two) states a node is in. Our best tool is the scope, yet it
is inherently incapable of distinguishing the tristate condition.

In the good old days of LS technology you could be pretty sure a tri-
stated signal would show up at around 1.5 volts-somewhere between a
zero and a one. With CMOS this assurance is gone, yet most engineers
blithely continue to assume that zero volts means zero. It just ain’t so.

My solution is a little tool I made: a 1 k resistor with a clip lead on
each end. Mine is nicely soldered together and covered with insulation to
avoid shorts. To tell the difference between a legal state and high imped-
ance, clip the tool to the node and alternately touch the other end to Vcc
and then ground. If the node moves more than a trifle, something is wrong.
The scope, plus my tool, lets me identify all three possible states. Without

152 THE ART OF DESIGNING EMBEDDED SYSTEMS

the tool I’m guessing, and guessing while troubleshooting always sends
you down time-consuming blind alleys.

You can use a variation of this approach when troubleshooting an in-
termittent problem. If the silly thing refuses to fail when you’re working on
it-a sure bet, given the perversity of nature-run your fingers over the
board’s pins. A purely digital board should continue to run despite the
slight impedance changes brought about by your fingers, yet these may be
enough to drive a floating pin to the other state, possibly creating the fail-
ure you are looking for.

On SMT boards it’s tough to get at a device’s pins. If there’s one pin
you are suspicious of, touch it with an X-Acto knife. The sharp blade will
precisely align with any tiny pin, and its metal handle will conduct your
body impedance to the node. Sometimes 1’11 connect my trusty pull-
up/pull-down clip lead to the knife itself to exercise the node more deter-
ministically.

No scope will give decent readings on high-speed digital data unless
it is properly grounded. I can’t count the times technicians have pointed
out a clock improperly biased 2 volts above ground, convinced they found
the fault in a particular system, only to be bemused and embarrassed when
a good scope ground showed the signal in its correct 0- to 5-volt glory.

Yet most scope probes come with crummy little ground lead alliga-
tor clips that are impossible to connect to an IC. Designers all too often in-
sert a clip lead in series just to get a decent “grabber” end. Those extra 6 to
12 inches of ground lead will corrupt your display, sometimes to such an
extent that the waveform is illegible. Cut the alligator clip off the probe and
solder a micro grabber on in its place.

Ask an experienced scoper to work with you for a couple of hours.
Have the mentor randomly shuffle the controls; then try to bring the dis-
play back and stabilize it. Try probing around a battery-operated radio
(where there are no dangerous voltage levels!). Look at signals. Fiddle
with the trigger controls and time base to stabilize and examine them.

Fancy Tools, Big Bucks?

As an ex-tool vendor I can’t count the times I’ve heard, “Well, we re-
ally need decent equipment, but my boss won’t let me spend the money.”

It matters little what equipment we’re talking about. Once I wrote an
offhand comment about companies who won’t upgrade computers. An
avalanche of email filled my electronic in-box, from developers saddled
with 386-class machines in the Pentium age. We live in front of our com-
puters, spending hours per day with them. It’s incomprehensible to me that

Troubleshooting Tools 153

a business won’t provide very expensive engineers new machines every two
years. I’ve seen compile times shr ink from tens of minutes to tens of sec-
onds when transitioning just one generation of computers; surely this trans-
lates immediately into real payroll savings and faster development times!

Yes, we have an insatiable appetite for new goodies. Glittering new
scopes, emulators, logic analyzers, and software tools fill our thoughts
much as kids dream of Tonkas and Barbies. Very often, though, the gap
between what we want and what we get is as wide as the Grand Canyon.

Now, I know the cost and scarcity of capital. Just try going to the
bank, hat humbly in hand, looking for working capital when you really
need it. Venture capital is the seed of high tech, but is much less available
than people realize.

There’s never enough money, especially in smaller businesses, so
every decision is a financial tradeoff between competing needs.

I also know the cost of payroll. It’s by far the biggest expense in most
technology businesses. Yet many managers view payroll as a sunk cost.
Years ago my boss told me, “I have to pay you anyway, but to buy that
scope costs me real money.”

Well, no, actually, he didn’t have to pay me or any of the engineers.
He had options: do less engineering with fewer people and save on salary.
Use us inefficiently and ignore the costs. Work to improve our efficiency
and either get products out faster or get the same work done with fewer
people.

This concept of payroll as a fixed cost is a myth, one that destroys too
many technology companies. Managers do have the ability to manage this
cost, the biggest one of all, effectively. It’s not easy and it’s never “done”;
effective management requires an intimate understanding of the processes
involved, a willingness to experiment and tune, and a dedication to a
never-ending quest to find lots of 1 and 2% improvements, as the magic
20% efficiency improvements are indeed rare.

Our culture of absorbing payroll as a fixed expense means we battle
for weeks over $lO,OOO tool costs while ignoring, or accepting, $1 million
in salary costs.

Perhaps this is symptomatic of uninformed managers and exhibits it-
self in every area of development. One friend who makes a living design-
ing products as a contractor tells me story after story of companies that
happily spend a quarter million dollars on tooling for the product’s plastic
box, yet balk at a quote for $30k in custom firmware.

I see an increasing number of companies embracing the noble ideal
of “doing more with less” without understanding that sometimes spending
a bit on tools is the fastest route to that ideal.

154 THE ART OF DESIGNING EMBEDDED SYSTEMS

You can’t pick up a trade magazine today without seeing the indus-
try’s mantra-Time To Market-gracing every article and ad. All sorts
of studies indicate that getting a product out first is the best way to gain
market share and profitability. Whether this is true or not makes little dif-
ference; the important point is that management has universally bought
into the concept, leaving it up to engineering to somehow “make it so.”

The time-to-market furor explains surveys that show development
time to be the number one priority of many engineering departments, with
cost usually running third after quality. Whether we agree with the goals or
not, it is at least a reasonable ranking of priorities.

Get it done fast. Do a good job. And then worry about costs. These
are the constraints we’re working under, in order.

But we can’t develop a realistic plan without considering all of the
facts. One is that salaries continue to rise, especially now, and especially
for highly trained and scarce engineers. None of us can control this.

Fast, gotta be fast. Cheap, too-somehow we have to save bucks
wherever we can. OK. . . now what?

Astonishingly, more and more companies are making decisions like:
no tools. Poor tools. Or, let’s pick a chip that has no tools, or for which de-
cent tools are a but a dream.

How on earth are we supposed to be fast with inadequate tools?
Won’t costs skyrocket as we spend more time struggling to find bugs-
bugs that are more evasive than ever as products get more complex-using
what amounts to toys?

In the face of increasing salaries, more complex products, and tem-
fying schedules, all too often the question “How are we going to get the
work done?’ never gets answered honestly.

Yet, as you read this today, hundreds of companies pursue develop-
ment strategies that are doomed to cost too much and take too long. Some
use custom microprocessors-for good reasons and bad-and build their
own compilers and debuggers. I’m not saying this is necessarily wrong;
it’s just costly. Some of these businesses understand and manage the is-
sues; others just yell louder at the developers to meet the schedule.

I’ve seen months spent gluing CPUs inaccessibly into the core of a
monster ASIC, without the least thought given to debugging . . . and then
the hardware guys present the firmware folks with this fait accompli and
only two months left in the schedule.

We must look at the technology challenges posed by the parts we
choose, and then at our options for building the system and then finding
bugs. We must find or invent ways of achieving our fast-quality+heap
goals before committing to a difficult or impossible technology.

Troubleshooting Tools 155

And, management must understand that time costs money-real
money, not just sunk costs. Further, crummy development environments
never yield faster product introductions.

This is not a Dilbert-like rant against managers. We’re all infatuated
with the latest technology, and we all are convinced that, this time, bugs
won’t be as big of a problem as last time.

Embedded processors will continue to get faster and more highly in-
tegrated-and will generally become much tougher to work on than those
of yesteryear. That’s a fact as sure as salary inflation and time-to-market
pressures .

It’s largely up to the developers doing the work to educate manage-
ment, and to make intelligent decisions yielding debuggable products.

Often we are perceived as wanting everything without decent justifi-
cations. Faster computers, private offices, better software tools. Without
educating our bosses about how these things save them money, we’ll lose
most battles.

A common joke is the “capital equipment justification,” all too often
more an exercise in creative writing than in fact gathering and analysis.
Sometimes tool vendors will present you with spreadsheets of savings
from using their latest widget, but none of us really trusts these figures. It’s
far better to use hard-hitting, quantitative data accumulated from your own
hard-won experience. Don’t have any? Shame on you!

One well-known bug reducer is recording each bug, stopping and
thinking for a few seconds about how you could have avoided making the
mistake in the first place. Take this a step further and think through (and
record!) how you found it, using what tools. Log it all in an engineering
notebook as you work; it’s a matter of a few seconds’ time, yet will help
you improve the way you work. This notebook will also serve as the raw
data for your cost justifications. If that cruddy freeware compiler gener-
ated a bad opcode that took a day to find, a little math quickly will show
how much money a multi-thousand-dollar commercial package would
save.

As you educate management, educate yourself, and remember those
lessons when you’re the boss!

Years ago I worked for a small, 100-person outfit that experienced a
wealth of financial difficulties. Half of the phone calls were from angry
creditors. The bank was perpetually on the brink of closing us down. Still,
our small engineering group always had a reasonable set of tools. Good
scopes then cost upwards of $lO,OOO, a lot of money in 1975 dollars. We
even managed to get one of Intel’s first microprocessor development sys-
tems. Though we engineers had to cajole and plead with management for

156 THE ART OF DESIGNING EMBEDDED SYSTEMS

the tools, we did get them, and developed an expectation that we’d always
have access to whatever the job needed.

Then I started consulting.
Suddenly, those wonderful tools we had so long taken for granted

were no long available. My partner and I shared an old Tektronix 545
scope (that used vacuum tubes-you know, those glass-shelled things with
filaments and high voltages). We scraped up enough money to build an
emulator-such as it was-from mail-ordered Multibus boards. A $400
CRT terminal and daisy-wheel printer were all we could afford in the way
of new capital equipment.

We learned all sorts of ways to extract information from systems,
pouring loads of time into projects instead of cash.

Then I met a fellow whose high-school kid had a lab of sorts in his
home. He had a new Tektronix scope! I was flabbergasted. Though the unit
wasn’t top-of-the-line, it sure beat the antique I was saddled with.

A few discreet questions turned up the fact that he rented the scope,
for a lousy $50 a month. Somehow it had never occurred to me that there
were options other than coming up with thousands in cash. This kid had
shown me that the quest to obtain the right tools is aproblem, one like any
other problem we run into in engineering and life, one that takes a bit of
creative energy to solve.

Ain’t America grand? Easy credit, available to practically any warm
body, means we can satisfy practically any whim . . . as far too many of us
do until the inevitable day of reckoning comes.

Look at the computers advertised in any PC magazine. Every ad has
a caption giving the low, low monthly payment they’ll require. If your
business has any income at all, then the hundred a month or so for a high-
end machine is a pittance.

Test equipment vendors all offer similar plans. You’d be surprised
how low the monthly payments on a scope are, when spread over three to
five years.

Most companies will bend over backwards to finance your purchase.
Those that have no in-house financing ability work with third-party finan-
cial outfits. Test equipment companies really want you to have their latest
widget, and they’ll do practically anything to help you purchase it.

Renting is a traditional means to get access to equipment for short pe-
riods of time. However, unless you’re quite convinced that the project will
end as planned, be wary of rentals. Few short-term projects fail to increase
in scope and duration. Since rentals generally cost around 10% of the
unit’s purchase price per month, once the project slips more than a quarter,
you may have been better off buying than renting.

Troubleshooting Tools 157

Leases are the most attractive way to get equipment you can’t afford
to buy outright. A lease with buyout clause is nothing more than a financed
purchase. It may have certain tax benefits as well, though this part of the
law changes constantly.

Even for a single scope you can get leases amortized over practically
any amount of time. Three years is a common period. The monthly pay-
ment will be something like 3% of the unit’s purchase price per month. A
$5000 logic analyzer will set you back around $200 per month. For less
than your car payment you can get a nice scope and logic analyzer. Unlike
the car, neither will wear out before the payments are up.

Sometimes it makes sense just to purchase gear outright, especially
since the IRS permits you to expense $17,500 of capital equipment per
year. When cash is tight, consider getting used, refurbished test equip-
ment. A number of outfits sell reconditioned gear for around 50 cents on
the dollar. Good test equipment lasts almost forever.

One acquaintance has just a shell of a company, a so-called “virtual
corporation” that changes dynamically as business ebbs and flows. He
shares an office suite with other like-structured organizations. All are in
the digital business and use a common lab area with shared test equipment.
For small outfits, this is a neat way to make the dollar go a lot further.

Tool Woes

After reading the glossy brochures and hearing the promises of suited
tool salespeople, you’re no doubt convinced that their latest widget will
solve all of your debugging problems in a flash.

Not.
Be wary of putting too much faith in the power of tools. Too many

engineers, burned by previous projects, do a good job of surveying the tool
market and selecting a reasonable development environment, but then put
all their hopes of debugging salvation in the toolchain.

The fact is, vendors tend to overpromise and underdeliver. Perhaps
not maliciously, but their advertisements do play into our desperate
searches for solutions. The embedded tool business is a very fragmented
market. With hundreds of extant microprocessors, the truth is that typically
only dozens to (maybe) a couple of thousand users exist for any single tool.
With such a small user base, bugs and problems are de rigueur.

I write this as an ex-tool vendor who strongly believes that an im-
portant component of productivity comes from using a first-class develop-
ment environment. But, as an ex-vendor, all too often I saw engineers who
expected that spending five or ten thousand on the gadget would miracu-

158 THE ART OF DESIGNING EMBEDDED SYSTEMS

lously solve most problems. It just ain’t so. Buy the right tools, but under-
stand their inherent limitations.

Overcome limitations with clever designs, using a deep understand-
ing of where the problems come from. Here’s a collection of ideas drawn
from bitter experience:

Reliable Connections

In the good old days microprocessors came in only a few packages.
DIP, PGA, or PLCC, these parts were designed for through-hole PC boards
with the expectation that, at least for prototyping, designers would socket
the processor. Isolating or removing the part for software development re-
quired nothing more than the industry-standard chip puller (a bent paper
clip or small screwdriver).

Now tiny PQFP and TQFP packages essentially cannot be removed
for the convenience of the software group. Once you reflow a 100-pin de-
vice onto the board, it’s essentially there forever.

Part of the drive toward TQFP is the increasing die complexity. That
tiny device is far more than a microprocessor; it’s a pretty big chunk of
your system. The CPU core is surrounded with a sea of peripherals-and
sometimes even memory. Replace the device with a development system,
and the tool will have to replace both the core and all of those high-inte-
gration devices.

Take heart! Most semiconductor vendors are aware of the problem
and take great pains to provide work-arounds.

There’s no cheap cure for the purely mechanical problem of con-
necting a tool to those whisker-thin pins, but at least the industry’s con-
nector folks sell clips that snap right over the soldered-on processor. The
clip translates those SMT leads to a PC board with a PGA or header array
that your tools can plug into. Before starting any design, get a copy of Em-
ulation Technology’s catalog. Though their products are horrifically ex-
pensive, they offer a very wide range of adapters and connection strategies.

Another good source for connection ideas is the logic analyzer arena.
Both HP and Tektronix are starting to standardize their analyzer cables on
AMP’s “Mictor” connector, a very small, very high-density, controlled
impedance device. If you surround your CPU with Mictors (being careful
to match the pinouts used by the analyzer vendors), then probing becomes
trivial: just plug the analyzer cables in directly. If you’re frustrated with
logic analysis because of the agony of connecting 50 or 100 little clip leads
(half of which pop off at inconvenient times), take heart, as the Mictor goes
directly into the main analyzer cables, bypassing the clips altogether.

Troubleshooting Tools 159

A Canadian company had a PCMCIA-based product whose CPU’s
whisker-thin TQFP leads defeated every ICE connection attempt. Their
wonderfully clever solution was to design the card with a large extra con-
nector-a 100-pin header-to which all of the CPU signals went. This, of
course, doubled the size of the board. The connector sat at the far side of
the board, outside of the PCMCIA’s nominal form factor (i.e., when the
board was plugged into a laptop computer, the connector protruded into
space outside of the PC). The engineers ensured that the connector’s pinout
exactly matched that of the emulator they selected, so the ICE’S pod
plugged in with no adaptors or other reliability reducers. When it came
time to ship the product they cut the connector off, and the board down to
size, with a bandsaw. Production versions, of course, were proper-sized
cards without the connector.

If your product uses a card cage, no doubt the board-to-board spac-
ing is insanely tight. Too often extender cards don’t work, since the CPU
becomes unstable driving the extra long lines. Just debugging the hardware
is hard enough-try slipping a scope probe in between boards! It’s not un-
usual to see a card with a dozen wires hastily soldered on. snaked out to
where the scope or logic analyzer can connect.

Why make life so hard? Either design a robust processor board that
works properly on an extender, or come up with a mechanical strategy that
lets you put the CPU near the end of the cage, with the cage’s metal covers
removed, so you and the software people can gain the access so essential
to high-productivity debugging.

One DOD system’s card cage is so tightly packed into the rack of
equipment that the developers could only remove the “wrong” (i.e., circuit)
side of the card cage cover. Their solution: solder the processor socket on
the circuit side of the board, and then make a pin swapping jig for the logic
analyzer. Using a ROM emulator in a similarly tight situation? Consider
the same trick, inverting one or more ROM sockets.

Make sure the CPU (when using an ICE or logic analyzer) or ROM
sockets (ROM emulator) are positioned so it’s possible to connect the tool.
Be sure the chip’s orientation matches that needed by the emulator or an-
alyzer.

Nonintrusive Myths
Debugging tool vendors all promote the myth of “nonintrusive

tools.” In fact, we demand just the opposite-what could be more intru-
sive, after all, than hitting a breakpoint?

Other forms of intrusion are less desirable but inevitable as the hard-

160 THE ART OF DESIGNING EMBEDDED SYSTEMS

ware pushes the envelope of physical possibilities. If you don’t recognize
these realities and deal with them early, your system will be virtually
undebuggable.

Don’t push the timing margins. All emulators eat nanoseconds. With
no margin the tool will just not work reliably. I’ve seen quite a few designs
that consume every bit of the read cycle. Some designers convince them-
selves that this is fine-the timing specs are worst-case scenarios met at
max or min temperatures, leaving a bit of wiggle room for the tool. As
speeds increase, though, IC vendors leave ever less slop in their specifica-
tions. It’s dangerous to rely on a hope and a prayer.

Before designing hardware, talk to the tool vendor to learn how much
margin to assign to the debugger. Typically it makes sense to leave around
5 nsec available in read and write cycle timing. Wait states are another
constant source of emulator issues, so give the tool a break and ease off on
the times by four or five nanoseconds there, as well.

Fact: if you don’t leave sufficient margin, the system will be virtually
undebuggable. Now, BDMs and ROM monitors will generally work in
marginless designs, but you’ll give up the ability to bring up dead hard-
ware and track real-time firmware flow.

Be wary of pull-up resistors. CMOS’s infinite input impedance lures
us into using lots of ohms for the pull-ups. Remember, though, that when
you connect any sort of tool to the system, you’ll change the signal load-
ing. Perhaps the tool uses a pull-down to bias unused inputs to a safe value,
or the signal might go to more than one gate, or to a buffer with wildly dif-
ferent characteristics than used on your design. I prefer to keep pull-ups to
10k or less so the system will run the same with and without an emulator
installed.

If you use pull-down resistors (perhaps to bias an unused node such
as an interrupt input to zero, while allowing automatic test equipment to
properly bias the node in production test), remember that the tool may in-
deed have a weak pull-up associated with that signal. Use too high of a re-
sistance and the tool’s internal pull-up may overcome your pull-down. I
never exceed 220 ohms on pull-downs.

Synchronous memory circuits defeat some emulators. These designs
ignore the processor’s read and write outputs, instead deriving these criti-
cal signals from status outputs and the clock phase. Vadem, for example,
makes chip sets based on NEC’s V30 whose synchronous timing is fa-
mously difficult for ICES.

This sort of timing creates a dilemma for ICE vendors. What sorts of
signals should the emulator drive when the unit is stopped at a breakpoint?
A logical choice is to drive nothing: put read, write, and all other control

Troubleshooting Tools 16 1

signals to an idle, nonactive state. This confuses the state machine used in
the synchronous timing circuits, though; generally the state machine will
not recover properly when emulation resumes, and thus generates incorrect
reads and writes.

Most emulators cannot afford to completely idle the bus, anyway, as
it’s important to echo DMA and refresh cycles to the target system at all
times.

Since the processor in the ICE usually runs a little control program
when sitting still at a breakpoint, another option is to echo these readlwrite
cycles to the bus. That keeps the state machine alive, but destroys the in-
tegrity of the user’s system because internal emulator write cycles trash
user memory and YO.

Another possibility is to echo the cycles, but fake out write cycles.
When the emulator’s CPU issues a write, the ICE drives an artificial read
to the target. Unhappily, on many chips read and write cycles have some-
what different timing, which may confuse the user’s state machine.

