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Preface

Our goal in writing this book has been to provide a comprehensive, mathematically
rigorous, but still accessible treatment of the interaction between information and
control in multi-agent decision making in the context of networked control systems.
These are systems where different decision units (or equivalently decision makers
or agents, which could be sensors, controllers, encoders, or decoders) are connected
over a real-time communication network, where the communication medium is
heterogeneous, information is decentralized and distributed, and its acquisition is
not instantaneous. The questions we address are all performance driven, and entail
the issues of what data to pick and how to shape and transmit them for control
purposes under various resource constraints as well as how to design optimal
control policies with partial information. We deal specifically with the issues of
quantization and encoding, design of optimum channels, effects of decentralization
on control performance, stability, learning, signaling, and relationships between
team performance (of a group of agents) and various information structures.

The book draws and utilizes a diverse set of tools (of both conceptual and
analytical nature) from various disciplines, including stochastic control, stochastic
teams, information theory, probability theory and stochastic processes, and source-
coding and channel-coding theory, and amalgamates them into a unified, coherent,
applicable theory. It could be used as a textbook or as an accompanying text in
a graduate course on networked control or multi-agent decision making under
informational constraints.
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Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Information and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Coverage and the Intended Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contents of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Part I. Information Structures in a Networked
Control System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Part II. Stabilization of Networked Control Systems. . . 6
1.3.3 Part III. Optimization in Networked

Control: Design of Optimal Policies Under
Information Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 A Guide for the Reader or the Instructor . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Part I Information Structures in Networked Control

2 Networked Control Systems as Stochastic Team Decision
Problems: A General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 A Mathematical Framework For Static Decision Problems . . . . . . 12
2.3 An Illustrative Example of a Finite Stochastic Team.. . . . . . . . . . . . . 17
2.4 A Mathematical Framework for Dynamic Decision Problems . . . 26
2.5 An Illustrative Example of a Finite Dynamic Team .. . . . . . . . . . . . . . 33
2.6 Team-Optimal Solutions for Static Teams . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Teams with Finite Measurement Spaces . . . . . . . . . . . . . . . . 39
2.6.2 Teams on Finite-Dimensional Spaces . . . . . . . . . . . . . . . . . . . 49
2.6.3 Two Special Cost Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.8 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Characterization and Comparison of Information Structures . . . . . . . . 77
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Comparison of Information Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

ix



x Contents

3.3 Dynamic Teams with Nonclassical Information:
Importance of Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.1 Witsenhausen’s Counterexample with Discrete

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.2 Witsenhausen’s Counterexample .. . . . . . . . . . . . . . . . . . . . . . . 92
3.3.3 Generalized Gaussian Test Channel . . . . . . . . . . . . . . . . . . . . 95

3.4 Dynamic Teams with Classical or Quasi-classical
Information Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Probability and Cost-dependent Properties
and Expansion of Information Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5.1 Performance-irrevelant Signaling

and a Stochastic Interpretation of Nestedness . . . . . . . . . . 101
3.5.2 Expansion of Information Structures:

A Recipe for Identifying Sufficient Information . . . . . . . 105
3.6 Signaling Through Control Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.7 Revisiting Witsenhausen’s Characterization

of Information Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.8 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.9 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 Topological Properties of Information Structures:
Comparison, Convergence, and Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2 Measurement Channels as Information Structures . . . . . . . . . . . . . . . . 120
4.3 Concavity on the Space of Channels and Blackwell’s

Comparison of Information Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4 Topological Characterization of Measurement Channels . . . . . . . . . 124
4.5 Single Stage: Continuity of the Optimal Cost in Channels . . . . . . . 127
4.6 Single Stage: Existence of Optimal Channels . . . . . . . . . . . . . . . . . . . . . 132
4.7 Quantizers as a Class of Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.8 The Multistage Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.9 Multi-agent Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.10 Revisiting Nonclassical Information Structures

and Lack of Convexity Due to Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.11 Conditions for Continuity Under Weak Convergence

and Empirical Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.12 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.12.1 Proof of Lemma 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.12.2 Proof of Theorem 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.12.3 Proof of Lemma 4.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.12.4 Proof of Theorem 4.7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.13 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.14 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



Contents xi

Part II Stabilization of Networked Control Systems

5 Coding for Control and Connections with Information Theory . . . . . . . 155
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2 Quantization and Real-Time Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2.1 Real-Time Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.2.2 Information Structures for Real-Time

Encoders and Controllers: Policies, Actions
and Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 Information Theoretic Preliminaries and Performance
of Quantizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.1 Information Theoretic Preliminaries . . . . . . . . . . . . . . . . . . . . 162
5.3.2 Fixed or Variable Rates of a Quantizer/Encoder . . . . . . . 164
5.3.3 Rate-distortion Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.3.4 Channel Coding and Shannon Capacity . . . . . . . . . . . . . . . . 166

5.4 Infinite-Dimensional Coding Versus
Finite-Dimensional Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.5 Noncausal Coding for Stationary and Nonstationary Sources . . . . 170
5.6 Fundamental Bounds on Information Rates

for Real-time Stabilization Over Noiseless Channels . . . . . . . . . . . . . 172
5.7 Appendix: Proof of Theorem 5.6.1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.8 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.9 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6 Stochastic Stability and Drift Criteria for Markov Chains
in Networked Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.1 Introduction and Motivation: Why Stochastic Drift Criteria? . . . . 179
6.2 Stochastic Stability and Drift Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.2.1 One-stage Foster–Lyapunov Drift Criteria . . . . . . . . . . . . . 180
6.2.2 State-dependent Drift Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2.3 Random-time State-dependent Stochastic

Drift Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.3 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3.1 Proof of Theorem 6.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.3.2 Proof of Theorem 6.2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.4 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.5 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7 Stochastic Stabilization Over Noiseless Channels . . . . . . . . . . . . . . . . . . . . . . . 189
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.2 Control and Communication Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3 Stochastic Stability Analysis for a Scalar System .. . . . . . . . . . . . . . . . 190

7.3.1 Adaptive Quantizers and a Zooming Scheme . . . . . . . . . . 190
7.3.2 Stochastic Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.3.3 Application of the Theory of Random-time

State-dependent Stochastic Drift . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3.4 Simulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



xii Contents

7.4 The Multidimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.5 The Partially Observed Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.6 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.6.1 Proof of Theorem 7.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.6.2 Proof of Theorem 7.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.6.3 Proof of Theorem 7.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.6.4 Proof of Theorem 7.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.6.5 Proof of Theorem 7.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.6.6 Proof of Theorem 7.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.6.7 Proof of Theorem 7.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.7 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.8 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8 Stochastic Stabilization Over Noisy Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.2 Stabilization Over Noisy Channels with Noiseless

Feedback and a Converse Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.2.1 Control and Communication Model . . . . . . . . . . . . . . . . . . . . 217
8.2.2 Converse Theorem on Stochastic Stability

Over a Discrete Memoryless Channel . . . . . . . . . . . . . . . . . . 218
8.3 Stochastic Stabilization Over Erasure Channels with Feedback .. 219

8.3.1 Connections with Random-time Drift Criteria . . . . . . . . . 223
8.3.2 Simulation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.4 Stochastic Stabilization Over DMCs with Feedback .. . . . . . . . . . . . . 225
8.5 Channels with Memory and Multidimensional Sources . . . . . . . . . . 230
8.6 Stabilization with Noisy Forward and Feedback/Reverse

Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.6.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.6.2 Necessary Conditions for Stabilization . . . . . . . . . . . . . . . . . 235
8.6.3 Stabilization Over Discrete Channels

and State-dependent Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.6.4 Stabilization Over Continuous-Alphabet Channels . . . . 243

8.7 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.7.1 Proof of Theorem 8.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.7.2 Proof of Proposition 8.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.7.3 Proof of Proposition 8.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.7.4 Proof of Proposition 8.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.7.5 Proof of Theorem 8.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.7.6 Proof of Theorem 8.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.7.7 Proof of Theorem 8.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
8.7.8 Proof of Theorem 8.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.7.9 Proof of Theorem 8.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.7.10 Proof of Theorem 8.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.7.11 Proof of Theorem 8.4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
8.7.12 Proof of Theorem 8.5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276



Contents xiii

8.7.13 Proof of Theorem 8.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
8.7.14 Proof of Theorem 8.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.7.15 Proof of Theorem 8.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
8.7.16 Proof of Theorem 8.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.7.17 Proof of Theorem 8.6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.7.18 Proof of Theorem 8.6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.7.19 Proof of Theorem 8.6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

8.8 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.9 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

9 Stabilization of Decentralized Systems
Over Communication Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
9.3 Existence of Decentralized Stabilizing Controllers

and Time-Varying Linear Feedback Laws . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.4 Decentralized Stabilization over Communication Channels . . . . . . 300
9.5 Multi-Sensor Structure with a Centralized Controller . . . . . . . . . . . . 305
9.6 Multi-Sensor and Multi-Controller Systems Driven by Noise . . . . 306

9.6.1 Multi-Sensor Systems Driven by Unbounded
Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

9.6.2 Multi-Controller Systems Driven by Unbounded
Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

9.7 Illustration of Binning and Its Use
in Decentralized Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

9.8 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.8.1 A Supporting Lemma .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.8.2 Proof of Theorem 9.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.8.3 Proof of Lemma 9.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.8.4 Proof of Lemma 9.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

9.9 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.10 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Part III Optimization in Networked Control: Design
of Optimal Policies Under Information Constraints

10 Optimization of Real-Time Coding and Control Policies:
Structural and Existence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
10.2 Policies and Action Spaces for Encoding .. . . . . . . . . . . . . . . . . . . . . . . . . 320
10.3 Single Terminal Case: Optimal Causal Coding

of a Partially Observed Markov Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
10.3.1 Single Terminal, Fully Observed Case. . . . . . . . . . . . . . . . . . 322
10.3.2 Partially Observed Markov Source. . . . . . . . . . . . . . . . . . . . . . 323
10.3.3 Structural Results for Systems with Control . . . . . . . . . . . 326



xiv Contents

10.4 Existence of Optimal Zero-Delay Quantizers . . . . . . . . . . . . . . . . . . . . . 327
10.5 Multiterminal (Decentralized) Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

10.5.1 Memoryless Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
10.5.2 Markov Sources: Nonclassical Information

Structure and a Counterexample Under Signaling . . . . . 330
10.6 Simultaneous Optimization of LQG Coding

and Control Policies: Optimal Quantization and Control . . . . . . . . . 332
10.6.1 Application to the LQG Setup: Separation

of Estimation and Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.6.2 Optimal LQG Coding and Control Policies

and Separation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
10.6.3 Existence of Optimal Quantization Policies . . . . . . . . . . . . 338
10.6.4 Partially Observed Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

10.7 Case with Noisy Channels and Noiseless Feedback . . . . . . . . . . . . . . 341
10.8 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

10.8.1 Proof of Theorem 10.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
10.8.2 Proof of Theorem 10.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
10.8.3 Proof of Theorem 10.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
10.8.4 Proof of Theorem 10.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
10.8.5 Proof of Theorem 10.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
10.8.6 Proof of Theorem 10.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
10.8.7 Proof of Theorem 10.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
10.8.8 Proof of Lemma 10.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
10.8.9 Proof of Theorem 10.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
10.8.10 Proof of Theorem 10.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

10.9 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
10.10 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

11 Optimal Coding and Control for Linear Gaussian Systems
Over Gaussian Channels Under Quadratic Cost . . . . . . . . . . . . . . . . . . . . . . . 373
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
11.2 Gaussian Source-Channel Pairs and Optimality

of Linear Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
11.2.1 Optimality of Linear Coding Policies

over a Gaussian Channel with Matching
Between the Source and the Channel . . . . . . . . . . . . . . . . . . . 374

11.2.2 The Gaussian Pair: Gaussian Sources and Channels . . . 375
11.2.3 Multi-Dimensional Source and Channels. . . . . . . . . . . . . . . 376

11.3 Joint Optimization of Encoder and Controllers for
Linear Systems Controlled Over Gaussian Channels . . . . . . . . . . . . . 377
11.3.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
11.3.2 Optimality of Linear Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

11.4 Stabilization over Gaussian Channels and Sufficiency
of Shannon Capacity Conditions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382



Contents xv

11.5 Two Counterexamples on Sub-optimality of Linear Policies . . . . . 385
11.5.1 Gaussian Relay Channels with Two

Encoders: Person-by-Person-Optimality
of Linear Policies and Lack of Convexity
of the Team Problem.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

11.5.2 A Decentralized Sensing Problem Over
Vector Gaussian Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

11.6 Looseness of Information Theoretic (Cut-Set) Bounds
for Gaussian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

11.7 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
11.7.1 Proof of Theorem 11.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
11.7.2 Proof of Theorem 11.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
11.7.3 Proof of Theorem 11.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

11.8 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
11.9 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

12 Agreement in Teams and the Dynamic Programming
Approach Under Information Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
12.2 Common Knowledge and Agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

12.2.1 Common Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
12.2.2 Asymptotic Agreement with Common

Priors but Different Posteriors. . . . . . . . . . . . . . . . . . . . . . . . . . . 401
12.2.3 Inconsistent Priors (Probability Models),

Lack of Agreement and Merging . . . . . . . . . . . . . . . . . . . . . . . 402
12.2.4 Agreement in Finite Time Over Noisy Channels . . . . . . . 404

12.3 Common Knowledge as Information State
and the Dynamic Programming Approach
to Team Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

12.4 k-Stage Periodic Belief Sharing Pattern
and Communication Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
12.4.1 k-Stage Periodic Belief Sharing Pattern . . . . . . . . . . . . . . . . 406
12.4.2 Minimum Communication for the Belief

Sharing Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
12.5 A Team Cost-Rate Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
12.6 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
12.7 Bibliographic Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

A Topological Notions and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
A.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
A.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
A.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
A.4 Convex Sets and Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
A.5 Optimization of Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
A.6 Contraction Mappings and Fixed-Point Theorems .. . . . . . . . . . . . . . . 433



xvi Contents

B Probability Theory and Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
B.1 Probability .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

B.1.1 Measurable Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
B.1.2 Integration .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
B.1.3 Probability Spaces and Random Variables . . . . . . . . . . . . . 438

B.2 Convergence of Probability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
B.3 Conditional Expectation and Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . 443
B.4 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

C Markov Chains, Martingales, and Ergodic Processes . . . . . . . . . . . . . . . . . . 447
C.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
C.2 Discrete-Time Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
C.3 Stochastic Stability of Dynamical Systems

and Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
C.3.1 Stationary, Ergodic, and Asymptotically

Mean Stationary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

D Markov Decision Theory and Optimality of Markov Policies . . . . . . . . . 455
D.1 Controlled Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

D.1.1 Fully Observed Markov Control Problem Model . . . . . . 455
D.1.2 Classes of Control Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
D.1.3 Optimality of Markov Policies and

Elimination of Irrelevant Information.. . . . . . . . . . . . . . . . . . 457
D.1.4 Markov Decision Processes (MDPs) and

Optimality of Markov Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 457
D.1.5 Dynamic Programming and Measurable

Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
D.1.6 Partially Observable MDPs (POMDPs) . . . . . . . . . . . . . . . . 459

D.2 Kalman Filter and Linear-Quadratic-Gaussian
Optimal Control Problem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481



Acronyms and Notations

trace(A) Trace of a square matrix A
det(A) Determinant of a square matrix A
1E Indicator function for event E
X A space of vectors
〈x, y〉 Inner product between x and y on a Hilbert space
B(X) The Borel σ-field on X

σ(y) σ-field generated by a random variable y
P(X) Set of probability measures on B(X)
R Set of real numbers
R

n Vector space of n-dimensional real vectors
Z Set of integers
Z+ Set of nonnegative integers
N Set of positive integers
Q A space of quantizers
Q Quantizer or channel depending on context
Πcomp,i Composite quantization policy for encoder i
Qi

t Quantizer used by agent i at time t
DM i or A i decision maker i or agent i
γi Policy of DM i, that is, {γit, t ≥ 0}
γ Ensemble of policies for all decision makers, that is, {γi}
Iit or Ii

t Information variable at agent i at time t
η Information structure inducing map {η1, . . . , ηN}
E

γ

P {·} Expectation under policy γ, with initial condition measure P
Ex Expectation conditioned on an initial condition realization x,

or with respect to a random variable x, depending on the context
H(·) Discrete entropy
h(·) Differential entropy
I(·; ·) Mutual information
D(P1||P2) Kullback–Leibler divergence between P1 and P2

xvii



xviii Acronyms and Notations

|x| Euclidean norm of a finite-dimensional real vector x
A′ or AT Transpose of matrix A
|S| Cardinality of a set S
A \B Set difference: {x : x ∈ A, x /∈ B}
A�B (A \B) ∪ (B \A)
ln(x) or log(x) Natural logarithm of positive real x
o Zero vector
T Time/stage index set, {1, 2, . . . , T } or {0, 1, . . . , T − 1}
N (L) Decision maker (DM) index set, {1, 2, . . . , N} ({1, 2, . . . , L})
u[k,s] Action (decision) variables from t = k to t = s for s > k,

{uk, uk+1, · · · , us}
u Collection of actions in N (or L): {u1, u2, . . . , uN}



Chapter 1
Introduction

This chapter provides an introduction to the field of networked control and thereby
to this book. It highlights the main approaches taken to address issues unique to
networked control and describes the scope of coverage and the contents of the book.

1.1 Information and Control

The interaction between information and control is a phenomenon that arises in
every decision and control problem. On the one hand, any performance-driven
controller requires information on the unknowns that affect the operation of the
underlying system; on the other hand, the quality of the relevant information itself
is typically affected by the choice of the control action in a closed-loop system.
Further, the transmission of information over communication channels with high
fidelity and the process of shaping the source output and recovering the transmitted
signal at the other end can themselves be viewed as controller design problems. This
book is a comprehensive undertaking aimed at furthering our understanding of this
interaction in the context of decentralized and networked control systems.

Networked control refers to a decentralized control system in which the compo-
nents are connected through real-time communication channels or a data network.
Thus, there may be a data link between the sensors (which collect information), the
controllers (which make decisions), and the actuators (which execute the controller
commands); and the sensors, the controllers, and the plant themselves could be
geographically separated.

With such a networked structure, many modern control systems are decentral-
ized. Such systems feature multiple decision makers (e.g., sensors, controllers, and
encoders) which have access to different and imperfect information, either cooperate
with or compete against each other. Such systems are becoming ubiquitous, with
applications ranging from automobile and inter-vehicle communications designs,
control of surveillance and rescue robot teams for access to hazardous environments,

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 1,
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Plant

Station 4

Station 3

Station 2

Station 1

Fig. 1.1 A decentralized networked control system. Solid lines show the interaction between the
control stations and the plant Dashed lines depict the possible communication links between the
stations

remote surgery, space exploration and aircraft design, and control of economic
systems, among many other fields of applications most of which involve remote
control.

In such decentralized networked control problems, one major concern is the
characterization of the minimum amount of information transfer needed for a
satisfactory performance and particularly for stability of the overall system. This
information transfer would be between various components of the networked control
system. One necessity for satisfactory control performance is the ability for the
controllers to track the plant state under various constraints on the communication
(see Fig. 1.1). Another set of challenges is the determination of the data rate
required for the transmission of control signals, and the construction of dynamic
encoding, decoding, and control policies meeting some selected design criteria.
Another important problem is the establishment of effective coordination among
multiple sensors or multiple controllers/decision makers using minimum possible
information exchange. Even in cases when communication resources are not scarce,
a strong understanding of the fundamentals can be useful in constructing the
system architecture, and finally, such an insight can help reduce the computation
requirements and complexity.

Various forms of system architectures have been introduced and studied in the
networked control literature. To be able to analyze different scenarios, it is important
to identify and formalize the probabilistic description of the system and characterize
the underlying information structure. Further, it is equally important to precisely pin
down the objective in the system design, whether it is stochastic stability (in some
appropriate sense) or optimization. Learning and identifying an unknown system
through observations and actions is another important issue. Finally, the notion
of signaling–that controllers could communicate through actions–is another aspect
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which has to be taken into account. In all this, it is essential to understand both
the qualitative and the quantitative values of information for achieving different
objectives in such networked settings.

The above description of a networked control system lies at the intersection of
three disciplines of applied mathematics and engineering, namely, decentralized
control (in view of information structures and decision making under measurability
constraints), stochastic control (in view of decision making under uncertainty),
and communication, information, and quantization theories (in view of information
exchange among decision makers). Finally, probabilistic analysis (in view of being
the ultimate mathematical tool needed to conduct a study in all of these disciplines)
plays an essential role in the understanding, analysis, and synthesis of such systems.

Our aim in this book is to bridge these three disciplines in a precise and
rigorous manner, while also conveying practical messages to systems designers and
controller architects. The field of networked control has had accelerated growth
during the past decade, but many of the problems and challenges that arise were
actually obstacles identified already in the 1960s and the 1970s. What makes
the situation different today is the accumulation (since that time) of an arsenal of
more powerful results and tools from information theory, source coding theory,
and the theory of Markov chains, directly applicable to the problems at hand.
Furthermore, we have a richer pool of computational algorithms, and the computers
of the current generation have significantly more processing power. The field has
reached some state of maturity, and it seems timely to collect and present the main
results in a book form. Furthermore, it is also useful to revisit many of the results
of the 1970s and the 1980s and blend them in such a treatise with the current
developments, as they have by no means lost their relevance. And this is another
one of our goals here.

1.2 Coverage and the Intended Audience

Within the framework of networked control systems and in discrete time, five
essential concepts are visited recurrently in the book:

• The characterization of information structures in team problems defined in
terms of measurability relations in a given probability space. Comparison and
topological properties of information structures for stochastic team optimization
problems and identification of information structures which may lead to a
systematic program for generation of optimal policies.

• Stochastic stability of systems (state, controller, and encoders). Converse results
through information theoretic analysis and constructive algorithms via stochastic
drift equations. Stochastic stability corresponds to the existence of an equilibrium
distribution, ergodicity of a process, or existence of finite moments.
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• The operational differences between information theoretic settings (which, in
the classical sense, requires an infinite ensemble of messages to be transmitted
or encoded) and real-time settings in control which do not tolerate delay.
Use of information theory in establishing fundamental bounds on information
requirements.

• Optimal information transmission under causality and delay constraints, and
jointly optimal channel and controller design for real-time systems, under a
variety of information structures. Structural results as well as existence results
on optimal policies.

• The notion of signaling, its utilization in decentralized stabilization, and the
technical issues that are associated with it, such as the lack of convexity, the
dual effect of control, and non-neutrality.

These concepts and notions are interweaved throughout the book, constituting
the backbone of a comprehensive theory of networked control. Specific results are
built on that foundation and seamlessly presented throughout the book.

What is Not Covered

As indicated earlier, networked control systems, and multi-agent systems in general,
entail multiple decision makers that provide input into the system using only local
(decentralized) information. Throughout the book the underlying assumption is that
the agents act in unison, toward a common goal, that is, as members of a team, even
though they do not necessarily share the information they acquire. An extended
framework would be one where the agents’ goals are not aligned and may even
be conflicting, which then cannot be cast as a decentralized team problem. Such
problems belong to the realm of dynamic noncooperative stochastic games, where
appropriate solution concepts are the Nash equilibrium or Stackelberg equilibrium,
or a blend of the two, depending on whether there is a hierarchy in decision making
or not [32]. Such problems entail other intricate issues and their analysis requires a
different set of tools, beyond the scope of the coverage here.

Another direction in which the framework of this book can be broadened is
as follows: The treatment in the book is restricted to settings where there is an
underlying probability space and all the variables in the system are well-defined
random variables on this probability space given the policies of the decision makers.
Such a Bayesian setting does not include the probability-free settings occasionally
used in control theory (as in robust control with distribution-free disturbances with
norm constraints [28]) and in information theory and machine learning (as in coding
and learning for individual sequences [90]). As objective or loss functionals, such
settings typically admit a min-max type formulation instead of minimization of the
expected value of a loss function with respect to a probability measure. This book
does not consider such settings explicitly; however, the approaches presented here
are applicable to many such scenarios.
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Intended Audience for the Book

The intended audience is broad, including academic as well as industrial researchers
interested in control theory, information theory, statistics, and applied mathematics.
As indicated earlier, the book adopts a probability theory, information theory, and
decentralized stochastic control theory view to networked control problems. To
comfortably follow the material in the book, the reader should be familiar with linear
systems (at the first-year graduate level), basics of information theory, and measure-
theoretic stochastic processes (again at the first-year graduate level). The reader is
also expected to have a basic understanding of Markov chains and martingale theory.
For those who do not have the requisite background, appropriate references are
provided throughout the development in the book, and four appendices are included,
covering some of this material as well as others.

1.3 Contents of the Book

The book is comprised of twelve chapters, organized into three parts, as described
below. It also has four appendices, providing background material.

1.3.1 Part I. Information Structures in a Networked Control
System

This part is primarily concerned with the mathematical description of a networked
control system as a stochastic dynamic team. It provides a treatise on stochastic
dynamic teams and a detailed investigation of information structures. Comparison
of different information structures is also covered.

In Chapter 2, a general probability theoretic framework for stochastic team
decision problems is established, by defining and classifying information structures,
interaction dynamics, policy spaces, and objective functions. A number of examples
are included to provide a gentle introduction to the concepts. Team problems and
information structures are classified according to various criteria. Solution methods
for static teams are presented, with particular emphasis on convex cost functions.
Dynamic teams are considered further in Chap. 3.

Chapter 3 focuses on comparison of information structures and solution
approaches to a class of dynamic team problems. Under nonclassical informa-
tion structures, the notion of signaling is introduced and thoroughly discussed.
Witsenhausen’s counterexample is studied, along with its generalizations and a class
of dynamic team problems involving Gaussian sources and channels. Expansion
of information structures is presented as a general recipe for studying dynamic
teams with nonclassical information patterns. Witsenhausen’s characterization of
information structures is also presented in this chapter.
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Chapter 4 investigates the optimal design of information structures and studies
a number of topological properties of information structures modeled as observa-
tion channels under various topologies. Continuity, compactness, concavity, and
existence properties are studied for single-stage and multistage optimal stochastic
control problems. An introduction to quantizers is given. Quantizers are viewed
as a special class of measurement channels, and existence of optimal quantizers is
established. Furthermore, a partial ordering on the value of information channels
for the minimization of cost functions is studied (known as Blackwell ordering).
Applications to empirical consistency and learning are discussed.The results pre-
sented in this chapter are used extensively later in Part III.

1.3.2 Part II. Stabilization of Networked Control Systems

This part focuses on the stabilization of networked control systems, for both single-
sensor/controller and multi-sensor/controller systems, and comprises five chapters.

The chapters in this part introduce fundamental criteria that need to be satisfied
for stochastic stabilization. Constructive methods are presented which meet the
fundamental (converse) bounds. The constructive proofs utilize a drift approach
offered in a number of recent papers by us and our collaborators. Toward further
understanding the value of information channels in stochastic control, it is shown
that Shannon capacity provides a total ordering on the set of channels for the
existence of policies for stochastic stability and ergodicity properties.

Chapter 5 introduces policies and actions regarding the selection of quantizers
and controllers in networked control. It reviews fundamentals of information
theoretic notions. The chapter exhibits the important differences between the real-
time communication formulation and the traditional Shannon theoretic setup which
allows for large blocks of data (with unbounded block length) to be encoded and
transmitted. This distinction is highlighted in the context of distortion-constrained
quantizer design and the rate-distortion theory. The chapter also establishes funda-
mental lower bounds on information rates needed for various forms of stochastic
stabilization. These lower bounds are further studied in Chap. 9.

Chapter 6 is an important one for the general program of Part II, where random-
time state-dependent stochastic drift criteria for stabilization of Markov chains are
established together with a class of application areas in networked control systems.
Criteria for transience and other forms of stochastic stability are presented. Related
background material is reviewed in Appendix C.

In the context of stochastic stabilization of linear sources driven by noise with
unbounded support, controlled over information channels, Chap. 7 focuses on
finite-rate noiseless channels and provides the architectural setup for coding and
control policies. Chapter 8 investigates stabilization over erasure channels, discrete
memoryless channels with and without feedback as well as a class of continuous-
alphabet channels (Gaussian channels are further discussed in Chap. 11). A common
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theme in these chapters is the relationship between Shannon capacity and the
ergodicity of the controlled Markov process: For ergodicity (under additional
technical assumptions), Shannon capacity (with feedback) provides a boundary
condition in the space of communication channels for stochastic stabilization of
unstable linear systems. For finite moment stability, however, further conditions are
required both on the channels and on the tail distributions of the system noise. The
results in these chapters also include extensions to multidimensional and partially
observed settings.

Chapter 9 considers stabilization under a decentralized information structure for
multi-sensor and multi-controller systems. Existence results on stabilizing policies
under the decentralized information structure are obtained. In the absence of
noise, it is shown that multi-controller systems, unlike multi-sensor systems with
a centralized controller, entail a rate loss due to decentralization. The noisy cases
are also investigated and rate conditions are established for multi-sensor systems.

1.3.3 Part III. Optimization in Networked Control: Design
of Optimal Policies Under Information Constraints

The third, and final part of the book, comprising three chapters, studies simultaneous
design of optimal encoding and control policies for networked control systems.

Chapter 10 establishes the structure of optimal quantization policies under
various information structures for general cost functions. The coverage includes
both single decision maker and multiple decision maker formulations, with partial
as well as full observation. A dynamic programming approach is presented building
on classical results by Witsenhausen, and Walrand and Varaiya. The chapter also
presents optimal solutions for encoders and controllers under quadratic performance
measure for linear Gaussian systems controlled over discrete noiseless channels.

Chapter 11 obtains optimal solutions for encoders and controllers under quadratic
cost functions for linear Gaussian systems controlled over Gaussian channels,
proving also the existence of optimal solutions. Furthermore, the chapter identifies
conditions under which optimal coding and control policies are linear. Counterex-
amples on sub-optimality of linear policies are also presented.

Chapter 12 presents the notions of agreement and common knowledge and
addresses the question of how to achieve common knowledge. The chapter presents
a general framework for obtaining solutions to dynamic team problems under de-
centralized information structures based on dynamic programming and an evolving
common knowledge, and applies this primarily in the context of the belief sharing
information pattern. Information rates required for tractability of optimal solutions
are also presented. Finally, the chapter introduces a team cost-rate function, which
provides the minimum cost subject to a rate constraint on the information exchange
among members of a team.
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1.4 A Guide for the Reader or the Instructor

For students who have a background in stochastic processes at the first-year graduate
level and who are also familiar with the basics of information theory, the book can
be used as a textbook in a course on networked control systems or stochastic control
or multi-agent decision making. It could also be used in a special topics course or as
an independent resource.

For a graduate-level course on decentralized control where the students do not
have any background on communication theory at the graduate level, Chaps. 2, 3, 4,
9, 10, 11, and 12 together with the Appendices can be used as primary or supporting
material. A basic information theory background can be acquired from standard
textbooks, such as [103] or [151]. For further advanced topics on information theory,
the reader is referred to advanced texts such as [107] or [153].

Chapters 2, 3, 4, 6, 10, and 12 together with the Appendices can be used as
primary or supporting material in a graduate-level course on Stochastic Control with
limited information theory content.

For students who do not have a background at a graduate-level stochastic process
course, all chapters except Chaps. 4, 6 should be accessible.

For students who are familiar with information theory, but not stochastic control
and optimization, all chapters should be accessible with some further reading.
The stochastic control and optimization fundamentals could be supplemented by
resources such as [84, 194, 225, 269], and [14] on stochastic control and [55] and
[242] on optimization. The material in Chap. 6 can be supplemented by [271].
A further useful reference is [189].

A useful related book in the literature on networked control systems is the
text by Matveev and Savkin [266], which has partial overlap with the material in
Chaps. 7, 8, and 9 of this book, even though the approaches are different. The two
books can be used as complementary resources.
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Chapter 2
Networked Control Systems as Stochastic Team
Decision Problems: A General Introduction

2.1 Introduction

Networked control systems can be viewed as stochastic decision problems with
dynamic decentralized information structures or as stochastic dynamic teams, with
each subcontroller viewed as an agent in a dynamic team. The goal of this
introductory chapter is accordingly to introduce the reader to a general mathematical
formulation of stochastic teams, first with static and then with dynamic information
structures, and to discuss some salient features of these decision problems and
associated solution concepts through some simple but illustrative examples.

The chapter discusses both static stochastic teams (i.e., team decision problems
where the information signals received by the decision makers are not affected by
actions) and dynamic stochastic teams (where the information of at least one deci-
sion maker is affected by action). Sections 2.2, 2.3, and 2.6 deal with static teams,
whereas Sects. 2.4 and 2.5 discuss dynamic teams. Section 2.2 provides a general
formulation for static teams, which is followed by a complete analysis of a finite
stochastic team problem under various information patterns, in Sect. 2.3. Section 2.6
provides some general explicit results on existence, uniqueness, and characterization
of optimal solutions first for general static teams and then for special classes of
teams with Gaussian statistics: those with quadratic and exponentiated quadratic
costs.

Sections 2.4 and 2.5 can be viewed as the counterparts of Sects. 2.2 and 2.3
for dynamic teams. First a precise mathematical formulation for dynamic team
decision problems is given, in Sect. 2.4, along with various dynamic information
structures and appropriate solution concepts, and then an illustrative example of
a finite dynamic team is provided in Sect. 2.5, within the framework of which
some important features of optimal solutions in teams are discussed. The chapter
concludes with Sect. 2.7 which provides some bibliographical notes and guidelines
for further reading on the topics covered herein.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 2,
© Springer Science+Business Media New York 2013
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2.2 A Mathematical Framework For Static
Decision Problems

Multiple person stochastic decision problems could be formulated with varying
degrees of generality, abstraction, and rigor, depending on the types of problems to
be solved (i.e., the scope of coverage) and the level of mathematical sophistication
to be expected from the reader. Common to all possible formulations, however, is
the specification of five basic ingredients which are essential for a well-founded
mathematical treatment of decision making under uncertainty. These are:

1. The number of decision makers (synonymously, agents or controllers) and the
sets of alternative actions (synonymously, decisions or controls) available to
them

2. The uncertainty and its probabilistic description
3. The information acquired by each decision maker on the uncertainty and the

previous actions
4. The payoff (or loss) that accrues to each decision maker as a result of joint actions

(over the decision period) and realization of uncertainty
5. A solution concept whereby “best” or “satisfactory” decision rules can be

chosen

Before going into further specification of these entities, let us pause to introduce
some terminology and notation which will be needed in the sequel. We will refer
to a decision problem as static if the information available to each decision maker
is independent of the actions of other decision makers (this statement will be made
precise later in the section as well as in Sect. 3.8); otherwise, the decision problem
is said to be dynamic. We will refer to decision makers interchangeably as agents
or controllers, with the ith one denoted Ai, where i takes values in the set N :=
{1, . . . , N} which is called the agent (decision maker) set. The variable under the
control of each decision maker will be called the action (synonymously, decision
or control) variable and will be denoted by ui for Ai. Each ui will take values in
a given action set to be denoted by U i. Finally, the N -tuple (u1, . . . , uN) will be
denoted by u and the product action space U1 × · · · × UN by U.

Basic Ingredients of Static Decision Problems

In the static framework we will initially study the class of problems where the action
sets, U i, i ∈ N , are either (finitely or infinitely) countable or uncountable but finite
dimensional. In the latter case, we take the action set (space) to be isomorphic to the
Euclidean1 space R

mi , for some integer mi, i ∈ N ; furthermore, if there are any

1Some background material on sets and topological notions can be found in Appendix A.



2.2 A Mathematical Framework For Static Decision Problems 13

constraints imposed on the action variable ui, we introduce the action constraint set
Si, for Ai, as a proper subset of U i.

The uncertainty in the decision problem is captured in the so-called random state
of nature, ξ, which is a random variable (or vector) defined on a given probability
space (Ω,F , PΩ)2 and taking values in the Borel space (Ξ,B(Ξ)) where eitherΞ ≡
R

m for some positive integer m or Ξ is a countable set. Let P be the probability
measure induced by ξ on (Ξ,B(Ξ)), corresponding to PΩ . To save from notation,
the corresponding probability distribution function will also be denoted by P .

The decision makers do not, in general, have direct access to the true state of na-
ture but instead observe the value of some other variable, known as the measurement
(or information) signal. To define this quantity in precise mathematical terms, let us
first introduce, for each i ∈ N , the information field, Yi, for agent Ai as a given
sub σ-field of B(Ξ), generated by a measurable function ηi mapping (Ξ,B(Ξ))
onto (Y i,Bi). This is known as the information function for Ai, and the N -tuple
η := (η1, . . . , ηN ) is called the information structure (or information pattern) of the
decision problem. The information function ηi induces a σ-field, Yi, of Ξ , and the
information (measurement) signal yi of Ai (which lies in the measurement set Y i)
is generated according to ηi, which is symbolically written as

yi = ηi(ξ) ≡ η̃i(ω) , (2.1)

where the latter relates the measurement signal directly to the original probability
space Ω, with elements ω. This is sometimes a more convenient representation to
work with, especially ifΩ is finite or countable. In that case one can considerΩ and
Ξ to be essentially the same set and thereby view Yi also as a partition of Ω, which
is a convention we henceforth adopt. In the case of finite probability spaces we will
also adopt the convention, perhaps by a slight abuse of notation and terminology,
that the measurement signal yi can be considered as an element of the partition
set Yi.

The decision makers determine their actions using the measurement signals that
they receive, under the strategies that they adopt for transforming measurements into
actions. The strategy (synonymously, decision rule (function) or control law) of Ai
will be denoted by γi and is formally defined as a measurable mapping from (Ξ,Yi)
into the space (U i,BUi). This can also be written as a measurable mapping from
(Y i,Bi) to (U i,BUi), as we state explicitly below. We denote the set of all such
mappings, which also satisfy the additional constraints that may have been imposed
on ui, by Γ i, to be called the strategy space of Ai, and note the relationship

ui = γi(yi) = γi(ηi[ξ]),

2Necessary background material on probability theory, along with an explanation of the terminol-
ogy and notation used here, can be found in Appendix B.
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where the latter relates the action variable to the state of nature, ξ. We will denote the
N -tuple (γ1, . . . , γN ) by γ, and the product strategy space Γ 1×· · ·×ΓN by Γ. The
individual strategy spaces Γ i may also include the additional structural constraints
that may have been imposed on the policies, such as linearity. What is not allowed
in general, however, is for Γ to be nonrectangular, that is, for the choice out of Γ i

(for some i) to restrict the choice out of Γ j(j 	= i). For example, our formulation
(at this point) does not cover “cross-constraints” of the type f(ui, uj) ≤ 0, i 	= j,
for some functional f .

Given an (N+1)-tuple (ξ,u) ∈ Ξ ×U, the loss incurred to the decision makers
viewed collectively as a team will be denoted by L(ξ,u), where the function
L : Ξ × U → R is known as the loss function for the team. Its negative,
−L(ξ,u) =: U(ξ,u), is known as the payoff function, which all agents collectively
want to “maximize,” in a sense to be defined shortly. Implicit here is the assumption
that for the team there exists a unique (up to equivalence) utility function which
numerically orders different outcomes corresponding to joint actions and realization
of the state of nature, in a way consistent with the team’s preference ordering among
different alternatives.

The loss incurred is generally a random quantity, the randomness appearing
through both ξ and u, where the latter depends on ξ through the measurement
signals and the strategies adopted by the decision makers. Therefore, one rather
works with the expected value of this quantity, which we will be referring to as the
cost function.3 Other possible terminology would be expected loss function, average
risk, or expected cost, all of which have been used in the literature, which we will
also use interchangeably. The cost function, J : Γ → R, is defined on the product
strategy space Γ as4

J(γ) =

∫
Ξ

L(ξ, γ(η[ξ]))P (dξ) = E[L(ξ, γ(η[ξ]))] =: EξL(ξ, γ(η[ξ])), (2.2)

where
γ(η[ξ]) := (γ1(η1[ξ]), . . . , γN(ηN [ξ])) (2.3)

and Eξ is the operator that takes the expected value of the quantity it precedes, over
ξ. To show the explicit dependence of J on also the information structure η, we
will sometimes use the notation J(γ, η) and occasionally use J(γ, η;L, P ) to also
indicate the dependence on the loss function L and the probability distribution P .

The specification of J , along with the product strategy space Γ, provides a
complete characterization (aside from the solution concept) of a stochastic multiple
person decision problem and is known as the normal form description. Note that in

3There would be other ways of making the objective function deterministic, such as defining the
cost function as the probability of the loss exceeding a given ceiling or taking it as the supremum
of the loss function over ω ∈ Ω. We will not be devoting much discussion to such formulations in
the book.
4See Appendix B for an explanation of the notation used here.
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this description, the information structure is suppressed and it enters the problem
formulation only through the strategy spaces Γ i, i ∈ N . The description which
lays out explicitly the dependence of the measurement signals on the unknown
state of nature is known as the extensive form description of the underlying (static)
stochastic decision problem. The distinction between these two forms should be
more transparent when we introduce dynamic decision problems, later in this
chapter. We should note, however, that the two forms are in fact equivalent in the
sense that they both uniquely characterize a given stochastic decision problem; the
essential difference is that sometimes it is more convenient to work with one form
than the other.

Notion of Optimality

In the framework laid out above, it would have been possible to endow each
decision maker (agent) with a different loss function and also possibly a different
subjective probability measure regarding the unknown state of nature. Either of
these departures would take us outside the realm of team problems and necessitate
consideration of the more general framework of stochastic (zero-sum or nonzero-
sum) games, with associated solution concepts, such as saddle-point equilibrium
or Nash equilibrium [32]. Covering this more general framework is outside the
scope and the goals of this book, as here our interest is in problems originating
in networked control systems, where decision makers have common objectives and
act as a team, even though the information may not be centralized. More precisely:

A team is a collection of individual decision makers who strive for the same goal, using the
same (probabilistic) model of the underlying decision process, but not necessarily sharing
the same online information (such as measurements) on the uncertainty.

For anN -person stochastic team problem, since all agents will be striving toward
the same goal, with team preferences quantified in the given loss functional, the only
reasonable solution that leads to optimal behavior is the global minimization of the
team cost over the product strategy space. Hence, we have

Definition 2.2.1. For a given stochastic team problem with a fixed information
structure, {J ;Γ i, i ∈ N}, a strategy N -tuple γ∗ := (γ1

∗
, . . . , γN

∗
) ∈ Γ is an

optimal team decision rule (synonymously, team-optimal decision rule or simply
team-optimal solution) if

J(γ∗) = inf
γ∈Γ

J(γ) =: J∗, (2.4)

provided that such a strategy exists. The cost level achieved by this strategy, J∗, is
the minimum (or optimal ) team cost. �

In the above definition of “optimality in a team,” we have taken the information
structure as fixed and given a priori. Even though the class of systems one typically
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encounters are primarily of this type, it is worth mentioning that it is possible
to consider the information structure of the problem as a variable, alongside the
strategies of the agents. In fact, in the theory of organizations (as well as to a large
extent in the design of networked systems), the prime goal is to obtain an optimal
design for the pair (γ; η) which is known as the organizational form (Marschak
and Radner [255]). Of course, to make the problem meaningful, we have to impose
some restrictions on η (such as belonging to some prescribed class of comparable
information structures, say N ) or attach some cost to it which would be directly
proportional with its value.5 In the absence of such realistic restraints on η, the
problem will admit the trivial solution where η∗ (the optimal η) allows the agents
to acquire perfect information on the state of nature, ξ, and thereby γ∗ to depend
directly on ξ. Under realistic organizational constraints, however, say with η ∈ N,
an optimal design (γ∗; η∗) ∈ Γ× N will have the property that there exists no η ∈ N
such that

inf
γ∈Γ

J(γ; η) < J(γ∗; η∗) (2.5)

where the cost function J may also include some additional (possibly additive)
terms reflecting the costs associated with various η’s. Furthermore, the policy
space Γ implicitly depends on the choice out of N, so that the product Γ × N
is actually not rectangular. Note that a natural way of obtaining an optimal
organizational form would be to minimize the function J(γ∗

η
; η) over η ∈ N, where

γ∗
η

is the team-optimal solution corresponding to the fixed information structure η.

We use a subscript on γ∗ here to explicitly point out the fact that the team-optimal
solution depends on η structurally and in general in a fairly complicated manner,
which makes the further optimization of J , as η varies over N, a rather complex
problem (not of the standard type), unless the cardinality of N is finite.

One important feature of the team-optimal solution that is worth mentioning
at this point (perhaps as a cautionary remark) is that multiple solutions are not
necessarily interchangeable. For a two-person team problem, for example, if the
pairs of policies (γ1, γ2) and (β1, β2) are two team-optimal policy pairs, then it
is not necessarily true that the pair (γ1, β2) will also constitute a team-optimal
solution. Hence, in case of nonuniqueness of the solution, the agents need to have
a common consistent rule as to which one of the possible solutions to adopt, in
order to arrive at the optimum. This may require some pre-communication and pre-
commitment to some protocols among the agents.

A weaker solution concept than that of team-optimality introduced in
Definition 2.2.1 is that of person-by-person optimality, equivalently Nash equilib-
rium, introduced next.

5At this point this is a rather imprecise statement. The precise meaning of value of a given
information structure and the notion of one information structure being more valuable (or better)
than another one will be introduced and studied in the next chapter, particularly Sect. 3.2.
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Definition 2.2.2. For a given N -person stochastic team with a fixed information
structure, {J ;Γ i, i ∈ N}, an N -tuple of strategies γ∗ := (γ1

∗
, . . . , γN

∗
) consti-

tutes a Nash equilibrium (synonymously, a person-by-person optimal
(pbp optimal) solution) if, for all β ∈ Γ i and all i ∈ N , the following inequalities
hold:

J∗ := J(γ∗) ≤ J(γ−i∗, β), (2.6)

where we have adopted the notation

(γ−i∗, β) := (γ1∗, . . . , γi−1∗, β, γi+1∗, . . . , γN∗). (2.7)

�

Remark 2.2.1. Nash equilibrium is a weaker solution concept than team-optimality
(cf. Definition 2.2.1), since satisfaction of the N inequalities (2.6) is clearly
necessary but not sufficient for γ∗ to be an optimal team decision rule. But, since
every team-optimal solution is necessarily a pbp optimal solution, the latter plays an
important role in the derivation of the former, as we will see later in the book, with
the first demonstration being in Sect. 2.6. �

In the next section, we depart from the abstract formulation of the present section
and provide an illustrative example which will aid in better understanding of the
concepts introduced above.

2.3 An Illustrative Example of a Finite Stochastic Team

A stochastic team problem is said to be finite if both the action and the uncertainty
sets are finite. In this case (as we have indicated earlier) there is no need to make
any distinction between Ω and Ξ ,6 and one may as well work in the original
probability space (Ω,F , PΩ) where the probability measure will be replaced with
the probability masses {pj = PΩ({ωj})}#j=1 where ωj is an element of Ω with
positive probability, and # := |Ω|, the cardinality of Ω, with those elements of
Ω receiving zero probability from PΩ being irrelevant to the decision problem and
therefore deleted. By a possible abuse of terminology, we will call the # elements
of Ω the states of nature. We note that F is a collection of all subsets of Ω (hence it
has 2# elements), and Yi can be taken, without any loss of generality, as a partition
of Ω, for each i ∈ N .

Every two-person finite stochastic static team can be represented by a family of
matrices, each matrix (and there will be# of them) corresponding to a different state
of nature, ω. The rows of these matrices would correspond to action choices of one
agent, say A1, the columns would correspond to action choices of the other agent,
A2, and each entry would be the corresponding loss to the team for that particular ω.

6Actually here the only requirement is that the uncertainty set be finite.
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This, together with a specification of the class of all possible information signals,
(Y1,Y2), would constitute the extensive form description for the team. Such a
set-up can also naturally be extended to N -person finite static teams, where now
the matrices are replaced by N -dimensional hypercubes.

One approach (and a universally applicable one) toward obtaining the team-
optimal solution(s) of such finite static teams is to convert the above extensive form
into a normal form by relating the strategies of the agents directly to the (expected)
costs that accrue to the team. As we have indicated earlier, such a formulation
would suppress the information signals as well as the role of nature in the decision
problem, and it would involve only a single finite, albeit larger dimensional, matrix
(or hypercube, if there are more than two agents) whose columns and rows are
strategy choices of the agents and whose lowest entry (or entries) would yield
the team-optimal solution. Note that for Ai the number of alternative strategies
(i.e., |Γ i|) would be |U i||Yi|, and hence a derivation based solely on the normal
form could easily get intractable if either the number of information signals or the
cardinality of the action set for at least one agent is large. It is therefore necessary
to look for alternative ways of obtaining the solution, by also exploiting the nature
of the information available to the agents. Note that the solution to a finite static
stochastic team problem always exists (but it may be nonunique), since it involves
optimization over a finite set.

With this prelude, we consider in this section a two-person static stochastic
team problem where U1 = {U(up), D(down)}, U2 = {L(left), R(right)},
Ω = {ω1, ω2, ω3}, p1 = p2 = 0.3, p3 = 0.4, and the loss matrices are given by

A2

L R
A1 U 1 0

D 3 1
ω : ω1 ↔ 0.3

A2

L R
U 2 3
D 2 1
ω2 ↔ 0.3

A2

L R
U 1 2
D 0 2
ω3 ↔ 0.4

Under various information structures for the team, we now study the derivation of
team-optimal decision rules and some of their properties.

1. Perfect measurements

Here both agents have access to the true state of nature, and hence Y1 = Y2 =
σ({{ω1}, {ω2}, {ω3}}), the σ−field generated by the singletons. The cardinality
of the strategy spaces (Γ 1 and Γ 2) is 23 = 8 each, and hence the normal form
is an 8 × 8 matrix, requiring a comparison of 64 entries. The normal form of a
decision problem could also be called a pre-commitment model, since the strategies
of the agents tell them what to do under all possible realizations of the information
signal, even before the actual state of nature is realized. If, however, the agents
wait to make their decisions until after they receive the measurements (which we
may call the post-commitment scenario), then the dimension of the problem could
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be reduced significantly. This is particularly true when the agents’ measurements
are identical, as in the present case, where intuition tells us that we may, without
any loss of generality, obtain the minimum value of L(ω;u1, u2) for each ω ∈ Ω
and then construct the optimal decision rules from the solutions of these individual
(deterministic) teams. A mathematical justification for this intuitively appealing
approach follows from the identity

J∗ := min
γ1,γ2

J(γ1, γ2) = min
γ1,γ2

EωL(ω; γ
1(ω), γ2(ω))

≡ Eω{min
u1,u2

L(ω;u1, u2)}, (2.8)

which is true since the agents have perfect measurements on ω. Note that the
inner minimization in (2.8) involves the minimization of 3 loss matrices with four
elements each, while the normal form required the minimization of a cost matrix
with 64 elements.

The individual minima of L(ω;u1, u2) are

minL(ω1;u
1, u2) = L(ω1;U,R) = 0,

minL(ω2;u
1, u2) = L(ω2;D,R) = 1,

minL(ω3;u
1, u2) = L(ω3;D,L) = 0,

which lead [from (2.8)] to J∗ = 0.3 and the unique team-optimal decision rules:

γ1
∗
(ω) =

{
U, ω = ω1,

D, else,
γ2

∗
(ω) =

{
L, ω = ω3,

R, else,

which we rewrite symbolically as

γ∗ = (UDD,RRL),

a convention we adopt (and will henceforth use) for representing strategies in finite
spaces.

As a final note we point to the observation that even though the policy pair
(UDD,RRL) is unique as a team-optimal solution (which is also, by defini-
tion, pbp optimal), it is not the unique pbp optimal solution. The policy pair
(UUD,RLL) is also pbp optimal, but it carries the unfavorable cost of 0.6 which
is significantly higher than J∗.

2. Imperfect identical measurements

Here we consider the situation where the agents can distinguish only between
the pair (ω1, ω2) and the singleton ω3, and hence Y1 = Y2 =: Y =
σ({{ω1, ω2}, {ω3}}). The strategy spaces have four elements each, leading to a 4×4
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matrix as the normal form. We write out this matrix, for instructional purposes, with
the notation γi(yi) = (a, b) (with a, b denoting the possible actions of the agents)
standing for

γi(yi) =

{
a, yi = {ω1, ω2},
b, else,

A2

LL LR RL RR
UU 1.3 1.7 1.3 1.7

A1 UD 0.9 1.7 0.9 1.7
DU 1.9 2.3 1.0 1.4
DD 1.5 2.3 0.6* 1.4

The matrix has a unique minimum entry, as indicated, and hence the team
problem under the given information pattern admits the unique optimal solution
γ∗ = (DD,RL), yielding a cost level of J∗ = 0.6. Note that this is twice the
optimal cost level attained under the perfect state measurements, and we can refer
to the difference between the two (informally) as the “value” of the additional
measurement which enables the agents to distinguish between the two states ω1 and
ω2. Note also that in addition to the team-optimal solution given above, the problem
admits one other pbp optimal solution, which is (UD,LL), with a corresponding
(unfavorable) cost level of 0.9.

An alternative derivation for the team-optimal solution, which would involve
lower-dimensional matrices, follows from a reasoning similar to the one used for
the perfect information case. Here the counterpart of (2.8) would be

J∗ := min
γ1,γ2

J(γ1, γ2) = min
γ1,γ2

EωL(ω; γ
1(y), γ2(y))

≡ Ey{min
u1,u2

Eω|yL(ω;u
1, u2)}, (2.9)

where we have used the “iterated property” of the conditional expectation: Eω =
EyEω|y where Eω|y is the conditional expectation of the random variable it
precedes, given that y ∈ Y has been observed.7 Also, since we are operating in
finite spaces, expression (2.9) is well defined and thus we are allowed to interchange
the operations of outer expectation (over y ∈ Y) and minimization (over γ ∈ Γ ).
Now, the inner minimization in (2.9) involves two matrices, corresponding to two
different (and exhaustive) choices for y : y1 = {ω1, ω2} and y2 = {ω3}. These

7For this and other properties of conditional expectation the reader is referred to Appendix B.
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matrices, which we may call conditional cost matrices, are as follows, with the
unique optimal solution indicated in each case8:

A2

L R
A1 U 1.5 1.5

D 2.5 1.0*
y : y1 ↔ 0.6

A2

L R
U 1 2
D 0* 2
y2 ↔ 0.4

Since y1 occurs with probability 0.6 and y2 with probability 0.4, the (average)
optimal team cost is J∗ = (0.6)(1) + (0.4)(0) = 0.6, attained by the unique pair
of decision rules (DD,RL). Note that the first matrix admits one other pbp optimal
solution (U,L) which, together with the team-optimal solution of the second matrix,
leads to a pbp optimal solution for the original team, (UD,LL), which is the one
found earlier using the 4× 4 normal form.

3. No measurements

When neither agent makes any measurements, Y1 and Y2 are trivial σ−fields
{∅, Ω}, and hence all permissible decision rules are constant maps. The normal
form is the 2× 2 matrix

A2
L R

A1 U 1.3* 1.7
D 1.5 1.4

from which we immediately read: J∗ = 1.3 and γ∗ = (U,L).

4. Nonidentical measurements: Perfect for A2 and none for A1

This is the first nonsymmetric information structure that we will be studying. The
information sets are Y2 = σ({{ω1}, {ω2}, {ω3}}), Y1 = σ({ω1, ω2, ω3}), leading
to eight elements for Γ 2 and two for Γ 1. The normal form is given by the two-by-
eight matrix

A2
LLL LLR LRL LRR RLL RLR RRL RRR

A1 U 1.3 1.7 1.6 2.0 1.0 1.4 1.3 1.7
D 1.5 2.3 1.2 2.0 0.9 1.7 0.6* 1.4

8The entries of the first matrix are obtained from the relationship Eω|y1L(ω; u
1, u2) =

L(ω; u1, u2)p1|1 + L(ω; u1, u2)p2|1, where p1|1 and p2|1 are the conditional probabilities, each
equal to 1/2.
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and the unique team-optimal solution is, as indicated, γ∗ = (D,RRL), and the
value is J∗ = 0.6. Note that the optimal cost is the same here as in case 2, even
though the information structures are incomparable. (As compared with case 2,
here A1 has worse and A2 has better information, in the sense that Y1

(4) ⊂ Y1
(2)

and Y2
(4) ⊃ Y2

(2), where the subscripts on Y refer to the two different cases and

inclusion is a strict one.9)
The question arises now as to whether a procedure similar to those used in cases 1

and 2 could also be used here to simplify the derivation (i.e., to avoid working
with a large dimensional matrix, each entry of which has to be computed). Clearly,
an identity such as (2.9) cannot be used since the agents do not make identical
measurements. However, for each fixed decision rule γ1 of A1 (and there are only
two), one can obtain the best response (minimizing solution) T (γ1) for A2 by using
the original matrices, since A2 has perfect information:

γ1 = U ⇒ γ2 = T (U) = (RLL) ⇒ J(U, T (U)) = 1.0,

γ1 = D ⇒ γ2 = T (D) = (RRL) ⇒ J(D,T (U)) = 0.6.

The best choice for A1, then, is γ1
∗
= D, and the corresponding best response for

A2 is γ2
∗
= T (D) = (RRL), thus agreeing with what we had obtained earlier.

The above is yet another procedure for obtaining the team-optimal solution in
two-person stochastic teams: Fix the policies of one of the agents (preferably the
one whose strategy space has fewer elements), obtain the best response of the other
agent to each such policy, and compute the corresponding (average) team cost in
each case. The lowest such cost is the optimal team cost, and the corresponding
policies are the team-optimal decision rules. Such a procedure is always justified
because of the following sequence of identities (where we have taken A1 as the
starting agent):

J∗ = min
γ1

min
γ2

EωL(ω; γ
1(y1), γ2(y2))

≡ min
γ1

Ey2

{
min
u2

Eω|y2L(ω; γ1(y1), u2)

}

≡ min
γ1

EωL(ω; γ
1(y1), T (γ1)(y2)).

This would be applicable even if Y1 and Y2 do not satisfy an inclusion relationship
(in the particular case above we had Y1 ⊂ Y2), but then one has to construct new
conditional cost matrices (|Y2| of them, each of dimension |Γ 1|-by-|U2|) in order
to obtain the optimal response of A2. [See the next case for an information structure
of the type where the inclusion does not hold.]

9An equivalent statement would be Γ 1
(4)

⊂ Γ 1
(2)

and Γ 2
(4)

⊃ Γ 2
(2)

. A more formal treatment of
comparison of two information structures will be done in the next chapter, in Sect. 3.2.
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5. Nonidentical imperfect measurements

This case will serve to illustrate a point which is sometimes very useful in the
derivation of team-optimal solutions. Consider the information structure given by
Y1 = σ({{ω1}, {ω2, ω3}}) and Y2 = σ({{ω1, ω2}, {ω3}}), where an inclusion
property does not hold between Y1 and Y2. This, therefore, does not fall into any
of the categories of information structures considered so far in this section (for the
specific example). The two methods of derivation here would be:

(a) The direct solution based on the normal form (which is a 4× 4 matrix)
(b) The sequential approach (which involves two 4×2 matrices and hence does not

offer any savings (and thereby advantage) over the normal form)

These are the two general methods which would be applicable to this class of
problems; however, in the present case a simple (but useful) observation yields the
solution immediately: The team-optimal decision rules γ1

∗
and γ2

∗
for case 1 (i.e.,

under perfect measurements) are also well-defined functions on the signal spaces
Y1 and Y2 above, and hence under the right kind of interpretation, they belong to
the strategy spaces Γ 1 and Γ 2 of the present problem. The information structure in
case 1 being richer (in fact, the richest possible),10 this observation directly implies
that the pair {γ1∗ = UD, γ2

∗
= RL} is the unique team-optimal solution of

the new problem with “coarser” information. Note that the pair (UD,RL) here
is indeed the pair (UDD,RRL) of case 1, simply rewritten using the adopted
convention, on the restricted information space. If we write them out, they both
correspond to

γ1
∗
(y1) =

⎧⎨
⎩
U, y1 = {ω1},

D, else,
γ2

∗
(y2) =

⎧⎨
⎩
R, y2 = {ω1, ω2},

L, else.

A mathematically precise statement of the property (of the team-optimal solution)
used here will be given later in the chapter.

6. “Noisy” measurements

For reasons which will become clear later, it is useful to distinguish between
“imperfect” and “noisy” measurements. The information signals of cases 2 and
5, studied above, belong to the former category because they do not bring in
additional uncertainty into the problem formulation, other than what exists already
in the complete description of the cost matrices. In a sense, an imperfect measure-
ment brings in a refinement on the information available to an agent under the

10At this point, this statement should be interpreted as saying “there is no other information
structure which provides the agents with more information on the state of nature.” The underlying
notion will be made precise later.



24 2 Networked Control Systems as Stochastic Team Decision Problems. . .

no-measurement scenario (such as case 3) without bringing in additional elements
of uncertainty. In the “noisy measurement” case, however, the sample space has
some additional elements which are not needed in the complete description of the
loss (payoff) functions. To further elaborate on this point, consider the scenario
depicted below, which uses essentially the same team problem as before, but with a
different type of information.

Agent A2 makes no measurements, while A1 observes the value of a random
variable z, taking two possible (distinct) values, y1 and y2. The loss matrices are
the same as before, where we now adopt a different symbol, x, to replace ω, with
xi = ωi. To complete the description of the team problem, we now specify, in the
following table, the joint probability mass function (pmf ) of the pair (x, z), which
has to be consistent with the marginal pmf of x:

x1 x2 x3
y1 0.12 0.21 0.12
y2 0.18 0.09 0.28

Note that

Prob(xi | y1) =
{
4/15, i = 1, 3,

7/15, i = 2,
Prob(xi | y2) =

⎧⎨
⎩

18/55, i = 1,

9/55, i = 2,

28/55, i = 3,

and hence after observing y1 or y2 it is not possible for A1 to tell, with certainty, the
true value of x. We refer to the measurement signal as “noisy” because

(a) It does not transmit the true value of x (which, along with the action variables,
completely determines the loss).

(b) It introduces additional elements of uncertainty into the problem.

The problem can now be cast in the framework of the general formulation of
Sect. 2.2 by constructing an appropriate sample space. Toward this end, let Ω be a
set of cardinality 6, with elements ωij (i = 1, 2, 3; j = 1, 2), where ωij corresponds
to the pair (xi, yj) and hence Prob(ω = ωij) = Prob(x = xi, y = yj). The
two possible measurement signals of A1 are y11 = {ω11, ω21, ω31} and y12 =
{ω12, ω22, ω32} which together determine the partition Y1 introduced in Sect. 2.2.11

We thus have a team problem of the standard type, for which the normal form is

A1

UU UD DU DD
A2 L 1.30* 1.38 1.42 1.50

R 1.70 1.70 1.40 1.40

11Here, since we have a finite decision problem, we do not distinguish between Ω and Ξ, and
hence consider Y1 as a partition of the sample space Ω.
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which admits the unique team-optimal solution γ∗ = (UU,L), with a corresponding
value of J∗ = 1.30. An immediate observation here is that this is the same value
as that obtained in case 3, and hence the additional (noisy) information to A1 is
of no value to the team. We leave it to the reader to verify that if, instead, agent
A2 had received this measurement signal, then the team-optimal solution would
again be unique and be given by γ∗ = (D,RL), yielding this time a value of
J∗ = 1.29. Hence the same measurement is of some (positive) value to the team,
if received by the second agent. As a final scenario, let us consider the information
structure under which both agents have access to the realization of z (i.e., they have
a complete sharing of information, which makes the problem essentially no different
from a single agent stochastic decision problem). In view of the discussion for
case 2, and especially the relation (2.9), we first form the conditional cost matrices
corresponding to the two realizations of the measurement signal, y1 and y2:

A2

L R
A1 U 22/15 29/15

D 26/15 19/15*
z : y1 ↔ 0.45

A2

L R
U 64/55* 83/55
D 72/55 83/55

y2 ↔ 0.55

Then we can readily read, from the above matrices, the unique team-optimal
strategy pair: (DU,RL), with a corresponding cost value of 1.21. Note that here,
to determine the optimal strategies, all we need are the six conditional probabilities,
Prob(xi | yj), i = 1, 2, 3; j = 1, 2, and not the individual probabilities for y1 and
y2.12 The latter are, of course, needed in the computation of the corresponding cost
value.

It is worth noting that the main feature of this last case, which distinguishes it
from the earlier ones, is that the random quantity ω (or, equivalently here, the state
of nature ξ) has two identifiable components: the “payoff relevant” part, x, and the
information signal, y, with some correlation between them. The role of y is to carry
information regarding the true value of x, and it affects the value of the loss function
only through the strategy of the agent who receives this information. The advantage
of splitting ξ into two components, as above, may not be that obvious at this point,
but we will later observe the versatility of such a formulation, especially in the
context of infinite decision problems.

12This would not have been true if the agents had made nonidentical measurements.
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2.4 A Mathematical Framework for Dynamic Decision
Problems

As mentioned earlier in Sect. 2.2, a decision problem is said to be dynamic if the
measurements of at least one of the agents involve past actions (of that particular
agent or some other agent(s)). In the literature, the connotation “dynamic” is also
used to characterize decision problems where an agent acts more than once, even if
the measurements do not depend on past actions (the case of open-loop information
structure). In principle such problems can be converted into static decision problems
by essentially working in higher-dimensional spaces, but it is generally found
convenient to treat them also in the context of truly dynamic problems because of
the similarities in the derivation of the optimal solutions. We will have occasions to
use both approaches in this book. We describe below an appropriate setup for the
study of truly dynamic decision problems, restricting the exposition to discrete time.

For a truly dynamic problem, we follow the formulation of Sect. 2.2, prior to
(2.1) but now replace the static relationship (2.1) with the dynamic equation

yi = ηi(ξ;u), i ∈ N , (2.10)

where the dependence on u is assumed to be strictly causal, which means that
under a given fixed clock the information received by each agent can depend only
on actions taken in the past. To give this statement a more precise mathematical
meaning, let us consider a discrete-time framework where actions are taken at
discrete instants of time, 1, 2, . . . , T . Let t stand for the generic time variable and T
denote the (discrete) time set

T := {1, . . . , T }. (2.11)

Let uit and yit denote, respectively, the action (decision) variable and the information
variable of agent Ai at the time instant t ∈ T . Furthermore, introduce the notation:

ut := {u1t , . . . , uNt }, yt := {y1t , . . . , yNt }, (2.12)

u[t0,t1) ≡ u[t0,t1−1] := {ut0 ,ut0+1, . . . ,ut1−1} ≡ {u1[t0,t1), . . . , u
N
[t0,t1)

}. (2.13)

Then, under the strict causality assumption, (2.10) becomes equivalent to

yit = ηit(ξ;u[1,t)), t ∈ T , i ∈ N (2.14)

for some “information functions” ηit, t ∈ T , i ∈ N . The stochastic variable yit,
taking values in Y i

t , is the online information available to Ai which he can use in
the construction of the decision uit at time t, through an appropriate policy variable
γit : Y

i
t → U i

t

uit = γit(y
i
t) ≡ γit(η

i
t[ξ;u[1,t)]), t ∈ T , i ∈ N . (2.15)



2.4 A Mathematical Framework for Dynamic Decision Problems 27

A permissible policy γit is one under which uit becomes a well-defined random
variable, defined on the original probability space, and taking values in Si

t ⊂ U i
t ,

where Si
t is the action constraint set for Ai at time t. Let us denote the set of all

such maps by Γ i
t , which is the policy space of Ai at time t. The construction of such

a policy space will depend on the problem at hand, and we will see several such
constructions throughout the book. At this point let us simply assume that such a
construction is given, and rewrite (2.15) in the following compact form:

u = γ(η[ξ;u]), γ ∈ Γ := Γ 1 × · · · × ΓN , (2.16)

where Γ i is the composite (over-time) policy space of Ai:

Γ i := (Γ i
1, Γ

i
2, . . . , Γ

i
T ), i ∈ N .

Note that the right-hand side of (2.16) also depends on u, which is what makes
dynamic decision problems intrinsically different from the static ones introduced in
Sect. 2.2. Equation (2.16) is called a loop equation, and a dynamic decision problem
is well defined only if this loop equation has a unique solution for every ξ, that is,
for some γ̃ : Ξ → U,

u = γ̃(ξ) (2.17)

uniquely solves (2.16). The strict causality condition, or equivalently the structural
assumption (2.15), is precisely the condition that guarantees this.

It is possible to relax the strict causality condition and the fixed clock assumption
and replace them by some other conditions under which the loop equations (2.16)
still admit a unique solution. A precise study of these conditions is beyond the
level of our treatment here; for this more general treatment the reader is referred to
Witsenhausen [393] and Teneketzis [360] (see also Sect. 3.7 for further discussions).
To just provide a flavor of these extensions here, let us note that in (2.15) we
can allow uit to depend on ujt , j 	= i, provided that ujt is not allowed to depend
on uit either directly or through the actions of other agents. In Fig. 2.1 we have
depicted two such scenarios for a four-agent problem with time step t isolated. A
pointed arrow indicates that information flows at this stage in the direction of the
arrow. The first (upper) configuration of Fig. 2.1 does not lead to a well-defined
(physically realizable) decision problem because u4t depends on u1t while at the
same time u1t depends on u4t ; hence there is a deadlock. (Clearly closed directed
graphs should not be allowed for unique solvability of the loop equations.) The
second (lower) configuration of Fig. 2.1, on the other hand, depicts an acceptable
information exchange13 since it does not contain any closed direct graph. Hence,

13Here, and throughout, we are using a finer partition of the time interval in between the two
(discrete) time points t and t + 1, so that agents can select ui

t, i ∈ N , in a (partially) sequential
order. A possible strict time order of the configuration of Fig. 2.1 (lower) is (u1

t , u
4
t , u

2
t , u

3
t ), but

not all configurations have to have a strict time order.
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A1 A2 A3 A4

A1 A2 A3 A4

Fig. 2.1 Two scenarios on
available action information
at stage t

the strictly causal relation (2.15) can accommodate such permissible informational
relationships among the uit’s, and the configuration could be different for each t.

In such a team, if there is a prespecified order in which the agents act, then such
a team is said to be a sequential team. However, one can allow these “permissible
configurations” to be sample-path dependent (i.e., dependent on ξ), provided that
certain measurability conditions are satisfied. This is the situation where the order
in which the agents act is determined (partially) by a chance mechanism. Such a
dynamic team model is said to be a nonsequential team.

Sequential Dynamic Teams in State-Space Form

Now, coming back to (2.14) and (2.15), it is generally convenient to introduce an
intermediate variable, called the state variable, recursively defined by

xt+1 = ft(xt, u
1
t , . . . , u

N
t ;w0

t ) , t ∈ T , (2.18)

where x1 and w0 := {w0
1 , . . . , w

0
T } are random exogenous variables with given

probability distributions (with the latter being the system noise); furthermore, xt+1

takes values in a given topological space Xt+1. We further introduce the equation

yit = git(xt, u
1
t−1, . . . , u

N
t−1;w

i
t), i ∈ N , t ∈ T , (2.19)

where yit is again the measurement of Ai at stage t and {wi
t, t ∈ T } is known as

the measurement noise of Ai, which has a given probability distribution, possibly
different for different agents as to be elucidated below. Note that for t = 1, git would
have as argument only xt and wt, as controls have not yet been applied. Further
note that the state variable xt, t ∈ T , can easily be eliminated (for t > 1) in (2.19)
by recursive substitution, so that yit can be expressed solely in terms of the action
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variables and the primitive random variables:

yit = g̃it(x1, w
0
[1,t−1],u[1,t−1], w

i
t). (2.20)

Here, the primitive random variables, or the “states of nature,” are

ξ := {x1, w0
[1,T ],w[1,T ]} , (2.21)

where w[1,T ] is defined similar to u[1,T ], with w replacing u.
Now, the operation of a decision process described by (2.18) and (2.19) would

proceed chronologically as follows:

• Generation of an initial random state x1 with distribution Px1

• Observation of measurements y1 := {y11 , . . . , yN1 }, where the composite
measurement noise w1 has a given conditional distribution Pw1|x1

, i ∈ N
• Application of controls u1

• Generation of the “system noise” w0
1 , with conditional distribution Pw0

1|x1,u1
,

and transition to the next state x2

· · · · · · · · · · · · · · · · · · · · ·

• · · · transition to state xt
• Observation of measurements yt, with wt ∼ Pwt|xt

, ut−1

• Application of controls ut

• Generation of the “system noise” w0
t ∼ Pw0

t |xt,ut

· · · · · · · · · · · · · · · · · · · · ·

• · · · transition to state xT+1

The above evolution does not completely describe the dynamic decision process,
because the construction of the controls and the allowable dependence of the con-
trols on the past measurements and/or actions have not yet been specified. Toward
this end, let ỹit denote some prespecified subset of the collection {y[1,t],u[1,t−1]},
possibly a different subcollection for different i ∈ N . Note that it is possible to find
an ηit, so that

ỹit = ηit(ξ;u[1,t−1]), t ∈ T , i ∈ N ,

where ξ was introduced earlier by (2.21). The ỹit defined above can definitely
be viewed as a (high-dimensional) vector, and it is precisely the information
variable (2.14) where we have not used tilde on y simply not to clutter the notation.
But the distinction should be clear from context. In static decision problems, there
is, of course, no difference between the information and measurement variables, and
indeed in Sect. 2.2 we have called yi as both measurement variable and information
variable. In dynamic problems, however, there is a distinction between the two, and
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this has to be recognized in the derivation of optimal solutions to dynamic teams, as
we will see later.

The collection of individual information functions {ηit, t ∈ T , i ∈ N} constitutes
the information structure of the dynamic decision problem. Perhaps by a slight
abuse of notation and terminology, we introduce, for each t ∈ T and i ∈ N ,
a finite set Ii

t which specifies precisely which elements of the set of vectors
{y[1,t],u[1,t−1]} will be used in the construction of the control uit, and we call the
collection I := {Ii

t , i ∈ N , t ∈ T } again as the information structure of the
decision problem.

We list below some important information structures which will be used through-
out the book.

1. Sole prior information (SPI): Ai is said to have SP information if she makes no
measurements and the only information she works with is the prior statistics on
the random variables. A decision problem has SP information if all agents have
SP information.

2. Open-loop (OL) information: Ai is said to have OL information if Ii
t = Ii

1 for
all t ∈ T . A decision problem has OL information structure if all agents have
OL information (which are not necessarily the same). Note that OL information
is different from SPI.

3. Complete information sharing (CIS):

Ii
t = {y[1,t],u[1,t−1]}, i ∈ N , t ∈ T .

Here there is a complete exchange of present and past measurements as well as
past actions.

4. Complete measurement sharing (CMS):

Ii
t = {y[1,t]}, i ∈ N .

Here the past actions are not shared.
5. n-step delayed information sharing (nDIS):

Ii
t =

⎧⎪⎨
⎪⎩

{yi[t−n+1,t],y[1,t−n],u[1,t−n]}, t > n,

{yi[1,t]}, t ≤ n,

i ∈ N .

6. n-step delayed measurement sharing (nDMS):

Ii
t =

⎧⎪⎨
⎪⎩

{yi[t−n+1,t],y[1,t−n]}, t > n,

{yi[1,t]}, t ≤ n,

i ∈ N .
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7. n-step delayed control sharing (nDCS):

Ii
t =

⎧⎪⎨
⎪⎩

{yi[1,t],u[1,t−n]}, t > n,

{yi[1,t]}, t ≤ n,

i ∈ N .

8. k-step periodic information sharing (kPIS):

Ii
t =

⎧⎪⎨
⎪⎩

{yi[�t/k�k,t],y[1,�t/k�k],u[1,�t/k�k]}, t ≥ k,

{yi[1,t]}, t < k,

i ∈ N .

9. Completely decentralized information (CDI):

Ii
t = {yi[1,t]}, i ∈ N , t ∈ T .

Note that this corresponds to nDMS with n = T .

All the information structures given above are of the perfect recall (PR) type,
in the sense that the agents have full memory of their information in the past. An
example of an information structure (IS) which is not of the PR type is

Ii
t = {yit}, i ∈ N , t ∈ T .

Stochastic decision problems whose ISs are not of the PR type are relatively more
difficult to analyze than those with PR type IS, as we shall see later. Another class
of challenging decision problems are those with so-called nonclassical ISs. Under
such ISs an agent sees the action variable of another agent in her information set,
or her information is indirectly affected by it, but she does not have access to the
measurements/information based on which that action was taken; nDCS introduced
above is one such IS, so could nDMS, CDI, or information structures which are
not PR. We will say more on such nonclassical ISs in the next chapter, Sect. 3.2.
Furthermore, we will observe that not all nonclassical information structures lead to
computational difficulties. Examples will be considered further in the next chapter,
as well as in Chap. 12.

Now, fixing the IS of a dynamic decision problem also fixes the strategy (policy)
spaces of the agents, as in (2.16). To complete the description as a team problem,
we have to specify the cost structure, which we do as follows:

Adopting the description (2.18) and (2.19), also known as the state-space model,
we associate with the team the loss function14

L(x[1,T+1],u[1,T ]) =
∑
t∈T

ct(xt+1,ut), (2.22)

14Here, an alternative form can be L(x[1,T+1],u[1,T ]) =
∑

t∈T ct(xt,ut) + cT+1(xT+1).
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where each term in the summation is known as the incremental (stagewise) loss.
Since x[1,t+1] can be expressed in terms of the primitive random variables and the
action variables, replacing uit in (2.22) by γit(y

i
t), γ

i
t ∈ Γ i

t , constructed under the
given IS, L becomes a function of only ξ (for each fixed γ ∈ Γ), whose expectation
with respect to the subjective probability distribution function of ξ leads as in (2.2)
to the cost function:

J(γ) = EξL(ξ, γ(η[ξ])) . (2.23)

Here L is given by (2.22), with the intermediate variables eliminated by using (2.18)
and (2.19).

The function J , along with the product strategy space Γ, constitutes the normal
(strategic) form of the dynamic decision problem, and as such is no different (in
abstract form) from the normal form introduced in Sect. 2.2 for static multiple
person decision problems. Hence, all the solution concepts introduced there, viz.,
team-optimality and person-by-person optimality (or Nash equilibrium), are equally
valid (and relevant) here, which we do not give to avoid repetition. In addition,
however, some new features emerge due to the dynamic nature of the information
pattern, which use particularly the sequential (extensive form) description of the
decision problem. We introduce below two such general features associated with
the team-optimal or pbp optimal solutions of dynamic team problems.

Definition 2.4.1. Let D := {J,Γ, T } be a dynamic team problem which admits a
solution γ∗ ∈ Γ. Let t > 1 be an arbitrary point in T and consider the decision

problem Dβ
[t,T ] which is derived from D by setting γ

[1,t−1]
= β

[1,t−1]
, for an

arbitrary β
[1,t−1]

∈ Γ[1,t−1]. Then:

(i) The solution γ∗ ∈ Γ is strongly time consistent (STC) if the subpolicy γ∗
[t,T ]

constitutes a solution to the dynamic team Dβ
[t,T ], this being so for every t ∈

T , t > 1, and every permissible β
[1,t−1]

∈ Γ[1,t−1].

(ii) The solution γ∗ ∈ Γ is weakly time consistent (WTC) if the subpolicy γ∗
[t,T ]

constitutes a solution to the dynamic team Dβ
[t,T ] when β

[1,t−1]
= γ∗

[1,t−1]
.

�

Note that if an equilibrium solution is STC, then the past actions do not rein in
the present and future actions of the agents under the same solution concept, i.e.,
the agents have no reason to renege (and deviate from the equilibrium policy or the
course of action) even if some inadvertent deviations have taken place in the past.
With the WTC solution, however, there is no incentive to renege only if the declared
course of action has been followed in the past.

The Intrinsic Model and the Markov Transition Model

Before concluding this section, we should mention that in our general formulation
of a dynamic team decision problem, we have allowed an agent to act multiple
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times, at different time instants, using possibly different information, that is, Ai has
ui[1,T ] as her action variable. An alternative (but equivalent) formulation would be
to have an agent Ai be split into T agents, with Ai(t) (t’th agent in this split, where
t = 1, . . . , T ) controlling only uit. This would then transform the original N -agent
team to anNT -agent team problem, but other than a difference in semantics, the two
formulations are essentially the same. More details on these different viewpoints to
dynamic decision problems can be found in Witsenhausen [399–401] (see Sect. 3.7,
where Witsenhausen’s intrinsic model as well as other models for dynamic teams
are reviewed).

Another point worth mentioning is that an alternative to the state-space model
(2.18) and (2.19) exists, especially if the probability and action spaces are finite. This
so-called Markov transition model involves N + 1 conditional probability laws at
each stage t ∈ T , to replace (2.18) and (2.19). The state equation (2.18) is replaced
by a controlled probability transition:

Px
t+1|xt,w

0
t

(ut), i ∈ N , t ∈ T .

If all the variables belong to finite spaces, then the model is completely described
by a finite number of finite-dimensional (probability) matrices.

2.5 An Illustrative Example of a Finite Dynamic Team

To illustrate some salient aspects of the formulation of dynamic decision problems,
we consider in this section a finite dynamic team problem with two agents and
two stages and with the agents having the same subjective prior probabilities on
the random variables. We will study the derivation of the team-optimal solution
under several different ISs of the type introduced in the previous section. Since the
underlying team is finite (with a finite probability space), a team-optimal solution
will exist under all ISs.

Now, the description of the stochastic dynamic team follows: At each stage, the
control (decision) spaces of the agents have two elements, as in the static team of
Sect. 2.3.

U1
1 = U1

2 = {U(up), D(down)}, U2
1 = U2

2 = {L(left, )R(right )}.

The initial state, x1, is a discrete random variable, taking two values, x11 and x12,
with respective probabilities 0.4 and 0.6. If x1 = x1i and u11 = U orD, and u21 = L
or R, the loss to the team (i.e., the stagewise loss, c1(x1, u11, u

2
1)) is given by the

“loss matrices”

A2

L R
A1 U 1 0

D 3 1
x1 = x11

A2

L R
U 1 2
D 0 2
x1 = x12
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We denote the first matrix above by LM1 and the second matrix by LM2. The
transition to the second stage and the associated cost is now described as follows:
Let x2 take three distinct values, x21, x22 and x23, with the rule

x2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x21, if (u11, u
2
1) = (U,L) and x1 = x11,

x22, if (u11, u
2
1) = (U,L) and x1 = x12,

x23, otherwise.

The corresponding cost is determined by x2, u12, u22, and an independent random
variable, in terms of the loss matrices LM1 and LM2 at stage 1, according to the
following table.

x2 Loss at stage 2 (c2)
x21 LM1 w.p. 0.4, LM2 w.p. 0.6
x22 LM1 w.p. 0.5, LM2 w.p. 0.5
x23 LM1 w.p. 0.3, LM2 w.p. 0.7

All random mechanisms are assumed to be independent and the total loss to the
team is the arithmetic sum of the stagewise losses, as in (2.22). Note that here we
basically have two random variables, x1 and w2, say, with the statistics of the latter
governing the loss structure in the table above, i.e.,

Prob(w2 = w21 | x2) = 1− Prob (w2 = w22 | x2) =

⎧⎨
⎩

0.4, x2 = x21,

0.5, x2 = x22,

0.3, x2 = x23,

where w21 corresponds to LM1 and w22 to LM2.
Now we specify the measurements available to the agents: It is assumed that

A1 knows exactly the value of x1 at stage 1, and does not make any further
measurements (at stage 2).A2, on the other hand, makes no measurements at stage 1
but knows precisely the value of w2 at stage 2; hence

y11 = x1, y12 : void; y21 : void, y22 = w2.

For any given permissible policy, the (expected) cost to the team is given by (2.23),
and with ξ := (x1, w2). The precise form, of course, will depend on the IS to be
adopted, as delineated below:

1. SPI. This will lead to the worst performance for the team, because both agents
work under only the given prior information. The policy spaces of the agents are

Γ 1 = {Uu,Ud,Du,Dd}; Γ 2 = {Ll, Lr,Rl, Rr}
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where we have used “lower case letters” for the second-stage decisions. The only
way to solve this team problem is to convert it to normal form, which is a 4 × 4
matrix

A2

Ll Lr Rl Rr
Uu 2 2.08 2.2 1.8

A1 Ud 2.38 3.5 3.3 2.5
Du 2.2 2.2 2.6 2.2
Dd 3.3 2.9 3.7 3.2

The unique team-optimal solution is (Uu,Rr), with a cost level of JSP = 1.8.
2. CMS. This is the other extreme case, when the agents know exactly what loss

matrix is being optimized at each stage. Since the lowest entries of LM1 and
LM2 are both zero, the optimal team cost is JCMS = 0. The solution would have
been the same if, instead, we had the CIS IS.

3. 1-step-delayed measurement sharing (1DMS). Here the information available to
the agents at each stage are

I1
2 = I1

1 = {x1}, I2
1 = φ, I2

2 = {x1, w2},

and hence |Γ 1
1 | = |Γ 1

2 | = 4, |Γ 2
1 | = 2, and |Γ 2

2 | = 8. The cardinality of the
composite policy spaces are |Γ 1| = 8,15 |Γ 2| = 16, which means that the
normal form would be an 8 × 16 dimensional matrix. One possible approach
to the problem would be to compute the entries of this matrix and choose the
smallest one as the solution. An alternative approach is a sequential derivation,
which makes use of the fact that measurements are shared with a delay of one
time unit, which is what we discuss below.

Suppose that the actions at stage 1 have been taken, and the agents are facing
the decision problem (at the second stage) where the value of x1 is now common
knowledge. A1 has no other information, and hence his possible actions (policies)
are u and d. A2, on the other hand, has the additional information, the precise
value of w2, and hence he has four possible policies: ll, lr, rl, and rr, where lr
stands for u21 = l, if w2 = w21, and u21 = r, otherwise. Now, conditioned on the
value of x1 (which is common knowledge) and the actions taken by the agents
at stage 1 (which can also be considered to be common knowledge since we
have a (cooperative) team problem and the information based on which these
actions were taken is common knowledge), we have the following eight total
cost matrices.

15This one is not 16 because for each value of x1, A1 has four choices, which makes the total 8.
Hence, one can replace Γ 1 := Γ 1

1 × Γ 1
2 with a smaller set, without any loss in performance.
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x1 = x11 :

(u11, u
2
1) = (U,L)

ll lr rl rr
u 2 2.6 1.6 2.2
d 2.2 3.4 1.4* 2.6

(u11, u
2
1) = (U,R)

ll lr rl rr
u 1 1.3 0.3* 0.6
d 2.1 3.3 0.7 1.3

(u11, u
2
1) = (D,L)

ll lr rl rr
u 4 4.3 3.3* 3.6
d 5.1 6.3 3.7 4.3

(u11, u
2
1) = (D,R)

ll lr rl rr
u 2 2.3 1.3* 1.6
d 3.1 4.3 1.7 2.3

x1 = x12 :

(u11, u
2
1) = (U,L)

ll lr rl rr
u 2 2.5 1.5* 2
d 2.5 3.5 1.5* 2.5

(u11, u
2
1) = (U,R)

ll lr rl rr
u 3 3.3 2.3* 2.6
d 4.1 5.3 2.7 3.3

(u11, u
2
1) = (U,L)

ll lr rl rr
u 1 1.3 0.3* 0.6
d 2.1 3.3 0.7 1.3

(u11, u
2
1) = (U,R)

ll lr rl rr
u 3 3.3 2.3* 2.6
d 4.1 5.3 2.7 3.3

In each case, the “starred” entry(ies) denotes the minimum entries of the
corresponding matrices, which will be carried over to the first stage to determine
the optimal policies there. Now, at stage 1 A1 knows the value of x1, but A2
does not, so that possible policies for A1 are UU, UD, DU, and DD, while the
permissible policies for A2 are L and R. Using the optimum entries above, we can
construct an equivalent cost matrix at stage 1 through an appropriate averaging
process:

A2

L R
UU 1.46 1.5

A1 UD 0.74* 1.5
DU 2.22 1.9
DD 1.5 1.9

This is known as the optimum cost-to-go matrix at stage 1, because of the
following interpretation that the entries admit. Consider, for example, the entry
with the numerical value 2.22: If A1 chooses D when x1 = x11 and U when
x1 = x12, and A2 chooses L, all at stage 1, then whatever choices are made at
stage 2 (under the given information) the total (expected) cost can never be lower
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than 2.22. To arrive at this numerical value, we note that if x1 = x11, u11 = D
and u21 = L, the cost resulting from an optimum choice of policies at stage 2
would be 3.3 (the lowest entry of the third conditional total cost matrix), whereas
if x1 = x12, u11 = U , u21 = L, the optimum total cost would be 1.5 (the lowest
entry of the fifth matrix). Since the value of x1 is not available to A2 at stage 1,
we average these values of x1 to obtain

(0.4)(3.3) + (0.6)(1.5) = 2.22.

All other entries of the 4× 2 cost-to-go matrix can be computed analogously.
Clearly, the minimum cost is J1DMS = 0.74, with the unique team-optimal

policy being

(γ1∗1 (x1), γ
1∗
2 (x1)) =

{
Ud, x1 = x11,

Du, x1 = x12,

γ2∗1 = L, γ2∗2 (x1, w2) =

{
r, w2 = w21,

l, w1 = w22,

Note that γ2∗2 is actually independent of the value of x1 (which means that even
if the measurement y11 had not been shared, the team-optimal solution would still
be the same) and that γ1∗2 does depend on x1 (which means that if A1 were not
allowed to recall the value of x1 at stage 2, the optimal team cost would have
been higher—see the next case).

4. No sharing, no recall (NSR). Here we have

I1
1 = {x1}, I1

2 = φ = I2
1 , I2

2 = {w2}.
If we had allowed perfect recall (i.e., I1

2 = I1
1 ), then the solution would be the

one obtained in case 3, as discussed there16; however, without perfect recall the
solution does not follow from the one in case 3. This information structure is
nonclassical and hence a recursive derivation as in case 3 is also not possible.
The only possibility is to construct the normal form for the team, which is
characterized by the 8× 8 matrix given below.

A2

Lll Llr Lrl Lrr Rll Rlr Rrl Rrr
UUu 2 2.54 1.54 2.08 2.2 2.5 1.5 1.8
UDu 1.4 1.82 0.82* 1.24 2.2 2.5 1.5 1.8
DUu 2.8 3.22 2.22 2.64 2.6 2.9 1.9 2.2

A1 DDu 2.2 2.5 1.5 1.8 2.6 2.9 1.9 2.2
UUd 2.38 3.46 1.46 2.54 2.86 3.44 1.9 2.5
UDd 2.14 3.34 0.98 1.82 3.3 4.5 1.9 2.5
DUd 3.54 4.62 2.38 3.22 3.7 4.9 2.3 2.9
DDd 3.3 4.5 1.9 2.50 3.7 4.9 2.3 2.9

16We should note that this is specific to the problem at hand and is not a general rule. In general,
optimal team cost in case 4 and with perfect recall will be higher than the one at case 3 where some
sharing of measurements is allowed.
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The unique solution is (UDu, Lrl), with a cost level of JNSR = 0.82. Note that
UDu stands for

γ1∗1 (x1) =

{
U, x1 = x11,

D, x1 = x12,
γ1∗2 = u,

and Lrl denotes the policy

γ2∗1 = L, γ2∗2 (w2)

{
r, w1 = w21,

l, w1 = w22,

5. Open-loop information (OLI). Here the agents use only the measurements they
have obtained at stage 1, which is x1 for A1 and no measurement for A2. The
normal form here is, in fact, a submatrix that can be obtained from the 8 × 8
matrix of case 4. For A1 the permissible policies are still the same. For A2,
however, the permissible ones are Ll, Lr, Rl, Rr, which correspond in case 4 to
Lll, Lrr, Rll, Rrr. Hence, we retain only the first, fourth, fifth, and eighth columns
of the matrix of case 4, and the result is the unique team-optimal solution (UDu,
Lr), with a cost level of JOL = 1.24. We should note in passing that the normal
form of case 1 can also be recovered from the normal form of case 4, this time by
also eliminating the second, third, sixth, and seventh rows of the matrix of case 4.

Cost Comparisons

Clearly, more information to any one agent in a team will never result in higher
optimal team cost and in fact could lead to a strictly lower value. In the latter case,
we say that the extra information is useful (or worth receiving). In the context of this
specific example, we have the optimum cost comparisons

JSP = 1.8 > JOL = 1.24 > JNSR = 0.82 > J1DMS = J1DIS = 0.74

> JCMS = JCIS = 0,

and hence in each case the extra information to one or more agents has been worth
receiving (with the exception of pure action information in the cases of CIS and
1DIS ISs). The equalities J1DIS = J1DMS , JCMS = JCIS hold not only for this
specific example but also for the general stochastic team problems.



2.6 Team-Optimal Solutions for Static Teams 39

2.6 Team-Optimal Solutions for Static Teams

We present, in this section, a theory for static N -person stochastic teams, by
focusing on fundamental issues such as the existence, uniqueness and derivation
of team-optimal solutions, establishing conditions under which person-by-person
(pbp) optimal solutions are also team-optimal, and studying the relationships
between achievable optimal team costs and information structures in static teams.

Using the terminology and notation introduced in Sect. 2.2, we represent a
general team by the (N + 1)-tuple {J ;Γ i, i ∈ N}, where the cost J is derived
from a loss function, using a probability measure P on the states of nature, common
to all agents. We consider the cases where the action spaces (U i, i ∈ N ) are either
finite or infinite but finite dimensional, and for the latter class we also include the
possibility that some hard constraints may be imposed on the decision variables, in
which case the action constraint sets (Si, i ∈ N ) are taken as appropriate closed
subsets of the corresponding action spaces.

In the first subsection (Sect. 2.6.1), we consider the class of teams which are
either finite or have finite measurement spaces for all agents. For this class, we
provide general existence and uniqueness results for team-optimality and discuss
the relationship with pbp optimality and the notion of stationarity (which is to
be defined shortly). In Sect. 2.6.2, we extend this study to teams where the mea-
surement spaces are infinite (but finite dimensional) and develop conditions under
which stationarity implies team-optimality. Section 2.6.3 discusses two special, but
important, classes of teams: (1) those with quadratic loss functions, first under
general probability distributions and then under the Gaussian distribution, and (2)
static teams with exponentiated quadratic loss functions. We also discuss recursive
algorithms for the computation of the team-optimal solution in each case.

2.6.1 Teams with Finite Measurement Spaces

We have already identified, in Sect. 2.3, one class of team problems for which an
optimal solution always exists, namely, static finite teams, i.e., teams where both the
action and the measurement spaces are finite or, equivalently, the product strategy
space (Γ) is finite. This conclusion would also be valid for dynamic teams where the
product strategy space (Γ) is finite, since we would be doing a comparison among
only a finite number of choices. It would be appropriate first to present this trivial,
but useful, result as a fact.

Fact 2.6.1. Every finite stochastic team admits at least one team-optimal
solution. �

Two other key observations we made in Sect. 2.3 were that multiple team-optimal
solutions are not necessarily interchangeable (respecting the order) and that a pbp
optimal solution is not necessarily team-optimal, both of which we summarize
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below for future reference. These two facts are naturally valid not only for finite
teams but for infinite teams as well and further not only for static teams but also for
dynamic teams in normal (strategic) form.

Fact 2.6.2. Neither multiple team-optimal solutions nor multiple pbp optimal
solutions are necessarily interchangeable. �

Fact 2.6.3. Every team-optimal solution is pbp optimal, but not vice versa. �

If a team problem is not finite, then one has to bring additional structure into
the formulation in order to guarantee the existence, as well as the uniqueness, of
the solution. Viewing a stochastic team in normal form as one of minimization17 of
a functional, J , over a set, Γ, an optimum may fail to exist (in infinite teams) for
basically one of two reasons:

1. The (cost) functional J is unbounded below.
2. There exists an infimizing sequence in Γ, without any limit in Γ.

The former basically says that J∗, defined by the RHS of (2.4), is −∞, implying
that a sequence can be found in Γ which makes the value of J arbitrarily small
(negative). The only way to avoid this difficulty is to formulate, from the beginning,
a well-defined team problem whose cost is bounded away from −∞. The latter
reason, however, cannot be dispensed with that easily since it places some nontrivial
restrictions on the topology of the product policy space Γ as well as on the structure
of J . In this case J∗, defined by the RHS of (2.4), is a finite quantity, but one can
only achieve values arbitrarily close to (but larger than) J∗, and never equal to it.
This could arise if, for example, the function J has some discontinuities on Γ or
Γ has some “holes” in it so that the infimizing sequence cannot have a limit in Γ.
The most general condition that ensures that these two things do not happen is the
celebrated Weierstrass theorem (see Appendix A, Sect. A.5), rephrased below as a
fact using the team framework.

Fact 2.6.4. The team problem {J ;Γ i, i ∈ N} admits a team-optimal solution if the
product policy space Γ is a compact subset of a normed linear vector space, and
the cost function J is lower semicontinuous (lsc) on Γ. �

As one useful application of the above result, consider the class of stochastic
team problems which satisfy the following four hypotheses:

(c.1) Each action constraint set Si (i ∈ N ) is a closed and bounded subset of the
action space U i (i ∈ N ) which is itself a finite-dimensional vector space.

(c.2) L(ξ;u1, . . . , uN) is almost surely (a.s.) jointly lsc in (u1, . . . , uN) =: u, on
U := U1 × · · · × UN .

(c.3) Each measurement set Y i (i ∈ N ) is finite, with no element receiving zero
probability from the probability measure P , or equivalently, for each i ∈ N , the

17For some background material on the optimization of functionals, see Sect. A.5 of Appendix A.
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partition set Yi has a finite number of elements, with each element receiving
positive probability from P .

(c.4) Eξ|yiL(ξ;u1, . . . , uN ) is finite for every yi ∈ Y i, uj ∈ U j , i, j ∈ N .

Then we have the following theorem:

Theorem 2.6.1. For an N -agent static stochastic team problem satisfying (c.1)–
(c.4) above, there exists at least one team-optimal solution. �

Proof. The result follows from Fact 2.6.4, once we observe that, under the given
specifications, the normal form has a lsc cost function J on a compact policy space
Γ. We first show the latter, which is equivalent to showing that, for each i ∈ N ,
Γ i is a closed and bounded subset of a finite-dimensional space. Toward this end,
let Y i be generated (without any loss of generality) by the ni-tuple {yi1, . . . , yini

},
where ni := |Y i| is finite by (c.3). Then, every permissible strategy γi for Ai (i.e.,
every element of Γ i) can be written as

γi(yi) = uij , if yi = yij , j = 1, . . . , ni,

where each uij lies in Si. Hence, each strategy can be viewed as an ni-tuple of
vectors (ui1, . . . , u

i
ni
) belonging to

Si := Si × · · · × Si︸ ︷︷ ︸
nitimes

⊂ U i × · · · × U i︸ ︷︷ ︸
nitimes

=: Ui,

which makes Γ i isomorphic to Si which is closed and bounded, and finite
dimensional, since it is a finite product of Si which itself is closed and bounded
[by (c.1)].

We now show that J is lsc on U := U1 × · · · ×UN . To obtain a description of
J on U, let us first introduce the notation y to denote an N -tuple of scalars

y := (y1t1 , . . . , y
N
tN ), ti ∈ {1, . . . , ni}, i ∈ N ,

where yiti denotes one possible (generic) measurement of Ai. By a possible abuse
of terminology, we will consider y as a random quantity, which has N :=

∏
i∈N ni

different realizations. Then, we have the following sequence of equalities:

J(γ) = EξL(ξ; γ
1(η1(ξ)), . . . , γN (ηN (ξ)))

= Ey Eξ|yL(ξ;u
1
t1 , . . . , u

N
tN )︸ ︷︷ ︸

Lav(y;u1
t1

,...,uN
tN

)

≡
∑

ti∈{1,...,ni},i∈N
Lav(y;u

1
t1 , . . . , u

N
tN )Prob(y),

()
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where the second line follows from the “iterated property” of conditional
expectations (see Appendix B) and the adopted convention that γi(yi) = uiti , when
yi = yiti .

Now, under (c.2) and (c.4), Lav(yt;u
1
t1 , . . . , u

N
tN ) is a lsc function on u

(as well as on U) for each yt, since it is the integral of a lsc function (L) under
the conditional measure Prob(ξ|y), which is finite by (c.4). In view of this, the last
line of () (which is a finite weighted sum of individual lsc functions) provides
a representation for J on U, which is lsc. This then completes the proof of the
theorem. It is worth noting at this point that the result would be true even if condition
(c.2) is relaxed somewhat, requiring instead that the functionLav(y;u) be lsc on u,
where Lav(y;u) := Eξ|y,uL(ξ;u). ��

For the general result of Theorem 2.6.1 to be valid, conditions (c.2) and (c.3)
cannot be relaxed any further, because the relaxation of (c.2) (with the provision
above) would lead to violation of the lsc part of Fact 2.6.4, and the relaxation of (c.3)
(meaning that some of the Y i’s might be infinite sets) leads to policy spaces that are
no longer finite dimensional, in which case (c.1) does not imply the compactness
of Γ. Relaxation of (c.4), on the other hand, would lead to a J that is not lsc at
those points of u where it is unbounded. Of course, this condition is automatically
satisfied if the underlying probability space is finite. The only condition that can be
relaxed, without affecting the basic result of the theorem is (c.1). To accommodate
in our formulation the situation where some (or all) of the decision variables do not
have hard constraints imposed on them, we have the following substitute condition:

(c.1′) Let Nh and Ns be two complementary subsets of N (i.e., Nh ∪ Ns = N ,
and Nh ∩ Ns = ∅) such that Si is compact for all i ∈ Nh, and Sj ≡ U j for
all j ∈ Ns. Then, as

∑
j∈Ns

|uj | → ∞, L(ξ;u1, . . . , uN ) → ∞ a.s., for every
fixed ui ∈ Si, i ∈ Nh.

This condition ensures that uj , j ∈ Ns, can be restricted to a (possibly
sufficiently large) compact set, thus making the result of Theorem 2.6.1 still valid.
Hence we have

Corollary 2.6.1. An N -agent static stochastic team problem satisfying (c.1′),
(c.2), (c.3), and (c.4) admits at least one team-optimal solution. �

Uniqueness

In view of Fact 2.6.2, it may be important to determine the conditions under which a
team-optimal solution is unique, since as we have discussed earlier in Sect. 2.3,
multiple optima may lead to an inferior outcome if the agents do not have a
consistent protocol to resolve the dilemma. Once the existence of an optimum has
been established, there would be two ways to verify uniqueness of the solution. One
would be to write down a set of necessary conditions to be satisfied by the team-
optimal solution and show that these conditions admit at most one solution—as to
be discussed later in this subsection. A second way to verify unicity would be to
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use the normal form for the team and show strict convexity18 of J over the product
policy space Γ, which has to be a convex set. The following theorem now does
precisely that, by relating the (strict) convexity of L to the convexity of J under the
hypotheses of Theorem 2.6.1.

Theorem 2.6.2. In addition to the four hypotheses of Theorem 2.6.1 or of
Corollary 2.6.1, let Si be a convex set for each i ∈ N and L(ξ; ·) be strictly
convex on U a.s.19 Then, the stochastic team problem admits a unique team-optimal
solution. �

Proof of Theorem 2.6.2. First note that for X a finite-dimensional vector space and
I a finite index set, if fi, i ∈ I , is a convex (respectively, strictly convex) functional
defined on X , then the functional f : f =

∑
i∈I fi is also convex (respectively,

strictly convex) on X . Now, the construction given for J , in the proof of Theo-
rem 2.6.1, satisfies the hypotheses of this result with ft(·) = Lav(yt; ·)Prob(yt),
since for each yt, Lav(yt; ·) is strictly convex on u (being the conditional average
of an a.s. strictly convex functional), and every uiti , ti ∈ {1, . . . , ni}, i ∈ N ,
appears in at least one of the additive terms in the representation () for J . Note, in
passing, that Prob(yt) may not be positive for every possible N -tuple (t1, . . . , tN ),
ti ∈ {1, . . . , ni}, i ∈ N , but for any j ∈ N, and tj ∈ {1, . . . , nj}, yjtj will receive
positive probability in at least one such sequence, since otherwise this would imply
that Prob(yj = yjtj ) = 0, a contradiction to our initial hypothesis. ��

The following example serves to illustrate some of the fine points of the results
of Theorems 2.6.1 and 2.6.2 and the analyses that led to these results, including the
construction () used in the proof of Theorem 2.6.1.

Example 2.6.1. Let N = 2, Ξ = U1 = U2 ≡ R, ξ be a (continuous) random
variable uniformly distributed on the open interval (0, 2), and the loss functional L
be given by

L(ξ;u1, u2) = (u1)
2
+ (u2)

2
+ ξu1u2 − u1 − 2u2.

Suppose that A1 can tell (through his measurements and with certainty) whether the
realized value of ξ belongs to the open interval (0, 1) or not and A2 can similarly
tell whether it belongs to the subinterval (12 ,

3
2 ) or not. The question is whether this

(static) stochastic team problem admits a team-optimal solution or not and, if it does,
whether it is unique and how it can be computed.

Let us first check the conditions of Theorem 2.6.1 and Corollary 2.6.1. Clearly
(c.2) and (c.3) are satisfied, where in the latter we choose y1 = {(0, 1), [1, 2)},
y2 = {(12 ,

3
2 ), (0,

1
2 ] ∪ [ 32 , 2)}}. We associate the measurement yi1 with the first

subinterval (in each corresponding partition) and the measurement yi2 with the

18See Appendix A, Sect. A.4, for a definition.
19A random function L(ξ;u) is a.s. strictly convex in u if the set of ξ for which L is not strictly
convex in u is of Pξ-measure zero.
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complement (i.e., the second) set. Condition (c.1) is not satisfied, but (c.1′) is (with
Ns = N ), because, for each ξ ∈ (0, 2), the Hessian matrix of L (see Appendix A,
Sect. A.4),

�2L(ξ,u) =

(
2 ξ

ξ 2

)
,

is positive definite (p.d.), implying that L(ξ,u) → ∞ as |u1| + |u2| → ∞, for
every fixed ξ ∈ (0, 2). Note that even if the open interval (0, 2) is replaced with
the closed interval [0, 2] (the distribution still being the same), (c.1′) would still be
satisfied because, even though �2L(ξ,u) is no longer p.d. at ξ = 2 (in fact, then
choosing u1 = −u2 and letting u2 → ∞, one can drive L to −∞), the singleton
event {ξ = 2} receives zero probability under the given continuous distribution,
and hence the condition holds in the a.s. sense. If, however, we had a probability
distribution with a jump at the point ξ = 2, assigning, say, a weight of 1

3 to that
single value, then (c.1′) would have been violated.

Now, in the course of the discussion above, we have also established the validity
of the two additional hypotheses of Theorem 2.6.2 (the first one trivially and the
second one because of the reason that the Hessian matrix of L is p.d. a.s.), from
which it follows that the problem indeed admits a unique team-optimal solution.

To obtain a characterization of the solution, let us first construct the normal
form, following the steps outlined in the proof of Theorem 2.6.1. Noting that the
summation in () has four terms, with Prob((y1i , y

2
j )) =

1
4 , i, j = 1, 2, some algebra

leads to the expression

J(γ) =
1

2

2∑
i,j=1

(uij)
2 − 1

2

2∑
j=1

u1j −
2∑

j=1

u2j +
1

16
[u11u

2
2 +3u11u

2
1 +5u12u

2
1 +7u12u

2
2],

which is to be minimized with respect to (u11, u
1
2, u

2
1, u

2
2) over R4. This is a strictly

convex functional and is differentiable, which means that the unique solution should
satisfy (uniquely) the stationarity conditions:

∂J/∂uij = 0, i, j = 1, 2.

These conditions reduce to the set of four linear equations:

16u11 + 3u21 + u22 = 8,

16u12 + 5u21 + 7u22 = 8,

3u11 + 5u12 + 16u21 = 16,

u11 + 7u12 + 16u22 = 16,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(◦)
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which admits the unique solution (to the nearest 6 decimal places):

u1∗ := (u11
∗
, u12

∗
) = (0.231214,−0.323699),

u2
∗
:= (u21

∗
, u22

∗
) = (1.057803, 1.127168),

with the minimum value being

J∗ ≈ −1.141618.

It would be instructive to compare this value for the team cost with what would
have been achieved if the agents had not made any measurements (i.e., operated in
an “open-loop” fashion with no measurements). In such a case, the normal form for
the team would be given by the cost functional JOL (where the subscript OL stands
for “open-loop”);

JOL = (u1)
2
+ (u2)

2 − u1 − 2u2 + u1u2,

since E[ξ] = 1. A straightforward minimization of this quadratic (and strictly
convex) functional leads to the unique solution

u1
∗
= 0, u2

∗
= 1 ⇒ J∗

OL = −1.

Hence, we observe that the presence of the measurements (which bring the
uncertainty in the true value of ξ to intervals of length 1, instead of the original
interval of length 2) leads to an improvement of (approximately) 14% in the
performance attained by the team.

Another extreme case to consider would be the information structure that
provides the agents with the “maximum” information regarding the true value of
ξ, which, unquestionably, is the measurement signal yi = ξ, i = 1, 2 (i.e., perfect
measurement), unless some restrictions are imposed on the information structure.
Our results, so far, as embodied in Theorems 2.6.1 and 2.6.2 and Corollary 2.6.1, are
not (strictly speaking) applicable to problems of this type, since the measurements
belong to infinite sets—this is the topic of the next subsection. However, because
of the fact that both agents make perfect measurements here, the problem would be
easy to analyze, since it is no different from a deterministic (quadratic) optimization
problem. As such, this particular (team) problem is not well defined, since the
objective functional is not strictly convex at ξ = 2, meaning (in this case) that for
ξ = 2 the loss functional can be driven to −∞, which in turn implies (in that case)
that under the uniform distribution on (0, 2) the cost (average loss) can be made
arbitrarily small (negative).20 The message here is that not only the characterization

20One can determine the optimal decision rules for each value of ξ ∈ (0, 2) (this can be done
analytically), substitute these unique rules into the given loss functional, and see that its integral
over the interval (0, 2) does not exist—which shows that J∗ is unbounded under the perfect
measurement information structure.
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but also the existence of a solution in a stochastic team problem could very much
depend on the underlying information structure. �

We have thus seen, in the preceding example, a constructive procedure for
obtaining closed-form solutions to a stochastic static team problem with finite
measurement spaces. The question now is whether there are other (alternative) ways
of obtaining the solution and also of verifying team-optimality of a given candidate
solution without going through the derivation. Such tools would be provided by
the necessary conditions satisfied by a team-optimal solution, one of which is
person-by-person (pbp) optimality, the necessity of which has already been given in
Fact 2.6.3. Recalling Remark 2.2.1, and particularly inequality (2.7), a pbp solution
γ∗ ∈ Γ for a static team problem (J,Γ) would be given by

min
β∈Γ i

J(γ−i∗, β) = J(γ∗), i ∈ N , (2.24)

which can equivalently be written as

min
u∈Si

Eξ|yiL(ξ; γ−i ∗ (y−i), u) = Eξ|yiL(ξ; γ ∗ (y)), i ∈ N . (2.25)

In other words, we have N separate optimization problems, one for each agent, and
in each case the remaining agents’ policies frozen at their pbp optimal choices. Note
that (2.24) is an optimization (of total expectation) in the policy space, whereas (2)
is optimization (of conditional expectation) in the action space, for every value of the
conditioning variable. If (2.25) admits a unique solution and if the original problem
is known to have a team-optimal solution (as in the case of Theorem 2.6.1 or
Corollary 2.6.1), then (2.25) provides an alternative way of obtaining that solution.
If, however, (2.25) admits more than one solution, then one would like to determine
whether all or some of these are team-optimal. Hence, derivation of conditions under
which pbp optimality implies team-optimality is of natural interest. At the outset,
one would expect a.s. convexity of L(ξ;u) over u ∈ U to play a role here. This is
indeed the case, but convexity in itself is not a sufficient condition, as the following
example demonstrates:

Consider the purely deterministic loss function L : R2 → R defined by

L(u1, u2) =

⎧⎨
⎩

(u1)2 + (1 − u2)2, u1 ≥ u2,

(u2)2 + (1 − u1)2, u1 < u2,

which is strictly convex on R
2. For any fixed u2 ∈ R, argminu1 L(u1, u2) =

u2, and likewise for fixed u1 ∈ R, argminu2 L(u1, u2) = u1. Hence, there exist
infinitely many pbp optimal solutions (u1 = u2 = u, u ∈ R), but only one of these,
namely, (u1 = u2 = 1

2 ) is team-optimal.
The function L above is nondifferentiable at the pbp optimal points (u1 = u2),

and in view of this observation one might wonder whether a similar “negative” result
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can be obtained if the loss function were continuously differentiable. The following
lemma outrules this possibility for deterministic problems and provides a set of
(tight) sufficient conditions for a pbp optimal solution to be globally optimal.

Lemma 2.6.1. Let L : Rm1 × · · · × R
mN → R be a convex (deterministic) loss

function, with a pbp optimal solution u◦ := (u1
◦
, . . . , uN

◦
). If L is continuously

differentiable21 at u◦, then u◦ is globally (team) optimal. �

Proof. From the definition of convexity, we have the inequality

L(αv + (1 − α)u◦) ≤ αL(v) + (1− α)L(u◦)

for any v = (v1, . . . , vN ) ∈ R
m1 × · · · × R

mN and every α ∈ [0, 1]. Rearranging
this inequality, we obtain, for 0 < α ≤ 1,

1

α
[L(u◦ + α(v − u◦))− L(u◦)] ≤ L(v)− L(u◦),

and letting α ↓ 0, we arrive at

N∑
i=1

∇uiL(u◦)(vi − uoi) ≤ L(v)− L(u◦), ∀v ∈ R
m1 × · · · × R

mN ,

where the required derivatives exist and the chain rule applies since L is continu-
ously differentiable at the given point. Furthermore, by the pbp optimality of u◦, all
these partial derivatives vanish, leading to

L(u◦) ≤ L(v), ∀v ∈ R
m1 × · · · × R

mN ,

which proves global optimality of u◦. ��

This lemma now finds a natural generalization to static stochastic team problems
with finite measurement spaces. First, we formally introduce the notion of a
“stationary policy.”

Definition 2.6.1. Given a static stochastic team problem {J ;Γ i, i ∈ N}, a policy
N -tuple γ ∈ Γ is stationary if (i) J(γ) is finite, (ii) the N partial derivatives in the
following equations are well defined (locally), and (iii) γ satisfies these equations:

[
∇uiEξ|yiL(ξ; γ−i(y−i), ui)

]
|ui=γi(yi) = 0, a.s. i ∈ N . (2.26)

�

21 Here, if one is to generalize the space on which L is defined, such as an infinite-dimensional
space, Fréchet differentiability would be a sufficient condition. In fact continuous differentiability,
and thus continuity of partial derivatives for a finite-dimensional function (see Appendix A.4),
implies Fréchet differentiability [140]. The key aspect required is that the chain rule in differentia-
tion applies, which is the case for Fréchet differentiable functions, and not necessarily the case for
weaker forms of differentiability. See also Radner [316] for a related discussion.
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Clearly, the stationarity condition (2.26) is a necessary condition for (2.25) if
L(ξ;u) is continuously differentiable in each agent’s action variable (not necessarily
jointly) for every ξ ∈ Ξ , and Si, i ∈ N , are open subsets of finite-dimensional
vector spaces. It is equivalent to (2.25) if furthermore Si, i ∈ N , are convex sets,
and L(ξ;u) is convex in ui, i ∈ N , for every ξ ∈ Ξ . The following theorem now
basically says that if the convexity and continuous differentiability of L is jointly in
all the agents’ action variables, then a stationary policy is necessarily team-optimal.

Theorem 2.6.3. For an N -agent static stochastic team problem, let the hypotheses
(c.3) and (c.4) be satisfied, Si be an open convex subset of a finite-dimensional
vector space, for each i ∈ N , and L(ξ, ·) be convex and continuously differentiable
on S := S1 × · · · × SN . Under these conditions, if the policy γ◦, taking values in
S, is stationary, it is team-optimal. �

Proof. Using the construction given in the proof of Theorem 2.6.2, J admits a
representation on the space U, which is convex and continuously differentiable
(this last property follows because by (c.4) the function Lav(yt; ·) is continuously
differentiable, and the representation for J is a finite weighted sum of such
functions). Then, the result follows by a direct application of Lemma 2.6.1. ��

Example 2.6.1. continued. Returning to the static team of Example 2.6.1, so as to
apply Theorem 2.6.3, first by the “monotone convergence theorem” (see the proof
of Theorem 2.6.4), the conditional expectation and differentiation in (2.26) can be
interchanged, leading to the equivalent stationarity conditions

Eξ|yi{(∂/∂ui)L(ξ; γj(yj), ui)}|ui=γi(yi) = 0, i 	= j, i, j = 1, 2

⇔
2γ1(y1) + E[ξγ2(y2)|y1]− 1 = 0,

2γ2(y2) + E[ξγ1(y1)|y2]− 2 = 0.

Since y1 and y2 each take two different values, this pair of equations is in fact a set
of four linear equations, identical with the equations (◦) encountered earlier—as we
would have expected. Note that to further simplify the pair of equations above, we
can substitute for γ2 from the second into the first, to arrive at a single equation in
terms of γ1,

4γ1(y1) + 2E[ξ|y1]− 1− E[ξE[γ1(y1)|y2]|y1] = 0,

which can be solved uniquely for u11 = γ1(y11) and u12 = γ1(y12), to yield u11
∗
=

0.231214, u12
∗
= −0.323699. The stationary policies of agent 2 can likewise be

obtained. Since the loss function L satisfies all the hypotheses of Theorem 2.6.3,
these stationary policies are indeed team-optimal. �
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2.6.2 Teams on Finite-Dimensional Spaces

We now extend the theory of the previous subsection from finite spaces to a
class of uncountable (but finite-dimensional) measurement spaces, with the action
spaces again taken as finite-dimensional vector spaces. Given such a team problem
{J ;Γ i, i ∈ N}, at least one of the policy spaces (Γ i) will be infinite dimensional,
which means that condition (c.1) will no longer imply that the policy space Γ is
compact. Hence, even though Fact 2.6.1 would still be applicable in this case, a
counterpart of Theorem 2.6.1 (on the existence of a team solution) will not follow
from the given conditions. If γ∗ ∈ Γ is a team-optimal solution, then it will
necessarily satisfy the pbp optimality condition (2.25) where now Y i = R

ri , i ∈ N .
If furthermore, the action constraint sets are open, and the function to be minimized
in (2.25) is continuously differentiable in the minimizing argument, this being so for
all i ∈ N , then the team solution should satisfy the stationarity conditions (2.26).
The question now is whether there exists a counterpart of Theorem 2.6.3, to ensure
that every stationary solution is also team-optimal. We first have the following
theorem which provides a set of sufficient conditions for a policy N -tuple to be
team-optimal.

Theorem 2.6.4. Let {J ;Γ i, i ∈ N} be a static stochastic team problem where
U i ≡ R

mi , i ∈ N , the loss function L(ξ,u) is convex and continuously
differentiable in u a.s., and J(γ) is bounded from below on Γ. Let γ∗ ∈ Γ be a
policy N -tuple with a finite cost (J(γ∗) < ∞), and suppose that for every γ ∈ Γ
such that J(γ) <∞, the following N inequalities hold:

E{∇uiL(ξ; γ∗(y))[γi(yi)− γi∗(yi)]} ≥ 0, i ∈ N , (2.27)

where E{·} denotes the total expectation. Then, γ∗ is a team-optimal policy, and it
is unique if L is strictly convex in u. �

Proof. First, by the convexity of L, we obtain (as in the proof of Lemma 2.6.1)

1

α

[
L(ξ; γ∗(y) + α[γ(y) − γ∗(y)]) − L(ξ; γ∗(y))

]
≤ L(ξ; γ(y)) − L(ξ; γ∗(y)),

for all α ∈ (0, 1]. Using the definition of J , this inequality can equivalently be
written as (by taking the total expectation):

h(α) :=
1

α
[E{L(ξ; γ∗(y) + α[γ(y)− γ∗(y)])} − J(γ∗)] ≤ J(γ)− J(γ∗),

where α ∈ (0, 1]. Note that both J(γ) and J(γ∗) are finite, by hypothesis, and the
first random variable (i.e., the first loss function) also has a finite expectation for
every α ∈ (0, 1] because of the bound provided by the inequality. Now, due to the
convexity of L, its finite integral,E{L(ξ; γ∗(y)+α[γ(y)−γ∗(y)])} is also convex
in α. This leads to the conclusion that (by a property of convex functionals, given
in Appendix A, Sect. A.4) h(α) is a monotonically nonincreasing function as α ↓ 0,
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and furthermore h(1) ≡ J(γ) − J(γ∗) is bounded (by hypothesis). It then follows
from the monotone convergence theorem (see Appendix B) that limα↓0 h(α) exists,
and the limit and expectation operations can be interchanged. As a consequence of
continuous differentiability, this then leads to the inequality

N∑
i=1

E{∇uiL(ξ; γ∗(y))[γi(yi)− γi
∗
(yi)]} ≤ J(γ)− J(γ∗)

from which team-optimality of γ∗ follows, since the left-hand side is nonnegative,
by (2.27).

