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Definition of the Six Trigonometric Functions
Right triangle definitions, where 0 < 0 < /2.

. h
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W > adj hyp
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Circular function definitions, where 0 is any angle.
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X y
Reciprocal Identities
. 1 1 1
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cscx cos x cotx
1 1
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i COS X
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Reduction Formulas
sin(—x) = —sinx cos(—x) = cosx
csc(—x) = —cscx  tan(—x) = —tanx
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Sum and Difference Formulas
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. Word from the Authors

9th

Welcome to the Ninth Edition of Calculus! We are proud to offer you a new and
revised version of our textbook. Much has changed since we wrote the first edition
over 35 years ago. With each edition we have listened to you,
our users, and have incorporated many of your suggestions for

improvement. Calculus

‘CAL CFLJ:’

CALCUL I.J 5

6th

[
—_

8th

7th

Throughout the years, our objective has always been to write in a precise,
readable manner with the fundamental concepts and rules of calculus clearly defined
and demonstrated. When writing for students, we strive to offer features and
materials that enable mastery by all types of learners. For the instructors, we aim to
provide a comprehensive teaching instrument that employs proven pedagogical
techniques, freeing instructors to make the most efficient use of classroom time.

This revision brings us to a new level of change and improvement. For the past
several years, we’ve maintained an independent website—CalcChat.com—that
provides free solutions to all odd-numbered exercises in the text. Thousands of
students using our textbooks have visited the site for practice and help with their
homework. With the Ninth Edition, we were able to use information from
CalcChat.com, including which solutions students accessed most often, to help guide
the revision of the exercises. This edition of Calculus will be the first calculus textbook
to use actual data from students.

We have also added a new feature called Capstone exercises to this edition. These
conceptual problems synthesize key topics and provide students with a better
understanding of each section’s concepts. Capstone exercises are excellent for
classroom discussion or test prep, and instructors may find value in integrating these
problems into their review of the section. These and other new features join our
time-tested pedagogy, with the goal of enabling students and instructors to make the
best use of this text.

We hope you will enjoy the Ninth Edition of Calculus. As always, we welcome
comments and suggestions for continued improvements.

@W Brne V.Elwands
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.extbook Features

Tools to Build Mastery

— CAPSTONES )

NEW! Capstone exercises now appear in every
section. These exercises synthesize the main
concepts of each section and show students how the
topics relate. They are often multipart problems that
contain conceptual and noncomputational parts, and
can be used for classroom discussion or test prep.

CAPSTONE

70. Use the graph of f” shown in the figure to answer the

WRITING ABOUT CONCEPTS

59. The graph of fis shown in the figure.

(a) Evaluate [} f(x) dx.
(b) Determine the average value of fon the interval [1, 7].

(c) Determine the answers to parts (a) and (b) if the graph
is translated two units upward.

6f

d

If (1) represents the rate of growth of a dog in pounds
per year, what does r(r) represent? What does [3 r/(1) dr
represent about the dog?

following, given that f(0) = —4.

(a) Approximate the slope of fat x = 4. Explain.

(b) Is it possible that f(2) = —1? Explain.

(¢) Is f(5) — f(4) > 0? Explain.

(d) Approximate the value of x where f is maximum.
Explain.

(e) Approximate any intervals in which the graph of f is
concave upward and any intervals in which it is concave
downward. Approximate the x-coordinates of any
points of inflection.

(f) Approximate the x-coordinate of the minimum of £”(x).

(g) Sketch an approximate graph of f. To print an enlarged
copy of the graph, go to the website
www.mathgraphs.com.

WRITING ABOUT CONCEPTS )

These writing exercises are questions designed to test
students’ understanding of basic concepts in each
section. The exercises encourage students to verbalize
and write answers, promoting technical communication
skills that will be invaluable in their future careers.

Because integration is

— STUDY TIPS )

The devil is in the details. Study Tips help point out some of the troublesome

usually more difficult than differentiation,
you should always check your answer to
an integration problem by differentiating.
For instance, in Example 4 you should

common mistakes, indicate special cases that can cause confusion, or
expand on important concepts. These tips provide students with valuable
information, similar to what an instructor might comment on in class.

differentiate 3(2x |
that you obtain the

Later in this chapter,

you will leurll1 convenient methods for
calculating [, f(x) dx for continuous

Xiv

EXAMPLE |3 Evaluation of a Definite Integral

3
Evaluate J (=x? + 4x — 3) dx using each of the following values.
1

3 26 3 3
J x2dx =7, J xdx =4, j dx =2
1 3 1 1

Solution

f (—x2+4x — 3)dx = J (—x¥)dx + J 4x dx + J (—3) dx
1 1 1 1

3 3 3
= 7-[ ,\'ldx+4J’ xdx — SJ dx
1 1 1

- 7(%6> +4(4) - 30)

4
3

Remember that you can  fon.
check your answer by differentiating.

T NOW, you must use the

EXAMPLES )

Throughout the text, examples are worked out
step-by-step. These worked examples
demonstrate the procedures and techniques for
solving problems, and give students an increased
understanding of the concepts of calculus.
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Texthook Features XV

— EXERCISES )

Practice makes perfect. Exercises are often the m Ererci

o XETFCISES scewwCalcChat.com for worked-out solutons to odd-numbered erer
first place students turn to in a textbook. The
authors have Spent a great deal Of time analyzing ‘l:“ﬁxerﬂseslandl. use Example 1 as a model to evaluate the
lim E/amx 13. /) =5

and revising the exercises, and the result is a A o
comprehensive and robust set of exercises at the

In Exercises 13-22, set up a definite integral that yields the area
of the region. (Do not evaluate the integral.)

. f() =

over the region hounded by the graphs of the equations.

1. flr) = Vi, x=3 4
end of every section. A variety of exercise types RS :

and levels of difficulty are included to i R

In Exercises 3-8, evaluate the definite integral by the limit
definition.

accommodate students with all learning styles. i 15

3. J 8dr 4. J xdv

In addition to the exercises in the book, 3,000 s ew o [[1en
algorithmic exercises appear in the WebAssign® e s [ ey
course that accompanies Calculus. | 7

4=l 16 £(0) =

63. Respiratory Cycle The volume V. in liters, of air in the lungs
during a five-second respiratory eyele is approximated by the
model V = 017201 + 0152217 — 0.03741%, where 1 i the time
in seconds. Approximate the average volume of air in the lungs
during one cycle.

B 64. Average Sales A company fits a model to the monthly sales
data for a seasonal product. The model is

' it
=<+ 184055 (7) 0=r=24
S(0) =3 + 18 + 05 sin( ¢ r=24

where S is sales (in thousands) and 1 is time in months.

(a) Use a graphing utility to graph f(r) = 0.5 sin(m1/6) for
0= =24 Use the graph to explain why the average
value of £(7) is 0 over the interval

APPLICATIONS )

(b) Use a graphing utility to graph $(1) and the line
() = /4 + 18 in the same viewing window. Use the
graph and the result of part (a) to explain why g is called
the trend line.

“When will I use this?”” The authors attempt to answer this question ¥ s ot Date i cxperimert st i st on 3
for students with carefully chosen applied exercises and examples. i

Applications are pulled from diverse sources, such as current events,

world data, industry trends, and more, and relate to a wide range of @ Use & guping wilty (0 fnd 3 mode of te form
interests. Understanding where calculus is (or can be) used promotes () sy e g e ok
fuller understanding of the material.

corded e

ry 10 seconds for | minute (sce table).

graphing utility to plot the data and graph the model

the distance traveled by the vehicle during the test.

318 Chapter 4 Integration

REVIEW EXERCISES )

@REVIEW EXERCISES  sccumcaichatcom frwoked ot sltons o od-umbered exrises

In Exercises 1 and 2, use the graph of /* to sketch a graph of f. 14, lelﬂuly and Acceleration  The speed of a car traveling in a 1 1 1
e e T e Review Exercises at the end of each chapter provide more
www.mathgraphs.com. m ince of 264 feet. Find the distance in which the car can be. . . .
L 2 o e o s practice for students. These exercise sets provide a
15. Velocity and Acceleration A ball is thrown vertically upward . . Py
; . from ground eve it il selosty af 56 e pr teond. comprehenswe review of the chapter s concepts and are
(a) How long will it take the ball to rise to its maximum height?
. What is the maximum height?
: an excellent way for students to prepare for an exam.

(¢) What is the height of the ball when its velocity is one-half

In Exercises 3-8, find the indefinite integral. the initial velocity
R 16. Modeling Data The table shows the velocities (in miles per

s fee s “f5 houey of o carsan n etran ramp o intrstate highvay:
s J“ﬁfxm 3 ‘[gm “The time 11 in seconds.

e o] s [10|15]2|2]30

7. Ju\ — 9sinx) dx

9. Find the particular solution of the differential | cauaion 2| 0| 21 | 38| 51|60 6465
J(x) = —6x whose graph passes through the point (1, ~2)

5 cos x — 2 sec? x) dv
X'f( < x) d w0257 16| 45|65

@ PROBLEM SOLVING

1 LuLhr:J‘ Jdi. x> 0.
i

(@ Locat (0.3).
6. The Two-Point Gaussian Quadrature Approximation for fis

I points of inflection of § on the int

10, Find the particular solution of the differential equation
S"() = 6(x = 1) whose graph passes through the point (2, 1)
and is tangent to the line 3x — y — 5 = 0 at that point.

(@) Rewrite the velocities in feet per second,
[ (b) Use the regression capabilities of a
quadratic models for the data in p

() Find L(1),
(b) Find L'(x) and L'(1).

phing utility to find
)

P8 Stope Fields In Exercises 11 and 12, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (To print an enlarged copy
of the graph, g0 to the website www.mathgraphs.com.) (b) Use
integration to find the particular solution of the differential
equation and use a graphing utility to graph the solution.

4 (4-2)

13. Velocity and Acceleration An airplane taking off from a
runway travels 3600 feet before lifting off. The airplane starts
firom rest, moves with constant acceleration, and makes the run
in 30 seconds. With what speed does it lift off?

(©) Approximate the distanc d by each car during the
30 seconds. Explain the difference in the distances.

In Exercises 17 and 18, use sigma notation to write the sum.

1
N 3(10)
2+ L)! 3\(nt 1)
) (=)
In Exercises 19-22, use the properties of summation and
Theorem 4.2 to evaluate the sum.

1. 2 i 2. ) @i 1)
&

21. Ev,Hy 22 ‘Elmffn
=]

23. Wite in sigma notation (a) the sum of the first ten posi
ineges (9 the sum of the cubesofhe fis  posive ntegers.
and (©)6 + 10 + + 42

24. Evaluate each sum for x, = 2., = —1,xy = 5, %, = 3, and
=1

(b 2—

© 3y -2 @ D)

[ () Use a graphing utility to approximate the value of x (to three
decimal places) for which L(x) =

(@) Prove that Lix,x;) = L(x,) + L(x,) for all positive values of
x, and x,

B2 Lert = [ sin £ di.

(@) Use a graphing utility to complete the table.

(€) Use the definition of the derivative to find the exact value of
the limit lim G(x)

In Exercises 3 and 4, (a) write the area under the graph of the
given function defined on the given interval as a lim
evaluate the sum in part (a), and (c) evaluate the limi
result of part (b).

Joy=xt-ad 4l [0,2]

. Archimedes showed that the

. Galileo Galilei (1564-1642) stated the following proposition

Lxmm :7( ﬁ) + 1[!}

. ; j o

mation is exact for all polynomials of de

polic arch s cqui 103
the productof the ase and the hfght (e fsure

of a

—

(@) Graph the parabolic arch bounded by y = 9 — x? and the
x-axis. Use an appropriate integral to find the area A

(b) Find the base and height of the arch and verify Archimedes™
formula.

() Prove Archimede:

formula for a general parabola.

con

ning falling objects
The

in which any space is traversed by a uniformly
rating body is equal 1o the time in which that same
space would be traversed by the same body moving at a
uniform speed whose value is the mean of the h
speed of the accelerating body and the speed just before
acceleration began

Use the techniques of this chapter to verify this proposition.

. The graph of the function f consists of the three line segments
ioining the poinrs (0.0) (2, =21, (6,2), and (8, 3) The funclion

(i 3 = ot Vo DG+ 3n = 1))

P.S. PROBLEM SOLVING )

These sets of exercises at the end of each chapter test students’ abilities
with challenging, thought-provoking questions.
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XVi

Textbook Features

Classic Calculus with Contemporary Relevance

— THEOREMS )

Theorems provide the
conceptual framework for
calculus. Theorems are
clearly stated and separated
from the rest of the text

by boxes for quick visual
reference. Key proofs often
follow the theorem, and
other proofs are provided in
an in-text appendix.

THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS

ative of f on the interval [a, b], then

J f(x) dx = F(b) — F(a).

If a function fis continuous on the closed interval [a, ] and F is an antideriv-

DEFINITION OF DEFINITE INTEGRAL

partitions A
llAll—

1*1

limit is denoted by

If fis defined on the closed interval [a, b] and the limit of Riemann sums over

lim Ef (c;) Ax,

exists (as described above), then fis said to be integrable on [a, b] and the

\Aneozf JAx _Jf

The limit is called the definite integral of f from a to b.
lower limit of integration, and the number b is the uppe)j EXAMPLE [E Change of Variables

DEFINITIONS

As with the theorems,
definitions are clearly
stated using precise,
formal wording and are
separated from the text
by boxes for quick
visual reference.

the next example.

Find '[sinz 3x cos 3x dx.

immediately see. Like the
study tips, notes can be
invaluable to students.

Solution  Because sin® 3x = (sin 3x)?, you can let # = sin 3x. Then
_ PROCEDURES ) du = (cos 3x)(3) dx.
Now, because cos 3x dx is part of the original integral, you can write
Formal procedures are set apart from % = cos 3v dv.
the text for casy reference. The Substituting u and du/3 in the original integral yields
procedures provide students with step- . Ldu
. . . jsm- 3xcos3xdx = | u? 3
by-step instructions that will help them
o o 1
solve problems quickly and efficiently. = gjuz du
1 (ux) i
=z=)+c
—_ NOTES ) 303
= ésin3 3x + C.
Notes provide additional details about theorems, You can check this by differentiating.
definitions, and examples. They offer additional insight, d [1 o ] (')(%)( s 300)
. . . . |z sn” ox [ = | 5 )(3)(s1n 5x)(COS 5x)(°
or important generalizations that students might not del9 o

= sin® 3x cos 3x

There are two important points that should be made concerning the Trapezoidal Rule
(or the Midpoint Rule). First, the approximation tends to become more accurate as n increases.
For instance, in Example 1, if n = 16, the Trapezoidal Rule yields an approximation of 1.994.
Second, although you could have used the Fundamental Theorem to evaluate the integral in
Example 1, this theorem cannot be used to evaluate an integral as simple as ['sin x> dx because
sin x%> has no elementary antiderivative. Yet, the Trapezoidal Rule can be applied easily to
estimate this integral. |

To complete the change of variables in Example 5, you solved for x in terms of
u. Sometimes this is very difficult. Fortunately it is not always necessary, as shown in

that you have
L}
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Texthook Features Xvii

Expanding the Experience of Calculus

— _CHAPTER OPENERS ) Differential Equations

Chapter Openers provide initial motivation for the upcoming
chapter material. Along with a map of the chapter objectives, ;
an important concept in the chapter is related to an application o homogsncos, s v, and

Bernoulli. Then you will apply these

In this chapter, you will study one of the
most important applications of calculus—

of the topic in the real world. Students are encouraged to see ot o
. In this chapter, you should learn the
the real-life relevance of calculus. o

particular solution. (6.1)
= How 10 use an exponential function
to model growth and decay. (6.2)

® How to use separation of variables
10 solve a differential equation. (6.3)

= How 10 solve a first-order linear

EXPLORATION differential equation and a Bemoulli

differential equation. (6.4)
The Converse of Theorem 4.4 1Is the converse of Theorem 4.4 true? That is,
if a function is integrable, does it have to be continuous? Explain your reasoning
and give examples.

D Do =
Describe the relationships among continuity, differentiability, and Depending on the type of bacteria, the time it takes for a culture's weight to double
integrability. Which is the strongest condition? Which is the weakest? Which caniyery, praaty,from ssesral mipites I Several dsys HowlCoud youluse'a
< ; differential equation to model the growth rate of a bacteria culture’s weight? (See

conditions imply other conditions Section 6.3, Exercise 84.)

Finding Antiderivatives For

cach derivative, describe the

— E x P L 0 RAT' 0 N s ) original function F.

a F()=2 b Ff()=ux
1

s . . L Fx) =22 L F'(x) ==
Exploratlons prOV1de StUdentS Wlth s ' L . A function y = f(x) is a solution of a differential equation if the equation is satisfied when y and its derivatives are
. e F'lx) = 1 f. F'(x) = cosx replaced by f(x) and its derivatives. One way to solve a differential equation is to use slope fields, which show the general
unique challenges to study concepts S o o s s el e, 5 St 5.1
that haVe nOt yet been formal]y ‘What strategy did you use to find 405
5

covered. They allow students to learn
by discovery and introduce topics
related to ones they are presently studying. HISTORICAL NOTES AND BIOGRAPHIES )—
By exploring topics in this way, students are
encouraged to think outside the box.

Historical Notes provide students with
background information on the foundations of

calculus, and Biographies
help humanize calculus
and teach students about
the people who contributed

r PUTNAM EXAM CHALLENGES )

Putnam Exam questions . .
PUTNAM EXAM CHALLENGE
l If ay, a, AL\R‘)CL\\ nulvcrs satisfying M q b tO ltS formal Creatlon'
oot ’ appear in selected sections
U )
1 2 n+1
and are drawn from actual . : —
show that the equation SUM OF THE FIRST 100 INTEGERS
oyt apx+apd g =0 Putnam Exams. These i hr of Carl Friedrich Gauss (1777-1855)
has at least one real zero. . . .. = him to add all the integers from 1 to
140. Find all the continuous positive functions f(x). for exercises will push the limits GEORG FRIEDRICH BERNHARD RIEMANN | | !"én Gauss refurned with the correct
0=x < 1 such that (1826-1866) 1 after only a few moments, the teacher
‘ of students’ understanding Geman mathenacion Fenam G0 NS ot | U
erman mathematician Riemann did his mos
J fl)de=1 what Gauss did:
lo . famous work in the areas of non-Euclidean
forde = a of calculus and prov1de extra geometry, differential equations, and number I + 100
o ¢ . theory. It was Riemann’s results in physics [+ 99 + 98 + + 1
s = e Cha]lenges for motivated and mathematics that formed the structure [+ To1 + 101+ -+ 00
5 o which Einstins Genera Theor of Reltity || 10,
where ais a real number students. is based | = 5050
- " punam e
Con generalized by Theorem 4.2, where

w0
2/ _ 100(2101) — 5080
=]

— _ SECTION PROJECTS )

Projects appear in selected sections and more deeply

explore applications related to the topics being studied. Demonstrating the Fundamental Theorem

Use a graph lity to graph the function y, = sin®¢ on the  (b) Use the integration capabilities of a graphing utility to

They provide an interesting and engaging way for students interval 0 = 1 = 7. Let F(x) be the following function of x graph F
. . . . Flx) :J Sin? rdt (¢) Use the differentiation capabilities of a graphing utility to graph
to work and investigate ideas collaboratively.

o F/(x). How is this graph related to the graph in part (b)?

(a) Complete the table. Explain why the values of F are increasing. (d) Verify that the derivative of y = (1/2)¢ — (sin 2¢)/4 is sin®r.
Graph y and write a short paragraph about how this graph is
‘ x ‘ 0| w6 ‘ /3 ‘ /2 ‘ 27/3 ‘ Sm/6 ‘ ™ related to those in parts (b) and (c).

0 I I I
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Textbook Features

Integrated Technology for Today’s World

CEXAMPLE [Ell change of Variables

Find j}c\/lx — 1dx.

Solution As in the previous example, let u = 2x — 1 and obtain dx = du/2.
Because the integrand contains a factor of x, you must also solve for x in terms of u,

as shown.

u=2x—-1 = x=W+1)/2

Now, using substitution, you obtain
+
j,x\/Zx —ldx = j(%) u'/? (%)

1
= Zj(ll3/2 + u'/?) du

1{us? 143/2>
| - e
4(5/2 tap)t e

— S = RS- PR C

Solve for x in terms of u.

Examples throughout the book are
accompanied by CAS Investigations.
These investigations are linked
explorations that use a computer
algebra system (e.g., Maple®) to
further explore a related example

in the book. They allow students to
explore calculus by manipulating
functions, graphs, etc. and observing
the results. (Formerly called Open
Explorations)

CAS INVESTIGATIONS j———

— GRAPHING TECH EXERCISES )

Understanding is often enhanced by using a
graph or visualization. Graphing Tech Exercises
are exercises that ask students to make use of a
graphing utility to help find a solution. These
exercises are marked with a special icon.

F}d Slope Fields In Exercises 55 and 56, (a) use a graphing utility
to graph a slope field for the differential equation, (b) use
integration and the given point to find the particular solution of
the differential equation, and (c) graph the solution and the
slope field in the same viewing window.

55. D _ 00 (-2, -2)
dx

s6. Y=ok (4,12)
dx

@D 49. Investigation Consider the function

flay) =x? = y?

at the point (4, —3,7).

(@) Use a computer algebra system (o graph the surface | @) In Exercises 79-82, use a computer algebra system to graph the

represented by the function. plane.

(b) Determine the directional derivative D, f(4, —3) as a 79. w+y—z2-6 80. v —32=3
function of 6, where u = cos 0i + sin 0. Use a computer 8L —5x 4 dy — 6= —8 82 20k —4Ty—z= -3
algebra system to graph the function on the interval [0, 2).

(¢) Approximate the zeros of the function in part (b) and In Exercises 83-86, determine if any of the planes are parallel
interpret each in the context of the problem. or identical.

(d) Approximate the critical numbers of the function in part (b)
and interpret each in the context of the problem.

(¢) Find |[Vf(4, —3)| and explain its relationship to your
answers in part (d).

@D In Exercises 21-24, use a computer algebra system to find u x v
and a unit vector orthogonal to u and v.

(f) Use a computer
of the function f at
the vector in the direction 21. u=(4,-357)
relationship to the level curve.|

22.u=(-8 -6,4)

v =(25.9.3) v =(10,—-12,-2)
23 u=-3i+2j -5k 24, u =07k
v =04 - 0.8j + 0.2k v = 15i + 6.2k

—._ CAS EXERCISES )

NEW! Like the Graphing Tech Exercises, some
exercises may best be solved using a computer
algebra system. These CAS Exercises are new to
this edition and are denoted by a special icon.

TECHNOLOGY )7

Throughout the book,
technology boxes give students
a glimpse of how technology
may be used to help solve
problems and explore the
concepts of calculus. They
provide discussions of not only
where technology succeeds, but
also where it may fail.

—@ETITITIED Most graphing utilities and computer algebra systems have built-in
programs that can be used to approximate the value of a definite integral. Try using
such a program to approximate the integral in Example 1. How close is your
approximation?

‘When you use such a program, you need to be aware of its limitations. Often,
you are given no indication of the degree of accuracy of the approximation. Other
times, you may be given an approximation that is completely wrong. For instance,
try using a built-in numerical integration program to evaluate

7
J —dx.
X

Your calculator should give an error message. Does yours?
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.dditional Resources

Student Resources

Student Solutions Manual—Need a leg up on your homework or help to
prepare for an exam? The Student Solutions Manual contains worked-out
solutions for all odd-numbered exercises in the text. It is a great resource to
help you understand how to solve those tough problems.

Notetaking Guide—This notebook organizer is designed to help you organize
your notes, and provides section-by-section summaries of key topics and other
helpful study tools. The Notetaking Guide is available for download on the
book’s website.

WebAssign®—The most widely used homework system in higher education,
WebAssign offers instant feedback and repeatable problems, everything you
could ask for in an online homework system. WebAssign’s homework system
lets you practice and submit homework via the web. It is easy to use and loaded
with extra resources. With this edition of Larson’s Calculus, there are over
3,000 algorithmic homework exercises to use for practice and review.

DVD Lecture Series—Comprehensive, instructional lecture presentations
serve a number of uses. They are great if you need to catch up after missing

a class, need to supplement online or hybrid instruction, or need material for
self-study or review.

CalcLabs with Maple® and Mathematica®— Working with Maple or
Mathematica in class? Be sure to pick up one of these comprehensive manuals
that will help you use each program efficiently.

Xix
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XX Additional Resources

Instructor Resources

WebAssign®—Instant feedback, grading precision, and ease of use are just
three reasons why WebAssign is the most widely used homework system in
higher education. WebAssign’s homework delivery system lets instructors
deliver, collect, grade, and record assignments via the web. With this edition
of Larson’s Calculus, there are over 3,000 algorithmic homework exercises to
choose from. These algorithmic exercises are based on the section exercises
from the textbook to ensure alignment with course goals.

Instructor’s Complete Solutions Manual—This manual contains worked-out
solutions for all exercises in the text. It also contains solutions for the special
features in the text such as Explorations, Section Projects, etc. It is available
on the Instructor’s Resource Center at the book’s website.

Instructor’s Resource Manual—This robust manual contains an abundance
of resources keyed to the textbook by chapter and section, including chapter
summaries and teaching strategies. New to this edition’s manual are the
authors’ findings from CalcChat.com (see A Word from the Authors). They
offer suggestions for exercises to cover in class, identify tricky exercises
with tips on how best to use them, and explain what changes were made in
the exercise set based on the research.

Power Lecture—This comprehensive CD-ROM includes the Instructor’s
Complete Solutions Manual, PowerPoint® slides, and the computerized test
bank featuring algorithmically created questions that can be used to create,
deliver, and customize tests.

Computerized Test Bank—Create, deliver, and customize tests and study
guides in minutes with this easy to use assessment software on CD. The
thousands of algorithmic questions in the test bank are derived from the
textbook exercises, ensuring consistency between exams and the book.

JoinIn on TurningPoint—Enhance your students’ interactions with you,
your lectures, and each other. Cengage Learning is now pleased to offer you
book-specific content for Response Systems tailored to Larson’s Calculus,
allowing you to transform your classroom and assess your students’ progress
with instant in-class quizzes and polls.
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Preparation
for Calculus

This chapter reviews several concepts that ha"
s St

will help you prepare for your study of e
' ‘ .
g

calculus. These concepts include sketching
the graphs of equations and functions, and
fitting mathematical models to data. It is
important to review these concepts before
moving on to calculus.

In this chapter, you should learn the
following.

B How to identify the characteristics of .-
equations and sketch their graphs. (P.1)

® How to find and graph equations of
lines, including parallel and perpendicular
lines, using the concept of slope. (P.2)

B How to evaluate and graph functions
and their transformations. (P.3)

B How to fit mathematical models to
real-life data sets. (P.4)

Jeremy Walker/Getty Images

In 2006, China surpassed the United States as the world’s higgest emitter of carbon
dioxide, the main greenhouse gas. Given the carbon dioxide concentrations in the
—m atmosphere for several years, can older mathematical models still accurately
predict future atmospheric concentrations compared with more recent models? (See
Section P.1, Example 6.)

Mathematical models are commonly used to describe data sets. These models can be represented by many different
types of functions, such as linear, quadratic, cubic, rational, and trigonometric functions. (See Section P.4.)
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2 Chapter P

Preparation for Calculus

E Graphs and Models

Archive Photos

RENE DESCARTES (1596-1650)

Descartes made many contributions to
philosophy, science, and mathematics. The
idea of representing points in the plane by
pairs of real numbers and representing curves
in the plane by equations was described by
Descartes in his book La Géométrie, published
in 1637.

8
0,7)
6
4 (4.4 3x+y=7
*T\an
} N—t—+— X
2\ 4 6
-2 (3,-2)
- (4,-5)

Graphical approach: 3x +y =7
Figure P.1

=

y=x2-2

—_ N W R

The parabolay = x> — 2
Figure P.2

m Sketch the graph of an equation.

B Find the intercepts of a graph.

m Test a graph for symmetry with respect to an axis and the origin.
® Find the points of intersection of two graphs.

B Interpret mathematical models for real-life data.

The Graph of an Equation

In 1637 the French mathematician René Descartes revolutionized the study of mathe-
matics by joining its two major fields—algebra and geometry. With Descartes’s
coordinate plane, geometric concepts could be formulated analytically and algebraic
concepts could be viewed graphically. The power of this approach was such that
within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by viewing
calculus from multiple perspectives—graphically, analytically, and numerically—
you will increase your understanding of core concepts.

Consider the equation 3x + y = 7. The point (2, 1) is a solution point of the
equation because the equation is satisfied (is true) when 2 is substituted for x and 1 is
substituted for y. This equation has many other solutions, such as (1, 4) and (0, 7). To

find other solutions systematically, solve the original equation for y.
y = 7 — 3x Analytic approach

Then construct a table of values by substituting several values of x.

x| 0,1 2 3 | 4

Numerical approach

y|7/4]1] -2] -5

From the table, you can see that (0, 7), (1, 4), (2, 1), (3, —2), and (4, —35) are solutions
of the original equation 3x + y = 7. Like many equations, this equation has an
infinite number of solutions. The set of all solution points is the graph of the equation,
as shown in Figure P.1.

Even though we refer to the sketch shown in Figure P.1 as the graph of 3x + y = 7, it
really represents only a portion of the graph. The entire graph would extend beyond the page.
|

In this course, you will study many sketching techniques. The simplest is point
plotting—that is, you plot points until the basic shape of the graph seems apparent.

EXAMPLE [l Sketching a Graph by Point Plotting
Sketch the graph of y = x? — 2.

Solution  First construct a table of values. Then plot the points shown in the table.

x| —=2|-=1,0 | 1 |23
—-112 7

y| 2 | —-1] =2

Finally, connect the points with a smooth curve, as shown in Figure P.2. This graph is
a parabola. It is one of the conics you will study in Chapter 10. |

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



P.1  Graphs and Models 3

One disadvantage of point plotting is that to get a good idea about the shape of a
graph, you may need to plot many points. With only a few points, you could badly
misrepresent the graph. For instance, suppose that to sketch the graph of

y = %x(39 — 10x% + x%)

you plotted only five points: (—3, —3), (=1, —1), (0, 0), (1, 1), and (3, 3), as shown
in Figure P.3(a). From these five points, you might conclude that the graph is a line.
This, however, is not correct. By plotting several more points, you can see that the
graph is more complicated, as shown in Figure P.3(b).

v y=35x(39 - 10x + x*)
34 3.3 7
’ 3T
2 Ve
/7 2+
1+ 21
0,0 7 T
C —f—+—x
-3 =2 -1 7 1 2 3 } } } } } > x
.- -3 -2 -1 12 3
CL=Da -1+ Plotting only a L
, / few points can B
’ 2T misrepresent a ol
’
5 (3.3 -3+ graph.
-3+
EXPLORATION
) . (@) (b)
Comparing Graphical and Figure P.3
Analytic Approaches Use a
graphing utility to graph each
equation. In each case, find a —@ELITINAD Technology has made sketching of graphs easier. Even with
viewing window that shows the technology, however, it is possible to misrepresent a graph badly. For instance, each
important characteristics of the of the graphing utility screens in Figure P.4 shows a portion of the graph of

graph.
y =x> — x> —25.
ay=x>—-3x*+2%+5
From the screen on the left, you might assume that the graph is a line. From the

Ly =x>—3x2+ 2x + 25 . : .
b.y=x Y Y screen on the right, however, you can see that the graph is not a line. So, whether

c.y=-x—3x>+20x+5 you are sketching a graph by hand or using a graphing utility, you must realize that
d. y = 3¢ — 402 + 50x — 45 different “viewing windows” can produce very different views of a graph. In
choosing a viewing window, your goal is to show a view of the graph that fits well
e.y=—(r+12) in the context of the problem.
f.y=x—-2)x—-4)(x—06)
10 5
A purely graphical approach to 7
this problem would involve a -5 5
simple “guess, check, and revise”
strategy. What types of things do
you think an analytic approach -10 10
might involve? For instance, does
the graph have symmetry? Does I
the graph have turns? If so, where ,-")/_ I
are they? “10 “a5
As you proceed through
Chapters 1, 2, and 3 of this text, Graphing utility screens of y = x* — x* — 25
you will study many new analytic Figure P.4
tools that will help you analyze
graphs of equations such as these. In this text, the term graphing utility means either a graphing calculator or computer
graphing software such as Maple, Mathematica, or the TI-89. |
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Intercepts of a Graph

Two types of solution points that are especially useful in graphing an equation are those
having zero as their x- or y-coordinate. Such points are called intercepts because they
are the points at which the graph intersects the x- or y-axis. The point (a, 0) is an
x-intercept of the graph of an equation if it is a solution point of the equation. To find
the x-intercepts of a graph, let y be zero and solve the equation for x. The point (0, b)
is a y-intercept of the graph of an equation if it is a solution point of the equation. To
find the y-intercepts of a graph, let x be zero and solve the equation for y.

LM Some texts denote the x-intercept as the x-coordinate of the point (a, 0) rather than the
point itself. Unless it is necessary to make a distinction, we will use the term intercept to mean
either the point or the coordinate. u

It is possible for a graph to have no intercepts, or it might have several. For
instance, consider the four graphs shown in Figure P.5.

y

No x-intercepts
One y-intercept
Figure P.5

Intercepts of a graph
Figure P.6

y y
X L X ﬁ X X
Three x-intercepts One x-intercept No intercepts
One y-intercept Two y-intercepts

EXAMPLE B3 Finding x- and y-intercepts
Find the x- and y-intercepts of the graph of y = x3 — 4x.

Solution To find the x-intercepts, let y be zero and solve for x.

X —4x=0 Let y be zero.
xx—2)x +2)=0 Factor.
x=20,2,0or—2 Solve for x.

Because this equation has three solutions, you can conclude that the graph has three
x-intercepts:

(0,0),(2,0), and(—2, 0). x-intercepts

To find the y-intercepts, let x be zero. Doing this produces y = 0. So, the y-intercept is
(0, 0). y-intercept

(See Figure P.6.) [ ]

Example 2 uses an analytic approach to finding intercepts. When
an analytic approach is not possible, you can use a graphical approach by finding
the points at which the graph intersects the axes. Use a graphing utility to approxi-
mate the intercepts.
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Figure P.7

y

y=2x3—x

(1, 1)

Origin symmetry
Figure P.8
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Symmetry of a Graph

Knowing the symmetry of a graph before attempting to sketch it is useful because you
need only half as many points to sketch the graph. The following three types of
symmetry can be used to help sketch the graphs of equations (see Figure P.7).

1. A graph is symmetric with respect to the y-axis if, whenever (x, y) is a point on
the graph, (—x, y) is also a point on the graph. This means that the portion of
the graph to the left of the y-axis is a mirror image of the portion to the right of the
y-axis.

2. A graph is symmetric with respect to the x-axis if, whenever (x, y) is a point on
the graph, (x, —y) is also a point on the graph. This means that the portion of the
graph above the x-axis is a mirror image of the portion below the x-axis.

3. A graph is symmetric with respect to the origin if, whenever (x, y) is a point on

the graph, (—x, —y) is also a point on the graph. This means that the graph is
unchanged by a rotation of 180° about the origin.

TESTS FOR SYMMETRY

1. The graph of an equation in x and y is symmetric with respect to the y-axis
if replacing x by —x yields an equivalent equation.

2. The graph of an equation in x and y is symmetric with respect to the x-axis
if replacing y by —y yields an equivalent equation.

3. The graph of an equation in x and y is symmetric with respect to the origin
if replacing x by —x and y by —y yields an equivalent equation.

The graph of a polynomial has symmetry with respect to the y-axis if each term
has an even exponent (or is a constant). For instance, the graph of y = 2x* — x> + 2
has symmetry with respect to the y-axis. Similarly, the graph of a polynomial has
symmetry with respect to the origin if each term has an odd exponent, as illustrated in
Example 3.

EXAMPLE [EJ Testing for Symmetry

Test the graph of y = 2x* — x for symmetry with respect to the y-axis and to the
origin.

Solution

y-axis Symmetry:

y = 23 — x Write original equation.
y = 2(—)()3 - (—x) Replace x by —x.
y=—- 2% + x Simplify. It is not an equivalent equation.

Origin Symmetry:

y = 23 — x Write original equation.
-y = 2(—)()3 - (—x) Replace x by —x and y by —y.
—y=-2x+x Simplify.

y = 23 — x Equivalent equation

Because replacing both x by —x and y by —y yields an equivalent equation, you can
conclude that the graph of y = 2x* — x is symmetric with respect to the origin, as
shown in Figure P.8. n
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y
x—y2=1 (5,2)
2 4
(2, 1)
1 —+
(1,0)
¢ } } } } X
2 3 4 5
_1 -+
x-intercept
-2+ P
Figure P.9

x2—y=3

Two points of intersection
Figure P.10

You can check the points
of intersection in Example 5 by
substituting into both of the original
equations or by using the intersect
feature of a graphing utility.

O EXAMPLE n Using Intercepts and Symmetry to Sketch a Graph

Sketch the graph of x — y2 = 1.

Solution The graph is symmetric with respect to the x-axis because replacing y by
—y yields an equivalent equation.

X — y2 =1 Write original equation.
X — (—y)2 =1 Replace y by —y.
X — y2 =1 Equivalent equation

This means that the portion of the graph below the x-axis is a mirror image of the
portion above the x-axis. To sketch the graph, first plot the x-intercept and the points
above the x-axis. Then reflect in the x-axis to obtain the entire graph, as shown in
Figure P.9. |

—m Graphing utilities are designed so that they most easily graph
equations in which y is a function of x (see Section P.3 for a definition of function).

To graph other types of equations, you need to split the graph into two or more parts
or you need to use a different graphing mode. For instance, to graph the equation in
Example 4, you can split it into two parts.

V= VX — 1 Top portion of graph
Vo = VX — 1 Bottom portion of graph

Points of Intersection

A point of intersection of the graphs of two equations is a point that satisfies both
equations. You can find the point(s) of intersection of two graphs by solving their
equations simultaneously.

EXAMPLE [EJ Finding Points of Intersection
Find all points of intersection of the graphs of x> — y =3 andx —y = 1.

Solution Begin by sketching the graphs of both equations on the same rectangular
coordinate system, as shown in Figure P.10. Having done this, it appears that the
graphs have two points of intersection. You can find these two points, as follows.

y = x> -3 Solve first equation for y.
y=x—- 1 Solve second equation for y.
x?—-3=x-1 Equate y-values.
X2—x—-2=0 Write in general form.
x—2)x+1)=0 Factor.
x=2or—1 Solve for x.
The corresponding values of y are obtained by substituting x = 2 and x = — 1 into

either of the original equations. Doing this produces two points of intersection:

(2, 1) and (— 1, —2). Points of intersection ]

The icon C indicates that you will find a CAS Investigation on the book’s website. The CAS

Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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The Mauna Loa Observatory in Hawaii
has been measuring the increasing
concentration of carbon dioxide in Earth’s
atmosphere since 1958. Carbon dioxide is
the main greenhouse gas responsible for
global climate warming.

The models in Example 6 were
developed using a procedure called least
squares regression (see Section 13.9).
The quadratic and linear models have
correlations given by 7> = 0.997 and

r? = 0.994, respectively. The closer r?
is to 1, the “better” the model.

P.1  Graphs and Models 7

Mathematical Models

Real-life applications of mathematics often use equations as mathematical models.
In developing a mathematical model to represent actual data, you should strive for two
(often conflicting) goals: accuracy and simplicity. That is, you want the model to be
simple enough to be workable, yet accurate enough to produce meaningful results.
Section P.4 explores these goals more completely.

EXAMPLE ﬂ Comparing Two Mathematical Models

The Mauna Loa Observatory in Hawaii records the carbon dioxide concentration y (in
parts per million) in Earth’s atmosphere. The January readings for various years are
shown in Figure P.11. In the July 1990 issue of Scientific American, these data were
used to predict the carbon dioxide level in Earth’s atmosphere in the year 2035, using
the quadratic model

y = 316.2 + 0.70t 4+ 0.018¢> Quadratic model for 1960-1990 data

where ¢ = 0 represents 1960, as shown in Figure P.11(a).
The data shown in Figure P.11(b) represent the years 1980 through 2007 and can
be modeled by

y = 304.1 + 1.64¢ Linear model for 1980-2007 data

where t = 0 represents 1960. What was the prediction given in the Scientific American
article in 19907 Given the new data for 1990 through 2007, does this prediction for the
year 2035 seem accurate?

y y
385 / 385 /
380 // 380 I"'
S 375 / S 375 2
£ 370 / £ 370 o
365 / 365 #
= 360 = 360
8 355 / 8 355 g
2 i 2 Kl
2 350 o 5 350 /
E 345 P E 345 -
& 340 J & 340 Fd
£ 33 7y £ 335 /
=330 =330 /
o' 325+ o' 325 /
O 30y O 3201 s
315 3155
$ 1 1 1 1 1 1 1 1 1 1 t $ 1 1 1 1 1 1 1 1 1 1 t
T T T T T T T T T T T T T T T T T T T T
510 15 20 25 30 35 40 45 50 510 15 20 25 30 35 40 45 50
Year (0 <> 1960) Year (0 <> 1960)
(a) (b)
Figure P.11

Solution To answer the first question, substitute + = 75 (for 2035) into the quadratic
model.

y = 316.2 + 0.70(75) + 0.018(75)% = 469.95 Quadratic model

So, the prediction in the Scientific American article was that the carbon dioxide
concentration in Earth’s atmosphere would reach about 470 parts per million in the
year 2035. Using the linear model for the 1980-2007 data, the prediction for the year
2035 is

y = 304.1 + 1.64(75) = 427.1. Linear model
So, based on the linear model for 1980-2007, it appears that the 1990 prediction was
too high. |
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@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, match the equation with its graph. [The
graphs are labeled (a), (b), (¢), and (d).]

(a) y m v

2.y=V9 -

4, y=x>—x

1.y=—%x+3
3.y=3—x?

In Exercises 5-14, sketch the graph of the equation by point
plotting.

5.y=1x+2 6.y=5—2x
7.y =4—x? 8. y=(x—3)
9.y = |x+2 10. y = |x| — 1
1. y=J/x—6 12. y= Jx + 2
3 1
13.y—x 14.y—xJr2

'dF’ In Exercises 15 and 16, describe the viewing window that yields

the figure.

15. y =2 + 4x> = 3

A

J(\J

16. y = |x| + |x — 16]

_/

'dF’ In Exercises 17 and 18, use a graphing utility to graph the

equation. Move the cursor along the curve to approximate the
unknown coordinate of each solution point accurate to two
decimal places.

17.y= /5 — x (@ (2,y) (b) (x,3)
18. y = x° — 5x (@) (=0.5,y) (b) (x, —4)

In Exercises 19-28, find any intercepts.

19. y=2x—5 20. y = 4x> + 3

2l y=x>+x—2 22. y2 = x* — 4x
23, y = xJ/16 — x* 24, y=(x—1)/x*+1

2 — Ux x2 + 3x

25. y = 26, y="—"-

Y S5x J (Bx + 1)?
27. X%y — x>+ 4y =0 28, y =2x — Vx> + 1

In Exercises 29-40, test for symmetry with respect to each axis
and to the origin.

29. y=x>—-6 30. y = x> —x

31. y2 = — 8x 2. y=x>+x

33. xy=4 34. xy2=-10

3[/.y=4— /x+3 36. xy — J4—x2=0
2

37.y=xz’_‘H 3s.y=xz"Tl

39. y =[x + 4] 40. |y| —x=3

In Exercises 41-58, sketch the graph of the equation. Identify
any intercepts and test for symmetry.

41. y =2 — 3x 42.y=—%x+6
43.y:%x—4 44.y:%x+1
45. y =9 — x? 46. y = x>+ 3
47. y = (x + 3)? 48. y = 2x> + x
49. y =x3+2 50. y = x* — 4x
51.y=x\/m 52.y=\/25fx2
53. x =y 54. x =y>—4
55.y=§ 56. y = 210

X x>+ 1
57.y =6 — |x| 58. y =16 — x|

ldF"' In Exercises 59-62, use a graphing utility to graph the equation.

Identify any intercepts and test for symmetry.

59. y2—x=9
6l. x +3y> =6

60. x> + 4y> = 4
62. 3x — 4y? =8

In Exercises 63-70, find the points of intersection of the graphs
of the equations.

63. x+y=38 64. 3x — 2y = —4
4 —y =1 4x + 2y = —10

65. x2+y=6 66. x =3 — y?
x+y=4 y=x-—1

The symbol |dp' indicates an exercise in which you are instructed to use graphing technology
or a symbolic computer algebra system. The solutions of other exercises may also be facilitated

by use of appropriate technology.
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67. x> +y> =5 68. x>+ y>=25
x—y=1 —3x+y=15

69. y = x3 70. y = x> — 4x
y=x y=-k+2)

'dF" In Exercises 71-74, use a graphing utility to find the points
of intersection of the graphs. Check your results analytically.

Ty =x>—2x>+x — 1 72y =x* =22+ 1
y=—-x*+3x—1 y=1-x

73.y=Vx+6 74.y=—|2x - 3| +6
y=\/ﬂ y=6 —x

'dP' 75. Modeling Data The table shows the Consumer Price Index
(CP)) for selected years. (Source: Bureau of Labor Statistics)

Year | 1975 | 1980 | 1985 | 1990 | 1995 | 2000 | 2005

CPI | 53.8 | 824 | 107.6 | 130.7 | 152.4 | 172.2 | 195.3

P.1  Graphs and Models 9

where x is the diameter of the wire in mils (0.001 in.). Use a
graphing utility to graph the model. If the diameter of the wire
is doubled, the resistance is changed by about what factor?

WRITING ABOUT CONCEPTS

In Exercises 79 and 80, write an equation whose graph has
the indicated property. (There may be more than one
correct answer.)

79. The graph has intercepts at x = —4,x = 3, and x = 8.

80. The graph has intercepts at x = —%, x=4,andx = %

81. (a) Prove that if a graph is symmetric with respect to the
x-axis and to the y-axis, then it is symmetric with
respect to the origin. Give an example to show that the
converse is not true.

(b) Prove that if a graph is symmetric with respect to one
axis and to the origin, then it is symmetric with respect
to the other axis.

(a) Use the regression capabilities of a graphing utility to find
a mathematical model of the form y = at? + bt + ¢ for the
data. In the model, y represents the CPI and ¢ represents the
year, with = 5 corresponding to 1975.

(b) Use a graphing utility to plot the data and graph the model.
Compare the data with the model.

(c) Use the model to predict the CPI for the year 2010.

ldP' 76. Modeling Data The table shows the numbers of cellular
phone subscribers (in millions) in the United States for selected

years. (Source: Cellular Telecommunications and Internet
Association)

Year 1990 | 1993 | 1996 | 1999 | 2002 | 2005

Number 5 16 44 86 141 208

(a) Use the regression capabilities of a graphing utility to find
a mathematical model of the form y = at> + bt + ¢ for the
data. In the model, y represents the number of subscribers
and ¢ represents the year, with ¢+ = 0 corresponding to 1990.

(b) Use a graphing utility to plot the data and graph the model.
Compare the data with the model.

(c) Use the model to predict the number of cellular phone sub-
scribers in the United States in the year 2015.

77. Break-Even Point Find the sales necessary to break even
(R = C) if the cost C of producing x units is

C =55x + 10,000

Cost equation
and the revenue R from selling x units is

R = 3.20x.

Revenue equation

ldF" 78. Copper Wire The resistance y in ohms of 1000 feet of solid
copper wire at 77°F can be approximated by the model

10,770
YT
X

— 037, 5=x=100

CAPSTONE

82. Match the equation or equations with the given
characteristic.

(i) y=3x*—3x (i) y=(x +3)* (i) y=3x—3
(iv) y =¥ M y=32+3 (v)y=r+3
(a) Symmetric with respect to the y-axis

(b) Three x-intercepts

(c) Symmetric with respect to the x-axis

(d) (=2, 1)is a point on the graph

(e) Symmetric with respect to the origin

(f) Graph passes through the origin

True or False? In Exercises 83—86, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

83. If (—4, —5) is a point on a graph that is symmetric with respect
to the x-axis, then (4, —5) is also a point on the graph.

84. If (—4, —5) is a point on a graph that is symmetric with respect
to the y-axis, then (4, —5) is also a point on the graph.

85. If b> — 4ac > 0 and a # 0, then the graph of y = ax?® + bx + ¢
has two x-intercepts.

86. If b> — 4ac = 0and a # 0, then the graph of y = ax® + bx + ¢
has only one x-intercept.

In Exercises 87 and 88, find an equation of the graph that
consists of all points (x, y) having the given distance from the
origin. (For a review of the Distance Formula, see Appendix C.)

87. The distance from the origin is twice the distance from (0, 3).

88. The distance from the origin is K(K # 1) times the distance
from (2, 0).
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@ Linear Models and Rates of Change

Ay =y, —y, = changeiny
Ax = x, — x; = changein x
Figure P.12

If m is positive, then the line rises
from left to right.
Figure P.13

Find the slope of a line passing through two points.
Write the equation of a line with a given point and slope.

Sketch the graph of a linear equation in slope-intercept form.

[
[
B Interpret slope as a ratio or as a rate in a real-life application.
[
[

Write equations of lines that are parallel or perpendicular to a given line.

The Slope of a Line

The slope of a nonvertical line is a measure of the number of units the line rises (or

Ay =Y~ N Change in y
units corresponds to a horizontal change of
Ax = Xy T X4 Change in x

falls) vertically for each unit of horizontal change from left to right. Consider the two
points (x;, y;) and (x,, y,) on the line in Figure P.12. As you move from left to right
along this line, a vertical change of

units. (A is the Greek uppercase letter delta, and the symbols Ay and Ax are read

“delta y” and “delta x.”)

DEFINITION OF THE SLOPE OF A LINE

The slope m of the nonvertical line passing through (x,, y,) and (x,, y,) is

Ay _

Ny #Fx
2 Il 5
Ax 1

- X

Slope is not defined for vertical lines.

When using the formula for slope, note that

Yo ™ N

N T )

Xy T X

X T X

So, it does not matter in which order you subtract as long as you are consistent and both
“subtracted coordinates” come from the same point.

Figure P.13 shows four lines: one has a positive slope, one has a slope of zero,
one has a negative slope, and one has an “undefined” slope. In general, the greater the
absolute value of the slope of a line, the steeper the line is. For instance, in Figure
P.13, the line with a slope of —5 is steeper than the line with a slope of %

-1+

If m is zero, then the line is
horizontal.

y
44 0,4
3 3
2

1

T T f f f X
-1 2 3 4
-1 1,-D

If m is negative, then the line falls
from left to right.
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| omyis
5 | undefined.

1+ (3, 1)

1 1 1 F—x
-1 1 2 4
—1+

If m is undefined, then the line is
vertical.



P2 Linear Models and Rates of Change 1

EXPLORATION

Investigating Equations of Lines
Use a graphing utility to graph
each of the linear equations.
Which point is common to all
seven lines? Which value in the
equation determines the slope of
each line?

ay—4=-2x+1)

b.y—4=—1x+1)
c.y—4=-3x+1)
d.y—4=0x+1)

ey—4=13x+1)
f.y—4=1x+1)
g.y—4=2x+1)
Use your results to write an

equation of a line passing through
(=1, 4) with a slope of m.

Equations of Lines

Any two points on a nonvertical line can be used to calculate its slope. This can be
verified from the similar triangles shown in Figure P.14. (Recall that the ratios of
corresponding sides of similar triangles are equal.)

(%, ¥,%)

A m= 27N

Any two points on a nonvertical line can be
used to determine its slope.
Figure P.14

You can write an equation of a nonvertical line if you know the slope of the line
and the coordinates of one point on the line. Suppose the slope is m and the point is
(x;, yy)- If (x, y) is any other point on the line, then

Yooy=3x-5

>

=

I w4
&~

’ o I

=
=
Il

_57

The line with a slope of 3 passing through

the point (1, —2)
Figure P.15

Y=V _

X —Xx

This equation, involving the two variables x and y, can be rewritten in the form
y — v, = m(x — x,), which is called the point-slope equation of a line.

POINT-SLOPE EQUATION OF A LINE

An equation of the line with slope m passing through the point (x,, y,) is
given by

Yy =W Zm(x—xl).

EXAMPLE [l Finding an Equation of a Line

Find an equation of the line that has a slope of 3 and passes through the point (1, —2).

Solution
y =y =mlx —x) Point-slope form
y—(=2)=3x—-1) Substitute —2 for y;, 1 for x,, and 3 for m.
y+2=3x-3 Simplify.
y=3x—-35 Solve for y.
(See Figure P.15.) -

(3 Remember that only nonvertical lines have a slope. Consequently, vertical lines
cannot be written in point-slope form. For instance, the equation of the vertical line passing
through the point (1, =2)is x = 1. |
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_®
-7 13838000
a0

4 el

3 10

Population (in millions)

1 1 1
T T T
1995 2005 2015
Year

Population of Colorado
Figure P.16

Ratios and Rates of Change

The slope of a line can be interpreted as either a ratio or a rate. If the x- and y-axes
have the same unit of measure, the slope has no units and is a ratio. If the x- and
y-axes have different units of measure, the slope is a rate or rate of change. In your
study of calculus, you will encounter applications involving both interpretations
of slope.

EXAMPLE ﬂ Population Growth and Engineering Design

a. The population of Colorado was 3,827,000 in 1995 and 4,665,000 in 2005. Over
this 10-year period, the average rate of change of the population was

change in population

Rate of change = 5
change in years

4,665,000 — 3,827,000
2005 — 1995
= 83,800 people per year.

If Colorado’s population continues to increase at this same rate for the next
10 years, it will have a 2015 population of 5,503,000 (see Figure P.16). (Source:
U.S. Census Bureau)

b. In tournament water-ski jumping, the ramp rises to a height of 6 feet on a raft that
is 21 feet long, as shown in Figure P.17. The slope of the ski ramp is the ratio of
its height (the rise) to the length of its base (the run).

rise

Slope of ramp = — Rise is vertical change, run is horizontal change.
run

_ 6 feet
21 feet

In this case, note that the slope is a ratio and has no units.

Dimensions of a water-ski ramp
Figure P.17 ]

The rate of change found in Example 2(a) is an average rate of change. An
average rate of change is always calculated over an interval. In this case, the interval
is [1995, 2005]. In Chapter 2 you will study another type of rate of change called an
instantaneous rate of change.
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P2 Linear Models and Rates of Change 13

Graphing Linear Models

Many problems in analytic geometry can be classified in two basic categories: (1)
Given a graph, what is its equation? and (2) Given an equation, what is its graph?
The point-slope equation of a line can be used to solve problems in the first category.
However, this form is not especially useful for solving problems in the second
category. The form that is better suited to sketching the graph of a line is the slope-
intercept form of the equation of a line.

THE SLOPE-INTERCEPT EQUATION OF A LINE

The graph of the linear equation
y=mx + b

is a line having a slope of m and a y-intercept at (0, b).

EXAMPLE [EJ Sketching Lines in the Plane

Sketch the graph of each equation.
ay=2x+1 b.y=2 c.3y+x—6=0
Solution

a. Because b = 1, the y-intercept is (0, 1). Because the slope is m = 2, you know that
the line rises two units for each unit it moves to the right, as shown in Figure
P.18(a).

b. Because b = 2, the y-intercept is (0, 2). Because the slope is m = 0, you know that
the line is horizontal, as shown in Figure P.18(b).

¢. Begin by writing the equation in slope-intercept form.

3y +x—6=0 Write original equation.
3y=—x+6 Isolate y-term on the left.
1
y = —gx + 2 Slope-intercept form
In this form, you can see that the y-intercept is (0, 2) and the slope is m = —1. This
means that the line falls one unit for every three units it moves to the right, as
shown in Figure P.18(c).
y y y
y=2x+1 34 34
| y=2
L pAy=2 ~
| (0,2 \
1+ 1
} } X } } } X
2 3 1 2 3
(a) m = 2; line rises (b) m = 0; line is horizontal () m= 7%; line falls
Figure P.18 [ ]
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14 Chapter P Preparation for Calculus

In mathematics, the
phrase “if and only if” is a way of
stating two implications in one state-
ment. For instance, the first statement at
the right could be rewritten as the
following two implications.

a. If two distinct nonvertical lines are
parallel, then their slopes are equal.

b. If two distinct nonvertical lines have
equal slopes, then they are parallel.

Because the slope of a vertical line is not defined, its equation cannot be written
in the slope-intercept form. However, the equation of any line can be written in the
general form

Ax +By+ C=0 General form of the equation of a line

where A and B are not both zero. For instance, the vertical line given by x = a can be
represented by the general formx — a = 0.

SUMMARY OF EQUATIONS OF LINES

1. General form: Ax+By+C=0, (A,B+#0)
2. Vertical line: X =a

3. Horizontal line: y=1b

4. Point-slope form: y —y, = mx — x,)

5. Slope-intercept form: y = mx + b

Parallel and Perpendicular Lines
The slope of a line is a convenient tool for determining whether two lines are parallel
or perpendicular, as shown in Figure P.19. Specifically, nonvertical lines with the same
slope are parallel and nonvertical lines whose slopes are negative reciprocals are
perpendicular.

y y
ml = m2

m

m

Parallel lines Perpendicular lines
Figure P.19

PARALLEL AND PERPENDICULAR LINES

1. Two distinct nonvertical lines are parallel if and only if their slopes are
equal—that is, if and only if m, = m,.

2. Two nonvertical lines are perpendicular if and only if their slopes are
negative reciprocals of each other—that is, if and only if
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3x+2y=4
2\ 2x—3y=5

2x—-3y="17

Lines parallel and perpendicular to
x—3 =95
Figure P.20

P.2 Linear Models and Rates of Change 15

\ EXAMPLE I Finding Parallel and Perpendicular Lines

Find the general forms of the equations of the lines that pass through the point (2, — 1)
and are

a. parallel to the line 2x — 3y =5  b. perpendicular to the line 2x — 3y = 5.
(See Figure P.20.)

Solution By writing the linear equation 2x — 3y = 5 in slope-intercept form,
y = %x - %, you can see that the given line has a slope of m = %

a. The line through (2, —1) that is parallel to the given line also has a slope of %

y—y = m(x - xl) Point-slope form
y—(-1)= %(x —-2) Substitute.
3(y +1)=2(x—-2) Simplify.
2x—3y—7=0 General form

Note the similarity to the original equation.

b. Using the negative reciprocal of the slope of the given line, you can determine that

the slope of a line perpendicular to the given line is —%, So, the line through the

point (2, — 1) that is perpendicular to the given line has the following equation.

y—y = m(x - xl) Point-slope form
y—(—1)= —%(x -2) Substitute.
2y +1) = =3(x — 2) Simplify.
3x+2y—4=0 General form |

—@EILITINENIRZI® The slope of a line will appear distorted if you use
different tick-mark spacing on the x- and y-axes. For instance, the graphing
calculator screens in Figures P.21(a) and P.21(b) both show the lines given by
y=2x and y = —%x + 3. Because these lines have slopes that are negative
reciprocals, they must be perpendicular. In Figure P.21(a), however, the lines don’t
appear to be perpendicular because the tick-mark spacing on the x-axis is not the
same as that on the y-axis. In Figure P.21(b), the lines appear perpendicular because
the tick-mark spacing on the x-axis is the same as on the y-axis. This type of
viewing window is said to have a square setting.

10 6
-10 10 -9 9
-10 -6
(a) Tick-mark spacing on the x-axis is not the (b) Tick-mark spacing on the x-axis is the
same as tick-mark spacing on the y-axis. same as tick-mark spacing on the y-axis.

Figure P.21
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@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, estimate the slope of the line from its graph.
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

1. v 2. Y
7 7 /
6 6
5 5
4 4
3 3
2 2
1 1
X X
1234567 1234567
3 y 4 y
7
6 6
5 5
4
3 3
2 2
1 1
X X
1234567 123456
5 y 6 y
28 -\ 70 /
Sa L\ 60 /
20 50
16 40 /
12 \ 304/
8 20 -/
4 10
\ X / X
123\567 1234567

In Exercises 7 and 8, sketch the lines through the point with
the indicated slopes. Make the sketches on the same set of
coordinate axes.

Point Slopes
7. (3,4) (a) 1
8. (-2,5) (a) 3

(b) =2 (¢) =3 (d) Undefined
® -3 ©3 (@0
In Exercises 9-14, plot the pair of points and find the slope of
the line passing through them.
9. (3,—4),(5,2)
11. (4,6),(4,1)
12. (3, =5), (5, —5)
2 3

13. (=5.3),(=3.3)

3 1
14. (£3). G -9
In Exercises 15-18, use the point on the line and the slope of the

line to find three additional points that the line passes through.
(There is more than one correct answer.)

10. (1,1),(=2,7)

Point Slope Point Slope
15. (6,2) m =70 16. (—4.,3)
17. (1,7) 18. (=2, -2) m =2

m is undefined.

m= -3

19. Conveyor Design A moving conveyor is built to rise 1 meter
for each 3 meters of horizontal change.

(a) Find the slope of the conveyor.

(b) Suppose the conveyor runs between two floors in a factory.
Find the length of the conveyor if the vertical distance
between floors is 10 feet.

20. Rate of Change Each of the following is the slope of a line
representing daily revenue y in terms of time x in days. Use the
slope to interpret any change in daily revenue for a one-day
increase in time.

(@ m=2800 (b) m=250 (c)m=0
21. Modeling Data The table shows the populations y (in millions)
of the United States for 2000 through 2005. The variable ¢

represents the time in years, with = 0 corresponding to 2000.
(Source: U.S. Bureau of the Census)

t 0 1 2 3 4 5

y | 2824 | 2853 | 2882 | 291.1 | 293.9 | 296.6

(a) Plot the data by hand and connect adjacent points with a
line segment.

(b) Use the slope of each line segment to determine the year
when the population increased least rapidly.

22. Modeling Data The table shows the rate r (in miles per hour)
that a vehicle is traveling after ¢ seconds.

t |5 10 15|20 25| 30

r | 57 | 74 | 8 | 84 | 61 | 43

(a) Plot the data by hand and connect adjacent points with a
line segment.

(b) Use the slope of each line segment to determine the interval
when the vehicle’s rate changed most rapidly. How did the
rate change?

In Exercises 23-28, find the slope and the y-intercept (if possible)
of the line.

23. y=4x -3 24, —x+y=1
25. x + 5y =20 26. 6x — 5y =15
27. x=4
28. y=—1

In Exercises 29-34, find an equation of the line that passes
through the point and has the indicated slope. Sketch the line.

Point Slope Point Slope
29. (0,3) m=3 30. (=5, —2)  mis undefined.
31. (0,0) m=3 32. (0,4) m=0
33. (3,-2) m= 34. (—2,4) m=—3
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In Exercises 35-44, find an equation of the line that passes In Exercises 61- 66, write the general forms of the equations of

through the points, and sketch the line. the lines through the point (a) parallel to the given line and (b)
erpendicular to the given line.

35. (0,0). (4. 8) 36. (0,0). (~1,5) pere &

37. (2, 1), (0,—3) 38. (-2, -2),(1,7) Point Line Point Line

39. (2,8), (5, 0) 40. (-3,6),(1,2) 61. (-7,-2) x=1 62. (—1,0) y= -3

41. (6,3), (6, 8) 42. (1,-2),(3, -2) 63. (2,1) 4x —2y =3 64. (—3,2) x+y=17

43. (12),(0,3) a4, (12), (5, 1) 65. (3. %) 5¢—3y=0 66. (4, -5 3x+dy=7

45. Find an equation of the vertical line with x-intercept at 3. Rate of Change In Exercises 67-70, you are given the dollar

value of a product in 2008 and the rate at which the value of the
product is expected to change during the next 5 years. Write a
linear equation that gives the dollar value V of the product in

46. Show that the line with intercepts (a, 0) and (0, b) has the
following equation.

Xy % =1. a#0.b#0 terms of the year ¢. (Let £ = 0 represent 2000.)
a
2008 Value Rate
In Exercises 47-50, use the result of Exercise 46 to write an 67. $1850 $250 increase per year
equation of the line in general form. 68. $156 $4.50 increase per year
47. x-intercept: (2, 0) 48. x-intercept: (—%, 0) 69. $17,200 $1600 decrease per year
y-intercept: (0, 3) y-intercept: (0, —2) 70. $245,000 $5600 decrease per year
49. Pélnt on line: (1, 2) 50. Pé1nt on line: (=3, 4) 'dF" In Exercises 71 and 72, use a graphing utility to graph the
x-intercept: (a, 0) x-intercept: (a, 0) parabolas and find their points of intersection. Find an equation
y-intercept: (0, a) y-intercept: (0, a) of the line through the points of intersection and graph the line
(a # 0) (a # 0) in the same viewing window.
= 52 .
In Exercises 51-58, sketch a graph of the equation. Ny==x 72y oAt 3
y = 4x — x? y=—-x>4+2x+3
51. y= -3 52. x =4
53.y= —2x+ 1 54,y = %x ~1 In Exercises 73 and 74, determine whether the points are
55 y—2= % (= 1) 56y — 1 = 3(x + 4) collinear. (Three points are collinear if they lie on the same line.)
57.2x—y—3=0 58. x +2y +6=0 73. (=2,1),(=1,0), (2, -2)

74. (0,4), (7, —6), (=5, 11)
'dF‘" 59. Square Setting Use a graphing utility to graph the lines

y=2x—3 and y = —%x + 1 in each viewing window. WRITING ABOUT CONCEPTS

Compare the graphs. Do the lines appear perpendicular? Are In Exercises 75-77, find the coordinates of the point of
the lines perpendicular? Explain. intersection of the given segments. Explain your reasoning.
@) Xmin = -5 ® Xmin = -6 (b, ©) (b, c)

Xmax =5 Xmax =6

Xscl =1 Xscl =1

Ymin = -5 Ymin = -4

Ymax =5 Ymax =4 (-a, 0) (a, 0) (—a, 0) (a, 0)

Yscl =1 Yscl =1

Perpendicular bisectors Medians

CAPSTONE 7. . )

60. A line is represented by the equation ax + by = 4.
(a) When is the line parallel to the x-axis?
(b) When is the line parallel to the y-axis? (-a, 0) (a, 0)

(c) Give values for a and b such that the line has a slope of % Altitudes

(d) Give values for a and b such that the line is perpendi-
culartoy = % x + 3. 78. Show that the points of intersection in Exercises 75, 76, and

(¢) Give values for a and b such that the line coincides with 77 are collinear.

the graph of 5x + 6y = 8.
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79.

80.

'dP' 81.

82.

Chapter P Preparation for Calculus

Temperature Conversion Find a linear equation that expresses
the relationship between the temperature in degrees Celsius C
and degrees Fahrenheit F. Use the fact that water freezes at 0°C
(32°F) and boils at 100°C (212°F). Use the equation to convert
72°F to degrees Celsius.

Reimbursed Expenses A company reimburses its sales repre-
sentatives $175 per day for lodging and meals plus 48¢ per mile
driven. Write a linear equation giving the daily cost C to the
company in terms of x, the number of miles driven. How
much does it cost the company if a sales representative drives
137 miles on a given day?

Career Choice An employee has two options for positions in
a large corporation. One position pays $14.50 per hour plus an
additional unit rate of $0.75 per unit produced. The other pays
$11.20 per hour plus a unit rate of $1.30.

(a) Find linear equations for the hourly wages W in terms of x,
the number of units produced per hour, for each option.

(b) Use a graphing utility to graph the linear equations and find
the point of intersection.

(c) Interpret the meaning of the point of intersection of the
graphs in part (b). How would you use this information
to select the correct option if the goal were to obtain the
highest hourly wage?

Straight-Line Depreciation A small business purchases a
piece of equipment for $875. After 5 years the equipment will
be outdated, having no value.

(a) Write a linear equation giving the value y of the equipment
in terms of the time x, 0 = x = 5.

(b) Find the value of the equipment when x = 2.

(c) Estimate (to two-decimal-place accuracy) the time when
the value of the equipment is $200.

83. Apartment Rental A real estate office manages an apartment

F® s4.

complex with 50 units. When the rent is $780 per month, all 50
units are occupied. However, when the rent is $825, the average
number of occupied units drops to 47. Assume that the
relationship between the monthly rent p and the demand x is
linear. (Note: The term demand refers to the number of
occupied units.)

(a) Write a linear equation giving the demand x in terms of the
rent p.

(b) Linear extrapolation Use a graphing utility to graph the
demand equation and use the frace feature to predict the
number of units occupied if the rent is raised to $855.

(c) Linear interpolation Predict the number of units occupied
if the rent is lowered to $795. Verify graphically.

Modeling Data  An instructor gives regular 20-point quizzes
and 100-point exams in a mathematics course. Average scores
for six students, given as ordered pairs (x, y), where x is the
average quiz score and y is the average test score, are (18, 87),
(10, 55), (19, 96), (16, 79), (13, 76), and (15, 82).

(a) Use the regression capabilities of a graphing utility to find
the least squares regression line for the data.

(b) Use a graphing utility to plot the points and graph the
regression line in the same viewing window.

85.

86.

(c) Use the regression line to predict the average exam score
for a student with an average quiz score of 17.

(d) Interpret the meaning of the slope of the regression line.

(e) The instructor adds 4 points to the average test score of every-
one in the class. Describe the changes in the positions of the
plotted points and the change in the equation of the line.

Tangent Line Find an equation of the line tangent to the
circle x> + y?> = 169 at the point (5, 12).

Tangent Line Find an equation of the line tangent to the
circle (x — 1) + (y — 1)? = 25 at the point (4, —3).

Distance In Exercises 87-92, find the distance between the
point and line, or between the lines, using the formula for the
distance between the point (x,,y,) and the line Ax + By +

C=0.
. |Ax1 + Byl + Cl
Distance = ———F—————
JAT+ B?
87. Point: (0, 0) 88. Point: (2, 3)
Line: 4x + 3y = 10 Line: 4x + 3y = 10
89. Point: (—2, 1) 90. Point: (6, 2)

91.

93.

e 94,

95.
96.

97.

98.

Line: x = —1
. Line: 3x — 4y =1
Line: 3x — 4y = 10

Lineex —y—2=0
Line:x +y =1
Line:x +y =5
Show that the distance between the point (x;, ;) and the line
Ax + By + C=0is
|Ax, + By, + C|

JAEE B
Write the distance d between the point (3, 1) and the line
y = mx + 4 in terms of m. Use a graphing utility to graph

the equation. When is the distance 0? Explain the result
geometrically.

Distance =

Prove that the diagonals of a rhombus intersect at right angles.
(A rhombus is a quadrilateral with sides of equal lengths.)

Prove that the figure formed by connecting consecutive
midpoints of the sides of any quadrilateral is a parallelogram.
Prove that if the points (x,, y,) and (x,, y,) lie on the same line
as (x7,y}) and (x5, y5), then

Y2 =N _2" N

Noox gy

Assume x; # x, and x7 # x5.

Prove that if the slopes of two nonvertical lines are negative
reciprocals of each other, then the lines are perpendicular.

True or False? In Exercises 99 and 100, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

99.

100.

The lines represented by ax + by = ¢, and bx — ay = c, are
perpendicular. Assume @ # 0 and b # 0.

It is possible for two lines with positive slopes to be perpendi-
cular to each other.
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@ Functions and Their Graphs

A real-valued function f of a real variable
Figure P.22

FUNCTION NOTATION

The word function was first used by Gottfried
Wilhelm Leibniz in 1694 as a term to denote
any quantity connected with a curve, such as
the coordinates of a point on a curve or the
slope of a curve. Forty years later, Leonhard
Euler used the word “function” to describe
any expression made up of a variable and
some constants. He introduced the notation
y = f(x).

Use function notation to represent and evaluate a function.
Find the domain and range of a function.

Sketch the graph of a function.

Identify different types of transformations of functions.
Classify functions and recognize combinations of functions.

Functions and Function Notation

A relation between two sets X and Y is a set of ordered pairs, each of the form (x, y),
where x is a member of X and y is a member of Y. A function from X to Y is a
relation between X and Y that has the property that any two ordered pairs with the
same x-value also have the same y-value. The variable x is the independent variable,
and the variable y is the dependent variable.

Many real-life situations can be modeled by functions. For instance, the area A of
a circle is a function of the circle’s radius r.

A= mr? A is a function of r.

In this case r is the independent variable and A is the dependent variable.

DEFINITION OF A REAL-VALUED FUNCTION OF A REAL VARIABLE

Let X and Y be sets of real numbers. A real-valued function f of a real
variable x from X to Y is a correspondence that assigns to each number x in X
exactly one number y in Y.

The domain of fis the set X. The number y is the image of x under f and
is denoted by f(x), which is called the value of f at x. The range of fis a
subset of Y and consists of all images of numbers in X (see Figure P.22).

Functions can be specified in a variety of ways. In this text, however, we will
concentrate primarily on functions that are given by equations involving the dependent
and independent variables. For instance, the equation

x% + 2y =1 Equation in implicit form

defines y, the dependent variable, as a function of x, the independent variable. To
evaluate this function (that is, to find the y-value that corresponds to a given x-value),
it is convenient to isolate y on the left side of the equation.

y = 5(1 - xz) Equation in explicit form
Using fas the name of the function, you can write this equation as
! 2
f(x) = 5(1 - X ) Function notation

The original equation, x> + 2y = 1, implicitly defines y as a function of x. When you
solve the equation for y, you are writing the equation in explicit form.

Function notation has the advantage of clearly identifying the dependent variable
as f(x) while at the same time telling you that x is the independent variable and that
the function itself is “f.” The symbol f(x) is read “f of x.” Function notation allows you
to be less wordy. Instead of asking “What is the value of y that corresponds to x = 37”
you can ask “What is £(3)?”
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20 Chapter P Preparation for Calculus

In calculus, it is important
to specify clearly the domain of a func-
tion or expression. For instance, in
Example 1(c) the two expressions

S+ Ax) — fx)
Ax
Ax #0

and 2x + Ax,

are equivalent because Ax = 0 is
excluded from the domain of each
expression. Without a stated domain
restriction, the two expressions would
not be equivalent.

In an equation that defines a function, the role of the variable x is simply that of
a placeholder. For instance, the function given by

flx) = 20> —dx + 1
can be described by the form
) =20 —alt )+

where parentheses are used instead of x. To evaluate f(—2), simply place —2 in each
set of parentheses.

f(=2) =2(-22 —4(-2) + 1 Substitute —2 for x.
=24)+8+1 Simplify.
=17 Simplify.

(i3 Although f is often used as a convenient function name and x as the independent
variable, you can use other symbols. For instance, the following equations all define the
same function.

f(x) =x2—4x+7 Function name is f, independent variable is x.
fl)y=1>—4t+7 Function name is f, independent variable is .
g(s) =52 —4s+7 Function name is g, independent variable is s.
]
EXAMPLE [El] Evaluating a Function
For the function f defined by f(x) = x> + 7, evaluate each expression.
+ Ax) —
a. fGa) b.fb—1) e Lot M) S0y Ly
Ax
Solution
a. f(3a) = Ba)* + 7 Substitute 3a for x.
=9a>+ 17 Simplify.
b. f(b -D=0b-12+7 Substitute b — 1 for x.
=p2—-20+1+7 Expand binomial.
=b>—2b+38 Simplify.
. fo+ Ax) = f(x)  [(x + Ax)?2 + 7] — (x> + 7)
) Ax Ax
X2+ A+ (Ax)2+ T —x2 =7
Ax
~ 2xAx + (Ax)?
Ax
_ Ax(2x + Ax)
Ax
=2x+Ax, Ax#0 [ ]

The expression in Example 1(c) is called a difference quotient and has a special
significance in calculus. You will learn more about this in Chapter 2. |
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Range: y 20

| | |
A T T T X

1 2 3 4

Domain: x > 1

(a) The domain of fis [I, co) and the range is
[0, o).

y flx)=tanx

Range

T 2r

I I I
I I I
I I I
I I I
1 1 1
1 1 1
I I I
I I I
I I I
] ] ]
I I X
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
1 1 1
i i i
I I I

Domain
(b) The domain of fis all x-values such that

X # g + nr and the range is (— oo, 00).

Figure P.23

y _Jl=x x<l1
A= {\/x—l,le

Range: y 20

Domain: all real x

The domain of fis (— oo, co) and the range
is[0, co).
Figure P.24
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The Domain and Range of a Function

The domain of a function can be described explicitly, or it may be described implicitly
by an equation used to define the function. The implied domain is the set of all real
numbers for which the equation is defined, whereas an explicitly defined domain is
one that is given along with the function. For example, the function given by

1

Zm, 4 <x<5

fx)

has an explicitly defined domain given by {x: 4 < x < 5}. On the other hand, the
function given by

1
x> —4

glx) =

has an implied domain that is the set {x: x # £2}.