None of these solutions will work on all CPUs and in all user sys-
tems. If you really feel compelled to use a synchronous memory design.
talk to the emulator vendor and see how they handle cycle echoing at a
breakpoint.

Consider adding an extra input to your state machine that the emula-
tor can drive with its “stopped” signal and that shuts down memory reads
and writes. Talk timing details with the vendor to ensure that their
“stopped” output comes in time to gate off your logic.

Add Debugging Resources

Debugging always steals too much time from the schedule. This fact
implies that we’ve got to anticipate problems when designing the hard-
ware, and take every action possible to ease troubleshooting.

Always-unless your system is so cost constrained that a buck is a
huge deal-add an extra output port to the system, one dedicated just to de-
bugging. Why?

As we saw in Chapter 4, a very effective and inexpensive way to
measure system performance is to instrument your code. Add a
line that sets a b i t -on this YO port-high when in an ISR to mea-
sure ISR time. Diddle another YO bit in the idle loop to measure
overall system loading.
Toggle one of the bits when the system resets. As I said in Chap-
ter 6, a watchdog time-out is a serious event. If your system auto-

162 THE ART OF DESIGNING EMBEDDED SYSTEMS

matically recovers from the watchdog reset, you surely need some
way, during debug, to see that the time-out occurred.
When your tools are not working well, or perhaps you’ve simply
lost faith in them, you can still track overall program flow by as-
signing an 8-bit number to each important function. Output this
number to the debug port when the function starts. Collect the data
in the logic analyzer and you’ll instantly see what executes when,
and for how long.
Connect one or more of the more YO bits to LEDs, and instrument
the code to signal system state. Most tools do a poor job of read-
ing out state; generally you’ll have to stop the code or something
similar. The LED bank instantly shows things like, “It’s doing
WHAT???!!!!!”

If your main debug strategy revolves around a full-blown emulator,
if at all possible go ahead and add the BDM or JTAG connector (if the
CPU supports it). The cost is vanishingly small, and the option of doing
BDM debugging when the ICE falls flat or fails may save a lot of money
and time.

Conversely, if a BDM will be the main tool, add a connector (like the
Mictor) so that you can connect a logic analyzer for tracking real-time
events. It’s so terribly difficult to use analyzers via their standard multitude
of clips that we leave it as a last resort; if it’s easy to connect, we’ll use the
tool at the appropriate times.

ROM Burnout

Remember that every tool affects system operation in some manner.
Never wait until the night before shipping to test the system from ROM.
Make burning a ROM or loading the Flash a regular part of the test proce-
dure.

Debugging tools invariably have a different size of emulation
RAM than your target system’s ROM space (this is true using an
ICE or a ROM emulator, or even if you relink your code to run
from your system RAM area). If the code grows to exceed target
ROM space, it may run just fine from the (probably bigger) emu-
lation RAM area.
The compiler’s runtime package or constants might be improperly
initialized. Many C compilers require a startup procedure that
copies some critical variables to RAM. When you’re debugging,
you’ll generally replace system ROM with RAM merely to support

Troubleshooting Tools 163

quick code downloads. If the initialize is not correct, since you’re
debugging from RAM things may work just fine . . . until that first
ROM bum.
Often hardware problems mean that the ROM sockets on your
target just don’t function properly. This may be due to wiring or
design problems . . . or even to buggy code. An improperly con-
figured chip select signal, for example, may not create any prob-
lems working from emulation RAM, but will crash the code after
the ROM burn.

Be wary of the converse situation: the code runs fine from ROM but
not from emulation RAM. All too often a wandering pointer causes erratic
writes over ROM space, surely a very bad thing. This happens so often that
we should take a defensive posture and regularly look for such problems.
Depending on your tools, this is pretty trivial:

Many emulators support modes that will automatically watch for
writes to code space. If the tool doesn’t explicitly include such a
resource, you can still usually configure one of the complex break-
points to break on any “write to address between X and Y,” where
X and Y represent the range of addresses of code.
Occasionally checksum your code. That is, download the code and
compute a checksum of the image using the tool’s checksum com-
mand. Run the application for a while and recompute the check-
sum. Any change generally indicates a serious problem.
Wandering pointers are such a common problem, and are so diffi-
cult to find, that there’s a lot to be said for leaving a logic analyzer
connected that’s configured to watch for errant memory accesses.
The wonderful triggering capability of these tools means it’s easy
to set up multiple conditions that watch for any stupid memory ac-
cess. What do I mean by “stupid’? A write to code space. A fetch
from data areas. Any access to unused memory. Trigger on these
three conditions and you’ll catch a huge percentage of wandering
pointers.

CHAPTER 8
Troubleshooting

There comes a time in any project when your new design, both hard-
ware and software, is finally assembled, awaiting your special expertise to
”make it work.” Sometimes it seems like the design end of this business is
the easy part; troubleshooting and debugging can make even the toughest
engineer a Maalox addict.

You can’t fix any embedded system without the right world view: a
zeitgeist of suspicion tempered by trust in the laws of physics, curiosity
dulled only by the determination to stay focused on a single problem, and
a zealot’s regard for the scientific method.

Perhaps these are successful characteristics of all who pursue the
truth. In a world where we are surrounded by complexity, where we deal
daily with equipment and systems only half-understood, it seems wise
to follow understanding by an iterative loop of focus, hypothesis, and
experiment.

Too many engineers fall in love with their creations only to be con-
tinually blindsided by the design’s faults. They are quick to overtly or sub-
consciously assume that the problem is due to the software (and vice
versa), the lousy chips, or the power company, when simple experience
teaches us that any new design is rife with bugs.

Assume it’s broken. Never figure anything is working right until
proven by repeated experiment; even then, continue to view the “fact” that
it seems to work with suspicion. Bugs are not bad; they’re merely a test of
your troubleshooting ability.

Armed with a healthy skeptical attitude, the basic philosophy of de-
bugging any system is to follow these steps:

165

166 THE ART OF DESIGNING EMBEDDED SYSTEMS

For (i=O; i< # findable bugs; i++)

while (bug(i))
{

I
Observe the behavior to find the apparent bug;
Observe collateral behavior to gain as much
information as possible about the bug;
Round up the usual suspects;
Generate a hypothesis;
Generate an experiment to test the hypothesis;
Fix the bug;

I ;
1 ;

Now you’re ready to start troubleshooting, right? Wrong! Stop a
minute and make sure you have good access to the system. No matter how
minor the problem seems to be, troubleshooting is like a bog we all get
trapped in for far too long. Take a minute to ease your access to the system.

Do you have extender cards if they’re needed to scope any point on
the board(s)? How about special long cables to reach the boards once they
are extended?

If there’s no convenient point to reliably clip on the scope’s ground
lead, solder a resistor lead onto the board so you’re not fumbling with
leads that keep popping off.

Some systems have signals that regulate major operating modes. Sol-
der a resistor lead on these points as well, as you’ll surely be scoping them
at some point. This small investment in time up front will pay off in spades
later.

Use the advice in the last chapter to ensure that your software is as
probeable as the hardware.

Let’s cover each step of the troubleshooting sequence in detail.
Step 1: Observe the behavior tofind the apparent bug.
In other words, determine the bug’s symptoms. Remember always

that many problems are subtle and exhibit themselves via a confusing set
of symptoms. The fact that the first digit of the LCD fails to display may
not be a useful symptom-but the fact that none of the digits work may
mean a lot.

Step 2: Observe collateral behavior to gain as much information as
possible about the bug.

Does the LCD’s problem correlate to a relay clicking in? Try to avoid
studying a bug in isolation, but at the same time be wary of trying to fix too

Troubleshooting 167

many bugs at the same time. When ROM accesses are unreliable and the
front panel display is not bright enough, address one of these problems at
a time. No one is smart enough to deal with multiple bugs all at once-un-
less they are all manifestations of something more fundamental.

Step 3: Round up the usual suspects.
Lots of computer problems stem from the same few sources. Clocks

must be stable and must meet very specific timing and electrical specs . . .
or all bets are off. Reset too often has unusual timing parameters. When
things are just “weird,” take a minute to scope all critical inputs to the
microprocessor, such as clock, HOLD, READY, and RESET.

Never, never, never forget to check Vcc. Time and time again I’ve
seen systems that don’t run right because the 5-volt supply is really only
putting out 4.5, or 5.6. or 5 volts with lots of ripple. The systems come in
after their designers spent weeks sweating over some obscure problem that
in fact never existed, but was simply the ghostly incarnation of the more
profound power-supply issue.

Step 4: Generate a hypothesis.
“Shotgunners” are those poor fools who address problems by sim-

ply changing things-ICs, designs, PAL equations-without having a
rationale for the changes. Shotgunning is for amateurs. It has no place in
a professional engineering lab. And, as noted in Chapter 2, the software
equivalent of shotgunning is making changes without a deep under-
standing of the bug. Use an engineering notebook to break the vicious
“change/test” cycle.

Before changing things, formulate a hypothesis about the cause of the
bug. You probably don’t have the information to do this without gathering
more data. Use a scope, emulator, or logic analyzer to see exactly what’s
going on; compare that to what you think should happen. Generate a the-
ory about the cause of the bug from the difference in these.

Sometimes you’ll have no clue what the problem might be. Checking
the logical places might not generate much information. Or, a grand fail-
ure such as an inability to boot is so systemic that it’s hard to tell where to
start looking. Sometimes, when the pangs of desperation set in. it’s worth-
while to scope around the board practically at random. You might find a
floating line, an unconnected ground pin, or something unexpected. Scope
around, but always be on the prowl for a working hypothesis.

Step 5 ; Generate an experiment to test the hypothesis.
Construct an experiment to prove or disprove your hypothesis. Most

of the time this gets resolved in the process of gathering data to come up
with the theory in the first place. For example. if the emulator reads all
ones from a programmed ROM. a reasonable hypothesis is that CS or OE

168 THE ART OF DESIGNING EMBEDDED SYSTEMS

is not toggling. Scoping the pins will prove this one way or the other,
though now you’ll need another hypothesis and experiment to figure out
why the selects are not where you expect to see them.

Sometimes, though, the hypothesis-experiment model should be
much less casually applied. When Intel started shipping the XL version of
the 186 (supposedly compatible with the older series), I had a system that
just would not start with this version of the CPU. Scoping around showed
the processor to be stuck in a weird tristate, though all of its inputs seemed
reasonable. One hypothesis was that the 186XL was not coming out of
reset properly, an awfully hard thing to capture since reset is a basically
non-scopable one-time event. We finally built a system to reset the proces-
sor repeatedly, to give us something to scope. The experiment proved the
hypothesis, and a fix was easy to design.

Note that an alternative would have been to glue in a new reset circuit
from the start to see if the problem went away. Problems that mysteriously
go away tend to mysteriously come back; unless you can prove that the
change really fixed the problem, there may still be a time bomb lurking.

Occasionally the bug will be too complicated to yield to such casual
troubleshooting. If the timing of a PAL will have to be adjusted, before
you wildly make changes visualize the new timing in your mind or on
a sheet of graph paper. Will it work? It’s much faster to think out the
change than to actually implement i t . . . and perhaps troubleshoot it all
over again.

Rapid troubleshooting is as important as accurate troubleshooting.
Decide what your experiment will be, and then stop and think it through
once again. What will this test really prove? I like experiments with binary
results-the signal is there or it is not, or it meets specified timing or it
does not-since either result gives me a direction to proceed. Binary re-
sults have another benefit: sometimes they let you skip the experiment al-
together! Always think through the actions you’ll take ufrer the experiment
is complete, since sometimes you’ll find yourself taking the same path re-
gardless of the result, making the experiment superfluous.

If the experiment is a nuisance to set up, is there a simpler approach?
Hooking up 50 logic analyzer probes or digging through a million trace
cycles is rather painful if you can get the same information in some easier
way. I’d hate to be in a lab without a logic analyzer, since they are so use-
ful for so many things . . . but I try to keep it as the tool of last resort, since
most often it’s possible to construct an easier experiment that is complete
in a fraction of the time it takes to connect the LA.

Don’t be so enamored of your new grand hypothesis that you miss
data that might disprove it! The purpose of a hypothesis is simply to

Troubleshooting 169

crystallize your thinking-if it is right, you’ll know what step to take next.
If it’s wrong, collect more data to formulate yet another theory.

Step 6: Fix the bug.
There’s more than one way to fix a problem. Hanging a capacitor on

a PAL output to skew it a few nanoseconds is one way: another is to adjust
the design to avoid the race condition entirely.

Sometimes a quick and dirty fix might be worthwhile to avoid getting
hung up on one little point if you are after bigger game. Always. always re-
visit the kludge and reengineer it properly. Electronics has an unfortunate
tendency to work in the engineering lab and not go wrong until the 5000th
unit is built. If a fix feels bad, or if you have to furtively look over your
shoulder and glue it in when no one is looking, then it is bad.

Finally: never, ever, fix the bug and assume it’s OK because the
symptom has disappeared. Apply a little common sense and scope the sig-
nals to make sure you haven’t serendipitously fixed the problem by creat-
ing a lurking new one.

Speed Up by Slowing Down

There he sits. . . the organization’s engineering guru, respected but
somewhat feared because of his arcane knowledge. His desk is a foot deep
in paper, the lab bench a mess of old food containers and smoldering sol-
der drippings. Tools and resistor clippings threaten to short out any test
system carelessly placed on the bench. Wires crisscross every square inch
of tabletop-scope probes, clip leads, RS-232 cables-all going some-
where . . . though perhaps no one really knows their destination.

Ask the guru for a piece of paper and be prepared to wait. He burrows
frantically through the mess. Usually the paper never comes to light. It’s
lost. Don’t worry, though-he’ll recreate it for you as soon as he has a
chance. Probably the PAL equations he’ll come up with will be about
right, but if they’re not-no problem! He’s already debugged that circuit
twice, so he’s quite the expert.

Too many managers tolerate this level of chaos. Me, I’m a reformed
lab pig. My 12-step recovery program revolved around living in tiny
places-a VW microbus, many boats-which force you to be organized
simply to deal with the incredible lack of living space. There’s no room to
be a slob on a small sailboat! Fortunately, my personal quest for organiza-
tion rolled over into the lab when I discovered just how much time I saved
by putting things where they belong.

Mess and clutter quite simply decrease productivity. Those few min-
utes a day spent putting things away save hours of searching. Sweep the

170 THE ART OF DESIGNING EMBEDDED SYSTEMS

solder drippings and wire segments off the bench once in a while and your
incidence of catastrophic failures will plunge dramatically.

An organized lab promotes correctness. How many times have you
seen engineering changes that never quite made it into production because
someone forgot to write them down? Or because the notation was made on
the comer of a napkin that was accidentally used to wipe up a spill and then
thrown away?

When starting to debug a new project, remove everything from the
bench and sweep it clean. A quick wipe with a damp cloth removes those
accumulated coffee stains. Then, put everything not absolutely needed
back on the shelves. This is the unique chance we get once in a while to re-
move the clutter, so be relentless.

Any embedded project will require at least a computer and a scope.
Decide what test equipment you’ll use continuously, and which will be
used only on an as-needed basis. All too often even a simple embedded sys-
tem has some sort of communications link requiring an extra computer as a
source of data. I like to use a laptop for this as it requires little bench space.

Be sure you can easily reach the computer’s frequently used connec-
tors. If two different devices must share an RS-232 port, buy a switch box
and reduce the wear and tear on connectors . . . and your back.

Don’t work with unacceptable power distributions. Too many of us
spend half our lives swapping power plugs. Buy outlet strips or wire up a
decent source of AC mains to your test bench.

Miles and Beryl Smeaton sailed their aging boat around Cape Horn
many years ago with expert boatbuilder John Guzzwell as crew. When the
boat flipped in 30-foot seas and the hull cracked open, Guzzwell was
shocked to discover that all of the Smeaton’s tools were rusty and dull. As
water poured in he carefully sharpened and cleaned the tools before un-
dertaking the repairs that eventually saved their lives.

The moral is to buy good tools and take care of them. You’ll live with
those dikes and needle-nose pliers for weeks on end. Buy cheap stuff and
your blood pressure will skyrocket every time you can’t clip a lead close
to the board. Keep them organized-get a little toolbox to keep them from
falling onto the floor and getting lost.

How is your soldering equipment? A vacuum desolderer is great for
making large-scale changes, but during prototyping I find it’s often easier
just to hack away at the board, mounting chips on top of chips and using
plenty of blue wire.

During the first few days (or weeks) of bringing up a new embedded
system I often find myself making lots of little modifications to the system.
A hot iron always at hand is critical. After things start to more or less

Troubleshooting 171

work, I start testing VO interfaces by writing low-level drivers and exer-
cising the code, making software and hardware changes in parallel as
needed. The code changes much faster than the wiring, so it seems waste-
ful to keep an iron hot all the time. Several companies sell neat $30 cord-
less soldering irons that heat in seconds, the ideal thing for those infrequent
modifications.

Being an immensely stupid person, I require vast quantities of clip
leads. Most of my ideas are wrong, so I save a ton of time by using a clip
lead to try a design change and see what happens.

Clip leads have a very short lifetime in a development lab. Accidentally
connect Vcc to ground and the plastic tip melts horribly. I hate it when that
happens. We used to send a runner to Radio Shack occasionally to replenish
our supply but found that “the Shack” couldn’t keep up with our needs.

It’s better to buy 100 clips at a time and have a high-school kid sol-
der up 50 leads. You’ll have an infinite supply for a while, and may help a
fledgling engineer find his true vocation. (Bring a part-timer in from your
local high school to help maintain the lab. The cost is minuscule, the lab
will be better off for it, and you’ll show one more kid that there are alter-
natives to slinging burgers.)

Be sure your lab area is set up to ensure that you can also do serious
software development! Clearly, your computer must include the properly
installed compilers and assemblers needed for the project. Just as impor-
tant as quality hand tools are the debuggers, make utilities, and other soft-
ware resources needed to quickly and painlessly write, compile, and test
the code. Set up the environment with a Make utility so you can com-
pile/assemble without twiddling compiler switches.

Hardware design requires as much software support as does the
firmware. PALS, PLDs, and FPGAs let you create much of the hardware
design late in the game and so are a wonderful thing. Be sure your bench
is set up with all of the tools you need to edit and compile these.

Documentation

All too often the frenetic pace of debugging hardware tempts us to be
less than careful about writing down changes. Resist this temptation. Your
company is paying you to debug a prototype for one reason only: so it can
be turned into a working production system. If you carelessly forget to
document modifications, the company will need at least one additional
PCB revision, which you’ll have to debug all over again. This is a terrible
waste of money. A wise manager of such a documentation-free engineer
will either retrain or fire the individual.

172 THE ART OF DESIGNING EMBEDDED SYSTEMS

Avoid taking notes on scraps of paper. The best solution is a meticu-
lously maintained engineering notebook. Write everything down, clearly
and concisely. The good nuns of my grammar school all but committed
suicide over their failed attempts to teach me penmanship, so such clarity
is a particular headache for me. I’ve learned to slow down and print, since
most of the time I can’t read my own script.

Some engineers document directly into a computer file. If your envi-
ronment is so perfect that you can always seamlessly switch to the editor,
perhaps this works-if you keep backups. In most cases, though, being
stuck in a program you can’t exit forces you to make notes on paper.

Use one set of schematics to record changes. This is your master de-
velopment drawing set. Staple them together and clearly label them as
your masters.

When creating the schematics, go ahead and add comments, just as
we do in the code. For example, document how things work.

For all off-page connections, document what page the connection
goes to.

Whenever you add a part whose Vcc and GND connections are not
obvious, provide a comment that indicates how power and ground connect.
Power connections are as important as the logic, so someone who’s trou-
bleshooting will surely need to check these at some time. Without on-
schematic notes they’ll be forced to go to the databooks.

Similarly, for those nasty parts with pins protruding on all four sides,
add a schematic note that indicates where pin 1 is located, and how the part
is numbered (CW or CCW). Also, add tick-marks on the silk screen for
every fifth pin on large parts. It makes it so much easier to find pin 143. . . .

Assumptions

A misspent youth of blaring rock ’n’ roll left my hearing somewhat
impaired, but helped formulate, of all things, my philosophy of trou-
bleshooting digital systems. The title of the Firesign Theatre’s “Every-
thing You Know Is Wrong’’ album should be our modern anthem for
making progress in the lab.

I hate getting called into a troubleshooting session and finding that
the engineer “knows” that x, y, and z are not part of the problem at hand.
Everything you know is wrong! Is that 5-volt supply really 5 volts at the
PCB? What makes you think ground goes to the chips-when a single part
has 5 or 10 ground connections, make sure all of them are connected.
Could the system be dead because there’s no clock signal? Are you sure
the design isn’t really working-could your experiment be flawed?

Troubleshooting 173

Another example: suppose your system runs fine at 10 MHz but
never at 20. Obviously you’d put a 20-MHz clock source in and pursue the
problem. Every once in a while, go back to 10 MHz just to be sure the
symptom has not changed. You could spend a lot of time developing a
hypothesis about 20 versus 10 operation, when the 10-MHz test results
might actually be a fluke.