If L were strictly convex in u, a.s., then all the inequalities above would be strict,
for γ 	= γ∗, thus leading to

J(γ∗) < J(γ),

which says that γ∗ is the unique team-optimal solution. ��

Note that the conditions of Theorem 2.6.4 above do not include the stationarity
of γ∗, and furthermore inequalities (2.27) may not generally be easy to check, since
they involve all permissible policies γ (with finite cost)—generally an uncountable
set. It is therefore important to obtain more readily checkable conditions to re-
place (2.27) and to relate team-optimality to stationarity. Either one of the following
two conditions will accomplish this goal:

(c.5) For all γ ∈ Γ such that J(γ) < ∞, the following random variables have
well-defined (finite) expectations (i.e., mean values):

∇uiL(ξ; γ∗(y))[γi(yi)− γi∗(yi)], i ∈ N

(c.6) Γ i is a Hilbert space for each i ∈ N and J(γ) < ∞ for all γ ∈ Γ .
Furthermore,

Eξ|yi{∇uiL(ξ; γ∗(y)} ∈ Γ i, i ∈ N .

Of course, (c.6) can be obtained from (c.5) if Γ i, i ∈ N , are taken as Hilbert spaces.
Here we give it as a separate condition because in some problems (such as linear
quadratic—as we shall see shortly) (c.6) follows quite readily from the problem
formulations.

Theorem 2.6.5. Let {J ;Γ i, i ∈ N} be a static stochastic team problem which
satisfies all the hypotheses of Theorem 2.6.4, with the exception of the set of
inequalities (2.27). Instead of (2.27), let either (c.5) or (c.6) be satisfied. Then, if
γ∗ ∈ Γ is a stationary policy, it is also team-optimal. Such a policy is unique if
L(ξ;u) is strictly convex in u, a.s. �

Proof. We prove the result under condition (c.6) and leave its verification under
(c.5) as an exercise. Clearly, what we need to show is that stationarity of γ∗ implies
[under (c.6)] the set of inequalities (2.27). Firstly note that since Γ i is a vector space,
γi − γi∗ ∈ Γ i for every γi ∈ Γ i, and for every βi ∈ Γ i, there exists a γi ∈ Γ i
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such that βi = γi − γi∗. Since βi ∈ Γ i ⇒ −βi ∈ Γ i, the set of inequalities (2.27)
become equivalent to

E{∇uiL(ξ; γ∗(y))βi(yi)} = 0, ∀βi ∈ Γ i, i ∈ N
⇔

Eyi{Eξ|yi [∇uiL(ξ; γ∗(y))]βi(yi)} = 0, ∀βi ∈ Γ i, i ∈ N ,

where the second line follows from the iterated property of conditional expectation,
under condition (c.6). Since both product terms above belong to Γ i which is a
Hilbert space, and the equality is required to hold for every element of Γ i, i ∈ N ,
the last line becomes equivalent to

Eξ|yi [∇uiL(ξ; γ∗(y))] = 0, a.s. yi, i ∈ N .

To complete the proof, we now have to show that the stationarity condition (2.26)
implies the above, which would be true if we were able to interchange the derivative
(which is a limit) and conditional expectation operations. This however is justified
(using again the monotone convergence theorem, as in the proof of Theorem 2.6.4),
since J(γ) is finite for all γ ∈ Γ and the conditional expectation above is well
defined (as an element of a Hilbert space). ��

Theorem 2.6.5 above thus provides an extension of the result of Theorem 2.6.3
from finite to infinite measurement sets. To appreciate some of the fine points of
Theorems 2.6.4 and 2.6.5, let us now consider the following example, which was
discussed by Radner [316] and Krainak et al. [218].

Example 2.6.2. Let N = 2, Ξ = U1 = U2 = R, ξ = x be a Gaussian random
variable with zero mean and unit variance (∼ N(0, 1)), and the loss functional be
given by

L(x;u1, u2) = (u1 − u2)2ex
2

+ 2u1u2.

Note that L is strictly convex and continuously differentiable in (u1, u2) for every
value of x. Hence, if the true value of x were known to both agents, the problem
would admit a unique team-optimal solution: u1 = u2 = 0, which is also
stationary. Since this team-optimal solution does not use the precise value of x,
it is certainly optimal also under “no-measurement” information (the other extreme
scenario). Note, however, that in this case the only pairs that make J(γ) finite are
u1 = u2 = u ∈ R, since

E[ex
2

] =
1√
2π

∫ ∞

−∞
e+

x2

2 dx = ∞.

With the set of permissible policies not being an open set, clearly we cannot talk
about stationarity in this case. Theorem 2.6.4 (which does not involve stationarity)
is applicable here, where inequality (2.27) is satisfied trivially. Note also that for
every u ∈ R, u1 = u2 = u is a pbp optimal solution, but only one of these is
team-optimal.
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Now, as a more interesting case, consider the measurement scheme:

y1 = x+ w1; y2 = x+ w2,

where w1 and w2 are independent random variables uniformly distributed on the
interval [−1, 1], which are also independent of x.22 Clearly, u1 = u2 = 0 is team-
optimal for this case also, but it is not obvious at the outset whether it is stationary
or not. Toward this end, let us evaluate (2.26) for i = 1 and with γ2(y2) = 0:

(∂/∂u1)Ex,y2|y1{(u1)2eξ2} = (∂/∂u1)[(u1)2Ex|y1{eξ2}] = 2u1Ex|y1{eξ2}

where the last step follows because the conditional probability density of x given y1

is nonzero only in a finite interval (thus making the conditional expectation finite).
By symmetry, it follows that both derivatives in (2.26) vanish at u1 = u2 = 0, and
hence the team-optimal solution is stationary. It is not difficult to see that in fact this
is the only pair of stationary policies. Note that all the hypotheses of Theorem 2.6.5
are satisfied here, under condition (c.5). �

2.6.3 Two Special Cost Structures

We now specialize the above general result to two classes of teams with special cost
structures, namely, quadratic and exponentiated quadratic loss functions. In both
cases the team loss function will be strictly convex and continuously differentiable,
so that (2.27) provides a sufficient condition for a policy γ∗ ∈ Γ to be team-optimal.
We will further observe that the conditions of Theorem 2.6.5 are satisfied, so that
stationary policies are also team-optimal.

Static Teams with Quadratic Loss

Given a probability space (Ω,F, PΩ), and an associated vector-valued random
variable ξ, let {J ;Γ i, i ∈ N} be a static stochastic team problem with the following
specifications:

(i) U i ≡ R
mi , i ∈ N , i.e., the action spaces are unconstrained Euclidean spaces.

(ii) The loss function is a quadratic function of u for every ξ:

L(ξ;u) =
∑

i,j∈N
ui

′
Rij(ξ)u

j + 2
∑
i∈N

ui
′
ri(ξ) + c(ξ), (2.28)

22Note that here the random state of nature, ξ, is chosen as (x,w1, w2)′.
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where Rij(ξ) is a matrix-valued random variable (with Rij ≡ R′
ji), ri(ξ) is

a vector-valued random variable, and c(ξ) is a random variable, all generated
by measurable mappings on the random state of nature, ξ.

(iii) L(ξ;u) is strictly (and uniformly) convex in u a.s., i.e., there exists a positive
scalar α such that, withR(ξ) defined as a matrix comprised ofN blocks, with
the ij ’th block given by Rij(ξ), the matrix R(ξ)−αI is positive definite a.s.,
where I is the appropriate dimensional identity matrix.

(iv) R(ξ) is uniformly bounded above, i.e., there exists a positive scalar β such
that the matrix βI −R(ξ) is positive definite a.s.

(v) Y i ≡ R
ri , i ∈ N , i.e., the measurement spaces are unconstrained Euclidean

spaces.
(vi) yi= ηi(ξ), i∈N , for some appropriate Borel measurable functions ηi, i ∈ N .

(vii) Γ i is the (Hilbert) space of all Borel measurable mappings of γi : Rri →
R

mi , which have bounded second moments, i.e., Eyi{γi′(yi)γi(yi)} <∞.
(viii) Eξ[r

′
i(ξ)ri(ξ)] <∞, i ∈ N ; Eξ[c(ξ)] <∞.

Definition 2.6.2. A static stochastic team is quadratic if it satisfies (i)–(viii) above.
It is a standard quadratic team if furthermore the matrix R is constant for all
ξ (i.e., it is deterministic). If, in addition, ξ is a Gaussian distributed random
vector, and ri(ξ) = Qiξ, η

i(ξ) = Hiξ, i ∈ N , for some deterministic matrices
Qi, H

i, i ∈ N , the decision problem is a quadratic-Gaussian team (more widely
known as a linear-quadratic-Gaussian (LQG) team under some further structure on
Qi and Hi). �

We now first show that the cost function of a quadratic team is bounded and
strictly convex on Γ.

Proposition 2.6.1. For a quadratic team,

(i) |J(γ)| <∞ for all γ ∈ Γ.
(ii) J(γ) is strictly convex on Γ. �

Proof. For each γ ∈ Γ, each component of ui = γi(yi) is a random variable
on (Ω,F , PΩ) with a bounded second moment (i.e., it is a second-order random
variable), this being true for all i ∈ N . Now using the fact that the product of any
two second-order random variables defined on the same probability space is a well-
defined random variable (on the same probability space) with a finite mean value
(see Appendix B), it follows that the expected value of the second term of (2.28) is
finite. Furthermore, since R(ξ) is uniformly bounded, the expected value of the first
term satisfies the bound

0 ≤ E{
∑
i,j

ui
′
Rij(ξ)u

j} ≡ E{u′R(ξ)u} ≤ βE{u′u},

whereE{u′u} is finite by the same reasoning as above. Then, it readily follows that
L(ξ;u), with ui = γi(yi), i ∈ N , is a well-defined random variable with a finite
expectation. Now, since L(ξ,u) is strictly convex in u for every ξ, we have the strict
inequality

L(ξ; α̃γ(y) + (1− α̃)γ̂(y)) < α̃L(ξ; γ(y)) + (1− α̃)L(ξ; γ̂(y))
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for all α̃ ∈ (0, 1), and every γ, γ̂ ∈ Γ, γ 	= γ̂. Taking the expected values of both
sides, which are finite as shown above, we arrive at

J(α̃γ + (1− α̃)γ̂) < α̃J(γ) + (1 − α̃)J(γ̂),

which shows that J is strictly convex. ��

Now, the stationarity conditions (2.26) associated with the loss functional (2.28)
can be evaluated:

[∇ui

⎧⎨
⎩Eξ|yi

∑
k,j∈N

uk
′
Rkj(ξ)u

j + 2ui
′
Eξ|yiri(ξ) + 2Eξ|yi

∑
j∈N ,j 
=i

uj
′
rj(ξ)

+Eξ|yic(ξ)

⎫⎬
⎭]|ui=γi(yi) = 0, i ∈ N

⇔ [Eξ|yi [Rii(ξ)]u
i +

∑
j∈N ,j 
=i

Eξ|yiRij(ξ)u
j + Eξ|yiri(ξ)]|ui=γi(yi) = 0, i ∈ N

⇔ Eξ|yi [Rii(ξ)]γ
i(yi)+

∑
j∈N ,j 
=i

Eξ|yi [Rij(ξ)γ
j(yj)]+Eξ|yiri(ξ) = 0, i ∈ N ,

(2.29)
where in going from the first to the second line of the equation we have simply
performed vector differentiation with respect to ui which is outside the conditional
expectation and have also used the fact that Rij ≡ R′

ji.
Hence, (2.29) constitutes the set of stationarity conditions for the quadratic team.

The following theorem, due to Radner [316], now says that the solution is unique
and is team-optimal.

Theorem 2.6.6. A quadratic static team (á la Definition 2.6.2) admits a unique
team-optimal solution γ∗ ∈ Γ, which is also the unique stationary solution
satisfying (2.29). �

Proof. Assuming that there exists a stationary solution [i.e., a solution to (2.29)], the
uniqueness and team-optimality follow from Theorem 2.6.5, since all its hypotheses
are satisfied along with condition (c.6). Hence the proof will be completed if we can
show that there exists at least one solution γ∗ ∈ Γ to (2.29). Here the verification
is somewhat technical and requires some results from functional analysis and
particularly Hilbert spaces (which are summarized in Appendix A, Sect. A.2). We
outline here the crucial steps in this verification; the approach is essentially due to
Radner [316].

Let us first note that the quadratic loss function (2.28) can equivalently be
written as

L(ξ;u) = u′R(ξ)u+ 2u′r(ξ) + c(ξ)

≡ [u+R−1(ξ)r(ξ)]′R(ξ)[u+R−1(ξ)r(ξ)] + c(ξ)− r(ξ)′R−1(ξ)r(ξ),
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whereR(ξ) is the matrix whose ij th block is Rij(ξ), and has an inverse (pointwise)
by the a.s. strict convexity of L. Hence, if all agents had perfect access to the precise
value of ξ, the minimum value of J would be given by the expected value of the
last two terms above. Since this is not the case, the actual minimum value of J
will be higher, the difference being due to the error in “approximating the vector
−R−1(ξ)r(ξ) using policies out of Γ.” An equivalent problem, therefore, is

min
γ∈Γ

J̃(γ), J̃(γ) := E{‖γ(y) +R−1(ξ)r(ξ)‖2R(ξ)}, (2.30)

and the statement just made (in “inverted commas”) can be given a precise
mathematical meaning as follows.

First note that the policy space Γ is the product space Γ 1×· · ·×ΓN , where each
Γ i is in fact a Hilbert space, with the inner product

〈αi, βi〉i := E[αi(yi)′βi(yi)]

(see Appendix A, Sect. A.2, and Appendix B, Sect. B.1). This makesΓ also a Hilbert
space, with the inner product

〈α, β〉 := E

{∑
i∈N

αi(yi)′βi(yi)

}
≡ E[α(y)′β(y)]. (◦)

Note the important restriction that α and β are not allowed to depend on all
components of y, because different agents do not have access to the same set of
measurements. Now, in order to be able to use (2.30) as a norm compatible with the
given inner product, we have to change the (◦) somewhat by weighting it with R(ξ):

〈α, β〉 = E[α(y)′R(ξ)β(y)]. (◦◦)

This actually changes Γ, the space where α and β belong, but because of the given
properties of R(ξ), we have an isometry between the two spaces and therefore can
denote the one under the new inner product (◦◦) also by Γ. If every component
of γ were allowed to depend on the entire measurement vector y (which would
be the case if all the agents were to share their measurements), then the set of all
permissible γ′s bounded under the norm induced by (◦◦) would be a much larger
(than Γ) space. Let us denote this space by H, and note that it is also a Hilbert space,
under the inner product (◦◦). An important observation now is that Γ is a closed
linear subspace of H, closed because every convergent sequence in Γ with a limit
point will have the limit point in Γ. Hence, the team-minimization problem (2.30) is
in fact an orthogonal projection problem, one of orthogonally projecting the random
vector x(ξ) := R−1(ξ)r(ξ) from H onto Γ. The conditions of the orthogonal
projection theorem given in Appendix A, Sect. A.2, are satisfied, and therefore there
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exists a unique element of Γ that solves (2.30). Furthermore, this unique element,
say γ∗, has the property that

γ∗ + x ⊥ γ, ∀γ ∈ Γ

(see Appendix A, Sect. A.2, for notation and terminology). Using the inner product
(◦◦), this orthogonality relationship can be written as

〈γ∗ + x, γ〉 = E
{
[γ∗(y) + x(ξ)]′R(ξ)γ(y)

}
= 0

⇔

E

⎧⎨
⎩
∑
i∈N

γi(yi)′

⎡
⎣∑
j∈N

Rij(ξ)γ
∗j(yj) + ri(ξ)

⎤
⎦
⎫⎬
⎭ = 0

⇔

E

{∑
i∈N

γi(yi)′

[
Eξ|yi{Rii(ξ)}γ∗i(yi) +

∑
j∈N ,j 
=i

Eξ|yi

{
Rij(ξ)γ

∗j(yj)
}

+Eξ|yiri(ξ)

]}
= 0,

where in arriving at the last line we have used the iterative property of conditional
expectations. Now, since this equality has to hold for all γ ∈ Γ and since Γ is
a Hilbert space, it follows that the expression in brackets should vanish for every
i ∈ N 23 which is precisely (2.29). ��

The proof of the theorem, as presented above, provides us with a new in-
terpretation to the stationarity conditions (2.29). Note that they can be rewritten
(compactly) as

PRγ + Pr = 0, (2.31)

where P is a linear operator, block diagonal, with the ii ’th block defined through

Piiβ
i(ξ) = Eξ|yiβi(ξ), i ∈ N ,

where βi(ξ) is anmi-dimensional measurable function of ξ, satisfying the bounded-
ness condition E{βi(ξ)′βi(ξ)} <∞. As such, the linear operator P is a projection
operator defined on a Hilbert space, whose operator norm is one (see Appendix A,
Sect. A.2). Note that if the agents had full access to the value of ξ, then the
stationarity condition would be

R(ξ)γ(ξ) + r(ξ) = 0, (2.32)

23Here we have used the following property of Hilbert spaces: if 〈α, β〉 = 0 for all β ∈ H, then
α ≡ 0.
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which of course admits a unique solution since the matrix R(ξ) is invertible for
all ξ. Hence, the stationarity equation in the decentralized measurement case is a
“projected” version of the one in the centralized full information case, but note,
however, that the unique (decentralized) team-optimal solution is not a projected
version of the centralized one (−R−1r).

The unique team-optimal solution can be obtained using some approximation
schemes. Viewing (2.29) (or equivalently (2.31) as a fixed-point equation (see
Appendix A, Sect. A.6, for details), one approach would be to use successive
approximations:

⎧⎪⎪⎨
⎪⎪⎩
γi(k+1)(y

i) = −[Eξ|yiRii(ξ)]
−1

⎧⎨
⎩

∑
j∈N ,j 
=i

Eξ|yi [Rij(ξ)γ
j
(k)(y

j)] + Eξ|yiri(ξ)

⎫⎬
⎭,

γi(0)(y
i) ≡ 0, i ∈ N , k = 0, 1, . . .

(2.33)
which is called the parallel update scheme, where we have taken the starting points
of the iteration as the zero function, as an arbitrary choice. This iteration models a
dynamic decision process where the agents exchange policy information at every
(discrete) point in time, and at the k + 1’th instant agent i solves the (stochastic)
optimization problem

minγi∈Γ i J(γ1(k), . . . , γ
i−1
(k) , γ

i, γi+1
(k) , . . . , γ

N
(k))

= J(γ1(k), . . . , γ
i−1
(k) , γ

i
(k+1), γ

i+1
(k) , . . . , γ

N
(k)), i ∈ N .

Clearly, if the parallel scheme converges, it will yield the (unique) team-optimal
solution in the limit. However, there is generally no guarantee that it will converge,
unless some conditions are imposed on the matrix R and the probabilistic structure
of the problem. To state two such conditions, let us first write (2.33) in compact
form:

γ
(k+1)

= Fγ
(k)

+ r̂, (2.34)

where F is a linear operator mapping Γ into itself and composed of block operators
with the diagonal blocks being zero and off-diagonal blocks given by

[Fijγ
j](yi) = −[Eξ|yiRii(ξ)]

−1Eξ|yi [Rij(ξ)γ
j(yj)], j 	= i, j ∈ N . (2.35)

Furthermore, r̂ ∈ Γ, with the ith block vector given by

[r̂(y)]i = −[Eξ|yiRii(ξ)]
−1Eξ|yiri(ξ), i ∈ N . (2.36)

Using the notation introduced in Appendix A, Sect. A.2, let " F # denote the
operator norm of F and ρ(F) denote its spectral radius; furthermore, note the
inequality

ρ(F) ≤ " F # .



58 2 Networked Control Systems as Stochastic Team Decision Problems. . .

The Banach and successive approximation theorems of Appendix A, Sect. A.6, now
readily lead to the following result.

Proposition 2.6.2. Consider the parallel update scheme (2.33) [equivalently (2.34)]
for the general stochastic static team problem:

(i) The iteration converges for all starting points γ
(0)

∈ Γ if, and only if,

ρ(F) < 1. (2.37)

(ii) The iteration converges for all starting points γ
(0)

∈ Γ if

" F # < 1, (2.38)

which is therefore a sufficient condition for (2.37).

�

It is important to note that nonsatisfaction of (2.37) does not necessarily imply
that there is no recursive scheme which would compute γ∗; in fact, there may exist
nonparallel schemes or schemes that use relaxation (i.e., higher-order memory),
which will have better convergence properties. As an example of a nonparallel
scheme consider the so-called sequential scheme where the agents take their turns,
one at a time and in strict order, to re-optimize their policies, i.e., γi(k+1) is
determined through the minimization of

min
γi∈Γ i

J(γ1(k+1), . . . , γ
i−1
(k+1), γ

i, γi+1
(k) , . . . , γ

N
(k)).

This then leads to the following counterpart of (2.33):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γi(k+1) = [Eξ|yiRii(ξ)]
−1

⎧⎨
⎩

∑
j∈N ,j<i

Eξ|yi [Rij(ξ)γ
j
(k+1)(y

i)]

+
∑

j∈N ,j>i

Eξ|yi [Rij(ξ)γ
j
(k)(y

j)]+Eξ|yiri(ξ)

⎫⎬
⎭ , i∈N , k = 0, 1 . . . ,

γi(0) ≡ 0, i ∈ N , i 	= 1.

(2.39)
Note that this recursion cannot be written in a compact form as in (2.34). However,
for such convex team problems, sequential schemes have more desirable conver-
gence properties since the sequence of minimizations above leads to a monotone
non-increasing sequence of positive real numbers (associated with the team cost)
which has a limit (unlike the general parallel scheme in (2.33)).
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Standard Quadratic Teams

We now study the class of quadratic teams where the matrix R(ξ) is a constant in
(ξ), i.e., R is deterministic. The basic equation of stationarity, (2.29), simplifies to

γi(yi) +
∑

j∈N ,j 
=i

R̃ijEξ|yi [γj(yj)] + Eξ|yi r̃i(ξ) = 0, i ∈ N , (2.40)

where
R̃ij := R−1

ii Rij ; r̃i(ξ) = R−1
ii ri(ξ). (2.41)

Clearly, by Theorem 2.6.6, this equation admits a unique solution γ∗ ∈ Γ, whenever
the loss function is strictly convex (equivalently, if the constant matrix R is positive
definite). The counterpart of the parallel update scheme (2.33) is

γi(k+1)(y
i) = −

∑
j∈N ,j 
=i

R̃ijEyj |yi [γj(k)(y
j)]− Eξ|yi r̃i(ξ) i ∈ N , k = 0, 1, . . . ,

(2.42)
which we now further study for the case N = 2 (i.e., with only two agents).
Substituting γ2(k+1) obtained from (2.42) into the same for i = 1, we obtain

γ1(k+2)(y
1) = R̃12R̃21Ey2|y1Ey1|y2 [γ1(k)(y

1)] + c1(y1), (2.43)

where
c1(y1) := −Eξ|y1 r̃1(ξ) + R̃12Ey2|y1Eξ|y2 r̃2(ξ). (2.44)

Note that if we instead had the sequential update, (2.39), the resulting equation for
i = 1 would be exactly (2.43) with simply γ1(k) replaced by γ1(k+1). Hence the
parallel and sequential update schemes are essentially identical in the case of a two-
agent team problem. The following proposition states this result, along with two
other useful observations.

Proposition 2.6.3. For the standard quadratic team with N = 2:

(i) The parallel update schemes (2.42) converge (to a limiting policy pair
γ∗ ∈ Γ, which is a team-optimal solution) if, and only if, the single update
scheme (2.43) converges.

(ii) If (2.43) converges to a limiting policy γ1∗ ∈ Γ 1, then γ2∗ is the unique team-
optimal policy of agent A1, and

γ2∗(y2) = −R̃21Ey1|y2 [γ1∗(y1)]− Eξ|y2 r̃2(ξ)

is the unique team-optimal policy of agent A2.
(iii) The parallel and sequential update schemes require the same condition of

convergence, which is

ρ(R̃12R̃21Eξ|y1Eξ|y2) < 1 ,
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where ρ(·) is the spectral radius of its linear operator argument mapping Γ 1

into itself. �

Proof. Parts (i) and (ii) are mere observations and require no proof. Part (iii)
follows from the successive approximation theorem of Appendix A, Sect. A.6, since
in (2.43) R̃12R̃21Ey2|y1Ey1|y2 , which can equivalently be written as
R̃12R̃21Eξ|y1Eξ|y2 is a linear bounded operator mapping Γ 1 (a Hilbert space) into
itself. See also Proposition 2.6.2, and compare (2.43) with (2.31). ��

The following lemma now paves the way toward showing that the condition of
Proposition 2.6.3(iii) is satisfied for all standard quadratic teams.

Lemma 2.6.2. The loss function (2.28), with N = 2 and Rij constant matrices, is
strictly convex if, and only if, R22 is positive definite and

ρ(R̃12R̃21) < 1.

�

Proof. Strict convexity of L is equivalent to the positive definiteness of the matrix

R :=

(
R11 R12

R12 R22

)
,

which is further equivalent to (by definition)

(
x

y

)′(
R11 R12

R′
12 R22

)(
x

y

)
> 0, ∀

(
x

y

)
	= o,

where o is the zero vector in R
m, m := m1 + m2, and x, y have dimensions

compatible with the dimensions of the blocks of R. The above can be rewritten as

x′R11x+ 2x′R12y + y′R22y > 0

from which it follows that R11 > 0, R22 > 0 are necessary conditions for
strict convexity. Now, minimizing this expression with respect to y, we have, by
differentiation,

y = −R−1
22 R21x

as the unique solution, substitution of which into the original expression leads to

min
y

(
x

y

)′

R

(
x

y

)
= x′(R11 −R12R

−1
22 R

′
12)x

≡ (R
1
2
11x)

′(I − (R
1
2
11)

−1R12R
−1
22 R

′
12(R

1
2
11)

−1)(R
1
2
11x) > 0,

for x 	= 0, where R
1
2
11 is the unique square root of R11.
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The strict inequality holds, for all nonzero x, if, and only if, the matrix

I − (R
1
2
11)

−1R12R
−1
22 R

′
12(R

1
2
11)

−1

is positive definite, which is equivalent to all eigenvalues of the second (nonnegative
definite) matrix to be less than one. Hence,

ρ((R
1
2
11)

−1R12R
−1
22 R

′
12(R

1
2
11)

−1) ≡ ρ(R−1
11 R12R

−1
22 R

′
12) < 1,

where we used the fact that for two square matrices A and B, ρ(AB) = ρ(BA).
Since R̃12 = R−1

11 R12, R̃21 = R−1
22 R21 ≡ R−1

22 R
′
12, this completes the proof of the

lemma. ��

This brings us to the following strengthened version of Theorem 2.6.6 for
standard quadratic teams with N = 2.

Theorem 2.6.7. For the two-agent standard quadratic team,

(i) There exists a unique team-optimal solution γ∗ ∈ Γ, which is also the unique
solution of (2.40) with N = 2.

(ii) Both the parallel and sequential update schemes converge for all starting
points in Γ.

(iii) Agent Ai’s optimal policy is given by the infinite sum

γi∗(yi) =
∞∑
k=0

(R̃ijR̃jiEyj |yiEyi|yj )kci(yi), i, j = 1, 2; j 	= i, (2.45)

where c1 is given by (2.44) and c2 is defined by the same with 1’s and 2’s
interchanged. �

Proof. Of course, (i) follows from Theorem 2.6.6, but since (ii) implies (i) in view
of Proposition 2.6.3, the independent proof that we will give for (ii) will also provide
an alternative proof to this special case of Theorem 2.6.6.

To prove part (ii), it will be sufficient to verify the condition of Proposi-
tion 2.6.3(iii). Toward this end, let us first introduce a (Hilbert) space Γ̂ 1 of all
m1-dimensional measurable functions γ̂(y1, y2) with bounded second moments:
Ey{|γ̂(y1, y2)|2} < ∞. Clearly, Γ 1 is a subspace of Γ̂ 1. Now, the conditional
expectation operator Eξ|yi =: P i is a projection operator on Γ̂ 1 (see Appendix B)
and hence has operator norm one, for both i = 1 and i = 2. Since the product P 1P 2

is also a linear bounded operator on Γ̂ 1, its norm is bounded by

" P 1P 2 # ≤ " P 1 #" P 2 #= 1.

An important observation here is that for any γ̂ ∈ Γ̂ ′, P 1P 2γ̂ ∈ Γ 1 ⊂ Γ̂ 1, and
hence we can also view the product operator P 1P 2 as a bounded linear operator
mapping Γ 1 into itself. Since R̃12R̃21 also maps Γ 1 into itself, we have

ρ(R̃12R̃21P
1P 2) ≤ ρ(R̃12R̃21)ρ(P

1P 2),
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which is the spectral radius inequality on Hilbert spaces (see Appendix A, Sect. A.2).
The first product term above is strictly less than one by Lemma 2.6.2, and the second
term is no greater than one, by

ρ(P 1P 2) ≤ " P 1P 2 # ≤ 1.

This completes the proof of (ii), in view of Proposition 2.6.3(iii).
For part (iii) simply note that for i = 1, (2.45) is the infinite summation obtained

from (2.43) by taking γ1(0) ≡ 0, with the limit being a valid (well-defined) element

of Γ 1 by part (ii). Clearly the same result holds for i = 2. ��

Remark 2.6.1. The iteration (2.43), or more generally (2.42), is sometimes called
the infinite second guessing scheme. If the agents had known each other’s (optimal)
policies, then the iteration would halt after one step. Since this knowledge is not
there, they have to estimate (or guess) each other’s actions, which would also involve
the estimates of each other’s estimates, etc., leading in general to an infinite, albeit
convergent, sequence. �

Even though iteration (2.42) converges for N = 2, it does not necessarily
converge for N > 2. This is mainly due to the fact that strict convexity of L
(equivalently, positive definiteness of R) does not imply that24 ρ(R̃) < 1, unless
N = 2.

Also one intuitive explanation for this discrepancy is that for N = 2 the
iteration (2.42) corresponds to the sequence of minimizations

J(γ1(k+1), γ
2
(k)) = min

γ1∈Γ 2
J(γ1, γ2(k)) =: J(k+1),

J(γ1(k+1), γ
2
(k+2)) = min

γ2∈Γ 2
J(γ1(k+1), γ

2) =: J(k+2), k = 0, 1, . . . ,

with the property

J(1) ≥ J(2) ≥ . . . ≥ J(k) ≥ J(k+1) ≥ . . . ,

Hence, at every step of the iteration, the value of J cannot increase, thus generating
a nonincreasing convergent sequence (of costs). This, of course, could also converge
to a pbp-optimal solution, but we know in this case (as already shown) that a pbp-
optimal solution (which is also stationary because of the special quadratic structure
of the loss function) is also team-optimal.

For N > 2, however, the iteration (2.42) does not necessarily generate a
monotonic cost sequence nor a subsequence that is monotonic, which is a reason
for the failure of (2.42) to converge.

24Here R̃ is the (m×m) matrix whose diagonal blocks are zero, and off-diagonal blocks are given
by [R̃]ij = R̃ij , as defined by (2.41).



2.6 Team-Optimal Solutions for Static Teams 63

In view of the above, a natural question that arises is whether there exists some
other (computational) algorithm that would yield the unique solution of (2.40)
(which is known to exist by Theorem 2.6.6). Toward studying this question, let
us first rewrite (2.40) as follows, using the compact notation of (2.31):

PRγ + Pr = 0. (∗)

Let us add −εγ to both sides (where ε > 0), and divide throughout by ε, to obtain

γ = P (I − 1

ε
R)γ − 1

ε
Pr, (∗∗)

where we have used the fact that the projection operator P and the identity operator
(matrix) I commute. Note that (∗) and (∗∗) are in fact identical equations. Now, we
associate the following iteration with (∗∗):

γ
(k+1)

= P (I − 1

ε
R)γ

(k)
− 1

ε
Pr, k = 0, 1, (2.46)

which, in component form, is, for i ∈ N , k = 0, 1, . . .,

γi(k+1)(y
i) = (I − 1

ε
Rii)γ

i
(k)(y

i)− 1

ε

∑
j∈N ,j 
=i

RijEξ|yiγj(yj)− 1

ε
Eξ|yiri(ξ).

(2.47)
Clearly, if the sequence generated by (2.46) converges to a limit in Γ, this also
solves (∗∗) and equivalently (∗). Furthermore, (2.40) being a linear iteration, we
know from Proposition 2.6.3(i) that the sequence {γ

(k)
} converges if, and only if,

ρ(P (I − 1

ε
R)) < 1.

Since both P and (I − 1
εR) map Γ into itself and since P has operator norm equal

to one, this inequality will be satisfied if

ρ(I − 1

ε
R) < 1.

The matrixR being positive definite, this inequality can always be met by choosing
ε > 0 sufficiently large. If λmax(R) denotes the maximum eigenvalue of R,
choosing ε > 1

2λmax(R) will in fact do the job. The specific choice of ε within this
region may be dictated by other considerations, such as the speed of convergence.
Since the smaller the spectral radium ρ(I − 1

εR) is, the “faster” the algorithm will
(in general) converge, a reasonable choice of ε, with this in mind, is

ε =
1

2
[λmax(R) + λmin(R)], (2.48)
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where λmin(R) denotes the minimum eigenvalue of R. These results are now
summarized in the following proposition.

Proposition 2.6.4. For the standard quadratic team with N agents, the parallel
update scheme (31b) converges to the unique team-optimal solution whenever ε >
1
2λmax(R). A particular value of ε which leads to relatively fast convergence is
given by (2.48). �

Proof. The result has already been verified prior to the statement of the proposition.
Note that this also provides an alternative proof for Theorem 2.6.6 for the special
case of standard quadratic teams. ��

Remark 2.6.2. The algorithm (2.46) should be viewed (at this point) only as a
computational tool, and not carry any significant interpretation in terms of the
original team decision problem. There are also other variations of this algorithm
which lead to convergence, but further discussion is beyond the scope and goal of
this book. �

Quadratic-Gaussian Teams

One class of quadratic teams for which the team-optimal solution can be obtained
in closed form are those where the random state of nature ξ is a Gaussian random
vector. Let us decompose ξ into N + 1 block vectors

ξ = (x′, y1
′
, y2

′
, . . . , yN

′
)′ (2.49)

of dimensions r0, r1, r2, . . . , rN , respectively. Being a Gaussian random vector, ξ
is completely described in terms of its mean value and covariance matrix, which we
specify below:

E[ξ] =: ξ̄ = (x̄′, ȳ1
′
, . . . , ȳN

′
), (2.50)

cov (ξ) =: Σ, with [Σ]ij =: Σij , i, j = 0, 1, . . . , N, (2.51)

[Σ]ij denotes the ijth block of the matrix Σ of dimension ri × rj , which stands for
the cross-variance between the ith and jth block components of ξ. We further assume
(in addition to the natural condition Σ ≥ 0) that Σii > 0 for i ∈ N , which means
that the measurement vectors yi’s have nonsingular distributions. To complete the
description of the quadratic-Gaussian team, we finally take the linear terms ri(ξ)
in the loss function (2.28) to be linear in x, which makes x the “payoff relevant”
part of the state of nature (recall the earlier discussion in Sect. 2.4 on the use of this
terminology):

ri(ξ) = Dix, i ∈ N , (2.52)

where Di is an (ri × r0) dimensional constant matrix. Note that in Definition 2.6.2
we simply have Qi = (Di, 0, 0).
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In the characterization of the team-optimal solution for the quadratic-Gaussian
team we will need the following important result on the conditional distributions of
Gaussian random vectors, which we will have occasion to use also in other chapters
in the book. A proof of this result can be found in any standard text on probability
theory.

Lemma 2.6.3. Let z and y be jointly Gaussian distributed random vectors with
mean values z̄, ȳ, and covariance

cov (z, y) =

(
Σzz Σzy

Σ′
zy Σyy

)
≥ 0, Σyy > 0. (2.53)

Then, the conditional distribution of z given y is Gaussian, with mean

E[z|y] = z̄ +ΣzyΣ
−1
yy (y − ȳ) (2.54)

and covariance
cov(z|y) = Σzz −ΣzyΣ

−1
yy Σ

′
zy (2.55)

�

The complete solution to the quadratic-Gaussian team is now given in the
following theorem:

Theorem 2.6.8. The quadratic-Gaussian team decision problem as formulated
above admits a unique team-optimal solution that is affine in the measurement of
each agent:

γi∗(yi) = Πi(yi − ȳi) +M ix̄, i ∈ N . (2.56)

Here, Πi is an (mi × ri) matrix (i ∈ N ), uniquely solving the set of linear matrix
equations:

RiiΠ
iΣii +

∑
j∈N ,j 
=i

RijΠ
jΣji +DiΣ0i = 0, (2.57)

and M i is an (mi × r0) matrix for each i ∈ N , obtained as the unique solution of
∑
j∈N

RijM
j +Di = 0, i ∈ N . (2.58)

�

Proof. Referring back to iteration (2.47), and initializing it with γi(0) ≡ 0, i ∈ N ,

it follows from repeated application of Lemma 2.6.3 that γi(k)(y
i) that is generated

by (2.47) is necessarily affine in yi, for all k = 1, 2, . . ., with the structure given by

γi(k)(y
i) = Πi

(k)(y
i − ȳi) +M i

(k)x̄.

By Proposition 2.6.4, this sequence converges, and the limiting solution is neces-
sarily in the form (2.56). Further, by Theorem 2.6.6, this limiting policy should
uniquely solve the stationarity equations (2.40). Therefore, all that remains to be
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done is to substitute (2.56) into (2.40), to arrive at (in view of Lemma 2.6.3):

[RiiΠ
i+

∑
j∈N ,j 
=i

RijΠ
jΣjiΣ1

ii+DiΣoiΣ
−1
ii ](yi−ȳi)+[Σj∈NRijM

j+Di]x̄ ≡ 0,

which is an identity for each i ∈ N . Since yi − ȳi and x̄ are independent, (2.57)
and (2.58) readily follow. Clearly, in view of our reasoning above, the solutions
to (2.57) and (2.58) have to be unique. This algebraic result can in fact also be
proven directly. For (2.58), it trivially follows because it can be rewritten as

RM +D = 0,

where M := (M1′ ,M2′ , . . . ,MN ′
)′; D := (D1′ , D2′ , . . . , DN ′

)′ and hence the
unique solution is

M = −R−1D.

��

A quadratic-Gaussian team is known as a LQG team, if furthermore the
measurements have the special structure

yi = Hix+ wi, i ∈ N , (2.59)

where wi, i ∈ N , constitutes an independent sequence of zero-mean Gaussian
random vectors, also independent of x. Let us denote the covariance of wi, known
as the measurement noise for agent Ai, by N i > 0, i ∈ N . Note that in this setup
the state of nature is given as

ξ = (x′, w1′ , . . . , wN ′
)′,

which is again an r :=
∑N

i=0 ri-dimensional Gaussian random vector.
Now, in view of (2.59), and the independence of the noise sequence, we have

ȳi = Hix̄, Σ0i = Σ00H
i′ , Σij = HiΣ00H

j′ , Σii = HiΣ00H
i′ +N i, i ∈ N .

Clearly, by the positive definiteness ofN i’s,Σii’s are positive definite, which means
that all the hypotheses of Theorem 2.6.8 are satisfied. The following corollary then
follows as a special case.

Corollary 2.6.2. The LQG team decision problem as formulated above admits a
unique team-optimal solution given by

γi∗(yi) = Πi(yi −Hix̄) +M ix̄, i ∈ N , (2.60)
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where M i, i ∈ N , is the unique solution of (2.58) and Πi solves uniquely the
following version of (2.57):

RiiΠ
i +

⎛
⎝ ∑

j∈N ,j 
=i

RijΠ
jHjΣ00H

i′ +DiΣ00H
i′

⎞
⎠ (HiΣ00H

i′ +N i)−1 = 0 .

(2.61)
�

Example 2.6.3. To illustrate the preceding results, consider the two-agent scalar
LQG team with loss function

L(x,u) = (u1 + u2 + x)2 + (u1)2 + (u2)2

and measurements
y1 = x+ w1, y2 = x+ w2

under the independent statistics

x ∼ N(1, 2), w1 ∼ N(0, 2), w2 ∼ N(0, 1).

Direct application of Corollary 2.6.2 leads to the unique team-optimal solution

γ1∗(y1) = − 2
11 (y

1 − 1)− 1
3 ,

γ2∗(y2) = − 3
11 (y

2 − 1)− 1
3 .

⎫⎬
⎭ (∗)

The corresponding minimum team cost can be computed to be

J∗ := J(γ1∗, γ2∗) $ 1.424.

Note that this is a symmetric team as far as the loss function goes (i.e.,L(u1, u2;x)=
L(u2, u1, x)), but as far as the measurements go agent A1 has “higher” measure-
ment noise than agent A2. This is reflected in the team-optimal policies, with the
measurement of A1 weighted less than the measurement of A2 (compare the gain
2
11 against the gain 3

11 ).
If the agents did not have access to any measurements, and thus optimize in the

class of constant policies, the unique solution can easily be read off from (∗) to be

γ1OL = γ2OL = −1

3

with the corresponding cost being

JOL := J(γ1OL, γ
2
OL) =

7

3
∼= 2.3333.
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Hence, the decentralized measurements lead to about 39% improvement (reduction)
in the team cost, as compared with the no-measurement (open-loop) case.

If, on the other hand, the agents shared their measurements, with the team’s
common measurement now being y = (y1, y2)′, the optimum cost should be lower
than J∗. To study this specific model, we first note that Theorem 2.6.8 is directly
applicable here, with

Σ11 = Σ12 = Σ22 = cov(y) =

(
4 2

2 3

)
;Σ01 = Σ02 = (2, 2).

The unique team-optimal solution can readily be obtained to be

γ1sh(y) = γ2sh(y) = −1

4
[
1

3
(y1 − 1) +

2

3
(y2 − 1)]− 1

3

with the corresponding cost being

Jsh := J(γ1sh, γ
2
sh) =

4

3
∼= 1.3333.

The improvement here, over the open-loop cost, is 43 %, and over the decentralized
case is about 6%.

Finally, if both agents had perfect access to the true value of x (the case of perfect
measurements), the unique optimal solution would be

γ1pr(x) = γ2pr(x) = −1

3
x

with a cost level of

Jpr := J(γ1pr , γ
2
pr) =

1

3
E[x2] = 1,

which is the lowest possible value for J , under any measurement scheme. �

Positively Exponentiated Quadratic Loss

Consider again the formulation of the quadratic-Gaussian team (á la Defini-
tion 2.6.2) but with the loss function being a positively exponentiated quadratic
function, i.e.,

L(ξ;u) = θe
θ
2C(ξ;u), θ > 0, (2.62)

where C is a strictly convex (in u) function:

C(ξ;u) =
∑

i,j∈N
ui

′
Riju

j + 2
∑
i∈N

ui
′
Dix+ x′Qx. (2.63)
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The state of nature, ξ, is a Gaussian vector, as specified earlier by (2.49)–(2.51).
A static team problem with the structure above is known as an exponential-

Gaussian team or a linear-exponential-Gaussian team (LEGT), the latter used
especially if the measurements are given in the form (2.59). An exponential (of a
quadratic) loss function captures phenomena not obtainable from a quadratic loss
function and is preferred in situations where higher (than second) order moments
of the statistical quantities should also be taken into consideration. A team using
an exponential quadratic loss function in the construction of policies is called risk
averse if θ > 0 and risk preferring if θ < 0. Here we will discuss only the case
θ > 0 because it is only in this case that L is convex in u, which will enable us to
apply some of the results of Sect. 2.6.2. The “optimistic” case θ < 0 does not lead
to a convex loss function, and hence it is not possible to obtain a general theory to
cover this case as well. However, this should not be construed as the θ < 0 case
not being well defined or interesting. In fact, the stationarity conditions could hold
in this case also, but one has to study each problem individually before concluding
global (team) optimality.

Returning to the LEGT problem with θ > 0, the first step toward studying its
solution would be to obtain a characterization of the stationarity conditions (2.26).
To avoid some unnecessary complexity in the analysis to follow, let us take the mean
value of ξ to be zero, and furthermore let us restrict ourselves at the outset to linear
decision rules (policies) for the agents—the latter will actually create no loss of
generality as we shall see later.

Accordingly, let the decision rules be given as

γj(yj) = Ajyj , j ∈ N . (2.64)

Let us fix all but one (say ith one) as above, and substitute them into (2.63) to obtain

C(ξ;u, {γj}j 
=i) = u′Riiu+ 2u′T ′
i ξi + ξ′iSiξi =: Ci(ξi, u),

where u stands for ui and Ti, Si are defined as follows:

ξi := (x′, y1
′
. . . yi−1′yi+1′ . . . yN

′
)′,

T ′
iξi = Dix+

∑
j∈N ,j 
=i

RijA
jyj, (2.65)

ξ′iSiξi = x′Qx+
∑

j,k∈N ;j,k 
=i

yj
′
Aj′RjkA

kyk + 2
∑

j∈N ,j 
=i

yj
′
Aj′Djx. (2.66)

The important point here is that Ti and Si are constant matrices (not dependent
on ξ), but they depend on the policy gain matrices Aj , for all j ∈ N , except j = i.

We now evaluate

Eξ|yiL(ξ;u, {γj}j 
=i) =: Ji(u; y),
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where, for convenience, we have dropped the superscript from yi. Using Lemma
2.6.3, the distribution of ξ conditioned on yi = y is Gaussian, with mean and
covariance given by

E[ξ|y] = (Σ′
0iΣ

′
1i . . . Σ

′
Ni)

′Σ−1
ii y =: ξ̂i, (2.67)

cov(ξi|y) = Σ(i) − (Σ′
0i . . . Σ

′
Ni)

′Σ−1
ii (Σ′

0i . . . Σ
′
Ni) =: Σ̂i, (2.68)

which we assume to be positive definite. In (2.67) the matrix Σii does not appear
in (. . . ), and likewise in (2.68). Furthermore Σ(i) in (2.68) is the covariance of ξi,
which is the Σ of (2.51) with the (i+ 1)th row and column block deleted.

Now, aside from a pdf normalization constant,

Ji(u; y) =

∫
θe

θ
2Ci(ξi;u)e−

1
2 (ξi−ξ̂i)

′Σ̂−1
i (ξi−ξ̂i)dξi,

where the integration is over the vector ξi belonging to an appropriate dimensional
Euclidean space. This integral will have a finite value if, and only if, the quadratic
term in ξi is negative definite, which brings in the condition

Mi := Σ̂i > 0. (2.69)

Under this condition, the integral can be evaluated (using a property of Gaussian
pdf ’s) to yield (again aside from a positive multiplying constant)

Ji(u; y) = θeC̃i(ξ̂i,u),

where

C̃i(ξ̂i, u) :=
θ

2
u′Riiu+

1

2
(θTiu+ Σ̂−1

i ξ̂i)
′M−1

i (θTiu+ Σ̂−1
i ξ̂i)−

1

2
ξ̂−1
i Σ̂−1

i ξ̂i.

Note that for θ > 0, C̃i is strictly convex in u, which implies that Ji(u; y) is also
strictly convex in u. Minimization of Ji is equivalent to minimization of C̃i which,
being quadratic, immediately leads to

u = γi(yi) = −(Rii + θT ′
iM

−1
i Ti)

−1TiM
−1
i Σ̂−1

i ξ̂i =: Aiyi. (2.70)

Clearly this solution also satisfies the stationarity condition (2.26), with all other
(than ith) agents’ policies fixed as in (2.64).

Note thatAi determined as in (2.70) depends on the fixed gain matricesAj ’s, for
j 	= i, this dependence being throughMi and Ti. Let us denote this relationship by

Ai = f i(Ai, . . . , Ai−1, Ai+1, . . . , AN ) (2.71)
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where f i is a nonlinear but continuous function, determined uniquely by (2.70).
Since agent Ai was selected arbitrarily in the preceding analysis, a similar function
will exist for each agent, so that (2.71) will hold for all i ∈ N . This readily brings
us to the following proposition.

Proposition 2.6.5. The positively exponentiated Gaussian team problem admits a
linear stationary solution if, and only if, there exists a set of matrices Ai, i ∈ N ,
mutually satisfying (2.71), and under which (2.69) holds for all i ∈ N , and J(γ)
remains finite. �

Proof. In view of Definition 2.6.1, the result follows from the analysis that led to
the proposition. ��

Remark 2.6.3. If the random state of nature, ξ, has nonzero mean, as in (2.50), then
the policies (2.64) will have to be replaced by the affine structure

γj(yj) = Aj(yj − ȳj) + bj , i ∈ N .

Within this structure, one can again proceed through the preceding analysis and
arrive at a counterpart of Proposition 2.6.5. �

Remark 2.6.4. The boundedness of the cost corresponding to the linear stationary
solution can be checked by evaluating the quantity

EyiJi(A
iyi; yi), (∗)

where Ji was defined in the analysis leading to the proposition. We first substi-
tute (2.70) in Ci(ξ̂i, u) to obtain

C̃i(ξ̂i, γ
i(yi)) = −1

2
ξ̂′iNiξ̂i,

where

Ni := Σ̂−1
i + Σ̂−1

i M−1
i Ti(

1

θ
Rii + T ′

iM
−1
i Ti)

−1T ′
iM

−1
i Σ̂−1

i − Σ̂−1
i M−1

i Σ̂−1
i .

Then, we observe that (∗) is finite if, and only if, the integral

∫
θe−

1
2 ξ̂

′
iNiξ̂ie−

1
2y

′Σ−1
ii ydy

is finite, where ξ̂i is related to y through (2.67). This condition is equivalent to the
exponent being negative definite, that, is

ξ̂′iNiξ̂i + y′Σ−1
ii y > 0 ∀y ∈ R

mi , y 	= 0. (∗∗)

�
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Proposition 2.6.5 above leaves a number of questions unanswered. First, we
would like to know whether a linear stationary solution, whenever it exists, is
team-optimal and secondly whether there would be other team-optimal solutions
if the linear stationary solution (lss) ceases to exist. Clearly, we would not generally
expect the lss to exist for all (especially arbitrarily large) values of θ, because of
condition (2.69). The theorem below now provides an answer to the first question
raised above; the second question is a most difficult one for which no general answer
is known as yet.

Theorem 2.6.9. Let γ∗ ∈ Γ be the linear stationary solution of Proposition 2.6.5,
and let there exist some other linear policy β ∈ Γ such that J(β) < ∞. Then, γ∗

is the unique team-optimal solution of the (positively) exponentiated-Gaussian team
problem. �

Proof. Here we resort to Theorem 2.6.5, which delineates the conditions under
which stationarity implies team-optimality. Clearly L(ξ;u) is strictly convex and
continuously differentiable (in u), and J(γ) is bounded from below (by zero) for all
γ ∈ Γ. The stationary solution γ∗ has finite cost by hypothesis, and the subset (say,

Γ̂) of Γ on which J is finite is not a singleton, again by hypothesis. Hence, to apply
Theorem 2.6.5, one has to show that condition (c.5) holds for this problem. This is
indeed the case and follows from the fact that the subset Γ̂ referred to above is not
a singleton. The proof of this result is quite technical and will not be given here; it
can be found in [218]. ��

Remark 2.6.5. A sufficient condition for the second hypothesis of Theorem 2.6.9 is
the following: Choose β ≡ 0, which is clearly a linear policy. Then,

J(β) = E{θe θ
2x

′Qx},

which is finite if, and only if,

Σ−1
00 − θQ > 0.

Hence, if θ is chosen to be smaller than 1/[λmax(Σ00)λmax(Q)], the second
hypothesis is satisfied. Of course, this condition (on θ) can be made less stringent
by choosing some other (nonzero) β. �

Remark 2.6.6. For the negatively exponentiated Gaussian team problem, Proposi-
tion 2.6.5 remains equally valid (now in fact condition (2.69) would be satisfied with
a bigger margin on θ), but we do not have the counterpart of Theorem 2.6.9 because
of lack of convexity. �

Example 2.6.4. To illustrate the main result of Theorem 2.6.9 and to study the
restrictions imposed on the parameters of the problem by the various conditions
stated there, let us reconsider the static two-agent team problem of Example 2.6.3,
with two differences: Now, the loss functional is a positive exponential of the one
given there, i.e.,
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L(x, u) = eθC(x,u),

C(x,u) = (u1 + u2 + x)2 + (u1)2 + (u2)2,

and the random variable x has zero mean, i.e.,

x ∼ N(0, 2), w1 ∼ N(0, 2), w2 ∼ N(0, 1).

The measurements are still given by

y1 = x+ w1, y2 = x+ w2.

Writing out the stationarity conditions (2.71), we obtain, after some algebra,

A1 = −1

2
[1+A2−θ(A2)2]/c1(θ, A

2), A2 = −[1+A1−θ(A1)2]/c2(θ, A
1) (∗)

where
c1(θ, A

2) := 2− θ[1 + 2A2 + 6(A2)2] + θ2(A2)2,

c2(θ, A
1) := 3− θ[1 + 12(A1)2 + 2A1] + 2θ2(A1)2.

The matrices M1 and M2, defined by (2.69), are given by

M1 =

(
2− θ −1− θA2

−1− θA2 1− 2θ(A2)2

)
, M2 =

(
2− θ − 1

2 − θA1

− 1
2 − θA1 1

2 − 2θ(A1)2

)
,

so that condition (2.69) reads

0 < θ < 2, c1(θ, A
2) > 0, c2(θ, A

1) > 0. (∗∗)

Trying out two different values of θ, namely, θ = 1 and θ = 1
3 , we find that for

the former there is no solution to (∗) that also satisfies (∗∗); for the latter, however,
there exists a unique solution (∗) that also meets (∗∗), which is

A1∗ = −0.236375, A2∗ = −0.345398 (θ =
1

3
).

This solution and the associated value of θ also satisfy the conditions of Re-
marks 2.6.4 and 2.6.5, and hence by Theorem 2.6.9 there exists a unique
team-optimal solution to the LEGT problem:

γ1∗(y1) = −0.236375y1, γ2∗(y2) = −0.345398y2.

It is important to note that, as θ → 0 in (∗), the nonlinear equations reduce to linear
equations:

A1 = −1

4
(1 +A2), A2 = −1

3
(1 +A1),
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whose unique solution (− 2
11 ,−

3
11 ) is precisely the gain coefficients in the team-

optimal solution of Example 2.6.3. Hence in the limit as θ → 0 we recover the
solution of the corresponding LQG team (with loss function C(x,u)). This is to be
expected because for any positive function C,

lim
θ→0

1

θ
(eθC − 1) = C.

�Remark 2.6.7. A method for solving the set of coupled nonlinear equations (∗) of
Example 2.6.4 for a particular value of θ, or more generally equations (2.71), is
provided by the parallel update scheme

Ai
(k+1) = f i(A1

(k), . . . , A
i−1
(k) , A

i+1
(k) , . . . , A

N
(k)), i ∈ N , k = 0, 1, . . . ,

where the starting point is arbitrary. This set of recursive equations admits exactly
the same interpretation as in the LQ team case, and as was the case there, this
recursion may not converge (even if the LEG team problem admits a solution) for
N ≥ 3. For N = 2, however, the recursion will converge whenever the LEQ team
problem admits a solution; this is because at each step this corresponds to an agent’s
minimization of J by fixing the other agent’s policy at its most recently updated
value. Since one is basically minimizing a strictly convex functional (in the LEGT
problem), the unique minimum, whenever it exists, should be reachable by such a
unilaterally cost-minimizing update scheme. �

2.7 Concluding Remarks

This chapter has provided a general introduction to stochastic team decision
problems and associated solution concepts. Static and dynamic teams have been
identified, and in the context of static teams conditions for existence of team-optimal
solutions and for person-by-person optimality to imply team-optimality have been
obtained. The chapter has also discussed iterative methods for obtaining team-
optimal solutions and illustrated the theory presented with numerical examples.

2.8 Bibliographic Notes

Team decision theory has its roots in both control theory and economics. Jacob
Marschak [254] was perhaps the first to introduce the basic elements of teams
and to provide the first steps toward the development of a team theory. Roy
Radner [316] followed with a precise mathematical formulation and provided
conclusive results to some classes of static teams, establishing precise connections
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between person-by-person optimality, stationarity, and team-optimality. Marschak’s
and Radner’s collaborative work culminated in the publication of their influential
1972 book [255]. At the time when such developments were being made, significant
progress in the theory of statistical decision theory was also taking place: Bahadur’s
characterization of information fields and sufficient statistics [35, 36]; Blackwell’s
sufficient statistics and comparison of experiments results [61]; and Wald’s [383],
Savage’s [333], and Chernoff’s [94] contributions to statistical decision theory,
among other major developments in probability theory, contributed to the rapid
development of team decision theory.

Contributions of Hans Witsenhausen [393, 394, 399–401] on dynamic teams and
characterization of information structures have been crucial in the progress of our
understanding of dynamic teams; see Sect. 3.7, where Witsenhausen’s intrinsic
model as well as other models for dynamic teams are discussed in detail. This
section also includes a brief discussion for nonsequential teams where important
contributions in the literature have been due to Andersland and Teneketzis [9, 10]
and Teneketzis [360], in addition to Witsenhausen [393].

Considerations of risk sensitivity motivated researchers to look into team prob-
lems with exponentiated loss function, with substantial results in this domain
obtained (for teams) by Krainak et al. [219]. De Waal and van Schuppen [114]
considered extensions to discrete action spaces. Bagchi and Başar [34] studied teams
in continuous time as well as non-Gaussian settings.

Başar [24] studied team problems and more general nonzero-sum stochastic
games when agents do not agree on a common a priori probability measure
on the primitive random variable and work under their own subjective views of
the environment, with team models in this context necessarily leading to game
formulations. A more detailed discussion in this context of inconsistent probability
models among a group of decision makers is presented in Chap. 12.

Further discussion on design of information structures in the context of team
theory and economics applications is available in [15,372], among a rich collection
of other contributions.

In the next chapter, Chap. 3, we will see extensions of the static team theory
of this chapter to dynamic teams, where information structures are of paramount
importance. We will also consider Witsenhausen’s intrinsic model more explicitly
in Sect. 3.7. We refer the reader to also Teneketzis [360], in addition to [400], in this
context.

Part of the chapter uses results from [219,316], however, with somewhat different
proofs for some of the key results. The update schemes considered in Sect. 2.6 are
based on [24].



Chapter 3
Characterization and Comparison
of Information Structures

3.1 Introduction

In Chap. 2, we introduced a general framework for stochastic decision problems
with static and dynamic information patterns, which include stochastic teams,
stochastic control problems, or stochastic optimization problems with distributed
decision makers (DMs) and decentralized information. We have discussed general
existence results for finite stochastic teams as well as infinite but static teams,
with some specific results for those with quadratic or exponentiated quadratic loss
functions and when the underlying statistics of the primitive random variables
are Gaussian. In this chapter we concentrate on information structures (ISs)
in stochastic teams, and discuss them from various angles: comparison of two
(or more) information structures from the point of view of informativeness, clas-
sification of different ISs and the notion of signaling, ISs that allow for sequential
decomposition of a multi-stage problem into static ones, and the difficulties involved
in solving dynamic stochastic teams with nonclassical information.

The first section, Sect. 3.2, discusses comparison of information structures, and
makes precise the notion of one information structure being “better” than another.
It also introduces some examples on the design of “optimal” information structures
for static stochastic teams under some “hard” or “soft” costs attached to the
acquisition of information.

This is then followed by Sect. 3.3, which introduces nonclassical information
structures, and highlights the challenges involved in solving stochastic teams
which feature such patterns. It discusses the notion of signaling and the cele-
brated Witsenhausen’s counterexample and several variations on it. Section 3.4
discusses stochastic dynamic team problems with nested or partially nested infor-
mation structures (classical and quasi-classical), mostly from a structural angle.
Section 3.5 focuses on probability and cost-dependent aspects of information
structures. The section identifies dynamic teams with nonclassical information
which displays irrelevant signaling and also presents classes of problems with
nonclassical information which can be solved by conversion into an equivalent one

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 3,
© Springer Science+Business Media New York 2013
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(as far as optimality goes) with classical or quasi-classical information; this one
displays versatility of embedding a given dynamic team into a broader class of
teams with expanded (such as quasi-classical) information. Section 3.6 discusses
information transmission through signaling for a class of information patterns.
Finally, Sect. 3.7 summarizes a precise characterization of information structures in
view of Witsenhausen’s intrinsic model and presents further dynamic team decision
models due to Witsenhausen. The chapter concludes with Sect. 3.8 which provides
some historical notes and guidelines for further reading on the topics covered herein.

3.2 Comparison of Information Structures

The issues addressed in the previous chapter all relate to the questions of existence,
uniqueness, and characterization (derivation) of team-optimal solutions in static
team problems for a given fixed set of measurements for the agents (or, equivalently,
a fixed information structure (IS) for the team). In this section, we allow the
flexibility of having more than one information structure for the team, in which
context a natural question that arises is “when is one information structure better
than another?” To shed some light on this question, let us first introduce the notation
R(γ; η) (as in Sect. 2.2) as the cost function of the team (to replace “J” which
we had used all along), to recognize the dependence of the team performance
(or cost) also on the information structure η.1 This function R may also include
some additional terms quantifying costs due to the acquisition of information, i.e.,
cost directly associated with various η’s, as in

R(γ; η) := J̃(γ; η) + c(η) ≡ EξL(ξ, γ(η[ξ]) + c(η), (3.1)

where J̃ is the team (expected) cost under γ and η, without any cost on information,
and c(η) ≥ 0 is the cost due to the choice of the particular information structure η.
We should note that as η changes, the policy space of the team, Γ, may also change,
and hence to make this dependence explicit, we will write the policy space as Γ(η).

Clearly, being a scalar valued function, (3.1) provides a strict ordering of all
permissible information structures for a given team problem (with a fixed loss
function L and a fixed cost of information c) according to the best that can be
achieved. This leads us to the following first comparison (strict ordering) of ISs
for a given team problem.

Definition 3.2.1. For a stochastic team problem with a fixed cost structure as given
by (3.1) but a variable information structure (IS), an IS η is better (or more valuable)
than another IS η′ if

1Throughout this section, we adopt the framework of Sect. 2.2, unless otherwise stated; in
particular, all random variables take values either in finite sets or finite-dimensional Euclidean
spaces, and all information structures are static, as in Sect. 2.2.
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inf
γ∈Γ(η)

R(γ; η) < inf
γ∈Γ(η′)

R(γ; η′).

Two ISs η and η′ are of equal value if the inequality above is an equality. �

The strict ordering provided by Definition 3.2.1 is unfortunately dependent on
the underlying cost structure (i.e., L and c) and it would be desirable to obtain an
ordering that is valid for all reasonable loss functions (e.g., for all strictly convex
loss functions, all continuous and bounded costs functions, or all measurable and
bounded cost functions). The following definition which provides only a partial
ordering serves this purpose2:

Definition 3.2.2. Let L be a given class of loss functions for a given stochastic team
problem with fixed information cost and variable IS. Then, an IS η is uniformly
better (uniformly more valuable, more informative) than another IS η′ (with respect
to the class L) if, under the cost structure (3.1),

inf
γ∈Γ(η)

R(γ; η) ≤ inf
γ∈Γ(η′)

R(γ; η′)

for all L ∈ L, with strict inequality for at least one L ∈ L. A somewhat weaker
notion which allows the possibility for the inequality above to be an equality for all
L ∈ L is “η is uniformly at least as valuable as (least as informative as) η′” (with
respect to the class L). �

Now, to obtain a sufficient condition for an IS to be uniformly at least as
valuable as another IS , let us recall [from Sect. 2.2, Eq. (2.1)] that given an IS
η = (η1, . . . , ηN ), there is an associated set of measurements y = (y1, . . . , yN ),
which can also be viewed as random variables (or vectors) defined directly on
the original probability space (Ω,F, P ). Let σ(yi) be the smallest sigma-field
(on Ω) with respect to which yi is measurable. Clearly, σ(yi) ⊆ F. To indicate the
dependence of this sigma-field on ηi, we will use a subscript on σ: ση(yi). We are
now in a position to state our first result.

Proposition 3.2.1. Suppose we are given a static stochasticN -agent team problem
with two possible ISs η and η′. Let L be a class of loss functions with the property
that for L ∈ L, the random variable L(ξ, γ(η[ξ])) has a well-defined (possibly
infinite) expected value for every γ ∈ Γ(η) and every γ ∈ Γ(η′). Then, if c(η) =
c(η′) and

ση(y
i) ⊇ ση′ (yi

′
) for all i ∈ N , then

IS η is uniformly at least as valuable as η′. �

2If the objective is not minimization of a cost function, but stabilization of a dynamical system,
then obtaining a total order is possible for certain criteria, as information-theoretic notions may be
applicable. More on this will be presented later in the book.
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Proof. Suppose that the result is not true. Then, there exists a loss function L
such that

inf
γ∈Γ(η)

J̃(γ; η) > inf
γ∈Γ(η′)

J̃(γ; η′). (∗)

But under the given sigma-field inclusion, Γ i(ηi) ⊇ Γ i(ηi
′
), i ∈ N , which implies

that Γ(η) ⊇ Γ(η′). The infimum over a larger set cannot lead to a higher value (note

that the function J̃ does not depend on η or η′ explicitly—but only through γ), and
hence the inequality (∗) leads to a contradiction. ��

The sigma-field inclusion condition of Proposition 3.2.1 is also known as the
fineness condition (i.e., the sigma-field under one IS being finer (strictly speaking,
not coarser) than under another IS), and clearly it is necessary that c(η) = c(η′) for
the result to hold in this generality. It is quite possible to produce simple examples
which show that the result could fail if some nonconstant cost is attached to the IS,
with the following being one such illustration:

Example 3.2.1. Consider Example 2.6.3 of the previous chapter, this time with a
cost on the acquisition of information. The loss function is

L(x,u) = (u1 + u2 + x)2 + (u1)2 + (u2)2

and the individual measurements are

y1 = x+ w1, y2 = x+ w2,

where x ∼ N(1, 2), w1 ∼ N(0, 2), w2 ∼ N(0, 1) are independent. Consider three
possible ISs with the following associated costs:

(i) No measurement: σ(y1) = σ(y2) = {φ,Ω}, c(η
(i)
) = 0

(ii) Individual measurements: y1 = y1, y2 = y2, c(η
(ii)

) = 0.25

(iii) Sharing of measurements: y1 = y2 = (y1, y2)′, c(η
(iii)

) = 0.5

LetR∗
(·) denote the total team cost when the IS corresponding to case (·) is used, i.e.,

R∗
(·) := inf

γ∈Γ(η
(·))
R(γ; η

(·)) ≡ min
γ∈Γ(η

(·))
R(γ; η

(·)).

Then, it readily follows from the results of Example 2.6.3 that

R∗
(i)

∼= 2.3333, R∗
(ii)

∼= 1.6742, R∗
(iii)

∼= 1.83333,

and hence under the given cost structure the one that has the best trade-off between
performance and cost of information is the second IS, even though the third one
is uniformly at least as valuable as (in fact more valuable than) the second one.
Clearly, by selecting the information cost function c(·) appropriately, even the “no
measurement case” (η(i)) can be made overall more desirable. �
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y

w

y ′

Fig. 3.1 Garbled information
y′, generated from y by
additive independent noise

An easy way of checking the sigma-field inclusion condition of Proposition 3.2.1
is to find N -functions hi : Y i → Y i′ , so that

yi
′
= hi(yi) = hi(ηi[ξ]) ≡ ηi

′
(ξ), i ∈ N .

As an illustration of this consider the IS of the Linear-Quadratic-Gaussian (LQG)
team introduced by (2.59):

η : yi = Hix+ wi, i ∈ N ,

where yi is a (Gaussian) random vector of dimension mi. Let Λi be a matrix of
dimension m′

i ×mi (with m′
i ≤ mi), and define

η′ : yi
′
= Λiyi, i ∈ N .

Then, for the LQG team with no communication costs, the IS η is uniformly at
least as valuable as η′, which means that for any team with an arbitrary (but fixed)
loss function, the optimum performance obtained under η can be no worse than the
optimum performance under η′.

The result of Proposition 3.2.1, although useful, is typically too restrictive and
is not always directly applicable to situations where our intuition tells us that one
particular IS should be uniformly better than another. As a case in point, consider
the standard formulation of a stochastic team with measurement vectors y1, . . . , yN

[defined on the common probability space (Ω,F,P)], generating an information
structure η. Suppose that the measurement of one of the agents, say A1, is corrupted
by additive noise (independent of y1, . . . , yN , as well as of the “payoff-relevant”
part of the random state of nature, x), thus leading to the new information structure
(see Fig. 3.1)

η′ : y1
′
= y1 + w1′ , yi

′
= yi, i = 2, . . . , N.

Here we say that y1
′

is a garbled version of the measurement (or information) y1

of A1, and as a consequence η′ is a garbled version of the IS η. Now, since w1′

is independent noise, we would expect η′ to be less valuable (less informative) to

the team (and, particularly, y1
′

to be less informative to A1) than η, and hence the
team should not be able to achieve better performance under η′ than under η. To
prove this, however, Proposition 3.2.1 cannot be directly used, because we do not
necessarily have an inclusion relationship between σ(y1) and σ(y1

′
). Even if not

directly, the proposition can still be used (indirectly), however, to put the above
intuition on the same solid ground, as shown in the sequel. We first make precise
what it means for a random vector to be a garbled version of another random vector.
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Definition 3.2.3. Let x, y, y′ be three real-valued random vectors defined on a
common probability space (Ω,F, P ). Let Py′|y,x be the conditional probability
distribution of y′ given (y, x), and the same convention applies to Py,y′|x, Px|y,y′ ,
etc. Then, y′ is a garbled version of y with respect to x, if any one of the following
three equivalent conditions hold:

(1) Py′|y,x = Py′|y
(2) Px|y,y′ = Px|y
(3) Py,y′|x = Py|xPy′|y

�

Remark 3.2.1. The definition given above is more general than what Fig. 3.1
depicts, because the noise w′ does not necessarily have to be additive. The
equivalence of conditions (1)–(3) follows from a simple application of the Bayes
theorem; for example, to show that (1) → (2), we note the sequence of equalities

Px|y,y′ =
Px,y,y′

Py,y′
=
Py′|y,x · Py,x

Py′|y · Py
=
Py,x

Py
= Px|y

where at the next-to-the-last step we have used (1). Verification of (2) → (1), and
the other implications are left to the reader. Note that all these conditions basically
say that the whole information on x in y′ is the information received through y. �

It is useful first to consider the one-agent stochastic optimization problem where
the roles of the three random vectors x, y, y′ used in Definition 3.2.3 are more
transparent.

Proposition 3.2.2. Consider a one-agent stochastic optimization problem with loss
function L(x, u), two separate ISs η and η′ corresponding to static measurements
y and y′, respectively, and no cost of information. Let ξ := (x, y, y′) be a random
vector defined on the probability space (Ω,F, P ), and let Γ (η) and Γ (η′) be two
policy spaces for the agent, corresponding to the ISs η and η′, which are consistent
with any constraint that might have been imposed on the action variable u ∈ U .
Further assume that for every γ ∈ Γ (η) and γ′ ∈ Γ (η′), the loss functions
L(x, γ(y)) and L(x, γ′(y′)) are integrable (i.e., have well-defined expected values).
Then, if y′ is a garbled version of y with respect to x, η is uniformly at least as
valuable as η′. �

Proof. Let y′′ := (y, y′), with corresponding IS denoted by η′′. Let Γ (η′′) be the
class of all permissible policies for the agent under the IS η′′. Clearly, Γ (η) ⊆
Γ (η′′) and Γ (η′) ⊆ Γ (η′′), and furthermore σ(y′′) includes both σ(y) and σ(y′).
Hence, by Proposition 3.2.1, η′′ is uniformly at least as valuable as both η′ and η.
Particularly

inf
γ′′∈Γ (η′′)

EξL(x, γ
′′(y, y′)) ≤ inf

γ′∈Γ (η′)
EξL(x, γ

′(y′)) .
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Now, given any γ′′ ∈ Γ (η′′), note the following set of equalities:

EξL(x, γ
′′(y, y′)) = Ey,y′Ex|y,y′L(x, γ′′(y, y′)) = Ey,y′Ex|yL(x, γ

′′(y, y′))

=: Ey,y′ L̃(y, γ′′(y, y′)) ,

where the first equality follows from the Bayes rule: Ex,y,y′ ≡ Ey,y′ · Ex|y,y′ , the
second equality follows from condition (2) of Definition 3.2.3 under the “garbling”
hypothesis of the proposition, and the third equality defines L̃ [as a measurable
function of (y, y′)] through its inner conditional expectation (of x given y).
Likewise, for any γ ∈ Γ (η), Ex|yL(x, γ(y)) = L̃(y, γ(y)). Now, concentrating on
L̃(y, γ(y)) and L̃(y, γ′′(y, y′)), it follows from Blackwell’s Irrelevant Information
Theorem (see Theorem D.1.1) that for any given γ′′ ∈ Γ (η′′), there exists a
γ ∈ Γ (η) such that

EyL̃(y, γ(y)) ≤ Ey,y′ L̃(y, γ′′(y, y′)) ,

and hence that

inf
γ∈Γ (η)

Ex,yL(x, γ(y)) ≤ inf
γ∈Γ (η′′)

EξL(x, γ(y, y
′)) ,

and since Γ (η) ⊆ Γ (η′′), we have to have an equality here. Therefore,

inf
γ∈Γ (η)

Ex,yL(x, γ(y)) = inf
γ′′∈Γ (η′′)

EξL(x, γ
′′(y, y′)) ≤ inf

γ′∈Γ (η′)
EξL(x, γ

′(y′)) ,

which establishes the desired result. ��

Note the role x plays in the result of Proposition 3.2.2: it is the payoff-relevant
portion of the random state of nature. If we have a genuine team problem, with
N(≥ 2) agents, then this result does not immediately extend because the payoff-
relevant portion of the random state of nature will be a different random vector to
different agents; specifically, with Ai isolated and under a fixed IS η, the vector
ξi := (x, y1, . . . , yi−1, yi+1, . . . , yN) will be the payoff-relevant portion of ξ
from the point of view of Ai. On the positive side, this says that in an N -agent
static team problem, if only one of the agents’ information changes, so that it is a
garbled version of the old one, then the new (garbled) IS cannot lead to improved
performance (which follows directly from Proposition 3.2.2). An iterative use of
this feature leads to the following more general result where the measurements of
all or a subset of the agents are allowed to change.

Proposition 3.2.3. Consider an N -agent stochastic team problem, under the
hypothesis of Proposition 3.2.2, naturally extended to N agents, and with η :=

{y1, . . . , yN} and η′ := {y1′ , . . . , yN ′}, where yi
′

is a garbled version of yi with
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respect to ξ′i := (x, y1
′
, y2

′
, . . . , yi+1′ , . . . , yN

′
), i ∈ N .3 Then, with no cost of

information for the team, η is uniformly at least as valuable as η′. �

Proof. For the sake of simplicity and without much loss of generality, we assume
that all the minima in the following development exist. If a minimum does not exist,
then it is possible to consider an infimizing sequence, and the main result again goes
through.

Now, consider the following sequence of equalities and inequalities, where we
let γ′ ∈ Γ(η′) denote a team-optimal solution under the IS η′:

min
γ∈Γ(η′)

EξL(x, γ(y
′)) = min

β∈ΓN (ηN′)
EξL(x, {γj

′
(yj

′
)}N−1

j=1 , β(y
N ′

))

≥ min
β∈ΓN (ηN )

EξL(x, {γj
′
(yj

′
)}N−1

j=1 , β(y
N ))

≡ EξL(x, {γj
′
(yj

′
)}N−1

j=1 , γ
N∗(yN ))

≥ min
β∈ΓN−1′(ηN−1′ )

EξL(x, {γj
′
(yj

′
)}N−2

j=1 , β(y
N−1′)), γN∗(yN ))

≥ min
β∈ΓN−1(ηN−1)

EξL(x, {γj
′
(yj

′
)}N−2

j=1 , β(y
N−1)), γN∗(yN ))

≡ EξL(x, {γj
′
(yj

′
)}N−2

j=1 , γ
N−1∗(yN−1), γN∗(yN ))

≥ . . . . . . ≥ min
β∈Γ 1(η1)

EξL(x, β(y
1), {γi∗(yi)}Ni=2)

≥ min
γ∈Γ(η)

EξL(x, γ(y)).

In the above, the first equality is a property of sequential minimization; the
next inequality follows from Proposition 3.2.2 by identifying x there with ξ′N :=

(x, y1
′
, . . . , yN−1′), y with yN , and y′ with yN

′
and by making use of the given

hypothesis that yN
′

is a garbled version of yN with respect to ξ′N . The next identity
defines γN∗ ∈ ΓN (ηN ), and the following inequality says that there may be some
other element of ΓN−1(ηN−1′) (other than γN−1′) that provides a lower value for
the given cost. The next inequality again follows from Proposition 3.2.2 since yN−1′

is a garbled version of yN−1 with respect to ξ′N−1, and the identity again defines
γN−1∗ ∈ ΓN−1(ηN−1). An induction argument then shows that the minimum of
J(γ) over Γ(η) cannot be higher than the minimum over Γ(η′), thus completing the
proof. ��

3Here, we allow for the possibility that yi and yi
′

are identical for some i ∈ N .
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Remark 3.2.2. As we will see in the next chapter, garbling is not a necessary
condition for one information structure to be uniformly at least as valuable as
another one. A somewhat more relaxed condition (which is necessary and sufficient
for a large class of setups) is presented in Theorem 4.3.2. �

Remark 3.2.3. It should be clear from the proof given above that in the hypotheses
of Proposition 3.2.3 the order of indices in N under which ξ′i has been defined could
be arbitrary. �

Remark 3.2.4. An important special case under which the “garbling” condition of
Proposition 3.2.3 is satisfied occurs when η and η′ are related by

yi
′
= yi + wi′ , i ∈ N ,

wherewi′ , i ∈ N , is a sequence of random vectors that are independent of theN+1
tuple (x, y1, . . . , yN). Then, clearly for every i ∈ N ,

Pyi′ |yi,ξ′i
= Pwi′

yi′−yi

where Pwi′
is the probability distribution function of wi′ , which shows that yi

′
is a

garbled version of yi with respect to ξ′i. �

In view of Remark 3.2.4 above, we have the following useful result, which we
state as a corollary to Proposition 3.2.3.

Corollary 3.2.1. Consider the LQG team problem of Sect. 2.6.3, under the
measurement scheme (2.59), where the measurement noiseswi ∼ N(0, N i), i ∈ N ,
are independent. Let the optimum team cost be given by J∗(N1, . . . , NN ) as a
function of the noise covariances. Then, J∗ is a nondecreasing function of the N i’s,
under the matrix partial ordering.4 �

So far in this section, we have shed some light on the question “under what
conditions is one IS better than another?” The answer is definitely context-
dependent, but it has also been possible to obtain some fairly general results, which
lead to only a partial ordering in the class of all (permissible) ISs. Two other related
questions here are:

(i) What is the value of a given extra information (measurement)?

(ii) What is the “best” IS for a given team problem?

The answer to the first question will definitely depend on the level of information
already at hand, but even under this provision there is the further issue of which
agent(s) should receive the extra available measurement(s) assuming that a sharing
of information is not possible. Then, the value of the extra measurement to the team

4In other words, N i′ − N i ≥ 0 (nonnegative definite), i ∈ N , implies J∗(N1′ , . . . , NN′
) ≥

J∗(N1, . . . , NN ). In words, the more “noisy” the measurements are, the higher is the team cost.
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will depend very much on which agent receives (and utilizes) it. This is clearly
a well-posed finite optimization problem which in general requires an exhaustive
search (to determine the agent who will “make the most out of the measurement”).
The following simple example will illustrate this point.

Example 3.2.2. Consider the two-agent LQG team problem with loss function

L(x, u1, u2) = (u1 + u2 + x)2 + (u1)2 + 2(u2)2,

where all variables are scalar, and x ∼ N(0, 1). Note that the two agents enter the
loss function quite symmetrically, with the exception of the “soft constraint” on the
action variable of A2, which shows that his action is costlier than that of A1.

In the absence of any measurements, the unique team-optimal solution is u1∗ =
u2∗ = 0, leading to the cost level of J∗

∅ = E[x2] = 1.
Let us now assume that a single measurement

z = x+ w , w ∼ N(0, 1) , independent of x ,

becomes available and only one agent is allowed to use it. If A1 uses it, the unique
team-optimal solution is

γ1∗(z) = −1

4
z , u2∗ = 0 ,

with a cost level of J∗
11 = 0.75. If, on the other hand, A2 uses it, the unique

team-optimal solution is

u1∗ = 0 , γ2∗(z) = −1

6
z ,

with a cost level of J∗
12 = 0.833. Clearly, it is to the team’s advantage for A1 to

receive it, and hence the value of this measurement to the team is 1 − 0.75 = 0.25
units (with the comparison made with the no measurement case).

Next, suppose that an additional measurement is made available

y = x+ v, v ∼ N(0, 2) ,

where v is independent of both x and w. Again, the decision as to which agent
should receive it will be made based on its value to the team. The following table
summarizes the four possible scenarios (Table 3.1).

Again it is optimal for the team for both measurements to go to A1, the agent
with a lower cost on action “effort.” The value of the second channel to the team is
0.75− 0.7 = 0.05 units, on the top of the optimum one-channel performance. �

In summary, for a general team problem,

Value of extra information = U (optimum team cost without the information

− optimum team cost with the extra information),
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ISs Team-optimal policies (γ1∗, γ2∗) Optimal cost J∗

η1 = {z}, η2 = {y} (− 8
35

y,− 3
35

z
)

0.76735

η1 = {y}, η2 = {z} (− 1
7
y,− 1

7
z
)

0.71428

η1 = {z, y}, η2 = φ
(− 1

10
(y + 2z), 0

)
0.7

η1 = φ, η2 = {z, y} (
0,− 1

15
(y + 2z)

)
0.8

Table 3.1 Four possible scenarios for the two-channel two-agent team of Example 3.2.2

where U is some appropriate utility function. In determining whether a given
measurement should be accepted or not, this value should be weighted against
the cost associated with the acquisition (and utilization) of this extra information.
Of course, in an “information cost-free world,” it is never detrimental for the team
to acquire the additional measurement, regardless of which agent utilizes it. We will
make use of this observation throughout the book, in particular in Chap. 10.

The second question we raised above, viz., the construction of the best IS for
a given team problem, can be addressed by formulating it as an optimization
problem. If there are only a finite number of ISs from which to select, the procedure
is basically one of exhaustive search, requiring the computation of the optimal
team cost under each IS; clearly costs associated with different ISs can also be
accommodated in this formulation. There are also cases when the class of ISs is not
finite, in which case one has to be more precise in the formulation of the underlying
optimization problem and the appropriate topology on the space of information
structures. We will provide further discussion along this direction in the next chapter.
Below, we provide one illustration in the context of LQG team problems.

Consider the LQG team framework of Sect. 2.6.3 (or equivalently of Corollary
3.2.1), but with the observation matricesHi, i ∈ N , in (2.59) yet to be designed—a
situation depicted in Fig. 3.2. We have N Gaussian independent vector channels,
each of dimensionmi, i ∈ N , with the covariances of the zero-mean channel noises
(wi’s) fixed, and the outputs of the channels (yi’s) available as measurements to
individual agents. The IS is determined by theHi, i ∈ N , whereHi is of dimension
n ×mi, and the IS design problem is one of coming up with the best selection of
these matrices (under some constraints) so that the team cost will be minimized,
provided that the γi’s are chosen optimally. Note that if no constraints (bounds) are
imposed on these matrices, then the optimal solution may not exist, because there
would be a tendency to choose elements of the observation matrices as large as
possible so as to combat the channel noise. Hence it is reasonable to have individual
channel output energy constraints, such as

E[yi
′
yi] ≤ ci, i ∈ N ,

which translate into the following constraints on the observation matrices:
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x
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HN

w1

w2

wN
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γN

u1

u2

uN

Fig. 3.2 An LQG team decision problem with a variable IS

E[yi
′
yi] = Tr[Σ00H

i′Hi] + Tr[N i] ≤ ci, i ∈ N ,

where Σ00 := cov(x), N i := cov(wi). Denote the class of (n ×mi)-dimensional
matrices that satisfy the energy constraint above by Mi, i ∈ N . Now, adopting a
constant parameter strictly convex quadratic loss function as in Sect. 2.6.3, we know
from Corollary 2.6.2 (with x̄ = 0) that for each Hi ∈ Mi, i ∈ N , the LQG team
admits a unique team-optimal solution

γ1∗(yi) = Πiyi, i ∈ N

where Πi, i ∈ N , satisfy the set of equations (2.61) and each Πi depends not only
on Hi but also on Hj , j 	= i. The optimal team cost J(γ∗) =: J̃(H1, . . . , HN)

will depend on the Hi’s continuously, and furthermore since the sets Mi, i ∈
N , are closed and bounded subsets of finite-dimensional (Euclidean) spaces, the
minimum of J̃ will exist on M := M1 × . . . × MN , by the Weierstrass theorem
(Appendix A.5). We summarize this result in the following proposition.

Proposition 3.2.4. Consider the LQG team depicted in Fig. 3.2, where L is a
strictly convex quadratic loss function and the observation matrices Hi, i ∈ N ,
satisfy the constraints E[yi

′
yi] ≤ ci, with ci > Tr[N i], i ∈ N . The problem of

jointly designing these observation matrices and the decision rule γi, i ∈ N , so
that EξL(x,u) is minimized, admits a solution, with the optimum γi’s being linear
in the respective channel outputs, yi. �

Remark 3.2.5. The optimum choice(s) out of M cannot be obtained in general
in analytic form, but since J̃ is a differentiable function, where differentiability
can be established by a variational argument, some of the existing numerical
optimization algorithms [55, 243] can be used. Note that, even in a single channel
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setup, the problem is in general not convex [302]. Nonetheless, if the information
is centralized, however, such as the case of a single-agent problem, the optimum H
can be obtained analytically, as shown in [23]. In the terminology of information
theory, this can also viewed as a linear encoding-decoding problem, for Gaussian
channels (see, e.g., [410]), under a further decentralized structure. If the encoding
part is taken to be a general mapping (not necessarily linear), then the optimal
measurement structure will generally be nonlinear, but the form of this nonlinear
encoding scheme is currently not known. We will say more on this in the next section
and in Chap. 11. �

3.3 Dynamic Teams with Nonclassical Information:
Importance of Signaling

In a dynamic stochastic decision problem (or dynamic stochastic team, or stochastic
control problem), if the action to be taken at some point in (discrete) time, say k, by
an agent Ai relies on a measurement (information) which is affected by an action
taken at some previous point in time, say k′ (k′ < k), by the same agent or by some
other agent and Ai does not have access to the measurement (information) used in
the construction of that previous action, then the underlying decision problem is said
to be one with nonclassical information. Such problems are inherently difficult to
solve, and there is no general theory which will aid in the construction of optimal
policies that use nonclassical information. The goal of this section is to discuss the
source of these difficulties, by studying what is perhaps the simplest such system,
first introduced by Witsenhausen in a 1968 paper [398]. We discuss here not only
that infamous counterexample but also some variants of it, including ones where the
underlying distributions are discrete.

Consider the following two-stage stochastic control or equivalently two-agent
dynamic stochastic team problem, where all quantities are scalar (see Fig. 3.3 for
flow of information and relationships between different variables).

A random variable, x, with a given distribution is to be transformed into another
random variable, u0 = γ0(x), which is transmitted over a channel, y = u0 +
w, with additive noise w of known distribution, the output, y, of which is to be
further transformed into another random variable, u1 = γ1(y). The objective is to
choose the transformations γ0 and γ1 in such a way that a given performance index,

x
γ0 γ1

y u1u0

w1

Fig. 3.3 Flow of information in Witsenhausen’s counterexample
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Q(x, u0, u1), quadratic in x, u0, and u1, is minimized in the average sense. That is,
we seek the pair γ∗ := (γ∗0 , γ

∗
1 ), if exists, such that

J(γ∗) = inf
γ
J(γ) =: J∗, (3.2)

where

J(γ) = E [Q(x, γ0(x), γ1(y))] (3.3)

with expectation, E[·], taken over the statistics of x and w, which are assumed
to be independent. Furthermore, the minimization is over the space of all Borel-
measurable maps, that is, both policies (decision rules) γ0 and γ1 are taken to be
Borel-measurable maps of the real line into itself.

This is a stochastic decision problem with nonclassical information, because
the information to be used by the decision rule, γ1, of the second agent depends
on the action, u0, of the first agent (and thereby on the decision rule of the first
agent), but the second agent does not have access to the information of the first
agent (i.e., x). If we view it as a single-agent problem where the agent acts twice,
then it is one where the agent is memoryless, that is, she does not remember
what she had observed at the earlier stage. As such, these problems belong to
the realm of inherently difficult decision problems for which a systematic solution
process generally does not exist, one of the main reasons being that due to loss in
memory, a sequential decomposition or a dynamic programming approach is not
possible [399, 400]. We now consider different instances of this class of problems,
corresponding to different choices of the performance indexQ, and different choices
for the distributions for x and w, some of which admit explicit, relatively simpler
solutions, while some others do not. Further, in some cases an optimal solution
exists (even though not available in closed form), and in other cases only an ε-
optimal solution exists. Hence, part of the message here is that even though the
nonclassical nature of the information is generally responsible for the difficulty
in obtaining the optimal solution, in some cases the structure of the loss function
(performance index) also contributes to the difficulty in solving these problems.

3.3.1 Witsenhausen’s Counterexample with Discrete
Distributions

Let the quadratic performance index Q be picked as

QW (x, u0, u1) = k(u0 − x)2 + (u1 − u0)
2 , (3.4)

where k > 0 is a given parameter. Note that here the first agent wants to stay as
close to x as possible, while the second agent wants to stay as close to the action of
the first agent, u0, as possible.
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y0

x1

w1

x2

y1μ0 μ1
μ1μ0

x0

Fig. 3.4 Witsenhausen’s counterexample in two-stage state-space form

This can also be viewed as a standard discrete-time two-stage stochastic optimal
control problem, with state equations (see Fig. 3.4)

x1 = x0 + v0 , x2 = x1 − v1 ,

measurement equations

y0 = x0 , y1 = x1 + w1 ,

and memoryless controls

v0 = μ0(y0) , v1 = μ1(y1) ,

where μ0 and μ1 are the instantaneous measurement output control policies at stages
0 and 1, respectively. This becomes equivalent to the earlier formulation in view of
the correspondences

u0 = x0 + v0 , u1 = v1 , x = x0 , w = w1 , y = y1 ,

if we pick the cost function as

Q̃(x2, v0) = (x2)
2 + k(v0)

2 ≡ QW (x1 − v0, x1, x1 − x2) .

Now let both x0 and w1 admit two-point probability mass functions, each taking
values 1 and −1 with equal probability 1

2 . Consider, for each ε > 0 sufficiently
small, the construction

γ0(x) = x0 + ε sgn(x) γ1(y) =

⎧⎨
⎩

1 + ε, if y = 2 + ε or ε,

−1− ε, if y = −2− ε or − ε,

and note that the corresponding value of J is kε2. This shows that J , which is a
nonnegative quantity, can be made sufficiently close to zero by picking ε sufficiently
small.

Note that if u1 also had access to the true value of x, then the optimum solution
would be γ0(x) = γ1(x) = x, resulting in zero cost, thus achieving the lowest
possible value for J . Now, since u1 does not have access to the value of x, this being
a team problem the true value of x has to be transmitted to u1 through the action
u0, which is a realization of a policy γ0; this in turn provides u1 with the true value
of u0 (even though it is received over a noisy channel) and thus enables the second
agent to make the second term of the cost zero. The channel noise being discrete and
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u0 being a continuous variable (taking values on the real line), transmission without
any error is possible, albeit at some (arbitrarily small) cost to u0. It should be clear
here that the infimum of J is zero, but it cannot be achieved because in the limit as
ε→ 0, it is no longer possible to transmit x (and thus u0, which inevitably depends
on it to keep the first term in J small) perfectly.

The phenomenon we have observed above—the true value of a random variable
being transmitted by an agent who observes it to another agent who observes only
the action of the first agent—is called signaling through control actions. Stochastic
team problems where the information structure is nonclassical generally entail
signaling through control actions by at least one agent to other agents who act later,
and signaling generally involves a trade-off or a compromise from an otherwise
optimal control action, and this trade-off cannot generally be formalized in a precise
mathematical form, or an explicit characterization cannot always be provided as in
this example. This is what contributes to the challenges underlying derivation of
team-optimal solutions in dynamic stochastic teams with nonclassical information.
Furthermore, as we will see in Sect. 4.10, team problems with such an information
structure are typically non-convex problems due to the signaling aspect.

Hence, the message conveyed by the analysis of the two-agent dynamic team
problem of this subsection is that in problems with nonclassical information a
minimum may not exist, and signaling may be essential to achieve a cost arbitrarily
close to the infimum. Note that the conclusions would have been the same if instead
of (3.4) the loss function was

Q′
W (x, u0, u1) = k(u0 − x)2 + (u1 − x)2 , (3.5)

which has no cross terms between the two action variables (but IS is still
nonclassical). Further, if the distributions had been m-point, instead of 2-point,
wherem is any positive integer, again the conclusion would essentially be the same.

In the next subsection we discuss the original counterexample by Witsenhausen,
where the distributions are not discrete, in which case the minimum exists, but the
policies that achieve it are not known.

3.3.2 Witsenhausen’s Counterexample

Now assume that the distributions of the two random variables are Gaussian: x is
a Gaussian random variable with mean zero and variance σ2

x, and w is also a zero-
mean Gaussian random variable, with variance σ2

w, the two again being independent.
Witsenhausen has shown in a 1968 paper [398] that the optimal solution to

this problem exists, but there are instances of the problem where the optimum
decision rules (μ0 and μ1, or equivalently γ0 and γ1) are not linear. For the latter,
he has shown that for some values of the parameters defining the problem, there
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exist nonlinear policies which outperform the best linear policies.5 A class of such
nonlinear policies introduced by Witsenhausen [398] and further improved upon in
[40] is

u0 = γo(x) = ε sgn(x) + λx ,

u1 = γ1(y) = E[ε sgn(x) + λx|y],

where ε and λ are parameters to be optimized over (in [398] the values are picked as
λ = 0 and ε = σx, and some asymptotics are studied). Clearly, if ε = 0, this class of
decision rules will be linear, since E[λx|y] will be linear for each λ however when
ε 	= 0, the decision rules at both stages will be nonlinear. To give some indication
of how much can be gained by taking ε 	= 0, let us consider the case with parameter
values k = 0.1, σ2

x = 10, σ2
w = 1; then the best linear policy at stage zero has the

gain λopt = −0.1127, with the corresponding value of J being −0.100. If however
ε is picked to be 2, the corresponding value of J (for the same choice of λ which is
clearly not optimal and can be further improved upon) is −0.4797, which registers
a substantial improvement over the best linear solution. For another scenario, let us
take k = 0.01, σ2

x = 80, σ2
w = 1; in this case the best linear policy at stage zero has

the gain λopt = 0.01006, with the corresponding value of J being −7.98× 10−3,
whereas for the same value of λ, picking ε = 5 leads to a value of J = −0.4691.
Further numerical results can be found in [40], which also shows that if λ = 0,
ε =

√
2/π and kσ2

x = 1, as k → 0 the bound on asymptotic performance becomes
(1− (2/π)) = 0.363.

Note that the policy γ0 above is of the type “linear plus 2-point quantized,” which
begs the question whether one can improve upon that by using a finer quantizer. For
example, one could start with the class of policies

u0 = γ0(x) = εQuant(x) + λx ,

u1 = γ1(y) = E[εQuant(x) + λx|y],

where Quant denotes the quantization operator (which will be defined precisely later
in the book; see Definition 4.7.1), and optimize over the parameter values ε and λ, as
well as over all quantizers.6 Since the 2-point quantizer is a special case, one could
naturally achieve an improvement in performance as a result of this optimization,
and in fact one can show [274] that there are instances of the problem where the
best performance in the linear class (i.e., with ε = 0, and optimized over λ) could
be arbitrarily bad against the best performance in this class; in precise mathematical
terms, within the structure above,

5We will shortly provide a proof of existence of the team-optimal solution, not based on the
original proof by Witsenhausen, but following a recent one given in [409] which is more direct.
As of today, closed-form expressions for the optimal nonlinear policies are not available, and their
characterization is not known.
6Note that γ1 above is optimal against the γ0 picked.
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sup
k>0,σ>0

infε=0,λE[QW (x, γ0(x), γ1(y))]

infε,λ,QuantE[QW (x, γ0(x), γ1(y))]
= ∞.

In spite of this improvement, however, the optimal solution to the problem (which
exists as mentioned earlier and to be proved below) is not of the quantized type.

Proof of Existence. We now proceed with the proof of existence of the team-
optimal solution, following [409]. First note that given any measurable γ0, the
optimal γ1 is uniquely given by the conditional mean

γ1(y) = E[γ0(x)|y] ,

and hence the problem becomes one of minimization with respect to all measurable
functions γ0 = f : R → R of the function

J ′(f) = E[k(f(x)−x)2+[f(x)]2−[E[f(x)|y]]2] ≡ kE[(z−x)2]+mmse(Φ),

(3.6)

where Φ is the probability distribution of z = f(x) and mmse(Φ) stands for
the minimum mean square (MMS) error of estimating a random variable z with
probability distribution Φ using measurement y = z+w, wherew is as given before
and is independent of z. Note that the second term depends only on Φ, whereas the
first term depends on the joint distribution of x and z. Hence, in the process of
minimization of (3.6) with respect to f , we could first hold Φ fixed, minimize the
first term over the joint distribution of x and z, say Px,z , with the marginals fixed at
N and Φ, respectively, and then minimize the resulting expression with respect to
the unknown marginalQ. The outcome of the first minimization (infimization) is

k[W2(N,Φ)]
2 + mmse(Φ) , (3.7)

where

W2(N,Φ) := inf
{Px,z:Px=N,Pz=Φ}

√
E[(z − x)2]

is the quadratic Wasserstein distance between the two probability distributions N
and Φ. Hence,

inf
f
J ′(f) = inf

Φ
[k[W2(N,Φ)]

2 + mmse(Φ)] =: inf
Φ
F (Φ) .

For each fixed N , W2(N,Φ) is weakly lower semicontinuous in Φ [7]. Further-
more, if Φ has a bounded second moment m2(Φ), with the bound say α2 > 0,
then W2(N,Φ) is minimized by linearly correlating z with x, more precisely
z = (α/σx)x, leading to the value of

min
{Φ:m2(Φ)≤α2}

W2(N,Φ) = |α− σx| ,
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which is an increasing function of α for α > σx. Likewise, mmse(Φ) is an
increasing function of α. Hence in the minimization of F (Φ), Φ can be restricted to
distributions with a uniformly bounded second moment and thus to a weakly com-
pact set.7 Then, infΦ F (Φ) involves infimization of a weakly lower-semicontinuous
function on a weakly compact set, and hence F (Φ), and consequently J ′(f), has a
minimum (by extended Weierstrass theorem [242]).8

3.3.3 Generalized Gaussian Test Channel

Now consider a different choice for Q:

QTC(x, u0, u1) = k(u0)
2 + (u1 − x)2 (3.8)

where again k > 0. Note that here the second agent’s objective is to estimate the
random variable x in the MMS sense, using a measurement that is transmitted over
a Gaussian channel where the input to the channel is shaped by the first agent who
has access to x and has a soft constraint (kE[(u0)

2]) on its action. The version
of this problem where the soft constraint is replaced by a hard power constraint,
E[(u0)

2] ≤ k, is known as the Gaussian test channel (GTC), and in this context γ0
is the encoder and γ1 the decoder, where the latter’s optimal choice is clearly the
conditional mean of x given y, that is, E[x|y]. The best encoder for the GTC can be
shown to be linear (a scaled version of the source output, x), which in turn leads to
a linear optimal decoder. The approach here (as we will discuss further below for a
more general, soft-constrained version), which is in fact the only approach known
to apply here, is to obtain bounds on the performance using an inequality from
information theory involving channel capacity [410] and rate distortion function
[53] and then to show that the bound can be achieved using linear policies.9

Now, consider the more general version of (3.8):

QGTC(x, u0, u1) = k(u0)
2 + (u1 − x)2 + b0u0x , (3.9)

where b0 is a parameter. Let

E[(u0)
2] =: α and E[(u1 − x)2] =: β .

7The next chapter, Chap. 4, provides a detailed coverage of some of the topological notions used
here, such as the space of probability distributions and weak topology on such spaces.
8We further note that the term W2(N,Φ) is convex in Φ, but mmse(Φ) is concave in Φ, which makes
the function to be minimized, F (Φ), in general non-convex. Some results and general discussion
on concavity of optimization problems in information structures can be found in Chap. 4.
9A detailed coverage of information theoretic notions can be found in Chap. 5. See also
Theorem 11.2.2.
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Then, with J defined as before, by (3.3), and with γ0 and γ1 constrained as above,
we have the inequalities

inf
γ
J(γ) ≥ kα+ β + inf

γ0

b0E[γ0(x)x]

≥ kα+ β − |b0|σx
√
α, (3.10)

where the second one follows from the Cauchy–Schwarz inequality.
Now, by the data processing theorem [410] (see Lemma 5.3.1), in a linear

configuration the mutual information10 between two random variables closer to
each other is no smaller than the mutual information between two random variables
farther apart. In our case, this translates to

I(x; y) ≥ I(x;u1), (3.11)

where I(·; ·) stands for mutual information. For each fixed α > 0, I(x; y) is
bounded from above by the capacity of the channel, C(α), which is known for the
Gaussian channel to be [151]

C(α) =
1

2
log(1 + (α/σ2

w) ) .

Further, for each fixed β, the quantity I(x;u1) is bounded from below by the rate
distortion function,R(β), for which the expression, when β ≤ σ2

x, is [53]

R(β) =
1

2
log(σ2

x/β) .

In view of (3.11), we have

1

2
log(1 + (α/σ2

w) ) = C(α) ≥ R(β) =
1

2
log(σ2

x/β)

leading to the following bound on β: β ≥ σ2
wσ

2
x/(α+ σ2

w), which is tight with

γ0(x) = −sgn(b0)

√
α

σx
x, (3.12)

Substitution of this in (3.10) leads to

inf
γ
J(γ) ≥ kα+ σ2

wσ
2
x/(α+ σ2

w)− |b0|σx
√
α. (3.13)

Let α∗ be the positive value of α that minimizes the bound in (3.13), which exists
and is unique. It is a solution of the polynomial equation

10See Definition 5.3.3 given in Chap. 5.
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[2k
√
α− |b0|σx] [α+ σ2

x]
2 = 2σ2

wσ
2
x

√
α . (3.14)

Then, when Q is in the structural form (3.9), the solution to (3.3) exists, is linear,
and is given by

γ∗0 (x) = −sgn(b0)

√
α∗

σx
x , (3.15)

γ∗1 (y) = E[x|y] = − sgn(b0)σx
√
α∗

α∗ + σ2
w

y . (3.16)

Remark 3.3.1. The main difference between the two problems of Sects. 3.3.2
and 3.3.3 is thatQ in the former has a product term between the decision rules of the
two agents while in the latter it does not. Hence, it is not only the nonclassical nature
of the information structure but also the structure of the performance index that
determines whether linear policies are optimal in these quadratic dynamic decision
problems with Gaussian statistics and nonclassical information. Another point to
note here is that for a similar formulation, but with discrete distributions, both
the generalized test channel model [note that (3.5) is a special case of (3.9)] and
the Witsenhausen counterexample system exhibit similar features (not admitting a
minimum, but allowing computation of the infimum and construction of explicit
policies that achieve a cost arbitrarily close to that value), thus indicating that the
nature of the distribution of the primitive random variables also makes a difference
in the level of complexity of the solution. More on this can be found in the following
sections. �

3.4 Dynamic Teams with Classical or Quasi-classical
Information Patterns

We have seen in the previous section the formidable difficulties associated with
solving stochastic dynamic team problems with nonclassical information. Again
nonclassical information structure (IS) arises if an agent Ai’s action affects the
information available to another agent Aj, who however does not have access to
the information available to Ai based on which her action was constructed. Another
perhaps mathematically more precise way of stating this is that the information
sigma-field (overΩ) of agent Aj is dependent explicitly on the policy (decision rule
or control law) of Ai. The difficulties in developing a comprehensive and broadly
applicable theory for such decision problems with nonclassical information stem
from the fact that actions (controls) exhibit triple roles: (i) the control effort of
reducing the cost, (ii) improvement of future knowledge of uncertainty, and (iii)
signaling to agents acting in the future some useful information on relevant random
variables, which they do not necessarily acquire—and these roles are generally
conflicting.
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Stochastic dynamic teams which do not entail nonclassical information are
generally simpler, since there is no possibility of affecting the information content
of measurements or uncertainty at future stages through actions at the present. Such
dynamic teams are also known as neutral—a term coined by Feldbaum [136]—
where [assuming that there is a state-space representation, as in (2.18) and (2.19)]
the conditional probability distribution of the state vector given past and present
measurements, past control actions, and past control laws (or policies) does not
depend on the control laws. ISs which are not of the nonclassical type are generally
grouped into two categories: classical and quasi-classical.

Classical ISs include deterministic patterns and centralized information patterns.
Referring back to the formulation (2.18) and (2.19) where the state-variable-based
description was introduced, deterministic patterns arise when the information is not
noise-corrupted and may be of the open-loop type in which only the initial value
of the state is available and no dynamic information is acquired or of the closed-
loop type where perfect information concerning the current value of the state is
also acquired, that is, in (2.19) yit = xt, for all i and t, and there is perfect recall.
Centralized patterns arise when all agents exchange their measurements without any
delay and also recall the past information.

Under the deterministic or centralized stochastic ISs, stochastic team problems
become equivalent to stochastic control problems and the solution techniques for
these reviewed in Appendix D (see, e.g., [56]) aredirectly available. In particular,
for stochastic teams with classical ISs, when everything is expressed in terms of
action variables and primitive random variables, as in (2.20), if

(i) the measurements are linear in the primitive random variables and past controls
(or actions of agents),

(ii) the primitive random variables are jointly Gaussian,
(iii) the loss function is quadratic jointly in the action variables and the primitive

random variables, and
(iv) the loss function is strictly convex in the action variables,

then there exists a unique team-optimal solution, which is affine in the available
information and can readily be computed by solving a set of minimization problems.
A special case of this is the so-called LQG control problem (or LQG dynamic
team with centralized information) which can be formulated using state variables
[as in (2.18) and (2.19)] where we require the state equation (2.18) and the
measurements (2.19) to be linear in all the variables and the loss function to be
quadratic and jointly strictly convex in the state and control (action) variables, which
then admits a unique optimal solution where the optimal control laws are linear in
the minimum-mean-square estimate of the state using the measurements, where this
estimate is generated recursively (in time) using the Kalman filter (conditional mean
and error covariance, independent of the past actions) [56]. The problem features a
separation of estimation and control as well as certainty equivalence, which means
that the control gain multiplying the output of the Kalman filter does not depend
on the statistics of the primitive random variables, and hence is the same as in
the deterministic version of the problem where all random quantities are replaced
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by their mean values. Separation (in a weaker sense) holds even for nonlinear,
non-quadratic, and non-Gaussian systems (again under centralized ISs) where again
the “quality” of the information carried to future stages cannot be affected by the
choice of the control policies in the past; this allows for a two-step derivation of the
optimum controller: First determine the conditional probability distribution (cpd) of
the state, express the (expected) cost in terms of this quantity and the control (yet to
be determined), and subsequently minimize the new expected cost function over
all control laws as functions of the cpd, which provides sufficient statistics for the
stochastic control problem. See Appendix D for further discussions.

The second type of IS, which is not nonclassical, is of the quasi-classical type,
also known as partially nested. Assuming again the existence of a common clock
for all agents, an IS is partially nested if an agent’s information at a particular
stage t can depend on the action of some other agent at some stage t′ ≤ t only
if she also has access to the information of that agent at stage t′.11 This would
allow, for example, for two agents acting at the same stage t not to share their
current measurements, but sharing their past measurements, or two agents who
are on different parts of the decision tree, whose actions and information are
completely decoupled not to share any information. As a special case, the static team
problems considered in Chap. 2, Sect. 2.6, are partially nested, but not with classical
IS, unless there is complete sharing of (the static) measurements. The one-step
delayed information sharing pattern or the one-step delayed measurement sharing
pattern introduced in Sect. 2.4 of Chap. 2 is of the quasi-classical type, and it is
also important to note that any performance (for a team) that can be achieved
under the former can also be achieved under the latter, and vice versa, because
they generate the same information sigma-fields for each agent, which are further
policy invariant (see [29]). In team problems with partially nested information, one
talks about precedence relationships among agents: an agent Ai is precedent to
another agent Aj (or Ai communicates to Aj), if the former agent’s actions affect
the information of the latter, in which case (to be partially nested) Aj has to have
the information based on which the action-generating policy of Ai was constructed.

Under quasi-classical information, LQG stochastic team problems are tractable
by conversion into equivalent static team problems of the type discussed extensively
in Sect. 2.6.3 of Chap. 2. As an example, consider the following dynamic team with
N agents, where each agent acts only once, with Ak, k ∈ N , having the following
measurement:

yk = Ckξ +
∑
i:i→k

Diku
i, (3.17)

11Here we can assume without any loss of generality that each agent acts only once in the decision
process, or equivalently appears only once on the decision tree. If an agent acts more than once,
then (as discussed earlier) she can be split into multiple agents, with each one again acting only
once; see also Witsenhausen’s intrinsic model [400, 401] discussed in Sect. 3.7.
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where ξ is an exogenous random variable picked by nature and i → k denotes the
precedence relation that the action of Ai affects the information of Ak and ui is the
action of Ai.

If the information structure is quasi-classical, then

Ik = {yk, {Ii, i→ k}}.

That is, Ak has access to the information available to all the signaling agents. Such
an IS is equivalent to the IS Ik = {ỹk}, where ỹk is a static measurement given by

ỹk =

{
Ckξ, {Ciξ, i→ k}

}
. (3.18)

Such a conversion can be done provided that the policies adopted by the agents are
deterministic, with the equivalence to be interpreted in the sense that any determin-
istic policy measurable under the original IS being measurable also under the new
(static) IS and vice versa, since the actions are determined by the measurements.
The restriction of using only deterministic policies is, however, without any loss of
optimality: with policies of all other agents fixed (possibly randomized) no agent
can benefit from randomized decisions in such team problems. We will discuss this
property of irrelevance of random information/actions in optimal stochastic control
further in the following chapter in view of Blackwell’s Irrelevant Information
Theorem (see Theorem D.1.1 in Appendix D).

If the underlying optimization problem is quadratic in all variables and the
random variables are all Gaussian, by such a reduction, the optimization problem
can be converted into the class of quadratic Gaussian static team problems con-
sidered in Sect. 2.6.3. The team-optimal solution under this new (static) IS can
then be reexpressed in terms of the original IS. Examples of such an indirect
derivation for dynamic teams with quasi-classical information have been given
in several papers [34, 198]. Team-optimal solutions have been constructed under
the one-step delayed information sharing pattern [223, 224, 332, 414] as well as
under the one-step delayed observation sharing [22] pattern. These do not exhibit
certainty equivalence or even separation as in the case of classical ISs, but are
recursively computable, involving solutions of coupled linear matrix equations of
the type given in Theorem 2.6.8. Another class of dynamic team problems that can
be converted into solvable dynamic optimization problems are those where even
though the information structure is nonclassical, there is no incentive for signaling
because any signaling from say agent Ai to agent Aj conveys information to the
latter which is “cost irrelevant,” that is, it does not lead to any improvement in
performance. If, for example, given a dynamic stochastic team with information
structure η = (η1, . . . , ηN ), possibly nonclassical, and the corresponding strategy
space Γ = Γ 1 × · · · × ΓN and normal form description (J,Γ), there is another
information structure η′ = (η1

′
, . . . , ηN

′
) (quasi-classical or classical), with

corresponding composite strategy space Γ̃ = Γ̃ 1×· · ·×Γ̃N , whereΓ ⊃ Γ̃, such that
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inf
γ∈Γ

J(γ) = inf
γ∈Γ̃

J(γ) =: J(γ̃∗) , (3.19)

then γ̃∗ provides an optimal team solution to the original problem even though it
utilizes less information. This statement may seem to be a trivial one (and indeed it is
an obvious fact), but it does play an important role in expanding the class of solvable
stochastic dynamic teams by converting some with nonclassical information and
specific structures into ones with classical information with equality holding
in (3.19), which is because the nonclassical part of the information structure is
performance irrelevant. We now make this statement concrete in the next section
by considering a class of dynamic teams which fit into this framework.

3.5 Probability and Cost-dependent Properties
and Expansion of Information Structures

In this section, we further discuss the role of information structures in dynamic
stochastic teams and identify useful refinements that depend on the underlying
probability measure and the cost structure.

3.5.1 Performance-irrevelant Signaling and a Stochastic
Interpretation of Nestedness

Let us start with a specific 2-agent LQG team with nonclassical information, within
the framework of (2.18), (2.19), (2.22), and (2.23), using the notation introduced
there:

x1t+1 = x1t + u1t + w01
t ,

x2t+1 = x2t + u2t + w02
t ,

(3.20)

y1t = x1t + w1
t , y2t = x2t + w2

t ,

y12t = y2t + w12
t , y21t = y1t + w21

t ,

(3.21)

where t ∈ T := {1, . . . , T }, all variables are scalar and take values on the real
line, and {xi1, w0i

t , w
i
t, w

ij
t , i, j = 1, 2, j 	= i, t ∈ T } are independent zero-mean

Gaussian random variables with specified variances. We assume that at time t, agent
Ai has access to the present and past values of yit and yijt , j 	= i, i, j = 1, 2.
Hence, Ii

t = {yi[1,t], y
ij
[1,t]}, i, j = 1, 2, j 	= i. A permissible policy for Ai at

time t is a measurable function of Ii
t into the real line; denote the set of all such

policies for Ai over the time interval T by Γ. Note that the information pattern
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here is neither classical nor partially nested. Note further that there is no sharing of
information (even with delay), and the second measurement stream, yijt , an agent
Ai receives, contains noisy information on the first component of measurement of
the other agent Aj, but she does not have access to the control actions of that agent
that influences her (Aj’s) state. It is therefore plausible that Aj could signal to Ai
her past measurements by appropriate control actions, through this second channel
Ai has access to.

Now, let us consider, as a special case of (2.22), the following loss function for
the team:

L(x[1,T+1],u[1,T ]) = L1(x1[1,T+1], u
1
[1,T ]) + L2(x2[1,T+1], u

2
[1,T ]), (3.22)

where

Li(xi[1,T+1], u
i
[1,T ]) =

∑
t∈T

(xit+1)
2 + ri(uit)

2 , i = 1, 2 , (3.23)

where ri is some positive parameter, for i = 1, 2. Let J denote the corresponding
cost (expected loss) function for the team [as counterpart of (2.23)], defined over
the policy space Γ, additively decomposed as in (3.22):

J(γ1[1,T ], γ
2
[1,T ]) = J1(γ1[1,T ], γ

2
[1,T ]) + J2(γ1[1,T ], γ

2
[1,T ]), (3.24)

Note that the loss function (3.22) and (3.23) is additively decoupled as far as the
agents’ state variables and action variables go, and hence if the agents had access
to perfect state measurements, each would use only her own state in minimizing the
expected value of the individual loss function, and independent minimizations of
these would lead to the unique optimal policies for the team (which would be linear
for each agent in the current value of her own state). Such a decomposition would
hold also if the agents’ information structures were instead

Ĩi
t = {yi[1,t]} , i = 1, 2 , t ∈ T , (3.25)

which eliminates the possibility of any signaling (note that all random variables
are independent), in which case the agents solve independently their scalar LQG
problems. Now, with the original information structure, this reasoning does not
immediately hold, because even if the loss functions are decoupled, the agents would
be coupled through their second measurement channels, which is why in (3.24) we
have kept both γ1 and γ2 in the arguments of J1 and J2, even though Li in (3.23)
depends only on ui. In spite of this possibility of coupling through information,
however, we will show below that this coupling is in fact irrelevant as far as the
underlying optimization problem goes, and there is no loss of performance if one
works instead with the IS (3.25). In a nutshell, the main reason for this is that
(in addition to L being additively decoupled) yij[1,T ] is a garbled version of yj[1,T ],
and hence agent Ai cannot provide any useful information to agent Aj on the second
component of her measurement, and also signaling the first component is not useful
either because L is additively decoupled.
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For a mathematically precise verification of this intuitive result, let us introduce
Γ̃ i as the strategy space of Ai corresponding to the information structure (3.25), with
the corresponding composite strategy space denoted by Γ̃. Let Γ̃c and Γc denote the
strategy spaces corresponding to centralized information structures

Ĩc
t := {y1[1,t], y2[1,t]} and Ic

t := {yi[1,t], y
ij
[1,t] , j 	= i, i, j = 1, 2} ,

respectively. Note that

Γc ⊃ Γ̃c ⊃ Γ̃ and Γc ⊃ Γ ⊃ Γ̃.

Now note the following set of inequalities and equalities:

inf
γ∈Γ

J(γ1, γ2) ≥ inf
γ∈Γc

J(γ1, γ2) = inf
γ∈Γ̃c

J(γ1, γ2)

≥ inf
γ∈Γ̃c

J1(γ1, γ2) + inf
γ∈Γ̃c

J2(γ1, γ2)

= inf
γ1∈Γ̃ 1

J1(γ1) + inf
γ2∈Γ̃ 2

J2(γ2) ,

(3.26)

where the first inequality follows because the second infimization is over a larger
set; the next equality follows because under centralized information the collection
of yij’s is a garbled version (cf. Definition 3.2.3) of the collection of yi’s with
respect to the state vector x = (x1, x2) and hence is superfluous (not contributing
to improvement in performance)12; the next inequality follows because the sum
of two infima cannot be larger than the infimum of the sum; and the last equality
follows because under the reduced centralized information structure we have both
informational decoupling and cost decoupling (and hence J i does not depend on
γj, j 	= i). Each of these single-agent optimization problems is a strictly convex
LQG problem and hence admits a unique solution where γ̃i∗ is a linear function of
the conditional mean of xi at time t, using yi[1,t] (given by the Kalman filter). Since

γ̃i∗ is also an element of Γ i, we have equality throughout in (3.26), and hence (3.19)
holds.