EXAMPLE |3 Finding the Domain and Range of a Function

a. The domain of the function
f) = Vx—1

is the set of all x-values for which x — 1 > 0, which is the interval [1, o). To find
the range, observe that f(x) = /x — 1 is never negative. So, the range is the
interval [0, oo), as indicated in Figure P.23(a).

b. The domain of the tangent function, as shown in Figure P.23(b),
f(x) = tan x

is the set of all x-values such that
T . .
X # E + nm, nis an integer. Domain of tangent function

The range of this function is the set of all real numbers. For a review of the
characteristics of this and other trigonometric functions, see Appendix C.

EXAMPLE ﬂ A Function Defined by More than One Equation

Determine the domain and range of the function.

1 —x, ifx <1

) = {\/ﬁ ifx =1

Solution Because fis defined for x < 1 and x = 1, the domain is the entire set of
real numbers. On the portion of the domain for which x = 1, the function behaves as
in Example 2(a). For x < 1, the values of 1 — x are positive. So, the range of the
function is the interval [0, co). (See Figure P.24.) [ ]

A function from X to Y is one-to-one if to each y-value in the range there
corresponds exactly one x-value in the domain. For instance, the function given in
Example 2(a) is one-to-one, whereas the functions given in Examples 2(b) and 3 are
not one-to-one. A function from X to Y is onto if its range consists of all of Y.
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X

The graph of a function

Preparation for Calculus

The Graph of a Function

The graph of the function y = f(x) consists of all points (x, f(x)), where x is in the
domain of f. In Figure P.25, note that

X =

fx)

the directed distance from the y-axis

the directed distance from the x-axis.

A vertical line can intersect the graph of a function of x at most once. This
observation provides a convenient visual test, called the Vertical Line Test, for
functions of x. That is, a graph in the coordinate plane is the graph of a function of x
if and only if no vertical line intersects the graph at more than one point. For example,
in Figure P.26(a), you can see that the graph does not define y as a function of x because

a vertical line intersects the graph twice, whereas in Figures P.26(b) and (c), the graphs
do define y as a function of x.

(a) Not a function of x

Figure P.26

(b) A function of x

(¢) A function of x

Figure P.27 shows the graphs of eight basic functions. You should be able to recognize
these graphs. (Graphs of the other four basic trigonometric functions are shown in
Appendix C.)

Y ) =x2

) =vx

=

=

-2 -1 ) 12 3 4
Squaring function Square root function
y y y
1
f) = =
2T 2T f(x) =sin x 2 f(x) =cos x
1 T /\ 1 T /
} } } } X x x
-1 1 2 / - n\/Zn: 2r
1+ 4
-+ ,2 -+ _2 -+

Figure P.25
1 fw=x
2 =+
1 =+
} } } }
-2 -1 12
-1+
2+
Identity function
¥
4 -+
J@) = x|
3 -
2 -+
1+
t t t t
-2 -1 12

Absolute value function

Rational function

The graphs of eight basic functions

Figure P.27

Cosine function

Sine function
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Transformations of Functions
EXPLORATION

Writing Equations for Functions
Each of the graphing utility screens
below shows the graph of one of

the eight basic functions shown on

Some families of graphs have the same basic shape. For example, compare the graph
of y = x? with the graphs of the four other quadratic functions shown in Figure P.28.

page 22. Each screen also shows 4
a transformation of the graph. 5
Describe the transformation. Then =2 3+
use your description to write an
equation for the transformation. T
1+ = 2 1-+
y=x — 42
9 y=(+2)7? VA
} } } } x <+ x
-2 -1 12 -3 -2 -1 1
(a) Vertical shift upward (b) Horizontal shift to the left
-9 9
y y
-3 PR 4+
3 -+
a. 1L R y=1-(&+3) sl 2
4 y=x 1 y=x
} } } }
TN AN/
/—\\- Nl ox? =5/ -3 \-1 | 1 2
6 [ 6 ol
-2+ 1
4 (¢) Reflection (d) Shift left, reflect, and shift upward
Figure P.28
b.
8 Each of the graphs in Figure P.28 is a transformation of the graph of y = x2. The

three basic types of transformations illustrated by these graphs are vertical shifts,
horizontal shifts, and reflections. Function notation lends itself well to describing
transformations of graphs in the plane. For instance, if f(x) = x2 is considered to be
-8 T 10 the original function in Figure P.28, the transformations shown can be represented by
the following equations.

-4 y = flx) +2 Vertical shift up 2 units
c. y = flx +2) Horizontal shift to the left 2 units
5 y = —flx) Reflection about the x-axis
/_/r ] y=—flx+3)+1 Shift left 3 units, reflect about x-axis, and shift up 1 unit
_6 6 BASIC TYPES OF TRANSFORMATIONS (¢ > 0)
‘{ ('/ l Original graph: y = fx)
3 Horizontal shift ¢ units to the right: y = f(x — ¢)
d. Horizontal shift ¢ units to the left:  y = f(x + ¢)
Vertical shift ¢ units downward: y=flx) — ¢
Vertical shift ¢ units upward: y=fx)+c
Reflection (about the x-axis): y = —f(x)
Reflection (about the y-axis): y = f(—x)
Reflection (about the origin): y = —f(—x)

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



24 Chapter P

Bettmann/Corbis

LEONHARD EULER (1707-1783)

In addition to making major contributions to
almost every branch of mathematics, Euler
was one of the first to apply calculus to
real-life problems in physics. His extensive
published writings include such topics as
shipbuilding, acoustics, optics, astronomy,
mechanics, and magnetism.

FOR FURTHER INFORMATION For
more on the history of the concept of a
function, see the article “Evolution of the

Function Concept: A Brief Survey” by

Israel Kleiner in The College Mathematics

Journal. To view this article, go to the
website www.matharticles.com.

Upto § ¢
left |*
X

Preparation for Calculus

Classifications and Comhbinations of Functions

The modern notion of a function is derived from the efforts of many seventeenth- and
eighteenth-century mathematicians. Of particular note was Leonhard Euler, to whom
we are indebted for the function notation y = f(x). By the end of the eighteenth
century, mathematicians and scientists had concluded that many real-world phenomena
could be represented by mathematical models taken from a collection of functions
called elementary functions. Elementary functions fall into three categories.

1. Algebraic functions (polynomial, radical, rational)
2. Trigonometric functions (sine, cosine, tangent, and so on)

3. Exponential and logarithmic functions

You can review the trigonometric functions in Appendix C. The other nonalgebraic
functions, such as the inverse trigonometric functions and the exponential and
logarithmic functions, are introduced in Chapter 5.

The most common type of algebraic function is a polynomial function

f)=ax"+a,_x" '+ +ax®+ax+a,

where n is a nonnegative integer. The numbers g, are coefficients, with a, the leading
coefficient and a the constant term of the polynomial function. If a, # 0, then n is
the degree of the polynomial function. The zero polynomial f(x) = 0 is not assigned
a degree. It is common practice to use subscript notation for coefficients of general
polynomial functions, but for polynomial functions of low degree, the following
simpler forms are often used. (Note that a # 0.)

Constant function

Zeroth degree: f(x) = a

First degree:  f(x) = ax + b

Second degree: f(x) = ax* + bx + ¢

Third degree:  f(x) = ax® + bx> + cx + d

Linear function
Quadratic function

Cubic function

Although the graph of a nonconstant polynomial function can have several turns,
eventually the graph will rise or fall without bound as x moves to the right or left.

Whether the graph of

f&) =ax"+a,_ x""'+ -+ ax?+ax + a,

eventually rises or falls can be determined by the function’s degree (odd or even) and
by the leading coefficient a,, as indicated in Figure P.29. Note that the dashed portions
of the graphs indicate that the Leading Coefficient Test determines on/y the right and
left behavior of the graph.

'

a,<0 a,>0 a, <0
y y
f \ Upto
.. Up to , left

Y right \

1 \ ! ¥

’ AY ! "

N \ RN ,' \”-"“\
] ) , S N ’ \
;Down ' Down Down - Down \
to left ‘\to right I' to left to right ‘\

\ / v

Graphs of polynomial functions of even degree

The Leading Coefficient Test for polynomial functions

Figure P.29
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Just as a rational number can be written as the quotient of two integers, a rational
function can be written as the quotient of two polynomials. Specifically, a function fis
rational if it has the form

where p(x) and g(x) are polynomials.

Polynomial functions and rational functions are examples of algebraic
functions. An algebraic function of x is one that can be expressed as a finite number
of sums, differences, multiples, quotients, and radicals involving x". For example,
f(x) = /x + 1is algebraic. Functions that are not algebraic are transcendental. For
instance, the trigonometric functions are transcendental.

Two functions can be combined in various ways to create new functions. For
example, given f(x) = 2x — 3 and g(x) = x> + 1, you can form the functions shown.

(f+ox) =fx)+g)=2x—=3)+ >+ 1) Sum
(f—gx) =fx) —gx) =2x—3) — x>+ 1) Difference
(f)x) = flx)glx) = (2x = 3)(x* + 1) Product
2x — 3
(f/g)(x) = @ = )26 Quotient
g s e+l
D in of :
omamn ot You can combine two functions in yet another way, called composition. The
Y resulting function is called a composite function.
e(x) DEFINITION OF COMPOSITE FUNCTION
Domain of f Let fand g be functions. The function given by (< g)(x) = f(g(x)) is called
The domain of the composite function f g the composite of f with g. The domain of f - g is the set of all x in the domain
Figure P.30 of g such that g(x) is in the domain of f (see Figure P.30).

The composite of f with g may not be equal to the composite of g with f.

(" JExampLE [E1 Finding Composite Functions

Given f(x) = 2x — 3 and g(x) = cos x, find each composite function.

a. fog b.gof

Solution

a. (fog)x) = flgx) Definition of f - g
= f(COS X) Substitute cos x for g(x).
= 2(cosx) — 3 Definition of f(x)
=2cosx —3 Simplify.

b. (g °f)( ) = g(f(x)) Definition of g ° f
= g(2x — 3) Substitute 2x — 3 for f(x).
= cos(2x — 3) Definition of g(x)

Note that (£ g)(x) # (g °f)(x). ]
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EXPLORATION

Use a graphing utility to graph
each function. Determine whether
the function is even, odd, or

k(x) =x> —2x*+x—2
plx

Describe a way to identify a
function as odd or even by
inspecting the equation.

neither.
) = x% =t
gy =23+ 1
h(x) = x5 —2x3 + x
jx) =2 —x0 —x8
)
)

=x%+ 3% —x3+x

(a) Odd function

3T g(x)=1+cosx

4
4
=

2w 3r 4r

(b) Even function

Figure P.31

In Section P.1, an x-intercept of a graph was defined to be a point (a, 0) at which
the graph crosses the x-axis. If the graph represents a function f, the number a is a zero
of . In other words, the zeros of a function f are the solutions of the equation f(x) = 0.
For example, the function f(x) = x — 4 has a zero at x = 4 because f(4) = 0.

In Section P.1 you also studied different types of symmetry. In the terminology of
functions, a function is even if its graph is symmetric with respect to the y-axis, and
is odd if its graph is symmetric with respect to the origin. The symmetry tests in
Section P.1 yield the following test for even and odd functions.

TEST FOR EVEN AND ODD FUNCTIONS

The function y = f(x) is even if f(—x) = f(x).
The function y = f(x) is odd if f(—x) = —f(x).

LA Except for the constant function f(x) = 0, the graph of a function of x cannot have
symmetry with respect to the x-axis because it then would fail the Vertical Line Test for the
graph of the function. [ ]

EXAMPLE [E| Even and Odd Functions and Zeros of Functions

Determine whether each function is even, odd, or neither. Then find the zeros of the
function.

a flx) =x> —x b. g(x) =1 + cos x
Solution
a. This function is odd because
fE) =P = () = = +x= - —x) = —f).

The zeros of fare found as shown.

X*=—x=0 Let f(x) = 0.
xXx2—-1D=xx—-1)x+1)=0 Factor.
x=0,1,—-1 Zeros of f

See Figure P.31(a).

b. This function is even because
g(—x) =1+ cos(—x) =1+ cosx = g(x). cos(—x) = cos(x)

The zeros of g are found as shown.

1 +cosx=0 Let g(x) = 0.
cosx = —1 Subtract 1 from each side.
x = (2n + 1)m, nis an integer. Zeros of g
See Figure P.31(b). |

(3 Each of the functions in Example 5 is either even or odd. However, some functions,
such asf(x) = x2 + x + 1, are neither even nor odd. [ |
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@ EXE I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1 and 2, use the graphs of f and g to answer the

following.

(a) Identify the domains and ranges of f and g.

(b) Identify f(—2) and g(3).

(¢) For what value(s) of x is f(x) =

g(x)?

(d) Estimate the solution(s) of f(x) = 2.
(e) Estimate the solutions of g(x) = 0.

In Exercises 3—12, evaluate (if possible) the function at the given

value(s) of the independent variable. Simplify the results.

(c) f(b)
d flx—1)
5. g(x) =5 —x?
(a) g(0)
®) ¢(V3)
(©) g(=2)
(d gt = 1)
7. f(x) = cos 2x
(a) £(0)
(b) f(=7/4)
(c) f(m/3)
9. fx) = x3
flx + Ax) — flx)

x—=2

In Exercises 13-20, find the domain and range of the function.

13. f(x) = 4x?
15. glx) = N
17. f(t) = sec%t

4. f(x) = Vx+5
(@) f(—4)
(b) f(11)
(©) f(=8)
(d) f(x + Ax)
6. g(x) = x2(x — 4)
(@) g(4)
) ¢(3)
(©) g(o)
(d) gt +4)
8. f(x) = sinx
(a) f(m)
(b) f(57/4)
(c) f(2m/3)
10. f(x) = 3x — 1
f&) = (M)
x—1

12, f(x) =x* — x

fl) = f(1)

x—1

14. g(x) = x> -5
16. h(x) = —Vx +3

18. h(t) = cott

2

19. f(x) = = p—

20. g(x) =

In Exercises 21-26, find the domain of the function.

)= Vx+ J1T—x 22, f(x) = V22 —3x +2

2 1
23. glx) = T~ cosx 24. h(x) = o 1
2

1 1
25. f(x) = et 26~g(x)=m

In Exercises 27-30, evaluate the function as indicated.
Determine its domain and range.

=iy 1
@ f(=1) () £0) (o) f(2) @ f(e* + 1)
wa- {0 00
(@) f(= () f(0) (o) f(1) (d) f(s* +2)
{|x| +1,x<1
—x+ 1L, x=1
(@) f(= b f(1)  (© fO3) (d) f(b* + 1)
{ x+4, x<5
(x—52% x>5
(@) f(= () £0) () f(5) (d) £(10)

In Exercises 31-38, sketch a graph of the function and find its
domain and range. Use a graphing utility to verify your graph.

4
31. f(x) =4 — x 32, g(x) = —
33. hx) = JSx— 6 34, f(x) =33 +3
35, f(x) = V9 — 2 36. f(x) = x + V4 — x?
0
37. g(t) = 3 sin mt 38. h(6) = -5 cos 5
WRITING ABOUT CONCEPTS
39. The graph of the distance s
that a student drives in a 7 10+
10-minute trip to school E s+t
. . (10, 6)
is shown in the figure. E 6+ ’
Give a verbal description 8 41
of characteristics of the é sl (4,2)
student’s drive to school. S ®,2) ;
0,00 2 4 6 8 10
Time (in minutes)
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WRITING ABOUT CONCEPTS (continued)

40. A student who commutes 27 miles to attend college
remembers, after driving a few minutes, that a term paper
that is due has been forgotten. Driving faster than usual, the
student returns home, picks up the paper, and once again
starts toward school. Sketch a possible graph of the
student’s distance from home as a function of time.

In Exercises 41-44, use the Vertical Line Test to determine
whether y is a function of x. To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.

2. /P-4-y=0

Yy

y

2 4

3Ak

1 gl

> x 1+
12 3 4

41, x —y?> =

-1

-2

x+1, x=0
43. y = 4. x> +y> =14
—x+2, x>0

N

y
2
1
} } X T T
B HEAN -1 1
_1 _lak

-2

In Exercises 45— 48, determine whether y is a function of x.

45. 2 + 2 = 16
47. y2 =x* -1

46. x>+ y =16
48. x2y — x>+ 4y =0

In Exercises 49-54, use the graph of y = f(x) to match the
function with its graph.

—6-5-4-3-2-1
-2

49. y = f(x + 5)
5. y = —f(—x) — 2
53.y=fx+6)+2

50. y =f(x) = 5
52. y=—flx—4)
4. y=f(x—1)+3

55. Use the graph of f shown in the figure to sketch the graph of
each function. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

@ fc+3) O fc—1) 3
O 2 @f0-4 [
© ¥W ) e L

-7

56. Use the graph of f shown in the figure to sketch the graph of
each function. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

@ fr—4)  ®) flx+2) 3
©f0) +4 @ f) — 1 o
© 2() (f) 3/(x) ) f
453
-5

57. Use the graph of f(x) = /x to sketch the graph of each
function. In each case, describe the transformation.

@y=vx+2 ®y=-Vx ©y=J/rx-2

58. Specify a sequence of transformations that will yield each
graph of h from the graph of the function f(x) = sin x.

(@) h(x) = sin(x + g) +1  (b) Ax) = —sin(x — 1)

59. Given f(x) = /xand g(x) = x2 — 1, evaluate each expression.
(@) f(g(1) (b) g(f(1)) (©) g(1(0))
(d) f(g(=4) (o) fglx)) () g(f(x))

60. Given f(x) = sin x and g(x) = x, evaluate each expression.

@ s o f(s(3))
@ g(f(g)) (@) f(g(x)

(c) g(f(0))
() g(f(x))

In Exercises 61-64, find the composite functions (f -g) and
(g °f). What is the domain of each composite function? Are the
two composite functions equal?

61. f(x) = x? 62. f(x) =x>—1
glv) = Vx c

63. f(x) = % 64. f(x) =
o) = — 1

65. Use the graphs of fand g to
evaluate each expression. If the
result is undefined, explain why.

(@ (f2(3) () g(f(2)
(©) g(f(5) (d (feg)(=3)
@) (g-N=1 () flg(=1))
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66. Ripples A pebble is dropped into a calm pond, causing
ripples in the form of concentric circles. The radius (in feet) of
the outer ripple is given by r(t) = 0.6¢, where ¢ is the time in
seconds after the pebble strikes the water. The area of the circle
is given by the function A(r) = @72 Find and interpret

(A ().

Think About It In Exercises 67 and 68, F(x) = f - g - h. Identify
functions for f, g, and /. (There are many correct answers.)

67. F(x) = V2x — 2

In Exercises 69-72, determine whether the function is even,
odd, or neither. Use a graphing utility to verify your result.

70. f(x) = Vx
72. f(x) = sin®x

68. F(x) = —4sin(l — x)

69. f(x) = x*(4 — x?)
71. f(x) = x cos x

Think About It In Exercises 73 and 74, find the coordinates of
a second point on the graph of a function f if the given point is

on the graph and the function is (a) even and (b) odd.
73. (-3, 4) 74. (4,9)

75. The graphs of f, g, and h are shown in the figure. Decide
whether each function is even, odd, or neither.

6,,
f oI
2,,
HAA N X
-6 -4 -2 7T 2 4 6
4
_6,,
Figure for 75 Figure for 76

76. The domain of the function f shown in the figure is
—6=x =6

(a) Complete the graph of f given that fis even.
(b) Complete the graph of f given that fis odd.

Writing Functions In Exercises 77— 80, write an equation for a
function that has the given graph.

77. Line segment connecting (—2, 4) and (0, —6)

78. Line segment connecting (3, 1) and (5, 8)

79. The bottom half of the parabola x + y> =

80. The bottom half of the circle x> + y* = 36

In Exercises 8§1-84, sketch a possible graph of the situation.

81. The speed of an airplane as a function of time during a 5-hour
flight

82. The height of a baseball as a function of horizontal distance
during a home run

83. The amount of a certain brand of sneaker sold by a sporting
goods store as a function of the price of the sneaker

P.3  Functions and Their Graphs 29

84. The value of a new car as a function of time over a period of
8 years

85. Find the value of ¢ such that the domain of
) = Ve —x
is[—5,5].

86. Find all values of ¢ such that the domain of

_ x+3
x> +3cx+ 6

f(x)

is the set of all real numbers.

87. Graphical Reasoning An electronically controlled thermostat
is programmed to lower the temperature during the night
automatically (see figure). The temperature 7 in degrees Celsius
is given in terms of ¢, the time in hours on a 24-hour clock.

T

1ttt
‘3691215182124

(a) Approximate T(4) and 7(15).

(b) The thermostat is reprogrammed to produce a temperature
H(t) = T(t — 1). How does this change the temperature?
Explain.

(c) The thermostat is reprogrammed to produce a temperature
H(t) = T(t) — 1. How does this change the temperature?
Explain.

CAPSTONE

88. Water runs into a vase of height 30 centimeters at a constant
rate. The vase is full after 5 seconds. Use this information
and the shape of the vase shown to answer the questions if
d is the depth of the water in centimeters and 7 is the time in
seconds (see figure).

|

30 cm
|
d
'

(a) Explain why d is a function of ¢.

(b) Determine the domain and range of the function.
(c) Sketch a possible graph of the function.

(d) Use the graph in part (c) to approximate d(4). What
does this represent?
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89. Modeling Data The table shows the average numbers of acres (b) Use a graphing utility to graph the volume function and
per farm in the United States for selected years. (Source: approximate the dimensions of the box that yield a
U.S. Department of Agriculture) maximum volume.

(c) Use the table feature of a graphing utility to verify your
Year 1955 | 1965 | 1975 | 1985 | 1995 | 2005 answer in part (b). (The first two rows of the table are

Acreage | 258 | 340 | 420 | 441 @ 438 | 444 shown.)

Length

(a) Plot the data, where A is the acreage and ¢ is the time in Height, x | and Width Volume, V

years, with t = 5 corresponding to 1955. Sketch a frechand
curve that approximates the data. 1 24 —2(1) | 1[24 — 2(1)] = 484

(b) Use the curve in part (a) to approximate A(20).

2 24 —2(2) | 2[24 — 2(2)] = 800

90. Automobile Aerodynamics The horsepower H required to

overcome wind drag on a certain automobile is approximated by ) ) ) )
98. Length A right triangle is formed in the first quadrant by the

H(x) = 0.002x> + 0.005x — 0.029, 10 < x =< 100 x- and y-axes and a line through the point (3, 2) (see figure).

where x is the speed of the car in miles per hour. Write the length L of the hypotenuse as a function of x.

'dP' (a) Use a graphing utility to graph H. Y

(b) Rewrite the power function so that x represents the speed in
kilometers per hour. [Find H(x/1.6).]

91. Think About It Write the function

[ O

f) = |x] + |x = 2] 1

without using absolute value signs. (For a review of absolute | 1 2 ; 4 ; 6 7
value, see Appendix C.)

P‘P’ 92. Writing Use a graphing utility to graph the polynomial True or False? In Exercises 99-102, determine whether the
functions p,(x) = x> — x + 1 and p,(x) = x* — x. How many statement is true or false. If it is false, explain why or give an

zeros does each function have? Is there a cubic polynomial that example that shows it is false.

has no zeros? Explain. 99. I f(a) = f(b), then a = b.

93. Prove that the function is odd. 100. A vertical line can intersect the graph of a function at most

F@) = ag,  x+ 4 +oagx once.
101. If f(x) = f(—x) for all x in the domain of f, then the graph of
fis symmetric with respect to the y-axis.

() = @y, X + @y, X724 - -+ ax + a 102. If fis a function, then f(ax) = af(x).

95. Prove that the product of two even (or two odd) functions is PUTNAM EXAM CHALLENGE

even.

103. Let R be the region consisting of the points (x, y) of the
Cartesian plane satisfying both |x| — |y] <1 and
|| < 1. Sketch the region R and find its area.

94. Prove that the function is even.

96. Prove that the product of an odd function and an even function
is odd.

ldP' 97. Volume An open box of maximum volume is to be made
from a square piece of material 24 centimeters on a side by
cutting equal squares from the corners and turning up the sides
(see figure).

104. Consider a polynomial f(x) with real coefficients having
the property f(g(x)) = g(f(x)) for every polynomial g(x)
with real coefficients. Determine and prove the nature of

f).

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

FX4e—— D24 — Dx —>+ XA

(a) Write the volume V as a function of x, the length of the
corner squares. What is the domain of the function?
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@ Fitting Models to Data

B Fit a linear model to a real-life data set.
B Fit a quadratic model to a real-life data set.
B Fit a trigonometric model to a real-life data set.

Fitting a Linear Model to Data

A basic premise of science is that much of the physical world can be described
mathematically and that many physical phenomena are predictable. This scientific
outlook was part of the scientific revolution that took place in Europe during the late
1500s. Two early publications connected with this revolution were On the Revolutions
of the Heavenly Spheres by the Polish astronomer Nicolaus Copernicus and On the
Structure of the Human Body by the Belgian anatomist Andreas Vesalius. Each of
these books was published in 1543, and each broke with prior tradition by suggesting
the use of a scientific method rather than unquestioned reliance on authority.

One basic technique of modern science is gathering data and then describing the
data with a mathematical model. For instance, the data given in Example 1 are
A computer graphics drawing based on the inspired by Leonardo da Vinci’s famous drawing that indicates that a person’s height
pen and ink drawing of Leonardo da Vinci’s and arm span are equal.
famous study of human proportions, called
Vitruvian Man

" JexampLe [l Fitting a Linear Model to Data

A class of 28 people collected the following data, which represent their heights x and
arm spans y (rounded to the nearest inch).

(60, 61), (65, 65), (68, 67), (72, 73), (61, 62), (63, 63), (70, 71),
(75,74), (71, 72), (62, 60), (65, 65), (66, 68), (62, 62), (72, 73),
y (70, 70), (69, 68), (69, 70), (60, 61), (63, 63), (64, 64), (71,71),
76 (68, 67), (69, 70), (70, 72), (65, 65), (64, 63), (71, 70), (67, 67)
—~ 74
}:E 72+ Find a linear model to represent these data.
g 70+ .
£ est Solution  There are different ways to model these data with an equation. The
§ 66 simplest would be to observe that x and y are about the same and list the model as
Z o4 simply y = x. A more careful analysis would be to use a procedure from statistics
z 2T called linear regression. (You will study this procedure in Section 13.9.) The least
0 . squares regression line for these data is
Height (in inches) y = 1.006x — 0.23. Least squares regression line
Linear model and data The graph of the model and the data are shown in Figure P.32. From this model, you
Figure P.32 can see that a person’s arm span tends to be about the same as his or her height.

m TECHNOLOGY J Many scientific and graphing calculators have built-in least squares
regression programs. Typically, you enter the data into the calculator and then
run the linear regression program. The program usually displays the slope and
y-intercept of the best-fitting line and the correlation coefficient r. The correlation
coefficient gives a measure of how well the model fits the data. The closer |r|
is to 1, the better the model fits the data. For instance, the correlation coefficient for
the model in Example 1 is » = 0.97, which indicates that the model is a good fit for
the data. If the r-value is positive, the variables have a positive correlation, as in
Example 1. If the r-value is negative, the variables have a negative correlation.
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Fitting a Quadratic Model to Data

A function that gives the height s of a falling object in terms of the time 7 is called a
position function. If air resistance is not considered, the position of a falling object can
be modeled by

s(t) = %gtz + vt + 5

where g is the acceleration due to gravity, v, is the initial velocity, and s is the initial
height. The value of g depends on where the object is dropped. On Earth, g is approx-
imately —32 feet per second per second, or —9.8 meters per second per second.

To discover the value of g experimentally, you could record the heights of a
falling object at several increments, as shown in Example 2.

EXAMPLE [FJ Fitting a Quadratic Model to Data

A basketball is dropped from a height of about 5411 feet. The height of the basketball is
recorded 23 times at intervals of about 0.02 second.* The results are shown in the table.

Time 0.0 0.02 0.04 0.06 0.08 0.099996
Height | 5.23594 | 5.20353 5.16031 5.0991 5.02707 | 4.95146
Time 0.119996 | 0.139992 | 0.159988 | 0.179988 | 0.199984 | 0.219984
Height | 4.85062 | 4.74979 | 4.63096 | 4.50132 | 4.35728 | 4.19523
Time 0.23998 | 0.25993 0.27998 | 0.299976 | 0.319972 | 0.339961
Height | 4.02958 | 3.84593 3.65507 3.44981 3.23375 3.01048
Time 0.359961 | 0.379951 | 0.399941 | 0.419941 | 0.439941

Height | 2.76921 2.52074 | 2.25786 1.98058 1.63488

Height (in feet)
w2

T
0.1 02 03

Scatter plot of data
Figure P.33

Find a model to fit these data. Then use the model to predict the time when the
basketball will hit the ground.

Solution  Begin by drawing a scatter plot of the data, as shown in Figure P.33. From
the scatter plot, you can see that the data do not appear to be linear. It does appear,
however, that they might be quadratic. To check this, enter the data into a calculator
or computer that has a quadratic regression program. You should obtain the model

s = —15.45¢% — 1.302r + 5.2340.

Least squares regression quadratic

Using this model, you can predict the time when the basketball hits the ground by
substituting 0 for s and solving the resulting equation for 7.
0 = —15.45> — 1.302¢ + 5.2340
- 1.302 + /(—1.302)> — 4(—15.45)(5.2340)
2(—15.45)

Lets = 0.

Quadratic Formula

t = 0.54

Choose positive solution.

The solution is about 0.54 second. In other words, the basketball will continue to fall
for about 0.1 second more before hitting the ground. |

* Data were collected with a Texas Instruments CBL (Calculator-Based Laboratory) System.
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The plane of Earth’ orbit about the sun and
its axis of rotation are not perpendicular.
Instead, Earth’s axis is tilted with respect

to its orbit. The result is that the amount

of daylight received by locations on Earth
varies with the time of year. That is, it varies
with the position of Earth in its orbit.

oL /N
- ——

650

Daylight (in minutes)

Day (0 <> December 22)

Graph of model
Figure P.34

(3 For a review of trigonometric
functions, see Appendix C.
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Fitting a Trigonometric Model to Data

What is mathematical modeling? This is one of the questions that is asked in the book
Guide to Mathematical Modelling. Here is part of the answer.*

1. Mathematical modeling consists of applying your mathematical skills to obtain
useful answers to real problems.

2. Learning to apply mathematical skills is very different from learning mathematics
itself.

3. Models are used in a very wide range of applications, some of which do not appear
initially to be mathematical in nature.

4. Models often allow quick and cheap evaluation of alternatives, leading to optimal
solutions that are not otherwise obvious.

5. There are no precise rules in mathematical modeling and no “correct” answers.
6. Modeling can be learned only by doing.

EXAMPLE [E] Fitting a Trigonometric Model to Data

The number of hours of daylight on a given day on Earth depends on the latitude and
the time of year. Here are the numbers of minutes of daylight at a location of 20°N lat-
itude on the longest and shortest days of the year: June 21, 801 minutes; December 22,
655 minutes. Use these data to write a model for the amount of daylight d (in minutes)
on each day of the year at a location of 20°N latitude. How could you check the
accuracy of your model?

Solution  Here is one way to create a model. You can hypothesize that the model is
a sine function whose period is 365 days. Using the given data, you can conclude that
the amplitude of the graph is (801 — 655)/2, or 73. So, one possible model is
2wt
d=1728 —T3sin| — + —|.
S‘“(365 2)

In this model, ¢ represents the number of each day of the year, with December 22
represented by r = 0. A graph of this model is shown in Figure P.34. To check the
accuracy of this model, a weather almanac was used to find the numbers of minutes
of daylight on different days of the year at the location of 20°N latitude.

Date Value of t Actual Daylight Daylight Given by Model
Dec 22 0 655 min 655 min
Jan 1 10 657 min 656 min
Feb 1 41 676 min 672 min
Mar 1 69 705 min 701 min
Apr 1 100 740 min 739 min
May 1 130 772 min 773 min
Jun 1 161 796 min 796 min
Jun 21 181 801 min 801 min
Jul 1 191 799 min 800 min
Aug 1 222 782 min 785 min
Sep 1 253 752 min 754 min
Oct 1 283 718 min 716 min
Nov 1 314 685 min 681 min
Dec 1 344 661 min 660 min
You can see that the model is fairly accurate. |

* Text from Dilwyn Edwards and Mike Hamson, Guide to Mathematical Modelling (Boca Raton:
CRC Press, 1990), p. 4. Used by permission of the authors.
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@ EXB I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In

Exercises 1-4, a scatter plot of data is given. Determine

whether the data can be modeled by a linear function, a quadratic
function, or a trigonometric function, or that there appears to be

no

relationship between x and y. To print an enlarged copy of the

graph, go to the website www.mathgraphs.com.

1.

5.

A 7.

. Quiz Scores

y 2. y
o °
L[] ° ° L[]
o © ° ° °
. o. : 0. o ° ® o
o °® ° L4 °®
..0....
X X
y 4. v
o o ® o ® e
o 0,0, °°,
.° e o o °J
° o.' o o ® o
LIS
L] ° [ ]
o °
L )
x > x
Carcinogens Each ordered pair gives the exposure index x of a

carcinogenic substance and the cancer mortality y per 100,000
people in the population.

(3.50, 150.1), (3.58, 133.1), (4.42, 132.9),

(2.26, 116.7), (2.63, 140.7), (4.85, 165.5),

(12.65,210.7), (7.42, 181.0), (9.35, 213.4)

(a) Plot the data. From the graph, do the data appear to be
approximately linear?

(b) Visually find a linear model for the data. Graph the model.

(c) Use the model to approximate y if x = 3.

The ordered pairs represent the scores on two
consecutive 15-point quizzes for a class of 18 students.

(7, 13), (9, 7), (14, 14), (15, 15), (10, 15), (9, 7),
(14, 11), (14, 15), (8, 10), (15,9), (10, 11), (9, 10),
(11, 14), (7, 14), (11, 10), (14, 11), (10, 15), (9, 6)

(a) Plot the data. From the graph, does the relationship between
consecutive scores appear to be approximately linear?

(b) If the data appear to be approximately linear, find a linear
model for the data. If not, give some possible explanations.

Hooke’s Law Hooke’s Law states that the force F required to
compress or stretch a spring (within its elastic limits) is propor-
tional to the distance d that the spring is compressed or stretched
from its original length. That is, F = kd, where k is a measure of
the stiffness of the spring and is called the spring constant. The
table shows the elongation d in centimeters of a spring when a
force of F newtons is applied.

B 9.

F | 20 | 40 | 60 | 80 | 100

d | 14|25 ] 40 53 | 66

(a) Use the regression capabilities of a graphing utility to find a
linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.
How well does the model fit the data? Explain your
reasoning.

(c) Use the model to estimate the elongation of the spring when
a force of 55 newtons is applied.

. Falling Object In an experiment, students measured the speed

s (in meters per second) of a falling object ¢ seconds after it was
released. The results are shown in the table.

t 10 1 2 3 4

s | 0| 11.0 | 194 | 292 | 394

(a) Use the regression capabilities of a graphing utility to find a
linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.
How well does the model fit the data? Explain your
reasoning.

(c) Use the model to estimate the speed of the object after
2.5 seconds.

Energy Consumption and Gross National Product The data
show the per capita energy consumptions (in millions of Btu)
and the per capita gross national products (in thousands of U.S.
dollars) for several countries in 2004. (Source: U.S. Census

Bureau)
Argentina (71, 12.53) Bangladesh (5,1.97)
Chile (75, 10.61) Ecuador (29, 3.77)
Greece (136, 22.23) Hong Kong | (159, 31.56)
Hungary (106, 15.8) India (15, 3.12)
Mexico (63, 9.64) Poland (95, 12.73)
Portugal (106, 19.24) South Korea | (186, 20.53)
Spain (159, 24.75) Turkey (51,7.72)
United Kingdom | (167, 31.43) Venezuela (115, 5.83)

(a) Use the regression capabilities of a graphing utility to find a
linear model for the data. What is the correlation coefficient?

(b) Use a graphing utility to plot the data and graph the model.

(c) Interpret the graph in part (b). Use the graph to identify the
four countries that differ most from the linear model.

(d) Delete the data for the four countries identified in part
(c). Fit a linear model to the remaining data and give the
correlation coefficient.
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hardness H of 0.35 carbon steel when hardened and tempered
at temperature ¢ (degrees Fahrenheit). (Source: Standard
Handbook for Mechanical Engineers)

t | 200 | 400 & 600 | 800 | 1000 | 1200

H | 534 | 495 | 415 | 352 | 269 217

(a) Use the regression capabilities of a graphing utility to find
a linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.
How well does the model fit the data? Explain your
reasoning.

(¢) Use the model to estimate the hardness when ¢ is 500°F.

'dF" 11. Automobile Costs The data in the table show the variable

costs of operating an automobile in the United States for several
recent years. The functions y,, y,, and y; represent the costs in
cents per mile for gas, maintenance, and tires, respectively.
(Source: Bureau of Transportation Statistics)

Year J1 Y2 Y3

0 5.60 | 3.30 | 1.70

1 6.90 | 3.60 | 1.70

2 7.90 | 3.90 | 1.80

3 590 | 4.10 | 1.80

4 7.20 | 4.10 | 1.80

5 6.50 | 5.40 | 0.70

6 9.50 | 490 | 0.70

7 8.90 | 490 | 0.70

(a) Use the regression capabilities of a graphing utility to find
cubic models for y, and y; and a linear model for y,.

(b) Use a graphing utility to graph y,, y,, y3, and y, + y, + y;
in the same viewing window. Use the model to estimate the
total variable cost per mile in year 12.

ldF" 12. Beam Strength Students in a lab measured the breaking

strength S (in pounds) of wood 2 inches thick, x inches high,
and 12 inches long. The results are shown in the table.

x 4 6 8 10 12

S | 2370 | 5460 | 10,310 | 16,250 | 23,860

(a) Use the regression capabilities of a graphing utility to fit a
quadratic model to the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model to approximate the breaking strength when
x=2.

CAPSTONE

rdp' shows the numbers of people N (in millions) receiving care

Enrollment (in millions)

P4  Fitting Models to Data 35

ldF" 10. Brinell Hardness The data in the table show the Brinell ldP' 13. Car Performance The time ¢ (in seconds) required to attain a

speed of s miles per hour from a standing start for a Honda
Accord Hybrid is shown in the table.  (Source: Car & Driver)

s | 30 | 40 | 50 | 60 | 70 80 90

t 2513550 67|87 | 115 144

(a) Use the regression capabilities of a graphing utility to find
a quadratic model for the data.

(b) Use a graphing utility to plot the data and graph the model.
(c) Use the graph in part (b) to state why the model is not

appropriate for determining the times required to attain
speeds of less than 20 miles per hour.

(d) Because the test began from a standing start, add the point
(0, 0) to the data. Fit a quadratic model to the revised data
and graph the new model.

(e) Does the quadratic model in part (d) more accurately model
the behavior of the car? Explain.

. Health Maintenance Organizations The bar graph

in HMOs for the years 1990 through 2004. (Source:
HealthLeaders-InterStudy)

HMO Enrollment
N
90 2 N g
80 =8 e 2w
3 aEE
70 3 O ]
60 A0
50 &
<t

40+

20
10

- 46.2
— 52.5

T T
4 5 6 7 8 9 10 11 12 13 14
Year (0 <> 1990)

o

=

&

H
2

(a) Let 7 be the time in years, with t = 0 corresponding to
1990. Use the regression capabilities of a graphing
utility to find linear and cubic models for the data.

=

f
S L
—T o

(b) Use a graphing utility to graph the data and the linear
and cubic models.

(c) Use the graphs in part (b) to determine which is the
better model.

(d) Use a graphing utility to find and graph a quadratic
model for the data. How well does the model fit the
data? Explain your reasoning.

(e) Use the linear and cubic models to estimate the number
of people receiving care in HMOs in the year 2007.
What do you notice?

(f) Use a graphing utility to find other models for the data.

Which models do you think best represent the data?
Explain.
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?dP' 15. Car Performance A V8 car engine is coupled to a ?dP' 18. Temperature The table shows the normal daily high tempera-

dynamometer, and the horsepower y is measured at different
engine speeds x (in thousands of revolutions per minute). The
results are shown in the table.

x | 1 2 3 4 5 6

y | 40 | 85 | 140 | 200 | 225 | 245

(a) Use the regression capabilities of a graphing utility to find
a cubic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the model to approximate the horsepower when the
engine is running at 4500 revolutions per minute.

?dP' 16. Boiling Temperature The table shows the temperatures T (°F)
at which water boils at selected pressures p (pounds per
square inch). (Source: Standard Handbook for Mechanical

tures for Miami M and Syracuse S (in degrees Fahrenheit) for
month ¢, with # = 1 corresponding to January. (Source: NOAA)

t 1 2 3 4 5 6
M | 76,5 | 77.7 H 80.7 | 83.8 | 87.2 | 89.5
S | 314 | 33,5 | 43.1 | 557 | 685 | 77.0
t 7 8 9 10 11 12
M | 909 | 90.6  89.0 | 854 | 81.2 | 77.5
S | 817 | 796 | 7114 | 598 | 474 | 363

Engineers)
p 5 10 14.696 (1 atmosphere) 20
T | 162.24° | 193.21° 212.00° 227.96°
30 40 60 80 100
250.33° | 267.25° | 292.71° | 312.03° | 327.81°

(a) Use the regression capabilities of a graphing utility to find
a cubic model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the graph to estimate the pressure required for the
boiling point of water to exceed 300°F.

(d) Explain why the model would not be accurate for pressures
exceeding 100 pounds per square inch.

17. Harmonic Motion The motion of an oscillating weight
suspended by a spring was measured by a motion detector. The
data collected and the approximate maximum (positive and
negative) displacements from equilibrium are shown in the
figure. The displacement y is measured in centimeters and the
time ¢ is measured in seconds.

(a) Isy a function of #? Explain.
(b) Approximate the amplitude and period of the oscillations.
(¢) Find a model for the data.
PP' (d) Use a graphing utility to graph the model in part (c).
Compare the result with the data in the figure.
y

51 (0.125,235)
/

% %
2 @ ° L] ]

° ° °
eq0 LY

(0.375, 1.65)

(a) A model for Miami is
M(t) = 83.70 + 7.46 5in(0.4912t — 1.95).

Find a model for Syracuse.
(b) Use a graphing utility to graph the data and the model for
the temperatures in Miami. How well does the model fit?
(c) Use a graphing utility to graph the data and the model for
the temperatures in Syracuse. How well does the model fit?
(d) Use the models to estimate the average annual temperature
in each city. Which term of the model did you use? Explain.
(e) What is the period of each model? Is it what you expected?
Explain.

(f) Which city has a greater variability in temperature
throughout the year? Which factor of the models
determines this variability? Explain.

WRITING ABOUT CONCEPTS

In Exercises 19 and 20, describe a possible real-life situation
for each data set. Then describe how a model could be used
in the real-life setting.

19. v 20. v

PUTNAM EXAM CHALLENGE

21. For i = 1, 2 let T; be a triangle with side lengths a;, b;, c;,
and area A;. Suppose that a;, < a,, b, = b,, ¢; = ¢,, and
that 75, is an acute triangle. Does it follow that A, = A,?

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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Review Exercises 37

@ R E V I E W E X E R c I S E S See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, find the intercepts (if any).

1.y=5x—38 2.y=(x—2)(x—6)
x—3
3.y—x_4 4. xy =4

In Exercises 5 and 6, check for symmetry with respect to both
axes and to the origin.

5.x% —x2+4y=0 6.y=x*-—x>+3

In Exercises 7-14, sketch the graph of the equation.

8. 6x — 3y =12

10. 0.02x + 0.15y = 0.25
12. y = 6x — x?

M. y=|x—4 -4

7.y=%(—x+3)
9. —%x+%y=l
11. y =9 — 8x — x?
13. y=2J4 —x

ldF"' In Exercises 15 and 16, describe the viewing window of a graph-

ing utility that yields the figure.
15. y = 4x> — 25

\ /

N =

16. y =83/x — 6

ldF" In Exercises 17 and 18, use a graphing utility to find the point(s)

of intersection of the graphs of the equations.

17. 5x + 3y = —1
x— y=-5

18.x—y+1=0
y—x2=17

19. Think About It Write an equation whose graph has
intercepts at x = —4 and x = 4 and is symmetric with respect
to the origin.

20. Think About It For what value of k does the graph of y = kx3
pass through the point?

@ (L4 O (=21 (© 0,0 (@ (=1, -1)

In Exercises 21 and 22, plot the points and find the slope of the
line passing through the points.

21. (3.1).(5.3)

In Exercises 23 and 24, use the concept of slope to find ¢ such
that the three points are collinear.

23. (—8,5),(0,7), (2, — 1)

22. (=7,8),(—1,8)

24. (=3,3), (1, —1),(8,6)

In Exercises 25-28, find an equation of the line that passes
through the point with the indicated slope. Sketch the line.

25. (3,-5), m=7
27. (=3,0), m=—%

26. (—8,1), misundefined.
28. (5,4), m=0

29. Find equations of the lines passing through (—3, 5) and having
the following characteristics.
(a) Slope of %
(b) Parallel to the line 5x — 3y = 3
(c) Passing through the origin
(d) Parallel to the y-axis

30. Find equations of the lines passing through (2, 4) and having
the following characteristics.
(a) Slope of —3
(b) Perpendicular to the line x + y = 0
(c) Passing through the point (6, 1)
(d) Parallel to the x-axis

31. Rate of Change The purchase price of a new machine is
$12,500, and its value will decrease by $850 per year. Use this
information to write a linear equation that gives the value V of

the machine ¢ years after it is purchased. Find its value at the
end of 3 years.

32. Break-Even Analysis A contractor purchases a piece of
equipment for $36,500 that costs an average of $9.25 per hour
for fuel and maintenance. The equipment operator is paid
$13.50 per hour, and customers are charged $30 per hour.

(a) Write an equation for the cost C of operating this equip-
ment for ¢ hours.

(b) Write an equation for the revenue R derived from ¢ hours
of use.

(c) Find the break-even point for this equipment by finding the
time at which R = C.

In Exercises 33-36, sketch the graph of the equation and use
the Vertical Line Test to determine whether the equation
expresses y as a function of x.

3. x—y2= 4. x2—y=0
_lx=2 — 0 _ 2
:'»S.y—x_2 36. x=9—y

37. Evaluate (if possible) the function f(x) = 1/x at the specified
values of the independent variable, and simplify the results.

S+ Ax) — f(1)
Ax

38. Evaluate (if possible) the function at each value of the inde-
pendent variable.

o) = x2+2, x<0
[x =2, x=0

(@) £(0) (b)

@ f(=4)  ® f0) (o) f(1)

39. Find the domain and range of each function.

2
@ y=36-22 (b) y= <oy={x’ x<0

7
2x — 10 2—x,x=20
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40.

41.

F® 42.

Pp’ 43.

FE 44.

Chapter P Preparation for Calculus

Given f(x) =1 —x?> and g(x) = 2x + 1, evaluate each
expression.

@ flx) —glx)  (®) fWglx) () g(f(x))

Sketch (on the same set of coordinate axes) graphs of f for
¢ = —2,0,and 2.

@ flx) =x+ ¢ (b) flx) = (x =)

© flx) =(x=2P +c (d) flx) = ex?

Use a graphing utility to graph f(x) = x> — 3x2 Use the graph
to write a formula for the function g shown in the figure.

To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(@) 6 (b) 2
(2,5) (2, 1)
; /\ RESEE N
a Y
2 (N 4,-3)
-1 -4
Conjecture

(a) Use a graphing utility to graph the functions f, g, and h in
the same viewing window. Write a description of any

similarities and differences you observe among the graphs.
Odd powers: f(x) = x, glx) = x>, h(x) = x°
Even powers: f(x) = x2, g(x) = x* h(x) = x°

(b) Use the result in part (a) to make a conjecture about the
graphs of the functions y = x” and y = x%. Use a graphing
utility to verify your conjecture.

Think About It Use the results of Exercise 43 to guess the

shapes of the graphs of the functions f, g, and h. Then use a

graphing utility to graph each function and compare the result

with your guess.

(@) fx) = x*(x = 6)
(© hlx) = x*(x — 6)

(b) glx) = x*(x — 6)?

'dF’ 45. Area A wire 24 inches long is to be cut into four pieces to

46.

form a rectangle whose shortest side has a length of x.
(a) Write the area A of the rectangle as a function of x.

(b) Determine the domain of the function and use a graphing
utility to graph the function over that domain.

(c) Use the graph of the function to approximate the maximum
area of the rectangle. Make a conjecture about the dimen-
sions that yield a maximum area.

Writing The following graphs give the profits P for two small
companies over a period p of 2 years. Create a story to describe
the behavior of each profit function for some hypothetical
product the company produces.

(a) P (b) P

200,000 100,000

100,000 50,000

p p

47.

e as.

49.

Think About It What is the minimum degree of the polyno-
mial function whose graph approximates the given graph?
What sign must the leading coefficient have?

(b)

(a) y

(d)

Stress Test A machine part was tested by bending it x
centimeters 10 times per minute until the time y (in hours) of
failure. The results are recorded in the table.

x| 3 6 9 |12 15 | 18 | 21 | 24 | 27 | 30

y | 61 | 56 | 53 | 55 | 48 | 35 | 36 | 33 44 | 23

(a) Use the regression capabilities of a graphing utility to find
a linear model for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use the graph to determine whether there may have been an
error made in conducting one of the tests or in recording the
results. If so, eliminate the erroneous point and find the
model for the remaining data.

Harmonic Motion The motion of an oscillating weight
suspended by a spring was measured by a motion detector. The
data collected and the approximate maximum (positive and
negative) displacements from equilibrium are shown in the
figure. The displacement y is measured in feet and the time ¢ is
measured in seconds.

(a) Is y a function of #? Explain.

(b) Approximate the amplitude and period of the oscillations.

(c) Find a model for the data.

'dP' (d) Use a graphing utility to graph the model in part (c).

Compare the result with the data in the figure.
y
0.50 -+

(/1.1, 0.25)
0.25 -o °®

-0.25 +

—-0.50
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@ PROBLEM SOLVING

1.

2.

3.

Institute of Electrical Engineers, London

Consider the circle x> + y?> — 6x — 8y = 0, as shown in the
figure.

(a) Find the center and radius of the circle.

(b) Find an equation of the tangent line to the circle at the point
(0, 0).

(c) Find an equation of the tangent line to the circle at the point
(6,0).

(d) Where do the two tangent lines intersect?

2+

Figure for 1 Figure for 2

There are two tangent lines from the point (0, 1) to the circle
x2+ (y+ 1)> = 1 (see figure). Find equations of these two lines
by using the fact that each tangent line intersects the circle at
exactly one point.

The Heaviside function H(x) is widely used in engineering
applications.

1, x=0
H(x) =
0, x<0

Sketch the graph of the Heaviside function and the graphs of the
following functions by hand.

(a) H(x) — 2
(d) H(—x)

() H(x — 2)
(e) 3H(x)

(c) —H(x)
(f) —Hx —2) +2

OLIVER HEAVISIDE (1850-1925)

Heaviside was a British mathematician and physicist who contributed to
the field of applied mathematics, especially applications of mathematics to
electrical engineering. The Heaviside function is a classic type of “on-off”
function that has applications to electricity and computer science.

PS. Problem Solving 39

4. Consider the graph of the function f shown below. Use

this graph to sketch the graphs of the following functions.
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(@ fx+1) () flx) +1 "
© 2f(0) (@ f(-x) 4T
(e) —f(x) () | ()]

(@ f(|x[)

. A rancher plans to fence a rectangular pasture adjacent to a river.

The rancher has 100 meters of fencing, and no fencing is needed
along the river (see figure).

(a) Write the area A of the pasture as a function of x, the length
of the side parallel to the river. What is the domain of A?

(b) Graph the area function A(x) and estimate the dimensions
that yield the maximum amount of area for the pasture.

(c) Find the dimensions that yield the maximum amount of area
for the pasture by completing the square.

2 y

Figure for 5

Figure for 6

. A rancher has 300 feet of fencing to enclose two adjacent

pastures.

(a) Write the total area A of the two pastures as a function of x
(see figure). What is the domain of A?

(b) Graph the area function and estimate the dimensions that
yield the maximum amount of area for the pastures.

(c) Find the dimensions that yield the maximum amount of area
for the pastures by completing the square.

. You are in a boat 2 miles from the nearest point on the coast. You

are to go to a point Q located 3 miles down the coast and
1 mile inland (see figure). You can row at 2 miles per hour and
walk at 4 miles per hour. Write the total time 7 of the trip as a
function of x.

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



40

8.

10.

11.

12.

Chapter P Preparation for Calculus

You drive to the beach at a rate of 120 kilometers per hour. On
the return trip, you drive at a rate of 60 kilometers per hour. What
is your average speed for the entire trip? Explain your reasoning.

. One of the fundamental themes of calculus is to find the slope

of the tangent line to a curve at a point. To see how this can be
done, consider the point (2, 4) on the graph of f(x) = x* (see
figure).

y
10+
8,,
6,,
—t+— —t—+—>x
—6-4-2 | 2 4 6

(a) Find the slope of the line joining (2, 4) and (3, 9). Is the
slope of the tangent line at (2, 4) greater than or less than
this number?

(b) Find the slope of the line joining (2, 4) and (1, 1). Is the
slope of the tangent line at (2, 4) greater than or less than
this number?

(c) Find the slope of the line joining (2, 4) and (2.1, 4.41). Is
the slope of the tangent line at (2, 4) greater than or less
than this number?

(d) Find the slope of the line joining (2,4) and (2 + h,
f(2 4 h)) in terms of the nonzero number /. Verify that
h =1, —1, and 0.1 yield the solutions to parts (a)-(c)
above.

(e) What is the slope of the tangent line at (2, 4)? Explain how
you arrived at your answer.

Sketch the graph of the function f(x) = /x and label the point

(4, 2) on the graph.

(a) Find the slope of the line joining (4, 2) and (9, 3). Is the
slope of the tangent line at (4, 2) greater than or less than
this number?

(b) Find the slope of the line joining (4, 2) and (1, 1). Is the
slope of the tangent line at (4, 2) greater than or less than
this number?

(c) Find the slope of the line joining (4, 2) and (4.41,2.1). Is
the slope of the tangent line at (4, 2) greater than or less
than this number?

(d) Find the slope of the line joining (4,2) and (4 + h,
f(4 + h)) in terms of the nonzero number .

(e) What is the slope of the tangent line at the point (4, 2)?
Explain how you arrived at your answer.

Explain how you would graph the equation
y Iyl = x4 .
Then sketch the graph.

A large room contains two speakers that are 3 meters apart. The
sound intensity / of one speaker is twice that of the other, as
shown in the figure. (To print an enlarged copy of the graph, go

13.

14.

15.

to the website www.mathgraphs.com.) Suppose the listener is
free to move about the room to find those positions that receive
equal amounts of sound from both speakers. Such a location
satisfies two conditions: (1) the sound intensity at the listener’s
position is directly proportional to the sound level of a source,
and (2) the sound intensity is inversely proportional to the
square of the distance from the source.

(a) Find the points on the x-axis that receive equal amounts of
sound from both speakers.

(b) Find and graph the equation of all locations (x, y) where
one could stand and receive equal amounts of sound from
both speakers.

¥ y
3+ 4
3 —+
2 .
RN 2+ 0N
1+ 7 N N / N N
/) N 1/ .
1)/ N21 I’ N Ukl
%" x ——f—F—F+—%—>x
1 2 3 1 2 3 4
Figure for 12 Figure for 13

Suppose the speakers in Exercise 12 are 4 meters apart and the
sound intensity of one speaker is k times that of the other, as
shown in the figure. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

(a) Find the equation of all locations (x, y) where one could stand
and receive equal amounts of sound from both speakers.

(b) Graph the equation for the case k = 3.

(c) Describe the set of locations of equal sound as k becomes
very large.

Let d, and d, be the distances from the point (x, y) to the points
(—1,0) and (1, 0), respectively, as shown in the figure. Show
that the equation of the graph of all points (x,y) satisfying
dd, = 11s (x> + y?)?> = 2(x> — y?). This curve is called a
lemniscate. Graph the lemniscate and identify three points on
the graph.

Let /() = 7.

(a) What are the domain and range of f?

(b) Find the composition f( f(x)). What is the domain of this
function?

(¢) Find f(f( f(x))). What is the domain of this function?
(d) Graph f( f( f(x))). Is the graph a line? Why or why not?
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Limits and Their
Properties

The limit of a function is the primary
concept that distinguishes calculus from
algebra and analytic geometry. The
notion of a limit is fundamental to the
study of calculus. Thus, it is important
to acquire a good working knowledge of
limits before moving on to other topics
in calculus.

In this chapter, you should learn the
following.

B How calculus compares with precalculus.

(1.1)

B How to find limits graphically and
numerically. (1.2)

B How to evaluate limits analytically. (1.3)

B How to determine continuity at a point
and on an open interval, and how to ~ m—
determine one-sided limits. (1.4)

® How to determine infinite limits and
find vertical asymptotes. (1.5)

European Space Agency/NASA

According to NASA, the coldest place in the known universe is the Boomerang
nebula. The nebula is five thousand light years from Earth and has a temperature of
—m —272°C. That is only 1° warmer than absolute zero, the coldest possible temperature.
How did scientists determine that absolute zero is the “lower limit” of the
temperature of matter? (See Section 1.4, Example 5.)

y y y

24 /fls
™ undefined
atx=0.
1 —

S = _x
| YIS Va+l-1 e Va+l-1

1 - : — 1 -

-1 1 -1 1 -1 1

The limit process is a fundamental concept of calculus. One technique you can use to estimate a limit is to graph the
function and then determine the behavior of the graph as the independent variable approaches a specific value. (See
Section 1.2.)

41
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42 Chapter 1  Limits and Their Properties

E A Preview of Calculus

As you progress through
this course, remember that learning
calculus is just one of your goals. Your
most important goal is to learn how to
use calculus to model and solve real-life
problems. Here are a few problem-
solving strategies that may help you.

* Be sure you understand the question.
What is given? What are you asked
to find?

* Outline a plan. There are many
approaches you could use: look for
a pattern, solve a simpler problem,
work backwards, draw a diagram,
use technology, or any of many
other approaches.

» Complete your plan. Be sure to
answer the question. Verbalize your
answer. For example, rather than
writing the answer as x = 4.6, it
would be better to write the answer
as “The area of the region is
4.6 square meters.”

* Look back at your work. Does your
answer make sense? Is there a way
you can check the reasonableness of
your answer?

® Understand what calculus is and how it compares with precalculus.
® Understand that the tangent line problem is basic to calculus.
® Understand that the area problem is also basic to calculus.

What Is Calculus?

Calculus is the mathematics of change. For instance, calculus is the mathematics of
velocities, accelerations, tangent lines, slopes, areas, volumes, arc lengths, centroids,
curvatures, and a variety of other concepts that have enabled scientists, engineers, and
economists to model real-life situations.

Although precalculus mathematics also deals with velocities, accelerations,
tangent lines, slopes, and so on, there is a fundamental difference between precalculus
mathematics and calculus. Precalculus mathematics is more static, whereas
calculus is more dynamic. Here are some examples.

* An object traveling at a constant velocity can be analyzed with precalculus
mathematics. To analyze the velocity of an accelerating object, you need calculus.

 The slope of a line can be analyzed with precalculus mathematics. To analyze the
slope of a curve, you need calculus.

e The curvature of a circle is constant and can be analyzed with precalculus mathe-
matics. To analyze the variable curvature of a general curve, you need calculus.

» The area of a rectangle can be analyzed with precalculus mathematics. To analyze
the area under a general curve, you need calculus.

Each of these situations involves the same general strategy—the reformulation of
precalculus mathematics through the use of a limit process. So, one way to answer the
question “What is calculus?” is to say that calculus is a “limit machine” that involves
three stages. The first stage is precalculus mathematics, such as the slope of a line or
the area of a rectangle. The second stage is the limit process, and the third stage is a
new calculus formulation, such as a derivative or integral.

Precalculus Limit

— —> Calculus

mathematics process

Some students try to learn calculus as if it were simply a collection of new
formulas. This is unfortunate. If you reduce calculus to the memorization of differen-
tiation and integration formulas, you will miss a great deal of understanding,
self-confidence, and satisfaction.

On the following two pages are listed some familiar precalculus concepts coupled
with their calculus counterparts. Throughout the text, your goal should be to learn how
precalculus formulas and techniques are used as building blocks to produce the more
general calculus formulas and techniques. Don’t worry if you are unfamiliar with
some of the “old formulas” listed on the following two pages—you will be reviewing
all of them.

As you proceed through this text, come back to this discussion repeatedly. Try to
keep track of where you are relative to the three stages involved in the study of
calculus. For example, the first three chapters break down as follows.

Chapter P: Preparation for Calculus Precalculus
Chapter 1: Limits and Their Properties Limit process
Chapter 2: Differentiation Calculus
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A Preview of Calculus

43

Without Calculus

With Differential Calculus

Value of f(x)
when x = ¢

Limit of f(x) as
x approaches ¢

Slope of a line

Slope of a curve

Secant line to

Tangent line to

a curve a curve

Average rate of ‘ , Instantaneous
change between =~~~ WOESEEF "7 TTTTTC = rate of change
t=aandt=>b attr = ¢
Curvature Curvature

of a circle of a curve
Height of a Maximum height
curve when of a curve on
X=c x | an interval

Tangent plane
to a sphere

Tangent plane
to a surface

Direction of
motion along
a line

Direction of
motion along
a curve
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44 Chapter 1

Limits and Their Properties

Without Calculus

With Integral Calculus

constant force

Area of a Area under
rectangle a curve .
Work done by a / \ Work done by a / \ <

variable force

Center of a el et Centroid of

rectangle P e a region o
Length of a Length of

line segment an arc

Surface area
of a cylinder

Surface area of a
solid of revolution

Mass of a solid

Mass of a solid

T

I

.
R 4

of constant of variable

density density

Volume of a Volume of a

rectangular region under

solid a surface

Sum of a Sum of an

finite number ata+---+a,=8S infinite number ata+tay+---=85
of terms of terms
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Tangent line

X

The tangent line to the graph of fat P
Figure 1.1

The Mistress Fellows, Girton College, Cambridge

GRACE CHISHOLM YOUNG (1868—-1944)

Grace Chisholm Young received her degree

in mathematics from Girton College in
Cambridge, England. Her early work was
published under the name of William Young,
her hushand. Between 1914 and 1916, Grace
Young published work on the foundations of
calculus that won her the Gamble Prize from
Girton College.

1.1 A Preview of Calculus 45

The Tangent Line Problem

The notion of a limit is fundamental to the study of calculus. The following brief
descriptions of two classic problems in calculus—the tangent line problem and the
area problem—should give you some idea of the way limits are used in calculus.

In the tangent line problem, you are given a function fand a point P on its graph
and are asked to find an equation of the tangent line to the graph at point P, as shown
in Figure 1.1.

Except for cases involving a vertical tangent line, the problem of finding the
tangent line at a point P is equivalent to finding the slope of the tangent line at P. You
can approximate this slope by using a line through the point of tangency and a second
point on the curve, as shown in Figure 1.2(a). Such a line is called a secant line. If
P(c, f(c)) is the point of tangency and

O(c + Ax, f(c + Ax))

is a second point on the graph of £, the slope of the secant line through these two points
can be found using precalculus and is given by

L _fle+ A~ £(0)
se¢ c+Ax —c¢ Ax

Q(c+ Ax, f(c+Ax))
/ Secant
lines

P(c, fle)

fle +Ax)=f(c)

Tangent line

X X

(b) As Q approaches P, the secant lines
approach the tangent line.

(a) The secant line through (c, f(c)) and
(¢ + Ax,f(c + Ax))
Figure 1.2

As point Q approaches point P, the slopes of the secant lines approach the slope
of the tangent line, as shown in Figure 1.2(b). When such a “limiting position” exists,
the slope of the tangent line is said to be the limit of the slopes of the secant lines.
(Much more will be said about this important calculus concept in Chapter 2.)

EXPLORATION

The following points lie on the graph of f(x) = x2.

0,(1.5,£(1.5)), 0,(1.1,£(1.1)), Q4(1.01, f(1.01)),
0,(1.001, (1.001)), Q4(1.0001, £(1.0001))

Each successive point gets closer to the point P(1, 1). Find the slopes of the
secant lines through Q, and P, Q, and P, and so on. Graph these secant lines
on a graphing utility. Then use your results to estimate the slope of the
tangent line to the graph of f at the point P.
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y
y=f)
/ a b
Area under a curve
Figure 1.3
HISTORICAL NOTE

In one of the most astounding events ever to
occur in mathematics, it was discovered

that the tangent line problem and the area
problem are closely related. This discovery led
to the birth of calculus. You will learn about
the relationship between these two problems
when you study the Fundamental Theorem of
Calculus in Chapter 4.

Limits and Their Properties

The Area Problem

In the tangent line problem, you saw how the limit process can be applied to the slope
of a line to find the slope of a general curve. A second classic problem in calculus is
finding the area of a plane region that is bounded by the graphs of functions. This
problem can also be solved with a limit process. In this case, the limit process is
applied to the area of a rectangle to find the area of a general region.

As a simple example, consider the region bounded by the graph of the function
y = f(x), the x-axis, and the vertical lines x = @ and x = b, as shown in Figure 1.3.
You can approximate the area of the region with several rectangular regions, as shown
in Figure 1.4. As you increase the number of rectangles, the approximation tends
to become better and better because the amount of area missed by the rectangles
decreases. Your goal is to determine the limit of the sum of the areas of the rectangles
as the number of rectangles increases without bound.

y=f) y=f)

/ a b / a b

Approximation using four rectangles Approximation using eight rectangles

Figure 1.4

f)=x2

N

(a) Bounded region

EXPLORATION

Consider the region bounded by the graphs of f(x) = x%, y = 0,and x = 1, as
shown in part (a) of the figure. The area of the region can be approximated by two
sets of rectangles—one set inscribed within the region and the other set circum-
scribed over the region, as shown in parts (b) and (c). Find the sum of the areas of
each set of rectangles. Then use your results to approximate the area of the region.

[0 =x? [0 =x?

(b) Inscribed rectangles (¢) Circumscribed rectangles
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@ EXE I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-5, decide whether the problem can be solved using
precalculus or whether calculus is required. If the problem can be
solved using precalculus, solve it. If the problem seems to require
calculus, explain your reasoning and use a graphical or numerical
approach to estimate the solution.

1. Find the distance traveled in 15 seconds by an object traveling at
a constant velocity of 20 feet per second.

2. Find the distance traveled in 15 seconds by an object moving
with a velocity of v(f) = 20 + 7 cos ¢ feet per second.

3. A bicyclist is riding on a path modeled by the function
f(x) = 0.04(8x — x?), where x and f(x) are measured in miles.
Find the rate of change of elevation at x = 2.

y y

3 3

2 = —x2 2

1 f(x) = 0.04(8x — x?) 1 ) = 0.08x
T I I I I I .
I S B B E— X =+ X

/<‘> 1 2 3 4 5 6 # 1 2 3 4 5 6

-1 -1

Figure for 3 Figure for 4

4. A bicyclist is riding on a path modeled by the function
f(x) = 0.08x, where x and f(x) are measured in miles. Find the
rate of change of elevation at x = 2.

5. Find the area of the shaded region.
(@ (b) y
2,4

6. Secant Lines Consider the function f(x) = /x and the point
P(4, 2) on the graph of f.
(a) Graph f and the secant lines passing through P(4,2) and
O (x, f(x)) for x-values of 1, 3, and 5.
(b) Find the slope of each secant line.

(c) Use the results of part (b) to estimate the slope of the tangent
line to the graph of f at P(4,2). Describe how to improve
your approximation of the slope.

7. Secant Lines Consider the function f(x) = 6x — x? and the
point P(2, 8) on the graph of f.
(a) Graph f and the secant lines passing through P(2, 8) and
O (x, f(x)) for x-values of 3, 2.5, and 1.5.
(b) Find the slope of each secant line.
(c) Use the results of part (b) to estimate the slope of the tangent

line to the graph of f at P(2, 8). Describe how to improve
your approximation of the slope.

8. (a) Use the rectangles in each graph to approximate the area of
the region bounded by y = sinx,y = 0,x = 0, and x = .

y y

X X
/ x n Iz A
2 2
(b) Describe how you could continue this process to obtain a
more accurate approximation of the area.

9. (a) Use the rectangles in each graph to approximate the area of
the region bounded by y = 5/x,y = 0,x = 1,and x = 5.

y y

5+ 5+

4+ 4+

3+ 3+

2+ 2+

14+ 1+
1t e o B
1 23 4 5 1 23 45

(b) Describe how you could continue this process to obtain a
more accurate approximation of the area.

10. How would you describe the instantaneous rate of change
of an automobile’s position on the highway?

WRITING ABOUT CONCEPTS

11. Consider the length of the graph of f(x) = 5/x from (1, 5)
to (5, 1).

y y
(1,5) 1,5
1 IR
4+ 4+ \
3+ 34+ \
2T 2T 5.1
1+ 1+
I > x
1 2 3 4 5 1 2 3 4 5

(a) Approximate the length of the curve by finding the
distance between its two endpoints, as shown in the
first figure.

(b) Approximate the length of the curve by finding the
sum of the lengths of four line segments, as shown in
the second figure.

(c) Describe how you could continue this process to obtain
a more accurate approximation of the length of the
curve.
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@ Finding Limits Graphically and Numerically

/

li =3
lim f(x) s

The limit of /(x) as x approaches 1 is 3.
Figure 1.5

B Estimate a limit using a numerical or graphical approach.
B Learn different ways that a limit can fail to exist.
® Study and use a formal definition of limit.

An Introduction to Limits
Suppose you are asked to sketch the graph of the function f given by
-1
f) == x#1
x—1

For all values other than x = 1, you can use standard curve-sketching techniques.
However, at x = 1, it is not clear what to expect. To get an idea of the behavior of the
graph of fnear x = 1, you can use two sets of x-values—one set that approaches 1
from the left and one set that approaches 1 from the right, as shown in the table.

x approaches 1 from the left. > < x approaches 1 from the right.

x 0.75 0.9 099 10999 | 1 | 1.001 @ 1.01 1.1 1.25
f(x) | 2313 | 27710 1 2970 | 2.997 | ? | 3.003 | 3.030 | 3.310 | 3.813

f(x) approaches 3. > < f(x) approaches 3.

The graph of fis a parabola that has a gap at the point (1, 3), as shown in Figure
1.5. Although x cannot equal 1, you can move arbitrarily close to 1, and as a result f(x)
moves arbitrarily close to 3. Using limit notation, you can write

lim f(x) = 3. This is read as “the limit of f(x) as x approaches 1 is 3.”
x—1

This discussion leads to an informal definition of limit. If f(x) becomes arbitrarily
close to a single number L as x approaches ¢ from either side, the limit of f(x), as x
approaches c, is L. This limit is written as

lim f(x) = L.

Xx—>cC

EXPLORATION

The discussion above gives an example of how you can estimate a limit
numerically by constructing a table and graphically by drawing a graph.
Estimate the following limit numerically by completing the table.

CoxX2—=3x+2
lim ————

x—2 x—2

x 175 | 1.9 | 1.99 | 1.999 2 |2.001| 2.01 | 2.1 | 225

S ? ? ? ? ? ? ? ? ?

Then use a graphing utility to estimate the limit graphically.
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fis undefined
atx=0.

|

14

\/

fG) =

Vx 1—1

T

-1

The limit of f(x) as x approaches 0 is 2.

Figure 1.6

The limit of f(x) as x approaches 2 is 1.

Figure 1.7

1.2 Finding Limits Graphically and Numerically 49

EXAMPLE [} Estimating a Limit Numerically

Evaluate the function f(x) = x/ (\/x +1 - 1) at several points near x = 0 and use
the results to estimate the limit

X
lim —.
=0 Jx+1—1

Solution  The table lists the values of f(x) for several x-values near 0.

x approaches 0 from the left. > < x approaches 0 from the right.

0.0001
2.00005

0.001 0.01
2.00050 | 2.00499

—-0.0001 | O
1.99995 | ?

> <

From the results shown in the table, you can estimate the limit to be 2. This limit is
reinforced by the graph of f (see Figure 1.6). |

x —0.01
flx) | 1.99499

—0.001
1.99950

f(x) approaches 2. f(x) approaches 2.

In Example 1, note that the function is undefined at x = 0 and yet f(x) appears to
be approaching a limit as x approaches 0. This often happens, and it is important to
realize that the existence or nonexistence of f(x) at x = ¢ has no bearing on the
existence of the limit of f(x) as x approaches c.

EXAMPLE [EJ Finding a Limit

Find the limit of f(x) as x approaches 2, where fis defined as
I, x#2
&) _{0, x=2

Solution Because f(x) = 1 for all x other than x = 2, you can conclude that the limit
is 1, as shown in Figure 1.7. So, you can write

lim f(x) = 1

The fact that f(2) = 0 has no bearing on the existence or value of the limit as x
approaches 2. For instance, if the function were defined as

(x) = 1, x#2
MO=0 v =2
the limit would be the same. [ ]

So far in this section, you have been estimating limits numerically and graphically.
Each of these approaches produces an estimate of the limit. In Section 1.3, you will
study analytic techniques for evaluating limits. Throughout the course, try to develop a
habit of using this three-pronged approach to problem solving.

1. Numerical approach Construct a table of values.

2. Graphical approach Draw a graph by hand or using technology.

3. Analytic approach

Use algebra or calculus.
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Limits and Their Properties

X

f&) =

|

f=1

f=-1

lim f(x) does not exist.
x—0

Figure 1.8

]
T

-2 -1 1
lim f(x) does not exist.
x—0

Figure 1.9

Limits That Fail to Exist

In the next three examples you will examine some limits that fail to exist.

EXAMPLE [EJ Behavior That Differs from the Right and from the Left

.. X .
Show that the limit lim u does not exist.
x—=0 X

Solution  Consider the graph of the function f(x) = |x|/x. From Figure 1.8 and the
definition of absolute value

x, ifx = o )
|x| = . Definition of absolute value
—x, ifx <0

you can see that

|x|:{ 1, ifx>0

x |-l ifx <O

This means that no matter how close x gets to 0, there will be both positive and
negative x-values that yield f(x) = 1 or f(x) = — 1. Specifically, if & (the lowercase
Greek letter delta) is a positive number, then for x-values satisfying the inequality
0 < |x| < & you can classify the values of |x|/x as follows.

(=8,0) (0, 9)
Negative x-values Positive x-values
yield |x|/x = —1. yield |x|/x = 1.

Because |x|/x approaches a different number from the right side of O than it
approaches from the left side, the limit lin(lJ (]x|/x) does not exist.
xX—

EXAMPLE [ZJ Unbounded Behavior

Discuss the existence of the limit lim iz

x—0 X
Solution Let f(x) = 1/x2 In Figure 1.9, you can see that as x approaches 0 from
either the right or the left, f(x) increases without bound. This means that by choosing
x close enough to 0, you can force f(x) to be as large as you want. For instance, f(x)
will be larger than 100 if you choose x that is within 11*0 of 0. That is,

1 1
O<|x|<ﬁ = f(x)=;>100.

Similarly, you can force f (x) to be larger than 1,000,000, as follows.

1 1
0 < |x| < m > f(x) = ; > 1,000,000

Because f(x) is not approaching a real number L as x approaches 0, you can conclude
that the limit does not exist. |
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" jexampLe [E Oscillating Behavior

flx) = sin%

-1

lim f(x) does not exist.
x—0

Figure 1.10

The Granger Collection

PETER GUSTAV DIRICHLET (1805-1859)

In the early development of calculus, the
definition of a function was much more
restricted than it is today, and “functions”
such as the Dirichlet function would not have
been considered. The modern definition of
function is attributed to the German
mathematician Peter Gustav Dirichlet.

1
Discuss the existence of the limit lim sin —.
x—0 X
Solution Let f(x) = sin(1/x). In Figure 1.10, you can see that as x approaches 0,
f(x) oscillates between — 1 and 1. So, the limit does not exist because no matter how
small you choose §, it is possible to choose x; and x, within & units of O such that

sin(1/x,) = 1 and sin(1/x,) = —1, as shown in the table.
X 2/m | 2/3mw | 2/57  2/77 | 2/97 | 2/11%@ x—0
sin (1/x) 1 -1 1 -1 1 —1 | Limit does not exist.