Assume nothing. Test everything. The PCB may have manufacturing
errors on internal layers. Power and ground may not be on the pins you ex-
pect-particularly on newer high-density SMT parts. Signals labeled with-
out an inversion bar may actually be active low. You might have ROMs
mixed up. Perhaps someone loaded the wrong parts on the board.

Never blindly trust your test equipment-know how each instrument
works and what its limitations are. If two signals seem impossibly skewed
by 15 nsec on the logic analyzer, make sure this is not an artifact of setting
it to sample too slowly. When your 100-MHz scope shows a perfectly
clean logic level, remember that undetected but virulent strains of 1-nsec
glitches can still be running merrily around your circuit.

When you do see a glitch, one that seems impossible given the
circuit design, remember that manufacturing shorts can do strange things
to signals. Is the part hot? A simple finger test may be a good short in-
dicator.

On its final spectacular descent to Mars in 1997, the Mars
Pathfinder spacecraft experienced a series of watchdog time-outs.
The robustly designed code recovered quickly, averting disaster.

Engineers later diagnosed and fixed the code, uploading
patches across 40 million miles of hostile vacuum. Interestingly
enough, they found that exactly the same WDT time-outs had been
noted during prelaunch testing, here on Earth. The testers had attrib-
uted the rare resets to “glitches” and ignored the problem.

Now, some “glitches” have physical manifestations. In one
system the timer chip went into an insane mode, where it would for
no apparent reason stop outputting pulses. The problem was a reset,
which I knew because only a reset-or magic (never to be dis-
counted)-could cause the problem.

The culprit was a glitch on the reset line, created by the fast
logic of the emulator’s pod driving the unmatched impedance of the
customer’s two-layer PC board. A simple resistor termination cured
the problem.

174 THE ART OF DESIGNING EMBEDDED SYSTEMS

On another system the processor’s internal VO lost its con-
figuration every few minutes; all of the internal registers changed to
default states, yet the program continued to run fine, though all sys-
tem I/O was idled.

The culprit was again a reset glitch. In this case the pulse was
created by PCB crosstalk. Only one nanosecond wide, it was too
short to catch reliably on a 500-MHz logic analyzer. We sampled
dozens of the erratic resets, eventually creating a statistical view of
the glitch.

Though every processor has a minimum reset time at least
several clocks long, even very short glitches can drive CPUs and
peripherals into bizarre modes. The trick is identifying the source
of the problem. . . and never ignoring erratic results or hard-to-
diagnose symptoms.

Bob Pease, of analog design fame, recommends, “When things
are acting funny, measure the amount of funny.”

Diagnose all glitches. If the system behaves oddly, something
is wrong. Find the problem, or your customer will.

Learn to Estimate
At the peril of sounding like one of the ancients, I do miss the culture

of the slide rule. Though accurate answers might have been elusive, we did
learn to estimate the answer for every problem before attempting a solu-
tion. Alas, it’s a skill that is fading away.

Calculator abuse-computing without thinking-is now too in-
grained in our society to waste effort fighting. Bummer. Other instruments,
though, also tempt us to mentally coast, to do things without thinking.
Take the scope: I can’t count the times an engineer mentioned that he sees
the signal . . . but has no idea, when I ask, about the width of the pulse. Is
it 1 nsec? 1 p e c ? Perhaps a second wide?

Timing is critical in computers, yet too many of us use the scope as a
sort of logic probe. “Hey, the signal is there!” Which signal? If you expect
a lO-psec pulse every msec, then any deviation from that norm is simply
wrong. Know what to expect, and then ensure that the waveforms are ap-
proximately correct. A misused scope will generate a morass of misinfor-
mation.

Estimate the performance of firmware before writing it. Sure, it’s
tough to know how many microseconds an as-yet-unwritten function will

Troubleshooting 175

chew up, but you can use your general knowledge of systems to make
some ballpark estimates about where problems will occur.

For example, a fast serial link might overrun a busy CPU. Estimate!
A 38,400-baud link carries about 4000 charactershec, or one character per
250 psec. That is not a lot of time for any CPU, particularly the typical
embedded 8-bitter. Your processor will be pretty busy servicing the data.
If it’s polled, then only heroic efforts will keep you within the 250-psec
timing margin.

Suppose you chose to implement the serial receive routine as an
ISR-what is the overhead? An assembly routine to queue incoming data
will need a dozen or two instructions, each of which will no doubt burn up
two or three machine cycles. Surely you know roughly how long a ma-
chine cycle takes (including wait states) for your system. . . don’t you?
Given this information, you can get a reasonable timing estimate before
writing a line of code.

Recently an engineer told me, “That initialization loop is clearly the
problem.” Oh yeah? He was looking for something burning up almost a
second of time, when clearly, regardless of processor, l000h memory zero-
ing iterations will run in a few milliseconds. Use your tools, one of which
is your brain, to make sure you are addressing the real problems.

Recently I saw a technician troubleshooting a board that exhibited
multiple problems. One chip was hot enough to fry eggs, yet he chose to
work on another, “unrelated” symptom. Dumb move-surely the part was
ready to self-destruct. which surely would create yet more grief for the
poor tech.

Always check a bare PC board fresh from the fab for a short between
Vcc and ground. Because there are so many access points for these two
“nodes.” they’re the easiest to short. If there is a short, connect the bare
board to a honking power supply and run some current through the short.
You’ll either blow it or you’ll be able to find it using the “burn your fin-
ger” heat test. Either way, you’ll locate the short.

Then, before you load all of the parts onto the PCB, think deeply
about what subset of components are really needed to start testing. Load
only those required. When you’ve got a dozen parts hanging on a bus, it’s
hell to find the one that asserts the wrong signal at the wrong time. It’s far
more efficient to load parts only as required, populating the board slowly
in step with your testing, to make it easy to find the culprit in multiple-
enable situations.

I like to power boards from a current-limited lab supply that has an
ammeter. I look at the current from time to time to make sure I’m not doing

176 THE ART OF DESIGNING EMBEDDED SYSTEMS

anything expensively stupid. (And I load the power supply components
first, testing that part of the circuit before adding the real logic.)

It’s a good idea to be on the lookout for excessive heat, especially
now that so many components are surface-mounted and tough to change
when you blow them up.

All semiconductor devices generate some heat; big CPUs can pro-
duce quite a bit. A really hot device, one that you can’t keep your finger on,
is usually screaming for help. Excessive heat may indicate an SCR latchup
condition due to ground bounce or a floating input.

Less dramatic overheating, much harder to detect without a lot of
practice, often indicates a design flaw. Your finger can give important
clues about the design. If two devices try to drive the bus at the same time,
they’ll overheat.

Be careful how you apply your personal temperature sensor. I’ve
found that my calloused forefinger is insulated enough to protect me
from bad burns when a part is unexpectedly frying. Thus, I gingerly
touch each part; if it seems reasonably cool, I’ll then use the much-more-
sensitive back of my hand to try to determine if the chip is running hot-
ter than it should. It’s surprising how much information you can get with
a little experience.

When starting out debugging a very fast system, crank the clock rate
down to absurdly low levels. Fix the easy stuff-logic errors and the like-
before tackling high-speed timing. Why deal with a vast ocean of troubles
simultaneously?

When you do find the problem, and then make a change, sometimes
the modification won’t help. Before doing anything, double-check the
change. Did you solder the wire to the right pin? The right IC? We tend
to program ourselves to look for hard problems instead of the all-too-
common simple mistakes.

Plan ahead. Think before doing. Don’t try something without know-
ing what the possible outcomes are . . . and without having some idea what
you’ll do for any of those outcomes. You may find that the next step will
be the same regardless of the results of the experiment. In this case, save
time and do something else.

The best troubleshooters are closet chess grand masters. They think
many steps ahead.

The most effective troubleshooting tool is a keen eye. With a work-
ing design, most problems stem from poor manufacturing. How many of
us have spent hours troubleshooting a board, only to find a missing chip?
Perhaps the wrong part is installed, or the correct one upside-down.

Troubleshooting 177

In smaller companies engineering is often production’s backup for
troubleshooting. Don’t accept boards unless a technician has performed a
careful visual inspection first.

Then, inspect it yourself. It’s far faster to find most manufacturing
defects by eye than by component-level diagnosis. Look for those missing
and backwards chips. Check soldering and solder splashes.

Inspect soldering on through-hole boards using a not-terribly sharp
pointer, such as an awl. Move it along every pin, using it as a guide for
your eye (which will otherwise quickly tire looking at a sea of pins). Scan
the board one chip at a time, working in a logical progression from one
side of the board to the other. Look for unsoldered and poorly soldered
pins, as well as solder splashes. If it looks bad, it is.

PC board defects are the most frustrating of all problems. Despite
modern quality-control processes, they are still far too common. Keep the
PCB artwork around as a reference, so you can see where the tracks run
when it’s time to fix a short or a design problem.

Often a new design suffers from a problem you just know you can
cure by grounding a signal. Be wary of using a clip lead as a grounder:
high-speed signals will see the lead’s inductance as a high impedance. The
ground end will be at ground, for sure. The signal end may not look much
different than without the clip lead attached. Edges are so fast now, even
in slow systems, that wires no longer act like wires. Solder a short-very
short-run to ground. perhaps using a discarded resistor lead. I have found
that grounding via a clip lead now only works on DC signals. Realize that
a wire is not a wire, but is a complex transmission line whose characteris-
tics will confound your common sense.

Use all of your tools. One Tektronix scope has a neat digital
counter. I’ve used it for tough hardwarehoftware troubleshooting prob-
lems. Unsure if an interrupt comes as often as it should? The counter will
tell you without a doubt how many come along. Wondering if all inter-
rupts get serviced? Put one counter on the interrupt line, and another on
the acknowledge, and see that the values are identical.

Computer systems will crash and bum from a single event. Though
digital scopes are wonderful at capturing single-shot signals, it’s usually
much easier to work with a problem that repeats itself, often, so you can
run tests at will. A logic analyzer excels at finding these one-time prob-
lems, but most won’t help much with electrical issues (say, marginal sig-
nal levels).

Always be on the lookout for ways to cause these events to repeat.
For example, the easiest way to troubleshoot reset problems is to use a

178 THE ART OF DESIGNING EMBEDDED SYSTEMS

pulse generator to reset a dead CPU repeatedly, so you can scope the reset
sequence.

Years ago we used a shortwave radio to listen to the operation of our
system’s code. With a little experience we knew what sort of noise to
expect in each of the instrument’s important operating modes. With the
volume turned to a quiet murmur, any change in its buzz instantly signaled
trouble. Troubleshooting is a multisensory experience. Wait! What’s that?
It smells like a resistor burning . . . a wire-wound, by its odor. . . . The
game’s afoot!

Scope Debugging

A lot of developers on a tight budget debug with a scope almost ex-
clusively. Personally, I think this is as bad as never using one. You won’t
get source-level debugging, which pretty much rules it out for applications
written in high-level languages.

A scope complements your tools. By itself it is inadequate; in con-
junction with the rest of the toolchain it is invaluable.

Just knowing how to press the buttons is not enough. That’s a little
like considering yourself educated because you can recite poetry in a lan-
guage you don’t understand. It’s important to know how and when to use
the scope, and what tricks you can play to pry the maximum amount of in-
formation from buggy code.

Is your program running at all? Some embedded systems don’t re-
ally do anything. They just sit quietly, monitoring some value, and pro-
duce an output only if some unlikely or infrequent event occurs. Without
blinking LEDs, are you really sure the unit is alive? Sure, you can use an
emulator or logic analyzer and collect trace data, but the scope provides
an easier alternative. Checking for “aliveness” is the simplest scope oper-
ation, requiring the use of only a single channel and only seconds of setup
time.

Though you can scope the microprocessor’s data, address, and con-
trol busses, it’s rather hard to decide if the CPU is running wild, or if it is
doing what you’d expect. Data and address lines are notoriously ugly, even
in well-behaved systems.

The best solution is to probe the chip selects to your critical YO de-
vices. If the code is polling these, there’s a good chance it is running. If you
wrote the code, you probably have a pretty good idea how often the code
should go to the I/O, which gives a baseline to compare against.

The first program I write on new hardware always looks something
like:

Troubleshooting 1 79

loop : ou t (s o m e s o r t) , (some-data)
j mp loop

Based on the clock rate it’s easy to figure the time between OUTS. I’ll
scope the VO line (whatever it is called: IORQ, W O , etc.), make sure the
chip selects are there, and that they are spaced about right. If the system
can run this loop, 90% of the time the kernel of the hardware (CPU, ROM,
RAM, etc.) is functioning properly.

RS-232 is one of the biggest headaches around. It seems no serial
port or routine ever works quite right at first. If you are coding a comm
function that just doesn’t seem to be working, use a scope to see if at least
data is moving around.

Pins 2 and 3 of the RS-232 connector (for both the 9- and 25-pin ver-
sions) have the serial streams. Put a probe on each of the pins to see if there
is any activity. RS-232 usually uses 12- to 15-volt levels, so be sure to
crank the volts/division control to the 5- or IO-volt position. If you see no
data, then the hardware or the code is broken.

Debugging serial code often involves a lot of interrupt fiddling,
queue management, etc. I typically connect a scope more or less penna-
nently to the serial lines so I’ll know instantly if comm shuts down.

It pays to be a little suspicious of your hardware platform when work-
ing with early prototype systems. Being able to run a few checks yourself
will saves a lot of finger pointing and aggravation. especially at 3 A.M.
when your boss is screaming for results.

To a software person, the true value of a scope lies in its ability to
measure the relationship between two signals. Though it’s easy to apply a
pair of inputs to the channel 1 and 2 vertical amplifiers, you must give
some thought to setting up the scope’s trigger system to get meaningful
results.

Suppose your code should respond to an interrupt by driving a pattern
of bits out some port, but for some reason the pattern never seems to ap-
pear. What’s wrong?

Either the code never even tries to access the port, or it is sending the
wrong data. Multiple causes branch from each of these possibilities, but
before you can make further decisions, you’ll need more information.

The first step is to look at the chip select pin on the YO device. If it
is toggling, then at least something in the software is accessing it.

Determining if the correct data is going out is a bit more difficult. If
the device is one of the common ultracomplex high-integration chips, like
an IEEE-488 controller, you’ll have to look at the data going to it during
the YO cycle.

180 THE ART OF DESIGNING EMBEDDED SYSTEMS

This is the trick to effective scope use. A data bus is always ex-
tremely busy. No one is smart enough to drop a probe on it and figure out
what is going on. You must look at the bus at a particular instant in time-
in this case, during the time the I/O write is in process.

In this case, put the chip select on channel 1. Use the trigger controls
to trigger the scope (i.e., start the sweep) when the select comes along.
Thus, select a trigger source of channel 1, and a trigger slope of (-) if the
chip select goes low when it is active (usually the case). Twiddle the trig-
ger level and time/division knobs to get a nice-looking pulse on the screen.

Now, connect the channel 2 probe to a data bus pin on the YO device.
Start with data bit 0. Look at the two signals on the CRT and note the state
of channel 2 when the chip select is active. The data bus might look horri-
ble, with ramping levels and all kinds of nonsense, but during the chip se-
lect period it will be either high or low. Note the state. Check each bit in
succession, logging the pattern.

The result? You’ll find out exactly what data was transferred to the
device, and can use this information to shed some light on what the code
must be doing.

The whole field of digital logic is based on presenting the correct data
at the correct time. When you look at the confusing mess on the scope dis-
play, remember that it really doesn’t matter what is up there, except during
that short period of interest.

You can use this technique to add a “virtual debugging port” to any
embedded system. Sometimes I’ll design a system to include an extra 8-bit
parallel port that drives LEDs. Then I can instrument my program to send
patterns out to the displays, so I can see just what the code is doing. I’ll put
out a different lamp combination for each interrupt service routine, each
main operating mode, etc. If things change so quickly that I can’t see the
LEDs blink, I watch the port with a scope.

The problem is that no boss likes to add special hardware to a system
to ease debugging. One solution is to write the codes out to a nonexistent
port, capturing the data on the scope instead of LEDs.

Frequently the YO decoder has spare outputs; chip selects that were
not needed. Use this unallocated “port” as the virtual debug address. Feed
it into channel 1, and trigger the scope on this signal. Scope the data bus
with channel 2. The YO write to the virtual port will not affect the system,
but it will give you a convenient way to trigger the scope. The data bus’s
contents during the write is the value your instrumented software is send-
ing out.

Chapter 7 describes scopes in general; another very handy attribute of
better oscilloscopes is delayed sweep. Just as any decent scope has at least

Troubleshooting 1 8 1

two vertical channels, most include two time bases as well. Seems odd,
doesn’t it? Double vertical channels intuitively make sense. since each
probe picks off a different sense point. Time, though, always flows in the
same direction at the same rate, so a single axis is all that makes sense.

Novice scope users understand the operation of time base A: crank
the time/division knob to the right and the signal on the screen expands in
size. Rotate it to the left and the signal shrinks, but much more history (Le..
more microseconds of data) appears.

Time base B is a bit more mysterious. If enabled, it doesn’t start until
sometime after time base A begins. Try it on your scope: select “Both” (or
“A intensified by B”) and select a sweep rate faster than that used by A.
You’ll see a highlighted section of the trace whose width is determined by
B’s sweep rate, and whose starting position is a function of the delay time
knob.

Switching from “Both” to “B” shows just the intensified part of the
sweep: the part controlled by time base B. In effect, you’ve picked out and
blown up a portion of the normal sweep. It’s like a zoom control-and you
can select the zoom factor using the sweep time. and the “pan position,” or
starting location, using the delay time adjustment.

Suppose you want to look at something that occurs a long time after
a trigger event. Using these zoom controls you can get a very high-
resolution view of that event-even when time base A is set to a very slow
rate.

Delayed sweep is always accompanied by a second trigger system.
Most of us have developed callouses twiddling the trigger level control in
an effort to obtain stable scope displays. Any instrument with dual time
bases will come with a second of these knobs to set the trigger point of the
B channel.

(Note: Newer scopes, like the MSO series from HP, remove most of
the uncertainty from setting trigger levels because they show an arrow on
the waveform indicating the exact voltage setting of the trigger level con-
trol. It’s a great time-saver.)

The second trigger is important when working on digital signals that
usually have unstable time relationships. Set the A trigger to start the
sweep (as always), position the intensified part of the sweep to some point
b<fire the section you’d like to zoom on, and then adjust trigger B until the
bright portion starts exactly on the event of interest.

This procedure guarantees that even though the second trigger event
moves around with relationship to trigger A, you’ll see a stable scope dis-
play after selecting the B time base. In effect you’ve qualified trigger B by
trigger A. and you can hope you’re zeroing in on the area needing study.

182 THE ART OF DESIGNING EMBEDDED SYSTEMS

Delayed sweep is essential when working on any embedded sys-
tem-let’s look at a couple of cases.

Suppose your microprocessor crashes immediately after RESET.
Traditional troubleshooting techniques call for hooking up the logic ana-
lyzer and laboriously examining all of the data and address lines. Person-
ally, I find this to be too much trouble. Worse yet, it tends to obscure
“electrical” problems: the analyzer might translate marginal ones and ze-
roes into what look like legal digital levels. Logic analyzers are great for
purely digital problems, but any problem at power-up can easily be related
to signal levels.

Only a scope gives you a view of those crucial signal levels that can
cause so much trouble. Trigger channel 1 on the RESET input and probe
around with channel 2. Look at READ: every processor starts off with a
read cycle to grab the first instruction or startup vector. You may find a
puzzling phenomenon: if the reset is provided by a source asynchronous to
the processor’s clock (as is the case with an RC circuit, a Vcc clamp, and
even with many watchdog timers), READ will bounce around with re-
spect to RESET. You’ll never get a nice high-resolution view of READ
this way.

Triggering off READ will not help. You need to catch thefirsr read
after reset (to look at the first instruction fetch), not any arbitrary incarna-
tion of the signal . . . and no doubt there will be millions of reads between
resets.

The answer is delayed sweep. Put RESET into the scope’s external
trigger input and fiddle the knobs until you get a stable trigger. (I like to put
one scope channel on the external trigger while doing this initial setup to
make sure the trigger is doing what I expect.) Then connect channel 1 to
your processor’s READ output and crank the time base until it appears
over toward the right side of the display. Go to delayed (A intensified by
B) mode, and rotate the B time base trigger adjustment until the bright part
of the trace starts on the leading edge of the bouncing READ signal.

At this point time base A starts the sweep going on the asynchronous
RESET, and time base B triggers the intensified part of the sweep when the
first READ comes along. Flip the Horizontal Mode switch to B (to show
only the intensified part of the sweep-that part after the B trigger), and a
jitter-free READ will be on the left part of the screen. Cool, huh?

With the now stabilized scope display you can use channel 2 to look
at the data lines, ROM chip selects, and other signals during the read cycle.
It becomes a simple matter to see if the first instruction gets fetched
correctly. A lot has to be perfect for this to happen. Very often a power-up

Troubleshooting 183

problem comes from a bad data line, chip select, or buffer problem, any of
which is trivial to find with the scope triggered properly.