We should note that the structure of the dynamic team problem above was
picked for convenience in conveying the message succinctly, and the same result
applies to more general, linear as well as nonlinear problems, as long as there
is decoupling in both the state equation and the loss function, and the garbling
condition holds. For example, we could havean N -agent dynamic stochastic team,
with (3.20) replaced by

xit+1 = f i
t (x

i
t, u

i
t, w

0i
t ) , t ∈ T , i = 1, . . . , N ,

12This follows from Proposition 3.2.2, naturally extended to the dynamic case.
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(3.21) by

yit = git(x
i
t, w

i
t),

yijt = yjt + wij
t , j 	= i, i, j = 1, . . . , N ,

and (3.23) by

Li(xi[1,T+1], u
i
[1,T ]) =

∑
t∈T

cit(x
i
t+1, u

i
t) , i = 1, . . . , N ,

with

L :=

N∑
i=1

Li ,

where f i’s, gi’s, and ci’s are measurable functions, the variables are all possibly
non-scalar, and all random variables are statistically independent of each other
and over time. Again, even though this team problem is one with nonclassical
information, the measurements yijt , j 	= i, do not contribute toward improving the
performance and hence can be discarded. The resulting problem then is equivalent
to N stochastic control problems with classical information and is hence readily
solvable.

We should also note that if the loss function had not been additively decou-
pled, then signaling would come into play because an agent would be able to
contribute improvement to the performance by receiving some information on the
measurement of some other agent with whom she is coupled through the loss
function.

Remark 3.5.1. In the discussion of this section, there is an inherent nestedness
condition: A signaling DM’s private information is not informative given the
signaled DM’s information even though the signaled DM does not have access to the
information at the signaling DM. The nestedness notion here is termed as stochastic
nestedness in [417]. The difference between partial nestedness and the setting here
is the following. Partial nestedness (or nestedness) is defined independent of the
probability measure on the system variables and strictly depends on the information
field relationships of the DMs. However, when probabilistic aspects are also
considered, a weaker condition identifying the irrelevance of private information
at a signaling DM can be established leading to a reduction to a static team. Further
aspects of such a stochastic nestedness interpretation are presented in the next
subsection where a signaling DM’s private information is not informative given the
signaled DM’s information, provided that the DM’s actions are made available to
the signaled DM. �
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3.5.2 Expansion of Information Structures: A Recipe
for Identifying Sufficient Information

We start with a general result on optimum-performance equivalence of two stochastic
dynamic teams with different information structures. This is in fact a result which
has a very simple proof, but it is quite effective as we will see shortly.

Proposition 3.5.1. Let D1 and D2 be two stochastic dynamic teams with the
same loss function and differing only in their information structures, η

1
and η

2
,

respectively, with corresponding composite strategy spaces Γ1 and Γ2, such that
Γ2 ⊆ Γ1. Let D1 admit a team-optimal solution, denoted by γ∗

1
∈ Γ1, with the

further property that γ∗
1
∈ Γ2. Then γ∗

1
also solves D2. �

Proof. Let J1 and J2 be the cost functions of the two teams D1 and D2 when
expressed in normal form. Note that Γ2 ⊆ Γ1 says that the strategy space for D1 is
richer than that forD2. Consider now the following set of equalities and inequalities:

J1(γ
∗
1
) = inf

γ
1
∈Γ1

J1(γ1) ≤ inf
γ
1
∈Γ2

J1(γ1) = inf
γ
2
∈Γ2

J2(γ2) ≤ J2(γ
∗
1
),

where the first equality is the definition of γ∗
1
; the first inequality follows because

infimization over a smaller set cannot lead to a smaller value; the next equality
follows because J1 and J2 agree on Γ2; and the last inequality follows because as
an element of Γ2, γ∗

1
cannot lead to a lower value than the infimum of J2 on Γ2. ��

A recipe for utilizing the result above would be:

Given a team problem, say D2, with IS η
2
, which is presumably difficult to solve, obtain

a finer IS η
1

and solve the team problem under this expanded IS (assuming that this new
team problem is easier to solve). Then, if the team-optimal solution here is adapted to the
sigma-field generated by the original coarser IS, it solves also the original problem D2.

To see such a recipe at work, consider the following class of two-agent LQG team
problems13 with nonclassical information considered in [417]: The state equation is
given by

xt+1 = Axt +B1u1t +B2u2t + w0
t , t ∈ T ,

the measurement of agent A1 by

y1t = C1xt + w1
t , t ∈ T,

13As it will be clear later, restriction to two agents and to the LQG framework is only for
convenience in presentation; the result of Proposition 3.5.1 is applicable to a broader class of
N-agent teams with nonlinear state equation and non-quadratic loss function, provided that they
have an IS similar to that of the two-agent team problem considered here.
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and that of A2 by

y21 = C2x1 + w2
1 ,

where the initial state x1 and noise sequences wi
[1,T ] , i = 0, 1, are independent

zero-mean Gaussian random vectors with specified positive-definite covariance
matrices, and w2

1 is also Gaussian zero-mean with a specified positive-definite
covariance matrix. The only restriction is that the statistics of w2

1 are picked, along
with the matrices C1 and C2, such that y21 is a garbled version of y11 with respect to
x1; in other words (in view of Definition 3.2.3) the conditional probability density
function (cpdf) of x1 given (y11 , y

2
1) does not depend on y21 . One way of satisfying

this requirement would be if y21 was a noisy version of y11 , obtained, for example,
through

y21 = C3y
1
1 + v ≡ C3C1x1 + C3w

1
1 + v =: C2x1 + w2

1 ,

where v is another independent zero-mean Gaussian random vector with
positive-definite covariance.

Now given all of the above, let us specify the information structure of the
problem as

I1t = {y1[1,t], u2[1,T ]} , I2t = {y21} , t ∈ T,

where agent A1 keeps her noisy measurement of the current value of the state and
has access to the past, present, and future control actions of the other agent, both
with perfect recall. A2, on the other hand, has open-loop information: she has access
to imperfect noisy measurement of the initial value of the state and uses this in the
construction of her policies for all time, which she does in a pre-commitment mode,
that is, she decides on u2[1,T ] = γ2[1,T ](y

2
1) at time t = 1 and sticks to it for all

t. Note that this is a problem which exhibits nonclassical information, because A1
observes the actions of A2 but does not have access to the measurement (y21) used
in the construction of these controls, which opens the possibility of signaling, with
A2 signaling the value of y21 to A1 through his actions.

It is worth noting that an IS equivalent to the one above would be the one where
the agents’ self control actions are also included in the information sets, namely,

I1t = {y1[1,t], u1[1,t], u2[1,T ]} , I2t = {y21 , u2[1,t]} , t ∈ T,

which is sometimes more convenient to work with. Now, an IS which is more
informative (finer) than the one above would be the one where A1 also has access
to y21 :

Ĩ1t = {y1[1,t], y21 , u1[1,t], u2[1,T ]} , Ĩ2t = {y21, u2[1,t]} , t ∈ T .

This is a partially nested IS because A1 now knows everything A2 knows but not
vice versa.

To proceed further, let us adopt a loss function for the team:
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L(x[1,T+1], u[1,T ]) =
∑
t∈T

|xt+1|2Q + |ut|2R ,

where ut := (u1t
′
u2t

′
)′, Q ≥ 0 and R > 0 are symmetric weighting matrices of

appropriate dimensions, and | · |Q denotes the Euclidean (semi-)norm weighted by
Q. The team problem then is minimization of the expected value of L, expressed
in terms of the policy variables using the given information. Now, if instead of the
original information structure, we take the expanded one Ĩ , then the problem is
readily solvable and in closed form, as to be shown below, because it is a partially
nested LQG team.

We first note that if the weighting matrix R in the loss function is not block
diagonal, it can be made one by redefining u1t through a translation that is linear
in u2t , that is, there exists a matrix M of appropriate dimensions, such that with
ũ1t := u1t +Mu2t , |ut|2R = |ũ1t |2R1 + |u2t |2R2 , where both R1 and R2 are positive-
definite matrices. Note that such a transformation is compatible with the original
information structure, because A1 is allowed to have access to the control actions
of A2. To keep the notation simple, we will assume henceforth (and clearly without
any loss of generality) that the original formulation has the weightings on u1 and u2

decoupled, that is, that |ut|2R = |u1t |2R1 + |u2t |2R2 .
Denote the composite strategy spaces corresponding to the original and ex-

panded information structures (i.e., I and Ĩ) by Γ2 and Γ1, respectively. Let the
corresponding ones for an individual agent be superscripted by the identity of that
agent (1 or 2). Recall that a team-optimal solution γ1

∗
, γ2

∗
is one that is defined

through the relationship (this one under the expanded IS):

J(γ1
∗
, γ2

∗
) = inf

γ1∈Γ1
2,γ

2∈Γ2
2

J(γ1, γ2) ≡ inf
γ2∈Γ2

2

inf
γ1∈Γ1

2

J(γ1, γ2) , ()

where the last expression says that the composite infimization can be carried out
sequentially; we can first hold γ2 fixed as an arbitrary element of Γ2

2, perform
minimization with respect to γ1 over Γ1

2 (let us call this inner minimization),
and then come back and infimize the resulting expression over Γ2

2. The inner
minimization is a discrete-time stochastic control problem with state dynamics

xt+1 = Axt +B1u1t +B2γ2t (y
2
1) + w0

t , t ∈ T,

and loss function

L(x[1,T+1], u[1,T ]) =
∑
t∈T

|xt+1|2Q + |u1t |2R1 + |u2t |2R2 , ()

where all terms have been defined as before. The controller has access to (y11 , y
2
1) at

t = 1 and to y1t for t > 1, and also has access to the realized values of γ2[1,T ](y
2
1)

at t = 1, and has no restrictions on memory. As such, this is a standard LQG
control problem, but with an additional inputB2γ2t (y

2
1) in the state equation, which

however is measurable with respect to the sigma-field generated by y21 , and hence
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can be treated as a deterministic quantity (and in fact it is given as B2u2t ) when the
expectation of L is conditioned on y21 .14 Note that the third term in the expression
for L does not enter into the minimization at this stage.

Now, using standard LQG theory with an additional deterministic driving term in
the state equation, given also that Q ≥ 0 and R1 > 0, the problem of minimization
of the conditional expected loss function

E[L(x[1,T+1], γ
1
[1,T ](Ĩ

1
[1,T ]), γ

2
[1,T ](y

2
1))|y21 ]

over Γ1
2 for fixed γ2[1,T ] admits an optimal solution that is of the form

γ1t (y
1
[1,t], u

1
[1,t−1], y

2
1 , u

2
[1,T ]) = γ̂1t (x̂t, u

2
[1,T ]) , (o)

where

γ̂1t (x̂t, u
2
[1,T ]) = −PtSt+1Ax̂t − Pt(st+1 + St+1B

2u2t ) , t ∈ T , (i)

Pt, t ∈ T , is given by

Pt = [R1 +B1′St+1B
1]−1B1′ , (ii)

St, t ∈ T , is an appropriate-dimensional matrix sequence generated by the matrix
Riccati difference equation

St = Q +A′St+1[I −B1PtSt+1]A; ST+1 = Q , (iii)

and st, t ∈ T , is a vector sequence generated by a linear difference equation in
retrograde time (where st depends linearly on u2[t+1,T ]):

st = A′[I −B1PtSt+1]
′[st+1 + St+1B

2u2t ]; sT+1 = 0 . (iv)

Finally,

x̂t = E[xt | y1[1,t], u1[1,t−1], y
2
1 , u

2
[1,t−1]] , (v)

that is, it is the conditional mean of x at time t, given all the past and present
measurements and past control actions, and as such is given by the Kalman filter.
Note that the solution γ̂1t , t ∈ T , in (i) does not depend on γ2[1,T ] but depends on its

realized value u2[1,T ] and also possibly on y21 . We next argue that it actually does not
depend on the latter. Let x̃t, t ∈ T , be generated by

x̃t+1 = Ax̃t + w0
t , x̃1 = x1, t ∈ T ,

14For the argument here it is not necessary that the controller has access to u2
[1,T ]

since with the

expanded IS it has access to y21 , but shortly we will see that accessibility to u2
[1,T ]

is crucial to

ensure that the optimal solution to the inner minimization is independent of the policy γ2.
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and

ỹ1t := C1x̃t + w1
t , t ∈ T .

Then, the cpdf of the random variable xt given the set of random variables {y1[1,t],
u1[1,t−1], y

2
1 , and u2[1,t−1]} is the same as that of x̃t given {ỹ1[1,t], y21}, that is,

p(x̃t|ỹ1[1,t], y21). For t = 1, this is the cpdf of x1 given {y11 , y21}, which is independent

of y21 since y21 is a garbled version of y11 . For t > 1, we have

p(x̃t|ỹ1[2,t], y11 , y21) =
∫
x1

p(x̃t|x1, ỹ1[2,t], y11, y21) p(x1|y11 , y21) dx1 / p(ỹ1[2,t]|y11 , y21) .

The first cpdf above is the cpdf of w0
[1,t−1] which is independent of y21 ; the second

cpdf is independent of y21 because of the garbling condition; and the denominator
cpdf is also independent of y21 by the same reasoning as in the first cpdf, because
ỹ1t := C1x̃t+w

1
t andw1

t is independent of y21 . Hence, the Kalman filter does not use
the extra measurement y21 when it is a garbled version of y11 with respect to x1. And
consequently the inner minimization problem in () would admit the same solution
if the information structure for A1 did not include y21 .

We now focus on the outer minimization problem in (). First, because of
the linear structure of the optimal controller (i), the minimum value of the inner
minimization in () consists of three general terms: a term which is quadratic
in u2[1,T ], a second (bilinear) term which is a product of u2[1,T ] and the primitive
random variables, and a third term which depends only on the primitive random
variables but not on u2[1,T ]. Further, since () is positive for all u2[1,T ] whenever x1
has a positive-definite covariance, the minimum value of the inner minimization in
() is strictly convex in u2[1,T ]. Hence, the outer minimization in () is a standard
static quadratic stochastic optimization problem, which (being strictly convex in the
decision variables) admits a unique optimal solution u2t = γ2t (y

2
1), t ∈ T , which is

linear in y21 .
Hence, problem () admits a globally optimal solution, (γ1

∗ ∈ Γ1
2, γ

2∗ ∈ Γ2
2),

which is linear in the available information to the two agents, and furthermore γ1
∗ ∈

Γ1
1 (and naturally also γ2

∗ ∈ Γ1
2). In view of Proposition 3.5.1, (γ1

∗
, γ2

∗
) also

solves the original problem with nonclassical information.
Before closing the discussion on the solution to the problem, we note that

linearity of the state equation and quadratic structure of the loss function did not
play any role in the applicability of Proposition 3.5.1; other than that the optimal
solution was linear because of the linear-quadratic structure. Hence, provided the
basic assumptions of garbling and the specific IS structure hold, a similar result can
be obtained for nonlinear, non-quadratic problems as well. We remark, however,
that both the garbling assumption and the one that allows A1 to have full access not
only to the past and current values of the actions of A2 but also their future values
(which entails a pre-commitment mode of operation) are essential for linearity
of the optimal solution. The former is needed for the problem with expanded
(partially nested) information to have the same minimum as the one with the original
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nonclassical information. The latter is needed because otherwise the recursion (iv)
cannot be implemented. If any of these two assumptions do not hold, then there
emerges the possibility of A2 signaling the value of y21 to A1 through her control
actions. We discuss below one such class of problems where signaling through
control actions becomes instrumental in improving the performance of a team.

3.6 Signaling Through Control Actions

Consider the following 2-agent stochastic dynamic team problem: u1 and u2 are
real-valued control actions of agents A1 and A2, respectively, who have access to
information I1 = {u2} and I2 = {α, x}, where α takes two values, 1 and 2,
each with equal probability 1

2 , x is a uniform random variable with support set the
interval [−

√
3,
√
3], α and x are statistically independent, and all this is common

information to both agents. Hence, u1 = γ1(u2) and u2 = γ2(α, x), where the
policies γ1 ∈ Γ 1 and γ2 ∈ Γ 2 are measurable maps. Note that this is a problem
with nonclassical information, because A1 has access to the action variable of A2,
but does not have access to the information used by A2. Let the loss function for the
team be given by

L(α, x, u1, u2) = α(u1 + u2)2 + (u2 − x)2 + (u1)2 , (#)

with the corresponding expected loss (or cost) given by J(γ1, γ2). The goal is to
minimize J over Γ 1 × Γ 2.

Now, if A1 instead had the expanded IS Ĩ1 = {u2, α, x}, then this would be
a problem with classical information, and the unique pair of policies would be the
ones that minimize (#) for each α and x:

γ̃1(u2, α, x) = − 1

1 + α
u2 , γ̃2(α, x) = − 1

2 + α
x , (##)

with the minimum value of L being

min
u1,u2

L(α, x, u1, u2) =
1

2 + α
x2 ,

whose expected value, 7
24 , is the minimum of J over the expanded policy spaces.

The question now is whether this expected value can be achieved, exactly or
approximately, under the original information structure. Note that A1 does not use
the additional information on x in (##), but needs the value of α. Hence, if it were
possible for A1 to decipher the true value of α through her observation of u2 or,
put it another way, if A2 were able to signal to A1 the true value of α through her
action u2 without compromising performance attained under γ̃2 in (##), then the
same performance would be achieved under the original IS. But a closer look will
reveal that since γ̃2 is unique as given, signaling at zero cost is not possible. Then,
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is perfect signaling at some infinitesimal cost possible? We will argue below that
yes, given any ε > 0, it is possible to come up with a policy for A2 which will lead
to a value smaller than 7

24 + ε.
First note that any realized value of u2 = γ̃2(α, x) in (##) will be in the interval

[−
√
3
3 ,

√
3
3 ], and signaling the true value of αwill require just one bit of information.

Hence, if A2 adopts a strategy of truncating the realized value of γ̃2(α, x) to n
decimal points and uses an extra n+1’-th decimal point to convey the true value of
α, 1 or 2,15 then A1 will be able to decipher the true value of α from her observation
of u2 and be able to implement the policy γ̃1(u2, α). There will be a small deviation
from the ultimate performance level of 7

24 , with the smallness determined by the
value of n. Clearly, given any small ε > 0, one can always find a large enough
integer n such that the strategy above for A2 will result in a cost no larger than
7
24 + ε. But clearly, ε cannot be driven to zero, and hence this problem admits only
an ε-optimal solution, as in the case of the team problem of Sect. 3.3.1, but for a
totally different reason.

This type of a result, considered by Bismut [60], where part of the action variable
in a decimal expansion carries information from one agent to another on an observed
random variable through appropriate encoding, resulting in ε-optimality, applies to
more general problems as long as one agent has perfect access to the action variable
of another agent. To put what we have observed above in more precise terms, the ε
term arises due to the fact that the control policy is to encode information on both
the control action and the observation, with as minimum damage as possible to the
control action; and this is possible due to the fact that a real number carries infinite
amount of information (when information is measured in Shannon information
theoretic bits). One way to achieve this is as follows: Since rational numbers are
dense in R, for any ε′, there exists an n ∈ Z such that an n-decimal representation
which is at most at an ε′ distance from any real number in a compact set is possible.
Therefore, if one is to represent a finite-dimensional (say, r-dimensional) control
variable in a compact set U ⊂ R

r and a finite-dimensional (say, m-dimensional)
observation variable in a compact set Y ⊂ R

m, these signals can be represented with
an arbitrarily small error by a single rational number. Thus, one may embed in this
number, the ε′-approximate decimal expansions of the numbers to be represented,
thus leading to a total of n(m+ r) decimal letters, by allocating the most significant
nr letters for the control variable. Clearly, the ε used in the performance is directly
related to the ε′ used in the truncation argument above.

If the control and observation variables take values in a non-compact set, then, by
separability, a countable representation is possible, but a uniform number of decimal
letters will then not be sufficient, making the coding design impractical.

15For example, let a particular realization be x = 1.7 and α = 1, and n be picked as 7. Then,
γ̃2(α, x) = −1.7/3, which would be, using a 7-decimal point truncation, −0.5666666. Then, A2’s
action would be u2 = −0.56666661.
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3.7 Revisiting Witsenhausen’s Characterization
of Information Structures

Heretofore in this chapter, as well as in Chap. 2, we have presented a comprehensive
study of the characterization of information structures for stochastic team decision
problems. In this section, we revisit these and present some further characterizations
as laid out by Witsenhausen, termed as the intrinsic model [400]. In this model
(described in discrete time), any action applied at any given time is regarded as ap-
plied by an individual decision maker/agent, who acts only once. One advantage of
this model, in addition to its generality, is that the definitions regarding information
structures can be compactly described.

Suppose that in the decentralized system considered below, there is a predefined
order in which the decision makers act. Such systems are called sequential systems.
In the context of a sequential system, the intrinsic model has three components:

• A collection of measurable spaces I := {Ω,F , (U i,U i), (Y i,Yi), i ∈ N},
specifying the system’s distinguishable events, and the control and measurement
spaces. Here N = |N | is the number of control actions taken, and each of
these actions is taken by an individual (different) DM (hence, even a DM with
perfect recall can be regarded as a separate decision maker every time it acts).
The pair (Ω,F) is a measurable space (on which an underlying probability
may be defined). The pair (U i,U i) denotes the measurable space from which
the action of decision maker i, ui is selected. The pair (Y i,Yi) denotes the
measurable observation/measurement space.

• A measurement constraint which establishes the connection between the
observation variables and the system’s distinguishable events. The Y i-valued
observation variables are given by Ii = ηi(ω,u−i), u−i = {uk, k ≤ i − 1},
ηi measurable functions, and uk denotes the action of DM k.

• A design constraint, which restricts the set of admissible N -tuple control laws
γ = {γ1, γ2, . . . , γN}, also called designs or policies, to the set of all measurable
control functions, so that ui = γi(Ii), with Ii = ηi(ω,u−i), and γi, ηi

measurable functions.

Hence, the information variable Ii induces a σ-field, σ(Ii) over Ω ×
∏i−1

k=1 U
k.

One can also introduce a fourth component:

• A probability measure P defined on (Ω,F). To accommodate randomizations in
individual decisions, this can be expanded both in F as well as Ii, by including
randomization events.

Under this intrinsic model, a team problem is dynamic if the information
available to at least one DM is affected by the action of at least one other DM.
A decentralized problem is static, if the information available at every decision
maker is only affected by exogenous disturbances (nature); that is, no other decision
maker can affect the information at any given decision maker.
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As before, information structures can also be classified as classical,
quasi-classical, or nonclassical. An IS {Ii, 1 ≤ i ≤ N} is classical if Ii contains
all of the information available to DM k for k < i. An IS is quasi-classical or
partially nested, if whenever uk, for some k < i, affects Ii, Ii contains Ik (i.e.,
σ(Ik) ⊂ σ(Ii)). An IS which is not partially nested is nonclassical.

The Nonsequential Case

The order of actions can also be nature-dependent in some settings. If there is a
pre-defined order in which the decision makers act, as above, then we say that
a system is sequential. Otherwise, the system is nonsequential. Such systems are
substantially more difficult to study, since the ambiguities in the order of actions
lead to challenges on the interpretation of local information.

On a conceptual level, the intrinsic model described above captures such dynamic
teams as well. In particular, the measurement constraint described above needs to be
adjusted such that the observation variables are given by Ii = ηi(ω,u−i), u−i =
{uk, k 	= i, k ∈ N}, where ηi is measurable and uk denotes the action of DM k.

Design of such nonsequential systems requires a careful construction since
the systems should be deadlock-free, that is, the actions of a given DM should
not depend on the actions of DMs acting in the future, for any realized random
ordering (see Fig. 2.1 for an example of a system with deadlock). Furthermore,
the optimization problem for such systems should be well posed, since for some
designs the expected cost may not be well defined. To gain further insight into these
intricacies, consider the following two examples (see Teneketzis [360]):

Example 3.7.1. Let Ω = U1 = U2 = U3 = {0, 1} and

σ(I1) =

{
∅, Ω × U1 × U2 × U3, {(ω, u1, u2, u3) : ω(1− u2)u3 = 1},

{(ω, u1, u2, u3) : ω(1− u2)u3 = 0}
}
,

σ(I2) =

{
∅, Ω × U1 × U2 × U3, {(ω, u1, u2, u3) : ω(1− u3)u1 = 1},

{(ω, u1, u2, u3) : ω(1− u3)u1 = 0}
}
,

σ(I3) =

{
∅, Ω × U1 × U2 × U3, {(ω, u1, u2, u3) : ω(1− u1)u2 = 1},

{(ω, u1, u2, u3) : ω(1− u1)u2 = 0}
}
.

This system has a deadlock, since no DM can act as in the top figure of Fig. 2.1. �
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Example 3.7.2. Let Ω = U1 = U2 = {0, 1} and σ(I1) = 2Ω×U2

, σ(I2) =

2Ω×U1

(where the notation 2U denotes the power set, i.e., the collection of all
subsets of U ). Consider the following team policy:

γ1(ω, u2) = 0× 1{u2=0} + 1× 1{u2=1},

γ2(ω, u1) = 0× 1{u1=0} + 1× 1{u1=1},

where 1E denotes the indicator function for event E. For this design, consider the
realization ω = 0. In this case, (ω, u1, u2) = (0, 0, 0) as well as (0, 1, 1) are
acceptable realizations given the policy stated above. A similar setting occurs for
ω = 1, since (1, 0, 0) and (1, 1, 1) are acceptable realizations. Hence, for a given
cost function c, there does not exist, in general, a well-defined (measurable) cost re-
alization variable c(ω, u1, u2) under this policy, and the expectationE[c(ω, u1, u2)]
is not well defined given the policy (γ1, γ2). �

These two examples exhibit the difficulties arising in non-sequential systems.
For such systems, one needs to consider the sequences of possible events to
ensure that these issues do not arise. We refer the reader to Witsenhausen [393],
Andersland and Teneketzis [9, 10], and Teneketzis [360] for a comprehensive study
of nonsequential systems.

Witsenhausen’s Equivalent Model and Static Reduction
of Sequential Dynamic Teams

Another equivalence between sequential dynamics teams and their static reduction
is as follows (termed as the equivalent model [401]).

Consider a dynamic team setting according to the intrinsic model where there are
N time stages, and each DM observes, for some t, yt=gt(ω0, ωt, u

1, u2, · · · , ut−1),
and the decisions are generated by ut = γt({yτ , τ ∈ Kt}), where Kt is
the set of observations available at DM t. Here ω0, ω1, · · · , ωN are primitive
(exogenous) variables. We assume that all variables take values in real Euclidean
spaces (or complete separable metric spaces). The resulting cost under a given team
policy is

J(γ) = E[c(ω0,y,u)],

where, as before, we have the notation y = {yk, k ∈ N}. This dynamic team can be
converted to a static team provided that the following absolute continuity condition
holds: For every t ∈ N , there exists a function ft such that for all Borel S

P (yt ∈ S|ω0, u
1, u2, · · · , ut−1) =

∫
S

ft(yt, ω0, u
1, u2, · · · , ut−1)Qt(dy

t).
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We can then write (since the action of each DM is determined by the measurement
variables under a policy)

P (dω0, dy) = P (dω0)

N∏
t=1

ft(yt, ω0, u
1, u2, · · · , ut−1)Qt(dy

t).

The cost function J(γ) can then be written as

J(γ) =

∫
P (dω0)

N∏
t=1

(ft(yt, ω0, u
1, u2, · · · , ut−1)Qt(dy

t))c(ω0,y,u),

where now the measurement variables can be regarded as independent and by
incorporating the {ft} terms into c, we can obtain an equivalent static team problem.
Hence, the essential step is to appropriately adjust the probability space and the cost
function. For the (Witsenhausen’s) counterexample considered in Sect. 3.3.2, this
reduction leads to the following equivalent static problem:

∫
P (dy0)P (dy1)

(
(y0 + u0 − u1)

2 + k2u20

)
e(y0+u0)(2y1−y0−u0)/2,

where u0 = γ0(y0), u1 = γ1(y1) and y0, y1 are independent, zero-mean Gaussian
variables with variances σ2 and 1, respectively. One immediately notices that this
static reduction leads to a loss function which is not convex in the control actions
further explaining the source of difficulties in solving the counterexample.

Such a reduction is both conceptually and computationally useful. The computa-
tional benefit is particularly evident in finite state-space decision problems, since it
amounts to a reformulation of the underlying optimization problem.

Standard Form for Sequential Dynamic Teams

According to another model for sequential teams, known as Witsenhausen’s stan-
dard form [394], for optimization of sequential dynamic teams with finite horizons,
a dynamic programming principle can be applied which essentially expresses the
optimization problem as a terminal-stage cost function. Here, every DM acts
given the policies of the previous DMs optimally. When the cost function is
stagewise additive and further assumptions are placed on the primitive variables, the
analysis reduces to the dynamic programming formulation for state-space models
(see Appendix D for a review of dynamic programming).
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3.8 Concluding Remarks

The main theme of this chapter has been information structures and the role
they play in stochastic dynamic teams. We have seen the complexity and chal-
lenges involved in obtaining team-optimal solutions for dynamic teams when the
information structure is nonclassical, which would arise when, for example, the
agents do not share information and/or have limited memory. We have also seen
that the structures of the cost function and the system dynamics (describing the
evolution of the decision process) as well as the overall probabilistic description of
the team problem also play important roles in the existence, complexity, solvability,
and characterization of team-optimal solutions. We have obtained a method for
solving nonclassical information structures through expanding the information set,
obtaining a solution and checking if the solution is realizable according to the
original information structure. We also discussed performance-irrelevant signaling
for a class of nonclassical information structures.

3.9 Bibliographic Notes

In addition to the extensive references provided in the main body of the chapter,
we refer the reader to [29, 197, 250, 332, 417] for further discussion on and
examples of information structures. Partially nested information structures also
include the cases where explicit information exchange in a decentralized system
among decision makers is faster than information propagation through system
dynamics; see [87,320,382]. Related to the notion of partial nestedness, Bamieh and
Voulgaris, Rotkowitz and Lall, and Voulgaris [38,324,382] have studied sufficiency
conditions for tractability and convexity in optimal decentralized control problems.

Further examples on information patterns and structural results for optimal team
policies have been considered in [4,13,22,224,286,332,374,414,417]. In Chap. 12,
further discussions on the generation of optimal team policies are presented.

In the context of dynamic quadratic team problems, if one poses the problem
not as an expectation minimization but as a min-max optimization where nature
acts as the maximizer and the encoders/decoders (or the controllers) act as the
minimizer, then linear policies are optimal for a class of settings; see, for example,
[26, 30, 31, 157, 323]; [26] also provides a review on LQG problems under non-
classical information including Witsenhausen’s counterexample. Also regarding this
counterexample, connections with information-theoretic concepts such as binning
have been made in [177] to obtain approximation bounds.

Approximately optimal solutions for weakly coupled teams with nonclassical
information structures have been considered in [345]. The discussion in the chapter
on performance-irrelevant signaling builds on and extends the stochastically nested
information structure in [417]. This generalizes earlier characterizations based on
information-field inclusion based characterizations of nestedness by Witsenhausen
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[399] and Ho and Chu [198]. Blackwell’s [61] comparison of information structures
is a related concept in a single decision maker setting—a topic to be covered
further in the next chapter. Mahajan and Yüksel [251] generalized this view to
Witsenhausen’s intrinsic model.

We recall that an important property for nonclassical information structures
is that the information fields at the decision makers are not nested. A result is
that the conditional expectation operations of each decision maker require careful
constructions (and in particular, these operations do not satisfy the law of the iterated
expectations; see (B.2) in Appendix B, also known as the smoothing property
of conditional expectation). With this observation and the motivation that the
information fields generated by local measurements lead to nontrivial constructions
for nonsequential systems, an alternative algebraic model for describing team
decision problems has been proposed in [44, 45].

Game theory and economics literatures have also considered signaling
extensively in the context when decision makers (players) have different objective
functions to be optimized (see, e.g., [25, 33, 105]). In these cases, the design of the
information structure leads to further subtle intricacies.

Section 3.5 builds, in part, on [417]. The material on garbling in the chapter
builds, in part, on [61, 255].



Chapter 4
Topological Properties of Information
Structures: Comparison, Convergence,
and Optimization

4.1 Introduction

In Chaps. 2 and 3, we introduced the notion of an information structure and studied
various properties associated with information structures in the contexts of static and
dynamic stochastic teams, identifying classes of teams (in terms of their information
structures) which are tractable and others which present major challenges because
of the nonclassical nature of the information.

In this chapter, we will continue with our discussion of information structures
but from a different perspective: studying their topological properties. In particular,
we study topological and structural properties of the functional infγ R(γ; η), where
R(·; ·) is defined in (3.1), on a space of information structures. We investigate
values of measurement channels and the problem of channel optimization for a class
of stochastic control problems. In addition to establishing existence and structural
results for optimal policies, the topological properties developed in the chapter will
also be useful in assessing robustness of designs when a probabilistic description
of a model is not fully accurate. We will also introduce quantizers as a special
class of measurement channels and obtain several useful topological properties and
existence results for optimal quantizers. Quantizers will be studied further in the
book, in Parts II and III.

We start the chapter by first defining measurement channels as information
structures and stating the problems considered in this chapter, in Sect. 4.2. We then
consider comparison of measurement channels in Sect. 4.3. Topological character-
ization of information structures is presented in Sect. 4.4. Continuity of optimal
solutions in channels for single-stage optimization problems is considered in
Sect. 4.5 and existence analysis is provided in Sect. 4.6. Quantizers, viewed as a
subclass of measurement channels, are studied in detail in view of continuity and
existence properties in Sect. 4.7. Multistage problems are considered in Sect. 4.8
and multi-agent setting is investigated in Sect. 4.9. Applications of the results in

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 4,
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the chapter to nonclassical team problems in view of lack of convexity in control
policies are discussed in Sect. 4.10. Finally, relaxations of the continuity properties
under setwise and weak convergence notions are discussed in Sect. 4.11.

4.2 Measurement Channels as Information Structures

Consider a single-agent dynamical system described by the discrete-time equations
[as single-agent, time-invariant counterparts of (2.18) and (2.19)]

xt+1 = f(xt, ut, wt),

yt = g(xt, vt), t ∈ T ,

for some measurable functions f, g, with {wt} being an independent and identically
distributed (i.i.d) system noise process and {vt} an i.i.d. measurement disturbance
process, which are independent of x0 and each other. Here, xt ∈ X, yt ∈ Y, ut ∈ U,
where we assume that these spaces are Borel subsets of finite-dimensional Euclidean
spaces.

In the above, we can view g as inducing a measurement channel Q, which is a
stochastic kernel or a regular conditional probability measure from X to Y in the
sense that Q( · |x) is a probability measure on the (Borel) σ-algebra B(Y) on Y for
every x ∈ X, and Q(A| · ) : X → [0, 1] is a Borel-measurable function for every
A ∈ B(Y).

As before, an admissible policy is a sequence of control functions {γt, t ∈ Z+}
such that γt is measurable with respect to the σ-algebra generated by the information
variables

It = {y[0,t], u[0,t−1]}, t ∈ N, I0 = {y0},

where
ut = γt(It), t ∈ Z+ (4.1)

are the U-valued control actions. Let Γ be the space of all admissible policies.
With the above setup, let the objective be one of minimization of the cost

J(P,Q, γ) = E
Q,γ

P

[ T−1∑
t=0

c(xt, ut)

]
, (4.2)

over the set of all admissible policies γ, where c : X × U → R is a Borel-

measurable stagewise cost function and E
Q,γ

P denotes the expectation with initial
state probability measure given by P , under policy γ and given channel Q.

For P ∈ P(X) and Q ∈ Q we let PQ denote the joint distribution induced on
(X× Y,B(X× Y)) by channel Q with input distribution P :

PQ(A) =

∫
A

Q(dy|x)P (dx), A ∈ B(X× Y).
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We adopt the convention that given a probability measure μ, the notation z ∼ μ
means that z is a random variable with distribution μ.

Comparison of Measurement Channels (Stochastic Kernels): The first question
we ask is when can one compare two measurement channels Q1, Q2 such that

inf
γ∈Γ

J(P,Q1, γ) ≤ inf
γ∈Γ

J(P,Q2, γ),

for all measurable and bounded cost functions c in (4.2)?

Continuity on the Space of Measurement Channels (Stochastic Kernels):
Suppose that {Qn, n ∈ N} is a sequence of communication channels converging
in some sense to a channel Q. Then the question we ask is, when does

Qn → Q

imply
inf
γ∈Γ

J(P,Qn, γ) → inf
γ∈Γ

J(P,Q, γ)?

Existence of Optimal Measurement Channels and Quantizers: Let Q be a set
of communication channels. A second question we ask is, when do there exist
minimizing and maximizing channels for the optimization problems

inf
Q∈Q

inf
γ
E

Q,γ

P

[ T−1∑
t=0

c(xt, ut)

]

and

sup
Q∈Q

inf
γ
E

Q,γ

P

[ T−1∑
t=0

c(xt, ut)

]
?

If solutions to these problems exist, are they unique?

4.3 Concavity on the Space of Channels and Blackwell’s
Comparison of Information Structures

The following result has important consequences in decentralized stochastic control
problems as will be elaborated on later. It is also related to the discussion in Chap. 3
on garbling.

Theorem 4.3.1 ([436]). Let T = 1 and let the integral
∫
c(x, γ(y))PQ(dx, dy)

exist for all γ ∈ Γ and Q ∈ Q. Then, the function

J(P,Q) = inf
γ∈Γ

EQ,γ
P [c(x, u)]

is concave in Q. �
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Proof. For α ∈ [0, 1] and Q′, Q′′ ∈ Q, let Q = αQ′ + (1− α)Q′′ ∈ Q, i.e.,

Q(A|x) = αQ′(A|x) + (1− α)Q′′(A|x)

for all A ∈ B(Y) and x ∈ X. Noting that PQ = αPQ′ + (1− α)PQ′′, we have

J(P,Q) = J(P, αQ′ + (1− α)Q′′)

= inf
γ∈Γ

EQ,γ
P [c(x, u)]

= inf
γ∈Γ

∫
c(x, γ(y))PQ(dx, dy)

= inf
γ∈Γ

(
α

∫
c(x, γ(y))PQ′(dx, dy)+(1− α)

∫
c(x, γ(y))PQ′′(dx, dy)

)

≥ inf
γ∈Γ

(
α

∫
c(x, γ(y))PQ′(dx, dy)

)

+ inf
γ∈Γ

(
(1− α)

∫
c(x, γ(y))PQ′′(dx, dy)

)

= αJ(P,Q′) + (1− α)J(P,Q′′) (4.3)

proving that J(P,Q) is concave in Q. ��

The following result is a folk theorem in statistical decision theory whose proof
is similar to that of Theorem 4.3.1.

Proposition 4.3.1 ([436]). The function

V (P ) := inf
u∈U

∫
c(x, u)P (dx),

is concave in P , under the assumption that c is measurable and bounded. �

We will use the preceding observation to revisit a classical result in statistical
decision theory and comparison of experiments, by David Blackwell [61], who
considered a finite X. In a single decision maker setup, we refer to the probability
space induced on X× Y as an information structure.

As we observed in Remark 3.2.2 in the previous chapter, garbling can be further
weakened for comparison of information structures.

Definition 4.3.1. An information structure induced by some channel Q2 is weakly
stochastically degraded with respect to another one, Q1, if there exists a channelQ′

on Y× Y such that

Q2(B|x) =
∫
Y

Q′(B|y)Q1(dy|x), B ∈ B(Y), x ∈ X.

�

In view of Proposition 4.3.1, we have the following.
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Theorem 4.3.2 (Blackwell [61]). If Q2 is weakly stochastically degraded with
respect to Q1, then the information structure induced by channel Q1 is more
informative with respect to the one induced by channelQ2 in the sense that

inf
γ
EQ2,γ

P [c(x, u)] ≥ inf
γ
EQ1,γ

P [c(x, u)],

for all measurable and bounded cost functions c. �

Proof. Let (x, y1) ∼ PQ1, y2 be such that Pr(y2 ∈ B|x = x, y1 = y) = Q′(B|y)
for all B ∈ B(Y), y1 ∈ Y, and x ∈ X. Then x, y1, and y2 form a Markov chain in
this order and therefore P (dy2|y1, x) = P (dy2|y1) and P (x|dy2, y1) = P (x|y1).1
Thus we have

J(P,Q2) =

∫
V
(
P ( · |y2)

)
P (dy2)

=

∫
V

(∫
P ( · |y1)P (dy1|y2)

)
P (dy2)

≥
∫ (∫

P (dy1|y2)V
(
P ( · |y1)

))
P (dy2)

=

∫
V
(
P ( · |y1)

)(∫
P (dy1|y2)P (dy2)

)

=

∫
V
(
P ( · |y1)

)
P (dy1)

= J(P,Q1),

where in arriving at the inequality, we used Proposition 4.3.1 and Jensen’s
inequality. ��

Remark 4.3.1. When X is finite, Blackwell showed that the above condition also
has a converse theorem if P has positive measure on each element of X: For
an information structure to be more informative, weak stochastic degradedness
is a necessary condition. For Polish X and Y, the converse result holds under
further technical conditions on the stochastic kernels (information structures);
see [67, 86]. �

The comparison argument applies also for multistage settings with T > 1.

Theorem 4.3.3. For the multistage problem (4.2), if Q2 is weakly stochastically
degraded with respect to Q1, then the information structure induced by channel Q1

is more informative with respect to the one induced by channel Q2 in the sense that
for all measurable and bounded cost functions c in (4.2),

1We have slightly abused notation here, using, for example, P (dy2|y1, x) instead of
Py2|y1,x(dy

2|y1, x).
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J(P,Q1) ≤ J(P,Q2).

�

Proof. We will follow an argument based on simulation. As in the proof of
Theorem 4.3.2, let for t ≥ 0, (xt, y1t ) ∼ PQ1, y2t be such that Pr(y2t ∈ B|x =
x, y1t = y) = Q′(B|y) for all B ∈ B(Y), y1t ∈ Y, and xt ∈ X. Then xt, y1t ,
and y2t form a Markov chain in this order. Now, the cost value achieved under any
given policy γ2 which is measurable under the channelQ2 can also be achieved by a
randomized decision policy of the decision maker under channel Q1. That is, given
a policy γ2 = {γ2t (y2[0,t]), 0 ≤ t−1}, the decision maker can generate a randomized

decision policy γ1 = {γ1t (y1[0,t]), 0 ≤ t− 1} such that for all B ∈ B(U),

P (γ1t (y
1
[0,t]) ∈ B) =

∫
ỹ2
t

1{γ2(ỹ2
[0,t]

)∈B}P (dỹ
2
[0,t]|y1[0,t]),

where ỹ2[0,t] has the same probability measure as y2[0,t], generated recursively for
t ≥ 0. Hence, any policy under Q2 can be simulated by a decision maker under Q1

through a randomized policy. Through a dynamic programming argument and by
Theorem D.1.1 (Blackwell’s Irrelevant Information Theorem), for every randomized
policy, there exists a deterministic policy under Q1 which is at least as good as the
randomized policy. Hence, the result follows. ��

Remark 4.3.2. Blackwell’s informativeness provides a partial order in the space of
measurement channels; that is, not every pair of two channels can be compared.
We will later see that if the goal is not the minimization of a cost function
but that of stochastic stabilization of an open-loop unstable linear system over a
communication channel in an appropriate sense, then one can obtain a total order
on the space of channels, with the additional flexibility of allowing encoding and
decoding operations. �

4.4 Topological Characterization of Measurement Channels

In this section, we provide topologies for measurement channels. Such constructions
will be used extensively in view of existence of optimal channels as well as optimal
quantizers to be considered both in this chapter and later in the book. In the
following, we have X = R

n and Y = R
m, and Q denotes the set of all measurement

channels (stochastic kernels) with input space X and output space Y.
We refer the reader to Appendix B.2 for definitions of convergence of probability

measures in the senses of weak convergence, setwise convergence, and total
variation.
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Definition 4.4.1 (Convergence of Channels [438]). (i) A sequence of channels
{Qn} converges to a channel Q weakly at input P if PQn → PQ weakly.

(ii) A sequence of channels {Qn} converges to a channel Q setwise at input P if
PQn → PQ setwise, i.e., if PQn(A) → PQ(A) for all Borel setsA ⊂ X×Y.

(iii) A sequence of channels {Qn} converges to a channel Q in total variation at
input P if PQn → PQ in total variation, i.e., if ‖PQn − PQ‖TV → 0. �

If we introduce the equivalence relation Q ≡ Q′ if and only if PQ = PQ′,
Q,Q′ ∈ Q, then the convergence notions in Definition 4.4.1 only induce the
corresponding topologies on the resulting equivalence classes in Q, instead of Q.
Since in most of the development the input distribution P is fixed, there should be
no confusion when we talk about the induced topologies (resp. metrics) on Q.

The preceding definition was explicitly dependent on the input distribution P .
The next lemma provides a set of sufficient conditions which may be easier to verify,
independent of the input distribution. The proof is given in the appendix.

Lemma 4.4.1 ([438]). (i) If {Qn( · |x)} converges to Q( · |x) weakly for P -a.e. x,
then PQn → PQ weakly.

(ii) If {Qn( · |x)} converges to Q( · |x) setwise for P -a.e. x, then PQn → PQ
setwise.

(iii) If {Qn( · |x)} converges toQ( · |x) in total variation for P -a.e. x, thenPQn →
PQ in total variation. �

The conditions in Lemma 4.4.1 are almost universal in the choice of input
probability measures; that is, the convergence characterizations will be independent
of the input distributions if each of the conditions is replaced with convergence of
{Qn( · |x)} to Q( · |x) for all x ∈ X. This is particularly useful when the input
distribution is unknown or when it may change. The latter can occur in multistage
stochastic control problems.

We should note at this point that total variation is a stringent requirement
for convergence. For example, a sequence of discrete probability measures never
converges in total variation to a probability measure which admits a density function
with respect to the Lebesgue measure. On the other hand, setwise convergence
induces a topology on the space of probability measures and channels which is
not easy to work with. This is mainly due to the property that the space under
this notion of convergence is not metrizable [161, p. 59]. However, the space of
probability measures on a complete, separable, metric (Polish) space endowed with
the topology of weak convergence is itself a complete, separable, metric space
[58]. The Prokhorov metric, for example, can be used to metrize this space. This
metric has found many applications in information theory and stochastic control.
Furthermore, there are well-known conditions to determine whether a family of
probability measures is weakly sequentially compact or not [58]. There are also
other advantages of working with weak convergence, as we will see later in the
book (see in particular Appendix B.2). Accordingly, one would like to work with
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weak convergence. However, as we will see, weak convergence is insufficient in a
general setup for obtaining continuity. In the following, we provide some examples,
taken from [438]:

1. Consider the case where the measurement channel has the form yt = Cxt + vt,
where {vt} is an i.i.d. noise (measurement disturbance) process. Suppose vt ∼
fθ0 for some θ0 ∈ Θ, where Θ ⊂ R

d is a parameter set and {fθ : θ ∈ Θ} is
a parametric family of densities such that fθn(v) → fθ0(v) for all v ∈ R

n and
any sequence of parameters θn such that θn → θ0. Then by Scheffé’s theorem
[70] fθn converges to fθ0 in the L1 sense, and consequently, the sequence
of corresponding additive channels Qn( · |x) converges to the channel Q( · |x)
(corresponding to fθ) in total variation for all x.

2. Consider again the measurement channel yt = Cxt+vt but assume this time that
we only know that vt has a density (i.e., its measure is absolutely continuous with
respect to the Lebesgue measure) f (which is unknown to us). However, suppose
that we are provided with a sequence of independent realizations for the noise
process. Thus, with these independent observations v1, . . . , vn from the noise
process, we can use any of the consistent nonparametric methods, e.g., [115],
to obtain an estimate fn which converges (with probability one) to f in the L1

sense as n → ∞. The corresponding sequence of estimated channels Qn( · |x)
converges to the true channel Q( · |x) in total variation for all x with probability
one.

3. Now suppose that the observation channelQ is such thatQ( · |x) admits a condi-
tional density f(y|x) for all x ∈ R

n. Given observations (x1, y1), . . . , (xn, yn)
drawn independently from the distribution PQ, there exists a sequence of
nonparametric conditional density estimates fn(y|x) such that as n→ ∞

∫ (∫
|fn(y|x)− f(y|x)| dy

)
P (dx) → 0,

with probability one [183]. This immediately implies that the channels Qn

corresponding to these estimates converge to Q in total variation at input P .
4. Finally, assume again the additive model yt = Cxt + vt, where now we do

not have any information about the distribution μ of vt. In this case there
are no methods to consistently estimate μ in total variation from independent
samples v1, . . . , vn [116]. However, the empirical distribution μn of the samples
converges weakly to μ with probability one. The corresponding estimated
observation channels Qn( · |x) converge weakly to the true channel Q( · |x) for
all x with probability one.
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4.5 Single Stage: Continuity of the Optimal Cost in Channels

In this section, we study continuity properties under total variation, setwise conver-
gence, and weak convergence, for the single-stage case. Thus, we investigate the
continuity of the functional

J(P,Q) = inf
γ
E

Q,γ

P

[
c(x0, u0)

]

= inf
γ∈Γ

∫
X×Y

c(x, γ(y))Q(dy|x)P (dx)

in the channel Q ∈ Q, where Γ is the collection of all Borel-measurable functions
mapping Y into U. Note that by our previous notation, γ = γ is an admissible first-
stage control policy. As before, Q denotes the set of all channels with input space X
and output space Y.

Our results in this section as well as subsequent sections in this chapter will
utilize one or more of the assumptions on the cost function c and the (Borel) set
U ⊂ R

k:

Assumption 4.5.1. A1. The function c : X×U → R is nonnegative, bounded, and
continuous on X× U.

A2. The function c : X× U → R is nonnegative, measurable, and bounded.
A3. The function c : X × U → R is nonnegative, measurable, bounded, and

continuous on U for every x ∈ X.
A4. U is a compact set.
A5. U is a convex set.

�

Before proceeding further, we look for conditions under which an optimal control
policy exists, i.e, when the infimum in infγ E

Q,γ
P [c(x, u)] is a minimum. The

following result is proved in the appendix of the chapter.

Theorem 4.5.1 ([438]). Suppose assumptions A3 and A4 hold. Then, there exists
an optimal control policy for any channelQ. �

The following example demonstrates that J(P,Q) may not be sequentially
continuous under weak convergence of channels even for continuous loss functions
c and compact X, Y, and U.

Let X = Y = U = [0, 1]. Suppose the cost is given as c(x, u) = (x − u)2 and
assume that P is a discrete distribution with two atoms:

P =
1

2
δ0 +

1

2
δ1,

where δ0 is the delta measure at point 0, that is, δ0(A) = 1{0∈A} for every Borel
set A, where 1E denotes the indicator function of event E. Similarly, δ1 is the delta
measure at point 1. Let {Qn} be a sequence of channels given by
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Qn( · |x) =
{
δ 1

n
if x ≥ 1

n ,

δ0 if x < 1
n .

(4.4)

In this case, the optimal control policy, which is unique up to changes in points
of measure zero, is

γn(y) = 1{y≥ 1
n }, n ∈ N,

leading to a cost of 0. We observe that the limit of the sequence {Qn( · |x)} is
given by

Q( · |x) = δ0 for all x ∈ R. (4.5)

It can now be shown that [438] Qn → Q weakly at input P . However, the limit of
the sequence of channels cannot distinguish between the inputs, since the channel
output always equals a. Thus, even though

J(P,Qn) = 0, for all n ≥ 1,

the cost of Q = limnQn is

J(P,Q) =
1

4

since, letting (X,Y ) ∼ PQ, we have γ(y) = E[X |Y = y] = 1/2 for all y.

Upper semi-continuity, however, can be established.

Theorem 4.5.2 ([438]). Suppose assumptions A1 and A5 hold. If {Qn} is a
sequence of channels converging weakly at input P to a channelQ, then

lim sup
n→∞

J(P,Qn) ≤ J(P,Q),

that is, J(P,Q) is upper semicontinuous on Q under weak convergence. �

Proof. Let μ be an arbitrary probability measure on (X × Y,B(X × Y)) and let
μY be its second marginal, i.e., μY(A) = μ(X × A) for A ∈ B(Y). Let g ∈ Γ
be arbitrary. By Lusin’s theorem [325, Theorem 2.24], there exists a continuous
function f : Y → U such that

μY{y : f(y) 	= g(y)} < ε.

Letting B = {y : f(y) 	= g(y)} we obtain
∫ ∣∣c(x, g(y))− c(x, f(y))

∣∣μ(dx, dy) =
∫
X×B

∣∣c(x, g(y))− c(x, f(y))
∣∣μ(dx, dy)

< ε · c∗,

where c∗ = supx,u c(x, u) <∞ by assumption A1, so that

∫
c(x, f(y))μ(dx, dy) <

∫
c(x, g(y))μ(dx, dy) + c∗ε. (4.6)



4.5 Single Stage: Continuity of the Optimal Cost in Channels 129

Let C be the set of continuous functions from Y into U. Define

j(μ, C) = inf
γ∈C

∫
c(x, γ(y))μ(dx, dy), j(μ, Γ ) = inf

γ∈G

∫
c(x, γ(y))μ(dx, dy)

and note that j(μ, C) ≥ j(μ, Γ ) since C ⊂ Γ . By (4.6), j(μ, C) is upper bounded
by the right-hand side of (4.6). Since g in (4.6) was arbitrary, we obtain j(μ, C) ≤
j(μ, Γ ) + c∗ε, which in turn implies j(μ, C) ≤ j(μ, Γ ) since ε > 0 was arbitrary.
Hence j(μ, C) = j(μ, Γ ).

Applying the above first to PQn and then to PQ, we obtain

lim sup
n→∞

inf
γ∈G

∫
c(x, γ(y))PQn(dx, dy) = lim sup

n→∞
inf
f∈C

∫
c(x, f(y))PQn(dx, dy)

≤ inf
f∈C

lim sup
n→∞

∫
c(x, f(y))PQn(dx, dy)

= inf
f∈C

∫
c(x, f(y))PQ(dx, dy)

= inf
γ∈Γ

∫
c(x, γ(y))PQ(dx, dy),

where the next to last equality holds since PQn converges weakly to PQ. ��

We state the following for setwise convergence.

Theorem 4.5.3 ([438]). (i) Under assumption A2, the optimal cost

J(P,Q) := inf
γ
EQ,γ

P [c(x, u)]

is sequentially upper semicontinuous on the set of communication channels Q
under setwise convergence.

(ii) J(P,Q) may not be sequentially continuous under setwise convergence of
channels even for continuous loss functions and compact X, Y, and U.

�

Proof. (i) Let {Qn} converge setwise to Q at input P . Then

lim sup
n→∞

inf
γ∈Γ

∫
c(x, γ(y))PQn(dx, dy) ≤ inf

γ∈Γ
lim sup
n→∞

∫
c(x, γ(y))PQn(dx, dy)

= inf
γ∈Γ

∫
c(x, γ(y))PQ(dx, dy),

where the equality holds since c is bounded.
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(ii) The following counterexample demonstrates that J(P,Q) may not be
sequentially continuous also under setwise convergence of channels even for
continuous cost functions and compact X, Y, and U.

Let X = Y = U = [0, 1]. Assume that X has the two-point distribution

P =
1

2
δ0 +

1

2
δ1.

Let Q( · |x) = U([0, 1]) for all x, so that if (x, y) ∼ PQ, then y is independent of x
and has the uniform distribution on [0, 1]. Let c(x, u) = (x− u)2.

By independence,E[x|y] = E[x] = 1/2, so

J(P,Q) = min
γ∈Γ

E[(x− γ(y))2] = E[(x − E[x|y])2]

=
1

2

(
1− 1

2

)2

+
1

2

(
0− 1

2

)2

=
1

4
.

For n ∈ N and k = 1, . . . , n consider the intervals

Lnk =

[
2k − 2

2n
,
2k − 1

2n

)
, Rnk =

[
2k − 1

2n
,
2k

2n

)
(4.7)

and define the “square wave” function

hn(t) =
n∑

k=1

(
1{t∈Lnk} − 1{t∈Rnk}

)
.

Since
∫ 1

0
hn(t) dt = 0 and |hn(t)| ≤ 1, the function fn(t) =

(
1 + hn(t)

)
1{t∈[0,1]}

is a probability density function. Furthermore, the standard proof of the Riemann–
Lebesgue lemma (e.g., [391], Theorem 12.21) can be used almost verbatim to show
that

lim
n→∞

∫ 1

0

hn(t)g(t) dt = 0 for all g ∈ L1([0, 1],R)

and therefore

lim
n→∞

∫ 1

0

fn(t)g(t) dt =

∫ 1

0

g(t) dt for all g ∈ L1([0, 1],R). (4.8)

In particular, we obtain that the sequence of probability measures induced by the
sequence {fn} converges setwise to U([0, 1]).
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Now, for every n, introduce a channel as follows:

Qn( · |x) =
{
U([0, 1]), x = 0

∼ fn, x = 1.

Then Qn(·|x) → Q setwise for x = 0 and x = 1, and thus PQn → PU([0, 1])
setwise. However, letting (x, yn) ∼ PQn, a simple calculation shows that the
optimal policy for PQn is

γn(y) = E[x|yn = y] =

{
0, y ∈

⋃n
k=1 Rnk,

2
3 , y ∈

⋃n
k=1 Lnk,

and therefore for every n ∈ N

J(P,Qn) = min
γ∈Γ

E[(x− γ(yn))
2]

=
1

2

∫ 1

0

(0− γn(y))
2 dy +

1

2

∫ 1

0

(1− γn(y))
2fn(y) dy

=
1

6
.

Thus, the optimal cost value is not continuous under setwise convergence. ��

We have continuity under the stronger notion of total variation:

Theorem 4.5.4 ([438]). Under assumption A2, the optimal cost J(P,Q) is contin-
uous on the set of communication channels Q under the topology of total variation.
�

Proof. Assume Qn → Q in total variation at input P . Let ε > 0 and pick the
ε-optimal policies γn and γ under channels Qn and Q, respectively. That is, letting
Ĵ(Q′, γ′) = EQ′,γ′

P [c(x, u)] for any γ′ ∈ Γ and Q′ ∈ Q, we have Ĵ(Qn, γn) <

J(P,Qn) + ε and Ĵ(Q, γ) < J(P,Q) + ε.
Considering first the case, J(P,Qn) < J(P,Q), we have

J(P,Q)− J(P,Qn) ≤ J(P,Q)− Ĵ(Qn, γn) + ε

≤ Ĵ(Q, γn)− Ĵ(Qn, γn) + ε.

By a symmetric argument it follows that

|J(P,Q)− J(P,Qn)| ≤ max
(
Ĵ(Q, γn)− Ĵ(Qn, γn), Ĵ(Qn, γ)− Ĵ(Q, γ)

)
+ ε.
(4.9)
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Now, since c is bounded, it follows from Appendix B.2 that for any γ′ ∈ Γ,

|Ĵ(Qn, γ
′)−Ĵ(Q, γ′)| =

∣∣∣∣
∫
c(x, γ′(y))PQn(dx, dy)−

∫
c(x, γ′(y))PQ(dx, dy)

∣∣∣∣
≤ ‖c‖∞‖PQn − PQ‖TV .

Together with (4.9), this implies that |J(P,Qn) − J(P,Q)| ≤ ‖c‖∞‖PQn −
PQ‖TV + ε. Since ε > 0 was arbitrary, we obtain |J(P,Qn) − J(P,Q)| ≤
‖c‖∞‖PQn − PQ‖TV , and therefore J(P,Qn) → J(P,Q) as claimed. ��

Remark 4.5.1. We can relax the boundedness condition for c by a uniform integra-
bility condition below. Let Qn → Q and let for every n, γn be optimal for Qn, γ
optimal for Q. If uniformly for {Qn, γn} and Q, γ, we have that for every ε > 0,
there exists an L <∞ such that∣∣∣∣EQn,γn

ν0 [c(x, u)]− EQn,γn

ν0 [c(x, u)1(c(x,u)≤L)]

∣∣∣∣ ≤ ε,

with c nonnegative and measurable, then continuity holds. See Chap. 11
(Theorem 10.6.4) for further details on such an analysis. �

Thus, total variation, although a strong metric, is useful in establishing continuity.

4.6 Single Stage: Existence of Optimal Channels

In this section, again for the single-stage problem, we study characterizations
of compactness (or sequential compactness), which will be useful in obtaining
existence results and may be useful in obtaining approximation results.

The discussion on weak convergence has already shown us that weak conver-
gence does not induce a strong enough topology under which continuity properties
can be obtained. In the following, we will obtain conditions for sequential compact-
ness for the other two convergence notions, that is, for setwise convergence and total
variation.

We first discuss setwise convergence. A set of probability measures M on some
measurable space is said to be setwise sequentially precompact if every sequence in
M has a subsequence converging setwise to a probability measure (not necessarily
in M). For two finite measures ν and μ defined on the same measurable space, we
write ν ≤ μ if ν(A) ≤ μ(A) for all measurable sets A.

We have the following condition for setwise (pre)compactness (see also pp. 305–
306 in [127]).

Lemma 4.6.1 ([66, Theorem 4.7.25]). Let μ be a finite measure on a measurable
space (T,A). Assume a set of probability measures Ψ ⊂ P(T) satisfies

P ≤ μ, for all P ∈ Ψ.

Then Ψ is setwise precompact. �
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As before, PQ ∈ P(X × Y) denotes the joint probability measure induced by
input P and channel Q, where X = R

n and Y = R
m. A simple consequence of the

preceding majorization criterion is the following.

Lemma 4.6.2 ([438]). Let ν be a finite measure on B(X × Y) and let P be a
probability measure on B(X). Suppose Q is a set of channels such that

PQ ≤ ν, for all Q ∈ Q.

Then Q is setwise sequentially precompact at inputP in the sense that any sequence
in Q has a subsequence {Qn} such that Qn → Q setwise at input P for some
channelQ. �

Proof. By Lemma 4.6.1, the set of joint measures M = {PQ : Q ∈ Q} is setwise
sequentially precompact, that is, any sequence in M has a subsequence {PQn}
converging to some P̂ setwise. Furthermore, since the first marginal of PQn is P
for all n, the first marginal of P̂ is also P (since PQn(A × Y) → P̂ (A × Y) for
all A ∈ B(X)). Now let Q be a regular conditional probability measure satisfying
P̂ = PQ, and the result follows for the subsequential convergence of Qn. ��

For a probability density function p on R
N , we let Pp denote the induced

probability measure: Pp(A) =
∫
A
p(x) dx, A ∈ B(RN). The next lemma provides

a sufficient condition for precompactness.

Lemma 4.6.3 ([438]). Let μ be a finite Borel measure on R
N and let F be an

equicontinuous and uniformly bounded family of probability density functions.
Define Ψ ⊂ P(RN ) by

Ψ = {Pp : Pp ≤ μ, p ∈ F}.

Then Ψ is precompact under total variation. �

Proof. See Sect. 4.12.3. ��

The next result is an analogue of Lemma 4.6.2 and has an essentially identical
proof.

Lemma 4.6.4 ([438]). Let Q be a set of channels such that {PQ : Q ∈ Q} is a
precompact set of probability measures under total variation. Then Q is precompact
under total variation at input P . �

The following theorem, when combined with the preceding results, leads to
sufficient conditions for the existence of best and worst channels when the given
family of channels Q is closed under the appropriate convergence notion.

Theorem 4.6.1 ([438]). (i) There exists a worst channel in Q, that is, a solution to
the maximization problem

sup
Q∈Q

J(P,Q) = sup
Q∈Q

inf
γ
EQ,γ

P [c(x, u)],
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when the set Q is weakly sequentially compact and assumptions A1, A4, and A5
hold.

(ii) There exists a worst channel in Q when the set Q is setwise sequentially
compact and assumption A2 holds.

(iii) There exist best and worst channels in Q, that is, solutions to the minimization
problem infQ∈Q J(P,Q) and the maximization problem supQ∈Q J(P,Q)
when the set Q is compact under total variation and assumption A2 holds.

�

Proof. Under the stated conditions, we have sequential upper semi-continuity or
continuity (Theorems 4.5.2, 4.5.3, and 4.5.4) under the corresponding topologies.
By sequential compactness, the existence of the cost maximizing (worst) channel
follows when J(P,Q) is upper semicontinuous, while the existence of the cost
minimizing (best) channel follows when J(P,Q) is continuous in Q. ��

Remark 4.6.1. The existence of worst channels is a useful result for the robust
control or game-theoretic approach to optimization problems. If the problem is
formulated as a game where the uncertainty in the set is regarded as a maximizer and
the controller is the minimizer, one could search for a max-min solution, which we
have just proven to exist. We note that, in information theory, problems of similar
nature have been considered in the context of mutual information games [346]. �

4.7 Quantizers as a Class of Channels

In this section, we consider the problem of convergence and optimization of
quantizers. Quantization will be an recurrent subject throughout the rest of the book.

We start with the definition of a quantizer.

Definition 4.7.1. An M -cell vector quantizer, Q, is a (Borel) measurable mapping
from a subset of X = R

n to the finite set {1, 2, . . . ,M}, characterized by a
measurable partition {B1, B2, . . . , BM} such that Bi = {x : Q(x) = i} for
i = 1, . . . ,M . The Bis are called the cells (or bins) of Q. �

Remark 4.7.1.

(i) For later convenience we allow for the possibility that some of the cells of the
quantizer are empty.

(ii) Traditionally, in source-coding theory, a quantizer is a mappingQ : Rn → R
n

with a finite range. Thus Q is defined by a partition and a reconstruction value
in R

n for each cell in the partition. That is, for given cells {B1, . . . , BM} and
reconstruction values {q1, . . . , qM} ⊂ R

n, we have Q(x) = qi if and only if
x ∈ Bi. In the definition above, we do not include the reconstruction values. �
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A quantizerQ with cells {B1, . . . , BM} can also be characterized as a stochastic
kernel Q from X to {1, . . . ,M} defined by

Q(i|x) = 1{x∈Bi}, i = 1, . . . ,M,

so that Q(x) =
∑M

i=1 q
iQ(i|x). We denote by QD(M) the space of all M -cell

quantizers represented in the channel form. In addition, we let Q(M) denote the set
of (Borel) stochastic kernels from X to {1, . . . ,M}, i.e., Q ∈ Q(M) if and only
if Q( · |x) is a probability distribution on {1, . . . ,M} for all x ∈ X, and Q(i| · ) is
Borel measurable for all i = 1, . . . ,M . Note that QD(M) ⊂ Q(M) and by our
definition QD(M − 1) ⊂ QD(M) for all M ≥ 2. We note that elements of Q(M)
are sometimes referred to as random quantizers.

Lemma 4.7.1 ([438]). The set of quantizers QD(M) is setwise sequentially pre-
compact at any input P . �

Proof. The proof follows from Lemma 4.6.2 and the interpretation above viewing
a quantizer as a channel. In particular, a majorizing finite measure ν is obtained by
defining ν = P × λ, where λ is the counting measure on {1, . . . ,M} (note that
ν(Rn × {1, . . . ,M}) =M). Then for any measurable B ⊂ R

n and i = 1, . . . ,M ,
we have ν(B × {i}) = P (B)λ({i}) = P (B) and thus

PQ(B × {i}) = P (B ∩Bi) ≤ P (B) = ν(B × {i}).

Since any measurable D ⊂ X × {1, . . . ,M} can be written as the disjoint union
of the sets Di × {i}, i = 1, . . . ,M , with Di = {x ∈ X : (x, i) ∈ D}, the above
implies PQ(D) ≤ ν(D). ��

The following lemma provides a useful result.

Lemma 4.7.2 ([438]). A sequence {Qn} in Q(M) converges to a Q in Q(M)
setwise at input P if and only if

∫
A

Qn(i|x)P (dx) →
∫
A

Q(i|x)P (dx) for all A ∈ B(X) and i = 1, . . . ,M .

�

Proof. The lemma follows by noticing that for any Q ∈ Q(M) and measurable
D ⊂ X× {1, . . . ,M},

PQ(D) =

∫
D

Q(dy|x)P (dx) =
M∑
i=1

∫
Di

Q(i|x)P (dx),

where Di = {x ∈ X : (x, i) ∈ D}. ��
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The following example shows that the space of quantizers QD(M) is not closed
under setwise convergence:

Let X = [0, 1] and P the uniform distribution on [0, 1]. Recall the definition
Lnk =

[
2k−2
2n , 2k−1

2n

)
in (4.7) and let Bn,1 =

⋃n
k=1 Lnk and Bn,2 = [0, 1] \ Bn,1.

Define {Qn} as the sequence of 2-cell quantizers given by

Qn(1|x) = 1{x∈Bn,1}, Qn(2|x) = 1{x∈Bn,2}.

This then implies that for all A ∈ B([0, 1]),

lim
n→∞

∫
A

Qn(dy|x)P (dx) = lim
n→∞

∫ 1

0

1

2
fn(t) dt =

1

2
P (A),

and thus, by Lemma 4.7.2,Qn converges setwise toQ given byQ(1|x) = Q(2|x) =
1
2 for all x ∈ [0, 1]. However,Q is not a (deterministic) quantizer.

Definition 4.7.2. The class of finitely randomized quantizers QFR(M) is the
convex hull of QD(M), i.e., Q ∈ QFR(M) if and only if there exist k ∈ N,
Q1, . . . , Qk ∈ QD(M), and α1, . . . , αk ∈ [0, 1] with

∑k
i=1 αi = 1, such that

Q(i|x) =
k∑

j=1

αjQj(i|x), for all i = 1, . . . ,M and x ∈ X.

�

The next result says that QR(M) is the (sequential) closure of the convex hull of
QD(M).

Theorem 4.7.1 ([438]). For any Q ∈ Q(M) there exists a sequence {Q̂n} of
finitely randomized quantizers in QFR(M) which converges to Q setwise at any
input P . �

The preceding theorem has important implications in that it tells us that the space
of deterministic quantizers is a “basis” for the space of communication channels
between X and {1, . . . ,M} in an appropriate sense. For the case when both spaces
are finite, we can obtain a result reminiscent of the Birkhoff–von Neumann theorem
[381], the proof of which immediately follows from the Krein–Milman theorem
[50].

Theorem 4.7.2 ([438]). Let X,Y be finite spaces and let Q be the space of
stochastic kernels (matrices) from X to Y. Then every Q ∈ Q can be expressed
as a convex combination of (deterministic) quantizers from X to Y. �

Remark 4.7.2 (Extreme Point Property of Quantizers). Related to Theorem 4.7.2,
it is worth stating a further representation result due to Borkar [69] (see also [76]).
Consider the set of probability measures

Θ := {ζ ∈ P (Rn ×M) : ζ = PQ,Q ∈ Q}, (4.10)
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on R
n×M having fixed input marginal P , equipped with weak topology. This set is

the (Borel-measurable) set of the extreme points on the set of probability measures
on R

n ×M with a fixed input marginal P . Borel measurability of Θ follows from
[307] since set of probability measures on R

n ×M with a fixed input marginal P is
a convex and compact set in a complete separable metric space, and therefore, the
set of its extreme points is Borel measurable. Hence, the set of all stochastic kernels
from R

n to M with fixed input marginal measure P on R
n is such that any element

K in this space can be expressed in the form

K(A) =

∫
ξ(dQ)PQ(A), A ∈ B(RN ×M)

for some ξ ∈ P(Θ). �

In the following we again consider Euclidean spaces and show that an optimal
channel can be replaced with an optimal quantizer without any loss in performance.

Proposition 4.7.1 ([438]). For any Q ∈ Q(M), there exists a Q′ ∈ QD(M) with
J(P,Q′) ≤ J(P,Q). If there exists an optimal channel in Q(M), then there is a
quantizer in QD(M) that is optimal. �

Proof. We need to prove only the first statement. For a policy γ : {1, . . . ,M} →
U = X (with finite cost) define for all i,

B̄i =
{
x : c(x, γ(i)) ≤ c(x, γ(j)), j = 1, . . . ,M

}
.

Letting B1 = B̄1 and Bi = B̄i \
⋃i−1

j=1 Bj , i = 2, . . . ,M , we obtain a partition
{B1, . . . , BM} and a corresponding quantizer Q′ ∈ QD(M). It is easy to see that

EQ′,γ
P [c(x, u)] ≤ EQ,γ

P [c(x, u)] for any Q ∈ Q(M). ��

The following shows that setwise convergence of quantizers implies convergence
under total variation.

Theorem 4.7.3 ([438]). Let {Qn} be a sequence of quantizers in QD(M) which
converges to a quantizer Q ∈ QD(M) setwise at P . Then, the convergence is also
under total variation at P . �

Proof. See Sect. 4.12.4. ��

We have seen in the above discussion that, without further restriction, the
convergence of quantizers may not lead to desirable continuity properties: We
observed that, for example, the space of quantizers is not closed. To alleviate
this aspect, in the following, we consider quantizers with convex codecells and
an input distribution that is absolutely continuous with respect to the Lebesgue
measure on R

n [185]. We note that such quantizers are commonly used in practice,
and for a large class of cost functions they are known to contain optimal policies
among all possible quantizers. For cost functions of the form c(x, u) = ‖x − u‖2
for x, u ∈ R

n, the cells of optimal quantizers (if they exist) will be convex by
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Lloyd–Max conditions of optimality [240]; see [185] for further results on convexity
of bins for entropy-constrained quantization problems. We note that [1] also
considered such cost functions for existence results on optimal quantizers; Graf and
Luschgy [167] considered more general norm-based cost functions.

Now, assume Q ∈ QD(M) with cells B1, . . . , BM , each of which is a convex
subset of R

n. By the separating hyperplane theorem [243], there exist pairs of
complementary closed half-spaces {(Hi,j , Hj,i) : 1 ≤ i, j ≤ M, i 	= j} such
that for all i = 1, . . . ,M ,

Bi ⊂
⋂
j 
=i

Hi,j .

Each B̄i :=
⋂

j 
=iHi,j is a closed convex polytope and by the absolute continuity
of P one has P (B̄i \ Bi) = 0 for all i = 1, . . . ,M . One can thus obtain a (P–a.s)
representation of Q by the M(M − 1)/2 hyperplanes hi,j = Hi,j ∩Hj,i.

Let Qc(M) denote the collection of M -cell quantizers with convex cells. Since
one can represent such a hyperplane h by a vector (a1, . . . , am, b) ∈ R

n+1 with∑
k |ak|2 = 1 such that h = {x ∈ R

n :
∑

i aixi = b}, thus obtaining a
parametrization over R(M−1)(n+1) of all such quantizers in Qc.

Consider a sequence {Qn} in Qc(M). It can be shown (see the proof of
Theorem 1 in [185]) that using the above appropriate parametrization of the
separating hyperplanes, a subsequence Qnk

can be chosen which converges to a
Q ∈ Qc(M) in the sense that P (Bnk

i � Bi) → 0 for all i = 1, . . . ,M , where the
Bnk

i and the Bi are the cells of Qnk
and Q, respectively. In view of the proof of

Theorem 4.7.3, we obtain the following.

Theorem 4.7.4 ([438]). The set Qc(M) is compact under total variation at any
input measure P that is absolutely continuous with respect to the Lebesgue measure
on R

n. �

We can now state an existence result for optimal quantization.

Theorem 4.7.5 ([438]). Let P be absolutely continuous and suppose the goal is to
find the best quantizer Q with M cells minimizing J(P,Q) = infγ E

Q,γ
P [c(x, u)]

under assumption A2, where Q is restricted to Qc(M). Then an optimal quantizer
exists. �

Proof. The existence follows from Theorems 4.6.1 and 4.7.4. ��

The above result and the topological construction will be useful and used
extensively when we search for optimal dynamic quantizers later in the book, in
Chap. 12.

Remark 4.7.3. In the quantization literature, finding an optimal quantizer entails
finding optimal codecells and corresponding reconstruction points. Our formulation
here does not require the existence of optimal reconstruction points (i.e., existence
of an optimal policy γ). �
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Remark 4.7.4 (Further Existence Results on Optimal Quantizers). It is worth not-
ing that for the existence of an optimal quantizer and reconstruction values for
infQ infγ E

Q,γ
P [c(x, u)], the condition that the source admits a density can be

relaxed, provided that the cost function is lower semicontinuous in u. We refer the
reader to [2] for cost functions of the form c(x, u) = c(|x− u|). �

4.8 The Multistage Case

We now consider the general stochastic control problem with T stages [as in (4.2)].
It should be noted that the effect of a control policy applied at any given time stage
presents itself in two ways, in the cost incurred at the given time stage and the
effect on the process distribution (and hence, the estimation error at the controller
regarding the true state of the system) at future time stages. This is known as the
dual effect of control [43].

The next theorem shows the continuity of the optimal cost in the measurement
channel under some regularity conditions. Note that the existence of best and
worst channels follows under an appropriate compactness condition as in Theo-
rem 4.6.1(iii). We need the following definition.

Definition 4.8.1. A sequence of channels {Qn} converges to a channelQ uniformly
in total variation if

lim
n→∞

sup
x∈X

∥∥Qn( · |x) −Q( · |x)
∥∥
TV

= 0.

�

Note that in the special but important case of additive measurement channels,
uniform convergence in total variation is equivalent to the weaker condition that
Qn( · |x) → Q( · |x) in total variation for each x. When the additive noise is
absolutely continuous with respect to the Lebesgue measure, uniform convergence
in total variation is equivalent to requiring that the noise density corresponding to
Qn converges in the L1 sense to the density corresponding to Q. For example, if
the noise density is estimated from n independent observations using any of the
L1 consistent density estimates described in, e.g., [115], then the resulting Qn will
converge (with probability one) uniformly in total variation.

Theorem 4.8.1 ([438]). Consider the cost function (4.2) with arbitrary T ∈ N.
Suppose assumption A2 holds. Then, the optimization problem is continuous in the
observation channel in the sense that if {Qn} is a sequence of channels converging
to Q uniformly in total variation, then

lim
n→∞

J(P,Qn) = J(P,Q).

�
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Proof. Let ε > 0 and pick ε-optimal policies γn = {γn0 , γn1 , . . . , γnT−1} and γ =
{γ0, γ1, . . . , γT−1} for channelsQn and Q, respectively. That is, using the notation
in (4.2), we have J(P,Qn, γ

n) < J(P,Qn)+ ε and J(P,Q, γ) < J(P,Q)+ ε. The
argument used to obtain (4.9) gives

|J(P,Q)− J(P,Qn)|

≤ max

(
J(P,Q, γn)− J(P,Qn, γ

n), J(P,Qn, γ)− J(P,Q, γ)

)
+ ε.

We will next show that both terms in the maximum above converge to zero. First we
consider the term

J(P,Qn, γn)− J(P,Q, γn) =
T−1∑
t=0

E
Qn,γn

P [c(xt, ut)]−E
Q,γn

P [c(xt, ut)]. (4.11)

Under policy γn = {γn0 , γn1 , . . . , γnT−1}, we have ut = γnt (y[0,t], u[0,t−1]). We
absorb in the notation the dependence of ut on γn0 , . . . , γ

n
t−1 and write Ut =

γnt (y[0,t]).
For t = 0, . . . , T − 1 and k = 0, . . . , t define ζnk,t : X

k × Y
k → R by setting

ζnt,t(x[0,t], y[0,t]) := c(xt, γ
n
t (y[0,t])

and defining recursively for k = t− 1, . . . , 0

ζnk,t(x[0,k], y[0,k])

:=

∫
P (dxk+1|xk, γnk (y[0,k]))Qn(dyk+1|xk+1)ζ

n
k+1,t(x[0,k+1], y[0,k+1]).

Note that ‖ζnt,t‖∞ ≤ ‖c‖∞ and thus ‖ζnk,t‖∞ ≤ ‖c‖∞ for all k = t− 1, . . . , 0.
Fix 0 ≤ k ≤ t and consider a system such that the observation channel is Q at

stages 0, . . . , k − 1 and Qn at stages k, k + 1, . . . , t. Let μn
k denote the distribution

of the resulting process segment (x[0,k], y[0,k]) under policy γn (by definition μn
0 =

PQn). Also under policy γn, let νnk denote the distribution of (x[0,k], y[0,k]) if the
observation channel is Q for all the stages 0, . . . , t. Then we have

E
Qn,γn

P [c(xt, ut)] =

∫
μn
0 (dx0, dy0)ζ

n
0,t(x0, y0)

and

E
Q,γn

P [c(xt, ut)] =

∫
νnt (dx[0,t], dy[0,t])ζ

n
t,t(x[0,t], y[0,t]).

Note that by construction, for all k = 1, . . . , t,
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∫
μn
k (dx[0,k], dy[0,k])ζ

n
k,t(x[0,k], y[0,k])

=

∫
νnk−1(dx[0,k−1], dy[0,k−1])ζ

n
k−1,t(x[0,k−1], y[0,k−1]).

Thus each term in the sum on the right-hand side of (4.11) can be expressed as a
telescopic sum, which in turn can be bounded term by term, as follows:

∣∣EQn,γn

P [c(xt, ut)]−E
Q,γn

P [c(xt, ut)]
∣∣ =

∣∣∣∣
t∑

k=0

∫
μn
k (dx[0,k], dy[0,k])ζ

n
k,t(x[0,k], y[0,k])

−
∫
νnk (dx[0,k], dy[0,k])ζ

n
k,t(x[0,k], y[0,k])

∣∣∣∣

≤
t∑

k=1

‖μn
k − νnk ‖TV ‖ζnk,t‖∞

≤ ‖c‖∞
t∑

k=1

‖μn
k − νnk ‖TV . (4.12)

For any Borel set B ⊂ X
k+1 × Y

k+1, define B(x[0,k], y[0,k−1]) = {yk ∈ Y :
(x[0,k], y[0,k]) ∈ B}, so that

|μn
k (B)− νnk (B)| =

∣∣∣∣
∫
νnk−1(dx[0,k−1], dy[0,k−1])

∫
P (dxk|xk−1, γ

n
k−1(y[0,k−1]))

(
Qn(B(x[0,k], y[0,k−1])|xk)−Q(B(x[0,k], y[0,k−1])|xk)

)∣∣∣∣
≤ sup

xk∈X

‖Qn( · |xk)−Q( · |xk)‖TV .

The preceding bound and the uniform convergence of {Qn} imply limn ‖μn
k −

νnk ‖TV = 0 for all k. Combining this with (4.12) and (4.11) gives

J(P,Qn, γn)− J(P,Q, γn) → 0.

Replacing γn with γ we can use an identical argument to show that J(P,Qn, γ) →
J(P,Q, γ). Since ε > 0 in (4.11) was arbitrary, the proof is complete. ��

We obtained the continuity of the optimal cost on the space of channels equipped
with a more stringent notion for convergence in total variation. This result and its
proof indicate that further technical complications arise in multistage problems.
Likewise, upper semi-continuity under weak convergence and setwise convergence
requires more stringent uniformity assumptions.
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On the other hand, the concavity property applies directly to the multistage case.
That is, J(P,Q) is concave in the space of channels; the proof of this result follows
that of Theorem 4.3.1.

Remark 4.8.1. One related approach regarding the multistage case is to consider
adaptive observation channels. For example, one may aim to design optimal adaptive
quantizers for a control problem. In this case, Markov Decision Process tools can
be used for obtaining existence conditions for optimal channels and quantizers. This
approach will be adopted in Chap. 10 and structural as well as existence results will
be presented for optimal policies. �

4.9 Multi-agent Setting

The results for the single-agent setting apply to multi-agent setups as well, provided
that the convergence notions are modified accordingly. Consider now a two-agent
setup as follows.

xt+1 = f(xt, u
1
t , u

2
t , wt),

yit = gi(xt, v
i
t), i = 1, 2,

where the noise variables v1t and v2t are independent. Suppose that gi induces a
channel Qi for i = 1, 2 as described earlier and DM i has only access to yi. Let
γ = {γ1, γ2} denote the measurable policies of the agents. By the property of
conditional independence, the product measure writes as P ×Q1 ×Q2(A× B1 ×
B2) =

∫
A
P (dx)(

∫
B1 Q

1(dy|x)
∫
B2 Q

2(dy|x)) for A ∈ B(X), Bi ∈ B(Yi), i =
1, 2. Let us define the following cost functional for a single-stage setup:

J(P,Q1, Q2) = inf
{γ1,γ2}

E
Q1,Q2,γ

P

[
c(x, u1, u2)

]

= inf
γ1,γ2

∫
X×Y

c(x, γ1(y1), γ2(y2))Q1(dy1|x)Q2(dy2|x)P (dx).

First we discuss the comparison of information structures in the sense of
Blackwell parallel to Theorem 4.3.2. See Proposition 3.2.3 for a related discussion
in view of garbling.

It should be evident that if Q2′ is a channel which is stochastically degraded with
respect to Q2 and Q1′ is stochastically degraded with respect to Q1, then

J(P,Q1, Q2) ≤ J(P,Q1′, Q2′),

since under any fixed policy γ2, Theorem 4.3.2 applies for DM 1 and likewise for
DM 2. As another approach, note that any policy under (Q1′, Q2′) can be simulated
by a team policy under (Q1, Q2) using independent randomization devices and
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such randomization does not improve the team performance. Furthermore, even if
a common randomization device which is independent of the variables x, y1, y2 is
provided, the result still holds true. We refer the reader to [229] for further analysis
of such problems and Theorem 10.5.1 for an example where additional information
provided to a team could be redundant (irrelevant) for a team decision problem.

We now discuss continuity. We first introduce the following convergence notion.

Definition 4.9.1. A sequence of channel pairs {Q1
n, Q

2
n} converges to a channel

pair Q1, Q2 in total variation at P if
∥∥P ×Q1

n ×Q2
n − P ×Q1 ×Q2

∥∥
TV

→ 0.

�

We then have the following result, whose proof is a direct extension of that of
Theorem 4.5.4 by considering the convergence in the product measure under total
variation:

Theorem 4.9.1. If c(x, u1, u2) is measurable and bounded, the optimal cost
J(P,Q1, Q2) is continuous on a set of communication channels Q1 × Q2 in the
sense that if a sequence (Q1

n, Q
2
n) converges to (Q1, Q2) in total variation at P ,

then
lim
n→∞

J(P,Q1
n, Q

2
n) = J(P,Q1, Q2).

�

We note that it is possible to obtain analogous convergence results under various
convergence notions for the channel pairs. Under setwise convergence, for example,
an extension of upper-semi-continuity result in Theorem 4.5.3 can be obtained.
Likewise under Definition 4.8.1 for the channel pairs, Theorem 4.8.1 is applicable
in a multi-agent setting.

4.10 Revisiting Nonclassical Information Structures
and Lack of Convexity Due to Signaling

We revisit in this section nonclassical information structures discussed in Chap. 3
and bring a different perspective to the difficulties underlying decision problems
with such structures, in view of the preceding results in this chapter.

Let us consider dynamic decentralized control systems where multiple con-
trollers with non-shared measurements are present. In such problems, the infor-
mation structure is generally of nonclassical nature, and we have already seen
in Chap. 3 that in such cases there may be an incentive for signaling. Under
signaling, the DMs apply their actions to affect the information available at the other
decision makers. In this case, the control policies induce stochastic kernels from the
exogenous random variable space to the observation space of the signaled DMs.
Note that this is very different from the quasi-classical case, when either (1) the
signaling DM affects the information of a signaled DM, in which case the signaled
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decision maker already has access to all the information available to the signaling
DM, or (2) it does not affect the information of another DM and the channel
output is only dependent on exogenous variables. However, for the nonclassical
case, the problem also features an information transmission aspect, and the signaling
DM’s objective also includes the design of an optimal measurement channel. The
discussion in Sect. 4.3 indicates that concavity is unavoidable in such settings.

It is an implication of Theorem 4.3.1 that (as also demonstrated in Chap. 3)
stochastic control problems are difficult when signaling is present. In this case,
the problem becomes partly a communication problem, and as we have seen, the
underlying problem is non-convex.

To make this important issue more explicit, let us consider the following example.
Consider a two-controller system evolving in R

n:

xt+1 = Axt +B1u1t +B2u2t + wt,

y1t = C1xt + v1t ,

y2t = C2xt + v2t ,

where w, v1, v2 are zero-mean, i.i.d. disturbances and A,B1, B2, C1, C2 matrices
of appropriate dimensions. For ρ1, ρ2 > 0, let the objective be the minimization of
the cost functional

J = E

[( T−1∑
t=0

|xt|2 + ρ1|u1t |2 + ρ2|u2t |2
)
+ |xT |2

]

over control policies of the form:

uit = μi
t(y

i
[0,t], u

i
[0,t−1]), i = 1, 2; t = 0, 1, . . . , T − 1.

As discussed earlier in Chap. 2, a static LQG team problem (i.e., the above with T =
1) admits an optimal solution which is linear. The proof for this result has followed
the property that the team cost is convex in the joint actions of the DMs and is
continuously differentiable, and as a consequence it suffices to find the unique fixed
point. This, in turn, leads (under the Gaussian statistics) to linear optimal strategies
for the agents.

For a multistage problem (say with T = 2), however, the cost is in general
no longer convex in the action variables of the controllers acting in the first stage
t = 0, by Corollary 4.3.1 or Theorem 4.3.1. This is because these actions might
affect the estimation quality of the other controller in the future stages, if one
DM can signal information to the other DM in one stage. We note that this
condition is equivalent to C1AlB2 	= 0 or C2AlB1 	= 0 with l + 1 denoting
the delay in signaling with l = 0 in the problem considered. In particular, if the
controller is allowed to apply a randomized policy (e.g., by possibly using private
random information that it has from the past realizations), this induces a conditional
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probability measure (channel) from the external variables and the initial state of the
system to the observation variables at the other decision maker. The optimization
problem, as such, is not jointly convex in such policies, and finding a fixed point
to the stationarity conditions in the optimal policies does not necessarily lead to
the conclusion that such policies are optimal. We will revisit this discussion in
Sect. 11.5.

4.11 Conditions for Continuity Under Weak Convergence
and Empirical Consistency

We observed in Theorem 4.5.4 that total variation is a metric which provides
continuity properties. However, a careful analysis of the proof of Theorem 4.5.4
reveals that we essentially need a uniform convergence property for setwise
convergence to also be sufficient for continuity. That is, we wish to have

lim
n→∞

sup
γ∈Fs

∣∣∣∣
∫ (∫

Q(dy|x)c(x, γ(y)) −
∫
Qn(dy|x)c(x, γ(y))

)
P (dx)

∣∣∣∣ = 0,

for a class of admissible policies Fs to be able to have continuity under setwise
convergence. Thus, one important question of practical interest is the following:
What type of stochastic control problems, cost functions, and allowable policies
leads to solutions which admit such a uniform convergence principle under setwise
convergence? Some partial answers to this can be found in [363].

Likewise, a parallel discussion applies to weak convergence under the assump-
tion that for every Qn and for Q, corresponding optimal policies γn and γ are
continuous and are assumed to be from a restricted class of policies Fw. One wants
to have

∫
X×Y

c(x, γn(y))Qn(dy|x)P (dx) →
∫
X×Y

c(x, γ(y))Q(dy|x)P (dx).

A sufficient condition for this is the following form of uniform weak conver-
gence:

lim
n→∞

sup
γ∈Fw

∣∣∣∣
∫
X×Y

c(x, γ(y))Qn(dy|x)P (dx)−
∫
X×Y

c(x, γ(y))Q(dy|x)P (dx)
∣∣∣∣ = 0.

Two application areas of the above set of results in networked control would be
learning and identification:

When one does not know the system dynamics, such as the observation channel,
one typically attempts to learn the channel via test inputs or empirical observations.
Let {(xi, yi), i ∈ N} be an X × Y-valued i.i.d sequence generated according to



146 4 Topological Properties of Information Structures...

some distribution μ. Defining for every measurable B ⊂ X × Y and n ∈ N, the
empirical occupation measures

μn(B) =
1

n

n∑
i=1

1{(xi,yi)∈B},

one has μn(B) → μ(B) almost surely (a.s.) by the strong law of large numbers.
However, it is generally not true that μn → μ setwise a.s. (e.g., μn never converges
to μ setwise when either xi or yi has a nonatomic distribution), in which case
μn cannot converge to μ in total variation. A number of related examples were
considered in Sect. 4.4.

Again by the strong law of large numbers, for any μ-integrable function f on
X× Y, one has, almost surely,

lim
n→∞

∫
f(x, y)μn(dx, dy) =

∫
f(x, y)μ(dx, dy).

In particular, μn → μ weakly with probability one [124].
In the learning theoretic context, the convergence of optimal costs under μn to

the cost optimal for μ is called the consistency of empirical risk minimization (see
[373] for an overview). In particular, if the cost function and the allowable control
policies Fl are such that

lim
n→∞

sup
γ∈Fl

∣∣∣∣
∫
c(x, γ(y))μn(dx, dy)−

∫
c(x, γ(y))μ(dx, dy)

∣∣∣∣ = 0,

then we arrive at consistency.
A class of measurable functions E is called a Glivenko–Cantelli class [125], if

the integrals with respect to the empirical measures converge almost surely to the
integrals with respect to the true measure uniformly over E . Thus, if

G = {γ : c(x, γ(y)) ∈ E},

where E is a class of Glivenko–Cantelli family of functions, then we could establish
consistency. One example of a Glivenko–Cantelli family of real functions on R

N is
the family {f : ‖f‖BL ≤ M} for some 0 < M < ∞, where ‖ · ‖BL denotes the
bounded Lipschitz norm [125].

Thus, if we restrict the class of control policies and cost functions, we can have
consistency in learning and robustness to errors in the probabilistic description of a
channel.
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4.12 Appendix: Proofs

4.12.1 Proof of Lemma 4.4.1

(i) Since c(x, · ) is continuous and bounded on Y for all x, we have

lim
n→∞

∫
X×Y

c(x, y)PQn(dx, dy) = lim
n→∞

∫
X

(∫
Y

c(x, y)Qn(dy|x)
)
P (dx)

=

∫
X

(∫
Y

c(x, y)Q(dy|x)
)
P (dx)

=

∫
X×Y

c(x, y)PQ(dx, dy),

where first we used Fubini’s theorem and then the dominated convergence
theorem (see Appendix A) and the fact that

∫
X
c(x, y)Qn(dy|x) is bounded

and converges to
∫
X
c(x, y)Q(dy|x) for P -a.e. x.

(ii) Let A ∈ B(X × Y) and for x, let Ax = {y : (x, y) ∈ A}. Similarly to the
previous proof,

lim
n→∞

PQn(A) = lim
n→∞

∫
X

Qn(Ax|x)P (dx)

=

∫
X

Q(Ax|x)P (dx)

= PQ(A)

by the dominated convergence theorem, since limn→∞Qn(Ax|x) = Q(Ax|x)
for P -a.e. x.

(iii) We have

sup
A∈B(X×Y)

|PQn(A) − PQ(A)|

= sup
A∈B(X×Y)

∣∣∣∣
∫
X

Qn(Ax|x)P (dx) −
∫
X

Q(Ax|x)P (dx)
∣∣∣∣

≤ sup
A∈B(X×Y)

∫
X

∣∣Qn(Ax|x) −Q(Ax|x)
∣∣P (dx)

≤
∫
X

sup
B∈B(Y)

∣∣Qn(B|x) −Q(B|x)
∣∣P (dx).
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Since sup
B∈B(Y)

∣∣Qn(B|x) − Q(B|x)
∣∣ → 0 for P -a.e. x, an application of the

dominated convergence theorem completes the proof. ��

4.12.2 Proof of Theorem 4.5.1

We have

J(P,Q) = inf
γ∈Γ

∫
X×Y

c(x, γ(y))Q(dy|y)P (dx).

Let (x, y) ∼ PQ and let P ( · |y) be the (regular) conditional distribution of x given
y. If (PQ)Y denotes the distribution of y, then

J(P,Q) = inf
γ∈Γ

∫
Y

∫
X

c(x, γ(y))P (dx|y)(PQ)Y(dy)

=

∫
Y

(
inf
u∈U

∫
X

c(x, u)P (dx|y)
)
(PQ)Y(dy),

where the validity of the second equality is explained below.
By assumption A3, c is bounded and c(x, un) → c(x, u) if un → u for all x;

thus by the dominated convergence theorem

∫
X

c(x, un)P (dx|y) →
∫
X

c(x, u)P (dx|y)

proving that g(u, y) =
∫
X
c(x, u)P (dx|y) is continuous in u for each y. Since U

is compact, there exists γ∗(y) ∈ U such that g(γ∗(y), y) = infu∈U g(u, y). A
standard argument shows that γ∗ : Y → U can be taken to be measurable (see,
e.g., Appendix D of [194]) and we have

J(P,Q) =

∫
X×Y

c(x, γ∗(y))Q(dy|x)P (dx).

��

4.12.3 Proof of Lemma 4.6.3

By Lemma 4.6.1, Ψ is setwise sequentially precompact and thus any sequence in Ψ
has a subsequence {Pn} such that Pn → P setwise for some P ∈ P(RN). P is
clearly absolutely continuous with respect to the Lebesgue measure on R

N , and so
it admits a density p.
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Let pn be the density of Pn. It suffices to show that

lim
n→∞

‖pn − p‖1 = 0 (4.13)

since ‖pn − p‖TV = 2‖pn − p‖1 = 2
∫
|pn(x) − p(x)| dx.

Pick a sequence of compact sets Kj ⊂ R
N such that Kj ⊂ Kj+1 for all j ∈ N

and
⋃

j Kj = R
N . Since the collection of densities {pn} is uniformly bounded and

equicontinuous, it is precompact in the supremum norm on each Kj by the Arzelà–
Ascoli theorem [124]. Thus there exist subsequences {pnj

k
} such that

lim
k→∞

sup
x∈Kj

|pnj
k
(x) − pj(x)| = 0

for some continuous pj : Kj → [0,∞).
Since the Kj are nested, one can choose {pnj+1

k
} to be a subsequence of {pnj

k
}

for all j ∈ N. Then pj+1 coincides with pj on Kj and we can define p̂ on R
N by

setting p̂(x) = pj(x), x ∈ Kj . We can now use Cantor’s diagonal method to pick
an increasing sequence of integers {mi} which is a subsequence of each {nj

k}, and
thus

lim
i→∞

pmi(x) = p̂(x), for all x ∈ R
N . (4.14)

Note that by construction the convergence is uniform on each Kj (and p̂ is
continuous). By uniform convergencePpmi

(A) → Pp̂(A) for all Borel subsets A of
Kj . The setwise convergence of Pn to Pp implies Ppmi

(A) → Pp(A) for all Borel
sets, so we must have p = p̂ almost everywhere. This and (4.14) imply via Scheffé’s
theorem [59] that

‖pmj − p‖1 → 0,

which completes the proof. ��

4.12.4 Proof of Theorem 4.7.3

Let Bn
1 , . . . , B

n
M be the cells of Qn. Since Qn → Q setwise at input P , we have

PQn(B × {i}) → PQ(B × {i}) for any B ∈ B(X). Since PQn(B × {i}) =∫
B
1{x∈Bn

i }P (dx), we obtain

P (B ∩Bn
i ) → P (B ∩Bi), for all i = 1, . . . ,M.

If B1, . . . , BM are the cells of Q, the above implies P (Bj ∩ Bn
i ) → P (Bj ∩ Bi)

for all i, j ∈ {1, . . . ,M}. Since both {Bn
i } and {Bn} are partitions of X, we obtain

P (Bn
i �Bi) → 0 for all i = 1, . . . ,M,
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where Bn
i �B = (Bn

i \B) ∪ (B \Bn
i ). Then we have

‖PQn − PQ‖TV

= sup
f :‖f‖∞≤1

∣∣∣∣∣
M∑
i=1

(∫
X

f(x, i)Qn(i|x)P (dx) −
∫
X

f(x, i)Q(i|x)P (dx)
)∣∣∣∣∣

= sup
f :‖f‖∞≤1

∣∣∣∣∣
M∑
i=1

∫
X

f(x, i)
(
1{x∈Bn

i } − 1{x∈Bi}
)
P (dx)

∣∣∣∣∣

≤ sup
f :‖f‖∞≤1

M∑
i=1

∫
Bn

i �Bi

|f(x, i)|P (dx)

≤
M∑
i=1

P (Bn
i �Bi) → 0 (4.15)

and convergence in total variation follows. ��

4.13 Concluding Remarks

This chapter has looked at the structural and topological properties of some
optimization problems in stochastic control in the space of measurement channels
and quantizers. Continuity, compactness, and existence results have been established
both for measurement channels as well as quantizers (viewed as a suitable subset of
measurement channels).

One further main result was that the optimization problem is concave in such
channels as well as on the space of information structures. This is a significant
observation since the design of information structures is inherently a non-convex
problem. One further implication of this result is that in a decentralized control
problem, if signaling is present, the original convex problem (which may be convex
under a nested, partially nested, or a stochastically nested information structure)
loses its convexity.

The restriction to Euclidean state spaces is not essential and many (but not all)
of the results in this chapter can be extended to the case where X, Y, and U are
Polish spaces. In particular, all the results in Sects. 4.3 and 4.5 carry through without
change, except Theorem 4.5.2. The results of Sect. 4.6 hold for this more general
setup (however, in Lemma 4.6.3, we need the additional condition that the space
is σ-compact). Likewise, most of the results in Sect. 4.7 on quantization hold more
generally (in fact, Theorem 4.7.1 holds for an arbitrary measurable space), but two
of the main results, Theorems 4.7.4 and 4.7.5, do require the assumption that X is a
finite-dimensional Euclidean space.
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The results here can also be applied to study the topological properties with
regard to the space of the input probability measures. For example, if a sequence
of priors of a decision maker regarding the state of the world converges in some
sense, the implications of this convergence on the optimal costs would follow from
a similar machinery as presented in the chapter.
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similar settings where the uncertain probability measure is considered for the
product space in multistage control. They have considered both optimal control and
estimation, and the related problem of optimal control design when the channel
is unknown. In particular, [343] has studied the existence of optimal continuous
estimation policies and worst-case channels under a relative entropy constraint
characterizing the uncertainty in the system. In [321], the total variation norm is
considered as a measure of uncertainty, and an inf-sup policy has been determined
(thus, the setup considered is that of a min-max problem for the generation of
optimal control policies). Similarly, there are connections with robust detection,
such as those studied by Huber [203] and Poor [311], when the source distribution
to be detected belongs to some set.

Blackwell’s comparison of information structures or measurement channels has
been expanded by Le Cam [85] by introducing an approximation interpretation.
The Le Cam distance between two measurement channels Q1, Q2 is defined as the
infimum over all randomizations at the output of Q1 of the supremum over all input
symbols x of the total variation distance between a randomization at the output of
Q1 and Q2 at input measure δx. Along this spirit, Raginsky [317] relaxed the total
variation metric.

Regarding the concavity properties of the optimization problems in measurement
channels developed in this chapter and in [438], relevant results in the setting of
quantization problems have been studied in György and Linder [184]; see Arrow
[15] for a discussion in the context of team theory.

In the chapter, Theorem 4.3.2 follows from [61]. Many of the results presented
in this chapter are based on results by Yüksel and Linder [435, 438].
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Chapter 5
Coding for Control and Connections
with Information Theory

5.1 Introduction

In this chapter, we study quantizers and encoders. The notion of a quantizer was
introduced formally in Sect. 4.7. We will discuss further properties of quantizers,
and their performance, and bring a perspective where we view quantizers as decision
variables. The chapter is also concerned with the derivation of fundamental bounds
in connection with stabilizability of a linear system over a communication channel.
The ideas and results presented here will be used throughout the rest of the book.

The chapter introduces the notion of real-time coding and defines the selection of
a quantizer function as a decision problem in Sect. 5.2. In Sect. 5.3, a review of basic
operational definitions in information theory is presented. Section 5.4 highlights the
subtle differences between the performances of optimal coding for a single random
variable and the limit performance of a sequence of optimal codes for blocks of
random variables as the block length becomes unbounded (a common view adopted
in Shannon’s formulation of information theory). Performance bounds of quantizers
for causal and noncausal coding of unstable processes are studied in Sect. 5.5.
Fundamental lower bounds for stabilization are presented in Sect. 5.6.

5.2 Quantization and Real-Time Coding

5.2.1 Real-Time Coding

In real-time applications such as remote control of time-sensitive processes, causal-
ity in encoding and decoding is a natural limitation. As discussed earlier, there is a
natural causal ordering of events in a controlled process, consisting of measurement,
estimation, and actuation. All these events need to take place in real time and not

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 5,
© Springer Science+Business Media New York 2013
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Bin size−(K/2)Δ

Overflow bin

(K/2)Δ

Overflow bin

Fig. 5.1 A modified uniform quantizer. There is a single overflow bin

with significant delay. In the following, we provide a characterization of information
structures in such systems and obtain fundamental bounds on transmission rates for
stabilization of such systems.

Essential in communication problems is the embedding of information into a
finite set, possibly with loss of information. This is done through quantization,
which is a mapping from a larger alphabet to a smaller alphabet.

Before proceeding further, recall from Definition 4.7.1 that a quantizer Q is a
(Borel-measurable) function from a topological space X to a finite index set M :=
{1, 2, . . . ,M}. We define the bins or cells in such a quantizer as the sets

Bi = {x ∈ X : Q(x) = i}, i ∈ M.

Thus, a quantizer partitions its domain set. Occasionally, quantization bins are
represented by reconstruction values. Traditionally, in source-coding theory, a
quantizer is also characterized by a collection of reconstruction values in addition to
a set of partitions. According to our model, this corresponds to assigning a sequence
of vectors {qi ∈ A} (for some set A which is typically X itself) such that

Q(x) =
∑
i∈M

qi1{x∈Bi}.

Thus, one could regard the above to be a composition of a quantizer and a decoding
function D : M → A defined by

D(k) =
∑
i∈M

qi1{i=k}.

When reconstruction values are specified a priori, we will explicitly include them
in the definition of the quantizer. An example of a quantizer, which will be used
extensively later in the book, is the following : A modified uniform quantizer QΔ

K :
R → R with step size Δ and K + 1 (with K even) number of bins satisfies the
following for k = 1, 2 . . . ,K (see Fig. 5.1):

QΔ
K(x) =

⎧⎪⎪⎨
⎪⎪⎩
(k − 1

2 (K + 1))Δ, if x ∈ [(k − 1− 1
2K)Δ, (k − 1

2K)Δ),

(12 (K − 1))Δ, if x = 1
2KΔ,

0, if x 	∈ [− 1
2KΔ,

1
2KΔ],

(5.1)
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where we have M = {1, 2, . . . ,K + 1}. The quantizer-decoder mapping thus
described corresponds to a uniform quantizer with bin size Δ. The interval
[−K/2,K/2] is termed the granular region of the quantizer, and R \ [−K/2,K/2]
is named the overflow region of the quantizer (see Fig. 5.1). We will refer to this
quantizer as a modified uniform quantizer, since the overflow region is assigned a
single bin.

Typically, it is assumed that a quantizer is followed by an encoder. Let M be
a finite set, typically taken as {0, 1}, that is, the binary alphabet. We refer to an
encoder E as a mapping from M to M

∗, where M
∗ denotes the set of all finite-

length sequences with elements in M. The sequences in M
∗ are called codewords.

If the lengths of the codewords corresponding to elements in M under an encoder
E are all equal, the encoder is said to be a fixed-rate encoder. If the lengths are
different, the encoder is said to be variable rate. Hence, we define the fixed-rate
rate of a quantizer or an encoder by the (base-2) logarithm of the number of cells,
which is 'log2(|M|)( for the quantizer described in (5.1).

Unless explicitly stated, we will always assume that a quantizer is followed by
an encoder.

5.2.2 Information Structures for Real-Time Encoders
and Controllers: Policies, Actions and Measurability

This subsection considers a typical optimal causal encoding/quantization setup in
a networked control system. For simplicity of the setup, we consider only two
encoders, for a decentralized system, and use this system to introduce the causality
and measurability constraints in quantizer design.

We begin by providing a description of the system model. Consider a partially
observed Markov process, defined on a probability space, again, (Ω,F , P ), and
described by the following discrete-time equations for t ≥ 0:

xt+1 = f(xt, ut, wt), (5.2)

yit = gi(xt, v
i
t), (5.3)

for (Borel)-measurable functions f, gi, i = 1, 2, with {x0, wt, v
i
t, i = 1, 2}

random variables, which are mutually independent across time and space and whose
distribution functions are available at the decision makers. We further have xt ∈ X,
and yit ∈ Y

i, ut ∈ U, where X,Yi,U are complete, separable, metric spaces (Polish
spaces) and, thus, include countable spaces or Rn, n ∈ N.

Consider a scenario where an encoder, Encoder i, is located at one end of a
measurement channel characterized by (5.3), this being for i = 1, 2. The encoders
transmit their information to a receiver (see Fig. 5.2), over a discrete noiseless
channel with finite capacity, and hence, they have to quantize their information.
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x
Observation Channels

Q1

Q2

q1

q2

Feedback from receiver

y1

y2

v1

v2 Receiver/Controller

Feedback from receiver

Fig. 5.2 Partially observed source under a decentralized structure

We letΠcomp,i denote a composite quantization policy for Encoder i, defined as a
sequence of functions {Qcomp,i

t , t ≥ 0} which are causal such that the quantization
output at time t, qit, underΠcomp,i is generated by a function of its local information,
that is, a mapping measurable with respect to the sigma-algebra generated by

Iit = {yi[0,t], qi[0,t−1], z
i
[0,t−1]}, t ≥ 1, Ii0 = {yi0},

to Mi
t, where

Mi
t := {1, 2, . . . , |Mi

t|},

for 0 ≤ t ≤ T − 1 and i = 1, 2. Here zi denotes some additional side information
available, such as feedback from the receiver.

Let Iit denote the space in which the realization Iit takes values in, such that
Iit ∈ I

i
t, t ≥ 0. Hence,

Qcomp,i
t : Iit → Mi

t.

Alternatively, and equivalently, we can express the policyΠcomp,i as a composition
of a quantization policy γi and a quantizer. A quantization policy of Encoder i, γi,
is a sequence of functions {γit}, such that for each t ≥ 0, γit is a mapping from
the information space I

i
t to a space of quantizers Qi

t to be clarified further below.
A quantizer is subsequently used to generate the quantizer output. That is, for every
t and i, γit(I

i
t) ∈ Q

i
t and for every realization Iit ∈ I

i
t,

Qcomp,i
t (Iit ) = (γit(I

i
t ))(I

i
t ), (5.4)
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mapping the information space to Mi
t in its most general form. Even though there

may appear to be duplicated information in (5.4) (since first, a map is used to pick
a quantizer, and then the quantizer maps the available information to outputs), it is
possible to eliminate any existing informational redundancy: A quantizer action will
be generated based on the common information at the encoders and the receiver,
and the quantizer will map the relevant private information at the encoder to the
quantization output. Such a separation is without any loss in the space of all
composite quantization policies. To establish this explicitly, let the information at
the receiver at time t ≥ 0 be Irt = {q1[0,t], q2[0,t]}. Let the common information,
under feedback information, at the encoders and the receiver be Ict . Thus, we can
express any measurable composite quantization policy as

Qcomp,i
t (Iit ) = (γit(I

c
t ))(I

i
t \ Ict ),

mapping the information space to Mi
t.

We note that any composite quantization policy Qcomp,i
t can be expressed in the

form above; that is, there is no loss in the space of possible such policies, since for
any Qcomp,i

t , one could define

γit(I
c
t )(·) := Qcomp,i

t (Ict , ·).

Thus, we let DMi have policy γi = {γit} and under this policy generate quantizer
actions {Qi

t, t ≥ 0}, Qi
t ∈ Q

i
t (Qi

t is the quantizer used at time t). Under action Qi
t,

the encoder generates qit, as the quantization output at time t.
The receiver (or the controller), upon receiving the information from the en-

coders, generates its decision at time t, also causally: An admissible causal receiver
policy is a sequence of measurable functions γ0 = {γ0t } such that

γ0t :

t∏
s=0

(
M1

s ×M2
s

)
→ U, t ≥ 0,

where U denotes the decision set for the receiver.
In the following, we let the bold letters denote the ensemble of letters in the sense

that Qt = {Q1
t , Q

2
t} and q[0,t] = {q1[0,t], q2[0,t]}. Then, ut = γ0t (q[0,t]) for t ≥ 0.

Case with Noisy Channels

A more general setup that we will consider in the book is the setting which involves
noisy channels. We consider first memoryless noisy channels (in the following
definitions, we assume feedback is not present; minor adjustments can be made
to capture the case with feedback).
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Definition 5.2.1. A discrete memoryless channel (DMC) is characterized by a
discrete input alphabet M, a discrete output alphabet M′, and a conditional
probability mass function P (q′|q), from M × M′ to [0, 1] which satisfies the
following. Let q[0,n] ∈ Mn+1 be a sequence of input symbols, let q′[0,n] ∈ M′n+1

be a sequence of output symbols, where qk ∈ M and q′k ∈ M′ for all k and let
Pn+1
DMC denote the joint mass function on the n + 1-tuple input and output spaces.

It follows that Pn+1
DMC(q

′
[0,n]|q[0,n]) =

∏n
k=0 PDMC(q

′
k|qk), ∀q[0,n] ∈ Mn+1,

q′[0,n] ∈ M′n+1, where qk, q′k denote the kth component of the vectors q[0,n], q′[0,n],
respectively. �

Definition 5.2.2. A real continuous memoryless channel (CMC) is characterized
by a continuous (Borel) input alphabet M ⊂ R

s1 , a continuous (Borel) output
alphabet M′ ⊂ R

s2 (where s1, s2 ∈ N), and a regular conditional probability
measure p(A|m), from M × B(M′) to R, where B(M′) is the Borel σ-algebra
over M′. Let m[0,n] ∈ Mn+1 be a sequence of input symbols, {m0,m1, . . . ,mn},
and let An

0 be a sequence of Borel subsets in B(M′), {A0, A1, . . . , An}, where
mk ∈ M and Ak ∈ B(M′) for all k. Let pn+1

CMC be the probability measure
on B(Mn+1 × M′n+1

). A CMC from Mn+1 to M′n+1 satisfies the following
for all 0 ≤ k ≤ n: pn+1

CMC(Ak|m[0,k], A[0,k−1]) = p(Ak|mk), for almost all
m[0,k] ∈ Mk+1, where mk denotes the kth component of the vector m[0,n]. �

Channels can also have memory. We state the following for both discrete and
continuous-alphabet channels.

Definition 5.2.3. A discrete channel (continuous channel) with memory is char-
acterized by a sequence of discrete (continuous) input alphabets Mn+1, discrete
(continuous) output alphabets Mn+1, and a sequence of regular conditional proba-
bility measures Pn(dq

′
[0,n]|q[0,n]), from Mn+1 to M′n+1. �

Typically, discrete channels admit finite alphabets. Unless stated otherwise, while
considering discrete channels, we will assume channels with finite alphabets.

As before, consider a scenario where an encoder, Encoder i, is located at one end
of a measurement channel characterized by (5.3), this being so for i = 1, 2. The
encoders transmit their information to a receiver (see Fig. 5.3), over noisy channels.

In this context, we will also let Πcomp,i denote a composite encoding policy for
Encoder i, defined as a sequence of functions {Qcomp,i

t , t ≥ 0} which are causal
such that the output at time t, qit, under Πcomp,i is generated by a function of its
local information, that is, a mapping measurable with respect to the sigma-algebra
generated by

Iit = {yi[0,t], qi[0,t−1], z
i
[0,t−1]}, t ≥ 1, Ii0 = {yi0},

to Mi
t, where Mi

t := {1, 2, . . . , |Mi
t|}, for 0 ≤ t ≤ T − 1 and i = 1, 2. Here

zi denotes some additional side information available, such as feedback from the
receiver.
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Fig. 5.3 Partially observed source under a decentralized structure with noisy channels

As before, let the information at the receiver at time t ≥ 0 be Irt = {q′1[0,t], q′2[0,t]}.
Let the common information, under feedback information, at the encoders and the
receiver be Ict . Thus, we can express any measurable composite encoding policy as

Qcomp,i
t (Iit ) = (γit(I

c
t ))(I

i
t \ Ict ),

mapping the information space to Mi
t. Thus, we let DM i have policy γi and under

this policy generate quantizer actions {Qi
t, t ≥ 0}, Qi

t ∈ Q
i
t (Qi

t is the quantizer
used at time t). Under action Qi

t, the encoder generates qit, as the quantization
output at time t. The channel maps qt to q′t in a stochastic fashion as described
in Definitions 5.2.1–5.2.3.

The receiver (or the controller), upon receiving the information from the channel,
generates its decision at time t, also causally: An admissible causal receiver policy
is a sequence of measurable functions γ0 = {γ0t } such that ut = γ0t (q

′
[0,t]) where

ut ∈ U.

Design Objective

With the above formulation, one typical objective functional for the decision makers
would be the following for some T ∈ N:

inf
Πcomp,γ0

E
Πcomp,γ0

ν0 [

T−1∑
t=0

c(xt, ut)],
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over all policies Πcomp, γ0 with initial distribution ν0 on x0. Here c(xt, ut), is
a non-negative function and ut = γ0t (q

′
[0,t]) for t ≥ 0. As an example, this setup

includes, for the case when X = R
n, the quadratic cost function: c(x, u) = |x−u|2.

Another objective would be to ensure that the dynamical system {xt} is
stochastically stable in some appropriate sense.

Both of these considerations will be made precise later in the book.

5.3 Information Theoretic Preliminaries and Performance
of Quantizers

In this section, we collect relevant notions and results from information theory.

5.3.1 Information Theoretic Preliminaries

We first present a number of definitions.

Definition 5.3.1. Let x be an X-valued random variable, where X is a countable
set. The entropy of x is defined as

H(x) = −
∑
z∈X

P (z) log2(P (z)) ,

where P is the probability mass function (pmf) of the random variable x. If y is
another X-valued random variable, the conditional entropy of x given y = y0 is
defined by

H(x | y = y0) = −
∑
z∈X

P (z | y = y0) log2(P (z | y = y0)) ,

where P (· | y = y0) is the conditional pmf of x given y = y0. The conditional
entropy of x given y is defined by the average of such conditional entropies such
that

H(x | y) =
∑
y0∈X

P (y = y0)H(x | y = y0).

�

Definition 5.3.2. Let x be an X−valued random variable, where X = R
n, and

the probability measure induced by x is absolutely continuous with respect to the
Lebesgue measure. The differential entropy of x is defined by

h(x) = −
∫
X

p(x) log2(p(x))dx ,
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where p(·) is the probability density function (pdf) of x. If y is another random
variable with density (or mass function) py , the conditional differential entropy of x
given y = y0 is defined by

h(x | y = y0) = −
∫
z

p(z | y = y0) log2(p(z | y = y0))dz ,

where p(· | y = y0) is the conditional pdf of x given y = y0. The conditional
differential entropy of x given y is defined by the average of such conditional
entropies such that

h(x | y) =
∫
y0

py(y0)h(x | y = y0)dy0.

�

An important property of entropy (and differential entropy) is the chain rule:
H(x, y) = H(x) + H(y|x), where H(x, y) is the entropy for the vector random
variable (x, y). If x and y are independent,H(y|x) = H(y).

A further important result is that conditioning on a random variable cannot
increase entropy: H(x|y) ≤ H(x); conditioning on a realization, however, may
increase the entropy.

Definition 5.3.3. The mutual information between a discrete (continuous) random
variable x and another discrete (continuous) random variable y, defined on a
common probability space is defined as

I(x; y) = H(x)−H(x|y) ,

where H(x) is the entropy of x (differential entropy if x is a continuous random
variable), and H(x|y) is the conditional entropy of x given y (conditional differen-
tial entropy if x is a continuous random variable). �

For more general settings, that is, for cases including when the random variables
are continuous, discrete or a mixture of the two or for settings where the random
variables take values in Polish spaces, mutual information is defined as

I(x; y) := sup
Q1,Q2

I(Q1(x);Q2(y)),

where Q1 and Q2 are quantizers with finitely many bins (see Chap. 5 in [171]). An
important relevant result is the following. Let x be a random variable and Q be a
quantizer applied to x. Then, H(Q(x)) = I(x;Q(x)) = h(x)− h(x|Q(x)).