COMMON TYPES OF BEHAVIOR ASSOCIATED WITH NONEXISTENCE OF A LIMIT

1. f(x) approaches a different number from the right side of ¢ than it approaches
from the left side.
2. f(x) increases or decreases without bound as x approaches c.

3. f(x) oscillates between two fixed values as x approaches c.

There are many other interesting functions that have unusual limit behavior. An
often cited one is the Dirichlet function

) = 0, if xis rational.
Y71, if xis irrational.

Because this function has no limit at any real number c, it is not continuous at any real
number c. You will study continuity more closely in Section 1.4.

LA NI SARITVEED When you use a graphing utility to investigate the
behavior of a function near the x-value at which you are trying to evaluate a limit,

remember that you can’t always trust the pictures that graphing utilities draw. If you
use a graphing utility to graph the function in Example 5 over an interval containing
0, you will most likely obtain an incorrect graph such as that shown in Figure 1.11.
The reason that a graphing utility can’t show the correct graph is that the graph has
infinitely many oscillations over any interval that contains 0.

1.2

-0.25 0.25

-1.2

Incorrect graph of f(x) = sin(1/x).
Figure 1.11

The icon C indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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&c+6
c-6

The &-8 definition of the limit of f(x) as x
approaches ¢
Figure 1.12

FOR FURTHER INFORMATION For
more on the introduction of rigor to
calculus, see “Who Gave You the
Epsilon? Cauchy and the Origins of
Rigorous Calculus” by Judith V.
Grabiner in The American Mathematical
Monthly. To view this article, go to the
website www.matharticles.com.

A Formal Definition of Limit

Let’s take another look at the informal definition of limit. If f(x) becomes arbitrarily
close to a single number L as x approaches ¢ from either side, then the limit of f(x) as
x approaches c is L, written as

lim f(x) = L.

X—cC
At first glance, this definition looks fairly technical. Even so, it is informal because
exact meanings have not yet been given to the two phrases

“f(x) becomes arbitrarily close to L”
and

“x approaches c.”

The first person to assign mathematically rigorous meanings to these two phrases was
Augustin-Louis Cauchy. His e-6 definition of limit is the standard used today.

In Figure 1.12, let & (the lowercase Greek letter epsilon) represent a (small)
positive number. Then the phrase “f(x) becomes arbitrarily close to L” means that f(x)
lies in the interval (L — &, L + &). Using absolute value, you can write this as

|f(x) = L| <e.

Similarly, the phrase “x approaches ¢” means that there exists a positive number &
such that x lies in either the interval (¢ — 8§, ¢) or the interval (c, ¢ + 8). This fact can
be concisely expressed by the double inequality

0<|x—c| <é
The first inequality

0< |x - C| The distance between x and ¢ is more than 0.
expresses the fact that x # ¢. The second inequality

|x - C| <0 x is within & units of c.

says that x is within a distance 6 of c.

DEFINITION OF LIMIT

Let f be a function defined on an open interval containing ¢ (except possibly
at ¢) and let L be a real number. The statement

lim f(x) = L
Xx—c
means that for each € > 0 there exists a 6 > 0 such that if

0<|x—rc| <8 then [f(x)—L|<e

Throughout this text, the expression
limf(x) = L
xX—cC

implies two statements—the limit exists and the limit is L. |
Some functions do not have limits as x — ¢, but those that do cannot have two

different limits as x — c¢. That is, if the limit of a function exists, it is unique (see
Exercise 79).
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y=101
y=1

y=0.99 |-

oox= 2.995
’ x=3
x =3.005

-2+

The limit of f(x) as x approaches 3 is 1.

Figure 1.13

fx)=2x-5

y=4+et--
y=4|-¢.
L]
I
y=4—g - : :
\—x=2+5
x=2
y x=2-0
4 -
3L
2L
LT fx)=3x-2
} } } }
/ 1 2 3 4

The limit of f(x) as x approaches 2 is 4.

Figure 1.14

1.2 Finding Limits Graphically and Numerically 53

The next three examples should help you develop a better understanding of the
&-0 definition of limit.

EXAMPLE [} Finding a 5 for a Given ¢

Given the limit

lim 2x — 5) = 1
x—3

find 8 such that |(2x — 5) — 1| < 0.01 whenever 0 < |x — 3| < 4.

Solution In this problem, you are working with a given value of e—namely,
e = 0.01. To find an appropriate 8, notice that

[2x —5) — 1| = |2x — 6] = 2|x — 3]|.
Because the inequality |(2x — 5) — 1| < 0.01 is equivalent to 2|x — 3| < 0.01,
you can choose 8 = 5(0.01) = 0.005. This choice works because

0 < |x — 3| < 0.005
implies that

|(2x = 5) — 1] = 2|x — 3| < 2(0.005) = 0.01

as shown in Figure 1.13. L

In Example 6, note that 0.005 is the largest value of & that will guarantee
[(2x — 5) — 1| < 0.01 whenever 0 < |x — 3| < 8. Any smaller positive value of & would
also work. |

In Example 6, you found a o-value for a given e. This does not prove the
existence of the limit. To do that, you must prove that you can find a & for any &, as
shown in the next example.

EXAMPLE Using the ¢-5 Definition of Limit
Use the &-6 definition of limit to prove that

lim (3x — 2) = 4.
x—2

Solution  You must show that for each & > 0, there exists a 8§ > 0 such that
|(3x — 2) — 4| < & whenever 0 < |x — 2| < 8. Because your choice of & depends
on &, you need to establish a connection between the absolute values |(3x — 2) — 4]
and |x — 2|.

|(3x — 2) — 4] = [3x — 6] = 3]x — 2

So, for a given € > 0 you can choose 8 = g/3. This choice works because
€
O<|lx—2<é6=73
k-2 <8=1
implies that
€
|3x — 2) — 4| = 3|x — 2] <3<3):8

as shown in Figure 1.14. |
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EXAMPLE [EJ Using the &-5 Definition of Limit

£0) =22 Use the e-6 definition of limit to prove that
4+et lim x2 = 4.
x—2
Q+8)? - r /
i 1 Solution  You must show that for each ¢ > 0, there exists a 8 > 0 such that
Q-8 b---# E E |x> — 4| < & whenever 0 < |x — 2| < &
d-er /00 To find an appropriate §, begin by writing |x> — 4| = |x — 2||x + 2|. For all x in the
Lo interval (1, 3), x + 2 < 5 and thus |x + 2| < 5. So, letting & be the minimum of /5
L 0is and 1, it follows that, whenever 0 < |x — 2| < §, you have
2 g
2-6 |x2—4|=|x—2||x+2|<<5>(5)=s
The limit of f(x) as x approaches 2 is 4.
Figure 1.15 as shown in Figure 1.15. [ |

Throughout this chapter you will use the &-6 definition of limit primarily to prove
theorems about limits and to establish the existence or nonexistence of particular types
of limits. For finding limits, you will learn techniques that are easier to use than the e-8
definition of limit.

@ EXE I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-8, complete the table and use the result to [/ 4+ 1D)] = (1/4)
estimate the limit. Use a graphing utility to graph the function S 11_1)1} x—3
to confirm your result.
4 X 2.9 | 299 | 2999 | 3.001 | 3.01 | 3.1
y -
1. lim ————
X2 —3x—4 f&)
x 39 | 399 | 3999 | 4.001 | 401 | 4.1 [x/(x + 1)] = (4/5)
6. lim
fx) x—4 x—4
2 X 39 | 399 | 3999 | 4001 | 4.01 | 4.1
2. lim ———
g fx)
x 1.9 | 1.99 | 1.999 | 2.001 | 2.01 | 2.1 7. lim Si;x
x—0
fx)
X —-0.1 | —0.01 | —0.001 | 0.001 | 0.01 | 0.1
o Vx+6— \/6
3. im————— fx)
x—0 X
x —0.1 | —0.01 = —0.001 | 0.001 | 0.01 | 0.1 8. lim Cos’;i_l
x—0
(x)
! X —0.1 | —0.01 | —0.001 | 0.001 | 0.01 | 0.1
4 fim A2 73 f&)
x——=5 x+5
x —5.1 | —5.01 | —5.001 | —4.999 | —499 | —49
fx)
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In Exercises 9-14, create a table of values for the function and
use the result to estimate the limit. Use a graphing utility to
graph the function to confirm your result.

. x—2
9 ,11—1>nlxz+x—6

11. lim

13. lim ——

x+3
x>-3x2+ Tx + 12

10. lim

3
12, lim 238
—-2x + 2

tan x

14. lim
x—0 tan 2x

In Exercises 15-24, use the graph to find the limit (if it exists).
If the limit does not exist, explain why.

15. linl 4 —x)

T T T X
1 2 3 11\
17. lim ()
4 —x, x#F2
-t

y

3,,

2t

1+ o
N AR
345
-2+
-3+

21. lim sin 7 x
x—1

16. liml (x2+ 3)

18. lim f(x)

20. lim

O

_2 —+
_4 -+
—6

22. lim sec x
x—0

S R e

1.2 Finding Limits Graphically and Numerically 55

1
23. lim cos — 24. lim tanx
x—0 X x—/2
y
2 4

~—

—_
|
T

|
B O~ T S ————

B S E T e ———
a
5

In Exercises 25 and 26, use the graph of the function f to decide
whether the value of the given quantity exists. If it does, find it.
If not, explain why.

25. (a) f(1) y
(®) lim f(x) °T
(c) f(4) 3”/?
(d) }’131 f(x) ?: ;/O/
EEE PR
26. (a) f(—2) v
() lim f(x) | 4
x——2 , 3
(¢) £(0) 2 .
(@) lim f(x) P IR /AN
© £(2) \Qﬁ e
(f) lim £(x) ‘
() f(4)

(h) lim f(x)

In Exercises 27 and 28, use the graph of f to identify the values
of ¢ for which lim f(x) exists.

xX—c
27. y 28. y
6-- 6
i 4
1 2
L — X
\ ,,_(:\ -4\, 2\ /s 6
1 ———>x
2+ 2 4
2L

In Exercises 29 and 30, sketch the graph of f. Then identify the
values of ¢ for which lim f(x) exists.

x2, x<?2

29, f(x) =98 —2x, 2<x<4
4, x =4
sin x, x<0

30. f(x) =91 —cosx, O<x<m
oS X, x>
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In Exercises 31 and 32, sketch a graph of a function f that
satisfies the given values. (There are many correct answers.)

31.

'dP' 33.

e 34.

35.

£(0) is undefined. 32.f(-2)=0

'yﬁn(l)f(.ﬂ =4 f2)=o0

f2)=6 lim f(x) =0

113; flx) =3 113% f(x) does not exist.

Modeling Data  For a long distance phone call, a hotel charges
$9.99 for the first minute and $0.79 for each additional
minute or fraction thereof. A formula for the cost is given by

C(t) =999 — 0.79[—(r — 1)]

where ¢ is the time in minutes.

(Note: [x]] = greatest integer n such that n < x. For example,
[32] =3 and[-1.6] = —2.)

(a) Use a graphing utility to graph the cost function for
0<t=6.

(b) Use the graph to complete the table and observe the
behavior of the function as 7 approaches 3.5. Use the graph
and the table to find
lim C ().

t—3.5

t | 313334 35 36|37 4

C ?

(c) Use the graph to complete the table and observe the
behavior of the function as ¢ approaches 3.

t 2125129 3 31|35 4

C ?

Does the limit of C(#) as ¢ approaches 3 exist? Explain.
Repeat Exercise 33 for

C(r) = 5.79 — 0.99[—(r — )]

The graph of f(x) = x + 1 is shown in the figure. Find 8 such
that if 0 < |x — 2| < &then | f(x) — 3| < 0.4.

36. The graph of

37.

38.

is shown in the figure. Find 8 such thatif 0 < |x — 2| < Sthen
|f(x) — 1] < 0.01.

2.0+ 101}
1.00 |-+
LT 099} -~ -
1.0+ 200 2 199
101 929
05+
} } } } x
1 2 3 4
The graph of
1
x)=2——
S =2+

is shown in the figure. Find 8 such thatif 0 < |x — 1| < Sthen
If() — 1] < 0.1.

< <
=

Sl =

O = =
1 : 1

B I

P —— ~ e I

S
}
-

[

The graph of f(x) = x> — 1 is shown in the figure. Find § such
that if 0 < |x — 2| < Sthen | f(x) — 3| < 0.2.
y
4+ !
3Ak
N

2+ y=32F--
14 y=3r--4

y=28[ ")

—t——x

A2 34

In Exercises 39—-42, find the limit L. Then find 6 > 0 such that
[f&) — L| < 0.01 whenever 0 < |x — ¢| < &.

39.

40.

41.
42,

lin% (3x +2)

X
lim (4 — %
Ti( 2)

lirr% (x2 —3)
lim (x2 + 4)

x—5

The symbol ydp' indicates an exercise in which you are instructed to use graphing technology
or a symbolic computer algebra system. The solutions of other exercises may also be facilitated
by use of appropriate technology.
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In Exercises 43—-54, find the limit L. Then use the £-6 definition

to prove that the limit is L.

43. lim (x + 2)

x—4

4. lim (2 +5)
45. lim (3x — 1)

x——4
46. lim (2x +7)
47. 1im 3

x—6

48. lim (—1)

x—2

49. lim ¥/x

x—=0

50. lim /x

x—4
51. lim_ |x — 3]
52. lin; |x — 6]
53. lim (x* + 1)

x—1

54. lim (x? + 3x)

x—=—3

55. What is the limit of f(x) = 4 as x approaches 7?
56. What is the limit of g(x) = x as x approaches 7?

ldF"' Writing In Exercises 57-60, use a graphing utility to graph the
function and estimate the limit (if it exists). What is the domain
of the function? Can you detect a possible error in determining
the domain of a function solely by analyzing the graph generated
by a graphing utility? Write a short paragraph about the impor-
tance of examining a function analytically as well as graphically.

Jx+5-3 x—3

57. f(x) = Y — 4 58. f(x) = m
lim £(x) lim £(x)
x—4 x—3
-9
59. /() = <~
lim £(x)
x—=9
-3
60. f(x) = ;2 -
lim f(x)

WRITING ABOUT CONCEPTS

61. Write a brief description of the meaning of the notation
lim f(x) = 25.
x—8

possibly at c. Why is this requirement necessary?

a function.

62. The definition of limit on page 52 requires that f is a
function defined on an open interval containing c, except

63. Identify three types of behavior associated with the
nonexistence of a limit. Illustrate each type with a graph of

1.2 Finding Limits Graphically and Numerically 57

64. (a) If £(2) = 4, can you conclude anything about the limit

of f(x) as x approaches 2? Explain your reasoning.

(b) If the limit of f(x) as x approaches 2 is 4, can you
conclude anything about £(2)? Explain your reasoning.

65.

66.

67.

'dF" 69.

Jewelry A jeweler resizes a ring so that its inner circumference
is 6 centimeters.

(a) What is the radius of the ring?

(b) If the ring’s inner circumference can vary between
5.5 centimeters and 6.5 centimeters, how can the radius vary?

(c) Use the &-8 definition of limit to describe this situation.
Identify & and 0.

Sports A sporting goods manufacturer designs a golf ball
having a volume of 2.48 cubic inches.

(a) What is the radius of the golf ball?

(b) If the ball’s volume can vary between 2.45 cubic inches and
2.51 cubic inches, how can the radius vary?

(c) Use the -6 definition of limit to describe this situation.
Identify € and 6.

Consider the function f(x) = (1 + x)'/*. Estimate the limit

lim (1 + x)'/x

x—0

by evaluating f at x-values near 0. Sketch the graph of f.

. Consider the function

=|x~l—1|—|x—l|

e -
Estimate

+1 —|x—=1
N e |
x—0 X

by evaluating f at x-values near 0. Sketch the graph of f.
Graphical Analysis The statement

means that for each € > 0 there corresponds a 6 > 0 such that
if 0 < |x — 2| < &, then

x> —4
x—2

— 4| < e.

If ¢ = 0.001, then

X2 —4
x—2

— 4| < 0.001.

Use a graphing utility to graph each side of this inequality. Use
the zoom feature to find an interval (2 — 8, 2 + &) such that the
graph of the left side is below the graph of the right side of the
inequality.
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58 Chapter 1 Limits and Their Properties

I b 70. Graphical Analysis The statement 82. (a) Given that
oox?—3x lim 3x + 1)(3x — 1)x* + 0.01 = 0.01
hng 3 x—0
x—=3 X —

prove that there exists an open interval (a, b) containing 0
means that for each ¢ > 0 there corresponds a § > 0 such that such that (3x + 1)(3x — 1)x2 + 0.01 > 0 for all x # 0 in
if 0 < |x — 3| < &, then

(a, b).
¥ —3x Al <. (b) Given that 11_)r12 g(x) = L, where L > 0, prove that there
x =3 exists an open interval (a,b) containing ¢ such that
If & = 0.001, then g(x) > 0 forall x # cin (a, b).
2= 3y {dp' 83. Programming Use the programming capabilities of a graphing
x—3 3| < 0.001. utility to write a program for approximating }1(1_1)11( f).

Assume the program will be applied only to functions whose
limits exist as x approaches c. Let y, = f(x) and generate two
lists whose entries form the ordered pairs

Use a graphing utility to graph each side of this inequality. Use
the zoom feature to find an interval (3 — 8,3 + 8) such that the
graph of the left side is below the graph of the right side of the

inequality. (c = [0.1]", f(c £ [0.1]")
True or False? In Exercises 71-74, determine whether the forn =0, 1, 2, 3, and 4.
statement is true or false. If it is false, explain why or give an & 84, Programming  Use the program you created in Exercise 83 to
example that shows it is false. approximate the limit
71. If fis undefined at x = ¢, then the limit of f(x) as x approaches i x2—x—12
im————

¢ does not exist. 4 x—4

72. If the limit of f(x) as x approaches c is 0, then there must exist
a number k such that f(k) < 0.001.
73. If f(¢) = L, then lim f(x) = L. 85. Inscribe a rectangle of base b and height & and an isosceles
e triangle of base b in a circle of radius one as shown. For
what value of /& do the rectangle and triangle have the same

74. If lim f(x) = L, then f(c) = L.

area?
In Exercises 75 and 76, consider the function f(x) = /x.
75. Is lim /x = 0.5 a true statement? Explain.
x—0.25
76. Is lim+/x = 0 a true statement? Explain.
x—0
h

nnx

ldP' 77. Use a graphing utility to evaluate the limit lim & for several

x—0 X

values of n. What do you notice?

. - R ¢
ldP' 78. Use a graphing utility to evaluate the limit 1111(1) ar;nx for several
x—
values of n. What do you notice?
86. A right circular cone has base of radius 1 and height 3. A
cube is inscribed in the cone so that one face of the cube is
contained in the base of the cone. What is the side-length of

79. Prove that if the limit of f(x) as x — ¢ exists, then the limit must
be unique. [Hint: Let

. X N
limf(x) =L, and limf(x) =L, the cube?

- e These problems were composed by the Committee on the Putnam Prize
and prove that Ll = L2,] Competition. © The Mathematical Association of America. All rights reserved.

80. Consider the line f(x) = mx + b, where m # 0. Use the -8
definition of limit to prove that lim f(x) = mc + b.

81. Prove that lim f(x) = L is equivalent to lim [ f(x) — L] = 0.
x—c x—c
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@ Evaluating Limits Analytically

Y fleoy=x
¢ + € R .
£=0 1
flOo=cr<-------- : E
€=9 I I

b
c=6 ¢ c+9
Figure 1.16

When you encounter new
notations or symbols in mathematics,
be sure you know how the notations are
read. For instance, the limit in Example
1(c) is read as “the limit of x? as x
approaches 2 is 4.”

Evaluate a limit using properties of limits.

Develop and use a strategy for finding limits.

Evaluate a limit using dividing out and rationalizing techniques.
Evaluate a limit using the Squeeze Theorem.

Properties of Limits

In Section 1.2, you learned that the limit of f(x) as x approaches ¢ does not depend on
the value of fat x = c. It may happen, however, that the limit is precisely f(c). In such
cases, the limit can be evaluated by direct substitution. That is,

lim f(x) = f(c) Substitute ¢ for x.
X—c

Such well-behaved functions are continuous at ¢. You will examine this concept more
closely in Section 1.4.

THEOREM 1.1 SOME BASIC LIMITS

Let b and ¢ be real numbers and let n be a positive integer.

1. imb = b 2. limx = ¢ 3. limx" = ¢
x—c¢ x—c¢ x—=c

To prove Property 2 of Theorem 1.1, you need to show that for each & > 0
there exists a 8 > 0 such that |x — ¢| < & whenever 0 < |x — ¢| < 8. To do this,
choose 6 = &. The second inequality then implies the first, as shown in Figure 1.16.
This completes the proof. (Proofs of the other properties of limits in this section are
listed in Appendix A or are discussed in the exercises.) |

EXAMPLE [l Evaluating Basic Limits

a. lim3 =3 b. lim x = —4 c. limx?=22=4 |

x—2 x——4 x—2

THEOREM 1.2 PROPERTIES OF LIMITS

Let b and ¢ be real numbers, let n be a positive integer, and let fand g be
functions with the following limits.

limf(x) =L and limg(x) =K
x—c¢ x—c
1. Scalar multiple:  lim [b f(x)] = bL
X—cC

2. Sum or difference: lim [ f(x) + g(x)] =L = K
X—C

3. Product: lim [ f(x)g(x)] = LK
. . fl) L .
4. Quotient: lim~——< = —, provided K # 0
Q x—c g(x) K p

5. Power: lim [ f(x)]* = L»
X—cC

Copyright 2010 Cengage Learning. All Rights Reserved.

May not be copied, scanned, or duplicated, in whole or in part.



60 Chapter 1  Limits and Their Properties

EXAMPLE [E3 The Limit of a Polynomial

lim (4x% + 3) = lim 4x2 + lim 3 Property 2
x—2 x—2 x—2
= 4(lim x2> + lim 3 Property 1
x—2 x—2
=422 + 3 Example 1
=19 Simplify. [ |

In Example 2, note that the limit (as x — 2) of the polynomial function
p(x) = 4x% + 3 is simply the value of p at x = 2.

lirr% plx) =p2) =4(2>) +3 =19

This direct substitution property is valid for all polynomial and rational functions with
nonzero denominators.

THEOREM 1.3 LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONS

If p is a polynomial function and c is a real number, then
lim p(x) = p(c).
Xx—c

If r is a rational function given by r(x) = p(x)/g(x) and ¢ is a real number
such that g(c) # 0, then

lxl_r)rz r(x) = r(c) = %

EXAMPLE [EJ The Limit of a Rational Function

2
Find the limit: lim ¥~ X+ 2
—l x+1
Solution  Because the denominator is not 0 when x = 1, you can apply Theorem 1.3
to obtain
X +x+2 12P+14+2 4
lim = =— =07, -
=1 x+ 1 1+1 2

Polynomial functions and rational functions are two of the three basic types of
algebraic functions. The following theorem deals with the limit of the third type of
algebraic function—one that involves a radical. See Appendix A for a proof of this

theorem.
THE SQUARE ROOT SYMBOL

The first use of a symbol to denote the square
root can be traced to the sixteenth century. THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL
Mathematicians first used the symbol </,
which had only two strokes. This symbol was
chosen because it resembled a lowercase r,
to stand for the Latin word radix, meaning lim ,\1/;6 — \/E
root. x—c

Let n be a positive integer. The following limit is valid for all ¢ if # is odd,
and is valid for ¢ > 0 if n is even.

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



1.3  Evaluating Limits Analytically 61

The following theorem greatly expands your ability to evaluate limits because it
shows how to analyze the limit of a composite function. See Appendix A for a proof
of this theorem.

THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION

If fand g are functions such that lim g(x) = L and lirri f(x) = f(L), then
X—cC X—>

tim (509 = f(1im ¢(0)) = 1(0).

X—cC

O EXAMPLE [E§ The Limit of a Composite Function

a. Because
lim(x2+4)=02+4=4 and nn}lf:ﬂ:z
xX—

x—0
it follows that

m% I 4= J4=2,
X—>

b. Because
lim (2x2 — 10) =2(32) — 10 =8 and lim3¥x=¥8 =2
x—3 x—8

it follows that

lin}) Y22 —10=38 =2. =
X3

You have seen that the limits of many algebraic functions can be evaluated by
direct substitution. The six basic trigonometric functions also exhibit this desirable
quality, as shown in the next theorem (presented without proof).

THEOREM 1.6 LIMITS OF TRIGONOMETRIC FUNCTIONS

Let ¢ be a real number in the domain of the given trigonometric function.

1. lim sinx = sin ¢ 2. lim cos x = cos ¢
X—C X—C

3. limtanx = tan ¢ 4. lim cotx = cotc
X—C X—C

5. lim secx = secc¢ 6. lim cscx = cscc¢
X—cC X—C

EXAMPLE [EJ Limits of Trigonometric Functions

a. lim tanx = tan(0) = 0

x—0

b. lim (x cos x) = (lim x)(lim cos x) = qcos(m) = —7
X—>1T X—>1T X—>TT

¢. lim sin?x = lim (sinx)2 = 02 =0 ]
x—0 x—0

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



62 Chapter 1  Limits and Their Properties

g(x)=x2+x+l

t } } x

-2 -1 1

fand g agree at all but one point.
Figure 1.17

When applying this
strategy for finding a limit, remember
that some functions do not have a limit
(as x approaches c). For instance, the
following limit does not exist.

X+ 1
lim
=1 x — 1

A Strategy for Finding Limits

On the previous three pages, you studied several types of functions whose limits can
be evaluated by direct substitution. This knowledge, together with the following
theorem, can be used to develop a strategy for finding limits. A proof of this theorem
is given in Appendix A.

THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINT

Let ¢ be a real number and let f(x) = g(x) for all x # ¢ in an open interval
containing c. If the limit of g(x) as x approaches c exists, then the limit of f(x)
also exists and

lim f(x) = lim g(x).

EXAMPLE [} Finding the Limit of a Function

. T i |
Find the limit: lim .
x—=1 X — 1

Solution Let f(x) = (x* — 1)/(x — 1). By factoring and dividing out like factors,
you can rewrite f as

f(x):M(xz+x+l)=x2+x+l=g(x), x# 1.

1)

So, for all x-values other than x = 1, the functions f and g agree, as shown in Figure

1.17. Because lirr{ g(x) exists, you can apply Theorem 1.7 to conclude that f and g
x—

have the same limit at x = 1.

3 2
ox0—1 =D+ x+1
lim = llm( ) ) Factor.
=1 x — 1 xo1 x—1
lim b + x + 1) Divid like f:
= 1vide out like factors.
x—1 x—1 c
= lim@x>+x + 1) Apply Theorem 1.7.
x—1
=12+1+1 Use direct substitution.
=3 Simplify. [ ]

A STRATEGY FOR FINDING LIMITS

1. Learn to recognize which limits can be evaluated by direct substitution.
(These limits are listed in Theorems 1.1 through 1.6.)

2. If the limit of f(x) as x approaches ¢ cannot be evaluated by direct substitu-
tion, try to find a function g that agrees with f for all x other than x = c.
[Choose g such that the limit of g(x) can be evaluated by direct substitution. ]

3. Apply Theorem 1.7 to conclude analytically that
lim f(x) = lim g(x) = g(c).
X—c X—c

4. Use a graph or table to reinforce your conclusion.
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1.3  Evaluating Limits Analytically 63

Dividing Out and Rationalizing Techniques

Two techniques for finding limits analytically are shown in Examples 7 and 8. The
dividing out technique involves dividing out common factors, and the rationalizing
technique involves rationalizing the numerator of a fractional expression.

" JexampLe [ ividing Out Technique

fis undefined when x = —3.
Figure 1.18

In the solution of Example 7,
be sure you see the usefulness of the
Factor Theorem of Algebra. This
theorem states that if ¢ is a zero of a
polynomial function, (x — ¢) is a factor
of the polynomial. So, if you apply
direct substitution to a rational function
and obtain

you can conclude that (x — ¢) must be a
common factor of both p(x) and ¢(x).

-5+¢
B —1-3+6
/ Glitch near |
=7 (=3,=9)
-5-¢
Incorrect graph of f
Figure 1.19

x2+x—6

Find the limit: lim
x+3

x——3
Solution  Although you are taking the limit of a rational function, you cannot apply
Theorem 1.3 because the limit of the denominator is 0.

im (x> + x — 6) =
/ x1—>H£13(x x 6) 0
x2+x—6

Iim —— Direct substitution fails.
x——3 x + 3

lim(x +3)=0

x—>-3

Because the limit of the numerator is also 0, the numerator and denominator have
a common factor of (x + 3). So, for all x # —3, you can divide out this factor
to obtain

X2+ x—6  (x+3)x —2)

= — — _ 2 _ -3
fl) = ST -2 =g, 2
Using Theorem 1.7, it follows that
x2+x—6 .
m s = XI_I)II}?)(X 2) Apply Theorem 1.7.
= —5. Use direct substitution.

This result is shown graphically in Figure 1.18. Note that the graph of the function f
coincides with the graph of the function g(x) = x — 2, except that the graph of f has
a gap at the point (—3, —3). ]

In Example 7, direct substitution produced the meaningless fractional form 0/0.
An expression such as 0/0 is called an indeterminate form because you cannot (from
the form alone) determine the limit. When you try to evaluate a limit and encounter
this form, remember that you must rewrite the fraction so that the new denominator
does not have 0 as its limit. One way to do this is to divide out like factors, as shown
in Example 7. A second way is to rationalize the numerator, as shown in Example 8.

Because the graphs of
2 —

flx) = % and  glx) =x—2

differ only at the point (—3, —5), a standard graphing utility setting may
not distinguish clearly between these graphs. However, because of the pixel
configuration and rounding error of a graphing utility, it may be possible to find
screen settings that distinguish between the graphs. Specifically, by repeatedly
zooming in near the point (—3, —5) on the graph of £, your graphing utility may
show glitches or irregularities that do not exist on the actual graph. (See Figure
1.19.) By changing the screen settings on your graphing utility you may obtain
the correct graph of f.
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64 Chapter 1 Limits and Their Properties

EXAMPLE |EJ Rationalizing Technique
Jx+1-1

Find the limit: lim
x—0 X

Solution By direct substitution, you obtain the indeterminate form 0/0.

lim(Vx+1-1)=0

x—0
Jx+1-—-1 ) o
Iim—— Direct substitution fails.
x—0 X
limx =20
x—0

In this case, you can rewrite the fraction by rationalizing the numerator.

\/x+1—1_<\/x+1—1><\/x+1+1>

X Jx+1+1

x+1) -1

Jx+1+1)
R _ X

HS/x+1+1)
fg=YEL=2 1

1 = —, #0
\1 ) Jx+1+1 *
)\

Now, using Theorem 1.7, you can evaluate the limit as shown.

—i i ! lim x+1_1=lim !
=0 X =0 Jx+1+1
1
-1+ 1+ 1
1
. iy 2
The limit of f(x) as x approaches 0 is 5.
Figure 1.20 A table or a graph can reinforce your conclusion that the limit is % (See Figure 1.20.)
x approaches 0 from the left. > < x approaches 0 from the right.
x -025, —0.1 | =0.01 | —0.001 | O | 0.001 | 0.01 0.1 0.25

f(x) 105359  0.5132 | 0.5013 | 0.5001 | ? | 0.4999 | 0.4988 | 0.4881 | 0.4721

£ (x) approaches 0.5. > < f(x) approaches 0.5.

(3 The rationalizing technique for evaluating limits is based on multiplication by a
convenient form of 1. In Example 8, the convenient form is
_Vxt+ 141 -
Jr+1+1

1
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The Squeeze Theorem

h(x) < f(x) < g(x) The next theorem concerns the limit of a function that is squeezed between two other
y functions, each of which has the same limit at a given x-value, as shown in Figure
1.21. (The proof of this theorem is given in Appendix A.)
¢ flies in here.
g THEOREM 1.8 THE SQUEEZE THEOREM
f
‘ ! If h(x) < f(x) < g(x) for all x in an open interval containing c, except possibly
! ) at c itself, and if
h 1 lim h(x) = L = lim g(x)
: xX—c X—cC
. X
¢ then lim f(x) exists and is equal to L.
xX—c
The Squeeze Theorem
Figure 1.21
You can see the usefulness of the Squeeze Theorem (also called the Sandwich
Theorem or the Pinching Theorem) in the proof of Theorem 1.9.
THEOREM 1.9 TWO SPECIAL TRIGONOMETRIC LIMITS
LoGim S0 = g i LT
x—0 X x—0 X
" To avoid the confusion of two different uses of x, the proof is presented using
(cos 6, sin 6) the variable 6, where 6 is an acute positive angle measured in radians.
(1, tan 6) Figure 1.22 shows a circular sector that is squeezed between two triangles.
0 1,0
b .9 x tan 6
1
1 1
Area of triangle = Area of sector = Area of triangle
tan 0 - 0 - sin 0
A circular sector is used to prove Theorem 1.9. 2 - 2 - 2
Figure 1.22
Multiplying each expression by 2/sin 6 produces
! > _0 =1

and taking reciprocals and reversing the inequalities yields

sin 6 <
0

Because cos 0 = cos(—0) and (sin 0)/0 = [sin(—60)]/(—6), you can conclude that

this inequality is valid for all nonzero 6 in the open interval (— /2, 7/2). Finally,
because (lgln}J cos 8 =1 and (lain% 1 =1, you can apply the Squeeze Theorem to
— —

cos O < 1.

conclude that élrr(l) (sin )/0 = 1. The proof of the second limit is left as an exercise (see
—
Exercise 123). u
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fo) = B
_ 4
2 z
-2

The limit of f(x) as x approaches 0 is 1.

Figure 1.23

)= Slrjr 4x

SIE
SIE]

i

-2

The limit of g(x) as x approaches 0 is 4.

Figure 1.24

EXAMPLE ﬂ A Limit Involving a Trigonometric Function

. . . .. tanx
Find the limit: lim .
x—0 X

Solution Direct substitution yields the indeterminate form 0/0. To solve this
problem, you can write tan x as (sin x)/(cos x) and obtain

. tanx . sin x 1
lim = lim .
x—0 X x—0 X COS x

Now, because

sin x

lim =1 and lim ! =1
x—0 X x—0 COS X

you can obtain

. tanx .osinx\/.. 1
lim = (lim lim
x—0 X x—0 X x—0 COS X

|
—_

(See Figure 1.23.)

EXAMPLE m A Limit Involving a Trigonometric Function

. . . .. sin4x
Find the limit: lim .
x—0 X

Solution Direct substitution yields the indeterminate form 0/0. To solve this
problem, you can rewrite the limit as
iy S04 4< . sin 4x>.

x—0 X

lim

=0  4x

Multiply and divide by 4.

Now, by letting y = 4x and observing that x — 0 if and only if y — 0, you can write

. sindx . sindx
lim =4{lim ——
x—0 X x—0 4x
= 4<1im Sy )
y—0 y
= 4(1) Apply Theorem 1.9(1).
= 4.
(See Figure 1.24.) [ |

—m Use a graphing utility to confirm the limits in the examples and in
the exercise set. For instance, Figures 1.23 and 1.24 show the graphs of

in 4
and glx) = SIAx
X x

() = 22

flx

Note that the first graph appears to contain the point (0, 1) and the second graph
appears to contain the point (0, 4), which lends support to the conclusions obtained
in Examples 9 and 10.
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IdP' In Exercises 1-4, use a graphing utility to graph the function

and visually estimate the limits.

1. h(x) = —x% + 4x

(a) lim h(x)
(b) 11I£1 h(x)
3. f(x) = xcos x
(@) li_I)T(l)f (x)
(b) XET/SJ’" (x)

In Exercises 5-22, find the limit.

5. lim x?

x—2

7. lim 2x —1)
9. hm (x2 + 3x)

x——3

11. lim (2x%2 + 4x + 1)

x——3

13. lim Vx+1
15. lim (x + 3)2

x——4

17. lim 1
x—2 X

B =g

3x
21. lim —F——
=7 Jx + 2

2.

12(/x - 3)
x—9

@) lim g(x)
() 113% g(x)

glx) =

4. f(r) = t|t — 4]

(@ lim £(1)
(b) lim /(1)

6. lim x*
x—>—2
8. lir1_12 (Bx + 2)
10. lim (—x2 + 1)
x—1
12. lim (3x3 — 2x2 + 4)

18.

20.

22,

In Exercises 23-26, find the limits.

23. f(x) =5 —x, glx) =
(b) )151341& g(x)
24. _f(x) =x+17, g(x) =
(b) 11—13 g(x)

(@) lim f(x)

@ lim f(x

25. f(x) =4 —x2, glx) = Vx + 1

(@) lim f(x)

(b) lim g(x)

x—1

- lim Yy + 4
. lim (2x — 1)3

x—0

xlirzl% x+ 2
lim 2x —3
x—1 x + 5

Lo Vx+2
lim

=2 x—4

(c) lim g(f(x))
(© lim g(f(x))

(c) lim g(f(x))

26. f(x) =2x> —=3x+ 1, glx) =¥x + 6

(@ lim f(x)

(b) lim g(x)

() lim g(f(x)

In Exercises 27-36, find the limit of the trigonometric function.

27. lim sinx
x—m/2

29. lim cos ?

x—1

31. lim sec 2x
x—0

33. lim sinx
x—=57/6

. X
35. 11_)n§ tan( n )

28.

30.

32.
34.

36.

lim tan x

X—=TT

.. X
lim sin —~
x—2 2
lim cos 3x
X—TT

lim cosx
x—=5m/3

. X
lim sec| —
x—7 6

1.3 Evaluating Limits Analytically

@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

67

In Exercises 37-40, use the information to evaluate the limits.

37. limf(x) = 3

hzn gly) =2

(@) lim [Sg(x)]

(®) )lcl_rfcl [f(x) + g)]
(© lim [f(x)g(x)]

i 1)
@0

39. lim f(x) = 4
@ tim (70T
(b) lim Vf(x)
(©) lim [3(x)]
(@ lim [F(0)]"

38.

40.

xX—=c

lim f(x) = 3
3

lim g(x) =

xX—c

(a) lim [4f(x)]

xX—c

(b) lim [f(x) + g(x)]

x—c

(© lim [/(x)g(x)]
@ tim £13

lim f(x) = 27

(@) lim ¥f(x)

fx)
(b) lim =g

() lim [F(0]
(@) lim [f()]*?

In Exercises 41-44, use the graph to determine the limit visually
(if it exists). Write a simpler function that agrees with the given

function at all but one point.

2

XT — X

41. g(x) = P

-/
/z

@ lim g(x)
(b) lim glx)

x—x

43. gl ="

-2 -1 1
(@) lim g(x)
(b) lim glx)
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X

42.

4.

—x2% + 3x
x

h(x) =

y

\:*

2+

(a) lin% h(x)
(b) lirr(l) h(x)

) =57
2+

1
SSRE
N

@) lim f ()
(b) lim f ()

f —t >
—11*125\

X



68 Chapter 1  Limits and Their Properties

In Exercises 45-48, find the limit of the function (if it exists).
Write a simpler function that agrees with the given function at
all but one point. Use a graphing utility to confirm your result.

2 2 _ _
45, 1im ! 46. lim 2 —*¥—3
—-1x+ 1 x——1 x+ 1
3 _ 3
47. lim = 48. lim *
x—=2 X — x—>—1 X 1

In Exercises 49-64, find the limit (if it exists).

. . 3x
49. )1(1_I}I(l) X2 —x S0. )I{I_I)I(l) x2 + 2x
.oox—4 . 3 —x
SLlim 26 52. lim >y
. x*+x—6 . X —=5x+ 4
33 Im —e AL P -
55, lim YX 73 =3 56, Jim YX 7172
x—4 X — 4 x—3 x—3
L Jx+5-5 2+ — 2
57. lim———— 58. lim
x—0 X x—0 X
qo 1 VB (/3) [+ 4] - (1/4)
x—0 X x—0 X
_ 2 _ 2
61. Jim 20 A0 — v 62. fim AV — X
Ar—0 Ax Av—0 Ax
63. lim x4+ Ax)?—2x +Ax) + 1 —(x2—2x + 1)
A0 Ax
e+ Ax)P =3
64. Aliglo Ax

In Exercises 65-76, determine the limit of the trigonometric
function (if it exists).

65. lim 20X 66. lim 21— 05%)
x—0 5X x—0
67. Tim S0 x(1 ; oS X) 68. Tim ftan 6
x>0 X 60 0
2 2
69. Tim 22X 70. Tim 22X
x—0 X =0 X
. (1 — cos h)? .
71. ,lg(l) 7 72. dl)ﬂd)sec 10)
73. lim S5X 74, lim — 40X
x—m/2 Cot X x—m/4 SINX — COS X
75. Jim S0
—0 2t

. sin 2x R . (2sin 2x 3x
T n 3 [H"”' Find lﬁ( 2 )(3 sin 3x>']

ldP' Graphical, Numerical, and Analytic Analysis In Exercises
77-84, use a graphing utility to graph the function and estimate
the limit. Use a table to reinforce your conclusion. Then find the
limit by analytic methods.

N

76.

. 4= Ux
lim

x—l6 x — 16

77. lim

x—0

78.

+ _ 5 _
79, fjm B/@ 01 =(1/2) gy 20— 32
x—0 X =2 X — 2
81. lim 51 82. lim SX —1
1—0 t x—0 2x
sin x2 . sinx
B tim -l
In Exercises 8588, find lim £& 20 = /()
Ax—0 Ax

85. f(x) =3x —2

86. f(x) = Vx
87. () = i -

88. f(x) = x> — 4x

In Exercises 89 and 90, use the Squeeze Theorem to find

lim f(x).

xX—cC

89.c=0
4—x2<flx) <4+
90. c =a

b—|x—a|l <flx) <b+|x—aq

ldP' In Exercises 91-96, use a graphing utility to graph the given
function and the equations y = |x| and y = — |x| in the same
viewing window. Using the graphs to observe the Squeeze
Theorem visually, find ’lclir(l) f&).

91. f(x) = xcos x
93. f(x) = |x| sin x

92. f(x) = |xsinx|
94. f(x) = |x| cos x

1
95. f(x) = xsin

WRITING ABOUT CONCEPTS

97. In the context of finding limits, discuss what is meant by
two functions that agree at all but one point.

96. h(x) = x cos 1
x

98. Give an example of two functions that agree at all but one

point.
99.
100.

What is meant by an indeterminate form?

In your own words, explain the Squeeze Theorem.

ldP' 101. Writing Use a graphing utility to graph

and h(x) = smx

flx) = x, glx) = sinx,
in the same viewing window. Compare the magnitudes of f(x)
and g(x) when x is close to 0. Use the comparison to write a
short paragraph explaining why

lim A(x) = 1.

x—0
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A 102

. Writing Use a graphing utility to graph

a2
fx) = x, g(x) = sin®x, and h(x) = SH; 2l

in the same viewing window. Compare the magnitudes of f(x)
and g(x) when x is close to 0. Use the comparison to write a
short paragraph explaining why lim A(x) = 0.

x—0

Free-Falling Object In Exercises 103 and 104, use the position
function s(f) = —16¢2 + 500, which gives the height (in feet) of
an object that has fallen for # seconds from a height of 500 feet.
The velocity at time ¢ = a seconds is given by

t—a

103.

104.

s(a) = s(®)
m—.

a—t

If a construction worker drops a wrench from a height of 500
feet, how fast will the wrench be falling after 2 seconds?

If a construction worker drops a wrench from a height of 500
feet, when will the wrench hit the ground? At what velocity
will the wrench impact the ground?

Free-Falling Object In Exercises 105 and 106, use the position
function s(f) = —4.9¢2 + 200, which gives the height (in meters)
of an object that has fallen from a height of 200 meters. The
velocity at time £ = a seconds is given by

lim
t—a

105

106.

107.

108.

109.
110.

111.
112.

113.

114.

115.

s(a) — s@®)

a-—t
. Find the velocity of the object when ¢ = 3.
At what velocity will the object impact the ground?

Find two functions fand g such that lirré f(x) and liII(l) g(x) do
Reed Red

not exist, but linrl) [f(x) + g(x)] does exist.

Prove that if lim f(x) exists and lim [ f(x) + g(x)] does not

exist, then lim g(x) does not exist.
X—cC

Prove Property 1 of Theorem 1.1.

Prove Property 3 of Theorem 1.1. (You may use Property 3 of
Theorem 1.2.)

Prove Property 1 of Theorem 1.2.
Prove that if 111)1}f(x) = 0, then lim | fx)] = 0.
Prove that if 1{13} flx) = 0and | g(x)| < M for a fixed number
M and all x # ¢, then 1133 flx)glx) = 0.
(a) Prove that if lim |f(x)| = 0, then lim_f(x) =0.
(Note: This 1¥sﬁtile converse of ExérZ;se 112.)
(b) Prove that if lim f(x) = L, then lim | Fx)] = |L].
e F@I = 10 = 176 — 21

[Hint: Use the inequality

Think About It Find a function fto show that the converse
of Exercise 114(b) is not true. [Hint: Find a function f such
that lim | f(x)| = |Z| but lim f(x) does not exist.]

X—=cC X—C

116. Let f(x) = {

1.3  Evaluating Limits Analytically 69

3, x#2

5 =2 Find ll_rgf(x)

True or False?

In Exercises 117-122, determine whether the

statement is true or false. If it is false, explain why or give an
example that shows it is false.

117.

119.

120.
121.

122.

123.

124.

de’ 125.

118. lim 225 =

x—>m X

If f(x) = g(x) for all real numbers other than x = 0, and
lin(])f(x) = L, then lin(l) glx) =L

If lim f(x) = L, then f(c) = L.

xX—cC
3, x=2

li = 3, wh =

lim £(x) = 3, where f{x) {o, x>2
If f(x) < g(x) for all x # a, then

lim f(x) < lim g(x).

Prove the second part of Theorem 1.9.

1_
COSX:0

lim
x—0 X
0, if x is rational
Let /) = {1, if x is irrational
and
(x) = 0, if x1is rational

§ x, ifxis irrational.
Find (if possible) lin(l) f(x) and liII(l) g(x).

X X—>

. -1

Graphical Reasoning Consider f(x) = m%.

(a) Find the domain of f.

(b) Use a graphing utility to graph f. Is the domain of f
obvious from the graph? If not, explain.

(c) Use the graph of fto approximate lin(]) fx).

(d) Confirm your answer to part (c) analytically.

126. Approximation

127.

1 —
(a) Find lim ——o.
x—=0 X

(b) Use your answer to part (a) to derive the approximation
cosx = 1 — 3x2 for x near 0.
(c) Use your answer to part (b) to approximate cos(0.1).

(d) Use a calculator to approximate cos(0.1) to four decimal
places. Compare the result with part (c).

Think About It 'When using a graphing utility to generate a

table to approximate lirr(l) [(sin x)/x], a student concluded that

the limit was 0.01745 rather than 1. Determine the probable
cause of the error.
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70 Chapter 1  Limits and Their Properties

@ Continuity and One-Sided Limits

Determine continuity at a point and continuity on an open interval.
Determine one-sided limits and continuity on a closed interval.
Use properties of continuity.

Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval

Informally, you might say that a
function is continuous on an open
interval if its graph can be drawn
with a pencil without lifting the
pencil from the paper. Use a graph-
ing utility to graph each function
on the given interval. From the
graphs, which functions would you
say are continuous on the interval?
Do you think you can trust the
results you obtained graphically?
Explain your reasoning.

Function Interval
a y=x>+1 (—3,3)
b. y= ! (—3,3)
R ’
sin x
cy=- (=, m
x> —4
= -3,3
M) (=3.3)

In mathematics, the term continuous has much the same meaning as it has in

EXPLORATION everyday usage. Informally, to say that a function fis continuous at x = ¢ means that

there is no interruption in the graph of f at ¢. That is, its graph is unbroken at ¢ and
there are no holes, jumps, or gaps. Figure 1.25 identifies three values of x at which the
graph of fis not continuous. At all other points in the interval (a, b), the graph of fis
uninterrupted and continuous.

flo)is

not defined. does not exist.

o\_//

C limf
| lim /() % /()

P

R —
a ¢ b

[ 1
\ T
a

T
c b a b
Three conditions exist for which the graph of fis not continuous at x = c.
Figure 1.25

In Figure 1.25, it appears that continuity at x = ¢ can be destroyed by any one of
the following conditions.

1. The function is not defined at x = c.

FOR FURTHER INFORMATION For
more information on the concept of
continuity, see the article “Leibniz and
the Spell of the Continuous” by Hardy
Grant in The College Mathematics
Journal. To view this article, go to the
website www.matharticles.com.

2. The limit of f(x) does not exist at x = c.
3. The limit of f(x) exists at x = ¢, but it is not equal to f(c).

If none of the three conditions above is true, the function fis called continuous at c,
as indicated in the following important definition.

DEFINITION OF CONTINUITY

Continuity at a Point: A function fis continuous at c if the following three
conditions are met.

1. f(c) is defined.

2. li_)mf(x) exists.
3. lim /() = /16)

Continuity on an Open Interval: A function is continuous on an open
interval (a, b) if it is continuous at each point in the interval. A function that is
continuous on the entire real line (— oo, o) is everywhere continuous.
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-
a ¢ b

(a) Removable discontinuity

(¢) Removable discontinuity

Figure 1.26

Some people may refer
to the function in Example 1(a) as
“discontinuous.” We have found that
this terminology can be confusing.
Rather than saying that the function is
discontinuous, we prefer to say that it
has a discontinuity at x = 0.

1.4  Continuity and One-Sided Limits 1

Consider an open interval / that contains a real number c. If a function fis defined
on [ (except possibly at ¢), and f is not continuous at c, then f is said to have a
discontinuity at c. Discontinuities fall into two categories: removable and
nonremovable. A discontinuity at ¢ is called removable if f can be made continuous
by appropriately defining (or redefining) f(c). For instance, the functions shown in
Figures 1.26(a) and (c) have removable discontinuities at ¢ and the function shown in
Figure 1.26(b) has a nonremovable discontinuity at c.

EXAMPLE [l Continuity of a Function
Discuss the continuity of each function.

2 -1 x+1, x<0
c. hx) =1,
x*>+1, x>0

a f) =+ b glo) =

d. y = sin
X x—1 Y .

Solution

a. The domain of f1is all nonzero real numbers. From Theorem 1.3, you can conclude
that fis continuous at every x-value in its domain. At x = 0, fhas a nonremovable
discontinuity, as shown in Figure 1.27(a). In other words, there is no way to define
£(0) so as to make the function continuous at x = 0.

b. The domain of g is all real numbers except x = 1. From Theorem 1.3, you can
conclude that g is continuous at every x-value in its domain. At x = 1, the function
has a removable discontinuity, as shown in Figure 1.27(b). If g(1) is defined as 2,
the “newly defined” function is continuous for all real numbers.

¢. The domain of 4 is all real numbers. The function 4 is continuous on (— oo, 0) and
(0, o0), and, because lirr(l) h(x) = 1, h is continuous on the entire real line, as shown
X—>
in Figure 1.27(c).
d. The domain of y is all real numbers. From Theorem 1.6, you can conclude that the
function is continuous on its entire domain, (— oo, 00), as shown in Figure 1.27(d).

-1 1 2 3

N

(a) Nonremovable discontinuity at x = 0

=
4t
—
= =
\Y%
(=]
oy -
w
N

(¢) Continuous on entire real line

Figure 1.27

(d) Continuous on entire real line
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Chapter 1

x approaches
¢ from the right.

Limits and Their Properties

One-Sided Limits and Continuity on a Closed Interval

To understand continuity on a closed interval, you first need to look at a different type
of limit called a one-sided limit. For example, the limit from the right (or right-hand
limit) means that x approaches ¢ from values greater than ¢ [see Figure 1.28(a)]. This
limit is denoted as

c<x xl_i)Izl+ f(x) =L. Limit from the right
(a) Limit from right
Similarly, the limit from the left (or left-hand limit) means that x approaches ¢ from
¥ values less than ¢ [see Figure 1.28(b)]. This limit is denoted as
x approaches . _ e "
¢ from the left. xl_lfflf f(x) ILs Limit from the left
x One-sided limits are useful in taking limits of functions involving radicals. For
c>x instance, if 7 is an even integer,
(b) Limit from left
Figure 1.28 lim %x = 0.
x—0"
X EXAMPLE |3 A One-Sided Limit
3T Find the limit of f(x) = /4 — x? as x approaches —2 from the right.
fe)=V4-x* .
Solution  As shown in Figure 1.29, the limit as x approaches —2 from the right is
lim 4 —x*=0. ]
1+ x—>—2"
i | | | One-sided limits can be used to investigate the behavior of step functions. One
-2 -l 1 2 common type of step function is the greatest integer function [x], defined by

[x] = greatest integer n such that n < x. Greatest integer function

The limit of f(x) as x approaches —2 from

the right is 0. For instance, [2.5] = 2 and [-2.5] = —3.
Figure 1.29
EXAMPLE [EJ] The Greatest Integer Function
_ Find the limit of the greatest integer function f(x) = [x]] as x approaches 0 from the
1 =1 left and from the right.
2T — Solution  As shown in Figure 1.30, the limit as x approaches 0 from the left is given
by
1+ &——0
lim [ = —1
i S e =
! ! : 3 and the limit as x approaches 0 from the right is given by
[ lim [ = 0.
x—0"
&——-0 -2+

Greatest integer function

Figure 1.30

The greatest integer function has a discontinuity at zero because the left and right
limits at zero are different. By similar reasoning, you can see that the greatest integer
function has a discontinuity at any integer n. [ |
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1.4  Continuity and One-Sided Limits 73

When the limit from the left is not equal to the limit from the right, the (two-
sided) limit does not exist. The next theorem makes this more explicit. The proof of
this theorem follows directly from the definition of a one-sided limit.

THEOREM 1.10 THE EXISTENCE OF A LIMIT

Let fbe a function and let ¢ and L be real numbers. The limit of f(x) as x
approaches c is L if and only if

lim f(x) =L and lim f(x) = L.
x—c~ x—ct

The concept of a one-sided limit allows you to extend the definition of continuity
to closed intervals. Basically, a function is continuous on a closed interval if it is
continuous in the interior of the interval and exhibits one-sided continuity at the
endpoints. This is stated formally as follows.

DEFINITION OF CONTINUITY ON A CLOSED INTERVAL

A function fis continuous on the closed interval [a, b] if it is continuous on
the open interval (a, b) and

[ J— lim f(x) = f(@) and  lim f(x) = f(b).

a b x—a* x—b~

Continuous function on a closed interval The function fis continuous from the right at ¢ and continuous from the
Figure 1.31 left at b (see Figure 1.31).

Similar definitions can be made to cover continuity on intervals of the form (a, b]
and [a, b) that are neither open nor closed, or on infinite intervals. For example, the
function

) = Vx
is continuous on the infinite interval [0, oo), and the function
g) = V2 —x

is continuous on the infinite interval (—oo, 2].

EXAMPLE [ZJ Continuity on a Closed Interval

Discuss the continuity of f(x) = /1 — x>

Solution The domain of fis the closed interval [—1, 1]. At all points in the open
interval (—1, 1), the continuity of f follows from Theorems 1.4 and 1.5. Moreover,

f)=v/1-x2 because
lim V1 —x2=0= f(— l) Continuous from the right

x—>—1"
and

X
-1 lim V1 —x2=0=£(1) Continuous from the left

x—1-

— 4

fis continuous on [— 1, 1]. you can conclude that f is continuous on the closed interval [—1, 1], as shown in
Figure 1.32 Figure 1.32. u
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74 Chapter 1 Limits and Their Properties

V =0.08213T + 22.4334

(=273.15, 0)
5 -+
} } } } T
-300 -200 -100 100
The volume of hydrogen gas depends on its
temperature.

Figure 1.33

In 2003, researchers at the Massachusetts
Institute of Technology used lasers and
evaporation to produce a supercold gas in
which atoms overlap. This gas is called a
Bose-Einstein condensate. They measured a
temperature of about 450 pK (picokelvin),
or approximately —273.14999999955°C.
(Source: Science magazine, September 12,
2003)

The next example shows how a one-sided limit can be used to determine the value
of absolute zero on the Kelvin scale.

EXAMPLE B Charles’s Law and Absolute Zero

On the Kelvin scale, absolute zero is the temperature 0 K. Although temperatures very
close to 0 K have been produced in laboratories, absolute zero has never been attained.
In fact, evidence suggests that absolute zero cannot be attained. How did scientists
determine that 0 K is the “lower limit” of the temperature of matter? What is absolute
zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French
physicist Jacques Charles (1746—1823). Charles discovered that the volume of gas at
a constant pressure increases linearly with the temperature of the gas. The table
illustrates this relationship between volume and temperature. To generate the values
in the table, one mole of hydrogen is held at a constant pressure of one atmosphere.
The volume V is approximated and is measured in liters, and the temperature 7 is
measured in degrees Celsius.

—40 -20 0 20 40 60 30
19.1482 | 20.7908 | 22.4334 | 24.0760 | 25.7186 | 27.3612 | 29.0038

The points represented by the table are shown in Figure 1.33. Moreover, by using the
points in the table, you can determine that 7 and V are related by the linear equation

V — 22.4334

V = 0.082137 + 22.4334  or T= 0.08213

By reasoning that the volume of the gas can approach O (but can never equal or go
below 0), you can determine that the “least possible temperature” is given by
. ..V —1224334
AT = I 008213

0 — 224334
0.08213

~ —273.15.

Use direct substitution.

So, absolute zero on the Kelvin scale (0 K) is approximately —273.15° on the Celsius
scale. "

The following table shows the temperatures in Example 5 converted to the
Fahrenheit scale. Try repeating the solution shown in Example 5 using these temperatures
and volumes. Use the result to find the value of absolute zero on the Fahrenheit scale.

T —40 —4 32 68 104 140 176
19.1482 | 20.7908 | 22.4334 | 24.0760 | 25.7186 | 27.3612 | 29.0038

(i3 Charles’s Law for gases (assuming constant pressure) can be stated as
V =RT Charles’s Law

where V is volume, R is a constant, and 7 is temperature. In the statement of this law, what
property must the temperature scale have? |
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Bettmann/Corbis

AUGUSTIN-LOUIS CAUCHY (1789-1857)

The concept of a continuous function was
first introduced by Augustin-Louis Cauchy
in 1821. The definition given in his text
Cours d’Analyse stated that indefinite small
changes in y were the result of indefinite
small changes in x. “...f(x) will be called a
continuous function if ... the numerical
values of the difference f(x + a) — f(x)
decrease indefinitely with those of v ...."

NOTE X6 f Th

@I One consequence of Theorem THEOREM 1.12 CONTINUITY OF A COMPOSITE FUNCTION

1.12 is that if f'and g satisfy the given

conditions, you can determine the limit If g is continuous at ¢ and fis continuous at g(c), then the composite function
of f(g(x)) as x approaches ¢ to be given by (f° g)(x) = f(g(x)) is continuous at c.

lim f(g(x)) = f(g(c)).

1.4  Continuity and One-Sided Limits 75

Properties of Continuity

In Section 1.3, you studied several properties of limits. Each of those properties yields
a corresponding property pertaining to the continuity of a function. For instance,
Theorem 1.11 follows directly from Theorem 1.2. (A proof of Theorem 1.11 is given

in Appendix A.)

THEOREM 1.11 PROPERTIES OF CONTINUITY

If b is a real number and fand g are continuous at x = ¢, then the following
functions are also continuous at c.

1. Scalar multiple: bf
2. Sum or difference: f+ g
3. Product: fg

4. Quotient: ch, if g(c) # 0

The following types of functions are continuous at every point in their domains.

1. Polynomial:  p(x) = ax" + a,_x" '+ - -+ ax + a,
2. Rational: r(x) = M, glx) #0

q(x)
3. Radical: flx) = /x

4. Trigonometric: sin x, cos x, tan x, cot x, sec X, CSC X

By combining Theorem 1.11 with this summary, you can conclude that a wide
variety of elementary functions are continuous at every point in their domains.

O EXAMPLE ﬂ Applying Properties of Continuity

By Theorem 1.11, it follows that each of the functions below is continuous at every
point in its domain.
x> +1

f&x) =x +sinx, f(x) =3tanx, f(x):cosx -

The next theorem, which is a consequence of Theorem 1.5, allows you to determine
the continuity of composite functions such as

fx) =sin3x, flx) =Vx*+ 1, f(x)=tan i

By the definition of continuity, lim g(x) = g(c) and liII(l) flx) = f(gle)).
x—c x—g(c
Apply Theorem 1.5 with L = g(c) to obtain ll_T}Llf(g(x)) :f()lgr} g(X)) = f(g(c)). So,

(fog) = f(g(x)) is continuous at c. -
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EXAMPLE Testing for Continuity

Describe the interval(s) on which each function is continuous.

a. f(x) = tan x b. g(x) =

c. hix) = x’

{sin)lc, x#0 _ xsin1 x#0
0, x=0 0, x=0

Solution

a.

| L4+ |
| Co3+ | |
| o2 |
o))
y y Y | -
Y e ZE
| -3+ |
| -4+ |
f(x) =tan x

(a) fis continuous on each open interval in its
domain.

Figure 1.34

The tangent function f(x) = tan x is undefined at

T . .

X = E + n, n 18 an integer.
At all other points it is continuous. So, f(x) = tan x is continuous on the open
intervals

as shown in Figure 1.34(a).

Because y = 1/x is continuous except at x = 0 and the sine function is continuous
for all real values of x, it follows that y = sin (1/x) is continuous at all real values
except x = 0. At x = 0, the limit of g(x) does not exist (see Example 5, Section
1.2). So, g is continuous on the intervals (— oo, 0) and (0, co), as shown in Figure
1.34(b).

. This function is similar to the function in part (b) except that the oscillations are

damped by the factor x. Using the Squeeze Theorem, you obtain

— || stin%5|x, x#0

and you can conclude that

lim A(x) = 0.

x—0

So, h is continuous on the entire real line, as shown in Figure 1.34(c).

y y

y=|x|

1
,,,,,,,,,,, 1L
X X
-1 1

e —1+

sinl,x;tO xsinlx;tO

gx) = x y=—|x| h(x)= )
0, x=0 0, x=0
(b) gis continuous on (— oo, 0) and (0, co). (¢) his continuous on the entire real line
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The Intermediate Value Theorem

Theorem 1.13 is an important theorem concerning the behavior of functions that are
continuous on a closed interval.

THEOREM 1.13 INTERMEDIATE VALUE THEOREM

If fis continuous on the closed interval [a, b], f(a) # f(b), and k is any
number between f(a) and f(b), then there is at least one number c in [a, b]
such that

flc) = k.

The Intermediate Value Theorem tells you that at least one number c exists, but it does
not provide a method for finding c. Such theorems are called existence theorems. By referring
to a text on advanced calculus, you will find that a proof of this theorem is based on a property
of real numbers called completeness. The Intermediate Value Theorem states that for a
continuous function f, if x takes on all values between a and b, f(x) must take on all values

between f(a) and f(b). [ |

As a simple example of the application of this theorem, consider a person’s
height. Suppose that a girl is 5 feet tall on her thirteenth birthday and 5 feet 7 inches
tall on her fourteenth birthday. Then, for any height / between 5 feet and 5 feet 7 inches,
there must have been a time r when her height was exactly . This seems reasonable
because human growth is continuous and a person’s height does not abruptly change
from one value to another.

The Intermediate Value Theorem guarantees the existence of at least one number
c in the closed interval [a, b]. There may, of course, be more than one number ¢ such
that f(c) = k, as shown in Figure 1.35. A function that is not continuous does not
necessarily exhibit the intermediate value property. For example, the graph of the
function shown in Figure 1.36 jumps over the horizontal line given by y = k, and for
this function there is no value of ¢ in [a, b] such that f(c) = k.

fla) F=

Jb) f-=-=----- \{._.)/

]
C I
a b

fis continuous on [a, b]. fis not continuous on [a, b].

[There exist three ¢ such that f(c) = k.] [There are no ¢ such that f(c) = k.]

Figure 1.35 Figure 1.36

The Intermediate Value Theorem often can be used to locate the zeros of a
function that is continuous on a closed interval. Specifically, if fis continuous on [a, b]
and f(a) and f(b) differ in sign, the Intermediate Value Theorem guarantees the
existence of at least one zero of fin the closed interval [a, b].
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78 Chapter 1 Limits and Their Properties

y f)=x3+2x—1

21 (1,2)

|
€0 1

‘l/«),—l)

fis continuous on [0, 1] with f(0) < 0and

f1) > 0.
Figure 1.37

EXAMPLE ﬂ An Application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the polynomial function
f(x) = x> + 2x — 1 has a zero in the interval [0, 1].

Solution  Note that fis continuous on the closed interval [0, 1]. Because
f0)=034+20)—1=—-1 and f(1)=13+2(1)—1=2

it follows that f(0) < 0 and f(1) > 0. You can therefore apply the Intermediate Value
Theorem to conclude that there must be some ¢ in [0, 1] such that

fle)=0 fhas a zero in the closed interval [0, 1].

as shown in Figure 1.37. L]

The bisection method for approximating the real zeros of a continuous function
is similar to the method used in Example 8. If you know that a zero exists in the closed
interval [a, b], the zero must lie in the interval [a, (a + b)/2] or [(a + b)/2, b]. From
the sign of f([a + b]/2), you can determine which interval contains the zero. By
repeatedly bisecting the interval, you can “close in” on the zero of the function.

—@ELTTINTED You can also use the zoom feature of a graphing utility to approxi-
mate the real zeros of a continuous function. By repeatedly zooming in on the
point where the graph crosses the x-axis, and adjusting the x-axis scale, you can
approximate the zero of the function to any desired accuracy. The zero of
x* + 2x — 1 is approximately 0.453, as shown in Figure 1.38.

0.2 0.013
-0.2 1 0.4 0.5
-0.2 -0.012

Figure 1.38 Zooming in on the zero of f(x) = x* + 2x — |

@ EXBI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

discuss the continuity of the function.

(@ lim f(x)  (b) lim f(x)  (c) Lim f(x)

1. y 2.

In Exercises 1-6, use the graph to determine the limit, and R 4. - y
e,
I
y | v | |
2 \4 6

5+
4Ak
3+
2+

y + (3,0 sS4 N
\ c=-2 (s c=3 T
1 . 5. 6.

~<

1+

’ (2,3)
—1-+ ] ° 4+
2+ c=-1
2+ 14 ¢=2 T
Il Il Il Il Il Il X 2Ak
NEEEPER: S
-2+ _
3 (2’03)— ——t—> x
-3 (-1,0) 1
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1.4  Continuity and One-Sided Limits 79

In Exercises 7-26, find the limit (if it exists). If it does not exist, X, x <1
explain why. 29. £(x) = 3] + x 30. f(x) =142, x=1
1 2x — 1, x> 1
TR TS y y
. x—35 . 2 —x 3 3
. xl_l)l}l‘ x2 —25 10. Xl_lgl‘ x2—4 2 / 2+ o
1 1+
m - =3 R R R R
1. lim -9 12. lm —=— 321 8 10203 30 Sl 123
-2+
13. lim m /_33 3+
x—0" X
14. lim M In Exercises 31-34, discuss the continuity of the function on the
=10+ x — 10 .
closed interval.
1 1
X+ Ax  «x Function Interval
15, lim ———(—
Av—0- Ax 31, g(x) = V49 — 2 [-7.7]
2 _ 2
16, fim XAV F Xt Ar = () 2. /)0 =3-V9-1 [-3,3]
Av—0* Ax 3 <0
3 f(x)—{ A [—1,4]
x-|2-2’ x<3 3+%x,x>0 ’
17. lim f(x), where f(x) = _ 1
3 12 . 2 s M. gl) = 5 [-1,2]
18. lim £(x), wh ) = X2 —4x+6, x<2 In Exercises 35-60, find the x-values (if any) at which f is not
: xlﬁn}f %), where f(x) = -+ 4 -2, x=2 continuous. Which of the discontinuities are removable?
. B3+ 1 ox<d 6 3
19. lgr}f(x), where f(x) = {x F1oxs 1 35. f(x) = . 36. f(x) = —
< 37. fix) =x*—9 38. fx) =x2—2x+ 1
20. lim f(x), where f(x) = * v=l /6 S
x> 1 1 —x, x>1 700 1 20. () 1
39. fx) = - flx) =
21. lim cot x 4-x X+ 1
22. lim secx 41. f(x) = 3x — cosx 42. f(x) = cos%
x—1r/2
23. lim (S[x] — 7)
i 43. f(x) = 5 4. f(x) = 5 1
24, 1i1£1 (2x — [x]) xm X X
x.~> + 3 X
25. lim (2 — [—a]) 45. f(x) = T
26. lim<1 - [{—f]b _x—6
x—1 2 46' f(x) xz _ 36
In Exercises 27-30, discuss the continuity of each function. 47. f(x) = _x+2
: x2—=3x—10
27. f2) = = 2. 50 =~ PRSI T
xX° — 4 x + l . f X .X2 + x - 2
i x + 7]
-t W10 =

2 ——
1t / 50. f(x) = g_—?

: Sy A o
4 51. f(x) - x2, x> 1
_'4;,,
) —2x+3, x<1
52. f(x) = {xz, 1
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2x +1, x=<2
3 —x,
2x, x <2
—4x+1, x>2
tan TX |x| < 1
55. f(x)
x| =
ese TX x — 3| =
56. f(x) =
2, p—ﬂ>2
57. f(x) = csc2x 58. f(x) = tan fo

59. f(x) =[x — 8] 60. f(x) =5 — [x]

'dF" In Exercises 61 and 62, use a graphing utility to graph the
function. From the graph, estimate

lim f(x) and lim f(x).
x—0% x—0~
Is the function continuous on the entire real line? Explain.

|x2 — 4]x
x+2

|x% 4 4x|(x + 2)

61. f(x) = 44

62. f(x) =

In Exercises 63—-68, find the constant a, or the constants ¢ and
b, such that the function is continuous on the entire real line.

def" In Exercises 73 -76, use a graphing utility to graph the function.
Use the graph to determine any x-values at which the function
is not continuous.

1
73. fx) = [x] — x 74. h(x) = proR——
75 ()_x2—3x,x>4
Y T -, x<4
cosx — 1
76. f(x) = X » x<0
S5x, x=0

In Exercises 77-80, describe the interval(s) on which the

function is continuous.

X
77. f( ) = m 78. f(x)—x\/x+3
y Y
1+ 44
0.5+ (=3,0) 2T
— —t—x f—t—+—>x
_2 2 4 _4 K VR
1 4+
79. ) = see T 80. f(x) = xkl
y y
|\t | 4
\J .
| ‘ ‘ } X 2+

| !
T T
-2 2
=2 L
/\\—4 [\ —t—+—+—=x
| | 12 3 4

ldP' Writing In Exercises 81 and 82, use a graphing utility to graph
the function on the interval [—4, 4]. Does the graph of the function
appear to be continuous on this interval? Is the function continu-
ous on [—4, 4]? Write a short paragraph about the importance of
examining a function analytically as well as graphically.

sin x x> -8

81. f(x) =

82. flx) =

3x2, x =1
63. f(x) = {ax— x <1
33, x <1
64. f(x) { x> 1
x <2
65. f(x) _{ 2 x>2
4 sin x
66. g(x) = P x<0
a—2x, x=0
2, x < —1
67. fx) =Jax+b, —1<x<3
-2, x=3
22— a?
68. g(x) =1 x—a’ xFa
8, X=a

In Exercises 69-72, discuss the continuity of the composite

function h(x) = f(g(x)).
_ 1
69. f(x) = 70. f(x) 7
glx) =x—1 gl) =x—1
7L 1) = - 1 - 72. flx) = sin x
gx)=x2+5 glx) =2

x—2

Writing In Exercises 83-86, explain why the function has a

zero in the given interval.

Function Interval
83. f(x) = x4—x + 4 [1,2]
84.f()=x+5x—3 [0, 1]
85. f(x) =x>—2 —cosx [0, ]
8&fﬁﬂ=-—§+tm<wx> [1,4]

10
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ldp' In Exercises 87-90, use the Intermediate Value Theorem and a

graphing utility to approximate the zero of the function in the
interval [0, 1]. Repeatedly “zoom in” on the graph of the function
to approximate the zero accurate to two decimal places. Use the
zero or root feature of the graphing utility to approximate the
zero accurate to four decimal places.

87. fx) =x* +x — 1

88. flx) =x*+5x —3

89. s(
(

. g(t) =2cost — 3t
90. h

=1+ 60—3tan 0

In Exercises 91-94, verify that the Intermediate Value Theorem
applies to the indicated interval and find the value of ¢ guaran-
teed by the theorem.

91. f(x) =x2+x—1, [0,5], flc)=11

92. f(x) =x>—6x+ 38, [0,3], flc)=0

93. fr) =x* —x*+x—2, [0,3], flc)=14

2
94. f(x) = =, B 4], o) =6

WRITING ABOUT CONCEPTS

95. State how continuity is destroyed at x = ¢ for each of the
following graphs.

(a) v (b) ¥

[ S

al---

(c) V¥ d v

\

[ S S

96. Sketch the graph of any function f such that
lim f(x) = 1 and

x—3%

xlig]’ f(X) - 0

Is the function continuous at x = 3? Explain.

97. If the functions fand g are continuous for all real x, is f + g
always continuous for all real x? Is f/g always continuous
for all real x? If either is not continuous, give an example to
verify your conclusion.

1.4  Continuity and One-Sided Limits 81

CAPSTONE

98. Describe the difference between a discontinuity that is
removable and one that is nonremovable. In your explana-
tion, give examples of the following descriptions.

(a) A function with a nonremovable discontinuity at
x=4
(b) A function with a removable discontinuity at x = —4

(c) A function that has both of the characteristics
described in parts (a) and (b)

True or False? In Exercises 99-102, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

99. If lim f(x) = L and f(c) = L, then fis continuous at c.
100. If f(x) = g(x) for x # ¢ and f(c) # g(c), then either f or g is
not continuous at c.

101. A rational function can have infinitely many x-values at which
it is not continuous.

102. The function f(x) = |x — 1|/(x — 1) is continuous on
(—o0, o0).

103. Swimming Pool Every day you dissolve 28 ounces of
chlorine in a swimming pool. The graph shows the amount of
chlorine £(¢) in the pool after ¢ days.

y

140
112

56
% \o\o\o\o
i } } } } } } t

‘ 1 2 3 4 5 6 17

Estimate and interpret lim f(¢) and lim f(z).
1—4- —4+

104. Think About It Describe how the functions

fx) =3+ [
and

g(x) =3 =[xl
differ.

105. Telephone Charges A long distance phone service charges
$0.40 for the first 10 minutes and $0.05 for each additional
minute or fraction thereof. Use the greatest integer function to
write the cost C of a call in terms of time 7 (in minutes). Sketch
the graph of this function and discuss its continuity.
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82 Chapter 1  Limits and Their Properties

106. Inventory Management The number of units in inventory in
a small company is given by

NG) = zs(zﬂ%ﬂ - t)

where ¢ is the time in months. Sketch the graph of this func-
tion and discuss its continuity. How often must this company
replenish its inventory?

107. Déja Vu At 8:00 a.M. on Saturday a man begins running up
the side of a mountain to his weekend campsite (see figure). On
Sunday morning at 8:00 A.M. he runs back down the mountain.
It takes him 20 minutes to run up, but only 10 minutes to run
down. At some point on the way down, he realizes that he
passed the same place at exactly the same time on Saturday.
Prove that he is correct. [Hint: Let s(t) and r(¢) be the position
functions for the runs up and down, and apply the Intermediate
Value Theorem to the function £(¢) = s(1) — r(¢).]

Not drawn to scale

Sunday 8:00 AM.

Saturday 8:00 A.M.

108. Volume Use the Intermediate Value Theorem to show that
for all spheres with radii in the interval [5, 8], there is one with
a volume of 1500 cubic centimeters.

109. Prove that if fis continuous and has no zeros on [a, b], then
either

f(x) > 0 forall xin [a, b] or f(x) <0 for all x in [a, b].
110. Show that the Dirichlet function
0, if x is rational
@ = {1, if x is irrational
is not continuous at any real number.
111. Show that the function

(x) = 0, ifxisrational
T =4, i xis irrational

is continuous only at x = 0. (Assume that & is any nonzero real
number.)

112. The signum function is defined by

-1, x< O
sgn(x) =40, x=0
1, x> 0.

Sketch a graph of sgn(x) and find the following (if possible).