This example shows how a few seconds of button twiddling can re-
solve two asynchronous signals on the scope display.

When your system seems crashed, it’s often hard to guess exactly
what the program is doing. Is the main loop running correctly? Is it stuck
waiting for input from a UART?

Instead of reaching for the logic analyzer, 1’11 usually put on a think-
ing cap and speculate about what could be going on. For example, in a sys-
tem that regularly polls a UART, it takes but a few seconds to check the
VO port’s chip select to see if the code is hitting that pin. If so, there’s a
pretty good chance the main loop is at least running.

When a series of UO operations happen sequentially you can use de-
layed sweep to examine each event in detail. For instance, the code to pro-
gram a Zilog SCC (Serial Communications Controller-a do-everything
serial link) sends many, many bytes to the same port. Triggering a scope on
these port writes will display a jumble of mixed-up cycles. Delayed sweep,
though, lets you trigger on the first write to the port, and then display the
particular write you’d like to see.

Trigger channel A on the first write. (Use the Trigger Holdoff control
to restrict triggering to burst events.) Set the sweep rate of channel B to
something faster than channel A. Then use the delay time control to scroll
through as many port writes as necessary to find the event causing grief. In
this example, the delayed sweep lets you see a high-resolution view of
events that may be widely separated in time.

Use a variation of this technique to troubleshoot many hardware/
software integration issues. If your system has an unused I/O select-say,
an output of an VO decoder-seed the code with reads or writes to this
port. Trigger time base A from this select, and then use delayed sweep to
zoom in on an enhanced view of problem areas.

Summary-Bringing Up a New System

So there it is, your new creation, now glittering as a real bit of hard-
ware instead of some abstract scribbles on the CAD screen. Flip on the
power switch. . . and surely it’ll continue staring dumbly back at you,
doing nothing, dead and awaiting your magic healing touch. Whatcha
gonna do?

First, before loading the parts, ohm Vcc to GND on the PCB. Any
short means there’s a problem with the board.

184 THE ART OF DESIGNING EMBEDDED SYSTEMS

Next, load just enough parts to test the system’s kernel. This includes
the CPU (or maybe a socket if you’re using an ICE), ROM, RAM, and de-
coders. Since microprocessor-based systems all use a CPU surrounded by
dozens of chips all hanging on a common bus, the failure of any of which
can cause problems, it makes sense to bring up your embedded system by
testing the simplest sections of the hardware first.

Now stop and inspect the board carefully. Look for shorts and opens,
and everything that looks a bit odd. Are all of the parts oriented properly?
Are the right parts installed in the right locations? It’s hell to find these
sorts of problems by conventional troubleshooting techniques, so a few
minutes spent inspecting may yield tremendous dividends.

Connect power, if at all possible, using a lab supply that has an am-
meter. Check the meter: if it’s way out of line of what you’d expect, then
something serious is wrong. Stop and find the problem.

Now check the voltage and stability of Vcc on the target system.
Never neglect this step, and always repeat it if weird, unexplainable things
seem to be happening. A +5 supply that is even a half-volt low can cause
all sorts of erratic operations that are all but impossible to troubleshoot.
Check this with the scope’s vertical channel on the 1 volt per division set-
ting so you can measure the supply accurately.

Next, check the clock signal to the microprocessor. Clocks are a con-
stant source of problems. As processor speeds increase, chip vendors are
tightening specs and reducing margins. Yet even now most designers ig-
nore the electrical characteristics of this all-important signal. If the CPU
uses a crystal instead of a clock module, check the clock-out pin to make
sure that it is indeed running at the correct frequency. A PCB layout prob-
lem, incorrect cut of crystal, or other problem can make the CPU start at
some harmonic of the desired frequency. Again, look at this with the scope
on the 1 volt per division setting so you can really see the clock’s shape
and voltage levels.

Test the CPU’s RESET input next. This critical signal must be in an
unasserted state except at power-up and reset time. If RESET is low, some-
thing is wrong.

With the basic signals correct, it’s time to look at the address and data
busses. You’ll have two basic choices: use a tool such as an ICE or BDM,
or fudge it with a bit of cleverness. Either way, check every address and
data line at each chip.

Many ICES and BDMs will let you issue a repeating write command
that sends known data to all memory locations. It may be called a “Fill”;
tell the tool to fill memory from 0 to infinity, over and over and over. Con-
nect a scope to each address line and be sure that they sequence in order.

Troubleshooting 185

Don’t have an adequate tool? Don’t despair. Most CPUs include a
single-byte or one-word software interrupt instruction that will serve
equally well. Remove all memory chips (or disable them by putting their
control signals to idle states), and pull the data bus to the value of the in-
terrupt instruction. For example, on any x86 processor, INT3 (OxCC) is a
one-byte interrupt. Z80/180 systems use RST7 (OxFF). Motorola proces-
sors usually have a breakpoint or illegal instruction trap that works equally
well.

By pulling the data bus to this one-byte/word instruction, you’ve
made it impossible for the CPU to do anything but run that particular
opcode. The processor will blindly follow your will by executing the
interrupt.

It will push the system context onto the stack (never doing a POP or
Return), so the stack will march down to zero, and then roll over. Trigger
your scope on the processor’s WRITE line, and watch the addresses as the
stack pointer marches along. What we’ve done is force the CPU to produce
every possible address, in a controlled manner, while not assuming that
any ROM or RAM location works!

Once the ROM works, it seems logical to assume that the code will
run . . . doesn’t it? Well, no. Things can and do go wrong when running
code, so it makes sense to spend a few minutes trying a simple execution
test before getting carried away burning complex things into ROM.

At the processor’s startup location, bum the simple loop described
earlier (OUT to a port, with a JMP back to the OUT) into ROM (or Flash,
if you’re using it). Odds are the loop will run correctly, since we’ve already
checked the busses. Trigger a scope on the write pulse (generated by the
OUT) and see that it comes at a rate correlated to your clock speed.

Next, get RAM working. Bum a bit of code that sets up the RAM
chip select (if required) and that writes a location in RAM, reading the
value back. With the scope, you’ll be able to watch the transaction to en-
sure that the data comes out of RAM just as it goes in. Again, since the
address bus was tested, there’s no need to do an extensive test.

With working RAM and ROM, it’s time to get your real software de-
bugging tools going. If you’re using a ROM monitor, build a serial port
driver and link it all together. A ROM emulator should just plug in and
play, now that the system’s kernel is alive. An ICE or BDM, of course, will
work even without an operating kernel.

Using your debugger, check the YO using the hacking techniques
outlined in Chapter 5.

CHAPTER 9
People Musings

Managing Yourself and Others

Anyone can crank code or draw logic diagrams. Truly gifted engi-
neers are those who predictably deliver quality products on time, on budget,
that meet the specs.

Raw inspiration accounts for a tiny fraction of the effort needed to be
constantly successful. An awful lot of what we do boils down to finding a
reasonable formula for success and then following that formula relent-
lessly. Sure, we should experiment with it, tune things as needed, but dis-
aster is guaranteed when we abandon the process and just start hammering
out code and drawings.

Chapter 2 presented and described seven steps that are fundamental
to getting decent products out. Sometimes it’s hard to translate ideas into
daily action plans. It’s even more difficult to audit one’s performance in
the chaos of a project, one that is surely constrained to the breaking point
by schedule pressures.

So here’s a “Weekly Audit,” a checklist the wise developer will con-
sult to ensure that the processes are effective and actually being used.
Check it weekly, perhaps every Friday morning, without fail.

As I mentioned in the very first chapter of this book, use a Daytimer
or similar time management tool as an electronic nag to remind you to do
the right things at the right time. Have the Daytimer pop up a reminder to
run the audit weekly. Depend on memory and you’ll surely forget.

187

188 THE ART OF DESIGNING EMBEDDED SYSTEMS

Version Control System

Yes

Yes No Does each developer have only those modules

No Are all source code and related files managed by a
networked VCS?

absolutely needed checked out (answer “no” if they
hoard checked-out modules)?
Has the VCS been backed up every day this week?
Are the backups stored in a safe place?

Yes

If any Nos circled: What action will you take today to solve the
problem?

No

Firmware Standards

Yes No

Yes No

Yes No

Yes No
Yes No

Yes No
Yes No

Is the Firmware Standards Manual the bible for all
development (answer “no” if it’s stored in a musty
closet like a demented nephew, paraded out for show
once in a while)?
Is every function and module held to the Standards
Manual, as audited by Code Inspections?
Do all developers buy into the Standard (answer “no”
if they constantly squabble over the contents of the
Standard)?
Was every bit of code tested this week inspected first?
Do all Inspection teams keep and use standard forms
for tracking the number and type of each defect?
Do the teams all use an Inspection Checklist?
Do all of the developers buy into the need for Code
Inspections?

Ifany Nos circled: What action will you take today to solve the
problem ?

Bug Management

Yes No Are the developers all using engineering notebooks to

Yes

Yes No Are bad modules identified and rewritten?
Yes No

control and log defects?
For code being tested, is every bug logged and
counted?

Are more than 5% of the modules falling into the
“bad” category?

No

People Musings 189

Yes Have bug lists been abandoned (Le., bugs fixed as they
appear)?

Yes No For released products: is every bug being systematically
tracked?

!f any Nos circled: What action will you take today to solve the

No

problem ?

Tools

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Are the development tools stable (answer “no” if
they’re effectively held together with baling wire and
duct tape)?
Are all processes automated (compile, link, make,
debugger initial configuration load)?
Does every developer have reasonable access to the
tools (answer “no” if people are waiting for access)?
Are hand tools, clip leads. and the like in good
condition?
Are there adequate supplies of logic analyzer clips
and the like?
Is the “bozo” bit reset (answer “no” if anyone is
doing something stupid, like holding systems together
with propped-up books, or building 3-D clip-leaded
prototypes that look like works of modern sculpture)?

I f any Nos circled: What action will you take today to sohv the
problem ?

Tracking Development Rates

Yes No Is every engineer filling out time cards accurately?
(Answer “no” if this is a mad scramble at the end of
the week, which indicates you’ll never learn how long
it takes to build a product or write a line of code.)

project for a few hours) tracked?
Yes No Is every diversion (such as switching to another

Ifany Nos circled: What action will you take today to solve the
problem ?

Work Environment

Yes No Does each developer know his or her most productive
time, and then use that time wisely (answer “no” if

190 THE ART OF DESIGNING EMBEDDED SYSTEMS

developers don’t close their doors or otherwise warn
off interruptions during these hours)?
Does every developer turn off the phone for at least
several hours a day during their productive time?
Do developers limit time they leave their email reader
on‘?
If cubicles are the norm, does each developer do
something (e.g., wear headphones) to limit noise
distractions?

Yes

Yes

Yes

No

No

No

Ifany Nos circled: What action bz-il l you take today to solile the
problem ?

Critical Paths

What action can you take today to make sure everyone has what
they need to be successful next week?
What action can you take next week to make sure everyone has
what they need to be successful next month?

Note that each category concludes with the important admonition: do
something today to clear the roadblock. Don’t defer action; it’s much eas-
ier to correct a project when it first starts to veer off course than after
months of dysfunctional development have left their scars.

Boss Management

Management is the art of combining resources in innovative ways to
get a desired outcome. In our industry this outcome is some blend of fea-
tures, quality, and schedule.

Yet schedule is the usual battleground between managers and the
managed. When management distorts or destroys your careful estimate. or
beats you into agreeing to one that cannot possibly happen. failure is cer-
tain. Period. Yet this practice is the norm.

People ask me constantly how they can better estimate the time a
project will take. When I probe. usually I find that dates are assigned
capriciously by marketing or upper management. These engineers don’t
really want to know how to better estimate their schedules; they’re look-
ing for a silver bullet. a bit of magic that will let them shoehorn their
project into an impossible time frame. Magic and estimation are two
very different things.

Bosses complain that the engineers pad their estimates so much that
there simply must be fat. They feel justified in whacking off a month or

People Musings 191

two. Or, there are those who feel an aggressive schedule inspires harder
work-possibly true, but only when “aggressive” is not confused with
“impossible.”

My feeling is that if there’s no mutual trust between workers and
management, the employment situation is dysfunctional and should be ter-
minated. Professionals-us !-are paid for doing the work and for making
reasonable technical recommendations. We may be wrong sometimes, but
a healthy work environment recognizes the strengths and weakness of each
professional. If your boss thinks you’re an idiot, or refuses to trust your
judgment, search the employment ads.

Too many bosses have little or no experience in managing software
projects. The news they get is invariably bad-the project will take six
months longer than hoped-yet it generally comes with no options, no de-
cisions that he can make to achieve the sort of balance between product
and delivery.

It’s critical that we learn to manage our bosses. When presenting bad
news, be sure you give options. “We can deliver on time but without these
features, or 6 months late with everything, or on time but with lots of
bugs. . . .” An intelligent analysis of choices, presented clearly. will help
get your message across.

We need to develop trust with our superiors by educating them about
development issues, by being right (meeting our own predictions), and by
communicating clearly.

We’ve got to avoid quoting a long, arbitrary time impact as a knee-
jerk reaction to any change request.

Too many developers react to a manager’s request by obfuscating the
facts. A schedule question gets answered with a long discourse peppered
with obscure acronyms and a detailed analysis of the technology involved.
In most cases your boss will not be as good as you are at cranking code or
designing FPGA equations. The boss is paid to manage, not do. We’re paid
to do, and to communicate clearly to the rest of the organization. When
talking to the boss, talk his lingo, not the language of ones and zeroes.

If we expect to be treated honestly and with respect, we have to re-
ciprocate accordingly.

Just as it takes time and many projects to get the data you need to be
an accurate estimator, educating the boss and creating trust can be a very
slow process. So slow, in fact, that you must remember that sooner or later
the boss will die or move on . . . and you’ll be in charge. Then remember.
Treat your people with trust and respect, and teach them what you’ve
learned about scheduling.

192 THE ART OF DESIGNING EMBEDDED SYSTEMS

Evolution is a great thing. Perhaps the firmware industry will mature
as new generations of people learn to do things correctly, and then slowly
replace the dinosaurs now all too often at the top.

Managing the Feedback Loop

The last step in most projects is the one we dread the most-assign-
ing the blame. Who is responsible for the late delivery? Why didn’t we
meet the specification document? Who let costs spiral out of control?

The developers, that’s who. When management sheds blame like a
duck repels water, we wonder why we got into such an unforgiving
profession.

Something happened in this country in the past couple of decades,
something scary for the future. We’ve become intolerant of failure. In
1967 a horrible fire consumed the Apollo 1 spacecraft and three astro-
nauts. An investigation found, and corrected, numerous problems. There
was never a serious question about carrying on.

In the 1980s, when the Challenger blew up, commentators asked
what NASA was doing to ensure that such a tragedy would never happen
again. Huh? Sitting on 6 million pounds of explosive and you want a guar-
antee that the system was foolproof? Even my car is not totally reliable.
There are no guarantees, yet society seems to expect miracles from us, the
technology gurus.

Consider the Superconducting Supercollider. If scientists could
promise a practical result, or perhaps only promise finally resolving the
issue of the Higgs particle, then maybe the SSC would be something more
than an abandoned hole in the ground. Fear of failure sent the politicians
fleeing. Yes, it was very, very expensive. I was angered, though, by the
national lack of understanding that, in science, failure is an element of
success. We learn by trying a lot of things; with luck, a few pan out. From
each defeat we have the possibility of crawling toward success.

As developers, we’ve got to learn to manage both failure and success.
Our companies are demanding more from us every day. Downsizing and
increasingly frenetic time-to-market pressures mean that Joe Engineer
must take advantage of every opportunity to learn.

Yet there is no Embedded University. We’re mostly educated
via OJT, a haphazard and inefficient way of learning. Few of us are privi-
leged to work with a mentor of stature, so the best we can do is to exam-
ine the results of everything we do, with a critical, unbiased eye toward
improving our skills, and improving the processes used to develop our
products.

People Musings 193

Does this scenario sound familiar? A small team starts a project with
great hopes and enthusiasm. Along the way problems crop up. Sales
changes the features. Management reduces the product’s cost. Schedules
slip when compiler bugs appear. Code grows bigger than expected. Real-
time response isn’t adequate, so the engineers start burning the midnight
oil, making heroic changes to get the system out, but schedules slip more,
tempers flare, and when the product finally ships no one is speaking to
each other.

A week later the developers are embroiled in another product, again
starting with high hopes, and again doomed to encounter the same rather
small yet common set of problems that cause late delivery.

Sliding into middle age one has the chance to observe patterns in
one’s life, patterns we seem to repeat over and over. Einstein said, “Doing
the same things over and over, and expecting different results each time, is
clearly insane.”

Yet most engineering efforts exhibit this insanity. Careening from
project to project, perhaps learning a little along the way but repeating the
same tired old patterns, is clearly dysfunctional.

In most organizations the engineering managers are held accountable
for getting the products out in the scheduled time, at a budgeted cost, with
a minimal number of bugs. These are noble, important goals.

How often, though, are the managers encouraged-no, required-to
improve the process of designing products?

The Total Quality movement in many companies seems to have by-
passed engineering altogether. Every other department is held to the cold
light of scrutiny, its processes tuned to minimize wasted effort. Engineer-
ing has a mystique of dealing with unpredictable technologies and work-
ers immune to normal management controls. Why can’t R&D be improved
just like production and accounting?

Now, new technologies are a constant in this business. These tech-
nologies bring risks, risks that are tough to identify, let alone quantify.
We’ll always be victims of unpredictable problems.

Worse, software is very difficult to estimate. Few of us have the lux-
ury of completely and clearly specifying a project before we start. Even
fewer don’t suffer from creeping featurism as the project crawls toward
completion.

Unfortunately, most engineering departments use these problems as
excuses for continually missing goals and deadlines. The mantra “Engi-
neering is an art, not a science” weaves a spell that the process of devel-
opment doesn’t lend itself to improvement.

Phooey.

194 THE ART OF DESIGNING EMBEDDED SYSTEMS

Engineering management is about removing obstacles to success.
Mentoring the developers. Acquiring needed resources.

It’s also about closing feedback loops. Finding and removing dys-
functional patterns of operation. Discovering new, better ways to get the
work done.

Doing things the same old way is a prescription for getting the same
old results.

It’s infuriating that typical projects fizzle out in a last-minute crunch
of bug fixes, followed by the immediate startup of a new development
effort. Nothing could be dumber.

Did you learn anything doing the project? Did your co-workers? Is
there any chance some bit of wisdom could be extracted from its successes
and failures-a bit of wisdom that may save your butt in the future? Why
do we careen right into the next project, hoping to avoid disaster by sheer
hard work, instead of taking a moment to take a deep breath, gather our
wits, and understand what we’ve learned?

Engineering managers simply must allocate time for a careful post-
mortem analysis of each and every project. Once the pressure of the ship
date is gone, all of the team members should work toward extracting every
bit of learning from the development effort.

Usually we casually pick up some wisdom even without a formal
postmortem. This is the basis for “experience,” a virtue acquired by mak-
ing mistakes. I’ll never forget shoehorning an RTOS into an almost com-
plete system more than a decade ago. Putting it in after 20,000 lines of
code were written hurt so badly I swore I’d never start a system like that
again without installing an RTOS as the first software component. This bit
of wisdom came in exactly the same way kids learn not to touch a hot
stove: pain. I believe we can do better than learning by acquiring scars.

A formal postmortem analysis has one goal: squeeze every bit of
learning from the just-completed project. Wring it dry, extracting infor-
mation to compress the acquisition of “experience” as much as possible.

The postmortem is not a forum for assigning blame. When I started
conducting these at my last company, the engineers immediately became
paranoid, thinking that this was the chance for management to “get” them,
in writing, in a venue visible to all employees.

If blame must be given, then do it privately and constructively. Non-
constructive criticism is a waste of time, to be used only when firing the
offending employee (if then).

Similarly, the postmortem shouldn’t be used as a staging area for the
engineers’ complaints against management. When there are valid concerns

People Musings 195

(for example, schedule slippages due to changing specs), then these should
be coldly, accurately documented in a form that’s useful to all involved.
No whining allowed.

No, a successful postmortem is an unemotional, nonconfrontational,
reasoned, thoughtful process. It works when all participants buy into the
idea that improvement is important and possible.

I feel that a successful postmortem results in a written document that
will be preserved with other engineering materials, perhaps in a drawing
system. The document is important, as it’s a formal analysis of ways of
doing engineering better. Just as a contract is a written version of an infor-
mal understanding, the postmortem report codifies the information.

A great postmortem results in a report that’s eminently readable, that
even people not involved with the project can understand. File these to-
gether and give them to all new hires to give them “virtual experience.”

The document is a critical look at every part of the project (Figure
9-1). Did the specifications change often? How often, and what was the
real impact on the project? Were the tools up to snuff? What other tool-
chains could you have used, and why didn’t you? Did real-time problems
cause trouble? Did you badly estimate the scope of the system. . . and if
so, why?

Never forget to look at the skills of all of the players. Did a new lan-
guage no one really understood create problems? Perhaps new hires just
didn’t understand the company’s technology.