Definition 5.3.4. The Kullback-Leibler divergence or relative entropy between two
probability measures P1 and P2 such that P1 is absolutely continuous with respect
to P2 is defined as

D(P1||P2) =

∫
log2(f(x))P1(dx),
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where f(x) = dP1

dP2
is the Radon-Nikodym derivative of P1 with respect to P2, that

is, for all events A, P1(A) =
∫
A
f(x)P2(dx). �

Mutual information between two random variables x (with probability measure P1)
and y (with probability measure P2) is also given byD(P1P2||P1 ×P2), that is, the
relative entropy between the joint measure and a measure which is the product of
the measures of x and y, denoted here by P1 × P2.

An important information theoretic property is the data-processing inequality.

Lemma 5.3.1. Let x, y, z be three random variables which form a Markov chain in
the specified order, that is, x↔ y ↔ z. Then, I(x; y) ≥ I(x; z). �

An immediate consequence of Lemma 5.3.1 is that given two random variables
x, y, for any measurable function pairs f, g, the following holds: I(f(x); g(y)) ≤
I(x; y).

An important property of differential entropy is the entropy-power inequality,
given as follows.

Lemma 5.3.2. (a) Let x, y be independent random variables and let z = x + y.
Then,

22h(z) ≥ 22h(x) + 22h(y),

where equality holds if x, y are Gaussian. b) Let x, y be conditionally independent
given u and let z = x+ y. Then,

22h(z|u) ≥ 22h(x|u) + 22h(y|u),

where h(·|u) denotes the conditional differential entropy. �

5.3.2 Fixed or Variable Rates of a Quantizer/Encoder

As discussed earlier, the fixed-rate rate of a quantizer or encoder is defined by the
(base-2) logarithm of the number of cells, which is 'log2(|M|)( for the quantizer
described in (5.1). There is also a rate definition in terms of the expected number of
bits to be used; this is called the variable-rate rate of a quantizer.

Let x be an X−valued random variable and let P denote the probability measure
induced by x. Suppose that we wish to represent this variable in terms of binary
numbers and an encoder maps X to a space of binary sequences. The variable-rate
rate captures the average number of bits needed to represent the encoder outputs:
That is, let l(x) denote the length of a binary string (codeword) which is used to
represent the symbol x ∈ X. Then, the variable-rate rate of this encoder is given by

E[l(x)] =
∑
x∈X

P (x) log2(l(x)).
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A very important result in source-coding theory is the following.

Proposition 5.3.1 ([103]). Let x be an X−valued random variable where X is
a finite set. The variable-rate rate of any encoder which leads to a noiseless
representation of the random variable satisfies

H(x) ≤ E[l(x)].

Furthermore, there exists an encoder with variable-rate rate:

E[l(x)] ≤ H(x) + 1,

which leads to a noiseless representation of the source x. �

Proposition 5.3.1 thus represents a lower bound on the average rate of quan-
tization outputs when a source is quantized. When a source is quantized, the
quantized output can be coded with a variable-rate encoder and the entropy of the
quantization output serves as a lower bound on the average length of the codewords.
Note that, if an encoder simultaneously encodes a sequence of n i.i.d. random
variables x[0,n−1], then, with increasing values of n, entropy becomes an arbitrarily
close measure for the minimum average variable-rate information rate needed for
noiseless representation since for every n there exists a code with average rate
satisfying

H(x0) =
1

n
H(x[0,n−1]) ≤

1

n
E[l(x[0,n−1])] ≤ H(x0) +

1

n
.

5.3.3 Rate-distortion Theory

Shannon’s rate-distortion function is defined operationally as follows: Given a
componentwise X-valued stochastic process {xt, t ∈ Z+}, a rate-distortion pair
(R,D) is achievable if given the source process {xt} and a distortion function
ρ : X× X → R+, there exist sequences of

1. Quantizers (encoders): En : Xn → M(n) with |M(n)| ≤ 2Rn,
2. Decoders: Dn : M(n) → X

n such that x̂t = Dn(q[0,n−1]), 0 ≤ t ≤ n− 1 with

Dn :=
1

n
E[

n−1∑
t=0

ρ(xt, x̂t)] ≤ D,

with limn→∞Dn ≤ D.
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Fig. 5.4 Shannon’s setup assumes block coders which are delay insensitive

The quantity

inf{R : (R,D) is achievable}

is the (operational) rate-distortion function of the source at the distortion level D.
The quantity inf{D : (R,D) is achievable} is the (operational) distortion-rate
function at rate R.

5.3.4 Channel Coding and Shannon Capacity

Given a channel, a rate R is achievable (transmittable) if there exists a sequence
(R, εn), with εn → 0 as n→ ∞, such that for every n, there exist

1. A set of messages M(n) := {1, 2, 3 . . . ,M(n)} such that |M(n)| = M(n) ≥
2Rn

2. A channel coder

En : M(n) → Mn (5.5)

and a decoder: Dn : M′n → M(n), with average error probability

Pe :=
1

|M(n)|
∑

c∈M(n)

P (Dn(q
′
[0,n−1]) 	= c|c is transmitted) ≤ εn

Given a channel, the supremum rate R that can be achieved is called the
(operational) Shannon capacity of the channel.

We emphasize that the above are operational definitions for rate distortion
and capacity (Fig. 5.4). When the source and the channels belong to further
special classes (e.g., those which are ergodic [376, 379]) then the operational
definitions stated above also admit what is known as single-letter mathematical
characterizations.
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If the source sequence is independent and identically distributed, the rate-
distortion function, Rx(D), of a random variable, x, is the minimum (or infimum)
value of the mutual information over the class of stochastic kernels from the input to
the output, subject to the constraint that distortion is not higher than some level D:

R(D) = inf
P (dx̂|x):E[ρ(x,x̂)]≤D

I(x; x̂), (5.6)

where the infimum is over the space of all stochastic kernels P (dx̂|x) from X to
X. We also note that the inverse kernel P (dx|x̂) (from the reconstruction space to
the source alphabet space) is known as the backward test channel (and thus, this
exhibits a duality relationship between the channel-coding problem and the source-
coding problem).

A memoryless Gaussian random source constitutes an important example of the
above. For a Gaussian source with variance σ2

x, the rate-distortion function is given
by R(D) = (1/2) log2(σ

2
x/D) for D ≤ σ2

x.
Likewise, suppose that we have a discrete memoryless channel. The capacity of

such a memoryless channel can be expressed as

C = sup
P (q)

I(q; q′), (5.7)

where the supremum is over the set of all admissible channel input distributions
P (q).

Two important types of channels are the binary symmetric channel and the binary
erasure channel.

A binary symmetric channel is defined by the transition probabilities: P (q′ =
0|q = 1) = P (q′ = 1|q = 0) = ε. The capacity of such a channel is obtained when
the input probability is such that P (q = 0) = P (q = 1) = 1/2, leading to the
capacity value of 1−Hb(ε), where the binary entropy functionHb is defined as

Hb(x) = −x log2(x)− (1 − x) log2(1− x),

for x ∈ [0, 1].
A binary erasure channel is defined by the transition probabilities P (q′ = 0|q =

0) = P (q′ = 1|q = 1) = 1 − ε for some ε ∈ [0, 1] and the existence of an
erasure symbol e such that P (q′ = e|q = 0) = P (q′ = e|q = 1) = ε. The
capacity of such a channel is also obtained when the input probability is such that
P (q = 0) = P (q = 1) = 1/2, leading to the capacity value of (1− ε).

Such channels and their generalizations will be revisited in Chap. 8.
Gaussian sources and channels are further important examples. In Chap. 11, these

are studied in further detail.
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Channels With Feedback

Communication systems may operate with feedback, that is, encoders can use the
previous channel outputs to select channel inputs in a causal fashion. In this case,
the encoder sequences in (5.5) are to be replaced by

En =

{
En,k : M(n)×M

′k → Mk

}
,

for 0 ≤ k ≤ n−1 such that qk = En,k(c, q′[0,k−1]). Such feedback does not increase
the capacity of memoryless channels, but does in general increase the capacity
of channels with memory [103]. Furthermore, feedback may allow for the use of
practical coding schemes with significantly less complexity and typically improves
the reliability of channels, which is a measure of the rate of improvement in error
probability as a function of the number of channel uses. The reliability of channels
will be considered further in Chap. 8.

5.4 Infinite-Dimensional Coding Versus Finite-Dimensional
Coding

The practical or operational applicability of the information theoretic notions
(such as capacity and the rate-distortion function) generally requires processing
of sequences of random variables with unbounded block length, whereas in real-
time control applications (of main concern in this book) excess delay in processing
cannot be tolerated. The distinction between the two is quite subtle and we attempt
to make this more transparent in the following.

Toward this end, we will emphasize the differences between the settings of Shan-
non’s rate-distortion function and the problem of distortion-constrained entropy
minimization considered in [184] and [187], among other references.

Consider a real-valued random variable x with probability measure P . Suppose
that we wish to quantize this source subject to a constraint on the rate of
communication. This constraint can involve either a fixed-rate or a variable-rate
measure of information rate.

Let the quantizer have bins {Bi} and let the reconstruction values be {γ(Q(x))},
where γ denotes a decoder function. To economize notation, we will denote the
reconstruction value by {Q(x)}.

Let J(Q) = E[ρ(x,Q(x))] =
∫
ρ(x,Q(x))P (dx), where ρ : R× R → R+ is a

distortion function. The distortion under quantizerQ is given by

J(Q) =

|M|∑
i=1

∫
Bi

ρ(x, qi)P (dx)

with qi = Q(x) for x ∈ Bi.
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We define the distortion-constrained fixed-rate function (or operational rate-
distortion function [176]) as

RFQ(D) = inf{'log2(|Q(R)|)( : J(Q) ≤ D},

where |Q(R)| denotes the cardinality of the quantizer index set.
The entropy under quantizerQ is (which, as discussed earlier, is a measure of the

minimum average rate needed for lossless representation of quantizer outputs):

H(Q) := −
∑
i

P (Bi) log2(P (Bi)).

We define the distortion-constrained entropy function as

RQ(D) = inf
Q∈Q

{H(Q) : J(Q) ≤ D},

where Q is the space of all quantizersQ, possibly with countably infinite number of
bins. For such a setting, the number of quantizer bins in an optimal quantizer can be
finite or infinite [186]. It is evident thatRFQ(D) ≥ RQ(D), since fixed-rate coding
is a special case of variable-rate coding.

Note that in the expression of R(D), see (5.6), the infimization is over the space
of stochastic kernels, whereas in the quantization framework, it is over only the
space of quantizers. Furthermore, when x̂ admits a discrete probability measure and
P (x̂|x) = 1{x̂=Q(x)}, I(x; x̂) reduces to H(x̂). Thus, the essential difference is the
space of optimization. It is a direct consequence of the larger space of optimization
in the rate-distortion formulation that RQ(D) ≥ R(D) where the inequality is strict
in many of the applications in information theory. Furthermore, even though the
rate-distortion function is a convex function of distortion, the distortion-constrained
entropy function is not a convex function of distortion (see György and Linder [184,
187], where in the former study [184] an analysis for a uniform source has been
explicitly considered). Furthermore, the set of quantizers is not convex. Note also
that we have already discussed some further properties of quantizers in Sect. 4.7.

As discussed in Sect. 5.3.3, from a practical or an operational viewpoint, in
the rate-distortion theoretic analysis, an increasing sequence of blocks of random
variables with unbounded length is considered, and compression is performed
based on these sequences. The rate-distortion theoretic performance values are
obtained as the limit of the performances attained for these increasing blocks
of variables. The rate-distortion function leads to an asymptotically tight lower
value, since through a solution to (5.6), a test channel is constructed and the
induced backward test channel can be used to construct an asymptotically efficient
codebook, utilizing the properties of laws of large numbers: Only for quantization
of vector-valued processes with ergodic behavior, in the limit of large dimensions,
does one observe an equivalence between the operational rate-distortion function,
distortion-constrained entropy function, and the rate-distortion function [176].
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For a quantization problem, however, a single realization of a random variable is
observed, and the output is generated only for the single realization.

We note that, in view of the above, even when an independent sequence is
encoded, block encoding may perform strictly better than memoryless quantization.
We will, however, see later in Chap. 10 that for causal (zero-delay) coding of
independent sources, scalar (memoryless) coding is as good as any causal block
encoder of arbitrary length.

Another important difference between finite-length and infinite-length problems
is on joint source-channel coding. In the limit of large block lengths, one can
design an optimal quantizer/encoder/decoder scheme (for the minimization of some
average distortion criterion subject to a rate constraint) by first compressing an
ergodic source using a rate-distortion achieving code (up to an arbitrarily small
error) and applying a capacity-achieving channel code to map the compression
outputs to channel inputs, when the channel is also ergodic. This is known as
source-channel separation. However, such a setup is not generally optimal for finite
block-length settings and the quantization and channel encoding operations need
to be analyzed jointly for optimal performance. We will revisit this topic later in
Chap. 11.

We end the section by noting that, although typical information theoretic
approaches require long blocks, important special cases provide optimal perfor-
mance even under delay-limited settings: One popular example is the problem of
transmitting a Gaussian source over a Gaussian channel, the so-called Gaussian
test channel (GTC) problem, introduced and discussed in Chap. 3. As stated there,
the no-memory property of the GTC is due to the fact that the source and channel
pairs are matched in the sense that capacity and rate-distortion achieving pairs are
identical, leading to optimality (known as the matching property) . We will discuss
this topic also further in Chap. 11.

5.5 Noncausal Coding for Stationary and Nonstationary
Sources

In the next few chapters we will study information requirements, and coding and
control algorithms for stabilization of open-loop unstable linear systems controlled
over communication channels. Toward obtaining such results, in the following, we
provide a partial review of the contributions in the information theory literature for
such sources.

There have been important contributions in the information theory literature
on noncausal coding of nonstationary/unstable sources: Consider the following
Gaussian autoregressive (AR) process:

xt = −
m∑

k=1

akxt−k + wt,
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where {wt} is i.i.d. zero-mean, Gaussian random sequence with variance
E[w2

t ] = σ2. If the roots of the polynomialH(z) = 1 +
∑m

k=1 akz
−k are all in the

interior of the unit circle, then the process is asymptotically stationary and its rate-
distortion function (with the distortion being the expected, normalized Euclidean
error) is given parametrically by the following [169], obtained by considering the
asymptotic distribution of the eigenvalues of the correlation matrix:

Dθ =
1

2π

∫ π

−π

min(θ,
1

g(w)
)dw,

R(Dθ) =
1

2π

∫ π

−π

max(1/2(log
1

θg(w)
), 0)dw,

with g(w) = 1
σ2 |1 +

∑m
k=1 ake

−ikw|2. If at least one root is on or outside the
unit circle, the analysis is more involved as the asymptotic eigenvalue distribution
contains unbounded components. Gray and Hashimoto (see [169, 192] and [174])
have shown, using the properties of the eigenvalues as well as Jensen’s formula for
integrations along the unit circle, that R(Dθ) above should be replaced by

R(Dθ) =
1

2π

∫ π

−π

max

(
1

2
log(

1

θg(w)
), 0

)
dw +

m∑
k=1

1

2
max(0, log(|ρk|2), (5.8)

where {ρk} are the roots of the polynomialH .
Thus, an important finding in the above literature is that the logarithms of the

unstable poles in such linear systems appear in the rate-distortion formulations, an
issue which has also been observed in the networked control literature, which we
will discuss further below. It is important to emphasize that the underlying coding
schemes are noncausal, that is, the encoder has access to the entire ensemble before
the encoding begins, or the coding is a sliding-block/sliding-window scheme with a
finite degree of non-causality.

In contrast with information theory, due to the practical motivation of sensitivity
to delay, the control theory literature has mainly considered causal/zero-delay
coding for unstable (or nonstationary) sources, in the context of networked control
systems. For specific settings, Wong and Brockett [406] and Baillieul [37], and
for more general contexts, Tatikonda and Mitter [355] (see also [352]) and Nair
and Evans [280] have obtained the minimum lower bound needed for stabilization
over communication channels under various assumptions on the system noise and
channels, sometimes referred to as a data-rate theorem. This theorem states that for
stabilizability under information constraints, in the mean-square sense, a minimum
average rate per time stage needed for stabilizability has to be at least the sum of the
logarithms of the unstable poles/eigenvalues in the system, that is

R ≥
m∑

k=1

1

2
max

(
0, log(|ρk|2)

)
.
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This result could be compared with (5.8). In particular, together with the information
theoretic bound (5.8), these suggest that the rate requirement is not due to causality,
but due to the intrinsic evolution of the (differential) entropy in an unstable system.
A more general result will be presented in the next section, in Theorem 5.6.1.
Further extensions of these results will be provided in later chapters, together with
a more comprehensive treatment of the literature in Chap. 8.

More precisely, in the next section, we will provide a derivation of the result
above. In Chaps. 7, 8 and 9, we will show, using stochastic stabilization arguments,
that the rate bound is tight for a large class of channels and investigate further criteria
such as stationarity, ergodicity, and existence of finite moments. In Chap. 8, we will
also obtain further converse results for stabilization over a large class of channels
with memory.

5.6 Fundamental Bounds on Information Rates
for Real-time Stabilization Over Noiseless Channels

As a special case of the model considered earlier in (5.2)–(5.3), we consider here a
multidimensional linear system connected over a noiseless channel:

xt+1 = Axt +But + wt, yt = xt, (5.9)

where xt ∈ R
n is the state at time t, ut is the control input, and {wt} is a sequence

of i.i.d. Rn-valued zero-mean second-order random variables. Here A is the system
matrix with at least one eigenvalue greater than 1 in magnitude, that is, the system
is open-loop unstable. We assume that (A,B) is a stabilizable pair.

Let the quantizer, as described earlier, map its information to a finite set Mt

for t ≥ 0. We define a quantizer, a quantization policy, and a controller policy
accordingly (see Fig. 5.5).

Theorem 5.6.1. For the problem formulated above, with x0 a second-order random
variable, let Ravg(T ) =

1
T

∑T−1
t=0 Rt be the per-stage average quantization rate at

time T − 1, where Rt is the quantization rate at time t (thus, encoding is possibly
variable rate). For this setup, under any stabilizing control and causal quantization
policy, for either

lim sup
t→∞

1

t
log(E[|xt − E[xt|q[0,t]]|2]) ≤ 0

or

lim sup
t→∞

1

t
log(E[|xt|2]) ≤ 0

to hold, the per-stage average quantization rate must satisfy the inequality

lim inf
T→∞

Ravg(T ) ≥
∑

|λi|>1

log2(|λi|),
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Fig. 5.5 Control over a finite-rate noiseless channel with quantized observations at the controller

where {λi, 1 ≤ i ≤ n} are the eigenvalues of A, with each repeated eigenvalue (if
any) taken as a distinct element in the sequence. �

Proof. See Sect. 5.7. ��

Remark 5.6.1. A refinement of the theorem above will be discussed in the context
of stabilization over a general class of noisy communication channels in Chap. 8
(see Theorem 8.5.2). �

A further general result is the following.

Theorem 5.6.2. With x0 a second-order random variable, let limT→∞Ravg(T ) =
C. For the controlled state process {xt} to be asymptotically mean stationary (AMS)
(see Definition C.3.5), it must be that C ≥

∑
|λi|>1 log2(|λi|). �

The proof of this theorem is almost identical to that of Theorem 8.2.2 (which is
presented in Chap. 8) and is therefore omitted.

5.7 Appendix: Proof of Theorem 5.6.1

The proof follows from [422] and [427]. The matrix A can always be block-
diagonalized with two blocks, where the first block has only stable eigenvalues
and the second one unstable eigenvalues. For the stable modes, one need not use
the channel, and hence for the remaining discussion and analysis we can assume,
without any loss of generality, that A has only unstable eigenvalues.

Let the expected square of the Euclidean norm of the random vector xt be
denoted by Dt and the covariance matrix of the same be denoted by Ct. Thus,
Dt = trace(Ct). We also note that among random vectors with a fixed covariance
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matrix, the differential entropy is maximized by a jointly Gaussian distribution,
which in turn has a finite entropy [103]. Since entropy serves as a lower bound
on the average rate (see Proposition 5.3.1), the average per-stage quantization rate
satisfies the following for T ∈ N:

TRavg(T ) ≥ H(q[0,T−1]) =

T−1∑
t=1

H(qt|q[0,t−1]) +H(q0)

≥
T−1∑
t=1

(
H(qt|q[0,t−1])−H(qt|xt, q[0,t−1])

)
+H(q0)

=

T−1∑
t=1

I(xt; qt|q[0,t−1]) +H(q0)

=

T−1∑
t=1

(
h(xt|q[0,t−1])− h(xt|q[0,t])

)
+H(q0)

=
T−1∑
t=1

(
h(Axt−1 + wt−1 +But−1|q[0,t−1])− h(xt|q[0,t])

)
+H(q0)

=

T−1∑
t=1

(
h(Axt−1 + wt−1|q[0,t−1])− h(xt|q[0,t])

)
+H(q0)

≥
T−1∑
t=1

(
h(Axt−1 + wt−1|q[0,t−1], wt−1)− h(xt|q[0,t])

)
+H(q0)

=

T−1∑
t=1

(
h(Axt−1|q[0,t−1], wt−1)− h(xt|q[0,t])

)
+H(q0)

=

T−1∑
t=1

(
h(Axt−1|q[0,t−1])− h(xt|q[0,t])

)
+H(q0) (5.10)

=

T−1∑
t=1

(
log2(|det(A)|) + h(xt−1|q[0,t−1])− h(xt|q[0,t])

)
+H(q0)

=

( T−1∑
t=1

log2(|det(A)|)
)
+ h(x0|q0)− h(xT−1|q[0,T−1]) +H(q0)

≥
( T−1∑

t=1

log2(|det(A)|)
)
+ h(x0|q0)− h(xT−1) +H(q0) (5.11)
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≥
( T−1∑

t=1

log2(|det(A)|)
)
+ h(x0|q0)−

1

2
log

(
(2πe)ndet(CT−1)

)
+H(q0)

≥
( T−1∑

t=1

log2(|det(A)|)
)
+ h(x0|q0)−

1

2
log

(
(2πe)n(

1

n
DT−1)

n

)
+H(q0).

(5.12)

The first inequality follows since discrete entropy is always nonnegative, and the
second and third inequalities follow from the fact that conditioning does not increase
entropy (see [103]). The fourth inequality follows from the property that the Gaus-
sian measure maximizes the entropy for a given covariance matrix. Equation (5.10)
follows from the assumption that {wt} is an i.i.d. process, and (5.11) uses the fact
that conditioning does not increase entropy (this last step could be skipped if the goal
was to only show the subexponential growth of the estimation error in the sense that
lim supt→∞

1
t log(E[|xt − E[xt|q[0,t]]|2]) ≤ 0). In (5.12) we use det(CT−1) ≤

( 1n trace(CT−1))
n (which is a consequence of the inequality of arithmetic and

geometric means applied to eigenvalues). Since lim supt→∞
1
t log(Dt) ≤ 0 and

h(x0) <∞ we obtain

lim inf
T→∞

Ravg(T ) ≥
∑

|λi|>1

log2(|λi|).

��

5.8 Concluding Remarks

In this chapter, information structures for encoders and controllers have been
introduced, with the setup presented in this chapter to be used throughout the book.
In the following chapters of Part II of the book, stochastic stabilization under such
measurability and information rate constraints will be covered. In Part III of the
book, optimization of coding and control policies in networked control systems will
be studied in detail, under such information constraints.

In the chapter, the connections between real-time coding and information
theoretic approaches have been investigated and subtle differences have been
highlighted. Further, properties of quantizers and their performance have been
studied. The chapter has also been concerned with the derivation of fundamental
bounds in connection with stabilizability of a linear system over a communication
channel. This problem will be revisited in further generality in Chap. 8.
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5.9 Bibliographic Notes

A comprehensive tutorial on quantization and source-coding theory can be found in
[176].

Causal coding has been studied in the literature in different contexts and under
different assumptions on the classes of sources and encoder types. Some of the
relevant results on the topic are the following: When the elements of a sequence
{xi}, living in a discrete alphabet, are independent and identically distributed, and
if the decoder is allowed to perform with delay, then an optimal memoryless coder
(possibly randomized) is the optimal causal encoder minimizing the data rate subject
to a distortion constraint, which is a result due to Neuhoff and Gilbert [292]. We note
that [292] allows for delay at the decoder output to facilitate entropy coding, but not
at the encoder/decoder symbol generation. A more restrictive causal coding scheme
is what is known as the zero-delay (delayless) coding scheme which does not
allow delay in symbol as well as code generation. That is, the zero-delay property
is stronger than the causality notion adopted in [292] in that both encoding and
decoding are instantaneous.The zero-delay coding scheme was studied in [148],
which demonstrated the optimality of memoryless fixed-rate encoders when the
source takes values in a finite set, and the encoding is fixed rate. If the source is
kth-order Markov, then the optimal fixed-rate, zero-delay coder minimizing any
measurable, additive (per-stage) distortion uses only the last k source symbols and
the current state at the receiver’s memory [396]. The results of [396] were extended
in [361] and [250] to systems with noisy feedback, under the assumption of a
fixed decoder structure with finite memory. Zero-delay coding for partially observed
Markov sources was considered in [425]. The problem of optimal transmission over
noisy channels with perfect causal feedback was considered in [385] for the case
when the source belongs to a finite and discrete set. In the limit of low distortion
(high rate), [237] studied stationary encoding of a stable stationary process and
showed that memoryless quantizer followed by a conditional entropy coder is
at most 0.25 bits worse than any causal encoder. A relevant problem in causal
rate-distortion theory was studied in [352], where under the criterion of directed
mutual information (see [259]) minimization subject to a distortion constraint
and with availability of feedback, optimal causal conditional coding laws were
obtained. Further aspects on and differences between real-time coding and standard
information theoretic formulations have been described in detail in [359].

Matching of sources and channels as dual problems of capacity of a given
channel and the rate-distortion function of a given source has been discussed in
[107] and [156]. On a parallel note, the multiterminal source-coding theorems
[103], although insightful, are not always applicable in a real-time setting, as
the asymptotic partitioning arguments in classical information theory [103] do
not apply. In a control context, however, one method to achieve the information
theoretic bounds is via binning; see [429, 431] for discussions on binning in a
decentralized control context and [312] for a discussion on binning in a general
communications context.
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In the information theory literature, stochastic stability results were established
mostly for stationary sources, which are already in some appropriate sense stable
sources. In this literature, the stability of the estimation errors as well as the
encoder state processes have been studied. These systems mainly involve causal
and noncausal coding (block coding as well as sliding-block coding) of stationary
sources [166, 214, 215] and asymptotically mean stationary sources [141]. Real-
time settings such as sigma-delta quantization schemes have also been considered
in the literature; see, for example, [403], among others. We refer the reader to a
review in [174] regarding rate-distortion results for such nonstationary processes
and on the methods used in [169] and [192]. Berger [51] obtained the rate-distortion
function for Wiener processes and in addition, developed a two-part coding scheme,
which was later generalized in [329] and [331] to unstable Markov processes driven
by bounded noise. The scheme in [51] exploits the independent increment property
of Wiener processes. References [420], [419] obtained ergodicity results for open-
loop unstable systems controlled over noisy or noiseless channels.

Uniform scalar quantizers, in addition to their simplicity, are also approximately
optimal in the limit of high-rate distortion [163] with respect to the mean-square
distortion measure [427]. Gish and Pierce [163] has shown that the uniform
quantizer followed by an entropy coder is at most 0.255 bits worse than any optimal
quantizer, if one exists, in the context of entropy-constrained causal quantization,
a situation which is also applicable in linear control systems. Some other selected
relevant papers are [336] and [442].

The fundamental lower bound in Theorem 5.6.1 is a generalization of the results
established by Nair and Evans [280] and Tatikonda and Mitter [356], building on
[422] and [427]. Part of this chapter follows from [421] and [427].



Chapter 6
Stochastic Stability and Drift Criteria
for Markov Chains in Networked Control

6.1 Introduction and Motivation: Why Stochastic Drift
Criteria?

One essential aspect of a networked control system is the presence of randomness
and uncertainty in measurement information or action transmissions. The evolution
of the dynamics is generally event driven and this does not necessarily admit a
time-homogeneous dynamics based on a fixed clock or a deterministic sequence.
To understand such random event-based updates, it is necessary to develop the
requisite mathematical tools to study such processes.

We will develop in this chapter an important mathematical program to study
such dynamics; we will refer to it as random-time state-dependent drift criteria for
stabilization.

We will see later in Chaps. 7–9 that a random-time state-dependent drift-based
program is very effective in arriving at stochastic stability results. Furthermore,
as we will see in Chap. 12, many decentralized control problems use algorithms
which allow for agreement on certain variables of nature at random times, based
on which decisions can be generated. Such time characterizations are essential
for optimization and stabilization studies of networked and decentralized control
systems. Stochastic stabilization and the applicability of ergodic theorems are also
important for the development of infinite horizon dynamic optimization algorithms.

This present chapter provides the key mathematical tools needed in the remaining
chapters of Part II for stabilization over noiseless as well as noisy channels.
We are presenting these results here in this chapter instead of relegating them
to an appendix, due to their importance and the prominence (in particular of
Theorem 6.2.4) in such applications. The reader could skip or just skim through this
chapter if not particularly interested in the mathematical details concerning Markov
chains and the martingale arguments which will be applied in the chapters to follow,
to establish stochastic stabilization.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 6,
© Springer Science+Business Media New York 2013
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In a nutshell, this chapter presents the drift criteria for stochastic stabilization of
Markov chains. The reader is referred to Appendix C for an overview of Markov
chains and stochastic stabilization, as well as the comprehensive book by Meyn and
Tweedie [271].

6.2 Stochastic Stability and Drift Criteria

Let X = {xt, t ≥ 0} denote a Markov chain with state space X. Assume that the
state space is a complete, separable, metric space, whose Borel σ-field is denoted
B(X). Let the transition probability be denoted by P , so that for any x ∈ X, A ∈
B(X), the probability of moving from x to A in one step is given by P (xt+1 ∈
A | xt = x) = P (x,A). The n-step transitions are obtained via composition in the
usual way, P (xt+n ∈ A | xt = x) = Pn(x,A), for any n ≥ 1. The transition law
acts on measurable functions f : X → R and measures μ on B(X) via

Pf (x):=

∫
X

P (x, dy)f(y), x ∈ X, μP (A):=

∫
X

μ(dx)P (x,A), A ∈ B(X).

A probability measure π on B(X) is called invariant if πP = π. That is,
∫
π(dx)P (x,A) = π(A), A ∈ B(X).

The existence of an invariant probability measure is very important since such
a measure represents the asymptotic behavior of the Markov chain. Typically,
limn→∞

1
n

∑n−1
k=0 P

k(x,A) converges to π(A) for some invariant measure π, which
may depend on x. If the Markov chain is positive Harris recurrent (see Sect. C.1),
there exists a unique invariant probability measure π and furthermore, for every x,
limn→∞ Pn(x,A) = π(A).

One sufficient, and very general, characterization for the existence of an invariant
probability measure is through the use of Lyapunov functions and the drift criteria,
which we discuss in the following subsections.

For any initial probability measure ν on B(X) we can construct a stochastic
process with transition law P and satisfying x0 ∼ ν. We let Pν denote the resulting
probability measure on the sample space, with the usual convention ν = δx when
the initial state is x ∈ X. When ν = π, then the resulting process is stationary.

6.2.1 One-stage Foster–Lyapunov Drift Criteria

An increasing family {Fn} of sub-σ-fields of F is called a filtration (see Sect. C.2).
In the following, let Ft be such a filtration generated by the state sequence, that is,
Ft = σ(xm,m ≤ t), t ≥ 0.
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The following results are known as Foster–Lyapunov drift criteria [271].

Theorem 6.2.1 ([271]). Suppose that X is a ϕ-irreducible Markov chain. Suppose
moreover that there are functions V : X → (0,∞), ε > 0, a petite set C, and a
constant b ∈ R, such that the following holds:

E[V (xt+1) | Ft] ≤ V (xt)− ε+ b1{xt∈C}. (6.1)

Then X is positive Harris recurrent. �

Theorem 6.2.2 ([271]). Suppose that X is a ϕ-irreducible Markov chain. Suppose
moreover that there are functions V : X → (0,∞), f : X → [1,∞), a petite set C,
and a constant b ∈ R, such that the following holds:

E[V (xt+1) | Ft] ≤ V (xt)− f(xt) + b1{xt∈C}. (6.2)

Then X is positive Harris recurrent, and moreover π(f) := Eπ(f(x)) < ∞, with
π being the invariant distribution. �

6.2.2 State-dependent Drift Criteria

The following establishes a set of sufficient conditions for positive Harris recurrence
under deterministic but state-dependent drift.

Theorem 6.2.3 ([271]). Suppose that X is a ϕ-irreducible Markov chain. Let V (.):
X → R+ be a positive-valued functional and b ∈ R+. Consider the following
inequality for some ε ≥ 0 and some function n(·) : X → Z+:

E[V (xt+n(xt)) | Ft] ≤ (1− ε)(n(xt))V (xt)− n(xt) + b1{xt∈C},

∀x ∈ X.
If the inequality holds with ε = 0, then a finite invariant measure exists for the

Markov chain. If ε > 0, then the chain is exponentially ergodic, that is, there exist
r > 1 and a positive function M(x) such that

lim
n→∞

M(x)rn||Pn(x, ·)− π||TV → 0.

�

We now partially generalize the above in the following to random-time state-
dependent stochastic drift criteria.

6.2.3 Random-time State-dependent Stochastic Drift Criteria

Throughout this subsection, the sequence of stopping times {τi : i ∈ N+} is
assumed to be nondecreasing, with τ0 = 0, measurable on the filtration generated
by the state process. Additional assumptions are made in the results that follow.
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Theorem 6.2.4 ([439]). Suppose that X is a ϕ-irreducible and aperiodic Markov
chain. Suppose moreover that there are functions V : X → (0,∞), δ : X → [1,∞),
f : X → [1,∞), a small set C, and a constant b ∈ R, such that the following hold:

E[V (xτz+1) | Fτz ] ≤ V (xτz)− δ(xτz ) + b1{xτz∈C}

E
[τz+1−1∑

k=τz

f(xk) | Fτz

]
≤ δ(xτz) , z ≥ 0.

(6.3)

Then the following hold:

(i) X is positive Harris recurrent, with unique invariant distribution π.
(ii) π(f) :=

∫
f(x)π(dx) <∞.

(iii) For any function g that is bounded by f , in the sense that supx |g(x)|/f(x) <
∞, we have convergence of moments in the mean, and the Law of Large
Numbers holds:

lim
t→∞

Ex[g(xt)] = π(g),

lim
N→∞

1

N

N−1∑
t=0

g(xt) = π(g) a.s. , x ∈ X.

�

Proof. See Sect. 6.3.1. ��

Remark 6.2.1. We note that, for (ii) in Theorem 6.2.4, the condition that f : X →
[1,∞), δ : X → [1,∞), can be relaxed to f : X → [0,∞), δ : X → [0,∞), provided
that one can establish (i), that is, the positive Harris recurrence of the Markov chain
X first. �

Remark 6.2.2. The assumption of τ0 = 0 is important for establishing recurrence.
If τ0 	= 0, additional technical, but mild, conditions would have to be added to verify
recurrence. �

By taking f(x) = 1 for all x ∈ X, we obtain the following corollary to
Theorem 6.2.4.

Corollary 6.2.1. Suppose that X is a ϕ-irreducible Markov chain with filtration
Ft. Suppose moreover that there is a function V : X → (0,∞), a petite set C, and
a constant b ∈ R, such that the following hold:

E[V (xτz+1) | Fτz ] ≤ V (xτz )− 1 + b1{xτz∈C},

sup
z≥0

E[τz+1 − τz | Fτz ] <∞.
(6.4)

Then X is positive Harris recurrent. �
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To relax the ϕ-irreducibility assumption, we can impose instead the following
continuity assumption: A Markov chain is (weak) Feller if the function Pf is
continuous on X, for every continuous and bounded function f : X → R.

Theorem 6.2.5 ([227,271]). Suppose that the chain X is Feller, living in a locally
compact space and that there is a compact set A satisfying

sup
x∈A

Ex[τA] <∞,

where τA = inf(k > 0 : xk ∈ A). Then the Markov chain admits an invariant
probability measure π which is positive on A. �

The following is a consequence of proofs of Theorems 6.2.4 and 6.2.5.

Theorem 6.2.6. If (6.4) holds for a measurable set C and a function V : X →
(0,∞), then C satisfies

sup
x∈C

E[τC ] <∞.

�

In view of the above, we have the following. Note that here the Markov chain
need not be irreducible.

Theorem 6.2.7 ([439]). Suppose thatX is a Feller Markov chain living in a locally
compact space, not necessarily ϕ-irreducible. Then, if (6.3) holds with C compact,
there exists at least one invariant probability measure. Moreover, there exists c <∞
such that, under any invariant probability measure π,

Eπ [f(xt)] =

∫
X

π(dx)f(x) ≤ c. (6.5)

�

Finally, we state a result on transience. This will be useful in establishing that
bounded range quantizers lead to transience (see Theorem 7.3.1; see also Theo-
rem 8.6.3 which essentially uses a similar argument).

Theorem 6.2.8 (Theorem 8.4.1 in [271]). Let V : X → R+. If there exists a set
A such that

E[V (xt+1)|xt = x] ≤ V (x), (6.6)

for all x /∈ A and ∃x̄ /∈ A such that V (x̄) < infz∈A V (z), then {xt} is not
recurrent, in the sense that Px̄(τA <∞) < 1. �

Proof. See Sect. 6.3.2. ��

Why Random-time State-dependent Drift Criteria?

Many network protocol and networked control applications share the property that
controllers and sensors can access data or act on a system at random times. These
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times may depend on the availability of communication resources. One example of
such a scenario is reported in [419], which will be discussed in detail in Chaps. 7
and 8, for establishing stochastic stability of adaptive quantizers for Markov sources
where random stopping times are the instances when the encoder can transmit
information to a controller. In this context, there has been a significant amount of
research on stochastic stabilization of networked control systems under information
constraints. For linear systems driven by unbounded noise, [419] established
ergodicity, under fixed-rate constraints, through martingale methods. Yüksel and
Başar [432] obtained conditions for the existence of an invariant probability measure
for noisy channels, considering deterministic, state-dependent drift criteria, based
on the criteria developed in [272]. Further examples in networked control where
the theory is applicable are settings in [313, 314, 415] among others which will be
discussed further in Chap. 8.

Our motivation here for random time drift comes from such applications in
networked control, as well as in information theory with variable length and
variable delay decoding, [328, 331], and non-asymptotic information theory [310].
In particular, variable length coding schemes with best error exponents also allow
for random delay in decoding [83].

In the chapters to follow, we will define a sequence of increasing stopping times
{τz, z ∈ Z+}, which will denote the random times when important events in the
system take place: For control over noiseless channels in Chap. 7 and control over
erasure channels in Chap. 8, these will stand for the times when an informative
message arrives at the controller with no channel error. For control over general
noisy channels in Chap. 8, these will be the times when the encoder’s uncertainty
regarding the state of the system is bounded. Based on these stopping times, we
apply the results of this chapter to establish various forms of stochastic stability.
In Sects. 7.3.3 and 8.3.1, we will make the connections with stabilization over
communication channels more explicit.

6.3 Appendix: Proofs

6.3.1 Proof of Theorem 6.2.4

Proof of Theorem 6.2.4(i)

The proof is similar to the proof of the Comparison Theorem of [271]: Define the
sequence {Mz : z ≥ 0} by M0 = V (x0), and for z ≥ 0,

Mz+1 = V (xτz+1) +

z∑
k=0

(δ(xτk)− b1{xτk
∈C}).

Under the assumed drift condition we have
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E[Mz+1 | Fτz ] ≤ V (xτz ) +
z−1∑
k=0

(δ(xτk )− b1{xτk
∈C}),

which implies the supermartingale bound,E[Mz+1 | Fτz ] ≤Mz.
For a measurable subset C ⊂ X we denote the first hitting time for the sampled

chain,

ζC = min{z ≥ 1 : xτz ∈ C}. (6.7)

Define ζnC = min(n, ζC) for any n ≥ 1. Then E[Mζn
C
] ≤M0 for any n ∈ Z, and

E[

ζn
C−1∑
k=0

δ(xτk)|F0] ≤M0 + b.

Applying the bound E
[∑τz+1−1

k=τz
f(xk) | Fτz

]
≤ δ(xτz ) and that f(x) ≥ 1,

the following bound is obtained from the smoothing property of the conditional
expectation:

E[τζn
C
| F0] = E

[ζn
C−1∑
i=0

E[τi+1 − τi]|F0]
]

≤ E
[ζn

C−1∑
i=0

δ(xτi)|F0

]
≤M0 + b.

Hence by the monotone convergence theorem,

E[τC ] ≤ E[τζC ] = lim
n→∞

E[τζn
C
| F0] ≤M0 + b.

Consequently we obtain that supx∈C E[τC ] <∞, as well as recurrence of the chain,
Px(τC <∞) = 1 for any x ∈ X. Positive Harris recurrence now follows from [270]
Theorem 4.1. ��

The following result is key to obtaining moment bounds. The inequality (6.9) is
known as drift condition (V3) [271]. Define

V ∗
f (x) := Ex

[τC−1∑
t=0

f(xt)
]
, x ∈ X. (6.8)

Lemma 6.3.1. Suppose that X satisfies all of the assumptions of Theorem 6.2.4,
except that the ψ-irreducibility assumption is relaxed. Then, there is a constant bf
such that the following bounds hold;

PV ∗
f ≤ V ∗

f − f + bf IC , (6.9)

V ∗
f (x) ≤ V (x) + bf , x ∈ X. (6.10)
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�

Proof. The drift condition (6.9) is given in Theorem 14.0.1 of [271]. The proof of
(6.10) is based on supermartingale arguments: DenoteM0 = V (x0), and for z ≥ 0,

Mz+1 = V (xτz+1)−
τz+1−1∑
k=0

(
−f(xk) + b1{xτk

∈C}
)
. (6.11)

The supermartingale property for {Mz} follows from the assumed drift condition:

E[Mz+1 | Fτz ] =Mz + E
[
V (xτz+1)− V (xτz )

+

τz+1−1∑
k=τz

(f(xk)− b1{xτk
∈C}) | Fτz

]
≤Mz. (6.12)

As in the previous proof we bound expectations involving the stopping time ζC
beginning with its truncation ζnC = min(n, ζC).

The supermartingale property gives E[Mζn
C
] ≤ M0, and once again it follows

again by the monotone convergence theorem that V ∗
f satisfies the bound (6.10) as

claimed. ��

Proofs of Theorem 6.2.4(ii) and (iii)

The existence of a finite moment follows from Lemma 6.3.1 and the following
generalization of Kac’s theorem (see [271, Theorem 10.4.9]):

π(f) :=

∫
π(dx)f(x) =

∫
A

π(dx)Ex

( τA−1∑
t=0

f(xt)

)
, (6.13)

where A is any set satisfying π(A) > 0 and τA = inf(t ≥ 1 : xt ∈ A). The
supermartingale argument above ensures that the expectation under the invariant
probability measure is bounded by recognizing C as a recurrent set.

Proof of Theorem 6.2.4(iii) now follows from the ergodic theorem for Markov
chains; see [271, Theorem 17.0.1]. ��

6.3.2 Proof of Theorem 6.2.8

Let x = x̄. Proof follows from observing that



6.4 Concluding Remarks 187

V (x) ≥
∫
y

V (y)P (x, dy)

≥ ( inf
z∈A

V (z))P (x,A) +

∫
y/∈A

V (y)P (x, dy)

≥ ( inf
z∈A

V (z))P (x,A).

It thus follows that

P (τA < 2) = P (x,A) ≤ V (x)

(infz∈A V (z))
.

Likewise,

V (x̄) ≥
∫
y

V (y)P (x̄, dy)

≥ ( inf
z∈A

V (z))P (x̄, A)+

∫
y/∈A

(

∫
s

V (s)P (y, ds))P (x̄, dy)

≥ ( inf
z∈A

V (z))P (x̄, A)+

∫
y/∈A

P (x̄, dy)(( inf
s∈A

V (s))P (y,A)+

∫
s/∈A

V (s)P (y, ds))

≥ ( inf
z∈A

V (z))P (x̄, A) +

∫
y/∈A

P (x̄, dy)(( inf
s∈A

V (s))P (y,A))

= ( inf
z∈A

V (z))

(
P (x̄, A)+

∫
y/∈A

P (x̄, dy)P (y,A)

)
. (6.14)

Thus, observing thatP ({ω : τA(ω) < 3}) =
∫
A
P (x̄, dy)+

∫
y/∈A

P (x̄, dy)P (y,A),
we observe that

Px̄(τA < 3) ≤ V (x̄)

(infz∈A V (z))
.

Thus, for any n: Px̄(τA < n) ≤ V (x̄)
(infz∈A V (z)) < 1. Continuity of probability

measures (by defining: Bn = {ω : τA < n} and observing Bn ⊂ Bn+1 and
that limn P (τA < n) = P (∪nBn) = P (τA <∞) < 1) leads to the result. ��

6.4 Concluding Remarks

In this chapter, stochastic random-time drift criteria have been introduced.
The random-drift criteria are especially useful in networked control systems, as will
be demonstrated later in the book starting with the next chapter. For stabilization, we
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will observe that a random-time drift based program is very effective in obtaining
stochastic stability results. Furthermore, many decentralized control problems use
algorithms which allow for agreement at certain variables of nature in random times,
based on which decisions can be generated. Such time characterizations are essential
for optimization and stabilization studies of networked and decentralized control
systems. We will revisit this topic in Chap. 12.

The stochastic stability in finite moments or the existence of a unique invariant
probability measure is important also for the applicability of the convex analytic
method of Borkar [71] for MDPs (see Appendix D), in view of the applicability of
the sample path ergodic theorem.

6.5 Bibliographic Notes

Stochastic stability of Markov chains has a rich and complete theory and forms a
foundation for several other general techniques such as dynamic programming and
Markov chain Monte Carlo (MCMC) [269].

The state-dependent criteria [253,272] are the basis of the fluid-model (or ODE)
approach to stability in stochastic networks and other general models [72, 112, 113,
142, 269].

On the topic of Markov chains, rates of convergence and mixing under
random-time drift is an important aspect to be explored for networked control
systems. It is apparent that the nature of the drift as well as the distribution of
stopping times used for drift will play a role in the rate of convergence. We
refer the reader to [100, 121] for rate of convergence analysis when the drift
times are deterministic. We also refer the reader to [322] on rates of convergence
and geometric ergodicity. Further related random-drift results have been presented
in [144].

The methods of random-time drift criteria can also be applied to other models of
networked control systems with delay-sensitive information transmission: For such
systems, the effects of randomness in delay for transmission of sensor or controller
signals (see, e.g., [96, 179, 204, 239, 407]) is an application area where this
discussion is relevant. Another related area is event-triggered feedback control
systems [17, 230, 244, 351], where the event instances constitute the stopping times.

The treatment in this chapter is a condensed discussion from Meyn–Tweedie
[271], Hernandez-Lerma and Lasserre [195] and [439]. The results on random-time
drift criteria in Sect. 6.2.3 and the proofs are based on Yüksel and Meyn [416,439].
Theorem 6.2.8 is available in [271] as well as Hairer [189].



Chapter 7
Stochastic Stabilization Over Noiseless Channels

7.1 Introduction

In this chapter, we present conditions for stochastic stabilization of networked
linear control systems over noiseless channels with finite capacity. We consider
multi-dimensional linear systems within both fully observed and partially observed
settings and obtain conditions for stochastic stabilizability. In such systems, there
is an information rate constraint on the quantizers. We use the random-time state-
dependent drift criteria introduced in Chap. 6 to obtain stabilizing schemes. The rate
requirements under such an approach meet the fundamental lower bound given in
Theorem 5.6.1.

The specifications considered in this chapter are the existence of an invariant
probability measure, as well as the finiteness of certain moments. Section 7.2 estab-
lishes the control and the communication models, Sect. 7.3 establishes stochastic
stability for a scalar setting, Sect. 7.4 considers multidimensional systems, and
Sect. 7.5 investigates partially observed setups.

7.2 Control and Communication Models

We consider stabilization of linear noisy systems described by the dynamics

xt+1 = Axt +But + wt, (7.1)

where xt ∈ R
n, (A,B) is controllable, and the noise process {wt} is a zero-mean

i.i.d. sequence of random vectors, with stabilization to be carried out over noiseless
channels with finite capacity. We assume also that x0 is a second-order random
variable.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 7,
© Springer Science+Business Media New York 2013
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The conditions we will impose on the zero-mean i.i.d. noise sequence will prove
to be important in the goals to be achieved. The noise sequence is required to satisfy
one of the following assumptions:

Assumption 7.2.1. Each wt admits a probability measure ν which is absolutely
continuous with respect to the Lebesgue measure λ on R

n (i.e., the measure admits
a density), and for every D ∈ B(Rn) with positive Lebesgue measure, ν(D) > 0.
Furthermore, E[|wt|2] <∞. �

The second assumption is slightly stronger.

Assumption 7.2.2. Each wt has a probability measure ν which admits a density,
and for everyD ∈ B(Rn) with positive Lebesgue measure, ν(D) > 0. Furthermore,
E[|wt|2+ε] <∞ for some ε > 0. �

Finally, we take the noise to be Gaussian.

Assumption 7.2.3. {wt} is a sequence of Gaussian random variables. �

Under Assumption 7.2.1, we will establish stationarity and ergodicity. Under
Assumption 7.2.2 (or the stronger Assumption 7.2.3), we will establish, in addition,
the existence of finite moments.

Before discussing the more general case in Sect. 7.4, we first discuss the scalar
version described by the following equation:

xt+1 = axt + but + wt. (7.2)

As depicted in Fig. 5.5 and generally described in Sect. 5.2.2, our goal is to
stabilize such a system by designing quantization and controller policies, where the
quantizers at a given time map the information to a finite set M.

7.3 Stochastic Stability Analysis for a Scalar System

7.3.1 Adaptive Quantizers and a Zooming Scheme

A general class of quantization policies involves adaptive quantizers: Following the
terminology of Chap. 5, such a quantizer policy picks quantizers whose selection
involves memory. Use of such quantizers is motivated by the following result whose
proof can be found in the appendix.

Theorem 7.3.1. Consider (7.2), with |a| > 1. A fixed quantizer leads to a transient
Markov chain in the sense that Px(τS < ∞) < 1 where for some s > 0, S =
(−∞, s) is an open set containing the origin, x /∈ S and τS := inf(t > 0 : xt ∈ S).

�

Let S be a set of states for a quantizer state s. Let F : S × R → S be a
state update function. An adaptive quantizer may have the following state update
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equations: st+1 = F (Qt(xt), st). Here, Qt is the quantizer applied at time t, xt is
the input to the quantizer Qt, and st is the state of the quantizer. Such a quantizer
is implementable since the updates can be performed at both the encoder and the
decoder.

A particular class of adaptive quantizers has been introduced by Goodman and
Gersho [166]. One such type has the following form (see (5.1) and Fig. 5.1) with
QΔ

K being a uniform quantizer with K + 1 bins and bin size Δ and Q̄ determining
the updates in the bin size of the uniform quantizer as a function of the source and
the current bin size:

qt = QΔt

K (xt), Δt+1 = ΔtQ̂(qt, Δt). (7.3)

Here Δt characterizes the uniform quantizer, as it is the bin size of the quantizer at
time t.

In the analysis, we will consider such adaptive quantizers, whose realizations
will be from a class of uniform quantizers, considered earlier in (5.1). Thus, in this
setting, we modify the description of a traditional uniform quantizer by assigning
the same value when the state is in the overflow region of the quantizer.

The quantizer system is connected over a noiseless channel with a finite capacity
to an estimator (controller) as depicted in Fig. 5.5. The controller has only access
to the information it has received through the channel. The controller in the model
estimates the state and then applies its control action. As such, the problem reduces
to a state estimation problem since (7.2) is controllable. Hence, stability of the
estimation error is equivalent to stability of the state itself.

7.3.2 Stochastic Stability Analysis

In the following, we will consider a discrete noiseless channel with capacity R
(hence with 2R = |M| ∈ Z+).

Theorem 7.3.2 ([419]). Consider an adaptive quantizer applied to the linear
control system described by (7.2), under Assumption 7.2.1. If the noiseless channel
has capacity,

R = log2('|a|+ ε(+ 1),

for some ε > 0, there exists an adaptive quantization policy such that there exists a
compact set S ⊂ R

2 so that with τS = min(t > 0 : xt ∈ S):

sup
(x,Δ)∈S

E[τS |x0 = x] <∞,

which makes S a recurrent set. Furthermore

P(x,Δ)(τS <∞) = 1

for all (x,Δ) pairs visited by the chain. �
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The proof of the theorem can be found in the appendix to the chapter. For the
constructive proof, we consider adaptive quantizers for which the quantizer bins
are updated as follows. The quantizer bin sizes will get enlarged until the state
process hits the granular region of the quantizer, that is, the joint process hits the
set {(xt, Δt) : |ht| ≤ 1}, where

ht = xt/(
K

2
Δt). (7.4)

In this case, the quantizer will be said to be in the perfect-zoom phase. Due to the
effect of the system noise, occasionally the state will be in the overflow region of
the quantizer, leading to an under-zoom phase.

Now, with K = '|a| + ε(, R = log2(K + 1), let us introduce R′ = log2(K).
We will consider the following update rules. For t ≥ 0 and with Δ0 > L for some
L ∈ R+, and x̂0 ∈ R, consider

ut = −a
b
x̂t, x̂t = QΔt

K (xt), Δt+1 = ΔtQ̄(| xt
Δt2R

′−1
|, Δt). (7.5)

If we use δ, ε, α > 0 with α < 1 and L > 0 such that

Q̄(x,Δ) = |a|+ δ if |x| > 1,

Q̄(x,Δ) = α if 0 ≤ |x| ≤ 1, Δ ≥ L,

Q̄(x,Δ) = 1 if 0 ≤ |x| ≤ 1, Δ < L, (7.6)

we will show that a recurrent set exists. We note that the above imply that Δt ≥
Lα =: L′ for all t ≥ 0.

The stability for such a scheme can be established using random-time stochastic
drift conditions. This is because the quantizer helps reduce the uncertainty on the
system state only when the state is in the granular region of the quantizer. The times
when the state is in this region are random stopping times (defined on the filtration
generated by the state and quantizer processes).

The following considers the state space for the quantizer bins to be countable,
leading to irreducibility and consequently positive Harris recurrence. The proof is
given in the appendix.

Theorem 7.3.3 ([419]). Under the setup of Theorem 7.3.2, for the adaptive quan-
tizer in (7.5), if the quantizer bin sizes are such that their (base−2) logarithms are
integer multiples of some scalar s and log2(Q̄(·, ·)) take values in integer multiples
of s where the integers taken are relatively prime (i.e., they share no common
divisors except for 1), then the process {(xt, Δt)} is a positive (Harris) recurrent
Markov chain (and has a unique invariant distribution). �
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The following results are on moment stability, whose proofs can be found in the
appendix. Note that more restrictive assumptions (Assumptions 7.2.2 and 7.2.3) are
imposed on the tail distribution of the i.i.d. noise process {wt}.

Theorem 7.3.4 ([419]). Under the setups of Theorem 7.3.2, Theorem 7.3.3, and
Assumption 7.2.3, it follows that limt→∞E[x2t ] < ∞, and this limit is independent
of the initial state of the system. Furthermore, limt→∞ E[Δ2

t ] <∞. �

This result also holds under Assumption 7.2.2 with essentially the same argu-
ments as in the proof of Theorem 7.3.4. A proof sketch is presented in the appendix.

Theorem 7.3.5 ([209]). Under the setups of Theorem 7.3.2, Theorem 7.3.3 and
Assumption 7.2.2, it follows that limt→∞E[x2t ] < ∞, and this limit is independent
of the initial state of the system. Furthermore, limt→∞ E[Δ2

t ] <∞. �

We also have the following.

Theorem 7.3.6. Let the assumptions of Theorem 7.3.3 and Assumption 7.2.3 hold.
In addition, assume that

|a|m
( 1

(2R − 1)m

)
< 1,

for some m ∈ N. Then, with the adaptive quantization policy (7.6) and initial
condition (x0, Δ0), we have

lim
t→∞

E[|xt|m] = Eπ [|x0|m] <∞ .

�

7.3.3 Application of the Theory of Random-time
State-dependent Stochastic Drift

We now make explicit the connection with the general theory for random-time
stochastic drift introduced in Chap. 6. The Markov chain considered is (xt, Δt)
(see Lemma 7.6.1).

Figure 7.1 provides some intuition on the construction of stopping times and
the Lyapunov functions, where ht = xt/(2

R′−1Δt) was introduced in (7.4). The
arrows shown in the figure denote the mean one-step increments of (xt, ht). That is,
the arrow ν with base at (x, h) is defined by

ν = E[(xt+1, ht+1)− (xt, ht) | (xt, ht) = (x, h)].

With F > 0 fixed and with F ′ = F2−(R′−1), two sets are used to define the small
set in the drift criteria: Cx = {x : |x| ≤ F} for F > 0 and CΔ = {Δ : Δ ≤ F ′}.
Let Ch = {h : |h| ≤ 1}, and assume that F > 0 is chosen sufficiently large so that
(xt, Δt) ∈ Cx × CΔ whenever (xt, ht) ∈ Cx × Ch. When xt is outside Cx and ht
outside Ch (the under-zoomed phase of the quantizer), there is a drift of ht toward
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Fig. 7.1 Drift in the Markov Process. When under-zoomed, the error increases on average and the
quantizer zooms out; when perfectly zoomed, the error decreases and the quantizer zooms in

Ch. When the process xt reaches Ch (the perfectly zoomed phase of the quantizer),
then the process drifts toward Cx.

In the model considered, the controller can receive meaningful information
regarding the state of the system when the source lies in the granular region of
the quantizer, that is, xt ∈ [− 1

2KΔt,
1
2KΔt].

The times at which these events occur form an increasing sequence of stopping
times. We will apply the drift criteria presented in Sect. 6.2.3 for these random
stopping times. In particular, we define the sequence of stopping times as

τ0 = 0, τz+1 = inf{k > τz : |hk| ≤ 1}, z ∈ N. (7.7)

These are the times when information reaches the controller regarding the value
of the state when the state is in the granular region of the quantizer.

Using this construction of stopping times, we will find appropriate Lyapunov
functions (such as V (x,Δ) = log(Δ2) and V (x,Δ) = Δ2) and drift functions
which will lead to stationarity as well as finite moments for the Markov process
{(xt, ht)} through the satisfaction of special instances of Theorem 6.2.4. See the
appendix for details.

7.3.4 Simulation

For a simulation study, we consider a linear system with the following dynamics:

xt+1 = 2.2xt + ut + wt,
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Fig. 7.2 Sample path for a stochastically stable quantizer. The variables picked are as follows:
L′ = 1, ε = 0.3, δ = 0.25, η = 0.02

where {wt} are i.i.d., zero-mean Gaussian with variance 1. We use the zooming
quantizer with rate log2(4) = 2, since 4 is the smallest integer larger than or equal
to '2.2(+ 1. We have taken L′ = 1. Figure 7.2 corroborates the stochastic stability
result, by showing the under-zoomed and perfectly zoomed phases, with the peaks
in the plots showing the under-zoom phases.

7.4 The Multidimensional Case

The scheme proposed in the previous section is also applicable to the multidimen-
sional setup. Let us revisit (7.1), where xt ∈ R

n is the state at time t, ut ∈ R
m

is the control action, and {wt} is a sequence of i.i.d. Rn-valued zero-mean random
variables satisfying Assumption 7.2.2. HereA is the system matrix with at least one
eigenvalue greater than 1 in magnitude, that is, the system is open-loop unstable.
We also assume at this point that the eigenvalues are real.

Without any loss of generality, we assume A to be in Jordan form. Because
of this, we allow wt to have correlated components, that is, the correlation
matrix E[wtw

T
t ] is not necessarily diagonal. We may also assume that (A,B) is

controllable, and for ease in presentation we assume that B is invertible mainly to
make the stopping time analysis easier to pursue (if B is not invertible, the sampled
system can be made to have an invertible control matrix, with a periodic scheme of
period at most n).
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Stabilizability for the diagonalizable case immediately follows from the dis-
cussion for scalar systems, since the analysis for the scalar case is applicable
to each of the subsystems along the eigenvectors. The possibly correlated noise
components will lead to the recurrence analysis discussed earlier. For such a setup,
the stopping times can be arranged to be identical for each mode, for the case
when the quantizer captures all the state components. Once this is satisfied, the
drift conditions will be obtained. The non-diagonalizable Jordan case, however, is
more involved. The approach for the scalar system still applies, but it needs to be
appropriately generalized.

We now make this discussion more precise. One can consider two approaches for
stabilization of a multidimensional system. We first discuss one approach which we
will refer to as the block-coding approach.

Consider the following system:

[
x1t+1

x2t+1

]
=

[
λ 1

0 λ

] [
x1t
x2t

]
+B

[
u1t
u2t

]
+

[
w1

t

w2
t

]
. (7.8)

The approach entails quantizing the components in the system according to the
adaptive quantization rule provided earlier, that is, we modify the scheme in (7.5)
as follows: For i = 1, 2, let R′ = R′

i = log2(2
Ri − 1) = log2(Ki) (i.e., the same

rate is used for quantizing the components with the same eigenvalue). For t ≥ 0 and
with Δ1

0, Δ
2
0 ∈ R, consider

ut = −B−1Ax̂t,

[
x̂1t
x̂2t

]
=

[
Q

Δ1
t

K1
(x1t )

Q
Δ2

t

K2
(x2t )

]
, (7.9)

Δ1
t+1 = Δ1

t Q̄(|h1t |, |h2t |, Δ1
t ), Δ2

t+1 = Δ2
t Q̄(|h1t |, |h2t |, Δ2

t ), (7.10)

with, for i = 1, 2, δi, εi, ηi > 0, ηi < εi and Li > 0 such that

Q̄(x, y,Δ) = |λ|+ δi if |x| > 1, or |y| > 1,

Q̄(x, y,Δ) =
|λ|

2R
′
i − ηi

if 0 ≤ |x| ≤ 1, |y| ≤ 1, Δi > Li,

Q̄(x, y,Δ) = 1 if 0 ≤ |x| ≤ 1, |y| ≤ 1, Δi ≤ Li.

Note that the above imply that Δi
t ≥ Li |λ|

2R
′
i−ηi

=: L′i. We also assume that for

some sufficiently large ηΔ, Δ1
0 = ηΔΔ

2
0, which leads to the result that Δ1

t = ηΔΔ
2
t

for all t ≥ 0. See Fig. 7.3 for a depiction of the quantizer used at a particular time.
Instead of (7.7), the sequence of stopping times is now defined as follows:

τ0 = 0, τz+1 = inf{k > τz : |hik| ≤ 1, i ∈ {1, 2, . . . , n}}, z ∈ Z+,
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Fig. 7.3 A uniform vector quantizer. There is a single overflow bin

where hit =
xi
t

Δi
t2

R′
i
−1

. Here Δi is the bin size of the quantizer in the direction of the

eigenvector xi, with rate R′
i.

With this approach, the drift criterion applies almost identically as it does for the
scalar case. The extensions of Theorems 7.3.2, 7.3.3, and 7.3.4 are then immediate.

We thus have the following result. The proof for a single Jordan block with real
eigenvalues is in the appendix. The extension to multiple Jordan blocks as well
as systems having complex eigenvalues in the real Jordan canonical form follows
from similar arguments by coupling the modes having complex conjugate pairs in a
single vector quantizer through the establishment of a geometric measure bounding
(majorizing) the probability measure of a subsequent stopping time.

Theorem 7.4.1 ([209]). Consider the multidimensional system (7.1). If the average
rate satisfies

R >
∑

|λi|>1

log2(|λi|),

there exists a stabilizing scheme leading to a Markov chain with a bounded second
moment in the sense that lim supt→∞E[|xt|22] <∞. �

Proof. See Sect. 7.6.7. ��

Remark 7.4.1. In an alternative scheme, one could consider an approach that we call
sequential stabilization of the scalar components: We could adopt a lower to upper
sequential approach, considering stabilized modes at particular stopping times as
noise with a finite moment. Using an inductive argument, one can first start with
the lowest mode (in the matrix diagonal) of the system and stabilize that mode so
that there is a finite invariant second moment of the state. We can then view this
mode as a second-order disturbance for the one upper mode and obtain conditions
for stabilizability for this mode, by employing the same approach, since the lower
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mode is a positive Harris recurrent Markov process. We note that the random process
for the upper mode might not have Markov dynamics for its marginal, but the
joint system consisting of all modes and quantizer parameters will be Markov.
Furthermore, the lower modes, viewed as noise, will no longer be independent from
the state process. For example, the effective disturbance affecting the stochastic
evolution of a repeated mode is no longer Gaussian. However appropriate moment
bounds (such as Jensen’s and Hölder’s inequality) can be applied to carry out the
analysis. Such a sequential stabilization approach will be adopted for noise-free
multi-sensor systems in Chap. 9 and for Gaussian channels in Chap. 11. �

7.5 The Partially Observed Case

The results in the previous sections have direct counterparts in the partially observed
case, where along with (7.1), we have the measurement equation

yt = Cxt + vt. (7.11)

Here, (A,C) is observable and the noise terms {wt}, {vt} are i.i.d, mutually
independent, and Gaussian. The encoder can run an observer, which is given by
a Kalman filter. In Appendix D.2 we discuss the reduction to a fully observed model
in further detail.

Suppose that E[wtw
T
t ] =W > 0 and E[vtv

T
t ] = V > 0. We let

mt := E[xt|y[0,t−1], u[0,t−1]],

Σt|t−1 := E[(xt −mt)(xt −mt)
T |y[0,t−1], u[0,t−1]].

Introduce m̃t = E[xt|y[0,t], u[0,t−1]]. In Appendix D.2, we show that

m̃t = mt +Σt|t−1C
T (CΣt|t−1C

T + V )−1(yt − Cmt),

or

m̃t = Am̃t−1 +Σt|t−1C
T (CΣt|t−1C

T + V )−1(CA(xt−1 − m̃t−1) + vt)

Σt+1|t = AΣt|t−1A
T +W − (AΣt|t−1C

T )(CΣt|t−1C
T + V )−1(CΣt|t−1A

T )

(7.12)

with Σ0|−1 = E[x0x
′
0]. The zero-mean variable xt − m̃t is orthogonal to It =

{y[0,t], u[0,t−1]}, in the sense that the error is independent of the information
available at the encoder: given the control actions, the information available at the
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encoder with regard to the state is Gaussian for all time stages, and consequently
independence and orthogonality of xt − m̃t and It are equivalent.

Then, m̃t is a fully observed system driven by an independent (but not identical)
Gaussian noise process. Asymptotically, however, the independent noise process
converges (in total variation) to a stationary distribution since Σt|t−1 converges to a
constant matrix under the setup considered. The stability analysis for (7.1) can then
be applied for (7.12) given the uniform bounds on the noise variances, in view of the
convergence argument. Hence, the state process hits a compact set infinitely often,
and the state moments are uniformly bounded. As a result, we have the following.

Theorem 7.5.1 ([209]). Consider the partially observed multidimensional system
(7.1)–(7.11). If the average rate satisfies

R >
∑

|λi|>1

log2(|λi|),

there exists a stabilizing scheme leading to a Markov chain with a bounded second
moment in the sense that lim supt→∞E[|xt|2] <∞. �

Remark 7.5.1. The discussions here and in Sect. 7.4 apply to multi-sensor settings
using a quantizer construction similar to that in Sect. 7.4. In this case, the state space
is partitioned based on the observable modes at different sensors and coordination
among the quantizers for each sensor is established with limited information
exchange. In Sect. 9.6.1, this setup is discussed. �

7.6 Appendix: Proofs

7.6.1 Proof of Theorem 7.3.1

We provide a proof for the case a > 1; a similar line of argument applies for a < −1.
Suppose that |ut| ≤ U for some finite U . Let a Lyapunov function be picked as
V (x) = γ−x, defined for positive x and with γ > 1. Define a process x̃t+1 =
āx̃t + wt, where wt is almost surely the same noise process acting on the original
system and a > ā > 1 with x0 = x̃0. It follows that xt ≥ x̃t for t ≥ 1 almost
surely if the initial condition is greater than U/(a − ā). Let us pick such an initial
condition. Observe that for all x̃ > U/(a − ā), E[V (x̃t+1)|x̃t = x̃] ≤ V (x̃), since
E[γ−(āx̃+wt)] = γ−āx̃E[γ−w]. For all x̃ ∈ {x̃ : γ(ā−1)x̃ > E[γ−w]} =: SC

(where SC = R \ S) the Lyapunov condition (6.6) in Theorem 6.2.8 holds. Since
the function V is strictly decreasing, Px̃(τS < ∞) < 1 for x̃ ∈ SC . This implies
that Px(τS <∞) < 1 for the original chain. ��
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7.6.2 Proof of Theorem 7.3.2

Toward the proof, we will first derive a supporting result.

Lemma 7.6.1. Let B(R× R+) denote the Borel σ−field on R× R+. Then,

P

(
(xt, Δt) ∈ (C ×D)|(xt−1, Δt−1), . . . , (x0, Δ0)

)

= P

(
(xt, Δt) ∈ (C ×D)|(xt−1, Δt−1)

)
,

∀(C ×D) ∈ B(R× R+), i.e., (xt, Δt) is a Markov chain. �

Proof. We observe that xt+1 = axt − ax̂t + wt and x̂t+1 = QΔt

K (xt+1). Thus,

P

(
(xt, Δt) ∈ (C ×D)|(xt−1, Δt−1), . . . , (x0, Δ0)

)

= P

(
xt ∈ C|(Δt ∈ D, xt−1, Δt−1), . . . , (x0, Δ0)

)

×P
(
Δt ∈ D|(xt−1, Δt−1), . . . , (x0, Δ0)

)

= P

(
xt ∈ C|(xt−1, Δt−1)

)
P

(
Δt ∈ D|(xt−1, Δt−1)

)

= P

(
(xt, Δt) ∈ (C ×D)|(xt−1, Δt−1)

)
.

The equations above follow from the update equations in the quantizer (7.5). ��

Let us define ht := xt

Δt2R
′−1 . Consider the following sets: Cx = {x : |x| ≤

E}, Ch = {h : |h| ≤ 1}, with E1 = 2R
′−1L′. Further, let another set be

C′
x = {x : |x| ≤ F}, with a sufficiently large F value, to be derived below. We will

study the expected number of time stages between visits of {(xt, ht)} to C′
x × Ch.

We first show that the sequence {ht, t ≥ 0} visits Ch infinitely often with
probability 1 and the expected length of the excursion is uniformly bounded over
all possible values of (x, h) ∈ C′

x × Ch. Let V (ht) = h2t serve as a Lyapunov
function. Define a sequence of stopping times for the perfect-zoom case with (where
the initial state is perfectly zoomed)

τ0 = 0, τz+1 = inf{k > τz : |hk| ≤ 1}, z ∈ Z+.
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We have that if |ht| > 1 (under-zoomed),E[h2t+1|ht, xt] ≤
(a2+

E[w2
1]

|xt|2
)

(a+δ)2 (ht)
2. Since

when |ht| > 1, we have that |xt| > 2R
′−1Lα, it follows that

E[h2t+1|ht, xt] ≤ (
a2 +

E[w2
1 ]

E2
1

(a+ δ)2
)(ht)

2.

If |ht| ≤ 1, then

E[h2t+1] ≤
a2 (Δt)

2

4 + E[w2
1 ]

(Δt2R
′−1)2

(
1

α
)2 ≤

a2 L′2
4 + E[w2

1 ]

(L′2R′−1)2
(
1

α
)2 =: K1,

where L′ = L |a|
|a|+ε−η (this is a lower bound on Δt). Hence, it follows that

E[h2t+1 − h2t |ht, xt] ≤ −ρh2t +K11{|ht|≤1}, (7.13)

where 1U is the indicator function for event U with ρ = 1 − (a2+
E[w2

1]

E2 )

(a+δ)2 . Since for

A,B > 0, A2 +B2 ≤ (A+B)2 it follows that letting L′ such that
√

E[w2
t ]

L′2R′−1 < δ

will ensure ρ > 0. Now, let us define K ′
1 := K1 + 1, M0 := V (h0), and for t ≥ 1,

Mt := V (ht)−
t−1∑
i=0

(−ρ+K ′
11{hi∈Ch}).

Define a stopping time: τN = min(N,min{i > 0 : V (hi) + ρt ≥ N},min{i >
0 : V (hi) ≤ 1}). Since, E[Mt+1|(xs, hs), s ≤ t] ≤ Mt, ∀t ≥ 0, it follows
that {Mt} is a supermartingale sequence. The stopping time τN is bounded and
the supermartingale sequence is integrable for t ≤ τN . Hence, we have, by the
Martingale Optional Sampling Theorem (see Appendix C.2): E[M(τN )] ≤ E[M0].

Thus, we obtain E[
∑τN−1

i=0 ρ] ≤ V (h0) + K ′
1E[

∑τN−1
i=0 1{hi∈Ch}], leading to

ρE[τN − 1 + 1] ≤ V (h0) +K ′
1, and by the monotone convergence theorem,

ρ lim
N→∞

E[τN ] = ρE[τ ] ≤ V (h0) +K ′
1 ≤ 1 +K ′

1,

E[τz+1 − τz] ≤ (1 +K ′
1)/ρ, (7.14)

uniformly for hτz ∈ Ch. The above also indicates that if the initial condition is not
zoomed, in finite time the process will reach a perfectly zoomed state almost surely.
By the strong Markov property (xτz , hτz) is also a Markov chain as {τz < n} ∈ Fn,
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the filtration generated by the quantizer state and the quantizer output at time n. The
probability that τz+1 	= τz + 1 is upper bounded by

P

(
{|a|Δτz/2 + wτz ≥ (2R

′−1)Δτz

1

α
}

⋃
{−|a|Δτz/2 + wτz ≤ −(2R

′−1)Δτz

1

α
}
)

= P

(
(wτz)

2 > (
Δτz

2
(
2R

′

α
− |a|))2

)

=: Pe(Δτz). (7.15)

If τz+1 	= τz + 1, this means that the error is increasing on the average and the
system is once again under-zoomed at time t = τz + 1: xτz+1 = axτz + wτz

with Δτz+1 = |a|
|a|+ε−ηΔτz (when Δτz ≥ L). With some positive probability, the

quantizer will still be in the perfect zoom phase: τz+1 = τz+1. In case perfect-zoom
is lost, there is a uniform bound on when the zoom is expected to be recovered. It
follows that, conditioned on increment in the error, until the next stopping time, the
process will increase exponentially, and hence

xτz+1 = aτz+1−τz(xτz +

τz+1−τz−1∑
t=0

a−t−1wt+τz).

We now show that there exist ψ > 0, |G| <∞ such that

E[log(Δ2
τz+1

)|Δτz , hτz ] ≤ log(Δ2
τz )− ψ +G1{|Δτz |≤F}. (7.16)

Now, it follows that

E[log(Δ2
τz+1

)|Δτz , hτz ]

≤ (1− Pe(Δτz ))

(
2 log(α) + log(Δ2

τz)

)

+Pe(Δτz)E

[
2(τz+1 − τz) log(|a|+ δ) + 2 log(Δτz )

]
.

We now proceed to further upper bound E[log(Δ2
τz+1

)|Δτz , hτz ]. Toward this end,
we have

P

(
d2τz > (

Δτz

2
(
2R

′

α
− |a|))2

)
≤

E[d2τz ]

(
Δτz

2 (2
R′
α − |a|))2

≤
E[d2τz ]

(K2Δτz )
2
,
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where we have used Markov’s inequality, withK2 = (12 (
2R

′

α −|a|)). It then follows

that Pe(Δτz) ≤ E[d2
τz

]

(K2Δτz )
2 . Given the uniform bound in (7.14), for (7.16) to hold,

it suffices that the following equation is satisfied for large enough Δτz values, for
some ψ > 0:

Pe(Δτz )

{
(2(1 +K ′

1)/ρ) log(|a|+ δ)

}
+ 2 log(α) ≤ −ψ < 0. (7.17)

Thus, we have

E[log(Δ2
τz+1

)|Δτz , hτz ] ≤ log(Δ2
τz)− ψ +G1{|Δτz |≤F ′},

with

F ′ =

√
E[w2

1 ]
√
(2(1 +K ′

1)/ρ) log(|a|+ δ)

K2

√
−ψ − 2 log(α)

,

and G = 2 log(F ′) + 2((1 + K ′
1)/ρ) log(|a| + δ) + ψ. Hence, we have obtained

another drift condition for the sampled Markov chain.
Together with (7.14), this leads to, by Theorem 6.2.6 (which follows from

Theorem 6.2.4 and Corollary 6.2.1, except the irreducibility condition), the fol-
lowing result: The newly constructed process Δτz hits the set {Δt : |Δt| ≤ F ′}
infinitely often with finite expected return time. This is equivalent to xτz hitting the
set C′

x = {x : |x| ≤ F := 2R
′−1F ′} with finite expected return time.

In the above, we assumed that the initial state is perfectly zoomed. If the initial
condition is not in a perfect-zoom phase, with probability 1, in finite time the state
process will move to this phase by (7.13) and the subsequent discussion. ��

7.6.3 Proof of Theorem 7.3.3

Before proceeding further, let us first recall the following.

Lemma 7.6.2 (Bézout’s Lemma). [12] Let Ã ∈ N, B̃ ∈ N. Let I be the set of all
integers that can be obtained by summing positive integer multiples of elements in
{−Ã, B̃}. If Ã, B̃ are relatively prime, then I = Z, that is, I is the set of all integers.
If r is the greatest common divisor of {−Ã, B̃}, then I contains integer multiples
of r. �

We now show that the set of admissible quantizers forms a communication class
under the hypothesis of the theorem: Since we have Δt+1 = Q̄(| xt

Δt2R
′−1 |, Δt)Δt,

it follows that

log2(Δt+1)/s = log2(Q̄(| xt
Δt2R

′−1
|), Δt)/s+ log2(Δt)/s

is also an integer. Furthermore, since the source process xt is Lebesgue-irreducible
(as the system noise admits a probability density function with positive mass on



204 7 Stochastic Stabilization Over Noiseless Channels

every nonempty open set) and there is a uniform lower bound L′ on bin sizes, the
error process takes values in any of the admissible quantizer bins with nonzero
probability. Let the values taken by log2(Q̄(| xt

Δt2R
′−1 |, Δt))/s be {−Ã, 0, B̃},

with Ã, B̃ relatively prime. Thus, for all l, k ∈ Z+, l, k ≥ log2(L
′)

s , there exist
NA, NB ∈ Z+ such that l − k = −NAÃ+NBB̃.

Consider two integers k, l ≥ log2(L
′)

s . In particular, if at time 0, the quantizer is
perfectly zoomed and Δ0 = 2sk, then there exists a sequence of events consisting
of NB̃ zoom-out events and NÃ zoom-in events taking place with nonzero values.

Consider first the case where k > log2(L
′)

s +NAÃ. We show that the probability
of NA occurrences of perfect zoom and NB occurrences of under-zoom phases is
bounded away from zero. This set of occurrences includes the event that in the first
NA time stages perfect zoom occurs and later, successively, NB times the under-
zoom phase occurs. The probability of the first sequence is lower bounded by

(
P (wt ∈ [−(α2R

′
− |a|)Δt/2, (α2

R′
− |a|)Δt/2])

)NA

.

The probability of the second sequence is lower bounded by the product of an under-
zoom event, lower bounded by

P (xt ∈ (α2R
′−1Δt/2, α2

R′−1Δt/2 + S])

with Δt = 2sk, for some S > 0, which is lower bounded by

P

(
wt ∈ ((α2R

′
+ |a|)Δt/2 +Δt/2, (α2

R′ − |a|)Δt/2 +Δt/2 + S)

)NA

and the product of a sequence of under-zoom events, each lower bounded by

P

(
xt ∈ (α2R

′−1Δt/2, α2
R′−1Δt/2 + S]

∣∣∣∣xt−1 ∈ (α2R
′−1Δt−1/2, α2

R′−1Δt−1/2 + S]

)
. (7.18)

Hence, the probability of the sequence of under-zoom events is lower bounded
by (with ΔNA = 2sk ):

NB∏
n=1

P

(
wNA+n ∈

(
(|a|+ δ)nΔNA + |a|((|a|+ δ)n−1ΔNA2

R′−1 + S),

(|a|+δ)nΔNA+|a|((|a|+ δ)n−1ΔNA2
R′−1 + S) + S

))

×P (w1 ∈ ((α2R
′
+ |a|)ΔNA/2 +ΔNA/2]), (α2

R′ − |a|)ΔNA/2+ΔNA/2)+S)

> 0. (7.19)
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A similar analysis can be performed when k < log2(L
′)

s +NAA, by considering
a sequence of events where periodically zoom-out and zoom-in events occur (this is
useful for obtaining a nonzero lower bound on the events of perfect-zoom phases,
once the state is under-zoomed) and finally, zoom-out events occur leading to a
non-zero probability for the events. As such, for any two integers k, l and for some
p > 0, P (log2(Δt+p) = ls| log2(Δt) = ks) > 0.

Now, for some probability measure K on positive integers, E ⊂ R, and Δ an
admissible bin size,

∑
n∈N+

K(n)P

(
(xn, Δn) ∈ (E × {Δ})

∣∣∣x0, Δ0

)
≥ KΔ0,Δψ(E,Δ).

Here KΔ0,Δ, denoting a lower bound on the probability of visiting Δ from Δ0 in
some finite time, is nonzero by (7.19) and ψ is a function to be further discussed
below.

Let t > 0 be the time stage for which Δt = Δ and thus by the construction in
(7.19) and with |ht−1| ≤ 1: |axt−1 + but−1| ≤ |a|Δt−1/2 = Δt

|a|/(2R′−η)
. Thus, it

follows that, for A1, B1 ∈ R, A1 < B1,

P

(
xt ∈ [A1, B1]

∣∣∣∣|axt−1 + but−1| ≤ |a|Δt−1/2, Δt−1

)

= P

(
wt−1 ∈ [A1 − (axt−1 + but−1), B1 − (axt−1 + but−1)]

∣∣∣∣|axt−1 + but−1| ≤ |a|Δt−1/2, Δt−1

)

≥ min

(
P (wt−1 ∈ [A1 −

Δ

2
(|a|/α), B1 −

Δ

2
(|a|/α)],

P (wt−1 ∈ [A1 +
Δ

2
(|a|/α), B1 +

Δ

2
(|a|/α)]

)
> 0.

(7.20)

Define the finite set C′
Δ := {Δ : L′ ≤ |Δ| ≤ F ′, log2(Δ)

s ∈ N}. We now
show that the recurrent set Cx × C′

Δ is petite and hence small. We note that under
aperiodicity and irreducibility (see Appendix C), every petite set is small and we
will establish aperiodicity toward the end of the proof.

Now, the chain satisfies the recurrence property that P(x,Δ)(τCx×C′
Δ
< ∞) =

1 for any admissible (x,Δ). This follows from (7.13) and the drift conditions in
(7.16). Once a state which is perfectly zoomed, that is, satisfying |xt| ≤ 2R

′−1Δt,
is visited, the stopping time analysis can be used to verify that from any initial
condition the recurrent set is visited in finite time with probability 1. In view of
(7.19), we have that the chain is irreducible.
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To establish petiteness, we establish the following uniform countable additivity
condition (see Sect. C.1): Now, the set Cx × C′

Δ satisfies (C.2), since for any given
bin size Δ′ in the countable space constructed above, we have that

lim
n→∞

sup
(x,Δ)∈Cx×C′

Δ

P ((xt+1, Δt+1) ∈ (Bn ×Δ′)|xt = x,Δt = Δ)

= lim
n→∞

sup
(x,Δ)∈Cx×C′

Δ

P ((ax+ but + wt, Δt+1) ∈ (Bn ×Δ′)|xt = x,Δt = Δ)

= lim
n→∞

sup
(x,Δ)∈Cx×C′

Δ

P

(
(wt, Δt+1) ∈

(
(Bn − (ax+ but))×Δ′

)

∣∣∣∣xt = x,Δt = Δ

)

= 0. (7.21)

This follows from the fact that the Gaussian random variable w1 satisfies

lim
n→∞

sup
An

P (w1 ∈ An) = 0,

for any sequence An ↓ ∅, since a Gaussian measure admits a uniformly bounded
density function.

If the integers Ã, B̃ are relatively prime, then by Lemma 7.6.2, the communica-
tion class will form the set of integers except those leading to Δ ≤ L′. We finally
show that the Markov chain is aperiodic. This follows from the fact that the smallest
admissible state for the quantizer,Δ∗ = L′, can be visited in subsequent time stages
with non-zero probability, since

min
|x|≤Δ∗/2

P (wt ∈ [−2R
′−1Δ∗ − x, 2R

′−1Δ∗ − x]) > 0.

Now, we can connect these results with Theorem 7.3.2, Theorem 6.2.4, and
Corollary 6.2.1 and establish the positive Harris recurrence property for the chain
and the existence of a unique invariant probability measure. ��

7.6.4 Proof of Theorem 7.3.4

Toward the proof, we state a number of supporting results:

Lemma 7.6.3. Let z = 0, τz = 0 and τ1 = τz+1 − τz . It follows that, for k ∈ Z+,

P (τ1 > k|x0, Δ0) ≤ Ce−((ζk−1N−1/2)Δ0)
2/(2σ′2),
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uniformly for |h0| ≤ 1 with

σ′2 =
E[w2

1 ]

1− |a|−2
, ζ =

|a|+ δ

|a| , N = (2R
′−1 α

|a| ),

C = σ′ 2√
2π(2N − 1)Δ0/2

.

�

Proof. LetP denote the probability conditioned on x0, Δ0. It follows that for k ≥ 1,

P (τ1 > k)

= P

( k⋂
t=1

{xt /∈ [−(|a|+ δ)t−12R
′−1αΔ0, 2

R′−1(|a|+ δ)t−1αΔ0]}
)

≤ P

(
xk /∈ [−(|a|+ δ)k−12R

′−1αΔ0, 2
R′−1(|a|+ δ)k−1αΔ0]

)
(7.22)

= P

(
ak(x0 + (b/a)u0 +

k−1∑
i=0

a−i−1wi)

/∈ [−(|a|+ δ)k−12R
′−1αΔ0, 2

R′−1(a+ δ)k−1αΔ0]

)

= P

(
(x0 + (b/a)u0 +

k−1∑
i=0

a−i−1wi)

/∈ [−(
|a|+ δ

|a| )k−12R
′−1 α

|a|Δ0, 2
R′−1(

|a|+ δ

|a| )k−1 α

|a|Δ0]

)

≤ 2P

( k−1∑
i=0

a−i−1wi ≥ (2R
′−1(

|a|+ δ

|a| )k−1 α

|a| − 1/2)Δ0

)
(7.23)

≤ Ce−((ζk−1N−1/2)Δ0)
2/(2σ′2), (7.24)

uniformly over |h0| ≤ 1 with σ′2, ζ, N and C as defined in the statement of the
lemma. Here, (7.22) follows from the chain property of a probability measure, (7.23)
follows from the fact that |ax0+bu0| ≤ |a|Δ0/2, since the state is perfectly zoomed
at time 0. Inequality (7.24) follows by bounding the complementary error function:
For u > 0:

∫∞
u
μ(dx) ≤

∫
u

x
uμ(dx), μ(.) being the Gaussian measure. ��

Now, since a decaying exponential decays faster than a polynomial and the bound
above is decreasing in Δ0, there exists an M < ∞ such that, with r > (|a| + δ)2,
and for all Δ0 ≥ L′,

P (τ1 = k) < Ce−((ζk−2N−1/2)Δ0)
2/(2σ′2) ≤Mr−k, ∀k ∈ Z+. (7.25)
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Lemma 7.6.4. If for some γ > 0, b <∞, the following holds:

γE[

τ1−1∑
k=0

Δ2
k|x0, Δ0] ≤ Δ2

0 − E[Δ2
τ1 |x0, Δ0] + b1{(Δ0,h0)∈(C′

x×Ch)},

then limt→∞E[Δ2
t |x0, Δ0] <∞. �

The proof of this result follows from Theorem 6.2.4. Let us now note that (with a
simple bounding argument in the last inequality)

E[

τ1−1∑
t=0

Δ2
t |x0, Δ0] =

∞∑
l=1

P (τ1 = l)

l−1∑
k=0

E[Δ2
k|τ1 = l, x0, Δ0]

≤ Δ2
0

∞∑
l=1

P (τ1 = l)
l−1∑
k=0

(|a|+ δ)2k

≤ Δ2
0

( ∞∑
l=1

M(r−l)
(|a|+ δ)2l − 1

(|a|+ δ)2 − 1

)

≤MΔ2
0

(
1

1− r−1(|a|+ δ)2
− 1

1− r−1

)
1

(|a|+ δ)2 − 1
.

Toward obtaining a bound on E[Δ2
τ1 |x0, Δ0],

E[Δ2
τ1 |x0, Δ0]

= P (τ1 = 1)E[Δ2
τ1 |τ1 = 1, x0, Δ0] + P (τ1 > 1)E[Δ2

τ1 |τ1 > 1, x0, Δ0]

≤ P (τ1 = 1)Δ2
0(

|a|
|a|+ ε− η

)2 + P (τ1 > 1)

∞∑
k=2

P (τ1 = k)E[Δ2
k|τ1=k, x0, Δ0]

≤ P (τ1 = 1)Δ2
0(

|a|
|a|+ ε− η

)2 + P (τ1 > 1)

∞∑
k=2

Mr−k(|a|+ δ)2kΔ2
0

≤ P (τ1 = 1)Δ2
0(

|a|
|a|+ ε− η

)2

+P (τ1 > 1)M((|a|+ δ)2r−1)2
Δ2

0

1− r−1(|a|+ δ)2
.

Thus, we require, for some γ > 0, and sufficiently large Δ0

(
P (τ1 = 1)Δ2

0α
2 + P (τ1 > 1)M((|a|+ δ)2r−1)2

Δ2
0

1− r−1(|a|+ δ)2

)

< −γMΔ2
0

(
(

1

1− r−1(|a|+ δ)2
− 1

1− r−1
)

1

(|a|+ δ)2 − 1

)
+Δ2

0.
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Since limΔ0→∞ P (τ1 > 1) = 0, by (7.17): Pe(Δτz ) ≤ E[d2τz ]/(K2Δτz)
2, for

some sufficiently small γ, say,

γ <
(1− α2)(

M( 1
1−r−1(|a|+δ)2 − 1

1−r−1 )
1

(|a|+δ)2−1

) ,

the desired stability result follows for {Δt}, that is, limt→∞E[Δ2
t |x0, Δ0] < ∞.

We now have the final result:

Lemma 7.6.5. If R > log2('|a|+ ε(+ 1), then limt→∞E[x2t |x0, Δ0] <∞. �

Proof. First we observe that for some κ > 0,

κE[

τ1−1∑
t=0

x2t |x0, Δ0] ≤ (22(R
′−1))Δ2

0.

To see this, note that

E

[ τ1−1∑
t=0

|xt|2
∣∣∣ x0, Δ0

]
= E

[ ∞∑
t=0

1{t<τ1}|xt|2
∣∣∣ x0, Δ0

]

≤
∞∑
t=0

(
E[(1{t<τ1})

1+χ|x0, Δ0]

) 1
1+χ

(
E[|xt|2(

1+χ
χ )|x0, Δ0]

) χ
1+χ

, (7.26)

for some χ > 0, by Hölder’s inequality. Now, E[|xt|2(
1+χ
χ )|x0, Δ0] = E[|at(x0 +

(
∑t−1

i=0 a
−i−1wi))|2(

1+χ
χ )] ≤ B2(Δ

2
02

2(R′−1))
1+χ
χ |a|2t(

1+χ
χ ) for some B2 < ∞.

Here, we use the fact the random variable (h0 +
∑∞

i=0 a−i−1wi

2R′−1Δ0
) has a Gaussian

distribution, with its expected fixed moments uniform on Δ0 ≥ L′. Thus,

E[

τ1−1∑
t=0

|xt|2|x0, Δ0]≤(Δ2
02

2(R′−1))
∞∑
t=0

(
P (τ1≥t+1|x0, Δ0)

) 1
1+χ

(
B

χ
1+χ

2 |a|2t
)

< ζB2 (2
R′−1Δ0)

2,

for ζB2 <∞.
Hence, for some ε > 0, by taking

δ(x,Δ) = εΔ2, f(x,Δ) =
ε

ζL22
2(R′−1)

x2,

C a compact set and V2(x,Δ) = Δ2, Theorem 6.2.4 applies and
limt→∞ E[x2t ]<∞. ��
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Thus, with R > log2('|a| + ε( + 1), stability with a finite second moment is
achieved. Finally, the limit is independent of the initial distribution since the chain
is irreducible, by Theorem 7.3.3. This completes the proof of the theorem. ��

7.6.5 Proof of Theorem 7.3.5

Proof follows from essentially the same steps as in the proof of Theorem 7.3.4.
With τz as defined, we can obtain the following for k > 1:

P (τ1 > k)

= P

( k⋂
t=1

{xt /∈ [−(|a|+ δ)t−12R
′−1αΔ0, 2

R′−1(|a|+ δ)t−1αΔ0]}
)

≤ P

(
xk /∈ [−(|a|+ δ)k−12R

′−1αΔ0, 2
R′−1(|a|+ δ)k−1αΔ0]

)
(7.27)

≤ 2P

( k−1∑
i=0

a−i−1wi ≥ (2R
′−1(

|a|+ δ

|a| )k−1 α

|a| − 1/2)Δ0

)
(7.28)

≤ 2
E[(

∑k−1
i=0 a

−i−1wi)
2+ε](

(2R′−1( |a|+δ
|a| )k−1 α

|a| − 1/2)Δ0

)2+ε (7.29)

≤Mr−(2+ε)k, (7.30)

for M and r ∈ (ρ |a|+δ
|a| ,

|a|+δ
|a| ) with ρ < 1 and which can be made arbitrarily

close to 1. In (7.29), we apply Markov’s inequality. (7.30) follows due to the
geometric expression in the denominator in (7.29) and a polynomial bound in k

for E[(
∑k−1

i=0 a
−i−1wi)

2+ε]. Now, with r−1(|a|+ δ)2 < 1, by taking, if necessary,
δ sufficiently large, we can obtain the following:

E

[ τ1−1∑
t=0

|xt|2
∣∣∣ x0, Δ0

]
= E

[ ∞∑
t=0

1{t<τ1}|xt|2
∣∣∣ x0, Δ0

]

≤
∞∑
t=0

(
E[(1{t<τ1})

1+χ|x0, Δ0]

) 1
1+χ

(
E[|xt|2(

1+χ
χ )|x0, Δ0]

) χ
1+χ

, (7.31)

for some χ > 0, by Hölder’s inequality. Now,

E[|xt|2(
1+χ
χ )|x0, Δ0] ≤ B2(Δ

2
02

2(R′−1))
1+χ
χ |a|2t(

1+χ
χ ),
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for some B2 <∞. Thus,

E[

τ1−1∑
t=0

|xt|2|x0, Δ0]≤(Δ2
02

2(R′−1))

∞∑
t=0

(
P (τ1 ≥ t+1|x0, Δ0)

) 1
1+χ

(
B

χ
1+χ

2 |a|2t
)

< ζB2(2
R′−1Δ0)

2

for some finite ζBm . Hence, as before, with some ε > 0 and

δ(x,Δ) = εΔ2, f(x,Δ) =
ε

ζB22
2(R′−1)

|x|2,

C a compact set, and V2(x,Δ)=Δ2, Theorem 6.2.4 applies and
limt→∞ E[|xt|2]<∞. ��

7.6.6 Proof of Theorem 7.3.6

The proof follows closely that of Theorem 7.3.4. First observe that

E

[ τ1−1∑
t=0

|xt|m
∣∣∣ x0, Δ0

]
= E

[ ∞∑
t=0

1{t<τ1}|xt|m
∣∣∣x0, Δ0

]

≤
∞∑
t=0

(
E[(1{t<τ1})

1+χ|x0, Δ0]

) 1
1+χ

(
E[|xt|m( 1+χ

χ )|x0, Δ0]

) χ
1+χ

, (7.32)

for some χ > 0, by Hölder’s inequality. As before, E[|xt|m( 1+χ
χ )|x0, Δ0] ≤

Bm(Δm
0 2m(R′−1))

1+χ
χ |a|mt( 1+χ

χ ) for some Bm <∞.
Thus,

E[

τ1−1∑

t=0

|xt|m|x0,Δ0]≤(Δm
0 2m(R′−1))

∞∑

t=0

(

P (τ1≥t+1|x0, Δ0)

) 1
1+χ

(

B
χ

1+χ
m |a|mt

)

<ζBm(2R
′−1Δ0)

m

for some finite ζBm . With ε > 0, with

δ(x,Δ) = εΔm, f(x,Δ) =
ε

ζBm22(R′−1)
|x|m,

C a compact set, and Vm(x,Δ) = Δm, Theorem 6.2.4 applies and
limt→∞ E[|xt|m]<∞. ��
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7.6.7 Proof of Theorem 7.4.1

We assume, without any loss of generality, that all the eigenvalues are unstable.
Let P denote Px0,Δ0 . We first note that, by an application of the union bound,

P (τ1 > k) ≤ P (∪n
k=1(|hik| > 1)|zoom until k))

≤
n∑

k=1

P (|hik| > 1|zoom until k).

Consider a two-dimensional Jordan block example considered in (7.8). We have
already obtained a bound on P (|h2k| > 1) in (7.22), as this mode evolves free from
upper modes. In the following, since |x10 − x̂10| < Δ1

0/2, we will, by an abuse of
notation, let |x10| ≤ Δ1

0/2 and, likewise, |x20| ≤ Δ2
0/2. Let δ1 = δ2 = δ. For

P (|h1k| > 1), we have the following:

P (|h1k| > 1)

= P

(
x1k /∈ [−(|λ|+ δ)k−12R

′
1−1αΔ1

0, 2
R′

1−1(|λ|+ δ)k−1αΔ1
0]

)

= P

(
λk(x10 +

k−1∑
i=0

λ−i−1(w1
i + x2i ))

/∈ [−(|λ|+ δ)k−12R
′
1−1αΔ1

0, 2
R′

1−1(a+ δ)k−1αΔ1
0]

)

= P

(
λk(x10 +

k−1∑
i=0

λ−i−1w1
i +

k−1∑
i=0

λ−i−1(λix20 +
i−1∑
j=0

λi−j−1w2
j ))

/∈ [−(|λ|+ δ)k−12R
′
1−1αΔ1

0, 2
R′

1−1(λ+ δ)k−1αΔ1
0]

)

= P

(
|λk(x10 +

k−1∑
i=0

λ−i−1w1
i +

k−1∑
i=0

λ−i−1(λix20 +

i−1∑
j=0

λi−j−1w2
j ))|

> (|λ| + δ)k−12R
′
1−1αΔ1

0

)

= P

(∣∣∣∣(x10 +
k−1∑
i=0

λ−i−1w1
i +

k−1∑
i=0

λ−i−1(λix20 +
i−1∑
j=0

λi−j−1w2
j ))

∣∣∣∣

> (
|λ|+ δ

|λ| )k−1 α

|λ|2
R′

1−1Δ1
0

)
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≤ P

(
|
k−1∑
i=0

λ−i−1w1
i +

k−1∑
i=0

i−1∑
j=0

λ−j−2w2
j ))|

> (
|λ|+ δ

|λ| )k−1 α

|λ|2
R′

1−1Δ1
0 −Δ1

0/2− kλ−1Δ2
0

)

≤ P

(
|(
k−1∑
i=0

λ−i−1w1
i +

k−1∑
i=0

i−1∑
j=0

λ−j−2w2
j )|

> Δ1
0/2

(
(
|λ|+ δ

|λ| )k−1 α

|λ|2
R′

1 − (1 + k|λ|−1ηΔ)

))
. (7.33)

Under Assumption 7.2.2, the bound in (7.33) can be used to obtain

P

(
|(
k−1∑
i=0

λ−i−1w1
i +

k−1∑
i=0

i−1∑
j=0

λ−j−2w2
j )|2+ε

>

(
Δ1

0/2(
|λ|+ δ

|λ| )k−1 α

|λ|2
R′

1 − (1 + k|λ|−1ηΔ)

)2+ε)
. (7.34)

Now, it can be shown that |(
∑k−1

i=0 λ
−i−1w1

i +
∑k−1

i=0

∑i−1
j=0 λ

−j−2w2
j )|2+ε ≤

CBk
2(2+ε) for some CB < ∞. By an application of Markov’s inequality and with

the conditionR′
1 > log2(

|a|
α ), this leads to an expression similar to (7.30). Thus, the

drift criteria and the analysis in Sect. 7.6.4 follows, and the finite moment conditions
are satisfied.

A parallel argument applies for dimensions higher than 2, leading to the desired
conclusion. For a complete proof, see [209]. ��

7.7 Concluding Remarks

In this chapter, we considered constructions of quantizers leading to stochastic
stability for an open-loop unstable system driven by noise. In particular, we showed
that such quantizers are rate efficient, in addition to being simple and fixed rate.

7.8 Bibliographic Notes

There has been a significant amount of research on quantizer design for networked
control systems. We will discuss and review relevant contributions in detail in the
next chapter.



214 7 Stochastic Stabilization Over Noiseless Channels

Zooming-type adaptive quantizers have been considered by Goodman and Gersho
[166] and later in a control context by Brockett and Liberzon [81] (see also
[234] among many others) for remote stabilization of open-loop unstable, noise-
free systems with arbitrary initial conditions. There is a large body of literature
on quantizer design in the communications and information theory communities.
One key reference on adaptive quantization is the work by Goodman and Gersho
[166], where an adaptive quantizer was introduced and its stochastic stability was
investigated when the source fed to the quantizer is a second-order i.i.d. sequence.
Zooming-type quantizers of Brockett and Liberzon form a special class of the
adaptive quantization scheme of Goodman and Gersho. Kieffer and Dunham [215]
have studied the stochastic stability of a number of coding schemes when the
source fed to the quantizer is also stochastically stable, but not necessarily i.i.d.
For the setting of this chapter, however, the schemes in [166] and [215] are not
directly applicable, as the process considered here is open-loop unstable (as well as
Markovian).

Nair and Evans [280] considered stability under the assumption that the quantizer
is variable rate and showed that for a setup with system noise which has unbounded
support for its probability measure, on the average it suffices to use an average
rate given in Theorem 5.6.1 per channel use to achieve a form of stability, when
the channel is noiseless. They used asymptotic quantization theory to obtain a
time-varying scheme, where the quantizer is used at certain intervals at a very
high rate, and at other time stages, the quantizer is not used. The authors show
that there exists a policy such that lim supt→∞E[|xt|2] < ∞. Reference [419]
presented an approach which uses fixed rate, meeting the lower bounds presented
in Theorem 5.6.1, and which leads to positive Harris recurrence of the state with
finite moments, that is, limt→∞E[x2t ] <∞. Higher-dimensional settings have been
considered in [209].

Part of this chapter is based on [419, 421] and [209].



Chapter 8
Stochastic Stabilization Over Noisy Channels

8.1 Introduction

In this chapter, we discuss several generalizations of the results of Chap. 7 and
consider stochastic stabilization of linear systems over various types of noisy
channels: these are erasure channels, general discrete channels (memoryless as well
as with memory) with noiseless feedback, and a class of discrete and continuous
channels without any feedback (Gaussian channels will be considered in detail in
Chap. 11). We will present strong forms of stability and ergodicity, which will come
at the expense of further complexities in the design and analysis when compared
with noiseless channels considered earlier.

As in Chap. 7, this chapter identifies conditions on the channels for which there
exist coding and control policies such that a controlled linear system with state xt
is stochastically stable in one or more of the following senses:

• The state {xt} and the coding and control parameters lead to a positive Harris
recurrent Markov chain.

• {xt} is asymptotically mean stationary (AMS) and satisfies Birkhoff’s sample
path ergodic theorem (see Definition C.3.5 and Appendix C for an overview of
ergodic theory).

• limT→∞
1
T

∑T−1
t=0 |xt|2 exists and is finite almost surely (this will be referred to

as quadratic stability).

We will obtain a tight converse theorem on stabilizability in the AMS sense over a
large class of noisy channels. We will see that the Shannon capacity provides the
appropriate measure on whether a system can be stabilized or not under arbitrary
admissible coding and control policies.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 8,
© Springer Science+Business Media New York 2013
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We then establish constructive proofs for various channels. Our stabilization
analysis starts with the erasure channel, which is perhaps the simplest nontrivial
noisy channel. This channel is also important in many engineering applications,
since it is used as a common model, such as in control over communication networks
arising in many industrial systems. Our treatment of the erasure channel allows
us to obtain stronger results regarding stochastic stability of linear systems when
compared with general noisy channels considered later in the chapter. We will see
that the Shannon capacity of the erasure channel is an almost sufficient condition for
the positive Harris recurrence of the state and the quantizer process. For quadratic
(finite second moment) stabilization, however, the conditions on the channel are
more stringent. Similar conclusions will be arrived at in the context of more general
discrete memoryless channels (DMCs).

Every imperfect information transmission problem features a nonclassical
information pattern. However, an information structure in a setup for control over a
noisy channel with noiseless, instantaneous feedback leads to settings where the
information at the receiver is nested in that at the encoder. For such a system,
we saw in Chap. 7 that one can obtain stochastic stability results by establishing
stopping times measurable with respect to the information at the receiver, as well
as the controller. In this chapter, for the cases with noiseless feedback, we will
define appropriate stopping times and extend the proof program in Chap. 7 to such
a context.

The presence of a noisy channel with noisy feedback brings up further challenges
since the agents (encoders, decoders, and controllers) do not have nested informa-
tion. In this case, the dual role of control is present, as the control policy might affect
the estimation error of the controller with respect to the state of the system. In the
chapter, we study problems in these settings also and establish stochastic stability
results. We consider stabilization of open-loop unstable linear time-invariant (LTI)
stochastic systems when communications between the plant and the controller
(forward communication), and between the controller and the plant (reverse commu-
nication) are conducted over noisy channels which are either discrete memoryless
or continuous memoryless. A new coding scheme allowing a version of the random-
time state-dependent drift considered in Chap. 6 to be applicable will be presented,
and differences between finite-alphabet and continuous-alphabet channels will be
highlighted.

The treatment in this chapter starts with stabilization over channels with noiseless
feedback in Sect. 8.2, where we obtain converse theorems on stabilizability over a
noisy channel. We then consider stabilization over erasure channels in Sect. 8.3,
and later more general DMCs in Sect. 8.4, and establish ergodicity and quadratic
stability results using the theory developed in Chap. 6. Channels with memory and
multidimensional systems are investigated in Sect. 8.5. Section 8.6 investigates the
case with noisy reverse channels without any feedback. An appendix, constituting
Sect. 8.7, includes proofs of some of the main results.
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8.2 Stabilization Over Noisy Channels with Noiseless
Feedback and a Converse Theorem

8.2.1 Control and Communication Model

We first consider a scalar LTI discrete-time system, with the multidimensional case
relegated to Sect. 8.5. Here, the scalar system is described by

xt+1 = axt + but + wt, t ∈ Z+, (8.1)

where xt is the state at time t, ut is the control input, the initial state x0 is a
zero-mean second-order random variable, and {wt} is a sequence of zero-mean i.i.d.
Gaussian random variables, also independent of x0. We assume that the system is
open-loop unstable and controllable, that is, |a| ≥ 1 and b 	= 0.

This system is connected over a noisy channel to a controller, as shown
in Fig. 8.1. The controller has access to the information it has received through the
channel. A source coder maps the source symbols, state values, to corresponding
channel inputs. The quantizer outputs are transmitted through a channel, after
passing through a channel encoder. We recall here Definitions 5.2.1 and 5.2.3.

The receiver has access to noisy versions of the quantizer/coder outputs for each
time, which we denote by q′t ∈ M′. The quantizer and the channel encoder policies
are causal so that the channel input at time t, qt, is generated using the information
vector Iet available at the encoder:

Iet = {Iet−1, xt, qt−1, q
′
t−1}, t ∈ N, Ie0 = {x0}.

That is, the encoder has access to noiseless feedback from the channel output.
The control policy at time t, also causal, is measurable with respect to the sigma-
algebra generated by Ict :

Ict = {Ict−1, q
′
t}, t ∈ N, Ic0 = ∅,

q q′
u

x

Coder Channel Controller

Plant
u

Fig. 8.1 Control of a system over a noisy channel
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and is a mapping to R. We assume that the source model, channel model, the
probabilistic description of the noise variables, and the initial state distribution ν0
are available to both the quantizer/channel encoder and the controller.

We will call such coding and control policies admissible.
We start our analysis with a converse theorem. This will be discussed first in the

context of DMCs.

8.2.2 Converse Theorem on Stochastic Stability Over
a Discrete Memoryless Channel

We have the following converse theorem, which generalizes Theorem 5.6.1. This
result is further generalized to a class of channels with memory in Theorem 8.5.2.

Theorem 8.2.1 ([422]). Suppose that a linear plant given as in (8.1) controlled
over a DMC, under some admissible coding and controller policy, satisfies the
condition

lim inf
T→∞

1

T
h(xT ) ≤ 0, (8.2)

where h denotes the entropy function. Then, the channel capacity C must satisfy

C ≥ log2(|a|).

�

Proof. This is a special case of Theorem 8.5.2 which deals with the multidimen-
sional case. ��

Remark 8.2.1. The condition (8.2) is a weak one. For example, a stochastic process

whose second moment grows subexponentially in time, lim infT→∞
log(E[x2

T ])
T ≤ 0,

satisfies this condition. �

We now present a supporting result due to Matveev.

Proposition 8.2.1 ([260]). Suppose that a linear plant given as in (8.1) is con-
trolled over a DMC. If

C < log2(|a|),

then

lim sup
T→∞

P (|xT | ≤ b(T )) ≤ C

log2(|a|)
,

for all b(T ) > 0 such that limT→∞
1
T log2(b(T )) = 0. �

Proof. See the proof of Proposition 8.5.1 in Sect. 8.7.2, which considers the more
general setting of channels with memory. ��



8.3 Stochastic Stabilization Over Erasure Channels with Feedback 219

With this lemma at hand, we can prove the following.

Theorem 8.2.2 ([424]). Suppose that a linear plant given as in (8.1) is controlled
over a DMC. If, under some causal encoding and controller policy, the state process
is AMS, then the channel capacity C must satisfy

C ≥ log2(|a|).

�

Proof. See the proof of Theorem 8.5.3 in Sect. 8.7.3. ��

In the following sections, we will observe that the condition C ≥ log2(|a|)
in Theorems 8.2.1 and 8.2.2 is almost sufficient as well for stability in the AMS
sense. Toward this goal, we first discuss the erasure channel with feedback and then
consider more general DMCs, followed by a class of channels with memory. We will
also investigate quadratic stability.

8.3 Stochastic Stabilization Over Erasure Channels
with Feedback

For the linear system (8.1), we first consider a particular and important class of
DMCs, the erasure channel, in the following.

The details of the setup considered are specified as follows: The channel source
consists of state values from R. The source output is, as before, quantized. We use
the same set of quantizers as in the previous chapter, defined by (5.1), repeated
below:

QΔ
K(x)=

⎧⎪⎪⎨
⎪⎪⎩
(k − 1

2 (K + 1))Δ, if x ∈ [(k − 1− 1
2K)Δ, (k − 1

2K)Δ),

(12 (K − 1))Δ, if x = 1
2KΔ,

0, if x 	∈ [− 1
2KΔ,

1
2KΔ].

(8.3)

The quantizer outputs are transmitted through a memoryless erasure channel, after
being subjected to a bijective mapping, which is performed by the channel encoder.
The channel encoder maps the quantizer output symbols to corresponding channel
inputs q ∈ M := {1, 2 . . . ,K + 1}. A channel encoder at time t, denoted by Et,
maps the quantizer outputs to M such that Et(Qt(xt)) = qt ∈ M.

The controller/decoder has access to noisy versions of the encoder outputs for
each time, which we denote by {q′} ∈ M∪{e}, with e denoting the erasure symbol,
generated according to a probability distribution for every fixed q ∈ M. The channel
transition probabilities are given by

P (q′ = i|q = i) = p, P (q′ = e|q = i) = 1− p, i ∈ M.
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At each time t ∈ Z+, the controller/decoder applies a mapping Dt : M∪{e} →
R, given by

Dt(q
′
t) = E−1

t (q′t)× 1{q′t 
=e} + 0× 1{q′t=e}.

Let {Υt} denote a binary sequence of i.i.d. random variables, representing the
erasure process in the channel, where the event Υt = 1 indicates that the signal is
transmitted with no error through the channel at time t. Let p = E[Υt] denote the
probability of success in transmission.

The following key assumptions are imposed throughout this section: Given K ≥
2 introduced in the definition of the quantizer, define the rate variables

R := log2(K + 1) R′ = log2(K), (8.4)

We fix positive scalars δ, α satisfying

|a|2−R′
< α < 1, (8.5)

and

α(|a|+ δ)p
−1−1 < 1. (8.6)

Similar to (7.5) and (7.6), we consider the following update rules. For t ∈ Z+

and with Δ0 ∈ R selected arbitrarily, consider:

ut = −a
b
x̂t,

x̂t = Dt(q
′
t) = ΥtQ

Δt

K (xt),

Δt+1 = ΔtQ̄(Δt, |
xt

Δt2R
′−1

|, Υt). (8.7)

Here, Q̄ : R× R× {0, 1} → R is defined below, where L > 0 is a constant:

Q̄(Δ,h, p) = |a|+ δ if |h| > 1, or p = 0,

Q̄(Δ,h, p) = α if 0 ≤ |h| ≤ 1, p = 1, Δ > L,

Q̄(Δ,h, p) = 1 if 0 ≤ |h| ≤ 1, p = 1, Δ ≤ L

The update equations above imply that

Δt ≥ Lα =: L′. (8.8)

Without any loss of generality, we assume that L′ ≥ 1.
We note that given the channel output q′t 	= e, the controller can simultaneously

deduce the realization of Υt and the event {|ht| > 1}, where ht := xt

Δt2R
′−1 . This

is due to the fact that if the channel output is not the erasure symbol, the controller
knows that the signal is received with no error. If q′t = e, however, then the controller
applies 0 as its control input and enlarges the bin size of the quantizer.
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Stochastic Stability and Positive Harris Recurrence

Lemma 8.3.1. Under (8.7), the process (xt, Δt) is a Markov chain. �

Proof. The system’s state evolution can be expressed as

xt+1 = axt − ax̂t + wt,

where x̂t = ΥtQ
Δt

K (xt). It follows that the process (xt, Δt) evolves as a nonlinear
state space model:

xt+1 = a(xt − ΥtQ
Δt

K (xt)) + wt,

Δt+1 = ΔtQ̄(Δt, |
xt

2R′−1Δt
|, Υt),

(8.9)

in which (wt, Υt) is i.i.d.. Thus, the pair (xt, Δt) forms a Markov chain. ��

The following result is established in the Appendix to the chapter, based on the
stochastic stability results of Chap. 6.

Proposition 8.3.1 ([439]). If (8.4) holds, then there exists a compact set A×B ⊂
R

2 satisfying the finite-mean return property

sup
(x,Δ)∈A×B

Ex,Δ[τA×B] <∞,

and the recurrence condition P(x,Δ)(τA×B <∞) = 1 for any admissible (x,Δ). �

A result on the existence and uniqueness of an invariant probability measure is
the following. It basically establishes irreducibility and aperiodicity, which leads
to positive Harris recurrence, by Proposition 8.3.1.

Theorem 8.3.1 ([439]). For an adaptive quantizer satisfying (8.4), suppose that
the quantizer bin sizes are such that their base-2 logarithms are integer multiples
of some scalar s, and log2(Q̄( · )) takes values in integer multiples of s. Then
the process (xt, Δt) forms a positive Harris recurrent Markov chain. If the
integers taken are relatively prime (i.e., they share no common divisors except 1),
then the invariant probability measure is independent of the value of the integer
multiplying s. �

We note that the (Shannon) capacity of such an erasure channel is given by
log2(K + 1)p [103]. From (8.4) to (8.6), the following is obtained.

Theorem 8.3.2. If log2(K)p > log2(|a|), then α, δ exist such that the conditions
of Theorem 8.3.1 are satisfied. �

Remark 8.3.1. Thus, the Shannon capacity of the erasure channel is an almost
sufficient condition for the positive Harris recurrence of the state and the quantizer
process. We will see that under the weaker notions of ergodicity or asymptotic
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mean stationarity, this result applies to a large class of memoryless channels and a
class of channels with memory and feedback (see Theorem 8.4.3): There is a direct
relationship between asymptotic mean stationarity and the Shannon capacity of the
channel used in the system. As we shall see, however, for quadratic or finite moment
stability, Shannon capacity is typically not sufficient. �

Quadratic Stability

Under slightly stronger conditions, we obtain a finite second moment:

Theorem 8.3.3 ([439]). Suppose that the assumptions of Theorem 8.3.1 hold, and
in addition the following bound holds:

a2
(
1− p+

p

(2R − 1)2

)
< 1. (8.10)

Then, for each initial condition (x0, Δ0),

lim
t→∞

E[x2t ] = Eπ [x
2
0] <∞ .

�

By the positive Harris recurrence property, the above holds also in a sample-path
sense almost surely, leading to quadratic stability.

The above theorem also has a converse in the sense that the rate condition in
(8.10) is tight (up to the transmission of an additional symbol).

Theorem 8.3.4 ([273]). A necessary condition for mean square stability is

a2
(
1− p+

p

22R

)
< 1.

�

Proof. By the property that the Gaussian measure maximizes the entropy over the
set of all random variables with a fixed variance, we have

E[x2t |q′[0,t−1]] ≥
1

2πe
22h(a

tx0|q′[0,t−1]). (8.11)

Conditioned on the event Lk of k successful transmissions at t ≥ k transmissions,
there are kR bits at the controller by time t. Since kR ≥ I(x0; q

′
[0,t−1], Lk) =

h(x0) − h(x0|q′[0,t−1], Lk), it follows that 22h(a
tx0|q′[0,t−1],Lk) ≥ a2t22h(x0)/22kR.

Conditional entropy is an average of these realized conditional entropies (see Def-
inition 5.3.2). A necessary condition for the boundedness of the second moment is
then lim inft→∞ E[ a2t

22Rt
] < 1, where Rt is the total number of bits successfully

received by time t. By considering combinatorially the events of erasures up until
time t, we obtain
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a2t
t∑

k=0

(
t

k

)
pk(1− p)t−k 1

22Rk
= (a2(

p

22R
+ 1− p))2t < 1,

as a necessary condition. ��

Thus, the sufficiency condition in Theorem 8.3.3 almost meets this bound except
for the additional symbol transmitted for the under-zoom events. We note that the
average rates can be made arbitrarily close to the rate required in (8.3.4) by sampling
the control system with larger periods. Such a relaxation of the sampling period,
however, would lead to a process which is not Markov, but an AMS process which
is quadratically stable.

We now consider themth moment case. In this case, the proof is almost identical
to that of Theorem 8.3.3 and is thus omitted.

Theorem 8.3.5 ([439]). Consider the scalar system in (8.1). Let m ∈ N, suppose
that the assumptions of Theorem 8.3.1 hold, and in addition we have the inequality,

|a|m
(
1− p+

p

(2R − 1)m

)
< 1.

Then, with the adaptive quantization policy considered and given the initial
condition (x0, Δ0),

lim
t→∞

E[|xt|m] = Eπ [|x0|m] <∞ .

�

8.3.1 Connections with Random-time Drift Criteria

As it was done in Sect. 7.3.3, we point out the connections between the results above
and the random-time drift criteria.