(a) liI(I)17 sgn(x)  (b) lir})l+ sgn(x) (¢ lir% sgn(x)

113. Modeling Data The table lists the speeds S (in feet per
second) of a falling object at various times # (in seconds).

t |0 5 10 15 20 25 30

S 10| 482 | 535|552 | 559 | 562 | 56.3

(a) Create a line graph of the data.
(b) Does there appear to be a limiting speed of the object? If
there is a limiting speed, identify a possible cause.

114. Creating Models A swimmer crosses a pool of width b by
swimming in a straight line from (0, 0) to (2b, b). (See figure.)

y
(2b, b)

-— S ——

0,0)

(a) Let fbe a function defined as the y-coordinate of the point
on the long side of the pool that is nearest the swimmer at
any given time during the swimmer’s crossing of the pool.
Determine the function f and sketch its graph. Is f
continuous? Explain.

(b) Let g be the minimum distance between the swimmer and
the long sides of the pool. Determine the function g and
sketch its graph. Is g continuous? Explain.

115. Find all values of ¢ such that fis continuous on (— oo, co).

1 =x% x=sc
f(x)_{ x>ec

X,
116. Prove that for any real number y there exists x in (— /2, 7/2)
such that tan x = y.

117. Let f(x) = (\/x + 2 - C)/x, ¢ > 0. What is the domain of
f? How can you define f at x = 0 in order for f to be
continuous there?

118. Prove that if Al)imof(c + Ax) = f(c), then fis continuous at c.

119. Discuss the continuity of the function i(x) = x[x].

120. (a) Let f,(x) and f,(x) be continuous on the closed interval
la, b]. If f,(a) < fy(a) and £,(b) > £,(b), prove that there
exists ¢ between a and b such that f;(c) = f(c).

IdP (b) Show that there exists ¢ in [0, ’{] such that cos x = x. Use
a graphing utility to approximate c to three decimal places.

PUTNAM EXAM CHALLENGE

121. Prove or disprove: if x and y are real numbers with y = 0
andy(y + 1) < (x + 1)%, then y(y — 1) < x%

122. Determine all polynomials P(x) such that
P(x* + 1) = (P(x))> + 1 and P(0) = 0.

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.
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6 3 e
x=2

4+ asx — 2%
ZAV

} } } } }

Y — 4 6
_2Ak

3

— —oo

x—2 -4+ 3

asx — 27 f(x)=72
,6A» -

f(x) increases and decreases without bound

as x approaches 2.
Figure 1.39

lim f(x) = oo

Infinite limits
Figure 1.40

1.5 Infinite Limits 83

B Determine infinite limits from the left and from the right.
® Find and sketch the vertical asymptotes of the graph of a function.

Infinite Limits

Let fbe the function given by 3/(x — 2). From Figure 1.39 and the table, you can see
that f(x) decreases without bound as x approaches 2 from the left, and f(x) increases
without bound as x approaches 2 from the right. This behavior is denoted as

lim = —0o0 f(x) decreases without bound as x approaches 2 from the left.
=2 X — 2
and
lim = 00 f(x) increases without bound as x approaches 2 from the right.
x—=27x — 2
x approaches 2 from the left. > < x approaches 2 from the right.
x 1.5 1.9 1.99 1.999 2.001 | 2.01 | 2.1 | 2.5

f(x) | —6 | =30 | —300 | —3000 | ? | 3000 | 300 30 6

f(x) decreases without bound. > <

A limit in which f(x) increases or decreases without bound as x approaches c is called
an infinite limit.

) increases without bound.

DEFINITION OF INFINITE LIMITS

Let fbe a function that is defined at every real number in some open interval
containing ¢ (except possibly at c itself). The statement

lim f(x) = oo

X—C
means that for each M > 0 there exists a 8 > 0 such that f(x) > M whenever
0 < |x — ¢| < & (see Figure 1.40). Similarly, the statement

lim f(x) = —o0

X—cC
means that for each N < 0 there exists a § > 0 such that f(x) < N whenever
0<|x—c| <d

To define the infinite limit from the left, replace 0 < |x — ¢| < dby
¢ — 6 < x < c. To define the infinite limit from the right, replace
0< |x—c| <d8byc<x<c+a

Be sure you see that the equal sign in the statement lim f(x) = oo does not mean
that the limit exists! On the contrary, it tells you how the limit fails to exist by denoting
the unbounded behavior of f(x) as x approaches c.
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EXPLORATION

Use a graphing utility to graph
each function. For each function,
analytically find the single real
number c that is not in the
domain. Then graphically find the
limit (if it exists) of f(x) as x
approaches ¢ from the left and
from the right.

a0 =
b f) = 5
€10 = (e
f0) =5 ;32)2

(3 If the graph of a function f has
a vertical asymptote at x = ¢, then fis
not continuous at c.

EXAMPLE [fl] Determining Infinite Limits from a Graph

Determine the limit of each function shown in Figure 1.41 as x approaches 1 from the
left and from the right.
2T ) s
/ fO=F=1

I
I
I
| ‘
| ‘
| |
1 1 i e e
__'/ : -2 -l : 2
} t X I
| |
1 1
| |
| |
| |
| |
| |

| ]
T T

-2 -1 2 3
R =T
-2+ (x—1)2 -3+
(@) (b)
Each graph has an asymptote at x = 1.
Figure 1.41
Solution

a. When x approaches 1 from the left or the right, (x — 1)? is a small positive number.
Thus, the quotient 1/(x — 1)? is a large positive number and f(x) approaches
infinity from each side of x = 1. So, you can conclude that

lim T na oo Limit from each side is infinity.
x—1 ( - 1)

Figure 1.41(a) confirms this analysis.

b. When x approaches 1 from the left, x — 1 is a small negative number. Thus, the
quotient —1/(x — 1) is a large positive number and f(x) approaches infinity from
the left of x = 1. So, you can conclude that

lim = oo. Limit from the left side is infinity.
x—1-x — 1

When x approaches 1 from the right, x — 1 is a small positive number. Thus, the
quotient —1/(x — 1) is a large negative number and f(x) approaches negative
infinity from the right of x = 1. So, you can conclude that

lim = —oo. Limit from the right side is negative infinity.
x—=1tx — 1
Figure 1.41(b) confirms this analysis. |

Vertical Asymptotes

If it were possible to extend the graphs in Figure 1.41 toward positive and negative
infinity, you would see that each graph becomes arbitrarily close to the vertical line
x = 1. This line is a vertical asymptote of the graph of f. (You will study other types
of asymptotes in Sections 3.5 and 3.6.)

DEFINITION OF VERTICAL ASYMPTOTE

If f(x) approaches infinity (or negative infinity) as x approaches ¢ from the
right or the left, then the line x = c is a vertical asymptote of the graph of f.
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1.5 Infinite Limits 85

In Example 1, note that each of the functions is a quotient and that the vertical
asymptote occurs at a number at which the denominator is 0 (and the numerator is not
0). The next theorem generalizes this observation. (A proof of this theorem is given in
Appendix A.)

THEOREM 1.14 VERTICAL ASYMPTOTES

Let fand g be continuous on an open interval containing c. If f(c) # 0,
g(c) = 0, and there exists an open interval containing ¢ such that g(x) # 0 for
all x # ¢ in the interval, then the graph of the function given by

_fW
hlx) = g(x)

has a vertical asymptote at x = c.

: ~ — .
P (_ EXAMPLE [EAl Finding Vertical Asymptotes
P\ - Determine all vertical asymptotes of the graph of each function.
1 \ 2
I I | I X 1 x?+1
- T 1 a. f(x) = m b. f(x) = e C. f(x) = cotx
Dl .
! Solution
| 2T a. When x = — 1, the denominator of
(a) 1
=56+

is 0 and the numerator is not 0. So, by Theorem 1.14, you can conclude that
x = —11is a vertical asymptote, as shown in Figure 1.42(a).

b. By factoring the denominator as

% - x f(x):x2+1: x2+1
S =1 (—=DE+1)
you can see that the denominator is 0 at x = — 1 and x = 1. Moreover, because the

numerator is not 0 at these two points, you can apply Theorem 1.14 to conclude
(b) that the graph of f has two vertical asymptotes, as shown in Figure 1.42(b).
¢. By writing the cotangent function in the form

COoS X
sin x

f(x) = cotx =

you can apply Theorem 1.14 to conclude that vertical asymptotes occur at all values
of x such that sinx = 0 and cosx # 0, as shown in Figure 1.42(c). So, the
graph of this function has infinitely many vertical asymptotes. These asymptotes
occur at x = nir, where n is an integer. [ |

Theorem 1.14 requires that the value of the numerator at x = ¢ be nonzero. If
both the numerator and the denominator are 0 at x = ¢, you obtain the indeterminate
Functions with vertical asymptotes form 0/0, and you cannot determine the limit behavior at x = ¢ without further
Figure 1.42 investigation, as illustrated in Example 3.
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EXAMPLE [EJ A Rational Function with Common Factors

Determine all vertical asymptotes of the graph of

2
2,038 _X + 2x — 8
=52 O =7
‘ it Solution Begin by simplifying the expression, as shown.
1 2 _
"\ 4 Undefined ) = %
1 when x =2 x*—4
N R )
| (x +2)——2)
N : * +4
"\ 2 .
| Vertical i Y72
' ~2Z7  asymptote
‘ atx=-2 At all x-values other than x = 2, the graph of f coincides with the graph of
f(x) increases and decreases Wlthout bound g(x) = (x + 4)/(x + 2) SO, you can apply Theorem 114 to 8 to COHClude that there
as x approaches — 2. is a vertical asymptote at x = —2, as shown in Figure 1.43. From the graph, you can
Figure 1.43 see that
i A8 4 g S8
-2 x> —4 -2t x*—4 :
Note that x = 2 is not a vertical asymptote.
EXAMPLE [ Determining Infinite Limits
Find each limit.
2 _ 2 _
lim =% and  fim 2%
=l x — 1 =1t ox — 1
f) = )52_73)5
6 x=1 Solution Because the denominator is 0 when x = 1 (and the numerator is not zero),
] you know that the graph of
x> — 3x
-4 6 @) = x—1
/ has a vertical asymptote at x = 1. This means that each of the given limits is either oo
or —oo. You can determine the result by analyzing f at values of x close to 1, or by
-6 using a graphing utility. From the graph of f shown in Figure 1.44, you can see that
fhas a vertical asymptote at x = 1. the graph approaches oo from the left of x = 1 and approaches — oo from the right of
Figure 1.44 x = 1. So, you can conclude that
. x*—3x
lim = 00 The limit from the left is infinity.
x—1- x — 1
and
. ox*—3x _ o B
lim = —Oo0. The limit from the right is negative infinity. |

A DT SARITVEED When using a graphing calculator or graphing software,
be careful to interpret correctly the graph of a function with a vertical asymptote—
graphing utilities often have difficulty drawing this type of graph.
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THEOREM 1.15 PROPERTIES OF INFINITE LIMITS

Let ¢ and L be real numbers and let f and g be functions such that

lim flx) = o0 and lim glx) = L.

1. Sum or difference: lim [ f(x) + g(x)] = oo
X—cC

2. Product: lim [f(x)g(x)] =00, L>0
lim [ f(x)g(x)] = —c0, L < 0
3. Quotient: )l(l_r)r:fcg)) =0

Similar properties hold for one-sided limits and for functions for which the
limit of f(x) as x approaches c is —oo.

To show that the limit of f(x) + g(x) is infinite, choose M > 0. You then
need to find 6 > 0 such that

[f(x) + g(0)] > M

whenever 0 < |x — ¢| < 8. For simplicity’s sake, you can assume L is positive.
Let M, = M + 1. Because the limit of f(x) is infinite, there exists 8, such that
f(x) > M, whenever 0 < |x — ¢| < §,. Also, because the limit of g(x) is L, there
exists 8, such that |g(x) — L| < 1 whenever 0 < |x — ¢| < §,. By letting & be the
smaller of §, and 8,, you can conclude that 0 < |x — ¢| < & implies f(x) > M + 1
and |g(x) — L| < 1. The second of these two inequalities implies that g(x) > L — 1,
and, adding this to the first inequality, you can write

f) +gx)>M+1D)+(L-1)=M+L>M.
So, you can conclude that
lim [ /(x) + glx)] = oo.

The proofs of the remaining properties are left as exercises (see Exercise 78).

|
EXAMPLE Bl Determining Limits
. . .
a. Because lim 1 = 1 and lim —, = 00, you can write
x—0 x—0 X
) 1
lim{1 + — | = oo Property 1, Theorem 1.15
x—0 X
b. Because lim (x> + 1) = 2 and lim (cot 7mx) = — o0, you can write
x—1- x—1-
x2+1
im =0. Property 3, Theorem 1.15
x—1- cot mx
¢. Because lim 3 = 3 and lim cotx = oo, you can write
x—0" x—0"
lim 3 cot x = oo. Property 2, Theorem 1.15 |
x—0"
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@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, determine whether f(x) approaches co or
— oo as x approaches 4 from the left and from the right.

3. f(x) = ﬁ 4. f(x) = (x 114)2

In Exercises 5-8, determine whether f(x) approaches co or
— oo as x approaches —2 from the left and from the right.

X 1
5.f(x)—2x2_4‘ 6.f(x)—x+2
y
N 3T
A\ 2T
A
=1 L1
L2
L3
7. 8. f(x):sec%
¥
/ kj 3
—+—+ ———>x
_6[\_2 I 2[\6

Numerical and Graphical Analysis In Exercises 9-12, deter-
mine whether f(x) approaches co or —co as x approaches —3
from the left and from the right by completing the table. Use a
graphing utility to graph the function to confirm your answer.

x -35 31 | =301 | —3.001

fx)

x —2999 | —299 | -29 —25

fx)

9. fl) = 10. £(x) =

.fx—x2_9 'fx_x2—9
)C2

12. f(x) = sec%

11. f(x) = 2o
In Exercises 13-32, find the vertical asymptotes (if any) of the
graph of the function.

4

13. f(x) = % 14. f(x) = m

_x2 —4x

15. f(x) = o 16. f(x) = 214
t—1 2s — 3

17. ¢(t) = pra— 18. h(s) = 2 — 25

x2 =2 2+ x
19. h(x) = m 20. g(x) = m

1
4 axd — x? — 4x
21. T(l‘) =1- tiz 22. g(x) = m
3
B0 =5r
4% + 4x — 24
2. 1) = x* = 2x3 — 9x? + 18x
x> +1 x> —4

28 = B R

x2—2x—15 2 =2t
I =3 se s BIO= g
29. f(x) = tan mx 30. f(x) = sec mx

t tan 0
31 s(r) = o 32. g(6) = ;

In Exercises 33-36, determine whether the graph of the function
has a vertical asymptote or a removable discontinuity atx = —1.
Graph the function using a graphing utility to confirm your
answer.

x2—1 2—6x—17
3. /() =" 34. f(x) = %

2+1 in(x + 1
35. /(0 =" 36. f(x) = 75“1(1 1 )

In Exercises 37-54, find the limit (if it exists).

. . -1
37. xl}I—nl*x + 1 38. xllf{l’ (X - 1)2
2 +
39. lim 40. lim &
=2t x — 2 =1t 1l —x
. X2 . x2
41. x1_1)r]n+ G- 17 42. xl_)u}]ﬁ 2116
x+3 6x2+x— 1
43. 1 S —— 44. i S —
3 xllinr x2+x—6 ;H(llrlr}zﬁ 4x2 —4x — 3
x—1 x—2
45. lim 75—~ —— 46. li
S P 6. im—>
1 1
47. lim (1 + 7> 48. lim <x2 — *)
x—=0" X x>0~ X
2 -2
49. lim — 50. lim
x>0+ sin x x—s(m/2)* COS X
51 1im 52, fim * 2
x—m CSC X x—=0 cotx
53. lim x sec mx 54. lim x?tan mx
x—1/2 x—=1/2
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ldP' In Exercises 55-58, use a graphing utility to graph the function
and determine the one-sided limit.

x2+x+1 x3 -1
55. f(x) = )637—1 56. f(x) = m
lirln+ flx) liIP, flx)
1 X
57. f(x) = 725 58. f(x) = sec 5
lilgli flx) lir‘Itl+ flx)

WRITING ABOUT CONCEPTS

59. In your own words, describe the meaning of an infinite
limit. Is oo a real number?

60. In your own words, describe what is meant by an asymptote
of a graph.

61. Write a rational function with vertical asymptotes at x = 6
and x = —2, and with a zero at x = 3.

62. Does the graph of every rational function have a vertical
asymptote? Explain.

63. Use the graph of the function f (see figure) to sketch the
graph of g(x) = 1/f(x) on the interval [—2, 3]. To print
an enlarged copy of the graph, go to the website
www.mathgraphs.com.

CAPSTONE

64. Given a polynomial p(x), is it true that the graph of the

o)

function given by f(x) = I has a vertical asymptote at

x = 1?7 Why or why not?

1.5 Infinite Limits 89

(b) Find the rate r when 0 is 7/3.
(c) Find the limit of r as 0— (7/2) .

5! 25 ft fta

~— X —>1

Figure for 67

Figure for 68

68. Rate of Change A 25-foot ladder is leaning against a house
(see figure). If the base of the ladder is pulled away from the
house at a rate of 2 feet per second, the top will move down the
wall at a rate of

2x

r=——ft/sec
V625 — x2 /
where x is the distance between the base of the ladder and the

house.
(a) Find the rate r when x is 7 feet.
(b) Find the rate r when x is 15 feet.
(c) Find the limit of ras x—257.
69. Average Speed On a trip of d miles to another city, a truck
driver’s average speed was x miles per hour. On the return trip

the average speed was y miles per hour. The average speed for
the round trip was 50 miles per hour.

25x

x — 25

(a) Verify thaty = . What is the domain?

(b) Complete the table.

x | 30 | 40 | 50 | 60

y

Are the values of y different than you expected? Explain.

(c) Find the limit of y as x — 25" and interpret its meaning.

65. Relativity According to the theory of relativity, the mass m of ldP' 70. Numerical and Graphical Analysis Use a graphing utility to

a particle depends on its velocity v. That is,
Mg
V1 —(v?/c?)

where m,, is the mass when the particle is at rest and c is the
speed of light. Find the limit of the mass as v approaches ¢ ™.

66. Boyle’s Law For a quantity of gas at a constant temperature,
the pressure P is inversely proportional to the volume V. Find
the limit of P as V— 0.

67. Rate of Change A patrol car is parked 50 feet from a long
warehouse (see figure). The revolving light on top of the car
turns at a rate of % revolution per second. The rate at which the
light beam moves along the wall is r = 507 sec? 0 ft/sec.

(a) Find the rate » when 0 is 7/6.

complete the table for each function and graph each function to
estimate the limit. What is the value of the limit when the power
of x in the denominator is greater than 3?

x 170502 01| 0.01 | 0001 | 0.0001
Jx)

X — sinx X — sinx
a) lim —— b) lim ———
( ) x—0* ( ) x—=0* x2

X — sinx x — sinx
¢) lim ———— d) lim ———
© x>0t X d x>0t xt
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PP' 71. Numerical and Graphical Analysis Consider the shaded

region outside the sector of a circle of radius 10 meters and
inside a right triangle (see figure).

0 ]
10 m

(a) Write the area A = f(0) of the region as a function of 6.
Determine the domain of the function.

(b) Use a graphing utility to complete the table and graph the
function over the appropriate domain.

0 030609 1215
f(0)

(c) Find the limit of A as 0— (7/2)".

fdP' 72. Numerical and Graphical Reasoning A crossed belt connects

a 20-centimeter pulley (10-cm radius) on an electric motor with
a 40-centimeter pulley (20-cm radius) on a saw arbor (see
figure). The electric motor runs at 1700 revolutions per minute.

(a) Determine the number of revolutions per minute of the saw.

(b) How does crossing the belt affect the saw in relation to the
motor?

(c) Let L be the total length of the belt. Write L as a function of
¢, where ¢ is measured in radians. What is the domain of
the function? (Hint: Add the lengths of the straight sections
of the belt and the length of the belt around each pulley.)

(d) Use a graphing utility to complete the table.

¢ | 030609 1215

L

(e) Use a graphing utility to graph the function over the appro-
priate domain.

(f) Find . l(in/)z) L. Use a geometric argument as the basis of
a second method of finding this limit.
(g) Find lim L.
d—0"

True or False? In Exercises 73-76, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

73. The graph of a rational function has at least one vertical
asymptote.

74. The graphs of polynomial functions have no vertical
asymptotes.

75.The graphs of trigonometric functions have no vertical
asymptotes.

76. If f has a vertical asymptote at x = 0, then f is undefined at
x=0.

77. Find functions f and g such that limf(x) = co and
xX—=c¢
lim g(x) = oo but lim [ f(x) — g(x)] # 0.
78. Prove the difference, product, and quotient properties in
Theorem 1.15.
1

79. Prove that if 1erlf(x) = oo, then 113} ]@ = 0.

| . .
80. Prove that if lim —— = 0, then lim f(x) does not exist.

x—c (x) x—c

Infinite Limits In Exercises 81 and 82, use the -6 definition of
infinite limits to prove the statement.

81. lim ! = oo 82. lim ! = —00
=3t x — 3 =5 x—5

SECTION PROJECT

Graphs and Limits of Trigonometric Functions

Recall from Theorem 1.9 that the limit of f(x) = (sinx)/x as x
approaches 0 is 1.

(a) Use a graphing utility to graph the function f on the interval
—a < x < . Explain how the graph helps confirm this
theorem.

(b) Explain how you could use a table of values to confirm the
value of this limit numerically.

(c) Graph g(x) = sin x by hand. Sketch a tangent line at the point
(0, 0) and visually estimate the slope of this tangent line.

(d) Let (x, sin x) be a point on the graph of g near (0, 0), and write
a formula for the slope of the secant line joining (x, sin x) and
(0, 0). Evaluate this formula at x = 0.1 and x = 0.01. Then find
the exact slope of the tangent line to g at the point (0, 0).

(e) Sketch the graph of the cosine function i(x) = cos x. What is
the slope of the tangent line at the point (0, 1)? Use limits to find
this slope analytically.

(f) Find the slope of the tangent line to k(x) = tan x at (0, 0).
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g R E V I E W E X E R c I S E S See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1 and 2, determine whether the problem can be
solved using precalculus or if calculus is required. If the problem
can be solved using precalculus, solve it. If the problem seems to
require calculus, explain your reasoning. Use a graphical or
numerical approach to estimate the solution.

1. Find the distance between the points (1, 1) and (3, 9) along the

curve y = x2.

2. Find the distance between the points (1, 1) and (3, 9) along the
liney = 4x — 3.

In Exercises 3 and 4, complete the table and use the result to
estimate the limit. Use a graphing utility to graph the function
to confirm your result.

x -0.1 | —0.01
f&)

—0.001 | 0.001 | 0.01 | 0.1

3, fim B+ D]=2

x—0 X

4 tim A F 2 V0)

x—0

In Exercises 5-8, find the limit L. Then use the -8 definition to
prove that the limit is L.

5. lim (x + 4) 6. lim x
x—1 x—9

7. lim (1 — x?) 8. lim 9
x—2 x—5

In Exercises 9 and 10, use the graph to determine each limit.

4x — x2 —2x
9. h(x) = . 10. g(x) = p—
y y
6T 9+ |
1 6L 3
4 S
3T e
2T =3 | 3 6
1 T I
RN -6+ |
_1,,1234N 9 f
(a) lim h(x) (b) lim h(x) (a) lim g(x)  (b) lim g(x)
x—0 x——1 x—=3 x—0
In Exercises 11-26, find the limit (if it exists).
11. lirré (x —2)2 12. lin%(lO —x)*
13. lim /1 + 2 14. lim 3]y — 1]
t—4 y—4
.t +2 . t2—=9
1. lim 02 16. lim~—3
17. lim 7")6_3_1 18. lim 7M
=4 x—4 x—0 X

19. lim M 20. lim (1/— “14_?)_1
x—0 X 5s—0 N
. x4+ 125 . x> —4
2. xg@s x+5 2. xgryz X +8
.1 —cosx . 4x
23. lim ———— 24. lim
x—0  sinx x—m/4 tan x
. i _
25. lim sin[(7r/6) + Ax] — (1/2)
Ax—0 Ax

[Hint: sin(6 + ¢) = sin 0 cos ¢ + cos 0 sin ¢]
26. fim ST+ A0+ 1
Ax—0 Ax

[Hint: cos(0 + ¢) = cos 6 cos ¢ — sin O sin ¢]

In Exercises 27-30, evaluate the limit given lim f(x) = —% and
lim g(x) = % e
. - flx)
27. lim [ f(x)g(x) 28. lim "~
X—c [f g ] xX—=c g(x)

29. lim [£(x) + 2¢()] 30. lim[f()]

Numerical, Graphical, and Analytic Analysis In Exercises 31
and 32, consider

lil}]+ fx).

(a) Complete the table to estimate the limit.

ldF" (b) Use a graphing utility to graph the function and use the

graph to estimate the limit.

(¢) Rationalize the numerator to find the exact value of the
limit analytically.

x 1.1 | 1.01 | 1.001 1.0001
fx)
st =
— 3
32. f(x) = lx _\{;

[Hint: a® — b> = (a — b)(a® + ab + b?)]

Free-Falling Object In Exercises 33 and 34, use the position
function s(f) = —4.9¢% + 250, which gives the height (in meters)
of an object that has fallen from a height of 250 meters. The
velocity at time ¢ = a seconds is given by

. s(a) — 5@
lim ——.

t—a a-—t

33. Find the velocity of the object when t = 4.
34. At what velocity will the object impact the ground?
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In Exercises 35-40, find the limit (if it exists). If the limit does
not exist, explain why.

35.

37.

38.

39.

40.

In

Lol 3] im [ —
L 36 Jmb -1
(x—22 x<2
lim f(x), where f(x) =
lim f(x) f(x) {z_x, Y2
V1I—x, x =<1
lim g(x), where g(x) =
x—17 x + 1, x> 1
B+1, <1
lim h(f), where h(t) = {1
-1 A+ 1), =1
lim f(s) where f(s) = | B =72
im , where =
s——2 fls It s2+4s+6, s> -2

Exercises 41-52, determine the intervals on which the

function is continuous.

41.

42. .
43.

44.
45.

46.
47.
49.
51.

53.

54.

55.

FE s6.

fl) = -32+7

2
- .2 _ =
fl) = =~
f) =[x+ 3]
32 —x—2
Sl ==
3x2 —x — 2
f(x) — { X — 1 s X * 1
0, X =
5—x, x=<2
@) _{2)(—3, x>2
1 x+ 1
f(x) - (x _ 2)2 48. f(X) - X
3 x+1
W=7 0. 10 =575
flx) = csc% 52. f(x) = tan 2x
Determine the value of ¢ such that the function is continuous on

the entire real line.

) = {x + 3,

cx + 6,

x <2
x> 2

Determine the values of b and ¢ such that the function is
continuous on the entire real line.

fx) —{

l<x<3
x =2 =1

x+ 1,
x2 + bx + ¢,

Use the Intermediate Value Theorem to show that

f(x) = 2x> — 3 has a zero in the interval [1, 2].

Delivery Charges The cost of sending an overnight package
from New York to Atlanta is $12.80 for the first pound and
$2.50 for each additional pound or fraction thereof. Use the
greatest integer function to create a model for the cost C of
overnight delivery of a package weighing x pounds. Use a
graphing utility to graph the function and discuss its continuity.

57.

58.

2

-4 o .
|);_72|. Find each limit (if possible).

@ lim f(x)

(®) lim f(x)

() lim f (x)

Letf(x) = Vx(x = 1).
(a) Find the domain of f.
(b) Find xliglﬁ fx).

Let f(x) =

(¢) Find lil}l‘ flx).

In Exercises 59-62, find the vertical asymptotes (if any) of the
graph of the function.

9. g0) = 1+ 60. 1) = 5
61. f(x) = ﬁ 62. f(x) = csc mx

In Exercises 63-74, find the one-sided limit (if it exists).

63.

65.

67.

69.

71.

73.

75.

76.

2%+ x+ 1

li _— 64. i
e S ol 2% — 1
. x+ 1 . x+1
X_l)u}% ¥+ 1 66 X—I}EI}’ x* =1
24+ 20+ 1 2-2x+1
Jim T2 68. lim —— "~
x—>1- X — 1 x—=-—1* x + 1
1
lim (x - 7) 70. lim —————
x—0* X =2 3 x2 — 4
in 4
lim 22 72. lim 5%
x—0" SX x—=0" X
2 2
lim 25X 74, lim &%
x—0* X x—0~ X

Environment A utility company burns coal to generate
electricity. The cost C in dollars of removing p% of the air
pollutants in the stack emissions is

_80,000p

=100, 0=p <100

Find the costs of removing (a) 15%, (b) 50%, and (c) 90% of
the pollutants. (d) Find the limit of C as p— 100~

The function f'is defined as shown.

_ tan 2x

f(x) — x#0

tan 2x

(a) Find lin(l) T (if it exists).
(b) Can the function f be defined at x = 0 such that it is

continuous at x = 0?
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@PROBLEM SOLVING

1. Let P(x, y) be a point on the parabolay = x?in the first quadrant.
Consider the triangle APAO formed by P, A(0, 1), and the
origin 0(0, 0), and the triangle APBO formed by P, B(1, 0), and
the origin.

(a) Write the perimeter of each triangle in terms of x.
(b) Let r(x) be the ratio of the perimeters of the two triangles,
_ Perimeter APAO
'™ Perimeter APBO’

Complete the table.

x 4 1 2 1 |01 | 001

Perimeter APAO

Perimeter APBO
r(x)

(c) Calculate 1i1¥)1+ r(x).

X—
. Let P(x, y) be a point on the parabola y = x? in the first quadrant.
Consider the triangle APAO formed by P, A(0, 1), and the
origin 0(0, 0), and the triangle APBO formed by P, B(1, 0), and
the origin.

(a) Write the area of each triangle in terms of x.
(b) Let a(x) be the ratio of the areas of the two triangles,
alx) = Area APBO
Area APAO’

Complete the table.

x 41 2 1 0.1 | 0.01

Area APAO

Area APBO
a(x)

(c) Calculate lim af(x).
x—0"

PS. Problem Solving 93

. (a) Find the area of a regular hexagon inscribed in a circle of

radius 1. How close is this area to that of the circle?

(b) Find the area A, of an n-sided regular polygon inscribed in
a circle of radius 1. Write your answer as a function of n.

(c) Complete the table.

n 6 | 12 | 24 | 48 | 96

A

n

(d) What number does A, approach as n gets larger and larger?

Figure for 3

Figure for 4

. Let P(3, 4) be a point on the circle x> 4+ y? = 25.

(a) What is the slope of the line joining P and O(0, 0)?
(b) Find an equation of the tangent line to the circle at P.

(c) Let Q(x, y) be another point on the circle in the first quadrant.
Find the slope m, of the line joining P and Q in terms of x.

(d) Calculate lin% m,. How does this number relate to your
X2

answer in part (b)?

. Let P(5, —12) be a point on the circle x> + y> = 169.

(a) What is the slope of the line joining P and O(0, 0)?
(b) Find an equation of the tangent line to the circle at P.

(c) Let Q(x,y) be another point on the circle in the fourth
quadrant. Find the slope m, of the line joining P and Q in
terms of x.

(d) Calculate ling m,. How does this number relate to your
xX—>

answer in part (b)?
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6.

7.

Chapter 1 Limits and Their Properties

Find the values of the constants a and b such that

. Ja+ bx — \/5
lim———— = /3.
x—0 X

3+ B =2
Consider the function f(x) = xiil

(a) Find the domain of f.

IdP' (b) Use a graphing utility to graph the function.

10.

11.

(c) Calculate lim f(x).
x——=27"

(d) Calculate lin} ).

. Determine all values of the constant a such that the following

function is continuous for all real numbers.

ax

Pl x=0
— Jtanx
-
a’?—2, x<0
. Consider the graphs of the four functions g,, g, g3, and g,.
y y
3+ 3+ °
2 81 2 A/-o—{
1+ 1+
} } } X } } } X
1 2 3 1 2 3
y y
3o 3 F————o—
84
2+ 2+ °
83
1+ o—0 1
t t t X { - - x
1 2 3 1 2 3

For each given condition of the function f, which of the graphs
could be the graph of f?

(@) lim /() =3

(b) fis continuous at 2.

© lim f(x) =3

Sketch the graph of the function f(x) = Hi]‘

(a) Evaluatef(i),f(3), and f(1).
(b) Evaluate the limits lim f(x), lim f(x), lim f(x), and
. x—1" x—1t x—0
lim f(x).
x—0*"
(c) Discuss the continuity of the function.
Sketch the graph of the function f(x) = [x] + [—x].
(a) Evaluate f(1), £(0), £(3), and £(—2.7).
(b) Evaluate the limits liIP fx), lil? f(x), and lim f(x).
x—>1" x—1* .xe%

(c) Discuss the continuity of the function.

12.

13.

14.

To escape Earth’s gravitational field, a rocket must be launched
with an initial velocity called the escape velocity. A rocket
launched from the surface of Earth has velocity v (in miles per
second) given by

2GM 192,000
E— _l’_ [ ——

voz — T ~ + v02 — 48

where v, is the initial velocity, r is the distance from the rocket to

the center of Earth, G is the gravitational constant, M is the mass

of Earth, and R is the radius of Earth (approximately 4000 miles).

(a) Find the value of v, for which you obtain an infinite limit
for r as v approaches zero. This value of v is the escape
velocity for Earth.

A rocket launched from the surface of the moon has
velocity v (in miles per second) given by

B2 e -2
-

(b

~

Find the escape velocity for the moon.

(c) A rocket launched from the surface of a planet has velocity
v (in miles per second) given by

10,600
y = \/ 2 4 v? — 6.99.
r

Find the escape velocity for this planet. Is the mass of this
planet larger or smaller than that of Earth? (Assume that the
mean density of this planet is the same as that of Earth.)

For positive numbers a < b, the pulse function is defined as

0, «x<
P, x)=Hx—a) —Hx—b) =41, a<x<b
0, x=b
1, =20. - .
where H(x) = 0 0 is the Heaviside function.

(a) Sketch the graph of the pulse function.
(b) Find the following limits:
@i lim P_,(x) (i) lim P_,(x)
x—a* ’ x—a- ’

(iii) lil}} P, ,(x) (iv) lir}}i P, ,(x)

(c) Discuss the continuity of the pulse function.

(d) Why is

_ 1
b—a

U(x) P ab (x)

called the unit pulse function?
Let a be a nonzero constant. Prove that if liH(l) f(x) = L, then
Red
lirr(l) flax) = L. Show by means of an example that ¢ must be
Rerd

nonzero.
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In this chapter you will study one of the
most important processes of calculus—
differentiation. In each section, you will
learn new methods and rules for finding
derivatives of functions. Then you will
apply these rules to find such things as
velocity, acceleration, and the rates of
change of two or more related variables.

In this chapter, you should learn the
following.

® How to find the derivative of a function
using the limit definition and understand
the relationship between differentiability
and continuity. (2.1)

B How to find the derivative of a function

using basic differentiation rules. (2.2) ™

® How to find the derivative of a function
using the Product Rule and the Quotient
Rule. (2.3)

B How to find the derivative of a function
using the Chain Rule and the General
Power Rule. (2.4)

B How to find the derivative of a function
using implicit differentiation. (2.5)

B How to find a related rate. (2.6)

Al Bello/Getty Imags
When jumping from a platform, a diver’s velocity is briefly positive because of the

—m upward movement, but then becomes negative when falling. How can you use calculus
to determine the velocity of a diver at impact? (See Section 2.2, Example 10.)

To approximate the slope of a tangent line to a graph at a given point, find the slope of the secant line through the
given point and a second point on the graph. As the second point approaches the given point, the approximation tends
to become more accurate. (See Section 2.1.)

95
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96 Chapter 2  Differentiation

@ The Derivative and the Tangent Line Problem

Mary Evans Picture Library

ISAAC NEWTON (1642-1727)

In addition to his work in calculus, Newton

made revolutionary contributions to physics,

including the Law of Universal Gravitation
and his three laws of motion.

AN

Tangent line to a circle
Figure 2.1

B Find the slope of the tangent line to a curve at a point.
B Use the limit definition to find the derivative of a function.
B Understand the relationship between differentiability and continuity.

The Tangent Line Problem

Calculus grew out of four major problems that European mathematicians were working
on during the seventeenth century.

1. The tangent line problem (Section 1.1 and this section)

2. The velocity and acceleration problem (Sections 2.2 and 2.3)
3. The minimum and maximum problem (Section 3.1)

4. The area problem (Sections 1.1 and 4.2)

Each problem involves the notion of a limit, and calculus can be introduced with any
of the four problems.

A brief introduction to the tangent line problem is given in Section 1.1. Although
partial solutions to this problem were given by Pierre de Fermat (1601-1665), René
Descartes (1596-1650), Christian Huygens (1629-1695), and Isaac Barrow
(1630-1677), credit for the first general solution is usually given to Isaac Newton
(1642—1727) and Gottfried Leibniz (1646—1716). Newton’s work on this problem
stemmed from his interest in optics and light refraction.

What does it mean to say that a line is tangent to a curve at a point? For a circle,
the tangent line at a point P is the line that is perpendicular to the radial line at point
P, as shown in Figure 2.1.

For a general curve, however, the problem is more difficult. For example, how
would you define the tangent lines shown in Figure 2.2? You might say that a line is
tangent to a curve at a point P if it touches, but does not cross, the curve at point P.
This definition would work for the first curve shown in Figure 2.2, but not for the
second. Or you might say that a line is tangent to a curve if the line touches or
intersects the curve at exactly one point. This definition would work for a circle but
not for more general curves, as the third curve in Figure 2.2 shows.

y y

y=f&)

y=f(x)

/ \
Tangent line to a curve at a point
Figure 2.2

EXPLORATION

Identifying a Tangent Line Use a graphing utility to graph the function
f(x) = 2x3 — 4x> 4+ 3x — 5. On the same screen, graphy = x — 5,

y =2x — 5,and y = 3x — 5. Which of these lines, if any, appears to be
tangent to the graph of fat the point (0, —5)? Explain your reasoning.
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(c + Ax, f(c + Ax))

fle +Ax) = fle) = Ay

The secant line through (c, f(c)) and

(¢ + Ax,f(c + Ax))
Figure 2.3

THE TANGENT LINE PROBLEM

In 1637, mathematician René Descartes stated
this about the tangent line problem:

“And | dare say that this is not only the most
useful and general problem in geometry that
| know, but even that | ever desire to know.”

2.1  The Derivative and the Tangent Line Problem 97

Essentially, the problem of finding the tangent line at a point P boils down to the
problem of finding the slope of the tangent line at point P. You can approximate this
slope using a secant line* through the point of tangency and a second point on the
curve, as shown in Figure 2.3. If (c,f(c)) is the point of tangency and
(c + Ax, f(c + Ax)) is a second point on the graph of f, the slope of the secant line
through the two points is given by substitution into the slope formula

_ Y2 "N
Xy = X
_ f(C + Ax) — f(C) Change in y
Msec (c+ Ax) — ¢ Change in x
_ fle+ Ax) = fle) .
Moo = . Slope of secant line

Ax

The right-hand side of this equation is a difference quotient. The denominator Ax is
the change in x, and the numerator Ay = f(c + Ax) — f(c) is the change in y.

The beauty of this procedure is that you can obtain more and more accurate
approximations of the slope of the tangent line by choosing points closer and closer
to the point of tangency, as shown in Figure 2.4.

(¢, f(©) Z Ay Ar=0
/ Ay / @ f(c)) 7j /

Ax (¢ f(e)
/‘ Ay (flen/
,A,,J
T (e fle) (@ f(e) [ ay

%‘ / /Ax (e f(e)) /
(e, f(©))
Ax— 0
% angent line Tangent line

Tangent line approximations
Figure 2.4

DEFINITION OF TANGENT LINE WITH SLOPE m

If fis defined on an open interval containing ¢, and if the limit

lim &Y = jy Lo+ 89 —flo) _
Ax—0 Ax Ax—0 Ax

exists, then the line passing through (c, f(c)) with slope m is the tangent line
to the graph of fat the point (c, f(c)).

The slope of the tangent line to the graph of fat the point (c, f(c)) is also called

the slope of the graph of fatx = c.

* This use of the word secant comes from the Latin secare, meaning to cut, and is not a reference
to the trigonometric function of the same name.
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Chapter 2

Differentiation

EXAMPLE [l The Slope of the Graph of a Linear Function

Find the slope of the graph of
fx)=2x -3
at the point (2, 1).

Solution  To find the slope of the graph of f when ¢ = 2, you can apply the defini-
tion of the slope of a tangent line, as shown.

2 + Ax) — f(2) _ im [2(2 + Ax) — 3] = [2(2) — 3]
Ax Ax—0 Ax

44+2Ax—3—-4+3
Ax

lim

Ax—0

lim
Ax—0

247
Ax

1m
Ax—0

The slope of fat (2, 1) ism = 2.

Figure 2.5

= lim 2
Ax—0
=2

The slope of fat (c, f(c)) = (2, 1) is m = 2, as shown in Figure 2.5. ]

In Example 1, the limit definition of the slope of f agrees with the definition of the
slope of a line as discussed in Section P.2. |

The graph of a linear function has the same slope at any point. This is not true of
nonlinear functions, as shown in the following example.

EXAMPLE |3 Tangent Lines to the Graph of a Nonlinear Function

Find the slopes of the tangent lines to the graph of
flx) =x>+1
at the points (0, 1) and (—1, 2), as shown in Figure 2.6.

fey=xt+1 Solution Let (c, f(c)) represent an arbitrary point on the graph of f. Then the slope

Eﬁzg;nt 2T Tangent line of the tangent line at (c, f(c)) is given by
t (0, 1
(-1,2) /a 0, 1) ' f(c + Ax) —f(C) . [(C + Ax)2 + 1] _ (6‘2 + 1)
lim = lim
Ax—0 Ax Ax—0 Ax
2 - 2 ! — im 24+ 2c(Ax) + (Ax)2+1 —c2—1
The slope of fat any point (c, f(c)) is Ax—0 Ax
m = 2. . 2c(Ax) + (Ax)?
Figure 2.6 = Alif_r)lo A—x
= lim (2¢ + Ax)
Ax—0
= 2c.

So, the slope at any point (c, f(c)) on the graph of fis m = 2c. At the point (0, 1), the

slope is m = 2(0) = 0, and at (—1, 2), the slope is m = 2(—1) = —2. ]
In Example 2, note that ¢ is held constant in the limit process (as Ax— 0). [ |
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v Vertical
tangent
line

(¢, f(0))

Cc

The graph of f has a vertical tangent line at

(. f(0)).

Figure 2.7

FOR FURTHER INFORMATION
For more information on the crediting
of mathematical discoveries to the
first “discoverers,” see the article
“Mathematical Firsts—Who Done It?”
by Richard H. Williams and Roy D.
Mazzagatti in Mathematics Teacher.
To view this article, go to the website
www.matharticles.com.
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The definition of a tangent line to a curve does not cover the possibility of a
vertical tangent line. For vertical tangent lines, you can use the following definition.
If fis continuous at ¢ and

fle + Ax) = f(c) fle + Ax) = f(c)

lim =00 or lim = —0o0
Ax—0 Ax Ax—0 Ax

the vertical line x = ¢ passing through (c, f(c)) is a vertical tangent line to the graph
of f. For example, the function shown in Figure 2.7 has a vertical tangent line at
(c, f(c)). If the domain of fis the closed interval [a, b], you can extend the definition
of a vertical tangent line to include the endpoints by considering continuity and
limits from the right (for x = @) and from the left (for x = b).

The Derivative of a Function

You have now arrived at a crucial point in the study of calculus. The limit used to
define the slope of a tangent line is also used to define one of the two fundamental
operations of calculus—differentiation.

DEFINITION OF THE DERIVATIVE OF A FUNCTION

The derivative of f at x is given by

f’(x) = lim f(x + Ax) _f(x)

Ax—0 Ax

provided the limit exists. For all x for which this limit exists, f” is a function
of x.

Be sure you see that the derivative of a function of x is also a function of x. This
“new” function gives the slope of the tangent line to the graph of fat the point (x, f(x)),
provided that the graph has a tangent line at this point.

The process of finding the derivative of a function is called differentiation. A
function is differentiable at x if its derivative exists at x and is differentiable on an
open interval (a, b) if it is differentiable at every point in the interval.

In addition to f/(x), which is read as “f prime of x,” other notations are used to
denote the derivative of y = f(x). The most common are

dy , d

&, —, y, —[f®], D[yl Notation for derivatives
dx dx

The notation dy/dx is read as “the derivative of y with respect to x” or simply “dy,
dx.” Using limit notation, you can write

dy _ Ay
dx Aliglo Ax
+ p—
o S A — )

Ax—0 Ax

= f).
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100 Chapter 2  Differentiation

" JExampLE [EN Finding the Derivative by the Limit Process

Find the derivative of f(x) = x> + 2x.

Solution
iy = e S+ AY) = fx) U
f (X) Allgo Ax Definition of derivative
o e+ Ax)P + 20+ Ax) — (¥ + 2x)
= lim
Ax—0 Ax
When using the definition - x>+ 3x%Ax + 3x(Ax)? + (Ax)® + 2x + 2Ax — X3 — 2x
to find a derivative of a function, the key Ax—0 Ax
is to rewrite the difference quotient so . 3x2Ax + 3x(Ax)2 + (Ax)? + 2Ax
that Ax does not occur as a factor of the = lim
. Ax—0 Ax
denominator.
. AF[3x2 + 3xAx + (Ax)2 + 2]
= lim
Ax—0 M
= Al;m [3x2 + 3xAx + (Ax)? + 2]
=3x2+2 [ ]
Remember that the derivative of a function f1is itself a function, which can be used
to find the slope of the tangent line at the point (x, f(x)) on the graph of f.
EXAMPLE [} Using the Derivative to Find the Slope at a Point
Find f"(x) for f(x) = /x. Then find the slopes of the graph of fat the points (1, 1) and
(4, 2). Discuss the behavior of fat (0, 0).
Solution  Use the procedure for rationalizing numerators, as discussed in Section 1.3.
o flr+ A — () o
f (x) = Al)}go Ax Definition of derivative
— lim Vx + Ax — f
Ax—0
— im \/x+Ax—f Jx+ Ax + Ux
y Axv—0 Ax Ux + Ax + Ux
— lim (x + Ax) — x
3+ Ax50 Ax(\/x + Ax + f)
“2) = lim Ax
2T, : a0 Ax(Vx + Ax + V)
\ o = lim S
| 1 f@=vx A0 /x + Ax + Jx
o ! >0
% % % —x =—,
©0 1 5 3 4 N
The slope of fat (x, f(x)), x > 0, is At the point (1, 1), the slope is f/(1) = 5. At the point (4, 2), the slope is f1(4) = j.
m=1 /(2\/})_ See Figure 2.8. At the point (0, 0), the slope is undefined. Moreover, the graph of f
Figure 2.8 has a vertical tangent line at (0, 0). ]

The icon C indicates that you will find a CAS Investigation on the book’s website. The CAS

Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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2.1  The Derivative and the Tangent Line Problem 101

In many applications, it is convenient to use a variable other than x as the
independent variable, as shown in Example 5.

" JexampLe [E Finding the Derivative of a Function

(1,2)

O y=-2+4

At the point (1, 2), the line y = —2¢ + 4 s
tangent to the graph of y = 2/1.
Figure 2.9

(x, f(x))

L

(e, fle))

i
X—cC

) = fle)

X

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
Cc X

As x approaches c, the secant line approaches
the tangent line.
Figure 2.10

Find the derivative with respect to ¢ for the function y = 2/1.
Solution Considering y = f(¢), you obtain
+ Ar) —
dy _ oo U+ A) = f(0)

Definition of derivative

dt  A—0 Ar
2 _2
= lim M f(r+ Ar) =2/(r + Ar) and f(r) = 2/t
A10 At ‘ ‘
2t —2(t + A1)
. Ht + At) o
= A]:Lno T Combine fractions in numerator.
= lim i Divide out common factor of At.
ar—0 Xi(t)(t + Ar)
= lim _72 Simplify.
A0 t(t + Af)
2
= _72. Evaluate limit asAr— 0. |

—EITIINED A graphing utility can be used to reinforce the result given in
Example 5. For instance, using the formula dy/dt = —2/t?, you know that the

slope of the graph of y = 2/t at the point (1, 2) is m = —2. Using the point-slope
form, you can find that the equation of the tangent line to the graph at (1, 2) is

y—2=-=2(t—1) or y=-2t+4

as shown in Figure 2.9.

Differentiability and Continuity

The following alternative limit form of the derivative is useful in investigating the
relationship between differentiability and continuity. The derivative of fat c is

Alternative form of derivative

provided this limit exists (see Figure 2.10). (A proof of the equivalence of this form
is given in Appendix A.) Note that the existence of the limit in this alternative form
requires that the one-sided limits

e SO =@ W) = £

x—=c” X —C x—ct X —C

exist and are equal. These one-sided limits are called the derivatives from the left
and from the right, respectively. It follows that f is differentiable on the closed
interval [a, b] if it is differentiable on (a, b) and if the derivative from the right at a
and the derivative from the left at b both exist.
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2+ *——0O

1+ e—o
—t O——f——f—>x
-2 -1 1 2 3

7 f@) = [

&——-o0 -2

The greatest integer function is not differen-
tiable at x = 0, because it is not continuous
atx = 0.

Figure 2.11

If a function is not continuous at x = c, it is also not differentiable at x = ¢. For
instance, the greatest integer function

f&) =[]

is not continuous at x = 0, and so it is not differentiable at x = 0 (see Figure 2.11).
You can verify this by observing that

f0 =0 _ =0

lim ———— = Derivative from the left
x—0" x—0 x—0" X
and
. x) — f(0 . x| — 0
11r51+ L](;() = 11r51+ & = 0. Derivative from the right
xX—> X — xX—> X

Although it is true that differentiability implies continuity (as shown in Theorem 2.1
on the next page), the converse is not true. That is, it is possible for a function to be
continuous at x = ¢ and not differentiable at x = c¢. Examples 6 and 7 illustrate this
possibility.

" JExampLE [E A Graph with a Sharp Turn

- fy=]x-2|

i
1l

fis not differentiable at x = 2, because the
derivatives from the left and from the right
are not equal.
Figure 2.12

fis not differentiable at x = 0, because f has
a vertical tangent line at x = 0.
Figure 2.13

The function

fx) = |x — 2
shown in Figure 2.12 is continuous at x = 2. However, the one-sided limits
— -2 =0
lim M = lim u =—1 Derivative from the left
x—27 X — 2 x—27 X — 2
and
— -2 =0
lim f(x) f(2) = lim |x | =1 Derivative from the right
x—2F X — x—2+ X — 2

are not equal. So, fis not differentiable at x = 2 and the graph of f does not have a
tangent line at the point (2, 0).

EXAMPLE A Graph with a Vertical Tangent Line

The function

flx) = x5

is continuous at x = 0, as shown in Figure 2.13. However, because the limit

f&) = f(0) X3 -0

lim = lim
=0 x—0 x—0 X
i 1
= lim —/
x—0 x2/3
= oo

is infinite, you can conclude that the tangent line is vertical at x = 0. So, f is not
differentiable atx = 0. [ |

From Examples 6 and 7, you can see that a function is not differentiable at a point
at which its graph has a sharp turn or a vertical tangent line.
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—@ELITITED Some graphing
utilities, such as Maple, Mathematica,
and the T1-89, perform symbolic
differentiation. Others perform
numerical differentiation by finding
values of derivatives using the formula

fle+ Ax) — f(x — Ax)
2Ax

) =

where Ax is a small number such as
0.001. Can you see any problems with
this definition? For instance, using
this definition, what is the value of the
derivative of f(x) = |x| when x = 0?

2.1  The Derivative and the Tangent Line Problem 103

THEOREM 2.1 DIFFERENTIABILITY IMPLIES CONTINUITY

If fis differentiable at x = ¢, then fis continuous at x = c.

You can prove that fis continuous at x = ¢ by showing that f(x) approaches
f(c) as x—c. To do this, use the differentiability of f at x = ¢ and consider the

following limit.
lim [f(x) = f(c)] = lim [(x N C)<M>]

ol
= (0)Lf1c)]
=0

Because the difference f(x) — f(c) approaches zero as x— ¢, you can conclude that
lim f(x) = f(c). So, fis continuous at x = c. ]
xX—C

The following statements summarize the relationship between continuity and
differentiability.

1. If a function is differentiable at x = ¢, then it is continuous at x = ¢. So, differen-
tiability implies continuity.

2. It is possible for a function to be continuous at x = ¢ and not be differentiable at
x = c¢. So, continuity does not imply differentiability (see Example 6).

@ EXE I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1 and 2, estimate the slope of the graph at the
points (x,,y,) and (x,, y,).

In Exercises 3 and 4, use the graph shown in the figure.

To print an enlarged copy

of the graph, go to the website

www.mathgraphs.com.

1. (a) y (b) Y
I y
(p yy) ], a\ 6F (45 f
I (x2, yz) \ 5+
/ Oy ¥y) Cep yy) :*
I / X X -+
| / \ 2
/ gl
/ \ e
2. (a) y (b) y 3. Identify or sketch each of the quantities on the figure.
(a) f(1) and f(4) (b) f(4) — f(1)
4) — f(1
iy ©y=TE Wy 4
(¥ 202 "
A Ng x 4. Insert the proper inequality symbol (< or >) between the given
- A vy quantities.
o) @ W= @ - fC)
1 4 -1 4 -3
4) — f(1
o) LI
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104 Chapter 2  Differentiation

In Exercises 5-10, find the slope of the tangent line to the graph
of the function at the given point.

5 f(x) =3 — 5x, (—1,8) 6. glx) =3x+1, (=2,-2)
7. glx) =x>—9, (2,-5) 8. glx) =6 —x2, (1,5)
9. f(t) =3t — ¢, (0,0) 10. () =2+ 3, (—2,7)

In Exercises 11-24, find the derivative by the limit process.

11. f(x) = 2. glx) = -

13. f(x) = —10x 14. f(x) =3x + 2
15. h(s) = 3 + 35 16. f(x) = 8 — x
17. fx) = x> +x— 3 18. f(x) =2 — x2
19. f(x) = x> — 12x 0. f(x) = x> + x2
2. flx) = — 1 2. fl) = &

23. flx) = Vx + 4 24, f(x) = %

pP' In Exercises 25-32, (a) find an equation of the tangent line to the

graph of f at the given point, (b) use a graphing utility to graph
the function and its tangent line at the point, and (c) use the
derivative feature of a graphing utility to confirm your results.

25. f()—x2+3 (1,4)
f) =x>+3x+4, (-2,2)
27. f(x) =3, (2,8) 28. fx) =3+ 1, (1,2)
fx) = Vx, (1,1) 30. fx) = Vx— 1, (5,2
3. flx) = +§ (@, 5) 3. f(x) = ﬁ 0. 1)

In Exercises 33-38, find an equation of the line that is tangent
to the graph of f and parallel to the given line.

Function Line
33. f(x) = x? 2xx—y+1=0
34f(x)—2x 4 +y+3=0
35f() 3x—y+1=0
(x)—x + 2 3x—y—4=0
1
37. =— +2y—6=0
f(X) \/); X y
1
38. = +2y+7=0

In Exercises 39-42, the graph of f is given. Select the graph
of f'.
390 y 40. y

41. y 42. y

L " I v
~
w
}
S

-1 1 23 45

(a) y (b) y
5+ 4+
41 3+
3 2+

Mo
T
y
L \9:
o -
¢
=
|
-
|
1o -
|
_
—_
[
(S ~
=

4 2
© y (d) y
3+ 34+
24+ L 2+ /.,
1< A 1+ f
—+—+ ———>x —+—+ ———>x
-3-2 2 3 -3-2-1/, 1 2 3
—2 4
3+ 3L

43. The tangent line to the graph of y = g(x) at the point (4, 5)
passes through the point (7, 0). Find g(4) and g’(4).

44. The tangent line to the graph of y = h(x) at the point (—1, 4)
passes through the point (3, 6). Find h(—1) and h'(—1).

WRITING ABOUT CONCEPTS

In Exercises 45-50, sketch the graph of f’. Explain how you
found your answer.

-1 +-12345¢67
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WRITING ABOUT CONCEPTS (continued)

49.

51.

52.

50. y
4 -+
3+

f

1;\

—+— —+— X
x -3-2-1 | 1 2 3

-2+

Sketch a graph of a function whose derivative is always
negative. Explain how you found your answer.

Sketch a graph of a function whose derivative is always
positive. Explain how you found your answer.

In Exercises 53-56, the limit represents f’(c) for a function f

and

53.

55.

a number c. Find f and c.
. [5-301+Ay)]—2 o (=2+Ax)P+ 8
Aligl() Ax 54‘ Alv}E}() Ax
_.2 _
Jim —= 36 56, Tim 2/X =6
=6 x—6 =9 x—9

In Exercises 57-59, identify a function f that has the given
characteristics. Then sketch the function.

57. £(0) = 2; 58. £(0) = 4;17(0) = 0;
f'x) = -3,—c0o<x<o0 f(x) < O0forx < 0;

f(x) >0forx >0

59. £(0) = 0; £ (0) = 0; f'(x) > Oforx # 0

60.

Assume that f’(¢c) = 3. Find f’(—¢) if (a) fis an odd function
and if (b) fis an even function.

In Exercises 61 and 62, find equations of the two tangent lines
to the graph of f that pass through the indicated point.

61. f(x) = 4x — x? 62. f(x) = x?

A& 63.

y y
(2.5

— N W B W

D

Ias )\

Graphical Reasoning Use a graphing utility to graph each
function and its tangent lines at x = —1,x = 0, and x = 1.
Based on the results, determine whether the slopes of tangent
lines to the graph of a function at different values of x are
always distinct.

(@) flx) = x? ) glx) =3

2.1  The Derivative and the Tangent Line Problem 105

CAPSTONE

64. The figure shows the graph of g".

y

6 -

(a) g'0) = (b) g 3) =
(c) What can you conclude about the graph of g knowing
that (1) = =52

(d) What can you conclude about the graph of g knowing
that g'(—4) = 3

(e) Is g(6) — g(4) positive or negative? Explain.

(f) Is it possible to find g(2) from the graph? Explain.

ldP' 65. Graphical Analysis Consider the function f(x) = 3x2.
(a) Use a graphing utility to graph the function and estimate the
values off’(O),f/(%),f/(l), and f1(2).
(b) Use your results from part (a) to determine the values of
F(=2)£(=1), and f1(=2).
(c) Sketch a possible graph of f”.
(d) Use the definition of derivative to find f’(x).
ldP' 66. Graphical Analysis Consider the function f(x) = 3x°.
(a) Use a graphing utility to graph the function and estimate the
values of £/(0), /(3). £/(1). £1(2), and f/(3).
(b) Use your results from part (a) to determine the values of
F=3) (=1, £(=2), and £1(=3).
(¢) Sketch a possible graph of f”.
(d) Use the definition of derivative to find f’(x).

ldP' Graphical Reasoning In Exercises 67 and 68, use a graphing
utility to graph the functions f and g in the same viewing
window where

[ +0.01) — f(x)

glx) =

0.01
Label the graphs and describe the relationship between them.
67. f(x) = 2x — x2 68. f(x) = 3Vx

In Exercises 69 and 70, evaluate f(2) and f(2.1) and use the
results to approximate f”(2).

69. f(x) = x(4 — x) 70. f(x) = ix3

'dP' Graphical Reasoning In Exercises 71 and 72, use a graphing
utility to graph the function and its derivative in the same
viewing window. Label the graphs and describe the relationship
between them.

7. 1) = % 72. f(x) = xf ~ 3
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106 Chapter 2  Differentiation

In Exercises 73-82, use the alternative form of the derivative to
find the derivative at x = ¢ (if it exists).

73. f(x) =x> =35, ¢=3 74. gx) =x(x — 1), c=1
75. f(x) = x>+ 2x2+ 1, ¢ = -2

76. f(x) = x>+ 6x, c =2

77. glx) =

79. f(x) = (x —6)*3 c=6

80. g(x) = (x +3)13, ¢=-3

81. hx) =[x+ 7|, ¢ = —7 82. f(x) =|x—6], c=6

78. f(x) =2/x, ¢=5

In Exercises 83-88, describe the x-values at which f is
differentiable.

83. f(x) = %

84. f(x) = |x2 — 9|

ldF" Graphical Analysis 1In Exercises 89-92, use a graphing utility

to graph the function and find the x-values at which f is
differentiable.

4x
x—3

89. f(x) = |x — 5| 90. f(x) =
91. f(x) = x*/°

=32 +3x, x=<1
92. f(x) = {xz — oy

In Exercises 93-96, find the derivatives from the left and from
the right at x = 1 (if they exist). Is the function differentiable at
x=1?

93. f(x) = |x — 1| 9. f(x) = V1 —x?
_ 3 < <
SR e R TV URE

In Exercises 97 and 98, determine whether the function is
differentiable at x = 2.

2+1, x=2 XAl x<2

97‘f(x):{4x—3, x>2 98'f("):{ﬁ, x=2

99. Graphical Reasoning A line with slope m passes through
the point (0, 4) and has the equation y = mx + 4.

(a) Write the distance d between the line and the point (3, 1)
as a function of m.
ldP' (b) Use a graphing utility to graph the function d in part (a).
Based on the graph, is the function differentiable at every
value of m? If not, where is it not differentiable?

100. Conjecture Consider the functions f(x) = x?and g(x) = x°.

(a) Graph fand f’ on the same set of axes.
(b) Graph g and g’ on the same set of axes.

(c) Identify a pattern between f and g and their respective
derivatives. Use the pattern to make a conjecture about
h'(x) if h(x) = x", where n is an integer and n > 2.

(d) Find f/(x) if f(x) = x* Compare the result with the
conjecture in part (c). Is this a proof of your conjecture?
Explain.

True or False? 1In Exercises 101-104, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

101. The slope of the tangent line to the differentiable function f at

2+ Ax) — f(2
the point (2, £(2)) is f@+ 8% = f@)
Ax
102. If a function is continuous at a point, then it is differentiable
at that point.

103. If a function has derivatives from both the right and the left at
a point, then it is differentiable at that point.

104. If a function is differentiable at a point, then it is continuous
at that point.

.1
2 —
and g(x) X sin x#0

() = xsin)l? x#0
0, x=0 0, x=0

105. Let f

Show that f is continuous, but not differentiable, at x = 0.
Show that g is differentiable at 0, and find g’(0).

de’ 106. Writing Use a graphing utility to graph the two functions

f(x) =x*+1 and g(x)=|x| +1 in the same viewing
window. Use the zoom and trace features to analyze the graphs
near the point (0, 1). What do you observe? Which function is
differentiable at this point? Write a short paragraph describing
the geometric significance of differentiability at a point.
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2.2 Basic Differentiation Rules and Rates of Change 107

@ Basic Differentiation Rules and Rates of Change

y

The slope of a
horizontal line
is 0.

f)y=c
The derivative of a
constant function
is 0.

Notice that the Constant Rule is equivalent
to saying that the slope of a horizontal line
is 0. This demonstrates the relationship
between slope and derivative.

Figure 2.14

Find the derivative of a function using the Constant Rule.

Find the derivative of a function using the Power Rule.

Find the derivative of a function using the Constant Multiple Rule.
Find the derivative of a function using the Sum and Difference Rules.
Find the derivatives of the sine function and of the cosine function.
Use derivatives to find rates of change.

The Constant Rule

In Section 2.1 you used the limit definition to find derivatives. In this and the next two
sections you will be introduced to several “differentiation rules” that allow you to find
derivatives without the direct use of the limit definition.

THEOREM 2.2 THE CONSTANT RULE

The derivative of a constant function is 0. That is, if ¢ is a real number, then
d
—lc| = 0.
kel

(See Figure 2.14.)

Let f(x) = c. Then, by the limit definition of the derivative,
d
41 =

o S+ Ax) — f(v)
B Al;:go Ax

li c—cC
m
Ax—0 Ax

= lim 0 = 0. [ ]
Ax—0

EXAMPLE [l Using the Constant Rule

Function Derivative
ay=7 dy/dx = 0
b. f(x) =0 fx) =0
c. s(t) = -3 s()=0
d. y = k7?2, k is constant y' =0 ]

EXPLORATION

Writing a Conjecture Use the definition of the derivative given in Section 2.1
to find the derivative of each function. What patterns do you see? Use your
results to write a conjecture about the derivative of f(x) = x".

a. f(x) = x! b. f(x) = x? ¢ flx) =x3
d. f(x) = x* e. flx) =x1/2 f. f(x) =x7!
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108 Chapter 2  Differentiation

From Example 7 in Section 2.1,
you know that the function f(x) = x'/3 is
defined at x = 0, but is not differentiable
at x = 0. This is because x~2/3 is not
defined on an interval containing 0.

} } } }
T T T T x

1 2 3 4

The slope of the line y = xis 1.
Figure 2.15

The Power Rule

Before proving the next rule, it is important to review the procedure for expanding a
binomial.

(x + Ax)? = x2 + 2xAx + (Ax)?
(x + Ax)? = x® + 3x2Ax + 3x(Ax)? + (Ax)?
The general binomial expansion for a positive integer 7 is

nn — 1)x"=2

> (Ax)2 + - - -+ (Ax)

. o

(x + Ax)" = x" + nx" "1 (Ax) +

(Ax)? is a factor of these terms.

This binomial expansion is used in proving a special case of the Power Rule.

THEOREM 2.3 THE POWER RULE

If n is a rational number, then the function f(x) = x” is differentiable and

d

T [x"] = nx" 1.

For fto be differentiable at x = 0, n must be a number such that x” ! is
defined on an interval containing 0.

If n is a positive integer greater than 1, then the binomial expansion produces

i[ "= fim (x + Ax)m — x
dx Ax—0 Ax
— n—2
ok e i) + D (02 b (g -
- AIJ}EO Ax
— n—2

= Aligo [nx”_1 + n(n 21)x (Ax) + + (Ax)”‘l}

=px" '+0+---4+0

= px" 1L,

This proves the case for which n is a positive integer greater than 1. You will prove the
case for n = 1. Example 7 in Section 2.3 proves the case for which n is a negative
integer. In Exercise 76 in Section 2.5 you are asked to prove the case for which n is
rational. (In Section 5.5, the Power Rule will be extended to cover irrational
values of n.) [ |

When using the Power Rule, the case for which n = 1 is best thought of as a
separate differentiation rule. That is,

Power Rule when n = 1

d
a[x] = 1.

This rule is consistent with the fact that the slope of the line y = x is 1, as shown in
Figure 2.15.

Copyright 2010 Cengage Learning. All Rights Reserved.

May not be copied, scanned, or duplicated, in whole or in part.



11 1

-1 (0,0) 1

Note that the slope of the graph is negative
at the point (— 1, 1), the slope is zero at the
point (0, 0), and the slope is positive at the
point (1, 1).

Figure 2.16

fo=x2
(=2,4) 4+

% | —x
-2 \ 1 2

y=—4x-4

The line y = —4x — 4 is tangent to the

graph of f(x) = x?at the point (—2, 4).
Figure 2.17

2.2 Basic Differentiation Rules and Rates of Change

EXAMPLE JE3 Using the Power Rule

Function Derivative
a. f(x) = x3 Fx) =322
b. g(x) = Ix ¢'(x) = i[)61/3] NS
dx 3 3x2/3
! dy _d _, B 2
. = —_ = — = _2 3 — _ =
Cr=ea dx  dx L] = (=2 x3

109

In Example 2(c), note that before differentiating, 1/x> was rewritten as x~ 2.

Rewriting is the first step in many differentiation problems.

Given: Rewrite: Differentiate: Simplify:
_ 1 = 0 5 B d_ s a2
YT = dx (=2 dx

" JExampLE [EX Finding the Slope of a Graph

Find the slope of the graph of f(x) = x* when

a. x = —1 b. x =0 c. x = 1.

Solution The slope of a graph at a point is the value of the derivative at that point.

The derivative of fis f/(x) = 4x>.

a. When x = — 1, the slope is f(— 1)

b. When x = 0, the slope is £(0) = 4(0)3 = 0.
¢. When x = 1, the slope is f(1) = 4(1)> = 4.
See Figure 2.16.

Slope is zero.

O EXAMPLE n Finding an Equation of a Tangent Line

Find an equation of the tangent line to the graph of f(x) = x> when x = —2.

Slope is negative.

Slope is positive.

Solution To find the point on the graph of f, evaluate the original function at

x = —2.

(=2,/(=2) = (=2,4)

Point on graph

To find the slope of the graph when x = —2, evaluate the derivative, f/(x) = 2x, at

x= -2
m :f,(_z) =—4 Slope of graph at (=2, 4)

Now, using the point-slope form of the equation of a line, you can write

y == m(x - Xl) Point-slope form
y—4= —4[x — (—2)] Substitute for y,, m, and x,.
y=—4x — 4. Simplify.

See Figure 2.17.
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110 Chapter 2  Differentiation

The Constant Multiple Rule

THEOREM 2.4 THE CONSTANT MULTIPLE RULE

If fis a differentiable function and c is a real number, then cfis also

d
differentiable and j[cf(x)] = cf(x).
X

PROOF
d s
a[cf ()] = lim

Definition of derivative

Ax—0 Ax
~ g o -t 80 1]
=c [Aligo flar s AAx)g — f(X)} Apply Theorem 1.2.
= ¢f(x) u

Informally, the Constant Multiple Rule states that constants can be factored out
of the differentiation process, even if the constants appear in the denominator.

d d ,
a[Cf(x)]= 5[ Dfw] = o)

EXAMPLE ﬂ Using the Constant Multiple Rule

Function Derivative

— g @ - -1 —~ [+—1 _ -2 — _3

ay=-> i el LSl B RN
42 o dl4, 4,08

b. 1) = * f(t)—dt[s |-221 - e - 3

- dy - d 121 — (1 —1/2) - —1/2 — L
c.y=2Jx It dx[Zx 1=2 X X 7

_ 1 dy _d|1 —2/3} _l<_%> —5/3 — _ 1
dy=sve dx dx[Zx 2\ 73) " 35573

_ ok T .
&y 2 Y Tl 2” 2 2

The Constant Multiple Rule and the Power Rule can be combined into one rule. The
combination rule is

%[cx"] = cnx" L,
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2.2 Basic Differentiation Rules and Rates of Change 111

EXAMPLE ﬂ Using Parentheses When Differentiating

Original Function Rewrite Differentiate Simplify
2y =55 o IR Gt
by = o i I AT CE U B
¢y =35 s U5 IR e y=
d.y = (3)67)_2 y = 63(x?) vy’ = 63(2x) y’ = 126x

The Sum and Difference Rules

THEOREM 2.5 THE SUM AND DIFFERENCE RULES

The sum (or difference) of two differentiable functions fand g is itself
differentiable. Moreover, the derivative of f + g (or f — g) is the sum (or
difference) of the derivatives of fand g.

%[ F) + @] = (00 + g)  sumRule

%[f(x) - g(X)] :f/(X) - g’(x) Difference Rule

A proof of the Sum Rule follows from Theorem 1.2. (The Difference Rule
can be proved in a similar way.)

9 (0) + )] = g L A0+ gl )]~ /G0 gl

_ Sl + Ax) + glx + Ax) — f(x) — glx)
Ax—0 Ax

[Llet 89—t , gle 89 = )
Ax Ax

= lim flx + ixx) — ) Jim. glx + AAx; — g(x)

) + g'x) ]

Il
=

The Sum and Difference Rules can be extended to any finite number of functions.
For instance, if F(x) = f(x) + g(x) — h(x), then F'(x) = f(x) + g'(x) — h'(x).

EXAMPLE Using the Sum and Difference Rules

Function Derivative
a f(x) =% —dx +5 fla)=3x>—4
4
b. g(x) = —% + 3x3 — 2x g'x) = =243+ 9%x2 -2 ]
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112 Chapter 2  Differentiation

FOR FURTHER INFORMATION For
the outline of a geometric proof of the
derivatives of the sine and cosine
functions, see the article “The Spider’s
Spacewalk Derivation of sin”and cos””
by Tim Hesterberg in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.

The derivative of the sine function is the
cosine function.

Figure 2.18
=2sinx y:ésinx
y= 2 2
i
=T m
—
|
-2

y=sinx y:%sinx

d. .
p» [asinx] = acosx

Figure 2.19

Derivatives of the Sine and Cosine Functions

In Section 1.3, you studied the following limits.

sin Ax _ 1 — cos Ax _
Ax Ax

These two limits can be used to prove differentiation rules for the sine and cosine
functions. (The derivatives of the other four trigonometric functions are discussed in
Section 2.3.)

lim 0

Ax—0

1 lim
Ax—0

and

THEOREM 2.6 DERIVATIVES OF SINE AND COSINE FUNCTIONS

a[sin x] = cos x d%[cos x] = —sinx
4 [sinx] = lim sin(x + Ax) — sinx Definition of derivative
dx Ax—0 Ax
~ lim sin x cos Ax + cos x sin Ax — sin x
Ax—0 Ax
— i SOSX sin Ax — (sin x)(1 — cos Ax)
Ax—0 A)C
= lim [(cos x) (Sin Ax) — (sin x)(l_COSAx)]
x>0 Ax Ax
= Cos x( lim sin Ax) — sin x< lim w)
Ax—0  Ax Ax—0 Ax

= (cos x)(1) — (sin x)(0)

= COS X

This differentiation rule is shown graphically in Figure 2.18. Note that for each x, the
slope of the sine curve is equal to the value of the cosine. The proof of the second rule

is left as an exercise (see Exercise 120). [ ]
\_  EXAMPLE IE] Derivatives Involving Sines and Cosines
Function Derivative
a.y =2sinx vy’ =2cosx
b sinx 1 sin , 1 cos cos X
Ly = —— = —ginx = —Ccosx =
YT T2 ) 2
c.y=ux+cosx y'=1—sinx [

= TECHNOLOGY JN graphing utility can provide insight into the interpretation of a
derivative. For instance, Figure 2.19 shows the graphs of

y =asinx

for a =3, 1,3, and 2. Estimate the slope of each graph at the point (0, 0). Then
verify your estimates analytically by evaluating the derivative of each function
when x = 0.
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Time-lapse photograph of a free-falling
billiard ball
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Rates of Change

You have seen how the derivative is used to determine slope. The derivative can also be
used to determine the rate of change of one variable with respect to another. Applications
involving rates of change occur in a wide variety of fields. A few examples are
population growth rates, production rates, water flow rates, velocity, and acceleration.

A common use for rate of change is to describe the motion of an object moving
in a straight line. In such problems, it is customary to use either a horizontal or a
vertical line with a designated origin to represent the line of motion. On such lines,
movement to the right (or upward) is considered to be in the positive direction, and
movement to the left (or downward) is considered to be in the negative direction.

The function s that gives the position (relative to the origin) of an object as a
function of time ¢ is called a position function. If, over a period of time Az, the object
changes its position by the amount As = s(t + Af) — s(¢), then, by the familiar
formula

_ distance

Rate ;
time

the average velocity is

Change in distance _ As
Change in time At

Average velocity

EXAMPLE ﬂ Finding Average Velocity of a Falling Object

If a billiard ball is dropped from a height of 100 feet, its height s at time 7 is given by
the position function

s = —16¢2 + 100 Position function

where s is measured in feet and ¢ is measured in seconds. Find the average velocity
over each of the following time intervals.

a. [1,2] b. [1, 1.5] c. [1,1.1]
Solution

a. For the interval [1, 2], the object falls from a height of s(1) = —16(1)> + 100 = 84
feet to a height of s(2) = —16(2)?> + 100 = 36 feet. The average velocity is
As 36 — 84 —48
AN 21 1 T —48 feet per second.
b. For the interval [1, 1.5], the object falls from a height of 84 feet to a height of
64 feet. The average velocity is
As 64— 84  —20

At 15-1 05

c. For the interval [1, 1.1], the object falls from a height of 84 feet to a height of
80.64 feet. The average velocity is
As  80.64 —84 —336

~- 111 - ol - —33.6 feet per second.

= —40 feet per second.

Note that the average velocities are negative, indicating that the object is moving
downward. [ |

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



114 Chapter 2  Differentiation

Tangent line

/

Secant line

} 1 t
t=1 tz\

The average velocity between ¢, and ¢, is
the slope of the secant line, and the
instantaneous velocity at 7, is the slope
of the tangent line.

Figure 2.20

Velocity is positive when an object is rising,
and is negative when an object is falling.
Notice that the diver moves upward for the
first half-second because the velocity is
positive for 0 < f < % When the velocity
is 0, the diver has reached the maximum
height of the dive.