Structure the report as a series of recommendations. “The tools
sucked” is useless. Better: “The selected CPU had no real tool support.
Next time pick a chip with at least two different ICES and three compilers
so we have options.”

1 Product

Code inspections Quahtyldesign

Change control Team burnout How we did it
Change frenzy
People avadability

Hardware design

Perform mce

FIGURE 9-1 Areas a post mortem should cover

196 THE ART OF DESIGNING EMBEDDED SYSTEMS

A classic complaint at the end of any project is that creeping fea-
turism inflated the spec. The post mortem must address this, in a quanti-
tative way. No: “Marketing kept changing the specs” may be accurate,
but leaves a manager no specific information useful to the next project.
Better: “Four spec changes, with a total impact of 23 additional devel-
opment days, accounted for 60% of the schedule slip. All changes made
sense in terms of the goals. Unhappily, management forgot the impact
and kept the same schedule. Next time get their approval in writing for
the slip.”

The goal is not to find failure, but to find answers. Successes are
every bit as important to understand, so you can capitalize on them next
time.

No one person is smart enough to find solutions to all problems. The
document should be input to a brainstorming meeting where your col-
leagues hash out better ways to perform next time. Feed these ideas, where
appropriate, back into the document.

The only bad postmortem is one that’s not honest and thoughtful. Do
assess yourselves without beating each other up-no matter how badly
things went. But be intolerant of flippant, whiny, or unreflective post
mortems. If a team member is unable or unwilling to look for ways to im-
prove the organization, especially in this nonthreatening context, then that
person is simply not suited to a career in this fast-changing industry. At
least not with me.

A post mortem without specific quantifiable data is a waste of time.
“Well, we ran somewhat late and were over budget” is useless informa-
tion. “We finished early and saved a ton of money” is just as bad. You
can’t take action, or learn things, without knowing the specifics of the
situation.

But our memories are notoriously unreliable. During a six-month
project lots of things happen, good and bad. Many dates might be missed
and many met. By the time you’re analyzing the results of the project,
there’s no way you’ll remember-accurately-even a few of these.

Preserve the data, so during the post mortem you’ll have the accurate
information you need to produce useful recommendations. The engineer-
ing notebook, which I’ve endorsed throughout this book, is a logical place
to record all of this information.

Too many people feel that college is the end of education. It’s just the
start. We’ve all got to struggle forever to learn more and to improve. Read-
ing, studying, seminars, trade shows are all important ingredients. Equally
important is self- and organizational examination, looking for good things
to emulate and bad things to fix.

People Musings 197

Degrees

A friend went away to college at age 18, for the first time leaving
home behind. A scholarship program lined his pockets with cash, enough
to pay for tuition, room, and board for a full year.

A few months later he was out, expelled for nonpayment of all fees
and a GPA that rivaled those of the students in Animal House. The money
somehow turned into parties-parties that kept him a long way from class.

Today he’s a successful mechanical engineer. With no degree he
managed to apprentice himself to a startup, and to parlay that job into oth-
ers where his skills showed through, and where enlightened bosses gave
him the title and the work he’s so adept at.

Over the years I’ve known others with similar stories, many of which
ended on not-so-happy notes. The draft during the Vietnam era was, in a
way, a tough burden for many smart people. They came back older, per-
haps with families they had to support, and somehow never made it back
to college. Many of these people became technicians, bringing their mili-
tary training to a practical civilian use. Some managed to work themselves
up to engineering status. Others were not so lucky.

My dad breezed through MIT on a full scholarship. Graduating with
a feeling that his prestigious scholarship made him very special, he started
working in aerospace. The company put him on the production line for six
months, riveting airplanes together. In those days this outfit put all new
engineers in production to teach them the difference between theory and
practicality. He came out of it with a new appreciation for what works
and for the problems associated with manufacturing, I’ve always thought
this an especially enlightened way to introduce new graduates to the harsh
realities of the physical world.

Most of today’s new engineering graduates do have some experience
with tools and methods. Schools now have them build things, test things,
and in general act like real engineers. Still, it seems the practical aspects
are subjugated to theoretical ones. You really don’t know much about pro-
gramming until you’ve completely hosed a 10,000-line project, and you
know little about hardware until you’ve designed, built, and somehow
troubleshot a complex board.

Experience is a critical part of the engineering education, one that’s
pretty much impossible to impart in the environment of a university. We’re
still much like the blacksmith of old, who started his career as an appren-
tice, and who ended it working with apprentices, training them over the
truth of a hot fire. Book learning is very important, but in the end we’re
paid for what we can do.

198 THE ART OF DESIGNING EMBEDDED SYSTEMS

In my career I’ve worked with lots of engineers, most with sheep-
skins, but many without. Both groups have had winners and losers. The
non-degreed folks, though, generally come up a very different path, earn-
ing their “engineering” title only after years as a technician. This career
path has a tremendous amount of value, as it’s tempered in the forge of
more hands-on experience than most of their BSEE-laden bosses.

Technicians are masters of making things. They are expert solder-
ers-something far too few engineers ever master. A good tech can bum a
PAL, assemble a board, and use a milling machine. The best-those bound
for an engineering career-are wonderfully adept troubleshooters, masters
of the scope. Since technicians spend their daily lives working intimately
with circuits, some develop an uncanny understanding of electronic
behavior.

Some companies won’t let engineers touch a product. A tech is the
developer’s hands and senses. Though the engineer knows more about
what the system should do, I imagine the techs have a deeper understand-
ing of what it does do.

Too many of us view our profession parochially, somehow feeling
that college is the only route to design. Part of this probably stems from the
education itself, where instructors without doctorates cannot become full
professors. Some comes from our fascination with honors and fancy cer-
tificates. Doctors and lawyers plaster degrees and awards over the walls to
impress clients . . . which implies that we, the public, are indeed impressed
by these paper honors.

These same doctors and lawyers have very effective professional as-
sociations that limit entry into the field to those people with a degree-
from a school approved by the association. It’s a clever way to maximize
salaries through anticompetitive measures.

Electronics is very different. We’re in a much younger field, where a
bit of the anarchy of the Wild West still reigns. More so than in other pro-
fessions, we’re judged on our ability and our performance. If you can crank
working designs out at warp speed, then who cares what your scholastic
record shows?

And yet, our creations get more complex every day. A 1975-era em-
bedded system pushed the edge of technology at 4 MHz, yet required little
of the theoretical knowledge we got in college. One needed the ability to
read a data book, the experience to know how to create circuits, and the
ability to make the silly thing work.

Today’s designs are different. We battle Maxwell’s equations every
time we propagate a fast signal more than a few inches. Our products’

People Musings 199

algorithms rely on Fourier transforms and other advanced mathematical
concepts. After resisting all of the math they fed us, now I feel a little bit
like the teenager coming of age-our professors, like our parents, were
right after all!

Other neglected parts of a college education are becoming important.
One of the most crucial: writing skills. Engineers are notoriously poor
communicators, yet we’re the folks building the communications age.
After decades of decline, writing has assumed a new importance in the
form of email. We’re judged by our composition skills every time we toss
off a message.

Of course, few engineering programs focus on writing. It’s as if the
intent is to produce development androids without the skills needed to “in-
terface” with the rest of the world.

Occasionally we hear talk of turning engineering education into more
of a vocational program. Train students to design systems and nothing
else! The model fits well into the 1990s’ frenetic preoccupation with get-
ting results today, and the future be damned. If we agree that a tech, who
has a VoTech-like education, could be a good engineer, then perhaps
there’s value to revolutionizing our schools.

Yet, I worry for the future of our profession. Several forces are shap-
ing profound and scary changes.

The first is simply the breathtaking rate of change. Every three years
or so it seems we’re in a totally new sort of technology. This will only ac-
celerate, which means the engineer of the future will either have a three-
year career, or will become adept at anticipating and embracing change.
More than anything, it means we have to reeducate ourselves daily.

Yet I talk to engineers every day who spend little to no time keeping
current.

Time to market is another force that will change the profession.
When you’re designing a product, there’s no time to learn how to do it, or
to master the product’s technology. Companies want experts now. Yet how
can you be an expert at new technology? This is one reason we see so
many consultants working in development efforts-they (effectively or
otherwise) bring new knowledge to bear immediately. Enlightened man-
agement will find a way to transfer this knowledge to the core employees.
Sadly, too many can’t see beyond getting the product out the door, never
investing in growing their skill sets.

Finally, we see a serious pigeonholing of skills. Are you good at x?
Then do x! Do it forever! We can always get a new lud to work on the next
project-after all, you’re the x expert!

200 THE ART OF DESIGNING EMBEDDED SYSTEMS

The complexity of software will only make this worse. Design a
product, get it out the door, and there’s a good chance you’ll be involved
in its maintenance forever.

You’ve got to take charge of your career. Manage it. Keep learning
and stretching your skill set.

But I wonder how many techs-turned-engineers have the background
to keep up in this rapidly advancing world. Similarly, I wonder how many
college-educated designers remember enough math to understand what’s
going on. I did a survey recently of several graduate engineers. None could
integrate a simple function. None remembered much about the transfer
function of a transistor. Though these were digital folks who work with
ICs, does this mean that the background and the theory drummed into
them so long ago is worthless? Does it imply that only the youngest, those
who haven’t had time to forget, should work on the newest and the most
complex systems?

I wish I knew the answer. I’ve tried not to discriminate on the basis
of a degree, having had some wonderful experiences with very smart, very
hard-working people who became engineers by the force of their will. But
over time I see fewer of these. More and more rksumks are filled with BS,
CS, several minors, one or more masters, and the like. There’s a competi-
tive pressure that raises the stakes in job seeking. If one degree is good, we
seem to think more is better.

Clearly, any large organization will screen non-degreed people out
before they can demonstrate their (possibly) astonishing abilities.

Engineering is a very diverse discipline. We need thinkers and doers,
inventors and implementers, designers and troubleshooters. Sometimes
one person contains all of these skills, though more often a team comes to-
gether to complement each other’s skills. The whole is greater than the
parts.

When it’s time to hire, most of us look for the standard require-
ments, probably including some sort of degree. I like to use the SWAN
model: Smart, Works hard, Ambitious, and Nice. Though hard to gauge at
an interview, these qualities almost guarantee a decent worker. When hir-
ing a nun-entry-level person, the SWAN model, coupled with what
they’ve done in the past, is a far better indicator of success than any
sheepskin.

As someone who rejects our fascination with form over substance, I
think that good, non-degreed engineers are a valuable asset only a fool
would reject. However, not getting a degree is clearly a mistake. One just
cannot compete in the job market without this prerequisite. I know-I
dropped out of college three courses short of a BSEE.

People Musings 201

Older folks who, by circumstance or bad planning, did not complete
college should look at other degree options. Check out High Technology
Degree Alternatives, by Joel Butler (ISBN 0-9 12045-61 -2). 1994, Profes-
sional Publications. It's full of ideas about getting a degree without quit-
ting your job or spending a lot of money.

A Standards
Monual

Every day we make a choice: create firmware in a consistent, repeat-
able way, or just crank out code as whim dictates. Though it is possible to
build successful products using chaotic and ill-disciplined methods, two
generations of research shows that ad hoc development ultimately results
in poor code delivered late.

No firmware organization can seriously consider itself “professional”
unless it has a set of standards to which all code is held. Those standards
must be in writing and absolutely clear. Developers must buy into the con-
cept of using standards-or be retrained or replaced. Period. Code inspec-
tions insure every bit of software is audited to the standard.

Use the following standard intact, or modify it to suit your re-
quirements. Feel free to download the machine-readable version from
www.ganssle.com/ades/fsm. html.

Scope

This document defines the standard way all programmers will create
embedded firmware. Every programmer is expected to be intimately fa-
miliar with the Standard, and to understand and accept these requirements.
All consultants and contractors will also adhere to this Standard.

The reason for the Standard is to insure all company-developed
firmware meets minimum levels of readability and maintainability.
Source code has two equally important functions: it must work, and it
must clearly communicate how it works to a future programmer or the

203

204 THE ART OF DESIGNING EMBEDDED SYSTEMS

future version of yourself. Just as standard English grammar and spelling
make prose readable, standardized coding conventions ease readability of
one’s firmware.

Part of every code review is to insure the reviewed modules and func-
tions meet the requirements of the Standard. Code that does not meet this
Standard will be rejected.

We recognize that no Standard can cover every eventuality. There
may be times where it makes sense to take exception to one or more of the
requirements incorporated in this document. Every exception must meet
the following requirements:

Clear Reasons-Before making an exception to the Standard, the
programmer(s) will clearly spell out and understand the reasons in-
volved, and will communicate these reasons to the project man-
ager. The reasons must involve clear benefit to the project and/or
company; stylistic motivations, or programmer preferences and
idiosyncrasies are not adequate reasons for making an exception.
Approval-The project manager will approve all exceptions made.
Documentation-The effected module or function will have the
exception clearly documented in the comments, so during code
reviews and later maintenance, the current and future technical
staff understand the reasons for the exception, and the nature of the
exception.

Projects
Directory Structure

To simplify use of a version control system, and to deal with unex-
pected programmer departures and sicknesses, every programmer involved
with each project will maintain identical directory structures for the source
code associated with the project.

The general “root” directory for a project takes the form:
/proj ec ts/proj ec t-namehorn-name
where

“/projects” is the root of all firmware developed by the company.
By keeping all projects under one general directory, version control
and backup are simplified and reduce the size of the computer’s
root directory.
“/project-name’’ is the formal name of the project under develop-
ment.

A Firmware Standards Manual 205

"/ram-name" is the name of the ROM the code pertains to. One
project may involve several microprocessors, each of which has
its own set of ROMs and code. Or a single project may have
multiple binary images, each of which goes into its own set of
ROMs.

Required directories:

/projects/project-name/tools--compilers. linkers, assemblers used
by this project. All tools will be checked into the VCS so in 5 to
10 years, when a change is required, the (now obsolete and un-
obtainable) tools will still be around. It’s impossible to recompile
and retest the project code every time a new version of the com-
piler or assembler comes out; the only alternative is to preserve
old versions, forever, in the VCS.

/projects/project-name/rom-name/headers-all header files, such
as .h or assemble include files, go here.

/projects/project-namehorn-name/source-source code. This may
be further broken down into header, C, and assembly directories.
The MAKE files are also stored here.

/projects/project-name/rom-name/object-object code, including
compiler/assembler objects and the linked and located binaries.

/projects/project-namehorn-namehest-This directory is the one,
and only one, that is not checked into the VCS and whose
subdirectory layout is entirely up to the individual programmer.
It contains work-in-progress, which is generally restricted to a
single module. When the module is released to the VCS or the
rest of the development team, the developer must clean out the
directory and eliminate any file that is duplicated in the VCS.

Version File

Each project will have a special module that provides firmware version
name, version date, and part number (typically the part number on the ROM
chips). This module will list, in order (with the newest changes at the top of
the file), all changes made from version to version of the released code.

Remember that the production or repair departments may have to sup-
port these products for years or decades. Documentation gets lost and ROM
labels may come adrift. To make it possible to correlate problems to ROM
versions, even after the version label is long gone, the version file should
generate only one bit of “code”-a string that indicates, in ASCII, the cur-
rent ROM version. Some day in the future a technician-or yourself!-may

206 THE ART OF DESIGNING EMBEDDED SYSTEMS

then be able to identify the ROM by dumping the ROM’s contents. An ex-
ample definition is:

undef VERSION
define VERSION “Version 1.30”

Example:
.
* Version Module-Project SAMPLE

* Copyright 1997 Company
* All Rights Reserved

* The information contained herein is confidential
* property of Company. The use, copying, transfer
* or
* disclosure of such information is prohibited
* except
* by express written agreement with Company.

undef VERSION
define VERSION “Version 1.30”
* 12/18/97-Version 1.3-ROM ID 78-130

*

*

*

* Modified module AD-TO-D to fix
*
*

scaling
algorithm; instead of y=mx, it

* now
* computes y=mx+b.
* 10/29/97-Version 1.2-ROM ID 78-120
* Changed modules DISPLAY-LED and
* READ-DI P
* to incorporate marketing’s
* request for a
* diagnostics mode.
* 09/03/97-Version 1.1-ROM ID 78-110
* Changed module ISR to properly
* handle
* non-reentrant math problem.
* 07/12/97-Version 1.0-ROM ID 78-100
* Initial release
.

A Firmware Standards Manual 207

Make and Proiect Files

Every executable will be generated via a MAKE file, or the equiva-
lent supported by the tool chain selected. The MAKE file includes all of
the information needed to automatically build the entire ROM image. This
includes compiling and assembling source files, linking, locating (if
needed), and whatever else must be done to produce a final ROM image.

An alternative version of the MAKE file may be provided to gener-
ate debug versions of the code. Debug versions may include special diag-
nostic code, or might have a somewhat different format of the binary
image for use with debugging tools.

In integrated development environments (like Visual C++) specify a
PROJECT file that is saved with the source code to configure all MAKE-
like dependencies.

In no case is any tool ever to be invoked by typing in a command, as
invariably command line arguments “accumulate” over the course of a
project . . . only to be quickly forgotten once version 1.0 ships.

Sfartup Code

Most ROM code, especially when a C compiler is used, requires an
initial startup module that sets up the compiler’s runtime package and ini-
tializes certain hardware on the processor itself, including chip selects,
wait states, etc.

Startup code generally comes from the compiler or locator vendor,
and is then modified by the project team to meet specific needs of the pro-
ject. It is invariably compiler- and locator-specific. Therefore, the first
modification made to the startup code is an initial comment that describes
the version numbers of all tools (compiler, assembler, linker, and locator)
used.

Vendor-supplied startup code is notoriously poorly documented. To
avoid creating difficult-to-track problems, never delete a line of code from
the startup module. Simply comment out unneeded lines, being careful to
put a note in that you were responsible for disabling the specific lines. This
will ease re-enabling the code in the future (for example, if you disable the
floating point package initialization, one day it may need to be brought
back in).

Many of the peripherals may be initialized in the startup module. Be
careful when using automatic code generation tools provided by the
processor vendor (tools that automate chip select setup, for example).
Since many processors boot with RAM chip selects disabled, always in-

208 THE ART OF DESIGNING EMBEDDED SYSTEMS

clude the chip select and wait state code in-line (not as a subroutine). Be
careful to initialize these selects at the very top of the module, to allow fu-
ture subroutine calls to operate, and since some debugging tools will not
operate reliably until these are set up.

Stack and Heap Issues

Always initialize the stack on an even address. Resist the temptation
to set it to a odd value like Oxffff, since on a word machine an odd stack
will cripple system performance.

Since few programmers have a reasonable way to determine maxi-
mum stack requirements, always assume your estimates will be incorrect.
For each stack in the system, make sure the initialization code fills the en-
tire amount of memory allocated to the stack with the value 0x55. Later,
when debugging, you can view the stack and detect stack overflows by
seeing no blocks of 0x55 in that region. Be sure, though, that the code that
fills the stack with 0x55 automatically detects the stack’s size, so a late
night stack size change will not destroy this useful tool.

Embedded systems are often intolerant of heap problems. Dynami-
cally allocating and freeing memory may, over time, fragment the heap to
the point that the program crashes due to an inability to allocate more
RAM. (Desktop programs are much less susceptible to this as they typi-
cally run for much shorter periods of time.)

So, be wary of the use of the malloc() function. When using a new
tool chain examine the malloc function, if possible, to see if it implements
garbage collection to release fragmented blocks (note that this may bring
in another problem, as during garbage collection the system may not be re-
sponsive to interrupts). Never blindly assume that allocating and freeing
memory is cost- or problem-free.

If you chose to use malloc(), always check the return value and safely
crash (with diagnostic information) if it fails.

When using C, if possible (depending on resource issues and pro-
cessor limitations), always include Walter Bright’s MEM package (www.
snippets.org/mem.txt) with the code, at least for the debugging.

MEM provides:

ISO/ANSI verification of allocationheallocation functions
Logging of all allocations and frees
Verifications of frees
Detection of pointer over- and under-runs.

A Firmware Standards Manual 209

Memory leak detection
Pointer checking
Out of memory handling

Modules
General

A Module is a single file of source code that contains one or
more functions or routines, as well as the variables needed to support the
functions.

Each module contains a number of reluted functions. For instance, an
A/D converter module may include all A/D drivers in a single file. Group-
ing functions in this manner makes it easier to find relevant sections of
code, and allows more effective encapsulation.

Encapsulation-hiding the details of a function’s operation, and
keeping the variables used by the function local-is absolutely essential.
Though C and assembly language don’t explicitly support encapsulation,
with careful coding you can get all of the benefits of this powerful idea as
do people using OOP languages.

In C and assembly language you can define all variables and RAM
inside the modules that use those values. Encapsulate the data by defining
each variable for the scope of the functions that use these variables only.
Keep them private within the function, or within the module, that uses
them.

Modules tend to grow large enough that they are unmanageable.
Keep module sizes under loo0 lines to insure tools (source debuggers,
compilers, etc.) are not stressed to the point they become slow or unreli-
able, and to ease searching.