The process (xt, Δt) will once again form a Markov chain. Now, in the model
considered, the controller can receive meaningful information regarding the state
of the system when two events occur concurrently: the channel carries information
with no error, and the source lies in the granular region of the quantizer, that is,
xt ∈ [− 1

2KΔt,
1
2KΔt) and Υt = 1. The times at which both of these events occur

form an increasing sequence of random stopping times, defined as

τ0 = 0, τz+1 = inf{k > τz : |hk| ≤ 1, Υk = 1}, z ∈ N.

In the proofs of the stability theorems, we will apply Theorem 6.2.4 for these
stopping times. These are the times when information reaches the controller
regarding the value of the state when the state is in the granular region of the
quantizer. As in Fig. 7.1, we introduce Cx = {x : |x| ≤ F}, Ch = {h : |h| ≤ 1},
for some sufficiently large F value, which will serve as a small set as well as a
recurrent set.
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Fig. 8.2 Sample path for a stochastically stable system with a 5-bin quantizer

In view of Theorem 6.2.4, first without an irreducibility assumption, we will
establish recurrence of the set Cx × Ch by defining a Lyapunov function of the
form V (xt, Δt) =

1
2 log2(Δ

2) + B0 for some B0 > 0. Later we will establish the
irreducibility of the Markov chain by imposing a countability condition. The details
are given in the appendix.

8.3.2 Simulation

Consider the linear system (8.1) with a = 2.5, b = 1, and {wt} a sequence of
i.i.d., zero-mean Gaussian variables with E[w2

t ] = 1. The erasure channel has error
probability 1 − p = 0.1. For stability with a finite second moment, we employ a
quantizer with rate

log2('
√

p
1
a2 − (1− p)

(+ 1) = log2(5)
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bits or a uniform quantizer with 5 bins. Here, we have taken L′ = 1. Figures 8.2
and 8.3 illustrate the stochastic stability results presented in Theorems 8.3.1
and 8.3.3. The plots show the under-zoomed and perfectly zoomed phases, with
the peaks in the plots showing the under-zoom phases. For the plot with 5 levels,
the system is positive Harris recurrent, since the update equations are such that
α = 0.629, δ = 0.025, and log2(Q̄(·)) ∈ {−0.6744, 0, 1.363}. These values satisfy
the irreducibility condition since −0.6744 = −(1/2)1.363, and the communication
conditions are satisfied. Furthermore,

α(|a|+ δ)
1
p−1 < 0.698 < 1.

One notable aspect is that increasing the bit rate by only two bits in Fig. 8.3 leads to
a much more desirable sample path. Moreover, by increasing the rate, the severity of
rare events is reduced. In view of these observations, the sensitivity of performance
to the bit rate emerges as a relevant problem.

8.4 Stochastic Stabilization Over DMCs with Feedback

In this section, we consider more general DMCs. The construction will be more
tedious, but the essence of the analysis for the erasure channel applies to this setting
as well.

We first note that the condition C ≥ log2(|a|) in Theorem 8.2.1 is almost
sufficient for strong forms of stability.

Theorem 8.4.1 ([422]). For the existence of a compact coordinate recurrent set
(see Definition C.3.4), the following is sufficient: The channel capacity C satisfies:
C > log2(|a|). �

Proof. See Sect. 8.7.7. ��
We now consider the following update algorithm which is used in the proof

of Theorem 8.4.1. Let n be a given block length. Consider a class of uniform
quantizers, defined by two parameters, with bin size Δ > 0, and an even number
K(n) ≥ 2 (see Fig. 5.1). Define the uniform quantizer as follows: For k =
1, 2 . . . ,K(n),

QΔ
K(n)(x) =

⎧⎪⎪⎨
⎪⎪⎩
(k − 1

2 (K(n) + 1))Δ, if x ∈ [(k−1− 1
2K(n))Δ, (k− 1

2K(n))Δ),

( 12 (K(n) − 1))Δ, if x = 1
2K(n)Δ,

Z, if x �∈ [− 1
2K(n)Δ, 12K(n)Δ].

where Z is the overflow symbol in the quantizer. Let {x : QΔ
K(n)(x) 	= Z} be the

granular region of the quantizer.
At every sampling instant t = kn, k = 0, 1, 2, . . . , the source coder Es

t

quantizes output symbols in R ∪ {Z} to a set M(n) = {1, 2, . . . ,K(n) + 1}.
A channel encoder Ec

t maps the elements in M(n) to corresponding channel inputs
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Fig. 8.3 Sample path with a 17-bin quantizer, a more desirable path

q[kn,(k+1)n−1] ∈ Mn. For each time t = kn − 1, k = 1, 2, 3, . . . , the channel
decoder applies a mapping Dtn : M′n → M(n), such that

c′(k+1)n−1 = Dkn(q
′
[kn,(k+1)n−1]).

Finally, the controller runs an estimator:

x̂kn = (Es
kn)

−1(c′(k+1)n−1)× 1{c′
(k+1)n−1


=Z} + 0× 1{c′
(k+1)n−1

=Z}.

Hence, when the decoder output is the overflow symbol, the estimation output is 0.
As in the previous two chapters, at time kn the bin size Δkn is taken to be a

function of the previous state Δ(k−1)n and the past n channel outputs. Further, the
encoder has access to the previous channel outputs, thus making such a quantizer
implementable at both the encoder and the decoder.

With K(n) > '|a|n(, R = log2(K(n) + 1), let us introduce R′(n) =
log2(K(n)) and let

R′(n) > n log2(
|a|
α
),
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for some α, 0 < α < 1 and δ > 0. When clear from the context, we will drop
the index n in R′(n). We will consider the following update rules in the controller
actions and the quantizers. For t ≥ 0 and with Δ0 > L for some L ∈ R+, and
x̂0 ∈ R, consider, for t = kn, k ∈ N,

ut = −1{t=(k+1)n−1}
an

b
x̂kn,

Δ(k+1)n = ΔknQ̄(Δkn, c
′
(k+1)n−1), (8.12)

where c′ denotes the decoder output variable. If we use δ > 0 and L > 0 such that

Q̄(Δ, c′) = (|a|+ δ)n if c′ = Z,

Q̄(Δ, c′) = αn if c′ 	= Z, Δ ≥ L,

Q̄(Δ, c′) = 1 if c′ 	= Z, Δ < L, (8.13)

we will show in Sect. 8.7.7 that a recurrent set exists. Note that the above implies
that Δt ≥ Lαn =: L′ for all t ≥ 0.

Thus, we have three main events: When the decoder output is the overflow
symbol, the quantizer is zoomed out (with a coefficient of (|a| + δ)n). When the
decoder output is not the overflow symbol Z , the quantizer is zoomed in (with a
coefficient of αn) if the current bin size is greater than or equal to L, and otherwise
the bin size does not change.

In the following, we make the quantizer bin size set countable and as a result
establish the irreducibility of the sampled process (xtn, Δtn).

Theorem 8.4.2. For an adaptive quantizer satisfying the conditions of Theo-
rem 8.4.1, suppose that the quantizer bin sizes are such that their logarithms are
integer multiples of some scalar s, and log2(Q̄( · )) takes values in integer multiples
of s. Suppose the integers taken are relatively prime (that is they share no common
divisors except for 1). Then the sampled process (xtn, Δtn) forms a positive Harris
recurrent Markov chain at sampling times on the set of admissible quantizer bins
and state values. �

Proof. See Sect. 8.7.8. ��

Theorem 8.4.3. Under the conditions of Theorems 8.4.1 and 8.4.2, the process
{xt, Δt} is n-stationary, n-ergodic, and hence AMS. That is, if the channel capacity
C satisfies: C > log2(|a|), there exists a coding and control policy such that the
process {xt, Δt} is n-stationary, n-ergodic, and AMS. �

Proof. The proof follows from the observation that a positive Harris recurrent
Markov chain is recurrent and stationary. It uses the property that if a sampled
process is a positive Harris recurrent Markov chain and if the intersampling time is
fixed, with a time-homogenous update in the intersampling times, then the process
is mixing, n−ergodic, and n−stationary. Details are given in Sect. 8.7.9. ��
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Quadratic Stability and Finite Second Moment

We now discuss quadratic and finite moment stability (see Definition C.3.7). For
a given coding scheme with block length n, a message set M(n) = {1, 2, . . . ,
K(n)+1}, and a decoding function γ : M′n → {1, 2, . . . ,K(n) + 1}, we have
three types of errors:

• Type I-A: Error from a granular symbol to another granular symbol. A bound for
such an error is

P e
g|g(n) := max

c∈M(n)\Z
P (γ(q′[0,n−1]) 	= c, γ(q′[0,n−1]) 	= Z|c is transmitted)

• Type I-B: Error from a granular symbol to Z

P e
g|g(n) := max

c∈M(n)\Z
P (γ(q′[0,n−1]) = Z|c is transmitted)

• Type II: Error from Z to a granular symbol

P e
g|Z(n) := P (γ(q′[0,n−1]) 	= Z|Z is transmitted)

Type II error will be shown to be crucial in the analysis of the error exponent.
Types I-A and I-B will play an important role in establishing the drift properties.
The following theorem captures the main results for establishing quadratic stability.

Theorem 8.4.4 ([422]). A sufficient condition for quadratic stability (for the joint
(xt, Δt) process) over a DMC is that:

lim
n→∞

(
1

n
log(P e

Z|g(n)) + 2 log(|a|+ δ) < 0,

lim
n→∞

(κ
1

n
log(P e

g|Z(n)) + 2 log(|a|+ δ) < 0,

lim
n→∞

(κ
1

n
log(P e

g|g(n)) + 2 log(|a|+ δ) + 2κ log(α) < 0,

R′(n) > n log2(|a|/α)

and

κ <
1

log |a|+δ
|a|

( |a|+δ
α )

.

�

Proof. See Sect. 8.7.10. ��

Let

P̄e(n) := max
c∈M(n)

P (γ(q′[0,n−1]) 	= c|c is transmitted).
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When the block length is clear from context, we drop the explicit dependence on n.
We have the following corollary to Theorem 8.4.4.

Corollary 8.4.1. A sufficient condition for quadratic stability (for the joint (xt, Δt)
process) over a DMC is:

lim
n→∞

(κ
1

n
log(P̄e(n)) + 2 log(|a|+ δ) < 0,

with rate R′(n) > n log2(
|a|
α ). �

Remark 8.4.1. For a DMC with block length n, Shannon’s random coding [150]
leads to

Pe(n) ≤ e−nE(R)+o(n),

uniformly for all codewords c ∈ {1, 2, . . . ,M(n)} with c′ being the decoder output
(thus, the random exponent also applies uniformly over the set). Here o(n)

n → 0 as
n → ∞ and E(R) > 0 for 0 < R < C. Thus, under the above conditions, the
exponent under random coding should satisfy E(R) > 2 log2(|a|+δ)

κ . �

Remark 8.4.2 (Converse Results for Quadratic Stability). For quadratic stability
over erasure channels, we observed in Theorem 8.3.4 that a converse theorem exists,
and the proposed scheme achieves the converse result. For general DMCs, however,
a tight converse result on quadratic stabilizability is not yet available. One primary
reason is that the error exponents of fixed length block codes with noiseless feedback
for general DMCs are not currently known. We note here that the channel reliability
or error exponent of DMCs is typically improved with feedback, unlike the capacity
of DMCs. Some partial results have been reported in [118] (in particular, the
sphere packing upper bound is tight for a class of symmetric channels for rates
above a critical rate even with feedback), see Chap. 10 of [107] among others.
In Remark 8.6.2, a discussion on converse results for quadratic stability, which
also applies to the setting in this section, is given. Related references addressing
partial results include [267, 268] which consider lower bounds on estimation error
moments for transmission of a single variable over a noisy channel (in the context
of this chapter, this single variable may correspond to the initial state x0). A further
related notion for quadratic stability is the notion of any-time capacity introduced
by Sahai and Mitter (see [328, 331]) which is discussed further in Sect. 8.9. �

Zero-Error Transmission for Z

An important practical setup would be the case when Z is transmitted with no error
and is not confused with messages from the granular region. The following captures
this.
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Assumption 8.4.1. P e
Z|g(n) = P e

g|Z(n) = 0 for n ≥ n0 for some n0 ∈ N. �

Theorem 8.4.5. Under Assumption 8.4.1, a sufficient condition for quadratic
stability is

lim
n→∞

(P̄e(n))(|a|+ δ)2n < 1,

with rate R′(n) > n log2(
|a|
α ) and κ > 1/2. �

Proof. See Sect. 8.7.11. ��

It is worth emphasizing that the reliability of sending the symbolZ for the under-
zoom phase allows a relaxation in the overall channel reliability requirements.

8.5 Channels with Memory and Multidimensional Sources

Definition 8.5.1. Channels are said to be of Class A type, if:

(i) they satisfy the following Markov chain condition:

q′t ↔ qt, q[0,t−1], q
′
[0,t−1] ↔ {x0, wt, t ≥ 0},

for all t ≥ 0, and
(ii) their capacity with feedback is given by

C = lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

), 0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1]),

where the directed mutual information is defined by

I(q[0,T−1] → q′[0,T−1]) =

T−1∑
t=1

I(q[0,t]; q
′
t|q′[0,t−1]) + I(q0; q

′
0).

�

DMCs naturally belong to this class. For DMCs, feedback does not increase the
capacity [103]. Such a class also includes finite state stationary Markov channels
which are indecomposable [306], and non-Markov channels which satisfy certain
symmetry properties [106]. Further examples can be found in [111, 357].

Theorem 8.5.1 ([422]). Suppose that a linear plant given by (8.1) is controlled
over a Class A type noisy channel with feedback. If the channel capacity (with
feedback) is less than log2(|a|), then

(i) The following condition:

lim inf
T→∞

1

T
h(xT ) ≤ 0

cannot be satisfied under any policy



8.5 Channels with Memory and Multidimensional Sources 231

(ii) The state process cannot be AMS under any policy.

�

Proof. This is a special case of Theorems 8.5.2 and 8.5.3, and hence its proof is
postponed until later. ��

Remark 8.5.1. The result above is negative, but one can also obtain a positive one:
If the channel capacity is greater than log2(|a|) and there is a positive error exponent
(uniform over all transmitted messages, as in Theorem 14 of [306]), then there exists
a coding scheme leading to an AMS state process provided that the channel restarts
itself with the transmission of every new block (either independently or as a Markov
process). �

Remark 8.5.2. If the channel is not information stable, then information spectrum
methods lead to pessimistic realizations of capacity (known as the lim inf in
probability of the normalized information density, see [357, 379]). We do not
consider such channels in this book, although the approach here is generalizable
to some cases when the channel state is Markov and the worst-case initial input
state is considered as in [306]. �

Higher-Order Plants

The result for the scalar problem has a natural counterpart in the multidimensional
setting. Consider the linear system described by

xt+1 = Axt +But +Gwt, (8.14)

where xt ∈ R
N is the state at time t, ut ∈ R

m is the control input, and {wt}
is a sequence of zero-mean i.i.d. Rd-valued Gaussian random vectors. Here A is
the square system matrix with at least one eigenvalue greater than or equal to 1
in magnitude, that is, the system is open-loop unstable. Furthermore, (A,B) and
(A,G) are controllable pairs.

In the following we assume that all eigenvalues {λi, 1 ≤ i ≤ N} of A
are unstable, that is, have magnitudes greater than or equal to 1. There is no loss
here since if some eigenvalues are stable, by a similarity transformation, the unstable
modes can be decoupled from the stable ones and one can instead consider a lower-
dimensional system; stable modes are already recurrent.

Consider a multidimensional linear system as in (8.14) with all eigenvalues
unstable, that is, |λi| ≥ 1 for i = 1, . . . , N . We have the following results:

Theorem 8.5.2. For such a system controlled over a Class A type noisy channel
with feedback, if the channel capacity (with feedback) satisfies

C <
∑
i

log2(|λi|),



232 8 Stochastic Stabilization Over Noisy Channels

there does not exist a stabilizing coding and control scheme with the property
lim infT→∞

1
T h(xT ) ≤ 0. �

Proof. See Sect. 8.7.1. ��

Proposition 8.5.1. For such a system controlled over a Class A type noisy channel
with feedback, if

C < log2(|A|),

then,

lim sup
T→∞

P (|xT | ≤ b(T )) ≤ C

log2(|A|)
> 0,

for all b(T ) > 0 such that limT→∞
1
T log2(b(T )) = 0. �

Proof. See Sect. 8.7.2 ��

With this lemma, we state the following.

Theorem 8.5.3. Consider such a system controlled over a Class A type noisy
channel with feedback. If there exists some encoding and controller policy so that
the state process is AMS, then the channel capacity (with feedback) C must satisfy

C ≥ log2(|A|).
�

Proof. See Sect. 8.7.3 ��

For sufficiency, we will assume that A is a diagonalizable matrix (a sufficient
condition for which is that its eigenvalues are distinct real).

Theorem 8.5.4 ([422]). Consider a multidimensional system with a diagonalizable
matrixA. If the Shannon capacity of the DMC used in the controlled system satisfies

C >
∑

|λi|>1

log2(|λi|),

there exists a stabilizing scheme in the AMS sense. �

Proof. See Sect. 8.7.12. ��

Regarding channels with memory, the discussions in Remark 8.5.1 also apply for
this setting.

Remark 8.5.3. Theorem 8.5.4 can be extended to the case where the matrix A is
not diagonalizable, in the same spirit as in Theorem 7.4.1, by constructing stopping
times in view of the coupling between modes sharing a common eigenvalue. �
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8.6 Stabilization with Noisy Forward and Feedback/Reverse
Channels

In the spirit of the coverage so far in the chapter, we consider in this section
stabilization of open-loop unstable LTI stochastic systems when communications
between the plant and the controller (forward communication), and the controller
and the plant (reverse communication) are conducted over noisy channels which
are either discrete memoryless or continuous memoryless. A new coding scheme
allowing a version of the state-dependent drift considered in Chap. 6 to be applicable
is presented. To facilitate the analysis, we will consider continuous-time systems.

8.6.1 Formulation

We consider here the class of LTI continuous-time scalar systems described by

dx′t′ = (μx′t′ + b′u′t′)dt
′ + dBt′ , t′ ≥ 0, (8.15)

where x′t′ is the state; Bt′ , t
′ ≥ 0, is the standard Brownian motion process; u′t′ is

the (applied) control, which is assumed to be piecewise constant over intervals of
length Ts (which is a constant sampling period); the initial state x0 is Gaussian; and
μ > 0, thus making the open-loop system unstable. After sampling, with period Ts,
we have the discrete-time system

xt+1 = axt + bu′t + wt , t = 0, 1, . . . , (8.16)

where t is the discrete-time variable, defined through the relationship t′ = tTs;
xt = x′tTs

is the state x′ at the sampling times; {wt} is a sequence of zero-mean
i.i.d. Gaussian random variables; a = eμTs ; b = b′(eμTs − 1)/μ; and E[w2

t ] =
(e2μTs − 1)/2μ.

We refer to the channel carrying the signal from the plant to the controller as the
forward channel and the one carrying the signal from the controller to the plant as
the reverse (feedback) channel (see Fig. 8.4). The plant is controlled over the reverse
channel and the controller receives information over the forward channel, both of
which are noisy.

We consider here both discrete and continuous (alphabet) channels, which are
memoryless.

When the forward channel is a DMC, we will let Mf denote the set of sensor
symbols, with |Mf | denoting its cardinality, and Nf be the number of channel uses.
Then, the coding rate for the forward channel is defined as Rf = log2(|Mf |)/Nf .
Likewise, for the reverse channel, for the DMC case, the coding rate is given
by Rr = log2(|Mr|)/Nr with obvious corresponding meanings for Mr and Nr.
The plant output (state) is quantized (by the source coder) and turned into a bit
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Fig. 8.4 Control over noisy forward and reverse channels

stream for each quantization symbol (by the channel encoder) before being inputed
to the forward channel (see Fig 8.4). Likewise, the controller output is quantized and
turned into a bit stream before being inputed to the reverse channel.

We note that the analysis to be carried out for the scalar system is applicable to
multivariable systems through a block coding approach or a sequential stabilization
approach as was discussed in Chap. 7 and Remark 7.4.1.

Referring to Fig. 8.4, in this setup both the sensor and the controller act as both
transmitters and receivers because of the closed-loop structure. For the DMC case,
we model the forward source-channel encoder as a stochastic kernel ps(zt|xt), xt ∈
R, zt ∈ Z (with Z being the channel alphabet), between the source output and
the channel input; hence ps(zt|xt) is a collection of (conditional) probability mass
functions parametrized by xt ∈ R. The forward channel is a memoryless stochastic
kernel, pc(yt|zt), between the channel input and the channel output, where yt ∈
Y , the output channel alphabet. The channel output is acted on by the controller
in a memoryless fashion, so that we have another well-defined stochastic kernel,
p(ut|yt), which is the probability for control at time t to be ut ∈ U given that the
output of the forward channel at time t is yt ∈ Y .

The reverse channel also has a source-channel encoder, p′s(z
′
t|ut), z′t ∈ Z ′,

channel mapping p′c(y
′
t|z′t), y′t ∈ Y ′, and a channel decoder p′d(u

′
t|y′t), u′t ∈ U ′.

Appropriate adjustments are made to the interpretations of these different stochastic
kernels in the case of continuous memoryless channels (CMCs).

For the DMC case, a quantizer is used to obtain a countable representation of
the input source. Here, the quantizer bins, Bi, are taken to be non-overlapping semi-
open intervals, Bi = [δi, δi+1) for i > 0, with δi < δi+1, i = 0, 1, 2, . . . , such
that δ0 is at the origin, where {δi} are termed “bin edges.” We consider “symmetric
quantizers,” in the sense that if (δi, δi+1] is a quantization bin, where 0<δi<δi+1,
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then B−i := (−δi+1,−δi] is also a quantization bin. We define the encodable state
set Sx ⊂ R as the set of elements which are represented by some codeword;
Sx :=

⋃
i Bi. Such a definition applies to the encodable control set, Sc, as well.

Suppose that the state is within the encodable state set and is in the ith bin of the
quantizer. The source-coding output at the plant sensor will represent this state as qi
and send the ith index over the channel. After a joint mapping of the channel and the
channel decoder, the controller will receive the transmitted index i as index j with
probability p(j|i). The controller will apply its control over index j, computingQ′

j .
Thus, the controller-decoder and the controller-encoder can be regarded as a single
(composite) mapping. The controller transmits the control signal through the reverse
channel to the plant which would interpret this value as Q′

l with probability p′(l|j),
by a mapping through the reverse channel. Given that the state is in the ith bin,
the plant will receive the control Q′

l with probability
∑

j p
′(l|j)p(j|i). Thus, the

applied control will be u′t = Q′
l with probability

∑
j p

′(l|j)p(j|i), the probability
of the state being in the ith bin being p(i) = Prob(x ∈ Bi). For CMCs, however,
we do not use a quantizer; we denote the joint channel encoder and the channel as a
stochastic kernel, p(A|x), for x ∈ R, and A ∈ B(R). The control is a deterministic
function of the channel decoder, mappingR into R. The control signals are sent back
to the plant, via a reverse channel encoder and a reverse channel. Upon the arrival of
the reverse channel output, the plant decoder generates the decoded control signals,
u′ ∈ R.

8.6.2 Necessary Conditions for Stabilization

Conditions on Capacities

The following theorem shows that there is a relationship between the capacities
of the forward and reverse channels and the existence of an invariant probability
measure under memoryless policies.

Theorem 8.6.1 ([432]). Consider the system described by (8.16), and let Cf and
Cr denote, respectively, the forward and reverse channel capacities. Then, for the
existence of an invariant probability measure with a finite second moment, we need
min(Cf , Cr) ≥ log2(|a|), when memoryless policies are considered. �

Proof. See Sect. 8.7.13. ��

Remark 8.6.1. The above result captures the requirements on channel capacities
under memoryless policies, for the existence of an invariant probability measure
for the controlled Markov process. This should be contrasted with the analysis
earlier in the context of Theorem 8.2.1 for asymptotic mean stationarity (AMS).
For the AMS property, we saw that, under any policy, the capacity requirement
is both necessary and (almost) sufficient; however, the setting did not necessarily
allow for a Markov process. Recall also that Theorem 8.3.2 stated that for stochastic
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stabilization over an erasure channel under policies with feedback, the Shannon
capacity is almost sufficient not only for the AMS property but also for positive
Harris recurrence. Such a strong result was also established in Chap. 7 for noiseless
channels. Such a positive result will also be established for Gaussian channels with
noiseless feedback later in this chapter as well as in Chap. 11. �

We note that Theorem 8.5.2 applies also for memoryless channels with noisy or
noiseless feedback since such channels also belong to Class A (see Definition 8.5.1),
the reason being that feedback does not increase the capacity of such channels
[103]. Hence, for the system described by (8.16), the forward channel’s capacity
should be at least log2(|a|) for stabilization in the sense of Theorem 8.5.2 under
any coding or control policy. We can make this result stronger, by regarding the
controller in Fig. 8.4 as an intermediate encoder, and y′t as the channel output from
the effective channel consisting of the encoder, controller, and the channels. With
such an interpretation, we obtain the following.

Theorem 8.6.2. Consider the system described by (8.16), and let Cf and Cr

denote, respectively, the forward and reverse channel capacities. Then, for

lim inf
t→∞

1

t
h(xt) ≤ 0,

under any causal coding and control policy, we need min(Cf , Cr) ≥ log2(|a|). �

Proof. See Sect. 8.7.14. ��

Structural Conditions

We now present a result on the structure of the encoder, which has significant
practical implications that will be elaborated on later. This result could be seen as
an extension of Theorem 7.3.1, to the present context. This result also highlights an
important difference between continuous and discrete (finite-alphabet) channels.

Theorem 8.6.3 ([432]). For a discrete-time linear system as in (8.16), with |a|> 1,
with channel transitions forming an irreducible Markov chain, if either the en-
codable control set or the encodable state set is bounded, the Markov chain is
transient. �

Proof. See Sect. 8.7.15. ��

The restriction alluded to in Theorem 8.6.3 above leads to significant complexity
on encoding for control over a discrete noisy channel, since there needs to be a
matching between the entire state space (which requires at least a countably infinite
number of codewords) and a finite-symbol channel. Such a complexity does not
arise, however, in a CMC, as we will see later.

This now motivates us to introduce the following.

Definition 8.6.1. An open-loop unstable system is escape-free if all the state
symbols are encoded in such a way that given x ∈ X , there exists in the quantizer a
reconstruction level, q, such that x < q. �
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Let τ[−M,M ] := inf{t > 0 : |xt| ∈ [−M,M ]} forM > 0. By Theorem 8.6.3, for
the chain to be positive Harris recurrent, i.e., to haveP (τ[−M,M ] <∞|x0 = x) = 1,
∀x ∈ X , an unstable system has to be escape-free. Such a condition is not required
for a stable system, since such a system is always recurrent. A system controlled
over a continuous channel can always be made escape-free, and if the capacity is
sufficiently large then the system can be stabilized. We will see that using a dynamic
structure, escape-freeness can be assured by considering a side channel which can
be either continuous or a discrete one with finite capacity that can transmit variable
length codes through variable sampling.

8.6.3 Stabilization Over Discrete Channels
and State-dependent Sampling

Further Discussion on Error Exponents and Channel Reliability
Requirements

Before proceeding with the analysis of DMCs, we first review a few relevant results
on reliability of channels. Earlier, the random coding exponent was considered in
Remark 8.4.1. Here, we discuss further bounds on error exponents primarily in view
of pairwise errors between symbols.

Let C = {c0, c1, . . . , cM−1} be a codebook of cardinality M , where each
codeword is of length N . Let p(y|cm) be the conditional probability of y being
received given that input to the channel is cm. Suppose that the decoding rule is
such that the mth codeword is the output if p(y|cm) > p(y|cn), for all n 	= m
(in case of an equality, we can declare an error to obtain an upper bound on the
error event). This rule corresponds to the maximum likelihood (ML) decoding [65].
The set of output symbols which would lead to a decoding of cm is thus given by
Rm = {y : p(y|cm) > p(y|cn), n 	= m}. It follows that, if y /∈ Rm, for at least
one n 	= m, say n′, such that p(y|cn′) ≥ p(y|cm), we have

∑
n
=m

p(y|cn)
p(y|cm) ≥ 1.

Let s > 0. It follows that,

∑
y∈Rn

p(y|cm) ≤
∑
y∈Rn

p(y|cm)

(
p(y|cn)
p(y|cm)

) s
s+1

=
∑
y∈Rn

(p(y|cm))
1

s+1 (p(y|cn))
s

s+1

= exp

(
log

[ ∑
y∈Rn

(p(y|cm))
1

s+1 (p(y|cn))
s

s+1

])

=: exp
(
− d(cm, cn; s)

)
, (8.17)
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which defines the quantity d(cm, cn; s) whose minimum overall codeword pairs
and s > 0 is called the minimum distance of a code, as introduced in [337].
For s = 1, we have the Bhattacharyya distance between two symbols cm and cn,
which we denote (by some abuse of notation) by d(cm, cn); note that d(cm, cn; 1) =
d(cm, cn). The minimum of this quantity over all cm, cn ∈ C, m 	= n, is called
the minimum Bhattacharyya distance of a code C and is denoted by d(C). We let
EL(N,R) :=

1
N d(C) denote the minimum Bhattacharyya distance for a codebookC

with lengthN and rate R and assume that the limit limN→∞EL(N,R) exist for all
rates. The probability of error between two different codewords (i.e., p(n|m),m 	=
n; cm, cn ∈ C) can be upper bounded using EL(N,R): p(n|m) ≤ e−NEL(N,R).
We note that, for low coding rates, the minimum Bhattacharyya distance is closely
related to the Gilbert bound; for details see [298, 380].

For rates which are not low, however, a more useful bound is the random coding
exponent [152], considered earlier in Remark 8.4.1. One difference is that in the
random coding bound, the exponent is strictly positive for rates below capacity,
while this may not be so for the Gilbert bound. We also note that the random
coding bound can be used to obtain a uniform bound on the errors for all transmitted
messages as well, as observed in Remark 8.4.1.

An upper bound on the error exponent is given by the sphere packing error
exponent. This exponent is related to the maximum over the minimum distance
described above. Hence a lower bound can be obtained on the average probability
of error, pe :=

∑
m p(cm)p(y /∈ Rm|cm), where cm ∈ C, which is

pe ≥ e−N{Esp(R−o1(N))+o2(N)},

known as the sphere packing bound [151, 337], with o1(N), o2(N) → 0 with
increasing N .

Asymptotic Stability in the Absence of System Noise

We first have the following result, a proof of which can be found in the appendix.

Theorem 8.6.4. Let C ⊂ Z, L < ∞, and δi, ∀i ∈ Z, be the bin edges of a
symmetric quantizer. Let 1{i∈C} be the indicator function for i ∈ C. For a discrete
channel, if the following drift condition holds for some sufficiently small ε > 0, and
for all bins:

max

(
|(
∑
l

∑
j

p(j|i)p′(l|j)(aδi + bQ′
l))|, |(

∑
l

∑
j

p(j|i)p′(l|j)(aδi+1 + bQ′
l))|

)

< δi − ε+ L1{i∈C}, (8.18)

then C is a recurrent set in the sense that supx∈∪i∈CBi
E[min(t > 0 : xt ∈

∪i∈CBi)|x0 = x] <∞. �

Proof. See Sect. 8.7.16. ��
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We now study the case when the channels are discrete and noiseless. If the
channels are noiseless, the above leads (with ε = 0, L = 0) to a logarithmic
quantizer [132] .

Corollary 8.6.1. Consider a symmetric quantizer at the sensor. Let both the
forward and reverse channels be noiseless. To lead to a drift toward the origin,
quantizer bin edges (on the positive real line) have to satisfy δi+1 ≤ (1 + 2/|a|)δi.
�

Before studying the stability conditions, however, we first note the following
relationship between reliability and delay.

Let us fix the forward and reverse channel rates,Rf = log2(|Mf |)/Nf andRr =
log2(|Mr|)/Nr. We penalize the codelengths in both channels by a possibly linear
term in the sampling period. It then takes longer to send more bits, that is, reliability
competes with delay. The following theorem says that if the controller waits long
enough, stability can be achieved. To separate out the difficulty that comes about
due to the escape-freeness requirement, we consider here first a one-stage problem;
the more general system and control setup will be considered subsequently.

Theorem 8.6.5 ([432]). Consider the scalar continuous-time system (8.15) but
without the driving Brownian motion process. Let the probability distribution of the
initial state x0 have a bounded support set. Let the sampling period be a function of
block lengths: Ts = αNf + βNr; α, β be possibly depending on the codelengths,
and the number of symbols in the state and control be K = |X ′| = |U| = |U ′|.
Let the rates Rf = log2(K)/Nf and Rr = log2(K)/Nr be kept constant as
Nf and Nr grow. If the system and channel parameters satisfy the following three
conditions:

lim
Nf→∞

(Rf + 2μα− Ef
L(Nf , Rf )) + (2μβRf/Rr) < 0,

lim
Nf→∞

(Rr + 2μβ − Er
L(Nr, Rr)) + (2μαRr/Rf ) < 0,

α

Rf
+

β

Rr
<

1

μ
, (8.19)

then limTs→∞E[x2Ts
] = 0. �

Proof. See Sect. 8.7.17. ��

Let a = eμTs as before. We have the following observations regarding the result
of Theorem 8.6.5 above. Positivity of the random coding error exponent (which is
the case when rate R is strictly less than the Shannon capacity C of the memoryless
channel) does not directly lead to stability, and the exponent actually has to be
larger than a specific positive quantity. The condition (8.19) is the quantization rate
requirement:K > |a|, also considered in Chap. 7.

Remark 8.6.2. We note that one could obtain a converse bound by obtaining a lower
bound on the pairwise error probabilities provided that a uniform lower bound on the
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distortion for every transmitted message in the event of an error is satisfied with the
coding policy. This provides a lower bound on the second moment conditioned on
any transmitted symbol, which can then readily be used in the setting here leading to
a converse result. The sphere packing exponent,Esp(R), maximizing the minimum
distance, can be used for such an analysis. Note the earlier Remark 8.4.2, which had
related discussions. �

Remark 8.6.3. In the remainder of the section we will consider the bound obtained
via the Bhattacharyya distance. Note that one could generate parallel results using
the random coding exponent, which is tight at high rates (and equals the sphere
packing exponent bound for rates greater than a critical rate). �

Asymptotic Stability in the Presence of System Noise and Variable Length
Coding Through State-dependent Sampling

We now consider the sampled system (8.16) driven by i.i.d. noise, which is a more
realistic scenario, where a finite sampling period is given, and the amount of data
to be sent over a sampling period is finite. In this case, asymptotic analysis of
Theorem 8.6.5 becomes inapplicable. We already know from Theorem 8.6.3 that
for stability the encodable set has to be unbounded; however, the number of bits that
can be transmitted per unit time over the channel is finite. This dichotomy can be
resolved using a coding scheme based on binning, where the coset of the code is
transmitted and the particular bin is transmitted using an additional side channel.

Suppose that K = 2NfRf symbols can be transmitted during each unit time
stage. Partition the entire state space into bins, group K adjacent elements into one
larger bin, indexed by I , and represent them by a single channel codebook. We refer
to this ensemble of bins as a Codebin. Hence, a total of 2NfRf codewords are used
to represent the entire state space.

Thus, we have Codebin(I) = {x : δINfRf
≤ x < δ(I+1)NfRf

}. We denote
the bin indices by δnI+i, which means that the edge belongs to Codebin I and is
represented by the ith channel codeword. We say the source code is in mode I , if
the state is in Codebin I . The reconstruction value of each bin is assumed to be its
midpoint, so that Qi = (δi + δi+1)/2.

We assume that the controller and the sensor can transmit the index information
of the Codebin, over variable periods by using either explicit variable length codes
or a timing channel (see Fig. 8.5). Timing channel is noiseless and carries the binary
signal of starting the encoding, effectively carrying the index information. In such
a scheme, Codebins are generated according to the number of sampling periods
required to send the side channel information. Thus, the effective sampling period
will vary. Here, the number of Codebins for a given period will grow exponentially
with the sampling period. However, in this case the system will no longer be first-
order Markovian.
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Fig. 8.5 Variable encoding via a time-channel as side channel

Given state x, let n(x) be the number of sampling periods it takes for the
transmission of the side channel symbol (or timing instant). Note that n(x) is a
causally measurable stopping time, which is in fact deterministic. Consider the
sampling process given by the dynamics: Tk = Tk−1 + n(xTk−1

). The sampled
process, xTk

, is also Markovian. With this observation, we can obtain a state-
dependent drift condition (see Theorem 6.2.3), to study stability. Here, we provide
only conditions for the existence of an invariant measure; the approach for stronger
conditions is identical and the extension is merely technical. If the transmission
of the state and the control signals takes k times as long as it does in the fixed
length case, the effective sampling period in the variable length encoding scheme
is kTs, k ∈ Z+. Thus the system will be open loop during kTs seconds. These
considerations lead to the following.

Theorem 8.6.6 ([432]). Consider the scalar continuous-time system described by
(8.15), which is to be remotely controlled over discrete channels. Let the forward
and the reverse side channels be noiseless and the side channel symbols be
transmitted over variable durations (as described above). Further, let Uk(γ) :=

γ
2(kNfRf )
k , and

Υ (k) :=

(
e−kNfE

f
L(Nf ,Rf )−kNrE

r
L(Nr,Rr)2kNfRf

+e−kNfE
f
L(Nf ,Rf ) + e−kNrE

r
L(Nr,Rr)

)
2kNfRf . (8.20)
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Suppose limk→∞
Υ (k)Uk(γ)
e−2μkTs

< 1. If for a sequence {γk ≥ 1, k ∈ Z+}, ∃k0 > 0
such that ∀k > k0, the following holds:

γk < 1 + 2e−kμ(αNf+βNr)

√
1− Υ (k)Uk(γ)

e−2μkTs
,

and

NfRf > log2(|a|),

then there exists a coding scheme leading to positive Harris recurrence for the
sampled Markov chain. The source coder is a symmetric logarithmic quantizer with
sequentially decreasing expansion ratios γk used for symbols transmitted in the kth
time stage. �

Proof. See Sect. 8.7.18 in the appendix. ��

We note that since the system noise is Gaussian, the Markov chain is Lebesgue-
irreducible. Furthermore, if there is a compact set which is recurrent, then all open
subsets of this compact set are also recurrent. Now, even though the transition kernel
is not continuous for all x ∈ R, for a small set C ∈ B(R) in one of the bins close to
the origin, P (xt+1 ∈ A|xt = x), A ∈ B(R), will be uniformly continuous in x ∈ C
and bounded from below by some nontrivial measure. As such, such a set can serve
as a petite set.

Remark 8.6.4. We note that, in the above construction, the original chain is no
longer Markov. The sampled chain is Markov, however, and furthermore, the
original system is such that there exists a compact set which satisfies the finite-mean
return property supx∈S E[τS ] <∞. �

Remark 8.6.5. In the above, we required the time-channel to transmit noise-free the
integer k ∈ Z+ (for kTs as the open-loop duration during transmission) in k time
stages. A prefix-free, uniquely decodable code can be used for the time-channel,
such as, with 1 denoting the stopping bit, 1, 01, 001, 0001, . . . , 0 . . . 01, . . . . Hence,
it suffices to send one bit of information to stop decoding. One needs an arbitrarily
small but nonzero zero-error capacity, since for every zero-error capacity of ε, there
exists a sampling period Ts such that 1/Ts < ε and reliable transmission of one bit
per time stage is possible. One can adjust the petite set as a function of Ts. We also
note that the conditions in Theorem 8.6.6 simplify when one or both of the channels
are noiseless, since the probability of error is zero (and the exponent is infinite). �

If the goal is the existence of a finite moment, more stringent criteria on channels
will be needed. Nonetheless, the same techniques can be applied using the drift
criteria. We also note that the coding construction can be arbitrary, as long as the
drift conditions are satisfied.
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8.6.4 Stabilization Over Continuous-Alphabet Channels

We now consider CMCs and obtain achievable rates for control over continuous
alphabet channels. For continuous alphabet channels, there is no restriction on
the values transmitted over the channel; there may be constraints over the input
distributions, but arbitrary values can be fed into the channel. Thus, the system can
always be designed to be escape-free. Here, we will study two special channels:
Gaussian and continuous erasure channels.

Stabilizing Rates Over Gaussian Channels

For Gaussian channels, we associate power constraints with the encoder outputs, Pf

and Pr, for the forward and the reverse channels, respectively. The objective is to
develop coding schemes that will lead to an invariant density with a finite second
moment. Here, one does not face the difficulty of explicitly using a finite codelength,
for X ′ is the entire real line, and rare events are transmitted with higher magnitude
signals, whose contribution to the expected power is limited. This was the main
difficulty we observed in DMCs in the design of variable length codes in a control
context. There, rare events had to be represented in longer codewords to prevent the
Markov chain from becoming transient.

In the following theorem, we restrict the encoders, the sensor, and the controller
to be scaling their inputs. We further restrict the controller and the decoders to be
linear in their arguments, and obtain the decoder and the controller that minimize
the invariant second moment of the state, leading to a stabilizing configuration.

Theorem 8.6.7 ([432]). Suppose that the sensor encoder and the controller
encoder have average power constraints Pf and Pr, respectively. Further suppose
that the encoders and the decoders, and also the controller itself, are restricted to
be linear and memoryless. Then, the optimal such policy at the input of the plant
which minimizes the steady-state variance is

u′t = −a
b

√
PfPr

( √
E[x2t ]√

Pf + σf2

w (Pr + σr2
w )

)
y′t,

where y′t = z′t + wr
t , and σf2

w and σr2

w are the channel noise variances for the
forward and the reverse channels, respectively. If the forward and the reverse
channel capacities satisfy the condition

2−2Cf + 2−2Cr − 2−2Cf−2Cr < 1/a2,

then the steady-state variance is finite. �
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Proof. See Sect. 8.7.19 in the appendix. ��

Note that the lower bound on the capacities is log2(|a|). This leads us to the
following Corollary to Theorem 8.6.7:

Corollary 8.6.2. As Cf (respectively, Cr) → ∞, the condition on Cr (respectively,
Cf ) becomes Cr > log2(|a|) (respectively, Cf > log2(|a|)). Hence, if either the
forward channel or the reverse channel is noiseless, then memoryless and linear
coders are as good as any other coder for the optimum rate (or power) for the
existence of an invariant probability measure for the state process. �

Hence, linear policies are almost optimal as they meet the lower bound, when
one of the channels becomes very reliable. It will be shown in Chap. 11 that when
noiseless feedback is available, innovation coders are optimal. The corollary above
shows that, if the goal is to have stability, memoryless schemes might as well be
used without much loss in performance.

We will consider Gaussian channels in further generality in Chap. 11.

Continuous Erasure Channels

Consider forward and reverse erasure channels which lose packets with probabilities
ef and er, respectively. Consider also the case where the packets can be sent without
a need of quantization, i.e., the erasure channel codebook set is the real line (thus the
information theoretic capacity is infinite). In this case we have the following result.

Proposition 8.6.1. Consider the unstable plant in (8.16), along with forward and
reverse erasure channels. If the forward and the reverse channel packet loss
probabilities satisfy the inequality ef + er − efer < 1/a2, then there exist
memoryless policies such that limt→∞ E[x2t ] <∞. �

Proof. If there is erasure in the forward channel as well as in the reverse channel, a
control of zero value can be applied. For a nonzero control to have any effect, both
channels have to transmit successfully. Hence, with probability (1 − ef )(1 − er),
we have

xt+1 = axt − b(a/b)xt + wt.

Then the evolution of the second moment will be

E[x2t+1] = [1− (1− ef )(1 − er)]a
2E[x2t ] + E[w2

t ],

which is stable if the condition in the statement of the proposition holds. ��
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8.7 Appendix: Proofs

8.7.1 Proof of Theorem 8.5.2

For channels of the type Class A (which includes the DMCs as a special case), the
capacity is given by

C = lim
T→∞

max
{P (qi|q[0,t−1],q

′
[0,t−1]

)}

1

T
I(q[0,T−1] → q′[0,T−1]),

where

I(q[0,T−1] → q′[0,T−1]) =

T−1∑
t=1

I(q[0,t]; q
′
t|q′[0,t−1]),

Let us define RT = max{P (qt|q[0,t−1],q
′
[0,t−1]

),0≤t≤T−1}
1
T

∑T−1
t=0 I(q′t; q[0,t]|

q′[0,t−1]). Observe that for t > 0:

I(q′t; q[0,t]|q′[0,t−1]) = H(q′t|q′[0,t−1])−H(q′t|q[0,t], q′[0,t−1])

= H(q′t|q′[0,t−1])−H(q′t|q[0,t], xt, q′[0,t−1]) (8.21)

≥ H(q′t|q′[0,t−1])−H(q′t|xt, q′[0,t−1])

= I(xt; q
′
t|q′[0,t−1]). (8.22)

Here, (8.21) follows from the assumption that the channel is of Class A type (and
the control actions are determined by channel outputs). It follows that since for two
sequences {an}, {bn} with an ≥ bn, we have lim supn an ≥ lim supn bn, and RT

is assumed to have a limit

lim
T→∞

RT

≥ lim sup
T→∞

1

T

( T−1∑
t=1

I(xt; q
′
t|q′[0,t−1])) + I(x0; q

′
0)

)

= lim sup
T→∞

1

T

( T−1∑
t=1

(
h(xt|q′[0,t−1])− h(xt|q′[0,t])

)
+ I(x0; q

′
0)

)

= lim sup
T→∞

1

T

( T−1∑
t=1

(
h(Axt−1 +Gwt−1 +But−1|q′[0,t−1])− h(xt|q′[0,t])

)

+I(x0; q
′
0)

)
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= lim sup
T→∞

1

T

( T−1∑
t=1

(
h(Axt−1 +Gwt−1|q′[0,t−1])− h(xt|q′[0,t])

)

+I(x0; q
′
0)

)
(8.23)

≥ lim sup
T→∞

1

T

( T−1∑
t=1

(
h(Axt−1 +Gwt−1|q′[0,t−1], wt−1)− h(xt|q′[0,t])

)

+I(x0; q
′
0)

)
(8.24)

= lim sup
T→∞

1

T

( T−1∑
t=1

(
h(Axt−1|q′[0,t−1], wt−1)− h(xt|q′[0,t])

)
+ I(x0; q

′
0)

)

= lim sup
T→∞

1

T

( T−1∑
t=1

(
h(Axt−1|q′[0,t−1])− h(xt|q′[0,t])

)
+ I(x0; q

′
0)

)
(8.25)

= lim sup
T→∞

1

T

( T−1∑
t=1

(
log2(|A|) + h(xt−1|q′[0,t−1])− h(xt|q′[0,t])

)
+ I(x0; q

′
0)

)

= lim sup
T→∞

1

T

(( T−1∑
t=1

log2(|A|)
)
+ h(x0|q′0)− h(xT−1|q′[0,T−1]) + I(x0; q

′
0)

)

= log2(|A|) − lim inf
T→∞

(
1

T
h(xT−1|q′[0,T−1])

)
(8.26)

≥ log2(|A|) − lim inf
T→∞

(
1

T
h(xT−1)

)
≥ log2(|A|). (8.27)

Equality (8.23) follows from the fact that the control action is a function of
the past channel outputs, (8.24) follows from the fact that conditioning does
not increase entropy, and (8.25) follows from the observation that {wt} is an
independent process. Equation (8.27) follows from conditioning. The other (inter-
mediate) lines follow from the properties of mutual information. By the hypothesis,
lim inft→∞

1
th(xt) ≤ 0, it must be that limT→∞RT ≥ log2(|A|). Thus, the

capacity also needs to satisfy this bound. ��

8.7.2 Proof of Proposition 8.5.1

The proof follows from that of Theorem 8.5.2, with the following differences (where
we build on [260]). Define the event
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ST = {ω : |x0| ≤ K, |
T−1∑
k=0

A−k−1Gwk − ζk| ≤ 1},

where in this context | · | denotes the l2 norm, ζk is a deterministic sequence, and
K is sufficiently large, such that the event ST has positive probability. Define x̄t =
xt −

∑t−1
k=0 A

t−k−1But to be the control-free state such that x̄0 = x0 and x̄t+1 =
Ax̄t +Gwt. By Definition 8.5.1, we note that the capacity expression satisfies

C = lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

), 0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1])

= lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

), 0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1]|ST ),

where the conditional directed information is given by

I(q[0,T−1] → q′[0,T−1]|ST ) =

T−1∑
t=1

I(q[0,t]; q
′
t|q′[0,t−1],ST ) + I(q0; q

′
0|ST ).

This result is a consequence of the equivalence of the expressions under a capacity
achieving channel input policy and the Markov chain condition in Definition 8.5.1.
Now, instead of (8.21), the following can be established:

I(q′t; q[0,t]|q′[0,t−1],ST ) = H(q′t|q′[0,t−1],ST )−H(q′t|q[0,t], q′[0,t−1],ST )

= H(q′t|q′[0,t−1],ST )−H(q′t|q[0,t], x̄T , q′[0,t−1],ST ) (8.28)

≥ H(q′t|q′[0,t−1],ST )−H(q′t|x̄T , q′[0,t−1],ST )

= I(x̄T ; q
′
t|q′[0,t−1],ST ).

Here, (8.28) holds by conditioning and by the fact that the system variables
do not affect the channel as a consequence of Definition 8.5.1. We also note
that here the events are conditioned on the event realization ST . Thus, RT ≥∑T−1

t=0 I(x̄T ; q
′
t|q′[0,t−1],ST ) = I(x̄T ; q

′
[0,T−1]|ST ). Let us write

I(x̄T ; q
′
[0,T−1]|ST ) = hST (x̄T )− hST (x̄T |q′[0,T−1]),

where the notation hST (·) denotes the conditioning on the event realization ST . The
following then holds:

hST (x̄T |q′[0,T−1]) ≥ hST (x̄T )− TRT . (8.29)
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Furthermore,

hST (x̄T ) = hST (A
T (x0 +

T−1∑
k=0

A−k−1Gwk))

= log2(|A|)T + hST ((x0 +

T−1∑
k=0

A−k−1Gwk)). (8.30)

Observe that since ut is a function of q′[0,t] for all t ≥ 0,

hST (x̄T |q′[0,T−1]) = hST (xT |q′[0,T−1]) ≤ hST (xT ,Y|q′[0,T−1]),

where Y is a binary random variable which is 1 if |xT | ≤ b(T ) and 0 otherwise. Let

P (Y = 1) = P (|xT | ≤ b(T )) =: pT .

Then,

hST (xT ,Y|q′[0,T−1]) = hST (xT |q′[0,T−1],Y) + hST (Y|q′[0,T−1])

≤ hST (xT |q′[0,T−1],Y) + 1,

since Y is binary. We have that

hST (xT |q′[0,T−1],Y) ≤ 1 + pT
n

2
log2(2πeb

2(T ))

+(1− pT−1)hST

(
xT

∣∣∣∣q′[0,T−1], |xT | ≥ b(T )

)

and

hST

(
xT

∣∣∣∣q′[0,T−1], |xT | > b(T )

)

= hST

(
AT (x0 +

T−1∑
k=0

A−k−1(wk + uk))

∣∣∣∣q′[0,T−1], |xT | > b(T )

)

≤ log2(|A|)T +
n

2
log2(2πe(K + 1)2). (8.31)

Here (8.31) follows from the fact that the Gaussian measure maximizes the
differential entropy among random variables with a fixed covariance matrix, which
in this case is further bounded by the effects of the event ST . We have then, by
(8.29)–(8.31) and by adjusting T and ST accordingly,

lim inf
T→∞

1

T

(
1 + (1− pT )(log2(|A|)T +

n

2
log2(2πe(K + 1)2))

+pT
n

2
log2(2πeb

2(T ))

)
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≥ lim inf
T→∞

(
log2(|A|)T+hST

((x0+

T−1∑
k=0

A−k−1Gwk))−TRT

)

= log2(|A|)−C,

where the last step follows since |hST ((x0+
∑T−1

k=0 A
−k−1Gwk))| <∞ (uniformly

over T ). It then follows that

lim sup
T→∞

P (|xT | ≤ b(T )) ≤ C

log2(|A|)
,

for all b(T ) such that log2(b(T ))/T = 0. This completes the proof. ��

8.7.3 Proof of Proposition 8.5.3

If the process is AMS (see Sect. C.3.1), then there exists a stationary measure P̄
such that

lim
T→∞

T∑
k=1

P (T−kD) = P̄ (D), (8.32)

for all (cylinder) events D. Let for bB ∈ R+, B ∈ B(RN) be given by B = {x :
|x| ≤ bB} and Xn(z) = zn be the coordinate function (see Sect. C.3.1) where
z = {z0, z1, z2, · · · }.

If, by Proposition 8.2.1,

lim sup
T→∞

P (|xT | ≤ bB) ≤
C

log2(|A|))
< 1, (8.33)

holds for all bB ∈ R+, then P̄n(B) < C
log2(|A|) for all compact B, where P̄n is the

marginal probability on the nth coordinate defined as

P̄n(B) = P̄ (x : |Xn(x)| ≤ bB).

But then P̄n, as an individual probability measure, must be tight [58]; therefore, for
every δ > 0 there exists bB <∞ such that P̄n(B) ≥ 1−δ. But, by (8.32), this would
imply that lim supt→∞ P (T−tB) = lim supt→∞ P (|xt| ∈ B) ≥ 1 − δ, leading to
a contradiction with (8.33) for δ < 1 − C

log2(|A|) . Hence, the AMS property cannot
be achieved. ��

8.7.4 Proof of Proposition 8.3.1

As in (8.12), we introduce a sequence of stopping times as
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τ0 = 0, τz+1 = inf{k > τz : |hk| ≤ 1, pk = 1}, z ∈ N.

By the strong Markov property and the nature of the stopping times, (xτz , hτz)
is also a Markov chain. In the following, we show that there exist b0 > 0, b1 < ∞
such that

E[log(Δ2
τz+1

)|Δτz , hτz ] ≤ log(Δ2
τz )− b0 + b11{|Δτz |≤F}. (8.34)

We first bound the probabilityP (τz+1−τz ≥ k|Δτz , hτz) from above and below
in the following two lemmas:

Lemma 8.7.1. The discrete probability measure P (τz+1 − τz = k | xτz , Δτz) has
the upper bound

P (τz+1 − τz ≥ k|xτz , Δτz) ≤ (1 − p)k−1 +Gk(Δτz ),

where Gk(Δτz) → 0 as Δτz → ∞ uniformly in xτz . �

Proof. For k ∈ N, let

Θk := P (τz+1 − τz ≥ k | xτz , Δτz) = Pxτz ,Δτz
(τz+1 − τz ≥ k). (8.35)

Without any loss of generality, let z = 0, τ0 = 0, so that Θk = Px0,Δ0(τ1 ≥ k).
The probabilityΘk for k ≥ 2 is bounded as follows:

Θk = Px0,Δ0

( k−1⋂
s=1

(Υs = 0) ∪ (|hs| > 1)

)

≤ Px0,Δ0

( k−1⋂
s=1

(Υs = 0) ∪ (|xs| ≥ 2R
′−1(|a|+ δ)s−1αΔ0)

)

= Px0,Δ0

( k−1⋂
s=1

(Υs=0) ∪ (|as(x0+
s−1∑
i=0

a−i−1wi)| ≥ (|a|+δ)s−12R
′−1αΔ0)

)

≤ Px0,Δ0

( k−2⋂
s=1

(Υs = 0) ∪ (|hs| > 1)
∣∣∣Υk−1 = 0

)
(1− p)

+ Px0,Δ0

( k−2⋂
s=1

(Υs = 0) ∪ (|hs| > 1)

∣∣∣ {|ak−1(x0 +
k−2∑
i=0

a−i−1wi)| ≥ (|a|+ δ)k−22R
′−1αΔ0}

)

× Px0,Δ0

(
|ak−1(x0 +

k−2∑
i=0

a−i−1wi)| ≥ (|a|+ δ)k−22R
′−1αΔ0

)
(8.36)
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≤ Px0,Δ0

( k−2⋂
s=1

(Υs = 0) ∪ (|hs| > 1)
∣∣∣Υk−1 = 0

)
(1− p)

+ Px0,Δ0

(
|ak−1(x0 +

k−2∑
i=0

a−i−1wi)| ≥ (|a|+ δ)k−22R
′−1αΔ0

)

= Px0,Δ0(τ1 ≥ k − 1)(1− p)

+ Px0,Δ0

(
|ak−1(x0 +

k−2∑
i=0

a−i−1wi)| ≥ (|a|+ δ)k−22R
′−1αΔ0

)
. (8.37)

In the above derivation, (8.36) follows from the following: For any three events
M,C,D in a common probability space,

P
(
M ∩ (C ∪D)

)
= P

(
(M ∩ C) ∪ (M ∩D)

)
≤ P

(
M ∩ C

)
+ P

(
M ∩D

)

Now, observe that for k ≥ 2,

Px0,Δ0

(
|(x0 +

k−2∑
i=0

a−i−1wi)| ≥ (
|a|+ δ

|a| )k−22R
′−1 α

|a|Δ0

)

≤ 2Px0,Δ0

( k−2∑
i=0

a−i−1wi > (2R
′−1(

|a|+ δ

|a| )k−2 α

|a| −
1

2
)Δ0

)

≤ C exp
(
− ((ξk−2N − 1/2)Δ0)

2

2σ′2

)
, (8.38)

where (8.38) follows from (8.5), for this condition ensures that the term

(2R
′−1(

|a|+ δ

|a| )k−2 α

|a| −
1

2
)

is positive for k ≥ 2 and bounding the complementary error function by the
following:

∫∞
q μ(dx) ≤ q−1

∫∞
q xμ(dx), for q > 0. In the above derivation, the

constants are as follows:

σ′2 =
E[w2

1 ]

1−|a|−2
, ξ =

|a|+δ
|a| , N =

2R
′−1

(|a|)/α , C = 2σ′ 1√
2π(2N − 1)Δ0/2

.

Let us define:

Ξk :=
((ξk−2N − 1/2)Δ0)

2

2σ′2 , Ξ̃k :=
((ξkN − 1/2)Δ0)

2

2σ′2 .
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We can bound the probability Θk defined in (8.35). Since a decaying exponential
decays faster than any decaying polynomial, for each m ∈ N+, there exists an
M <∞ such that for all k ∈ N,

Ce−Ξk ≤MΞ̃−m
k . (8.39)

Thus, we have that

Px0,Δ0

(
(x0+

k−2∑
i=0

a−i−1wi)≥(
|a|+δ
|a| )k−22R

′−1 α

|a|Δ0

)
≤MΞ̃−m

k . (8.40)

Now Θ1 = 1 by definition, and for k > 1,

Θk ≤ Θk−1(1− p) + Ce−Ξk . (8.41)

We obtain,

Θk ≤ (1− p)k−1 +Gk(Δτ0), (8.42)

where

Gk(Δτ0) :=
k−1∑
s=1

M(1− p)k−s−1Ξ̃−m
s . (8.43)

It now follows that

Gk(Δτ0) =

k−1∑
s=1

M(1− p)k−s−1Ξ̃−m
s

= Δ−2m
0 (1− p)k−1

k−1∑
s=1

M(1− p)−s

(
(ξsN − 1/2)2/(2σ′2)

)−m

≤ ΓmΔ
−2m
0 (1 − p)k−1

(
(1− p)ξ2m

)−k

− 1

(
(1 − p)ξ2m

)−1

− 1

, (8.44)

with Γm =M(N − 1
2ξ )

−2m(2σ′2)m <∞. Now if m is taken such that

(1 − p)ξ2m > 1, (8.45)

then limΔ0→∞Gk(Δ0) = 0, and for all k ∈ N,

Θk ≤ (1− p)k−1

(
1 + ΓmΔ

−2m
τ0

1

1− ((1− p)ξ2m)−1

)
(8.46)

��
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Lemma 8.7.2. The discrete probability measure P (τz+1 − τz = k | xτz , Δτz) has
the lower bound

P (τz+1 − τz ≥ k|xτz , Δτz ) ≥ (1− p)k−1,

for all realizations of xτz , Δτz . �

Proof. This follows since

Px0,Δ0

( k−1⋂
s=1

(Υs = 0) ∪ (|hs| > 1)

)
≥ Px0,Δ0

( k−1⋂
s=1

(Υs = 0)

)
.

��

As a consequence of Lemmas 8.7.1 and 8.7.2, the probability below tends to
(1− p)k−1p as Δτz → ∞:

P (τz+1 − τz = k | xτz , Δτz)

= P (τz+1 − τz ≥ k | xτz , Δτz)− P (τz+1 − τz ≥ k + 1|xτz , Δτz). (8.47)

We can now invoke Theorem 6.2.6. With the candidate Lyapunov function
V0(xt, Δt) = log(Δ2

t ) +B0, for Δτz > L, we have that

E[V0(xτz+1 , Δτz+1) | xτz , Δτz ] = B0+P (τz+1−τz=1)

(
2 log(α)+ log(Δ2

τz )

)

+

∞∑
k=2

log(Δ2
τz+k)P (τz+1 − τz = k | xτz , Δτz).

Thus, the drift satisfies:

E[V0(xτz+1 , Δτz+1) | xτz , Δτz ]− V0(xτz , Δτz)

=

∞∑
k=1

2 log((|a|+ δ)(k−1)α)P (τz+1 − τz = k | xτz , Δτz)

=2 log(α)+2
∞∑
k=1

(k−1) log(|a|+δ)P (τz+1−τz=k | xτz , Δτz). (8.48)

By (8.43), the summability of
∑∞

k=1Gk(Δτz ), and the dominated convergence
theorem, we have
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lim
Δτz→∞

∞∑
k=1

(k − 1)((1− p)k−1 +Gk(Δτz )− (1− p)k)

=
∞∑
k=1

lim
Δτz→∞

(k − 1)((1− p)k−1 +Gk(Δτz)− (1− p)k)

=

∞∑
k=1

p(1− p)k−1(k − 1) = p−1 − 1.

Provided that (8.6) holds, it follows that for some b0 > 0

lim
Δτz→∞

{
E[V0(xτz+1 ,Δτz+1) | xτz ,Δτz ]− V0(xτz ,Δτz )

}

= 2 lim
Δτz→∞

{
log(α) +

∞∑
k=1

(k − 1) log(|a|+ δ)P (τz+1 − τz = k | xτz , Δτz )
}

≤ −b0 .
(8.49)

ForΔτz in a compact set and lower bounded byL′ defined by (8.8),E[log(Δ2
τz+1

)
| xτz , Δτz ] is uniformly bounded. This follows from the representation of the drift
given in (8.48). Finally, since,

Gk(Δτ0) ≤ (1− p)k−1ΓmΔ
−2m
τ0

1

1− ((1 − p)ξ2m)−1
,

it follows that
∑∞

k=1Gk(Δτ0)k <∞ and as a result

sup
xτz ,Δτz

Exτz ,Δτz
[τz+1 − τz ] <∞. (8.50)

Consequently, under the bound (8.6), there exist b0 > 0, b1 < ∞, F ′ > 0
such that

E[V0(xτz+1 , Δτz+1)|xτz , Δτz ] ≤ V0(xτz , Δτz)− b0 + b11{|Δτz |≤F ′}. (8.51)

With (8.50) and (8.51), Corollary 6.2.1 leads to positive Harris recurrence.
Together with Lemmas 6.2.6 and 8.7.1, (8.50) and (8.51) imply the existence of

a set Cx × CΔ satisfying the property that

sup
(x,Δ)∈Cx×CΔ

Ex,Δ[τCx×CΔ ] <∞.

To verify the property P(x,Δ)(τCx×CΔ <∞) = 1 for any admissible (x,Δ), the
argument follows, as before, from the construction of

Θk(Δ,x) := P (τ1 ≥ k | x,Δ),
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where

τ1 = inf(k > 0 : |xk| ≤ 2R
′−1Δk, x0 = x,Δ0 = Δ)

and observing that Θk(Δ,x) is majorized by a geometric measure with similar
steps. Once a state which is perfectly zoomed, that is, which satisfies |xt| ≤
2R

′−1Δt, is visited, the stopping time analysis can be used to verify that from any
initial condition the recurrent set is visited in finite time with probability 1. ��

8.7.5 Proof of Theorem 8.3.1

Let the values taken by log2(Q̄(·))/s be {−Ã, 0, B̃}. Let

Lz0,Ã,B̃ := {n∈N, n≥ log2(L
′)/s : ∃NÃ∈N, NB̃∈N, n = −NÃÃ+NB̃B̃+z0}.

By (8.7),

log2(Δt+1)/s = log2(Q̄(Δt, |ht|, Υt))/s+ log2(Δt)/s

is also an integer. We will establish that Lz0,Ã,B̃ forms a communication class,
where z0 = log2(Δ0)/s is the initial condition of the parameter for the quantizer.
Furthermore, since the source process xt is “Lebesgue-irreducible” (for the system
noise admits a probability density function that is positive everywhere) and there
is a uniform lower bound L′ on bin sizes, the error process takes values in any of
the admissible quantizer bins with nonzero probability. In view of these, we now
establish that the Markov chain is irreducible.

Given l, k ∈ Lz0,Ã,B̃, there existNÃ, NB̃ ∈ N such that l−k = −NÃÃ+NB̃B̃.

In particular, if at time 0, the quantizer is perfectly zoomed and Δ0 = 2sk, then
there exists a sequence of events consisting of NB̃ erasure events (simultaneously
satisfying |ht| ≤ 1) and consequently NÃ zoom-in events taking place with
probability at least:

(
(1− p)P (wt ∈ [−(2R

′ − a)L′/2, (2R
′ − a)L′/2])

)NB̃

(
pP (wt ∈ [−(α2R

′
− a)L′/2, (α2R

′
− a)L′/2])

)NÃ

> 0, (8.52)

so that P (ΔNÃ+NB̃
= 2sl|Δ0 = 2ks, x0) > 0, uniformly in x0. In the following

we will consider this sequence of events.
Now, for some distribution K on positive integers, E ⊂ R and Δ an admissible

bin size,

∑
n∈N+

K(n)P

(
(xn, Δn) ∈ (E × {Δ})

∣∣∣x0, Δ0

)
≥ KΔ0,Δψ(E,Δ).
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Here KΔ0,Δ, denoting a lower bound on the probability of visiting Δ from Δ0 in
some finite time, is nonzero by (8.52) and ψ is a positive function as the following
argument shows: Let t > 0 be the time stage for which Δt = Δ and thus by the
construction in (8.52), with |ht−1| ≤ 1: |axt−1+but−1| ≤ |a|Δt−1/2 = (|a|/α)Δ2 .
Thus, it follows that for A1, B1 ∈ R, A1 < B1,

P

(
xt ∈ [A1, B1]

∣∣∣ |axt−1 + but−1| ≤ |a|Δt−1/2, Δt−1

)

= P

(
axt−1 + but−1 + wt−1 ∈ [A1, B1]

∣∣∣ |axt−1 + but−1| ≤ |a|Δt−1/2, Δt−1

)

≥ min
|z|≤Δ

2 (|a|/α)

(
P (wt−1∈[A1−z,B1−z]

)
>0. (8.53)

Now, define the finite set C′
Δ := {Δ : L′ ≤ |Δ| ≤ F ′, log2(Δ)

s ∈ N}. The chain
satisfies the recurrence property that P(x,Δ)(τCx×C′

Δ
<∞) = 1 for any admissible

(x,Δ). This follows, as before, from the construction of

Θk(Δ,x) := P (τ1 ≥ k | x,Δ),

where

τ1 = inf(k > 0 : |xk| ≤ 2R
′−1Δk, x0 = x,Δ0 = Δ)

and observing that Θk(Δ,x) is majorized by a geometric measure. Once a state
which is perfectly zoomed, that is which satisfies |xt| ≤ 2R

′−1Δt, is visited,
the stopping time analysis can be used to verify that from any initial condition the
recurrent set is visited in finite time with probability 1. In view of (8.52), we have
that the chain is irreducible.

We can show that the set Cx × C′
Δ is small by first showing that this set is

petite and the property that under aperiodicity and irreducibility, every petite set is
small. As before in Sect. 7.6.3, to establish the petiteness property, we can establish
the uniform countable additivity condition (C.2) through (7.21). Therefore, every
compact set {x,Δ : |x| ≤ F0, |h| ≤ 1, Δ ∈ SΔ} for some finite F0 and finite SΔ is
petite in view of the discussion above.

If the integers Ã, B̃ are relatively prime, then by Lemma 7.6.2, the communi-
cation class will include the bin sizes whose logarithms are integer multiples of a
constant except those leading to Δ < L′.

We finally can show that the Markov chain is aperiodic. This follows from the
fact that the smallest admissible state for the quantizer, Δ∗ = L′, can be visited in
subsequent time stages with nonzero probability, since

(
min

|x|≤Δ∗/2
P (wt ∈ [−2R

′−1Δ∗ − x, 2R
′−1Δ∗ − x])

)
p > 0.

��
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8.7.6 Proof of Theorem 8.3.3

First, let us note that by (8.42) and (8.46), for every κ > 0, we can findΔ0 such that

lim
t→∞

P (τ1 ≥ t|x0, Δ0)

(1 − p+ κ)t−1
= 0.

We can pick κ > 0 such that (1 − p + κ)|a + δ|2 < 1. Such κ, δ exist since, by
hypothesis, (1− p)|a|2 < 1.

We now observe that for all x0 such that |h0| ≤ 1:

lim
Δ0→∞

E[V2(xτ1 , Δτ1) | x0, Δ0]

V2(x0, Δ0)
= lim

Δ0→∞

E[Δ2
τ1 | x0, Δ0]

Δ2
0

= lim
Δ0→∞

1

Δ2
0

∞∑
k=1

P (τ1 = k)E[Δ2
k|τ1 = k, x0, Δ0]

= lim
Δ0→∞

α2
∞∑
k=1

P (τ1 = k)(|a|+ δ)2(k−1)

= pα2 1

1− (1 − p)(|a|+ δ)2
, (8.54)

where the last equality follows from Lemma 8.7.1 and the dominated convergence
theorem. Now, if (8.10) holds, we can find α such that R′ > log2(|a|/α), and

pα2

1− (1 − p)(|a|+ δ)2
< 1, (8.55)

and simultaneously (8.6) is satisfied. We note that (8.55) implies (8.6) since by
Jensen’s inequality, log(pα2+(1−p)(|a|+δ)2) > p log(α2)+(1−p) log((|a|+δ)2).

To establish the required drift equation, we first establish the following bound for
all z ≥ 0:

κE[

τz+1−1∑
m=τz

x2m | x0, Δ0] ≤ Δ2
τz2

2(R′−1), (8.56)

for some κ > 0.
Let, for ease of notation, τz = 0. Observe that by Hölder’s inequality

E[

τ1−1∑
t=0

x2t |x0, Δ0] = E[

∞∑
t=0

1{t<τ1}x
2
t |x0, Δ0]

≤
∞∑
t=0

(
E[(1{t<τ1})

1+χ|x0, Δ0]

) 1
1+χ

(
E[x

2( 1+χ
χ )

t |x0, Δ0]

) χ
1+χ

, (8.57)
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for some χ > 0. Now

E[x
2( 1+χ

χ )

t |x0, Δ0] = E[a2t(
1+χ
χ )(x0 +

t−1∑
i=0

a−i−1wi)
2( 1+χ

χ )|x0, Δ0]

≤ |a|2t(
1+χ
χ )E[(x0 +

∞∑
i=0

a−i−1wi)
2 1+χ

χ |x0, Δ0]

= |a|2t(
1+χ
χ )(2R

′−1Δ0)
2 1+χ

χ E[(
x0 +

∑∞
i=0 a

−i−1wi

2R′−1Δ0
)2

1+χ
χ |x0, Δ0]

= |a|2t(
1+χ
χ )(2R

′−1Δ0)
2 1+χ

χ E[(h0 +

∑∞
i=0 a

−i−1wi

2R′−1Δ0
)2

1+χ
χ |x0, Δ0]

< L2(2
R′−1Δ0)

2 1+χ
χ |a|2t(

1+χ
χ ), (8.58)

for some L2 < ∞, where the last inequality follows since for every fixed |h0| ≤ 1,

the random variable (h0 +
∑∞

i=0 a−i−1wi

2R′−1Δ0
) has a Gaussian distribution with finite

moments, uniform on Δ0 ≥ L′.
Thus,

E[

τ1−1∑
t=0

x2t |x0, Δ0]

≤
∞∑
t=0

(
E[(1{t<τ1})

1+χ|x0, Δ0]

) 1
1+χ

(
L2(2

R′−1Δ0)
2 1+χ

χ |a|2t(
1+χ
χ )

) χ
1+χ

= (2R
′−1Δ0)

2
∞∑
t=0

(
P (τ1 ≥ t+ 1|x0, Δ0)

) 1
1+χ

(
L2|a|2t(

1+χ
χ )

) χ
1+χ

< ζL2(2
R′−1Δ0)

2

for some ζL2 <∞. The last inequality is due to the fact there exists κ > 0 such that

lim
t→∞

P (τ1 ≥ t|x0, Δ0)

(1 − p+ κ)t−1
= 0,

and we can pick χ > 0 with (1 − p + κ)|a|2(1+χ) < 1. Such χ and κ exist by the

hypothesis that (1− p)|a|2 < 1. Hence, with 0 < ε < 1− pα2

1−(1−p)(|a|+δ)2 ,

δ(x,Δ) = εΔ2, f(x,Δ) =
ε

ζL22
2(R′−1)

x2,

C a compact set and V2(x,Δ) = Δ2, Theorem 6.2.4 applies and limt→∞
E[x2t ] <∞. ��
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8.7.7 Proof of Theorem 8.4.1

Auxiliary Results and the Stopping Time Analysis

This section presents an important supporting result on stopping time distributions,
which is key in the use of Theorem 6.2.4 for the stochastic stability results. We begin
with the following.

Lemma 8.7.3. Let B(R× R+) denote the Borel σ-field on R× R+. Then,

P

(
(xkn, Δkn) ∈ (C ×D)|(x(k−1)n, Δ(k−1)n), . . . , (x0, Δ0)

)

= P

(
(xkn, Δkn) ∈ (C ×D)|(x(k−1)n, Δ(k−1)n)

)
,

∀(C ×D) ∈ B(R× R+), i.e., (xtn, Δtn) is a Markov chain. �

The above follows from the observations that the channel is memoryless, the
encoding only depends on the most recent samples of the state and the quantizer,
and the control policies use the channel outputs received in the last block, which
stochastically only depend on the parameters in the previous block.

Let us define ht := xt

Δt2R
′−1 . We will say that the quantizer is perfectly zoomed

when |ht| ≤ 1 and under-zoomed otherwise.
Define a sequence of stopping times for the perfect-zoom case with (where the

initial state is perfectly zoomed at τ0)

τ0 = 0, τz+1 = inf{kn > τz : |hkn| ≤ 1}, z, k ∈ Z+. (8.59)

As discussed in Sect. 8.4, there will be three types of errors (of Types I-A, I-B, II).

Lemma 8.7.4. The discrete probability distribution P (τz+1 − τz |xτz , Δτz) is
asymptotically, in the limit of large Δτz , dominated (majorized) by a geometrically
distributed measure. That is, for k ≥ '1/κ(+ 1,

P (τz+1 − τz ≥ kn|xτz , Δτz)

≤ Ξ(Δτz)

(
(1 − P e

g|g − P e
Z|g)(eP

(κ)
e )k−2

+P e
g|g(eP

(κ− 1−κ
k−2 )

e )k−2 + (P e
Z|g)(eP

(κ+ κ
k−2 )

e )k−2

)
. (8.60)

where Ξ(Δτz) <∞ and Ξ(Δτz ) → 1 as Δτz → ∞ for every fixed n, uniformly in
|h0| ≤ 1 and

κ <
1

log |a|+δ
|a|

( |a|+δ
α )

. (8.61)

�
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Proof. Let for k ∈ N,

Θk := P (τz+1 − τz ≥ kn|xτz , Δτz). (8.62)

Without any loss of generality, let z = 0 and τ0 = 0, so that Θk = P (τ1 ≥
kn|x0, Δ0).

Before proceeding with the proof, we highlight the technical difficulties that will
arise when the quantizer is in the under-zoom phase. As elaborated on earlier, the
errors at time 0 are crucial for obtaining the error bounds: At time 0, at most with
probability P e

g|g(n), an error will take place so that the quantizer will be zoomed in,
yet an incorrect control signal will be applied. With probability at most P e

Z|g(n), an
error will take place so that no control action is applied and the quantizer is zoomed
out. At consecutive time stages, until the next stopping time, the quantizer should
ideally zoom out but an error takes place with probability P e

g|Z(n) and forces the
quantizer to be zoomed in and a control action to be applied. Our analysis below
will address all of these issues.

In the following we will assume that the probabilities are conditioned on
particular x0, Δ0 values, to ease the notation.

We first consider the case where there is an intra-granular, Type I-A, error
at time 0, which takes place at most with probability P e

g|g (this happens to be the
worst-case error for the stopping time distribution). Now,

P (τ1 ≥ kn|Type I-A error at time 0)

= P

( k−1⋂
m=1

(|hmn| > 1)|Type I-A error at time 0

)

= P

( k−1⋂
m=1

(|xmn| ≥ 2R
′−1(|a|+ δ)(m−sm−1)nα(1+sm)nΔ0)

)

= P

( k−1⋂
m=1

(|amn(x0 +

mn−1∑
i=0

a−i−1(wi + ui))|

≥ 2R
′−1(|a|+ δ)(m−sm−1)nα(1+sm)nΔ0)

)

= P

( k−1⋂
m=1

(|(x0 +
mn−1∑
i=0

a−i−1(wi + ui))| ≥

2R
′−1αn

|an| (
|a|+ δ

|a| )(m−1)n(
α

|a|+ δ
)(sm)nΔ0)

)
. (8.63)

In the above, sm is the number of errors in the transmissions that have taken
place until (but not including) time m, except for the one at time 0. An error at
time 0 would possibly lead to a further enlargement of the bin size with nonzero
probability, whereas no error at time 0 leads to a strict decrease in the bin size.
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The study for the number of errors is crucial for analyzing the stopping time
distributions. In the following, we will condition on the number of erroneous
transmissions for k successive block codings for the under-zoomed phase. Suppose
that for k > 1, there are sk total erroneous transmissions in the time stages
{n, 2n, . . . , (k − 1)n} when the state is in fact under-zoomed, but the controller
interprets the received transmission as a successful one. Thus, we take s1 = 0.

Let ζ1, ζ2, . . . , ζsk−1
be the time stages when errors take place:

ζt+1 : min(min(m > ζt : c
′
nm 	= cnm), k − 1), ζ0 = 0,

such that ζsk−1+1 = k − 1 or ζsk−1
= k − 1 and define ηt = ζt+1 − ζt.

In the time interval [ζtn+1, ζt+1n−1] the system is open-loop, that is, there is no
control signal applied, as there is no misinterpretation by the controller. However,
there will be a nonzero control signal at times {ζkn, k ≥ 0}. These are, however,
upper bounded by the ranges of the quantizers at the corresponding time stages.
That is, when an erroneous interpretation by the controller arises, the control applied
−(an/b)u(ζz+1)n−1 lives in the set: {an(−2R

′−1 + k− (1/2))Δζz , 1 ≤ k ≤ 2R
′}.

From (8.63), we have that

P

( k−1⋂
m=1

(|hmn| > 1)|Type I-A error at time 0

)

≤ P

( k−1⋂
m=1

(
|amn(x0 +

mn−1∑
i=0

a−i−1(wi + ui))|

≥ 2R
′−1(|a|+ δ)(m−sm−1)nα(1+sm)nΔ0

))

≤ P

( k−2⋃
p=0

(
{sk−1 = p}

⋂{ p⋂
m=1

(|aζmn(x0 +

ζmn−1∑
i=0

a−i−1wi +

m−1∑
i=0

a(−ζi−1)nu(ζi+1)n−1)|

≥ 2R
′−1(|a|+ δ)(ζm−sm−1)nα(1+sm)nΔ0)

}))

=

k−2∑
p=0

(
k − 2

p

)
(P e

g|Z)
p(1− (P e

g|Z ))
k−1−p1{sk−1=p}

×P
( p⋂

m=1

(|aζmn(x0 +

ζmn−1∑
i=0

a−i−1wi +

m−1∑
i=0

a(−ζi−1)nu(ζi+1)n−1)|

≥ 2R
′−1(|a|+ δ)(ζm−sm−1)nα(1+sm)nΔ0|sk−1 = p

)
. (8.64)
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Since the control signal u(ζi+1)n−1 lives in {an(−2R
′−1+k−(1/2))Δ(ζi)n, 1 ≤

k ≤ 2R
′}, conditioned on having sk−1 errors in the transmissions, the bound

writes as

P

{ p⋂
m=1

(
|aζmn(x0 +

ζmn−1∑
i=0

a−i−1wi +
m−1∑
i=0

a(−ζi−1)nu(ζi+1)n−1)|

≥ 2R
′−1(|a|+ δ)(ζm−sm−1)nα(1+sm)nΔ0 | sk−1 = p

)}

≤ min
0≤m≤sk−1

{

P

(
|
ζmn−1∑
i=0

a−i−1wi| ≥ 2R
′−1(

|a|+ δ

|a| )(ζm−sm−1)n(
α

|a| )
(1+sm)nΔ0

−
m−1∑
i=1

|a|n( |a|+ δ

|a| )(ζi−si−1)n(
α

|a| )
(sm+1)n(2R

′−1 − 1/2)Δ0

∣∣∣∣sk−1 = p

)}

−|x0| − (2R
′−1 − 1/2)Δ0 (8.65)

≤ min
0≤m≤sk−1

{

P

(
|d̄| ≥ 2R

′−1(
|a|+ δ

|a| )(ζm−sm−1)n(
α

|a| )
(1+sm)nΔ0

−|x0| − (2R
′−1 − 1/2)Δ0

−
m−1∑
i=1

(
|a|+ δ

|a| )(ζm−sm−1)n(
α

|a| )
(1+sm)n(2R

′−1 − 1/2)Δ0

∣∣∣∣sk−1 = p

)}
,

(8.66)

where d̄ =
∑∞

i=0 a
−i−1wi is a zero-mean Gaussian random variable with variance

E[d2]a−2

1−a−2 . In the above (8.65) corresponds to the worst-case where, even when
the quantizer is zoomed the controller incorrectly picks the worst case control
signal and the chain rule for total probability: For two events A,B: P (A,B) ≤
min(P (A), P (B)). Now, let us consider m = k − 1. In this case,

P

(
|d̄| ≥ 2R

′−1(
|a|+ δ

|a| )(ζm−sm−1)n(
α

|a| )
(1+sm)n

−|x0| − (2R
′−1 − 1/2)Δ0

−
m−1∑
i=1

(
|a|+ δ

|a| )(ζm−sm−1)n(
α

|a| )
(1+sm)n(2R

′−1 − 1/2)Δ0

)
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≤ P

(
|d̄| ≥ 2R

′−1(
|a|+ δ

|a| )(ζm−sm)n(
α

|a| )
(sm)n(

α

|a|+ δ
)n

×
(
1−

m−1∑
i=1

(
|a|+ δ

|a| )(ζi−ζm)n(
α

|a| )
(si−sm)n(1− 2−R′

)

)
Δ0

−2R
′
Δ0

∣∣∣∣sk−1 = p

)
,

where in the inequality we observe that |x0| ≤ 2R
′−1Δ0, since the state is zoomed

at this time.
In bounding the stopping time distribution, we will consider the condition that

(k − 1)− (sk−1 + 1)(log (|a|+δ)
|a|

(
|a|+ δ

α
)) > αA(sk−1 + 1), (8.67)

for some arbitrarily small but positive αA, to be able to establish that

(
1−

m−1∑
i=1

(
|a|+ δ

|a| )(ζi−ζm)n(
α

|a| )
(si−sm)n(1 − 2−R′

)

)
> 0 (8.68)

and that ( |a|+δ
|a| )(ζk−1−sk−1)n( α

|a|+δ )
(sk−1)n > 2 for sufficiently large n. Now, there

exists an m such that ( |a|+δ
|a| )ζmn( α

|a+δ| )
smn ≥ ( |a|+δ

|a| )(ζk−1−sk−1)n( α
|a|+δ )

(sk−1)n

and for this m,

(
1−

m−1∑
i=1

(
|a|+ δ

|a| )
n(ζi−ζm−(log (|a|+δ)

|a|
( |a|+δ

α ))(si−sm))
)

≥ (1−
m−1∑
i=1

(
|a|+ δ

|a| )−αAin) > 0. (8.69)

This follows from considering a conservative configuration among an increasing
subsequence of times {ζi1 , . . . , ζin}, in ≤ k−1, such that for all elements ij of this
sequence:

(
|a|+ δ

|a| )ζijn(
α

|a+ δ| )
sijn ≥ (

|a|+ δ

|a| )(ζk−1−sk−1)n(
α

|a|+ δ
)(sk−1)n

and for i ≤ m, with ζm ∈ {ζi1 , . . . , ζin}, (ζm−ζi−(sm−si)(log (|a|+δ)
|a|

( |a|+δ
α )) ≥

αA(sm−si). Such an ordered sequence provides a conservative configuration which
yet satisfies (8.69), by considering if needed, m to be an element in the sequence
with a lower index value for which this is satisfied. This has to hold at least for
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one time ζm, since k − 1 satisfies (8.67). Such a construction ensures that (8.68)
is uniformly bounded from below for every k since

∑∞
i=1(

|a|+δ
|a| )−αAin < 1 for n

large enough.
Hence, by (8.67), for some constant Bb > 0, the following holds:

P

(
|d̄| ≥ BbΔ0

(
(
|a|+ δ

a
)ζmn(

α

(|a|+ δ)
)(sm+1)n

)

≤2
σ′

BbΔ0

(
( |a|+δ

a )ζmn( α
|a|+δ )

(sm+1)

)e−
(

BbΔ0(
|a|+δ

a )ζmn( α
(|a|+δ)

)(sm+1)n

)2

/2σ′2

.

(8.70)

The above follows from bounding the complementary error function by the
following:

∫∞
q
μ(dx) ≤

∫∞
q

x
qμ(dx), for q > 0 when μ is a zero-mean Gaussian

measure. In the above derivation σ′2 = E[w2
1 ]|a|−2/(1− |a|−2). The above can be

further upper bounded by, for any r > 0:

Mr(Δ0)r
−

(
( |a|+δ

a )ζmn( α
|a|+δ

)(sm+1)n

)

+

(
1− 1{ζm−(sm+1)(log (|a|+δ)

|a|
( |a|+δ

α ))>αA(sm+1)}

)
(8.71)

with Mr(Δ0) → 0 as Δ0 → ∞ exponentially: Mr(Δ0)Δ
p
0 → 0, for any p ∈ N+,

due to the exponential dependence of (8.70) in Δ0. Thus, combined with (8.67),
conditioned on having sk−1 errors and a Type I-A error at time 0, we have the
following bound on (8.65):

Mr(Δ0)r
−

(
( |a|+δ

a )(k−1−sk−1)n( α
|a| )

(sk−1+1)n

)
+ 1

{ζk−1≤
(sk−1+1)

κ }
(8.72)

with κ = 1

log (|a|+δ)
|a|

( |a|+δ
α )+αA

. We observe that the number of errors needs to satisfy

the following relation for the above bound in (8.71) to be less than 1: k − 1 >
(1 + sk−1)/κ. Finally, the probability that the number of incorrect transmissions
exceeds κ(k − 1)− 1 is exponentially low, as we observe below.

Let, as before, Pe(n) = P e
g|Z(n). We consider below Chernoff-Sanov’s theorem

[59]: The sum of Bernoulli error events leads to a binomial distribution. Let for
1 > ζ > 0, D(ζ, Pe) = ζ log(ζ/Pe) + (1 − ζ) log( 1−ζ

1−Pe
). Then, the following

upper bound holds [103], for every k > 3:
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P

( k−2∑
t=1

1{Type II Error} ≥ κ(k − 1)− 1

)

= P

( k−2∑
t=1

1{Type II Error} ≥ (k − 2)(κ− 1− κ

k − 2
)

)

≤ e−(k−2)D((κ− 1−κ
k−2 ),Pe). (8.73)

Hence,

P

( k−2∑
t=1

1{Type II Error} ≥ (κ− 1− κ

k − 2
)(k − 2)

)

≤ (eH((κ− 1−κ
k−2 ))P

(κ− 1−κ
k−2 )

e )k−2 ≤ (eP
(κ− 1−κ

k−2 )
e )k−2, (8.74)

with H(z) = −z log(z) − (1 − z) log(1 − z) ≤ 1. We could bound the following
summation:

�κ(k−1)�−1∑
sk−1=0

(
k − 2

sk−1

)
Mr(Δ0)r

−

(
(k−1)−(sk−1+1)/κ

)
n

(Pe)
sk−1(1− Pe)

k−1−sk−1

≤Mr(Δ0)(1 − Pe)
k−1

( �(κ− 1−κ
k−2 )(k−2)�∑
sk−1=0

(
k − 2

sk−1

))
(

Pe

1− Pe
)κ(k−1)−1 (8.75)

≤Mr(Δ0)(2P
(κ− 1−κ

k−2 )
e )(k−2), (8.76)

where (8.75) holds since r can be taken to be r > (1−Pe

Pe
)κ by takingΔ0 to be large

enough and in the summations sk−1 taken to be κ(k − 1)− 1.
Thus, from (8.64) we have computed a bound on the stopping time distributions

through (8.74) and (8.76). Following similar steps for the Type I-B error and no
error cases at time 0, we obtain the bounds on the stopping time distributions as
follows:

• Conditioned an error in the granular region (Type I-A) at time 0, the condition
for the number of errors is that k − 1 > (1 + sk−1)/κ, and by adding (8.74) and
(8.76), the stopping time is dominated by:

P (τ1 ≥ kn) ≤ Mr(Δ0)(2P
(κ− 1−κ

k−2 )
e )(k−2) + (eP

(κ− 1−κ
k−2 )

e )k−2

≤ Ξ(Δ0)(eP
(κ− 1−κ

k−2 )
e )k−2 (8.77)

for Ξ(Δ) =Mr(Δ) + 1 which goes to 1 as Δ→ ∞.
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• Conditioned on the error that Z is the decoding output at time 0, in the above,
the condition for the number of errors is that k − 1 > sk−1/κ, and we may
replace the exponent term (κ − 1−κ

k−2 ) with (κ + κ
k−2 ) and the stopping time is

dominated by

P (τ1 ≥ kn) ≤ Ξ(Δ0)(eP
(κ+ κ

k−2 )
e )(k−2) (8.78)

for Ξ(Δ) =Mr(Δ) + 1 which goes to 1 as Δ→ ∞.
• Conditioned on no error at time 0 and the rate condition R′ > log2(|a|/α), the

condition for the number of errors is that k − 1 > 1 + sk−1/κ, and we may
replace the exponent term (κ− 1−κ

k−2 ) with κ.
The reason for this is that |x0 − x̂0| ≤ Δ0/2 and the control term applied at

time n reduces the error. As a result (8.65) writes as

P

(
∩p
m=1 (|aζmn(x0 +

ζmn−1∑
i=0

a−i−1wi +

m−1∑
i=0

a(−ζi−1)nu(ζi+1)n−1)|

≥ 2R
′−1(|a|+ δ)(ζm−sm−1)nα(1+sm)n|sk−1 = p

)

≤ min
0≤m≤sk−1

{

P

{
|d̄|≥

(
2R

′−1(
α

|a| )
n

(
(
|a|+δ
|a| )(ζm−sm−1)n(

α

|a| )
smn−2−R′

(
α

|a| )
−n

)
Δ0

−
m−1∑
i=1

(2R
′−1(

α

|a| )
n(

|a|+ δ

|a| )(ζi−si−1)n(
α

|a| )
sin(1 − 2−R′

)Δ0)

)}}
.

Since 2R
′−1( α

|a|)
n > 1, the effect of the additional 1 in the exponent for

( α
|a|)

sm+1 can be excluded, unlike the case with P g
e|e above in (8.67).

As a result, the stopping time is dominated by

P (τ1 ≥ kn) ≤ Ξ(Δ0)(eP
κ
e )

k−2, (8.79)

for Ξ(Δ) =Mr(Δ) + 1 which goes to 1 as Δ→ ∞.

This completes the proof of the lemma. ��

Proof of Theorem 8.4.1

Once we have the Markov chain by Lemma 8.7.3, and the bound on the distribution
of the sequence of stopping times defined in (8.59) by Lemma 8.7.4, we can invoke
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Theorems 6.2.4 or 6.2.6 with Lyapunov functions V (x,Δ) = log2(Δ
2), f(x,Δ)

taken as a constant, and C a compact set.
As mentioned in Remark 8.4.1, for a DMC with block length n, Shannon’s

random coding method satisfies:

Pe(n) := max
c∈{1,2,...,M(n)}

P (c′ 	= c|c is transmitted) ≤ e−nE(R)+o(n),

with c′ being the decoder output. Here o(n)
n → 0 as n → ∞ and E(R) > 0 for

0 < R < C. Thus, by Lemma 8.7.4, we have that

E[τ1|x0, Δ0] =

∞∑
k=1

P (τ1 ≥ k) ≤ K ′
Δ0

(n) <∞, (8.80)

for some finite number K ′
Δ0

(n). The finiteness of this expression follows from the

observation that for k− 2 > 1−κ
κ , the exponent in e−n(κ− 1−κ

k−2 )(E(R)− o(n)
n ) becomes

negative. Furthermore, K ′
Δ0

(n) is monotone decreasing in Δ0 since Mr(Δ) is
decreasing in Δ.

We now apply the random-time drift result in Theorem 6.2.4 and Corollary 6.2.1
below. First, observe that the probability that τz+1 	= τz + n is upper bounded by
the probability below:

P e
g|g + (1− P e

g|g − P e
Z|g)2P

(
d̄ ≥ (2R

′
(
α

|a| )
n − 1)Δ0/2

)

+2P e
Z|gP

(
d̄ > (2R

′−1(|a|+ δ)n)Δ0 − |anx0|
)

≤ P e
g|g + (1− P e

g|g − P e
Z|g)2P

(
d̄ ≥ (2R

′
(
α

|a| )
n − 1)Δ0/2

)

+P e
Z|g2P

(
d̄ > 2R

′−1((|a|+ δ)n − |a|n)Δ0

)

=: Υ (Δτ0). (8.81)

Note that, provided that R′(n) > n log2(|a|/α), limΔ0→∞ Υ (Δτ0) = P e
g|g .

We now pick the Lyapunov function V (x,Δ) = log2(Δ
2) and f(x,Δ) a

constant to obtain the following:

E[log(Δ2
τz+1

)|xτz , Δτz ]

= E[log(Δ2
τz+1

)(1{Type I-A error at τz} + 1{Type I-B error at τz}

+1{no error at τz})|xτz , Δτz ]
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≤ (1 − P e
Z|g − P e

g|g)

(
n log2(α)

+nE[log2((|a+ δ)2(τz+1−1))1{τz+1>τz+n})|no error]

)

+P e
Z|g

(
n log2(|a|+ δ)

+nE[log2((|a+ δ)2(τz+1−1))1{τz+1>τz+n})|Type I-B error]

)

+P e
g|g

(
n log2(α) + nE[log2((|a+ δ)2(τz+1−1))1{τz+1>τz+n}|Type I-A error]

)

+ log2(Δ
2
τz)

= log(Δ2
τz) + n

(
(1− P e

Z|g) log2(α) + P e
Z|g log2(|a|+ δ)

)

+nE

[
log2

(
(|a+ δ)2(τz+1−1)

)
1{τz+1>τz+n})

]

≤ log(Δ2
τz) + n

(
(1− P e

Z|g) log2(α) + P e
Z|g log2(|a|+ δ)

)

+n

(
P (τz+1 > τz + n)

) χ
1+χ

×
( ∞∑

k=2

P (τz+1 = τz + kn)((k − 1) log2(|a|+ δ))1+χ

) 1
1+χ

(8.82)

≤ log(Δ2
τz) + n

(
(1− P e

Z|g) log2(α) + P e
Z|g log2(|a|+ δ)

)

+ (Υ (Δτz ))
χ

1+χn

( ∞∑
k=2

P (τz+1 = τz + kn)((k − 1) log2(|a|+ δ))1+χ

) 1
1+χ

,

(8.83)

where χ > 0 is an arbitrarily small positive number. In (8.82) we use the facts that
(i) zooming out for all time stages after τz + n provides a worst-case sequence, and
(ii) by Hölder’s inequality for a random variable X and an event A the following
holds:

E[X1A] ≤ (E[|X |1+χ])
1

1+χ (E[1
1+χ
χ

A
])

χ
1+χ = (E[|X |1+χ])

1
1+χ (P (A))

χ
1+χ .
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Now, the last term in (8.83) will converge to zero with n large enough and as
Δτz → ∞ for some χ > 0, since by Lemma 8.7.4 P (τz+1 = τz + kn) is bounded
by a geometric measure and the expectation of ((τz+1 − τz − 1) log2(|a|+ δ))1+χ

is finite (and decreasing in Δ0). The second term in (8.83) is negative with P e
Z|g

sufficiently small.
As a result, for some sufficiently large F , the inequality

E[log(Δ2
τz+1

)|Δτz , hτz ] ≤ log(Δ2
τz )− b0 + b11{|Δτz |≤F} (8.84)

holds for some positive b0 and finite b1. Here, b1 is finite since K ′(n) is finite. With
the uniform boundedness of (8.80) over the sequence of stopping times, this implies
by Theorem 6.2.6 that {(x,Δ) : |Δτz | ≤ F, | x

2R′−1Δ
| ≤ 1} is a recurrent set.

��

8.7.8 Proof of Theorem 8.4.2

In this section, we establish irreducibility and the existence of a small set, to be able
to invoke Theorem 6.2.4. The following follows the same approach as in Sect. 7.6.3.
In this setting, (xtn, Δtn) form the Markov chain, as was observed in Lemma 8.7.3.

Let the values taken by log2(Q̄(Δtn, c
′
(t+1)n−1))/s be {−Ã, 0, B̃}. Here Ã, B

are relatively prime. Let Lz0,Ã,B̃ be defined as

{n ∈ N, n ≥ log2(L
′)/s : ∃NA, NB, n = −NAÃ+NBB̃ + z0},

where z0 = log2(Δ0)/s is the initial value of the parameter for the quantizer.
We note that since Ã, B are relatively prime, then as before, by Bézout’s Lemma,
the communication class will include the bin sizes whose logarithms are integer
multiples of a constant except those leading to Δ < L′: Since we have Δ(t+1)n =
Q̄(Δtn, c

′
(t+1)n−1)Δtn, it follows that

log2(Δ(t+1)n)/s = log2(Q̄(Δtn, c
′
(t+1)n−1))/s+ log2(Δtn)/s

is also an integer. Furthermore, since the source process {xtn} is Lebesgue-
irreducible, and there is a uniform lower bound L′ on bin sizes, the error process
takes values in any of the admissible quantizer bins with nonzero probability.

Consider two integers k, l ≥ log2(L
′)

s . For all l, k ∈ Lz0,Ã,B̃, there exist NA, NB ∈
N such that l − k = −NAÃ + NBB̃. We can show that the probability of NA

occurrences of perfect zoom, andNB occurrences of under-zoom phases is bounded
away from zero. This set of occurrences includes the event that in the first NA time
stages perfect zoom occurs and later, successively, NB times under-zoom phase
occurs. Considering worst possible control realizations and errors, the probability
of this event is lower bounded by
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(
P

(
d̃ ∈ [−2R

′(n)−1L′ − |a|nL′, 2R
′(n)−1L′ − |a|nL′]

)
(P e(Z|i))

)NB

(
P

(
d̃∈[−(αn2R

′ − an)L′/2, (αn2R
′ − an)L′/2])(1−Pe)

)NA

> 0, (8.85)

where d̃ =
∑n−1

i=0 a
n−i−1wi is a Gaussian random variable. The above follows from

considering the sequence of zoom-ins and zoom-outs and the behavior of an(xtn −
x̂tn) + d̃. In the above discussion, P e(Z|i) is the conditional error on the zoom
symbol given the transmission of granular bin i, with the lowest error probability
(if the lowest such an error probability is zero, an alternative sequence of events
can be provided through events concerning the noise variables leading to zooming).
Thus, for any two such integers k, l and for some r > 0, P (log2(Δ(t+r)n) = ls |
log2(Δtn) = ks) > 0.

We can establish the irreducibility and aperiodicity of the sampled Markov chain,
by following the approach in Sect. 7.6.3. The rest of the argument for petiteness
follows that of Sect. 7.6.3 and (7.21) for the sampled chain, in view of the uniform
countable additivity condition. Hence, we can establish that the set Cx × C′

Δ =
{(x,Δ) : L′ ≤ Δ ≤ F, |h| ≤ 1} is petite.

Aperiodicity of the sampled chain follows from the fact that the smallest
admissible state for the quantizer,L′, can be visited in subsequent time stages, since

P (d̃ ∈ [−2R
′(n)−1L′/|a|n − L′,−2R

′(n)−1L′/|a|n + L′]) > 0. ��

8.7.9 Proof of Theorem 8.4.3

By Kolmogorov’s extension theorem, it suffices to check that the property holds for
finite-dimensional cylinder sets, since these sets generate the σ-algebra on which
the stochastic process measure is defined. Suppose first that the sampled Markov
chain is stationary. Consider two elements:

P (xt+1+n ∈ A1, xt+2+n ∈ A2)

=

∫
x� t+1+n

n
�n

P (dx� t+1+n
n �n, xt+1+n ∈ A1, xt+2+n ∈ A2)

=

∫
x� t+1+n

n
�n

P (xt+1+n ∈ A1, xt+2+n ∈ A2|x� t+1+n
n �n)

×P (dx� t+1+n
n �n)

=

∫
x� t+1

n
�n

P (xt+1 ∈ A1, xt+2 ∈ A2|x� t+1
n �n)P (dx� t+1

n �n).
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The above holds since the marginals P (dx� t+1
n �n) and P (dx� t+1+n

n �n) are equal
because the sampled Markov chain is positive Harris recurrent and is assumed to be
stationary, and the dynamics for inter-block times are time homogeneous Markov.
The above is applicable for any finite-dimensional set, thus for any element in the
sigma-field generated by the finite-dimensional sets, on which the stochastic process
is defined. Now, let for some event A, T−nA = A, where T denotes the shift
operation (see Sect. C.3.1). Then

P (A) = lim
k→∞

P (A ∩ T−knA) = lim
k→∞

P (A)P (T−knA|A). (8.86)

Note that a positive Harris recurrent Markov chain admits a unique invariant
distribution and for every x0 ∈ R

lim
k→∞

P (xkn ∈ A|x0) = π(A),

where π(·) is the unique invariant probability measure. Since such a Markov chain
forgets its initial condition, by (8.86), for A = T−nA: P (A) = P (A)P (A), thus,
P (A) ∈ {0, 1}, and the process is n-ergodic. ��

8.7.10 Proof of Theorem 8.4.4

We begin with the following result, which is a consequence of Theorem 6.2.4:

Lemma 8.7.5. Under the conditions of Theorem 8.4.2, we have that, if for some
γ > 0, b <∞, the following holds:

γE[

(τ1/n)−1∑
k=0

Δ2
kn|x0, Δ0] ≤ Δ2

0 − E[Δ2
τ1 |x0, Δ0] + b1{(Δ0,h0)∈(C′

x×Ch)},

then limk→∞ E[Δ2
kn] <∞. �

Now, under the hypotheses of Theorem 8.4.2 and observing that Type I-B and
I-A errors are worse than the no error case at time 0 for the stopping time tail
distributions, we write

E[

(τ1/n)−1∑
t=0

Δ2
tn | x0, Δ0]

≤ Δ2
0P

e
g|g

( ∞∑
l=2

P (τ1 = ln|Type I-A error)
(l−1)∑
k=1

(|a|+ δ)2(k−1)nα2n

)

+Δ2
0P

e
Z|g

( ∞∑
l=2

P (τ1 = ln|Type I-B error)
l−1∑
k=1

(|a|+ δ)2kn
)
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+Δ2
0(1− P e

g|g − P e
Z|g)

×
( ∞∑

l=2

P (τ1 = ln|no error at time 0)
l−1∑
k=1

(|a|+ δ)2(k−1)nα2n

)

+Δ2
0P (τ1 = n)

≤Δ2
0P

e
g|g

(|a|+δ)(2/κ)n
(|a|+δ)2n−1

Ξ(Δ0)

( ∞∑
l=2

(e(l−2))P
(κ)(l−1− 1

κ )
e (|a|+δ)2n(l−1− 1

κ )α2n

)

+Δ2
0P

e
Z|g

(|a|+δ)2n
1−(|a|+δ)−2n

Ξ(Δ0)

( ∞∑
l=2

(eP κ
e )

l−2(|a|+δ)2(l−2)n

)

+Δ2
0(1−P e

g|g−P e
Z|g)(|a|+δ)2nΞ(Δ0)

( ∞∑
l=2

(eP κ
e )

l−2 (|a|+δ)2(l−2)n

(|a|+δ)2n−1
α2n

)

+Δ2
0P (τ1=n)

≤ζ1Δ2
0 (8.87)

for some finite ζ1. To derive the above, we use the property that H(κ) ≤ 1
as well as the relations (8.77)–(8.79). We now establish that limΔ0→∞E[Δ2

τ1 |
x0, Δ0]/Δ

2
0< 1. This is a crucial step in the application of Theorem 6.2.4.

Following similar steps as in (8.87), the following upper bound on (E[Δ2
τ1 |

x0, Δ0]/Δ
2
0) is obtained:

(1 − P e
g|g − P e

Z|g)

×
(
α2n +

1

Δ2
0

E[Δ2
τ11{τ1>n}|no error at time 0]

)

+(P e
g|g)

(
α2n(1 + (|a|+ δ)2n + . . . (|a|+ δ)2(�

1
κ �)n)

+
∞∑

k=� 1
κ �+1

ek−2P
(κ(k−1− 1

κ ))
e (|a|+ δ)2(k−1− 1

κ )n(α)2n

×(|a|+ δ)(2/κ)nΞ(Δ0)

)

+P e
Z|g

(
(|a|+ δ)2n + Ξ(Δ0)

P κ
e (|a|+ δ)2n

1− P κ
e (|a|+ δ)2n

)
. (8.88)

Now note that

lim
Δ0→0

P (τ1 > n|no error at time 0, x0, Δ0) = 0,
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uniformly in x0 with |h0| ≤ 1 and given the rate condition R′(n) > n log2(|a|/α)
by (8.81). Therefore, the first term in (8.88) converges to 0 as Δ0 → ∞, since
limn→∞ κ 1

n log(Pe) + 2 log2(|a|+ δ) < 0 and we have the following upper bound

(
(|a|+ δ)2n

∞∑
k=2

(eP κ
e )

k−2(|a|+ δ)2n(k−2)(α)2n
)
<∞,

for sufficiently large n.
For the second term in (8.88), the convergence of the first term above is ensured

with limn→∞ P e
g|g(|a| + δ)(2/κ)nα2n → 0 and Pe(|a|+ δ)(2/κ)n → 0 as n → ∞.

By combining the second and the third terms, the desired result is obtained.
To show that limm→∞ E[x2mn] <∞, we first show that for some κ > 0,

κE[

(τ1/n)−1∑
m=0

x2mn | x0, Δ0] ≤ Δ2
02

2(R′−1). (8.89)

Now,

E[

(τ1/n)−1∑
m=0

x2mn | x0, Δ0]

= E

[ (τ1/n)−1∑
t=0

a2tn
(
(x0 +

tn−1∑
i=0

a−i−1wi) + (
t−1∑
i=0

a−i−1ui)

)2∣∣∣∣x0, Δ0

]

≤ 2E[

(τ1/n)−1∑
t=0

a2tn(x0 +

tn−1∑
i=0

a−i−1wi)
2|x0, Δ0]

+2E[

(τ1/n)−1∑
t=0

a2tn(

tn−1∑
i=0

a−i−1ui)
2|x0, Δ0], (8.90)

which follows from the observation that for two real-valued random variables y, z,
E[(y + z)2] ≤ 2E[y2] + 2E[z2].

Let us first consider the component: (at(x0 +
∑tn−1

i=0 a−i−1wi))
2.

E[

(τ1/n)−1∑
t=0

(atn(x0 +

tn−1∑
i=0

a−i−1wi))
2|x0, Δ0]

= E[

∞∑
t=0

1{t<τ1/n}(a
tn(x0 +

tn−1∑
i=0

a−i−1wi))
2|x0, Δ0]
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≤
∞∑
t=0

(
E[(1{t<τ1/n})

1+χ|x0, h0]
) 1

1+χ

(
E[(atn(x0 +

tn−1∑
i=0

a−i−1wi))
2( 1+χ

χ )|x0, Δ0]

) χ
1+χ

, (8.91)

for some χ > 0, by Hölder’s inequality.
Moreover, for some B2 <∞,

E[a2tn(
1+χ
χ )(x0 +

tn−1∑
i=0

a−i−1wi)
2( 1+χ

χ )|x0, Δ0]

≤ |a|2tn(
1+χ
χ )E[(x0 +

∞∑
i=0

a−i−1wi)
2 1+χ

χ |x0, Δ0]

= |a|2tn(
1+χ
χ )(2R

′−1Δ0)
2 1+χ

χ E[(
x0 +

∑∞
i=0 a

−i−1wi

2R′−1Δ0
)2

1+χ
χ |x0, Δ0]

= |a|2tn(
1+χ
χ )(2R

′−1Δ0)
2 1+χ

χ E[(h0 +

∑∞
i=0 a

−i−1wi

2R′−1Δ0
)2

1+χ
χ |x0, Δ0]

< B2(2
R′−1Δ0)

2 1+χ
χ |a|2tn(

1+χ
χ ), (8.92)

where the last inequality follows since for every fixed |h0| ≤ 1, the random variable
h0 + (

∑∞
i=0 a

−i−1wi)/(2
R′−1Δ0) has a Gaussian distribution with its individual

moments uniformly bounded on Δ0 ≥ L′.
Thus,

E[

(τ1/n)−1∑
t=0

a2tn(x0 +

tn−1∑
i=0

a−i−1wi)
2|x0, Δ0]

≤
∞∑
t=0

(
E[(1{t<τ1/n})

1+χ|x0, Δ0]

) 1
1+χ

(
B2(2

R′−1Δ0)
2 1+χ

χ |a|2tn(
1+χ
χ )

) χ
1+χ

=
∞∑
t=0

(
Ξ(Δ0)(eP

(κ− 1−κ
t−1 )

e )t−1

) 1
1+χ

(
B

χ
1+χ

2 Δ2
0|a|2tn

)

=

∞∑
t=0

(
Ξ(Δ0)(eP

(κ− 1−κ
t−1 )

e )t−1|a|2tn(1+χ)

) 1
1+χ

(
B

χ
1+χ

2 Δ2
0

)

< ζB2Δ
2
0, (8.93)
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for some finite ζB2 . In the discussion above we have used the fact that we can
pick χ > 0 such that (Pe)

κ|a|2n(1+χ) < 1. Such a χ exists by the hypothesis
that limn→∞ P κ

e (|a|+ δ)2n = 0.
We now consider the second term in (8.90). Since ui is the quantizer output

which is bounded in magnitude in proportion with Δi, the second term writes as:

E[

(τ1/n)−1∑
t=0

a2tn(

tn−1∑
i=0

a−i−1ui)
2|x0, Δ0]

≤ E[

(τ1/n)−1∑
t=0

a2tn(

t−1∑
i=0

a−in2(R
′−1)(|a|+ δ)inΔ0)

2|x0, Δ0]

≤
(

1

(1 − ( |a|+δ
|a| )n)

)2

E[

(τ1/n)−1∑
t=0

a2tn
(
2(R

′−1)(
|a|+ δ

|a| )tnΔ0

)2

|x0, Δ0]

≤ Δ2
0ζ̃B (8.94)

for some finite ζ̃B , by the bound on the stopping time and arguments presented
earlier.

Now, with (8.88), (8.90), and (8.93–8.94), we can apply Theorem 6.2.4: With
some ε > 0 [whose existence is justified by (8.88)],

δ(x,Δ) = εΔ2, f(x,Δ) =
ε

2ζB2 + 2ζ̃B
x2,

C a compact set and V (x,Δ)=Δ2, Theorem 6.2.4 applies and limt→∞E[x2tn]<∞.
Thus, with average rate strictly larger than log2(|a|), stability with a finite second

moment is achieved. Finally, the limit is independent of the initial distribution since
the sampled chain is irreducible, by Theorem 8.4.2. Now, if the sampled process has
a finite second moment, the average second moment for the state process satisfies

lim
N→∞

1

N
E[

N−1∑
k=0

x2k] =
1

n
Eπ[

n−1∑
k=0

x2k|x0, Δ0]

and is also finite, where Eπ denotes the expectation under the invariant probability
measure for x0, Δ0. By the ergodic theorem for Markov chains (see Theorem 6.2.4),
the above holds almost surely, and as a result

lim
N→∞

1

N

(N−1∑
k=0

x2k

)
=

1

n
Eπ[

n−1∑
k=0

x2k|x0, Δ0] <∞ a.s.
��
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8.7.11 Proof of Theorem 8.4.5

Proof follows from the observation that the number of errors in channel transmission
when the state is under-zoomed, s, is zero. No errors take place in the phase when
the quantizer is being zoomed out.

Following (8.88), the only term which survives is

α2n + P e
g|g

(
α2n

(
1 + (|a|+ δ)2n + . . . (|a|+ δ)2(�

1
κ �)n

)

which is to be less than 1. We can pick κ > 1/2 for this case. Now,

lim
Δ→∞

P (τ ≥ kn|x0, Δ0) ≤ P (d̄ >
(|a|+ δ)(k−1)nαn

|a|kn Δ02
R′−1) = 0

for k > 1
κ . Hence, limn→∞ P e

g|g(|a| + δ)2n → 0 is sufficient, since 2 > 1
κ . The

proof is complete once we recognize P̄e as P e
g|g . ��

8.7.12 Proof of Theorem 8.5.4

We provide a sketch of the proof since the analysis follows from the scalar case,
except for the construction of an adaptive vector quantizer and the associated
stopping time distribution.

Consider the following system:

⎡
⎢⎢⎢⎣

x1t+1

x2t+1
...

xNt+1

⎤
⎥⎥⎥⎦ = Λ

⎡
⎢⎢⎢⎣

x1t
x2t
...
xNt

⎤
⎥⎥⎥⎦+ B̃ut + G̃wt, (8.95)

where Λ = diag(λi) is a diagonal matrix, obtained via a similarity transformation:
Λ = U−1AU and B̃ = U−1B, G̃ = U−1G, where U consists of the eigenvectors
of the matrix A. We can assume without any loss of generality that B̃ is invertible
since otherwise, by the controllability assumption, we can sample the system with a
period of at most N to obtain an invertible control matrix.

The approach now is to quantize the components in the system according to
the adaptive quantization rule provided earlier, except for a joint mapping for
the overflow region. We modify the scheme in (8.12) as follows: Let for i =
1, 2, . . . , n, R′

i(n) = log2(2
Ri(n) − 1) = log2(Ki(n)). The vector quantizer

quantizes uniformly the marginal variables and we define the overflow region as
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the quantizer outside the granular region:
∏N

i=1[−2R
′
i(n)−1Δi, 2R

′
i(n)−1Δi] and for

i = 1, 2, . . . , N

Q
Δi

t

Ki
(x) = Z if x /∈

N∏
k=1

[−2R
′
k(n)−1Δk, 2R

′
k(n)−1Δk],

and for x ∈
∏N

i=1[−2R
′
i(n)−1Δi, 2R

′
i(n)−1Δi], the quantizer quantizes the marginal

according to (8.12). Hence, here Δi is the bin size of the quantizer in the direction
of the eigenvector xi, with rate R′

i(n). For 1 ≤ i ≤ N ,

ut = −1{t=(k+1)n−1}B̃
−1Λnx̂kn,

x̂it = Q
Δi

t

Ki
(xit),

Δi
t+1 = Δi

tQ̄
i(Δi

t, c
′
(t+1)n−1), (8.96)

with δi > 0, αi < 1, and Li > 0 such that

Q̄i(Δi, c′) = (|λi|+ δ)n if c′ = Z,

Q̄i(Δi, c′) = (αi)n if c′ 	= Z, Δ ≥ Li,

Q̄i(Δi, c′) = 1 if c′ 	= Z, Δ < Li,

and R′
i(n) > n log2(|λi|/αi).

Instead of (8.59), the sequence of stopping times is defined as follows. With
τ0 = 0, define

τz+1 = inf{kn > τz : |hikn| ≤ 1, i = 1, 2 . . . , N}, k, z ∈ Z+,

where hit =
xi
t

Δi
t2

R′
i
−1

. Now, we observe that for the N -dimensional system:

P (τ1 > kn|x0, Δ0)

= P

( k⋂
t=1

{
N⋃
i=1

(|hit| > 1)} | x0, Δ0

)

≤ P

( N⋃
i=1

(|hikn| > 1)|zoom until k) | x0, Δ0

)
(8.97)

≤
N∑
i=1

P (|hikn| > 1|zoom until k, x0, Δ0), (8.98)

where we have applied the chain rule of probability in (8.97) and the union bound in
(8.98). However, for each of the dimensions, P (|hikn| > 1|zoom until kn, x0, Δ0)
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is dominated by an exponential measure. Furthermore, P (τ1 > n|x0, Δ0) still
converges to 0 provided the rate condition R′

i(n) > log2(|λi|/αi) is satisfied
for every i, since P (τ1 > n|x0, Δ0) ≤

∑N
i=1 P (|hin| > 1|x0, Δ0). Therefore,

analogous results to (8.83) and (8.84) are applicable. Once one imposes a count-
ability condition for the bin size spaces as in Theorem 8.4.2, the desired ergodicity
properties are established. ��

8.7.13 Proof of Theorem 8.6.1

Let Pt be the probability measure at time t, generated as a result of the Markovian
recursions Pt(D) =

∫
X
P (x,D)Pt−1(dx), ∀D ∈ B(R), t ≥ 1. Suppose that we

have an invariant probability measure P for the Markovian process, with a finite
second moment. Then, the entropy of the invariant density is also finite (which is
bounded by the entropy of the Gaussian density with the same second moment).
Furthermore, by the irreducibility of the Markovian process, there is a unique
invariant probability measure.

Since the system is driven by a Gaussian noise process, it follows that Pt admits
a density, which we will refer to as pt and which can be expressed as a convolution
of the Gaussian measure with another probability measure. That is,

pt(x) =

∫
R

ν(x− z)p̃t−1(z)dz,

where p̃t−1 is a piecewise continuous density function and ν is the Gaussian density
function. The density function p̃t−1 is piecewise continuous due to the effect of
quantization and channel errors. It is thus a simple exercise to show that pt(x) is
uniformly continuous and is such that for any open set B ⊂ R, Pt(x ∈ B) > 0.
This implies that Pt is absolutely continuous with respect to P (which in turn is
absolutely continuous with respect to the Lebesgue measure). Let p be the density
corresponding to P .

This consequently implies that the (Kullback-Leibler) divergence (see Defini-
tion 5.3.4)D(pt||p) <∞, for some t > 1.

This, together with the uniqueness of the invariant measure, lead to the conclu-
sion that, by Theorem 4 of Harremoës and Holst [191] (see also [48]),

lim
t→∞

D(pt||p) = 0.

Furthermore, by the f -norm ergodic theorem ([271], Chap. 14),

∫
pt(x) log2(p(x))dx →

∫
p(x) log2(p(x))dx.
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Therefore,
∫
pt(x) log2(pt(x))dx converges to

∫
p(x) log2(p(x))dx. Hence,

limt→∞ h(xt) exists and is finite.
Since xt+1 = axt + bu′t +wt, conditioning does not increase entropy, and {wt}

is i.i.d.,

h(xt+1) ≥ h(xt+1|u′t) = h(a(xt − (b/a)u′t) + wt|u′t)

= h(axt + wt|u′t) ≥ h(axt + wt|u′t, wt)

= h(axt|u′t) = log2(|a|) + h(xt|u′t), (8.99)

which implies h(xt+1)−h(xt|u′t) ≥ log2(|a|). Since I(xt;u′t) = h(xt)−h(xt|u′t),
we have I(xt;u′t) ≥ h(xt) + log2(|a|) − h(xt+1), and since limt→∞ h(xt+1) −
h(xt) = 0, we have

lim inf
t→∞

I(xt;u
′
t) ≥ log2(|a|).