Figure 2.21

Suppose that in Example 9 you wanted to find the instantaneous velocity (or
simply the velocity) of the object when ¢ = 1. Just as you can approximate the slope
of the tangent line by calculating the slope of the secant line, you can approximate the
velocity at ¢ = 1 by calculating the average velocity over a small interval [1, 1 + At]
(see Figure 2.20). By taking the limit as Az approaches zero, you obtain the velocity
when t = 1. Try doing this—you will find that the velocity when ¢ = 1 is —32 feet
per second.

In general, if s = s(¢) is the position function for an object moving along a
straight line, the velocity of the object at time ¢ is

W(0) = Tim s(t + Ar) — s(2)

/| . o .
= s'(1). Velocity function
Ar—0 At ( ) Y

In other words, the velocity function is the derivative of the position function. Velocity
can be negative, zero, or positive. The speed of an object is the absolute value of its
velocity. Speed cannot be negative.

The position of a free-falling object (neglecting air resistance) under the influence
of gravity can be represented by the equation

1
s(t) = ngz + vt + 5 Position function

where s, is the initial height of the object, v, is the initial velocity of the object, and g
is the acceleration due to gravity. On Earth, the value of g is approximately —32 feet
per second per second or —9.8 meters per second per second.

EXAMPLE [Ii] Using the Derivative to Find Velocity

At time ¢ = 0, a diver jumps from a platform diving board that is 32 feet above the
water (see Figure 2.21). The position of the diver is given by

s(t) = —1662 + 16t + 32 Position function
where s is measured in feet and ¢ is measured in seconds.

a. When does the diver hit the water?

b. What is the diver’s velocity at impact?
Solution

a. To find the time  when the diver hits the water, let s = 0 and solve for ¢.

—16:2 4+ 16t +32 =0 Set position function equal to 0.
—16(t+ 1)t —2)=0 Factor.
t=—1lor2 Solve for .

Because ¢ = 0, choose the positive value to conclude that the diver hits the water
at t = 2 seconds.

b. The velocity at time ¢ is given by the derivative s(f) = —32¢ + 16. So, the
velocity at time ¢ = 2 is

s(2) = —32(2) + 16 = —48 feet per second. ]
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In Exercises 1 and 2, use the graph to estimate the slope of the
tangent line to y = x” at the point (1, 1). Verify your answer
analytically. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

L (a) y =x'/2 (b) y=ux°
y y
) . /
—
! ) : ()
X X
1 2 1 2

2. (a) y=x'? (b) y=x""

(1,1 (1, 1)

~—

o2 3 2

In Exercises 3-24, use the rules of differentiation to find the
derivative of the function.

.y=12 4. f(x) = =9
5.y=x" 6. y = x'°
7.y:% 8.y:£

9. flx) = Ix 10. g(x) = ¥x

11. f(x) = x + 11 12. g(x) =3x — 1
13. f(1) = =212+ 3t — 6 4. y=1t>+2t—-3

15. g(x) = x2 + 4x3
17. s(t) =3 + 52 — 3t + 8 18. f(x) = 243 — x% + 3x

Basic Differentiation Rules and Rates of Change

@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

Rewrite

Differentiate

Original Function
28. y = (3;7)2
29. y = %
30. y = é

X

In Exercises 31-38, find the slope of the graph of the function at
the given point. Use the derivative feature of a graphing utility

to confirm your results.

Function

8

31. f(x) = 2
3
32. f(l) =3 - §

3B f) = 5+ &
34.y=33-10

35. y = (4x + 1)

36. £(0) = 3(5 — x>
37. f(0) = 4sin0 — 0
38. g(r) = —2cost + 5

Point

In Exercises 39-54, find the derivative of the function.

39. f(x) =x*+5—3x2

41. g(r) = 1> — %
3 + 2
43. f(x) = u
X
x> —3x2+ 4
45. f(x) = s

47. y = x(x*> + 1)

49. f(x) = Jx — 6 Yx

40. f(x) = x> — 3x — 3x72
1
42. f(x) = x + e

-6
2

44. f(x) =

X

2x2 — 3x + 1
X

48. y = 3x(6x — 5x2)
50. f(x) = Jx + Ix

46. h(x) =

Simplify

19. y = %Tsin 6 — cos 6 20. g(t) = mwcost 51. h(s) = s¥/5 — §2/3 52. f(t) = 123 — 13 + 4
1 . 2
21 y = x* — jcosx 22. y =17 +sinx 53. f(x) = 6J/x + 5cosx 54.f(x)=?+3005x
X
23.y=1—3sinx 24.y=i§+2cosx
X (2x)° ldP' In Exercises 55-58, (a) find an equation of the tangent line to

In Exercises 25-30, complete the table.

Original Function — Rewrite Differentiate Simplify
25. y = 2ix2
26. y = é
27. y = (5i)3

the graph of f at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of a graphing utility to confirm your
results.

Function Point
55. y =x*—=3x2+2 (1,0)
56. y = x> + x (=1,-2)
2
57. f(x) = s (1,2)
58. y = (x2+ 2x)(x + 1) (1,6)
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116 Chapter 2  Differentiation

In Exercises 59-64, determine the point(s) (if any) at which the
graph of the function has a horizontal tangent line.

59. y =x*—2x2+3

60. y = x3 + x
1

61.y:F

62. y=x>+9

63. y=x t+sinx, 0<x<27w
64. y = /3x +2cosx, 0<x<2m

In Exercises 65-70, find k such that the line is tangent to the
graph of the function.

Function Line
65. f(x) = x> — kx y=25x—4
66. f(x) = k — x> y=—6x+1
k 3
67.f(x)—x y—*4x+3
68. f(x) = kVx y=x+4
69. f(x) = kx* y=x+1
70. f(x) = kx* y=4x — 1

71. Sketch the graph of a function f such that f* > 0 for all x and
the rate of change of the function is decreasing.

CAPSTONE

72. Use the graph of f to answer each question. To print
an enlarged copy of the graph, go to the website
www.mathgraphs.com.

y

(a) Between which two consecutive points is the average
rate of change of the function greatest?

(b) Is the average rate of change of the function between A
and B greater than or less than the instantaneous rate of
change at B?

(c) Sketch a tangent line to the graph between C and D such
that the slope of the tangent line is the same as the
average rate of change of the function between C and D.

WRITING ABOUT CONCEPTS

In Exercises 73 and 74, the relationship between f and g is
given. Explain the relationship between f’ and g".

73. glx) = f(x) + 6
74. g(x) = =5f(x)

WRITING ABOUT CONCEPTS (continued)

In Exercises 75 and 76, the graphs of a function f and its
derivative f” are shown on the same set of coordinate axes.
Label the graphs as f or f” and write a short paragraph
stating the criteria you used in making your selection. To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

75. y 76. y

1 ——
) ——

|

w -+
|

o -
|

_ 4

|

T \ T

77. Sketch the graphs of y = x? and y = —x? + 6x — 5, and
sketch the two lines that are tangent to both graphs. Find
equations of these lines.

78. Show that the graphs of the two equations y = x and y = 1/x

have tangent lines that are perpendicular to each other at their
point of intersection.

79. Show that the graph of the function

flx) = 3x + sinx + 2

does not have a horizontal tangent line.
80. Show that the graph of the function

flx) = x4+ 3x° + 5x

does not have a tangent line with a slope of 3.

In Exercises 81 and 82, find an equation of the tangent line to
the graph of the function f through the point (x,, y,) not on the
graph. To find the point of tangency (x,y) on the graph of f,
solve the equation

fo =22
Xy — X

[\S]

81. f(x) = Vx

(xo’ YO) =(-4,0)

82. f(x) ==

(xo’ Yo) = (5,0)

=

ldP' 83. Linear Approximation Use a graphing utility, with a square
window setting, to zoom in on the graph of

fl) =4 — 32
to approximate f’(1). Use the derivative to find £/(1).

84. Linear Approximation Use a graphing utility, with a square
window setting, to zoom in on the graph of

flx) =4Vx + 1

to approximate f’(4). Use the derivative to find f/(4).
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2.2 Basic Differentiation Rules and Rates of Change 117

pP' 85. Linear Approximation Consider the function f(x) = x*2 with -1 . T

the solution point (4, 8). 95. f(x) = T [1.2] 96. f(x) = sinx, [0’ E]

(a) Use a graphing utility to graph f. Use the zoom feature to . . X .
obtain successive magnifications of the graph in the neigh- Vertical Motion In Exercises 97 and 98, _use the position
borhood of the point (4, 8). After zooming in a few times, function s(t) = —16¢* + ¢ + s, for free-falling objects.
the graph should appear nearly linear. Use the trace feature

97. A silver dollar is dropped from the top of a building that is
to determine the coordinates of a point near (4, 8). Find an 1362 feet tall.

uation of the secant line S(x) through the two points. . .. . . .
eq ] é (x) throug P (a) Determine the position and velocity functions for the coin.
(b) Find the equation of the line . . .
(b) Determine the average velocity on the interval [1, 2].

T(x) = f4)x — 4) + f(4) (c) Find the instantaneous velocities when t = 1 and ¢ = 2.
tangent to the graph of f passing through the given point. (d) Find the time required for the coin to reach ground level.
Why are the linear functions S and 7 nearly the same? (¢) Find the velocity of the coin at impact.

(c) Use a graphing utility to graph fand T on the same set of 98. A ball is thrown straight down from the top of a 220-foot
coordme}te axes. Note that T is a good approximation of f building with an initial velocity of —22 feet per second. What
when x is close to 4. What happens to the accuracy of the is its velocity after 3 seconds? What is its velocity after falling
approximation as you move farther away from the point of 108 feet?
tangency?

(d) Demonstrate the conclusion in part (c) by completing the Vertical Motion In Exercises 99 and 100, use the position func-
table. tion s(f) = —4.9¢% + vyt + s, for free-falling objects.

99. A projectile is shot upward from the surface of Earth with an
Ax -3, -2, -1, =05} -01 0 initial velocity of 120 meters per second. What is its velocity

? ?

f(4 + Ax) after 5 seconds? After 10 seconds?
100. To estimate the height of a building, a stone is dropped from
T(4 + Ax) the top of the building into a pool of water at ground level.
How high is the building if the splash is seen 5.6 seconds after

Ax 0.1 | 0.5 1 2 3 the stone is dropped?

f@ + Ax) Think About It In Exercises 101 and 102, the graph of a
T4 + A position function is shown. It represents the distance in miles
(@ + Ax) that a person drives during a 10-minute trip to work. Make a

sketch of the corresponding velocity function.
ldP' 86. Linear Approximation Repeat Exercise 85 for the function ‘
f(x) = x3 where T(x) is the line tangent to the graph at the point 101. " 102. N

(1, 1). Explain why the accuracy of the linear approximation é é
decreases more rapidly than in Exercise 85. é ]
Q (5]
True or False? 1In Exercises 87-92, determine whether the é §
statement is true or false. If it is false, explain why or give an E t E t
example that shows it is false. 0,02 46 810 0,002 46 810
Time (in minutes) Time (in minutes)

87. If f/(x) = g’(x), then f(x) = g(x).

88. If f(x) = g(x) + ¢, then f(x) = g'(x). Thmlf About.lt .In Exercises 103 and 104, tl.le fgrap.h of a
— 2 h — 5 velocity function is shown. It represents the velocity in miles per

89. Ity = % then dy/dx = 2. hour during a 10-minute drive to work. Make a sketch of the

90. If y = x/m, then dy/dx = 1/m. corresponding position function.

91. If g(x) = 3f(x), then g’(x) = 3f(x).

103. v 104. v

92. If f(x) = 1/x", then f'(x) = 1/(nx"~1). E 0+ — E st —

= 50+ [ = 50—+ 1 1

1 1 ,S 1 1

In Exercises 93-96, find the average rate of change of the func- § ‘3‘8 Ir o = ;‘8 T ! !

tion over the given interval. Compare this average rate of 5 204+ 000 Tg 20+ 00
change with the instantaneous rates of change at the endpoints § 10T .. e T

of the interval. 246 810 246 810
93. f(t) =4+ 5, [1’ 2] 94, f(l) - [3’ 3'1] Time (in minutes) Time (in minutes)
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'dP' 105.

106.

107.

108.

Chapter 2  Differentiation

Modeling Data The stopping distance of an automobile, on
dry, level pavement, traveling at a speed v (kilometers per
hour) is the distance R (meters) the car travels during the
reaction time of the driver plus the distance B (meters) the car
travels after the brakes are applied (see figure). The table
shows the results of an experiment.

Reaction
time

Braking
distance

1

1

|
( Y
| l
| l

|

]

Hn

»----

t 2 & B

Driver sees  Driver applies Car
obstacle brakes stops
Speed, v 20 40 60 80 100
Reaction Time
Distance, R 83 | 16.7 | 25.0 | 33.3 | 41.7
Braking Time
Distance, B 2.3 9.0 | 20.2 | 358 | 559

(a) Use the regression capabilities of a graphing utility to find
a linear model for reaction time distance.

(b) Use the regression capabilities of a graphing utility to find
a quadratic model for braking distance.

(c) Determine the polynomial giving the total stopping
distance T.

(d) Use a graphing utility to graph the functions R, B, and T
in the same viewing window.

(e) Find the derivative of T and the rates of change of the total
stopping distance for v = 40, v = 80, and v = 100.

(f) Use the results of this exercise to draw conclusions about
the total stopping distance as speed increases.

Fuel Cost A car is driven 15,000 miles a year and gets x
miles per gallon. Assume that the average fuel cost is $2.76
per gallon. Find the annual cost of fuel C as a function of x and
use this function to complete the table.

x 10 | 15 | 20 | 25 | 30 | 35 | 40

C

dCldx

Who would benefit more from a one-mile-per-gallon increase
in fuel efficiency—the driver of a car that gets 15 miles per
gallon or the driver of a car that gets 35 miles per gallon?
Explain.

Volume The volume of a cube with sides of length s is given

by V = 3. Find the rate of change of the volume with respect
to s when s = 6 centimeters.

Area The area of a square with sides of length s is given by
A = 2. Find the rate of change of the area with respect to s
when s = 6 meters.

109. Velocity Verify that the average velocity over the time
interval [f, — At, t, + Ar] is the same as the instantaneous
velocity at ¢ = ¢, for the position function

s(t) = —%at2 + c.

110. Inventory Management The annual inventory cost C for a
manufacturer is

1,008,000
Cc = 22
o

where Q is the order size when the inventory is replenished.
Find the change in annual cost when Q is increased from 350
to 351, and compare this with the instantaneous rate of change
when Q = 350.

111. Writing The number of gallons N of regular unleaded
gasoline sold by a gasoline station at a price of p dollars per
gallon is given by N = f(p).

(a) Describe the meaning of £/(2.979).
(b) Is £1(2.979) usually positive or negative? Explain.

112. Newton’s Law of Cooling This law states that the rate of
change of the temperature of an object is proportional to the
difference between the object’s temperature 7 and the
temperature 7, of the surrounding medium. Write an equation
for this law.

+ 630

113. Find an equation of the parabolay = ax®> + bx + c that passes
through (0, 1) and is tangent to the liney = x — 1 at (1, 0).

114. Let (a, b) be an arbitrary point on the graph of y = 1/x,
x > 0. Prove that the area of the triangle formed by the
tangent line through (a, b) and the coordinate axes is 2.

115. Find the tangent line(s) to the curve y = x> — 9x through the
point (1, —9).

116. Find the equation(s) of the tangent line(s) to the parabola
y = x? through the given point.
(@ (0,a)  (b) (a,0)

Are there any restrictions on the constant a?

In Exercises 117 and 118, find a and b such that f is differen-
tiable everywhere.

17. f(x) = {”3’ r=2
X2+b, x>2

_|cosx, x<0

ws s = {27, 12

119. Where are the functions f(x) = |sinx| and f,(x) = sin |x|
differentiable?

120. Prove that a [cos x] = —sinx.
dx

FOR FURTHER INFORMATION For a geometric interpretation
of the derivatives of trigonometric functions, see the article “Sines
and Cosines of the Times” by Victor J. Katz in Math Horizons. To
view this article, go to the website www.matharticles.com.
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2.3  Product and Quotient Rules and Higher-Order Derivatives 119

@ Product and Quotient Rules and Higher-Order Derivatives

Find the derivative of a function using the Product Rule.
Find the derivative of a function using the Quotient Rule.
Find the derivative of a trigonometric function.

Find a higher-order derivative of a function.

The Product Rule

In Section 2.2 you learned that the derivative of the sum of two functions is simply the
sum of their derivatives. The rules for the derivatives of the product and quotient of
two functions are not as simple.

THEOREM 2.7 THE PRODUCT RULE

A version of the Product Rule The product of two differentiable functions fand g is itself differentiable.
that some people prefer is Moreover, the derivative of fg is the first function times the derivative of the

second, plus the second function times the derivative of the first.

W] = g0 + fx)g ),

L 0g0)] = W @) + g )

The advantage of this form is that it
generalizes easily to products of three
or more factors.

Some mathematical proofs, such as the proof of the Sum Rule, are straight-
forward. Others involve clever steps that may appear unmotivated to a reader. This
proof involves such a step—subtracting and adding the same quantity—which is
shown in color.

da _ o Jle+ Ax)glx + Ax) — flx)g(x)
4 fwgto] = Jim, .
— im flx + Ax)g(x + Ax) — flx + A;()g(x) + flx + Ax)g(x) — flx)g(x)
Ax—0 x
- Jim, s - anpR G ¢ o G =)
= Jim, [f(x +agfletan s g(x)} + lim [g<x>f LA ] (x)}

glx + Ax) — g(x) Sl + Ax) — flx)

= dim Sl A fim T it i T
= fla)g'(x) + g(x)f (x) n

Note that Alim0 f(x + Ax) = f(x) because fis given to be differentiable and therefore

is continuous.
The Product Rule can be extended to cover products involving more than two
factors. For example, if f, g, and & are differentiable functions of x, then

WA = FRIA0) + Fg (R + FIgh ().
For instance, the derivative of y = x? sin x cos x is

dy

[GEE@ The proof of the Product Rule o 2x sin x cos x + x?cos x cos x + x?sin x(—sin x)
for products of more than two factors is X
left as an exercise (see Exercise 141). = 2x sin x cos x + x%(cos2x — sinZx).
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120 Chapter 2  Differentiation

THE PRODUCT RULE

When Leibniz originally wrote a formula for
the Product Rule, he was motivated by the
expression

X+ do(y+ dy — xy

from which he subtracted dx dy (as being
negligible) and obtained the differential form
xdy + ydx. This derivation resulted in the
traditional form of the Product Rule. (Source:
The History of Mathematics by David M.
Burton)

In Example 3, notice that you
use the Product Rule when both factors
of the product are variable, and you use
the Constant Multiple Rule when one of
the factors is a constant.

The derivative of a product of two functions is not (in general) given by the product
of the derivatives of the two functions. To see this, try comparing the product of the
derivatives of f(x) = 3x — 2x?and g(x) = 5 + 4x with the derivative in Example 1.

EXAMPLE [l Using the Product Rule

Find the derivative of h(x) = (3x — 2x2)(5 + 4x).

Solution
Derivative Derivative
First of second Second of first
r A ~ N ——

h'(x) = Bx — 2x?) %[5 +4x] + (5 + 4x)dii[3x — 2x%] Apply Product Rule.
= (Bx — 2x3)(4) + (5 + 4x)(3 — 4x)

(12x — 8x2) + (15 — 8x — 16x?)

—24x% + 4x + 15 n

In Example 1, you have the option of finding the derivative with or without the
Product Rule. To find the derivative without the Product Rule, you can write

D, [(3x — 2x?)(5 + 4x)] = D [—8x3 + 2x? + 15x]
= —24x? + 4x + 15.

In the next example, you must use the Product Rule.

EXAMPLE |3 Using the Product Rule

Find the derivative of y = 3x? sin x.

Solution
d.. . ,d . d,
z[3x sin x] = 3x d*[Sll‘l x] + s1nxj[3x ] Apply Product Rule.
by X by
= 3x2 cos x + (sin x)(6x)
= 3x2cos x + 6x sin x

= 3x(x cos x + 2 sin x)

EXAMPLE Using the Product Rule

Find the derivative of y = 2x cos x — 2 sin x.

Solution
Product Rule Constant Multiple Rule

s N Is N

D — (09 Leos 1) + (eos 92126 - 2 Lfsin

= (2x)(—sin x) + (cos x)(2) — 2(cos x)
—2x sinx [ |
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—@ETLTITIED A graphing utility
can be used to compare the graph

of a function with the graph of its
derivative. For instance, in Figure
2.22, the graph of the function in
Example 4 appears to have two points
that have horizontal tangent lines. What
are the values of y” at these two points?

,=—5x2+4x+5

(% +1)? 6

_5x-2 74
Y x2+1

Graphical comparison of a function and
its derivative
Figure 2.22
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The Quotient Rule

THEOREM 2.8 THE QUOTIENT RULE

The quotient f/g of two differentiable functions fand g is itself differentiable
at all values of x for which g(x) # 0. Moreover, the derivative of f/g is given
by the denominator times the derivative of the numerator minus the numerator
times the derivative of the denominator, all divided by the square of the
denominator.

d [f(x)} _ g)fx) — fx)g(x) o) £ 0

dx| g(x) [g(x)]? ’

As with the proof of Theorem 2.7, the key to this proof is subtracting and
adding the same quantity.

fe + Ax)  flx)

i[@} — lim g+ Ay gl
Ax—0

Definition of derivative

dx| g(x) Ax
s+ A — gl + AY
Ax—0 Axg(x)g(x + Ax)
L sl AR — f()el) + /(s(s) — gl + A
Ax—>0 Axg(x)g(x + Ax)
gL+ A0 ] et + Ax) — g(0)]
_ Ax>0 Ax Ax—0 Ax
; dim [g(x)g(x + Ax)]
o09] Jim, PG — g i S S0
B lim [g(x)glx + Ax)]
_ sWf ) = fx)g'x) .
[g(x)]?

Note that Alim0 g(x + Ax) = g(x) because g is given to be differentiable and therefore
X—

is continuous.

EXAMPLE [ Using the Quotient Rule

Find the derivative of y = )5; :_ f
Solution
(x2 + 1)i[5x — 2] — (5x — 2)i[x2 + 1]
d|5x—2 dx dx .
a[xz + 1} - (x2 + 1)2 Apply Quotient Rule.
_ (x2 + 1(5) — (5x — 2)(2x)
(x2+ 1)
_(5x2+5) — (10x2 — 4w)
(x2 + 1)?
—5x2+4x + 5
RS C
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Note the use of parentheses in Example 4. A liberal use of parentheses is
recommended for all types of differentiation problems. For instance, with the
Quotient Rule, it is a good idea to enclose all factors and derivatives in parentheses,
and to pay special attention to the subtraction required in the numerator.

When differentiation rules were introduced in the preceding section, the need for
rewriting before differentiating was emphasized. The next example illustrates this
point with the Quotient Rule.

EXAMPLE E Rewriting Before Differentiating

3 - (/)

1S at (—1,1).

Find an equation of the tangent line to the graph of f(x) =

Solution  Begin by rewriting the function.

f(x) = %(IS/X) Write original function.
6!
f)= P )56 , = T"‘; Multiply numerator and denominator by x.
_x—1 Rewrite
x2 + Sx ewrite.
ooy 2+ 5003) = Bx — 1)(2x + 5) .
fx) = 2 + 52 Quotient Rule
_ (3x2 + 15x) — (6x2 + 13x — 9)
) (x2 + 5x)2
_ —3x2+2x+5 -
—(x2 T SX)Z implify.
To find the slope at (—1, 1), evaluate f'(—1).
1) =0 S f graph at (— 1, 1)
The line y = 1 is tangent to the graph of f= ope ot
f(x) at the point (—1, 1). Then, using the point-slope form of the equation of a line, you can determine that the
Figure 2.23 equation of the tangent line at (—1, 1) is y = 1. See Figure 2.23. |

Not every quotient needs to be differentiated by the Quotient Rule. For example,
each quotient in the next example can be considered as the product of a constant times
a function of x. In such cases it is more convenient to use the Constant Multiple Rule.

EXAMPLE [ Using the Constant Multiple Rule

Original Function Rewrite Differentiate Simplify
x2 + 3x 1 1 2x+ 3
a.y= =—(x2+3 "=—(2x+3 f=
y 5 y=ob? 43 =20 t3) c
5x* 5 5 5
b = — = — 4 /== 3 /== 3
Y=g y =¥ v =g yi=gx
To see the benefit of using —3(3x — 2x?) ) 3 6
the Constant Multiple Rule for some C.y= Tx = -3 -2 y = _7(_2) y = 7
quotients, try using the Quotient Rule
to differentiate the functions in Example d. y= % y = g(x—z) y = 2(_2x—3) y/ = _1783
6—you should obtain the same results, Sx 5 5x
but with more work. |
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In Section 2.2, the Power Rule was proved only for the case in which the
exponent n is a positive integer greater than 1. The next example extends the proof to
include negative integer exponents.

EXAMPLE Proof of the Power Rule (Negative Integer Exponents)
If n is a negative integer, there exists a positive integer k such that n = —k. So, by the
Quotient Rule, you can write
d d|1
dx[x 1= dx[xk}

_4(0) — (ke )

( k)z Quotient Rule and Power Rule
X
0 — kxk!
x2k
= —fx k1
=nx" L, n=—k
So, the Power Rule
d —1
*[X”] = nx" Power Rule

dx

is valid for any integer. In Exercise 76 in Section 2.5, you are asked to prove the case
for which n is any rational number. |

Derivatives of Trigonometric Functions

Knowing the derivatives of the sine and cosine functions, you can use the Quotient
Rule to find the derivatives of the four remaining trigonometric functions.

THEOREM 2.9 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

d d

a[tan x] = sec?x a[cot x] = —csc?x

d d

a[sec x] = secxtan x a[csc x] = —cscxcotx

Considering tan x = (sin x)/(cos x) and applying the Quotient Rule, you

obtain
d%[tan x] = (COS X) (COS X)CO_S z(iln X)(_ L X) Apply Quotient Rule.
_ cos?x + sin%x
cos?x
1
" cos?x
= sec?x.

The proofs of the other three parts of the theorem are left as an exercise (see
Exercise 89). [ |
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O EXAMPLE [EJ Differentiating Trigonometric Functions
Because of trigonometric Function Derivative
identities, the derivative of a trigonometric
function can take many forms. This a.y=x—tanx dy =1 —sec?x
presents a challenge when you are trying dx
to match your answers to those given in b. y = xsecx y’ = x(sec x tan x) + (sec x)(1)

h k of th .
the back of the text = (sec x)(1 + xtanx)

EXAMPLE [E) Different Forms of a Derivative

. . 1 — cosx
Differentiate both forms of y = ————— = cscx — cotx.
sin x
Solution
First form: y = L —cosx
F Y sin x

, _ (sinx)(sinx) — (1 — cos x)(cos x)
a sin®x

sin? x + cos?x — cos x
sin? x

1 — cosx
sin? x

Second form: y = cscx — cotx

4

y’ = —cscxcotx + csc?x

To show that the two derivatives are equal, you can write

I —cosx 1 1 \[cosx
sinZx sin? x sin x/\ sin x

= csc? x — cscx cot x. ]

The summary below shows that much of the work in obtaining a simplified form
of a derivative occurs after differentiating. Note that two characteristics of a simplified
form are the absence of negative exponents and the combining of like terms.

f'(x) After Differentiating f'(x) After Simplifying
Example 1 | (3x — 2x%)(4) + (5 + 4x)(3 — 4x) —24x2 4+ 4x + 15
Example 3 | (2x)(—sin x) + (cos x)(2) — 2(cos x) —2x sin x
(x> + 1)(5) — (5x — 2)(2x) —5x>+4x+ 5
Example 4 A S ]
rampe (2 + 1) 2+ 1)
(% + 5x)(3) — Bx — 1)(2x + 9) —3x2+2x+5
E le 5
Hampie (x2 + 5x)? (x2 + 5x)2
Example 9 (sin x)(sin x) —_(1 — cos x)(cos x) 1 ~ cosx
sin® x sin® x
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Higher-Order Derivatives

Just as you can obtain a velocity function by differentiating a position function, you
can obtain an acceleration function by differentiating a velocity function. Another
way of looking at this is that you can obtain an acceleration function by differentiating
a position function rwice.

S(l‘) Position function
V(I) = S/(I) Velocity function
a(t) = v/(t) = S”(t) Acceleration function

The second derivative of fis the ~ The function given by a(z) is the second derivative of s() and is denoted by s”(z).

derivative of the first derivative of f.

Seth Resnick/Getty Images

THE MOON

The second derivative is an example of a higher-order derivative. You can define
derivatives of any positive integer order. For instance, the third derivative is the deriv-
ative of the second derivative. Higher-order derivatives are denoted as follows.

First derivative: vy’ (%), I a[ fx)], D,[y]
Lo, ” d?y d? 2
Second derivative: y’, f(x), ot E[f ()], D7y]
. . . . V4 17, d3y d3 3
Third derivative: y”,  f”(x), o @[f (], DIyl
d4y d4
Fourth derivative: y®,  f¥(x), — ol Dyl
dx dx
o d"y d
. (n) (n) n
nth derivative: Y, F(x), i’ dx"[f @], D/[y]

EXAMPLE [[i] Finding the Acceleration Due to Gravity

Because the moon has no atmosphere, a falling object on the moon encounters no air
resistance. In 1971, astronaut David Scott demonstrated that a feather and a hammer
fall at the same rate on the moon. The position function for each of these falling
objects is given by

s(t) = —0.8112 + 2

where s(t) is the height in meters and ¢ is the time in seconds. What is the ratio of
Earth’s gravitational force to the moon’s?

Solution To find the acceleration, differentiate the position function twice.

The moon’s mass is 7.349 x 102 kilograms,

and Earth’s mass is 5.976 x 10 kilograms. s(t) = —0.81t2 + 2 Position function

The moon’s radius is 1737 kilometers, and s(t) = —1.62¢ Velocity function

Earth’s radius is 6378 kilometers. Because ” . .

the gravitational force on the surface of a s"(1) = — 162 Acceleration function

planet is directly proportional to its mass and So, the acceleration due to gravity on the moon is —1.62 meters per second per

inversely proportional to the square of its
radius, the ratio of the gravitational force on

second. Because the acceleration due to gravity on Earth is —9.8 meters per second
per second, the ratio of Earth’s gravitational force to the moon’s is

Earth to the gravitational force on the moon is

(5.976 x 10%)/63782 _
(7.349 x 102)/17372

6.0.

Earth’s gravitational force _ —9.8
Moon’s gravitational force =~ —1.62
~ 6.0. |
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@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, use the Product Rule to differentiate the
function.

1. g(x) = (x> + 3)(x* — 4x)
3.0 = Vi1 - P)

5. f(x) = x> cos x

2. f(x) = (6x + 5)(x> — 2)
4. g(s) = Vs(s*> + 8)
6. g(x) = Jxsinx

In Exercises 7-12, use the Quotient Rule to differentiate the
function.

70 = 5. 40 = 515
9. hix) = x;/f 1 10. h(s) = ﬁsf 1
11. g(x) = Si;lzx

12 £ = 5

In Exercises 13-18, find f'(x) and f'(c).

Function Value of c
13. f(x) = (x> + 4x)(3x2 + 2x — 5) c=0
14, f(x) = (x> —2x + D(x*> — 1) c=1
x> —4
15.f(x)—x_3 c=1
x+5
16.f()c)—x_5 c=4
17. f(x) = x cos x c :727
18. f(x) = % c = %T

In Exercises 19-24, complete the table without using the
Quotient Rule.

Function Rewrite Differentiate Simplify
19. y = x? -; 3x
20, y = 5x24— 3
2l. y = %
22,y = ;Tg
4372
23. y = xx
24.y = 5"21; 5

In Exercises 25-38, find the derivative of the algebraic function.

5. f = 42 2. f) == 5303

27.f(x)=x<1 _xi3) 28. f(x)=x4(1 _xi 1)

29. f(x) = 3’“\/;1 30. f(x) = Yx(Vx +3)

31. h(s) = (s> — 2)2 32. h(x) = (x> — 1)?
.

33, fx) = T3

34, glx) = x2<% - j_ 1)

35, flx) = (26 + 5x)(x — 3)(x + 2)
36. f(x) = (& — )2+ 2)x>+x— 1)

2 2
X+ c .
37. flx) == 5 ¢ is a constant
x2—c
2 2
c?—x
38. flx) = , s a constant
flx) 2+ x2

In Exercises 39-54, find the derivative of the trigonometric
function.

39. f(t) = t>sint 40. f(0) = (6 + 1) cos 0

a1, () = ! 2. fl) = S0

t x3
43. f(x) = —x + tanx

44. y = x + cotx

45. g() = Y1+ 6csct 46. h(x) = i — 12secx

3(1 — sinx) sec x
47. y = —F—"— 48. y =
Y 2 cos x 8.y
49. y = —cscx — sinx 50. y = xsinx + cosx

51. f(x) = x%tanx

53. y = 2xsinx + x%cos x

52. f(x) = sinx cos x
54. h(6) = 50sec O + Htan O

(X In Exercises 55-58, use a computer algebra system to differen-

tiate the function.

x+ 2

55. glx) = (g>(2x -5)

2 _ —
56. f(x) = <xxz+l3)(x2 x4
0
57800 = T g
sin 6
58. /(0) = 1 —cos @

The symbol @) indicates an exercise in which you are instructed to specifically use a computer

algebra system.
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In Exercises 59-62, evaluate the derivative of the function at the
given point. Use a graphing utility to verify your result.

Function Point
1 + cscx T
59, y = ——7— —, =3
YT T Tesex (6’ )
60. f(x) = tan x cot x (1, 1)
_sect

61. h(r) =

62. f(x) = sin x(sin x + cos x)

{dp' In Exercises 63-68, (a) find an equation of the tangent line to

the graph of f at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of a graphing utility to confirm your
results.

63. fr) =P +4x— 1x—2), (1,—4)
64. flx) = (x +3)x2 —2), (—2,2)

66. f(x) = é; Iy (2, %)

68. f(x) = secx, (%T 2)

65. f(x) = (—5,5)

x+ 4
67. f(x) = tan x, (g 1>

Famous Curves In Exercises 69-72, find an equation of the
tangent line to the graph at the given point. (The graphs in
Exercises 69 and 70 are called Witches of Agnesi. The graphs in
Exercises 71 and 72 are called serpentines.)

69. y 70. y
61 61 f=—2
T )= 8 4 +9
4 x’+4 4+
£ 3
(-3.3) T
/\Q T
N b
4 -2 L 2 4 4 -2 L 2 4
-2+ _2,,
71. y 72. v
16x 4
8+ =
T /9= 216 3+
at 27 (25)
S VS SIS A
B 4 8 + 1234
2,-8) + T
( 5) 1 fx) = 24X 4
gl +6 L

In Exercises 73-76, determine the point(s) at which the graph of
the function has a horizontal tangent line.

_ 2
73. f(x) = Zxxz ! . 10) = 5

2 —
75, f() =~ 76. f(x) = 5 _‘;

77. Tangent Lines Find equations of the tangent lines to the
graph of f(x) = (x + 1)/(x — 1) that are parallel to the line
2y + x = 6. Then graph the function and the tangent lines.

78. Tangent Lines Find equations of the tangent lines to the
graph of f(x) = x/(x — 1) that pass through the point (—1, 5).
Then graph the function and the tangent lines.

In Exercises 79 and 80, verify that f'(x) = g’(x), and explain the
relationship between f and g.

3x 5x + 4

.0 = W =T
sinx — 3x sinx + 2x
80. f() = T gln) =

In Exercises 81 and 82, use the graphs of f and g. Let
pk) = f(x)g(x) and q(x) = f(x)/g(x).
81. (a) Findp'(1). 82. (a) Find p'(4).

(b) Find q'(4). (b) Find q(7).

y y

10 10

8 Y 8 Y

6

X g

2 8 2

- X | X
- 2 4 6 8710 - 2 4+ 6+ 810

83. Area The length of a rectangle is given by 67 + 5 and its
height is /7, where  is time in seconds and the dimensions are
in centimeters. Find the rate of change of the area with respect
to time.

84. Volume The radius of a right circular cylinder is given by
V't + 2and its height is %ﬁ, where ¢ is time in seconds and the
dimensions are in inches. Find the rate of change of the volume
with respect to time.

85. Inventory Replenishment The ordering and transportation
cost C for the components used in manufacturing a product is

200 X
C = 100<7+x+30), x =1

where C is measured in thousands of dollars and x is the order
size in hundreds. Find the rate of change of C with respect to x
when (a) x = 10, (b) x = 15, and (¢) x = 20. What do these
rates of change imply about increasing order size?

86. Boyle’s Law This law states that if the temperature of a gas
remains constant, its pressure is inversely proportional to its
volume. Use the derivative to show that the rate of change of the
pressure is inversely proportional to the square of the volume.

87. Population Growth A population of 500 bacteria is introduced
into a culture and grows in number according to the equation

4
P(r) = 500(1 t 30t tz)

where ¢ is measured in hours. Find the rate at which the popu-
lation is growing when ¢t = 2.
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88. Gravitational Force Newton’s Law of Universal Gravitation In Exercises 93-100, find the second derivative of the function.

states that the force F between two masses, m, and m,, is
! 2 93. flx) = x* + 23 = 3x2 —x  94. f(x) = 8x° — 10x° + 5°

P Gm,m, 95. f(x) = 4x3/2 96. f(x) = x + 32x72
a2 240 — 1
97. flx) = — 98. flx) = ————
where G is a constant and d is the distance between the masses. x—1 X
Find an equation that gives an instantaneous rate of change of 99. f(x) = xsinx 100. f(x) = secx
F with respect to d. (Assume that m, and m, represent moving
points.) In Exercises 101-104, find the given higher-order derivative.
89. Prove the following differentiation rules. ’ 2 ’
4 J 101. F/(x) = x2, f"(x) 102. f(x) =2 — o ()
(a) —[secx] = secx tanx (b) ——[cscx] = —cscx cotx
dx dx 103. f7(x) = 2%, f9(x) 104. fD(x) = 2 + 1, fOx)
d
(© i [cotx] = —csc?x In Exercises 105-108, use the given information to find f'(2).

90. Rate of Change Determine whether there exist any values of g2)=3 and g(2)=-2
x in the interval [0,27) such that the rate of change of

’ 2)=-1 ‘2) =4

f(x) = sec x and the rate of change of g(x) = csc x are equal. h(2) and  K(2)

91. Modeling Data The table shows the quantities ¢ (in millions) 105. f(x) = 2g(x) + hlx) 106. f(x) = 4 — h(x)

of personal computers shipped in the United States and the

values v (in billions of dollars) of these shipments for the years

1999 through 2004. The year is represented by ¢, with r = 9

corresponding to 1999. (Source: U.S. Census Bureau) WRITING ABOUT CONCEPTS

109. Sketch the graph of a differentiable function f such that
Year, ¢ 9 10 11 12 13 14 f2)=0, f/<0 for —oo<x <2, and f' >0 for
q 196 | 159 | 146 | 129 | 150 | 15.8 2 < x < oo. Explain how you found your answer.

110. Sketch the graph of a differentiable function f such that
|4 268 | 226 | 189 | 162 | 147 | 153 f> 0andf” < 0 for all real numbers x. Explain how you
found your answer.

107. f(x) = 8 108. f(x) = g(x)h(x)

(a) Use a graphing utility to find cubic models for the quantity
of personal computers shipped ¢(t) and the value v(¢) of the
personal computers.

In Exercises 111 and 112, the graphs of f, f’, and f” are
shown on the same set of coordinate axes. Identify each
. graph. Explain your reasoning. To print an enlarged copy of
(b) Graph each model found in part (). the graph, go to the website www.mathgraphs.com.

(c) Find A = v(1)/q(1), then graph A. What does this function

represent? 11. Y 112. Y
(d) Interpret A’(7) in the context of these data. \ /]
92. Satellites When satellites observe Earth, they can scan only 4
part of Earth’s surface. Some satellites have sensors that can 1 1
measure the angle 6 shown in the figure. Let i represent the 1 3 *

satellite’s distance from Earth’s surface and let r represent
Earth’s radius.

0 In Exercises 113-116, the graph of f is shown. Sketch the graphs
h of f” and f”. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

113. ¥ 114.

(a) Show that h = r(csc § — 1).

(b) Find the rate at which & is changing with respect to § when
0 = 30°. (Assume r = 3960 miles.)
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115. 116. v

4 4T

3 d P

2

! / 2\/\
1 1 v T
T 3 F—t—t—t—x
2 2 \Lomox 3 oom

- 2 2
—4 -2

117. Acceleration The velocity of an object in meters per second is
v(t) = 36 — 12,0 < t < 6. Find the velocity and acceleration
of the object when r = 3. What can be said about the speed of
the object when the velocity and acceleration have opposite
signs?

118. Acceleration An automobile’s velocity starting from rest is

(1) 100z

T 2%+ 15

where v is measured in feet per second. Find the acceleration
at (a) 5 seconds, (b) 10 seconds, and (c) 20 seconds.

119. Stopping Distance A car is traveling at a rate of 66 feet per
second (45 miles per hour) when the brakes are applied. The
position function for the car is s(f) = —8.25t> + 66¢, where s
is measured in feet and ¢ is measured in seconds. Use this
function to complete the table, and find the average velocity
during each time interval.

t 0|1 2|3 4
s@®
v(¢)
a(?)

CAPSTONE

120. Particle Motion The figure shows the graphs of the
position, velocity, and acceleration functions of a particle.

(a) Copy the graphs of the y
functions shown. Identify ¢
each graph. Explain your 12
reasoning. To print an
enlarged copy of the ‘
graph, go to the website -1
www.mathgraphs.com.

(b) On your sketch, identify
when the particle speeds
up and when it slows
down. Explain  your
reasoning.

Finding a Pattern In Exercises 121 and 122, develop a general
rule for f®)(x) given f(x).

1

121. f(x) = x* 122. f(x) = <

123. Finding a Pattern Consider the function f(x) = g(x)h(x).
(a) Use the Product Rule to generate rules for finding f”(x),
J7(x), and f@(x).
(b) Use the results of part (a) to write a general rule for £ (x).

124. Finding a Pattern Develop a general rule for [xf(x)]®
where fis a differentiable function of x.

In Exercises 125 and 126, find the derivatives of the function f
for n = 1, 2, 3, and 4. Use the results to write a general rule for
f/(x) in terms of n.

COoS x

x"

125. f(x) = x"sin x 126. f(x) =

Differential Equations In Exercises 127-130, verify that the
function satisfies the differential equation.

Function Differential Equation

1
127.y=;,x>0 By + 2%y’ =0

128. y = 2x3 — 6x + 10
129. y = 2sinx + 3
130. y = 3 cosx + sinx

_y/// _ xy//_ 2y/ — _24x2
yit+y=3

y'+y=0

True or False? 1In Exercises 131-136, determine whether the

statement is true or false. If it is false, explain why or give an
example that shows it is false.

131. If y = f(x)g(x), then dy/dx = f'(x)g’(x).

132. If y = (x + 1)(x + 2)(x + 3)(x + 4), then d°y/dx> = 0.
133. If f/(c) and g (c) are zero and h(x) = f(x)g(x), then h’(c) = 0.
134. If f(x) is an nth-degree polynomial, then £+ D(x) = 0.

135. The second derivative represents the rate of change of the first
derivative.

136. If the velocity of an object is constant, then its acceleration is
zZero.

137. Find a second-degree polynomial f(x) = ax*> + bx + ¢ such
that its graph has a tangent line with slope 10 at the point
(2,7) and an x-intercept at (1, 0).

138. Consider the third-degree polynomial
f@)=a+bx>+cx+d, a#0.

Determine conditions for a, b, ¢, and d if the graph of fhas (a)
no horizontal tangents, (b) exactly one horizontal tangent, and
(c) exactly two horizontal tangents. Give an example for each
case.

139. Find the derivative of f(x) = x|x|. Does £”(0) exist?

140. Think About It Let f and g be functions whose first and
second derivatives exist on an interval /. Which of the following
formulas is (are) true?

@ fg"—fg=fg'—fg) () fg"+f%=1(fg)"
141. Use the Product Rule twice to prove that if f, g, and h are
differentiable functions of x, then

d%[f(X)g(x)h(X)] = f(0)gh(x) + fx)g (Wh(x) + fx)g(x)h ().
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@ The Chain Rule

Axle 1: y revolutions per minute
Axle 2: u revolutions per minute
Axle 3: x revolutions per minute
Figure 2.24

B Find the derivative of a composite function using the Chain Rule.

® Find the derivative of a function using the General Power Rule.

| Simplify the derivative of a function using algebra.

® Find the derivative of a trigonometric function using the Chain Rule.

The Chain Rule

This text has yet to discuss one of the most powerful differentiation rules—the Chain
Rule. This rule deals with composite functions and adds a surprising versatility to the
rules discussed in the two previous sections. For example, compare the functions
shown below. Those on the left can be differentiated without the Chain Rule, and those
on the right are best differentiated with the Chain Rule.

Without the Chain Rule With the Chain Rule
N y= VAT

y = sinx y = sin 6x
y=3x+2 y=(3x +2)

y =x+ tanx y = x + tan x?

Basically, the Chain Rule states that if y changes dy/du times as fast as u, and u
changes du/dx times as fast as x, then y changes (dy/du)(du/dx) times as fast as x.

EXAMPLE [l The Derivative of a Composite Function

A set of gears is constructed, as shown in Figure 2.24, such that the second and third
gears are on the same axle. As the first axle revolves, it drives the second axle, which in
turn drives the third axle. Let y, u, and x represent the numbers of revolutions per minute
of the first, second, and third axles, respectively. Find dy/du, du/dx, and dy/dx, and
show that

dy _dy du
dx du dx

Solution Because the circumference of the second gear is three times that of the first,
the first axle must make three revolutions to turn the second axle once. Similarly, the
second axle must make two revolutions to turn the third axle once, and you can write
dy du
— =3 and — =2.
du dx
Combining these two results, you know that the first axle must make six revolutions
to turn the third axle once. So, you can write

ﬂ _ Rate of change of first axle . Rate of change of second axle
dx " with respect to second axle with respect to third axle
dy du
e W
du dx

Rate of change of first axle
with respect to third axle

In other words, the rate of change of y with respect to x is the product of the rate of
change of y with respect to u and the rate of change of u with respect to x. |
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EXPLORATION

Using the Chain Rule Each of
the following functions can be
differentiated using rules that you
studied in Sections 2.2 and 2.3.
For each function, find the
derivative using those rules. Then
find the derivative using the Chain
Rule. Compare your results.
Which method is simpler?

a 2
"3x+ 1
b. (x + 2)3

c. sin 2x

2.4 The Chain Rule 131

Example 1 illustrates a simple case of the Chain Rule. The general rule is stated
below.

THEOREM 2.10 THE CHAIN RULE

If y = f(u) is a differentiable function of # and u = g(x) is a differentiable
function of x, then y = f(g(x)) is a differentiable function of x and

dy _dy du
dx du dx

or, equivalently,

L] = /g ).

Let h(x) = f(g(x)). Then, using the alternative form of the derivative, you
need to show that, for x = ¢,

h'(c) = f(g(c))g (c).

An important consideration in this proof is the behavior of g as x approaches c.
A problem occurs if there are values of x, other than ¢, such that g(x) = g(c).
Appendix A shows how to use the differentiability of f and g to overcome this
problem. For now, assume that g(x) # g(c) for values of x other than c. In the proofs
of the Product Rule and the Quotient Rule, the same quantity was added and subtracted
to obtain the desired form. This proof uses a similar technique—multiplying and
dividing by the same (nonzero) quantity. Note that because g is differentiable, it is also
continuous, and it follows that g(x) — g(c) as x —c.

h’(C) = lim f(g(x)) —f(g(c))

x—c X —C

— i [ L8 15 00 = 8] 1

) — flg(
x> g(x) — glo) x—c
e fle) = flg) ][ . s() — gle)
- [1im 50 — 50 [ 1 =]

= f(8(c))g (c) -

When applying the Chain Rule, it is helpful to think of the composite function

[ ° g as having two parts—an inner part and an outer part.

Outer function

y = flg(x)) = flu)

N/

Inner function

The derivative of y = f(u) is the derivative of the outer function (at the inner function
u) times the derivative of the inner function.

y' =fw) - u’
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132 Chapter 2  Differentiation

You could also solve the
problem in Example 3 without using the
Chain Rule by observing that

y =x°+3x*+3x2+ 1
and
y’ = 6x3 + 12x* + 6x.

Verify that this is the same as the deriva-
tive in Example 3. Which method would
you use to find

d

il 2+150?
oY

EXAMPLE [EJ Decomposition of a Composite Function

y = f(gx)) u = g y = fu)
a y= ] u=x+1 y=l
x+1 u
b. y = sin 2x u = 2x y =sinu
c.y=V3x>—x+1 u=3%-—x+1 y=Vu
d. y = tan’x u = tanx y = u?

EXAMPLE [EJ Using the Chain Rule

Find dy/dx for y = (x* + 1)>.

Solution  For this function, you can consider the inside function to be u = x? + 1.
By the Chain Rule, you obtain

dy _ 3(x2 + 1)2(2x) = 6x(x2 + 1)~
dx —

&

du dx

The General Power Rule

The function in Example 3 is an example of one of the most common types of
composite functions, y = [u(x)]". The rule for differentiating such functions is called
the General Power Rule, and it is a special case of the Chain Rule.

THEOREM 2.11 THE GENERAL POWER RULE

If y = [u(x)]", where u is a differentiable function of x and n is a rational
number, then

dl — n—1 @
= n[u(x)] =

or, equivalently,

d
a[u"] =nu""tu’

Because y = ", you apply the Chain Rule to obtain

2= (@)
dx du )\ dx
d du

 du Lu ]dx'

By the (Simple) Power Rule in Section 2.2, you have D, [u"] = nu" ™', and it follows
that
dy du

a = n[u(x)]”*l a [ |
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EXAMPLE [EJ Applying the General Power Rule
Find the derivative of f(x) = (3x — 2x?)3.
Solution Let u = 3x — 2x2. Then
fx) = 0Bx — 232 =4
and, by the General Power Rule, the derivative is

n—1 4

n u u
‘ ~ RINE Rl
/ — 2)2 i 2
f(x) = 3(3)6 - 2 ) dx [3x — 2 :| Apply General Power Rule.
= 3(3x - 2x2)2(3 - 4x). Differentiate 3x — 2x2.

EXAMPLE [EJ Differentiating Functions Involving Radicals

Find all points on the graph of f(x) = /(x> — 1)? for which f(x) = 0 and those for
which f(x) does not exist.

Solution Begin by rewriting the function as

x f) = (2 = 15

The derivative of fis 0 at x = 0 and is
undefined at x = £1.
Figure 2.25

Then, applying the General Power Rule (with u = x> — 1) produces

n u ! u

\ A N

2
f’(x) = g (x2 - 1)71/3 (2x) Apply General Power Rule.
aa Write in radical fa
=T rite 1n radical form.
3x* -1
So, f/(x) = 0 when x = 0 and f’(x) does not exist when x = +1, as shown in Figure

2.25.

EXAMPLE [J Differentiating Quotients with Constant Numerators

. . -7
Differentiate g(t) = W
Solution Begin by rewriting the function as

gty = =72t —3)72

Try differentiating the function Then, applying the General Power Rule produces

in Example 6 using the Quotient Rule.
You should obtain the same result, but
using the Quotient Rule is less efficient

than using the General Power Rule.

n ! u’

AN

g ’(t) = (—7)(— 2)(21‘ - 3)_3(2) Apply General Power Rule.
—
Constant
Multiple Rule
=28(2t — 3)73 Simplify.
28 o
= m Write with positive exponent. ]
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—@ETTTINIED Symbolic differ-

entiation utilities are capable of
differentiating very complicated
functions. Often, however, the result
is given in unsimplified form. If you
have access to such a utility, use it to
find the derivatives of the functions
given in Examples 7, 8, and 9. Then
compare the results with those given
in these examples.

Simplifying

Derivatives

The next three examples illustrate some techniques for simplifying the “raw deriva-
tives” of functions involving products, quotients, and composites.

EXAMPLE [gll Simplifying by Factoring Out the Least Powers

-2 /T= 2

= x2(1 — x2)1/2

=
=
I

21— (1

xz[l
—x3(1 — x2)71/2 4+ 2x(1 — x?)1/2
x(1 = x2)7 [ —x2(1) + 2(1 — x?)]

S (= )712(=20)

_x(2 =37
N

EXAMPLE [EJ Simplifying the Derivative of a Quotient

X

0= y=53

X

(k24 4)13

(x2

d
— +2)1/2 2
x?) e [x2]

] £ (1 = 22)12(2x)

(x2 + 4)13(1) — x(1/3)(x2 + 4)72/3(2x)

flx) =

=+ 4)—2/3[

(x2 + 4)/3

_ x2+ 12
3(x2 4+ 4)43

O EXAMPLE [E] Simplifying the Derivative of a Power

:<3x— 1)2
Y x2+3

n u ! u

’

‘r—%r—’%

32 + 4) - (2x2)(1)]
(2 + 472

y=2(Bh)4a ]
_ [2563;;31)][&2 + 3)((3)6)2;(?3’;;— 1)(2x)}

2(3x — 1)(3x2 + 9 — 6x2 + 2x)

(x2 + 3)3

2(3x — 1)(—3x%2+ 2x + 9)

(x2 + 3)3
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Original function

Rewrite.

Product Rule

General Power Rule

Simplify.

Factor.

Simplify.

Original function

Rewrite.

Quotient Rule

Factor.

Simplify.

Original function

General Power Rule

Quotient Rule

Multiply.

Simplify. |
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Trigonometric Functions and the Chain Rule

The “Chain Rule versions” of the derivatives of the six trigonometric functions are as

follows.

i[sin u] = (cosu) u’
dx

i[tan u] = (sec?u) u’

dx

d
a[sec u] = (secutanu) u’

4

[cosu] = —(sinu) u’
dx
d ) ,
—[cotu] = —(csc?u) u
dx
i[csc u] = —(cscucotu)u’
dx

EXAMPLE m Applying the Chain Rule to Trigonometric Functions

’

u COoS u u

~~
a. y = sin 2x

’

y

b. y = cos(x — 1)
c. y = tan 3x

—

y’ = 3sec?3x

—

y’ = cos 2x a’%c [2x] = (cos 2x)(2) = 2 cos 2x

—sin(x — 1)

Be sure that you understand the mathematical conventions regarding parentheses
and trigonometric functions. For instance, in Example 10(a), sin 2x is written to mean

sin(2x).

EXAMPLE [} Parentheses and Trigonometric Functions

a. y = cos 3x% = cos(3x?)
b. y = (cos 3)x?

¢. y = cos(3x)? = cos(9x?)
d. y = cos?x = (cos x)?

e. y = Jcosx = (cos x)'/2

y’ = (—sin 3x?)(6x) = —6x sin 3x?
y’ = (cos 3)(2x) = 2x cos 3
y’ = (—sin 9x?)(18x) = —18x sin 9x?
y’ = 2(cos x)(—sin x) = —2 cos x sin x
1 sin x
"= —(cosx)" VA —sinx) = ————
YTl =

To find the derivative of a function of the form k(x) = f(g(h(x))), you need to
apply the Chain Rule twice, as shown in Example 12.

EXAMPLE [[F] Repeated Application of the Chain Rule

sin® 4¢
(sin 4¢)3

= 3(sin 4¢)? %[Sin 4t

= 3(sin 41)*(cos 4t) %[4t]

3(sin 4¢)*(cos 41)(4)
12 sin? 4¢ cos 4t

Original function

Rewrite.

Apply Chain Rule once.

Apply Chain Rule a second time.

Simplify.
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136 Chapter 2  Differentiation

y  flx)=2sinx + cos 2x

Figure 2.26

To become skilled at
differentiation, you should memorize
each rule in words, not symbols. As
an aid to memorization, note that the
cofunctions (cosine, cotangent, and
cosecant) require a negative sign as part
of their derivatives.

EXAMPLE [E] Tangent Line of a Trigonometric Function

Find an equation of the tangent line to the graph of
f(x) = 2sinx + cos 2x

at the point (77, 1), as shown in Figure 2.26. Then determine all values of x in the
interval (0, 277) at which the graph of fhas a horizontal tangent.

Solution Begin by finding f/(x).
f(x) = 2sinx + cos 2x
f/(x) = 2 cos x + (—sin 2x)(2)
=2cosx — 2sin 2x

Write original function.
Apply Chain Rule to cos 2x.
Simplify.

To find the equation of the tangent line at (77, 1), evaluate f().

[

2 cos m— 2sin 2 Substitute.

= -2 Slope of graph at (1, 1)

Now, using the point-slope form of the equation of a line, you can write

y—yy = m(x - xl) Point-slope form
y — 1 = —2()C - 7T) Substitute for y,, m, and x,.
y=1-2x+2m Equation of tangent line at (7, 1)
You can then determine that f/(x) = 0 when x = g, g, 5?77, and 3777 So, f has
horizontal tangents at x = 71, 71, SLT, and 3£ [ |
6°2° 6 2

This section concludes with a summary of the differentiation rules studied so far.

SUMMARY OF DIFFERENTIATION RULES

General Differentiation Rules

Derivatives of Algebraic
Functions

Derivatives of Trigonometric
Functions

Chain Rule

Let f, g, and u be differentiable functions of x.

Constant Multiple Rule:

d .
a[cf] = ey

Sum or Difference Rule:

d
LLfrel=rxg

Product Rule: Quotient Rule:

d ; , d|f|_8&f—f¢

el — JL L] =95 JS

S LEl=fe' + gf o [ g] 2

Constant Rule: (Simple) Power Rule:

d — i n| — n—1 i —
dx[c]—O dx[x] nxt L dx[x] 1

dre 17— 4a = o2 a _
p [sin x] = cos x - [tan x] = sec?x - [sec x] = sec x tan x

d . d d
—[cosx] = —sinx —[cotx] = —csc?x  —[cscx] = —cscx cot x
dx dx dx

Chain Rule:

L) = w

General Power Rule:

d
a[u"] =nu" 'u’

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



2.4 The Chain Rule 137

@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, complete the table.

y = flglx)) u = g(x) y = flu)
1. y = (5x — 8)*
2.y = L
JrF 1
3.y= \/ﬁ

4. y = 3 tan(mx?)

5.y = cscix

. Sx
6.y—s1n2

In Exercises 7-36, find the derivative of the function.

7.y = (4 —1p 8. y=2(6— x2S
9. glx) = 3(4 — 9x)* 10. £() = (9t + 2)*/3
11. (1) = /5 — ¢ 12. g(x) = V9 — 4x
13. y = J6x2 + 1 14. g(x) = V/x2—2x + 1
15. y =249 — x2 16. f(x) = =342 — 9x
1 1
17.y—xf2 18.s(t)—7[2+3t71
1 \2 5
19. f(l‘) = (l‘_73> 20. y = —m
2.y = — 22. (1) = :
RN Hf -2
23. f(x) = x%(x — 2)* 24. f(x) = x(3x — 9)?
25. y =xJ1 — x2 26. y = 3x2./16 — x2
X X
27.y = —F—— 28, y = ————
YT YT A
x+5)\2 2 \?
29. glx) = (xz n 2> 30. h(r) = (m)
1 —2v\3 3x2 —2)\3
31.f(v)—(1+v) 32.g(x)—<2x+3>

33. flx) = (& +3)° + x)? 34. g(x) = 2+ @+ 1)*3

35. f0) = V2 + V2 + Vx 36.g() = Vi+1+1

@ In Exercises 37-42, use a computer algebra system to find the

derivative of the function. Then use the utility to graph the
function and its derivative on the same set of coordinate axes.
Describe the behavior of the function that corresponds to any
zeros of the graph of the derivative.

CVx+d _ 2x
37'y_x2+1 8.y= x+ 1
+
39. y = xxl 40. glx) = V/x— 1+ /x+1
cos mx + 1 1
1. y=—"" 42, y = x?tan —
y ¥ y xtanx

In Exercises 43 and 44, find the slope of the tangent line to the
sine function at the origin. Compare this value with the number
of complete cycles in the interval [0, 277]. What can you conclude
about the slope of the sine function sin ax at the origin?

43. (a) v (b)

In Exercises 45-66, find the derivative of the function.

45. y = cos 4x 46. y = sinmx

47. g(x) = 5tan 3x 48. h(x) = sec x?

49. y = sin(mx)? 50. y = cos(l — 2x)?

51. h(x) = sin 2x cos 2x 52. ¢(6) = sec(36) tan(36)
cotx COoS v

53. f(x) = sin x 54, glv) = cscr

55. y = 4sec’x 56. g(t) = 5 cos? mt

57. f(0) = tan®>50 58. g(0) = cos? 80

59. £(6) = §sin220 60. h(t) = 2 cot¥(mt + 2)

61. f(r) = 3 sec*(mt — 1) 62. y = 3x — 5 cos(mx)?

63. y= Jx+ isin(Zx)2 64. y = sin ¥x + ¥sinx

65. y = sin(tan 2x) 66. y = cos/sin(tan mx)

In Exercises 67-74, evaluate the derivative of the function at the
given point. Use a graphing utility to verify your result.

67. s(t) = V2 +6t—2, (3,5)
68. y = J3x3 + 4x, (2,2)

69. f(x) = XSS_ > (—2, —%)

1 1
70. f(x) = m, (4, E)
_ 3 +2

A0 =" (0.-2)
72. f(x)=2’;+_13, (2.3)

73. y = 26 — sec’4x, (0,25)
74. y = 1 + /cos x, (ﬂ, 2)
X 27
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lde In Exercises 75-82, (a) find an equation of the tangent line to
the graph of f at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of the graphing utility to confirm your

results.

Function Point
75. f(x) = V2x*> — 17 (4, 5)
76. f(x) = 3x/x2 + 5 (2,2)
77. y = (43 + 3)? (=1,1)
78. f(x) = (9 — x2)*? (1,4)
79. f(x) = sin 2x (7, 0)

_ 7 V2

80. y = cos 3x (4, 2 )
81. f(x) = tan’x (%T, 1)
82. y = 2tan’x (727 2)

ldP' In Exercises 83-86, (a) use a graphing utility to find the
derivative of the function at the given point, (b) find an equation
of the tangent line to the graph of the function at the given
point, and (c) use the utility to graph the function and its
tangent line in the same viewing window.

3 13
860 = 7= (33)
84. f(x) = Vx(2 — 2  (4,8)
85. s() = % V1+” (0’ %)
86. y=(2—9)J/r+2, (2.—10)

ldP' Famous Curves In Exercises 87 and 88, find an equation of the
tangent line to the graph at the given point. Then use a graph-
ing utility to graph the function and its tangent line in the same
viewing window.

87. Top half of circle 88. Bullet-nose curve

) =+/25 -2 ) = [ x|
y y 2—x2
8+ 4+
6+ 3
TGP .l
2+ 1+ #(1, 1)
= > x —+—1 —t—t—>x
-6-4-2 | 2 4 6 3-2-1 | 1 2 3
-4 + -2+

89. Horizontal Tangent Line Determine the point(s) in the
interval (0, 277) at which the graph of f(x) = 2 cos x + sin 2x
has a horizontal tangent.

90. Horizontal Tangent Line Determine the point(s) at which the

X
graph of f(x) = N has a horizontal tangent.

In Exercises 91-96, find the second derivative of the function.

91. f(x) = 5(2 — 7x)* 92. f(x) = 4(x> — 2)

1 4

93. f(x) = m 94, f(x) = m

95. f(x) = sin x? 96. f(x) = sec? mx

In Exercises 97-100, evaluate the second derivative of the func-
tion at the given point. Use a computer algebra system to verify
your result.

97. h(x) = 5Gx + 1%, (1,%)

8. 10 = 7 (0.3)
99. f(x) = cosx?, (0,1)

100. g(r) = tan 2, (g ﬁ)
WRITING ABOUT CONCEPTS

In Exercises 101-104, the graphs of a function f and its
derivative f” are shown. Label the graphs as f or f” and write
a short paragraph stating the criteria you used in making
your selection. To print an enlarged copy of the graph, go to
the website www.mathgraphs.com.

101. y 102. y

103. y 104.

In Exercises 105 and 106, the relationship between f and g is
given. Explain the relationship between f’ and g'.

105. g(x) = f(3x) 106. g(x) = f(x?)

107. Think About It The table shows some values of the deriva-
tive of an unknown function f. Complete the table by finding
(if possible) the derivative of each transformation of f.

(@) glv) =flx) — 2
(b) hlx) =2 f(x)
() r(x) = f(—=3x)
(d) s(x) = flx +2)
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x -2 -1 0 1 2 3

f@ | 4| 32| 3| -1|-2]| -4

g')
h'(x)
r'(x)
s'(x)

Table for 107

CAPSTONE
108. Given that g(5) = —3, g’ (5) =6, h(5)= 3, and
h'(5) = —2, find f(5) (if possible) for each of the following.
If it is not possible, state what additional information

is required.
@) f(x) = g(x)h(x) (b) f(x) = glh(x))
© i) =485 (@ 1) = gt

In Exercises 109 and 110, the graphs of f and g are shown. Let
h(x) = f(g(x)) and s(x) = g(f(x)). Find each derivative, if it
exists. If the derivative does not exist, explain why.

109. (a) Find h'(1). 110. (a) Find 2/(3).
(b) Find s'(5). (b) Find s7(9).
y y
10 10
8 1 8 /,
6
N\ g
2 & 2
{ X X
246810 27467810

111. Doppler Effect The frequency F of a fire truck siren heard
by a stationary observer is F = 132,400/(331 * v), where v
represents the velocity of the accelerating fire truck in meters
per second (see figure). Find the rate of change of F with
respect to v when

(a) the fire truck is approaching at a velocity of 30 meters per
second (use —v).

(b) the fire truck is moving away at a velocity of 30 meters
per second (use +v).

_ 132,400 Fe 132,400
331+ v 331 —v

ﬂ-'{

’ II}

112.

113.

114.

115.

’dP' 116.

2.4 The Chain Rule 139

Harmonic Motion The displacement from equilibrium of an
object in harmonic motion on the end of a spring is

y = %cos 12t — isin 12¢

where y is measured in feet and ¢ is the time in seconds.
Determine the position and velocity of the object when
t = /8.

Pendulum A 15-centimeter pendulum moves according to
the equation € = 0.2 cos 8¢, where 0 is the angular displace-
ment from the vertical in radians and ¢ is the time in seconds.
Determine the maximum angular displacement and the rate of
change of 0 when ¢ = 3 seconds.

Wave Motion A buoy oscillates in simple harmonic motion
y = A cos ot as waves move past it. The buoy moves a total of
3.5 feet (vertically) from its low point to its high point. It
returns to its high point every 10 seconds.

(a) Write an equation describing the motion of the buoy if it
is at its high point at t = 0.

(b) Determine the velocity of the buoy as a function of ¢.

Circulatory System The speed S of blood that is r centimeters
from the center of an artery is

S = C(R2 — r2)

where C is a constant, R is the radius of the artery, and S
is measured in centimeters per second. Suppose a drug is
administered and the artery begins to dilate at a rate of dR/dt.
At a constant distance r, find the rate at which S changes with
respect to t for C =176 x 105, R =12 x 1072, and
dR/dt = 1075,

Modeling Data The normal daily maximum temperatures
T (in degrees Fahrenheit) for Chicago, Illinois are shown in
the table. (Source: National Oceanic and Atmospheric
Administration)

Month Jan Feb | Mar | Apr | May | Jun

Temperature | 29.6 | 34.7 | 46.1 | 58.0 | 69.9 | 79.2

Month Jul Aug | Sep | Oct | Nov | Dec

Temperature | 83.5 | 81.2 | 73.9 | 62.1 | 47.1 | 344

(a) Use a graphing utility to plot the data and find a model for
the data of the form

T(t) = a + bsin(ct — d)
where 7 is the temperature and ¢ is the time in months,
with # = 1 corresponding to January.

(b) Use a graphing utility to graph the model. How well does
the model fit the data?

(¢) Find T’ and use a graphing utility to graph the derivative.

(d) Based on the graph of the derivative, during what times
does the temperature change most rapidly? Most slowly?
Do your answers agree with your observations of the
temperature changes? Explain.
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117. Modeling Data The cost of producing x units of a product is
C = 60x + 1350. For one week management determined the
number of units produced at the end of ¢ hours during an
eight-hour shift. The average values of x for the week are
shown in the table.

t 01 2 3 4 5 6 7 8

x | 0|16 | 60 | 130 | 205 | 271 | 336 | 384 | 392

IdP' (a) Use a graphing utility to fit a cubic model to the data.
(b) Use the Chain Rule to find dC/dt.

(c) Explain why the cost function is not increasing at a
constant rate during the eight-hour shift.

118. Finding a Pattern Consider the function f(x) = sin Bx,
where 3 is a constant.

(a) Find the first-, second-, third-, and fourth-order derivatives
of the function.

(b) Verify that the function and its second derivative satisfy
the equation f”(x) + B%f(x) = 0.

(c) Use the results of part (a) to write general rules for the
even- and odd-order derivatives
@) and @ I(x).

[Hint: (—1)*is positive if k is even and negative if k is odd.]
119. Conjecture Let fbe a differentiable function of period p.
(a) Is the function f’ periodic? Verify your answer.

(b) Consider the function g(x) = f(2x). Is the function g’(x)
periodic? Verify your answer.

120. Think About It Let r(x) = f(g(x)) and s(x) = g(f(x)),

where f and g are shown in the figure. Find (a) /(1) and (b)

s'(4).
.
7 (6,6)
6
5 8
4 /\
3 2,4) /(6,5
2 /!
1 ’/
N .
1 23 45617

121. (a) Find the derivative of the function g(x) = sin®x + cos?x
in two ways.

(b) For f(x) = sec®x and g(x) = tan?x, show that
fx) =g '(x).

122. (a) Show that the derivative of an odd function is even. That
is, if f(—x) = —f(x), then f(—x) = f(x).
(b) Show that the derivative of an even function is odd. That

is, if f(—x) = f(x), then f(—x) = —f(x).

123. Let u be a differentiable function of x. Use the fact that
|u| = /u? to prove that

d , U
dxHuH =u'— u+0.

L
lu

In Exercises 124—127, use the result of Exercise 123 to find the
derivative of the function.

124. g(x) = |3x — 5|
126. h(x) = |x| cos x

125. f(x) = |x* = 9]
127. f(x) = |sin x|

ldF" Linear and Quadratic Approximations The linear and quad-

ratic approximations of a function f at x = a are
P\(x) = f(a)(x — a) + f(a) and
Py) = 3/ @(x — ) + f@)x — @) + f(a).

In Exercises 128 and 129, (a) find the specified linear and
quadratic approximations of f, (b) use a graphing utility to
graph f and the approximations, (c) determine whether P, or
P, is the better approximation, and (d) state how the accuracy
changes as you move farther from x = a.

128. f(x) = tan x 129. f(x) = secx

a = a =

N
ol

True or False? In Exercises 130-132, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

130. Ify = (1 — x)/2 then y’ = 5(1 — x)~1/2,

131. If f(x) = sin?(2x), then f’(x) = 2(sin 2x)(cos 2x).

132. If y is a differentiable function of u, u is a differentiable
function of v, and v is a differentiable function of x, then

dy _ dy dudv
dx  dudvdx’

PUTNAM EXAM CHALLENGE

133. Letf(x) = a, sinx + a, sin 2x + - - - + a, sin nx, where
a,, a,, . . .,a, are real numbers and where n is a positive
integer. Given that |f(x)| < |sin x| for all real x, prove that
la, +2a, +- - -+ na,| < 1.

134. Let k be a fixed positive integer. The nth derivative of

P has the form

P,(x)

(Xk _ 1)n+l

where P, (x) is a polynomial. Find P,(1).

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.
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@ Implicit Differentiation

EXPLORATION

Graphing an Implicit Equation
How could you use a graphing
utility to sketch the graph of the
equation

x2 =2y + 4y =27

Here are two possible approaches.

a. Solve the equation for x. Switch
the roles of x and y and graph
the two resulting equations. The
combined graphs will show a
90° rotation of the graph of the
original equation.

b. Set the graphing utility to
parametric mode and graph
the equations

Y T T
y=t

and
x =2 =4t +2
y=t

From either of these two
approaches, can you decide
whether the graph has a tangent
line at the point (0, 1)? Explain
your reasoning.

B Distinguish between functions written in implicit form and explicit form.
m Use implicit differentiation to find the derivative of a function.

Implicit and Explicit Functions

Up to this point in the text, most functions have been expressed in explicit form. For
example, in the equation

y=3x2-75

Explicit form

the variable y is explicitly written as a function of x. Some functions, however, are
only implied by an equation. For instance, the function y = 1/x is defined implicitly
by the equation xy = 1. Suppose you were asked to find dy/dx for this equation. You
could begin by writing y explicitly as a function of x and then differentiating.

Implicit Form Explicit Form Derivative
1 dy 1
xy =1 =—=x1 L = —x 2= —-=
4 YT X dx x?

This strategy works whenever you can solve for the function explicitly. You cannot,
however, use this procedure when you are unable to solve for y as a function of x. For
instance, how would you find dy/dx for the equation

x> =23+ 4y =2

where it is very difficult to express y as a function of x explicitly? To do this, you can
use implicit differentiation.

To understand how to find dy/dx implicitly, you must realize that the differentia-
tion is taking place with respect to x. This means that when you differentiate terms
involving x alone, you can differentiate as usual. However, when you differentiate
terms involving y, you must apply the Chain Rule, because you are assuming that y is
defined implicitly as a differentiable function of x.

EXAMPLE [E] Differentiating with Respect to x

dr3_ 2o
dx[x] 3x

N

Variables agree

a. Variables agree: use Simple Power Rule.

u” nu = u’
— I ek

dr s _,,dy
b. dx[y] 3y
N

Variables disagree

Variables disagree: use Chain Rule.

d d
c. a[x +3y]=1+ 30% Chain Rule: i[Sy] =3y’

di 5 d., d
. — =x— + y2— o
d [xy?] = x dx[ v +y dx[x] Product Rule
= X<2y@> + y2(1) Chain Rule
dx
d
= 2xyd—)yc + y2 Simplify. ]
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4 y3+y2—5y—x2:—4

Point on Graph Slope of Graph

(2.0) -3

(17 _3) é

x=20 0

(1, 1) Undefined

The implicit equation
Py =Sy mxt=—4

has the derivative

y___
dx 3P +2 =5
Figure 2.27

Implicit Differentiation

GUIDELINES FOR IMPLICIT DIFFERENTIATION

1. Differentiate both sides of the equation with respect to x.

2. Collect all terms involving dy/dx on the left side of the equation and move all
other terms to the right side of the equation.

3. Factor dy/dx out of the left side of the equation.
4. Solve for dy/dx.

In Example 2, note that implicit differentiation can produce an expression for
dy/dx that contains both x and y.

EXAMPLE |3 Implicit Differentiation

Find dy/dx given that y3 + y> — 5y — x> = —4.
Solution

1. Differentiate both sides of the equation with respect to x.

Ay v = sy =) = £-4]
L+ 57 = S5y] - ) = < {—4]

dy dy _ sdy
2727 + = _ 5L _ =
Sydx 2ydx de 2x=20
2. Collect the dy/dx terms on the left side of the equation and move all other terms to
the right side of the equation.
dy dy

dy
3y2—=+ 2 —5==2
Y dx ydx dx x

3. Factor dy/dx out of the left side of the equation.
dy
—(By2+2y—5) =2
Bt 2y = 5) =2

4. Solve for dy/dx by dividing by (3y2 + 2y — 3).

@: 2x ]
dx 3y*?+2y—5

To see how you can use an implicit derivative, consider the graph shown in Figure
2.27. From the graph, you can see that y is not a function of x. Even so, the derivative
found in Example 2 gives a formula for the slope of the tangent line at a point on this
graph. The slopes at several points on the graph are shown below the graph.

With most graphing utilities, it is easy to graph an equation that
explicitly represents y as a function of x. Graphing other equations, however, can
require some ingenuity. For instance, to graph the equation given in Example 2, use
a graphing utility, set in parametric mode, to graph the parametric representations

x=V+1?=5t+4, y=t and x=—-V/>+>=5t+4, y=1 for

—5 =<t = 5. How does the result compare with the graph shown in Figure 2.27?
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It is meaningless to solve for dy/dx in an equation that has no solution points.
(For example, x> + y> = —4 has no solution points.) If, however, a segment of a
graph can be represented by a differentiable function, dy/dx will have meaning as the
2 4+y?=0 slope at each point on the segment. Recall that a function is not differentiable at (a)

0,0 . . . . . . . .
f ©.0 f x points with vertical tangents and (b) points at which the function is not continuous.