Templar fes

To encourage a uniform module look and feel, create module tem-
plates named “module-temp1ate.c” and “module-template.asm,” stored in
the source directory, that become part of the code base maintained by the
VCS. Use one of these files as the base for all new modules. The module
template includes a standardized form for the header (the comment block
preceding all code), a standard spot for file includes and module-wide
declarations, function prototypes and macros. The templates also include
the standard format for functions.

Here’s the template for C code:

210 THE ART OF DESIGNING EMBEDDED SYSTEMS

.
* Module name:

* Copyright 1997 Company as an unpublished work.
* All Rights Reserved.

* The information contained herein is confidential
* property of Company. The use, copying, transfer
* or
* disclosure of such information is prohibited
* except
* by express written agreement with Company.

* First written on xxxxx by xxxx.

* Module Description:
* (fill in a detailed description of the module’s
* function here).

.
/ * Include section
* Add all #includes here

.
/ * Defines section
* Add all #defines here

.
/ * Function Prototype Section
* Add prototypes for all functions called by this
* module, with the exception of runtime routines.

.

*

*

*

*

*

*

*

*

The template includes a section defining the general layout of func-
tions, as follows:

.
* Function name : TYPE foo(TYPE argl, TYPE arg2)
* returns : return value description

A Firmware Standards Manual 21 1

* argl : description
* arg2 : description
* Created by : author’s name
* Date created : date
* Description : detailed description
* Notes : restrictions, odd modes
.

The template for assembly modules is:

Module name:

Copyright 1997 Company as an unpublished work.
All Rights Reserved.

The information contained herein is confidential
property of Company. The use, copying, transfer
disclosure of such information is prohibited
except by express written agreement with Company.

First written on xxxxx by xxxx.

Module Description:
(fill in a detailed description of the module
here).

.
; Include section
; Add all ‘includes” here
.

The template includes a section defining the general layout of func-
tions, as follows:

.
; Routine name : foobar
; returns : return value(s) description
; argl : description of arguments
; arg2 : description

21 2 THE ART OF DESIGNING EMBEDDED SYSTEMS

; Created by : author’s name
; Date created : date
; Description : detailed description
; Notes : restrictions, odd modes
. ,

Module Names

Though long module names are a wonderful aid to identifying what-
goes-where, all too many compilers and debuggers don’t properly handle
names longer than 8 characters. In some cases this may be a fault inherent
in the object file format or a debugging file. Limit names to 8 characters
or less.

Never include the project’s name or acronym as part of each module
name. It’s much better to use separate directories for each project.

Big projects may require many dozens of modules; scrolling through
a directory listing looking for the one containing function main() can be
frustrating and confusing. Therefore store function main() in a module
named main.c or main.asm.

File extensions will be:

C Source Code
C Header File
Assembler files
Assembler include files
Object Code
Libraries
Shell Scripts
Directory Contents
Build rules for make

Fi1eName.c
FileName. h
FileName.asm
FileNamehc
FileName.obj
FileName.lib
FileName. bat
README
Project . mak

Variables

Names

Regardless of language, use long names to clearly specify the vari-
able’s meaning. If your tools do not support long names, get new tools.

Separate words within the variables by underscores. Do not use cap-
ital letters as separators. Consider how much harder IcantReadThis is on
the eyes versus I-can-read-this.

A Firmware Standards Manual 21 3

The ANSI C specification restricts the use of names that begin with
an underscore and either an uppercase letter or another underscore
(-[A-Z-][O-9A-Za-z-]). Much compiler runtime code also starts with lead-
ing underscores. To avoid confusion, never name a variable or function
with a leading underscore.

These names are also reserved by ANSI for its future expansion:

E[O-9A-Z] [0-9A-Za-z] *
is[a-z][O-9A-Za-z]*
to[a-z] [O-9A-Za-z]*
LC-[O-9A-Za-z-] *
SIG[-A-Z] [0-9A-Za-z-l*
str[a-z] [0-9A-Za-z-]*
mem[a-z] [0-9A-Za-z-] *
wc s [a-z] [0-9A-Za-z-] *

errno values
Character classification
Character manipulation
Locale
Signals
String manipulation
Memory manipulation
Wide character manipulation

Global Variarbles
All too often C and especially assembly programs have one huge

module with all of the variable definitions. Though it may seem nice to
organize variables in a common spot, the peril is these are all then global
in scope. Global variables are responsible for much undebuggable code,
reentrancy problems, global warming, and male pattern baldness. Avoid
them!

Real time code may occasionally require a few-and only a few-
global variables to insure reasonable response to external events. Every
global variable must be approved by the project manager.

When globals are used, put all of them into a single module. They are
so problematic that it's best to clearly identify the sin via the name globa1s.c
or globals.asm.

Portcrbility

Don't assume that the address of an int object is also the address of
its least-significant byte. This is not true on big-endian machines. Thus,
don't make the following mistake:

int c;
while ((c = getchar()) ! = EOF)
writelfile-descriptor, &c, 1);

214 THE ART OF DESIGNING EMBEDDED SYSTEMS

Functions

Regardless of language, keep functions small! The ideal size is less
than a page; in no case should a function ever exceed two pages. Break
large functions into several smaller ones.

The only exception to this rule is the very rare case where real time
constraints (or sometimes stack limitations) mandate long sequences of in-
line code. The project manager must approve all such code. . . but first
look hard for a more structured alternative!

Explicitly declare every parameter passed to each function. Clearly
document the meaning of the parameter in the comments.

Define a prototype for every called function, with the exception of
those in the compiler’s runtime library. Prototypes let the compiler catch
the all-too-common errors of incorrect argument types and improper num-
bers of arguments. They are cheap insurance.

In general, function names should follow the variable naming proto-
col. Remember that functions are the “verbs” in programs-they do things.
Incorporate the concept of “action words” into the variables’ names. For
example, use “read-A/D” instead of “A/D-data,” or “send-to-LCD’ in-
stead of “LCD-out.”

Interrupt Sewice Routines

ISRs, though usually a small percentage of the code, are often the
hardest bits of firmware to design and debug. Crummy ISRs will destroy
the project schedule!

Decent interrupt routines, though, require properly designed hard-
ware. Sometimes it’s tempting to save a few gates by letting the external
device just toggle the interrupt line for a few microseconds. This is unac-
ceptable. Every interrupt must be latched until acknowledged, either by
the processor’s interrupt-acknowledge cycle (be sure the hardware acks
the proper interrupt source), or via a handshake between the code and the
hardware.

Use the non-maskable interrupt only for catastrophic events, like the
apocalypse or imminent power failure. Many tools cannot properly debug
NMI code. Worse, NMI is guaranteed to break non-reentrant code.

If at all possible, design a few spare I/O bits in the system. These are
tremendously useful for measuring ISR performance.

Keep ISRs short! Long (too many lines of code) and slow are the
twins of ISR disaster. Remember that long and slow may be disjoint; a five-
line ISR with a loop can be as much of a problem as a loop-free 500-line

A Firmware Standards Manual 21 5

routine. When an ISR grows too large or too slow, spawn another task and
exit. Large ISRs are a sure sign of a need to include an RTOS.

Budget time for each ISR. Before writing the routine, understand just
how much time is available to service the interrupt. Base all of your cod-
ing on this, and then measure the resulting ISR performance to see if you
met the system’s need. Since every interrupt competes for CPU resources,
that slow ISR that works is just as buggy as one with totally corrupt code.

Never allocate or free memory in an ISR unless you have a clear un-
derstanding of the behavior of the memory allocation routines. Garbage
collection or the ill-behaved behavior of many runtime packages may
make the ISR time non-deterministic.

On processors with interrupt vector tables, fill every entry of the
table. Point those entries not used by the system to an error handler, so
you’ve got a prayer of finding problems due to incorrectly programmed
vectors in peripherals.

Though non-reentrant code is always dangerous in a real-time sys-
tem, it’s often unavoidable in ISRs. Hardware interfaces, for example, are
often non-reentrant. Put all such code as close to the beginning of the ISR
as possible, so you can then re-enable interrupts. Remember that as long as
interrupts are off the system is not responding to external requests.

Comments

Code implements an algorithm; the comments communicate the
code’s operation to yourself and others. Adequate comments allow you to
understand the system’s operation without having to read the code itself.

Write comments in clear English. Use the sentence structure Miss
Grandel tried to pound into your head in grade school. Avoid writing the
Great American Novel; be concise yet explicit . . . but be complete.

Avoid long paragraphs. Use simple sentences: noun, verb, object.
Use active voice: “Start-motor actuates the induction relay after a 4 second
pause.” Be complete. Good comments capture everything important about
the problem at hand.

Use proper case. Using all caps or all lowercase simply makes the
comments harder to read.

Enter comments in C at block resolution and when necessary to clar-
ify a line. Don’t feel compelled to comment each line. It is much more nat-
ural to comment groups of lines which work together to perform a macro
function. However, never assume that long variable names create “self-
documenting code.” Self-documenting code is an oxymoron, so add
comments where needed to make the firmware’s operation crystal clear. It

216 THE ART OF DESIGNING EMBEDDED SYSTEMS

should be possible to get a sense of the system’s operation by reading only
the comments.

Explain the meaning and function of every variable declaration.
Every single one. Explain the return value, if any. Long variable names are
merely an aid to understanding; accompany the descriptive name with a
deep, meaningful, prose description.

Comment assembly language blocks and any line that is not crystal
clear. The worst comments are those that say “move AX to BX’ on a
MOV instruction! Reasonable commenting practices will yield about one
comment on every other line of assembly code.

Though it’s useful to highlight sections of comments with strings of
asterisks, never have characters on the right side of a block of comments.
It’s too much trouble to maintain proper spacing as the comments later
change. In other words, this is not allowed:

.
* This comment incorrectly uses right-hand *
* asterisks *
.

The correct form is:
.
* This comment does not use right-hand
* asterisks
.

Coding Conventions

No line may ever be more than 80 characters.
Don’t use absolute path names when including header files. Use the

form #include <module/name> to get public header files from a
standard place.

Never, ever use “magic numbers.” Instead, first understand where the
number comes from, then define it in a constant, and then document your
understanding of the number in the constant’s declaration.

Spacing and hdentation

Put a space after every keyword, unless a semicolon is the next char-
acter, but never between function names and the argument list.

A Firmware Standards Manual 2 1 7

Put a space after each comma in argument lists and after the semi-
colons separating expressions in a for statement.

Put a space before and after every binary operator (like +, -, etc.).
Never put a space between a unary operator and its operand (e.g., unary
minus).

Put a space before and after pointer variants (star, ampersand) in de-
clarations. Precede pointer variants with a space, but have no following
space, in expressions.

Indent C code in increments of two spaces. That is, every indent level
is two, four, six, etc. spaces. Indent with spaces, never tabs.

Always place the # in a preprocessor directive in column I .

Never nest IF statements more than two deep; deep nesting quickly
becomes incomprehensible. It’s better to call a function, or even better to
replace complex IFs with a SWITCH statement.

Place braces so the opening brace is the last thing on the line, and
place the closing brace first, like:

if (result > a-to-d) {

do a bunch of stuff
1

Note that the closing brace is on a line of its own. except when it is

do I

followed by a continuation of the same statement, such as:

body of the loop
} while (condition);

When an i f -else statement is nested in another i f statement, al-
ways put braces around the i f -el se to make the scope of the first i f
clear.

When splitting a line of code, indent the second line like this:

function(f1oat argl, int arg2, long arg3,
int arg4)

if (long-variable-name && constant-of-some-sort ==
2

&& another-condition)

21 8 THE ART OF DESIGNING EMBEDDED SYSTEMS

Use too many parentheses. Never let the compiler resolve prece-

Never make assignments inside i f statements. For example, don’t
dence; explicitly declare precedence via parentheses.

write:

if ((foo = (char *) malloc(sizeof *foo)) == 0)
fatal (“virtual memory exhausted”) ;

instead. write:

foo = (char *) malloc(size0f *fool;
if (foo == 0)

fatal (“virtual memory exhausted” 1

If you use # i f def to select among a set of configuration options,
add a final #else clause containing an #error directive so that the
compiler will generate an error message if none of the options has been
defined:

#ifdef sun
#define USE-MOTIF
#elif hpux
#define USE-OPENLOOK
#else
#error unknown machine type
#endif

Assembly Formatting

Tab stops in assembly language are as follows:

Tab 1: column 8
Tab 2: column 16
Tab 3: column 32

Note that these are all in increments of 8, for editors that don’t sup-
port explicit tab settings. A large gap-16 columns-is between the
operands and the comments.

Place labels on lines by themselves, like this:

label :
mov rl, r2 ; rl=pointer to I/O

A Firmware Standards Manual 2 19

Precede and follow comment blocks with semicolon lines:

; Comment block that shows how comments stand
; out from the code when preceded and followed by
; “blank“ lines.

Never run a comment between lines of code. For example, do not
write like this:

mov rl, r2 ; Now we set rl to the value
add r3, [data] ; we read back in read-ad

Instead, use either a comment block, or a line without an instruction,
like this:

mov rl, r2 ; Now we set rl to the value

add r3, [datal
; we read back in read-ad

Be wary of macros. Though useful, macros can quickly obfuscate
meaning. Do pick very meaningful names for macros.

Tools
Computers

Do all PC-hosted development on machines running Windows 95 or
NT only, to insure support for long file names, and to give a common OS
between all team members.

If development under a DOS environment is required, do it in a Win
95/NT DOS window.

Maintain every bit of code under a version control system. In addi-
tion, the current compiler, assembler, linker, locator (if any) and debug-
ger(s) will be checked into the VCS. Products have lifetimes measured in
years or even decades, while tools tend to last months at best before new
versions appear. It’s impossible to recompile and retest all of the product
code just because a new compiler version is out, so you’ve got to save the
toolchain, under VCS lock and key.

The only downside of including tools in the VCS files is the additional
disk space required. Disks are cheap; when more free space is required sim-
ply buy a larger disk. It’s false economy to limp by with inadequate disk
space.

220 THE ART OF DESIGNING EMBEDDED SYSTEMS

Compilers et a/.
Leave all compiler, assembler, and linker warnings and error mes-

sages enabled. The module is unacceptable until it compiles cleanly, with
no errors or warning messages. In the future a warning may puzzle a pro-
grammer, wasting time as he attempts to decide if it’s important.

Write all C code to the ANSI standard. Never use vendor-defined
extensions, which create problems when changing compilers.

Never, ever, change the language’s syntax or specification via macro
substitutions.

Debugging

You have a choice: plan for bugs before writing the code, and build a
debuggable product, or (surprise!) find bugs during test in a system that is
impossible or difficult to troubleshoot. Expect bugs, and be bug-proactive
in your design.

If at all possible, in all systems with a parts cost over a handful of dol-
lars, allocate at least two, preferably more, parallel YO bits to trouble-
shooting. Use these bits to measure ISR time (set one high on ISR entry
and low on exit; measure time high on a scope), time consumed by other
functions, idle time, and even entry/exit to functions.

If possible, include a spare serial port in the design. Then add a mon-
itor-preferably a commercial product, but at least a low-level monitor
that gives you some access to your code and hardware.

Debugging tools are notoriously problematic-unreliable, buggy,
with long repair times. As CPU speeds increase the problems increase. Yet
these tools are indispensable. Select a dual, complementary, debugging
toolchain: perhaps an emulator and a monitor. Or an emulator and a back-
ground debugger. Be sure that both sets of tools use a common GUI. This
will minimize the time needed to switch between tools, and will insure
there will be no file conversion problems (debuggers use many hundreds
of incompatible debug file formats).

When selecting tools, evaluate the following items:

Support-is the vendor responsive and knowledgeable? Is the ven-
dor likely to be around in a few months or years? If the unit fails,
what is the guaranteed repair time?
Intrusion-how much does the tool intrude on the system’s oper-
ation? What is the impact on debugging strategies and develop-
ment time?

A Firmware Standards Manual 221

Does the tool run at full target speed, or will you have to slow
things down? What is the impact?
Will the mechanical connection between the tool and the target be
reliable? It’s quite tough to get a decent connection to many mod-
ern SMT and BGA processors.
IntenuptsDMA-Will the tool let you debug ISRs? Are interrupts/
DMA ever disabled unexpectedly? If the tool does not respond to
intermpts/DMA when stopped at a breakpoint (very common), will
this have a deleterious effect on your debugging?
Tasking-If the product uses an RTOS, the tool must provide
some support for that RTOS. Insure that the debugger itself is
aware of the RTOS, and can display important task constructs in
a high-level format. What happens if you set a breakpoint on a
t a s k 4 0 the others continue to run? If not, what impact will this
have on your development?
Internal peripherals-Is the tool aware of the CPU’s internal pe-
ripherals? Many are; they let you look at the function of the periph-
erals at a very high level. Do timers stop running at a breakpoint
(common)? Will this cause development problems?

Be wary of doing all of your development with the tool’s down-
loader. Burn a ROM from time to time to make sure the code itself runs
properly from ROM, and to insure the product properly addresses the
ROMs.

Leave all debugging resources in the product when it ships. Disable
them via a software flag so they lie latent, ready for action in case of a
problem. Remember the Mars Pathfinder: JPL diagnosed and fixed a pri-
ority inversion bug while the unit was on Mars, using the RTOS’s trace
debug feature, which had been left in the product.

APPENDIX B
A Simple Drawing
System

Just as firmware standards give a consistent framework for creating
and managing code, a drawing system organizes hardware documentation.
Most middle- to large-sized firms have some sort of drawing system in
place; smaller companies, though, need the same sort of management tool.

Use the following standard intact or modified to suit your require-
ments. Feel free to download the machine-readable version from www.
ganssle.com/ades/dwg.html.

Scope

This document describes a system that:

guarantees everyone has, and uses, accurate engineering docu-
ments.
manages storage of such documents and computer files to make
their backup easy and regular.
manages the current configuration of each product.

The system outlined is primarily a method to describe exactly what
goes into each product through a system of drawings. A top-level configu-
ration drawing points to lower-level drawings, each of which points to spe-
cific parts and/or even lower-level drawings. After following the “pointer
chain” all the way down to the lowest level, one will have access to:

Complete assembly drawings including mod lists.
A complete parts list.

223

224 THE ART OF DESIGNING EMBEDDED SYSTEMS

By reference, to other engineering documents like schematics and
source files.

The system works through a network of Bills of Materials (BOMs),
each of which includes the pointers to other drawings, or the part numbers
of bit pieces to buy and build.

Our primary goal is to build and sell products, so the drawing system
is tailored to give production all of the information needed to manufacture
the latest version of a product. However, keeping in mind that we must
maintain an auditable trail of engineering support information, the system
always contains a way to access the latest such information.

Drawings and Drawing Storage

Definitions

The term “drawing” includes any sort of documentation required to
assemble and maintain the products. Drawings can include schematics,
BOMs, assembly drawings, PAL and code source files, etc.

A “Part” is anything used to build a product. Parts include bit pieces
like PC boards and chips, and may even include programmed PALS and
ROMs. A part may be described on a drawing by a part number (like
74HCT74), or by a drawing number (in the case of something we build or
contract to build).

Druwing Notes

Every drawing has a drawing number associated with it. This number

Company documentation: WOO1 to W 9 9
Configuration drawings: W500 to #0999
Product line “A”: #lo00 to #1999
Product line “B”: #2000 to #2999
Product line “C”: #3000 to #3999

Every drawing has a revision letter associated with it, and marked
clearly upon it. Revision letters start with the letter ‘A’ and proceed to ‘Z’.
If there are more than 26 revisions, after ‘2’ comes ‘AA’, then ‘AB’, etc.

The first release of any drawing is to be marked revision ‘A’. There
are to be no drawings with no revision letters.

Every drawing will have the date of the revision clearly marked upon
it, with the engineer’s initials or name.

is organized by product series, as follows:

A Simple Drawing System 225

Every drawing will have a master printed out and stored in the
MASTERS file. The engineer releasing the drawing or the revision will
stamp the Master with a red MASTER stamp, and will fill in a date field
on that stamp.

Though in many cases both electronic and paper copies of drawings
(like for a schematic) exist, the paper copy is always considered the
MASTER.

Drawing numbers are always four-digit numerics, prefixed by the “#”
character.

Storage

All Master drawings and related documentation will be stored in the
central repository. Master computer files will be stored on network drive in
a directory (described later).

Everyone will have access to Master drawings and files. These are to
be used for reference only; no one may take a Master drawing from the
central repository for any purpose except for the following:

Drawings may be removed to be photocopied. They must be returned
immediately (within 30 minutes) to the central repository.

Drawings may be removed by an engineer for the sole reason of
updating them, to incorporate ECOs or otherwise improve their accuracy.
However, drawings may be removed only if they will be immediately up-
dated; you may not pull a Master and “forget” about it for a few days. It
is anticipated that, since most of our drawings are generated electroni-
cally, a master will usually just be removed and replaced by a new version.
See “Obsolete Drawings” for rules regarding the disposition of obsoleted
drawings.