We now study the asymptotic behavior of the mutual information I(xt;u
′
t) =

h(xt)+h(u′t)−h(xt, u
′
t). There exists a limit for h(xt) from the discussion above.

There exists an invariant limit density for u′t with a finite second moment, since
the control is a result of a stationary stochastic kernel. Thus, h(xt, u′t) is the joint
entropy process of a stable stationary pair and thus has a limit by the arguments
above. Hence, I(xt;u′t) has a limit, and limt→∞ I(xt;u

′
t) ≥ log2(|a|). Therefore,

for some arbitrary stationary distribution, the mutual information is lower bounded
by log2(|a|). From the data processing inequality (see, e.g., [171], Chapter 9) and
the fact that the policies included are memoryless, we have I(xt;u′t) ≤ I(zt; yt)
and I(xt;u′t) ≤ I(z′t; y

′
t).

Since capacities of memoryless channels are achieved by the maximizing source
distributions, Cf = supp(zt) I(zt; yt), Cr = supp(z′

t)
I(z′t; y

′
t), and the capacities

of the individual channels upper bound the joint capacity, we have min(Cf , Cr) ≥
log2(|a|). ��

8.7.14 Proof of Theorem 8.6.2

We regard the controller in Fig. 8.4 as an intermediate encoder, and y′t as the channel
output from the effective channel consisting of the encoder, controller, and the
channels. First note that the directed information satisfies

I(x[0,t−1] → y′[0,t−1]) =

T−1∑
k=1

I(x[0,k]; y
′
k|y′[0,k−1]) + I(x0; y

′
0),

and since u′k is determined by y′[0,k], and the control actions affect the evolution of
xt in an additive fashion, we have that I(x[0,k]; y′k|y′[0,k−1]) = I(x̄[0,k]; y

′
k|y′[0,k−1]),
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where x̄t = ax̄t+wt is the control-free process driven by the same noise realizations
as {xt} and initial condition x0. Thus,

I(x[0,t−1] → y′[0,t−1]) = I(x̄[0,t−1] → y′[0,t−1]).

Then,
1

t
I(x̄[0,t−1] → y′[0,t−1]) ≤

1

t
I(x̄[0,t−1]; y

′
[0,t−1]),

and by the data processing inequality (see Lemma 5.3.1), it follows that

1

t
I(x̄[0,t−1]; y

′
[0,t−1]) ≤ min(Cf , Cr). (8.100)

This relation holds for every t ∈ N. The proof then follows from that of
Theorem 8.5.2, by applying (8.21)–(8.27). ��

8.7.15 Proof of Theorem 8.6.3

Since the chain is irreducible, all sets with positive Lebesgue measure are visited
in finite time with probability 1. Due to this observation, the estimation error of the
controller regarding the state, et := xt −E[xt|Ict−1] (where Ict−1 is the information
at the controller at time t− 1), will be visiting a set Tk := [R, 2kR], with R > 0, in
finite time with probability one from any given initial condition. Now suppose that
the initial state is in a set Tk.

Further, without any loss of generality, let the bounded encodable control set be
given by Se = {u : |u| < M/b′}. We study the exit time of the process xt from Tk.
We have |b′u′t| < M, ∀t ≥ 0. Define a process dvt = γvtdt+ dBt, with v0 = x0 ∈
Tk, where x0 > R > M/(μ − γ) and μ > γ > 0 and Bt having the same sample
path as the disturbance in the original system. Let τN := min(inf{t : xt ≤ R}, N)

and τ ′ := min(inf{t : vt ≤ R}, N). Further, define τ ′k
N := min(inf{t : vt /∈

Tk}, N) and et := xt−vt. Since (μxt+b′u′t) > γvt, for 0 ≤ t ≤ min(τNk, τ
′
k
N
),

et is almost surely positive, for 0 ≤ t ≤ min(τN , τ ′N ). Since xt > vt almost surely,
the exit time satisfies τ ′Nk ≤ τNk almost surely. Now, let f(x) = e−2γx. Note that
f(x) is continuously differentiable and bounded over the set of interest. Hence, we
can apply Dynkin’s formula [295], from which it follows that

Ex0 [f(vτ ′N
k
)] = f(x0) + Ex0 [

∫ τ ′N
k

0

Af(vs)ds],

where A is the generator function [295], given by Af(x) = γfx + (1/2)fxx,
where fx denotes the partial derivative of f with respect to x, and fxx is its
second partial derivative. Since A(e−2γx) = 0 and E[τ ′

N
k ] < ∞, we have the
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expectation Ex0 [f(vτ ′N
k
)] = f(x0). With N → ∞, τ ′Nk → τ ′k, it follows that

Ex0 [f(vτ ′
k
)] = f(x0). Since the process is driven by a Brownian process, the

process exits a compact set in finite time almost surely. Hence, pRe−2γR + (1 −
pR)e

−γ2k+1R = e−2γx0 , where pR denotes the exit probability at R. Therefore, we
have that pR is bounded in k, and γ > 0. Hence, it follows that limk→∞ pR(k) =
e−2γx0/e−2γR < 1. Thus, the probability of the exit time for the newly defined
process satisfies P (τ ′ < ∞) < 1, and as a result, P (τ < ∞) < 1. Thus,
the Markov chain is transient. Due to the open-loop instability of the dynamics, the
return time of the process to a compact set around the origin has probability less
than one. The proof for the encodable state set follows from similar arguments. ��

8.7.16 Proof of Theorem 8.6.4

The expectation
∑

l

∑
j p(j|i)p′(l|j)[ax + bQ′

l] is linear in x; therefore, the
maximum value of |

∑
l

∑
j p(j|i)p′(l|j)[ax + bQ′

l]| for x ∈ [δi, δi+1] is achieved
at one of the end points of each quantization bin (as |f(x)| is a convex function, if
f(x) is linear). Thus, by ensuring the drift condition for the bin edges, a uniform
decrease in the Lyapunov value for all x will be attained.

Let V (x) = |x|. The result of the theorem follows from the construction of a
supermartingale sequence as follows: Let M0 = V (x0) and for n ≥ 1, Mn =
V (xn)+

∑n−1
k=0 (ε−L1{xk∈∪i∈CBi}). The sequence {Mn} forms a supermartingale:

For any finite n, E[Mn+1|σ(x1, x2, . . . , xn)] ≤ Mn. Let τ = min(k > 0 : xk ∈
∪i∈CBi). Let for n ∈ Z, τn = min(τ,min(t > 0 : t+ V (xt) ≥ n)) be a stopping
time. Then, E[Mτn |x0 = x] ≤ M0, and hence (supx∈∪i∈CBi

|x|)E[τn|x0 = x] ≤
M0+L

ε , and by the monotone convergence theorem (see Sect. B.1), it follows that
supx∈∪i∈CBi

E[τ |x0 = x] <∞. ��

8.7.17 Proof of Theorem 8.6.5

Suppose that the continuous-time system is sampled with a period Ts, to lead to
xt+1 = axt + bu′t, where a = eμTs and b is the sampled data control coefficient, as
introduced earlier.

In the following,K(Nf , Rf ) is the number of codewords, where we suppress the
dependence on Nf and Rf .

Let Q′
i = E[x|x ∈ [δi, δi+1)], which is the center of moment of the

corresponding bin (centroid). Let π0(x) be the probability measure on the initial
state. Then, the distortion is given by

D =

K∑
l=1

K∑
j=1

K∑
i=1

p(j|i)p′(l|j)
∫ δi+1

δi

a2(x − (b/a)Q′
l)
2π0(dx),
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which can be upper bounded as a function of the codelengths in the forward and
reverse channels:

D ≤ e(2μα−Ef
L(Nf ,Rf ))Nf e(2μβ−Er

L(Nr,Rr))Nr

K∑
l=1,l 
=j

K∑
j=1,j 
=i

K∑
i=1

∫ δi+1

δi

(x− (b/a)Q′
l)
2π0(dx)

+e(2μα)Nf e(2μβ−Er
L(Nr,Rr))Nr

K∑
i=1

K∑
l=1,l 
=i

∫ δi+1

δi

(x− (b/a)Q′
l)
2π0(dx)

+e(2μα−Ef
L(Nf ,Rf ))Nf e(2μβNr)

K∑
j=1

K∑
i=1,i
=j

∫ δi+1

δi

(x− (b/a)Q′
j)

2π0(dx)

+(e2μ)αNf+βNr

K∑
i=1

∫ δi+1

δi

(x− (b/a)Q′
i)

2π0(dx). (8.101)

The conditions (Rf +2μα−Ef
L(Nf , Rf )) < 0 and (Rr+2μβ−Er

L(Nr, Rr)) < 0
guarantee the convergence of the first term above. Note that the last term in (8.101)
is just the quantization error, and using asymptotic quantization theory [427], the
distortion is inversely proportional with the square of the number of symbols under
a Lloyd-Max quantizer, and this needs to compensate the growth in Ts, which is
satisfied by the third condition in (8.19). We note here that the third condition in
(8.19) can also be expressed as limNf→∞

K

eμ(αNf+βNr) > 1.
What remains to be done is the analysis of the cross terms (second and the third

terms in the summation). For the term

e(2μα)Nf+(2μβ−Er
L(Nr,Rr))Nr

K∑
i=1

K∑
l=1,l 
=i

∫ δi+1

δi

(x− (b/a)Q′
l)
2π0(dx),

using the centroid property of Q′
i, ∀i, we obtain

e(2μα)Nf+(2μβ−Er
L(Nr,Rr))Nr

K∑
i=1

K∑
l=1,l 
=j

∫ δi+1

δi

(
(x − (b/a)Q′

i)
2 + ((b/a)Qi − (b/a)Q′

l)
2

)
π0(dx),
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for asymptotic boundedness of which it suffices to have (2μα)Nf + (Rr + 2μβ −
Er

L(Nr, Rr))Nr < 0. Likewise, for the other cross term, we need (Rf + 2μα −
Ef

L(Nf , Rf ))Nf + (2μβNr) < 0. ��

8.7.18 Proof of Theorem 8.6.6

The forward channels in the Codebins are encoded here in k time stages. Due to the
increase in the effective sampling period, the sampled Brownian motion noise has
a larger variance. Let Ck be the set of Codebins, which are represented by codes
that are transmitted over k transmissions. For the finite-mean return property for a
compact set, as well as for the existence of an invariant distribution for the sampled
chain, by Theorem 6.2.3, it suffices that for some ε > 0 and k0 > 0:

E[x2t+k(xt)Ts
|xt]−x2t<−k(xt), ∀xt∈Codebin(I), I∈Ck, k≥k0. (8.102)

We have that there will be 2kNfRf codewords which are transmitted in k sampling
periods. Here, γk is the logarithmic quantizer ratio for this set of codewords. Let us
consider the following condition for some ε > 0 and k0 > 0:

E[x2t+kTs
|xt] < (1− ε)x2t , ∀xt ∈ Codebin(I), I ∈ Ck, k ≥ k0. (8.103)

We now write E[x2t+kTs
] = e2kTsμE[(xt + (b/a)u′t)

2] +Dk(B), where Dk(B) :=

(e2μkTs − 1)/2μ is the variance of the standard Brownian process integrated over a
period of kTs. Thus we need

e2μkTsE[(xt + (b/a)u′t)
2] < [(1− ε)x2t −Dk(B)], xt ∈ SC .

We can bound the distortion term following the results of Theorem 8.6.5. The
distortion is equal to

E[(xt + (b/a)u′t)
2] =

K∑
l=1

K∑
j=1

p(j|i)p′(l|j)e2kTsμ(xt − (b/a)Q′
l)
2.

The probability of error consists of the summation of the probability of errors in
both channels or in one of the channels. We can bound the probability of error by
the following:

Υ (k) =

(
e−kNfE

f
L(Nf ,Rf )−kNrE

r
L(Nr,Rr)2kNfRf + e−kNfE

f
L(Nf ,Rf )

+e−kNrE
r
L(Nr,Rr)

)
2kNfRf .
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For any i and l, the worst-case distortion is upper bounded by γ2(kNfRf )
k x2t , and the

quantization (source-coding) error is upper bounded by (1/4)x2t (e
2kμ)Ts(γk − 1)2.

Hence, if we have

e2μkTs

(
Υ (k)x2t + (γk − 1)2x2t /4

)
< (1− ε)x2t −Dk(B), (8.104)

for xt ∈ Ck, k ≥ k0, (8.103) will be satisfied. It now follows that (8.103) implies
(8.102), since lim|x|→∞ k(x)/x = 0. This follows since γk can be as large as

(1 + 2
√
e−2μkTs − Υ (k)Uk(γ)) = (1 + 2e−μkTs

√
1− Υ (k)Uk(γ)

e−2μkTs
),

limk→∞
Υ (k)Uk(γ)
e−2μkTs

< 1, and that, as a result,

lim
k→∞

(1 + 2
√
e−2μkTs − Υ (k)Uk(γ))

2kNfRf

k
= ∞,

when NfRf > log2(|a|). This implies that lim|x|→∞
k(x)
x = 0 (and also that the

entire state space is encoded). ��

8.7.19 Proof of Theorem 8.6.7

We have

zt =
√
Pfxt/||xt||, yt = zt + wt, x′t = αtyt, ut = ρtx

′
t,

z′t =
√
Prut/||ut||, y′t = z′t + w′

t, u′t = βty
′
t.

Let ||xt||2 = E[x2t ] and ||ut||2 = E[u2t ]. The control applied, u′t, can be written as
follows:

u′t = βt
√
Pr

( √
Pfxt

||xt||
√
Pf + σf 2

w)
+

wt√
Pf + σf 2

w

)
+ βtw

′
t.

Using this in the system equation xt+1 = axt + bu′t + wt, we obtain

E[x2t+1] = E

[(
(a+

bβt
√
PrPf

||xt||
√
Pf + σf 2

w

)xt

)2]

+b2β2
t σ

f 2

wPr/(Pf + σf 2

w) + b2β2
t σ

r2
w + E[w2

t ]. (8.105)
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Define ρt := bβt. The minimization of E[x2t+1] with respect to ρt yields

ρt = −
a||xt||

√
PfPr

(Pr + σr2
w)

√
Pf + σf 2

w

. (8.106)

From this, the optimal expression for βt follows. If we plug this optimal βt value in
the expression for ‖xt+1‖2 = E[x2t+1], we obtain

||xt+1||2 = ||xt||2a2
(
1− PrPf

(Pf + σf 2
w)(Pr + σr2

w)

)2

+||xt||2a2
(

σf 2
wP

2
r Pf

(Pf + σf 2
w)

2(Pr + σr2
w)

2

)

+||xt||2a2
PrPf

(Pf + σf 2
w)(Pr + σr2

w)
2
σr2

w + E[w2
t ].

Upon recognizing the capacity expression in the following:

Pf/(Pf + σf 2

w) = 1− 2−2Cf , Pr/(Pr + σr2
w) = 1− 2−2Cr ,

we arrive at

E[x2t+1] = a2
{
(1 − 2−2Cf )(1 − 2−2Cr)(2−2Cf − 2−2Cf−2Cr + 2−2Cr)

+

(
1− (1− 2−2Cf )(1 − 2−2Cr)

)2}
E[x2t ] + E[w2

t ].

Rearranging the first term, it follows that the condition

1− (1− 2−2Cf )(1 − 2−2Cr) < 1/a2

implies stability. ��

8.8 Concluding Remarks

This chapter considered stochastic stabilization over noisy channels of linear
systems driven by unbounded noise and established tight conditions for asymptotic
mean stationarity and ergodicity, as well as sufficient conditions for stability in the
sense of having a finite average second moment for the state process. One message
was that Shannon capacity and the stochastic stabilizability (in the sense of the AMS
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property or ergodicity) are inherently related. This relationship leads to stronger
results in the context of discrete noiseless channels (which were studied in Chap. 7)
and erasure channels which were covered in this chapter: For these channels,
we established not only asymptotic mean stationarity and n-ergodicity but also
stationarity and ergodicity. However, the full generality of this relationship became
apparent later in this chapter when we investigated more general noisy channels. We
have also presented conditions for quadratic and finite second moment stability.

We note that the assumption that the system noise is Gaussian can be relaxed.
For the second moment stability, a sufficiently light tail which would provide a
geometric bound on the stopping times as in (8.77) through (8.70) will be sufficient.
For the AMS property, this is not needed. For a noiseless DMC, Chap. 7 established
that a finite second moment for the system noise is sufficient for the existence of an
invariant probability measure. To establish irreducibility, we require, however, that
the noise admits a density which is positive everywhere.

We observed in the development that three types of errors are critical. These bring
up the importance of unequal error coding schemes with feedback. Recent results in
the literature [68] have focused on fixed length without feedback and variable length
with feedback, and further research in this arena could be useful for networked
control problems.

In the absence of noiseless feedback, for both DMCs and CMCs, this chapter
has presented necessary conditions on the channel capacities for the existence of a
controller that will lead to lim supT→∞E[x2T ] < ∞. We have obtained capacity
bounds and achievable forward and reverse rate regions leading to a positive
recurrent Markov chain. We have shown that if the underlying closed-loop system
is described by an irreducible Markov chain (such as in the case when the system
noise has unbounded support for its probability distribution with an everywhere
positive density function), then the entire state space and the control space have
to be encoded. We observed that control over discrete channels requires an intricate
design. We showed the inadequacy of fixed length encoding schemes and introduced
the notion of escape-freeness, which required the design to use variable length
encoding. The design stabilizes the system via variable rate sampling and uses
properties of the sampled Markov chain. We saw that continuous alphabet channels
are simpler to analyze since they can always be designed to be escape-free, without
resorting to variable length sampling. However, since continuous channels are not
as widely used as discrete channels, the analysis provided for DMCs is particularly
important in applications.

The value of information channels in optimization and control problems (be-
yond stabilization) is an important problem in view of applications in networked
control systems. Further research from the information theory community for non-
asymptotic or finite delay coding results will provide useful applications and insight
for such problems. In this context, suppose we have a channel where agreement on
a binary event in finite time is possible between the encoder and the decoder. Binary
events may include synchronization of encoding times and agreement on zooming
times. If the following assumption holds, then such agreements are possible in finite
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expected time: The channel is such that there exist input letters x1, x2, x3, x4 so
that D(P (·|x1)||P (·|x2)) = ∞ and D(P (·|x3)||P (·|x4)) = ∞. Here, x1 can equal
to x4 and x2 can equal to x3, which is a property satisfied by, for example, the
erasure channel. Note that the above condition is weaker than having a nonzero zero-
error capacity, but stronger than what Burnashev’s [83, 284, 411] method requires,
since there are more hypotheses to be tested. In such a setting, one could use
variable length encoding schemes. Such a design will allow the encoder and the
decoder to have transmission in three phases: zooming, transmission, and error
confirmation. Using random-time, state-dependent stochastic drift, we may find
alternative schemes for stochastic stabilization.

8.9 Bibliographic Notes

In Sect. 5.5, a brief overview of the literature was presented. In the following,
we provide some further discussion. Nair and Evans [280], Tatikonda and Mitter
[355], and Wong and Brockett [406] obtained the minimum lower bound needed
for stabilization over noisy channels under a set of assumptions on the system noise
and channels, also known as the data-rate theorem. This theorem states that for
stabilizability under information constraints, in the mean-square sense, a minimum
rate needed for stabilizability has to be at least the sum of the logarithms of the
unstable poles/eigenvalues in the system, that is,

m∑
k=1

1

2
max

(
0, log(|λk|2)

)
. (8.107)

Martins and Dahleh [256] established that when a channelis present in a controlled
linear system, under stationarity assumptions, the rate requirement in (8.107)
is necessary for having finite second moments for the state variable. A related
argument was made in [432] under the assumption of invariance conditions for the
controlled state process under memoryless policies and finite second moments.

The problem of control (as well as estimation) over noisy channels with or
without feedback has been considered in a large number of publications: [41, 98,
104, 258, 261, 266, 273, 355] among others. Most of the constructive results involve
Gaussian channels or erasure channels (some modeled as infinite capacity erasure
channels as in [205, 335]). We now discuss some of these in the following.

For coding and information transmission for unstable linear systems, there is
an important difference between continuous alphabet and finite-alphabet (discrete)
channels as discussed in [432]: When the space is continuous alphabet, we do not
necessarily need to consider adaptation in the encoders. On the other hand, when the
channel is finite alphabet, and the system is driven by unbounded noise, a bounded
range quantizer (a quantizer with bounded granular region) leads to almost sure
instability, a topic which will be discussed further in Chap. 10 and which was already
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discussed in Chap. 7 in the context of discrete-time systems. This was perhaps
first recognized in view of the unboundedness of second moments in Proposition
5.1 in [280], and the transience of such a controlled state process was established
in Theorem 4.2 in [432]. Hokayem et al. [110] and Ramponi et al. [319] studied
conditions for stabilization when the control actions are uniformly bounded and the
controlled multidimensional system is marginally stable and is driven by noise with
unbounded support.

Nair and Evans [280] considered a class of quantizer policies for such unstable
linear systems driven by noise, with unbounded support set for its probability
measure, and controlled over noiseless channels; they obtained necessary and
sufficient conditions for the boundedness of the following expression:

lim sup
t→∞

E[|xt|2] <∞.

A stronger result was obtained in [419], by establishing the existence of a limit

lim
t→∞

E[|xt|2] <∞,

and obtaining a scheme which made the state process and the encoder process
stochastically stable in the sense that the joint process is a positive Harris recurrent
Markov chain and the sample path ergodic theorem is applicable.

It should be stressed that the notion of stochastic stability is very important in
characterizing the conditions on the channel. Matveev and Savkin, in [261, 266],
considered stabilization in the following almost sure sense, when the system noise
is bounded:

lim sup
t→∞

|xt| <∞ a.s.,

and observed that one needs the zero-error capacity (with feedback) to be greater
than a particular lower bound. A similar observation was made in [331]. When
the system is driven by noise which admits a probability measure with unbounded
support, the stability requirement above is impossible for an infinite horizon
problem, even when the system is open-loop stable, since for any bound, there exists
almost surely a realization of a noise variable which will be larger.

Sahai [328] and Sahai and Mitter [331] considered systems driven by bounded
noise and considered a number of stability criteria: almost sure stability, moment
stability (lim supt→∞E[|xt|p] < ∞) as well as stability in probability in the
following sense: For every p > 0, there exists a ζ such that P (|xt| > ζ) < p
for all t ∈ N. The authors, in these papers, also introduced a characterization
for reliability for controlling unstable processes, namely, any-time capacity, as the
characterization of channels for which the following criterion can be satisfied:

lim sup
t→∞

E[|xt|p] <∞,
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for a positive integer p. A channel is α any-time reliable for a sequential coding
scheme if P (m̂t−d(t) 	= mt−d(t)) ≤ K2−αd for all t, d. Here mt−d is the message
transmitted at time t − d, estimated at time t. One interesting aspect of an any-
time decoder is the independence from the delay, with a fixed encoder policy. Sahai
and Mitter [331] states that for a system driven by bounded noise, stabilization is
possible if the maximum rate for which an any-time reliability of 2 log2(|λ|) is
satisfied and is greater than log2(|λ|), where λ is the unstable pole of the scalar
linear system.

In a related context, [258, 260, 266, 331] considered the relevance to Shannon
capacity. Martins et al. [258] observed that when the moment coefficient goes to
zero, Shannon capacity provides the right characterization on whether a channel is
sufficient or insufficient, when noise is bounded. A parallel argument is provided in
[331], observing that in the limit when p→ 0, capacity should be the right measure
for the objective of establishing stability in probability. Their discussion was for
bounded noise signals. Matveev and Savkin [266] presented a parallel discussion,
again for bounded noise signals.

With a departure from the bounded noise assumption, Matveev [260] considered
a more general model of multidimensional systems driven by an unbounded noise
process, considering again stability in probability. Matveev [260] also showed that
when the discrete noisy channel has capacity less than log2(|a|), there exists no
stabilizing scheme, and if the capacity is strictly greater than this number, there
exists a stabilizing scheme in the sense of stability in probability.

Many network applications and networked control applications require the access
of control and sensor information to be observed intermittently. Toward generating
a solution for such problems, [416, 439] developed random-time state-dependent
drift conditions, leading to the existence of an invariant distribution possibly with
moment constraints, extending the earlier deterministic state-dependent results in
[272]. Using drift arguments, [432] considered noisy channels (both discrete and
continuous alphabet), [419] considered noiseless channels, and [439] considered
erasure channels for the following stability criteria: the existence of an invariant
distribution, and the existence of an invariant distribution with finite moments.
Yüksel [422] considered discrete noisy channels, possibly with memory, with
noiseless feedback.

Minero et al. [273] considered erasure channels and obtained necessary and
sufficient time-varying rate conditions for control over such channels. Coviello et
al. [104] considered second moment stability over a class of Markov channels with
feedback and developed necessary and sufficient conditions for systems driven by
unbounded noise. Gurt and Nair [182] considered stability of the state and quantizer
parameters paralleling the results of [439].

Elia [130], Martins and Dahleh [256], and Martins et al. [257] considered general
channels (possibly with memory) and, establishing connections with Jensen’s
formula and Bode’s sensitivity integral, developed achievable rates for stabilization
under various networked control settings. Elia [131] considered a general setting
where channels are between the controller and the plant, as well as between the
sensor and the controller.
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For more traditional information theoretic settings where the source is revealed
at the beginning of the transmission, and for cases where causality and delay are
not important, the separation principle for source and channel-coding results are
applicable for ergodic sources and information stable channels. The separation
principle for more general setups has been considered in [376], among others.
Bansal and Başar [41] has shown that for a scalar discrete-time linear Gaussian
system controlled over a Gaussian channel, the encoder and the controllers with
noiseless causal feedback which jointly minimize a quadratic objecive functional
are all linear. Walrand and Varaiya [385] and Witsenhausen [396] studied the
optimal causal coding problem over, respectively, a noiseless channel and a noisy
channel with noiseless feedback. Unknown sources have been considered in [91].
We also note that, when noise is bounded, binning, based strategies, inspired
from Wyner-Ziv and Slepian-Wolf coding, schemes are applicable. This type of
consideration has been applied in [178, 331, 432]. Finally time-invariant quantizer
design for noiseless or bounded noise systems for control over noiseless channels
includes [132, 135, 206, 207] which induce logarithmic quantization structures.
Channel-coding algorithms for control systems have been presented in [301, 349].
Silva et al. [341] has also considered stabilization over noiseless channels with tight
rate conditions. On channels with memory, we note the work [92] for Gaussian
channels with memory.

There has also been progress on coding for noisy channels for the transmission
of sources with memory. Due to practical relevance, for communication of sources
with memory over channels, particular emphasis has been placed on Gaussian
channels with feedback. For such channels, the fact that real-time linear schemes
are rate-distortion achieving has been observed in [53, 156], and [41] in a control
theoretic context. Aside from such results (which involve matching between rate-
distortion achieving test channels and capacity achieving source distributions
[156]), capacity is known not to be a good measure of information reliability
for channels for real-time (zero-delay or delay-sensitive) control and estimation
problems [331, 385].

The error exponent is typically improved with feedback, unlike capacity of
DMCs. However, the error exponent under fixed length block coding with noiseless
feedback is not currently known. Some partial results have been reported in [118]
(in particular, the sphere packing bound is optimal for a class of symmetric channels
for rates above a critical number even with feedback); see also [54, 68, 107, 128,
190, 285, 446]. Particularly related to this chapter, [68] has considered the exponent
maximization for a special message symbol, at rates close to capacity. In case
feedback is not used, Gilbert exponent [297] for low-rate regions may provide better
bounds than the random coding exponent. Also in the information theory literature,
performance of information transmission schemes for channels with feedback has
been a recurring avenue of research, for both variable length and fixed length coding
schemes [83, 122, 199, 310, 330]. In such setups, the source comes from a fixed
alphabet, except for the sequential setup in [122, 330].

Erasure channels are practically important and there has been a large literature
on control over such channels. Typically, such channels are investigated in two
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forms: (i) a continuous (packetized) model where when a transmission is to take
place with no erasure, a real signal is transmitted without any error (i.e., this model
ignores the issues regarding quantization/encoding), and (ii) a discrete (quantized)
model, which is the model considered in this chapter. The packetized model
assumes that the Shannon capacity of the channel is infinite. On the discrete model,
Yüksel and Meyn [439] considered stochastic stabilization over erasure channels
and established positive Harris recurrent properties. You and Xie [415] studied the
problem of control over an erasure channel in the absence of noise. The continuous
model has been studied in many contributions. For linear systems, stability and
optimization have been considered in [181, 188, 205, 335], among other references
(see [196]). Quevedo et al. [313,315] have considered stabilization and optimization
over erasure channels for nonlinear settings. As mentioned earlier in Chap. 6, the
effects of randomness in delay for transmission of sensor or controller signals (see,
e.g., [96, 196]) is an important application area where the results of Chap. 6 can be
applied.

The zooming algorithm and its variations have been used in source-coding and
networked control literatures; see, e.g., the earlier papers [81, 166, 214] (zooming
algorithms) and the more recent ones [260, 261, 266, 280, 419, 421].

In the context of stabilization, logarithmic quantizers have been considered in
several publications, including [132, 135, 207].

Part of this chapter is based on [260, 420, 422, 426, 432]. The results on erasure
channels are primarily based on [416, 439].



Chapter 9
Stabilization of Decentralized Systems
Over Communication Channels

9.1 Introduction

A fundamental result in control theory is that a controllable and observable single
station (or centralized) linear time-invariant (LTI) system can be stabilized through
an observer (equivalently, dynamic output) feedback, and its poles can be altered
by static output feedback. These results do not generalize directly to decentralized
systems with multiple sensors or controllers. Decentralization presents further
intricacies in large part because of the issues related to signaling in view of
information transmission through control actions.

In the previous chapters, we covered stochastic stabilization of single-sensor
and single-controller systems over a variety of communication channels. In this
chapter, we study the problem of stabilization of multi-sensor and multi-controller
systems over communication channels. We will see that decentralization will present
more stringent requirements on information transmission for stabilization of multi-
controller systems. Multi-sensor systems, however, do not suffer from a rate loss in
communication due to decentralization.

The next section presents the problem model and some preliminary material.
Existence of decentralized stabilizing control policies under any class of admissible
policies given the decentralized information structure is discussed in Sect. 9.3,
followed by an analysis of information transmission requirements in Sect. 9.4.
Section 9.5 considers the important special case of the multi-sensor setting with
a single controller. Section 9.6 considers multi-sensor and multi-controller settings
with noise, and Sect. 9.7 introduces the notion of binning in the context of multi-
sensor systems.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 9,
© Springer Science+Business Media New York 2013
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9.2 Problem Formulation

Consider the class of multi-station n-dimensional discrete-time LTI systems,
described by

xt+1 = Axt +

L∑
j=1

Bjujt ,

yit = Cixt , 1 ≤ i ≤ L, t = 0, 1, . . . , (9.1)

where it is assumed that the joint system is stabilizable and detectable, that
is, (A, [B1|B2| . . . |BL]) is stabilizable and (A, [(C1)′|(C2)′| . . . |(CL)′]′) is de-
tectable, but the individual pairs (A,Bi) may not be stabilizable or (A,Ci) may not
be detectable, for 1 ≤ i ≤ L. Here, xt ∈ R

n is the state of the system, uit ∈ R
mi is

the control applied by station i, and yit ∈ R
pi is the observation available at station i,

all at time t. Without any loss of generality, we assume the system matrixA to be in
Jordan form. The initial state x0 is unknown, but is known to be generated according
to some probability distribution which is supported on a compact set X0 ⊂ R

n.
The information available to station i at time t is

Iit = {yi[0,t], ui[0,t−1]}, (9.2)

where, as before, ui[0,t−1] denotes {ui0, ui1, . . . , uit−1} and yi[0,t] = {yi0, yi1, . . . , yit}.
Hence, for each time t, each station has access to only its measurement and also has
full memory on its past measurements and actions. If γit denotes the strategy (policy,
control law) of station i at time t, we have uit = γit(I

i
t ). We assume that the entire

system dynamics is common information to all agents (stations).

Definition 9.2.1. The decentralized system described in (9.1) is stabilizable under
the decentralized information structure if there exists a set of policies γ such that,

with {xγt , t ≥ 0} denoting the state trajectory under γ, |xγt | → 0 as t → ∞ almost
surely. �

Let us introduce the notation

Ki :=
[
Bi ABi · · · An−1Bi

]
,

Oi :=
[
(Ci)′ (CiA)′ · · · (CiAn−1)′

]′

and let the controllable and unobservable subspaces at station i be denoted by Ki

and N i, respectively, where Ki is the range space of Ki and N i is the null-space
of Oi. We will, by a slight abuse of notation, refer to the subspace orthogonal to N i

as the observable subspace at the ith station and will denote it by Oi.
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We now introduce some basic ingredients and notation used throughout the
chapter. Let U ⊂ R

n, V ⊂ R
n be Euclidean subspaces. We adopt the following

notation:

U ∪ V = {x : x = αu + βv, u ∈ U, v ∈ V, α, β ∈ R},

U ∩ V = {x : x ∈ U, x ∈ V},

U− V = {u : u ∈ U, u′v = 0, ∀v ∈ V}.

With the above definitions, for a vector space S ⊂ R
n, we have SC = R − S, as

the orthogonal complement of S. We denote by PU(x) : Rn → U, the orthogonal
projection of a vector x onto the subspace U ⊂ R

n. We denote by

[v1, v2, . . . , vm] := {
m∑
i=1

αivi, αi ∈ R},

the space spanned by the vectors {v1, v2, . . . , vm}.
For two sets Ψ andΞ , Ψ \Ξ = {η : η ∈ Ψ, η /∈ Ξ} is the standard set difference.
By modes of a linear system, we refer to the subspaces (eigenspaces) which are

invariant in the absence of control; as such, when all the eigenvalues of the system
matrixA are distinct, the eigenvectors uniquely identify the modes of the system. In
case the geometric multiplicity of an eigenvalue is less than its algebraic multiplicity,
generalized eigenvectors (generalized modes) span the eigenspace corresponding to
a particular eigenvalue.

We next introduce some relevant graph-theoretic notions: A directed graph G
consists of a set of vertices, V , and a set of directed edges, (a, b) ∈ E , such that
a, b ∈ V . A path in G of length d consists of a sequence of d directed edges such
that each edge is connected. A graph in which there exists a path from any node
to any other node is a strongly connected graph. We define the minimum distance
between two sets of nodes S1, S2 ⊂ G as d(S1, S2) =

∑
i∈S1

min{d(i, j), j ∈ S2},
where d(i, j) denotes the minimum number of paths between node i and j (if such
a finite number exists), with the trivial case being d(i, i) = 0 for all nodes.

9.3 Existence of Decentralized Stabilizing Controllers
and Time-Varying Linear Feedback Laws

In this section we develop necessary and sufficient conditions for the existence of
stabilizing controllers for the system in (9.1), under the information structure (9.2).

One of the important notions in decentralized control is that of decentralized
fixed modes. For such fixed modes, there are two common classifications. In one
classification, Wang and Davison have introduced the notion of fixed modes under
linear time-invariant control policies.
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Theorem 9.3.1 ([386]). Let

KD = {K : K = diag(K1,K2, . . . ,KL),Ki ∈ R
mi×pi}.

For the system (9.1), the set of decentralized fixed modes under linear time-invariant
laws is given by

Λ =
⋂

K∈KD

λ

(
A+

L∑
i=1

BiKiCi

)
,

where λ(.) denotes the set of eigenvalues of its argument. The system (9.1) is stable
under linear time-invariant output feedback laws of the form

uit = Kiyit, i = 1, 2 . . . , L, (9.3)

if and only if Λ contains only stable eigenvalues. �

The original result in [386] is for continuous-time systems. A counterpart has been
provided by Khargonekar and Özgüler [213] for discrete-time systems.

Toward identifying fixed modes under LTI policies, we first present a definition,
which is followed by a result due to Willems [392].

Definition 9.3.1. An LTI system (A,B,C) is complete if the matrix

[
λI −A B

−C 0

]

has rank no smaller than n for all complex-valuedλ ∈ C. If this holds for all |λ| ≥ 1,
then the system is weakly complete. �

Theorem 9.3.2. There does not exist a decentralized unstable fixed mode under
linear time-invariant decentralized controllers (9.3) if and only if the joint system is
stabilizable and detectable, and for every partitioning of the system into

E1 = {a1, a2, . . . , ak}, E2 = {b1, b2, . . . , bL−k} = {1, 2, . . . , L} \ E1,

the systems

(A, [Ba1Ba2 . . . Bak ], [(Cb1)′(Cb2 )′ . . . (CbL−k)′]′),

are weakly complete. �

The other notion of fixed modes is one that is independent of the control policy
applied, and this arises due to the uncontrollability of the decentralized system.
Thus, a mode is a fixed mode if no decentralized algorithm/policy leads to a change
in the dynamics of the mode.
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Time-invariant output feedback laws are a restrictive class of control laws. In
general, as discussed in Sect. 3.3, it is possible for the controllers to communicate
through the plant with the process known as signaling which can be used for
communication of mode information among the decision makers. Hence, through
signaling, the controllable subspace can be expanded and the unobservable subspace
can be shrunk. Anderson and Moore [11] showed that decentralized stabilization in
a multi-controller setting is possible via time-varying control laws, if the system is
jointly controllable, jointly observable, and strongly connected: If every station can
communicate with every other station, possibly via other stations, the system is said
to be strongly connected. This condition will be made precise, and weakened, later
in this section.

In the following, we revisit a stabilizability result. This result is for any class of
admissible policies, that is, the controllers are not assumed to be of a particular form
(such as linear).

Willems [392] and Khargonekar and Özgüler [213] have noted that if a system is
complete, and if CAlB = 0 for all l ≥ 0, then the controllable subspace of (A,B)
needs to be identical to the unobservable subspace of (A,C) for stabilizability.
This observation is related to the information theoretic approach we will take for
decentralized stabilization.

Theorem 9.3.3 ([213]). There exists a periodic-time-varying decentralized con-
troller, that is, with time-dependent matrices Ki in (9.3), if and only if the joint
system is stabilizable and detectable, and for every partitioning of the system into

E1 = {a1, a2, . . . , ak}, E2 = {b1, b2, . . . , bL−k} = {1, 2, . . . , L} \ E1,

such that if the system

(A, [Ba1Ba2 . . . Bak ], [(Cb1)′(Cb2)′ . . . (CbL−k)′]′)

has a zero transfer function, then it is weakly complete. �

In particular, through lifting (i.e., by viewing the system as a higher-dimensional
linear system in a sampled setting), one can apply linear time-invariant policies.
In the following, we state a theorem on the universality of linear time-varying
controllers for decentralized stabilization. To facilitate the argument, we introduce
the notion of a quotient system [217]. Toward this end, we first discuss the notion of
connectivity. For two stations i and j, if Ki

� N j , then there exist control signals
generated at station i which are observed at station j. We denote this by i→ j. This
is equivalent to the condition that CjAlBi 	= 0, for some 0 ≤ l ≤ n − 1, as we
prove in the following:

Lemma 9.3.1. i→ j if and only if Cj(A)lBi 	= 0, for at least one l, 1 ≤ l ≤ n. �

Proof. The proof proceeds in two steps. (i) Suppose that Cj(A)lBi 	= 0 for at least
one l. This implies the existence of a control u such that OjKiu 	= 0.
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(ii) The observation at station j, as affected by controls from station i, is

yjt = Cj(A)tx0 +
t−1∑
k=0

Cj(A)t−k−1Biuik.

If all the terms Cj(A)lBi are zero, for 1 ≤ l ≤ n, then via the Cayley–Hamilton
theorem, CjAlBi = 0 for all l ∈ Z+. Thus, we have yjt = Cj(A)tx0. Hence, the
control of station i does not affect the observation of station j. ��

Lemma 9.3.2 ([431]). If k → m, then station m can recover the message sent by
station k in at most n time stages. �

The proof of this lemma follows from Lemma 9.3.1 and the following result, which
let station m extract the message signal.

Lemma 9.3.3. Before signaling takes place, station m can compute CmAnxn, at
time n. �

Proof. Suppose that there is no control action until time n. Then,

CmAnxn = Cm(

n−1∑
i=0

αiA
i)xn = Cm(

n−1∑
i=0

αiA
i)Anx0

= Cm(

n−1∑
i=0

αiA
i+n)x0 = Cm(

n−1∑
i=0

α′
iA

i)x0 =

n−1∑
i=0

α′
iy

l
i,

where αi, 1 ≤ i ≤ n, and α′
i, 1 ≤ i ≤ n, can be obtained by the Cayley–Hamilton

theorem. This completes the proof. ��

The above ensure that station i can send information to station j through control
actions {uit}. One may construct a directed communication graph given the above
relationship, by considering also the possibility that two stations may be connected
through other stations. In the following, we will, by an abuse of notation, use i→ j
to indicate that there is a path from station i to station j, possibly through other
stations.

If every station is connected to every other station in the sense above, the system
is said to be strongly connected. If the network of stations is not strongly connected,
it can be uniquely represented as a disjoint union of strongly connected subsystems.

As a consequence of signaling, each subsystem can be effectively regarded
as a single centralized subsystem. Let N be the number of strongly connected
subsystems in the system. Let us order the strongly connected subsystems by an
order of precedence, that is, subsystems i and j satisfy i < j only if station i
cannot signal to station j. This relation provides the direction of information flow
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among the subsystems. By concatenating the system as a composition of the modes
controlled by strongly connected subsystems and regarding each subsystem as a
single block, and using Kalman’s canonical decomposition (see [93]) the system
matrix can then be transformed to a block-upper-triangular form as follows (see
[101] or [392]):

A =

⎡
⎢⎢⎢⎣

Ã1 ∗ ∗ · · · ∗
0 Ã2 ∗ · · · ∗
...

...
... · · ·

...
0 0 0 · · · ÃN

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

B̃1 ∗ ∗ · · · ∗
0 B̃2 ∗ · · · ∗
...

...
... · · ·

...
0 0 0 · · · B̃N

⎤
⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎢⎣

C̃1 ∗ ∗ · · · ∗
0 C̃2 ∗ · · · ∗
...

...
... · · ·

...
0 0 0 · · · C̃N ,

⎤
⎥⎥⎥⎦ (9.4)

where each of the subsystems (Ãk, B̃k, C̃k) is strongly connected and ∗ denotes
some possibly nonzero matrix. Now, the stabilizability of each of these subsystems,
in a sequential manner, leads to the result that such a system is stabilizable if and
only if all of the individual strongly connected subsystems are stabilizable (by
effectively centralized policies in each strongly connected component).

Theorem 9.3.4 (Gong and Aldeen [165]). The decentralized system described in
(9.1) is stabilizable under the decentralized information structure (9.2) if and only if
each of the strongly connected subsystems (Ãk, B̃k, C̃k) is stabilizable detectable.
�

Furthermore, linear time-varying policies do not bring in any loss, as is captured in
the following result.

Theorem 9.3.5 ([165]). The decentralized system described in (9.1) is stabilizable
under the decentralized information structure (9.2) if and only if it is stabilizable by
periodic linear time-varying controllers. �

Remark 9.3.1. Even though the proof of Gong and Aldeen for Theorem 9.3.4
does not use information theoretic ideas, this result has an information theoretic
flavor. In particular, the theorem suggests that the controllers which can stabilize a
given mode should either have local information about that mode or be provided
information about that mode through signaling by those stations which can signal
to them. Such a signaling approach also suggests a constructive linear time-varying
control structure for Theorem 9.3.5. We will develop a few key ingredients toward
such an interpretation in the next section in the context of information transmission
requirements. �
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9.4 Decentralized Stabilization over Communication
Channels

Suppose the controllers are connected to the plant over a discrete noiseless channel.
In this case, the control signals ui are coded and decoded over discrete noiseless
channels with finite capacity. Hence, the applied control and transmitted messages
follow a coding (i.e., binary representation) and a decoding process. We assume
here fixed-rate encoding, that is, the rate is defined as the (base-2) logarithm of
the number of symbols to be transmitted: The coding process of the controller at
station i is a mapping measurable with respect to the sigma-algebra generated by
Iit to Mi

t = {1, 2, . . . , |Mi
t|}, which is the quantizer codebook at station i at time

t, and | · | denotes the cardinality function. Hence, at each time t, station i sends
log2(|Mi

t|) bits over the channel to the plant.
From an operational viewpoint, we assume that there is a decoder at the actuator

who receives the corresponding controller commands and applies the actions. This
can be regarded as an actuator located in the plant who receives the commands from
the controller. Hence, the channel is between the controller and the actuator. One
may view the system in Fig. 9.1.

In this section, we consider the following problem: Let R denote the set of
average rates on L sensor and controller channels which lead to stabilization, that is,

R =

{
(Ri, i ∈ 1, 2, . . . , L) :

∃{u1[0,∞), u
2
[0,∞), . . . , u

L
[0,∞)}, lim

T→∞
||xT ||∞ = 0

}
,

Plant

y1 y2 y3

q1 q2 q3

Plant

Station 1

Actuator 1 Actuator 2 Actuator 3

Station 2 Station 3

u1 u2 u3

Fig. 9.1 Multi-station
(multi-controller) system
structure
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where Ri = lim supT→∞
1
T

∑T−1
t=0 log2(|Mi

t|). Then, what is the minimum

average total rate R := minR{
∑L

i=1R
i}, such that decentralized stabilization is

possible?
We introduce two ingredients needed to address this question. First note that

the observability of an LTI system (A,B,C) can be checked using the Hautus–
Rosenbrock test: The pair (A,C) is observable if and only if for all λ ∈ C, the
following matrix is full rank: [

λI −A

C

]
.

Clearly, one needs to check the rank condition only for the eigenvalues of A.
Likewise, controllability can be checked by replacing C with B′ and A with A′

above, that is, observability of the pair (A′, B′).
The following follows directly from this Hautus–Rosenbrock test and is stated

without proof.

Proposition 9.4.1. Consider (9.1), where the system is jointly controllable and
jointly observable. Suppose that the system matrix A is in Jordan form, where each
Jordan block admits distinct eigenvalues. Then, for each Jordan block, there exists
at least one controller which can observe the entire eigenspace, and there exists at
least one controller which can control the eigenspace. �

Assumption 9.4.1. The system matrix A is in Jordan form, where each Jordan
block admits distinct eigenvalues. �

Theorem 9.4.1. Suppose that Assumption 9.4.1 holds. (i) Let A be such that the
eigenvalues are real. Then, a tight lower bound on the total rate required, R,
between the controllers and the plant for stabilizability is given by

∑
|λi|>1

(ηMi)

(
log2(|λi|)

)
, (9.5)

where

ηMi = min
l,m∈{1,2,...,L}

{
D∗(l,m) : l → m, [xi] ⊂ Oi ∪Om,

[xi] ⊂ Km, D∗(l,m) = d(l,m) + 1

}
(9.6)

(ii) There exist stabilizing coding and control policies whose sum rate is arbitrarily
close to the lower bound in (9.5). Hence, this bound is asymptotically achievable. �

Proof. See Sect. 9.8.2. ��
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t=0

t=1

t=2

S1 S2 S3

S1 S2 S3

S1 S2 S3

Plant

Plant

Plant

Plant

Cut−Set

Fig. 9.2 A max-flow min-cut interpretation on a spatial and temporal graph. In the figure, station
S1 observes a mode and relays it to station S2, which further relays it to station S3. Cut-set bounds
in information theory are based on such information rates across cuts in a graph

We note that the first result of the theorem above admits a max-flow min-cut
interpretation (Fig. 9.2) over a temporal graph [154]. One can approach the problem
as information transfer over a network, where the rate of information flow across
any cut is less than the mutual information between the inputs on either side of the
cut conditioned on the inputs on the other side of the cut.

When Assumption 9.4.1 does not hold, the proof of Theorem 9.4.1 is still
applicable: We can, instead of a Jordan form representation, invoke the represen-
tation in (9.4) and obtain a sequential stabilization characterization for each mode,
considering also the updates in the observable modes as a result of sequential
stabilization which sets the lower modes to 0. However, in this context, the
combinatorial nature of the mode selection would require the expression to be more
complicated. This combinatorial aspect is due to the selection of controller and
observer sets and the communication paths between the stations.

To gain further insight on these settings, we consider two scenarios where
Assumption 9.4.1 does not necessarily hold.
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Case 1: Multiple Controllers Need Information on a Mode
from Multiple Stations

Suppose that there is more than one controller which can control a single mode, yet
their information is not sufficiently rich to recover the mode independently. Such
a scenario can apply to modes with geometric multiplicities more than one. The
following example captures this scenario:

xt+1 =

⎡
⎢⎢⎣
5 0 0 0

0 5 0 0

0 0 0.2 0

0 0 0 0.5

⎤
⎥⎥⎦xt +

⎡
⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎦u1t +

⎡
⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎦u2t +

⎡
⎢⎢⎣
0

1

1

0

⎤
⎥⎥⎦u3t +

⎡
⎢⎢⎣
0

1

0

1

⎤
⎥⎥⎦u4t ,

y1t = [0 0 0 1]xt, y2t = [0 0 1 0]xt,

y3t = [1 1 0 0]xt, y4t = [1 − 1 0 0]xt.

In this case, the third and fourth stations send information to the first two controllers,
which can control the first mode whose information is not enough to recover the
mode independently.

Lemma 9.4.1. The minimum average total information rate needed to be sent to
the controllers for being able to control a mode with eigenvalue λi from those that
can help recover the mode is lower bounded by

min
K,L:[xi]⊂(∪m∈KKm)∩(∪j∈L,m∈KOj∪Om)

d(L,K)max(0, log2(|λi|)), (9.7)

where
d(L,K) =

∑
l∈L

min
k∈K

d(l, k).

�

Proof. See Sect. 9.8.3. ��

Case 2. Multiple Controllers Control a Given Mode Decentrally

Suppose that there is a number of controllers that can control a given mode, but
only their joint information is sufficient to recover the mode. The following lemma,
whose proof is given in the appendix, gives the information rate in that case.

Lemma 9.4.2. The minimum average total information rate needed to be sent from
the controllers to the plant for controlling a mode with eigenvalue λi is

min
K:[xi]⊂(∪m∈KKm)∩(∪m∈KOm)

max(0, log2(|λi|))|K|.
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�

Proof. See Sect. 9.8.4. ��

To illustrate the results of the section presented above, we now consider two
numerical examples.

Example 9.4.1. Consider the decentralized system below where the system matrix
has an eigenvalue of multiplicity two and with two Jordan blocks.

xt+1 =

⎡
⎢⎢⎣
4 1 0 0

0 4 0 0

0 0 2 0

0 0 0 2

⎤
⎥⎥⎦xt +

⎡
⎢⎢⎣
1

0

0

1

⎤
⎥⎥⎦u1t +

⎡
⎢⎢⎣
0

1

0

0

⎤
⎥⎥⎦u2t +

⎡
⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎦u3t +

⎡
⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎦u4t ,

y1t = [0 1 0 1]xt, y2t = [1 0 0 0]xt,

y3t = [0 0 1 1]xt, y4t = [1 0 1 − 1]xt.

�

The average rate needed for stabilization is 2 log2(4) + log2(2) + log2(2) +
log2(2) = 7 bits. As the first two modes are both observable and controllable by
station 2, it only requires 2 log2(4) bits to stabilize. For the third mode, there are
two controllers which can control the mode, but they cannot observe the mode as
the third station can observe x3 + x4 and the fourth station can observe x3 − x4.
The third and the fourth stations can do the following: either take part in explicit
signaling or apply a control decentrally. It turns out that both of these methods lead
to the same rate log2(2) + log2(2) = 2 bits.

Example 9.4.2. For the system below, there is no stabilizing decentralized con-
troller:

xt+1 =

⎡
⎢⎢⎣
5 0 0 0

0 4 0 0

0 0 2 0

0 0 0 0.5

⎤
⎥⎥⎦xt +

⎡
⎢⎢⎣
1

0

0

0

⎤
⎥⎥⎦u1t +

⎡
⎢⎢⎣
0

1

0

0

⎤
⎥⎥⎦u2t +

⎡
⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎦u3t +

⎡
⎢⎢⎣
0

0

0

1

⎤
⎥⎥⎦u4t ,

y1t = [0 0 0 1]xt, y2t = [0 1 0 0]xt,

y3t = [1 1 1 0]xt, y4t = [0 0 0 1]xt.

�

The reason is because the first controller cannot receive information about the
mode it can control, and there is no other controller which can arrange information
transmission for that control.
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9.5 Multi-Sensor Structure with a Centralized Controller

We discuss in this section the case where there is a central controller which receives
information from multiple sensors. Consider the following LTI system (see Fig. 9.3):

xt+1 = Axt +But , t ≥ 0,

yit = Cixt , t ≥ 0 , i = 1, . . . , L , (9.8)

where (A,B) is stabilizable, (A, [(C1)′ . . . (CL)′]′) is detectable, and the initial
state x0 is a random vector with a known continuous distribution over a compact
support. The information received by the sensors is quantized and sent to the
controller, which has access to only the information sent by the sensors. Suppose
also that the controller is connected to the plant through a noiseless infinite capacity
channel.

The system can be represented, using Kalman’s canonical decomposition, in an
upper-triangular form (see [209]) so that the system has the following form, where
∗ may or may not be zero and (Ãk, (C̃k)′, 1 ≤ k ≤ L) are detectable pairs:

A =

⎡
⎢⎢⎢⎣

Ã1 ∗ ∗ · · · ∗
0 Ã2 ∗ · · · ∗
...

...
... · · ·

...
0 0 0 · · · ÃL

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

C̃1 ∗ ∗ · · · ∗
0 C̃2 ∗ · · · ∗
...

...
... · · ·

...
0 0 0 · · · C̃L

⎤
⎥⎥⎥⎦ . (9.9)

Controller

y1 y2 y3

q1
q2

q3

u

Sensors

Plant

Fig. 9.3 Multi-sensor system structure
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The controller can stabilize the components sequentially by receiving information
from the sensors, as before, by moving up in the matrix. The following result then
essentially follows from Theorem 9.4.1, through a sequential stabilization argument.

Theorem 9.5.1. For the system considered in (9.8), for asymptotic stability, the
average total rate for every stabilizing coding and control policy satisfies R ≥∑

|λi|>1 log2(|λi|), and this bound is tight in the sense that there exists a stabi-
lizing coding and control policy for which the average total rate satisfies R >∑

|λi|>1 log2(|λi|). �

9.6 Multi-Sensor and Multi-Controller Systems Driven
by Noise

One further aspect of the difference between the multi-sensor case and the multi-
controller case is that for the former there is no issue of signaling. This allows one
to obtain tight results when there is both system and observation noise, as we discuss
in the following.

9.6.1 Multi-Sensor Systems Driven by Unbounded Noise

In this subsection, we consider a multi-sensor system of the form

xt+1 = Axt +But + wt , t ≥ 0,

yit = Cixt + vit , t ≥ 0 , i = 1, . . . , L , (9.10)

where (A,B) is stabilizable, (A, [(C1)′ . . . (CL)′]′) is detectable, {vit, wt} are i.i.d.
noise processes with E[|vit|2+ε] < ∞, E[|wt|2+ε] < ∞, ε > 0, and Assumption
9.6.1, to be introduced next, is applicable.

Assumption 9.6.1. Suppose that A is in Jordan form. For every Jordan block in A,
there exists a sensor which observes the entire block. �

We note that here the Jordan blocks do not necessarily have distinct eigenvalues
unlike Assumption 9.4.1.

Through the random-time state-dependent drift analysis considered in Chaps. 6
and 7, and obtaining an upper-diagonal structure as in (9.9), we can extend
Theorem 7.4.1 to the multi-sensor case. However, there are two aspects which need
to be addressed: coordination among the sensors for the stopping time analysis and
the coupling between the observable modes of the sensors. In view of Theorem 7.4.1
and the construction in Sect. 7.4, we can let all the sensor quantizers zoom out
and zoom in simultaneously by allowing a zoom-out symbol to be exchanged (see
Fig. 9.4). Assumption 9.6.1 facilitates the separation of observable modes which
partitions the (unstable portion of the) state space R

n.
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Plant

Controller

y1 y2 y3

q1
q2

q3

b

b

b

u

Sensors

Fig. 9.4 Multi-sensor system structure with unbounded noise. Here b represents the one-bit
coordination symbol for simultaneous zooming in and out

To facilitate the random-time drift analysis, with T denoting a sampling period
in the system, a sequence of stopping times for zooming-in events can be defined as

τ0 = 0, τz+1 = inf{k2nT > τz : |hik2nT | ≤ 1, i ∈ {1, 2, . . . , n}}, z ∈ Z+,

where hit =
x̄i
t

Δi
t2

R′
i
−1

. Here Δi is the bin size of the quantizer in the direction of

the eigenvector xi, with rate used R′
i for a corresponding eigenvalue, and x̄it is an

estimate of the state component xit, computed by a corresponding sensor.
Under update rules for the bin sizes as in (7.9), we can establish a finite geometric

measure which dominates the stopping time distribution. In view of these, by taking
T as a free parameter, we can establish the following.

Theorem 9.6.1 ([209]). Consider the system in (9.10). To achieve asymptotic
stability in the sense that

lim sup
t→∞

E[|xt|22] <∞,

it suffices to have the average total rate satisfying R >
∑

|λi|>1 log2(|λi|). �

The results can be extended to cases where Assumption 9.6.1 does not hold, for
which case upper and lower bounds on the information rates can be provided to
facilitate the drift arguments. In this case, the structure of the system in (9.9) plays
an important role in the analysis. In particular, if the eigenvalues of the matrices
Ã1, · · · , ÃL are ordered in decreasing magnitude, then Theorem 9.6.1 holds without
Assumption 9.6.1. The reader is referred to [209] for details.
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9.6.2 Multi-Controller Systems Driven by Unbounded Noise

In case one considers a noisy multi-controller counterpart of (9.10), the analysis is
more involved due to the signaling aspects presented in Theorem 9.4.1: Consider a
signaling phase where station k is signaling to station l. The observations at station
l will be of the form:

ylt+1 = Cl(Axt +Bkukt + wt) + vlt,

where station l tries to recover ukt without necessarily knowing xt and the noise
realizations. Signaling in such a setting corresponds to coding and decoding over
an additive channel (with unequal side information on the channel due to unequal
estimates regarding the state xt at the controllers taking part in signaling; see [430]
for a discussion). Unless there are no information transmission (power) constraints
in the signaling phase, the analysis leads to a tedious communication problem.
However, the essential construction of the signaling and control phases remains the
same as that in the proof of Theorem 9.4.1.

9.7 Illustration of Binning and Its Use in Decentralized
Stabilization

Before ending this chapter, we discuss and illustrate the useful information theoretic
notion of binning, a coding method that exploits the available side information at the
DMs which receive information.

Even though the discussion here is not related to the coverage earlier in this chap-
ter and may be skipped by the reader, it is worth noting that binning is at the heart
of multi-terminal information theoretic source and channel-coding problems (see
[103, 312]), which, however, is also applicable to a class of real-time systems. This
notion was discussed earlier in Chap. 3 in the context of the discrete Witsenhausen’s
counterexample and may be used to obtain practical design schemes for a class
of decentralized problems. Binning will also be employed explicitly in minimum
information exchange characterization for agreement problems in Chap. 12. The
description in this section is meant to provide an instructive illustration on the use
of binning.

Consider a 2-dimensional discrete-time noisy LTI system with a 2-dimensional
control input, where each control component has a direct effect on a corresponding
scalar state, that is,

xt+1 = Axt +But + wt , t ≥ 1, (9.11)

where A is an 2 × 2 matrix and B = diag(b1, b2) is nonsingular. Suppose that the
state x at time 1, x1, is a continuous random vector with a known distribution with
compact support, depicted in Fig. 9.5 with the square box, and wt is an i.i.d. noise
process whose distribution also has compact support.
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x1

x2

Fig. 9.5 A typical evolution of the uncertainty in a system of the form (9.11). Note that the
evolution is parallel to the directions of the eigenvectors, in addition to the bounded noise effects.
The encoders thus send correlated data and can exploit this dependency

A

B

C

D

E

1 2 3 4 5

F

Fig. 9.6 The evolution of the uncertainty, with the same matrix in Fig. 9.5 being used. If the
encoders do not collaborate, then each of their corresponding sensors will send information
for 5 symbols. We encode log2(30) bits if we do not let controllers cooperate (exchange their
information)

Let x1, x2 be the scalar components of the system and let two sensors observe
these variables. The goal is to send information to a receiver.

For the stabilization of such a system, a typically suboptimal (note that, we
already discussed optimal transmission schemes earlier in the chapter), yet practical
approach would be to encode the observations using a time-invariant scheme by
exploiting the side information available at the controller. Figures 9.5–9.8 depict the
essential ingredients of such an approach using ideas from information theory and



310 9 Stabilization of Decentralized Systems Over Communication Channels

A

B

C

D

E

1 2 3 4 5

A

Fig. 9.7 For any level that sensor 2 has to send, there are only 5 bins, and not 6, that sensor 1
needs to send. We would need log2(25) bits to be transmitted

1
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14
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16

17
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19

20

21

22

23

24

Fig. 9.8 Joint encoding outperforms independent encoding. If the sensors are allowed to share
their information as in a centralized encoding scheme, there would only be log2(24) bits to be
transmitted

binning. Figure 9.5 depicts the evolution of the uncertainty, that is, the support set
of the state random variable given that at time 1, the state’s support was a unit box
and the support set for time 2 is depicted. Figure 9.6 represents the rate conditions if
the sensors do not employ binning. Figure 9.7 reveals the benefit of binning leading
to an improvement in rate requirements, which, however, may not perform as well
as a centralized scheme where joint encoding is allowed (see Fig. 9.8).

For an analysis of such constructions, we refer the reader to [312, 428, 429].
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9.8 Appendix: Proofs

9.8.1 A Supporting Lemma

First we state and prove a lemma which will be used in the proof of Theorem 9.4.1.

Lemma 9.8.1. Let {kt, t = 1, 2, . . . } be a sequence of positive numbers such that
limt→∞ kt = 0. For a sequence of scalar almost surely bounded random variables
{vt, t = 1, 2, . . . } such that for all t ∈ N+ P (|vt| ≤ kt) = 1, the entropy sequence
has the property that lim supt→∞ h(vt) = −∞. �

Proof. The lemma follows from the fact that the entropy of a random variable with
a bounded support is maximized by a uniform distribution. We now prove this
argument. Let pt(dv) denote the probability measure of a random variable vt, which
we assume admits a density function, and denote the density also by pt(vt). If this
assumption does not hold, by constructing a sequence of discrete random variables
appropriately converging to the discrete or a mixed random variable (see [171]), a
similar argument as below is applicable. By Jensen’s inequality below, we have that

h(vt) = −E[log2(pt(vt))] = −
∫ kt

−kt

pt(vt) log2(pt(vt))dvt

≤ log2(E[
1

pt(vt)
]) ≤ log2(2kt) → −∞.

��

9.8.2 Proof of Theorem 9.4.1

(i) Let xλ be the eigenspace of λ, i.e., the space spanned by the eigenvectors
corresponding to eigenvalue λ. Let us order the eigenvalues in an upper-
triangular matrix as xk ∈ xλ with the smallest k being the lowermost mode and
order them with increasing index in a Jordan block starting from the lowermost
mode. Let the ith mode live in an ith eigenspace, with eigenvalue λi. Then, the
dynamics of the ith mode can be written as

xit = λtix
i
0 + (

∑
k

1{xk∈xλ,k≤i−1}f(x
k
0)) +BSi(uSi

[0,t]),

where f(·) is some function that depends on the upper-diagonal form of the
system matrix, and the Si denotes the set of stations that can control mode i,
i.e., xi0 ∈ Km for stationm in Si, u

Si

[0,t] denotes the control sequence applied by

such stations, and BSi(·) denotes the mapping from the set of applied controls
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to the mode. The evolution equation above follows from the fact that modes
sharing a similar eigenvalue are decoupled from other modes. We now have

h(xit) = h(λtix
i
0 + (

∑
k

1{xk∈xλ,k≤i−1}f(x
k
0)) +BSiuSi

[0,t])

≥ h

(
λtix

i
0 + (

∑
k

1{xk∈xλ,k≤i−1}f(x
k
0))

+BSiuSi

[0,t]|u
Si

[0,t], x
k
0 ∈ xλ

0 , k ≤ i− 1

)

= h(λtix
i
0|uSi

[0,t], x
k
0 ∈ xλ

0 , k ≤ i− 1)

= t log2(|λi|) + h(xi0|uSi

[0,t], x
k
0 ∈ xλ

0 , k ≤ i− 1). (9.12)

The first inequality above follows from the fact that conditioning does not
increase the entropy and the equalities follow from standard properties of the
entropy function. It now follows from (9.12) that

h(xi0)− h(xi0|uSi

[0,t], x
k
0 ∈ xλ

0 , k ≤ i− 1) ≥ h(xi0) + t log2(|λi|)− h(xit).

Since the initial state has finite entropy, the sequence {xit} converges to zero,
and by Lemma 9.8.1, lim supt→∞ h(xit) = −∞, and it follows that

lim inf
t→∞

1

t
{h(xi0)− h(xi0|uSi

[0,t], x
k
0 ∈ xλ

0, k ≤ i− 1)}

≥ lim inf
t→∞

1

t
{t log2(|λi|) + h(xi0)− h(xit)}

≥ log2(|λi|). (9.13)

Now, let Zm = {k : k → m} be the set of stations which can communicate to
station m. We have that uSi

[0,t] is a causal function of the information available,

{ym[0,t], yZ
m

[0,t],m ∈ Si, {xk0} ∈ xλ
0, k ≤ i−1}, and thus from the data-processing

inequality it follows that

I(xi0;u
Si

[0,t], x
k
0∈xλ

0, k ≤ i−1)≤I(xi0; {ym[0,t], yZ
m

[0,t],m∈Si, x
k
0∈xλ

0, k≤i−1})

and

lim inf
t→∞

1

t
I(xi0; {ym[0,t], yZ

m

[0,t],m ∈ Si, x
k
0 ∈ xλ

0, k ≤ i− 1}) ≥ log2(|λi|).

Note that the above holds even if one allows nonlinear control policies, as
long as these are causally measurable functions of the observations.
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Hence, the information rate requirement is that, from the set of stations
which can observe a mode to a station which can control a mode, the above
rate requirement is necessary.

(ii) According to the system modes, the controllers who can control them can be
identified. By Lemma 9.3.3, any station l can compute ClAnxn, at time n.
There exists at least one station, station l, that can control a mode i and at
least one station, station k, that can observe the mode xi and k → l. Then,
the information on mode xi is to be transmitted to station l through the plant
(where without any loss we assume that these stations are unique; otherwise,
the most rate-efficient pair can be identified). Suppose that information on xi0
is to be transmitted to station l. Sensor k recovers xi0 at a time no later than n.
It then quantizes xi0 uniformly. Station k sets ukt = Qt(x

i
0), where Qt denotes

the quantization function at time t. In this case,

xn+1 = Axn +BkQn(x
i
0),

yln+1 = Cl(Axn+1 +BkQn(x
i
0)).

Assembling the observations {yl[n+1,2n]} and using the fact that Cl(A)mBk 	=
0 for at least one m, 1 ≤ m ≤ n, and Lemma 9.3.3, the quantized output
Qn(x

i
0) can be recovered at a time no later than 2n. Sensor l can recover the

quantized information Qn(x
i
0), which it subsequently sends to station l. Via

this information, the estimate at time 2n, x̂i0(2n), can be computed. Let p > 0
be an integer. If an average quantization rate of R = n log2 |λi| + ε, for some
ε > 0, is used, then the estimation error xi0 − x̂i0(pn) approaches zero at a rate
faster than 1/(|λi|)pn.

The plant undoes the signaling, since it is assumed to know the control
protocol. We assume (without any loss of generality) that after signaling
takes place, the plant can undo it in the sense of canceling the effects of
communication, since it is assumed to know the control protocol: The actions
live in the controllable subspace, and these can be undone/cancelled by the same
controller in at most n time stages, such that the system behaves as if it has been
operating open loop by the end of t + n time stages, where t is the time when
signaling ends.

The controller can then drive the estimated value to zero in at most n time
stages. Finally, we need to consider multiple transmissions. The remaining
controllers can be designed to be idle, while a particular mode is being relayed
by the plant. Such a sequential scheme ensures convergence, where ε can be
taken to be arbitrarily small by adjusting the time stages. ��

9.8.3 Proof of Lemma 9.4.1

Let K be the set of controllers which can (possibly jointly) control the mode,
that is, xi ∈ ∪m∈KK

m. Following Lemma 9.8.1, we require h(xt) → −∞ and
lim inft→∞

1
t I(x

i
0; z

j
[0,t], j ∈ K) ≥ log2(|λi|).
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Without any loss of generality, suppose the controllers themselves do not have the
information needed to recover the state of the mode to be controlled, for otherwise
the rate needed for signaling would be zero. Let the information to be sent to station
1 ∈ K at time t be z1t . It follows from the fact that the entropy of a discrete-valued
random variable is nonnegative and conditioning does not increase the entropy of a
random variable that

lim
t→∞

1

t
H(z1[0,t]) ≥ lim

t→∞

1

t

{
H

(
z1[0,t]

)
−H

(
z1[0,t]

∣∣∣∣λtixi0, zj[0,t], j ∈ K− {1}
)}

= lim
t→∞

1

t

{
I

(
z1[0,t];λ

t
ix

i
0, z

j
[0,t], j ∈ K− {1}

)}

= lim
t→∞

1

t

(
I(z1[0,t];λ

t
ix

i
0

∣∣∣∣zj[0,t], j ∈ K− {1})
)

+ I

(
z1[0,t]; z

j
[0,t], j ∈ K − {1}

)}

= lim
t→∞

1

t

{
h

(
λtix

i
0

∣∣∣∣zj[0,t], j ∈ K− {1}
)

− h

(
λtix

i
0

∣∣∣∣zj[0,t], j ∈ K− {1}, z1[0,t]
)

+ I

(
z1[0,t]; z

j
[0,t], j ∈ K − {1}

)}

= lim
t→∞

1

t

{
t log2(|λi|) + h

(
xi0

∣∣∣∣zj[0,t], j ∈ K− {1}
)

− h

(
λtix

i
0

∣∣∣∣zj[0,t], j ∈ K− {1}, z1[0,t]
)

+ I

(
z1[0,t]; z

j
[0,t], j ∈ K − {1}

)}

= log2(|λi|) + η ≥ log2(|λi|),

where

η = lim
t→∞

1

t
I(z1[0,t]; z

j
[0,t], j ∈ K− {1}) ≥ 0.

Likewise, for the second message z2[0,t] we have the same result and for all modes
in K. As such, a rate equal to the sum of these is necessary.

All stations which are designed to control the mode need to be sent information
with at least an equal rate. ��
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9.8.4 Proof of Lemma 9.4.2

Proof is almost identical to that of Lemma 9.4.1. Let stations in the set K be able to
control a mode and be sent the sufficient information to recover the mode. Let z1t be
the message sent by station 1 ∈ K to the plant at time t. It then follows that

lim
t→∞

1

t
H(z1[0,t]) ≥ lim

t→∞

1

t

{
H

(
z1[0,t]

)
−H

(
z1[0,t]

∣∣∣∣λtixi0, zj[0,t], j ∈ K− {1}
)}

= lim
t→∞

1

t

(
t log2(|λi|) + h

(
xi0

∣∣∣∣zj[0,t], j ∈ K− {1}
)

− h

(
λtix

i
0

∣∣∣∣zj[0,t], j ∈ K− {1}, z1[0,t]
)

+ I

(
z1[0,t]; z

j
[0,t], j ∈ K − {1}

)}

≥ log2(|λi|) + η ≥ log2(|λi|), (9.14)

where η = limt→∞
1
t I(z

1
[0,t]; z

j
[0,t], j ∈ K − {1}) ≥ 0, following the same

arguments as in the proof of Lemma 9.4.1. Hence, with the same arguments for
the other control signals from stations in K, log2(|λi|)|K| is a necessary amount of
average rate. Any other coding scheme will require at least this rate. ��

9.9 Concluding Remarks

In this chapter, we have provided a characterization for the existence of stabilizing
controllers for multi-station systems under any control policy admissible under the
given decentralized information structure.

Extension to the noisy case is a challenging issue when signaling is present.
The signaling problem is equivalent to coding between two decision makers with
nonidentical side information about the channel, as different stations have different
information on the states they wish to control, and they signal communications
over. The practicality of the problem requires further applicable and scalable design
schemes.

9.10 Bibliographic Notes

In addition to the references listed in the chapter on decentralized stabilization, we
should mention the following early efforts in the literature. We refer the reader to
the comprehensive books by [252,340,342] for general references for decentralized
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control theory. Corfmat and Morse [101] provided conditions for decentralized
stabilization with time-invariant, output feedback controllers when a leader is picked
to control the entire system. If a leader is selected, by restricting the other agents to
use time-invariant or time-varying linear laws, the leader might be able to control the
entire system under strong connectivity conditions. Wang and Davison [386] proved
that unless unstable fixed modes are present, a decentralized system can be stabilized
by linear time-invariant controllers. Anderson and Moore [11] provided algebraic
conditions for existence of decentralized fixed modes under linear time-invariant
policies; the reader is also referred to [278]. Kobayashi et al. [217] presented
a graph-theoretic discussion for the case where the decentralized system can be
expressed as a set of strongly connected subsystems. They proved that the system is
stabilizable by a linear controller if and only if there is no fixed mode between the
decentralized systems composed of the strongly connected subsystems. Anderson
and Moore [11] showed that decentralized stabilization in a multi-controller setting
is possible via time-varying control laws, if the system is jointly controllable, jointly
observable, and strongly connected. Further related references are the works of
Wang [387], Willems [392], Khargonekar and Özgüler [213], and Gong and Aldeen
[165] which further studied time-varying control laws for stabilization. Khargonekar
and Özgüler [213] studied the necessary and sufficient requirements for stabilization
via time-varying controllers in terms of input-output mappings. The conditions they
provided are algebraic and further corroborate the fact that strong connectivity does
ensure decentralized stabilizability under the assumption of joint controllability and
observability. Gong and Aldeen [165] considered the decentralized stabilization
problem and obtained the characterization for stabilizability along similar algebraic
conditions. Özgüner and Davison [303] used a sampling technique to eliminate fixed
modes resulting from time-invariant policies.

The characterization of minimum information requirements for multi-sensor and
multi-controller linear systems with an arbitrary topology of decentralization has
been discussed in various publications [263–266, 281, 282, 305, 353, 354, 429, 431].
In particular, references [263, 266, 305, 431] considered signaling in networked
control problems with information theoretic coding perspectives. Gupta et al. [180]
considered stabilization for multi-sensor systems over erasure channels.

The issue of complexity of decentralized computation is another important aspect
of decentralized control applications. [404] studied the communication complexity
of decentralized control, building on the notion of communication complexity of
computation in [412]. In the information theory literature, distributed function
computation with minimum information exchange is another important area, with
some notable results being reported in [300], which does not consider a real-
time setup, but an information theoretic setup, which considers an infinite copy
of messages to be encoded and functions to be computed, extending the results in
Csiszar and Körner ([107], Theorem. 4.6) to a computation setting. These will be
considered further in the context of optimization of dynamic teams in Chap. 12.

Some of the results of this chapter are based on [209, 429, 431].
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Chapter 10
Optimization of Real-Time Coding and Control
Policies: Structural and Existence Results

10.1 Introduction

In Part II of this book we addressed the problem of stabilization of networked
control systems. In this chapter, and Part III overall, we move beyond stabilization
and study optimization of such systems, from the points of view of both encoding
and control policies.

The chapter considers the optimal causal encoding/quantization problem for
networked control systems. It presents structural results on optimal causal coding
of Markov sources in a large class of settings: fully observed and partially observed
Markov sources as well as multi-sensor systems and systems driven by control. For
the optimal causal coding of a fully observed or a partially observed Markov source,
the structure of optimal causal coders are obtained, which feature a separation
structure. It is also shown that real-time decentralized coding of a partially observed
i.i.d. source admits a memoryless optimal solution. Such a result does not, in
general, extend to decentralized coding of partially observed Markov sources. We
also establish in the chapter the existence of optimal control and quantization
policies under appropriate technical conditions. Linear systems with quadratic cost
will also be considered.

The contents of the chapter are as follows: In Sect. 10.2, we introduce the
problem structure while also revisiting the setup of Sect. 5.2.2. We then present,
in Sect. 10.3, structural results on optimal encoders, more precisely on optimal real-
time coding of Markov sources when there is only one encoder. We study both fully
observed and partially observed settings, as well as systems driven by control. Sec-
tion 10.4 considers the existence of optimal quantization policies. In Sect. 10.5, we
move to a decentralized setting, and show through a counterexample the difficulty
one encounters in obtaining structural results for decentralized coding in the absence
of a controlled Markov state construction, while providing a separation result
when the source is memoryless. We discuss, in Sect. 10.6.2, the case of a partially
observed Gaussian source and establish the optimality of a separation structure
of estimation/filtering and quantization of the filtering output. We also investigate

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 10,
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the optimal quantization and control problem for linear-quadratic-Gaussian (LQG)
problems, and building on the developments in Chap. 4, we establish the existence
of optimal quantizers and control policies. Finally, Sect. 10.7 considers the structure
of optimal coding policies for the case with noisy channels and noiseless feedback.
An appendix to the chapter includes proofs of the main results.

For background reading on Markov Decision Processes as well as for a review of
the LQG control problem and Kalman filtering, we refer the reader to Appendix D.

10.2 Policies and Action Spaces for Encoding

We consider a typical causal encoding/quantization setup of the type introduced
earlier in Chap. 5 (Sect. 5.2.2). For simplicity in exposition, but without much loss
of conceptual generality, we consider the case of only two encoders and within this
context introduce the causality and measurability constraints in quantizer design for
decentralized systems.

Consider first a control-free partially observed Markov process, defined on a
probability space, (Ω,F , P ), and generated by the following scalar discrete-time
equations for t ≥ 0:

xt+1 = f(xt, wt), (10.1)

yit = gi(xt, v
i
t), (10.2)

for (Borel) measurable functions f, gi, i = 1, 2, with {wt, v
i
t, i = 1, 2} zero-mean

noise processes with finite second moments, which are independent across time and
space. We further have xt ∈ X, and yit ∈ Y

i, where X,Yi are Polish spaces. Let an
encoder, Encoder i, be located at one end of a measurement channel characterized
by (10.2), this being so for i = 1, 2. The encoders transmit their information to a
receiver (see Fig. 10.1), over a discrete noiseless channel with finite capacity, and
hence, they have to quantize their input.

We let, as before in Sect. 5.2.2, Πcomp,i denote a composite quantization policy
for Encoder i, defined as a sequence of functions {Qcomp,i

t , t ≥ 0} which are causal
such that the quantization output at time t, qit, under Πcomp,i is generated by a
function of its local information, that is, a mapping measurable with respect to the
sigma-algebra generated by

Iit = {yi[0,t], qi[0,t−1], z
i
[0,t−1]}, t ≥ 1,

and Ii0 = {yi0}, with image space Mi
t, where Mi

t := {1, 2, . . . , |Mi
t|}, for 0 ≤

t ≤ T − 1 and i = 1, 2. Here zi denotes some additional side information available,
such as feedback from the receiver.

Let Iit denote the space Iit belongs to; hence

Qcomp,i
t : Iit → Mi

t.
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Fig. 10.1 Partially observed source under a decentralized structure

As discussed in Sect. 5.2.2, equivalently, we can express the policy Πcomp,i as
a composition of a quantization policy γi and a quantizer: A quantization policy
of Encoder i, γi, is a sequence of functions {γit}, such that for each t ≥ 0, γit is a
mapping from the information space Iit to the space of quantizers Qi

t. A quantizer is
subsequently used to generate the quantizer output. Without any loss of generality, a
quantizer action will be generated based on the common information at the encoders
and the receiver, and the quantizer will map the relevant private information at the
encoder to the quantization output. Let the information at the receiver at time t be
Irt = {q1[0,t−1], q

2
[0,t−1]}, for t ≥ 1. Let the common information, under feedback, at

the encoders and the receiver be Ict . Thus, we can express any measurable composite
quantization policy as

Qcomp,i
t (Iit ) = (γit(I

c
t ))(I

i
t \ Ict ), (10.3)

mapping the information space to Mi
t.

Viewing each encoder as an agent or a decision maker (DM), we let DMi have
policy γi and under this policy generate quantizers {Qi

t, t ≥ 0}, Qi
t ∈ Q

i
t. Under

action Qi
t, the encoder generates qit, as the quantization output at time t.

The receiver (or the controller), upon receiving the information from the en-
coders, generates its decision at time t, also causally: An admissible causal receiver
policy is a sequence of measurable functions γ0 = {γ0t } such that

γ0t :

t∏
s=0

(
M1

s ×M2
s

)
→ U, t ≥ 0,

where U denotes the decision set for the receiver.
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With the above formulation, one typical objective functional for the decision
makers would be the following:

inf
Πcomp

inf
γ0
E

Πcomp,γ0

ν0 [

T−1∑
t=0

c(xt, ut)], (10.4)

with initial condition distribution ν0. Here c(·, ·), is a nonnegative, measurable
function and ut = γ0t (q[0,t]) (with q = (q1, q2)) for t ≥ 0.

Before concluding this section, it may be worth emphasizing the operational
nature of causality, as different approaches could be adopted. The encoders at any
given time can only use their local information to generate the quantization outputs.
The receiver, at any given time, can only use its local information to generate its
decision/estimate. These happen with zero delay, that is, if there is a common clock
at the encoders and the receiver, the receiver at time t needs to make its decision
before the realizations xt+1, y

1
t+1, y

2
t+1 have taken place. This corresponds to the

zero-delay coding schemes of, for example, Witsenhausen [396] and Linder and
Lugosi [236].

10.3 Single Terminal Case: Optimal Causal Coding
of a Partially Observed Markov Source

10.3.1 Single Terminal, Fully Observed Case

We first consider the single-encoder, fully observed case: In this setup, (10.1)–(10.2)
hold with one encoder, that is,

xt+1 = f(xt, wt), yt = xt, t = 0, 1, ... . (10.5)

Let P(X) denote the space of probability measures on B(X) under the topology of
weak convergence and define πt ∈ P(X) to be the regular conditional probability
measure given by πt(·) = P (xt ∈ ·|q[0,t−1]), that is,

πt(A) = P (xt ∈ A|q[0,t−1]), A ∈ B(X).

We first state the following theorem on the structure of optimal causal quantiza-
tion policies, due to Witsenhausen [396].

Theorem 10.3.1 (Witsenhausen [396]). For system (10.5) and optimization prob-
lem (10.4), any composite quantization policy can be replaced, without any loss in
performance, by one which only uses xt and q[0,t−1] at time t ≥ 1. �

Proof. See Sect. 10.8.1. ��
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The following result is essentially due to Walrand and Varaiya [385]; however,
the form below is more general since the spaces considered are not necessarily finite.

Theorem 10.3.2 ([425]). For system (10.5) and optimization problem (10.4), any
composite quantization policy can be replaced, without any loss in performance, by
one which only uses the conditional probability measure πt(·) = P (xt ∈ ·|q[0,t−1]),
the state xt, and the time information t, at time t ≥ 1. �

Proof. See Sect. 10.8.2. ��

Remark 10.3.1. The difference between the structural results above is the follow-
ing: In the setup of Theorem 10.3.1, the encoder’s memory space is not fixed and
keeps expanding as the decision horizon in the optimization, T − 1, increases. In
the setup of Theorem 10.3.2, the memory space of an optimal encoder is fixed.
In general, the space of probability measures is a very large one; however, it may
be the case that different quantization outputs may lead to the same conditional
probability measure on the state process, leading to a reduction in the required
memory. Furthermore, Theorem 10.3.2 allows one to apply the theory of Markov
Decision Processes, an aspect which we will elaborate on further in this chapter. �

As we observed in Remark 4.7.2, the set [see (4.10)]

Θ := {ζ ∈ P (Rn ×M) : ζ = PQ,Q ∈ Q},

(with Q denoting the set of |M|-cell quantizers) is the Borel measurable set of the
extreme points of the set of probability measures on R

n × M with a fixed input
marginal P . In view of this observation and that the class of quantization policies
which admit the structure suggested in Theorem 10.3.2 is an important one, we
henceforth define

ΠW :=

{
Πcomp = {Qcomp

t , t ≥ 0} : ∃γ1t : P(X) → Q

Qcomp
t (It) = (γ1t (πt))(xt), ∀It

}
, (10.6)

to represent this class of policies. Here, the input measure is time varying and is
given by πt.

10.3.2 Partially Observed Markov Source

We consider here the setup of (10.1)–(10.2) but with a single encoder. Thus, the
system considered is a discrete-time scalar system described by

xt+1 = f(xt, wt), yt = g(xt, vt), t = 0, 1, ... (10.7)



324 10 Optimization of Real-Time Coding and Control Policies...

where xt, {wt, vt} are as introduced earlier. Let the quantizer, as described earlier,
map its information to a finite set Mt. At any given time, the receiver generates
a quantity ut as a function of its received information, that is, as a function of
{q0, q1, . . . , qt}. The goal is to obtain a solution to (10.4) subject to constraints
on the number of quantizer bins in Mt and the causality restriction in encoding and
decoding.

Now, define π̃t ∈ P(X) to be the regular conditional probability measure (whose
existence for every realization of observation variables follows from the fact that
both the state and the observation spaces are Polish) given by P (dxt|y[0,t]), that is,

π̃t(A) = P (xt ∈ A|y[0,t]), A ∈ B(X).

Under the topology of weak convergence for P(X), {π̃t} evolves according to a
nonlinear filtering equation (see (10.40); see also [347]) and is itself a Markov
process. Let us also define Ξt ∈ P(P(X)) as the regular conditional measure

Ξt(A) = P (π̃t ∈ A|q[0,t−1]), A ∈ B(P(X)).

The following are the main results of this subsection.

Theorem 10.3.3 ([425]). For system (10.7) and optimization problem (10.4) with
c bounded, any composite quantization policy can be replaced, without any loss in
performance, by one which only uses {π̃t, q[0,t−1]} as a sufficient statistic for t ≥ 1.
This can be expressed as a quantization policy which only uses q[0,t−1] to generate
a quantizer, where the quantizer uses π̃t to generate the quantization output at time
t ≥ 1. �

Proof. See Sect. 10.8.3. ��

Theorem 10.3.4 ([425]). For system (10.7) and optimization problem (10.4) with
c bounded, any composite quantization policy can be replaced, without any loss in
performance, by one which only uses {Ξt, π̃t, t} for t ≥ 1. This can be expressed
as a quantization policy which only uses {Ξt, t} to generate a quantizer, where the
quantizer uses π̃t to generate the quantization output at time t ≥ 1. �

Proof. See Sect. 10.8.4. ��

A number of remarks are now in order.

Remark 10.3.2. From the proof of Theorem 10.3.4, we will see that (Ξt, Qt) forms
a controlled Markov chain. Defining the actions as the quantizers allows one to
define a Markov Decision Problem with well-defined cost functions, and state and
action spaces. �

Remark 10.3.3. The results above can be viewed as direct extensions of the ones
in the previous subsection with perfect state measurements. In fact, once one
recognizes the fact that {π̃t} forms a Markov source and the cost function can be
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expressed as c̃(π̃, u), for some function c̃ : P(X) × U → R, one could almost
directly apply Theorems 10.3.1 and 10.3.2 to recover the structural results above. �

The results of Theorems 10.3.3 and 10.3.4 are also generalizable to settings
where (a) the source is Markov of order m > 0, (b) a finite delay d is allowed
at the decoder, and (c) the observation process depends also on past source outputs
in a sense described in (10.8) below. For these cases, we consider the following
generalization of the source by expanding the state space.

Suppose that the partially observed source is such that either the source is Markov
of order m or there is a finite delay d > 0 which is allowed at the decoder. Then
we can augment the source to obtain zt = {x[t−max(d+1,m)+1,t]}. Note that {zt} is
Markov. We can thus consider the following representation:

zt+1 = f̃(zt, w̃t), yt = g̃(zt, ṽt), (10.8)

for some f̃ , g̃, and where zt = {x[t−max(d+1,m)+1,t]} ∈ X
max(d+1,m), and w̃t, ṽt

are mutually independent, i.i.d. processes.
Any per-stage cost function of the form c(xt, ut) can be written as for some c̃:

c̃(zt, ut). For the finite delay case, the cost per stage can further be specialized as
c̃(xt−d, ut). For the Markov case with memory, the cost function per stage writes as
c̃(x[t−m+1,t], ut).

Now, by replacing X with X
max(d+1,m), let π̃t ∈ P(Xmax(d+1,m)) be given by

π̃t(A) = P (zt ∈ A|y[0,t]), A ∈ B(Xmax(d+1,m))

and Ξt ∈ P(P(Xmax(d+1,m))) be the regular conditional measure defined by

Ξt(A) = P (π̃t ∈ A|q[0,t−1]), A ∈ B(P(Xmax(d+1,m))).

Hence, we have the following result, which is a direct extension of Theorems 10.3.3
and 10.3.4. We assume that c is bounded.

Theorem 10.3.5. Suppose that the partially observed source is such that either the
source is Markov of order m or there is a finite delay d > 0 which is allowed at the
decoder. With zt = {x[t−max(d+1,m)+1,t]} and yt generated by (10.8), the following
holds:

(i) Any (causal) composite quantization policy can be replaced, without any loss
in performance, by one which only uses {π̃t, q[0,t−1]} as a sufficient statistic for
t ≥ 1. This can be expressed as a quantization policy which only uses q[0,t−1] to
generate a quantizer, where the quantizer uses π̃t to generate the quantization
output at time t ≥ 1.

(ii) Any (causal) composite quantization policy can be replaced, without any loss
in performance, by one which only uses {Ξt, π̃t, t} for t ≥ 1. This can be
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expressed as a quantization policy which only uses {Ξt, t} to generate a
quantizer, where the quantizer uses π̃t to generate the quantization output at
time t ≥ 1. �

For a further case where the decoder’s memory is limited or imperfect, the results
apply by replacing the full information considered so far at the receiver with the
limited one with additional assumptions on the decoder’s update of its memory
(in particular, (10.42) in the proof of Theorem 10.3.4 does not apply in general).
However, an equivalent result of Theorem 10.3.3 applies also for the limited
memory setting. Such memory settings have been considered in [248, 385, 396].

10.3.3 Structural Results for Systems with Control

Theorem 10.3.2 applies also for Markov sources driven by control. That is, instead
of (10.1)–(10.2), consider a system described by the following equations:

xt+1 = f(xt, ut, wt),

yt = xt. (10.9)

Suppose that the goal is the minimization of (10.4), with the information restrictions
stated in Sect. 10.2.

For this system, we have the following result (which extends the finite state-
action space analysis in [250, 384]).

Theorem 10.3.6 ([423]). (i) For system (10.9) and optimization problem (10.4),
any composite quantization policy (with a given control policy) can be
replaced, without any loss in performance, by one which only uses xt and
q[0,t−1] at time t ≥ 1, while keeping the control policy unaltered. This can
be expressed as a quantization policy which only uses q[0,t−1] to generate a
quantizer, where the quantizer uses xt to generate the quantization output at
time t.

(ii) For system (10.9) and optimization problem (10.4), any composite quantization
policy can be replaced, without any loss in performance, by one which only
uses the conditional probability measure πt(·) = P (xt ∈ ·|q[0,t−1]), the state
xt, and the time information t, at time t. This can be expressed as a quantization
policy which only uses {πt, t} to generate a quantizer, where the quantizer uses
xt to generate the quantization output at time t.

�

Proof. See Sect. 10.8.5. ��

The result also applies to the partially observed case with the conditional
probability replacing the state as in Theorem 10.3.4. The proof follows from those
of Theorems 10.3.4 and 10.3.6.
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10.4 Existence of Optimal Zero-Delay Quantizers

We now discuss the problem of existence of optimal composite quantization
policies, given the structural results for a fully observed setting. We assume that
the source to be quantized is an R

n-valued Markov source. The goal is to minimize
the cost

Jπ0(Π
comp, γ0, T ) := E

Πcomp,γ0

π0

[T−1∑
t=0

c(xt, ut)

]
, (10.10)

for some T ≥ 1, where c : Rn ×U → R+ is a (measurable) stagewise cost function
where U is an action set.

We have the following assumptions on the source {xt} and the cost function:

Assumption 10.4.1.

(i) The evolution of the Markov source {xt} in (10.1)–(10.2) is given by

xt+1 = f(xt) + wt, t ≥ 0

yt = xt, (10.11)

where {wt, t ≥ 0} is an i.i.d. Gaussian noise sequence and f : Rn → R
n is

measurable and bounded.
(ii) The cost function c : Rn × U → R+ is continuous and bounded.
(iii) The initial probability measure π0 is Gaussian.
(iv) U is compact (the compactness condition will be relaxed for LQG problems in

Sect. 10.6.3).

�

In this section, we will assume that the number of bins for the quantizers is
constant for every time stage such that |Mt| =M for all t. As discussed in Sect. 4.7,
a quantizer Q with cells {B1, . . . , BM} can be characterized as a stochastic kernel
Q from R

n to {1, . . . ,M} defined by

Q(i|x) = 1{x∈Bi}, i = 1, . . . ,M.

We endow the quantizers with a topology induced by such a stochastic kernel
interpretation as in Sect. 4.7. If P is a probability measure on R

n and Q is a
stochastic kernel from R

n to M, then PQ denotes the resulting joint probability
measure on R

n × M. That is, a quantizer sequence Qn converges to Q weakly at
P (Qn → Q weakly at P ) if PQn → PQ weakly. Similarly, Qn converges to Q in
total variation at P (Qn → Q at P in total variation at P ) if PQn → PQ in total
variation.

Suppose we adopt a quantizer policy which is in ΠW , that is, it admits the
form suggested by Theorem 10.3.2. Properties of conditional probability leads to
the following expression for πt(dxt) = P (dxt|q[0,t−1]) for t ≥ 1:
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πt(dxt) =

∫
xt−1

πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (dxt|xt−1)∫
xt−1

∫
xt
πt−1(dxt−1)P (qt−1|πt−1, xt−1)P (dxt|xt−1)

.

Let P be the set of probability measures on R
n endowed with the topology

of weak convergence. The following is a consequence of Theorem 10.3.4 and
Remark 10.3.2.

Theorem 10.4.1. The sequence of conditional measures and the sequence of
quantizers, (πt, Qt), form a joint Markov process in P ×Q. �

Now, under any quantization policy in ΠW and for any T ≥ 1, by optimizing the
receiver policy given a composite quantization policy in (10.10), we can define

Jπ0(Π
comp, T ) = EΠcomp

π0

[T−1∑
t=0

c̃(πt, Qt)

]
,

where, with Bi = Q−1
t (i), i = 1, . . . ,M denoting the cells of Qt, we have

c̃(πt, Qt)

=
∑
i∈M

P (qt = i|q[0,t−1]) inf
u∈U

(∫
P (dxt|q[0,t−1], qt = i)c(xt, u)

)

=
∑
i∈M

inf
u∈U

∫
Bi

πt(dx)c(x, u). (10.12)

As in Sect. 4.7, we restrict the set of quantizers considered by only allowing
quantizers having convex quantization bins (cells) Bi, i = 1, . . . ,M .

Assumption 10.4.2. The quantizers have convex codecells with at most a given
number of cells, that is, the quantizers live in Qc(M), the collection of k-cell
quantizers with convex cells where 1 ≤ k ≤M . �

Let ΠC
W denote the set of all composite quantization policies ΠW [defined in

(10.6)] which in addition satisfy the condition that all quantizers Qt, t ≥ 0 have
convex cells (i.e., Qt ∈ Qc for all t ≥ 0).

We have the following result on the existence of optimal quantizers.

Theorem 10.4.2 ([437]). For any T ≥ 1 and arbitrary initial condition π0, under
Assumptions 10.4.1 and 10.4.2, there exists a policy in ΠC

W such that

inf
Πcomp∈ΠC

W

inf
γ0
Jπ0(Π

comp, γ0, T ) (10.13)

is achieved. Letting JT
T (·) = 0 and
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JT
0 (π0) := min

Πcomp∈ΠC
W ,γ0

Jπ0(Π
comp, γ0, T ),

the dynamic programming recursion

JT
t (πt) = min

Q∈Qc

(
c(πt, Qt) + E[JT

t+1(πt+1)|πt, Qt]

)
(10.14)

holds for all t = 0, 1, . . . , T − 1. �

Proof. See Sect. 10.8.6. ��

10.5 Multiterminal (Decentralized) Setting

10.5.1 Memoryless Sources

Let us first consider a special, but important, case of (10.1)–(10.2) when {xt, t ≥ 0}
is an i.i.d. sequence. Further, suppose that the observations are generated by

yit = gi(xt, v
i
t), (10.15)

for measurable functions gi, i = 1, 2, with {v1t , v2t } (across time) an i.i.d. noise
process. We do not require that v1t and v2t are independent for a given t. We note
that the results presented here are also applicable when the process {v1t , v2t } is only
independent (across time), but not necessarily identically distributed. One difference
with the general setup considered earlier is that we require the observation spaces
Y

i, i = 1, 2, to be finite spaces; X is Polish.
Suppose the goal is again the minimization

inf
Πcomp

inf
γ0
E

Πcomp,γ0

ν0 [

T−1∑
t=0

c(xt, ut)]. (10.16)

Toward this end, we introduce the class of nonstationary memoryless team policies,
given by

ΠNSM :=

{
Πcomp : P (qt|y[0,t]) = P (q1t |y1t , t)P (q2t |y2t , t)

= 1{q1t=Q1
t (y

1
t )}1{q2t=Q2

t (y
2
t )},

Q1
t : Y1 → M1

t , Q2
t : Y2 → M2

t , t ≥ 0

}
, (10.17)

where {Q1
t , Q

2
t} are arbitrary measurable functions.
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Theorem 10.5.1 ([425]). Consider the minimization problem of (10.16). An op-
timal composite quantization policy over all causal policies exists, and it is an
element of ΠNSM . �

Proof. See Sect. 10.8.7. ��

The result says that an optimal composite quantization policy only uses the
product form admitted by a nonstationary memoryless team policy. It ignores the
past observations and past quantization outputs without any loss. We note that this
result applies also to the case when the source is memoryless, but not necessarily
i.i.d.

Remark 10.5.1. If there is an entropy constraint on the quantizer outputs, memory
in the encoders might be useful for finite horizon problems as it provides common
randomness, which cannot be achieved by time-sharing in a finite horizon problem.
Neuhoff and Gilbert [292] noted that randomization of two scalar quantizers
(operationally achievable through time-sharing) is optimal in causal coding of an
i.i.d. source subject to entropy constraints. On the other hand, for the zero-delay
setting, when one considers the distortion minimization problem subject to an
entropy constraint, György and Linder [184] observed that the distortion-entropy
curve is non-convex (leading to a benefit of common randomness which can be
used to expand the set of achievable rate and distortion pairs) as we elaborated on
in Sect. 5.4. �

10.5.2 Markov Sources: Nonclassical Information Structure
and a Counterexample Under Signaling

We now consider general Markov sources and show that a separation result of the
type seen in the single-terminal case may not hold when there are multiple terminals.

We have the following (negative) result for the two-encoder setup, where the
encoders have access to the feedback from the receiver (Fig. 10.1).

Proposition 10.5.1 ([425]). Consider the setup in (10.1)–(10.2), and let π̃i
t(A) =

P (xt ∈ A|yi[0,t]), i = 1, 2, and A ∈ B(X). An optimal composite quantization

policy cannot, in general, be replaced by a policy which uses only {q[0,t−1], π̃
i
t} to

generate qit for i = 1, 2. �

Proof. It suffices to produce an instance where an optimal policy cannot admit
the separated structure. Toward this end, let z1, z2, z3 be uniformly distributed,
independent, binary numbers; and let x0, x1 be defined by

x0 =
[
z1 z2 0 0

]′
, x1 =

[
0 0 z2 z3

]′
,
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such that x0(1) = z1, x0(2) = z2, x0(3) = x0(4) = 0. Let the observations be
given as follows:

y1t = g1(xt) = xt(1)⊕xt(3)⊕xt(4), y2t = g2(xt) = xt(1)⊕xt(2), t = 0, 1.

That is,
y10 =

[
z1
]
, y20 =

[
z1 ⊕ z2

]
,

where ⊕ is the x-or operation, and

y11 =
[
z2 ⊕ z3

]
, y21 =

[
0
]
,

Let the cost be

E

[
(x0(4)− E[x0(4)|q[0]])

2 + (x1(4)− E[x1(4)|q[0,1]])
2

]
.

That is, the cost is E[(z3 −E[z3|q[0,1]])
2], where qit are the information bits sent to

the decoder for t = 0 and 1.
We further restrict the information rates to satisfy |M1

0| = |M1
1| = |M2

1| = 2,
|M2

0| = 1. That is, the encoder 2 may only send information at time t = 1.
Under arbitrary causal composite quantization policies, a cost of zero can be

achieved as follows: If the encoder 1 sends the value z1 to the receiver and, at time
1, encoder 1 transmits z2 ⊕ z3 and encoder 2 transmits z2 (or z1 ⊕ z2), the receiver
can uniquely identify the value of z3, for every realization of the random variables.

For such a source, an optimal composite policy cannot be written in the separated
form, that is, an optimal policy of encoder 2 at time 1 cannot be written as
h1(q0, π̃

2
1), for some measurable function h1. To see this, note the following: The

conditional distribution of x1 at encoder 2 at time 1 is such that the conditional
measure on (z2, z3) is uniform and independent, that is, P (z2 = a, z3 = b|z1 ⊕
z2) = (1/4) for all values of a, b. If a policy of the structure of h1 is adopted,
then it is not possible for encoder 2 to recall its past observation to extract the
value of z2. This is because π̃2

1 will be a distribution only on z2 and z3, which
will be uniform and independent, given z1 ⊕ z2. Thus, the information y20 will not
be available in the memory and the receiver will have access to at most z2 ⊕ z3 and
z1 and P (z2, z3|z1 ⊕ z2) (the last variable containing no useful information). The
optimal estimator will be E[z3] = 1/2, leading to a cost of 1/4. ��

Discussion: Connections with Team Decision Theory

Here, we interpret the results of this section in view of optimization for dynamic
teams. With the characterization of information structures for dynamic teams
provided in Chap. 3, every lossy coding problem is nonclassical, since a receiver
cannot recover the information available at the encoder fully, while its information
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is clearly affected by the coding policy of the encoder. However, in an encoding
problem, the problem itself is the transmission of information. We suggest the
following: Signaling in a coding problem is the policy of an encoder to use the
quantizers/encoding functions to transmit a message to other decision makers or to
itself to be used in future stages, through the information sent to the receiver.

We have seen in Chap. 3 that in decentralized decision-making problems, when
the information structure is nonclassical, the decision makers might benefit from
communicating via their control actions, that is, by signaling. We also note that,
in the information theory literature, signaling has been employed in coding for
multiple-access channels with feedback, where active information transmission
allows for coordination between encoders (see [82, 102, 378]).

The reason for the negative conclusion in Proposition 10.5.1 is that in general for
an optimal policy,

P (qit|πi
t,q[0,t−1], y

i
[0,t−1]) 	= P (qit|πi

t,q[0,t−1]), (10.18)

when the encoders have engaged in signaling (in contrast with what we will have
in the proof of the separation results). The encoders may benefit from using the
received past observation variables explicitly.

As we will discuss in detail in Chap. 12, separation results for such dynamic
team problems typically require information sharing between the encoders (decision
makers), where the shared information is used to establish a sufficient statistic living
in a fixed state space and which admits a controlled Markov recursion (hence, such a
sufficient statistics can serve as a state for the decentralized system). For the proof of
Theorem 10.3.4, we see thatΞt forms such a state. For the proof of Theorem 10.5.1,
we see that information sharing is not needed for the encoders to agree on a
sufficient statistic, since the source considered is memoryless. Furthermore, for
the multiterminal setting with a Markov source, a careful analysis of the proof
of Theorem 10.5.1 reveals that if the encoders agree on P (dxt|y[0,t−1]) through
sharing their beliefs for all t ≥ 1, then a separation result involving this joint belief
can be obtained. See Chap. 12 for further discussion on this topic and a discussion
on the belief sharing information pattern.

10.6 Simultaneous Optimization of LQG Coding
and Control Policies: Optimal Quantization and Control

In this section, we consider an important application of the results presented so
far. We study a LQG setup, where a sensor encodes its noisy information to a
controller/estimator. First, we discuss the case without control. The case with control
will be considered subsequently.
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Fig. 10.2 Separation of estimation and quantization: When the source is Gaussian, generated
by the linear system (10.19), the cost is quadratic, and the observation channel is Gaussian, the
separated structure of the encoder above is optimal. That is, first the encoder runs a Kalman filter
and then causally encodes its estimate

10.6.1 Application to the LQG Setup: Separation of Estimation
and Quantization

Consider a control-free LQG setup, where a sensor is connected to an estimator over
a discrete noiseless channel. Let xt ∈ R

n, yt ∈ R
m, and the evolution of the source

be given by

xt+1 = Axt + wt,

yt = Cxt + vt, (10.19)

where {wt, vt} is a mutually independent zero-mean Gaussian noise sequence with
E[wtw

′
t] =: W,E[vtv

′
t] =: V , and A,C are matrices of appropriate dimensions.

The goal is to obtain a solution to the minimization problem

inf
Πcomp

inf
γ0
E

Πcomp,γ0

ν0 [

T−1∑
t=0

(xt − ut)
′Q(xt − ut)], (10.20)

with ν0 denoting a Gaussian distribution for the zero-mean initial state, and Q > 0
a positive-definite matrix.

The conditional distribution π̃t(·) = P (xt ∈ ·|y[0,t]) is Gaussian for all time
stages, which is characterized uniquely by its mean and covariance matrix for all

time; thus π̃t can be uniquely characterized by an element of R
n2+3n

2 . Furthermore,
the nonlinear filter equation described in (D.4) admits a simpler recursion known as
the Kalman filter (see Sect. B.4). We have the following result (see Fig. 10.2).

Theorem 10.6.1. For the minimization of the cost in (10.20), any composite
quantization policy can be replaced, without any loss in performance, by one which
only uses the output of the Kalman filter and the information available at the
receiver. �

Proof. The result can be proven by considering a direct approach, rather than as an
application of Theorems 10.3.3 and 10.3.4 (which require bounded costs; however,
this assumption can be relaxed for this case), exploiting the specific quadratic nature
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of the problem. Let, again, xt ∈ R
n and | · |Q denote the norm generated by an

inner product of the form 〈x, y〉Q = xTQy for x, y ∈ R
n for positive-definite

Q > 0. The projection theorem for Hilbert spaces implies that the random variable
xt −E[xt|y[0,t]] is orthogonal (see Sect. B.4) to the random variables {y[0,t], q[0,t]},
where q[0,t] is included due to the Markov chain condition that P (dxt|y[0,t], q[0,t]) =
P (dxt|y[0,t]). We thus obtain the following identity:

E[|xt − E[xt|q[0,t]]|2Q] = E[|xt − E[xt|y[0,t]]|2Q]

+E

[∣∣∣∣E[xt|y[0,t]]− E

[
E[xt|y[0,t]]

∣∣∣∣q[0,t]
]∣∣∣∣

2

Q

]
. (10.21)

The second term is to be minimized through the choice of the quantizers. Hence,
the term m̄t := E[xt|y[0,t]], which is computed through a Kalman filter, is to be
quantized (see Fig. 10.2). Recall that by the Kalman filter (see Sect. D.2), with

Σ0|−1 = E[x0x
′
0]

and for t ≥ 0

Σt+1|t = AΣt|t−1A
′ +W − (AΣt|t−1C

′)(CΣt|t−1C
′ + V )−1(CΣt|t−1A

′),

the following recursion holds for t ≥ 0 and with m̄−1 = 0:

m̄t = Am̄t−1 +Σt|t−1C
′(CΣt|t−1C

′ + V )−1(CA(xt−1 − m̄t−1) + vt).

Thus, the pair (m̄t, Σt|t−1) is a Markov source, where the evolution of Σt|t−1 is
deterministic. Even though the cost to be minimized is not bounded, since m̄t itself
is a fully observed process, Theorem 10.3.1 can be used to develop the structural
result that any causal encoder can be replaced with one which uses (m̄t, Σt|t−1) and
the past quantization outputs. Likewise, the proof of Theorem 10.3.2 shows that, for
the fully observed Markov source (m̄t, Σt|t−1), any causal coder can be replaced
with one which only uses the conditional probability on m̄t and the realization
(m̄t, Σt|t−1, t) at time t. ��

10.6.2 Optimal LQG Coding and Control Policies
and Separation Results

Here, we consider an LQG setup with control, where a sensor encodes its noisy
information to a controller. Let xt ∈ R

n and the evolution of the system be given
by the following:

xt+1 = Axt +But + wt,

yt = xt. (10.22)
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Fig. 10.3 Joint LQG optimal design of coding and control

Here, {wt} is a mutually independent, Gaussian noise sequence, {ut} is an R
m-

valued control action sequence, and A,B are matrices of appropriate dimensions.
We assume that the initial state distribution is also Gaussian, denoted by ν0.

As depicted in Fig. 10.3, we will follow the framework of Sect. 10.2 (in particular,
see Theorem 10.3.6).

Suppose that the goal is the computation of

inf
Πcomp

inf
γ0
J(Πcomp, γ0, T ), (10.23)

where

J(Πcomp, γ0, T ) :=
1

T
E

Πcomp,γ0

ν0 [

T−1∑
t=0

x′tQxt + u′tRut].

Here, Q ≥ 0, a positive semi-definite matrix, and R > 0, a positive-definite matrix.

Separation of Estimation Error and Control and Dual Effect

We first note that, by Theorem 10.3.6, an optimal composite quantization policy will
be within the class ΠW .

Toward a solution, we adopt a dynamic programming approach and establish that
the optimal controller is linear in its estimate [225]. This fact applies naturally for
the terminal time stage control. That this also applies for the previous time stages
applies from dynamic programming as we see in the following.

First consider the terminal time t = T − 1. For this time stage, to minimize
E[x′tQxt + u′tRut], the optimal control is uT−1 = 0 a.s.

To obtain a solution for t = T − 2, we look for a solution to

min
γ0
t

E

[(
x′tQxt+u

′
tRut+E[(Axt+But+wt)

′Q(Axt+But+wt)|Ic
t , ut]

)∣∣∣∣Ic
t

]
.

By completing the squares and using the orthogonality principle (see Sect. B.4), we
obtain that the optimal policy is linear and is given by

uT−2 = LT−2E[xT−2|q[0,T−2]],
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with
LT−2 = −R−1B′QA.

For t < T − 2, to obtain the solutions, we will first establish that the estimation
errors are uncorrelated. Toward this end, define for 1 ≤ t ≤ T − 1:

Ic
t = {q[0,t], u[0,t−1]},

and note that

m̃t+1 := E[xt+1|Ic
t+1] = E[Axt +But + wt|Ic

t+1].

It then follows that

m̃t+1 = E[xt+1|Ic
t+1]

= E[xt+1 − E[xt+1|Ic
t ] + E[xt+1|Ic

t ]|Ic
t+1]

= E[xt+1|Ic
t ] + E[xt+1 − E[xt+1|Ic

t ]|Ic
t+1]

= E[Axt +But + wt|Ic
t ] + E[xt+1 − E[xt+1|Ic

t ]|Ic
t+1]

= Am̃t +But +

(
E[xt+1|Ic

t+1]− E[xt+1|Ic
t ]

)

= Am̃t +But + w̄t, (10.24)

with

w̄t = (E[xt+1|Ic
t+1]− E[xt+1|Ic

t ]). (10.25)

Now, w̄t is orthogonal to the control action variable ut, as control actions are
determined by the past quantizer outputs and iterated expectation leads to the result
that conditioned on Ic

t , w̄t is zero mean and is orthogonal to Ic
t .

Now, for going into earlier time stages, the dynamic programming recursion
for linear systems driven by an uncorrelated noise process would normally apply,
since the estimate process {m̃t} is driven an uncorrelated noise (though, not
necessarily independent) process E[xt+1|Ic

t+1] − E[xt+1|Ic
t ]. However, this lack

of independence may be important. Using the completion of the squares method,
we can establish that the optimal controller at time t will be linear, provided that the
random variable w̄′

tQw̄t does not depend on uk, k ≤ t under any policy. A sufficient
condition for this is that the encoder is a predictive one. We state this formally as
follows (see [283] for a similar, but not identical, construction):

Definition 10.6.1. A predictive quantizer policy is one where for each time stage
t, the quantization has the form that the quantizer at all time stages subtracts
the effect of the past control terms, that is, at time t it has the form Qt(xt −∑t−1

k=0 A
t−k−1Buk), and the past control terms are added at the receiver. Hence,
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Fig. 10.4 For the LQG problem, a predictive encoder is without loss

the encoder quantizes a control-free process, defined by

x̄t+1 = Ax̄t + wt,

and the receiver generates the quantized estimate and adds
∑t−1

k=0A
t−k−1Buk to

compute the estimate of the state at time t. �

A predictive encoder is depicted in Fig. 10.4. We have the following key lemma.

Lemma 10.6.1 ([423]). For problem (10.23), for any quantizer policy in class ΠW

(which is without any loss as a result of Theorem 10.3.6), there exists a quantizer
which satisfies the form of a predictive quantizer (see Definition 10.6.1) and attains
the same performance under an optimal control policy. �

Proof. See Sect. 10.8.8. ��

Remark 10.6.1. We note that the structure in Definition 10.6.1 separates the estima-
tion from control process in the sense that the estimation errors are independent of
the control actions or policies. Hence, there is no dual effect of the control actions,
in the sense that the estimation error at any given time is independent of the past
applied control actions. �

As a consequence of the lack of dual effect, the cost function becomes

J(Πcomp, γ0, T ) :=
1

T
E

Πcomp,γ0

ν0 [

T−1∑

t=0

m̃′
tQm̃′

tQxt + u′
tRut + (xt − m̃t)

′Q(xt − m̃t)].

Theorem 10.6.2. For the minimization problem (10.23), the optimal control policy
is given by ut = LtE[xt|q[0,t]], where

Lt = −(R+B′Pt+1B)−1B′Kt+1A,

and
Pt = A′

tKt+1B(R+B′Kt+1B)−1B′Kt+1A,

Kt = A′
tKt+1At − Pt +Q,

with KT = PT−1 = 0. �
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Given the optimal control policy, the following result is obtained after some
analysis.

Theorem 10.6.3. For the minimization problem (10.23), under an optimal control
policy, the optimal cost is given by 1

T J0(Π
comp, T ), where

J0(Π
comp, T )=E[x′0K0x0]+E[(x0−E[x0|Ic

0 ])
′(Q+A′K1A)(x0−E[x0|Ic

0 ])]

+

T−1∑
t=1

E[(xt − E[xt|Ic
t ])

′(Q+A′Kt+1A−Kt)(xt − E[xt|Ic
t ])]

+

T−1∑
t=0

E[w′
tKt+1wt]. (10.26)

�

Proof. See Sect. 10.8.9. ��

We have thus established the solution to the optimal control problem. We address
the optimal quantization problem in the following subsection.

10.6.3 Existence of Optimal Quantization Policies

Now that we have separated the costs due to control and quantization, under any
such composite policy and T ∈ N, we can define a cost to be minimized by a
composite quantizer policy as

J(Πcomp, T ) = EΠcomp

ν0 [
1

T
(x′0K0x0 +

T−1∑
t=0

ct(πt, Qt))],

where

ct(πt, Qt) =
∑
i∈M

inf
γ0
t (i)

∫
Rn

1{qt=i}πt(dx̄)(x̄t − γ0t (i))
′Pt(x̄t − γ0t (i)),

where now γ0 = {γ0t , t ≥ 0} denotes a receiver policy and Pt = (Q+A′Kt+1A−
Kt), by (10.59) and P0 = Q+A′K1A.

We note that here the process x̄t is the control-free process given by x̄t+1 =
Ax̄t + wt.

Therefore, we consider the setting where in (10.22), ut = 0 and the quantizer is
designed for this system. We note that as a result of the decoupling from the control
actions by the predictive quantization policy (see Definition 10.6.1), the separation
results presented in Theorem 10.3.4 directly apply in this context.

In the analysis, we will restrict the quantizers to have convex codecells (see
Assumption 10.4.2). As elaborated in Chap. 4, a quantizer can be characterized as a
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stochastic kernel Q from X to {1, . . . ,M}) defined by

Q(i|x) = 1{x∈Bi}, i = 1, . . . ,M.

We endow the quantizers by a topology induced by such a stochastic kernel
interpretation. In view of the results of Sect. 4.4.1, we have the following.

Let πt(·) = P (xt ∈ ·|q[0,t−1]). Recall that the properties of conditional
probability lead to the filtering expression in (D.4).

Hence, with P(Rn) denoting the set of probability measures on B(Rn) under
weak convergence, the conditional density process and the quantization process
(πt(x), Qt) form a joint Markov process in P(Rn)×Qc(M), as in Theorem 10.4.1.

We have the following result on the existence of optimal quantizers for the finite
horizon setting.

Theorem 10.6.4. For any T ≥ 1 and arbitrary initial condition π0, there exists a
policy in ΠC

W such that

inf
Πcomp∈ΠC

W

Jπ0(Π
comp, T ) (10.27)

is achieved. Letting JT
T (·) = 0 and

JT
0 (π0) := min

Πcomp∈ΠC
W ,γ0

Jπ0(Π
comp, γ0, T ),

the dynamic programming recursion

TJT
t (πt) = min

Q∈Qc(M)

(
c(πt, Qt) + TE[JT

t+1(πt+1)|πt, Qt]

)
(10.28)

holds for all t = 0, 1, . . . , T − 1. �

Proof. See Sect. 10.8.10. ��

Note that the optimal control policy is linear in the conditional estimate and is
given in Theorem 10.6.2.

10.6.4 Partially Observed Case

We consider now the setup in (10.22) and Fig. 10.3, with a partially observed state,
that is, with

xt+1 = Axt +But + wt,

yt = Cxt + vt, (10.29)

where, different from (10.22), here yt ∈ R
m, vt is Gaussian and C a matrix.
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Define m̄t := E[xt|y[0,t]], which is computed through a Kalman filter. With

Σ0|−1 = E[x0x
′
0]

and for t ≥ 0,

Σt+1|t = AΣt|t−1A
′ +W

−(AΣt|t−1C
′)(CΣt|t−1C

′ + V )−1(CΣt|t−1A
′),

the following recursion holds for t ≥ 0 and with m̃−1 = 0:

m̄t = Am̄t−1 +But−1

+Σt|t−1C
′(CΣt|t−1C

′ + V )−1(CA(xt−1 − m̃t−1) + vt).

Now, note that the cost

inf
Πcomp

inf
γ
J(Πcomp, γ, T ) (10.30)

with

J(Πcomp, γ, T ) =
1

T
EΠcomp,γ

ν0 [

T−1∑
t=0

x′tQxt + u′tRut]

can be written equivalently as

J(Πcomp, γ, T ) =
1

T
EΠcomp,γ

ν0 [

T−1∑
t=0

m̄′
tQm̄t + u′tRut]

+
1

T
Eν0 [

T−1∑
t=0

(xt − m̄t)
′Q(xt − m̄t)]

since the quadratic error (xt − m̄t)
′Q(xt − m̄t) is independent of the coding or the

control policy.
Thus, we have that the processes (m̄t, Σt+1|t) and ut form a controlled Markov

chain and we can invoke Theorem 10.3.6: Any causal quantizer policy can, without
any loss, be replaced with one in ΠW (where the state is now (m̄t, Σt+1|t) instead
of xt) as a consequence of Theorem 10.3.6. Furthermore, any quantizer in ΠW can
be replaced without any loss with a predictive quantizer with the new state m̄t, as
a consequence of Lemma 10.6.1 applied to the new state with identical arguments:
Observe that the past control actions do not affect the evolution of Σt+1|t.