-1 EXAMPLE ﬂ Representing a Graph by Differentiable Functions

(a) If possible, represent y as a differentiable function of x.

a x> +y2=0 b. x2+y2=1 c.x+y>=1

<

y=vI=#2 Solution

a. The graph of this equation is a single point. So, it does not define y as a
(-1,0) (1,0) differentiable function of x. See Figure 2.28(a).
-1 1 b. The graph of this equation is the unit circle, centered at (0, 0). The upper semicircle
is given by the differentiable function

y==v1-x2 y=m, -1l<xx<1
(b) and the lower semicircle is given by the differentiable function
. y=-J1-x% —-l<x<l
\ y=+v1-x At the points (—1, 0) and (1, 0), the slope of the graph is undefined. See Figure

1 2.28(b).
\\(1, 0) ¢. The upper half of this parabola is given by the differentiable function
. . y=VT=x x<l1

and the lower half of this parabola is given by the differentiable function

y=—-JV1l—x, x<l1.

(©)
Some graph segments can be represented by
differentiable functions.

Figure 2.28 6 EXAMPLE n Finding the Slope of a Graph Implicitly

At the point (1, 0), the slope of the graph is undefined. See Figure 2.28(c).

Determine the slope of the tangent line to the graph of
x>+ 4y2 =4
y at the point (/2, —1//2). See Figure 2.29.

27 Solution

K__\ X2+ 4y =4 Write original equation.
} } X dy
~ _% 2x + Sydi =0 Differentiate with respect to x.
X

V2, - - -
2+ ( \/E) ﬂ = ﬂ = - Solve for ﬂ
dx 8y 4y dx
Figure 2.29 So, at (2, —1//2), the slope is
ﬂ .~ \/i o l dy a o 1
e = _4/\/§ = > Evaluate e when x = /2 and y= /2

To see the benefit of implicit differentiation, try doing Example 4 using the explicit

functiony = —3/4 — x% |
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3(x% + y%)? = 100xy
Leminscate
Figure 2.30
y
siny =x
n 3
5t (13)
f f X
-1 1
Y T
=
3|
2
.o dy 1
The derivative 157) =
dx 1 — 2
Figure 2.31

EXAMPLE E Finding the Slope of a Graph Implicitly

Determine the slope of the graph of 3(x?> + y2)? = 100xy at the point (3, 1).

Solution
d 2 0o 4
S B30 + 22 = - [100xy]
3(2)(x2 + y2)<2x + 2y@> = 100[)6@ + y(l)]
dx dx

dy dy

12502 + y)2 — 1002 = 100y — 12x(x2 + y?

v +y?) v y — 12x(x* + y?)

[12y(x? + y?) — IOOx]% = 100y — 12x(x? + y?)
dy _ 100y = 12x(x* + y?)
dx  —100x + 12y(x* + y?)

25y — 3x(x? + y?)
—25x + 3y(x% + y?)

At the point (3, 1), the slope of the graph is
dy  25(1) —303)3+13) 2590

de  —253) +3(1)(32 + 12)

—65 13

-75+30 —45 9

as shown in Figure 2.30. This graph is called a lemniscate.

EXAMPLE [} Determining a Differentiable Function

Find dy/dx implicitly for the equation sin y = x. Then find the largest interval of the
form —a < y < a on which y is a differentiable function of x (see Figure 2.31).

Solution
d. d
“siny) = ]
dy
= =1
cosy—
dy 1
dx cosy

The largest interval about the origin for which y is a differentiable function of x is
—1/2 <y < /2. To see this, note that cos y is positive for all y in this interval and
is 0 at the endpoints. If you restrict y to the interval —7/2 < y < /2, you should be
able to write dy/dx explicitly as a function of x. To do this, you can use

cosy = 1 —sin’y
=J/1-x2, —

<<lT
Y=9

e

and conclude that

dy 1
dx 1 —x%

You will study this example further when inverse trigonometric functions are defined
in Section 5.6.

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



2.5 Implicit Differentiation 145

With implicit differentiation, the form of the derivative often can be simplified (as
in Example 6) by an appropriate use of the original equation. A similar technique can
be used to find and simplify higher-order derivatives obtained implicitly.

EXAMPLE Finding the Second Derivative Implicitly

. d? . .
Given x? + y? = 25, find TZ Evaluate the first and second derivatives at the point
X

g
E (=3,4).
3
< Solution Differentiating each term with respect to x produces
on
=
<
g dy
E 2x + 2y; =0
F
dy _ _
ISAAC BARROW (1630-1677) 2y e 2x
The graph in Figure 2.32 is called the kappa _
curve because it resembles the Greek letter @ = ﬁ =X
kappa, . The general solution for the dx 2y y
tangent line to this curve was discovered d -3 3
by the English mathematician Isaac Barrow. At (—3,4): jy = —% = n
Newton was Barrow’s student, and they *
corresponded frequently regarding their work Differentiating a second time with respect to x yields
in the early development of calculus. 22 ( )(1) ( )(d /d )
— (x x
7)2] = 2 Y Quotient Rule
dx y
_ oy =@y yrAat 25
y? y? y
d 25 25
At(=3,4) S2 === =

EXAMPLE [EJ Finding a Tangent Line to a Graph

2

Y Find the tangent line to the graph given by x*(x> + y?) = y? at the point

(ﬁ/Z, ﬂ/Z), as shown in Figure 2.32.
Solution By rewriting and differentiating implicitly, you obtain

x4+x2y2—y2 =

dy dy
403 + 2292 ) + 2xy2 — 2y 2 =0
X X<ydx> Xy s

2y(x? — 1)% = —2x(2x> + y?)

dy  x(2x? +y?)
The kappa curve e W
Figure 2.32 Y

At the point (/2/2, /2/2), the slope is
dy _ (V2/2)[20/2) + (1/2] _3/2 _,

de (V221 - (1/2) 12

and the equation of the tangent line at this point is

ﬂ_( ﬂ)
A S
y=3x— 2 u
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@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

31. Bifolium:
(2 + y)? = 4y

Chapter 2  Differentiation

32. Folium of Descartes:
X4y —=6xy=0

In Exercises 1-16, find dy/dx by implicit differentiation.

1. x2+y2=9 2. x2—y2=25
ot e (408
3. 0242 = 16 42+ = 64 Point: (1, 1) Point: (3, 3)
y y
50083 —xy+y2=7 6. x?y + yx = =2
7. 33 —y=x 8. Vxy=xy+1 2
9. x3 —3x%y + 2xy2 =12 10. 4cosxsiny = 1 1
11. sinx + 2cos 2y = 1 12. (sin 7x + cos my)? =2 ., o
13. sinx = x(1 + tany) 14. coty =x —y -2 -l , L2
. 1
15. y = sinxy 16. x = sec; s

In Exercises 17-20, (a) find two explicit functions by solving the
equation for y in terms of x, (b) sketch the graph of the equation
and label the parts given by the corresponding explicit
functions, (c) differentiate the explicit functions, and (d) find
dy|dx and show that the result is equivalent to that of part (c).

Famous Curves In Exercises 33—40, find an equation of the
tangent line to the graph at the given point. To print an enlarged

copy of the graph, go to the website www.mathgraphs.com.
33. Parabola 34. Circle

(x+272%+(y-3)%=37

(=3 =4kx-5)

17. x2 + y2 = 64
19. 16x2 + 25y = 400

18. x> +y2 —4x + 6y +9 =0
20. 16y*> — x*> = 16

y
10+

In Exercises 21-28, find dy/dx by implicit differentiation and 2:
evaluate the derivative at the given point. 4
2A

2. xy =6, (—=6,—1) —+ x
22. 2 - =0, (1,1) T

2 — 49 -6+

2 X

23. y fepnTe (7,0)
4. (x+yP =4y (—1,1) 35. Rotated hyperbola 36. Rotated ellipse
25. X2 +y3 =5 (8,1) Y oamy=1 5% — 64/3xy + 13y — 16 =0
26. 33 +y3=6xy — 1, (2,3) ;
27. tan(x + y) = x, (0,0) L (1, 1)
28. xcosy =1, (2,%) _§ < 1 i é ; !
Famous Curves In Exercises 29-32, find the slope of the |

tangent line to the graph at the given point.

29. Witch of Agnesi: 30. Cissoid:
(x2+4)y=238 (4 —xpyr=x
Point: (2, 1) Point: (2, 2)

y y

37. Cruciform

x2y2 —9x2 — 4y2 =0

y
6+
S
(-4,2v3)
—t+— F—t—>x
-6 -4 -2 2 4 6
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39. Lemniscate

3(x2 + y2)2 =100(x> - yz)

40. Kappa curve
yHa? +y?) = 22

y y

6 3

YT @ (1,1

2,,

X X
-6 ) 6 3

_4——
_6 —

41. (a) Use implicit differentiation to find an equation of the

2 2
tangent line to the elhpse 5 + 2 s = lat(1,2).

Show that the equation of the tangent line to the ellipse

Yoy
b2

(b)

;+ly)2 1at(x0,y0)1sf+ =1
42. (a) Use implicit differentiation to ﬁnd an equation of the

2
tangent line to the hyperbola rin § 1 at (3, —2).

(b) Show that the equation of the tangent line to the hyperbola
x2 2 X YoV
;—iz 1at(x0,y0)1sL—ﬁ—l.

In Exercises 43 and 44, find dy/dx implicitly and find the largest
interval of the form —a <y <a or 0 <y < a such that y is

a differentiable function of x. Write dy/dx as a function of x.
43. tany = x 44. cosy = x

In Exercises 4550, find d2y/dx? in terms of x and y.

45. x> +y? =4 46. x*y? —2x =3
47x—y = 36 4. 1 —xy=x—y
49. y? 50. y2 = 10x

ldP' In Exercises 51 and 52, use a graphing utility to graph the
equation. Find an equation of the tangent line to the graph at
the given point and graph the tangent line in the same viewing

window.
_Xx— 1 o) ﬁ
2+ 1 > 5

51. Jx+ Sy =5,

ldP' In Exercises 53 and 54, find equations for the tangent line and
normal line to the circle at each given point. (The normal line at
a point is perpendicular to the tangent line at the point.) Use a
graphing utility to graph the equation, tangent line, and normal
line.

(9, 4) 52. y2

53. x> +y2=25 54. x> + y2 =36
(4,3),(=3,4) (6,0), (5, V11)

55. Show that the normal line at any point on the circle

x? 4+ y? = r? passes through the origin.
56. Two circles of radius 4 are tangent to the graph of y2 = 4x at

the point (1, 2). Find equations of these two circles.

2.5 Implicit Differentiation 147

In Exercises 57 and 58, find the points at which the graph of the
equation has a vertical or horizontal tangent line.

57. 25x2% 4+ 16y2 + 200x — 160y + 400 = 0
58. 42 +y2—8x +4y+4=0

ldF' Orthogonal Trajectories In Exercises 59-62, use a graphing
utility to sketch the intersecting graphs of the equations and show
that they are orthogonal. [Two graphs are orthogonal if at their
point(s) of intersection their tangent lines are perpendicular to
each other.]

59. 2x> +y2=6 60. y2 =
= 4x 202+ 3y2 =5
6l. x +y=0 62. ¥* =3(y— 1)
x =siny x(3y —29) =3

PJP' Orthogonal Trajectories In Exercises 63 and 64, verify that the
two families of curves are orthogonal where C and K are real
numbers. Use a graphing utility to graph the two families for
two values of C and two values of K.

63. xy=C, x*—y?=K 64. x> +y>2=C? y=Kx
In Exercises 65-68, differentiate (a) with respect to x (y is a func-

tion of x) and (b) with respect to ¢ (x and y are functions of #).
65. 2y> — 3x* =0

66. x> — 3xy2 +y3 =10

67. cos 7y — 3sinwmx = 1

68. 4sinxcosy = 1

WRITING ABOUT CONCEPTS

69. Describe the difference between the explicit form of a
function and an implicit equation. Give an example of each.

70. In your own words,
differentiation.

state the guidelines for implicit

71. Orthogonal Trajectories The figure below shows the
topographic map carried by a group of hikers. The hikers are in
a wooded area on top of the hill shown on the map and they
decide to follow a path of steepest descent (orthogonal
trajectories to the contours on the map). Draw their routes if
they start from point A and if they start from point B. If their
goal is to reach the road along the top of the map, which
starting point should they use? To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.
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72.

'dP' 73.

CAPSTONE

74. Determine if the statement is true. If it is false, explain why

Chapter 2  Differentiation

Weather Map The weather map shows several isobars—
curves that represent areas of constant air pressure. Three high
pressures H and one low pressure L are shown on the map.
Given that wind speed is greatest along the orthogonal
trajectories of the isobars, use the map to determine the areas
having high wind speed.

Consider the equation x* = 4(4x> — y2).
(a) Use a graphing utility to graph the equation.
(b) Find and graph the four tangent lines to the curve fory = 3.

(c) Find the exact coordinates of the point of intersection of the
two tangent lines in the first quadrant.

and correct it. For each statement, assume y is a function of x.
(a) icos(ﬁ) = —2xsin(x?) (b) icos(yz) = 2y sin(y?)
dx dy

(c) %COS(yZ) = —2ysin(y?)

SECTION PROJECT

75.

77.

78.

79.

80.

Fe s1.

Let L be any tangent line to the curve /x + 'y = /c. Show
that the sum of the x- and y-intercepts of L is c.

. Prove (Theorem 2.3) that d/dx[x"] = nx"~! for the case in

which # is a rational number. (Hint: Write y = x/4 in the form
y? = x? and differentiate implicitly. Assume that p and ¢ are
integers, where ¢ > 0.)

Slope Find all points on the circle x> + y> = 100 where the
slope is %.

Horizontal Tangent Determine the point(s) at which the graph
of y* = y> — x? has a horizontal tangent.

Tangent Lines
2y

llipse = + =—
ellipse - +°
Normals to a Parabola The graph shows the normal lines
from the point (2, 0) to the graph of the parabola x = y>. How

many normal lines are there from the point (x,, 0) to the graph

Find equations of both tangent lines to the

= 1 that passes through the point (4, 0).

of the parabola if (a) x, = i, (b) x, = %, and (c) x, = 1?
For what value of x, are two of the normal lines perpendicular
to each other?

Normal Lines (a) Find an equation of the normal line to the
2y

_— + i

32 8

utility to graph the ellipse and the normal line. (¢) At what other

point does the normal line intersect the ellipse?

ellipse =1 at the point (4,2). (b) Use a graphing

Optical Illusions

In each graph below, an optical illusion is created by having
lines intersect a family of curves. In each case, the lines appear
to be curved. Find the value of dy/dx for the given values of x
and y.

(a) Circles: x> + y2 = C?

(b) Hyperbolas: xy = C

x=3y=4C=5 x=1lLy=4C=4

=

N
=~

)

(c)

y \l/

FOR FURTHER INFORMATION For more information on

Lines: ax = by (d) Cosine curves: y = C cos x
o ﬁ’y 3 x=ﬂ,y=*,C=f
a=Y3,b=1 3 3

3
y y

the mathematics of optical illusions, see the article “Descriptive
Models for Perception of Optical Illusions” by David A. Smith
in The UMAP Journal.
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Volume is related to radius and height.
Figure 2.33

FOR FURTHER INFORMATION To
learn more about the history of related-
rate problems, see the article “The
Lengthening Shadow: The Story of
Related Rates” by Bill Austin, Don Barry,
and David Berman in Mathematics
Magazine. To view this article, go to
the website www.matharticles.com.
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B Find a related rate.
B Use related rates to solve real-life problems.

Finding Related Rates

You have seen how the Chain Rule can be used to find dy/dx implicitly. Another
important use of the Chain Rule is to find the rates of change of two or more related
variables that are changing with respect to time.

For example, when water is drained out of a conical tank (see Figure 2.33), the
volume V, the radius r, and the height & of the water level are all functions of time z.
Knowing that these variables are related by the equation

V=21

Original equation

you can differentiate implicitly with respect to ¢ to obtain the related-rate equation

d _d(m,
a’t(v) dt<3rh>
av _m

dh dr
- = 227 + -
dt 3 [r dt h<2r dtﬂ

= 7T<r2dh + 2rh a'r)

Differentiate with respect to 7.

3 dt dt

From this equation you can see that the rate of change of V is related to the rates of
change of both & and r.

EXPLORATION

Finding a Related Rate In the conical tank shown in Figure 2.33, suppose that
the height of the water level is changing at a rate of —0.2 foot per minute and
the radius is changing at a rate of —0.1 foot per minute. What is the rate of
change in the volume when the radius is » = 1 foot and the height is & = 2 feet?
Does the rate of change in the volume depend on the values of r and 4? Explain.

EXAMPLE n Two Rates That Are Related

Suppose x and y are both differentiable functions of 7 and are related by the equation
vy = x> + 3. Find dy/dt when x = 1, given that dx/dt = 2 when x = 1.

Solution  Using the Chain Rule, you can differentiate both sides of the equation with
respect to t.

y=x>+3 Write original equation.
d dr, o )
- - 1rerentiate wi respect to t.
dt[y]_dt[x + 3] Differentiate with tt
d d
ji = 2x£ Chain Rule
When x = 1 and dx/dt = 2, you have
d
(1)) = 4. =

dt
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150 Chapter 2  Differentiation

Problem Solving with Related Rates

In Example 1, you were given an equation that related the variables x and y and were
asked to find the rate of change of y when x = 1.

Equation: y =x>+3

Given rate: dx =2 when x=1
dt

Find: dy when x =1
dt

In each of the remaining examples in this section, you must create a mathematical
model from a verbal description.

EXAMPLE |3 Ripples in a Pond

A pebble is dropped into a calm pond, causing ripples in the form of concentric
circles, as shown in Figure 2.34. The radius r of the outer ripple is increasing at a
constant rate of 1 foot per second. When the radius is 4 feet, at what rate is the total
area A of the disturbed water changing?

Solution The variables r and A are related by A = 72, The rate of change of the
radius ris dr/dt = 1.

Equation: A = 7r?

. dr
o Given rate: — =1
g dt
<
) Find: when r =4
Z dt
m
E With this information, you can proceed as in Example 1.
e
. . d dr_, e
Total area increases as the outer radius increases. —[A] = =[#7r?] Differentiate with respect to 1.
- dt dt
Figure 2.34
da 2 dr Chain Rul
@ Y
dt dt am kRule
dA . .
ar =27w(4)(1) = 87 Substitute 4 for rand 1 for dr/dt.
When the radius is 4 feet, the area is changing at a rate of 87 square feet per second.
|
GUIDELINES FOR SOLVING RELATED-RATE PROBLEMS
1. Identify all given quantities and quantities fo be determined. Make a sketch
and label the quantities.
2. Write an equation involving the variables whose rates of change either are
given or are to be determined.
3. Using the Chain Rule, implicitly differentiate both sides of the equation with
When using these guidelines, respect to fime .
be sure you perform Step 3 before 4. After completing Step 3, substitute into the resulting equation all known
Step 4. Substituting the known values values for the variables and their rates of change. Then solve for the required
of the variables before differentiating rate of change.

will produce an inappropriate derivative.
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Inflating a balloon
Figure 2.35
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The table below lists examples of mathematical models involving rates of change.
For instance, the rate of change in the first example is the velocity of a car.

Verbal Statement Mathematical Model

x = distance traveled
dx
dt

The velocity of a car after traveling for 1 hour

is 50 miles per hour. = 50 whent =1

V = volume of water in pool

ﬂt/ = 10 m®/hr

Water is being pumped into a swimming pool
at a rate of 10 cubic meters per hour.

0 = angle of revolution

%f = 25(27r) rad/min

A gear is revolving at a rate of 25 revolutions
per minute (1 revolution = 27 rad).

EXAMPLE An Inflating Balloon

Air is being pumped into a spherical balloon (see Figure 2.35) at a rate of 4.5 cubic
feet per minute. Find the rate of change of the radius when the radius is 2 feet.

Solution Let V be the volume of the balloon and let r be its radius. Because the
volume is increasing at a rate of 4.5 cubic feet per minute, you know that at time 7 the
rate of change of the volume is dV/dt = % So, the problem can be stated as shown.

dav 9
Gi te: —— = — (constant rate
iven rate u 0 ( )
dr

Find: when r =2

dt

To find the rate of change of the radius, you must find an equation that relates the
radius r to the volume V.

Equation: V = = 7r3 Volume of a sphere

3

Differentiating both sides of the equation with respect to ¢ produces

av _ 4 r2ﬂ Differentiate with ot to t
dr T dr 1fferentiate with respect to 7.
dr 1 (av ‘
E - E . Solve for dr/dt.
Finally, when r = 2, the rate of change of the radius is
dr 1 (9 .
=—/[=]=0. . ]
a1 677( 2) 0.09 foot per minute

In Example 3, note that the volume is increasing at a constant rate but the radius
is increasing at a variable rate. Just because two rates are related does not mean that
they are proportional. In this particular case, the radius is growing more and more
slowly as ¢ increases. Do you see why?
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152 Chapter 2  Differentiation

" JExamPLE [0 The Speed of an Airplane Tracked by Radar

’ e
‘ ———
AN 'I \\

m Not drawn to scale

An airplane is flying at an altitude of 6 miles,
s miles from the station.
Figure 2.36

Not drawn to scale

A television camera at ground level is filming
the lift-off of a space shuttle that is rising
vertically according to the position equation
s = 5072, where s is measured in feet and ¢ is
measured in seconds. The camera is 2000 feet
from the launch pad.

Figure 2.37

An airplane is flying on a flight path that will take it directly over a radar tracking
station, as shown in Figure 2.36. If s is decreasing at a rate of 400 miles per hour when
s = 10 miles, what is the speed of the plane?

Solution Let x be the horizontal distance from the station, as shown in Figure 2.36.
Notice that when s = 10, x = /102 — 36 = 8.

Given rate: ds/dt = —400 when s = 10
Find: dx/dt when s=10 and x=38

You can find the velocity of the plane as shown.

Equation: x>+ 62 = 52 Pythagorean Theorem
2x @ =2s @ Differentiate with respect to t.
dt dt
@ = s(ds) Solve for dx/dt.
dt  x\dt
% = %(—400) Substitute for s, x, and ds/dt.
= —500 miles per hour Simplify.

Because the velocity is —500 miles per hour, the speed is 500 miles per hour.
|

L[ Note that the velocity in Example 4 is negative because x represents a distance that is
decreasing. |

EXAMPLE E A Changing Angle of Elevation

Find the rate of change in the angle of elevation of the camera shown in Figure 2.37
at 10 seconds after lift-off.

Solution Let 6 be the angle of elevation, as shown in Figure 2.37. When ¢ = 10, the
height s of the rocket is s = 50¢2 = 50(10)2 = 5000 feet.

Given rate: ds/dr = 1007 = velocity of rocket
Find: df/dt when t= 10 and s = 5000

Using Figure 2.37, you can relate s and 0 by the equation tan 6 = s/2000.

Equation: tan 0 = ﬁ See Figure 2.37.
(Secza)ﬁ = 1<ds> Differentiate with respect to .
dt 2000\ dt
do 5 5 1001 ) i
0s-6 Substitute 1007 for ds/dt.

ar 772000
B ( 2000 )2 100z
Js% 420002/ 2000

When t+ = 10 and s = 5000, you have

d6 _ 2000(100)(10) 2 .
7~ 50002 + 20002 — 20 radian per second.

cos 6 = 2000/ /s> + 20007

So, when r = 10, 0 is changing at a rate of % radian per second. |
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Law of Cosines:
b? = a® + ¢* — 2accos 0
Figure 2.39
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EXAMPLE [ The Velocity of a Piston

In the engine shown in Figure 2.38, a 7-inch connecting rod is fastened to a crank
of radius 3 inches. The crankshaft rotates counterclockwise at a constant rate of 200
revolutions per minute. Find the velocity of the piston when 6 = 7/3.

Crankshaft Piston

Connecting rod

The velocity of a piston is related to the angle of the crankshaft.
Figure 2.38

Solution Label the distances as shown in Figure 2.38. Because a complete
revolution corresponds to 27 radians, it follows that d0/dt = 200(27) = 4007
radians per minute.

do

Given rate: = 4007 (constant rate)

dt
. dx _
Find: o when 6= 3
You can use the Law of Cosines (Figure 2.39) to find an equation that relates x and 6.

Equation: 72 =32+ x2 — 2(3)(x) cos

dx . do dx
= _— = — — + —_—
0=2x " 6< xsmedt cos@dt)

dx . do
(6 cos 0 — 2x) i 6x sin 0 "

dx __ 6xsin @ (di))
dt  6cos 0 — 2x\dt

When 6 = 7/3, you can solve for x as shown.

72 =32+ x2 - 2(3)(x) cos =

3
1
49 =9 4+ x? — 6x<>
2
0=x2—3x—40
0=x—-8x+5)
x =28 Choose positive solution.

So, when x = 8 and 0 = /3, the velocity of the piston is
dx _ 6(8) J3/2
dr~ 6(1/2) — 16
96007/3
—13

—4018 inches per minute. L]

(4007)

U

(i3 Note that the velocity in Example 6 is negative because x represents a distance that is
decreasing. |

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



154 Chapter 2  Differentiation

@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, assume that x and y are both differentiable
functions of ¢ and find the required values of dy/dt and dx/dt.

Equation Find Given
1.y=\/;c (a)%whenx=4 %=3
(b) %whenx =25 % =2
2. y = 4(x* — 5x) (a) %Whenx =3 % =2
(b) %Whenx= 1 %=5
.xy=4 (a) %whenx=8 %= 10
(b) %whenx =1 % = -6
4, x> +y2=25 (a)%whenx:3,y:4 %:8
(b) %whenx=4,y=3 %=—2

In Exercises 5-8, a point is moving along the graph of the given
function such that dx/dt is 2 centimeters per second. Find dy/dt
for the given values of x.

5.y=2:2+1 @x=—-1 ®Mx=0 ()x=1
6.y=1_:x2 @x=-2 ) x=0 (c) x=2
7.y = tanx (a)x=—7§T (b)x=—g © x=0
8.y = cosx (a)ng (b)ng (c)ng

WRITING ABOUT CONCEPTS

9. Consider the linear function y = ax + b. If x changes at a
constant rate, does y change at a constant rate? If so, does it
change at the same rate as x? Explain.

10. In your own words, state the guidelines for solving related-
rate problems.

11. Find the rate of change of the distance between the origin
and a moving point on the graph of y = x> + 1 if dx/dt = 2
centimeters per second.

12. Find the rate of change of the distance between the origin
and a moving point on the graph of y = sin x if dx/dt = 2
centimeters per second.

13. Area The radius r of a circle is increasing at a rate of 4
centimeters per minute. Find the rates of change of the area
when (a) » = 8 centimeters and (b) » = 32 centimeters.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Area Let A be the area of a circle of radius r that is changing
with respect to time. If dr/dt is constant, is dA/dt constant?
Explain.

Area The included angle of the two sides of constant equal
length s of an isosceles triangle is 6.

(a) Show that the area of the triangle is given by A = %sz sin 6.

(b) If Ois increasing at the rate of % radian per minute, find the
rates of change of the area when 6 = 7/6 and 6 = /3.

(c) Explain why the rate of change of the area of the triangle is
not constant even though d6/dt is constant.

Volume The radius r of a sphere is increasing at a rate of
3 inches per minute.

(a) Find the rates of change of the volume when r = 9 inches
and r = 36 inches.

(b) Explain why the rate of change of the volume of the sphere
is not constant even though dr/dt is constant.

Volume A spherical balloon is inflated with gas at the rate of
800 cubic centimeters per minute. How fast is the radius of the
balloon increasing at the instant the radius is (a) 30 centimeters
and (b) 60 centimeters?

Volume All edges of a cube are expanding at a rate of
6 centimeters per second. How fast is the volume changing
when each edge is (a) 2 centimeters and (b) 10 centimeters?

Surface Area The conditions are the same as in Exercise 18.
Determine how fast the surface area is changing when each
edge is (a) 2 centimeters and (b) 10 centimeters.

Volume The formula for the volume of a cone is V = %’rrrzh.
Find the rates of change of the volume if dr/dt is 2 inches
per minute and 4 = 3r when (a) r = 6 inches and (b) r = 24
inches.

Volume At a sand and gravel plant, sand is falling off a
conveyor and onto a conical pile at a rate of 10 cubic feet per
minute. The diameter of the base of the cone is approximately
three times the altitude. At what rate is the height of the pile
changing when the pile is 15 feet high?

Depth A conical tank (with vertex down) is 10 feet across the
top and 12 feet deep. If water is flowing into the tank at a rate
of 10 cubic feet per minute, find the rate of change of the depth
of the water when the water is 8 feet deep.

Depth A swimming pool is 12 meters long, 6 meters wide,
1 meter deep at the shallow end, and 3 meters deep at the deep
end (see figure on next page). Water is being pumped into the
pool at i cubic meter per minute, and there is 1 meter of water
at the deep end.

(a) What percent of the pool is filled?

(b) At what rate is the water level rising?
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Figure for 23 Figure for 24

24. Depth A trough is 12 feet long and 3 feet across the top (see
figure). Its ends are isosceles triangles with altitudes of 3 feet.

(a) If water is being pumped into the trough at 2 cubic feet per
minute, how fast is the water level rising when the depth A
is 1 foot?

(b) If the water is rising at a rate of % inch per minute when
h = 2, determine the rate at which water is being pumped
into the trough.

25. Moving Ladder A ladder 25 feet long is leaning against the
wall of a house (see figure). The base of the ladder is pulled
away from the wall at a rate of 2 feet per second.

(a) How fast is the top of the ladder moving down the wall
when its base is 7 feet, 15 feet, and 24 feet from the wall?

(b) Consider the triangle formed by the side of the house, the
ladder, and the ground. Find the rate at which the area of
the triangle is changing when the base of the ladder is 7 feet
from the wall.

(c) Find the rate at which the angle between the ladder and the
wall of the house is changing when the base of the ladder is
7 feet from the wall.

Figure for 25 Figure for 26

FOR FURTHER INFORMATION For more information on the
mathematics of moving ladders, see the article “The Falling Ladder
Paradox” by Paul Scholten and Andrew Simoson in The College
Mathematics Journal. To view this article, go to the website
www.matharticles.com.

26. Construction A construction worker pulls a five-meter plank
up the side of a building under construction by means of a rope
tied to one end of the plank (see figure). Assume the opposite
end of the plank follows a path perpendicular to the wall of the
building and the worker pulls the rope at a rate of 0.15 meter
per second. How fast is the end of the plank sliding along the
ground when it is 2.5 meters from the wall of the building?

27.

28.

29.

2.6 Related Rates 155

Construction A winch at the top of a 12-meter building pulls
a pipe of the same length to a vertical position, as shown in the
figure. The winch pulls in rope at a rate of —0.2 meter per
second. Find the rate of vertical change and the rate of horizontal
change at the end of the pipe when y = 6.

y

ds
7 =025

e
d/

Not drawn to scale

Figure for 27 Figure for 28

Boating A boat is pulled into a dock by means of a winch
12 feet above the deck of the boat (see figure).

(a) The winch pulls in rope at a rate of 4 feet per second.
Determine the speed of the boat when there is 13 feet of
rope out. What happens to the speed of the boat as it gets
closer to the dock?

(b) Suppose the boat is moving at a constant rate of 4 feet per
second. Determine the speed at which the winch pulls in
rope when there is a total of 13 feet of rope out. What
happens to the speed at which the winch pulls in rope as the
boat gets closer to the dock?

Air Traffic Control An air traffic controller spots two planes
at the same altitude converging on a point as they fly at right
angles to each other (see figure). One plane is 225 miles from
the point moving at 450 miles per hour. The other plane is
300 miles from the point moving at 600 miles per hour.

(a) At what rate is the distance between the planes decreasing?

(b) How much time does the air traffic controller have to get
one of the planes on a different flight path?

y y
%\ 400 I =
E
£ 300
5
S 200
s
A 100
" X
x K‘MM Not drawn to scale
100 200 400
Distance (in miles)
Figure for 29 Figure for 30
30. Air Traffic Control An airplane is flying at an altitude of

5 miles and passes directly over a radar antenna (see figure).
When the plane is 10 miles away (s = 10), the radar detects
that the distance s is changing at a rate of 240 miles per hour.
What is the speed of the plane?
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31.

3rd 1st
o o

Figure for 31 and 32
32.

33.

34.

Figure for 34
35.

36.

Chapter 2  Differentiation

Sports A baseball diamond has the shape of a square with
sides 90 feet long (see figure). A player running from second
base to third base at a speed of 25 feet per second is 20 feet
from third base. At what rate is the player’s distance s from
home plate changing?

2nd
S

90 ft

V)
Home

Figure for 33

Sports  For the baseball diamond in Exercise 31, suppose the
player is running from first to second at a speed of 25 feet per
second. Find the rate at which the distance from home plate is
changing when the player is 20 feet from second base.
Shadow Length A man 6 feet tall walks at a rate of 5 feet per
second away from a light that is 15 feet above the ground (see
figure). When he is 10 feet from the base of the light,

(a) at what rate is the tip of his shadow moving?
(b) at what rate is the length of his shadow changing?

Shadow Length Repeat Exercise 33 for a man 6 feet tall
walking at a rate of 5 feet per second foward a light that is
20 feet above the ground (see figure).

L]

Figure for 35

Machine Design The endpoints of a movable rod of length
1 meter have coordinates (x,0) and (0,y) (see figure). The
position of the end on the x-axis is

x(t) = % sin %[

where ¢ is the time in seconds.
(a) Find the time of one complete cycle of the rod.

(b) What is the lowest point reached by the end of the rod on
the y-axis?

(c) Find the speed of the y-axis endpoint when the x-axis
endpoint is (i, 0).
Machine Design Repeat Exercise 35 for a position function
_ 3. . (3
of x(f) = ¥ sin #r1. Use the point (%, 0) for part (c).

37. Evaporation As a spherical raindrop falls, it reaches a layer

CAPSTONE

38. Using the graph of f, (a) determine whether dy/dt is

of dry air and begins to evaporate at a rate that is proportional
to its surface area (S = 4r2). Show that the radius of the
raindrop decreases at a constant rate.

positive or negative given that dx/dt is negative, and
(b) determine whether dx/dt is positive or negative given
that dy/dt is positive.

i v (i1) y

39.

40.

41.

42.

Electricity The combined electrical resistance R of R, and R,
connected in parallel, is given by

where R, R, and R, are measured in ohms. R, and R, are
increasing at rates of 1 and 1.5 ohms per second, respectively. At
what rate is R changing when R, = 50 ohms and R, = 75 ohms?

Adiabatic Expansion When a certain polyatomic gas
undergoes adiabatic expansion, its pressure p and volume V
satisfy the equation pV'3 = k, where k is a constant. Find the
relationship between the related rates dp/dt and dV/dt.

Roadway Design Cars on a certain roadway travel on a
circular arc of radius r. In order not to rely on friction alone to
overcome the centrifugal force, the road is banked at an angle
of magnitude 6 from the horizontal (see figure). The banking
angle must satisfy the equation rg tan 6 = v2, where v is the
velocity of the cars and g = 32 feet per second per second is
the acceleration due to gravity. Find the relationship between
the related rates dv/dt and d6/dt.

Angle of Elevation A balloon rises at a rate of 4 meters per
second from a point on the ground 50 meters from an observer.
Find the rate of change of the angle of elevation of the balloon
from the observer when the balloon is 50 meters above the
ground.
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43. Angle of Elevation A fish is reeled in at a rate of 1 foot per
second from a point 10 feet above the water (see figure). At
what rate is the angle 0 between the line and the water changing
when there is a total of 25 feet of line from the end of the rod
to the water?

10f \' . T

Figure for 43

Figure for 44

44. Angle of Elevation An airplane flies at an altitude of 5 miles
toward a point directly over an observer (see figure). The speed
of the plane is 600 miles per hour. Find the rates at which the
angle of elevation 6 is changing when the angle is (a) 6 = 30°,
(b) 6 = 60° and (c) O = 75°.

45. Linear vs. Angular Speed A patrol car is parked 50 feet from
a long warehouse (see figure). The revolving light on top of the
car turns at a rate of 30 revolutions per minute. How fast is the
light beam moving along the wall when the beam makes angles
of (a) 6=30°% (b) 6 =060°% and (c) 6= 70° with the
perpendicular line from the light to the wall?

O

Figure for 46

(i{=q) ]

Figure for 45

46. Linear vs. Angular Speed A wheel of radius 30 centimeters
revolves at a rate of 10 revolutions per second. A dot is painted
at a point P on the rim of the wheel (see figure).

(a) Find dx/dt as a function of 0.
(b) Use a graphing utility to graph the function in part (a).

(c) When is the absolute value of the rate of change of x
greatest? When is it least?

(d) Find dx/dt when 0 = 30° and 0 = 60°.

47. Flight Control An airplane is flying in still air with an
airspeed of 275 miles per hour. If it is climbing at an angle of
18°, find the rate at which it is gaining altitude.

48. Security Camera A security camera is centered 50 feet above
a 100-foot hallway (see figure). It is easiest to design the
camera with a constant angular rate of rotation, but this results
in a variable rate at which the images of the surveillance area
are recorded. So, it is desirable to design a system with a
variable rate of rotation and a constant rate of movement of the
scanning beam along the hallway. Find a model for the variable
rate of rotation if |dx/dt| = 2 feet per second.
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y
40.50)

o <y T R

100 ft

Figure for 48

49. Think About It Describe the relationship between the rate of
change of y and the rate of change of x in each expression.
Assume all variables and derivatives are positive.

dy dx
— 3 bl
(a ) d

t dt ®) dr xL =) ar

0<sx<sL
Acceleration 1In Exercises 50 and 51, find the acceleration of
the specified object. (Hint: Recall that if a variable is changing
at a constant rate, its acceleration is zero.)

50. Find the acceleration of the top of the ladder described in
Exercise 25 when the base of the ladder is 7 feet from the wall.

51. Find the acceleration of the boat in Exercise 28(a) when there
is a total of 13 feet of rope out.

52. Modeling Data The table shows the numbers (in millions) of
single women (never married) s and married women m in the
civilian work force in the United States for the years 1997
through 2005. (Source: U.S. Bureau of Labor Statistics)

Year | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005

s 16,5 17.1 | 17.6 | 17.8 | 18.0 | 18.2 | 18.4 | 18.6 | 19.2

m 33.8 1339|344 351352355 36.0 358|359

PP' (a) Use the regression capabilities of a graphing utility to find
a model of the form m(s) = as® + bs* + cs + d for the
data, where ¢ is the time in years, with ¢+ = 7 corresponding
to 1997.

(b) Find dm/dt. Then use the model to estimate dm/dt for
t = 10if it is predicted that the number of single women in
the work force will increase at the rate of 0.75 million
per year.

53. Moving Shadow A ball is dropped from a height of
20 meters, 12 meters away from the top of a 20-meter lamppost
(see figure). The ball’s shadow, caused by the light at the top of
the lamppost, is moving along the level ground. How fast is the
shadow moving 1 second after the ball is released?
(Submitted by Dennis Gittinger, St. Philips College, San
Antonio, TX)
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158 Chapter 2  Differentiation

@ R E V I E W E X E R C I S E S See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, find the derivative of the function by using the
definition of the derivative.

L flx) =x>—4x+5 2. fx) = Jx+ 1
3w = 45w =2

In Exercises 5 and 6, describe the x-values at which f is
differentiable.

3x
— (v — ?)2/5 =
5. ) = (x = 3) 6. /) = =
¥ y
5+ 3 8§
a4t 6t
Z 1 e
T, o
-l L1203 4s A A
7. Sketch the graph of f(x) = 4 — |x — 2|.
(a) Is fcontinuous at x = 27
(b) Is fdifferentiable at x = 2? Explain.
X2+4x+2, x< -2
8. Sketch the graph of f(x) = {1 Cdr— 2 x> -2

(a) Is fcontinuous at x = —2?
(b) Is fdifferentiable at x = —27? Explain.

In Exercises 9 and 10, find the slope of the tangent line to the
graph of the function at the given point.

9. glx) = %xz — é, (*l,%)

10. a(x) = :LSX — 2x2, (—2, —%)

ldP' In Exercises 11 and 12, (a) find an equation of the tangent line

to the graph of f at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use
the derivative feature of the graphing utility to confirm your
results.

M f) = —1, (=1,-2) 12. f(x) = (0,2)

x+ 1
In Exercises 13 and 14, use the alternative form of the derivative
to find the derivative at x = ¢ (if it exists).

13, glr) =x2(x — 1), ¢c=2 14, f(x) = c=3

x+ 4
In Exercises 15-30, use the rules of differentiation to find the
derivative of the function.
15. y =25

17. f(x) = «8

16. y = —30
18. g(x) = x*°

19. h(1) = 134
21. f(x) = x> — 11x?
23. h(x) = 6/x + 3x

20. f(r) = —8r°
22. g(s) = 4s* — 55
24. f(x) = x'/2 — x~1/2

2 10
25. g(1) = 32 26. h(x) = e
27. f(0) = 40 — 5sin 0 28. gla) =4cosa+ 6
sin 6 _ Ssina

29. f(0) =3cos ) — ——

4 30. g(@)

3 2a

Writing In Exercises 31 and 32, the figure shows the graphs of
a function and its derivative. Label the graphs as f or f’ and
write a short paragraph stating the criteria you used in making
your selection. To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

31. y 32.

33. Vibrating String When a guitar string is plucked, it vibrates
with a frequency of F = 200./7, where F is measured in
vibrations per second and the tension 7 is measured in pounds.
Find the rates of change of F when (a) 7 = 4 and (b) T = 9.

34. Vertical Motion A ball is dropped from a height of 100 feet.
One second later, another ball is dropped from a height of
75 feet. Which ball hits the ground first?

35. Vertical Motion To estimate the height of a building, a weight
is dropped from the top of the building into a pool at ground
level. How high is the building if the splash is seen 9.2 seconds
after the weight is dropped?

36. Vertical Motion A bomb is dropped from an airplane at an alti-
tude of 14,400 feet. How long will it take for the bomb to reach
the ground? (Because of the motion of the plane, the fall will not
be vertical, but the time will be the same as that for a vertical
fall.) The plane is moving at 600 miles per hour. How far will the
bomb move horizontally after it is released from the plane?

37. Projectile Motion A thrown ball follows a path described by
y =x — 0.02x2.
(a) Sketch a graph of the path.
(b) Find the total horizontal distance the ball is thrown.

(c) At what x-value does the ball reach its maximum height?
(Use the symmetry of the path.)

(d) Find an equation that gives the instantaneous rate of change
of the height of the ball with respect to the horizontal
change. Evaluate the equation at x = 0, 10, 25, 30, and 50.

(e) What is the instantaneous rate of change of the height when
the ball reaches its maximum height?
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38. Projectile Motion The path of a projectile thrown at an angle
of 45° with level ground is

32

=)

=x —
y v

where the initial velocity is v, feet per second.

(a) Find the x-coordinate of the point where the projectile
strikes the ground. Use the symmetry of the path of the
projectile to locate the x-coordinate of the point where
the projectile reaches its maximum height.

(b) What is the instantaneous rate of change of the height when
the projectile is at its maximum height?

(c) Show that doubling the initial velocity of the projectile
multiplies both the maximum height and the range by a
factor of 4.

(d) Find the maximum height and range of a projectile thrown
with an initial velocity of 70 feet per second. Use a
graphing utility to graph the path of the projectile.

39. Horizontal Motion The position function of a particle
moving along the x-axis is

x(t) =12 —=3t+2 for —oco <t < oo

(a) Find the velocity of the particle.

(b) Find the open r-interval(s) in which the particle is moving
to the left.

(c) Find the position of the particle when the velocity is 0.
(d) Find the speed of the particle when the position is 0.

IdP' 40. Modeling Data The speed of a car in miles per hour and the

stopping distance in feet are recorded in the table.

Speed, x 20 | 30 | 40 50 60

Stopping Distance,y | 25 | 55 | 105 | 188 | 300

(a) Use the regression capabilities of a graphing utility to find
a quadratic model for the data.

(b) Use a graphing utility to plot the data and graph the model.
(c) Use a graphing utility to graph dy/dx.

(d) Use the model to approximate the stopping distance at a
speed of 65 miles per hour.

(e) Use the graphs in parts (b) and (c) to explain the change in
stopping distance as the speed increases.

In Exercises 41-54, find the derivative of the function.

41. f(x) = (5x2 + 8)(x%> — 4x — 6)
42, glx) = (& + Tx)(x + 3)

43. h(x) = Jxsinx 44, f(r) = 25 cos ¢

x2+x—1 6x — 5
45. f(x) = o 46. f(x) = e
1 9
47. f(x) = 9 — a2 48. f(x) = PR
x* sin x
49. y = oSt 50. y = &

Review Exercises 159

51. y = 3x%secx 52. y = 2x — x*tanx

53. y = xcosx — sinx 54. g(x) = 3xsinx + x*> cos x

In Exercises 55-58, find an equation of the tangent line to the
graph of f at the given point.

3 _
55. f(x) = 2xx2 Lo 56. f(x) = iJ_r 1 (% 73)

1 + cosx T
57. = —xtanx, (0,0 58. =— |1
[0 = —rtny 0.0 0 =12 (7
59. Acceleration The velocity of an object in meters per second

is v(1) = 36 — 12, 0 < t < 6. Find the velocity and accelera-
tion of the object when t = 4.

60. Acceleration The velocity of an automobile starting from
rest is

_ 90t
4t + 10

v(1)

where v is measured in feet per second. Find the vehicle’s
velocity and acceleration at each of the following times.

(a) 1 second (b) 5 seconds (c) 10 seconds

In Exercises 61— 66, find the second derivative of the function.
61. g(t) = =82 — 5t + 12
63. f(x) = 15x5/2
65. f(0) = 3tan 0

62. h(x) = 21x73 + 3x
64. f(x) = 20Yx
66. h(t) = 10cost — 15sin¢

In Exercises 67 and 68, show that the function satisfies the
equation.

Function Equation

67. y = 2sinx + 3 cosx y'+y=0

10 — cos x

68. y = xy’ +y=sinx

In Exercises 69-80, find the derivative of the function.

0. 1) = (553 0. 1) = (1 + 1)
TLf(s) = (52 = (s> +5) 72 h(0) = ﬁ

73. y = 5cos(9x + 1) 74. y = 1 — cos 2x + 2 cos’x

x  sin2x sec’x  sec’x
5.y=5-"4 76.y ="~ 75
2 L, 2. 3x
_ = /2y — = 7/2 = —
77. y 5 Sin¥/2x — —sin’/2x 78. f(x) Jeil
_ sinm _coste— 1)
79.)/—)(_‘_2 80.)7— x—1

In Exercises 81-84, find the derivative of the function at the
given point.

81. f(x) = V1T — % (-2,3)
82. flx) = I —1, (3,2)
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160 Chapter 2  Differentiation

83. y= %csc 2x, <7ZT’ %)

84. y = csc 3x + cot 3x, (g, 1)

@D In Exercises 85-88, use a computer algebra system to find the

derivative of the function. Use the utility to graph the function
and its derivative on the same set of coordinate axes. Describe
the behavior of the function that corresponds to any zeros of the
graph of the derivative.

2x
85. g(x) = Jirl
87. f(t) = Vr+ 13t +1

86. f(x) = [(x — 2)(x + 4)]?

88. y = V/Bx(x + 2)3

@ In Exercises 89-92, (a) use a computer algebra system to find

the derivative of the function at the given point, (b) find an
equation of the tangent line to the graph of the function at the
point, and (c) graph the function and its tangent line on the
same set of coordinate axes.

89. f() =20t — 1), (2,4

gl) =xJ/2+ 1, (3,3/10)
91. f(x) tanv/1 — x, (—2, tan \/§)
92. f(x) = 2 ¢csc (\/}), (1,2 csc® 1)

In Exercises 93-96, find the second derivative of the function.

1
93. y = 7x? + cos 2x 94.y=;+tanx

95. f(x) = cotx 96. y = sin’x

@ In Exercises 97-100, use a computer algebra system to find the

second derivative of the function.

472 6x — 5
97. f(l‘) = 1- 1)2 98. g(x) = XZTI
99. g(0) = tan 30 — sin(6 — 1) 100. h(x) = 5x/x% — 16

101. Refrigeration The temperature T (in degrees Fahrenheit) of
food in a freezer is

700

T:t2+4t+10

where ¢ is the time in hours. Find the rate of change of 7 with
respect to ¢ at each of the following times.
(@ t=1 (b) t=3 (c)t=5 (d r=10

102. Fluid Flow The emergent velocity v of a liquid flowing
from a hole in the bottom of a tank is given by v = /2gh,
where g is the acceleration due to gravity (32 feet per second
per second) and £ is the depth of the liquid in the tank. Find
the rates of change of v with respect to & when (a) & = 9 and
(b) h = 4. (Note that g = +32 feet per second per second.
The sign of g depends on how a problem is modeled. In this
case, letting g be negative would produce an imaginary value
for v.)

In Exercises 103-108, find dy/dx by implicit differentiation.

= —y*+y)
106. y/x — x/y =25
108. cos(x +y) = x

103. x> + 3xy + y> = 10 104. y2
105. Jxy =x — 4y
107. xsiny = y cos x

ldP' In Exercises 109 and 110, find the equations of the tangent line

and the normal line to the graph of the equation at the given
point. Use a graphing utility to graph the equation, the tangent
line, and the normal line.

109. x> +y2 =10, (3,1) 110. x> —y2 =20, (6,4)

111. A point moves along the curve y = /x in such a way that the
y-value is increasing at a rate of 2 units per second. At what
rate is x changing for each of the following values?

@x=1 ®=x=1 ()x=4

112. Surface Area The edges of a cube are expanding at a rate
of 8 centimeters per second. How fast is the surface area
changing when each edge is 6.5 centimeters?

113. Depth The cross section of a five-meter trough is an isosceles
trapezoid with a two-meter lower base, a three-meter upper
base, and an altitude of 2 meters. Water is running into the
trough at a rate of 1 cubic meter per minute. How fast is the
water level rising when the water is 1 meter deep?

114. Linear and Angular Velocity A rotating beacon is located
1 kilometer off a straight shoreline (see figure). If the beacon
rotates at a rate of 3 revolutions per minute, how fast (in
kilometers per hour) does the beam of light appear to be
moving to a viewer who is % kilometer down the shoreline?

@

0

|<—% km —

Not drawn to scale

115. Moving Shadow A sandbag is dropped from a balloon at a
height of 60 meters when the angle of elevation to the sun
is 30° (see figure). Find the rate at which the shadow of the
sandbag is traveling along the ground when the sandbag is at
a height of 35 meters. [Hint: The position of the sandbag is
given by s(1) = 60 — 4.9¢2.]

Rays
Position: T
s(f) =60 — 49r2- ‘
. 9 60 m
madw SRR
-7\ 30° |
Shadows path
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@ PROBLEM SOLVING

IdP' 1. Consider the graph of the parabola y = x2. 5. Find a third-degree polynomial p(x) that is tangent to the line

(a) Find the radius r of the largest possible circle centered on the
y-axis that is tangent to the parabola at the origin, as shown
in the figure. This circle is called the circle of curvature
(see Section 12.5). Find the equation of this circle. Use a
graphing utility to graph the circle and parabola in the same
viewing window to verify your answer.

(b) Find the center (0, b) of the circle of radius 1 centered on the
y-axis that is tangent to the parabola at two points, as shown
in the figure. Find the equation of this circle. Use a graphing
utility to graph the circle and parabola in the same viewing
window to verify your answer.

y y

-1 1

Figure for 1(a)

Figure for 1(b)

. Graph the two parabolas y = x> and y = —x? + 2x — 5 in the
same coordinate plane. Find equations of the two lines simulta-
neously tangent to both parabolas.

. (a) Find the polynomial P (x) = a, + a,x whose value and
slope agree with the value and slope of f(x) = cos x at the
point x = 0.

(b) Find the polynomial P,(x) = a, + a,x + a,x*> whose value
and first two derivatives agree with the value and first two
derivatives of f(x) = cos x at the point x = 0. This polyno-
mial is called the second-degree Taylor polynomial of
flx) = cosxatx = 0.

(c) Complete the table comparing the values of f(x) = cos x and
P,(x). What do you observe?

x —-1.0 | =0.1 | —0.001 | 0 | 0.001 | 0.1 | 1.0

COoS x

Pz(x)

(d) Find the third-degree Taylor polynomial of f(x) = sin x at
x=0.

4. (a) Find an equation of the tangent line to the parabolay = x? at

the point (2, 4).

(b) Find an equation of the normal line to y = x? at the point
(2, 4). (The normal line is perpendicular to the tangent line.)
Where does this line intersect the parabola a second time?

(c) Find equations of the tangent line and normal line to y = x?
at the point (0, 0).

(d) Prove that for any point (a, b) # (0,0) on the parabola
y = x2, the normal line intersects the graph a second time.

y = l4x — 13 at the point (1,1), and tangent to the line
y = —2x — 5 at the point (—1, —3).

6. Find a function of the form f(x) = a + b cos cx that is tangent

to the line y = 1 at the point (0, 1), and tangent to the line

3 7
YEETR TS

at the point (E é)
POIt\go2 )

IdP' 7. The graph of the eight curve

x*=a*(x>—y?), a#0
is shown below.

y

X
(a) Explain how you could use a graphing utility to graph this
curve.

(b) Use a graphing utility to graph the curve for various values
of the constant a. Describe how a affects the shape of the
curve.

(c) Determine the points on the curve at which the tangent line
is horizontal.

'dF’ 8. The graph of the pear-shaped quartic

b2 =x3a—1x), ab>0

is shown below.
y

(a) Explain how you could use a graphing utility to graph this
curve.
(b) Use a graphing utility to graph the curve for various values

of the constants a and b. Describe how a and b affect the
shape of the curve.

(c) Determine the points on the curve at which the tangent line
is horizontal.
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9.

10.

11.

12.

'dF" 13.

Chapter 2  Differentiation

A man 6 feet tall walks at a rate of 5 feet per second toward a

streetlight that is 30 feet high (see figure). The man’s 3-foot-tall

child follows at the same speed, but 10 feet behind the man. At

times, the shadow behind the child is caused by the man, and at

other times, by the child.

(a) Suppose the man is 90 feet from the streetlight. Show that
the man’s shadow extends beyond the child’s shadow.

(b) Suppose the man is 60 feet from the streetlight. Show that
the child’s shadow extends beyond the man’s shadow.

(c) Determine the distance d from the man to the streetlight at
which the tips of the two shadows are exactly the same
distance from the streetlight.

(d) Determine how fast the tip of the man’s shadow is moving
as a function of x, the distance between the man and the
street- light. Discuss the continuity of this shadow speed
function.

N
N

iy
6 ft| 4 >
ﬂ Lg_ 3[R

=—10 ft —=

Not drawn to scale

Figure for 9

Figure for 10

A particle is moving along the graph of y = ¥/x (see figure).
When x = 8, the y-component of the position of the particle is
increasing at the rate of 1 centimeter per second.

(a) How fast is the x-component changing at this moment?

(b) How fast is the distance from the origin changing at this
moment?

(c) How fast is the angle of inclination 6 changing at this
moment?

Let L be a differentiable function for all x. Prove that if

L(a + b) = L(a) + L(b) for all a and b, then L’(x) = L’(0) for

all x. What does the graph of L look like?

Let E be a function satisfying E(0) = E’(0) = 1. Prove that if

E(a + b) = E(a)E(b) for all a and b, then E is differentiable

and E’(x) = E(x) for all x. Find an example of a function

satisfying E(a + b) = E(a)E(b).

. . .. sinx .
The fundamental limit lim —— = 1 assumes that x is measured
x—=0 X

in radians. What happens if you assume that x is measured in
degrees instead of radians?

(a) Set your calculator to degree mode and complete the table.

z (in degrees) | 0.1 | 0.01 | 0.0001

sin z
V4

14.

15.

(b) Use the table to estimate

. sing
lim —
z—0 Z

for z in degrees. What is the exact value of this limit? (Hint:
180° = 7 radians)

(c) Use the limit definition of the derivative to find
4 sin
dz <
for z in degrees.

(d) Define the new functions S(z) = sin(cz) and
C(z) = cos(cz), where ¢ = 7r/180. Find S(90) and C(180).
Use the Chain Rule to calculate

d
—S(2).
s
(e) Explain why calculus is made easier by using radians
instead of degrees.
An astronaut standing on the moon throws a rock upward. The
height of the rock is
27

s=—"—1>+ +
s 10t 27t + 6

where s is measured in feet and ¢ is measured in seconds.

(a) Find expressions for the velocity and acceleration of the
rock.

(b) Find the time when the rock is at its highest point by
finding the time when the velocity is zero. What is the
height of the rock at this time?

(c) How does the acceleration of the rock compare with the
acceleration due to gravity on Earth?

If a is the acceleration of an object, the jerk j is defined by
j=a).
(a) Use this definition to give a physical interpretation of j.

(b) Find for the slowing vehicle in Exercise 119 in Section 2.3
and interpret the result.

(c) The figure shows the graphs of the position, velocity,
acceleration, and jerk functions of a vehicle. Identify each
graph and explain your reasoning.
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Applications
of Differentiation

This chapter discusses several applications
of the derivative of a function. These
applications fall into three basic
categories—curve sketching, optimization,
and approximation techniques.

In this chapter, you should learn the
following.

® How to use a derivative to locate the
minimum and maximum values of a
function on a closed interval. (3.1)

B How numerous results in this chapter
depend on two important theorems
called Rolle’s Theorem and the Mean
Value Theorem. (3.2)

B How to use the first derivative to deter-
mine whether a function is increasing
or decreasing. (3.3)

B How to use the second derivative to
determine whether the graph of a
function is concave upward or concave |
downward. (3.4)

® How to find horizontal asymptotes of
the graph of a function. (3.5)

® How to graph a function using the
techniques from Chapters P-3. (3.6)

© E.J. Baumeister Jr./Alamy

® How to solve optimization problems. A small aircraft starts its descent from an altitude of 1 mile, 4 miles west of the
Q.7 = runway. Given a function that models the glide path of the plane, when would the
B How to use approximation techniques plane be descending at the greatest rate? (See Section 3.4, Exercise 75.)

to solve problems. (3.8 and 3.9)

1 1 1 1
1 1 1 1
1 1 1 1
! 1 ! 1
1 1 1 1
1 1 1 1
1 1 1 1
1 | | |
I SN S e — T @ T T
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

In Chapter 3, you will use calculus to analyze graphs of functions. For example, you can use the derivative of a function
to determine the function’s maximum and minimum values. You can use limits to identify any asymptotes of the
function’s graph. In Section 3.6, you will combine these techniques to sketch the graph of a function.

163

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



164 Chapter 3  Applications of Differentiation

@ Extrema on an Interval

2,5) _ Maximum

[ y
-1 1

,_
P ——
=

(a) fis continuous, [— 1, 2] is closed.

y

_Nota
maximum

f)=x*+1

Not a
minimum

[ T F—x
R

(¢) g is not continuous, [— 1, 2] is closed.
Extrema can occur at interior points or end-
points of an interval. Extrema that occur at
the endpoints are called endpoint extrema.

Figure 3.1

B Understand the definition of extrema of a function on an interval.
B Understand the definition of relative extrema of a function on an open interval.
B Find extrema on a closed interval.

Extrema of a Function

In calculus, much effort is devoted to determining the behavior of a function f on an
interval 1. Does fhave a maximum value on /? Does it have a minimum value? Where
is the function increasing? Where is it decreasing? In this chapter you will learn how
derivatives can be used to answer these questions. You will also see why these
questions are important in real-life applications.

DEFINITION OF EXTREMA

Let f'be defined on an interval / containing c.

1. f(c) is the minimum of f on I if f(c¢) < f(x) for all x in 1.
2. f(c) is the maximum of f on I if f(c¢) = f(x) for all x in .

The minimum and maximum of a function on an interval are the extreme
values, or extrema (the singular form of extrema is extremum), of the
function on the interval. The minimum and maximum of a function on an
interval are also called the absolute minimum and absolute maximum, or
the global minimum and global maximum, on the interval.

A function need not have a minimum or a maximum on an interval. For instance,
in Figure 3.1(a) and (b), you can see that the function f(x) = x> + 1 has both a
minimum and a maximum on the closed interval [— 1, 2], but does not have a maxi-
mum on the open interval (— 1, 2). Moreover, in Figure 3.1(c), you can see that
continuity (or the lack of it) can affect the existence of an extremum on the interval.
This suggests the theorem below. (Although the Extreme Value Theorem is intuitively
plausible, a proof of this theorem is not within the scope of this text.)

THEOREM 3.1 THE EXTREME VALUE THEOREM

If fis continuous on a closed interval [a, b], then fhas both a minimum and a
maximum on the interval.

EXPLORATION

Finding Minimum and Maximum Values The Extreme Value Theorem (like
the Intermediate Value Theorem) is an existence theorem because it tells of the
existence of minimum and maximum values but does not show how to find

these values. Use the extreme-value capability of a graphing utility to find the
minimum and maximum values of each of the following functions. In each case,
do you think the x-values are exact or approximate? Explain your reasoning.

a. f(x) = x> — 4x + 5 on the closed interval [—1, 3]
b. f(x) = x> — 2x2 — 3x — 2 on the closed interval [—1, 3]
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Hill y f(x) = x> = 3x2

I X

_2 —

-3 Valley
/.4

_4 -+

f has a relative maximum at (0, 0) and a
relative minimum at (2, —4).
Figure 3.2

! 2_
Y Relative  fx)= & . 3)
maximum 2
2 -4
(3,2
} } } X
2 4 6
_2 -4
_4 -4
(@) f3) =0
y
f@=|x| 3

(b) £/(0) does not exist.

y
f(x) =sinx

(E’ 1) Relative
[ 2 maximum

/..

2
Relative (3£ _1)
_»-L  minimum\ 2~

© 1(3) = or(3) =0

Figure 3.3

|
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Relative Extrema and Critical Numbers

In Figure 3.2, the graph of f(x) = x> — 3x2 has a relative maximum at the point
(0,0) and a relative minimum at the point (2, —4). Informally, for a continuous
function, you can think of a relative maximum as occurring on a “hill” on the graph,
and a relative minimum as occurring in a “valley” on the graph. Such a hill and
valley can occur in two ways. If the hill (or valley) is smooth and rounded, the graph
has a horizontal tangent line at the high point (or low point). If the hill (or valley) is
sharp and peaked, the graph represents a function that is not differentiable at the high
point (or low point).

DEFINITION OF RELATIVE EXTREMA

1. If there is an open interval containing ¢ on which f(c) is a maximum, then
f(c) is called a relative maximum of f, or you can say that f has a relative
maximum at (c, f(c)).

2. If there is an open interval containing ¢ on which f(c) is a minimum, then
f(c) is called a relative minimum of f, or you can say that f has a relative
minimum at (c, f(c)).

The plural of relative maximum is relative maxima, and the plural of relative

minimum is relative minima. Relative maximum and relative minimum are

sometimes called local maximum and local minimum, respectively.

Example 1 examines the derivatives of functions at given relative extrema. (Much
more is said about finding the relative extrema of a function in Section 3.3.)

EXAMPLE [fl] The Value of the Derivative at Relative Extrema

Find the value of the derivative at each relative extremum shown in Figure 3.3.

Solution
2
a. The derivative of f(x) = % is
3 _ 2 2
f ’(x) = i (18x) ((1)3())62 3)(3)6 ) Differentiate using Quotient Rule.
)
= 9(97436) Simplify.
X

At the point (3, 2), the value of the derivative is f/(3) = 0 [see Figure 3.3(a)].

b. At x = 0, the derivative of f(x) = |x| does not exist because the following
one-sided limits differ [see Figure 3.3(b)].

fim 18 =10 _J(;(O) — gim L=

Limit from the left

x=0" X — x=0" X

— f(0
lim M = lim | | =1 Limit from the right
x—0" X — x—=0" X

¢. The derivative of f(x) = sin x is
f(x) = cos x.

At the point (7/2, 1), the value of the derivative is f(7/2) = cos(w/2) = 0. At the
point (377/2, —1), the value of the derivative is f(37/2) = cos(37/2) = 0 [see
Figure 3.3(¢)]. [ ]
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Mary Evans Picture Library

PIERRE DE FERMAT (1601-1665)

For Fermat, who was trained as a lawyer,
mathematics was more of a hobby than a
profession. Nevertheless, Fermat made many
contributions to analytic geometry, number
theory, calculus, and probability. In letters to
friends, he wrote of many of the fundamental
ideas of calculus, long before Newton or
Leibniz. For instance, Theorem 3.2 is sometimes
attributed to Fermat.

Note in Example 1 that at each relative extremum, the derivative either is zero or
does not exist. The x-values at these special points are called critical numbers. Figure
3.4 illustrates the two types of critical numbers. Notice in the definition that the critical
number ¢ has to be in the domain of f, but ¢ does not have to be in the domain of f”.

DEFINITION OF A CRITICAL NUMBER

Let fbe defined at c. If f/(¢) = 0 or if fis not differentiable at c, then ¢ is a
critical number of f.

f’(c) does not exist.

fe)=0

/

Horizontal
tangent

1
1
1
1
1
1
1
1
1
1
I
1

c

I
1
1
1
1
1
1
1
1
1
1
1
1
I
1

C

/ N

¢ is a critical number of f.
Figure 3.4

THEOREM 3.2 RELATIVE EXTREMA OCCUR ONLY AT CRITICAL NUMBERS

If f has a relative minimum or relative maximum at x = c, then c is a critical
number of f.

Case 1: If fis not differentiable at x = ¢, then, by definition, c is a critical number of
fand the theorem is valid.

Case 2: If f is differentiable at x = ¢, then f/(c) must be positive, negative, or 0.
Suppose f’(c) is positive. Then

OEGI

/ =1
f(C) x1—>n;1' X —C
which implies that there exists an interval (a, b) containing ¢ such that
S = fle) > 0, for all x # c in (a, b). [See Exercise 82(b), Section 1.2.]
X —C

Because this quotient is positive, the signs of the denominator and numerator must
agree. This produces the following inequalities for x-values in the interval (a, b).

Leftof c:  x < c and f(x) < f(c) > f(c)is not a relative minimum
Right of ¢: x > ¢ and f(x) > f(c) > f(c) is not a relative maximum

So, the assumption that f’(c) > 0 contradicts the hypothesis that f(c) is a relative
extremum. Assuming that f/(c) < 0 produces a similar contradiction, you are left with
only one possibility—namely, f/(c) = 0. So, by definition, c is a critical number of f
and the theorem is valid. |
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16 -+ (2, 16)
Maximum

(1,-1) 2

-4+ Minimum

Fx) =3x* — 4x3

On the closed interval [— 1, 2], f has a
minimum at (1, — 1) and a maximum
at (2, 16).

Figure 3.5

3.1  Extrema on an Interval 167

Finding Extrema on a Closed Interval

Theorem 3.2 states that the relative extrema of a function can occur only at the critical
numbers of the function. Knowing this, you can use the following guidelines to find
extrema on a closed interval.

GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL

To find the extrema of a continuous function f on a closed interval [a, b], use
the following steps.

1. Find the critical numbers of fin (a, b).

2. Evaluate fat each critical number in (a, b).

3. Evaluate fat each endpoint of [a, b].

4. The least of these values is the minimum. The greatest is the maximum.

The next three examples show how to apply these guidelines. Be sure you see that
finding the critical numbers of the function is only part of the procedure. Evaluating
the function at the critical numbers and the endpoints is the other part.

EXAMPLE [EJ Finding Extrema on a Closed Interval

Find the extrema of f(x) = 3x* — 4x> on the interval [—1, 2].
Solution Begin by differentiating the function.

flx) = 3x* — 43
f(x) = 12x3 — 12x2

Write original function.
Differentiate.

To find the critical numbers of f, you must find all x-values for which f’(x) = 0 and
all x-values for which f(x) does not exist.

o) =12x3 — 122 =0
12x%(x — 1) =0
x=0,1

Set £(x) equal to 0.

Factor.

Critical numbers

Because f’ is defined for all x, you can conclude that these are the only critical
numbers of f. By evaluating f at these two critical numbers and at the endpoints of

[—1,2], you can determine that the maximum is f(2) = 16 and the minimum is
f(1) = —1, as shown in the table. The graph of fis shown in Figure 3.5.

Left Critical Critical Right
Endpoint Number Number Endpoint
1) = - f)=—-1 f(2) =16
f=0)=7 f0)=0 Minimum | Maximum u

In Figure 3.5, note that the critical number x = 0 does not yield a relative
minimum or a relative maximum. This tells you that the converse of Theorem 3.2 is
not true. In other words, the critical numbers of a function need not produce relative
extrema.
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y

Minimum
(-1,-5)

f(x) = 2x = 3x%3

On the closed interval [ — 1, 3], fhas a
minimum at (— 1, 5) and a maximum
at (0, 0).

Figure 3.6

(%, 3) Maximum

W

f(x) =2 sin x — cos 2x

(8]

,_.
=
ol
L
~—

] ] ]

LI

o.-n

_ e 3\ (llz _3
’ (5:-3) (%-3)

-3 ~ . 7

Minima

On the closed interval [0, 277], f has

two minima at (77r/6, —3/2) and

(114r/6, —3/2) and a maximum at

(7/2,3).

Figure 3.7

X

EXAMPLE [EJ Finding Extrema on a Closed Interval

Find the extrema of f(x) = 2x — 3x%3 on the interval [— 1, 3].

Solution Begin by differentiating the function.

f(x) = 2x — 3x%/3 Write original function.
2 x!'3—1
f’(x) =2 - )617 = 2()61/3 Difterentiate.

From this derivative, you can see that the function has two critical numbers in the
interval [—1, 3]. The number 1 is a critical number because (1) =0, and the
number 0 is a critical number because £/(0) does not exist. By evaluating fat these two
numbers and at the endpoints of the interval, you can conclude that the minimum is
f(=1) = =5 and the maximum is £(0) = 0, as shown in the table. The graph of fis
shown in Figure 3.6.

Left Critical Critical Right
Endpoint Number Number Endpoint

fl-1) = =5 | f(0)=0

Minimum Maximum

f)y=—-1] f3)=6-339~=-024

O EXAMPLE | Finding Extrema on a Closed Interval

Find the extrema of f(x) = 2 sin x — cos 2x on the interval [0, 277].

Solution This function is differentiable for all real x, so you can find all critical
numbers by differentiating the function and setting f'(x) equal to zero, as shown.

f(x) = 2sinx — cos 2x Write original function.
f(x) =2cosx+ 2sin2x =0 Set f’(x) equal to 0.
2cosx + 4cosxsinx =0 sin 2x = 2 cos x sin x
2(cos x)(1 + 2sinx) =0 Factor.

In the interval [0, 277], the factor cos x is zero when x = 7/2 and when x = 37/2.
The factor (1 + 2 sin x) is zero when x = 777/6 and when x = 1177/6. By evaluating
f at these four critical numbers and at the endpoints of the interval, you can conclude
that the maximum is f(7/2) =3 and the minimum occurs at fwo points,
f(7m/6) = —3/2 and f(117/6) = —3/2, as shown in the table. The graph is shown
in Figure 3.7.

Left Critical Critical Critical Critical Right
Endpoint | Number Number Number Number Endpoint

L A3) = AT) - () - )= 3 am=

. . 2 .
Maximum Minimum Minimum

The icon C indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, find the value of the derivative (if it exists) at

each indicated extremum.

2. f(x) = cos =

2,-1)
-2+ _2Ak
4
3 g(x)=x+; 4. f(x) = —3xJ/x + 1
y y
5T (_z 27@)2*
5+ 3’3
L 1
3 x
L @3 3 2 Lo\ 1
1+ -
—t——1—F+—"1—>x _y L
1 2 3 4 5 6 2
5. f(x) = (x + 2)¥3 6. f(x) =4 — |«
y y
2+ 6+
(—2‘,0> 1 A0 Y
Y x 2+
4 3 2 -1
S % % x
/s FEEAN
-2+ -2+

In Exercises 7-10, approximate the critical numbers of the
function shown in the graph. Determine whether the function
has a relative maximum, a relative minimum, an absolute
maximum, an absolute minimum, or none of these at each
critical number on the interval shown.

7. y 8. y
s
4L
3
S
1

3.1
9. Y
5+
4+
3+
2+
1

} } T F——t X
-1 | 1 23 4 5

Extrema on an Interval 169

10. Y

In Exercises 11-16, find any critical numbers of the function.

11. f(x) = x* — 3x?
13. ¢g(t) =t/4 — 1, t <3

15. h(x) = sin2x + cosx

0<x<2m

12. g(x) = x* — 422

4x
14. f(x) = o
16. f(6) = 2sec 0 + tan 0
0<6<2m

In Exercises 17-36, locate the absolute extrema of the function

on the closed interval.

17. fx) =3 —x, [~ 1,2]

19. g(x) = x> — 2x, [0, 4]

2x + 5

18. f(x) = , [0, 5]

20. h(x) = —x> +3x — 5, [-2,1]

21 1) = = 2, [-1,2]
23,y =3x%3 —2x, [—1,1]
[2

25. g(t) - 213 [_1’ 1]
27. h(s) = b , [0, 1]
s — 2
29. y =3 — |t—3,[—1,5]
1
30- 80 = T T ar

31 f(x) = [x], [-2,2]

1
33. f(x) = cos mx, [O, g]
35. y = 3cosx, [0,27]

36. y = tan (%), [0, 2]

[=3.3]

22, f(x) = x* — 12x, [0, 4]
24, g(x) = ¥x, [-1,1]
26. f(x) = T

28. ht) = . [3.5]

32. h(x) =2 — xf, [—2,2]

T o
34. g(x) = secx, [—g, g]

In Exercises 37-40, locate the absolute extrema of the function

(if any exist) over each interval.

37. f(x) =2x — 3
(@ [0,2] () [0,2)
(© (0,2] (@ (0,2)
39. f(x) = x> — 2x
(@ [-1,2] ) (1,3]
(© (0,2) (@ [1,4)
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38. f(x) =5 —x
(@ [1,4] ) [1,4)
(c) (1,4] (d) (1,4)

40. f(x) = V4 — x?
(@ [-2,2] (b) [-2,0)
(© (=2,2) @ [1,2)
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fdP' In Exercises 41-46, use a graphing utility to graph the function. WRITING ABOUT CONCEPTS

Locate the absolute extrema of the function on the given
& In Exercises 55 and 56, graph a function on the interval

interval.
fterva [—2, 5] having the given characteristics.
2x+2, 0= 1 . -
41. f(x) = * * , [0,3] 55. Absolute maximum at x = —2, absolute minimum at
’ 4x2, l<x<3 _ . . _
x = 1, relative maximum at x = 3
4. f(x) = {2 —ah Isa< 3, [1,5] 56. Relative minimum at x = —1, critical number (but no
2—-3x, 3=<x<5 extremum) at x = 0, absolute maximum at x = 2, absolute
3 2 minimum at x = 5
43. fx) = T (1,4] 4. fx) = pp— [0,2)

In Exercises 57-60, determine from the graph whether f

45. f) =x* -2 +x + 1, [-1,3] has a minimum in the open interval (a, b).

46. f(x) = Jx + cos%, [0, 2] 57. (a) (b)

@P In Exercises 47 and 48, (a) use a computer algebra system to
graph the function and approximate any absolute extrema on

! f
the given interval. (b) Use the utility to find any critical numbers, / /
and use them to find any absolute extrema not located at the \‘
endpoints. Compare the results with those in part (a). : :

47. f(x) = 3.2x°> + 5x3 — 3.5x, [0, 1]

X X
b b
48. f(x) = %%/3 —x [0,3] “ “
58. (a) (®)
X In Exercises 49 and 50, use a computer algebra system to find y y

the maximum value of | f”(x)| on the closed interval. (This value
is used in the error estimate for the Trapezoidal Rule, as
discussed in Section 4.6.) f f

49. f(x) = V1 + 23, [0,2]
o 1

@P In Exercises 51 and 52, use a computer algebra system to find
the maximum value of |f®(x)| on the closed interval. (This 59. (a) (b)
value is used in the error estimate for Simpson’s Rule, as y y
discussed in Section 4.6.)