Artwork may be removed to be sent out for manufacturing. However,
all POs sent to PC vendors must require “return of artwork and all films.”
He who pulls the artwork or film is responsible to see that the PO has this
information. Returned art must be immediately refiled.

All drawings will be stored in file folders in a “Master Drawing” file
cabinet. Those that are too big to store (like D size drawings) will be
folded. Drawings will be filed numerically by drawing number.

Artwork will be stored in a flatfile, stored within their protective
paper envelopes. Every piece of artwork and film will have a drawing
number and revision marked on both the adfilm, and on the envelope. If
it is not convenient to make the art marking electronically, then use a
magic marker.

226 THE ART OF DESIGNING EMBEDDED SYSTEMS

Storage-Obsoleted Drawings

Every Master drawing that is obsoleted will be removed from the cur-
rent Master file and moved to an Obsolete file. Obsoleted drawings will be
filed numerically by drawing number. Where a drawing has been obsoleted
more than once, each old version will be substored by version letter.

The Master will be stamped with a red OBSOLETE stamp. Enter the
date the drawing is canceled next to the stamp. Thus, every Obsolete draw-
ing will have two red stamps: MASTER (with the original release date)
and OBSOLETE (with the cancellation date).

If old ECOs are associated with the Obsoleted drawing, be sure they
remain attached to it when it is moved to the Obsolete file.

Obsoleted artwork and films will be immediately destroyed.
Sometimes one makes a small modification to a Master drawing to

incorporate an ECO-say, if a hand-drawn PC board assembly drawing
changes slightly. In this case duplicate the Master before making the change,
stamp the duplicate OBSOLETE, and file the duplicate.

The reason for saving old drawings is to preserve historical informa-
tion that might be needed to update/fix an old unit.

Master Drawing Book

Whenever a drawing is released or updated, the Master Drawing Book
will be modified by the releasing engineer to reflect the new information.

The Master Drawing Book is a looseleaf binder stored and kept with
the Master drawing file. The Master Drawing Book lists every drawing we
have by number and its current revision level. In addition, if one or more
ECOs is current against a drawing, it will be listed along with a brief one-
line description of what the ECO is for.

Just as important, the Master Drawing Book lists the name of the
electronic version of a drawing. This name is always the name of the file(s)
on the network drive, with the associated directory path listed.

Note that the “Dash Number” (described later under “Bills of Mate-
rials”) is not included in the list, since one drawing might have many dash
numbers.

Dwg # Revision Rev date Title Filename

#lo00 A 8- 1-97 Prod A BOM PRODA-ASSY

Thus, the drawing list looks like:

ECO: PRODA.A.3 Stabilize clock PROD AECO . A
ECO: PR0DA.A. 1 Secure cables PRODAEC0.A

#loo1 B 8-2-97 Prod A Baseplate PRODA-BASE

A Simple Drawing System 227

As drawings are updated the ECOs will no longer apply, and should
then be removed from the book.

Note that after each BOM drawing number there is a list of dash
numbers that describe what each configuration of the drawing is.

A section at the end of the book will contain descriptions of “Spe-
cials”-units we do something weird to to make a customer happy. If we
give someone a special PAL, document it with the source code and notes
about the unit’s serial number, date, etc. A copy of this goes in the unit’s
folder. It is the responsibility of the technician to insure that the folder and
Master Drawing Book are updated with “special” information.

The Master Drawing Book master copy will be stored as file name
ENGINEER\DOCS\MDB.DOC. and is maintained in Word.

Configuration Drawings

Every product will have a Configuration Drawing associated with it.

Currently, the following Configuration Drawings should be supported:
These Drawings essentially identify what goes into the shipping box.

Dwg # Description

#050 1
-1
-2
-3
#I0502
W503
-1
-2
-3

Product A
256k RAM option
1 Mb RAM option
50 MHz option
Product B
Product C
256k RAM option
1 Mb RAM option
50 MHz option

The “dash numbers” are callouts to Bills of Materials for variations
on a standard theme.

The Configuration Drawing is a BOM (see section on BOMs). As
such, it calls out everything shipped to the customer. Items to be included
in the Configuration Drawing include:

The unit itself (perhaps with dash numbers as above)
Manual (with version number)
Software disk
Paper warranty notice
FCC notice

228 THE ART OF DESIGNING EMBEDDED SYSTEMS

Thus, starting with the Configuration Drawing, anyone can follow
the “pointer trail” of BOMs and parts/drawings to figure out how to buy
everything needed to make a unit, and then how to put it together.

Bills of Materials

A Bill of Material (BOM) lists every part needed for a subassembly.
The Drawing System really has only three sorts of drawings: BOMs,

drawings for piece parts, and other engineering documentation. A piece
part drawing is just like a part: it is something we build or buy and incor-
porate into a subassembly. As such, every piece part drawing is called out
on a BOM, as is every piece part we purchase (like a 74HCT74). The part
number of a piece part made from a drawing is just the drawing number
itself. So, if drawing #1122 shows how to mill the product’s baseplate,
calling out part #1122 refers to this part.

“Other engineering documentation” refers to schematics, test proce-
dures, modification drawings, ROMPAL drawings, and assembly draw-
ings (pictorial representations of how to put a unit together). None of these
call out parts to buy, and therefore are always referenced on any BOM with
a quantity of 0.

A piece part drawing can never refer to other parts; it is just one
“thingy.” A BOM always refers to other parts, and is therefore a collection

One BOM might call out another BOM. For example, the product A
top-level BOM might call out parts (like the unit’s box), drawings (like the
baseplate), and a number of other BOMs (one per circuit board). In other
words, one BOM can call out another as a part (i.e., a subassembly).

Though all BOMs have conventional four-digit drawing numbers,
everything that refers to a BOM does so by appending a “dash number.”
That is, BOM #I234 is never called out on some higher-level drawing as
“#1234”; rather, it would be “#1234-1” or “#1234-2”, etc.

The dash number has two functions. First, it identifies the called out
item as yet another subassembly. Any time you see a number with the dash
number like this, you know that item is a subassembly.

The second reason is more important. The dash numbers let one
drawing refer to several variations on a design. For example, if the BOM
for the “Option A Memory Board” is drawing # low, then #1000-1 might
refer to 128k RAM and #1000-2 to 1 Mb RAM. The design is the same, so
we might as well use the same drawings. The configuration is just a little
different; one drawing can easily call out both configurations.

A good way to view the drawing system is as a matrix of pointers.

of parts.

A Simple Drawing System 229

The Top Level Configuration Drawing (which is really a BOM) calls out
subassemblies by referring to each with a drawing number with a dash suf-
fix-a sort of pointer. Each subassembly contains pointers to parts or more
levels of indirection to further BOMs. This makes it easy to share drawings
between projects; you just have to monkey with the pointers. The dash
numbers insure that every configuration of a project is documented, not
just the overall PC layout.

BOM Format

BOMs are never “pictures” of anything-they are always just Bills of
Materials (Le., parts lists). The parts list includes every part needed to
build that subassembly. Some of the parts might refer to further sub-
assemblies.

The parts list of the BOM has the following fields:

Item number (starting at 1 and working up)
Quantity used, by dash number
Part (or drawing) number
Description
Reference tie., U number or whatever)

Here is an example of a BOM #IOOO, with three dash number options.
This is a portion of a memory option board BOM with several different
memory configurations:

I tern

I

3
4
5
6
7
8
9
10
1 1
12
13
14

7

Qty
-1
#1000-1

1
8
1
8

1
L

Part #

-2 -3

#1000-2
1000-3

#1892
#I234
I 1 1 1

1 I #I221
8 8 Apl123
1 1 74F373

8 621 128
2 624000

62256

APC3322

Description

OPTION board 256k
OPTION board 1 mb
OPTION board 4 mb
OPTION ass’y
OPTION schematic
Test Procedure
OPTION PCB
32 pin socket
IC
Static RAM
Static RAM
Static RAM
Jumper

2 2 APC3322 Jumper

Ref

u1-8
u10
u1-8
U1-8
u1-2
J1,2
J3,4

230 THE ART OF DESIGNING EMBEDDED SYSTEMS

First, note that each of the three BOM types (Le., dash numbers) is
listed at the beginning of the parts list. A column is assigned to each dash
number; the quantities needed for a particular dash number are in this col-
umn. That is, there is a “quantity” column for each BOM type.

The first three entries, one per dash number, simply itemize what
each dash number is. The quantity must be zero.

Each dash number column contains all quantity information to make
that particular variation of the BOM.

Next, notice that drawing “#1892” is called out with a quantity of 0.
Drawing #1892 shows how the parts are stuffed into the board, and is
essential to production. However, it cannot call parts that must be bought,
so it always has a quantity of 0.

The schematic and test procedure are listed, even though these are
not really needed to build the unit. This is how all non-production engi-
neering documents are linked into the system. All schematics, test proce-
dures, and other engineering documentation that we want to preserve
should be listed, but the quantity column should show 0. Notice also that a
drawing number is assigned even to the test procedure. This insures that
the test procedure is linked into the system and maintained properly.

The first column is the “item number.” One number is assigned to
each part, starting from 1 and working up. This is used where a mechani-
cal drawing points out an item; in this case the item number would be in a
circle, with an arrow pointing to the part on the drawing. It forms a cross
reference between the pictorial stuffing drawing and the parts list. In
most cases most item numbers will not have a corresponding circle on the
drawing.

All jumpers that are inserted in the board are listed along with how
they should be inserted (by the reference designator). This is the only doc-
umentation about board jumpering we need to generate.

Note that no modifications to the PCBs are listed. PC board modifi-
cations are to be listed on a separate “Mod” drawing, which is also refer-
enced with a quantity of zero on the BOM.

ROMs and PALS

Every ROM and PAL used in a unit will be called out by two entries
in the parts list columns of the PC board BOM. The first entry calls out the
device part number (like GAL22V10) and associated data so purchasing
can buy the part. The second entry, which must follow right after the first,
calls out a ROM or PAL BOM.

A Simple Drawing System 231

The ROM or PAL BOM will be called out with quantity of 0. This
procedure really violates the definition of the drawing system, but it dras-
tically reduces the number of drawings needed by production to build a
unit.

On the PC board BOM, the callout for a ROM or PAL will look like:

Item Qty Part # Description Ref

I 1 GAL22V10 PAL U19
2 0 #1234-1 (MASTERSU’RODAW-Ul9.PDS) B9

Thus, the first entry tells us what to buy and where to put it; the sec-
ond refers to engineering documentation and the current checksum. For a
ROM, list the version number instead of the checksum. The description
field for the part must also include the ROM or PAL’S file name in paren-
theses, with directory on the lab computer.

ROMs, PALS, and SLD will be defined via BOMs, since these ele-
ments are really composed of potentially numerous sets of documentation.
The ROM/PAL/SLD drawing will form the basic linkage to all source
code files used in their creation.

The primary component of a PALEOM drawing is of course the de-
vice itself. Other rows will list the files needed to build the ROM or PAL.

Where two ROMs are derived from one set of code (like EVEN and
ODD ROMs), these will both be on the same drawing.

An example ROM follows:

Item Qty Part# Description Ref

- 1
1 1234- 1 64 1 80 P-bd ROM U9

1 27256- 10 EPROM, 100 nsec
2 PRODA.MAK-make file proda\code

Note that in this part list the EPROM itself is called out by conven-
tional part number, but the quantity is 0 (since a quantity was called out on
the PC board BOM that referenced this drawing).

A ROM, PAL, or SLD drawing calls out the ingredients of the de-
vice. In this case, the software’s MAKE is listed so there’s a reference
from the hardware design to the firmware configuration.

If other engineering documentation exists, it should be referred to as
well. This could include code descriptions, etc.

The last column contains the directory where these things are stored
on the network drive.

232 THE ART OF DESIGNING EMBEDDED SYSTEMS

The goal of including all of this information is to form one repository
which includes pointers to all important parts of the component.

ROM and PAL File Names

All PALs and ROMs will have filenames defined by the conventions

PALs are named: <board>-UcU numben.J<checksum>
ROMs are named: <board>-UcU numben.Vcversion>
Thus, you can tell a ROM from a PAL from the extension, whose

Legal <board> names are: (limited to one character)

M - main board
P - option A board
T - option B board

Examples:

M-U 10.JAB
M-U 1 .J 12

outlined here.

first character is a V for a ROM or a J for a PAL.

main board, U10, checksum=AB
main board, U 1, checksum= 12

Engineering Change Orders (ECOs)

ECOs will be issued as required, in a timely fashion to insure all
manufacturing and engineering needs are satisfied.

Every ECO is assigned against a drawing, not against a problem.
You may have to issue several ECOs for one problem, if the change affects
more than one drawing.

The reason for issuing perhaps several ECOs (one per drawing) is
twofold. First, production builds units from drawings. They should not
have to cross reference to find how to handle drawings. Secondly, engi-
neering modifies drawings one at a time. All of the information needed to
fix a drawing must be associated with the drawing in one place.

Each ECO will be attached to the affected drawing with a paperclip.
The ECO stays attached only as long as the drawing remains incorrect.
Thus, if you immediately fix the master (say, change the PAL checksum
on the drawing), then the ECO will be attached to the newly Obsoleted
Master, and filed in the Obsolete file.

If the ECO is not immediately incorporated into, say, a schematic,
then the person issuing the ECO will pencil the change onto the Master
drawing, so the schematic always reflects the way the unit is currently
built.

A Simple Drawing System 233

In addition, if the ECO is not immediately incorporated into the
drawing, the engineer issuing the ECO will mark the Master Drawing
Book with the ECO and a brief description of the reason for the ECO, as
follows:

Dwg # Title Revision Rev Date Filename

ECO: PRODA.A.3 Stabilize clk PRODA.A.3
ECO: PR0DA.A. 1 Secure cables PR0DA.A. 1

#3000 ProdABOM A 8- 1-97 PRODA-ASSY

Note that the filename of the ECO is included in the Master Drawing
Book.

When the ECO is incorporated into the drawing, remove the ECO an-
notation from the Master Drawing Book, as it is no longer applicable.

NEVER change a drawing without looking in the master repository
to see if other ECOs are outstanding against the drawing.

Every change gets an ECO, even if the change is immediately incor-
porated into a drawing. In this case, follow the procedure for obsoleting
a drawing. This provides a paper audit trail of changes, so we can see why a
change was made, and what the change was.

Every ECO will result in incrementing the version numbers of all af-
fected drawings. This includes the Configuration drawing as well. To keep
things simple, you do not have to issue an ECO to increment the Configu-
ration version number. We do want this incremented, though, so we can
track revision levels of the products. Add a line to the Master Drawing
Book listing the reason for the change and the new revision level of the
Configuration, as well as a list of affected drawings. This forms back
pointers to old drawings and versions. Though we remove old ECO history
from our drawings, never remove it from the Configuration drawing’s
Master Drawing Book entry, as this will show the product’s history.

The Master Drawing Book entry for an ECO’d Configuration draw-
ing will look like:

Dwg # Revision Rev date Title

W600 A 8- 1-97 Prod A Configuration PRODA-ASSY

Filename

B 8-2-97 Mod clock circuit to be more stable

C 8-3-97 Secure cables better
(1OOO- 1, 1234 modified)

Sometimes a proposed ECO may not be acceptable to production.
For example, a proposed mod may be better routed to different chip pins.
Therefore, the engineer making an ECO must consult with production

234 THE ART OF DESIGNING EMBEDDED SYSTEMS

before releasing the ECO. (This avoids a formal (and slow) system of
controlled ECO circulation.)

A decision must be made as to how critical the ECO is to production.
The engineer issuing the ECO is authorized to shut down production, if
necessary, to have the ECO incorporated in units currently being built.

Thus, to issue an ECO:

Fill out the ECO form, one per drawing, and distribute it to pro-
duction and all affected engineers.
If you don’t immediately fix the drawing, clip it to the affected
drawing and mark the Master Drawing Book as described.
If necessary, pencil the changes onto the Master drawing.
Increment the Configuration Drawing version number immedi-
ately. Add a line to the Master Drawing Book after the Configura-
tion drawing entry describing the reason for the change, and listing
the affected drawings.
If the change is a mod, consult with production on the proposed
routing of the mod.
If the change is critical, instruct production to incorporate it into
current work-in-progress.
Remember that most likely several drawings will be affected: a
new mod will affect the schematic and the BOM that shows the
mod list.

To incorporate an ECO into a drawing:

Make whatever changes are needed to incorporate ALL ECOs
clipped to that drawing.
Revise the version letter upwards.
Generate a new Master drawing, and Obsolete the old Master.
Delete the ECO file from the network drive.
Revise the Version letter on the Configuration drawing.

Responsi bilities
The engineer making a change is responsible to insure that change is

propagated into the drawing system, and that the information is dissemi-
nated to all parties. He/she is responsible for filing the drawings, removing
and refiling obsoleted drawings, stamping MASTER or OBSOLETE, etc.

The engineer making the change must update production’s master
ROMPAL computer with current programming files, and the drawings
with checksums and versions as appropriate. The engineer must immedi-
ately also update the network drive, and pass out ECOs.

A Simple Drawing System 235

Nothing in this precludes the use of clerical staff to help. However,
final responsibility for correctness lies with the engineer making changes.

The Master Drawing Book does contains information about “Spe-
cials” we’ve produced. The manufacturing technician is responsible to
insure that all appropriate information is saved both in this Book and in
the unit’s folder.

The production lab MUST maintain an accurate, neat book of
CURRENT BOMs, to insure the units are built properly. Every change
will result in an ECO; the lab must file that promptly.

Index

Access, nonintrusive, 136-37
Addresses

logical, 94
translating, 96

ALE (Address Latch Enable), 1 17
Analysis, post mortem. 194-95
Analyzers

logic, 158
performance, 79-82

ASICs (application-specific integrated

Assembly
circuits), 76, 109, 142, 154

formatting, 2 18-1 9
language, 6 1-64

Assumptions, 172-74
Audit, weekly, I87
Author’s role defined, I7

Bad code, identify, 30
Banking, 93-97

hardware issues, 94-96
logical to physical, 94
software, 96-97

RDM (Back-ground Debug Mode) and
JTAG (Joint Test Access Group)
hardware, 1 4 3 4

142-45, 162, 184

Bit banging software, UART, 44
BOMs (Bills of Materials). 224, 229-30
Bond-out chips, 140
Book, Master Drawing, 226-27
Boss management, 190-92
Breakpoints

BDMs (Back-ground Debug Modes),

debugger, 144

complex, 138
hardware, 40, 138
problems, 69-7 1

Bug measurements, three big reasons for,

Bug rates
27-28

measure one’s, 27-30

identify bad code, 30
stop, look, listen, 28-30

C
formatting, 2 17-1 8
language, 61-64

Capital equipment justification. 155
Challenger explosion. 1. 192
Chips

bond-out, 140
FIFO, 60-6 1

CIMM (Capability Immaturity Model),

Clip leads, 171, 177
Clock-shaping logic, I17
Clocks, 115-17
CMM (Capability Maturity Model). 8-33

achieving schedule and cost goals, 10
being wary of. 12
five levels of software maturity. 9

CMOS (complementary metal-oxide

9-10

semiconductors), 1 12. I5 I
gate, 1 13
logic, 1 1 1
voltage levels, 1 I6

data, 3 6 3 7
metric. 41
model, 37

break down by features, 47
complexity grows much faster than

cost of inspecting, 22
how fast one generates embedded. 32
Inspections, 133
startup. 207-8
writing polled, 54-55

Code Inspections
process, 18-22

COCOMO (Constructive Cost Model)

Code

program size, 82-83

follow-up, 20
inspection meeting, 19-20

238 THE ART OF DESIGNING EMBEDDED SYSTEMS

Code Inspections (continued)
miscellaneous points, 20-22
overview, 18-19
planning, 18
preparation, 19
rework, 20

teams, 17-18
Code production rates, measuring one’s,

Codes, create, compile, and test, 90
Coding conventions, 216-19

assembly formatting, 218-19
C formatting, 2 17-1 8
general, 216
spacing and indentation, 2 16-17

COGS (cost of goods), NRE versus,
42-43

Comments, 215-16
Compiler vendors, 6 2 4 3
Compilers, 220
Complex breakpoints, 138
Complexity does not scale linearly with

Computers

31-32

size, 35

timing is critical in, 174
tools, 2 19

Configuration Drawings, 227-28
Connections, reliable, 158-59
cost

of inspecting code, 22
payroll as fixed, 153

CPUs (central processing units), 41,
54-.56,61,64-65,77, 118, 120,
I85

partitioning with, 40-44
simplifying software through multiple,

4 3 4
Cubicles, working in, 25-26

Data
COCOMO (Constructive Cost Model),

collecting, 28
presenting, 28

36-37

Data-destroying event, 14
Data sheets

notes of, 118
read, 1 18

Datacomm problems, 70
Debug bit, 80
Debuggers

BDM (Back-ground Debug Mode),
144

BDM-like, 59
features, 135-39
JTAG (Joint Test Access Group), 144

Debugging, 220-21
basic philosophy of, 165
easy ISR, 7 1-72
INT/INTA cycles, 64-66
scope, 178-83
source-level, 135-36
tool vendors, 159-61
traces change philosophy of, 70

Debugging port, virtual, 180
Debugging resources, add, 161-62
Degrees of higher learning, 197-201
Delayed sweep, 180-82
Design process, and human nature, 49
Designing products, improving process

Designs
of, 193

correct, 112
debuggable, 109-1 1
top-down, 37
watchdog, 124

Developers, ideal prototype, 108.
Development, disciplined, 5-34
Devices

manual testing of, 90
mastering portions of, 89-90
overheating, 176
refreshing, 103

Diagnostics, RAM, 98-104
Directory structure, 204-5
Discipline, engineering is very diverse,

Disciplined development, 5-34
DMA (direct memory access), 90, 161
Documentation, 17 1-72
DRAMS (dynamic random-access mem-

Drawing Book, Master, 226-27
Drawing system, simple, 223-35

200

ones), 102-3

BOMs (Bills of Materials), 228-30
Configuration Drawing, 227-28

Index 239

drawings and drawing storage, 224-26
ECOs (Engineering Change Orders).