We have the following result.

Theorem 10.6.5. For the minimization problem (10.30), the optimal control policy
is given by ut = LtE[xt|q[0,t]], where

Lt = −(R+B′Pt+1B)−1B′Kt+1A,
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Fig. 10.5 Separation of estimation and quantization: When the source is Gaussian, generated
by the linear system (10.29), the cost is quadratic, and the observation channel is Gaussian, the
separated structure of the encoder above (with a predictive encoder) is optimal, where KF denotes
the Kalman filter

and
Pt = A′

tKt+1B(R+B′Kt+1B)−1B′Kt+1A,

Kt = A′
tKt+1At − Pt +Q,

with KT = PT−1 = 0. �

Given the optimal control policy, the following result is obtained.

Theorem 10.6.6. For the minimization problem (10.30), the optimal cost it given
by 1

T J0(Π
comp, T ), where

J0(Π
comp, T )=E[x′0K0x0]+E[(x0−E[x0|Ic

0 ])
′(Q+A′K1A)(x0−E[x0|Ic

0 ])]

+

T−1∑
t=1

E[(xt − E[xt|Ic
t ])

′(Q+A′Kt+1A−Kt)(xt − E[xt|Ic
t ])]

+

T−1∑
t=0

E[(xt − m̄t)
′Q(xt − m̄t) + w′

tKt+1wt]. (10.31)

�

Now, that the cost has been separated; the following is a result of Theorem 10.6.1.

Theorem 10.6.7. For the minimization of the cost in (10.30), any composite
quantization policy can be replaced, without any loss in performance, by one which
only uses the output of the Kalman filter and the information available at the
receiver. �

Thus, the optimality of Kalman filtering allows the encoder to only use the con-
ditional estimate and the error covariance matrix without any loss of optimality (see
Fig. 10.5), and the optimal quantization problem also has an explicit formulation.

10.7 Case with Noisy Channels and Noiseless Feedback

The results and the general program presented in this chapter apply also to coding
over discrete memoryless (noisy) channels (DMCs) with feedback. In this context,
consider the setup in Sect. 5.2.2, with one encoder and with yt = xt and with the



342 10 Optimization of Real-Time Coding and Control Policies...

channel being a DMC. The equivalent results of Theorems 10.3.1 and 10.3.2 apply
with q′t terms replacing qt, if q′t is the output of a DMC at time t, as we state in the
following.

In this context, let again P(X) denote the space of probability measures on B(X)
under the topology of weak convergence and define πt ∈ P(X) to be the regular
conditional probability measure given by πt(·) = P (xt ∈ ·|q′[0,t−1]), where q′t is the
channel output when the input is qt. That is, πt(A) = P (xt ∈ A|q′[0,t−1]), A ∈
B(X). The goal is the minimization

inf
Πcomp

inf
γ0
E

Πcomp,γ0

ν0 [
T−1∑
t=0

c(xt, ut)], (10.32)

with initial condition distribution ν0. Here c(·, ·), is a nonnegative, measurable
function and ut = γ0t (q

′
[0,t]). We state the following.

Theorem 10.7.1. Any composite encoding policy can be replaced, without any loss
in performance, by one which only uses xt and q′[0,t−1] at time t ≥ 1 to generate the
channel input qt. �

Theorem 10.7.2. Any composite quantization policy can be replaced, without any
loss in performance, by one which only uses the conditional probability measure
πt(·) = P (xt ∈ ·|q′[0,t−1]), the state xt, and the time information t, at time t ≥ 1 to
generate the channel input qt. �

The proof of these results follow from those of Theorems 10.3.1 and 10.3.2 with
almost identical steps with qt being replaced with q′t in the information available at
the receiver and the encoder.

Likewise, for a partially observed setup, extensions of Theorems 10.3.3 and
10.3.4 also apply to this case.

Remark 10.7.1. When there is no feedback from the controller or when there is
noisy feedback, the analysis requires a Markov chain construction in a larger state
space provided memory restrictions are imposed on the decoders. We refer the
reader to Teneketzis [361] and Mahajan and Teneketzis [248, 249] for a class of
such settings. �

10.8 Appendix: Proofs

10.8.1 Proof of Theorem 10.3.1

At time t = T − 1, the per-stage cost function can be written as follows, where γ0t
denotes a fixed receiver policy:

E[c(xt, γ
0
t (q[0,t]))|q[0,t−1]] = E[F (xt, q[0,t−1], qt)|q[0,t−1]]
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where, F (xt, q[0,t−1], qt) = c(xt, γ
0
t (q[0,t])).

This is equivalent to, by the smoothing property of conditional expectation, the
following:

E

[
E[F (xt, q[0,t−1], qt)|xt, q[0,t−1]]

∣∣∣∣q[0,t−1]

]
.

Now, we will apply Witsenhausen’s two-stage lemma [396], to show that we
can obtain a lower bound for the double expectation by picking qt as a result of
a measurable function of xt, q[0,t−1]. Thus, we will find a composite quantization
policy which only uses (xt, q[0,t−1]) which performs as well as one which uses the
entire memory available at the encoder. To make this precise, let us fix the decision
function γ0t at the receiver corresponding to a given composite quantization policy
at the encoderQcomp

t , let t = T − 1, and define for every k ∈ Mt:

βk :=

{
xt, q[0,t−1] : F (xt, q[0,t−1], k) ≤ F (xt, q[0,t−1], q

′), ∀q′ 	= k, q′ ∈ Mt

}
.

These sets are Borel, by the measurability of F on X. Such a construction covers
the domain set consisting of (xt, q[0,t−1]) but with overlaps. It covers the elements

in X×
∏T−2

t=0 Mt, since for every element in this product set, there is a minimizing
k ∈ Mt (Mt is finite). To avoid the overlaps, we adopt the following technique
which was introduced in Witsenhausen [396]. Let there be an ordering of the
elements in Mt as 1, 2, . . . , |Mt|, and for k ≥ 1 in this sequence define a function
Qcomp,∗

t as

qt = Qcomp,∗
t (xt, q[0,t−1]) = k, if(xt, q[0,t−1]) ∈ βk − ∪k−1

i=1 βi,

with β0 = ∅. Thus, for any random variable qt appropriately defined on the
probability space,

E

[
E[F (xt, q[0,t−1], qt)|xt, q[0,t−1]]

∣∣∣∣q[0,t−1]

]

≥ E

[
E[F (xt, q[0,t−1], Q

comp,∗
t (xt, q[0,t−1]))|xt, q[0,t−1]]

∣∣∣∣q[0,t−1]

]
.

(10.33)

Thus, the new composite policy performs at least as well as the original composite
coding policy even though it has a restricted structure.

As such, if there is an optimal policy, it can be replaced with one which uses only
{xt, q[0,t−1]} without any loss of performance while keeping the receiver decision
function γ0t fixed.

We have thus obtained the structure of the encoder for the last stage. We
iteratively proceed to study the other time stages. In particular, since {xt} is
Markov, we could proceed as follows (in essence using Witsenhausen’s three-stage
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lemma [396]): For a three-stage cost problem, the cost at time t = 2 can be written
as, for measurable functions c2, c3:

E

[
c2(x2, γ

0
2(q1, q2), q1, q2)

+E[c3(x3, γ
0
3(q1, q2, Q

comp,∗
3 (x3, q2, q1))|x3, q2, x2, q1, x1)]

∣∣∣∣x2, x1, q2, q1
]
.

Since
P (dx3, q2, q1|x2, x1, q2, q1) = P (dx3, q2, q1|x2, q2, q1)

and since under Qcomp,∗
3 , q3 is a function of x3 and q1, q2, the expression above is

equal to, for some measurableF2(.), F2(x2, q2, q1). By a similar argument as above,
a composite quantization policy at time 2 which uses x2 and q1 and which performs
at least as good as the original policy can be constructed. By similar arguments,
an encoder at time t, 1 ≤ t ≤ T − 1 only uses (xt, q[0,t−1]) can be constructed.
The encoder at time t = 0 uses x0, where x0 = ν0 is the prior distribution on the
initial state.

Now that we have obtained the restricted structure for a composite quantization
policy which is without any loss, we can express this as

Qcomp
t (xt, q[0,t−1]) = Qq[0,t−1](xt), ∀xt, q[0,t−1]

such that the quantizer actionQq[0,t−1] ∈ Q(X;Mt) is generated using only q[0,t−1]

and the quantizer outcome is generated by evaluatingQq[0,t−1](xt) for every xt. ��

10.8.2 Proof of Theorem 10.3.2

At time t = T − 1, the per-stage cost function can be written as

E[c(xt, vt(q[0,t]))|q[0,t−1]] = E[

∫
X

P (dxt|q[0,t−1], qt)c(xt, vt(q[0,t−1], qt))].

Thus, at time t = T−1, an optimal receiver (which is deterministic without any loss
of optimality) will use P (dxt|q[0,t]) as a sufficient statistic for an optimal decision
(or any receiver can be replaced with one which uses this sufficient statistic without
any loss). Let us fix a receiver policy which only uses the posterior P (dxt|q[0,t]) as
its sufficient statistic. Let us further note that

P (dxt|q[0,t]) =
P (qt, dxt|q[0,t−1])∫
xt
P (qt, dxt|q[0,t−1])

=
P (qt|xt, q[0,t−1])P (dxt|q[0,t−1])∫
xt
P (qt|xt, q[0,t−1])P (dxt|q[0,t−1])

. (10.34)
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The term P (qt|xt, q[0,t−1]) is determined by the quantizer action Qt (this follows
from Theorem 10.3.1). Furthermore, givenQt, the relation (10.34) is measurable on
P(X) (i.e., in πt(·) = P (xt ∈ ·|q[0,t−1])) under weak convergence.

To prove this technical argument, consider the numerator in (10.34) and note that
the function κB : P(X) → R defined as κB(π) = π(B) is measurable under weak
convergence topology as a consequence of Theorem B.2.1, for each B ∈ B(X). By
Theorem B.2.2, this implies that the relation in (10.34) is measurable on P(X).

Let us denote the quantizer applied, given the past realizations of quantizer
outputs as Q

q[0,t−1]

t . Note that qt is deterministically determined by (xt, Qt) and
the optimal receiver function can be expressed as γ0t (P (dxt|q[0,t−1]), qt), given
Q

q[0,t−1]

t . The cost at time t = T − 1 can be expressed, given the quantizerQ
q[0,t−1]

t ,
for some Borel functionG, as G(P (dxt|q[0,t−1]), Q

q[0,t−1]

t ), where

G(P (dxt|q[0,t−1]), Q
q[0,t−1]

t )

=

∫
X

P (dxt|q[0,t−1])
∑
Mt

(
1{qt=Q

q[0,t−1]
t (xt)}

ηQ
q[0,t−1]

(P (dxt|q[0,t−1]), qt))

)
,

with ηQ
q[0,t−1]

(P (dxt|q[0,t−1]), qt)) = c(xt, γ
0
t (P (dxt|q[0,t−1]), qt)).

Now, one can construct an equivalence class among the past q[0,t−1] sequences,
which induce the same πt, and can replace the quantizers in this class with one,
which induces a lower cost among the finitely many elements in each class for
the final time stage. An optimal quantization output thus may be generated using
πt(·) = P (xt ∈ ·|q[0,t−1]) and xt, by extending Witsenhausen’s argument used
earlier in the proof of Theorem 10.3.1 for the terminal time stage. Since there
are only finitely many past sequences and finitely many πt, this leads to a Borel
measurable selection of xt for every πt, leading to a quantizer and a measurable
selection in πt, xt. Hence, the final stage cost can be expressed as Ft(πt) for some
Ft, without any performance loss.

The same argument applies for all time stages: At time t = T − 2, the sufficient
statistic both for the immediate cost and the cost-to-go is P (dxt−1|q[0,t−1]), and
thus for the cost impacting the time stage t = T − 1 as a result of the optimality
result for QT−1. To show that the separation result generalizes to all time stages, it
suffices to prove that {(πt, Qt)} has a controlled Markov chain form, if the encoders
use the structure above.

Now, for t ≥ 1, for all B ∈ B(P(X)),

P

(
P (dxt|q[0,t−1]) ∈ B

∣∣∣∣P (dxs|q[0,s−1]), Qs, s ≤ t− 1

)

= P

(∫
xt−1

P (dxt, dxt−1|q[0,t−1]) ∈ B

∣∣∣∣P (dxs|q[0,s−1]), Qs, s ≤ t− 1

)
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= P

({ ∫
xt−1

P (dxt|xt−1)P (qt−1|xt−1, q[0,t−2])P (dxt−1|q[0,t−2])∫
xt−1,xt

P (dxt|xt−1)P (qt−1|xt−1, q[0,t−2])P (dxt−1|q[0,t−2])

}
∈ B

∣∣∣∣P (dxs|q[0,s−1]), Qs, s ≤ t− 1

)

=P

({ ∫
xt−1

P (dxt|xt−1)P (qt−1|xt−1, q[0,t−2])P (dxt−1|q[0,t−2])∫
xt−1,xt

P (dxt|xt−1)P (qt−1|xt−1, q[0,t−2])P (dxt−1|q[0,t−2])

}
∈ B

∣∣∣∣P (dxt−1|q[0,t−2]), Qt−1

)
(10.35)

=P

(∫
xt−1

P (dxt, dxt−1|q[0,t−1]) ∈ B

∣∣∣∣P (dxt−1|q[0,t−2]), Qt−1

)

= P

(
P (dxt|q[0,t−1]) ∈ B

∣∣∣∣P (dxt−1|q[0,t−2]), Qt−1

)
. (10.36)

In the above derivation, (10.35) uses the fact that the term P (qt−1|xt−1, q[0,t−2])
is uniquely identified by P (dxt−1|q[0,t−2]) and Qt−1, which in turn is uniquely
identified by q[0,t−2] and Qt−1. Furthermore, (10.36) defines a regular conditional
probability measure since for all B ∈ B(X),

πt(B) = P (xt ∈ B|q[0,t−1])

=

∫
xt−1

P (xt ∈ B, dxt−1|q[0,t−1])

=

∫
xt−1

P (xt ∈ B|xt−1)P (dxt−1|q[0,t−1])

is measurable in πt−1, givenQt−1 (as a consequence of the measurability of (10.34)
in πt). As a consequence the conditional probability πt(B), B ∈ B(X), is a
measurable function of πt−1, given Qt−1. By Theorem B.2.2, we conclude that
for any measurable function Ft of P (dxt|q[0,t−1])

E[Ft(P (dxt|q[0,t−1]))|P (dxs|q[0,s−1]), Qs, s ≤ t− 1]

= E[Ft(P (dxt|q[0,t−1]), Qt)|P (dxt−1|q[0,t−2]), Qt−1], (10.37)

for every given Qt−1. Once again an equivalence relationship between the finitely
many past quantizer outputs, based on the equivalence of the conditional measures
P (dxt−1|q[0,t−2]) they induce, can be constructed and as a consequence the
conditional probability measure πt is measurable in {P (dxt−1|q[0,t−2]), Qt−1},
given Qt−1. With the controlled Markov structure, we can essentially follow the
same argument for earlier time stages. As such, it suffices that the encoder uses
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only (P (dxt|q[0,t−1]), t) as its sufficient statistic for all time stages, to generate the
optimal quantizer. An optimal quantizer uses xt to generate the optimal quantization
outputs. ��

10.8.3 Proof of Theorem 10.3.3

We transform the problem into a real-time coding problem involving a fully
observed Markov source. At time t = T − 1, the per-stage cost function can be
written as follows, where γ0t denotes a fixed receiver policy:

E[c(xt, γ
0
t (q[0,t]))|q[0,t−1]]

=
∑
Mt

P (qt = k|q[0,t−1])(

∫
X

P (dxt|q[0,t−1], k)c(xt, γ
0
t (q[0,t−1], k)))

=

∫
X

∑
Mt

P (dxt, qt = k|q[0,t−1])c(xt, γ
0
t (q[0,t−1], k))

=

∫
P(X)

∫
X

∑
Mt

P (dxt, qt=k, dπ̃t|q[0,t−1])c(xt, γ
0
t (q[0,t−1], k))

=

∫
P(X)

∫
X

∑
Mt

P (dπ̃t|q[0,t−1])P (dxt|π̃t)P (qt=k|π̃t, q[0,t−1])c(xt, γ
0
t (q[0,t−1], k))

=

∫
P(X)

∑
Mt

P (dπ̃t|q[0,t−1])P (qt=k|π̃t, q[0,t−1])

∫
X

P (dxt|π̃t)c(xt, γ0t (q[0,t−1], k))

=E[F (π̃t, q[0,t−1], qt)|q[0,t−1]], (10.38)

where π̃t(·)=P (xt ∈ ·|y[0,t]) andF (π̃t, q[0,t−1], qt)=
∫
X
π̃t(dx)c(x, γ

0
t (q[0,t−1], qt)).

In the above derivation, the fourth equality follows from the property that

xt ↔ P (dxt|y[0,t]) ↔ q[0,t].

We note that F (·, γ0t (q[0,t−1], qt)) is measurable by Theorem B.2.1 and the fact
that the cost is bounded.

As in the proof of Theorem 10.3.1, one may define qt as a random variable on
the probability space such that the joint distribution of (qt, π̃t, q[0,t−1]) matches the
characterization that qt = Qcomp

t (y[0,t], q[0,t−1]), since

P (qt|π̃t, q[0,t−1]) =

∫

Yt+1

P (qt|y[0,t], q[0,t−1]))P (y[0,t]|π̃t, q[0,t−1]).
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The cost at the final stage is thus written as E[F (π̃t, q[0,t−1], qt)|q[0,t−1]], which
is equivalent to, by the smoothing property of conditional expectation, to the
following:

E

[
E[F (π̃t, q[0,t−1], qt)|π̃t, q[0,t−1]]

∣∣∣∣q[0,t−1]

]
.

Now, we will apply Witsenhausen’s two-stage lemma [396], to show that we can
obtain a lower bound for the double expectation by picking qt to be a measurable
function of π̃t, q[0,t−1]. Thus, we will find a composite quantization policy which
only uses (π̃t, q[0,t−1]) which performs as well as one which uses the entire
memory available at the encoder. Let us fix the receiver function γ0t at the receiver
corresponding to a given composite quantization policy at the encoder Qcomp

t , let
t = T − 1, and define for every k ∈ Mt:

βk :=

{
π̃t, q[0,t−1] : F (π̃t, q[0,t−1], k) ≤ F (π̃t, q[0,t−1], q

′), ∀q′ 	= k, q′ ∈ Mt

}
.

These sets are Borel, by the measurability of F on P(X). Such a construction
covers the domain set consisting of (π̃t, q[0,t−1]) but with overlaps. It covers the

elements in P(X)×
∏T−2

t=0 Mt, since for every element in this product set, there is
a minimizing k ∈ Mt (Mt is finite). To avoid the overlaps, we adopt the following
technique which was introduced in Witsenhausen [396]. Let there be an ordering
of the elements in Mt as 1, 2, . . . , |Mt|, and for k ≥ 1 in this sequence define a
functionQcomp,∗

t as

qt = Qcomp,∗
t (π̃t, q[0,t−1]) = k, if(π̃t, q[0,t−1]) ∈ βk − ∪k−1

i=1 βi,

with β0 = ∅. Thus, for any random variable qt appropriately defined on the
probability space,

E

[
E[F (π̃t, q[0,t−1], qt)|π̃t, q[0,t−1]]

∣∣∣∣q[0,t−1]

]

≥ E

[
E[F (π̃t, q[0,t−1], Q

comp,∗
t (π̃t, q[0,t−1]))|π̃t, q[0,t−1]]

∣∣∣∣q[0,t−1]

]
.

(10.39)

Thus, the new composite policy performs at least as well as the original composite
coding policy even though it has a restricted structure.

As such, if there is an optimal policy, it can be replaced with one which uses only
{π̃t, q[0,t−1]} without any loss of performance, while keeping the receiver decision
function γ0t fixed. It should now be noted that {π̃t} is a Markov process. Further
note that
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P (dxt|dy[0,t]) =
∫
xt−1

P (dyt|xt)P (dxt|xt−1)P (dxt−1|dy[0,t−1])∫
xt−1,xt

P (dyt|xt)P (dxt|xt−1)P (dxt−1|dy[0,t−1])

and that P (dyt|π̃s, s ≤ t − 1) =
∫
xt
P (dyt, dxt|π̃s, s ≤ t − 1) = P (dyt|π̃t−1).

These imply that the following is a Markov kernel:

P (dπ̃t|π̃s, s ≤ t− 1) = P (dπ̃t|π̃t−1). (10.40)

We have thus obtained the structure of the encoder for the last stage. We
iteratively proceed to study the other time stages. In particular, since {π̃t} is Markov,
we could proceed as follows (in essence using Witsenhausen’s three-stage lemma
[396]): For a three-stage cost problem, the cost at time t = 2 can be written as, for
measurable functions c2, c3,

E

[
c2(π̃2, γ

0
2(q1, q2), q1, q2)

+E[c3(π̃3, γ
0
3(q1, q2, Q

comp
3 (π̃3, q2, q1))|π̃3, q2, π̃2, q1, π̃1)]

∣∣∣∣π̃2, π̃1, q2, q1
]
.

Since
P (dπ̃3, q2, q1|π̃2, π̃1, q2, q1) = P (dπ̃3, q2, q1|π̃2, q2, q1)

and since under Qcomp,∗
3 , q3 is a function of π̃3 and q1, q2, the expectation above is

equal to, for some measurable F2(.), E[F2(π̃2, q2, q1)]. Measurability follows since

E

[
c2(π̃2, γ

0
2(q1, q2), q1, q2)

+E[c3(π̃3, γ
0
3(q1, q2, Q

comp,∗
3 (π̃3, q2, q1))|π̃3, q2, π̃2, q1, π̃1)]

∣∣∣∣π̃2, π̃1, q2, q1
]

is measurable. Thus, a composite quantization policy at time 2 which uses π̃2 and
q1 and which is without any loss in comparison with the original policy can be
constructed.

By a similar argument, an optimal encoder at time t, 1 ≤ t ≤ T − 1 only
uses (π̃t, q[0,t−1]). The encoder at time t = 0 uses π̃0, where π̃0 = ν0 is the prior
distribution on the initial state.

Now that we have obtained the restricted structure for a composite quantization
policy which is without any loss, we can express this as

Qcomp
t (π̃t, q[0,t−1]) = Qq[0,t−1](π̃t), ∀π̃t, q[0,t−1]
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such that the quantizer action Qq[0,t−1] ∈ Q(P(X);Mt) is generated using only
q[0,t−1] and the quantizer outcome is generated by evaluating Qq[0,t−1](π̃t) for
every π̃t. ��

10.8.4 Proof of Theorem 10.3.4

At time t = T − 1, an optimal receiver will use P (dxt|q[0,t]) as a sufficient statistic
for an optimal decision (or any receiver can be replaced with one which uses this
sufficient statistic without any loss). As in the proof of Theorem 10.3.2, let us fix a
receiver policy which only uses the posterior P (dxt|q[0,t]) as its sufficient statistic.
We now note that

P (dxt|q[0,t]) =
∫
π̃t

P (dxt|π̃t)P (dπ̃t|q[0,t]). (10.41)

Let us note that

P (dπ̃t|q[0,t]) =
P (qt, dπ̃t|q[0,t−1])∫
π̃t
P (qt, dπ̃t|q[0,t−1])

=
P (qt|π̃t, q[0,t−1])P (dπ̃t|q[0,t−1])∫
π̃t
P (qt|π̃t, q[0,t−1])P (dπ̃t|q[0,t−1])

. (10.42)

The term P (qt|π̃t, q[0,t−1]) is determined by the quantizer action Qt (this follows
from Theorem 10.3.3). Furthermore, givenQt, the relation (10.42) is measurable on
P(P(X)) (i.e., in Ξt(·) = P (π̃t ∈ ·|q[0,t−1])) under weak convergence.

This argument, as in the proof of Theorem 10.3.2, follows from the observation
that in the numerator of (10.42) the function κB : P(P(X)) → R defined as
κB(Ξ) = Ξ(B) is measurable under weak convergence topology as a consequence
of Theorem B.2.1, for each B ∈ B(P(X)). By Theorem B.2.2, this implies that the
relation in (10.42) is measurable on P(P(X)).

Let us denote the quantizer applied, given the past realizations of quantizer
outputs as Q

q[0,t−1]

t . Note that qt is deterministically determined by (πt, Q
q[0,t−1]

t )
and the optimal receiver function can be expressed as γ0t (Ξt, qt) (as a measurable
function), given Q

q[0,t−1]

t . The cost at time t = T − 1 can be expressed, given the
quantizerQ

q[0,t−1]

t , for some Borel functionG, as G(Ξt, Q
q[0,t−1]

t ), where

G(Ξt, Q
q[0,t−1]

t )

=

∫
P(X)

Ξt(dπ̃t)
∑
Mt

1{qt=Q
q[0,t−1]
t (πt)}

ηQ
q[0,t−1]

(Ξt, qt)),
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with ηQ
q[0,t−1]

(Ξt, qt)) =
∫
π̃t(dxt)c(xt, γ

0
t (Ξt, qt)). As in the proof of Theorem

10.3.2, one can construct an equivalence class among the past q[0,t−1] sequences
which induce the same Ξt and can replace the quantizers Q

q[0,t−1]

t for each class
with one which induces a lower cost among the finitely many elements in each such
class, for the final time stage. Thus, an optimal quantization output may be generated
using Ξt(·) = P (π̃t ∈ ·|q[0,t−1]) and π̃t. Since there are only finitely many past
sequences and finitely many Ξt, this leads to a Borel measurable selection of π̃t for
every Ξt, leading to a quantizer and a measurable selection in Ξt, π̃t.

Since such a selection for Qt only uses Ξt, an optimal quantization output may
be generated using Ξt(·) = P (π̃t ∈ ·|q[0,t−1]) and π̃t. Hence, G(Ξt, Q

q[0,t−1]

t ) can
be replaced with Ft(Ξt) for some Ft, without any performance loss.

The same argument applies for all time stages: At time t = T − 2, the sufficient
statistic both for the immediate cost and the cost-to-go is P (dπ̃t−1|q[0,t−1]), and
thus for the cost impacting the time stage t = T − 1, as a result of the optimality
result for QT−1. To show that the separation result generalizes to all time stages, it
suffices to prove that {(Ξt, Qt)} is a controlled Markov chain, if the encoders use
the structure above.

Now, for t ≥ 1, for all B ∈ B(P(P(X))),

P

(
P (dπ̃t|q[0,t−1]) ∈ B

∣∣∣∣P (dπ̃s|q[0,s−1]), Qs, s ≤ t− 1

)

= P

(∫
π̃t−1

P (dπ̃t, dπ̃t−1|q[0,t−1]) ∈ B

∣∣∣∣P (dπ̃s|q[0,s−1]), Qs, s ≤ t− 1

)

= P

({ ∫
π̃t−1

P (dπ̃t|π̃t−1)P (qt−1|π̃t−1, q[0,t−2])P (dπ̃t−1|q[0,t−2])∫
π̃t−1,π̃t

P (dπ̃t|π̃t−1)P (qt−1|π̃t−1, q[0,t−2])P (dπ̃t−1|q[0,t−2])

}
∈ B

∣∣∣∣P (dπ̃s|q[0,s−1]), Qs, s ≤ t− 1

)

=P

({ ∫
π̃t−1

P (dπ̃t|π̃t−1)P (qt−1|π̃t−1, q[0,t−2])P (dπ̃t−1|q[0,t−2])∫
π̃t−1,π̃t

P (dπ̃t|π̃t−1)P (qt−1|π̃t−1, q[0,t−2])P (dπ̃t−1|q[0,t−2])

}
∈ B

∣∣∣∣P (dπ̃t−1|q[0,t−2]), Qt−1

)
(10.43)

= P

(∫
π̃t−1

P (dπ̃t, dπ̃t−1|q[0,t−1]) ∈ B

∣∣∣∣P (dπ̃t−1|q[0,t−2]), Qt−1

)

= P

(
P (dπ̃t|q[0,t−1]) ∈ B

∣∣∣∣P (dπ̃t−1|q[0,t−2]), Qt−1

)
. (10.44)

Here, (10.43) uses the fact that P (qt−1|π̃t−1, q[0,t−2]) is identified by
{Ξt−1, Qt−1}, which in turn is uniquely identified by q[0,t−2] and Qt−1. Further-
more, the expression in (10.44) defines a regular conditional probability measure,
since for all B ∈ B(P(X)),
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Ξt(B) = P (π̃t ∈ B|q[0,t−1])

=

∫
π̃t−1

P (π̃t ∈ B, dπ̃t−1|q[0,t−1])

=

∫
π̃t−1

P (π̃t ∈ B|π̃t−1)P (dπ̃t−1|q[0,t−1])

is measurable inΞt−1, givenQt−1 (as a consequence of the measurability of (10.42)
in Ξt). Hence, by Theorem B.2.2, we conclude that for any measurable function Ft

of Ξt

E[Ft(Ξt)|Ξ[0,t−1], Q[0,t−1]] = E[Ft(Ξt), Qt)|Ξt−1, Qt−1],

for every given Qt−1. Now, once again an equivalence relationship between the
finitely many past quantizer outputs, based on the equivalence of the conditional
measures Ξt−1 they induce, can be constructed. With the controlled Markov
structure, we can follow the same argument for earlier time stages. Therefore, it
suffices that the encoder uses only (Ξt, t) as its sufficient statistic for all time stages,
to generate the optimal quantizer. An optimal quantizer uses π̃t to generate the
optimal quantization outputs. ��

10.8.5 Proof of Theorem 10.3.6

We note that the analysis in (10.38)–(10.33) apply identically for the case with
control, by replacing a receiver policy with a fixed control policy. We can thus
obtain the structure of the optimal encoder for the last stage. We iteratively proceed
to study the other time stages. The only difference here is that, with control, {xt} is
no longer Markov, but {xt, ut} forms a controlled Markov chain. For a three-stage
cost problem, the cost at time t = 2 can be written as, for measurable functions
c2, c3,

c2(x2, u2(q1, q2)) + E[c3(x3, u3(q1, q2, Q
comp
3 (x3, q2, q1))|q2, x2, u2, q1, x1)].

Since

P (dx3, q2, q1|x2, u2, x1, q2, q1) = P (dx3, q2, q1|x2, u2, q2, q1),

and u2 is a function of q1, q2 (with the control policy fixed, as mentioned earlier),
and since under Qcomp,∗

3 , q3 is a function of x3 and q1, q2, the expectation above
is equal to F2(x2, q2, q1) for some measurable F2(.). Thus, an optimal composite
quantization policy at time 2 uses x2 and q1. The proof follows identically for other
time stages. Hence, we have established an analogue of Theorem 10.3.1.
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By observing that P (dxt|q[0,t]) is a sufficient statistic for an optimal control
policy and the construction of a controlled Markov chain as in (10.35), it follows
that the discussion in Theorem 10.3.2 also applies in this case. ��

10.8.6 Proof of Theorem 10.4.2

We show that the measurable selection hypothesis (see Sect. D.1.5) applies in the
set of states which are visited with probability 1. In particular, the elements in the
set of reachable probability measures admit densities which furthermore satisfy the
equicontinuity condition in view of Lemma 10.8.1 below.

The following is a key lemma.

Lemma 10.8.1. For all t ≥ 1, πt(dx) is absolutely continuous with respect to
the Lebesgue measure, i.e., it has a probability density function, which we will
also denote by πt by an abuse of notation. The density function πt is uniformly
continuous for every t and the sequence {πt} is a uniformly bounded and uniformly
equicontinuous family. �

Proof. Let φ denote the common density of the Gaussian noise variables wt. Since
xt = f(xt−1) + wt and wt is independent of q[0,t−1], it is easy to see that the pdf
πt of the conditional measure P (dxt|q[0,t−1]) is given by

πt(z) =

∫
Rn

φ(z − f(xt−1))P (dxt−1|q[0,t−1]), z ∈ R
n.

The uniform boundedness of {πt} is immediate. Since φ is a Gaussian density, there
is a C > 0 such that

∣∣ ∂
∂zj

φ(z)
∣∣ ≤ C, j = 1, . . . , n. A standard application of the

dominated convergence theorem implies that the partial derivatives of πt exist and
they also satisfy

∣∣ ∂
∂zj

πt(z)
∣∣ ≤ C, j = 1, . . . , n. Since C does not depend on t, the

sequence of densities {πt} is uniformly equicontinuous. ��

The following lemma is important for the proof.

Lemma 10.8.2 ([437]).

(a) Let {μn} be a sequence of density functions on R
n which are uniformly

equicontinuous and uniformly bounded and assume μn → μ weakly. Then
μn → μ in total variation.

(b) Let {Qn} be a sequence in Qc such that Qn → Q weakly at P . If P admits a
density, then Qn → Q in total variation at P .

(c) Let PnQn → PQ weakly, where {Qn} is a sequence in Qc. Suppose further
that Pn → P in total variation where P admits a density. Then PnQn → PQ
in total variation.
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(d) Let Pn → P in total variation where P admits a density function. Let {Qn} be
a sequence in Qc. Then, there exists some subsequence such that PknQkn →
PQ for some Q ∈ Qc.

�

Proof. (a) Since μn → μ weakly, the sequence {μn} is tight. Then, using a minor
modification of Lemma 4.6.3, one can show that μ has a density and that the
equicontinuity and uniform boundedness of the {μn} imply that along some
subsequence μkn(x) → μ(x) pointwise for all x. By Scheffe’s theorem [70],
μkn converges to μ in L1, which is equivalent to convergence in total variation.
This convergence holds for the original sequence μn as well, since there cannot
be a subsequence which does not converge in L1: Suppose otherwise. Then,
there exists a subsequence such that μmn converges to μ weakly, but μmn does
not converge in L1. Then for some ε > 0 and a further subsequence with index
m′

n, ‖μm′
n
− μ‖TV ≥ ε. But, along a further subsequence μm′′

n
will converge

to μ in total variation (by the arguments above), leading to a contradiction.
(b) It was shown in (4.15) that

‖PQn − PQ‖TV ≤
M∑
i=1

P (Bn
i �Bi),

where Bn
1 , . . . , B

n
M and B1, . . . , BM are the cells of Qn and Q, respectively,

andBn
i �Bi = (Bn

i \Bi)∪ (Bi \Bn
i ). SinceQ has convex cells, the boundary

∂Bi of each cellBi has zero Lebesgue measure, so P (∂Bi) = 0 because P has
a density. Since ∂(Bi × {j}) = ∂Bi × {j} and

P (A× {j}) = P (A ∩Bj),

we have
PQ(∂(Bi × {j})) = P (∂Bi ∩Bj) = 0,

for all i and j. Thus if PQn → PQ weakly, then PQn(Bi×{j}) → PQ(Bi×
{j}) by the Portmanteau theorem, which is equivalent to

P (Bi ∩Bn
j ) → P (Bi ∩Bj)

for all i and j. Since Bn
1 , . . . , B

n
M and B1, . . . , BM are both partitions of Rn,

this implies P (Bn
i �Bi) → 0 for all i, which in turns proves that PQn → PQ

in total variation via (4.15).
(c) For any measurable A ⊂ R

n ×M we have

|PQn(A)− PQ(A)| ≤ |PQn(A) − PnQn(A)|

+ |PnQn(A)− PQ(A)|.

It is relatively easy to see that Pn → P in total variation implies |PnQn(A) −
PQn(A)| → 0. This follows from the observation that for A1 = {x : (x, y) ∈
A} and for x ∈ A1, A2(x) = {y : (x, y) ∈ A},
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|PnQn(A)− PQn(A)| ≤
∫
A1

|Pn(dx)− P (dx)|
(∫

A2(x)

Qn(dy|x)
)

and that
∫
A1

|Pn(dx) − P (dx)|
(∫

A2(x)

Qn(dy|x)
)

≤ ‖Pn − P‖TV → 0.

On the other hand, for any A with PQ(∂A) = 0, we have |PnQn(A) −
PQ(A)| → 0 since PnQn → PQ weakly. This proves that PQn → PQ
weakly. But since P admits a density, part (b) now implies that Qn → Q in
total variation.

Then we have

‖PnQn−PQ‖TV

= sup
f :‖f‖∞≤1

∣∣∣∣
M∑
i=1

(∫
Rn

f(x, i)Qn(i|x)Pn(dx)−
∫
Rn

f(x, i)Q(i|x)P (dx)
)∣∣∣∣

≤ sup
f :‖f‖∞≤1

∣∣∣∣
M∑
i=1

(∫
Rn

f(x, i)Qn(i|x)Pn(dx)−
∫
Rn

f(x, i)Qn(i|x)P (dx)
)∣∣∣∣

+ sup
f :‖f‖∞≤1

∣∣∣∣
M∑
i=1

(∫
Rn

f(x, i)Qn(i|x)P (dx)−
∫
Rn

f(x, i)Q(i|x)P (dx)
)∣∣∣∣

= sup
f :‖f‖∞≤1

∣∣∣∣
(∫

Rn

(Pn(dx)−P (dx))
M∑
i=1

f(x, i)Qn(i|x)
)∣∣∣∣

+ sup
f :‖f‖∞≤1

∣∣∣∣
M∑
i=1

(∫
Rn

f(x, i)Qn(i|x)P (dx)

−
∫
Rn

f(x, i)Q(i|x)P (dx)
)∣∣∣∣ → 0

since Pn → P in total variation and Qn → Q in total variation at P .
(d) By (b) above, there exists a subsequence Qmn such that PQmn converges to

PQ for some Q. Since Pn → P , we have that

‖PmnQmn −PQ‖TV ≤ ‖PmnQmn −PQmn‖TV + ‖PQmn −PQ‖TV → 0,

and the result follows. ��
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A Measurable Selection Condition and the Proof of Theorem 10.4.2

We now provide a relaxation of the measurable selection conditions considered in
[194, Theorem 3.3.5] (see also Appendix D). Let S ⊂ P(Rn) be the set of reachable
states for π under any composite coding policy. Note that by Lemma 10.8.1, the set
of densities in S is uniformly bounded and equicontinuous.

Condition D

(i) The cost function c(π,Q) is continuous on S × Qc in the sense that PnQn →
PQ implies that c(Pn, Qn) → c(P,Q).

(ii) Qc is compact in total variation at any input π admitting a density.
(iii) ∫

P(Rn)

JT
t+1(π)P (dπt+1|πt, Qt)

is a continuous function on S ×Qc, for the value function JT
t+1 at time t defined

recursively as

JT
t (πt) = min

Qt∈Qc

c(πt, Qt) + E[JT
t+1(πt+1)|πt = π,Qt = Q],

with JT
T = 0.

The proof of the following theorem follows essentially from dynamic program-
ming equation itself. This is related to (but weaker than) the Measurable Selection
Condition 3.3.2 (with a,b,c1) and the subsequent Theorem 3.3.5 in [194] since here
we directly consider the value function.

Theorem 10.8.1. Under Condition D, there exists an optimal (Borel measurable)
policy in ΠW achieving (10.13). �

In view of the preceding theorem, to prove Theorem 10.4.2 it suffices to show
that Condition D holds. We note that (ii) in Condition D directly follows from
Theorem 4.7.4.

An important supporting lemma is the following.

Lemma 10.8.3. Let for πn ∈ S, Qn ∈ Qc

π′(m,πn, Qn)(C) := P (xn+1 ∈ C|πn, Qn, qn = m)

=
1

πn(Bn
m)

∫
z∈C

{∫
πn(dx)1{x∈Bn

m}φ(z−f(x))
}
dz. (10.45)

As (πn, Qn) → (π,Q) in total variation, for every m ∈ {1, · · · ,M},

‖π′(m,πn, Qn)− π′(m,π,Q)‖TV → 0,

provided that π(Bm) > 0. �
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The following lemma is a minor generalization of Theorem 4.5.4.

Lemma 10.8.4. Let PnQn → PQ in total variation. Then,

inf
γ

∫
Pn(dx)Qn(q|x)c(x, γ(q))

→ inf
γ

∫
P (dx)Q(q|x)c(x, γ(q)). (10.46)

�

The next result establishes (i) in Condition D, the continuity of c(πt, Qt) on
S ×Qc.

Theorem 10.8.2. c(π,Q) is continuous on S ×Qc. �

Proof. Let {(πn, Qn)} be a sequence in S × Qc such that πnQn → πQ weakly.
It follows from Lemma 10.8.2(a) that πn → π in total variation and from
Lemma 10.8.2(c) that πnQn → πQ in total variation. Then Lemma 10.8.4 implies
that c(πn, Qn) → c(π,Q). ��

Next we establish (iii) in Condition D. We wish to prove that E[JT
t (πt)|π,Q] is

continuous in π,Q. We apply backward induction. At t = T − 1, let

JT
T−1(πT−1) = min

Q
c(πT−1, QT−1).

By Theorem 10.8.2 and the compactness of the set of quantizers (by
Theorem 4.7.5), there exists an optimal quantizer, Q∗

T−1. Furthermore, the follow-
ing holds:

Lemma 10.8.5. Let F : S × Qc → R be continuous on S × Qc in the sense
that PnQn → PQ implies that F (πn, Qn) → F (π,Q). Then, the function
minQ F (π,Q) is continuous in π. �

Proof. Let πn → π, Qn be optimal for πn, and Q be optimal for π. Then

|min
Q

F (πn, Q)−min
Q

F (π,Q)|

≤ max

(
F (πn, Q)− F (π,Q), F (π,Qn)− F (πn, Qn)

)
. (10.47)

The first term above converges since F is continuous in π,Q. The second converges
also. Suppose otherwise. Then, for some ε > 0, there exists a subsequence such that

F (π,Qkn)− F (πkn , Qkn) ≥ ε.

Consider the sequence (πkn , Qkn). There exists a subsequence such that (πk′
n
, Qk′

n
)

which converges to π,Q′ for some Q′, by Lemma 10.8.2(d). Hence, for this
subsequence, we have convergence of F (πk′

n
, Qk′

n
) as well as F (π,Qk′

n
), leading

to a contradiction. ��
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As a consequence, JT
T−1(πT−1) is continuous in πT−1. Consider now t = T − 2

and we wish to see if there is a solution to the following equality:

JT
T−2(πT−2) = min

Q

(
c(πT−2, QT−2) + E[JT

T−1(πT−1)|πT−2, QT−2]

)
.

(10.48)

Note that

E[JT
T−1(πT−1)|πT−2, QT−2]

=

M∑
m=1

P (π′(m,πT−2, QT−2)|πT−2, QT−2)J
T
T−1(π

′(m,πT−2, QT−2),

where

P (π′(m,πT−2, QT−2)|πT−2, QT−2) = P (qT−2 = m|πT−2, QT−2)

and

π′(m,πT−2, QT−2)(dz)=

∫
πT−2(dxT−2)P (qt−2=m|πT−2, xT−2)P (dz|xT−2)∫∫
πT−2(dxT−2)P (qt−2=m|πT−2, xT−2)P (dz|xT−2)

,

or

π′(m,π,Q)(C) =
1

π(Bm)

∫
z∈C

{
π(dx)1{x∈Bm}φ(z − f(x))

}
dz. (10.49)

Lemma 10.8.3 shows that as πQn → πQ, ‖π′(m,π,Qn) − π′(m,π,Q)‖TV → 0
whenever π′(m,π,Q) > 0. If π′(m,πT−2, QT−2) = 0, by the boundedness of the
cost, it follows that

P (π′(m,πT−2, QT−2,n)|πT−2, QT−2,n)J
T
T−1(π

′(m,πT−2, QT−2,n) → 0,

since P (π′(m,πT−2, QT−2,n)|πT−2, QT−2,n) → 0.
As a consequence, we have that E[JT

T−1(πT−1)|πT−2, QT−2] is continuous in
(πT−2, QT−2), since both of the expressions in (10.48) are continuous. Hence,

JT
T−2(πT−2) = min

QT−2

(
c(πT−2, QT−2) + E[JT

T−1(πT−1)|πT−2, QT−2]

)

exists and by Lemma 10.8.5 is continuous. The recursion applies for all time stages.
This concludes the proof of Theorem 10.4.2. ��
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10.8.7 Proof of Theorem 10.5.1

The proof is in three steps: (i), (ii), and (iii) below.

Step (i) In decentralized dynamic decision problems where the decision makers
have the same objective (i.e., in team problems), more information provided to
the decision makers does not lead to any degradation in performance, since the
decision makers can always choose to ignore the additional information (as we
saw in Sect. 3.5.2, in view of expansion of information structures). In view of
this, let us relax the information structure in such a way that the decision makers
now have access to all the previous observations; that is, the information available
at the encoders 1 and 2 are

Iit = {yit,y[0,t−1],q[0,t−1]} t ≥ 1, i = 1, 2.

Ii0 = {yi0}, i = 1, 2.

The information pattern among the encoders is now the one-step delayed
observation sharing pattern. We will show that the past information can be
eliminated altogether, to prove the desired result.

Step (ii) The second step uses the following technical lemma.

Lemma 10.8.6. Under the relaxed information structure in step (i) above, any
decentralized quantization policy at time t, 1 ≤ t ≤ T −1, can be replaced, without
any loss in performance, with one which only uses (πt,yt,q[0,t−1]), satisfying the
following form:

P (qt|y[0,t],q[0,t−1]) = P (q1t |y1t ,q[0,t−1])P (q
2
t |y2t ,q[0,t−1])

=1{q1t=Q̄1(y1
t ,q[0,t−1])}1{q2t=Q̄2(y2

t ,q[0,t−1])},

(10.50)

for measurable functions Q̄1 and Q̄2. �

Proof. Let us fix a composite quantization policy Qcomp. At time t = T − 1, the
per-stage cost function can be written as

E[

∫
X

P (dxt|q[0,t])c(xt, ut)|q[0,t−1]]. (10.51)

For this problem,P (dxt|q[0,t]) is a sufficient statistic for an optimal receiver. Hence,
at time t = T − 1, an optimal receiver will use P (dxt|q[0,t]) as a sufficient statistic
for an optimal decision as the cost function conditioned on q[0,t] is written as∫
P (dxt|q[0,t])c(xt, ut), where ut is the decision of the receiver. Now, let us fix

this decision policy at time t. We now observe that
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P (dxt|q[0,t]) =
∑
Yt+1

P (dxt,y[0,t]|q[0,t]) =

∑
Yt+1 P (dxt,qt,y[0,t]|q[0,t−1])

P (qt|q[0,t−1])

=

∑
Yt+1 P (qt|y[0,t],q[0,t−1])P (yt|xt)P (dxt|y[0,t−1])P (y[0,t−1]|q[0,t−1])∫

X,Yt+1 P (qt|y[0,t],q[0,t−1])P (yt|xt)P (dxt|y[0,t−1])P (y[0,t−1]|q[0,t−1])

=

∑
Yt+1 P (qt|y[0,t],q[0,t−1])P (yt|xt)π(dxt)P (y[0,t−1]|q[0,t−1])∫

X,Yt+1 P (qt|y[0,t],q[0,t−1])P (yt|xt)π(dxt)P (y[0,t−1]|q[0,t−1])
. (10.52)

The termP (qt|y[0,t],q[0,t−1]) is determined by the composite quantization policies:

P (qt|y[0,t],q[0,t−1])

= P (q1t |y1t ,y[0,t−1],q[0,t−1])P (q
2
t |y2t ,y[0,t−1],q[0,t−1])

= 1{q1t=Qcomp,1
t (y1

t ,y[0,t−1],q[0,t−1])}1{q2t=Qcomp,2
t (y2

t ,y[0,t−1],q[0,t−1])}.

In (10.52), we use the relation P (dxt|y[0,t−1]) = P (dxt) =: π(dxt), where π(·)
denotes the marginal probability on xt (recall that the source is memoryless). The
term P (qt|y[0,t],q[0,t−1]) in (10.52) is determined by the composite quantization
policies:

P (qt|y[0,t],q[0,t−1])

= P (q1t |y1t ,y[0,t−1],q[0,t−1])P (q
2
t |y2t ,y[0,t−1],q[0,t−1])

= 1{q1t=Qcomp,1
t (y1

t ,y[0,t−1],q[0,t−1])}1{q2t=Qcomp,2
t (y2

t ,y[0,t−1],q[0,t−1])}.

The above is valid since each encoder knows the past observations of both encoders.
As such, P (dxt|q[0,t]) can be written as, for some function Υ ,

Υ (π,q[0,t−1],Q
comp
t (.)).

Note that q[0,t−1] appears due to the term P (y[0,t−1]|q[0,t−1]). Now, consider the
space of joint mappings at time t, denoted by Gt:

Gt = {Ψt : Ψt = {Ψ1
t , Ψ

2
t }, Ψ i

t : Y
i → Mi

t, i = 1, 2}.

For every composite quantization policy there exists a distribution P ′ on random
variables (qt, π,q[0,t−1]) such that

P ′(qt|π,q[0,t−1]) =
∑

(Y1×Y2)t+1

P (qt,y[0,t]|π,q[0,t−1])

=
∑

(Y1×Y2)t+1

(
P (q1t |y[0,t−1], y

1
t ,q[0,t−1], π)

P (q2t |y[0,t−1], y
2
t ,q[0,t−1], π)P (y

1
t , y

2
t )P (y[0,t−1]|π,q[0,t−1])

)
. (10.53)
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Furthermore, with every composite quantization policy and every realization of
y[0,t−1],q[0,t−1], we can associate an element in the space Gt, Ψy[0,t−1],q[0,t−1]

, such
that the induced stochastic relationship in (10.53) can be obtained:

P ′(qt|π,q[0,t−1]) =
∑

(Y1×Y2)t+1

P (qt,y[0,t]|π,q[0,t−1])

=
∑

(Y1×Y2)t+1

1{Ψy[0,t−1],q[0,t−1]
(y1

t ,y
2
t )=(q1t ,q

2
t )}P (y

1
t , y

2
t )P (y[0,t−1]|π,q[0,t−1]).

We can thus express the cost, for some measurable function F in the following way:

E[F (π,q[0,t−1],Ψ)|π,q[0,t−1]],

where

P (Ψ|π,q[0,t−1]) =
∑

(Y1×Y2)t

1{Ψ=Ψy[0,t−1],q[0,t−1]
}P (y[0,t−1]|π,q[0,t−1]).

Now let t = T − 1 and define for every possible realization Ψt = (Ψ1
t , Ψ

2
t ) ∈ Gt

(with the decision policy considered earlier fixed):

βΨt :=

{
π,q[0,t−1] : F (π,q[0,t−1],Ψt) ≤ F (π,q[0,t−1],Ψ

′
t)

∀((Ψ1
t )

′, (Ψ2
t )

′) ∈ Gt

}
.

As we had observed in the proof of Theorem 10.3.3, such a construction covers
the domain set consisting of (π,q[0,t−1]) but possibly with overlaps. Note that for
every (π,q[0,t−1]), there exists a minimizing function in Gt, since Gt is a finite set.
In this sequence, let there be an ordering of the finitely many elements in Gt as
{Ψt(1),Ψt(2), . . . ,Ψt(k), . . . }, and define a function T∗

t as

Ψt(k) = T∗
t (π,q[0,t−1]), if

(
π,q[0,t−1]

)
∈ βΨt(k) − ∪k−1

i=0 βΨt(i),

with βΨt(0) = ∅.
Thus, we have constructed a policy which performs at least as well as the

original composite quantization policy. It has a restricted structure in that it only
uses (π,q[0,t−1]) to generate the team action and the local information y1t , y

2
t to

generate the quantizer outputs.
Now that we have obtained the structure of the optimal encoders for the last stage,

we can sequentially proceed to study the other time stages. Note that given a fixed
π, {(π,yt)} is i.i.d. and hence Markov. Now, define π′

t = (π,yt). For a three-stage
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cost problem, the cost at time t = 2 can be written as, for measurable functions
c2, c3,

c2(π
′
2, v2(q[1,2])) + E[c3(π

′
3, v3(q[1,2], Q3(π

′
3,q[1,2])))|π′

[1,2],q[1,2]].

Since P (dπ′
3,q[1,2]|π′

2, π
′
1,q[1,2]) = P (dπ′

3,q[1,2]|π′
2,q[1,2]), the expression above

is equal for some F2(π
′
2,q2,q1) for some measurable F2. By a similar argument,

an optimal composite quantizer at time t, 1 ≤ t ≤ T − 1 only uses (π,yt,q[0,t−1]).
An optimal (team) policy generates the quantizersQ1

t , Q
2
t using q[0,t−1], π, and the

quantizers use {yit} to generate the quantizer outputs at time t for i = 1, 2. ��

Step(iii) The final step will complete the proof. At time t = T − 1, an optimal
receiver will use P (dxt|q[0,t]) as a sufficient statistic for the optimal decision.
We now observe that

P (dxt|q[0,t]) =
∑
Yt+1

P (dxt|y[0,t])P (y[0,t]|q[0,t])

=
∑
Yt+1

P (dxt|yt)P (y[0,t]|q[0,t]) =
∑
Y

P (dxt|yt)
∑
Yt

P (y[0,t]|q[0,t])

=
∑
Y

P (dxt|yt)P (yt|q[0,t]).

Thus, P (dxt|q[0,t]) is a function of P (yt|q[0,t]). Now, let us note that

P (yt|q[0,t]) =
P (qt,yt|q[0,t−1])∑
yt
P (qt,yt|q[0,t−1])

=
P (qt|yt,q[0,t−1])P (yt|q[0,t−1])∑
yt
P (qt|yt,q[0,t−1])P (yt|q[0,t−1])

=
P (qt|yt,q[0,t−1])P (yt)∑
yt
P (qt|yt,q[0,t−1])P (yt)

, (10.54)

where the term P (qt|yt,q[0,t−1]) is determined by the quantizer team action
Qcomp

t . As such, the cost at time t = T − 1 can be expressed as a mea-
surable function G(P (yt),Qt). Thus, it follows that, an optimal quantizer
policy at the last stage, t = T − 1 may only use P (yt) to generate the
quantizers, where the quantizers use the local information yit to generate the
quantization output. The rest of the proof follows the arguments in the proof of
Theorem 10.3.4: At time t = T − 2, the sufficient statistic for the cost function
is P (dxt−1|q[0,t−1]) both for the immediate cost and the cost-to-go, that is, the
cost impacting the time stage t = T − 1, as a result of the optimality result for
QT−1 and the memoryless nature of the source dynamics. The same argument
applies for all time stages.
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Hence, any policy without loss can be replaced with one in ΠNSM . Since there
are finitely many policies in this class, an optimal composite quantization policy
exists. ��

10.8.8 Proof of Lemma 10.6.1

We apply dynamic programming. Let for the final stage, t = T − 1, ft(q[0,t−1]) :=∑t−1
k=0 A

t−k−1Buk and xt = x̄t+ft(q[0,t−1]). If the policy is inΠW , the composite
quantization policy is of the form

Qt(x̄t +

t−1∑
k=0

At−k−1Buk, P (x̄t +

t−1∑
k=0

At−k−1Buk ∈ ·|q[0,t−1])).

For this time stage, let there be an optimal decoder and controller for which a
sufficient statistic for the optimal control policy is E[xt|q[0,t]]. Observe that

E[x̄t + ft(q[0,t−1])|q[0,t]] = E[x̄t|q[0,t]] + ft(q[0,t−1])

= E[x̄t|q[0,t−1], qt] + ft(q[0,t−1]). (10.55)

The quantization output qt represents the bin information for xt. By shifting the
quantizer bins by ft(q[0,t−1]), a new quantizer which quantizes x̄t can generate the
same bin information on xt through qt. Hence, there is no information loss due to
the elimination of the past control actions. Therefore, this new quantizer, by adding
ft(q[0,t−1]) to the output, generates the same conditional estimate of the state as
the original quantizer. Thus, there exists a quantizer of the form Q̃t(x̄t, P (x̄t ∈
·|q[0,t−1])) with the following property: The estimation error realization and hence
the estimation is the same almost surely and as a consequence of the structure of
the cost and linearity in the system, the conditional estimate is a sufficient statistic,
the cost realization is identical almost surely. Furthermore, w̄t is independent of the
control actions applied earlier (due to the separated structure).

Consequently, for t = T − 3, since uT−2 is independent of w̄T−2 and w̄T−1,
an optimal controller will use E[xt|q[0,t]] as a sufficient statistic given the structural
result above for uT−1, uT−2 and the encoder policies. Hence, the analysis above
applies for t = T−4 and by induction, for all time stages until t = 0. The estimation
error is independent of the control actions under an optimal coding and control
policy without any loss. ��
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10.8.9 Proof of Theorem 10.6.3

As a consequence of Theorem 10.6.2, we obtain that for t ≥ 0, the unnormalized
value function to be given by

Jt(Ic
t ) = E[x′tKtxt|Ic

t ] +

T−1∑
k=t

(
E[(xk − E[xk|Ic

k])
′Q(xk − E[xk|Ic

k])]

+E[w̄′
kKk+1w̄k]

)
, (10.56)

where the effective noise process is w̄t = E[xt+1|Ic
t+1]− E[xt+1|Ic

t ] with

J(Πcomp, γ0, T ) =
1

T
J0(Ic

0).

Given a positive-definite matrix Λ define an inner product as

〈z1, z2〉Λ = z′1Λz2.

and the norm generated by this inner product as |z|Λ =
√
z′Λz. We now note the

following:

E

[
|E[xt+1|Ic

t+1]− E[xt+1|Ic
t ]|2Λ

]

= E

[
|
(
(E[xt+1|Ic

t+1]− xt+1) + (xt+1 − E[xt+1|Ic
t ])

)
|2Λ
]

= E[|(E[xt+1|Ic
t+1]− xt+1)|2Λ] + E[|(xt+1 − E[xt+1|Ic

t ])|2Λ]

+2E

[
〈(E[xt+1|Ic

t+1]− xt+1), (xt+1 − E[xt+1|Ic
t ])〉Λ

]
.

Note that

E

[
〈(E[xt+1|Ic

t+1]− xt+1), (xt+1 − E[xt+1|Ic
t ])〉Λ

]

= E

[
− 〈(E[xt+1|Ic

t+1]− xt+1), (E[xt+1|Ic
t ])〉Λ

+〈(E[xt+1|Ic
t+1]− xt+1), (xt+1)〉Λ

]

= E

[
〈(E[xt+1|Ic

t+1]− xt+1), (xt+1)〉Λ
]

(10.57)

= −E[|(E[xt+1|Ic
t+1]− xt+1)|2Λ], (10.58)
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where (10.57)–(10.58) follow from the orthogonality property of minimum mean-
square estimation and that E[xt+1|Ic

t ] is measurable on σ(Ic
t+1), the sigma-field

generated by Ic
t+1. Therefore, we have

E

[
|(E[xt+1|Ic

t+1]− E[xt+1|Ic
t ])|2Kt+1

]

= E

[
|(xt+1 − E[xt+1|Ic

t+1])|2Kt+1
+ E[|(Axt + wt −AE[xt|Ic

t ])|2Kt+1

]

−2E[|(xt+1 − E[xt+1|Ic
t+1])|2Kt+1

]

= −E
[
(xt+1 − E[xt+1|Ic

t+1])
′(Kt+1)(xt+1 − E[xt+1|Ic

t+1])

+E[(xt − E[xt|Ic
t ])

′(A′Kt+1A)(xt − E[xt|Ic
t ])] + E[w′Kt+1w]

]
.

Thus, the finite horizon cost could be written as, since KT = 0,

Jt(Ic
t ) = E[x′tKtxt|Ic

t ]

+

T−1∑
k=t

E[(xk − E[xk|Ic
k])

′(Q+A′Kk+1A)(xk − E[xk|Ic
k])]

−
T−1∑
k=t

E[(xk+1 − E[xk+1|Ic
k+1])

′(Kk+1)(xk+1 − E[xk+1|Ic
k+1])]

+

T−1∑
k=t

E[w′
kKk+1wk]

= E[x′tKtxt|Ic
t ]+

T−1∑
k=t

E[(xk−E[xk|Ic
k])

′(Q+A′Kk+1A)(xk−E[xk|Ic
k])]

−
T−1∑

k=t+1

E[(xk − E[xk|Ic
k])

′(Kk)(xk − E[xk|Ic
k])]

+

T−1∑
k=t

E[w′
kKk+1wk].

=E[x′tKtxt|Ic
t ]+E[(xt−E[xt|Ic

t ])
′(Q+A′Kt+1A)(xt−E[xt|Ic

t ])]

+

T−1∑
k=t+1

E[(xk − E[xk|Ic
k])

′(Q+A′Kk+1A−Kk)(xk − E[xk|Ic
k])]

+

T−1∑
k=t

E[w′
kKk+1wk]. (10.59)
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Now, with a fixed horizon T and for t < T − 1,

Jt(Ic
t ) = E[x′tKtxt|Ic

t ] + E[(xt − E[xt|Ic
t ])

′(Q+A′Kt+1A)(xt − E[xt|Ic
t ])]

+
T−1∑

k=t+1

E[(xk − E[xk|Ic
k])

′(Q+A′Kk+1A−Kk)(xk − E[xk|Ic
k])]

+
T−1∑
k=t

E[w′
kKk+1wk]. (10.60)

Letting t = 0 completes the proof. ��

10.8.10 Proof of Theorem 10.6.4

We will show that Condition D used in the proof of Theorem 10.4.2 applies. We need
to modify the proof of Theorem 10.4.2 only in view of the unboundedness of the
cost, which appears in two contexts. One is with regard to the continuity of c(π,Q)
and the other is the weak continuity of the expected value function in the transition
kernel. We address both below. To economize the notation, we take Pt = I in the
following.

(a) Continuity of c(π,Q)
Continuity under total variation can be extended for unbounded functions, provided
there is a uniform integrability condition as follows:

lim
L→∞

sup
Qn

inf
γ
EQn

π [(x−Qn(x))
′(x−Qn(x))1{(x−γ(Qn(x)))′(x−γ(Qn(x)))≥L}] = 0,

where by an abuse of notation, the infimization infγ is not for the truncated
expression

EQn
π [(x−Qn(x))

′(x −Qn(x))1{(x−γ(Qn(x)))′(x−γ(Qn(x)))≥L}],

but for the original cost

EQn
π [(x−Qn(x))

′(x −Qn(x))].

Now, by the parallelogram law

(x−Q(x))′(x−Q(x)) ≤ 2x′x+ 2| sup
x
Q(x)|2.

As a consequence, for any Qn, πn, we have that for some sequence Dn
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sup
πn,Qn

inf
γ

∫
πn(dx)(x−γ(Qn(x))

′(x−γ(Qn(x))1{(x−γ(Qn(x))′(x−γ(Qn(x))≥L}

≤ sup
πn

inf
γ

∫
πn(dx)(2x

′x+ 2Dn)1{2x′x≥L−2Dn}. (10.61)

For every π,Q and every sequence πn, Qn converging to π,Q, since the bins
converge setwise, so does the minimizing quantizer reconstruction levels in the
sense that ∫

Bn
k

πn(dx)x →
∫
Bk

π(dx)x, 1 ≤ k ≤M.

Hence, for some D <∞

sup
πn,Qn

inf
γ

∫
πn(dx)(x − γ(Qn(x))

′(x− γ(Qn(x))1{(x−γ(Q(x))′(x−γ(Q(x))≥L}

≤ sup
πn,Qn

inf
γ

∫
πn(dx)(2x

′x+ 2Dn)1{2x′x≥L−2Dn}

≤ sup
πn

inf
γ

∫
πn(dx)(2x

′x+ 2D)1{2x′x≥L−2D}. (10.62)

Hence, one needs to prove that {πn} itself is uniformly integrable. If this holds
then, for every ε, there exists an L such that for all (πn, Qn) → (π,Q), it follows
that ∣∣∣∣EQ

πn
[(x−Qn(x))

′(x −Qn(x))1{(x−γ(Qn(x)))′(x−γ(Qn(x)))≤L}]

−EQn
πn

[(x−Qn(x))
′(x−Qn(x))]

∣∣∣∣ ≤ ε/2

and that for sufficiently large n, given L,
∣∣∣∣EQn

πn
[(x−Qn(x))

′(x−Qn(x))1{(x−γ(Qn(x)))′(x−γ(Qn(x)))≤L}] (10.63)

−EQ
π [(x −Q(x))′(x−Q(x))1{(x−γ(Q(x)))′(x−γ(Q(x)))≤L}]

∣∣∣∣ ≤ ε/2.

Hence, for every ε > 0 there exists n0 such that for all n ≥ n0,

|EQ
πn

[(x−Qn(x))
′(x−Qn(x))] − EQ

π [(x−Q(x))′(x−Q(x))]| ≤ ε.

Thus, continuity is established under the uniform integrability condition. The
following technical lemma addresses the uniform integrability of πn.



368 10 Optimization of Real-Time Coding and Control Policies...

Lemma 10.8.7 ([434]). Let πt,n → πt be a uniformly integrable sequence. Then,
π′(m,πt,n, Qt,n) [defined in (10.45)] is uniformly integrable for (πt,n, Qt,n) →
πt, Qt. �

(b) Continuity of the Value Function in the Quantizer
We apply backward induction. Let

JT
T−1(πT−1) = min

Q
c(πT−1, QT−1).

We observed in part (a) above that for this case the optimal cost function is
continuous in πT−1, QT−1, provided πT−1 varies along a uniformly integrable
sequence, and hence by Lemma 10.8.5, the value function JT

T−1 is continuous in
πT−1. Now, we wish to see if

JT
T−2(πT−2) = min

Q

(
c(πT−2, QT−2) + E[JT

T−1(πT−1)|πT−2, QT−2]

)

(10.64)

is continuous in (πT−2, QT−2) (along a uniformly integrable sequence). Lemma
10.8.7 suggests that for (πT−2,n, QT−2,n) a uniformly integrable converging se-
quence, converging to (πT−2, QT−2), the term JT

T−1(πT−1(m,πT−2,n, QT−2,n))
also converges for every m, and hence continuity is established. It can be shown
that by Lemma 10.8.3, as Qn → Q, ‖π′(m,π,Qn) − π′(m,π,Q)‖TV → 0
for any quantizer Q with M cells of positive measure [434]. Continuity can be
established even if the number of cells is less then M by a bounding argument: if
a bin probability decreases to zero, so does the value function (note that an optimal
quantizer cannot have less thanM cells since by splitting a given cell into two leads
to the existence of another cell, yet the value function strictly decreases). Thus, in
the update equation

E[JT
T−1(πT−1)|πT−2, QT−2]

=

M∑
m=1

P (π′(m,πT−2, QT−2)|πT−2, QT−2)J
T
T−1(π

′(m,πT−2, QT−2),

E[JT
T−1(πT−1)|πT−2, QT−2] is continuous in πT−2, QT−2. By the continuity of

c(πT−2, QT−2), we have that c(πT−2, QT−2) + E[JT
T−1(πT−1)|πT−2, QT−2] is

continuous in πT−2, QT−2; the value function is continuous by Lemma 10.8.5.
Thus, (10.64) admits a solution, and

JT
T−3(πT−3) = min

Q

(
c(πT−3, QT−3) + E[JT

T−2(πT−2)|πT−3, QT−3]

)
,

is continuous in πT−3.
Continuing the same reasoning for the previous time stages, continuity and the

existence of an optimal policy follows. ��
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10.9 Concluding Remarks

This chapter presented structural results on optimal causal coding of Markov
sources in a large class of settings. The structural results are shown to feature a
separation structure. For the optimal causal coding of a partially observed Markov
source, the structure of the optimal causal coders is obtained and is shown to
admit a separation structure. We observed in particular that separation of estimation
(conditional probability computation) and quantization (of this probability) applies
in such a setup. We also observed that optimal real-time decentralized coding of a
partially observed i.i.d. source admits separation. Such a separation result does not,
in general, extend to decentralized coding of partially observed Markov sources.
The chapter has also established the existence of optimal control and quantization
policies under some technical conditions.

The joint optimization of encoding and control policies for the LQG problem has
also been studied in the chapter, and it has been shown that separation of estimation
and control applies, an optimal quantizer exists under some technical assumptions
on the space of policies considered, and the optimal control policy is linear in its
conditional estimate.

The separation result presented in this chapter will likely find many applications
in sensor networks and networked control problems where sensors have imperfect
observation of a plant to be controlled. One direction still to explore is to find explicit
results on the optimal policies using computational tools. One promising approach
is expert-based systems, which are very effective once one imposes a structure on
the designs; see [187] for details.

Theorem 10.3.4 motivates the problem of optimal quantization of probability
measures. This remains an interesting problem to be investigated in a real-time
coding context, with important practical consequences in control and economics
applications. Toward this direction, Graf and Luschgy, in [167, 168], have studied
the optimal quantization of probability measures.

10.10 Bibliographic Notes

Related papers on real-time coding include the following: [292] established that the
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sources over noisy channels with feedback. Teneketzis [361] and Mahajan and
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channels without feedback. Mahajan and Teneketzis [248] considered the optimal
causalcoding over a noisy channel with noisy feedback. Linder and Zamir [237]
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discussions on optimal quantization, randomized decisions, and optimal quantizer
design can be found in [149, 438].

Borkar et al. [74] have studied a related problem of coding of a partially
observed Markov source. This work also regarded actions as the quantizer functions.
Nayyar and Teneketzis [289] considered within a multiterminal setup decentralized
coding of correlated sources when the encoders observe conditionally independent
messages given a finitely valued random variable and obtained separation results
for the optimal encoders. Their paper also considers noisy channels. Some related
studies include optimal control with multiple sensors and sequential decentral-
ized hypothesis testing problems [375] and multi-access communications with
feedback [8].

Existence of optimal quantizers for a one-stage cost problem has been
investigated by Abaya and Wise [1], Pollard [309], and Yüksel and Linder [438]. For
dynamic vector quantizers, Borkar, Mitter, and Tatikonda [74] obtained existence
results for an infinite horizon setting. Mahajan and Teneketzis [250], Teneketzis
[361], and Yüksel [418] considered zero-delay coding of Markov sources under
various setups. Tatikonda et al. [358] considered general channels in the context
of sequential rate distortion and established the result that uniform quantization is
asymptotically optimal in the limit of large rates for quadratic distortion criteria.
A similar discussion can be found in [427]. Linder and Zamir [237] considered
causal coding of stationary sources in the limit of low distortion. Matveev and
Savkin [262] established the existence of optimal coding and quantizer policies for
the LQG setup under the assumption that the controller is memoryless.

There is a large literature on jointly optimal quantization for the LQG problem
dating back to early 1960s (see, e.g., [108, 232]). References [42, 73, 139, 147, 262,
283, 358, 423] considered the optimal LQG quantization and control, with various
results on the optimality or the lack of optimality of the separation principle. We
also note that [425] provides a discussion for optimal quantization of control-free
linear Gaussian systems. The LQG system analysis in this chapter builds primarily
on [423].

Weissman and Merhav [389] considered optimal causal variable-rate coding
under side information and [433] considered optimal variable-rate causal coding
under distortion constraints.

In this chapter, we also presented structural results for optimal decentralized
coding of i.i.d. sources, considered in [425]. There are algorithmic and asymptotic
results available in the literature when the encoders satisfy the optimal structure
obtained in the chapter; important contributions in this direction include [141, 172,
390].

A parallel line of consideration which is of a rate-distortion theoretic nature is
the sequential-rate distortion proposed in [358] and the feedforward setup, which
has been investigated in [129, 377].

This chapter is also related to Witsenhausen’s indirect rate distortion problem
[397] (see also [119]). Further related papers include [20, 39, 53, 119, 138, 201].
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Chapter 11
Optimal Coding and Control for Linear
Gaussian Systems Over Gaussian Channels
Under Quadratic Cost

11.1 Introduction

In this chapter, we consider linear systems driven by Gaussian noise, which are
controlled over Gaussian channels. We study the optimization of encoders and
controllers for the minimization of quadratic costs for such linear and Gaussian
systems (known as linear quadratic Gaussian (LQG) problems). We devote an entire
chapter to such problems because Gaussian source and channel models are widely
used in practice. Gaussian systems give rise to some of the most popular and easily
implementable control and filtering algorithms in view of the LQG theory and
Kalman filtering. Gaussian source and channel models are effective at capturing
robustness, for a Gaussian distribution has unbounded support, an attribute that
proved to play an important role in Part II of the book. Quadratic costs are practically
important because such costs penalize unstable behavior.

We present in the chapter information theoretic results on communicating a
Gaussian source over a Gaussian channel and obtain structural results for optimal
encoders and controllers. We obtain conditions under which linear encoding and
control policies are optimal and identify situations where such an optimality does
not hold. We saw in Chap. 3, in the context of Witsenhausen’s counterexample,
that even LQG systems with nonclassical information structures may fail to admit
linear policies as their optimal solutions. Yet, we also saw that a variation on
the Witsenhausen’s counterexample, with the cost function modified but still with
nonclassical information, the Gaussian test channel problem, admits linear optimal
policies. Two further important examples are presented in this chapter, which
are similar to the spirit of the Witsenhausen’s counterexample, exhibiting that
optimality of linear encoding policies is a rather rare event.

In the chapter, Sect. 11.2 provides information theoretic ingredients for optimal
joint source-channel coding over a Gaussian channel and discusses the notion of
matching in the context of Gaussian systems. Sect. 11.3 considers the problem of
jointly optimal LQG control and coding schemes for optimization, and Sect. 11.4
studies stabilization over Gaussian channels in various settings. Section 11.5

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 11,
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presents the two examples where linear policies are suboptimal, and Sect. 11.6
discusses information theoretic bounds for system performance.

For background reading, we refer the reader to Sect. D.2 for a review of the LQG
control problem and Kalman filtering.

11.2 Gaussian Source-Channel Pairs and Optimality
of Linear Policies

In this section, we consider Gaussian channels and networks of Gaussian channels
motivated by LQG problems.

11.2.1 Optimality of Linear Coding Policies over a Gaussian
Channel with Matching Between the Source
and the Channel

Converse to Shannon’s Channel Coding Theorem

As seen earlier in Sect. 5.3.3, the rate-distortion function, R(D), of a source is the
minimum average amount of information that can be transmitted to satisfy a given
level of average distortion D. The capacity, C(P ), of a channel with cost (power)
constraint P , on the other hand, is the maximum amount of information which can
be transmitted reliably per channel use given an average cost (power) constraint at
the channel input.

These two notions lead to the following classical converse theorem in informa-
tion theory [103]:

Theorem 11.2.1. Let {xt} be a real ergodic information source and let a distortion
function ρ : R×R → R+ be given. This information source can be transmitted over
a memoryless channel with capacity C(P ) with an average distortion less than or
equal to D, that is, there exists a coding policy with

lim
n→∞

1

n

n−1∑
t=0

ρ(xt, x̂t) ≤ D,

where x̂t is the decoder output, only if

R(D) < C(P ).

�

As a consequence of the above result, we obtain a lower bound on the achievable
distortion over a channel with capacity C(P ) as D ≥ R−1(C(P )), where R−1



11.2 Gaussian Source-Channel Pairs and Optimality of Linear Policies 375

Encoder

x

Decoder

x̂

v
u y

Fig. 11.1 The Gaussian source-channel pair belongs to a special class of pairs where source-
channel matching occurs

denotes the inverse rate-distortion function (known also as the distortion-rate
function; see Sect. 5.3.3).

The bound is in fact achievable arbitrarily closely, provided that the encoder and
the decoder are allowed to operate with delay, that is, block codes are allowed. This
is known as the source-channel separation theorem in information theory. However,
in the context of delay-sensitive real-time systems, the above is typically a very
loose bound, as discussed in Sect. 5.4. There are very few source and channel pairs
which allow the above to be tight. The Gaussian source-channel pair is one such
pair; we elaborate on this next.

11.2.2 The Gaussian Pair: Gaussian Sources and Channels

Optimality and Suboptimality of Linear Policies for Estimation
over a Gaussian Channel

In Sect. 3.3.3, we considered the generalized Gaussian test channel. One of the
findings was that for a scalar Gaussian source transmitted over a scalar Gaussian
channel, an optimal encoder is linear, a derivation of which essentially utilized
Theorem 11.2.1 above. Let x be a zero-mean real-valued Gaussian random variable
transmitted over a scalar Gaussian channel with capacity C and let y = u + v,
u = γ1(x), with u being the channel input and v a zero-mean Gaussian channel
noise, independent of x and x̂ = γ2(y) (see Fig. 11.1).

Let the Gaussian channel have input power constraint P , such that E[u2] ≤ P
and the Gaussian channel noise have variance σ2

v . The capacity then is given by
C = 1

2 log2(1 + (P/σ2
v)). In Chap. 3, we saw that the minimum estimation error

varianceD of a Gaussian source transmitted over a Gaussian channel with capacity
C satisfies the following set of inequalities:

C(P ) =
1

2
log2(1 + (P/σ2

v)) ≥ I(u; y)

≥ I(x; x̂) ≥ R(D) =
1

2
log2(E[x2]/D). (11.1)

Furthermore, the above is tight and the minimum attainable distortion is given by
D = E[x2]/22C . This is achieved by a linear scaling of the input. Thus, what is
known as the matching principle is applicable in this context:
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Lemma 11.2.1 ([156]). The equality R(D) = C(P ) holds if and only if:

(a) The distribution Pu of u = γ1(x) achieves the capacity of the channel P (dy|u)
with input cost constraint E[η(u)] ≤ P (for some cost function η).

(b) The conditional distribution P (dx̂|x) with x̂ = γ2(y) given x achieves the rate-
distortion function of the source x at distortion D = E[ρ(x, x̂)].

(c) γ1 and γ2 are such that I(u; y) = I(x; x̂).

�

For the Gaussian source and channel case, with ρ(·, ·) a quadratic error function
and η a quadratic function, we can take γ1 and γ2 to be linear. In this sense, we say
that a Gaussian source is matched to a Gaussian channel. We summarize the result
for the scalar Gaussian source-channel pair in the following.

Theorem 11.2.2 ([211]). Consider the minimization ofE[(x−E[x|y])2], subject to
a power constraint on the input E[u2] ≤ P over a Gaussian channel considered in
Fig. 11.1. The optimal encoder-decoder pair is linear, and the minimum achievable
cost is given by E[x2]/22C . The encoder applies z = αx, with α2 = P/E[x2]. The
optimal decoder policy is

E[x|y] = P

P + σ2
v

1

α
y.

�

11.2.3 Multi-Dimensional Source and Channels

We now consider a multidimensional source-channel pair. Consider the same setup
as above, but now with u ∈ R

m, v ∈ R
m with u = (u1, u2, · · · , um). Suppose

further that the channel input is constrained to satisfy E[u′u] ≤ P . The capacity for
such a multidimensional Gaussian channel is given by what is known as the water-
filling scheme. Toward that end, let us first define a multidimensional (parallel)
Gaussian channel as a set of channels:

yj = uj + vj , j = 1, 2, . . . ,m,

where {vj} is an independent set of random variables, with each vj being zero-mean
Gaussian with varianceNj . The problem of maximization of the mutual information
I(u; y) subject to the power constraint E[u′u] ≤ P admits a clean solution, given
in the following theorem.

Theorem 11.2.3 ([103]). The capacity of a multidimensional Gaussian channel is
given by

m∑
i=1

1

2
log2(1 +

Pi

Ni
),
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with
Pi = max(λ−Ni, 0),

where λ is chosen such that
∑m

i=1 Pi = P . �

Furthermore, the rate-distortion function for a multidimensional source also
admits what is known as a reverse water-filling solution, as given in the following
theorem.

Theorem 11.2.4 ([103]). Let x be an n-dimensional, zero-mean Gaussian random
vector with independent components, where component i, xi, has a Gaussian
distribution with variance σ2

i . Suppose that the distortion criterion is ρ(x, x̂) =∑n
i=1(x

i − x̂i)2, where x̂i denotes the conditional expectation of xi. The rate-
distortion function is given by

R(D) =

n∑
i=1

1

2
log2(

σ2
i

Di
),

where
Di = λ1{λ<σ2

i } + σ2
i 1{λ≥σ2

i }

and λ is chosen such that
∑n

i=1Di = D. �

Remark 11.2.1. In general, for such multidimensional Gaussian source-channel
pairs, matching conditions do not hold. Even when the Gaussian source and channel
dimensions are the same, matching conditions may not be realized. What is required
is thatR(D) = C(P ) and that the water-filling solutions giving rise to optimal input
distributions are such that the rate-distortion achieving test channel is the effective
channel from the estimator output to the source (after the encoding and the decoder
mappings are performed) itself. To see this aspect, note that linear encoding may
well achieve the capacity, but the effective channel from the source to the decoder
output also needs to satisfy the rate-distortion constraint, which may not hold. One
special case where such a matching holds is the case when the noise and signal
power levels are identical in every channel and the distortion criterion is identical
for all scalar components [308]. �

11.3 Joint Optimization of Encoder and Controllers
for Linear Systems Controlled over Gaussian Channels

11.3.1 Problem Setup

We now consider a controlled scalar linear system of the form:

xt+1 = axt + but + wt, (11.2)
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Fig. 11.2 Control over a Gaussian channel

where {wt} is an i.i.d. sequence of zero-mean Gaussian variables and x0 is an
independent Gaussian random variable.

The encoder transmits its information to a receiver/controller, over an additive
Gaussian channel. We assume that the encoder has access to past channel outputs,
that is, there is noiseless feedback. See Fig. 11.2.

In this context, we mean by a composite encoding policy Πcomp a sequence of
functions {Qcomp

t , t ≥ 0} which are causal such that the coding output at time t, qt,
underΠcomp is generated by a causally measurable function of its local information,
that is, a mapping measurable with respect to the sigma-algebra generated by Ie

t =
{x[0,t], q′[0,t−1]}, t ≥ 1, and Ie

0 = {x0}, to R. The setup follows that of Chap. 10
(see Sect. 10.2), except that here the channel is a Gaussian channel. The channel is
such that

q′t = qt + vt, (11.3)

where {vt} is an i.i.d. sequence of zero-mean Gaussian variables with variance σ2
v .

The controller’s information at time t is Ic
t = {q′[0,t]}. The goal is to minimize

E[

T−1∑
t=0

Qx2t +Ru2t ], (11.4)

with R > 0, Q > 0, subject to the constraint that E[q2t ] ≤ P , for some power
constraint P . We note that if for all time stages, the encoder applies

qt = αt(xt − aE[xt−1|Ic
t−1]), (11.5)

with αt =
P

E[(xt−aE[xt−1|Ic
t−1])

2] , the estimation error satisfies the recursion

E[(xt − E[xt|Ic
t ])

2] =
E[a2(xt−1 − E[xt−1|Ic

t−1])
2] + σ2

w

1 + (P/σ2
v)

.

Upon recognizing the capacity expression in the denominator, C = 1
2 log2(1 +

(P/σ2
v)), we obtain the following: If C > log2(|a|), stabilization in the sense of

having limt→∞E[(xt −E[xt|Ic
t ])

2] <∞ is possible. This result will be refined in
Theorem 11.3.2.

We next consider the optimization problem.
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11.3.2 Optimality of Linear Policies

We first note that in the current context there is no dual effect of control, that is, the
control actions do not affect the estimation errors for future time stages. The process
xt, conditioned on the past applied control actions, is always Gaussian. What is not
clear in general, however, is whether conditioning on the past channel outputs leads
to a Gaussian measure for the state process under optimal policies. We will consider
this in this subsection.

Before we proceed, we present three important lemmas. The first lemma is the
following.

Lemma 11.3.1. Let x be zero-mean Gaussian and z[0,t] be any given collection of
random variables for some t ∈ Z+. Then,

E[(x− E[x|z[0,t]])2] ≥ E[x2]2−2I(x;z[0,t]).

This inequality is tight if z[0,t] is a Gaussian collection. �

Proof. By the data-processing inequality (see Lemma 5.3.1) and the fact that
conditioning does not increase entropy, it follows that

I(x; z[0,t]) ≥ I(x;E[x|z[0,t]]) = h(x)− h(x|E[x|z[0,t]])

= h(x)− h

(
x− E[x|z[0,t]]

∣∣∣∣E[x|z[0,t]]
)

≥ h(x) − h(x− E[x|z[0,t]])

≥ (1/2) log2

(
E[x2]

E[(x − E[x|z[0,t]])2]

)
, (11.6)

where the last inequality follows from the fact that among all random variables with
a given variance, the Gaussian random variable has the largest differential entropy.
Tightness for the Gaussian case follows from the following:

I(x; z[0,t]) = h(x)− h(x− E[x|z[0,t]]|z[0,t])

= h(x)− h(x− E[x|z[0,t]]) (11.7)

=
1

2
log2

(
E[x2]

E[(x − E[x|z[0,t]])2]

)
. (11.8)

Here, (11.7) follows since for a Gaussian collection, x−E[x|z[0,t]] is also Gaussian
and independent of z[0,t]. ��

The second lemma is the following (see [39, 440]).

Lemma 11.3.2. Consider the scheme in Fig. 11.3, with u = γe(y) for a measurable
γe such thatE[u2] ≤ P , x is zero-mean Gaussian and v, w are zero-mean Gaussian
noise variables with variances σ2

v , σ
2
w, respectively. Then I(x; z) is maximized with
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Fig. 11.3 Leak in information through a noisy observation channel

u = γe,∗(y) = αy such that E[u2] = P . Furthermore, under any coding policy γe,

E[(x − E[x|z])2] ≥ E[x2]2−2C̃ ,

where

C̃ =
1

2
log2(1 +

α2E[x2]

α2σ2
v + σ2

w

).

Under u = γe,∗(y) = αy, the inequality is an equality. �

The proof can be established by noting that for any measurable γc

E[(x − γc(z))2] ≥ E[(x − E[x|z])2]

= E[(x− E[x|y])2] + E[(E[x|y]− E[x|z])2], (11.9)

where the equality follows from similar arguments as in (10.21). The term
E[(E[x|y]−E[x|z])2] is minimized by a linear policy in view of (11.1), sinceE[x|y]
is itself a Gaussian random variable. The final important ingredient is the following.

Lemma 11.3.3. For the linear Gaussian system (11.2) controlled over a Gaussian
channel (11.3), the cost (11.4) is equivalent to

E

[ T−1∑
t=0

R̃t(ut − ãtxt)
2

]
+K0E[x20] +

T−1∑
t=0

Kt+1σ
2
w, (11.10)

where for t = 0, . . . , T − 1,

Kt = Q+ a2Kt+1 −
ba2Kt+1

K + b2Kt+1
, ãt = − baKt+1

R+ b2Kt+1
, R̃t = R+ b2Kt+1,

with KT = 0. �

Hence, the problem reduces to a state estimation problem. Given these lemmas,
one can show that optimal coding and control policies are linear, as we state in the
following.

Theorem 11.3.1 ([41]). Consider the linear Gaussian system (11.2) controlled
over a Gaussian channel (11.3). For the minimization of (11.4), an optimal encoding
policy is of the form

qt = αt(xt − aE[xt−1|Ic
t−1]),
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with

αt =
P

E[(xt − aE[xt−1|Ic
t−1])

2]
,

and the optimal control policy is given by

ut = ãtE[xt|Ic
t ],

where ãt is given in (11.10). �

Proof. See Sect. 11.7.1. ��

Theorem 11.3.1 does not generalize directly to multidimensional sources or
channels since source-channel matching needs to take place at every time stage
when the channel is used. This is a very restrictive condition in a practical setting.
Partial results along this direction have been presented in [358].

In the appendix, we provide a proof for the following result, which is related to
Theorem 11.3.1.

Theorem 11.3.2. For the linear Gaussian system xt+1 = axt+ut+wt, with {wt}
a zero-mean Gaussian i.i.d. sequence with variance σ2

w, to satisfy

lim
t→∞

E[x2t ] ≤ d,

over a memoryless (discrete or continuous) communication channel with noiseless
feedback under some policy, the channel capacity must satisfy

C ≥ 1

2
log2(

a2d

d− σ2
w

).

These inequalities become equalities for a Gaussian channel and when optimal
linear coding and control policies are adopted. �

Structural Results for Optimal Encoders for Partially Observed
LQG Problems

In Sect. 10.6.1, we considered optimal coding and control over a discrete noiseless
channel. Provided that noiseless feedback is available, the analysis there carries over
to the case with Gaussian channels. Specifically, let xt ∈ R

n, yt ∈ R
m, and the

evolution of the process be given by the following:

xt+1 = Axt +But + wt, yt = Cxt + v0t . (11.11)
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Fig. 11.4 LQG control of a partially observed linear Gaussian system over a Gaussian channel.
Here, the channel encoder has access to the Gaussian channel output at the controller and KF
denotes the Kalman filter. Separation of estimation and coding is optimal as in Theorem 11.3.3

Here, {wt, v
0
t } is a mutually independent, white zero-mean Gaussian noise sequence

with W = E[wtw
′
t], V = E[v0t v

0
t
′], A,B,C are matrices of appropriate dimen-

sions. Suppose the goal is the minimization problem

inf
Πcomp

inf
γ
EΠcomp,γ

ν0 [

T−1∑
t=0

x′tQxt + u′tQut], (11.12)

over all admissible coding and control policies, with ν0 denoting a Gaussian
distribution for the initial state, and Q > 0, R > 0, where now Πcomp generates the
real-valued channel inputs using the Gaussian channel outputs in a causal manner
under a given power constraint for every time stage. Building on Theorem 10.6.1,
we have the following result (see Fig. 11.4).

Theorem 11.3.3. For the minimization of the cost in (11.12) over all coding
policies, a coder which uses the Kalman filter output and the information available
at the receiver is as good as any other causal coder. �

A particular application of this result is the encoding problem depicted in
Fig. 11.3. Here the encoder uses its estimate without any loss, and as a consequence
of (11.9), the optimal encoder is linear in its estimate. One further message here
is that a partially observed Gaussian source is essentially not different from a fully
observed Gaussian source.

11.4 Stabilization over Gaussian Channels and Sufficiency
of Shannon Capacity Conditions

Consider an R
n-valued linear Gaussian system of the form

xt+1 = Axt +But + wt, yt = xt, (11.13)

where we takeB to be diagonal. The stabilizability of such a system over a Gaussian
channel in the sense of ergodicity or the AMS property follows directly from
Chap. 8: By the discussions in Sect. 5.3.1, the capacity of a Gaussian channel can
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be approximated arbitrarily well by capacities of a sequence of discrete channels
obtained through quantization. As a consequence of the results in Sect. 8.4, Shannon
capacity being greater than

∑
|λi|>1 log2(|λi|) is a sufficient condition for the

AMS stabilization of the linear system (11.13), where λi are the eigenvalues of
A. However, not only the AMS property but also the positive Harris recurrence can
be established in the special setting of scalar sources and scalar channels through
the analysis in the previous section.

In this subsection, we see that this capacity condition is also sufficient for
quadratic stability for a large class of settings. In particular, for stabilization across
a scalar Gaussian channel with minimum capacity requirements, source-channel
matching is not required. This argument is not surprising since the scalar Gaussian
channel with noiseless feedback has its error exponent as infinite; see [133] and
[334]. In fact, in these papers, Elias [133] and Schalkwijk and Kailath [334] use
variations of the linear innovation coding scheme given in (11.5), discussed in
the previous section. Thus, as a consequence of Theorem 8.4.4 and arguments in
Chap. 8, the infinite exponent implies the existence of coding and control policies
which lead to quadratic stability.

However, instead of the constructions in Chap. 8, simpler coding schemes (such
as linear time-invariant, linear time-varying, or memoryless nonlinear policies) may
also be sufficient in the context of linear Gaussian systems. In the following, we
will show that this is the case. Toward this goal, we observe in the following
that for a multidimensional system controlled over a scalar Gaussian channel, it
is sufficient to use linear time-varying coding policies for sequential transmission of
scalar components in a Jordan form representation of the system. The proof of the
following theorem builds on first stabilizing the lower modes in a Jordan block and
then regarding these as noise variables for the upper modes, once one moves up in
the Jordan matrix.

Theorem 11.4.1 ([443]). Consider the n-dimensional Gaussian linear system
(11.13) to be controlled over a scalar Gaussian channel with noiseless feedback.
If the channel capacity is greater than

∑
|λi|>1 log2(|λi|), then there exist coding

and control schemes such that

lim sup
t→∞

E[|xt|2] <∞.

Furthermore, a linear time-varying policy is sufficient through sequential linear
encoding of scalar components. �

The above theorem can be generalized to a class of multidimensional sources and
multidimensional channels through time-varying (periodic) linear policies. What is
essential in such a construction is that every scalar mode of a linear system is to
be transmitted over at most a single scalar channel at any given time: Consider m
parallel Gaussian channels, each channel with individual rates Ci, 1 ≤ i ≤ m, so
that the capacity of the parallel channel is

∑m
i=1 Ci. We have the following.
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Theorem 11.4.2 ([445]). The system (11.13) can be mean square stabilized over
m parallel Gaussian channels (having independent noise variables) with feedback,
using a linear time-varying policy if there exist fij ∈ Q such that fij ≥ 0,∑m

j=1 fij ≤ 1,
∑n

i=1 fij ≤ 1, and for all i

log(|λi|) <
m∑
j=1

fijCj ,

where λi are eigenvalues of the system matrix A in (11.13) and Ci is the capacity
of the ith channel. �

In Theorem 11.4.2, the rational terms {fij} dictate the period of the time-sharing
policy for each of the modes.

One question of practical interest is the following: Can one achieve stabilization
with time-invariant policies? In general, the answer is clearly negative as the
following simple counterexample shows. Consider the system

xt+1 = Axt +But + wt, t ≥ 0,

yt = γe(xt) + vt , (11.14)

where the second equation describes the joint map from the encoder and the channel
noise to the output. Consider now, with |a| > 1,

A = diag(a, a), γe(xt) = Cxt, C = [α β].

For this system, independent of the values of α and β, the corresponding noise-free
system is unobservable, and therefore the system cannot be stabilized, regardless of
the capacity of the channel. For this system a time-varying encoding scheme can
be utilized to achieve stability, by transmitting different components of the state at
alternating times such that C2t = [0 αt], C2t+1 = [βt 0] for t ∈ Z+, αt, βt ∈ R.
If the channel is one dimensional and there is feedback, at every channel use, the
channel can carry independent information. Furthermore, the encoder can adjust
the signals to be transmitted in a time-varying fashion to ensure that the receiver’s
estimation error for every (open-loop) unstable mode is stable.

Remark 11.4.1. In Sect. 8.6.4 (see Theorem 8.6.7), stabilization of a linear system
over a Gaussian forward channel with a noisy Gaussian feedback channel was
considered. We observed that if the forward and the reverse channel capacities
satisfy

2−2Cf + 2−2Cr − 2−2Cf−2Cr < 1/a2,

then the steady-state variance is finite under linear memoryless policies. In par-
ticular, if the reverse channel is noise-free, Cr = ∞, the condition reduces to
Cf > log2(|a|). �
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11.5 Two Counterexamples on Sub-optimality
of Linear Policies

In the following, we will see that separation results involving optimality of
linear policies do not necessarily extend to decentralized settings. We present two
counterexamples for Gaussian source-channel pairs. Note that we have already seen
that for multidimensional channels, linear policies may not be optimal.

In particular, the results obtained for scalar sources and channels do not extend
to settings where there are two sensors and to settings when there is a relay in
the system. These two are perhaps the most immediate extensions of the scalar
setup considered. These, together with Witsenhausen’s counterexample considered
in Sect. 3.3.2, reveal that optimality of linear policies does not hold for a general
class of Gaussian systems, and typically one needs to go beyond the linear structure
to find optimal policies.

11.5.1 Gaussian Relay Channels with Two Encoders:
Person-by-Person-Optimality of Linear Policies
and Lack of Convexity of the Team Problem

Consider the transmission of a Gaussian source over a Gaussian relay channel, as
depicted in Fig. 11.5. The relay is an intermediate encoder/decision maker which
helps transmit the message from the source to the receiver.

We wish to minimizeE[(x−x̂)2] over source encoder and relay encoder policies:
We assume that the source x is Gaussian with zero mean and variance σ2

x. The
encoder mapping is γe, with se = γe(x) satisfying E[s2e] ≤ PS . The transmitted
signal se is then observed with noise by the relay node as y = se + ve, where ve
is a zero-mean independent Gaussian noise of variance Ne. The relay node applies
a measurable mapping γr on the received signal to produce sr under the following
average relay power constraint: E[s2r] ≤ PR. The signal sr is then transmitted over
a Gaussian channel. Accordingly the destination node receives r = sr + vr, where
{vr} is a zero-mean white Gaussian noise with variance Nr. The decoder generates
x̂ = g(r).

In Lemmas 11.3.1 and 11.3.2, we saw that if the source encoder is restricted to be
linear, the optimal relay policy is also linear. On the other hand, if the relay encoder
policy is fixed to be linear and memoryless, then the problem becomes equivalent to
the transmission of a Gaussian source over a Gaussian channel subject to an average

Encoder

x

DecoderRelay

se y sr r x̂

Fig. 11.5 Gaussian relay channel
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power constraint, for which we already know that linear encoding is optimal. Hence,
there exists a person-by-person optimal linear solution to the problem considered
in Fig. 11.5 (existence can be seen easily by noting that with encoder, relay, and
decoder all restricted to linear policies, the best policy in that class can be obtained
by minimization of a continuous function on a closed and bounded subset of R3,
and this globally optimal solution over the linear class is person-by-person optimal
over the general class).

We have seen in Chap. 2 that in decentralized team optimization problems,
person-by-person optimal solutions are globally optimal if the cost function is
convex in the policies of the decision makers and the cost function satisfies
appropriate differentiability conditions on the policies. For the problem at hand,
however, such a structural result does not hold, as we discuss next. Let P be an
observation channel from the input variable x at source encoder to the channel
output variable r such that P (·|x) is a probability measure on the Borel σ-algebra
B(R) on R for every x ∈ R, and P (A|·) : R → [0, 1] is a Borel measurable function
for every A ∈ B(R). Similarly we define P1 as an observation channel from the
variable x to the variable y and P2 as an observation channel from the variable
y to the variable r. From Chap. 4 (see Sect. 4.3), it follows that the distortion is
concave in the joint observation channel P (A|x) =

∫
R
P2(A|y)P1(dy|x) for every

A ∈ B(R), where the individual channels P1 and P2 are induced by the source and
the relay encoding policies. This implies that person-by-person optimal encoding
policies do not guarantee team optimality. We also note that, even under linear
policies, the problem is not convex (see [302]).

In view of the discussion above, we now provide a simple counterexample for
the problem depicted in Fig. 11.5 to show that linear policies are not optimal for
causal transmission of a Gaussian source over the given relay channel (see [444]).
First note that optimal linear policies lead to a cost of

D�
L = σ2

x

(
1− PSPR

(PS +Ne)(PR +Nr)

)
.

Consider now the following policies at the source encoder and the relay encoder,
respectively:

γe(x) =

⎧⎨
⎩

a, for x > m1,

0, for |x| ≤ m1,

−a, for x < −m1,

γr(y) =

⎧⎨
⎩

b, for y > m2,

0, for |y| ≤ m2,

−b, for y < −m2,

where the scalars a, b,m1,m2 ∈ R+ are to be specified. Under these policies, the
signals observed at the relay and the destination are respectively given by

y =

⎧⎨
⎩

a+ ve, for x > m1,

ve, for |x| ≤ m1,

−a+ ve, for x < −m1,

r =

⎧⎨
⎩

b+ vr, for y > m2,

vr, for |y| ≤ m2,

−b+ vr, for y < −m2,
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The nonlinear policies above have to satisfy the average transmit power constraints.
This leads to

a ≤
√

PS

2E(m1
σx

)
, b ≤

√
PR

2κ(m1,m2,a,σx,Ne)
,

where

κ(m1,m2, a, σx, Ne)

=

(
1−2Eq

(
m1

σx

))
Eq

(
m2√
Ne

)
+Eq

(
m1

σx

)(
Eq

(
m2−a√
Ne

)
+Eq

(
m2+a√
Ne

))

and

Eq(x) �
1√
2π

∫ ∞

x

e−
τ2

2 dτ.

Numerical computation [444] leads to the following: Letting σ2
x = PS = PR =

1, Ne = Nd = 4, m1 = 2.45, and m2 = 6.84, the performance of the given
nonlinear policy isDNL = 0.926, whereas the performance of the best linear policy
is D�

L = 0.96.
Hence, for the setup in Fig. 11.5, we can state the following:

• If the relay is restricted to be linear, the optimal encoder is linear from
information theoretic arguments. If the source encoder is restricted to be linear,
the best relay encoding is linear (by Lemmas 11.3.1 and 11.3.2).

• The problem is non-convex when the encoders are viewed as stochastic kernels
(as a consequence of Theorem 4.3.1). Hence, person-by-person optimality above
does not necessarily imply optimality of linear policies.

• Indeed, policies optimal in the linear class are not globally optimal.

11.5.2 A Decentralized Sensing Problem over Vector
Gaussian Channels

As a different setting where optimality of linear policies may not hold, this
subsection studies a distributed sensing problem. Consider a two-sensor, single-
controller, LTI system:

xt+1 = axt + ut + wt ,

yit = xt + vit , i = 1, 2. (11.15)

Here, xt ∈ R is the state of the system with the initial state x0 a zero-mean
Gaussian random variable with variance σ2

x, ut ∈ R is the control signal, and
yit ∈ R is the observation available at sensor station i at time t. Here {wt, v

1
t , v

2
t }
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x
Observation Channels Receiver

Feedback from receiver

Feedback from receiver

v1

v2

Sensor 1

Sensor 2

y1

y2

u1

u2

w1

w2

z1

z2

Fig. 11.6 Controller has access to (z1, z2)

are mutually independent, i.i.d. zero-mean Gaussian disturbance processes with
variances {σ2

w, σ
2
v1 , σ2

v2}.
The sensors transmit their signals at time t, which we denote by {u1t , u2t}, over

two noisy Gaussian channels where the channel outputs

zit = uit + wi
t, i = 1, 2,

are received by the controller. Here wi
t are zero-mean Gaussian random variables

with variances {σ2
wi , i = 1, 2}. Upon observing the channel outputs, the controller

generates its control input ut.
In the following, we discuss the information structures under which the sensor

signals {u1t , u2t} and the control signal ut are generated. A pictorial description for
the sequence of events for a single stage is presented in Fig. 11.6. Here, the sensor
action uit (i = 1, 2) is the output of a mapping γi measurable with respect to the
sigma-field generated by Ii

t = {yit, zt} and is a mapping to R. Here,

zt = {y[0,t−1], z[0,t−1]}

is the common past information, where z1t , z
2
t are the information received by the

controller. The controller policy γ0 is measurable with respect to the sigma-algebra
generated by Ic

t = {z[0,t−1]} and is a mapping to R. We also have a power
constraint on the sensors: E[(uit)

2] ≤ P i, i = 1, 2. The objective is to minimize
the following cost function:

J(γ1, γ2, γ0) = E[

T∑
t=0

x2t +Q(ut)
2], (11.16)
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for some Q > 0, over all admissible sensor and control policies under the
information structure presented above.

Theorem 11.5.1 ([441]). For the minimization of the cost (11.16) under the speci-
fied information structure, linear policies are not necessarily optimal. In particular,
there exists a nonlinear coding scheme which outperforms an optimal linear sensing
set of policies for a particular instance of the problem. �

Proof. See Sect. 11.7.3. ��

11.6 Looseness of Information Theoretic (Cut-Set) Bounds
for Gaussian Networks

We provide in this section a general discussion on the looseness of the bounds
derived from the source-channel separation theorem considered in Theorem 11.2.1.
Let us consider the configuration of 11.3, where v, w are Gaussian noise variables
with strictly positive variances. We observed in Lemmas 11.3.1 and 11.3.2 that
linear policies are optimal for quadratic error minimization. We note that under such
policies

I(x; y)− I(x; z) = −h(x|y) + h(x|z) = −h(x|y, z) + h(x|z) = I(x; y|z) > 0.

Hence, it follows that the end to end mutual information is less than the mutual
information in the first channel, unless the Markov chain condition holds

x↔ z ↔ y,

which implies that there is no information loss with regard to the message at the
second channel. Furthermore, it is evident then that

I(x; y) < min(C1, C2),

where C1 is the capacity of the additive first channel (where there is no encoding)
and C2 is the capacity of the channel between u and z. As a consequence,

E[(x− E[x|z])2] > E[x2]/22min(C1,C2).

Likewise, if we consider an encoder in the first channel as in the setup considered
in Fig. 11.5, with strictly positive noise variances, we arrive at the following.

Theorem 11.6.1. The mutual information satisfies

max
P (se)

I(se; r) ≤ min(max
P (se)

I(se; y),max
P (sr)

I(sr; r)) < min(C3, C4),
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where C3, C4 denote the Shannon capacities of the additive Gaussian channels
between se, y and sr, r, respectively, and P (s) denotes the probability measure on
the variable s. Hence, there is a leak in the end-to-end information transmission
when the channels are noisy and

E[(x − E[x|r])2] > E[x2]

22min(C1,C2)
.

�

The above holds despite the fact that the information theoretic capacity of a block
code is still equal to C = min(C1, C2).

The message in this subsection is that such information theoretic bounds (which
are also known as cut-set bounds) may only be used as lower bounds on system
performance in general. As with the case of optimality of linear policies, tightness
of such bounds is also a rare phenomenon and is related to the matching discussion
in Lemma 11.2.1.

11.7 Appendix: Proofs

11.7.1 Proof of Theorem 11.3.1

Given Lemma 11.3.3, the goal is to minimize the following expression in (11.10):

E

[ T−1∑
t=0

R̃t(ut − ãtxt)
2

]
. (11.17)

Note that due to the lack of a dual effect, the control actions do not affect the
estimation errors. Therefore, the optimal control policies are of the form

ut = ãtE[xt|Ic
t ].

As a consequence, (11.17) can be regarded as the sum of per-stage estimation errors.
Since the control actions do not affect the estimation errors, we can instead consider
a control-free process x̄t = ax̄t + wt and let ut be the estimation of ãtx̄t. Hence,
the goal is the minimization of

E

[ T−1∑
t=0

R̃t

(
ãtE[x̄t|Ic

t ]− ãtx̄t

)2]
.

We will first consider a two-stage problem. Note that

I(x̄1; q
′
[0,1]) = I(x̄1; q

′
1|q′0) + I(x̄1; q

′
0).
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Properties of mutual information lead to

I(x̄1; q
′
1|q′0)=h(q′1|q′0)−h(q′1|x̄1, q′0)=h(q′1|q′0)−h(q′1|x̄1, q′0, Q

comp
1 (x̄1, q

′
0))

=h(q′1|q′0)−h(q′1|Q
comp
1 (x̄1, q

′
0))≤h(q′1)−h(q′1|Q

comp
1 (x̄1, q

′
0)) (11.18)

≤ 1

2
log2(1 +

P

σ2
v

) =: C, (11.19)

where C is the Gaussian channel capacity.
Furthermore, I(x̄1; q′0) is also maximized by a linear policy at time 0: The

relation x̄1 = ax̄0 + w0 leads to E[x̄0|x̄1] = β1x̄1 for some scalar β1 so that
we can write z0 = β1x̄1 + v̄0 where x̄1 ↔ z0 ↔ q′0 forms a Markov chain, v̄0 is
Gaussian independent of x̄1, and z0 has the same distribution as x̄0. Therefore, the
setup reduces to the setting considered in Lemma 11.3.2 and a linear policy at time
0 also maximizes the mutual information I(x̄1; q′0).

As a result, by Lemma 11.3.2, it follows that I(x̄1; q′[0,1]) ≤ C1, where C1 =

C +max I(x̄1; q
′
0). This upper bound is tight when the optimal encoding policy is

of the form
qt = αt(xt − aE[xt−1|Ic

t−1]),

since Lemma 11.3.2 applies and (11.18)–(11.19) hold with equality since q′1 is
independent of q′0 and is Gaussian.

By writing

I(x̄2; q
′
[0,2]) = I(x̄2; q

′
2|q′[0,1]) + I(x̄2; q

′
[0,1]) ≤ C +max I(x̄2; q

′
[0,1]),

the same reasoning applies. Hence, we can obtain an upper bound on I(x̄t; q′[0,t]) =
I(x̄t; q

′
t|q′[0,t−1])+I(x̄t; q

′
[0,t−1]), and the recursion is established for all time stages.

Hence, the mutual information is maximized for all time stages.
Finally, by Lemma 11.3.1, we observe that the process {x̄t} is zero mean and

E[(x̄t − E[x̄t|q′[0,t]])2] ≥ E[x̄2t ]2
−2I(x̄t;q

′
[0,t]),

leading to a tight lower bound on the estimation errors which is achieved by linear
policies. ��

11.7.2 Proof of Theorem 11.3.2

Let σ2 = E[w2] and Dt = E[(xt +
b
aut)

2] and dt = E[x2t ]. It follows that Dt =
(dt+1−σ2)/a2 for t ≥ 0. Consider a memoryless channel with inputs qt and outputs
q′t and any deterministic control policy. Then,
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1

T

T−1∑

t=0

I(xt; q
′
t|q′[0,t−1]) =

1

T

T−1∑

t=0

h(xt|q′[0,t−1])− h(xt|q′[0,t])

=
1

T

T−1∑

t=0

h(axt−1 + but−1 +wt−1|q′[0,t−1])− h(xt|q′[0,t])

=
1

T

T−1∑

t=0

h(axt−1 + wt−1|q′[0,t−1]) − h(xt|q′[0,t])

=
1

T

( T∑

t=1

h(axt−1 + wt−1|q′[0,t−1])− h(xt−1|q′[0,t−1])

)

+
1

T
(−h(axT−1 + wT−1|q′[0,T−1]) + h(x0))

≥ 1

T

( T∑

t=1

1

2
log2(2

2h(axt−1|q′[0,t−1]) + 22h(wt−1))− h(xt−1|q′[0,t−1])

)

+
1

T
(−h(axT−1 + wT−1|q′[0,T−1]) + h(x0))

=
1

T

( T∑

t=1

1

2
log2(2

2h(a(xt−1+(b/a)ut−1)|q′[0,t−1])+22h(wt−1))−h(xt−1+(b/a)ut−1|q′[0,t−1])

)

+
1

T
(−h(axT−1 + wT−1|q′[0,T−1]) + h(x0))

≥ 1

T

( T∑

t=1

1

2
log2(2

2h(a(xt−1+(b/a)ut−1)) + 22h(wt−1))− h(xt−1 + (b/a)ut−1)

)

+
1

T
(−h(axT−1 + wT−1|q′[0,T−1]) + h(x0))

≥ 1

T

( T∑

t=1

1

2
log2(2πe(a

2Dt−1 + σ2)) − 1

2
log2(2πeDt−1)

)

+
1

T
(−h(axT−1 + wT−1|q′[0,T−1]) + h(x0))

=
1

T

( T∑

t=1

1

2
log2(

(a2Dt−1+σ2)

Dt−1
)

)

+
1

T
(−h(axT−1+wT−1|q′[0,T−1])+h(x0))

=
1

T

( T∑

t=1

1

2
log2(a

2 +
σ2

Dt−1
)

)

+
1

T
(−h(axT−1 +wT−1|q′[0,T−1]) + h(x0)).

Here, the first inequality follows from a conditional version of the entropy-power
inequality (see Lemma 5.3.2) and the second and the third ones by the following
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argument: 1
2 log2(a

2es+ b)− s, with b > 0, is a decreasing function of s; hence the
entropy term

h(xt|q′[0,t]) = h(xt +
b

a
ut|q′[0,t]) ≤ h(xt +

b

a
ut)

can be replaced by its maximum, which is achieved by a zero-mean Gaussian
random variable with the same second moment: Dt. Hence, for every T ∈ N, we
have that

1

T

T−1∑
t=0

I(xt; q
′
t|q′[0,t−1])

≥ 1

T

( T∑
t=1

1

2
log2(a

2 +
σ2

Dt−1
)

)
+

1

T
(−h(axT−1 + wT−1|q′[0,T−1]) + h(x0))

≥1

2
log2

(
a2+

σ2

( 1
T

∑T
t=1Dt−1)

)
+

1

T
(−h(axT−1+wT−1|q′[0,T−1])+h(x0)),

where the last line follows from the convexity of log(1 + 1
x ) in x. Observe now that

lim
T→∞

1

T
(−h(axT−1 + wT−1|q′[0,T−1]) + h(x0)) = 0,

since

h(wT−1) = h(axT−1 + wT−1|xT−1, q
′
[0,T−1])

≤ h(axT−1 + wT−1|q′[0,T−1]) ≤ h(xT ) < M <∞, (11.20)

for some M ∈ R+ (by the assumption that a limit exists for E[x2t ] and hence a
uniform upper bound exists for the entropy sequence {h(xt)}). Now, following the
analysis in the proof of Theorem 8.5.2 (see (8.21)), a memoryless Gaussian channel
is such that its capacity C satisfies

C ≥ lim sup
T→∞

1

T

T−1∑
t=0

I(xt; q
′
t|q′[0,t−1])

≥ lim sup
T→∞

1

2
log2

(
a2 +

σ2

( 1
T

∑T−1
t=0 Dt)

)
≥ 1

2
log2

(
a2 +

σ2

D

)
, (11.21)

where the last inequality follows from the continuity of log2(1 +
1
x) for x > 0.
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Hence, a lower bound on the capacity is expressed as C ≥ 1
2 log(

(a2D+σ2)
D ) for

the second moment to be less than d. This is tight for a Gaussian channel by linear
encoding and control policies. ��

11.7.3 Proof of Theorem 11.5.1

We take T = 1 and seek to minimize E[
∑1

t=0 x
2
t + Qu2t ], under the given

information structure. The cost is

E[Q(u1)
2 + (ax0 + u0 + w0)

2 +Q(u0)
2 + (x0)

2].

Clearly u1 = 0, and using completion of squares,

J(γ1, γ2, γ0) = E

[
Q(u1)

2 + (
a√

1 +Q
x0 +

√
1 +Qu0)

2

+(a2(1− 1

1 +Q
) + 1)(x0)

2 + (w0)
2

]
. (11.22)

Observing the fact that the estimation error is orthogonal to the best estimate at the
controller, the optimal control at time t = 0 can be evaluated as

u0 = − a

1 +Q
E[x0|z10 , z20 ].

Hence, the total cost for T = 1 can be written as

J(γ1, γ2, γ0) =
a2

1 +Q
Ez0 [(x0 − E[x0|z0])2]

+E[(x0)
2](a2(1− 1

1 +Q
) + 1) + E[(w0)

2]. (11.23)

As such, the remaining issue becomes the minimization of the estimation error
variance Ez0 [(x0 − E[x0|z0])2].

In the following, we first compute the performance of the best linear sensing
policies and introduce an alternative sensing scheme. We conclude the proof by a
comparison of the performances under the two schemes.

The performance of the optimal linear coding and decoding can be computed
from the performance of a minimum mean square error (MMSE) decoder ([311]):
In particular, the estimation error reduces to

E[x2]− [E[x2]E[x2]]A−1[E[x2]E[x2]]′, (11.24)
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where

A =

[
E[x2] + σ2

w′1 E[x2]

E[x2] E[x2] + σ2
w2′

]

with the induced channel noise variances

σ2
w′1 = σ2

v1 +
σ2
w1

P1

E[x2]+σ2
v1

, σ2
w′2 = σ2

v2 +
σ2
w2

P2

E[x2]+σ2
v2

.

We now provide an alternative sensing scheme, which will lead to a better
performance than the optimal linear policy. Toward obtaining the sensing scheme,
we first revisit a relevant result from source-channel coding literature to guide the
construction of the alternative coding scheme. In an information theoretic setup, for
a distributed joint source-channel code to be optimal in the sense of minimum mean-
square error, the following two conditions are sufficient (e.g., see [326]): (i) All
channels send independent information and (ii) all channels utilize the capacity
(source-channel needs to be matched).

Hence, one characteristic of an optimal code (in the information theoretic setup)
is the transmission of independent information over the channels (in the linear case,
the transmitted signals are inevitably correlated). Building on this insight, in the
scheme that will be provided, one of the coders will transmit the magnitude of the
signals they received at time 0 (we suppress the time index hereafter), and the other
will transmit the sign of the signal. These two are independent but note that they
do not satisfy the matching conditions with the channel (only a Gaussian source
is matched to a Gaussian channel). The approach is to express the signal to be
transmitted as x = ũ2u1, with ũ2 denoting the magnitude and u1 denoting the
sign of the random variable x. To minimize the power of the transmitted signal at
the sensor, we write ũ2 = u2 + η, where η is E[|x|] and only transmit u2. As such,
the decoder policy ζ : R× R → R will be as follows:

x̂(z1, z2) = ζ(z1, z2) = (û2(z2) + η)û1(z1)

with û2(z2) being the best linear decoder estimate of the shifted magnitude of the
source and û1(z1) the information regarding the sign of the source. We can write
the corresponding estimation error variance as

E[(x − x̂)2] = Pr(u1 	= û1)E[(u2 − û2)2|u1 	= û1]

+Pr(u1 = û1)E[(u2 − û2)2|u1 = û1]. (11.25)

Picking the values as a = 1.2, Q = 0.005, P1 = 10, P2 = 40, E[x2] = 5,
E[(v1)2] = 0, E[(v2)2] = 0, E[(w2)2] = E[(w1)2] = 2, E[w2] = 0.2 one checks
that with these values an upper bound on the cost J with the alternative coding
scheme is 5.36, whereas the optimal linear scheme leads to a cost of 5.51. Hence,
there exists a nonlinear scheme that outperforms the best linear policy. ��
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11.8 Concluding Remarks

This chapter has identified conditions for stabilization of a linear system over
Gaussian channels and the conditions for optimality in quadratic cost minimization.

We have presented counterexamples to optimality of linear policies for two
basic classes of Gaussian channels. The message is that when one departs from the
setting of the transmission of scalar Gaussian sources over scalar Gaussian channels,
linearity of optimal policies is a rather rare event unless matching occurs. We also
observed that cut-set type bounds can, in general, only be used as lower bounds for
system performance in real-time problems.
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(1/2)

∫ T

0

E[(xt − E[xt|y[0,t]])2]dt =
∫ T

0

I(x[0,t]; y[0,t])dt,

with the integration involving a continuous-time generalization of mutual informa-
tion. Weissman, Kim, and Permuter [388] considered an extension of this result
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Chapter 12
Agreement in Teams and the Dynamic
Programming Approach Under Information
Constraints

12.1 Introduction

As discussed extensively in Chaps. 2 and 3, at the heart of a decentralized decision
problem are the delineation of an information structure, identification of a loss
functional, and a probabilistic description of the unknown quantities (the so-called
states of nature).

One of the important messages in those two chapters was that some information
structures lead to computationally efficient derivations or programs for generation of
optimal decision policies regardless of the nature of loss functions or probabilistic
structure of the underlying system, but for some other information structures loss
functions and probabilistic structures also play a role in tractability. Particularly,
with nonclassical information structures, one may run into intractable problems as
far as the derivation of optimal decision rules goes, with one prime example being
Witsenhausen’s counterexample.