Q
S
Q
<

1
1. =(x+ 1%, [0,2 2. =—-— [—11
SL7(0 = 6+ D% 0.2 52500 = 5 (-1 1] ; ;
53. Writing Write a short paragraph explaining why a continuous ¢
function on an open interval may not have a maximum or
minimum. [llustrate your explanation with a sketch of the graph A
of such a function. x x

a b a b
CAPSTONE
60. (a) (b)
54. Decide whether each labeled point is an absolute maximum y y
or minimum, a relative maximum or minimum, or neither.
y
G
B
E 1
c S . S
X
F X X
a b a b
D
A
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61. Power The formula for the power output P of a battery is
P =VI— RI? where V is the electromotive force in volts,
R is the resistance in ohms, and / is the current in amperes. Find
the current that corresponds to a maximum value of P in a
battery for which V = 12 volts and R = 0.5 ohm. Assume that
a 15-ampere fuse bounds the output in the interval 0 < [ < 15.
Could the power output be increased by replacing the
15-ampere fuse with a 20-ampere fuse? Explain.

62. Lawn Sprinkler A lawn sprinkler is constructed in such a
way that d0/dt is constant, where 0 ranges between 45° and
135° (see figure). The distance the water travels horizontally is

v2 sin 20 R R
X=" , 45° <6< 135
where v is the speed of the water. Find dx/dt and explain why
this lawn sprinkler does not water evenly. What part of the lawn
receives the most water?

6=105° 2 =75
’ Y ’ A
’ \ 4 A
’ \ ’ \
6 =135 1 3 || 5 V0 =45°
- v PR
ARG Ve 1 S
~ ‘, ’\9 \‘ \§

‘LM N =

Water sprinkler: 45° < 6 < 135°

FOR FURTHER INFORMATION For more information on the
“calculus of lawn sprinklers,” see the article “Design of an
Oscillating Sprinkler” by Bart Braden in Mathematics Magazine. To
view this article, go to the website www.matharticles.com.

63. Honeycomb The surface area of a cell in a honeycomb is

2 —
5= 6hs + (VB cos b
2 sin 6

where & and s are positive constants and 6 is the angle at which
the upper faces meet the altitude of the cell (see figure). Find the
angle 0 (/6 < 0 < 7/2) that minimizes the surface area S.

FOR FURTHER INFORMATION For more information on the
geometric structure of a honeycomb cell, see the article “The Design
of Honeycombs” by Anthony L. Peressini in UMAP Module 502,
published by COMAP, Inc., Suite 210, 57 Bedford Street,
Lexington, MA.

3.1  Extrema on an Interval 171

64. Highway Design In order to build a highway, it is necessary
to fill a section of a valley where the grades (slopes) of the sides
are 9% and 6% (see figure). The top of the filled region will
have the shape of a parabolic arc that is tangent to the two
slopes at the points A and B. The horizontal distances from A to
the y-axis and from B to the y-axis are both 500 feet.

y
p= 500 ft —><— 500 ft —= Highway
\A i
P ¥
9o~ o - - de ‘
“m " le‘,gd T - o o &

Not drawn to scale

(a) Find the coordinates of A and B.

(b) Find a quadratic function y = ax?> + bx + ¢, —500 <
x = 500, that describes the top of the filled region.

(c) Construct a table giving the depths d of the fill for
x = —500, —400, —300, —200, —100, 0, 100, 200, 300,
400, and 500.

(d) What will be the lowest point on the completed highway?
Will it be directly over the point where the two hillsides
come together?

True or False? In Exercises 65—68, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

65. The maximum of a function that is continuous on a closed
interval can occur at two different values in the interval.

66. If a function is continuous on a closed interval, then it must
have a minimum on the interval.

67. If x = c is a critical number of the function f; then it is also a
critical number of the function g(x) = f(x) + k, where k is a
constant.

68. If x = ¢ is a critical number of the function f, then it is also a
critical number of the function g(x) = f(x — k), where k is a
constant.

69. Let the function f be differentiable on an interval / containing
c. If f has a maximum value at x = ¢, show that —f has a
minimum value at x = c.

70. Consider the cubic function f(x) = ax® + bx> + cx + d,
where a # 0. Show that f can have zero, one, or two critical
numbers and give an example of each case.

PUTNAM EXAM CHALLENGE

71. Determine all real numbers a > 0 for which there exists a
nonnegative continuous function f(x) defined on [0, a] with
the property that the region R = {(x,y); 0 < x < q,
0 <y < f(x)} has perimeter k units and area k square units
for some real number k.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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@ Rolle’s Theorem and the Mean Value Theorem

ROLLE’S THEOREM

French mathematician Michel Rolle first
published the theorem that bears his name in
1691. Before this time, however, Rolle was one
of the most vocal critics of calculus, stating
that it gave erroneous results and was based
on unsound reasoning. Later in life, Rolle
came to see the usefulness of calculus.

Relative
maximum

I I I
a c b
(a) fis continuous on [a, b] and differentiable
on (a, b).

Relative
maximum

(b) fis continuous on [a, b].

Figure 3.8

B Understand and use Rolle’s Theorem.
B Understand and use the Mean Value Theorem.

Rolle’s Theorem

The Extreme Value Theorem (Section 3.1) states that a continuous function on a
closed interval [a, b] must have both a minimum and a maximum on the interval. Both
of these values, however, can occur at the endpoints. Rolle’s Theorem, named after
the French mathematician Michel Rolle (1652-1719), gives conditions that guarantee
the existence of an extreme value in the interior of a closed interval.

EXPLORATION

Extreme Values in a Closed Interval Sketch a rectangular coordinate plane
on a piece of paper. Label the points (1, 3) and (5, 3). Using a pencil or pen,
draw the graph of a differentiable function f that starts at (1, 3) and ends at

(5, 3). Is there at least one point on the graph for which the derivative is zero?
Would it be possible to draw the graph so that there isn’t a point for which the
derivative is zero? Explain your reasoning.

THEOREM 3.3 ROLLE’S THEOREM

Let fbe continuous on the closed interval [a, b] and differentiable on the open
interval (a, b). If

fla) = f(b)

then there is at least one number c in (a, b) such that f’(c) = 0.

Let f(a) = d = f(b).

Case 1: If f(x) = d for all x in [a, b], fis constant on the interval and, by Theorem
2.2, f(x) = 0 for all x in (a, b).

Case 2: Suppose f(x) > d for some x in (a, b). By the Extreme Value Theorem, you
know that fhas a maximum at some c in the interval. Moreover, because f (c) > d, this
maximum does not occur at either endpoint. So, f has a maximum in the open
interval (a, b). This implies that f(c) is a relative maximum and, by Theorem 3.2, c is
a critical number of f. Finally, because f is differentiable at ¢, you can conclude that
fle) = 0.

Case 3: If f(x) < d for some x in (a, b), you can use an argument similar to that in
Case 2, but involving the minimum instead of the maximum. [ |

From Rolle’s Theorem, you can see that if a function fis continuous on [a, b] and
differentiable on (a, b), and if f(a) = f(b), there must be at least one x-value between
a and b at which the graph of f has a horizontal tangent, as shown in Figure 3.8(a).
If the differentiability requirement is dropped from Rolle’s Theorem, f will still have
a critical number in (a, b), but it may not yield a horizontal tangent. Such a case is
shown in Figure 3.8(b).
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f(x)=x2—3x+2

(1,0) (2,0)

]
NS
N
14 Horizontal
tangent

The x-value for which f’(x) = 0 is between
the two x-intercepts.
Figure 3.9

FED=0 50

fx) = x* — 2x?

=0

f/(x) = 0 for more than one x-value in the
interval (—2,2).
Figure 3.10

-3

Figure 3.11
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EXAMPLE [l lustrating Rolle’s Theorem

Find the two x-intercepts of
flx)=x*=3x+2
and show that f"(x) = 0 at some point between the two x-intercepts.

Solution Note that fis differentiable on the entire real line. Setting f(x) equal to 0
produces

x2—=3x+2=0
(x—Dkx—-2)=0.

So, f(1) = £(2) = 0, and from Rolle’s Theorem you know that there exists at least one
c in the interval (1, 2) such that f'(c) = 0. To find such a c, you can solve the equation

fx)=2x—-3=0

Set f(x) equal to 0.

Factor.

Set f/(x) equal to 0.

and determine that f'(x) = 0 when x = % Note that this x-value lies in the open interval
(1, 2), as shown in Figure 3.9. ]

Rolle’s Theorem states that if f'satisfies the conditions of the theorem, there must
be at least one point between a and b at which the derivative is 0. There may of course
be more than one such point, as shown in the next example.

EXAMPLE [EJ Wlustrating Rolle’s Theorem

Let f(x) = x* — 2x2 Find all values of ¢ in the interval (—2, 2) such that f(c) = 0.

Solution  To begin, note that the function satisfies the conditions of Rolle’s Theorem.
That is, f is continuous on the interval [—2, 2] and differentiable on the interval
(=2, 2). Moreover, because f(—2) = f(2) = 8, you can conclude that there exists at
least one ¢ in (—2, 2) such that f’(c) = 0. Setting the derivative equal to 0 produces
fx) =43 —4x=0
dx(x —Dx+1)=0
x=0,1,—1.

Set f/(x) equal to 0.
Factor.
x-values for which f/(x) = 0

So, in the interval (—2, 2), the derivative is zero at three different values of x, as shown
in Figure 3.10. u

WA LTIV ARITNTED A graphing utility can be used to indicate whether the
points on the graphs in Examples 1 and 2 are relative minima or relative maxima of

the functions. When using a graphing utility, however, you should keep in mind that
it can give misleading pictures of graphs. For example, use a graphing utility to
graph

1
1000(x — )7 + 1°

= 1= (=17 -

With most viewing windows, it appears that the function has a maximum of 1 when
x = 1 (see Figure 3.11). By evaluating the function at x = 1, however, you can see
that f(1) = 0. To determine the behavior of this function near x = 1, you need to
examine the graph analytically to get the complete picture.
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Y Slope of tangent line = f'(c)

Tangent line

Secant line

(b, f(b))

1
1
1
a c b

Figure 3.12

Mary Evans Picture Library

JOSEPH-LOUIS LAGRANGE (1736-1813)

The Mean Value Theorem was first proved
by the famous mathematician Joseph-Louis
Lagrange. Born in Italy, Lagrange held a
position in the court of Frederick the Great
in Berlin for 20 years. Afterward, he moved
to France, where he met emperor Napoleon
Bonaparte, who is quoted as saying,
“Lagrange is the lofty pyramid of the
mathematical sciences.”

The Mean Value Theorem

Rolle’s Theorem can be used to prove another theorem—the Mean Value Theorem.

THEOREM 3.4 THE MEAN VALUE THEOREM

If fis continuous on the closed interval [a, b] and differentiable on the open
interval (a, b), then there exists a number c in (a, b) such that

1) = yla)

e = HO =S

Refer to Figure 3.12. The equation of the secant line that passes through the
points (a, f(a)) and (b, f(b)) is

_ [W] (x - a) + fla).

Let g(x) be the difference between f(x) and y. Then
g(x) =flx) —y

=yt = [ 2O =19 ) — )

By evaluating g at a and b, you can see that g(a) = 0 = g(b). Because fis continuous

on [a, b], it follows that g is also continuous on [a, b]. Furthermore, because f is

differentiable, g is also differentiable, and you can apply Rolle’s Theorem to the

function g. So, there exists a number c in (g, b) such that g’(c) = 0, which implies that
0 =g’

— £/ _ f(b) — f(Cl)

7o - L =1@

So, there exists a number c in (a, b) such that

_ ) = fla) .

fe = FE=L

The “mean” in the Mean Value Theorem refers to the mean (or average) rate of change
of fin the interval [a, b]. |

Although the Mean Value Theorem can be used directly in problem solving, it is
used more often to prove other theorems. In fact, some people consider this to be the
most important theorem in calculus—it is closely related to the Fundamental Theorem
of Calculus discussed in Section 4.4. For now, you can get an idea of the versatility of
the Mean Value Theorem by looking at the results stated in Exercises 81-89 in this
section.

The Mean Value Theorem has implications for both basic interpretations of the
derivative. Geometrically, the theorem guarantees the existence of a tangent line that
is parallel to the secant line through the points (a, f(a)) and (b, f(b)), as shown in
Figure 3.12. Example 3 illustrates this geometric interpretation of the Mean Value
Theorem. In terms of rates of change, the Mean Value Theorem implies that there
must be a point in the open interval (a, b) at which the instantaneous rate of change is
equal to the average rate of change over the interval [a, b]. This is illustrated in
Example 4.
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Tangent line

4.4

(2,3) .
Secant line

foy=5-4

t } x

[1

Figure 3.13

=

o

L 3

3 4

2
The tangent line at (2, 3) is parallel to the
secant line through (1, 1

, 1) and (4,4).

5 miles

t = 4 minutes

At some time ¢, the instantaneous velocity is
equal to the average velocity over 4 minutes.

Figure 3.14

Not drawn to scale

t=0
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" JExampLE [EJ Finding a Tangent Line

Given f(x) = 5 — (4/x), find all values of ¢ in the open interval (1, 4) such that

) _ 1@ =)
rte) = =1,

Solution  The slope of the secant line through (1, £(1)) and (4, £(4)) is

fE -0 4=
4—1 4—1 =

Note that the function satisfies the conditions of the Mean Value Theorem. That is, f
is continuous on the interval [1, 4] and differentiable on the interval (1, 4). So, there
exists at least one number ¢ in (1,4) such that f(c) = 1. Solving the equation
f(x) = 1 yields

which implies that x = %2. So, in the interval (1, 4), you can conclude that ¢ = 2, as
shown in Figure 3.13.

EXAMPLE [ Finding an Instantaneous Rate of Change

Two stationary patrol cars equipped with radar are 5 miles apart on a highway, as
shown in Figure 3.14. As a truck passes the first patrol car, its speed is clocked at
55 miles per hour. Four minutes later, when the truck passes the second patrol car, its
speed is clocked at 50 miles per hour. Prove that the truck must have exceeded the
speed limit (of 55 miles per hour) at some time during the 4 minutes.

Solution Let r = 0 be the time (in hours) when the truck passes the first patrol car.
The time when the truck passes the second patrol car is

4 1
= — = —_ hour.
=g = 15 hour
By letting s(z) represent the distance (in miles) traveled by the truck, you have
5(0) = 0 and s({5) = 5. So, the average velocity of the truck over the five-mile stretch
of highway is

s(1/15) —s(0) 5
(1/15) =0  1/15

Average velocity = = 75 miles per hour.

Assuming that the position function is differentiable, you can apply the Mean Value
Theorem to conclude that the truck must have been traveling at a rate of 75 miles per
hour sometime during the 4 minutes. |

A useful alternative form of the Mean Value Theorem is as follows: If f is
continuous on [a, b] and differentiable on (a, b), then there exists a number c in (a, b)
such that

fb) = fla) + (b = a)f(c).

Alternative form of Mean Value Theorem

L[{#® When doing the exercises for this section, keep in mind that polynomial functions,
rational functions, and trigonometric functions are differentiable at all points in their domains.
|
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@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, explain why Rolle’s Theorem does not apply ldP' In Exercises 25-28, use a graphing utility to graph the function

to the function even though there exist ¢ and b such that

f@) = f®).

L) = 1) 2. /) = cot,
[—1.1] [, 37]

3f) =1~ 4. f(x) = V2 =),
[0.2] [~1,1]

In Exercises 5-8, find the two x-intercepts of the function f and
show that f’(x) = 0 at some point between the two x-intercepts.

5.fx) =x2—x—-2 6. f(x) = x(x — 3)
7. f(x) = xJ/x + 4 8. flx) = —3x/x+ 1
Rolle’s Theorem 1In Exercises 9 and 10, the graph of f is shown.

Apply Rolle’s Theorem and find all values of ¢ such that
f’(c) = 0 at some point between the labeled intercepts.

% fw=x2+2:-3y
5 f(x) =sin2x

In Exercises 11-24, determine whether Rolle’s Theorem can be
applied to f on the closed interval [a, b]. If Rolle’s Theorem can
be applied, find all values of ¢ in the open interval (a, b) such
that f’(c) = 0. If Rolle’s Theorem cannot be applied, explain
why not.

11. f(x) = —x2 + 3x, [0, 3]

12. f(x) = x> —5x+ 4, [1,4]

13. f(x) = (x — D(x — 2)(x — 3), [1,3]
14. f(x) = (x -3+ 1% [—1,3]

15. f(x) = x¥* — 1, [-8,8]

16. (x)—3—|x—3| [0, 6]

7. 1) =5 ;erxz 3 [-1.3]

18. f(x) = x_ . [-1,1]

19. f(x) = sinx, [0, 2]

20. f(x) = cosx, [0, 2]

2. f(0) = &~ 4gin2y [0 3}
) T ’ ’ 6

22. f(x) = cos 2x, [—m, ]
23. f(x) = tanx, [0, 7]
24. f(x) = secx, [m 27|

on the closed interval [a,b]. Determine whether Rolle’s
Theorem can be applied to f on the interval and, if so, find all
values of ¢ in the open interval (e, b) such that f'(c) = 0.

25. f(x) = x| — 1. [~1, 1] 26. f(x)
27. f(x) = x — tan 7x, [ I 4]

=x—x3, [0,1]

28. f(x) = % —sin =X [—1,0]

6

29. Vertical Motion The height of a ball ¢ seconds after it is
thrown upward from a height of 6 feet and with an initial
velocity of 48 feet per second is f(1) = —16t> + 48t + 6.

(a) Verify that (1) = f(2).

(b) According to Rolle’s Theorem, what must the velocity be at
some time in the interval (1, 2)? Find that time.

30. Reorder Costs The ordering and transportation cost C for
components used in a manufacturing process is approximated
1 X
=10( - +
by C(x) 10<x 13
of dollars and x is the order size in hundreds.
(a) Verify that C(3) = C(6).

(b) According to Rolle’s Theorem, the rate of change of the
cost must be 0 for some order size in the interval (3, 6).
Find that order size.

), where C is measured in thousands

In Exercises 31 and 32, copy the graph and sketch the secant
line to the graph through the points (a, f()) and (b, f(b)). Then
sketch any tangent lines to the graph for each value of ¢
guaranteed by the Mean Value Theorem. To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

31. v 32. v

AN

Writing In Exercises 33-36, explain why the Mean Value
Theorem does not apply to the function f on the interval [0, 6].

=

[ -
S
[~ S
S

33. ¥ 34. v
1
.1
4,,
3L e
2,,
]
———t——t>=x
1 2 3 4 5 6
3. 100 = 36. f(¥) = |x — 3|
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lde 37. Mean Value Theorem Consider the graph of the function

f(x) = —x* + 5. (a) Find the equation of the secant line join-
ing the points (—1,4) and (2,1). (b) Use the Mean Value
Theorem to determine a point ¢ in the interval (— 1, 2) such that
the tangent line at c is parallel to the secant line. (c¢) Find the
equation of the tangent line through c. (d) Then use a graphing
utility to graph f, the secant line, and the tangent line.

fx) =x2-x-12
y

fx)=—x%+5
y

Figure for 37 Figure for 38

IdP' 38. Mean Value Theorem Consider the graph of the function

f(x) = x> — x — 12. (a) Find the equation of the secant line
joining the points (—2, —6) and (4, 0). (b) Use the Mean Value
Theorem to determine a point ¢ in the interval (—2, 4) such that
the tangent line at ¢ is parallel to the secant line. (¢) Find the
equation of the tangent line through c. (d) Then use a graphing
utility to graph f; the secant line, and the tangent line.

In Exercises 39-48, determine whether the Mean Value
Theorem can be applied to f on the closed interval [a, b]. If the
Mean Value Theorem can be applied, find all values of ¢ in the

®)

open interval (a, b) such that f'(c) = fbf_i(a)' If the Mean

Value Theorem cannot be applied, explain why not.

40. f(x) = x>, [0,1]

42. f(x) = x* — 8x, [0,2]
4 = [-19]
45. f(x) = |2x + 1|, [-1,3] 46. f(x) = V2 —x, [-7,2]
47. f(x) = sinx, [0, 7]

48. f(x) = cos x + tanx, [0, 7]

39, fx) = x% [—2,1]
41. f(x) = x> + 2x, [—1,1]

43. f(x) = x*¥3, [0,1]

ldF’ In Exercises 49-52, use a graphing utility to (a) graph the

function f on the given interval, (b) find and graph the secant
line through points on the graph of f at the endpoints of the
given interval, and (c) find and graph any tangent lines to the
graph of f that are parallel to the secant line.

49. f(x) = X_T_ T [—%, 2] 50. f(x) =x—2sinx, [—m, 7

51. f(x) x, [1,9]
52. f(x) = x* — 223 + %2, [0,6]

53. Vertical Motion The height of an object  seconds after it is
dropped from a height of 300 meters is s(f) = —4.9t + 300.

(a) Find the average velocity of the object during the first
3 seconds.

3.2 Rolle’s Theorem and the Mean Value Theorem 177

(b) Use the Mean Value Theorem to verify that at some time
during the first 3 seconds of fall the instantaneous velocity
equals the average velocity. Find that time.

54. Sales A company introduces a new product for which the
number of units sold S is

() = 200(5 -3 9+ [>

where ¢ is the time in months.
(a) Find the average value of S(¢) during the first year.

(b) During what month does S’() equal the average value
during the first year?

WRITING ABOUT CONCEPTS

55. Let fbe continuous on [a, b] and differentiable on (a, b). If
there exists ¢ in (@, b) such that f/(c) = 0, does it follow that
f(a) = f(b)? Explain.

56. Let fbe continuous on the closed interval [a, b] and differ-
entiable on the open interval (a, b). Also, suppose that
f(a) = f(b) and that c is a real number in the interval such
that f(¢) = 0. Find an interval for the function g over which
Rolle’s Theorem can be applied, and find the corresponding
critical number of g (k is a constant).

(@) glx) =f(x) + & (b) glx) = flx — k)
(c) gx) = f(kx)
57. The function

£o) = {0’ 0

l1—x, O0<x=1
is differentiable on (0,1) and satisfies f(0) = f(1).
However, its derivative is never zero on (0, 1). Does this
contradict Rolle’s Theorem? Explain.
58. Can you find a function fsuch that f(—=2) = =2, f(2) = 6,
and f/(x) < 1 for all x? Why or why not?

59. Speed A plane begins its takeoff at 2:00 P.M. on a 2500-mile
flight. After 5.5 hours, the plane arrives at its destination.
Explain why there are at least two times during the flight when
the speed of the plane is 400 miles per hour.

60. Temperature When an object is removed from a furnace and
placed in an environment with a constant temperature of 90°F,
its core temperature is 1500°F. Five hours later the core
temperature is 390°F. Explain why there must exist a time in
the interval when the temperature is decreasing at a rate of
222°F per hour.

61. Velocity Two bicyclists begin a race at 8:00 A.M. They both
finish the race 2 hours and 15 minutes later. Prove that at some
time during the race, the bicyclists are traveling at the same
velocity.

62. Acceleration At 9:13 A.M., a sports car is traveling 35 miles
per hour. Two minutes later, the car is traveling 85 miles per
hour. Prove that at some time during this two-minute interval,
the car’s acceleration is exactly 1500 miles per hour squared.
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'dF’ 63. Consider the function f(x) = 3 cos? (%)

(a) Use a graphing utility to graph fand f".
(b) Is fa continuous function? Is f” a continuous function?

(c) Does Rolle’s Theorem apply on the interval [— 1, 1]? Does
it apply on the interval [1, 2]? Explain.

(d) Evaluate, if possible, lim f’(x) and lim f’(x).
xX—3" x—=3*

CAPSTONE

64. Graphical Reasoning The figure shows two parts of the
graph of a continuous differentiable function fon [—10, 4].
The derivative f” is also continuous. To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

_4 -+

_8 -+

(a) Explain why f must have at least one zero in [— 10, 4].

(b) Explain why f” must also have at least one zero in the
interval [ — 10, 4]. What are these zeros called?

(c) Make a possible sketch of the function with one zero of
£ on the interval [— 10, 4].

(d) Make a possible sketch of the function with two zeros
of f” on the interval [ — 10, 4].

(e) Were the conditions of continuity of f and f” necessary
to do parts (a) through (d)? Explain.

Think About It In Exercises 65 and 66, sketch the graph of an
arbitrary function f that satisfies the given condition but does
not satisfy the conditions of the Mean Value Theorem on the
interval [—5, 5].

65. fis continuous on [—5, 5].

66. fis not continuous on [—3, 5].
In Exercises 67-70, use the Intermediate Value Theorem and

Rolle’s Theorem to prove that the equation has exactly one real
solution.

67. ¥ +x>+x+1=0
69. 3x + 1 —sinx =0

68. 2x° +7x —1=0
70. 2x —2 —cosx =0
71. Determine the values a, b, and ¢ such that the function f

satisfies the hypotheses of the Mean Value Theorem on the
interval [0, 3].

1, x=0
flx) = ax + b, 0<x<1
X+4d4x+ce, 1<x<3

72. Determine the values a, b, ¢, and d such that the function f
satisfies the hypotheses of the Mean Value Theorem on the

interval [— 1, 2].

a, x=-—1

2, -1<x<0
flo) = bx2+c¢, O0O<x=<1

dx + 4, l<x<2

Differential Equations

In Exercises 73-76, find a function f

that has the derivative f’(x) and whose graph passes through
the given point. Explain your reasoning.

73.
75.

True or False?

(2,5)
(1,0)

74. f(x) =4, (0,1)
76. f'(x) = 2x + 3,

fl) =0,
fl) = 2x, (1,0)

In Exercises 77-80, determine whether the

statement is true or false. If it is false, explain why or give an
example that shows it is false.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.
88.
89.

The Mean Value Theorem can be applied to f(x) = 1/x on the
interval [—1, 1].

If the graph of a function has three x-intercepts, then it must
have at least two points at which its tangent line is horizontal.

If the graph of a polynomial function has three x-intercepts,
then it must have at least two points at which its tangent line is
horizontal.

If f(x) = 0 for all x in the domain of £, then f is a constant
function.

Prove that if @ > 0 and n is any positive integer, then the
polynomial function p(x) = x*"*! + ax + b cannot have two
real roots.

Prove that if f/(x) = 0 for all x in an interval (a, b), then fis

constant on (a, b).

Let p(x) = Ax* + Bx + C. Prove that for any interval [a, b],

the value ¢ guaranteed by the Mean Value Theorem is the

midpoint of the interval.

(a) Let f(x) =x* and g(x) = —x> + x> + 3x + 2. Then
f(=1) = g(=1)and f(2) = g(2). Show that there is at least
one value c in the interval (— 1, 2) where the tangent line to
fat (c,f(c)) is parallel to the tangent line to g at (c, g(c)).
Identify c.

(b) Let f and g be differentiable functions on [a, b] where
f(a) = gla) and f(b) = g(b). Show that there is at least one
value ¢ in the interval (a, b) where the tangent line to f at
(c, f(c)) is parallel to the tangent line to g at (c, g(c)).

Prove that if fis differentiable on (— oo, co) and f/(x) < 1 for

all real numbers, then f has at most one fixed point. A fixed

point of a function fis a real number ¢ such that f(c) = c.

Use the result of Exercise 85 to show that f(x) = % cos x has at
most one fixed point.

Prove that |cos @ — cos b| < |a — b| for all @ and b.
Prove that [sina — sinb| < |a — b| for all a and b.
Let 0 < a < b. Use the Mean Value Theorem to show that

b—a
\/B—\/E<27\/5.
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@ Increasing and Decreasing Functions and the First Derivative Test

. Constant |

F@<0 | =0 f)>0

The derivative is related to the slope of a
function.
Figure 3.15

X

m Determine intervals on which a function is increasing or decreasing.
B Apply the First Derivative Test to find relative extrema of a function.

Increasing and Decreasing Functions

In this section you will learn how derivatives can be used to classify relative extrema
as either relative minima or relative maxima. First, it is important to define increasing
and decreasing functions.

DEFINITIONS OF INCREASING AND DECREASING FUNCTIONS

A function fis increasing on an interval if for any two numbers x, and x, in
the interval, x, < x, implies f(x;) < f(x,).
A function f'is decreasing on an interval if for any two numbers x, and x, in
the interval, x, < x, implies f(x;) > f(x,).

A function is increasing if, as x moves to the right, its graph moves up, and is
decreasing if its graph moves down. For example, the function in Figure 3.15 is
decreasing on the interval (— oo, a), is constant on the interval (a, b), and is increasing
on the interval (b, o). As shown in Theorem 3.5 below, a positive derivative implies
that the function is increasing; a negative derivative implies that the function is
decreasing; and a zero derivative on an entire interval implies that the function is
constant on that interval.

THEOREM 3.5 TEST FOR INCREASING AND DECREASING FUNCTIONS

Let fbe a function that is continuous on the closed interval [a, b] and differen-
tiable on the open interval (a, b).

1. If f(x) > O for all x in (g, b), then fis increasing on [a, b].

2. If f/(x) < O for all x in (a, b), then fis decreasing on [a, b].

3. If f(x) = O for all x in (a, b), then fis constant on [a, b].

To prove the first case, assume that f’(x) > 0 for all x in the interval (a, b)
and let x; < x, be any two points in the interval. By the Mean Value Theorem, you
know that there exists a number ¢ such that x; < ¢ < x,, and
o f) = fx)
fle)=—F——+

Xy = X
Because f/(c) > 0 and x, — x; > 0, you know that

f(xz) — flx;) >0

which implies that f(x,) < f(x,). So, fis increasing on the interval. The second case
has a similar proof (see Exercise 104), and the third case is a consequence of Exercise
82 in Section 3.2. u

The conclusions in the first two cases of Theorem 3.5 are valid even if f/(x) = O at a
finite number of x-values in (a, b). [ |
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f)=x3- %xz

X

Figure 3.16

(a) Strictly monotonic function

&
21 £
g
g
1L S
f f f X
Constant 2 3
I —x2 x<0
fx)=10, 0<x<1
L (x=132 x>1

(b) Not strictly monotonic
Figure 3.17

Applications of Differentiation

EXAMPLE n Intervals on Which f Is Increasing or Decreasing

Find the open intervals on which f(x) = x> — 3x2 is increasing or decreasing.
p 2

Solution Note that fis differentiable on the entire real number line. To determine the
critical numbers of £, set f(x) equal to zero.

3
flx) = — Exz Write original function.
flx)=32-3x=0 Differentiate and set f/(x) equal to 0.
3(x)(x - 1) =0 Factor.
x=0,1 Critical numbers

Because there are no points for which f” does not exist, you can conclude that x = 0
and x = 1 are the only critical numbers. The table summarizes the testing of the three
intervals determined by these two critical numbers.

Interval —co<x<0 0<x<l I <x< oo
Test Value x=—1 x=13 x=2
Signof f'(x) | f(=1)=6>0 f(})=-2<0 f(@=6>0
Conclusion Increasing Decreasing Increasing

So, fis increasing on the intervals (— oo, 0) and (1, c0) and decreasing on the interval
(0, 1), as shown in Figure 3.16. ]

Example 1 gives you one example of how to find intervals on which a function is
increasing or decreasing. The guidelines below summarize the steps followed in that
example.

GUIDELINES FOR FINDING INTERVALS ON WHICH A FUNCTION IS
INCREASING OR DECREASING

Let f be continuous on the interval (a, b). To find the open intervals on which f
is increasing or decreasing, use the following steps.

1. Locate the critical numbers of fin (a, b), and use these numbers to determine
test intervals.

2. Determine the sign of f(x) at one test value in each of the intervals.

3. Use Theorem 3.5 to determine whether f is increasing or decreasing on each
interval.

These guidelines are also valid if the interval (a, b) is replaced by an interval of
the form (— oo, b), (a, ©0), or (— oo, o).

A function is strictly monotonic on an interval if it is either increasing on the
entire interval or decreasing on the entire interval. For instance, the function f(x) = x3
is strictly monotonic on the entire real number line because it is increasing on the
entire real number line, as shown in Figure 3.17(a). The function shown in Figure
3.17(b) is not strictly monotonic on the entire real number line because it is constant
on the interval [0, 1].
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The First Derivative Test

After you have determined the intervals on which a function is increasing or decreasing,
it is not difficult to locate the relative extrema of the function. For instance, in Figure
3.18 (from Example 1), the function

f) =2 = 202

2
has a relative maximum at the point (0, 0) because f is increasing immediately to the
left of x = 0 and decreasing immediately to the right of x = 0. Similarly, f has a
relative minimum at the point (1, —%) because fis decreasing immediately to the left
of x = 1 and increasing immediately to the right of x = 1. The following theorem,
called the First Derivative Test, makes this more explicit.

THEOREM 3.6 THE FIRST DERIVATIVE TEST

Let ¢ be a critical number of a function f that is continuous on an open inter-
val I containing c. If fis differentiable on the interval, except possibly at c,
then f(c) can be classified as follows.

1. If f/(x) changes from negative to positive at c, then fhas a relative minimum
at (c, f(c)).

2. If f/(x) changes from positive to negative at ¢, then f has a relative maximum
at (c, f(c)).

3. If f/(x) is positive on both sides of ¢ or negative on both sides of ¢, then f(c)
is neither a relative minimum nor a relative maximum.

\/ “ ! C
i o (+)i /\

F(x)<0 F(x)>0

3 f(x)>0 3 f(x)<0 3
a ¢ b

Relative minimum Relative maximum

1
1
1
L

a

I
c b

 (+) 1

f(x)>0

|

1

1

1

L

a c

Fix)>0

| CFW<0 | f0<0
b a c b

Neither relative minimum nor relative maximum

Assume that f'(x) changes from negative to positive at c¢. Then there exist a
and b in I such that

f(x) < 0forall xin (a, ¢)
and
f(x) > 0forall xin (c, b).

By Theorem 3.5, f is decreasing on [a, ¢] and increasing on [c, b]. So, f(c) is a
minimum of fon the open interval (¢, b) and, consequently, a relative minimum of f.
This proves the first case of the theorem. The second case can be proved in a similar
way (see Exercise 105). [ ]
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Chapter 3

flx) = %x —sin x

Applications of Differentiation

EXAMPLE ﬂ Applying the First Derivative Test

Find the relative extrema of the function f(x) = 3x — sin x in the interval (0, 27).

Solution  Note that fis continuous on the interval (0, 277). To determine the critical

numbers of £ in this interval, set f(x) equal to 0.

flx) = 1 cosx =

) Set f'(x) equal to 0.

COS x =

X = Critical numbers

Relative
maximum

Relative

T minimum

8

A relative minimum occurs where f changes
from decreasing to increasing, and a relative
maximum occurs where f changes from
increasing to decreasing.
Figure 3.19

Because there are no points for which f” does not exist, you can conclude that x = 77/3
and x = 57/3 are the only critical numbers. The table summarizes the testing of the

three intervals determined by these two critical numbers.

K T T S
Interval 0<x<3 3 <x<3 ?<x<277
Test Value x=7 x=ma _Im
4 T
Sign of f'(x) f’(Z) <0 £ >0 f’(T) <0
Conclusion Decreasing Increasing Decreasing

By applying the First Derivative Test, you can conclude that f has a relative minimum
at the point where

X ==

3

x-value where relative minimum occurs

and a relative maximum at the point where

5o

x=3

as shown in Figure 3.19.

x-value where relative maximum occurs

EXPLORATION

Comparing Graphical and Analytic Approaches
know that, by itself, a graphing utility can give misleading information about
the relative extrema of a graph. Used in conjunction with an analytic
approach, however, a graphing utility can provide a good way to reinforce
your conclusions. Use a graphing utility to graph the function in Example 2.
Then use the zoom and trace features to estimate the relative extrema. How
close are your graphical approximations?

From Section 3.2, you

Note that in Examples 1 and 2 the given functions are differentiable on the entire
real number line. For such functions, the only critical numbers are those for which
f/(x) = 0. Example 3 concerns a function that has two types of critical numbers—

those for which f/(x) = 0 and those for which fis not differentiable.
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You can apply the First Derivative Test to

find relative extrema.
Figure 3.20

T maximum

-(0,v/16)

Relative
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EXAMPLE ﬂ Applying the First Derivative Test
Find the relative extrema of
flo) = (62 = 425,

Solution Begin by noting that f is continuous on the entire real number line. The
derivative of f

f’(x) = %(xz - 4)71/3(2)6) General Power Rule
4x o
= W Simplify.

is 0 when x = 0 and does not exist when x = +2. So, the critical numbers are
x = —2,x =0, and x = 2. The table summarizes the testing of the four intervals
determined by these three critical numbers.

Interval —co<x< =2 2<x<0 0<x<?2 2<x<o©
Test Value x=-3 x=—1 x=1 x=3

Sign of f7(x) f(=3) <0 (=1 >0 (1) <0 f(3)>0
Conclusion Decreasing Increasing Decreasing Increasing

By applying the First Derivative Test, you can conclude that f has a relative minimum

at the point (—2, 0), a relative maximum at the point (O, 316 ), and another relative
minimum at the point (2, 0), as shown in Figure 3.20. [ |

LA N SARITNEED When using a graphing utility to graph a function
involving radicals or rational exponents, be sure you understand the way the utility
evaluates radical expressions. For instance, even though

1) = (2 = 473
and
g(x) = [(x? — 4)2]'/3

are the same algebraically, some graphing utilities distinguish between these two
functions. Which of the graphs shown in Figure 3.21 is incorrect? Why did the
graphing utility produce an incorrect graph?

fx) = &2 - 423 g = [(2— 42|13
5 5

-1 -1

Which graph is incorrect?

Figure 3.21
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When using the First Derivative Test, be sure to consider the domain of the
function. For instance, in the next example, the function

44+
f) =*—

X

is not defined when x = 0. This x-value must be used with the critical numbers to
determine the test intervals.

O EXAMPLE [EJ Applying the First Derivative Test

. . x*t 41
Find the relative extrema of f(x) = ———.
X
Solution
flx) =x2 4+ x72 Rewrite original function.
flx) =2x —2x73 Differentiate.
a2 S
= 2x 3 Rewrite with positive exponent.
2(x* = 1) o
=3 Simplify.
X
22+ Dx — D(x + 1)
= 3 Factor.
X
So, f/(x) is zero at x = +1. Moreover, because x = 0 is not in the domain of f, you
X4+ 1 . . .. . .
fay="= should use this x-value along with the critical numbers to determine the test intervals.
X
y x==1 Critical numbers, f(+£1) = 0
x=0 0 is not in the domain of f.
5 -+
The table summarizes the testing of the four intervals determined by these three
4 x-values.
3 -+
Interval —o<x<—1| —-1<x<0 O0<x<1 l <x< oo
(_1,2) 2T (1’2) Test Value X = —2 X = —% X = % X = 2
Relative | L Relative S / r(_ (1 /(1 ’
minimum minimum blgn Off (x) f( 2) <0 f( 2) >0 f (2) <0 f (2) >0
f f f f f x Conclusion Decreasing Increasing Decreasing Increasing
-2 -1 1 23
x-values that are not in the domain of £, as
well as critical numbers, determine test By applying the First Derivative Test, you can conclude that f has one relative
intervals for f”. minimum at the point (— 1, 2) and another at the point (1, 2), as shown in Figure 3.22.
Figure 3.22 |

—m The most difficult step in applying the First Derivative Test is
finding the values for which the derivative is equal to 0. For instance, the values of
x for which the derivative of

Cxt
x>+ 1

f&)

is equal to zero are x = 0 and x = £/ /2 — 1. If you have access to technology
that can perform symbolic differentiation and solve equations, use it to apply the
First Derivative Test to this function.
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If a projectile is propelled from ground
level and air resistance is neglected, the
object will travel farthest with an initial
angle of 45°. If, however, the projectile is
propelled from a point above ground level,
the angle that yields a maximum horizontal
distance is not 45° (see Example 5).

3.3 Increasing and Decreasing Functions and the First Derivative Test 185

EXAMPLE JE] The Path of a Projectile

Neglecting air resistance, the path of a projectile that is propelled at an angle 6 is

gsec? 6 , T
=827 ¢ + <0<~
20 x2+ (tan@x +h, 0<0 >

where y is the height, x is the horizontal distance, g is the acceleration due to gravity,
v, is the initial velocity, and 4 is the initial height. (This equation is derived in Section
12.3.) Let g = —32 feet per second per second, v, = 24 feet per second, and 1 = 9
feet. What value of 6 will produce a maximum horizontal distance?

Solution  To find the distance the projectile travels, let y = 0, and use the Quadratic
Formula to solve for x.

2
%:29% + (tan O)x + h =0
o
_32 2
z(%zc)gxz + (tan O)x + 9 =0
2
_se3c6 0x2 + (tan@)x +9 =0

_ —tan 6 £ tan® 0 + sec? 0

—sec? 0/18
x=18cos O(sin 6 + /sin? 6+ 1), x =0

At this point, you need to find the value of 6 that produces a maximum value of x.
Applying the First Derivative Test by hand would be very tedious. Using technology
to solve the equation dx/d® = 0, however, eliminates most of the messy computa-
tions. The result is that the maximum value of x occurs when

0 = 0.61548 radian, or 35.3°.

X

This conclusion is reinforced by sketching the path of the projectile for different
values of 6, as shown in Figure 3.23. Of the three paths shown, note that the distance
traveled is greatest for 6 = 35°.

5 10 15 20 25

The path of a projectile with initial angle 6
Figure 3.23 |

(3 A computer simulation of this example is given in the premium eBook for this text.
Using that simulation, you can experimentally discover that the maximum value of x
occurs when 6 =~ 35.3°. [ |
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@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1 and 2, use the graph of f to find (a) the largest
open interval on which f is increasing, and (b) the largest open
interval on which f is decreasing.

~ [=))
e

¥}
7
—

61 g
~N
AT = 5o
2+ / ) “

2 4 6 8 10

In Exercises 3-8, use the graph to estimate the open intervals
on which the function is increasing or decreasing. Then find the
open intervals analytically.

3. flx) =x>—6x +38 4. y =

—(x + 1)?

—_ N W s

1 X2
710 = Gy 8. v=90"1

y y
4,,
Nl

271!

ik

| :
j_l,,‘l 23 4

1 _277

In Exercises 9-16, identify the open intervals on which the
function is increasing or decreasing.

9. glx) =x2—2x— 8 10. h(x) =27x — x°
11. y = x/16 — x? 12.y=x+%

13. f(x) =sinx — 1, 0<x <27

14. h(x) = cos %, 0<x<2m

15. y=x —2cosx, 0<x<2m

16. f(x) = cos>x —cosx, 0 <x < 2w

In Exercises 17— 42, (a) find the critical numbers of f (if any), (b)
find the open interval(s) on which the function is increasing or
decreasing, (c) apply the First Derivative Test to identify all
relative extrema, and (d) use a graphing utility to confirm your
results.

17. f(x) = x> — 4x 18. f(x) x4+ 6x+ 10
19. f(x) = —2x2 +4x + 3 flx) = =2+ 8 + 12)
1. f(x) = 223 + 3x% — 12x 22. f(x) x> —6x2+ 15
23, f(x) = (x — 1)*(x + 3) f) =@ +22%x—1)

2. () =5 5 o 26. f(x) = x* — 32x + 4

27. flx) =x'3 + 1 28. f(x) =x*?—4

29. f(x) = (x + 2)?/3 30. f(x) = (x — 3)'

3L f(x) =5 — |x — 5| 32. f(0) =[x+ 3] -1

33. flx) = 2x + % 34. 1) =~ i 3

35. f(x) = xfj 5 36. fx) = u

w7,y =2 38, f) =2
wﬂ>fgﬁii 40. () = Pj,ﬁ:i
T I U DI

In Exercises 43-50, consider the function on the interval
(0, 277). For each function, (a) find the open interval(s) on which
the function is increasing or decreasing, (b) apply the First
Derivative Test to identify all relative extrema, and (c) use a
graphing utility to confirm your results.

43. f(x) = % + cos x

45. f(x) = sinx + cosx

44. f(x) = sinxcos x + 5

46. f(x) = x + 2sinx

47. f(x) = cos?*(2x) 48. f(x) = V/3sinx + cosx
o2 R sin x
49. f(x) = sin>x + sinx 50. f(x) = T+ cos’x

X In Exercises 51-56, (a) use a computer algebra system to

differentiate the function, (b) sketch the graphs of f and f’ on
the same set of coordinate axes over the given interval, (c) find
the critical numbers of f in the open interval, and (d) find the
interval(s) on which f” is positive and the interval(s) on which it
is negative. Compare the behavior of f and the sign of f".
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51. f(x) = 2xV/9 — x%, [—3,3]
52. f(x) = 10(5 — /x? — 3x + 16), [0,5]

X

53.f(n) = *sint, [0.27m] 54 f(x) = + cos % [0, 477]

55. f(x) = —3sin g [0, 67]
56. f(x) = 2sin3x + 4 cos 3x, [0, 7]

In Exercises 57 and 58, use symmetry, extrema, and zeros to
sketch the graph of f. How do the functions f and g differ?

5 3 +
57. f(x) — w’

x2—1

58. f(t) = cos>t — sin®t, g(t) =1 — 2sin?t

g(x) = x(x* = 3)

Think About It In Exercises 59-64, the graph of f is
shown in the figure. Sketch a graph of the derivative of f. To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

59. Y 60.

y
4+ 2
f 1 f
] ] % X

|
Q.
|

P ——
P ——
o
0 ——
=

63. y

In Exercises 65-68, use the graph of f’ to (a) identify the
interval(s) on which f is increasing or decreasing, and (b)
estimate the value(s) of x at which f has a relative maximum or
minimum.

65. 66. y

68. y

||
—

-4 -2

In Exercises 69 and 70, use the graph of f’ to (a) identify the
critical numbers of f, and (b) determine whether f has a relative
maximum, a relative minimum, or neither at each critical
number.

69.

WRITING ABOUT CONCEPTS

In Exercises 71-76, assume that f is differentiable for all x.
The signs of f” are as follows.

fx) > 00on(—c0,—4)
f(x) < 0on(—4,6)
fx) > 0 on (6,0)

Supply the appropriate inequality sign for the indicated value
of c.

Function Sign of g'(c)
71 g(x) = f(x) + 5 g'(0) 0
72. gx) = 3f(x) =3 g(=35) 0
73. g(x) = —f(x) g(=6) 0
74. g(x) = —f(x) £'(0) 0
75. g(x) = f(x — 10) 8'(0) 0
76. g(x) = f(x — 10) g® 0

77. Sketch the graph of the arbitrary function fsuch that

>0, x <4
f/(x) {undefined, x = 4.
<0, x >4

CAPSTONE

78. A differentiable function f has one critical number at x = 5.
Identify the relative extrema of f at the critical number if
f(4) = =2.5and f(6) = 3.
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Think About It In Exercises 79 and 80, the function f is differ-
entiable on the indicated interval. The table shows f/(x) for
selected values of x. (a) Sketch the graph of f, (b) approximate
the critical numbers, and (c) identify the relative extrema.

79. fis differentiable on [—1, 1]

x -1 —-0.75 | —=0.50 | —0.25

fx) | =10 | =32 —-0.5 0.8

x 0 0.25 0.50 0.75 1
&) 5.6 3.6 —-0.2 —-6.7 | —20.1

80. fis differentiable on [0, 7]

x 0 /6 /4 /3 /2

fx) | 314 | —023 | —245 | —=3.11 @ 0.69

x 2w/3 | 3w/4 | 57/6 ™
o) | 300 | 137 | —1.14 | —284

81. Rolling a Ball Bearing A ball bearing is placed on an
inclined plane and begins to roll. The angle of elevation of the
plane is 6. The distance (in meters) the ball bearing rolls in ¢
seconds is s(f) = 4.9(sin 6)¢2.

(a) Determine the speed of the ball bearing after 7 seconds.

(b) Complete the table and use it to determine the value of
that produces the maximum speed at a particular time.

0 O | w/4 | w/3 | w/2 | 2w/3 | 3w/4 | ™
s'(2)

82. Numerical, Graphical, and Analytic Analysis The concen-
tration C of a chemical in the bloodstream ¢ hours after injection
into muscle tissue is

3¢
27 + ¥

C(r) =

(a) Complete the table and use it to approximate the time when
the concentration is greatest.

t 0105 1152 253

C@t)

ldF" (b) Use a graphing utility to graph the concentration function
and use the graph to approximate the time when the
concentration is greatest.

(c) Use calculus to determine analytically the time when the
concentration is greatest.

83. Numerical, Graphical, and Analytic Analysis Consider the
functions f(x) = x and g(x) = sin x on the interval (0, 7).

(a) Complete the table and make a conjecture about which is
the greater function on the interval (0, ).

x 05 1 15 2 253
fG&)
g(x)

ldP' (b) Use a graphing utility to graph the functions and use the
graphs to make a conjecture about which is the greater
function on the interval (0, ).

(¢c) Prove that f(x) > g(x) on the interval (0, 7). [Hint: Show
that h'(x) > O where h = f — g.]
84. Numerical, Graphical, and Analytic Analysis Consider the
functions f(x) = x and g (x) = tan x on the interval (0, 7/2).

(a) Complete the table and make a conjecture about which is
the greater function on the interval (0, 77/2).

x 025 05075 |1 125 15
f&)
g(x)

ldP' (b) Use a graphing utility to graph the functions and use the
graphs to make a conjecture about which is the greater
function on the interval (0, 7/2).

(c) Prove that f(x) < g(x) on the interval (0, 7/2). [Hint:
Show that h'(x) > 0, where h = g — f]

85. Trachea Contraction Coughing forces the trachea (wind-
pipe) to contract, which affects the velocity v of the air passing
through the trachea. The velocity of the air during coughing is
v="kR — r)r? 0 < r < R, where k is a constant, R is the
normal radius of the trachea, and r is the radius during
coughing. What radius will produce the maximum air velocity?

86. Power The electric power P in watts in a direct-current circuit
with two resistors R, and R, connected in parallel is

VR\R,

P = 1 £
(Rl + R2)2

where v is the voltage. If v and R, are held constant, what resist-
ance R, produces maximum power?

87. Electrical Resistance The resistance R of a certain type of
resistor is R = /0.0017* — 4T + 100, where R is measured
in ohms and the temperature 7 is measured in degrees Celsius.

@D (2) Use a computer algebra system to find dR/dT and the

critical number of the function. Determine the minimum
resistance for this type of resistor.

(b) Use a graphing utility to graph the function R and use the
graph to approximate the minimum resistance for this type
of resistor.
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ldP'SS. Modeling Data The end-of-year assets of the Medicare
Hospital Insurance Trust Fund (in billions of dollars) for the
years 1995 through 2006 are shown.

1995: 130.3; 1996: 124.9; 1997: 115.6; 1998: 120.4;

1999: 141.4; 2000: 177.5; 2001: 208.7; 2002: 234.8;

2003: 256.0; 2004: 269.3; 2005: 285.8; 2006: 305.4

(Source: U.S. Centers for Medicare and Medicaid Services)

(a) Use the regression capabilities of a graphing utility to find
a model of the form M = at* + bt® + cf*> + dt + e for the
data. (Let r = 5 represent 1995.)

(b) Use a graphing utility to plot the data and graph the model.

(c) Find the minimum value of the model and compare the
result with the actual data.

Motion Along a Line In Exercises 89-92, the function s(f)
describes the motion of a particle along a line. For each function,
(a) find the velocity function of the particle at any time ¢ > 0,
(b) identify the time interval(s) in which the particle is moving
in a positive direction, (c) identify the time interval(s) in which
the particle is moving in a negative direction, and (d) identify
the time(s) at which the particle changes direction.

89. s(t) = 61 — 12 90. s(t) =2 — 7t + 10
91. s(t) =13 — 512 + 4
92. s(t) = 13 — 2012 + 128t — 280

Motion Along a Line In Exercises 93 and 94, the graph shows
the position of a particle moving along a line. Describe how the
particle’s position changes with respect to time.

93. 94, s

36 9 1215 18

ldP' Creating Polynomial Functions In Exercises 95-98, find a
polynomial function

f)=ax"+a,_ x4+ +ax*+ax+a,

that has only the specified extrema. (a) Determine the minimum
degree of the function and give the criteria you used in
determining the degree. (b) Using the fact that the coordinates
of the extrema are solution points of the function, and that the
x-coordinates are critical numbers, determine a system of linear
equations whose solution yields the coefficients of the required
function. (¢) Use a graphing utility to solve the system of
equations and determine the function. (d) Use a graphing
utility to confirm your result graphically.

95. Relative minimum: (0, 0); Relative maximum: (2, 2)

96. Relative minimum: (0, 0); Relative maximum: (4, 1000)
97. Relative minima: (0, 0), (4, 0); Relative maximum: (2, 4)
98. Relative minimum: (1, 2); Relative maxima: (—1, 4), (3, 4)

True or False? In Exercises 99-103, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

99. The sum of two increasing functions is increasing.
100. The product of two increasing functions is increasing.
101. Every nth-degree polynomial has (n — 1) critical numbers.

102. An nth-degree polynomial has at most (n — 1) critical
numbers.

103. There is a relative maximum or minimum at each critical
number.

104. Prove the second case of Theorem 3.5.
105. Prove the second case of Theorem 3.6.

106. Use the definitions of increasing and decreasing functions to
prove that f(x) = x3 is increasing on (— oo, 00).

107. Use the definitions of increasing and decreasing functions to
prove that f(x) = 1/x is decreasing on (0, oo).

PUTNAM EXAM CHALLENGE

108. Find the minimum value of

|sinx + cosx + tanx + cotx + secx + cscx
for real numbers x.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

SECTION PROJECT

Rainbows

Rainbows are formed when light strikes raindrops and is reflected
and refracted, as shown in the figure. (This figure shows a cross
section of a spherical raindrop.) The Law of Refraction states that
(sin a)/(sin B) = k, where k =~ 1.33 (for water). The angle of
deflection is given by D = 7 + 2a — 4.
(a) Use a graphing utility to graph
D =7+ 2a — 4sin"(1/k sin ),
0<acs< w2
(b) Prove that the minimum angle of
deflection occurs when
K2 -1
3
For water, what is the minimum angle of deflection, D . ? (The

min *
angle 7 — D, is called the rainbow angle.) What value of «

produces this minimum angle? (A ray of sunlight that strikes a
raindrop at this angle, a, is called a rainbow ray.)

Cos o =

FOR FURTHER INFORMATION For more information about the
mathematics of rainbows, see the article “Somewhere Within the
Rainbow” by Steven Janke in The UMAP Journal.
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@ Concavity and the Second Derivative Test

B Determine intervals on which a function is concave upward or concave downward.
B Find any points of inflection of the graph of a function.
H Apply the Second Derivative Test to find relative extrema of a function.

Concavity

You have already seen that locating the intervals in which a function f increases or
decreases helps to describe its graph. In this section, you will see how locating the
intervals in which f” increases or decreases can be used to determine where the graph
of fis curving upward or curving downward.

DEFINITION OF CONCAVITY

Let f'be differentiable on an open interval I. The graph of fis concave upward
on [ if " is increasing on the interval and concave downward on / if " is
decreasing on the interval.

The following graphical interpretation of concavity is useful. (See Appendix A
for a proof of these results.)

1. Let fbe differentiable on an open interval /. If the graph of fis concave upward on
I, then the graph of flies above all of its tangent lines on 1.
[See Figure 3.24(a).]

= =P I 2. Let fbe differentiable on an open interval /. If the graph of fis concave downward
3 on /, then the graph of flies below all of its tangent lines on 1.
Concave =0 1 Concave [See Figure 3.24(b).]
downward
! upward y y
| : el s
) 1 1 Concave upward,
w [’ is increasing. A
} L om= 0! d
l l
1 |
1 l Concave downward,
} ! 7 is decreasing.
1 y 1
| 1
| |
: ! X X
| 1+ ‘
: : . - . . . .
} ! (a) The graph of f lies above its tangent lines. (b) The graph of f lies below its tangent lines.
} 1(=1,0) (1,0) Figure 3.24
-2 -1 1
To find the open intervals on which the graph of a function fis concave upward
o1 or concave downward, you need to find the intervals on which f” is increasing or
P =x-1 ' decreasing. For instance, the graph of

[ is decreasing.

The concavity of f is related to the slope of

the derivative.
Figure 3.25

/7 is increasing.

flx) = %x3 —x

is concave downward on the open interval (—oo, 0) because f/(x) = x> — 1 is
decreasing there. (See Figure 3.25.) Similarly, the graph of fis concave upward on the
interval (0, oo) because f is increasing on (0, co).
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A third case of Theorem 3.7
could be that if f”(x) = 0 for all x in 1,
then fis linear. Note, however, that
concavity is not defined for a line. In
other words, a straight line is neither
concave upward nor concave downward.

6
X)= —F7~——
s x2+3
T
x>0 L >0
Concave . Concave

upward upward

1@ <0
Concave

downward
Il Il X
T T B

1 2

From the sign of f”you can determine the
concavity of the graph of f.
Figure 3.26
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The following theorem shows how to use the second derivative of a function f
to determine intervals on which the graph of fis concave upward or concave down-
ward. A proof of this theorem (see Appendix A) follows directly from Theorem 3.5
and the definition of concavity.

THEOREM 3.7 TEST FOR CONCAVITY

Let fbe a function whose second derivative exists on an open interval /.

1. If f(x) > O for all x in 1, then the graph of fis concave upward on I.
2. If f(x) < O for all x in 1, then the graph of fis concave downward on I.

To apply Theorem 3.7, locate the x-values at which f”(x) = 0 or f”does not exist.
Second, use these x-values to determine test intervals. Finally, test the sign of f”(x) in
each of the test intervals.

EXAMPLE [l Determining Concavity

Determine the open intervals on which the graph of

6
f0 =753

is concave upward or downward.

Solution Begin by observing that fis continuous on the entire real line. Next, find
the second derivative of f.

flx) = 6(x* +3)7! Rewrite original function.
fx) = (—6)(x* + 3)72(2x) Differentiate.
—12x ) o
= 7()52 n 3)2 First derivative
2 + 2(__ _ (= 2 +
f”(x) = (x 3) ( 12) (x2(+ 132;:)(2)()6 3)(2x) Differentiate.
36(x2 — 1) o
= W Second derivative

Because f(x) = 0 when x = +1 and f”is defined on the entire real line, you should
test f” in the intervals (—oo, —1), (—1, 1), and (1, 0o). The results are shown in the
table and in Figure 3.26.

Interval —co<x< —1 —-l<x<1 l<x< o
Test Value x=-2 x=20 x=2
Sign of f”(x) f(=2) >0 f7(0) <0 f7(2) >0
Conclusion Concave upward Concave downward Concave upward

The function given in Example 1 is continuous on the entire real line. If there are

x-values at which the function is not continuous, these values should be used, along

with the points at which f”(x) = 0 or f”(x) does not exist, to form the test intervals.
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192 Chapter 3  Applications of Differentiation

EXAMPLE |3 Determining Concavity

241
Determine the open intervals on which the graph of f(x) = x2 — is concave upward
or concave downward. .
Solution Differentiating twice produces the following.
t x>+ 1 o _
Concave Concave f (x) = > Write original function.
upward x*—4
. (= 4(2x) — (> + 1D(2v) S
flx) = 2 — 4y Differentiate.
—10x Firet derivati
— o t t
X (_xz — 4)2 1rst derivative
2 _ 42— — (- 2 _
X2+ 1 fx) = (2 — 4P(-10) 2( 10:)(2)(x (20 Differentiate.
x2_4 (x - 4)
_10(3x% + 4) Second derivati
(_xz — 4)3 econ erivative
Concave There are no points at which f”(x) = 0, but at x = +2 the function fis not continuous,
downward so test for concavity in the intervals (—oo, —2), (—2, 2), and (2, o0), as shown in the
Figure 3.27 table. The graph of fis shown in Figure 3.27.
y
Interval —o<x< —2 —2<x<?2 2 <x< oo
Concave Test Value x=-3 x=0 x=3
Concave downward
upward Sign of f”(x) (=3)>0 77(0) <0 7(3) >0
h Conclusion Concave upward Concave downward Concave upward
X .
¥ Points of Inflection

The graph in Figure 3.26 has two points at which the concavity changes. If the
tangent line to the graph exists at such a point, that point is a point of inflection. Three
types of points of inflection are shown in Figure 3.28.

DEFINITION OF POINT OF INFLECTION

Let fbe a function that is continuous on an open interval and let ¢ be a point
y in the interval. If the graph of f has a tangent line at this point (c, f(c)), then
this point is a point of inflection of the graph of fif the concavity of f
changes from upward to downward (or downward to upward) at the point.

Concave
downward
Concave W3 The definition of point of inflection given above requires that the tangent line exists at
upward the point of inflection. Some books do not require this. For instance, we do not
consider the function
X
7 2,
D 1 q 1 x =
The cqncawty of f changes at a point of f(x) 242 x=0
inflection. Note that the graph crosses its
tangent line at a point of inflection. to have a point of inflection at the origin, even though the concavity of the graph changes from
Figure 3.28 concave downward to concave upward. ]
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To locate possible points of inflection, you can determine the values of x for
which f”(x) = 0 or f”(x) does not exist. This is similar to the procedure for locating
relative extrema of f.

THEOREM 3.8 POINTS OF INFLECTION

If (c, f(c)) is a point of inflection of the graph of f, then either f”(c) = 0 or f”

fo0) = = de? does not exist at x = c.
18-+
>T infletion o .
EXAMPLE [EJ Finding Points of Inflection
% L
- 23 Determine the points of inflection and discuss the concavity of the graph of
°T flx) = x* — 453
-8 Solution  Differentiating twice produces the following.
274 flx) = x* — 43 Write original function.
Sg\iﬁge gg\sz\‘::r i S[?VI\I';?ZC flx) = 403 — 1242 Find first derivative.

Points of inflection can occur where
f(x) = 0 or f”does not exist.
Figure 3.29

fx) = 1207 — 24x = 12x(x — 2)

Find second derivative.

Setting f”(x) = 0, you can determine that the possible points of inflection occur at
x =0 and x = 2. By testing the intervals determined by these x-values, you can
conclude that they both yield points of inflection. A summary of this testing is shown

y in the table, and the graph of fis shown in Figure 3.29.
fe)=x*
s Interval —oo<x<0 0<x<?2 2<x< o0
Test Value x=—1 x=1 x =3
Sign of f”(x) f(=1)>0 (1) <0 f7(3) >0
1 Conclusion Concave upward Concave downward Concave upward
|
- : The converse of Theorem 3.8 is not generally true. That is, it is possible for the

second derivative to be 0 at a point that is not a point of inflection. For instance, the
graph of f(x) = x* is shown in Figure 3.30. The second derivative is 0 when x = 0,
but the point (0, 0) is not a point of inflection because the graph of fis concave upward
in both intervals —co < x < 0and 0 < x < oo.

EXPLORATION

Consider a general cubic function of the form

f(x) = 0, but (0, 0) is not a point of
inflection.
Figure 3.30

f(x) = ax® + bx* + cx + d.

You know that the value of d has a bearing on the location of the graph but
has no bearing on the value of the first derivative at given values of x.
Graphically, this is true because changes in the value of d shift the graph up
or down but do not change its basic shape. Use a graphing utility to graph
several cubics with different values of c¢. Then give a graphical explanation of
why changes in ¢ do not affect the values of the second derivative.
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fe)>0

Concave

\ upward

1
1
1
1

c

If f(c) = 0and f"(c) > 0, f(c) is a relative
minimum.

y

/
c \'r

If f(c) = O0and f"(c) < 0, f(c) is a relative
maximum.
Figure 3.31

f(e)<0

I
Concave
downward

I

The Second Derivative Test

In addition to testing for concavity, the second derivative can be used to perform a
simple test for relative maxima and minima. The test is based on the fact that if the
graph of a function f is concave upward on an open interval containing ¢, and
f(c) = 0, f(c) must be a relative minimum of f. Similarly, if the graph of a function f
is concave downward on an open interval containing ¢, and f(c) = 0, f(c) must be a
relative maximum of f (see Figure 3.31).

THEOREM 3.9 SECOND DERIVATIVE TEST

Let fbe a function such that f(¢) = 0 and the second derivative of fexists on
an open interval containing c.

1. If f”(c) > 0, then fhas a relative minimum at (c, f(c)).

2. If f”(c) < 0, then fhas a relative maximum at (c, f(c)).

If f”(c) = 0, the test fails. That is, f may have a relative maximum, a relative
minimum, or neither. In such cases, you can use the First Derivative Test.

If f(c) = 0 and f”(c) > 0, there exists an open interval I containing ¢ for
which

F0 =6 _ W,

X — C X —C

for all x # ¢ in I If x < ¢, then x — ¢ < 0 and f'(x) < 0. Also, if x > ¢, then
x — ¢ > 0and f(x) > 0. So, f(x) changes from negative to positive at ¢, and the First
Derivative Test implies that f(c) is a relative minimum. A proof of the second
case is left to you. |

O EXAMPLE [} Using the Second Derivative Test

fx) ==3x7 + 53
y Relative

maximum

(1,2)

(-1,-2)
Relative
minimum

(0, 0) is neither a relative minimum nor a
relative maximum.
Figure 3.32

Find the relative extrema for f(x) = —3x% + 5x°.
Solution Begin by finding the critical numbers of f.
flx) = —15x* + 152> = 15x*(1 — x?) =0 Set f(x) equal to 0.

X = — 1, 0, 1 Critical numbers
Using
fx) = —60x3 + 30x = 30(—2x3 + x)

you can apply the Second Derivative Test as shown below.

Point (—1, -2) (1,2) 0, 0)
Sign of f”(x) f(=1) >0 (1) <0 770) =0
Conclusion Relative minimum Relative maximum Test fails

Because the Second Derivative Test fails at (0, 0), you can use the First Derivative Test
and observe that f increases to the left and right of x = 0. So, (0, 0) is neither a
relative minimum nor a relative maximum (even though the graph has a horizontal
tangent line at this point). The graph of fis shown in Figure 3.32. |
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@ EXE I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, the graph of f is shown. State the signs of f’
and f” on the interval (0, 2).

1. v 2. Y
/ /
e ! 1 L }
} ; x % ; X
1 2 1 2
3. 4. v

o

x %

;
1 2 1

N -

In Exercises 5-18, determine the open intervals on which the
graph is concave upward or concave downward.

6. y=—x>+3x2 -2
8. hix) =x>—5x+2

S5.y=x*—-x-2
7. g(x) = 3x2 — x?
L flx) = =3+ 6x2 —9x — 1

10. f(x) x5+ 5xt — 40x2

11. f(x) = 2 2+412 12. f(x) = 2xjr 1

13. f(x) = xzf 1 14. y = —3x + 421%3 + 135x
15. g0 =5 o 16. () ==

2
17. y = 2x — tanx, (—E,E> 8. y=x+—" (—mm

272 sin x

In Exercises 19-36, find the points of inflection and discuss the
concavity of the graph of the function.

19. f(x) =1xt + 20
( ) = —x* 4 2442

fl) =3 —6x2 + 12x
22. f(x)— 203 —3x2—12x+ 5

flx) = 3x* — 222 24, f(x) =2x* — 8x + 3
25. f( ) = x(x — 4)? 26. f(x) = (x —2P3x — 1)
27. f(x) = xJ/x + 3 28. f(x) = xV/9 — x

4 _x+ 1

29. f(x) = e 30. f(x) = 7
31. f(x) = sin ;, [0, 4] 32. f(x) = 2csc 37)(’ (0, 27

33. f(x) = sec(x - g), (0, 4)
34. f(x) = sinx + cosx, [0,27]
35. f(x) = 2sinx + sin2x, [0, 27]
36. f(x) = x + 2cosx, [0,27]

In Exercises 37-52, find all relative extrema. Use the Second
Derivative Test where applicable.

37. f(x) = (x — 5)? 38. f(x) = —(x — 5)?
39. f(x) = 6x — x* 40. f(x) = x>+ 3x — 8
41. f(x) = x> —3x2 + 3 42, flx) = x> — 5> + Tx
43. f(x) = x* — 4> + 2 44, f(x) = —x* + 43 + 8x?
45. g(x) = x*(6 — x)? 46. g(x) = (x + 2)%(x — 4)?
47. fx) = x23 -3 48. flx) = Va2 + 1

4 X
49.f(x)=x+; 50.f(x)=x_1

51. f(x) = cosx — x, [0, 4]
52. f(x) = 2sinx + cos 2x, [0, 2]

@ In Exercises 53-56, use a computer algebra system to analyze

the function over the given interval. (a) Find the first and
second derivatives of the function. (b) Find any relative extrema
and points of inflection. (¢) Graph f, f’, and f” on the same
set of coordinate axes and state the relationship between the
behavior of f and the signs of f” and f”.

53. f(x) = 0.2x%(x — 3)3, [—1,4]

4. f(x) = V6 — 22, [~ V6, V6]
55. f(x) sinx — % sin 3x + % sin 5x, [0, 7]
fx) = V2xsinx, [0,27]

WRITING ABOUT CONCEPTS

57. Consider a function f such that f” is increasing. Sketch
graphs of ffor (a) f* < 0 and (b) f* > 0.

58. Consider a function f such that f’ is decreasing. Sketch
graphs of ffor (a) f* < 0 and (b) f* > 0.

59. Sketch the graph of a function f that does not have a point
of inflection at (c, f(c)) even though f”(c) = 0

60. S represents weekly sales of a product. What can be said of
S’ and S” for each of the following statements?

(a) The rate of change of sales is increasing.
(b) Sales are increasing at a slower rate.

(c) The rate of change of sales is constant.
(d) Sales are steady.

(e) Sales are declining, but at a slower rate.

(f) Sales have bottomed out and have started to rise.
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In Exercises 61-64, the graph of f is shown. Graph f, f’, and f”
on the same set of coordinate axes. To print an enlarged copy of

Applications of Differentiation

the graph, go to the website www.mathgraphs.com.

6l. y

63.

Think About It In Exercises 65—-68, sketch the graph of a

62. y

1
1
1
1
1
1
1
1
1
1
1
é
2 3 4

function f having the given characteristics.

65. f(2) = f(4) =0
ffx) <0ifx <3
£/(3) does not exist.
fx) > 0ifx > 3
f(x) < 0,x #3

67. f(2) = f(4) =0
fx) > 0ifx < 3
£/(3) does not exist.
fx) < 0ifx > 3
fx) >0,x#3

66. f(0) = f(2) = 0

fx) >0ifx < 1
f(1)=0
flx) < 0ifx > 1
fx) <0

68. f(0) =f(2) = 0

flx) < 0ifx < 1
f1)y=0
flx) > 0ifx > 1
fx) >0

71. Conjecture Consider the function f(x) = (x — 2)™.

(a) Use a graphing utility to graph fforn = 1, 2, 3, and 4. Use
the graphs to make a conjecture about the relationship
between n and any inflection points of the graph of f.

(b) Verify your conjecture in part (a).
72. (a) Graph f(x) = ¥x and identify the inflection point.
(b) Does f”(x) exist at the inflection point? Explain.

In Exercises 73 and 74, find a, b, ¢, and d such that the cubic
f(&) = ax® + bx? + cx + d satisfies the given conditions.

73. Relative maximum: (3, 3) 74. Relative maximum: (2, 4)

Relative minimum: (5, 1) Relative minimum: (4, 2)

Inflection point: (4, 2) Inflection point: (3, 3)

75. Aircraft Glide Path A small aircraft starts its descent from an
altitude of 1 mile, 4 miles west of the runway (see figure).

y

(a) Find the cubic f(x) = ax® + bx> + cx + d on the interval
[—4, 0] that describes a smooth glide path for the landing.

(b) The function in part (a) models the glide path of the plane.
When would the plane be descending at the greatest rate?

FOR FURTHER INFORMATION For more information on this
type of modeling, see the article “How Not to Land at Lake Tahoe!”
by Richard Barshinger in The American Mathematical Monthly. To
view this article, go to the website www.matharticles.com.

69. Think About It The figure shows the graph of f”. Sketch a 'dP' 76. Highway Design A section of highway connecting two

graph of f. (The answer is not unique.) To print an enlarged

copy of the graph, go to the website www.mathgraphs.com.

Figure for 69

f
d
i —
Figure for 70

CAPSTONE

70. Think About It Water is running into the vase shown in
the figure at a constant rate.

(a) Graph the depth d of water in the vase as a function of time.
(b) Does the function have any extrema? Explain.

(c) Interpret the inflection points of the graph of d.

hillsides with grades of 6% and 4% is to be built between two
points that are separated by a horizontal distance of 2000 feet
(see figure). At the point where the two hillsides come together,
there is a 50-foot difference in elevation.

y

- Highway B(1000,90) __ -~
T2~ AG1000,60) | - =%
i 6%“.~ ________ - A070 %t’dde
grade 50 ft

X
Not drawn to scale |

(a) Design a section of highway connecting the hillsides
modeled by the function f(x) = ax® + bx* + cx + d
(—1000 = x = 1000). At the points A and B, the slope of
the model must match the grade of the hillside.

(b) Use a graphing utility to graph the model.

(c) Use a graphing utility to graph the derivative of the model.

(d) Determine the grade at the steepest part of the transitional
section of the highway.
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77. Beam Deflection The deflection D of a beam of length L is 'dF’ Linear and Quadratic Approximations In Exercises 83—-86, use

D = 2x* — 5Lx> 4+ 3L%x?, where x is the distance from one
end of the beam. Find the value of x that yields the maximum
deflection.

78. Specific Gravity A model for the specific gravity of water S is

_ 5755, 8521, 6540

S
108 10° 10°

T+ 099987, 0 < T < 25

where T is the water temperature in degrees Celsius.

@® (a) Use a computer algebra system to find the coordinates of
the maximum value of the function.

(b) Sketch a graph of the function over the specified domain.
(Use a setting in which 0.996 < S < 1.001.)
(c) Estimate the specific gravity of water when 7' = 20°.

79. Average Cost A manufacturer has determined that the total
cost C of operating a factory is C = 0.5x% + 15x + 5000,
where x is the number of units produced. At what level of
production will the average cost per unit be minimized? (The
average cost per unit is C/x.)

80. Inventory Cost The total cost C of ordering and storing x
units is C = 2x + (300,000/x). What order size will produce a
minimum cost?

81. Sales Growth The annual sales S of a new product are given by

_ 5000¢2
8 + 1%

0 = r = 3, where ¢ is time in years.

(a) Complete the table. Then use it to estimate when the annual
sales are increasing at the greatest rate.

t 105 1152253

S

ldF" (b) Use a graphing utility to graph the function S. Then use the
graph to estimate when the annual sales are increasing at
the greatest rate.

(c) Find the exact time when the annual sales are increasing at
the greatest rate.

ldF" 82. Modeling Data The average typing speed S (in words per
minute) of a typing student after  weeks of lessons is shown in
the table.

t 5 110 15| 20 | 25 | 30

S 13815 |79 9 | 93 | 94

10072
65 + 1%

(a) Use a graphing utility to plot the data and graph the model.

A model for the data is § = t>

(b) Use the second derivative to determine the concavity of S.
Compare the result with the graph in part (a).

(c) What is the sign of the first derivative for ¢ > 0?7 By
combining this information with the concavity of the model,
what inferences can be made about the typing speed as
t increases?

a graphing utility to graph the function. Then graph the linear
and quadratic approximations

Pi(x) = f(a) + f'(@)x — a)
and
P,x) = f(@) + f@& — a) + 3 f (@ — a)?

in the same viewing window. Compare the values of f, P, and
P, and their first derivatives at x = a. How do the approxima-
tions change as you move farther away from x = a?

Function Value of a
83. f(x) = 2(sin x + cos x) a= g
84. f(x) = 2(sinx + cos x) a=0
85. flx) = V1 —x a=0
_ WA _
86.f(x)—x_1 a=2

B 87. Use a graphing utility to graph y = x sin(1/x). Show that the

graph is concave downward to the right of x = 1/7.

88. Show that the point of inflection of f(x) = x(x — 6)? lies
midway between the relative extrema of f.

89. Prove that every cubic function with three distinct real zeros
has a point of inflection whose x-coordinate is the average of
the three zeros.

90. Show that the cubic polynomial p(x) = ax® + bx*> + cx + d
has exactly one point of inflection (x,, y,), Where

) 2% be

xo—g and Yo =

27a*>  3a +d

Use this formula to find the point of inflection of
plx) = x> — 3> + 2.

True or False? 1In Exercises 91-94, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. The graph of every cubic polynomial has precisely one point of
inflection.

92. The graph of f(x) = 1/x is concave downward for x < 0 and
concave upward for x > 0, and thus it has a point of inflection
atx = 0.

93. If f’(c) > 0, then fis concave upward at x = c.

94. If f(2) = 0, then the graph of f must have a point of inflection
atx = 2.

In Exercises 95 and 96, let f and g represent differentiable
functions such that f”# 0 and g” # 0.