Master Drawing Book, 226-27
responsibilities, 234-35
ROM and PAL file names, 232
ROMs and PALS, 230-32

Drivers, hacking peripheral, 87-90

ECOs (Engineering Change Orders),
226,232-34

Electrical noise, 102
Embedded code, how fast one generates,

32
Emulation RAM, 137-38
Emulators, 139-42

downsides of, 1 4 1 3 2
ROM, 112, 146

232-34

Encapsulation, partitioning with, 38-40
Environment, creating quiet work, 22-27
EO1 (end of interrupt), 66
EPROMs (erasable programmable read-

Equipment
only memories), 121-22, 129

capital, 155
leasing, 157
soldering, 170

Estimate, learn to, 174-78
Estimation, one of engineering’s most

important tools, 77
Event, data-destroying, 14
Experience, 77-78

practical. 73
value of, 6

Feature matrix, 4&47
Features

break down codes by, 47
partitioning by, 45-58

Feedback loop
close, 78
managing, 192-96

FIFO (first-in, first-out) chips, 60-61
File names, ROM and PAL, 232
Files

make, 207
project, 207
version, 205-6

Filters, event triggers and, 137
Firmware

costs of, 7
development incrementally, 48-50
estimate performance of, 174-75

banking, 93-97
curse of Malloc(), 92-93
hacking peripheral drivers, 87-90
notes on software prototyping,

predicting ROM requirements,

RAM diagnostic, 98-104
selecting stack size, 90-92

Firmware standard, Code Inspections,

Firmware standards manual, 203-2 1

104-8

97-98

testing, 48

21

coding conventions, 216-19
assembly formatting, 2 I 8-1 9
C formatting, 2 17-1 8
general, 216

comments, 215-16
functions, 214
institute, 15-16
ISRs (Interrupt Service Routines),

214-15
modules, 209-1 2

general, 209
names, 2 12
templates, 209- 12

projects, 204-9
directory structure, 204-5
heap issues. 208-9
make files, 207
project files, 207
stack issues, 208-9
startup code, 207-8
version file, 205-6

scope, 2 0 3 4
tools, 2 19-2 1

compilers, 220
computers, 219
debugging, 220-2 1

variables, 212-13
global, 2 13
names, 2 12-1 3
portability, 2 I3

240 THE ART OF DESIGNING EMBEDDED SYSTEMS

Formatting, assembly, 218-19
FPGAs (field-programmable gate ar-

Functions. 214
rays), 129

most of bugs will be in few, 30
and reentrants, 67
using to do one thing, 59

Gate, CMOS, 113
Glitches, diagnose all, 174
Global variables, 68,213
Globals, 38
Grounders, using clip leads as, 177
Guesstimating, 75-76

Hacking peripheral drivers, 87-90
Handlers, keep short, 58
Hardware

breakpoints, 40, 138
is moving away from conventional

prototypes, 105
issues, 59-61,94-96

changing PCBs (printed circuit
boards), 128-30

clocks, 115-17
debuggable designs, 109-1 I
making PCBs (printed circuit

planning, 130-3 1
reset, 117-19
resistors, 1 11-13
small CPUs, 1 19-23
unused inputs, 114-15
watchdog timers, 123-26

boards), 126-28

Hardware design, let software drive, 40
Heap issues, 208-9
Heat, being on lookout for excessive, 176

Human nature and design process, 49
See also Overheating

ICES (In-Circuit Emulators), 139, 184
ICs (integrated circuits)

See also Chips
software, 74

Idle loops, 81-82
Idle time, 8 1
Impossible, conquer, 50-5 1
Inheritance, 38

Inputs
unused, 114-15

leave unconnected when building

Inspection team, keep management off,

Inspections, use Code, 16-22
INTANTA cycles, debugging, 64-66
Integration, 48
Intempt map, lay out, 57-58
Interruptions from work, 25
Interrupts; See also ISRs (interrupt ser-

vice routines), 54-64
C or assembly languages, 6 1-64
design guidelines, 57-59
finding missing, 66-67
hardware issues, 59-61
from internal peripherals, 64
latency of, 80
vectoring, 55-57

prototypes, 1 15

17

INTR signal, generation of, 60
ISRs (interrupt service routines), 40,

approximate complexity of, 58
cardinal rule of, 58
easy debugging, 71-72
keeping simple, 59
using complex data structures in, 63

54-55,57,214-15

JTAG (Joint Test Access Group), 143,

and BDM (Back-ground Debug)

debuggers, 144

162

hardware, 143-44

Keyboard, seduction of, 5
Knives, X-Acto, 129-30, 152
Knowledge is power, 9 1

Languages
assembly, 61-64
C, 61-64
CMSP, 63
writing shells of drivers in selected, 89

LCDs (liquid crystal displays), 166
Leads, clip, 17 1
Leasing most attractive way to get equip-

ment, 157

lndex 241

LEDs (light-emitting diodes), 12 1, 178
LOC (lines of code), 46,97-98
Logic

analyzers, 158
clock-shaping, 117
CMOS, 114

Logical address, 94
Loops, idle, 8 1-82
LS (large-scale) technology, 15 1

Make files, 207
Malloc(), curse of. 92-93
Management

boss, 190-92
defined, 190
engineering, 194
keep off inspection team, 17
of oneself, 187-90

Managers, Peopleware argument with,

Manual, institute firmware standards,

Manual testing of devices, 90
Map, lay out interrupt, 57-58
Market, Time To, 154, 199
Mars Pathfinder spacecraft, 173-74
Master Drawing Book, 226-27
Matrix, feature, 46-47
Media, will unreadable tomorrow, 15
Memory

OTP (One-Time Programmable)

problems, 99

27

15-16

program, 12 1-22

Microcontrollers, 123, 140
Midrange processors, 123
Models of products, virtual, 107
Moderator defined, 17
Module design, something profound

Module names, 2 12
Modules

about. 40

defined, 209
most of bugs will be in few, 30

Money, time costs, 155
Monitors

ROM, 145-46
watchdog, 125

Myths, nonintrusive, 159-61

Names, ROM and PAL file, 232
Network computing lets users share data.

NMIs (non-maskable interrupts).
73

112-13, 124
avoiding, 69
reoccurs at any time. 70

electrical, 102
issues, 101-4
when digital systems are most suscep-

Noise

tible to, 102
Nonintrusive access, 136-37
Nonintrusive myths, 159-61
NRE costs (nonrecurring engineering

costs), 42-43
NRE versus COGS, 42-43
Numbers, interpreting raw, 28

OOPS (object-oriented programs), 37, 84
Operating systems give tools to manage

Oscilloscopes; See also Scopes; Scoping

favorite software debugging tools, 147
and timing, 149
triggering signals, 150

resources, 84

tricks, 147-52

OTP (One-Time Programmable) pro-
gram memory, 12 1-22

Output bits for debugging purposes, 79
Overheating devices, 176
Overlay RAM, 137-38

PAL file names, ROM and, 232
PAL (programmable array logic), 12 1.

129, 167-69

Partitioning, 37-48
and ROMs, 230-32

with CPUs, 4 W
with encapsulation, 38-40
by features, 45-48

Parts, surface-mount, 129
Pattern sensitivity, 101
Payroll as fixed cost, 153
PCBs (printed circuit boards), 101-2,

I IO, 126-28
changing, 128-30
defects, 177

242 THE ART OF DESIGNING EMBEDDED SYSTEMS

PCMCIA (Portable Computer Memory
Card International Association),
159

People musings, 187-20 1
boss management, 190-92
degrees, 197-201
managing feedback loop, 192-96
managing oneself and others, 187-90

bug management, 188-89
critical paths, 190
firmware standards, 188
tools, 189
tracking development rates, 189
version control system, 188
work environment, 189-90

Peopleware (DeMarco and Lister), 22
Peopleware argument with managers,

Performance
27

analyzer, 79-82
guesstimating, 72-79
measuring, 72-82

Peripherals
drivers

87
fraught with risks and unknowns,

hacking, 87-90
incredibly complex, 65
interrupts from internal, 64

Personal Software Process, 33
Physical space, 94
Plan ahead, 176
Planning, 130-3 1

Polled code, writing, 54-55
Polymorphism, 38
Ports

using serial, 88
virtual debugging, 180

analysis, 194-95

PLDs, 121,128-29

Post mortem

Probes, take care of oscilloscope, 150
Problems

breakpoint, 69-7 1
datacomm, 70
expect, 134
reentrancy, 67-69

Problems, solving, 2, 12
Production rates, measuring one's code,

Productivity, 35
Products

3 1-32

customers and views of, 45
improving process of designing, 193
quality of, 8
virtual models of, 107

Products, shipping quality, 47
Profession, worry for future of engineer-

Professionals creating software, 6
Program size, code complexity grows

much faster than, 82-83
Programming languages; See Languages
Programming, structured, 37
Programs, stop writing big, 35-5 1

ing, 199

COCOMO (Constructive Cost Model)

conquer impossible, 50-5 1
develop firmware incrementally,

partitioning, 3748

data, 36-37

48-50

Project files, 207
Prototype code, writing in Visual Basic,

Prototype developers, ideal, 108
Prototypes, 106, 134

1 07

hardware is moving away from con-
ventional, 105

of system's software, 105
Prototyping, notes on software, 104-8
Pull-down resistors, 112-13, 160
Pull-up resistors, 113, 160

Quality
is nice, 7-8
of products, 8

Quality products, shipping on time, 47

RAM (random-access memory), 58,

diagnostics, 98- 104, 100-101
99-103, 119, 185

inverting bits, 100-101
noise issues, 101-4

emulation, 137-38

lndex 243

overlay, 137-38
shadow, 138

Reader defined, 17
Real-time trace, 137
Recorder defined, 17
Reentrancy problems, 67-69
Refreshing devices, 103
Renting equipment, 156
Reset, 117-19

glitches, 173-74
time delay on, 118

pull-down, 112-13, 160
Resistors, 1 1 1-1 3

pull-up, 113, 160
Resources, operating systems give tools

to manage, 84
Responsibilities, simple drawing system,

234-35
Results, define, 106
Rise and fall times, 117
RMAs (rate monotonic analysis) and

ROM emulators. 1 12, 146
ROMs (read-only memories), 129,

schedulers, 83

I85
monitors, 1 4 5 4 6
and PAL file names, 232
and PALS. 230-32
requirements, 97-98

around, 179
RS-232, one of biggest headaches

RTOSs (real-time operating systems),
81-85.96, 125, 194

is context switcher, 83
using, 85

SCC (Serial Communications
Controller), Zilog, 183

Schedulers and RMAs, 83
Schedules, 190

collapse of, 3 1
Schematics, 128
Scopes; See also Oscilloscopes

debugging by, 178-83
grounding, 152
simple drawing system, 223-24
tricks to effective uses, 180

Scoping tricks, 15C52
SCR latchup, 115
SCR (silicon controlled rectifier), 114
Sensitivity, pattern, 101
Serial ports, using, 88
Seven-step plan, 12-33

buying and using VCS (Version Con-

constantly study software engineering,

creating quiet work environment,
22-27

instituting firmware standards manual,
15-16

measuring one’s

trol System), 13-1 5

3 2-3 3

bug rates, 27-30
code production rates, 3 1-32

using Code Inspections, 16-22
Shadow RAM, 138
Shorts, 175
Signals

generation of INTR. 60
triggering, 150

SMT (surface-mount technology). 129.

Sockets. 129
Software

142. 152

debugging, 79
drives hardware design, 40
engineering, 32-33
ICs, 74
professionals creating, 6
prototypes of system’s. 105
prototyping, 104-8
simplifying through multiple CPUs.

UART bit banging, 44

levels of, 9

equipment, 170
inspecting, 177

Source debugger, 97
Source-level debugging, 135-36
Space, physical, 94
Spacecraft, Mars Pathfinder, 173-74
Spikes, timing, 119

43-44

Software maturity. CMM defines five

Soldering

244 THE ART OF DESIGNING EMBEDDED SYSTEMS

Spreadsheets, 107
SRAM (static random-access memory),

119
Stack

issues, 208-9
size, 90-92

Stamping, time, 139
Startup code, 207-8
Stimulus, creating, 88
Structured programming, 37
SWAN (Smart, Works hard, Ambitious,

and Nice) model, 200
Sweep, delayed, 180-82
Switches and embedded systems, 126
System

bringing up new, 183-85
total idle time of, 8 1

System status info, embedded systems
and managing, 84

System’s performance, tracking, 78
System’s response, measuring, 88

Target processor, developing understand-

Teams, Code Inspections, 17-18
Technicians

Technology, LS, 15 1
Templates, 209-12
Test equipment, never blindly trust, 173
Testing

ing of, 77

turned-engineers, 200

daily or weekly, 49
everything, 173
firmware, 48
points, 109-1 1
success requires determination to

constantly, 49
Think, need to focus to, 26
Time

costs money, 155
idle, 81
to market, 154, 199
real, 53-85

avoiding NMI (non-maskable inter-

breakpoint problems, 69-7 1
debugging INTANTA cycles, 64-66
easy ISR debugging, 71-72

rupt), 69

finding missing interrupts, 66-67
interrupts, 54-64
measuring performance, 72-82
reentrancy problems, 67-69
RTOS, 82-85

stamping, 139
Timers, watchdog, 123-26
Timing

details, 161
is critical in computers, 174
and oscilloscopes, 149
spikes, 119

Tool vendors, debugging, 1 5 9 4 1
Tool woes, 157-63

add debugging resources, 161-62
nonintrusive myths, 159-61
reliable connections, 158-59
ROM burnout, 16243

checkpointing, 15
CMMs (Capability Maturity Models)

are, 12
compilers, 220
computers, 219
debugging, 220-2 1
quest to obtain right, 156
scope complements, 178
troubleshooting, 133-63

Tools, 134-52

BDMs (Back-ground Debug
Modes), 1 4 2 4 5

cost of, 152-57
emulators, 1 3 9 4 2
fancy, 152-57
oscilloscopes, 147-52
ROM emulators, 146
ROM monitors, 1 4 5 4 6
tool woes, 157-63

use all, 177
Tools to manage resources, operating

Top-down design, 37
TQFP, 158
Traces, 80

systems give, 84

change philosophy of debugging, 70
real-time, 137

Trigger levels, 18 1
Triggering signals, 150
Triggers, event, 137

Index 245

Troubleshooters, best, 176
Troubleshooting. 165-85

bringing up new system, 183-85
scope debugging. 178-83
sequence, 1 6 M 9

fix bug, 169
generate experiment to test hypothe-

generate hypothesis, I67
observe behavior to find apparent

observe collateral behavior, 166-67
round up usual suspects, 167

speed up by slowing down, 169-78
assumptions, 172-74
documentation, 17 1-72
learn to estimate, 174-78

BDMs (Back-ground Debug
Modes). 14235

emulators, 1 3 9 4 2
oscilloscopes, 147-52
ROM emulators, 146
ROM monitors, 145-46
scoping tricks, 150-52

sis. 16749

bug, 166

tools, 1 3 3 4 3

Trust between workers and management.

TTL (transistor-transistor logic), 1 15-16
191

UARTs (universal asynchronous re-
ceiver-transmitters), 54, 57, 66,
121. 183

bit banging software. 44
Understanding, good measures promote,

28

Variables, 212-13
avoiding global, 68
declared as static. 68
global. 2 13
names, 212-13
portability, 213

VCS (Version Control System), 13-15,
205

Vectoring, 55-57
Vendors, compiler, 6 2 4 3
Version file, 2 0 5 4
Virtual corporation, I57
Virtual debugging port. 180
Virtual instruments, IO6
Virtual models of products, 107
Visual Basic, writing prototype code in.

I07

Watchdog
design, 124
monitors, 125
timers, 123-26

and safety issues, 125
WDTs (watchdog timers), 123-26

Weekly audit, 187
Work

environment, 22-27
interruptions from, 25

Workers and management, trust between,

Writing
191

few engineering programs focus on.

polled code, 54-55

COCOMO (Constructive Cost Model)

conquer impossible, 50-5 I
develop firmware incrementally,

partitioning, 3 7 4 8

199

Writing big programs, stop, 35-5 I

data. 36-37

48-50

X- Acto knives, 129-30. I52

280 processors, 66
Z I80 processors, 66. I 17-1 8
Zilog SCC (Serial Communications

Controller), 183

ELECTRONICS / CIRCUIT DESIGN

*’ JACK GANSSLE
Practical advice from a well-respected author
Commonsense approach to better, faster design processes
A philosophy of development, not a cookbook of ”how to build X”
Integrated coverage of hardware design and sohare code
In-depth discussion of real-time and performance issues

Design better embedded systems faster, using the ideas presented in Th 4
Embedded Systems. Whether you’re working with hardware or software, Mr. Ganssle’s
unique approach to design is guaranteed to keep you interested and learning.

The Ar t of Designing Ernbedded Systems is part primer and part re
needs of practicing embedded engineers in mind. Embedded systems
hoc development process. This book lays out a very simple seven-s
development under control. There are 110 formal methodologies that take months to master; the

Most designers aren’t aware of the scary fact that code complexity-and thus dedules-
grow much faster than code size. The book details a number of ways to#nearize ,I-- eom-
plexitybize curve to help get products to market faster.

Hardware and software can never be designed in isolation from each other, which IS a theme
that the author addresses throughout the book. Mr. Ganssle shows how to get better, more ink-
grated code and hardware designs, and then how to troubleshoot the inevitable problems.

plans and ideas are immediately useful. 3

Finally, the book recognizes that we all work in an environment populated with bosses and
coworkers. The Art of Designing Embedded Syems-discusses ways to deal with these people,
to further your career, and to build a fun environment condqive to creative work.

JACK GANSSLE is the Principal Consultant of The roupf“an independent consulting firm
for embedded applications. He has foundedfNktuccessful electronics companies and has been
a contributing editor for EDN, Embedded Systems Pmgmmming, and Ocean Navigator maga-
zines. He also sits on the board of the Embedded 9ystems Conference. He is the author of an
earlier book on progra
ded systems conferences

RELATED Embedded Sys

Stuart Ball ISBN 0-7506-7234-X pb 352 pp.

‘F Debugging Embedded Microprocessor Systems * Stuart Ball ISBN 0-7506-9990-6 pb 272 pp.

http: Newnes A n imprint //www. of Butterworth-Heinemann newnespress.com I .. 1 I .. I

	Cover
	Frontmatter
	Half Title Page
	Title Page
	Copyright
	Table of Contents
	Acknowledgments

	Chapter 1: Introduction
	Chapter 2: Disciplined Development
	Any Idiot Can Write Code
	Firmware Is the Most Expensive Thing in the Universe
	What Does Firmware Cost?
	Quality Is Nice... As Long As It’s Free
	The CMM
	Summary

	Chapter 3: Stop Writing Big Programs
	COCOMO Data
	Partitioning
	Develop Firmware Incrementally
	Conquer the Impossible
	Summary

	Chapter 4: Real Time Means Right Now!
	Interrupts
	Debugging INT/INTA Cycles
	Finding Missing Interrupts
	Reentrancy Problems
	Avoid NMI
	Breakpoint Problems
	Easy ISR Debugging
	Measuring Performance
	The RTOS

	Chapter 5: Firmware Musings
	Hacking Peripheral Drivers
	Selecting Stack Size
	The Curse of Malloc()
	Banking
	Predicting ROM Requirements
	RAM Diagnostics
	A Few Notes on Software Prototyping

	Chapter 6: Hardware Musings
	Debuggable Designs
	Resistors
	Unused Inputs
	Clocks
	Reset
	Small CPUs
	Watchdog Timers
	Making PCBs
	Changing PCBs
	Planning

	Chapter 7: Troubleshooting Tools
	Tools
	Fancy Tools, Big Bucks?
	Tool Woes

	Chapter 8: Troubleshooting
	Speed Up by Slowing Down
	Scope Debugging
	Summary - Bringing Up a New System

	Chapter 9: People Musings
	Managing Yourself and Others
	Boss Management
	Managing the Feedback Loop
	Degrees

	Backmatter
	Appendix A A Firmware Standards Manual
	Appendix B A Simple Drawing System
	Index

	Back Cover