In this chapter, we will further elaborate on the issue of tractability and show
that in a dynamical decentralized system, agreement on certain variables through
communication and availability of some common information are essential for
the development of a systematic program to obtain optimal solutions. Agreement
on common information can be useful for a team policy to be generated, or a
hierarchically higher decision maker can organize the overall system according to an
acceptable or optimal performance. For example, in the context of stochastic control
theory (see Appendix D), for a large class of decentralized decision problems, all
one needs to do is construct a related Markov decision problem (MDP) (with an ap-
propriate Markovian state in a stage-independent state space and a cost function) and
work with such a chain if the information structure allows for a recursive (iterative)
derivation and computation using dynamic programming. The intractability of some
(but not all) decentralized control problems stems from the fact that it is not possible
to construct such a chain in a general setting. An important relevant question entails
the communication requirements for generating such an MDP which leads to a
tractable computation for optimal policies. This chapter addresses such problems.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4 12,
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In this chapter, Sect. 12.2 discusses the concepts of common knowledge and
agreement. Section 12.3 introduces the dynamic programming approach to team
decision problems, and Sect. 12.4 introduces the belief sharing information pattern
in view of developing optimal team policies for a dynamic setting and obtains
information requirements for such a pattern. Section 12.5 introduces a team cost-
rate function, which captures the trade-off between the information rate and the
optimal cost attained under an optimal policy (or the infimum cost over all policies
given a total information rate constraint).

12.2 Common Knowledge and Agreement

12.2.1 Common Knowledge

We begin our discussion by revisiting an important notion introduced by Aumann
[19]. Let (Ω,F , P ) be a probability space, that is, Ω a sample space, F a σ-field
of subsets of Ω, and P a probability measure, where we first assume that Ω is a
finite space. Let E ∈ F denote an event and further let two information variables
measurable on this probability space be available to two decision makers DM 1 and
DM 2 such that I1 is available at DM 1 and I2 is available to DM 2.

Consider a finite space setting for Ω. Let F i = σ(Ii) denote the sigma-field
generated by Ii, i = 1, 2 (hence F i is generated by a partition ofΩ). Let us say that
DM i knows E ∈ F at ω (and denote this by {ω ∈ E} ∈ F1) if there exists a set
Bi ∈ F i such that ω ∈ Bi ⊂ E. Assume that the partitions of each decision maker
(induced by the local information variables) are known by both decision makers.
Aumann introduced the notion of an event E being common knowledge between
DM 1 and DM 2 at ω ∈ E as follows: Whenever ω ∈ E happens, DM 1 knows E,
DM 2 knows E, DM 1 knows that DM 2 knows E, DM 2 knows that DM 1 knows
E, and so on. An event E is common knowledge if it is common knowledge for
all ω ∈ E.

Aumann made the following characterization of common knowledge based on
information fields: If E ∈ F1 ∩ F2, then it is common knowledge. This is not only
sufficient but also necessary: Suppose that E is common knowledge and some ω ∈
E takes place. As stated earlier, the event that DM 1 knows E at ω means that there
exists some set B ∈ F1 such that ω ∈ B ⊂ E. Now, if E is common knowledge, it
must be that {ω : {ω ∈ E} ∈ F1} ∈ F2, that is, DM 2 knows that DM 1 knows that
E took place, for all ω ∈ E. For this to happen for everyω ∈ E, it must be that there
exists a finite index set T2 such that E = ∪t∈T2E

2
t , where E2

t ∈ F2, t ∈ T2 and for
all t ∈ T2, E2

t ⊂ E (for, otherwise, there would exist some ω ∈ E such that DM
2 could not know if DM 1 knows whether E happened or not). A parallel argument
applies for DM 1 for another finite index set. Hence, E ∈ F1 ∩ F2. Thus, an event
E ∈ F is common knowledge only if E ∈ σ(I1) ∩ σ(I2). The if direction follows
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from the observation that {{ω ∈ E} ∈ F1} ∈ F2 (since {ω : {ω ∈ E} ∈ F1} = E
and E ∈ F2) and {ω : ω ∈ {{ω ∈ E} ∈ F1} ∈ F2} ∈ F1 and so on, for every
such finite iteration.

Hence, an eventE ∈ F is common knowledge if and only ifE ∈ σ(I1)∩σ(I2).
We note that this relation does not depend on the particular probability measure P .

This equivalence between the definition of common knowledge and the sigma-
field characterization can be extended to cases where Ω is an uncountable space.
However, one technical issue is that sets (of one knows that the other knows) of
the form {{ω ∈ E} ∈ σ(I1)} may not be an event in F , since this may involve
uncountable unions. By incorporating the probability measure P , Nielsen [293] has
provided an approach by defining an equivalence class among the elements in F
by excluding null events, allowing a generalized definition of Aumann to apply
for uncountable settings. Brandenburger and Dekel [79] have considered common
knowledge with probability 1, through a completion of sigma-fields by adding null
events to the information sets of decision makers (note that if one partitions Ω into
measurable sets with positive probability, the partition is a countable one).

Hereafter, we will adopt the definition of common knowledge based on the
sigma-field characterization. That is, an event E ∈ F is common knowledge if
E ∈ σ(I1) ∩ σ(I2). In most cases, however, common knowledge with probability
1 is sufficient since null events do not affect the expected costs.

Aumann’s main result is that if decision makers have a common prior measure
and if their posterior probability measures on some event is common knowledge,
then the posteriors should be equal. In the following subsection, we will discuss this
result in a more general context.

12.2.2 Asymptotic Agreement with Common Priors
but Different Posteriors

If the posteriors of two DMs are not common knowledge and yet the DMs have a
common prior, then a common posterior can be obtained through communication,
a topic which we will consider further in this chapter. In control and economics
literatures, agreement on such a common knowledge has typically been obtained
through iterative exchange of decisions.

Let X be an integrable random variable (so that E[|X |] < ∞), such as 1A, with
A denoting an event. Suppose two decision makers DM 1 and DM 2 have access to
some local random variables defined on a common probability space and correlated
with X , and exchange their conditional probability measures over time. Suppose
further that:

• The information σ-fields at each decision maker is increasing: F i
t ⊂ F i

t+1.
• For all n ∈ N, there exists m > n such that F i

m contains information on
E[X |F j

n], i, j = 1, 2. That is, the decision makers exchange their estimates
(but not their raw data) infinitely often.



402 12 Agreement in Teams and the Dynamic Programming

Note that by the smoothing property of conditional expectation,

E[E[X |F i
n+1|F i

n] = E[X |F i
n],

and that by Jensen’s inequality supnE[|E[X |F i
n]|] ≤ E[E[|X ||F i

n]] = E[|X |] <
∞. Hence, (E[X |F i

n],F i
n) is a martingale sequence and the submartingale con-

vergence theorem (Theorem C.2.2) leads to the conclusion that limn→∞E[X |F i
n]

exists almost surely for i = 1, 2. Let F i
∞ denote the smallest sigma-algebra

containingF i
n for all n ∈ N. Hence, the almost sure limit isE[X |F i

∞]. Furthermore,
E[X |F i

n] is a uniformly integrable martingale sequence since X is integrable
(see Theorem 3.3.2 in [70]) and as a consequence one also has that E[|E[X |F i

n]−
E[X |F i

∞]|] → 0.
Since E[X |F j

n] is F i
m measurable, it is also F i

∞ measurable and likewise for
all n. Hence E[X |F j

∞] is F i
∞ measurable, and E[X |F i

∞] is measurable on both
F1

∞ and F2
∞. Thus, it is measurable on ∩i=1,2F i

∞. Hence the expectations are
asymptotically equal and are common knowledge. A similar reasoning applies for a
larger number of decision makers as well. Such a reasoning has been considered by
Borkar and Varaiya [75] (see also Geanakoplos and Polemarchakis [159], Tsitsiklis
and Athans [367], Li and Başar [233], and Teneketzis and Varaiya [362], among
other contributions and approaches in the literature).

At this point, it is also worth stating that exchanging expectations is informa-
tion theoretically inefficient. We will discuss this issue further in the following
subsections.

12.2.3 Inconsistent Priors (Probability Models), Lack
of Agreement and Merging

Common knowledge is a notion which is crucially important in team problems.
In a team setting, if a prior measure on the event space is not common knowledge,
the problem ceases to be a team problem, since the decision makers effectively
solve different optimization problems, transforming the problem to a game problem:
To make this more explicit, let Q denote a measurement channel as in Chap. 4 and
define the following cost:

Eγ
π [c(x, u)] =

∫
π(dx)Q(dy|x)c(x, γ(y)).

Now, given a fixed policy γ, the costs Eγ
π [c(x, u)] and Eγ

μ [c(x, u)] lead to different
values since the prior measures π and μ are different [24]. Therefore Eγ

· [c(x, u)]
defines a (measurable) function on the space of priors (under weak convergence),
leading to possibly different values for different priors given a fixed policy γ.
In particular, with multiple DMs present, a cost function to be minimized will not
be a common cost when viewed as a function of team policies.
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This then brings up the question of what the DMs can do in the absence of such
common priors.

Consider a two-DM setup. If the priors are different, the fact that they are dif-
ferent may or may not be common knowledge. The DMs may run some agreement
protocol to exchange information. In such a case, the following may take place:

• The DMs may run an agreement protocol assuming that the other DM has the
same prior as himself [362] or have a probabilistic belief on the prior of the
other DM [89]. In these cases, the DMs may realize that their probability models
are inconsistent and yet reach an agreement or may not realize that the models
are inconsistent but reach an agreement or reach different conclusions. In other
scenarios the DMs may agree to disagree, that is, they may realize that their
models are different, and a communication exchange protocol will not provide
any further information that would change the agreement status or lack of it
(see Teneketzis and Varaiya [362] and Teneketzis and Castanon [89] for further
discussions).

• The DMs may run Bayesian estimators and asymptotically achieve common
knowledge in the more restricted sense of agreement for events in the future
(which Blackwell and Dubins [63] refer to as merging): When DMs have
inconsistent priors, they can update their probability measures for events taking
place as a function of future random variables with increasing information, and
in some settings the learned information can overrule the priors leading to a
form of consistency. Blackwell and Dubins [63] and Kalai and Lehrer [212]
have observed that a sufficient condition for agreement on such conditional
probabilities in the case of strictly common (knowledge) observations is that
the decision makers’ prior beliefs are absolutely continuous with respect to
each other (i.e., each of the DMs assigns a positive prior probability to an
event on which the other DM also has a positive prior probability). However,
in the cases with controlled observations, such a condition has been shown to
be too restrictive for many applications [143, 277]. The reader is also referred to
Diaconis and Freedman [117] on asymptotic consistency of inconsistent priors
and the importance of prior selection for uncontrolled observations. For a related
information theoretic angle, see Barron [47].

The notion of common knowledge, beyond agreement on a common probability
measure, is a subtle notion. Before we end this discussion, we provide an intriguing
example, considered by Littlewood (see Geanakoplos [158]): Suppose there are
three students sitting in a circle, each wearing either a red hat or a white hat (each
only knowing the colors of the other students’ hats). Suppose that all the hats are
actually red (and the students do not know that), and a teacher asks the students what
color their hats are. No student can provide a conclusive answer since there is not
sufficient information ruling out the possibility that their hats are not red, or not
white. However, if the teacher reveals that there is at least one red hat in the circle,
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and reveals this to everyone, so that this is common knowledge, and sequentially
asks the students whether their hats are red or not, the first two students cannot give
a conclusive answer, but the third one, given the inconclusive answers of the first
two students, can deduce that her hat is red by taking into account all the possible
answers of the first two students.

In the remaining of the chapter, we will primarily consider settings where the
DMs have common priors (and consistent probability models) but possibly different
posteriors.

12.2.4 Agreement in Finite Time Over Noisy Channels

Even though asymptotic agreement results require in general an unbounded time for
resolution, it may be the case that DMs in a team can agree in finite time over a
communication channel by incorporating encoding and decoding rules.

Consider two decision makers who communicate over a noisy channel with
feedback, with the goal of agreement on a certain variable which can take finitely
many values. This variable may be, for example, synchronization of encoding
times and agreement on zooming times considered earlier in Chaps. 8 and 9.
Even though (almost sure) agreement over such a noisy channel typically takes
an infinite amount of time, one may achieve agreement in finite expected time for
a class of channels. If the following assumption holds, then such agreements are
possible in finite expected time: The channel is such that there exist input letters
x1, x2, x3, x4 where D(P (·|x1)||P (·|x2)) = ∞ and D(P (·|x3)||P (·|x4)) = ∞,
where D(· · · || · · · ) denotes the divergence between two input probability measures
(see Definition 5.3.4). Here, x1 can be equal to x4 and x2 can be equal to x3,
and as an example, the erasure channel satisfies this property. The argument here
essentially follows from [83].

If there is no feedback or if there is noisy feedback, achieving agreement in finite
time requires conditions which are similar to having a strictly positive zero-error
capacity [103], which is equivalent to the condition that at least two messages can
be distinguished unambiguously for some finite block length n.

Hence, one may achieve common knowledge even through noisy channels
provided that the channels are reliable enough in the context described above. These
may, for example, allow for the application of the random-time state-dependent
stochastic drift arguments (see Theorem 6.2.4) to settings where a system’s stabiliza-
tion is conditioned on agreement between various decision makers communicating
over noisy channels. These may also allow for the dynamic programming principle,
considered in the following section, to be applicable.
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12.3 Common Knowledge as Information State
and the Dynamic Programming Approach
to Team Decision Problems

In a team problem, if all the random information at any given decision maker is
common knowledge between all decision makers, then the system is essentially
centralized. If only some of the system variables are common knowledge, the
remaining unknowns may or may not lead to a computationally tractable program
generating an optimal solution. A possible approach toward establishing a tractable
program is through the construction of a controlled Markov chain where the
controlled Markov state may now live in a larger state space (e.g., a space of
probability measures) and the actions are elements in possibly function spaces. This
controlled Markov construction may lead to a computation of optimal policies.

Such a dynamic programming approach has been adopted extensively in the
literature (see, e.g., [4,18,95,287,413,417] and generalized in [288]) through the use
of a team policy which uses common information to generate partial functions for
each DM to generate their actions using local information. Thus, in the dynamic
programming approach, a separation of team decision policies in the form of a
two-tier architecture, a higher-level controller and a lower-level controller, can be
established with the use of common knowledge.

In the following, we present the ingredients of such an approach, as formalized
by Nayyar, Mahajan and Teneketzis [288] and termed the common information
approach:

1. Elimination of irrelevant information at the DMs: In this step, irrelevant local
information at the DMs, say DM k, is identified as follows. By letting the policy
at other DMs to be arbitrary, the policy of DM k can be optimized as a best-
response function, and irrelevant data at DM k can be removed. Theorems 10.3.1
and 10.3.3 are examples of this step.

2. Construction of a coordinated system: This step identifies the common infor-
mation and local/private information at the DMs, after Step 1 above has been
carried out. A fictitious coordinator (higher-level controller) uses the common
information to generate team policies, which in turn dictates the (lower-level)
DMs what to do with their local information. The construction of quantization
policies in Chap. 5.2.2 and in (10.3) are examples of this step.

3. Formulation of the cost function as a partially observed Markov decision process
(POMDP), in view of the coordinator’s optimal control problem: A fundamental
result in stochastic control is that the problem of optimal control of a partially
observed Markov chain (with additive per-stage costs) can be solved by turning
the problem into a fully observed one on a larger state space where the state is
replaced by the “belief” on the state (see Appendix D). Theorems 10.3.2, 10.3.4,
and 10.5.1 are examples of this step.
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4. Solution of the POMDP leads to the structural results for the coordinator to
generate optimal team policies, which in turn dictates the DMs what actions to
take given their local information realizations. Theorem 10.5.1 is an example of
this step.

5. Establishment of the equivalence between the solution obtained and the original
problem and translation of the optimal policies. Any coordination strategy can be
realized in the original system. Note that, even though there is no real coordinator,
such a coordination can be realized implicitly, due to the presence of common
information.

In addition to the examples in Chap. 10, we will provide a further explicit setting
with such a recipe at work, in the context of the k-stage periodic belief sharing
pattern in the next section. In particular, Lemmas 12.4.1 and 12.4.2 will highlight
this approach.

When a given information structure does not allow for the construction of a
controlled Markov chain even in a larger, but fixed for all time stages, state space,
one question that can be raised is what information requirements would lead to such
a structure. We will also investigate this problem in the context of the one-stage
belief sharing pattern in the next section.

12.4 k-Stage Periodic Belief Sharing Pattern
and Communication Requirements

In this section, we will use the term belief for a probability measure-valued random
variable. This terminology has been used particularly in the artificial intelligence
and computer science communities, which we adopt here. We will, however, make
precise what we mean by such a belief process in the following.

12.4.1 k-Stage Periodic Belief Sharing Pattern

As mentioned earlier and discussed in detail in Appendix D, a fundamental result
in stochastic control is that the problem of optimal control of a partially observed
Markov chain can be solved by turning the problem into a fully observed one on
a larger state space where the state is replaced by the belief on the state. Such
an approach is very effective in the centralized setting; in a decentralized setting,
however, the notion of a state requires further specification. In the following, we
illustrate this approach under the k-step periodic belief sharing information pattern.

Consider a joint process {xt, yt, t ∈ Z+}, where we assume for simplicity
that the spaces where xt, yt take values from are finite-dimensional real-valued or
countable. They are generated by
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xt+1 = f(xt, u
1
t , . . . , u

L
t , wt),

yit = g(xt, v
i
t),

where xt is the state, uit ∈ U
i is the control action, and (wt, v

i
t, 1 ≤ i ≤ L)

are second order, zero-mean, mutually independent, i.i.d. noise processes. We also
assume that the state noise,wt, either has a probability mass function or a probability
measure with a density function. To minimize the notational clutter, P (x) will
denote the probability mass function for discrete-valued spaces or probability
density function for continuous spaces.

Suppose that there is a common information vector Ic
t at some time t, which is

available to all the decision makers. At times ks− 1, with k > 0 fixed, and s ∈ Z+,
the decision makers share all their information: Ic

ks−1 = {y[0,ks−1],u[0,ks−1]} and
for Ic

0 = {P (x0)}, that is, at time 0 the DMs have the same a priori belief on the
initial state. Hence, at time t, DM i has access to {yi[ks,t], Ic

ks−1}.
Until the next common observation instant t = k(s + 1) − 1 we can regard the

individual decision functions specific to DM i as {uit = γis(y
i
[ks,t], Ic

ks−1)}; we let
γs denote the ensemble of such decision functions and let γ denote the team policy.

It then suffices to generate γs for all s ≥ 0, as the decision outputs conditioned
on yi[ks,t], under γis(y

i
[ks,t], Ic

ks−1), can be generated. In such a case, we can define
γs(., Ic

ks−1) to be the joint team decision rule mapping Ic
ks−1 into a space of action

vectors: {γis(yi[ks,t], Ic
ks−1), i ∈ L={1, 2. . ., L}, t∈{ks, ks+1, . . . , k(s+1)−1}}.

Let [0, T −1] be the decision horizon, where T is divisible by k. Let the objective
of the decision makers be the joint minimization of

Eγ1,γ2,...,γL

x0
[
T−1∑
t=0

c(xt, u
1
t , u

2
t , . . . , u

L
t )],

over all policies γ1, γ2, . . . , γL, with the initial condition x0 specified. The cost
function

Jx0(γ) = E
γ
x0

T−1∑
t=0

c(xt,ut)

can be expressed as

Jx0(γ) = E
γ
x0 [

T
k −1∑
s=0

c̄(γs(., Ic
ks−1), x̄s)]

with

c̄(γs(., Ic
ks−1), x̄s) = E

γ
x̄s
[

k(s+1)−1∑
t=ks

c(xt,ut)].

Lemma 12.4.1 ([417]). Consider the decentralized system setup above. Let Ic
t be

a common information vector supplied to the DMs regularly every k time stages, so
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that the DMs have common memory with a control policy generated as described
above. Then, {x̄s := xks, γs(·, Ic

ks−1), s ≥ 0} forms a controlled Markov chain. �

Proof. Letγ[0,s] = {γm(., Ic
km−1), 0 ≤ m ≤ s}. It follows that

P (x̄s+1|γ[0,s], x̄[0,s])

=
∑

(x,y)[ks,k(s+1)−1]

P (x̄s+1, x[ks,k(s+1)−1],y[ks,k(s+1)−1]|γ[0,s], x̄[0,s])

=
∑

(x,y)[ks,k(s+1)−1]

( k(s+1)−1∏

m=ks

P (xm+1|xm, γs(y[ks,m], Ic
ks−1), x̄s, γ[0,s−1], x̄[0,s−1])

P (y1
m|xm)P (y2

m|xm) . . . P (yL
m|xm)

)

=
∑

(x,y)[ks,k(s+1)−1]

( k(s+1)−1∏

m=ks

P (xm+1|xm, γs(y[ks,m], Ic
ks−1))

P (y1
m|xm)P (y2

m|xm) . . . P (yL
m|xm)

)

= P (x̄s+1|γs(., Ic
ks−1), x̄s). ��

In view of the above, we have the following separation result.

Lemma 12.4.2 ([417]). Let Ic
t be a common information vector supplied to the

DMs regularly every k time steps. There is no loss in performance if Ic
ks−1 is

replaced by P (x̄s|Ic
ks−1). �

Proof. As we observed earlier, the cost can be written as a function of additive costs:

Jx0(γ) = E
γ
x0 [

T
k −1∑
s=0

c̄(γs, x̄s)],

with

c̄(γs, x̄s) = E
γ
x̄s
[

k(s+1)−1∑
t=ks

c(xt,ut)].

For the minimization of a stage-additive cost in partially observed Markov chains,
it suffices to transform the state to an equivalent state of conditional distributions
as discussed in Appendix D. This follows from the construction of equivalence
classes based on belief states as in the proof of Theorem 10.3.2. Hence P (x̄s|Ic

ks−1)
acts as a sufficient statistic. ��

An essential issue for a tractable solution is to ensure a common information
vector which will act as a sufficient statistic for future control policies. This can
be done via sharing information at every stage or some structure possibly requiring
larger but finite delay.

The above motivates us to introduce the following pattern.
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Definition 12.4.1 (k-stage periodic belief sharing pattern). An information
pattern in which the decision makers share their posterior beliefs to reach a joint
belief about the system state is called a belief sharing information pattern. If the
belief sharing occurs periodically every k-stages (k > 1), the DMs also share the
control actions they applied in the last k−1 stages, together with intermediate belief
information. In this case, the information pattern is called the k-stage periodic belief
sharing information pattern. �

Remark 12.4.1. For k > 1, it should be noted that the exchange of the control
actions is essential, as was also observed in performance-irrelevant signaling or
stochastic nestedness discussion in Sect. 3.5. The decision makers also need to
exchange information for intermediate beliefs. The following algorithmic discussion
will make this clear. � �

In accordance with the preceding remark, we now discuss how beliefs are shared
sequentially. We proceed by induction. Suppose at time ks − 1, the DMs have an
agreement on P (x̄s|Ic

ks−1) and know the policies used by all the DMs. It then
follows that

πs+1 := P (x̄s+1|y[ks,k(s+1)−1],u[ks,k(s+1)−1], πs)

can be written as

P (x̄s+1, (y,u)[ks,k(s+1)−1]|πs)∑
x̄s+1

P (x̄s+1, (y,u)[ks,k(s+1)−1] |πs)

=

∑
x[ks,k(s+1)−1]

P (x̄s+1, (x,y,u)[ks,k(s+1)−1] |πs)∑
x[ks,k(s+1)−1],x̄s+1

P (x̄s+1, (x,y,u)[ks,k(s+1)−1] |πs)
. (12.1)

We now express the numerator in (12.1) more explicitly as

∑
xk(s+1)−1

(
P (xk(s+1)|xk(s+1)−1,uk(s+1)−1)(

L∏
l=1

P (ylk(s+1)−1|xk(s+1)−1))

∑
xk(s+1)−2

(
P (xk(s+1)−1|xk(s+1)−2,uk(s+1)−2)(

L∏
l=1

P (ylk(s+1)−2|xk(s+1)−2))

. . . . . . . . .

∑
xks+1

(
P (xks+2|xks+1,uks+1)(

L∏
l=1

P (ylks+1|xks+1))

∑
xks

(
P (xks+1|xks,uks)(

L∏
l=1

P (ylks|xks))P (xks|Ic
ks−1)

))
. . .

))
.
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Plant

DM1

DM2

DM3

Fig. 12.1 Belief propagation
converges to the true
conditional measure in a
finite number of iterations in
a cycle-free network

Thus, if k > 1, then the DMs also need to share the control actions applied in the
previous k − 1 time stages, as well as beliefs on individual states.

When the belief sharing occurs at every stage, then controls can be generated by
each of the DMs, and hence the control actions need not be shared. We will discuss
this further while considering the belief propagation algorithm in the following.

Iterative Belief Propagation Algorithm

We now present an iterative approach for the belief sharing pattern. This will
be an extension of the belief propagation algorithm, which is a local message
exchange algorithm among several remote DMs/sensors located at the vertices of
a graph through the edges [146]. In a belief propagation algorithm, each DM has
an a priori belief about the state of the system. With local observations, each
DM generates an a posteriori belief and then exchanges this with other DMs.
Belief propagation reaches the correct measure (one that would be achieved under
a centralized information structure) if there are no cycles, for example, when the
topology of the communication graph connecting the DMs forms a tree.

We discuss below how belief exchanges can be carried out to achieve the belief
sharing pattern in view of (12.1) and (12.2). We first consider a cycle-free network
of DMs. Consider the setting of Fig. 12.1. For m ≥ 0, suppose the DMs have an
agreement on xks+m, before they receive their local observations, that is, they all
have access to P (xks+m|uks+m−1, P (xks+m−1|Ic

ks+m−1)) for all xks+m values.
Once DMs observe local measurements yiks+m, first, DM 1 sends to DM 2 its belief
on xks+m: P (xks+m|y1ks+m, P (xks+m|uks+m−1, P (xks+m−1|Ic

ks+m−1))). Thus,
DM 1 sends its belief about the state of the system at time ks+m to DM 2, for all
possible xks+m values. DM 2 then for all xks+m values generates its own belief on
xks+m, using its local information (only using the belief sent by DM 1 and its own
information, together with the prior belief), to obtain
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P (xks+m|(y1, y2)ks+m, P (xks+m|.))

=

P (y2|xks+m)P

(
xks+m|y1ks+m, P (·|·)

)

∑
xks+m

P (y2|xks+m)P

(
xks+m|y1ks+m, P (·|·)

) ,

where P (·|·) denotes P (xks+m|uks+m−1, P (xks+m−1|Ic
ks+m−1)), which is the

prior belief on xks+m using the information from the previous time stage. DM 2
then sends this information to DM 3, who upon receiving the information from DM
2 generates the final conditional probability measure

P (xks+m|(y1, y2, y3)ks+m, P (xks+m|uks+m−1, P (xks+m−1|Ic
ks+m−1))).

In the next iteration, DM 3 sends this belief information back to DM 2 and finally
to DM 1. Upon such a forward and backward sweeping, all the DMs have access to
the joint belief on the state of the system, which we denote by P (xks+m|I ′c

ks+m).
Now that all the DMs have the same belief on the state, they share all their control

actions that they applied at time ks+m. With this information, all of the DMs have
access toP (xks+m+1|uks+m, P (xks+m|I ′

ks+m)). This now acts as a common prior
for the next iteration in this algorithm. DM 1 once again sends its belief on the state
xks+m+1 and the iteration continues. As such, upon such a double forward and
backward sweeping (first for the beliefs, then for the control actions), all DMs have
access to the correct joint belief on the state of the system. Once this convergence
occurs for all time stages ks, ks+1, ks+2 . . . , ks+s−1, the DMs start the iteration
for the next time stage, eventually agreeing on the conditional measure for the time
stage k(s+ 1)− 1 and subsequently having a common prior on k(s+ 1).

Consider now the setting of Fig. 12.2. In this case, as there is a cycle (loop) in
the communication topology, it is essential that the DMs have a predefined route for
information exchange for convergence to the actual joint belief: If all DMs talk to
their neighbors, then one DM might have more than one path to send a message to
another DM and hence her opinions might be incorrectly emphasized by the virtue
of the cycle.

If the sharing of measurements occurs at every stage (that is, k = 1), then control
action sharing would not be needed, since every DM can generate the others’ control
actions given the joint belief, under deterministic policies. In this case, we only need
to apply the original belief sharing algorithm, which, in the cycle-free case, only
requires one forward and backward message passing.
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Plant

DM1

DM2

DM3

Fig. 12.2 When there are cycles in the communication topology, in our setting, one needs to pick
an ordering a priori and avoid cycles in the ordering until convergence is reached

12.4.2 Minimum Communication for the Belief
Sharing Pattern

In view of Lemmas 12.4.1 and 12.4.2, what needs to be exchanged is a sufficient
amount of information such that the DMs have a common P (x̄s|Ic

s), so that their
recursions can be based on this information. The question that we are interested in
addressing in this subsection is the following: How much information exchange is
needed between the DMs so that they have an agreement on the state of the system
(i.e., the joint belief on the state) and a dynamic programming recursion is possible?

As was done earlier in the book, the information in this context will be measured
by the number of bits; when the coding is variable rate, information is measured
by the average number of bits that need to be exchanged among the DMs, whereas
when the coding scheme is fixed rate, information is measured by the actual number
of bits that are exchanged for any given time stage t ≥ 0. The coding process
of the controller at DM i is a mapping measurable with respect to the sigma-
algebra generated by Ii

t . DM i’s coding policy for communicating to DM j maps
the information Ii

t to Mi,j at time t; that is, the set of entropy-coder variable-
rate or fixed-rate codewords for communication from DM i to DM j. Hence, at
each time stage t, DM i sends Ri,j(t) bits over an external channel to DM j.
Let Rt = {Ri,j(t), i 	= j, i, j ∈ 1, 2, . . . , L} such that belief sharing is possible.
Define Rt := infRt{

∑L
i=1

∑L
j=1,j 
=iR

i,j
t }, such that belief sharing is realized for

a given time stage t. Our aim is to obtain such Rt values.
In the following, we consider the case where the measurement spaces Yi, i ∈ L,

are discrete.
We consider the one-stage belief sharing pattern, first for a two-DM setup.

In this case, the information needed at both controllers is such that they all need to
exchange the relevant information on the state, and need to agree on P (x̄t|I1

t , I2
t ),

where Ii
t denotes the information available at DM i. In the one-step belief sharing

pattern, x̄t = xt, since the period for information exchange is k = 1.
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We note that, when control policies are deterministic, the actions can uniquely
be identified by both DMs. As such, control signals need not be exchanged.

Theorem 12.4.1 ([417]). To achieve the one-stage belief sharing information
pattern, the following rate region is achievable using fixed-rate codes:

R(t) =

{
(Ri,j , Rj,i) : Ri,j = 'log2(|St|)(, Rj,i = 'log2(sup

πi

|Sπi,t|)(,

St =

{
πi = P

(
xt

∣∣∣∣yit = yi, P (.|.)
)

: P

(
yit = yi

∣∣∣∣P (.|.)
)
> 0, yi ∈ Y

i

}
,

Sπi,t =

{
P

(
xt

∣∣∣∣yjt=yj, πi, P (.|.)
)

: P

(
yjt=y

j

∣∣∣∣πi, P (.|.)
)
> 0, yj∈Yj

}}
,

where P (.|.) stands for P (xt|Ic
t−1). �

Proof. The result follows from binning arguments used in the context of decentral-
ized communication. First, DM 2 learns the conditional belief of DM 1 and then
computes the joint belief using the algorithm discussed in the previous section.
DM 2 then sends the set of all distinct possible a posteriori joint beliefs to DM
1 consistent with the belief at DM 1. ��

The following is a counterpart of the above result when the communication rate
is measured by the average number of bits:

Theorem 12.4.2 ([417]). Suppose that the measurement variables are discrete
valued, i.e., Yi, i = 1, 2, are countable spaces. To allow for the belief sharing
information pattern, a lower bound on the minimum average number of bits to be
transmitted to DM i from DM j, i, j ∈ {1, 2}, i 	= j is

Rj,i ≥ H

(
P (xt|Ic

t−1, y
i
t, y

j
t )

∣∣∣∣P (xt|Ic
t−1), y

i
t

)
,

Ri,j ≥ H

(
P (xt|Ic

t−1, y
i
t, y

j
t )

∣∣∣∣P (xt|Ic
t−1), y

j
t , z

i
t

)
,

where zit is the variable sent to DM i. �

Proof. Let z1t be the random variable that is transmitted from DM 2 to DM 1. Then,
we have (with ||.|| denoting the total variation norm),

R2,1 ≥ inf

{
H(z1t ) : ||P (xt|Ic

t−1, z
1
t , y

1
t )− P (xt|Ic

t−1, y
1
t , y

2
t )|| = 0

}

≥ inf

{
H

(
z1t

∣∣∣∣P (xt|Ic
t−1), y

1
t

)
: ||P (xt|Ic

t−1, z
1
t , y

1
t )−P (xt|Ic

t−1, y
1
t , y

2
t )||=0

}
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≥ inf

{
H

(
z1t

∣∣∣∣P (xt|Ic
t−1), y

1
t

)
−H

(
z1t

∣∣∣∣P (xt|Ic
t−1, y

2
t , y

1
t ), P (xt|Ic

t−1), y
1
t

)

: ||P (xt|Ic
t−1, z

1
t , y

1
t )− P (xt|Ic

t−1, y
1
t , y

2
t )|| = 0

}

= inf

{
I

(
z1t ;P (xt|Ic

t−1, y
2
t , y

1
t )

∣∣∣∣P (xt|Ic
t−1), y

1
t

)

: ||P (xt|Ic
t−1, z

1
t , y

1
t )− P (xt|Ic

t−1, y
1
t , y

2
t )|| = 0

}

= inf

{
H

(
P (xt|Ic

t−1, y
2
t , y

1
t )

∣∣∣∣P (xt|Ic
t−1), y

1
t

)

−H
(
P (xt|Ic

t−1, y
2
t , y

1
t )

∣∣∣∣P (xt|Ic
t−1), z

1
t , y

1
t

)

: ||P (xt|Ic
t−1, z

1
t , y

1
t )− P (xt|Ic

t−1, y
1
t , y

2
t )|| = 0

}

= H

(
P (xt|Ic

t−1, y
2
t , y

1
t )

∣∣∣∣P (xt|Ic
t−1), y

1
t

)
.

Here the last two steps follow from the observation that given z1 the conditional
measures are identical, and the constraint is independent of

H(P (xt|Ic
t−1, y

1
t , y

1
t )|P (xt|Ic

t−1), y
1
t ).

A parallel discussion applies to the reverse direction. ��

We note that the information rate needed is less than the one needed for
achieving the centralized information pattern which would require all the decision
makers to exchange all their observations. By the above argument, one would need
Ri,j ≥ H(yit|y

j
t , Ic

t−1) for the centralized information pattern as a lower bound.
The entropy of the conditional measure is at most as high as the entropy of the
measured variable. This is because different outputs may lead to the same values for
P (y2t = y|xt, Ic

t−1).
We may also obtain an upper bound on the communication rates in the two-DM

setting for variable-rate schemes. The result is intuitive and is given below without
a proof.

Proposition 12.4.1. When the measurement space is discrete, to allow for the
one-stage belief sharing information pattern, an upper bound on the minimum
average amount of bits to be transmitted to DM i from DM j, i, j ∈ {1, 2}, i 	= j, is
given by
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Rj,i ≤ min

{
H

(
ζ(yjt , P (.|.))

∣∣∣∣P (.|.)
)
:

P

(
xt

∣∣∣∣P (.|.), y1t , y2t
)

= P

(
xt

∣∣∣∣P (.|.), yit, ζ(yjt , P (.|.))
)}

,

where P (.|.) denotes P (xt|Ic
t−1). �

Remark 12.4.2. In the setup considered, the goal is for each DM to compute
the joint belief. We note here the interesting discussion between decentralized
computation and communication provided by Csiszar and Körner (see [107],
Theorem. 4.6) and Orlitsky and Roche [300], as well as by Witsenhausen [395].
However, the settings of these works assumes a typical information theoretic setup
of an infinite copy of messages to be encoded and functions to be computed,
which is not applicable in a real-time setting. In particular, such a decentralized
computation problem can be posed as a multiterminal source coding problem with
a cost function aligned with the computation. See El Gamal and Kim [153] for
a comprehensive treatment of information exchange requirements for computing.
It is also important to point out that multi-round protocols typically reduce the
average rate requirements. See also Sect. 5.4 for related discussions in the context
of real-time coding. � �

In the case of more than two DMs, one encounters a distributed coding with side
information setting. In this case the DMs will send correlated information to another
decision maker. This leads to the following lower bound, which we provide without
a proof since it follows from the analysis made earlier for the two-DM case.

Proposition 12.4.2 ([417]). To allow for the belief sharing information pattern, a
lower bound on the minimum average amount of bits that needs to be supplied to
any DM i, {i = 1, 2, . . . , L} is obtained by the relation

Ri ≥ H

(
P (xt|Ic

t−1, y
1
t , y

2
t , . . . , y

L
t )

∣∣∣∣P (xt|Ic
t−1), y

i
t

)
.

�

Consider the following special case with zero-capacity measurement channels.

Proposition 12.4.3. Consider the case where the measurement channel for each of
the DMs has zero capacity. Then, as

P (ȳis = η|x̄s) = P (ȳis = β|x̄s)

for all η, β values that the measurements can take, there is no further information
that is needed for the belief sharing pattern. �
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Proof. By Theorem 12.4.2, a lower bound on the rate is

H

(
P (xt|Ic

t−1, y
1
t , y

2
t )

∣∣∣∣P (xt|Ic
t−1), y

1
t

)
= 0.

This rate bound is tight, since by Theorem 12.4.1, the rate achievable by a fixed-rate
scheme is zero as well. ��

A similar result applies to the case of more than two DMs, by Proposition 12.4.2.
As such, there is no need for information exchange since there is no information

generated by the measurement of each controller with regard to the state and no
transmitted information transmission/exchange will be useful. Hence, the commu-
nication required for belief sharing pattern is zero if all of the information channels
have zero-capacity. We note that, in such a case, the control actions do not need to
be exchanged either, as there is already an agreement on the beliefs, based on the
a priori belief, and the optimal team decisions can be generated in a decentralized
fashion.

12.5 A Team Cost-Rate Function

Building on the results of the previous section, here we generalize the value of
information exchange to general sequential team problems. Consider the general
setting of the L-agent dynamic team problem of Chap. 2 with dynamics

xt+1 = ft(xt, u
1
t , . . . , u

L
t ;wt) , t ∈ T , (12.2)

and measurements

yit = git(xt, u
1
t−1, . . . , u

L
t−1; v

i
t), i ∈ L, t ∈ T , (12.3)

where x0, w[0,T−1], v
i
[0,T−1], i ∈ L are random variables with specified probability

distributions. The information exchange is facilitated by an encoding protocol E
which, in the usual setting, admits partial functions from each of the encoders
measurable on the local information, described as follows. Let the information
available to DM i at time t be

Ii
t = {yi[1,t], ui[1,t−1], z

i,j
[0,t], z

j,i
[0,t], j ∈ L},

where zi,j is the information transmitted from DM j to DM i such that for t ≥ 1
with

zit = {zi,jt , j ∈ L} = E i
t (Ii

t−1, u
i
t−1, y

i
t) (12.4)

and for t = 0,
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zi0 = {zi,j0 , j ∈ L} = E i
0(y

i
0).

As before,

uit = γit(Ii
t),

for all DMs. Let E i = {E i
t , t ≥ 0}. Under an encoding policy E = {E1, E2, . . . , EL}

and control policies γ = {γ1, γ2, . . . , γL}, let the induced cost be

Eγ,E [
T−1∑
t=0

c(xt,ut)].

Definition 12.5.1. Given a decentralized control problem as above, team cost-rate
function C : R → R is

C(R) := inf
γ,E

{
Eγ,E [

T−1∑
t=0

c(xt,ut)] :
1

T
R(z[0,T−1]) ≤ R

}
,

where E denotes the class of all causal encoder protocols/policies leading to the
exchange of random variables zi,j, i, j ∈ L. �

Here, 1
T R(z[0,T−1]) denotes the average rate of communication. This rate can be

measured under fixed-rate or variable-rate formulations (see Sect. 5.3.2).
The formulation here can be adjusted to include sequential (iterative) information

exchange given a fixed ordering of actions, as opposed to a simultaneous (parallel)
information exchange at any given time t. That is, instead of (12.4), we may have

zit = {zi,jt , j ∈ {1, 2, . . . , L}} = E i
t (Ii

t−1, u
i
t−1, y

i
t, {z

k,i
t , k < i}). (12.5)

Proposition 12.5.1. A sequential (iterative) communication protocol may perform
strictly better than an optimal parallel communication protocol given a total rate
constraint. �

Proof. We provide an instance where a sequential transmission may lead to better
performance. Consider the following setup with two DMs [164]. Let x1, x2, p be
uniformly distributed binary random variables. Let

x = (p, x1, x2), y1 = p, y2 = (x1, x2),

and the loss function be

c(x, u1, u2) = 1{p=0}c(x
1, u1, u2) + 1{p=1}c(x

2, u1, u2),

with

c(s, u1, u2) = (s− u1)2 + (s− u2)2.
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Suppose that we wish to compute the minimum cost subject to a total rate of 2 bits
that can be exchanged.

Under a sequential scheme, if we allow DM 1 to encode y1 to DM 2 with one
bit, then a cost of 0 is achieved since DM 2 knows the relevant information that
needs to be transmitted to DM 1, again with one bit: If p = 0, x1 is relevant with an
optimal policy u1 = u2 = x1, and if p = 1, x2 is relevant with an optimal policy
u1 = u2 = x2, and a cost of 0 is achieved. However, if the information exchange
is parallel, then DM 2 does not know which state is the relevant one, and it can be
shown that a cost of 0 cannot be achieved under any coding policy. ��

We now make a few remarks.

Remark 12.5.1. Replacing the fixed-rate or variable-rate (entropy) constraint in
Definition 12.5.1 with a mutual information constraint may lead to more desirable
mathematical properties for C(R); however, such a definition would not be opera-
tional in a real-time setting in the same spirit as discussed in Sect. 5.4. �
�

Remark 12.5.2. In Sect. 5.4, we introduced the distortion-constrained entropy
minimization problem [184,427]. The dual of the problem is the entropy-constrained
distortion minimization problem, defined as

DQ(R) = inf{D = E[ρ(x,Q(x))] : H(Q(x)) ≤ R}.

Note that, for the causal quantization problem, the entropy-constrained
distortion minimization problem becomes a special case of the formulation in
Definition 12.5.1, with the Markov source being a control-free source and the fixed-
rate constraint being replaced with a variable-rate constraint. �

Remark 12.5.3. The formulation in Definition 12.5.1 can also be adjusted to allow
for multiple rounds of communication per time stage. Keeping the total rate
constant, having multiple rounds can enhance the performance for a class of team
problems while keeping the total rate constant. For an information theoretic setup,
see [245]. �

The discussion on the one-stage belief sharing pattern leads to the following.

Theorem 12.5.1. If R is large enough to allow the realization of the one-stage
belief sharing pattern, then the optimal performance that could have been achieved
for a centralized system would be achieved. �

Therefore, C(R) can be expressed explicitly in a regime when the one-stage
belief sharing pattern can be realized: The rate requirements for the one-stage belief
sharing pattern were considered earlier in the chapter. If the available information
rate cannot allow for belief sharing, however, the answer to the question on what
an optimal coordination/agreement scheme would be is not clear for a dynamic
team problem. Tsitsiklis [365] has observed that from a computational complexity
viewpoint, variants of such a problem is non-tractable (NP-hard). However, explicit
structural and existence results on optimal coding and control policies, extending
the findings in Chap. 10, would be useful to obtain approximately optimal policies.
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12.6 Concluding Remarks

This chapter developed further insights into the problem of the value of information
channels in decentralized stochastic control. At the expense of communications,
the controllers benefit from a reduced computational complexity. Further work is
needed to obtain a trade-off between computational complexity and communica-
tions, although the chapter provided some discussion toward a unifying theory in
this direction. It is perhaps counterintuitive first to think that more information
leads to less complexity, but stochastic control theory shows that all one needs is
to construct a Markov decision problem (with an appropriate controlled Markovian
state, and a cost function). The intractability of some decentralized optimal control
problems (but not all) stems from not being able to construct such a non-exploding
chain in a general setting. Belief sharing is an attempt to provide a systematic,
rate-efficient way to construct a tractable setting, via an appropriate Markov chain.
This pattern also provides a partial answer to what needs to be exchanged in real
time to obtain optimal performance subject to communication constraints when the
communication allows an agreement on beliefs.

One related problem is how to optimally encode the control actions; such an
analysis will intimately depend on the cost functions [367]. Furthermore, as shown
in [368], solutions to such problems can be computationally difficult. Finally, the
analysis of belief propagation algorithms for the belief sharing information pattern
is a practically important problem which merits further analysis.
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communication complexity has been considered in [318], and Tsitsiklis and Athans
[368] established intractability of cost-rate-type formulations from the point of view
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Appendix A
Topological Notions and Optimization

This appendix provides some background material on those aspects of real analysis
and optimization that are frequently used in the text; it also serves to introduce the
reader to some of the notation and terminology used in the book. For a more detailed
exposition on the topics covered here, two standard references are [109, 242].

A.1 Sets

A set S is a collection of elements. If s is a member (element) of S, we write s ∈ S;
if s does not belong to S, we write s 	∈ S. If S contains a finite number of elements,
it is called a finite set; otherwise it is called an infinite set. If the number of elements
of an infinite set is countable (i.e., if there is a one-to-one correspondence between
its elements and positive integers); we say that it is a denumerable (countable) set,
otherwise it is a nondenumerable (uncountable) set. An example for the latter is the
set of all real numbers, R.

A set X with some specific structure attached to it is called a space, and it is
called a linear (vector) space if this specific structure is of algebraic nature with
certain well-known properties which we assume the reader is familiar with. If S is
a vector space, a subset of S which is also a vector space is called a subspace. An
example of a vector space is the n-dimensional Euclidean space (denoted as R

n),
each element of which is determined by n real numbers. An x ∈ R

n can either
be written as a row vector x = (x1, . . . , xn), where x1, . . . , xn are real numbers
and denote the components of x, or as a column vector which is the “transpose” of
(x1, . . . , xn) [written as x = (x1, . . . , xn)

′]. We shall adopt the latter convention in
this text, unless indicated otherwise.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4,
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Linear Independence

Given a finite set of vectors {s1, . . . , sn}, in a vector space S, we say that this set of
vectors is linearly independent if the equation

∑n
i=1 αisi = 0 implies αi = 0 ∀i =

1, . . . , n. Furthermore, if every element of S can be written as a linear combination
of these vectors, we say that this set of vectors generates S. Now, if S is generated
by such a linearly independent finite set (say, X), it is said to be finite dimensional
with its unique “dimension” being equal to the number of elements ofX ; otherwise,
S is infinite dimensional.

A.2 Vector Spaces

Normed Linear (Vector) Spaces

A normed linear vector space is a linear (vector) space S which has some additional
structure of topological nature. This structure is induced on S by a real-valued
function which maps each element u ∈ S into a real number ‖u‖ called the norm
of u. The norm satisfies the following three axioms, where o is the zero element:

(1) ‖u‖ ≥ 0 ∀u ∈ S; ‖u‖ = 0 if, and only if, u = o

(2) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, for each pair u, v ∈ S

(3) ‖αu‖ = |α| · ‖u‖ ∀α ∈ R and for each u ∈ S

Convergent Sequences and Cauchy Sequence

Aninfinite sequence of vectors {s1, s2, . . .} in a normed vector space S is said to
converge to a vector s if, given an ε > 0, there exists an integer N such that ‖s −
si‖ < ε for all i ≥ N . In this case, we write si → s, or limi→∞ si → s, and call s
the limit point of an infinite sequence {si}. More generally, a point s is said to be a
limit point of the infinite sequence {si} if the latter has an infinite subsequence {si}
that converges to s.

An infinite sequence {si} in a normed vector space is said to be a Cauchy
sequence if, given an ε > 0, there exists an integer N such that ‖sn − sm‖ < ε
for all n, m ≥ N . A normed vector space S is said to be complete, or a Banach
space, if every Cauchy sequence in S is convergent to an element of S.
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Open, Closed, and Compact Sets

Let S be a normed vector space. Given an s ∈ S and an ε > 0, the set Nε(s) =
{x ∈ S : ‖x − s‖ < ε} is said to be an ε- neighborhood of s. A subset X of S
is open if, for every x ∈ X , there exists an ε > 0 such that Nε(x) ⊂ X . A subset
X of S is closed if its complement in S is open; equivalently, X is closed if every
convergent sequence in X has its limit point in X . Given a set X ⊂ S, the largest
subset of X which is open is called the interior of X .

A subset X of a normed vector space S is said to be (sequentially) compact if
every infinite sequence in X has a convergent subsequence whose limit point is
in X . If X is finite dimensional, compactness is equivalent to being closed and
bounded.

Denseness and Separability

Let S be a normed linear space and X be a subset of S. X is said to be dense in S
if given any s ∈ S and ε > 0, there exists x ∈ X such that ‖x − s‖ ≤ ε. S is said
to be separable if there exists a countable set X ⊂ S which is dense in S.

Metric Spaces

A metric defined on a set X is a function d : X ×X → R+ such that

(1) d(x, y) ≥ 0, ∀x, y ∈ X, d(x, y) = 0 if, and only if, x = y

(2) d(x, y) = d(y, x), ∀x, y ∈ X

(3) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X

A metric space (X, d) is a set equipped with a metric d. A normed linear space
is also a metric space, with metric d(x, y) = ‖x − y‖. A metric space (X, d)
is complete, if every Cauchy sequence in the space has a limit in X (where the
definition of a Cauchy sequence is the same as that for a normed linear space with
‖ · ‖ replaced by d(·, ·)). A complete, separable metric space is also called a Polish
space.

Inner-Product Spaces

Given a linear vector space S, an inner product on S is a bilinear map 〈·, ·〉 : S ×
S → R which is positive definite and symmetric, i.e.,
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(1) 〈u, u〉 ≥ 0 ∀u ∈ S; 〈u, u〉 = 0 if, and only if, u = o, the zero element
(2) 〈u, v〉 = 〈v, u〉, ∀u, v ∈ S

(3) 〈αu + βv, γw〉 = αγ〈u,w〉 + βγ〈v, w〉 ∀α, β, γ ∈ R;u, v, w ∈ S

An important property of the inner product is that it satisfies the Cauchy–Schwarz
inequality:

|〈u, v〉|2 ≤ 〈u, u〉 〈v, v〉

A vector space S, equipped with an inner product 〈·, ·〉, is called an inner-product
space. The inner product induces a natural norm, ‖u‖ :=

√
〈u, u〉, so that an inner-

product space is also a normed vector space. Furthermore, if this inner-product space
is also complete (i.e., a Banach space), it is called a real Hilbert space, which we
denote by H.

An important notion in a Hilbert space H is orthogonality. We say that u ∈ H
and v ∈ H are orthogonal if 〈u, v〉 = 0, in which case we write u⊥v. If S is a
subspace of H, then the orthogonal complement S⊥ is defined by

S⊥ = {u ∈ H : 〈u, v〉 = 0 ∀v ∈ S}.

An important property of S⊥ is that it is a closed linear subspace of H, and that
given any x ∈ H there is a unique element in S⊥ (say xS⊥ ) and a unique element
in the closure of S (S̄) (say xS̄) such that

x = xS̄ + xS⊥ .

Equivalently, H can be written as the direct sum of S̄ and S⊥:

H = S̄ ⊕ S⊥.

In the above, xS⊥ is called the orthogonal projection of x on S⊥, and we have the
norm identity

‖x‖2 = ‖xS̄‖2 + ‖xS⊥‖2,

which is also known as the Pythagorean theorem.
A fundamental result in functional analysis, which we will have occasion to use

in the text, is the celebrated orthogonal projection theorem:

The Orthogonal Projection Theorem. Let H be a Hilbert space and S a closed
subspace of it. Then, given x ∈ H, there exists a unique s0 ∈ S, such that

‖x− s0‖ = min
s∈S

‖x− s‖.

Furthermore, a necessary and sufficient condition for s0 ∈ S to be the minimizing
vector is that (x− s0)⊥S.
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Transformations and Continuity

A mapping f of a vector space S into a vector space T is called a transformation or
a function and is written symbolically f : S → T or y = f(x), for x ∈ S, y ∈ T . f
is said to be a functional if T = R.

Let f : S → T where S and T are normed linear spaces. f is said to be
continuous at a point x0 ∈ S if, for every ε > 0, there exists a δ > 0 such that
f(x) ∈ Nε(f(x0)) for every x ∈ Nδ(x0), where the notation Nδ(z) := {x :
‖x−z‖ ≤ δ} denotes the ball with radius δ centered at z. If f is continuous at every
point of S it is said to be continuous everywhere or, simply, continuous. f is said
to be uniformly continuous if δ depends only on ε and not on x0. Furthermore, f is
said to be linear (or a linear operator) if f(αu + βv) = αf(u) + βf(v), for all
u, v ∈ S; α, β ∈ R.

Let S and T be as above and F be a family of functions from S to T . The family
F is said to be equicontinuous at a point x0 ∈ S if, for every ε > 0, there exists a
δ > 0 such that f(x) ∈ Nε(f(x0)) for all f ∈ F and for every x ∈ Nδ(x0). The
family F is said to be equicontinuous if it is equicontinuous at each x ∈ S. The
family F is uniformly equicontinuous if δ depends only on ε and not on x0.

Let S and T be Banach spaces, and A : S → T a linear operator. The quantity

" A#= sup
‖x‖≤1

‖Ax‖

is called the (operator) norm of A, and A is said to be bounded if there exists a
scalar k > 0 such that " A #≤ k. A is said to be a contraction operator if this
bound is less than 1, i.e., " A#< 1.

If S = T , another related quantity is the spectral radius of a bounded linear
operatorA : S → S, defined by

ρ(A) = lim
k→∞

sup [" Ak #]1/k.

An important relationship between the norm and the spectral radius is the inequality

ρ(A) ≤" A#,

for A : S → S.
Now again let S and T not necessarily be the same, but assume that each is a

Hilbert space. Then, the adjoint of a linear bounded operator A : S → T , denoted
by A∗, is defined by the equality

< Au, v >=< u,A∗v >, ∀u ∈ S, ∀ v ∈ T.

Note that here the two inner products are not the same, unless S and T are identical.
Now let S = T =: H, a common Hilbert space, and introduce the notation L(H) to
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denote the space of all linear bounded operators from H into H. Then we have the
following useful terminology and properties:

1. A ∈ L(H) is said to be self-adjoint if A∗ = A.
2. For a self-adjoint operatorA,

" A#= [ρ(AA∗)]
1
2 = [ρ(A∗A)]

1
2 .

3. A self-adjoint operatorA is positive (equivalently, nonnegative) if

〈u,Au〉 ≥ 0, ∀u ∈ H.

A is strongly positive if there exists a scalar α > 0 such that

〈u,Au〉 ≥ α〈u, u〉, ∀u ∈ H.

4. The norm of a self-adjoint operatorA ∈ L(H) is also given by

" A#= sup‖x‖≤1|〈x,Ax〉|.

5. Every strongly positive operatorA ∈ L(H) has a unique strongly positive square
root A

1
2 ∈ L(H), so that A

1
2A

1
2 = A.

6. Given an A ∈ L(H), its inverse A−1 is defined by

A−1A = AA−1 = I,

where I ∈ L(H) is the identity operator (i.e., Ix = x, ∀x ∈ H). A−1 also
belongs to L(H).

7. Let S be a closed linear subspace of H. P ∈ L(H) is called a projection operator
(into S) if Px ∈ S for every x ∈ H. Here S is called the range space of P . Two
important properties of P are that (i) P 2 = I (i.e., P is idempotent) and (ii)
" P #= 1. (Projection operators are also defined on more general Banach
spaces.)

8. Given two operatorsA, B ∈ L(H), the following inequalities hold:

" AB # ≤ " A# " B #
ρ(AB) ≤ ρ(A)ρ(B).

(The first inequality is valid also on Banach spaces, S and T , whereA :M → T ,
B : S → M , and M is another Banach space. Here the operator norm is the one
induced by the norm defined on T .)

If a linear operator has finite-dimensional domain and range spaces, it is called a
matrix, whose properties are further discussed in the following section.
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A.3 Matrices

An (m× n) matrix A is a rectangular array of numbers, called elements or entries,
arranged in m rows and n columns. The element in the ith row and jth column ofA
is denoted by a subscript ij, such as aij or [A]ij , in which case we write A = {aij}.

A matrix is said to be square if it has the same number of rows and columns; an
(n× n) square matrixA is said to be an identity matrix if aii = 1, i = 1, . . . , n and
aij = 0, i 	= j, i, j = 1, . . . , n. An (n × n) identity matrix will be denoted by In
or, simply, by I whenever its dimension is clear from the context.

The transpose of an (m × n) matrix A is the (n ×m) matrix A′ with elements
a′ij = aji. A square matrix A is symmetric if A = A′; it is nonsingular if there is
an (n× n) matrix called the inverse of A, denoted by A−1, such that A−1A = I =
AA−1.

Eigenvalues and Quadratic Forms

Corresponding to a square matrix A, a scalar (possibly complex valued) λ and a
nonzero vector (also possibly complex valued) x satisfying the equation Ax = λx
are said to be, respectively, an eigenvalue and an eigenvector of A.

A square symmetric matrix A has all its eigenvalues real. If they are all positive
(respectively, nonnegative), then A is said to be positive definite (respectively,
nonnegative definite or positive semi-definite). An equivalent definition is as follows.
A symmetric (n × n) matrix A is said to be positive definite (respectively,
nonnegative definite) if x′Ax > 0 (respectively, x′Ax ≥ 0) for all nonzero x ∈ R

n.
The matrix A is said to be negative definite (respectively, nonpositive definite) if the
matrix (−A) is positive (respectively, nonnegative) definite. We symbolically write
A > 0 (respectively,A ≥ 0) to denote that A is positive (respectively, nonnegative)
definite.

Norm and Spectral Radius

The norm of an (m× n) matrix A, consistent with the operator norm introduced in
Sect. A.2, is given by

" A#= max{λ : det(A′A− λI) = 0} ;

in other words, " A # is the maximum eigenvalue of the symmetric matrix A′A
(or equivalently that of AA′).
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If A is a square matrix, its spectral radius is equal to

ρ(A) = max{|λ| : det(A− λI) = 0},

that is, it is the magnitude of that eigenvalue of A with maximum absolute value.

A.4 Convex Sets and Functionals

A subset C of a vector space S is convex if for every u, v ∈ C and every α ∈ [0, 1],
we have αu+(1−α)v ∈ C. A functional f : C → R defined over a convex subset
C of a vector space S is convex if, for every u, v ∈ C and every scalar α ∈ [0, 1],
we have f(αu+ (1−α)v) ≤ αf(u) + (1− α)f(v). If this is a strict inequality for
every α ∈ (0, 1), then f is strictly convex. The functional f is concave if (−f) is
convex and strictly concave if (−f) is strictly convex.

A functional f : Rn → R is continuously differentiable if, with x ∈ R
n, the

partial derivatives of f with respect to the components of x exist and are continuous,
in which case we write

∇f(x) = [∂f(x)/∂x1, . . . , ∂f(x)/∂xn].

∇f(x) is the gradient of f at x and is a row vector. We shall also use the notation
fx(x) or df(x)/dx to denote the same quantity. If we partition x into two vectors
y and z of dimensions n1 and n − n1, respectively, and are interested only in the
partial derivatives of f with respect to the components of y, then we use the notation
∇yf(y, z) or ∂f(y, z)/∂z to denote this partial gradient.

Let g : R
n → R

n be a vector-valued function whose components are
continuously differentiable with respect to the components of x ∈ R

n. Then, we
say that g(x) is differentiable, with the derivative dg(x)/dx being an (m × n)
matrix whose ijth element is ∂gi(x)/∂xj . (Here gi denotes the ith component of
g.) The gradient ∇f(x) being a vector, its derivative (which is the second derivative
of f : R

n → R) will thus be an (n × n) matrix, assuming that f(x) is twice
continuously differentiable in terms of components of x. This matrix, denoted by
∇2f(x), is symmetric and is called the Hessian matrix of f at x.

Properties of Convex Functionals

1. A functional f : Rn → R which is twice continuously differentiable on R
n is

convex (respectively, strictly convex) if, and only if, its Hessian matrix ∇2f(x)
is nonnegative definite (respectively, positive definite) for all x ∈ R

n.
2. Let C be a convex subset of a vector space S and f : C → R be a convex

(respectively, strictly convex) functional. Let u and v be two vectors in C and let
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[a, b] be a subinterval of R such that for all ε ∈ [a, b], u + εv ∈ C. Then, the
function h : R → R, defined by h(ε) := f(u + εv), is a convex (respectively,
strictly convex) functional on [a, b].

3. If h : R → R is convex on an interval [a, b], then for c1, c2, c3 such that a ≤
c1 < c2 < c3 ≤ b,

h(c2)− h(c1)

c2 − c1
≤ h(c3)− h(c1)

c3 − c1
.

If h is strictly convex, then the inequality above is strict.
4. Let h, and (c1, c2) be as above, and let ḣ+(c1) denote the right-hand derivative

of h at the point c1. Then,

ḣ+(c2) ≤
h(c2)− h(c1)

c2 − c1

with the inequality being strict if h is strictly convex. Of course, if h is
differentiable at c1, then the derivative of h satisfies this bound.

A.5 Optimization of Functionals

Given a functional f : S → R, where S is a vector space, and a subset X ⊆ S, by
the optimization problem

minimize f(x) subject to x ∈ X,

we mean the problem of finding an element x∗ ∈ X (called a minimizing element
or an optimal solution) such that

f(x∗) ≤ f(x) ∀x ∈ X.

This is sometimes also referred to as a globally minimizing solution in order to
differentiate it from the other alternative—a locally minimizing solution. An element
x◦ ∈ X is called a locally minimizing solution if there exists an ε > 0 such that

f(x◦) ≤ f(x) ∀x ∈ Nε(x
◦) ∩X,

i.e., we compare f(x◦) with values of f(x) in that part of a certain ε-neighborhood
of x◦, which lies in X .

For a given optimization problem, it is not necessary that an optimal solution
exists; an optimal solution will exist if the set of real numbers {f(x) : x ∈ X} is
bounded below and there exists an x∗ ∈ X such that inf{f(x) : x ∈ X} = f(x∗),
in which case we write
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f(x∗) = inf
x∈X

f(x) = min
x∈X

f(x).

If such an x∗ cannot be found, even though inf {f(x) : x ∈ X} is finite, we simply
say that an optimal solution does not exist, but we declare the quantity

inf {f(x) : x ∈ X} or inf
x∈X

f(x)

as the optimal value of the optimization problem. In this case, given any ε > 0, one
can find xε ∈ X with the property that f(xε) < infx∈X f(x)+ε, that is, one can get
arbitrarily close to infx∈X f(x) by picking an element out of X . If {f(x) : x ∈ X}
is not bounded below, i.e., infx∈X f(x) = −∞, then neither an optimal solution
nor an optimal value exists.

An optimization problem which involves maximization instead of minimization
may be converted into a minimization problem by simply replacing f by −f .
Any optimal solution of this minimization problem is also an optimal solution
for the initial maximization problem and the optimal value of the former. When a
maximizing element x∗ ∈ X exists, then supx∈X f(x) = maxx∈X f(x) = f(x∗).

Existence of Optimal Solutions

In the minimization problem formulated above, an optimal solution exists if X is a
finite set, since then there is only a finite number of comparisons. When X is not
finite, however, existence of an optimal solution is guaranteed if f is continuous
(or lower semicontinuous) and X is compact—a result known as the Weierstrass
theorem. For the special case when X is finite dimensional, we should recall that
compactness is equivalent to being closed and bounded.

Necessary and Sufficient Conditions for Optimality

Let S = R
n and f : Rn → R be a differentiable function. If X is an open set, a

first-order necessary condition for an optimal solution to satisfy is

∇f(x∗) = 0.

If, in addition, f is twice continuously differentiable on R
n, a second-order

necessary condition is

∇2f(x∗) ≥ 0.
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The pair of conditions {∇f(x∗) = 0,∇2f(x∗) > 0} is sufficient for x∗ ∈ X
to be a locally minimizing solution. These conditions are also sufficient for global
optimality if, in addition,X is a convex set and f is a convex functional on X .

These results, by and large, hold also for the case when S is infinite dimensional,
but then one has to replace the gradient vector and the Hessian matrix by first and
second Gateaux (or Frèchet) derivatives, and positive definiteness requirement is
replaced by “strong positiveness” of an operator. See [242] for these extensions.

A.6 Contraction Mappings and Fixed-Point Theorems

Let S be a normed linear vector space, with norm ‖ ·‖. A mapping f of S into itself,
is called a contraction of S (or equivalently, a contraction mapping) if there exists
a scalar p ∈ [0, 1) such that

‖f(u)− f(v)‖ ≤ p‖u− v‖, ∀u, v ∈ S.

It is possible to extend this definition to metric spaces where the “distance” function
‖u − v‖ is replaced by a more general metric d(u, v). Consider an equation of
the form

f(u) = u

defined on S. Such an equation is known as a fixed-point equation, and any solution
to it (i.e., a u◦ ∈ S such that f(u◦) = u◦) is called a fixed point of f .

Theorem A.6.1 (Banach). If S is a Banach space under the norm ‖ · ‖ and f :
S → S is a continuous mapping which is also a contraction, then f has a unique
fixed point. �

It is possible for f to have a fixed point without being a contraction mapping.
A sufficient condition for such an existence is provided in the following theorem.

Theorem A.6.2 (Schauder). Let S be a Banach space, X a nonempty convex set
in S, and Y a compact subset of X . Let f : X → Y be a continuous map. Then
there is a fixed point of f (not necessarily unique). �

When specialized to finite-dimensional spaces, this result is known as Brouwer’s
fixed-point theorem, which of course predates the more general one:

Theorem A.6.3 (Brouwer). Let S ≡ R
n and X be a closed and bounded subset

of S. Let f : X → X be continuous. Then, f has a fixed point. �

One way of computing the fixed point of a mapping f : S → S, is to use the
iteration

u(k+1) = f(u(k)), k = 0, 1, . . .
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which is called “successive approximation.” If S is a Banach space and f is
contraction mapping, then the iteration above converges to the unique fixed point
of f , for all starting points u(0) ∈ S. If f is an affine mapping, then this result can
be strengthened, as given in the following theorem.

Theorem A.6.4 (Successive Approximation). Let S be a Banach space and A a
linear bounded operator mapping S into itself. Consider the equation

u = Au + b (∗)

defined on S, where b ∈ S is given. Furthermore, consider the “successive
approximation”

u(k+1) = Au(k) + b, k = 0, 1, . . . (∗∗)

to the solution of (∗). Then, the sequence {u(k)} generated by (∗∗) converges to a
unique element of S, for any starting point u(0) ∈ S, if, and only if, the spectral
radius of A is less than 1 (i.e., ρ(A) < 1). The limit of {u(k)} is the unique fixed
point of (∗). �



Appendix B
Probability Theory and Stochastic Processes

This appendix presents some notions of probability theory and stochastic processes
which are used in the text. For a more complete exposition the reader should consult
with the standard texts on probability theory, such as [16, 137, 241, 304], and texts
on stochastic processes, such as [402].

B.1 Probability

B.1.1 Measurable Spaces

Let X be a collection of points (elements) and F be a collection of subsets of X with
the following properties:

• X ∈ F
• If A ∈ F , then X \A ∈ F
• If Ak ∈ F , k = 1, 2, 3, . . . , then their countable union is also in F , i.e.,

∞⋃
k=1

Ak ∈ F

Then, F is said to be a σ-field. By De Morgan’s laws, F has to be closed under
countable intersections as well. Note, for example, that the full power set of any set
is a σ-field. If the countable union above is replaced with finite union, F is called a
field.

With the above, the pair (X,F) is called a measurable space.
If elements of X correspond to outcomes of a random experiment, then X is

called a sample space and its subsets are called events. In this case one generally
uses the notation Ω instead of X.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
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Let A be a collection of sets and J be the smallest σ-field containing the sets
in A; in this case, we write J = σ(A). An important class of σ-fields is the Borel
σ-field on a metric (or more generally topological) space, generated by open sets.
We will denote the Borel σ-field on such a space X by B(X). A measurable space
(X,B(X)) is called standard Borel, if X is a Polish space.

Definition B.1.1. If (X,B(X)) and (Y,B(Y)) are two measurable spaces, we say a
mapping h : X → Y is measurable if

h−1(B) = {x : h(x) ∈ B} ∈ B(X), ∀B ∈ B(Y).

�

A positive measure μ on (X,B(X)) is a function from B(X) to [0,∞] which is
countably additive, that is, for Ak, Aj ∈ B(X) and Ak ∩ Aj = ∅ ∀k, j ∈ N,

μ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

μ(Ak).

Definition B.1.2. μ is a probability measure if it is a positive measure and
μ(X)= 1. �

Definition B.1.3. A measure μ is finite if μ(X) < ∞ and σ-finite, if there exists a
collection of subsets {Ak} such that X =

⋃∞
k=1 Ak with μ(Ak) <∞ for all k. �

Theorem B.1.1 (Carathéodory’s Extension Theorem). Let M be a collection of
subsets, which is a field, and suppose that there exists a countably additive measure
P on M. Then, there exists a unique measure P ′ on the σ-field generated by M,
σ(M), which is consistent with P on M. �

Theorem B.1.2 (Kolmogorov’s Extension Theorem). Let X be a complete, sepa-
rable metric space and let μn be a probability measure on X

n, the n product of X,
for each n = 1, 2, . . ., such that

μn(A1 ×A2 × · · · ×An) = μn+1(A1 ×A2 × · · · ×An × X),

for every n and every sequence of Borel sets Ak. Then, there exists a unique
probability measure μ on (X∞,B(X∞)) which is consistent with each of the μn’s.

�

The above result is useful because to determine whether two measures are equal
it suffices to check if they are equal on the collection of sets which generate the
σ-field, and not necessarily on the entire σ-field. For example, if the σ-field on a
product space X

Z is generated by a sequence of finite-dimensional distributions,
one can define a measure on the product space which is consistent with the finite-
dimensional distributions. In particular, the Borel σ-field defined on a product space
is generated by the open sets in the product topology, which in turn allows one
to uniquely define a probability measure on the infinite-dimensional space by its
measures on cylinder sets of the form
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{x = (x0, x1, · · · ) ∈ X
Z+ : xm ∈ Am ∈ B(X),m ∈ I ⊂ Z+}.

One could construct the Lebesgue measure on the Borel σ-field on R by restricting
it to intervals only, since a field can be constructed by finitely many disjoint unions
of intervals. The Lebesgue measure λ is defined on the Borel σ-field such that for
A = (a, b), λ(A) = b− a.

B.1.2 Integration

Let h be a nonnegative measurable function from (X,B(X)) to (R,B(R)). The
Lebesgue integral of h with respect to a measure μ can be defined in three steps:

First, forA ∈ B(X), define 1{x∈A} (or 1(x∈A), or 1A(x)) as an indicator function
for event x ∈ A, that is, the function that takes the value 1 if x ∈ A, and 0 otherwise.
In this case,

∫
X
1{x∈A}λ(dx) =: λ(A).

Next, define simple functions such that forA1, A2, . . . , An, all in B(X), and pos-
itive numbers b1, b2, . . . , bn, hn(x) =

∑n
k=1 bk1{x∈Ak}. Then,

∫
X
hn(x)λ(dx) =:∑n

k=1 bkλ(Ak).
Finally, observe that for any given nonnegative measurable function h, there

exists a sequence of simple functions hn such that hn(x) ↑ h(x) monotonically.
Then, the Lebesgue integral is defined as

∫
h(x)μ(dx) := lim

n→∞

∫
hn(x)μ(dx) = lim

n→∞

n∑
k=1

bnkλ(A
n
k ).

There are four important convergence theorems related to integration.

Theorem B.1.3 (Monotone Convergence Theorem). If μ is a σ-finite positive
measure on (X,B(X)) and {fn, n ∈ Z+} is a sequence of measurable functions
from X to R which pointwise, monotonically, converges to f , that is, 0 ≤ fn(x) ≤
fn+1(x) for all n, and

lim
n→∞

fn(x) = f(x),

for μ-almost every x, then

lim
n→∞

∫
X

fn(x)μ(dx) =

∫
X

f(x)μ(dx).

�
Theorem B.1.4 (Extended Monotone Convergence Theorem). Let h be a mea-
surable and integrable function from X to R, μ be a σ-finite positive measure
on (X,B(X)), and {fn, n ∈ Z+} be a monotonically nondecreasing sequence
of measurable functions from X to R which pointwise converges to f such that
h(x) ≤ fn(x) ≤ fn+1(x) for all n, and
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lim
n→∞

fn(x) = f(x),

for μ-almost every x, and
∫
μ(dx)h(x) > −∞. Then,

lim
n→∞

∫
X

fn(x)μ(dx) =

∫
X

f(x)μ(dx).

�

Theorem B.1.5 (Fatou’s Lemma). (also Fatou–Lebesgue Theorem) If μ is a
σ-finite positive measure on (X,B(X)) and {fn, n ∈ Z+} is a sequence of
nonnegative measurable functions from X to R, then

∫
X

lim inf
n→∞

fn(x)μ(dx) ≤ lim inf
n→∞

∫
X

fn(x)μ(dx).

�

Theorem B.1.6 (Dominated Convergence Theorem). If (i) μ is a σ-finite positive
measure on (X,B(X)), (ii) g(x) ≥ 0 is a Borel measurable function such that

∫
X

g(x)μ(dx) <∞,

and (iii) {fn, n ∈ Z+} is a sequence of measurable functions from X to R which
satisfy |fn(x)| ≤ g(x) for μ-almost every x, and limn→∞ fn(x) = f(x), then

lim
n→∞

∫
X

fn(x)μ(dx) =

∫
X

f(x)μ(dx).

�

B.1.3 Probability Spaces and Random Variables

Let (Ω,F) be a measurable space and P be a probability measure on this space.
Then, the triple (Ω,F ,P) is known as a probability space.

If Ω = R
n, then its subsets of interest are the n-dimensional rectangles, and the

smallest σ-algebra generated by these rectangles is called the n-dimensional Borel
σ-algebra and is denoted by B(Rn). Elements of B(Rn) are Borel sets, and the pair
(Rn,B(Rn)) is a Borel (measurable) space. A probability measure defined on this
space is known as a Borel probability measure.

If Ω is a finite set (say, Ω = {ω1, ω2, . . . , ωn}), we can assign probability
weights on individual elements of Ω, instead of on subsets of Ω, in which case
we write pi to denote the probability of the single event ωi. We call the n-tuple
{p1, p2, . . . , pn} a probability mass function (pmf) on Ω. Clearly, we have the
restriction 0 ≤ pi ≤ 1 ∀i = 1, . . . , n, and

∑n
i=1 pi = 1. The same convention
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applies when Ω is countable (i.e., Ω = {ω1, ω2, . . . , ωi, . . .}), in which case we
simply replace n by ∞.

Let (Ω,F) and (E, E) be two measurable spaces, and X : (Ω,F) → (E, E)
be a measurable map. We call X an E-valued random variable, which is in fact
a function.1 If P is a probability measure on (Ω,F), then the image under X
constitutes a probability measure on (E, E), called the law of X and denoted by
PX . If E = R

N , we call X an N -dimensional random vector. In this case we can
restrict, PX , without any loss of generality, to semi-infinite open rectangles, {ξ ∈
R

N : ξi < ai, i = 1, . . . , N}, in B(RN), resulting in a functionPX(a1, a2, . . . , aN)
of N variables, {a1, a2, . . . , aN}, which are real numbers. This function is known
as the cumulative (probability) distribution function (cdf) of the random vector X .
The relationship with the probability measure P on the original probability space is:

PX(a1, a2, . . . , aN ) = P({ω ∈ Ω : X1(ω) < a1, X2(ω)<a2, . . . , XN(ω)<aN})

where Xi is the ith component of X .
The σ-field generated by the events {{ω : X(ω) ∈ A}, A ∈ E} is called the

σ-field generated by X and is denoted by σ(X). This is the smallest sub-σ-field of
F on which X is measurable.

Probability Density Function

Let P be a Borel probability measure on (RN ,B(RN)) such that any element of
B(RN) which is of Lebesgue measure zero is also of P-measure zero; then we
say that P is absolutely continuous with respect to the Lebesgue measure. Now, if
X : (Ω,F ,P) → (RN ,B(RN ),PX) is random vector and if PX is absolutely
continuous with respect to the Lebesgue measure, there exists a nonnegative Borel
function pX(·) such that, for every A ∈ B(RN),

PX(A) =

∫
A

pX(ξ)dξ.

Such a function pX(·) is called the probability density function (pdf ) of the random
vector X , and X is said to be a continuous random vector. In terms of the cdf PX ,
the preceding relationship can be written as

PX(a1, . . . , aN ) =

∫ a1

−∞
. . .

∫ aN

−∞
pX(ξ1, . . . , ξN )dξ1 . . . dξN

for every N scalars a1, . . . , aN .

1It is common to use uppercase letters for a random variable and lowercase letters for its realization,
that is, X(ω) = x, for ω ∈ Ω. In the book, to conserve notation, we will occasionally use lowercase
letters for the random variable itself as well, when there is no ambiguity from context.
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Let X : (Ω,F ,P) → (RN ,B(RN),PX) be a random vector and f : (RN ,
B(RN)) → R

M ,B(RM )) be a nonnegative Borel function. Then, f(X) can be
considered as a random vector from (Ω,F) to (RM ,B(RM )), and its average value
(expected value) is defined either by

∫
Ω f(X(ω))P(dω) or by

∫
Rn f(ξ)PX(dξ)

depending on which interpretation one adopts. Both of these integrals are well
defined and are uniquely equal in value. If f changes signs, then we take f =
f+ − f− where both f+ and f− are nonnegative and write the expected value
of f as

EXf(X) ≡ E[f(X)] =

∫
RN

f+(ξ)PX(dξ)−
∫
RN

f−(ξ)PX(dξ)

=:

∫
RN

f(ξ)PX(dξ),

provided that at least one of the pair E[f+(X)] and E[f−(X)] is finite. Since, by
definition, PX(dξ) = PX(ξ + dξ) − PX(ξ) =: dPX(ξ), this integral can further
be written as

E[f(X)] =

∫
RN

f(ξ)dPX(ξ),

which is a Lebesgue-Stieltjes integral. For the special case when f(x) = x, we have

E[X ] :=

∫
RN

ξPX(dξ) =: X̄ ≡ μX ,

which is known as the mean (expected) value of X . The covariance of the
N -dimensional random vector X is defined as

E[(X − X̄)(X − X̄)′] =

∫
RN

(ξ − X̄)(ξ − X̄)′PX(dξ) =: cov(X)

which is a nonnegative definite matrix of dimensions N × N . Now, if PX

is absolutely continuous with respect to the Lebesgue measure, E[f(X)] can
equivalently be written, in terms of the corresponding density function pX , as

E[f(X)] =

∫
RN

f(ξ)pX(ξ)dξ.

If Ω consists of only a finite number of disjoint events ω1, ω2, . . . , ωn, then the
integrals are all replaced by the single summation

E[f(X(ω))] =

n∑
i=1

f(X(ωi))pi,
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where pi denotes the probability of occurrence of event ωi. For a countably infinite
set Ω, we have the counterpart

E[f(X(ω)) = lim
n→∞

n∑
i=1

f(X(ωi))pi.

A continuous N -dimensional random vector X := (X1, . . . , XN ) is said to
be Gaussian distributed (or simply, a Gaussian random vector) with parameters
(μ,Σ)—μ an N -vector, Σ a (symmetric) positive definite matrix of dimensions
N ×N—if its pdf is given by

pX(x) =
1

(2π)
N
2 (detΣ)

1
2

exp{−1

2
(x − μ)′Σ−1(x− μ)},

where x = (x1, . . . , xN ). In this case we use the notation X ∼ N(μ,Σ) to denote
that X is Gaussian with the given mean vector and covariance matrix.

Let L be the class of all N -dimensional random vectors X : (Ω,F ,P) →
(RN ,B(RN),PX), with bounded second moments (i.e., E[X ′X ] :=

∑N
i=1

E[(Xi)
2] <∞). Then L is a Hilbert space (see Appendix A for a definition) under

the inner product 〈X,Y 〉 := E[X ′Y ], for X,Y ∈ L. A consequence of this is the
important (and useful) Cauchy-Schwarz inequality:

| E[X ′Y ] |2≤ E[X ′X ]E[Y ′Y ].

Sequences of Random Variables and Convergence

A random sequence {Xi}∞i=1 is a denumerable family of random variables

Xi : (Ω,F ,P) → (R,B, PXi), i = 1, 2, . . . .

Given a random sequence {Xi}, we say that it converges in probability to X :
(Ω,F ,P) → (R,B,PX) (and write Xi →p X) if, for every ε > 0, Prob{| Xi −
X |≥ ε} → 0 as i→ ∞. We say that {Xi} converges almost surely (a.s.) to X (and
write Xi →as X), if Xi(ω) → X(ω) pointwise, except possibly on a subset of Ω
which receives zero probability measure (under P).

B.2 Convergence of Probability Measures

Let P(RN) denote the family of all probability measures on (RN ,B(RN)) for some
N ∈ N. Let {μn, n ∈ N} be a sequence in P(RN ). It is said to converge to μ ∈
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P(RN ) weakly if ∫
RN

c(x)μn(dx) →
∫
RN

c(x)μ(dx)

for every continuous and bounded c : RN → R. On the other hand, {μn} is said to
converge to μ ∈ P(RN) setwise if

∫
RN

c(x)μn(dx) →
∫
RN

c(x)μ(dx)

for every measurable and bounded c : RN → R. Setwise convergence can also be
defined through pointwise convergence on Borel subsets of RN (see, e.g., [195]),
that is,

μn(A) → μ(A), for all A ∈ B(RN ),

since the space of simple functions is dense in the space of bounded and measurable
functions under the supremum norm.

For two probability measures μ, ν ∈ P(RN), the total variation metric is
defined by

‖μ− ν‖TV := 2 sup
B∈B(RN )

|μ(B)− ν(B)|

= sup
f : ‖f‖∞≤1

∣∣∣∣
∫
f(x)μ(dx) −

∫
f(x)ν(dx)

∣∣∣∣, (B.1)

where the supremum is over all measurable real f such that ‖f‖∞ := supx∈RN

|f(x)| ≤ 1. A sequence {μn} is said to converge to μ ∈ P(RN ) in total variation if
‖μn − μ‖TV → 0.

Setwise convergence is equivalent to pointwise convergence on Borel sets,
whereas total variation requires uniform convergence on Borel sets. Thus these
three convergence notions are in increasing order of strength: convergence in total
variation implies setwise convergence, which in turn implies weak convergence.

We close this section with two useful measurability results. A proof of the first
result can be found in [6] (see Theorem 15.13 in [6] or p. 215 in [66]).

Theorem B.2.1. Let S be a Polish space and M be the set of all measurable and
bounded functions f : S → R. Then, for any f ∈M , the integral

∫
π(dx)f(x)

defines a measurable function on P(S) under the topology of weak convergence. �

This is a useful result since it allows us to define measurable functions in integral
forms on the space of probability measures when we work with the topology of
weak convergence.
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The second useful result follows from Theorem B.2.1 and Theorem 2.1 of Dubins
and Freedman [123] and Proposition 7.25 in Bertsekas and Shreve [57].

Theorem B.2.2. Let S be a Polish space. A function F : P(S) → P(S) is
measurable onB(P(S)) (under weak convergence), if for allB ∈ B(S), (F (·))(B) :
P(S) → R is measurable under weak convergence on P(S), that is, for every
B ∈ B(S), (F (π))(B) is a measurable function when viewed as a function from
P(S) to R. �

B.3 Conditional Expectation and Estimation

Definition B.3.1. Given a measurable space (Ω,F), let G ⊂ F be a (sub-) sigma-
field. A function g : (Ω,F) → (R,B(R)) is said to be measurable with respect to
G if

for every B ∈ B(R), {ω ∈ Ω : g(ω) ∈ B} ∈ G

where B is the Borel field. In this case we say that the function g is G-measurable.
�

Fact. Suppose that X and Y are two real random variables on (Ω,F ,P), where
X is σ(Y )-measurable. Then, there is a Borel function g : R → R such that X =
g(Y ). �

Definition B.3.2. Let X be an integrable random variable on a probability space
(Ω,F ,P) such that E[|X |] < ∞ and Y be another random variable (on the same
probability space) with generated sigma-field σ(Y ). Conditional expectation of X
given σ(Y ) is any σ(Y )-measurable random variable Z satisfying

∫
A

Z(ω)P(dω) =

∫
A

X(ω)P(dω)

for every A ∈ σ(Y ). Such a Z is essentially unique and is written as E[X | σ(Y )]
and sometimes as E[X | Y ]. �

Note. In the definition above, we can replace σ(Y ) by any sigma-field G ⊂ F , in
which case we call E[X | G] the “conditional expectation of X given G.”

Some Properties

1. If Y1 and Y2 are two random variables, defined on the same probability space,
then

σ(Y1, Y2) ⊃ σ(Y1) and σ(Y1, Y2) ⊃ σ(Y2).
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Hence, by the law of the iterated expectation,

E{E[X | σ(Y1, Y2)] | σ(Yi)} = E[X | σ(Yi)], a.s., i = 1, 2. (B.2)

2. Let A = {Ω, θ}, which is the trivial sigma-field. Then,

E[X | A] = E[X ].

3. Let G ⊂ F be a (sub-) sigma-field and W be a G-measurable random variable.
Then,

E[WX | G] =WE[X | G] a.s.

4. Let X and Y be two integrable random variables defined on a common
probability space (Ω,F ,P) and G ⊂ F be a (sub-) sigma-field. Then, for any
two scalars α and β,

E{[αX + βY ] | G} = αE[X | G] + βE[Y | G].

5. Orthogonality principle. Let X and Z be two random variables defined on the
common probability space (Ω,F ,P), where Z is G-measurable, with G ⊂ F (a
sub-sigma-field on F ). Then the random variables Y := X − E[X | G] and Z
are uncorrelated, i.e., E[Y Z] = E[Y ]E[Z] = 0, and this is 0 since E[Y ] = 0.

The last property has important implications in minimum mean-square estima-
tion: Given a random variable X as above, and a sub-sigma-field G (of F ), we
wish to find a G-measurable random variable W that yields the minimum value to
E[(X −W )2] among all such G-measurable random variables.

The unique solution to this “estimation” problem is W = E[X | G], as given
below as a fact.

Fact. Let X be a random variable on (Ω,F ,P) and G ⊂ F be a given sub-sigma-
field. Then,

E[(X − E[X | G])2] ≤ E[(X − Z)2], for all G-measurable random variables Z,

and equality holds if, and only if, Z = E[X | G]. Here Y := X − E[X | G] is
the “error” in the estimation of X using G, and E[Y 2] is the minimum mean-square
error (mmse), which can also be written as E[Y 2] = E[X2]− E[(E[X | G])2]. �

B.4 Stochastic Processes

A stochastic process X := {xt, t ∈ T} is a parameterized family of random
variables defined on the same probability space, with the parameter t being the “time
variable.” If the time index set T is finite or countably infinite, then the stochastic
process is called a discrete-time process, whereas if it is uncountably infinite, such
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as the closed interval [0, T ], then the process is called a continuous-time process.
In addition to being a well-defined random variable for every t ∈ T , a stochastic
process should also have the property that for every finite subset S of T , the finite
family of random variables {xt, t ∈ S} is a well-defined random vector.

A stochastic process X := {xt, t ∈ T} is said to be a second-order process, if
E[|xt|2] < ∞ for all t ∈ T. For a second-order stochastic process, three quantities
of interest (and of importance) are:

Mean function: μX(t) := E[xt]
Autocorrelation function:RX(t, s) := E[xtxs]
Autocovariance function:CX(t, s) := E[(xt−μX(t))(xs − μX(s))] ≡ RX(t, s)
−μX(t)μX(s)

Estimation

Let X := {xt, t ∈ T} and Z := {zs, s ∈ T} be two stochastic processes, where T
is a discrete- or a continuous-time interval. Suppose we are interested in estimating
the value of X at some point, say t ∈ T, based on some observed values of Z .
Denote this estimate by x̂t = ĝt(yt), where yt is the collection of observed values
of Z by time t, and the function ĝt(·) is known as an estimator. There are several
possibilities for yt:

(i) T = [0, T ] and yt = {zt1 , . . . , ztn}, where zti , ti ∈ [0, T ] is some sampled
value of Z . If tn ≤ t, we say that ĝ is a causal estimator.

(ii) yt = {zs, s ≤ t} ⇒ x̂t = ĝt(zs, s ≤ t). Here all past values of the
measurement are used in the construction of the estimate x̂t. Here ĝ is also
a causal estimator.

(iii) yt = {zs, s ∈ T} ⇒ x̂t = ĝt(zs, s ∈ T). This is a noncausal estimator, which
is also called a smoother.

We say that an estimator ĝ is linear (affine) if it is given by a linear (affine) map,
e.g., for a causal estimator,

ĝt(yt) = k(t) +

∫ t

0

h(t, s)zsds, T = [0,∞)

or

ĝn(yn) = kn +

n∑
i=1

h(n, i)zi, for n ∈ T = {0, 1, . . .},

where we have let t = n for the discrete-time process. In all cases, we call ĝt a mms
estimator if it minimizes the quantity E{[xt − g(yt)]

2} over the allowable class of
g’s. For each fixed yt, the lowest possible value is attained by

x̂t = ĝt(yt) = E[xt | σ(yt)] ≡ E[xt | yt]
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provided that the conditional mean is well defined, where σ(yt) is the smallest
sigma-field generated by yt. Here again the orthogonality principle applies

E{(xt − x̂t)gt(yt)} = 0 for all functions gt.

Suppose that now we restrict our attention to affine estimators, where gt(·) is affine
in its arguments, as described above. Denote the class of such random variables
(estimators) under any one of the information schemes above by Hy and let x̂t
denote the affine estimate for xt based on Z for a given information scheme, under
the mean-squared error criterion, i.e.,

E{(xt − x̂t)
2} ≤ E{(xt − w)2}, for all w ∈ Hy.

Then, it again follows from the orthogonality principle that x̂t ∈ Hy solves the
estimation problem if, and only if,

E{[xt − x̂t]w} = 0 for all w ∈ Hy.



Appendix C
Markov Chains, Martingales, and Ergodic
Processes

This appendix provides some preliminary background on Markov chains, martin-
gales, and ergodic processes. More comprehensive treatment of Markov chains can
be found in [271, 294], martingales in any standard book on stochastic processes,
such as [402], and ergodic processes from an information theoretic angle in
[170, 175, 338].

C.1 Markov Chains

A sequence of random variables, ordered temporally, is a Markov chain if the
conditional probability of any element in the sequence given observed values of
past elements in the sequence depends only on the most recent past element. That
is, if x[0,N ] = {x0, x1, . . . , xN} denotes the sequence defined over a probability
space (Ω,F ,P), with each element taking values in a measurable space (X,B(X)),
then for each B ∈ B(X) and each t ∈ [0, N − 1],

P({ω ∈ Ω : xt+1(ω) ∈ B} | xt, xt−1, . . . , x0) = P({ω ∈ Ω : xt+1(ω)∈B}|xt).

If P is the probability measure induced by x[0,N ] on (XN+1,B(XN+1)), then the
above can equivalently be written as

P (xt+1 ∈ D | xt, xt−1, . . . , x0) = P (xt+1 ∈ D | xt)

for all D ∈ B(X) and each t ∈ [0, N − 1].
Thus a Markov chain is completely determined by the transition probability

and the probability of the initial state, P (dx0), denoting P (x0 ∈ ·). Hence, the
probability of the event {xt+1 ∈ D} for any t can be computed recursively by

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
Foundations & Applications, DOI 10.1007/978-1-4614-7085-4,
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starting at t = 0, with P (x1 ∈ D) =
∫
x P (x1 ∈ D|x0)P (dx0), and iterating

in a similar manner for t = 1, 2, . . ., that is, for an arbitrary t, P (xt+1 ∈ D) =∫
x P (xt+1 ∈ D|xt)P (dxt).

In the remainder of this section, we discuss a number of properties of Markov
chains.

Let {xt, t ≥ 0} be a Markov chain taking values in a complete, separable, metric
state space (X,B(X)) and defined on a probability space (Ω,F ,P). For each D ∈
B(X), let P (x,D) := P (xt+1 ∈ D|xt = x) denote the transition probability from
x to D, that is, the probability of the event {xt+1 ∈ D} given that xt = x, which as
we have seen completely determines the evolution of the Markov chain. We note that
given the one-step transition kernel, P (x,A), the n-step transitions can be obtained
via composition, P (xt+n ∈ A | xt = x) = Pn(x,A), for any n ≥ 1. The transition
law acts on measurable functions f : X → R and measures μ on B(X) via,

Pf (x):=

∫
X

P (x, dy)f(y), x ∈ X, μP (A):=

∫
X

μ(dx)P (x,A), A ∈ B(X).

A probability measure π on B(X) is called invariant or stationary if πP = π.
That is, ∫

π(dx)P (x,A) = π(A), A ∈ B(X).

For any initial probability measure ν on B(X) we can construct a stochastic
process with transition law P , satisfying x0 ∼ ν. We let Pν denote the resulting
probability measure on the sample space, with the usual convention for ν = δx
when the initial state is x ∈ X. When ν = π, then the resulting process is stationary.

There is at most one stationary solution under the following irreducibility
condition. For a set A ∈ B(X), let

τA := min(t ≥ 1 : xt ∈ A). (C.1)

Definition C.1.1. Let ϕ denote a sigma-finite measure on B(X).

(i) The Markov chain is called ϕ-irreducible if for any x ∈ X, and anyB ∈ B(X)
satisfying ϕ(B) > 0, we have

Px{τB <∞} > 0 .

(ii) Aϕ-irreducible Markov chain is aperiodic if for any x ∈ X, and anyB ∈ B(X)
satisfying ϕ(B) > 0, there exists n0 = n0(x,B) such that

Pn(x,B) > 0 for all n ≥ n0.

(iii) A ϕ-irreducible Markov chain is Harris recurrent if Px(τB <∞) = 1 for any
x ∈ X and any B ∈ B(X) satisfying ϕ(B) > 0. It is positive Harris recurrent
if in addition there is an invariant probability measure π. �
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Definition C.1.2. A set α is called an atom if there exists a probability measure ν
such that

P (x,A) = ν(A), ∀x ∈ α,A ∈ B(X).

If the chain is μ-irreducible and μ(α) > 0, then α is called an accessible atom. �

In case there is an atom α, we have the following:

Theorem C.1.1. For a Markov chain for which Eα[τα] < ∞, the following is an
invariant probability measure:

π(A) = Eα[

∑τα−1
k=0 1xk∈A

E[τα]
|x0 = α], ∀A ∈ B(X), μ(A) > 0.

�

In case there is no atom, one can construct atoms in an extended space through
Nummelin’s splitting technique [294] provided one of the following sets exists:

Definition C.1.3. A set A ⊂ X is μ-small on (X,B(X)) if for some n and some
positive measure μ,

Pn(x,B) ≥ μ(B), ∀x ∈ A, andB ∈ B(X) .

�

Definition C.1.4. A set A ⊂ X is μ-petite on (X,B(X)) if for some distribution T
on N (set of natural numbers) and some positive measure μ,

∞∑
n=0

Pn(x,B)T (n) ≥ μ(B), ∀x ∈ A, andB ∈ B(X) .

�

Note. By Theorem 5.5.7 of [271], under aperiodicity and irreducibility, every petite
set is small.

The following is a key result.

Theorem C.1.2 (Theorem 4.1 of Meyn-Tweedie [270]). Suppose that X is a ϕ-
irreducible Markov chain and suppose that there is a set A ∈ B(X) satisfying the
following:

(i) A is μ-petite for some μ.
(ii) The chain is recurrent in the sense that Px(τA <∞) = 1 for any x ∈ X.

(iii) A is finite mean recurrent: sup
x∈A

Ex[τA] <∞.

Then X is positive Harris recurrent and there exists a unique invariant probability
measure. �
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An invariant measure satisfies the following:

Theorem C.1.3. For a μ-irreducible Markov chain with the unique invariant prob-
ability measure π, the following is satisfied by the invariant probability measure:

π(A) =

∫
C

π(dx)Ex[

τC−1∑
k=0

1{xk∈A}], A ∈ B(X),

where C satisfies supx∈C Ex[τC ] <∞. Furthermore, for measurable f ,

π(f) =

∫
C

π(dx)Ex[

τC−1∑
k=0

f(xk)].

�

The existence of an invariant distribution is important primarily because of the
following:

Theorem C.1.4 (Birkhoff’s Sample Path Ergodic Theorem for Markov Chains).
Consider a positive Harris recurrent Markov chain {xt} taking values in X, with
invariant distribution π(.). Let f : X → R be such that

∫
f(x)π(dx) < ∞. Then,

the following holds almost surely:

lim
T→∞

1

T

T−1∑
t=0

f(xt) =

∫
f(x)π(dx).

�

On Petite and Small Sets

Establishing petiteness may be difficult to directly verify. In the following, we
present two conditions that may be used to establish the petiteness properties.

A kernel A from (X,B(X)) to itself is called sub-stochastic if for every x ∈
X, A(x, ·) is nonnegative, A(x,X) ≤ 1 and for every B ∈ B(X), A(·, B) is a
measurable function on (X,B(X)).

For a Markov chain with transition kernel P on a Borel space X, and for
K a probability measure on N, if there exists for every B ∈ B(X) a lower
semicontinuous functionA(·, B) such that

∞∑
n=0

Pn(x,B)K(n) ≥ A(x,B),

for a sub-stochastic kernel A(·, ·), the chain is called a T -chain. By [271], Theorem
6.0.1, every compact set in an irreducible T -chain is petite.
For a countable state space, under irreducibility, every finite set S is petite.
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To establish the petite set property, Tweedie [370] considers the following test
which only depends on the one-stage transition kernel of a Markov chain: If a set S
is such that the following uniform countable additivity condition

lim
n→∞

sup
x∈S

P (x,Bn) = 0 (C.2)

is satisfied for Bn ↓ ∅, and if the Markov chain is irreducible, then S is petite. This
condition may be easier to directly verify in a large class of applications.

C.2 Discrete-Time Martingales

Let (Ω,F ,P) be a probability space. An increasing family {Fn} of sub σ-fields
of F is called a filtration. A sequence of X-valued random variables xn defined on
(Ω,F ,P) is said to be adapted to Fn if xn is Fn-measurable, that is, x−1

n (B) =
{ω ∈ Ω : xn(ω) ∈ B} ∈ Fn for all B ∈ B(X). This holds, for example, if
Fn = σ(xm,m ≤ n), n ≥ 0. Given a filtration Fn and a sequence of real random
variables adapted to it, (xn,Fn) is said to be a martingale if

E[|xn|] <∞

and

E[xn+1|Fn] = xn.

We will occasionally take the sigma-fields to be Fn = σ(x1, x2, . . . , xn). Let n >
m ∈ Z+. If {xn} is a martingale sequence, E[xn|Fm] = xm. If we have that
E[xn|Fm] ≥ xm, {xn} is called a submartingale. IfE[xn|Fm] ≤ xm, then {xn} is
called a supermartingale.

A useful concept related to filtration is that of a stopping time. A stopping time
is a random time, whose occurrence is measurable with respect to the filtration in
the sense that for each n ∈ N, {T ≤ n} ∈ Fn.

The following is known as Doob’s optional sampling theorem [120].

Theorem C.2.1. Suppose (xn,Fn) is a supermartingale and ρ, τ are bounded
stopping times (say bounded by n ∈ Z+) with ρ ≤ τ almost surely. Then,
E[xτ |Fρ] ≤ xρ. �

Using Doob’s upcrossing lemma [120], together with the optional sampling
theorem above, one obtains the following:

Theorem C.2.2 (Submartingale Convergence Theorem). Suppose xn is a sub-
martingale and supn≥0E[|xn|] <∞. Then x := limn→∞ xn exists (almost surely)
and E[|x|] <∞. �
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C.3 Stochastic Stability of Dynamical Systems and Random
Processes

C.3.1 Stationary, Ergodic, and Asymptotically Mean Stationary
Processes

In this subsection, we review ergodic theory, in the context of information theory
(i.e., with the transformations being specific to the shift operation). A comprehen-
sive discussion is available in Shields [338] and Gray [170, 175].

Let X be a complete, separable, metric space. Let B(X) denote the Borel sigma-
field of subsets of X. Let Σ = X

∞ denote the sequence space of all one-sided or
two-sided infinite sequences drawn from X. Thus, for a two-sided sequence space,
if x ∈ Σ then x = {. . . , x−1, x0, x1, . . . } with xi ∈ X. Let Xn : Σ → X

denote the coordinate function such that Xn(x) = xn. Let T denote the shift
operation on Σ, that is, Xn(Tx) = xn+1. That is, for a one-sided sequence space,
T (x0, x1, x2, . . . ) = (x1, x2, x3, . . . ).

Let B(Σ) denote the smallest sigma-field containing all cylinder sets of the form
{x : xi ∈ Bi,m ≤ i ≤ n} where Bi ∈ B(X), for all integers m,n. Observe that
∩n≥0T

−nB(Σ) is the tail σ-field ∩n≥0σ(xn, xn+1, · · · ), since T−n(A) = {x :
T nx ∈ A}.

Let μ be a stationary measure on (Σ,B(Σ)) in the sense that μ(T−1B) =
μ(B) for all B ∈ B(Σ). The sequence of random variables {xn} defined on the
probability space (Σ,B(Σ), μ) is a stationary process.

Definition C.3.1. Let μ be the measure on a process. This random process is
ergodic if A = T−1A implies that μ(A) ∈ {0, 1}. �

That is, the events that are unchanged with a shift operation are trivial events.
Mixing is a sufficient condition for ergodicity. Thus, a source is ergodic if
limn→∞ P (A ∩ T−nB) = P (A)P (B), since the process forgets its initial
condition. For the special case of Markov sources, we have the following: A positive
Harris recurrent Markov chain is ergodic, since such a process is mixing and
stationary.

Definition C.3.2. A random process with measure μ is N -stationary (cyclo-
stationary or periodically stationary with period N ) if μ(T−NB) = μ(B) for all
B ∈ B(Σ) or equivalently for any n ∈ N samples t1, t2, . . . , tn:

μ(xt1 ∈ A1, . . . , xtn ∈ An) = μ(xt1+N ∈ A1, . . . , xtn+N ∈ An).

�

Definition C.3.3. A random process is N -ergodic if A = T−NA implies that
μ(A) ∈ {0, 1}. �
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Definition C.3.4. A set A ∈ B(X) is coordinate recurrent if for some m ∈ Z+

∞∑
m=0

1{Xm(x)∈A} = ∞, a.s.

�

Definition C.3.5. A process on a probability space (Ω,F ,P) with process measure
P is asymptotically mean stationary (AMS) if there exists a probability measure P̄
such that

lim
N→∞

1

N

N−1∑
k=0

P (T−kF ) = P̄ (F ),

for all events F ∈ B(Σ). Here P̄ is called the stationary mean of P and is a
stationary measure. �

P̄ is stationary since, by definition, P̄ (F ) = P̄ (T−1F ). A cyclo-stationary process
is AMS; see, for example, [78, 175] or [170] (Theorem 7.3.1). Asymptotic mean
stationarity is a very important property:

1. The Shannon-McMillan-Breiman theorem (the entropy ergodic theorem) applies
to finite-alphabet AMS sources [175] (see an extension for a more general class
[46]). In this case, the ergodic decomposition of the AMS process leads to almost
sure convergence of the conditional entropies.

2. Birkhoff’s ergodic theorem applies to bounded measurable functions f , if and
only if the process is AMS [175].

Let

F = {x : lim
N→∞

1

N

N−1∑
i=0

f(T ix) exists.}

It follows that for an AMS process,m(F ) = 1, withm being the stationary mean
of the process. Birkhoff’s Almost-Sure Ergodic Theorem states the following: If a
dynamical system is AMS with stationary mean m, then all bounded measurable
functions f have the ergodic property, and with probability 1,

lim
N→∞

1

N

N−1∑
i=0

f(T ix) = Emx [f ], x ∈ F,

where Emx denotes the expectation under measure mx and mx is the resulting
ergodic measure with initial state x in the ergodic decomposition of the asymptotic
mean (see Theorem 1.8.2 in [171]): m(A) =

∫
mx(A)m(dx).
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Definition C.3.6. A random process x is second moment stable if the following
holds:

lim
N→∞

1

N

N−1∑
m=0

E[(Xm(x))2] <∞.

�

Definition C.3.7. A random process x is quadratically stable (almost surely) if the
following limit exists and is finite almost surely:

lim
N→∞

1

N

N−1∑
m=0

Xm(x)2 <∞.

�

We finally note that a positive Harris recurrent Markov chain (thus with a unique
invariant distribution on the state space) is also ergodic in the more general sense of
ergodic theory.



Appendix D
Markov Decision Theory and Optimality
of Markov Policies

This appendix provides some preliminary background on optimization of controlled
Markov chains. A comprehensive treatment can be found in [14, 55, 84, 194, 225,
269].

D.1 Controlled Markov Models

D.1.1 Fully Observed Markov Control Problem Model

Consider the following model:

xt+1 = f(xt, ut, wt), (D.1)

where xt is a X-valued state variable, ut is a U-valued control action variable, wt

a W-valued i.i.d noise process, and f is a measurable function. We assume that
X,U,W are subsets of Polish spaces. The model above in (D.1) contains (see [69])
the class of all stochastic processes which satisfy the following for all Borel sets
B ∈ B(X), t ≥ 0 and all realizations x[0,t], u[0,t]:

P (xt+1 ∈ B|x[0,t] = a[0,t], u[0,t] = b[0,t]) = T (xt+1 ∈ B|at, bt), (D.2)

where T (·|x, u) is a stochastic kernel from X× U to X.
A stochastic process which satisfies (D.2) is called a controlled Markov chain.
A fully observed Markov control problem is a five tuple (X,U,K, T , c),where

• X is the state space, a subset of a Polish (i.e., a complete, separable, metric)
space.

• U is the action space, a subset of a Polish space.

S. Yüksel and T. Başar, Stochastic Networked Control Systems, Systems & Control:
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• K = {(x, u) : u ∈ U(x), x ∈ X} is the set of state, control pairs that are feasible.
There might be different states where different control actions are possible.

• T is a state transition kernel, that is, T (A|xt, ut) = P (xt+1 ∈ A|xt, ut).
• c : K → R is the cost function.

The objective function to be minimized for a finite-stage setup is given by

J(x0, Π) := EΠ
x0
[

T−1∑
t=0

c(xt, ut) + cT (xT )], (D.3)

where Π is a control policy, EΠ
x0
[·] denotes the expectation under policy Π and

initial state x0, and cT is a terminal state cost. Given a class of admissible policies
(to be defined below), the goal is to find an admissible policy Π∗ such that

J(x0, Π
∗) ≤ J(x0, Π),

for all admissible policies Π . Such a Π∗ is an optimal policy. Here Π can also be
called a strategy or a control law.

D.1.2 Classes of Control Policies

Admissible Control Policies

Let H0 := X, Ht = Ht−1 ×X×U for t = 1, 2, . . .. We let ht denote an element
ofHt, where ht = {x[0,t], u[0,t−1]}. A deterministic admissible control policyΠ is
a sequence of functions {γt} fromHt → U; in this case ut = γt(ht). A randomized
control policy is a sequence Π = {Πt, t ≥ 0} such that Π : Ht → P(U) (with
P(U) being the set of probability measures on U) such that

Πt(ut ∈ U(xt)|ht) = 1, ht ∈ Ht.

Markov Control Policies

A policy is randomized Markov if

PΠ
x0
(ut ∈ C|ht) = Πt(ut ∈ C|xt), C ∈ B(U).

Hence, the control action only depends on the state and the time, and not the past
history. If the control strategy is deterministic, that is, if

Πt(ut = ft(xt)|xt) = 1

for some function ft, the control policy is said to be deterministic Markov.
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Stationary Control Policies

A policy is randomized stationary if

PΠ
x0
(ut ∈ C|ht) = Π(ut ∈ C|xt), C ∈ B(U).

Hence, the control action only depends on the state, and not the past history or on
time. If the control strategy is deterministic, that is, if Π(ut = f(xt)|xt) = 1 for
some function f , the control policy is said to be deterministic stationary.

D.1.3 Optimality of Markov Policies and Elimination
of Irrelevant Information

The following is a useful result on the structure of optimal control policies.

Theorem D.1.1 (Blackwell’s Irrelevant Information Theorem [62, 64]). Let
X,Y,U be Polish spaces and P be a probability measure on B(X × Y) and let
c : X × U → R be a bounded Borel measurable cost function. Then, for any Borel
measurable function γ : X×Y → U, there exists another Borel measurable function
γ∗ : X → U such that

∫
X

c(x, γ∗(x))P (dx) ≤
∫
X×Y

c(x, γ(x, y))P (dx, dy).

Furthermore, policies based only on x almost surely are optimal. �

D.1.4 Markov Decision Processes (MDPs) and Optimality
of Markov Policies

The following result is a well-known theorem in the control theory literature
(e.g., see [193, 348]). A proof can be obtained through the dynamic programming
algorithm and applying Theorem D.1.1 at every time stage.

Theorem D.1.2. Given an MDP as above, consider the minimization of (D.3) over
all admissible control policies. There is no loss in restricting policies to be Markov,
that is, a policy which only uses the current state xt and the time information t. �
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D.1.5 Dynamic Programming and Measurable
Selection Criteria

The following dynamic programming arguments hold when there exist a minimizing
control policy (sequence of selectors for each time stage) for (D.3).

Dynamic Programming

Let {Jt, t = T, T − 1, . . . , 0}, with Jt : X → R, be a sequence of functions
generated by the recursion

Jt(x) = inf
u∈Ut(x)

(c(x, u) +

∫
X

Jt+1(y)P (xt+1 ∈ dy|xt = x, ut = u)), (∗)

for all x ∈ X, for t ∈ {0, 1, 2 . . . , T − 1}, with

JT (xT ) = cT (xT ).

Let the infimum in (*) be achieved for all t. Then, there exists a sequence of
measurable functions (selectors) {ft} such that

Jt(xt) = c(xt, ft(xt)) +

∫
X

Jt+1(y)P (dy|xt, ft(xt)),

and {ft} is optimal for (D.3).
Such a sequence of optimal functions exists under the following conditions:

Condition 1. The stage wise cost function to be minimized, c(xt, ut), is continuous
on both U and X, Ut(x) = U is compact, and

∫
X
Q(dy|x, u)v(y) is a continuous

function on X× U for every continuous and bounded v on X. �

Condition 2. For every x ∈ X the stage wise cost function to be minimized,
c(xt, ut), is continuous on U; Ut(x) is compact; and

∫
X
Q(dy|x, u)v(y) is a

continuous function on U for every bounded, measurable function v on X. �

Theorem D.1.3. Under Conditions 1 or 2, the measurable selection hypothesis
applies, and there exists an optimal control policy (which is a Markov policy)
obtained through the dynamic programming recursions in (*), that is, there exists
a minimizing control policy given by ft : X → At(xt). Furthermore, under
Condition 1, the function Jt(x) is continuous, if cN (xN ) is continuous. �

We can replace the compactness condition with an inf-compactness condition,
and modify Condition 1 as below:
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Condition 3. For every x ∈ X, c(x, u) is continuous on X×U and is nonnegative;
{u : c(x, u) ≤ α} is compact for all α > 0 and all x ∈ X, and

∫
X
Q(dy|x, u)v(y) is

a continuous function on X× U for every continuous and bounded v. �

Theorem D.1.4. Under Condition 3, the measurable selection hypothesis applies.
�

D.1.6 Partially Observable MDPs (POMDPs)

Consider the following dynamics:

xt+1 = f(xt, ut, wt), yt = g(xt, vt).

Here, as before, xt is the state, ut ∈ U is the control, (wt, vt) ∈ W × V are zero-
mean, i.i.d noise processes, and wt is independent of vt. In addition to the previous
fully observed model, yt denotes an observation variable taking values in Y, taken
here to be a subset of Rn. The controller only has causal access to the process {yt}.
An admissible policy Π = {Πt} is measurable with respect to σ({ys, s ≤ t}). We
denote the observed history space asH0 := Y, Ht = Ht−1×Y×U. Hence, the set
of admissible control policies are such that P (u(ht) ∈ U|ht) = 1 ∀ht ∈ Ht. One
could transform a partially observable Markov Decision Problem to a fully observed
Markov decision problem via an enlargement of the state space. In particular, one
obtains via the properties of total probability the following dynamic nonlinear filter
equation:

πt(A) : = P (xt ∈ A|y[0,t], u[0,t−1])

=

∫
X
πt−1(dxt−1)r(yt|xt)P (dxt|xt−1, ut−1)∫

X

∫
X
πt−1(dxt−1)r(yt|xt)P (xt|xt−1, ut−1)

,

where we assume that
∫
B r(y|x)dy = P (yt ∈ B|xt = x) for any B ∈ B(Y)

and r denotes the conditional density. The conditional measure process becomes a
controlled Markov chain in P(X) under the weak convergence topology.

Theorem D.1.5. The process {πt, ut} is a controlled Markov chain. That is, under
any admissible control policy, given the action at time t ≥ 0 and πt, πt+1 is
conditionally independent of {πs, us, s ≤ t− 1}. �

As before, let the objective function to be minimized be
∑T−1

t=0 EΠ
x0
[c(xt, ut)]. We

transform the system into a fully observed Markov model as follows. Define the new
cost as c̃(π, u) =

∫
X
c(x, u)π(dx), π ∈ P(X). The stochastic transition kernel q

is given by

q(dx, dy|π, u) =
∫
X

P (dx, dy|x′, u)π(dx′), π ∈ P(X).
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This kernel can be decomposed as q(dx, dy|π, u) = P (dy|π, u)P (dx|π, u, y).
The second term here is the filtering equation, mapping (π, u, y) ∈ (P(X) ×

U × Y) to P(X). It follows that (P(X),U,K, c̃) defines a completely observable
controlled Markov process. Here, we have

K(B|π, u) =
∫
Y

1{P (.|π,u,y)∈B}P (dy|π, u), ∀B ∈ B(P(X))

As such, one can obtain the optimal solution by using the filtering equation as a
sufficient statistic in a centralized setting, as Markov policies (policies that use the
Markov state as their sufficient statistics) are optimal for control of Markov chains,
under sufficiency conditions for the existence of optimal selectors.

D.2 Kalman Filter and Linear-Quadratic-Gaussian Optimal
Control Problem

As we observed above, for controlling partially observed controlled Markov
sources, one can enlarge the state space and define a probability measure valued
state which is fully observed. For a Gaussian source, however, the above can be
done in a computationally very efficient manner, as a Gaussian measure is uniquely
characterized by its mean and covariance matrix. We will discuss this further in this
section.

Consider now the partially observed linear system:

xt+1 = Axt +But + wt,

yt = Cxt + vt,

where x ∈ R
n, u ∈ R

m and w ∈ R
n, y ∈ R

p, v ∈ R
p. Suppose {wt, vt} are i.i.d.

zero-mean random Gaussian vectors with given covariance matrices E[wtw
′
t] =W

and E[vtv
′
t] = V for all t ≥ 0. Further, let x0 be zero-mean Gaussian.

Let us now define

mt = E[xt|y[0,t−1], u[0,t−1]]

and

Σt|t−1 = E[(xt − E[xt|y[0,t−1], u[0,t−1]])(xt − E[xt|y[0,t−1], u[0,t−1]])
′

|y[0,t−1], u[0,t−1]].
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Then, {mt, Σt|t−1} are generated by the following recursions, which constitute the
Kalman filter equations:

mt+1 = Amt +But +AΣt|t−1C
′(CΣt|t−1C

′ + V )−1(yt − Cmt),

m0 = E[x0],

Σt+1|t = AΣt|t−1A
′ +W − (AΣt|t−1C

′)(CΣt|t−1C
′ + V )−1(CΣt|t−1A

′),

Σ0|−1 = E[x0x
′
0].

Let us now introduce

It = {y[0,t], u[0,t−1]}

and define m̄t = E[xt|It]. The following readily holds:

m̄t = mt +Σt|t−1C
′(CΣt|t−1C

′ + V )−1(yt − Cmt),

or

m̄t = Am̄t−1 +But

+Σt|t−1C
′(CΣt|t−1C

′ + V )−1(CA(xt−1 − m̄t−1) + vt). (D.4)

We note that the zero-mean variable xt − m̄t is orthogonal to It = {y[0,t], u[0,t−1]},
in the sense that the error is independent of the information available at the
controller, and since the information available is Gaussian, independence and
orthogonality are equivalent. In view of this, the variable Σt|t−1C

′(CΣt|t−1C
′ +

V )−1(CA(xt−1−m̄t−1)+vt) is an additive Gaussian noise acting on the new state
variable m̄t.

LQG Optimal Control Problem

Now, given the Gaussian POMDP setup considered, suppose that the goal is to
obtain a solution to

inf
Π
J(Π,μ0),

where

J(Π,μ0) = EΠ
μ0
[

T−1∑
t=0

x′tQxt + u′tRut + x′TQTxT ],

with R > 0 and Q,QT ≥ 0 (i.e., these matrices are positive definite and positive
semi-definite), and μ0 is the prior measure on the initial state, which is taken to be
Gaussian.
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The quadratic optimization problem can be reformulated as a function of
m̄t, ut and the error (xt − m̄t), which makes the optimal control problem
equivalent to optimal control of fully observed state m̄t, with an additive time-
varying independent Gaussian noise process. This thus features as the separation
of estimation and control, and a more special version is known as the certainty
equivalent principle. The absence of dual effect plays a key role in this analysis, in
taking E[(xt − m̄)′Q(xt − m̄)] out of the conditioning on It.

Thus, one obtains

Jt(It) = E[x′tKtxt|It] +
T−1∑
k=t

(
E[(xk − E[xk|Ik])′Q(xk − E[xk|Ik])]

+E[w̃′
tKt+1w̃]

)
, (D.5)

where w̃t = Σt|t−1C
′(CΣt|t−1C

′ + V )−1(yt − CE[xt|It−1]).
Solving a fully observed LQG optimal control problem, the optimal minimizing

control is linear and has the form [225]:

ut = −(BKt+1B +R)−1B′Kt+1AE[xt|It]

where Kt is generated from the discrete-time Riccati equation:

Kt = Q+A′Kt+1A−A′Kt+1B((BKt+1B +R))−1B′Kt+1A,

with terminal conditionKT = QT .
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39. Bansal, R., Başar, T.: Solutions to a class of linear-quadratic-Gaussian (LQG) stochastic team
problems with nonclassical information. Syst. Control Lett. 9, 125–130 (1987)
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Basel (2003)
196. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control

systems. Proc. IEEE 95, 138–162 (2007)
197. Ho, Y.C.: Team decision theory and information structures. Proc. IEEE 68, 644–654 (1980)
198. Ho, Y.C., Chu, K.C.: Team decision theory and information structures in optimal control

problems – part I. IEEE Trans. Autom. Control 17, 15–22 (1972)
199. Horstein, M.: Sequential decoding using noiseless feedback. IEEE Trans. Inf. Theor. 9,

136–143 (1963)
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206. Ishii, H., Başar, T.: Remote control of LTI systems over networks with state quantization.

Syst. Control Lett. 54(1), 15–32 (2005)
207. Ishii, H., Francis, B.A.: Limited data rate in control systems with networks. In: Lecture Notes

in Control and Information Sciences, vol. 275. Springer, Berlin (2002)
208. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents

using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)



References 471
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233. Li, S., Başar, T.: Asymptotic agreement and convergence of asynchronous stochastic
algorithms. IEEE Trans. Autom. Control 32, 612–618 (1987)



472 References
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284. Nakiboğlu, B., Gallager, R.G.: Error exponents for variable-length block codes with feedback
and cost constraints. IEEE Trans. Inf. Theor. 54, 945–963 (2008)



474 References
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313. Quevedo, D., Nešić, D.: Robust stability of packetized predictive control of nonlinear systems

with disturbances and markovian packet losses. Automatica 48(8), 1803–1811 (2012)
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