95. Show that if f and g are concave upward on the interval (a, b),
then f + g is also concave upward on (a, b).

96. Prove that if f and g are positive, increasing, and concave
upward on the interval (a, b), then fg is also concave upward
on (a, b).
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3x2
X) =
4l @ 2.1
2 -+
f) -3 fx) =3
as x — —oo T as x — oo
——— F—t—F—1+—>x
-4 -3 -2 -1 1 2 3 4
The limit of f(x) as x approaches — co or co
is 3.
Figure 3.33

The statement lim f(x) = L
X— —00

or lim f(x) = L means that the limit
X—00

exists and the limit is equal to L.

lim f(x) = L

f(x) is within & units of L as x — oo.

Figure 3.34

Applications of Differentiation

m Determine (finite) limits at infinity.
m Determine the horizontal asymptotes, if any, of the graph of a function.
B Determine infinite limits at infinity.

Limits at Infinity

This section discusses the “end behavior” of a function on an infinite interval.
Consider the graph of

o 3x?
fl) = x2+1

as shown in Figure 3.33. Graphically, you can see that the values of f(x) appear to
approach 3 as x increases without bound or decreases without bound. You can come
to the same conclusions numerically, as shown in the table.

< x decreases without bound. x increases without bound. >

—-10 —-1]0] 1 10 100
297 | 1.5 0 15| 297 | 29997

X — 00 — 0

f&)

—100
2.9997

3¢«

< >

The table suggests that the value of f(x) approaches 3 as x increases without bound
(x = oo). Similarly, f(x) approaches 3 as x decreases without bound (x — —o0).
These limits at infinity are denoted by

lim f(x) =3

-3

f(x) approaches 3. f(x) approaches 3.

Limit at negative infinity
and

lim f(x) = 3. Limit at positive infinity

X—00

To say that a statement is true as x increases without bound means that for some
(large) real number M, the statement is true for al/ x in the interval {x: x > M}. The
following definition uses this concept.

DEFINITION OF LIMITS AT INFINITY

Let L be a real number.

1. The statement Yli)rgo f(x) = L means that for each & > 0 there exists an
M > 0 such thét |f(x) = L| < & whenever x > M.

2. The statement Ygr_noo f(x) = L means that for each & > 0 there exists an

N < 0 such that |f(x) — L| < & whenever x < N.

The definition of a limit at infinity is shown in Figure 3.34. In this figure, note
that for a given positive number & there exists a positive number M such that, for
x > M, the graph of f will lie between the horizontal lines given by y = L + € and
y=L—e.
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EXPLORATION

Use a graphing utility to graph

22 +4x -6
0 =355 %16

Describe all the important
features of the graph. Can you
find a single viewing window that
shows all of these features clearly?
Explain your reasoning.

What are the horizontal
asymptotes of the graph? How far
to the right do you have to move
on the graph so that the graph is
within 0.001 unit of its horizontal
asymptote? Explain your reasoning.

3.5 Limits at Infinity 199

Horizontal Asymptotes

In Figure 3.34, the graph of fapproaches the line y = L as x increases without bound.
The line y = L is called a horizontal asymptote of the graph of f.

DEFINITION OF A HORIZONTAL ASYMPTOTE

The line y = L is a horizontal asymptote of the graph of fif
lim f(x) =L or lim f(x) = L.
X— — 00 X—00

Note that from this definition, it follows that the graph of a function of x can have
at most two horizontal asymptotes—one to the right and one to the left.
Limits at infinity have many of the same properties of limits discussed in Section
1.3. For example, if lim f(x) and lim g(x) both exist, then
X—>00 X—00

lim [f(x) + g(x)] = lim f(x) + lim g(x)
and

lim [f()g(0] = [ lim f(o][ lim g(x)}

xX—00

Similar properties hold for limits at — oo.
When evaluating limits at infinity, the following theorem is helpful. (A proof of
this theorem is given in Appendix A.)

THEOREM 3.10 LIMITS AT INFINITY

If r is a positive rational number and c¢ is any real number, then

Furthermore, if x” is defined when x < 0, then

. C
lim — =0.
x——oo x”

EXAMPLE [El] Finding a Limit at Infinity

Find the limit: lim <5 - %)
xX—00 X

Solution Using Theorem 3.10, you can write

. 2 . .2
lim (5 - 5= lim 5 — lim - Property of limits
X—00 X xX—>00 x—00 X
=5-0
= 5. ]
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200 Chapter 3

When you encounter an
indeterminate form such as the one
in Example 2, you should divide the
numerator and denominator by the

highest power of x in the denominator.

6
L5
L4
, _2x-1
3] fO) ="

y = 2 isa horizontal asymptote.
Figure 3.35

|

0 80
0

As x increases, the graph of f'moves closer
and closer to the line y = 2.
Figure 3.36

Applications of Differentiation

EXAMPLE B3 Finding a Limit at Infinity

Find the limit: lim 2,
—oo x + 1

Solution Note that both the numerator and the denominator approach infinity as x
approaches infinity.

lim 2x — 1) — oo

2x _ ] / X—00

lim (x + 1) = oo

x—00

This results in =’ an indeterminate form. To resolve this problem, you can divide

both the numerator and the denominator by x. After dividing, the limit may be
evaluated as shown.

2x — 1
.o 2x—1 . . .
lim =1 Divide numerator and denominator by x.
x—oo x + 1 x—oo x + 1
X
1
P
= lim —— Simplify.
x—00
X

. 1
lim 2 — lim —
X—00 X—00 X . .

= —1 Take limits of numerator and denominator.

lim 1 + lim —
xX—00 xX—00 X

2-0
1+0

=2

Apply Theorem 3.10.

So, the line y = 2 is a horizontal asymptote to the right. By taking the limit as
Xx— —o0o, you can see that y = 2 is also a horizontal asymptote to the left. The graph
of the function is shown in Figure 3.35. |

—m You can test the reasonableness of the limit found in Example 2 by
evaluating f(x) for a few large positive values of x. For instance,

£(100) = 1.9703, £(1000) = 1.9970, and £(10,000) = 1.9997.

Another way to test the reasonableness of the limit is to use a graphing utility. For
instance, in Figure 3.36, the graph of

2x — 1

x+ 1

flx) =

is shown with the horizontal line y = 2. Note that as x increases, the graph of f
moves closer and closer to its horizontal asymptote.
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The Granger Collection

MARIA GAETANA AGNESI (1718-1799)

Agnesi was one of a handful of women to
receive credit for significant contributions to
mathematics before the twentieth century.
In her early twenties, she wrote the first text
that included both differential and integral
calculus. By age 30, she was an honorary
member of the faculty at the University of
Bologna.

For more information on the contributions of
women to mathematics, see the article “Why
Women Succeed in Mathematics” by Mona
Fabricant, Sylvia Svitak, and Patricia Clark
Kenschaft in Mathematics Teacher. To

view this article, go to the website
www.matharticles.com.

1
2+

2T fw=

-2 -1 1 2
lim f(x) =0 lim f(x) =0
X —> —oo X — oo
f has a horizontal asymptote at y = 0.
Figure 3.37
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O EXAMPLE [EJ] A Comparison of Three Rational Functions

Find each limit.

a lim 22T b lim 22 t5 c
.xl>r233x2+1 'xi>n;33x2+1 :

m 2x3 45
xX—00 3x2 + 1
Solution In each case, attempting to evaluate the limit produces the indeterminate
form oo/co.

a. Divide both the numerator and the denominator by x2.

o245 L (2 +(5/xY) _0+40_0_
Jim ey = Jm 3+ (1/x2) “3%+0 3 ©

b. Divide both the numerator and the denominator by x2.

lim 22%°+5 limZ+(5/xz):2-|-O:g
x—00 3)62 + 1 x—0 3 + (1/X2) 3+0 3

c. Divide both the numerator and the denominator by x2.

23 4+5 2x + (5/x%) oo

lim ———— = lim ———— = =

x—oo 3x% + 1 x—oo 3 + (1/)6 ) 3
You can conclude that the limit does not exist because the numerator increases
without bound while the denominator approaches 3. [ |

GUIDELINES FOR FINDING LIMITS AT oo OF RATIONAL FUNCTIONS

1. If the degree of the numerator is less than the degree of the denominator,
then the limit of the rational function is 0.

2. If the degree of the numerator is equal to the degree of the denominator, then
the limit of the rational function is the ratio of the leading coefficients.

3. If the degree of the numerator is greater than the degree of the denominator,
then the limit of the rational function does not exist.

Use these guidelines to check the results in Example 3. These limits seem reasonable
when you consider that for large values of x, the highest-power term of the rational
function is the most “influential” in determining the limit. For instance, the limit as x
approaches infinity of the function

1
X) = &5
f&x) x>+ 1
is 0 because the denominator overpowers the numerator as x increases or decreases
without bound, as shown in Figure 3.37.
The function shown in Figure 3.37 is a special case of a type of curve studied by
the Italian mathematician Maria Gaetana Agnesi. The general form of this function is

8a’
x2 + 4a?

flx) = Witch of Agnesi
and, through a mistranslation of the Italian word verféré, the curve has come to be
known as the Witch of Agnesi. Agnesi’s work with this curve first appeared in a

comprehensive text on calculus that was published in 1748.
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202 Chapter 3  Applications of Differentiation

In Figure 3.37, you can see that the function f(x) = 1/(x> + 1) approaches the
same horizontal asymptote to the right and to the left. This is always true of rational
functions. Functions that are not rational, however, may approach different horizontal
asymptotes to the right and to the left. This is demonstrated in Example 4.

EXAMPLE [N A Function with Two Horizontal Asymptotes

Find each limit.

a lim =2 b, lim X =2
T s 22+ 1 Tam—oe /2x2 41

Solution

a. For x > 0, you can write x = /x2 So, dividing both the numerator and the
denominator by x produces

3x — 2 2

3x—2

2
3_7
Nz 2x2+1 2x2+1 /

and you can take the limit as follows.

2
3x — 2 3% 3-0 3
= lim =—

Ly e Hoo\/2+ 2+0 V2

3
Vo oy=—
Y V2’ b. For x < 0, you can write x = —+/x2 So, dividing both the numerator and the
4 i‘;“;;zts denominator by x produces

to the right 3x — 2 - g 5 g
x—-2 X
WI+ 1 \/2x2+1 2x2+1 1

[ [2+—
x
o= and you can take the limit as follows.
=T V2 -4+ %2+ 1

Horizontal
asymptote 3x -2 3—-0 3

3 JE——
lim = lim = -
to the left oo 2)62 F1 oo \/m \/i
Functions that are not rational may have

different right and left horizontal asymptotes.
Figure 3.38 The graph of f(x) = (3x — 2)/+/2x? + 1 is shown in Figure 3.38. ]

LA DO SARITVEED If you use a graphing utility to help estimate a limit,
be sure that you also confirm the estimate analytically—the pictures shown by a

/r— graphing utility can be misleading. For instance, Figure 3.39 shows one view of the
s . graph of
B 2x3 + 1000x2 + x
- Y7 ¥ +1000x% + x + 1000°
The horizontal asymptote appears to be the From this view, one could be convinced that the graph has y = 1 as a horizontal
line y = 1 but it is actually the line y = 2. asymptote. An analytical approach shows that the horizontal asymptote is actually
Figure 3.39 y = 2. Confirm this by enlarging the viewing window on the graphing utility.
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sin
X 0
x—oo X

lim

=1
Y X

As x increases without bound, f(x)

approaches 0.
Figure 3.40
S
1.00
B o5l 200 (10, 0.9)
2
§0 0.50 2—t+1
= aes MO
o
0.25

Weeks

The level of oxygen in a pond approaches the

normal level of 1 as r approaches co.
Figure 3.41
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In Section 1.3 (Example 9), you saw how the Squeeze Theorem can be used to
evaluate limits involving trigonometric functions. This theorem is also valid for
limits at infinity.

EXAMPLE [EJ Limits Involving Trigonometric Functions

Find each limit.

. . . sinx
a. lim sinx b. lim

xX—>00 x—oe X
Solution

a. As x approaches infinity, the sine function oscillates between 1 and —1. So, this
limit does not exist.

b. Because —1 < sinx < 1, it follows that for x > 0,
sin x
X

<

=

==
==

where lim (—1/x) = 0 and lim (1/x) = 0. So, by the Squeeze Theorem, you

X—00 X—>00

can obtain

sinx

lim 0
x—>co X

as shown in Figure 3.40.

EXAMPLE [ Oxygen Level in a Pond

Suppose that () measures the level of oxygen in a pond, where f(f) = 1 is the normal
(unpolluted) level and the time ¢ is measured in weeks. When ¢ = 0, organic waste is
dumped into the pond, and as the waste material oxidizes, the level of oxygen in the
pond is

2—1r+1
2+ 1

flo) =
What percent of the normal level of oxygen exists in the pond after 1 week? After 2
weeks? After 10 weeks? What is the limit as ¢ approaches infinity?
Solution When ¢ = 1, 2, and 10, the levels of oxygen are as shown.
2—-1+1 1

f(l) = 2+ 1 = E = 50% 1 week
-2+

f2) = % = % = 60% 2 weeks
102—-10+1 91

f(lO) = 102 + 1 ~ 101 =~ 90.1% 10 weeks

To find the limit as r approaches infinity, divide the numerator and the denominator by
£? to obtain

2=+l 1=/ +0/A) 1-0+0
M= T T W T T 1vo O T100%
See Figure 3.41. n
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204 Chapter 3  Applications of Differentiation

Determining whether a function
has an infinite limit at infinity is useful
in analyzing the “end behavior” of its
graph. You will see examples of this in
Section 3.6 on curve sketching.

Figure 3.42

x4«
&= x+1

| | | |

Figure 3.43

Infinite Limits at Infinity

Many functions do not approach a finite limit as x increases (or decreases) without
bound. For instance, no polynomial function has a finite limit at infinity. The
following definition is used to describe the behavior of polynomial and other functions
at infinity.

DEFINITION OF INFINITE LIMITS AT INFINITY

Let f be a function defined on the interval (a, co).
1. The statement lim f(x) = oo means that for each positive number M, there
X—00

is a corresponding number N > 0 such that f(x) > M whenever x > N.

2. The statement lim f(x) = — oo means that for each negative number M,
X—00

there is a corresponding number N > 0 such that f(x) < M whenever x > N.

Similar definitions can be given for the statements lim f(x) = co and
lim f(x) = —oco. -

x——00

EXAMPLE Finding Infinite Limits at Infinity

Find each limit.

a. lim x3 b. lim »°
X—00 xX— —00
Solution

a. As x increases without bound, x* also increases without bound. So, you can write
lim x3 = oco.

xX—00
b. As x decreases without bound, x3 also decreases without bound. So, you can write
lim x* = —oo.
xX— —00

The graph of f(x) = x> in Figure 3.42 illustrates these two results. These results agree
with the Leading Coefficient Test for polynomial functions as described in Section P.3.

EXAMPLE [EJ Finding Infinite Limits at Infinity

Find each limit.

. 2x% — 4x . 2xr — 4x
a. lim — b. lim ——
x—oo X + 1 x—>—o0 X + 1

Solution  One way to evaluate each of these limits is to use long division to rewrite
the improper rational function as the sum of a polynomial and a rational function.

The statements above can be interpreted as saying that as x approaches *oo, the
function f(x) = (2x> — 4x)/(x + 1) behaves like the function g(x) = 2x — 6. In
Section 3.6, you will see that this is graphically described by saying that the line
y = 2x — 6 1is a slant asymptote of the graph of f, as shown in Figure 3.43. |
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3.5 Limits at Infinity 205

@ EXE I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, match the function with one of the graphs [(a), In Exercises 13 and 14, find lim k(x), if possible.
X—00

(b), (¢), (d), (e), or (f)] using horizontal asymptotes as an aid.
y y 5 g ymp 13. f(x) — 5x3 — 3x2 + 10x 14. f(x) = _4x2 +2x—5

() y (b) y
@ nt) = L2 @ ho) = L9
3+ X X
1 -+
—t x (¢) h(x) = % (©) hlx) = %
-2 -1 12
-1+
In Exercises 15-18, find each limit, if possible.
(© y (d) y x>+ 2 .3 - 2x
o 15 @ fim 5 16 @ fim 35
——————— To--oo== 2 .ox2+2 .3 — 2
1+ 14+ ®) xll)rgo x2—1 ®) xlggo 3x — 1
—+— —+——>x e ———F—>x 2 92
3-2-1/] 123 L1203 (© lim* t2 © lim o 2%
5 x—oo x — 1 x—oo 3x — 1
ol 5 —2x3/2 5x3/2
-3+ -3+ im ——=% im ———
7@ i 5e Ry
® y 5 =23 ) 5x3/2
4l ) lim 355 4 ®) Jim 51
3+ .5 —2x32 . 5x3/2
—————— L © ,\'li)rgo 3x — 4 © xll)rgaé].\/;c—i-l
1 -+
Aé, x In Exercises 19-38, find the limit.
x -3-2-1 | 1 2 3
24 19. lim (4 + 5) 20. lim (5 - f)
xX—00 X X——00 \ X 3
2x — 1 x*+3
2x2 2x 21. lim 22. lim
. = . = xooo 3x + 2 x—oo 2x2 — 1
1. f(x) 212 2. f(x) N —oo 3x X .
3+
_x - X2 23, lim ——— 24. lim ——— 5 ——
3.f(x)—x2+2 4-f(x)—2+m r—ooo x2 — 1 x—ooo 10x> —3x2+ 7
4sin 22— 3x + 5 25. lim X 26. lim (1x 4)
X X~ — OX . . P
N = . = xX——00 + X——00 2
5. flx) o 6. f(x) o x+3 2 X
» _ _ , . 27. lim ———— 28. lim ———
Numerical and Graphical Analysis In Exercises 7-12, use a == /x2 — x ——o /x2 + 1
graphing utility to complete the table and estimate the limit as ] 2+ 1 ) 3 + 1
x approaches infinity. Then use a graphing utility to graph the 29. XEIPOC Jx—x 30. Xl}l}loo N
function and estimate the limit graphically. = ' JET
31. hrgo 2)67—1 32. 11171’1Oo x3 1
x 10° | 10' | 10% | 103 | 10* | 10° | 10° L ' 5
. X . X
76 . lim o M.l
. 1 . 1
4x + 3 202 3 S sinx 36. lim cos
7. fx) = 8. flx) =
x—1 vt sin 2x X — COS X
37. lim - 38. lim ———
9 f(x) _ _6X 10 f(x) _ 2O-x x—00 X xX—00 X
’ VT +S ' NCTZE
1
ll.f(x)fS—szl 12.‘}0()6)74-4'%274_2
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206 Chapter 3  Applications of Differentiation

ldF" In Exercises 39-42, use a graphing utility to graph the function CAPSTONE

d identif horizontal totes.
anc identily any horizontal asymptotes 58. The graph of a function f is shown below. To print

ey _|3x + 2 an enlarged copy of the graph, go to the website
39. /() = x+ 1 40. flx) = x—2 www.mathgraphs.com.
3 VOx2 -2
4. fo) = ——— 42, o) = L2 ft
Jx*+2 2x + 1 6
In Exercises 43 and 44, find the limit. (Hint: Let x = 1/t and Ml
find the limitas¢r—0*.) | Lo
2L
+/r
43. lim xsin 1 44. lim xtan 1
x—00 X xX—o00 X X
-4 -2 1 2 4
In Exercises 45—48, find the limit. (Hint: Treat the expression 2T

as a fraction whose denominator is 1, and rationalize the
numerator.) Use a graphing utility to verify your result.

45. lim (x + Vx?+ 3) 46. li)m (x - Jxr+ x)

(a) Sketch f".
(b) Use the graphs to estimate lim f(x) and lim f/(x).
X—o0o X—0o0

(c) Explain the answers you gave in part (b).

47. lim (3x+ Vo®=x) 48 lim (4r - V168" —x)

e Numerical, Graphical, and Analytic Analysis In Exercises In Exercifes 59-76, sketch the graph of the equation using
49-52, use a graphing utility to complete the table and estimate extrema, Intercepts, symmetry, and asymptotes. Then use a
the limit as x approaches infinity. Then use a graphing utility to graphing utility to verify your result.
graph the function and estimate the limit. Finally, find the limit x x—4
analytically and compare your results with the estimates. 59.y = 1—x 60. y = Y =3

0 1 2 3 4 s 6 _xfl o

x 10° | 10 102 | 10* | 10 10 10 61. y e 62. y -2

fx) x? x?

Y= 4. y =
63y =16 6y =16
49. fx) =x — Vx(x — 1) 50. f(x) = x% — xVxlx — 1) 2y2 2x2
1 x + 1 A A
51. f(x) = xsin—— 52, f(x) =-
2x xJ/x 67. xy2 =9 68. x>y =9
WRITING ABOUT CONCEPTS 69. y = 0.y =2
- X - X

In Exercises 53 and 54, describe in your own words what the 3 |

statement means. 1. y=2—-— 72. y=1+—
x?2 X

53. lim f(x) = 4 54. lim f(x) =2 2 1
oo T 73. y =3+ ; 74. y = 4<1 - F)

55. Sketch a graph of a differentiable function fthat satisfies the N ’
following conditions and has x = 2 as its only critical 75. y = : 76. y = ——
number. x> —4 x*—4

fx) <0 for x <2 f(x) >0 for x > 2 @D In Exercises 77— 84, use a computer algebra system to analyze
lim f(x) = lim f(x) = 6 the graph of the function. Label any extrema and/or asymptotes
x—>—0 X0 that exist.

56. Is it possible to sketch a graph of a function that satisfies the 5 |
conditions of Exercise 55 and has no points of inflection? 71. fx) =9 — = 78. f(x) = PER——
Explain. * v

57. .Iffis a% contin.uous function such thz.it Xli}lgcf(x.) .= 5, find, 79. f(x) = ﬁ 80. f(x) = ﬁ
if possible, lim f(x) for each specified condition.

ol 81 ()737)( 82 ()7L

(a) The graph of fis symmetric with respect to the y-axis. S = /Ax2 + 1 C 8 T T A
(b) The graph of fis symmetric with respect to the origin. 2sin?2
graph of f1s sy P £ 83. glx) = sin(x f 2), x>3 84. f(x) = S
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3.5 Limits at Infinity 207

ldP' In Exercises 85 and 86, (a) use a graphing utility to graph f and ldF’ 91. Modeling Data The table shows the world record times for

g in the same viewing window, (b) verify algebraically that f and
g represent the same function, and (c) zoom out sufficiently far
so that the graph appears as a line. What equation does this line
appear to have? (Note that the points at which the function is
not continuous are not readily seen when you zoom out.)

X —=3x2+2 X =224+ 2
85. f(x) = =3 86. f(x) = — 2
2 1 1
= x4+ — = ——x4+1-—=
g(x) = x =3 g(x) Sxtl =2
87. Engine Efficiency The efficiency of an internal combustion
engine is
1
Efficiency (%) = 100 [1 - ]
y (7o ("1 /VZ)C

where v,/v, is the ratio of the uncompressed gas to the
compressed gas and ¢ is a positive constant dependent on the
engine design. Find the limit of the efficiency as the compres-
sion ratio approaches infinity.

88. Average Cost A business has a cost of C = 0.5x + 500 for
producing x units. The average cost per unit is
- _C
c=-
X
Find the limit of C as x approaches infinity.

89. Physics Newton’s First Law of Motion and Einstein’s Special
Theory of Relativity differ concerning a particle’s behavior as
its velocity approaches the speed of light c¢. In the graph,
functions N and E represent the velocity v, with respect to time
t, of a particle accelerated by a constant force as predicted by
Newton and Einstein. Write limit statements that describe these
two theories.

t

90. Temperature The graph shows the temperature 7, in degrees
Fahrenheit, of molten glass # seconds after it is removed from a
kiln.

T
¢ (0, 1700)

72

t

(a) Find lirgl T. What does this limit represent?
t—0*

(b) Find lim 7. What does this limit represent?
1—oo

(c) Will the temperature of the glass ever actually reach room
temperature? Why?

the mile run, where ¢ represents the year, with t = 0 correspon-
ding to 1900, and y is the time in minutes and seconds.

t 23 33 45 54 58

y | 4104 | 4:.07.6 | 4:01.3 | 3:59.4 | 3:54.5

t 66 79 85 99

y | 3:51.3 | 3:489 | 3:46.3 | 3:43.1

A model for the data is

3.35112 + 42.4611 — 543.730
y= 2
where the seconds have been changed to decimal parts of a
minute.
(a) Use a graphing utility to plot the data and graph the model.

(b) Does there appear to be a limiting time for running 1 mile?
Explain.

ldP' 92. Modeling Data The average typing speeds S (in words per

minute) of a typing student after r weeks of lessons are shown
in the table.

t 5 10 15120 25 30

S 12815 |79 9 | 93| 94

100¢2
65 + 1%

(a) Use a graphing utility to plot the data and graph the model.

A model for the data is S = > 0.

(b) Does there appear to be a limiting typing speed? Explain.

93. Modeling Data A heat probe is attached to the heat exchanger
of a heating system. The temperature 7 (in degrees Celsius) is
recorded  seconds after the furnace is started. The results for the
first 2 minutes are recorded in the table.

t 0 15 30 45 60

T | 252° | 36.9° | 455° | 51.4° | 56.0°

t 75 90 105 120

T | 59.6° | 62.0° | 64.0° | 65.2°

(a) Use the regression capabilities of a graphing utility to find
a model of the form T, = at> + bt + ¢ for the data.
(b) Use a graphing utility to graph T}.

1451 + 86
(c) A rational model for the data is 7, = 587+tt Use a

graphing utility to graph 7.

(d) Find T,(0) and 7,(0).

(e) Find lim T.

) Inter[;;é?the result in part (e) in the context of the problem.
Is it possible to do this type of analysis using 7,? Explain.
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208 Chapter 3  Applications of Differentiation

ldP' 94. Modeling Data A container holds 5 liters of a 25% brine

solution. The table shows the concentrations C of the mixture
after adding x liters of a 75% brine solution to the container.

x 0 0.5 1 1.5 2

C 025 | 0295 | 0333 | 0.365 | 0.393

x 25 3 35 4

C | 0417 | 0438 | 0456 | 0472

(a) Use the regression features of a graphing utility to find a
model of the form C; = ax?> + bx + c for the data.

(b) Use a graphing utility to graph C,.

. . _ 5+ 3
(c) A rational model for these data is C, = 20 & 4r Use a

graphing utility to graph C,.
(d) Find 1irgo C, and linolo C,. Which model do you think best
represents the concentration of the mixture? Explain.
(e) What is the limiting concentration?
95. A line with slope m passes through the point (0, 4).

(a) Write the distance d between the line and the point (3, 1) as
a function of m.

ldF" (b) Use a graphing utility to graph the equation in part (a).
(c) Find lim d(m) and lim d(m). Interpret the results
geomeriggglly. S
96. A line with slope m passes through the point (0, —2).

(a) Write the distance d between the line and the point (4, 2) as
a function of m.

ldP' (b) Use a graphing utility to graph the equation in part (a).
(c) Find lim d(m) and lim d(m). Interpret the results
m—o0 m——oo

geometrically.

97. The graph of f(x) = is shown.

X
x2+2

7777777777777 T

O
5]
Bl il

Not drawn to scale

(a) Find L = lim f(x).
(b) Determine x, and x, in terms of .

(c) Determine M, where M > 0, such that | f(x) — L| < & for
x> M.

(d) Determine N, where N < 0, such that |f(x) — L| < & for
x < N.

98. The graph of f(x) = is shown.

6x
I+ 2

Not drawn to scale

(@) Find L = lim f(x)and K = lim f(x).
X—oo X——o0
(b) Determine x, and x, in terms of .

(c) Determine M, where M > 0, such that | f(x) — L| < & for
x> M.

(d) Determine N, where N < 0, such that | f(x) — K| < & for
x < N.

3x
99. Consider lim ————.

% T
infinity to find values of M that correspond to (a) € = 0.5 and
(b) e = 0.1.

Use the definition of limits at

3x
100. Consid lim ————
er —-o0o Jx2 4+ 3
infinity to find values of N that correspond to (a) ¢ = 0.5 and
(b) e = 0.1.

. Use the definition of limits at

In Exercises 101-104, use the definition of limits at infinity to
prove the limit.

1 2
101. Xll)rgo 2 0 102. xli)rgo 7\/} =0
103. lim % =0 104. lim ! =0
x—>—oo X x—>—oo0 X — 2

105. Prove that if p(x) = a,x" + - - - + a;x + ay and

(](X) — bmxm 4+ e+ blx + b() (an # 0, bm #* O), then
0, n<m
L opl) _ [
lim B2 =¢ ", =m.
rl}go q(x) bm ! "
+oo, n>m

106. Use the definition of infinite limits at infinity to prove that
lim x* = oo.
X—00
True or False? In Exercises 107 and 108, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

107. If f/(x) > O for all real numbers x, then f increases without
bound.

108. If f”(x) < 0 for all real numbers x, then f decreases without
bound.
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@ A Summary of Curve Sketching

40

) j
-10
200

~10 J
-1200

30

Different viewing windows for the graph of

flx) = x> = 25x% 4+ T4x — 20

Figure 3.44

B Analyze and sketch the graph of a function.

Analyzing the Graph of a Function

It would be difficult to overstate the importance of using graphs in mathematics.
Descartes’s introduction of analytic geometry contributed significantly to the rapid
advances in calculus that began during the mid-seventeenth century. In the words of
Lagrange, “As long as algebra and geometry traveled separate paths their advance was
slow and their applications limited. But when these two sciences joined company, they
drew from each other fresh vitality and thenceforth marched on at a rapid pace toward
perfection.”

So far, you have studied several concepts that are useful in analyzing the graph of
a function.

* x-intercepts and y-intercepts (Section P.1)
e Symmetry (Section P.1)
e Domain and range (Section P.3)

e Continuity (Section 1.4)
(Section 1.5)
(Section 2.1)
(Section 3.1)
(Section 3.4)
(Section 3.4)
(Section 3.5)

(Section 3.5)

 Vertical asymptotes

* Differentiability

 Relative extrema

» Concavity

¢ Points of inflection

* Horizontal asymptotes

* Infinite limits at infinity

When you are sketching the graph of a function, either by hand or with a graph-
ing utility, remember that normally you cannot show the entire graph. The decision as

to which part of the graph you choose to show is often crucial. For instance, which of
the viewing windows in Figure 3.44 better represents the graph of

fx) = x3 — 25x2 + T4x — 20?

By seeing both views, it is clear that the second viewing window gives a more
complete representation of the graph. But would a third viewing window reveal other
interesting portions of the graph? To answer this, you need to use calculus to interpret
the first and second derivatives. Here are some guidelines for determining a good
viewing window for the graph of a function.

GUIDELINES FOR ANALYZING THE GRAPH OF A FUNCTION

1. Determine the domain and range of the function.
2. Determine the intercepts, asymptotes, and symmetry of the graph.

3. Locate the x-values for which f”(x) and f”(x) either are zero or do not exist. Use
the results to determine relative extrema and points of inflection.

In these guidelines, note the importance of algebra (as well as calculus) for solving
the equations f(x) = 0, f(x) = 0, and f"(x) = 0. [ |
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210 Chapter 3  Applications of Differentiation

EXAMPLE [l Sketching the Graph of a Rational Function

2(x* -9
Analyze and sketch the graph of f(x) = 5;7_4)
Solution
2(x*=9) . Loy 20x
f="5= First derivative:  f/(x) = @—a
y . —20(3x% + 4
5 3 Second derivative:  ["(x) = 2(#3)
-z |l l=¢ (@ —4)
geaf T ]2 .
£ g |'|1 559 x-intercepts: (—3,0), (3,0)
> g R -intercept:  (0,3)
'\ T | Relative Y pL 02
Horizontal ! ' minimum Vertical asymptotes: x = —2,x =2
asymptote: ‘ Horizontal asymptote: y = 2
Critical number: x =0
Possible points of inflection: None
Domain:  All real numbers except x = £2

Symmetry:  With respect to y-axis
Using calculus, you can be certain that you Test intervals: (—oo, —2), (=2, 0), (0, 2), (2, o0)
have determined all characteristics of the
graph of f.

Figure 3.45

The table shows how the test intervals are used to determine several characteristics of
the graph. The graph of fis shown in Figure 3.45.

Characteristic of Graph

f&) | ) | f)

—co<x < =2 - Decreasing, concave downward

FOR FURTHER INFORMATION For
more information on the use of technology x= - Undef. | Undef. | Undef.
to graph rational functions, see the article
“Graphs of Rational Functions for

Vertical asymptote

—2<x<0 - + Decreasing, concave upward

Computer Assisted Calculus” by Stan x=0 % 0 + Relative minimum
Byrd and Terry Walters in The College
Mathematics Journal. To view this article, 0<x<?2 + + Increasing, concave upward
o to the website www.matharticles.com. .
£ e x=2 Undef. | Undef. | Undef. Vertical asymptote
2 <x < oo + - Increasing, concave downward

Be sure you understand all of the implications of creating a table such as that
shown in Example 1. By using calculus, you can be sure that the graph has no relative
12 extrema or points of inflection other than those shown in Figure 3.45.

U NN SARITVEED Without using the type of analysis outlined in Example 1,
it is easy to obtain an incomplete view of a graph’s basic characteristics. For
instance, Figure 3.46 shows a view of the graph of

-6 6
\ ( o) = 2(x2 — 9)(x — 20)

= (@ — 4)x —21)°

From this view, it appears that the graph of g is about the same as the graph of
f shown in Figure 3.45. The graphs of these two functions, however, differ
significantly. Try enlarging the viewing window to see the differences.

By not using calculus you may overlook
important characteristics of the graph of g.
Figure 3.46
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EXAMPLE [EJ Sketching the Graph of a Rational Function

Analyze and sketch the graph of f(x) = xz;fo;-él
Solution
First derivative:  f'(x) = )(C)(Cx__;)?
Second derivative:  f’(x) = 8
(x —2)
x-intercepts: None
y-intercept: (0, —2)
Vertical asymptote: x = 2
Horizontal asymptotes: None
End behavior: xl}r_noo fx) = —oo, Yli)rg3 flx) = o0

Critical numbers: x=0,x=4
Possible points of inflection: None
Domain:  All real numbers except x = 2
Test intervals: (—o0, 0), (0, 2), (2, 4), (4, o0)

The analysis of the graph of f is shown in the table, and the graph is shown in
Figure 3.47.

f&) fx) | /&) Characteristic of Graph
—o<x<0 + - Increasing, concave downward
x=0 -2 0 - Relative maximum
0<x<?2 - - Decreasing, concave downward
x=2 Undef. | Undef. | Undef. Vertical asymptote
2<x<4 - + Decreasing, concave upward
x=4 6 0 + Relative minimum
4<x<oo + + Increasing, concave upward

Although the graph of the function in Example 2 has no horizontal asymptote, it
does have a slant asymptote. The graph of a rational function (having no common
factors and whose denominator is of degree 1 or greater) has a slant asymptote if the
degree of the numerator exceeds the degree of the denominator by exactly 1. To find
the slant asymptote, use long division to rewrite the rational function as the sum of a
first-degree polynomial and another rational function.

X2 —2x+4

f =2

Write original equation.

=x+

Rewrite using long division.

x—2

In Figure 3.48, note that the graph of f approaches the slant asymptote y = x as x
approaches — oo or oo.
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212 Chapter 3  Applications of Differentiation

Horizontal
asymptote:
y =
,,,,,,,,,,,, 1<%,,,,,,,,,,,,
foy=—=
VxZ+2
} } } } } } X
-3 -2 -1 0,00 2 3
Point of
inflection
,,,,,,,,,,, 14—
Horizontal
asymptote:
y=-1
Figure 3.49
y Relative flx) = 27 — 543
maximum
00, % % -[ x
4 8 12 (%, 0)
(1,-3)
Point of
inflection
+—-12
+-16
(8,-16)
Relative minimum
Figure 3.50

EXAMPLE [EJ Sketching the Graph of a Radical Function

X
Analyze and sketch the graph of f(x) = ———.
y graph of f(x) =3
Solution
2 6x

flx) = [ ) = N

The graph has only one intercept, (0, 0). It has no vertical asymptotes, but it has two
horizontal asymptotes: y = 1 (to the right) and y = —1 (to the left). The function has
no critical numbers and one possible point of inflection (at x = 0). The domain of the
function is all real numbers, and the graph is symmetric with respect to the origin. The
analysis of the graph of fis shown in the table, and the graph is shown in Figure 3.49.

f&) | &) | )

+ Increasing, concave upward

Characteristic of Graph

0 Point of inflection

+ 15~ +

0<x<oo

- Increasing, concave downward

EXAMPLE n Sketching the Graph of a Radical Function

Analyze and sketch the graph of f(x) = 2x%/3 — 5x*/3.
Solution

20(x1/3 — 1)

) = AR - ) ) = R

The function has two intercepts: (0, 0) and (%, 0). There are no horizontal or verti-
cal asymptotes. The function has two critical numbers (x = 0 and x = 8) and two
possible points of inflection (x = 0 and x = 1). The domain is all real numbers. The
analysis of the graph of fis shown in the table, and the graph is shown in Figure 3.50.

fx) f(x) f(x) Characteristic of Graph
—oo<x<0 + - Increasing, concave downward
x=0 0 0 Undef. Relative maximum
0<x<1 - - Decreasing, concave downward
x=1 -3 - 0 Point of inflection
l<x<8 - + Decreasing, concave upward
x =38 —16 0 + Relative minimum
8 <x< oo + + Increasing, concave upward

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



y fx) =x%— 123 + 48x% — 64x
0,0)

.0)
Point of
inflection
-157 (2.-16)
Point of
inflection

-25 —+

L (1,-27)
Relative minimum

=30

Generated by Maple
(b)
A polynomial function of even degree must
have at least one relative extremum.
Figure 3.51

3.6 A Summary of Curve Sketching

O EXAMPLE E Sketching the Graph of a Polynomial Function

Analyze and sketch the graph of f(x) = x* — 12x3 + 48x? — 64x.

Solution Begin by factoring to obtain

flx) =
= x(x — 4)3.

Then, using the factored form of f(x), you can perform the following analysis.

First derivative:

Second derivative:

x-intercepts:

y-intercept:

Vertical asymptotes:

Horizontal asymptotes:

End behavior:

Critical numbers:
Possible points of inflection:

Domain:

Test intervals:

x4 — 12x3 + 48x% — 64x

) = 4x = Dx — 4)?
) = 12(x — 4)(x — 2)
(0,0), (4,0)
(0,0)
None
None

lim f(x) = oo,
;H;O(lj, x=4
x=2,x=4
All real numbers
(—o0, 1),(1,2),(2,4), (4, 0)

ILHSO flx) = o0

213

The analysis of the graph of fis shown in the table, and the graph is shown in Figure
3.51(a). Using a computer algebra system such as Maple [see Figure 3.51(b)] can help

you verify your analysis.

fx) fx) | f&) Characteristic of Graph
—o<x <1 - + Decreasing, concave upward
x=1 -27 0 + Relative minimum
l<x<?2 + + Increasing, concave upward
x=2 —16 + 0 Point of inflection
2<x<4 + - Increasing, concave downward
x=4 0 0 Point of inflection
4 < x < o0 + + Increasing, concave upward

The fourth-degree polynomial function in Example 5 has one relative minimum
and no relative maxima. In general, a polynomial function of degree n can have at
most n — 1 relative extrema, and at most n — 2 points of inflection. Moreover,

polynomial functions of even degree must have at least one relative extremum.

Remember from the Leading Coefficient Test described in Section P.3 that the
“end behavior” of the graph of a polynomial function is determined by its leading
coefficient and its degree. For instance, because the polynomial in Example 5 has a
positive leading coefficient, the graph rises to the right. Moreover, because the degree
is even, the graph also rises to the left.
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Rl

S

I &
I I
= y =
) 3
g 8
o T (=¥
g g
> )
@n 1 12
[+ <
g \on 8
i1 =
5] [}
> >

Point of
inflection

f(x) — COS X

1+ sinx

(a)

Generated by Maple

(b)
Figure 3.52

EXAMPLE ﬂ Sketching the Graph of a Trigonometric Function

Analyze and sketch the graph of f(x) = %.

Solution Because the function has a period of 277, you can restrict the analysis of the
graph to any interval of length 2. For convenience, choose (— /2, 37/2).

1
First derivative: x) = —7——7—
irst derivative:  f/(x) 1T snx
Second derivative:  f(x) = %
Period: 2
. T
x-intercept: (2, 0)
y-intercept: (0, 1)
. T 37
Vertical asymptotes: x = 5 x = 5 See Note below.

Horizontal asymptotes: None

Critical numbers: None

Possible points of inflection: x = g
3+ 4
Domain:  All real numbers except x = 2 o

Test intervals: (—W 77) (W ﬁ)
' 2°2)°\27 2
The analysis of the graph of fon the interval (— /2, 37/2) is shown in the table, and
the graph is shown in Figure 3.52(a). Compare this with the graph generated by the
computer algebra system Maple in Figure 3.52(b).

f&x) f(x) f(x) Characteristic of Graph

x = —g Undef. | Undef. | Undef. Vertical asymptote

T T .
Ty <X<y - + Decreasing, concave upward

T 1 . . .
x=5 0 —3 0 Point of inflection
3 .

) <x < > — — Decreasing, concave downward

x = 3777 Undef. | Undef. | Undef. Vertical asymptote

LI By substituting — /2 or 37/2 into the function, you obtain the form 0/0. This
is called an indeterminate form, which you will study in Section 8.7. To determine that the
function has vertical asymptotes at these two values, you can rewrite the function as follows.

oS x (cos x)(1 — sin x) (cosx)(1 —sinx) 1 —sinx
flx) = — = . — = 5 =
1 +sinx (1 + sinx)(1 — sinx) cos? x oS X
In this form, it is clear that the graph of f has vertical asymptotes at x = — /2 and 37/2.
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@ EXE I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, match the graph of f in the left column with _ .8 _ 32
that of its derivative in the right column. 1. glx) = X2 12. f() = x + x?
2 3
Graph of f Graph of [’ 3. fl =21 14. f(x) = >
X x>—=9
L \ @ } 2 — 6x + 12 2% — 5x + 5
x> —6x + 1 x> — S5x +
zA* 15. - _x—74 16- y - _x—iz
1 17. y =xJV4 — x 18. g(x) = x/9 — x
—— ———>x 19. h(x) = x4 — x* 20. g(x) = xv/9 — x?
-3 -2 -1 123
T 21, y = 3x?3 — 2x 22,y =30 — 13— (x — 1)
N 23 y=x -3 +3 4. y= 1~ 3x+2)
) 25. y=2—x—x° 26. f(x) =(x — 13 +2
2. y (b) y 27. y = 3x* + 4x3 28, y = 3x* — 622 + 3
+ 6+ 29, y = x> — 5x 30 y=(x — 1)
T \4* 3.y = |2x — 3| 32,y = |x* — 6x + 3|
-+ P N @D In Exercises 33-36, use a computer algebra system to analyze
1+ 6-4-2 | 4.6 and graph the function. Identify any relative extrema, points of
— FT—— x 44 inflection, and asymptotes.
3-2-1 | 1 2 3 6
20x 1 4
33. flx) = - = M. fx) =x+ 5
3. y © y X+1 x X+ 1
34 T 35. flx) = . 36. f(x) = =
, L T VxE+T VX2 + 15
y o T In Exercises 37-46, sketch a graph of the function over the
SN\, L I DR given interval. Use a graphing utility to verify your graph.
ol 2T 37. f(x) = 2x — 4sinx, 0 <x <27
-3+ -4+ 38. f(x) = —x + 2cosx, 0<x <27
39.y=sinx—f§sin3x, <x <2mw
4. v (d) v 1
40. y = cos x — 7 cos 2x, <x < 2w
3+ 3+
21 21 41. y = 2x — tanx, —E<x<E
il il 2 2
——t e ——t > x 42, y=2(x —2) +cotx, 0 <x<m
3-2-1/] 1 2 3 3-2-1 | 1 23 -
1 43. y = 2(cscx + secx), 0 <x < 7
BT T X X
4. y= secz(?> - 2tan<?) -1, -3<x<3
In Exercises 5-32, analyze and sketch a graph of the function. 45. g(x) = xtanx 37 cx< 3w
Label any intercepts, relative extrema, points of inflection, and - 8 ’ 2 2
asymptotes. Use a graphing utility to verify your results. 46. g(x) = xcotx, —2m<x <2m
1
S.y=——5-3 6.y=x2)j_1 WRITING ABOUT CONCEPTS
) ) 47. Suppose f/(t) < 0 for all ¢ in the interval (2, 8). Explain why
7 =% g y=* + 1 3) (5)
YT 2+ YT ey JB3) > 1)
A —3 48. Suppose f(0) = 3and2 < f/(x) < 4 for all x in the interval
9.y=> 1 10. f(x) = [—5, 5]. Determine the greatest and least possible values of
2=
f(2).
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216 Chapter 3  Applications of Differentiation

WRITING ABOUT CONCEPTS (continued)

In Exercises 49 and 50, the graphs of f, f’, and f” are shown
on the same set of coordinate axes. Which is which? Explain
your reasoning. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

49. y 50. y
\* /
| %\ /% > x
4 2 M
4

In Exercises 51-54, use a graphing utility to graph the
function. Use the graph to determine whether it is possible
for the graph of a function to cross its horizontal asymptote.
Do you think it is possible for the graph of a function to cross
its vertical asymptote? Why or why not?

o Ax—1)?  3x*—5x+3
5L f() = X2 —4x+5 52. g(x) = x*+ 1
sin 2x cos 3x
53. hlx) = = 54. fl0) ==

In Exercises 55 and 56, use a graphing utility to graph the
function. Explain why there is no vertical asymptote when a
superficial examination of the function may indicate that
there should be one.

6 — 2x
3 —x

X+x—2

55. h(x) = "

56. glx) =

In Exercises 57-60, use a graphing utility to graph the
function and determine the slant asymptote of the graph.
Zoom out repeatedly and describe how the graph on the
display appears to change. Why does this occur?

X2 —=3x—-1 2x2 — 8 — 15
57. flx) = — —> 58. g(x) = P

2x3 —x*+x2+ 4
59. f(x) = 21 60. h(x) = —

Graphical Reasoning 1In Exercises 61-64, use the graph of f” to
sketch a graph of f and the graph of f”. To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

61. y 62. y

4 20 ,
3T r 16 f
zAk
1+ 12

T N = I I 8

-4-3 41 3 4 4
1 — A x

-8 -4 A» 4 8\ 12 16

63. y 64. y
34 34 P
24 , 02+
1+ f 1+
A»x 1>
-9 -6 /3 6 3-2-1/ 1 23
_2Ak —+
-3+ 3+

(Submitted by Bill Fox, Moberly Area
Moberly, MO)

Community College,

@D 65. Graphical Reasoning Consider the function

_ cos? mx
7o) = S

(a) Use a computer algebra system to graph the function and
use the graph to approximate the critical numbers visually.

0<x<4.

(b) Use a computer algebra system to find f” and approximate
the critical numbers. Are the results the same as the visual
approximation in part (a)? Explain.

'dF" 66. Graphical Reasoning Consider the function
f(x) = tan(sin 7).

(a) Use a graphing utility to graph the function.

(b) Identify any symmetry of the graph.

(c) Is the function periodic? If so, what is the period?
(d) Identify any extrema on (—1, 1).

(e) Use a graphing utility to determine the concavity of the
graph on (0, 1).

Think About It In Exercises 67-70, create a function whose
graph has the given characteristics. (There is more than one
correct answer.)
67. Vertical asymptote: x = 3

Horizontal asymptote: y = 0
68. Vertical asymptote: x = —5

Horizontal asymptote: None

69. Vertical asymptote: x = 3
Slant asymptote: y = 3x + 2

70. Vertical asymptote: x = 2
Slant asymptote: y = —x

71. Graphical Reasoning The graph of fis shown in the figure on

the next page.

(a) For which values of x is f(x) zero? Positive? Negative?
(b) For which values of x is f”(x) zero? Positive? Negative?
(c) On what interval is f” an increasing function?

(d) For which value of x is f/(x) minimum? For this value of x,
how does the rate of change of f compare with the rates of
change of f for other values of x? Explain.
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Figure for 71 Figure for 72

CAPSTONE

72. Graphical Reasoning ldentify the real numbers
Xg» Xy, X5, X5, and x, in the figure such that each of the
following is true.

(@) f(x) =0 ®) fx) =0
(c) f/(x) does not exist. (d) f has a relative maximum.

(e) fhas a point of inflection.

73. Graphical Reasoning Consider the function
ax
f(x) - (x _ b)2
Determine the effect on the graph of fas a and b are changed.

Consider cases where a and b are both positive or both negative,
and cases where a and b have opposite signs.

74. Consider the function f(x) = %(a)c)2 —ax,a # 0.

(a) Determine the changes (if any) in the intercepts, extrema,
and concavity of the graph of f when « is varied.

'dF" (b) Inthe same viewing window, use a graphing utility to graph
the function for four different values of a.

75. Investigation Consider the function

for nonnegative integer values of .

(a) Discuss the relationship between the value of n and the
symmetry of the graph.

(b) For which values of n will the x-axis be the horizontal
asymptote?

(c) For which value of n will y =2 be the horizontal
asymptote?

(d) What is the asymptote of the graph when n = 5?

(e) Use a graphing utility to graph f for the indicated values of
n in the table. Use the graph to determine the number of

extrema M and the number of inflection points N of the
graph.

n [0 123 45
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76. Investigation Let P(x,, y,) be an arbitrary point on the graph
of f such that f’(x,) # 0, as shown in the figure. Verify each

statement.
(a) The x-intercept of the tangent ¥y
line is (x(, _ ) 0).
f'(xo)
. P(xy y,)
(b) The y-intercept of the tangent ! G
line is (0, f(xy) — xo f"(xp))- L1 x

O‘AB Cc
|

(c) The x-intercept of the normal
line is (x, + f(xy) f(x,), 0).

(d) The y-intercept of the normal line is <O, yo + o )

f/(xo)
(o) |Bc] = ;fé)o)) 0 |PC| = ‘f (o) }/&ng/(xo)]2|

(2) |AB| = |f(x0)f/(xo)|
(h) [AP| = [fxo)| V1 + [f(x)

ldF" 77. Modeling Data The data in the table show the number N of
bacteria in a culture at time ¢, where ¢ is measured in days.

t 1 2 3 4 5 6 7 8

N | 25 | 200 | 804 | 1756 | 2296 | 2434 | 2467 | 2473

A model for these data is given by

_ 24,670 — 35,1531 + 13,2501

N 100 — 391 + 712 ’

1 <r<8.

(a) Use a graphing utility to plot the data and graph the model.

(b) Use the model to estimate the number of bacteria when
t = 10.

(c) Approximate the day when the number of bacteria is
greatest.

@X (d) Use a computer algebra system to determine the time when
the rate of increase in the number of bacteria is greatest.
(e) Find lim N(z).
1—oo
Slant Asymptotes In Exercises 78 and 79, the graph of the

function has two slant asymptotes. Identify each slant asymptote.
Then graph the function and its asymptotes.

78. y = V4 + 16x? 79. y = J/x* + 6x
PUTNAM EXAM CHALLENGE

80. Let f(x) be defined for a < x < b. Assuming appropriate
properties of continuity and derivability, prove for
a < x < bthat

f&) —fla)  fb) - fla)
X —a b—a 1

P—_— =5f "(B)

where 3 is some number between a and b.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



218 Chapter 3  Applications of Differentiation

WM Optimization Problems

Open box with square base:
S =x>+ 4xh = 108
Figure 3.53

LAH LTINS You can verify your

answer in Example 1 by using a
graphing utility to graph the volume
function
3
X
V=2Ix ——.
Tx 1
Use a viewing window in which
0=x= /108 = 10.4 and
0 <y = 120, and use the trace
feature to determine the maximum
value of V.

m Solve applied minimum and maximum problems.

Applied Minimum and Maximum Problems

One of the most common applications of calculus involves the determination of
minimum and maximum values. Consider how frequently you hear or read terms such
as greatest profit, least cost, least time, greatest voltage, optimum size, least size,
greatest strength, and greatest distance. Before outlining a general problem-solving
strategy for such problems, let’s look at an example.

EXAMPLE [}l Finding Maximum Volume

A manufacturer wants to design an open box having a square base and a surface area
of 108 square inches, as shown in Figure 3.53. What dimensions will produce a box
with maximum volume?

Solution Because the box has a square base, its volume is
V = x2h. Primary equation

This equation is called the primary equation because it gives a formula for the
quantity to be optimized. The surface area of the box is

S = (area of base) + (area of four sides)

S = x% + 4xh = 108. Secondary equation
Because V is to be maximized, you want to write V as a function of just one variable.

To do this, you can solve the equation x> + 4xi = 108 for 4 in terms of x to obtain
h = (108 — x?)/(4x). Substituting into the primary equation produces

V =x%h Function of two variables
L[ 108 — »2 ,
=X 47 Substitute for A.
X
x3
= 2Tx — Z Function of one variable

Before finding which x-value will yield a maximum value of V, you should determine
the feasible domain. That is, what values of x make sense in this problem? You know
that V = 0. You also know that x must be nonnegative and that the area of the base
(A = x?) is at most 108. So, the feasible domain is

0<x< J/108. Feasible domain

To maximize V, find the critical numbers of the volume function on the interval

(0, +/108).

av 3% 0 Set derivati 1to 0
- = - = et derivative equal to 0.
dx 4 d
3x% = 108 Simplify.
x ==6 Critical numbers
So, the critical numbers are x = £6. You do not need to consider x = — 6 because it is

outside the domain. Evaluating V at the critical number x = 6 and at the endpoints of
the domain produces V(0) = 0, V(6) = 108, and V(\/ 108) = 0. So, V is maximum
when x = 6 and the dimensions of the box are 6 x 6 x 3 inches. [ |
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When performing Step 5, recall
that to determine the maximum or
minimum value of a continuous function
Sfon a closed interval, you should
compare the values of f at its critical
numbers with the values of fat the
endpoints of the interval.
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In Example 1, you should realize that there are infinitely many open boxes
having 108 square inches of surface area. To begin solving the problem, you might ask
yourself which basic shape would seem to yield a maximum volume. Should the box

be tall, squat, or nearly cubical?

You might even try calculating a few volumes, as shown in Figure 3.54, to see if
you can get a better feeling for what the optimum dimensions should be. Remember
that you are not ready to begin solving a problem until you have clearly identified

what the problem is.

Volume =741 Volume =92 Volume = 1033

3
5><5><4%

3
4><4><51

1
3><3><81

Volume = 108 Volume = 88

6x6x3 8x8x 13

Which box has the greatest volume?
Figure 3.54

Example 1 illustrates the following guidelines for solving applied minimum and

maximum problems.

GUIDELINES FOR SOLVING APPLIED MINIMUM AND MAXIMUM
PROBLEMS

1.

Identify all given quantities and all quantities fo be determined. If possible,
make a sketch.

Write a primary equation for the quantity that is to be maximized or
minimized. (A review of several useful formulas from geometry is presented
inside the back cover.)

. Reduce the primary equation to one having a single independent variable.

This may involve the use of secondary equations relating the independent
variables of the primary equation.

Determine the feasible domain of the primary equation. That is, determine
the values for which the stated problem makes sense.

Determine the desired maximum or minimum value by the calculus
techniques discussed in Sections 3.1 through 3.4.
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”
</

I U
The quantity to be minimized is distance:
d=J(x—02+ (y — 22

Figure 3.55

1in. 1in.

1.
lim.

The quantity to be minimized is area:
A=(x+3)(y+2).
Figure 3.56

EXAMPLE |3 Finding Minimum Distance

Which points on the graph of y = 4 — x? are closest to the point (0, 2)?

Solution  Figure 3.55 shows that there are two points at a minimum distance from the
point (0, 2). The distance between the point (0, 2) and a point (x, y) on the graph of
y = 4 — x?is given by

d=J(x -0+ (y — 2> Primary equation

Using the secondary equation y = 4 — x2, you can rewrite the primary equation as

d= x>+ (4 —x2=2)2= /x* =32+ 4

Because d is smallest when the expression inside the radical is smallest, you need only
find the critical numbers of f(x) = x* — 3x> + 4. Note that the domain of f is the
entire real line. So, there are no endpoints of the domain to consider. Moreover,
setting f”(x) equal to O yields

F/(x) = 4¢3 — 6x = 26(2x2> — 3) =

0
- \ﬁ _\ﬁ
X s > 5

The First Derivative Test verifies that x = 0 yields a relative maximum, whereas both
x = 3/2 and x = —/3/2 yield a minimum distance. So, the closest points are
(V/372.5/2) and (— /3/2,5/2).

EXAMPLE [E} Finding Minimum Area

A rectangular page is to contain 24 square inches of print. The margins at the top and
bottom of the page are to be 1% inches, and the margins on the left and right are to be
1 inch (see Figure 3.56). What should the dimensions of the page be so that the least
amount of paper is used?

Solution Let A be the area to be minimized.

A=(x+3)(y+2) Primary equation
The printed area inside the margins is given by

24 = xy. Secondary equation

Solving this equation for y produces y = 24/x. Substitution into the primary equation
produces

24 72
A=(x+ 3)( + 2) =30+ 2x + —. Function of one variable
X X
Because x must be positive, you are interested only in values of A for x > 0. To find
the critical numbers, differentiate with respect to x.

A 2
i=2—77=0 > x2=36
dx X

So, the critical numbers are x = +6. You do not have to consider x = —6 because it
is outside the domain. The First Derivative Test confirms that A is a minimum when
x=6. So, y= %4 =4 and the dimensions of the page should be x + 3 =9

inches by y + 2 = 6 inches. L
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The quantity to be minimized is length.
From the diagram, you can see that x varies
between 0 and 30.

Figure 3.57

0

60

9, 50)

=130

45

You can confirm the minimum value of W

with a graphing utility.

Figure 3.58

3.7 Optimization Problems 221

EXAMPLE [EJ Finding Minimum Length

Two posts, one 12 feet high and the other 28 feet high, stand 30 feet apart. They are
to be stayed by two wires, attached to a single stake, running from ground level to the
top of each post. Where should the stake be placed to use the least amount of wire?

Solution Let W be the wire length to be minimized. Using Figure 3.57, you can write
W=y+z Primary equation

In this problem, rather than solving for y in terms of z (or vice versa), you can solve
for both y and z in terms of a third variable x, as shown in Figure 3.57. From the
Pythagorean Theorem, you obtain

X2+ 122 = y?
(30 — x)2 4+ 282 =22
which implies that

y = Vx> + 144
7= Jx2 — 60x + 1684,

So, W is given by
W=y+z
= J/x2 + 144 + /x* — 60x + 1684, 0 < x < 30.

Differentiating W with respect to x yields
dw X x — 30
— = + .
dx  /x2 + 144 x> — 60x + 1684
By letting dW/dx = 0, you obtain

X n x — 30
VP + 144 /X7 — 60x + 1684
xV/x% — 60x + 1684 = (30 — x) /a2 + 144
x3(x2 — 60x + 1684) = (30 — x)2(x2 + 144)
x4 — 60x3 + 1684x2 = x* — 60x3 + 1044x2 — 8640x + 129,600
640x2 + 8640x — 129,600 = 0
320(x — 9)(2x + 45) = 0
x =9, —=225.

Because x = —22.5 is not in the domain and
W(0) = 53.04, W(9) =50, and W(30) = 60.31

you can conclude that the wire should be staked at 9 feet from the 12-foot pole.

From Example 4, you can see that applied optimization problems
can involve a lot of algebra. If you have access to a graphing utility, you can
confirm that x = 9 yields a minimum value of W by graphing

W= x>+ 144 + /x> — 60x + 1684

as shown in Figure 3.58.
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X Area: x?

y
¥

(

Perimeter: 4x

(G

r
Coooo

2

Area: r

Circumference: 27r
The quantity to be maximized is area:
A=x+ w2
Figure 3.59

EXPLORATION

What would the answer be if
Example 5 asked for the dimen-
sions needed to enclose the
minimum total area?

In each of the first four examples, the extreme value occurred at a critical
number. Although this happens often, remember that an extreme value can also occur
at an endpoint of an interval, as shown in Example 5.

EXAMPLE B}l An Endpoint Maximum

Four feet of wire is to be used to form a square and a circle. How much of the wire
should be used for the square and how much should be used for the circle to enclose
the maximum total area?

Solution The total area (see Figure 3.59) is given by

A = (area of square) + (area of circle)

A=x*+ 7ri Primary equation
Because the total length of wire is 4 feet, you obtain

4 = (perimeter of square) + (circumference of circle)
4 =4dx + 27rr.

So, r = 2(1 — x)/r, and by substituting into the primary equation you have

4(1 — x)?

=x2+
1
= 77_[(77 + 4)x2 — 8x + 4].

The feasible domain is 0 < x < 1 restricted by the square’s perimeter. Because
dA _ 20m+4)x — 8
dx T

the only critical number in (0, 1) is x = 4/(7 + 4) = 0.56. So, using
A(0) = 1.273, A(0.56) = 0.56, and A(l) =1

you can conclude that the maximum area occurs when x = 0. That is, all the wire is
used for the circle. [ |

Let’s review the primary equations developed in the first five examples. As
applications go, these five examples are fairly simple, and yet the resulting primary
equations are quite complicated.

V=27x—xz W= J/x2+ 144 + /22 — 60x + 1684
d= Jx*—3x2+4 A=i77[(7r+4)x2—8x+4:|

A=30+2x+7)72

You must expect that real-life applications often involve equations that are at least as
complicated as these five. Remember that one of the main goals of this course is to
learn to use calculus to analyze equations that initially seem formidable.
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37 EXE I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

IdP' 1. Numerical, Graphical, and Analytic Analysis Find two

positive numbers whose sum is 110 and whose product is a
maximum.

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.)

First Second
Number x Number Product P
10 110 — 10 10(110 — 10) = 1000
20 110 — 20 | 20(110 — 20) = 1800

(b) Use a graphing utility to generate additional rows of the
table. Use the table to estimate the solution. (Hinz: Use the
table feature of the graphing utility.)

(c) Write the product P as a function of x.
(d) Use a graphing utility to graph the function in part (c) and
estimate the solution from the graph.

(e) Use calculus to find the critical number of the function in
part (c). Then find the two numbers.

2. Numerical, Graphical, and Analytic Analysis An open box
of maximum volume is to be made from a square piece of
material, 24 inches on a side, by cutting equal squares from the
corners and turning up the sides (see figure).

] pm— B
g :
- :
x—i' """"""" 1I_
e 24 - 2x e

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.) Use the table to guess
the maximum volume.

Length and
Height x Width Volume V
1 24 — 2(1) 124 — 2(1)]> = 484
2 24 —2(2) 2[24 — 2(2)]> = 800

(b) Write the volume V as a function of x.
(¢c) Use calculus to find the critical number of the function in
part (b) and find the maximum value.
B (d) Use a graphing utility to graph the function in part (b) and
verify the maximum volume from the graph.

In Exercises 3-8, find two positive numbers that satisfy the
given requirements.

3. The sum is S and the product is a maximum.

4. The product is 185 and the sum is a minimum.

5. The product is 147 and the sum of the first number plus three
times the second number is a minimum.

6. The second number is the reciprocal of the first number and the
sum is a minimum.

7. The sum of the first number and twice the second number is
108 and the product is a maximum.

8. The sum of the first number squared and the second number is
54 and the product is a maximum.

In Exercises 9 and 10, find the length and width of a rectangle
that has the given perimeter and a maximum area.

9. Perimeter: 80 meters 10. Perimeter: P units

In Exercises 11 and 12, find the length and width of a rectangle
that has the given area and a minimum perimeter.

11. Area: 32 square feet 12. Area: A square centimeters

In Exercises 13-16, find the point on the graph of the function
that is closest to the given point.

Function Point Function Point
13. f(x) = (2.1) 4. f(x) = (x — 1) (=5,3)
15. f(x) = Vx (4,0 16. f(x) = Vx—8 (12,0)

17. Area A rectangular page is to contain 30 square inches of
print. The margins on each side are 1 inch. Find the dimensions
of the page such that the least amount of paper is used.

18. Area A rectangular page is to contain 36 square inches of
print. The margins on each side are 1% inches. Find the dimen-
sions of the page such that the least amount of paper is used.

19. Chemical Reaction In an autocatalytic chemical reaction, the
product formed is a catalyst for the reaction. If Q, is the amount
of the original substance and x is the amount of catalyst formed,
the rate of chemical reaction is

dQ

e kx(Qy — x).

For what value of x will the rate of chemical reaction be
greatest?

20. Traffic Control On a given day, the flow rate F (cars per
hour) on a congested roadway is

v

=00

where v is the speed of the traffic in miles per hour. What speed
will maximize the flow rate on the road?
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21. Area A farmer plans to fence a rectangular pasture adjacent
to a river (see figure). The pasture must contain 245,000 square
meters in order to provide enough grass for the herd. What
dimensions will require the least amount of fencing if no
fencing is needed along the river?

; L

22. Maximum Area A rancher has 400 feet of fencing with
which to enclose two adjacent rectangular corrals (see figure).
What dimensions should be used so that the enclosed area will
be a maximum?

23. Maximum Volume

(a) Verify that each of the rectangular solids shown in the
figure has a surface area of 150 square inches.

(b) Find the volume of each solid.

(c) Determine the dimensions of a rectangular solid (with a
square base) of maximum volume if its surface area is
150 square inches.

3 3

—
= /5/ 5—)

/I\é\'

P

I}
3.25
'

|— N ——

24. Maximum Volume Determine the dimensions of a rectangular
solid (with a square base) with maximum volume if its surface
area is 337.5 square centimeters.

25. Maximum Area A Norman window is constructed by
adjoining a semicircle to the top of an ordinary rectangular
window (see figure). Find the dimensions of a Norman window
of maximum area if the total perimeter is 16 feet.

Figure for 25

26. Maximum Area A rectangle is bounded by the x- and y-axes
and the graph of y = (6 — x)/2 (see figure). What length and
width should the rectangle have so that its area is a maximum?

y y

5+ 4

4+ _ 0, )
. y= 6 5 % 3 3

(1,2)
2 (x, y) 2
1+ L
1 (x, 0)
|1 23 4 5 6 } N —x

-1 1 2 3 4
Figure for 26 Figure for 27

27. Minimum Length A right triangle is formed in the first
quadrant by the x- and y-axes and a line through the point (1, 2)
(see figure).

(a) Write the length L of the hypotenuse as a function of x.

PP' (b) Use a graphing utility to approximate x graphically such
that the length of the hypotenuse is a minimum.

(c) Find the vertices of the triangle such that its area is a
minimum.

28. Maximum Area Find the area of the largest isosceles triangle
that can be inscribed in a circle of radius 6 (see figure).

(a) Solve by writing the area as a function of /.
(b) Solve by writing the area as a function of a.

(c) Identify the type of triangle of maximum area.
b y=v25- x2

(x,y)

Figure for 28

Figure for 29

29. Maximum Area A rectangle is bounded by the x-axis and the
semicircle y = /25 — x? (see figure). What length and width
should the rectangle have so that its area is a maximum?

30. Area Find the dimensions of the largest rectangle that can be
inscribed in a semicircle of radius r (see Exercise 29).
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31.

Numerical, Graphical, and Analytic Analysis An exercise
room consists of a rectangle with a semicircle on each end. A
200-meter running track runs around the outside of the room.

(a) Draw a figure to represent the problem. Let x and y repre-
sent the length and width of the rectangle.

(b) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.) Use the table to
guess the maximum area of the rectangular region.

Length x Width y Area xy
2 2
10 =(100 — 10) | (10)=(100 — 10) = 573
T a
2 2
20 7—T(100 —20) (20);(100 —20) = 1019

(¢c) Write the area A as a function of x.

(d) Use calculus to find the critical number of the function in
part (c) and find the maximum value.

ldP' (e) Use a graphing utility to graph the function in part (c) and

verify the maximum area from the graph.

?dP' 32. Numerical, Graphical, and Analytic Analysis A right circular

33.

cylinder is to be designed to hold 22 cubic inches of a soft
drink (approximately 12 fluid ounces).

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.)

Radius r | Height Surface Area S
22 22
0.2 . . =~ .
(027 27 (0 2)[0 2+ 77(0.2)2] 220.3
22 22
0.4 . . — | = .
(047 27 (0 4)[0 4 + 77(0.4)2] 111.0

(b) Use a graphing utility to generate additional rows of the
table. Use the table to estimate the minimum surface area.
(Hint: Use the rable feature of the graphing utility.)

(c) Write the surface area S as a function of r.

(d) Use a graphing utility to graph the function in part (c) and
estimate the minimum surface area from the graph.

(e) Use calculus to find the critical number of the function in
part (c) and find dimensions that will yield the minimum
surface area.

Maximum Volume A rectangular package to be sent by a
postal service can have a maximum combined length and girth
(perimeter of a cross section) of 108 inches (see figure). Find
the dimensions of the package of maximum volume that can be
sent. (Assume the cross section is square.)

I*»’C*I

34.

35.

36.

WRITING ABOUT CONCEPTS

37. A shampoo bottle is a right circular cylinder. Because the

3.7 Optimization Problems 225

Maximum Volume Rework Exercise 33 for a cylindrical
package. (The cross section is circular.)

Maximum Volume Find the volume of the largest right
circular cone that can be inscribed in a sphere of radius r.

|—~ —|

Maximum Volume Find the volume of the largest right
circular cylinder that can be inscribed in a sphere of radius r.

surface area of the bottle does not change when it is
squeezed, is it true that the volume remains the same? Explain.

38. The perimeter of a rectangle is 20 feet. Of all possible

dimensions, the maximum area is 25 square feet when its
length and width are both 5 feet. Are there dimensions that
yield a minimum area? Explain.

39.

40.

41.

42.

43.

Minimum Surface Area A solid is formed by adjoining two
hemispheres to the ends of a right circular cylinder. The total
volume of the solid is 14 cubic centimeters. Find the radius of
the cylinder that produces the minimum surface area.

Minimum Cost An industrial tank of the shape described in
Exercise 39 must have a volume of 4000 cubic feet. The hemi-
spherical ends cost twice as much per square foot of surface
area as the sides. Find the dimensions that will minimize cost.

Minimum Area The sum of the perimeters of an equilateral
triangle and a square is 10. Find the dimensions of the triangle
and the square that produce a minimum total area.

Maximum Area Twenty feet of wire is to be used to form two
figures. In each of the following cases, how much wire should
be used for each figure so that the total enclosed area is
maximum?

(a) Equilateral triangle and square

(b) Square and regular pentagon

(c) Regular pentagon and regular hexagon

(d) Regular hexagon and circle

What can you conclude from this pattern? {Hint: The area
of a regular polygon with n sides of length x is
A = (n/4)[cot(/n)]x>.}

Beam Strength A wooden beam has a rectangular cross
section of height & and width w (see figure on the next page).
The strength S of the beam is directly proportional to the width
and the square of the height. What are the dimensions of the
strongest beam that can be cut from a round log of diameter
20 inches? (Hint: S = kh*w, where k is the proportionality
constant.)
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44.

45.

46.

Chapter 3  Applications of Differentiation
y
N w
0. )
e |-
\\\ y
(~x, 0) (x,0)
Figure for 43 Figure for 44

Minimum Length Two factories are located at the coordi-
nates (—x, 0) and (x, 0), and their power supply is at (0, &) (see
figure). Find y such that the total length of power line from the
power supply to the factories is a minimum.

Projectile Range The range R of a projectile fired with
an initial velocity v, at an angle 6 with the horizontal is

vg sin 260 . . . .
= —, where g is the acceleration due to gravity. Find

the angle 6 such that the range is a maximum.
1

Conjecture Consider the functions f(x) =3x> and

g(x) = t=x* — 2x? on the domain [0, 4].

ldF"(a) Use a graphing utility to graph the functions on the

47.

48.

specified domain.

(b) Write the vertical distance d between the functions as a
function of x and use calculus to find the value of x for
which d is maximum.

(c) Find the equations of the tangent lines to the graphs of fand
g at the critical number found in part (b). Graph the
tangent lines. What is the relationship between the lines?

(d) Make a conjecture about the relationship between tangent
lines to the graphs of two functions at the value of x at
which the vertical distance between the functions is
greatest, and prove your conjecture.

Illumination A light source is located over the center of a
circular table of diameter 4 feet (see figure). Find the height i
of the light source such that the illumination / at the perimeter
of the table is maximum if / = k(sin «)/s? where s is the slant
height, « is the angle at which the light strikes the table, and k
is a constant.

Illumination The illumination from a light source is directly
proportional to the strength of the source and inversely
proportional to the square of the distance from the source.
Two light sources of intensities /, and I, are d units apart.
What point on the line segment joining the two sources has
the least illumination?

49.

50.

51.

52.

Minimum Time A man is in a boat 2 miles from the nearest
point on the coast. He is to go to a point Q, located 3 miles
down the coast and 1 mile inland (see figure). He can row at
2 miles per hour and walk at 4 miles per hour. Toward what
point on the coast should he row in order to reach point Q in the
least time?

NN
24 o \\/‘I
—— L,{,,\"T?’,:JC,], —
-
6, *0

Minimum Time Consider Exercise 49 if the point Q is on the
shoreline rather than 1 mile inland.

(a) Write the travel time 7 as a function of a.

(b) Use the result of part (a) to find the minimum time to
reach Q.

(c) The man can row at v, miles per hour and walk at v, miles
per hour. Write the time 7 as a function of . Show that the
critical number of 7 depends only on v, and v, and not on
the distances. Explain how this result would be more
beneficial to the man than the result of Exercise 49.

(d) Describe how to apply the result of part (c) to minimizing
the cost of constructing a power transmission cable that
costs ¢, dollars per mile under water and ¢, dollars per mile
over land.

Minimum Time The conditions are the same as in Exercise
49 except that the man can row at v, miles per hour and walk at
v, miles per hour. If 6, and 0, are the magnitudes of the angles,
show that the man will reach point Q in the least time when

sin 6,  sin 0,

Vi v,
Minimum Time When light waves traveling in a transparent
medium strike the surface of a second transparent medium, they

change direction. This change of direction is called refraction
and is defined by Snell’s Law of Refraction,

sin 0, _ sin 0,

vy Vs

where 6, and 6, are the magnitudes of the angles shown in the
figure and v, and v, are the velocities of light in the two media.
Show that this problem is equivalent to that in Exercise 51, and
that light waves traveling from P to Q follow the path of
minimum time.

P
N 1
L . Medium 1
N 1
o 6
o
X N a-x
<
[N
Medium 2 % ‘\\lez
' “0
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3.7 Optimization Problems 227

pP' 53. Sketch the graph of f(x) = 2 — 2 sin x on the interval [0, 7/2]. ldP 57. Numerical, Graphical, and Analytic Analysis The cross

54.

55.

56.

(a) Find the distance from the origin to the y-intercept and the
distance from the origin to the x-intercept.

(b) Write the distance d from the origin to a point on the graph
of fas a function of x. Use your graphing utility to graph d
and find the minimum distance.

(c) Use calculus and the zero or root feature of a graphing
utility to find the value of x that minimizes the function d
on the interval [0, 7r/2]. What is the minimum distance?

(Submitted by Tim Chapell, Penn Valley Community
College, Kansas City, MO)

Minimum Cost An offshore oil well is 2 kilometers off the
coast. The refinery is 4 kilometers down the coast. Laying pipe
in the ocean is twice as expensive as on land. What path should
the pipe follow in order to minimize the cost?

Minimum Force A component is designed to slide a block of
steel with weight W across a table and into a chute (see
figure). The motion of the block is resisted by a frictional force
proportional to its apparent weight. (Let k be the constant of
proportionality.) Find the minimum force F needed to slide the
block, and find the corresponding value of 6. (Hint: F cos 0 is
the force in the direction of motion, and F sin 6 is the amount
of force tending to lift the block. So, the apparent weight of the
block is W — F sin 6.)

-~

Maximum Volume A sector with central angle 6 is cut from a
circle of radius 12 inches (see figure), and the edges of the
sector are brought together to form a cone. Find the magnitude
of 0 such that the volume of the cone is a maximum.

— & ft —>1

Figure for 56 Figure for 57

sections of an irrigation canal are isosceles trapezoids of which
three sides are 8 feet long (see figure). Determine the angle of
elevation 0 of the sides such that the area of the cross sections
is a maximum by completing the following.

(a) Analytically complete six rows of a table such as the one
below. (The first two rows are shown.)

Base 1 Base 2 Altitude Area

8 8 + 16 cos 10° | 8sin 10° | = 22.1

8 8 + 16 cos 20° | 8sin20° | = 42.5

(b) Use a graphing utility to generate additional rows of the
table and estimate the maximum cross-sectional area.
(Hint: Use the table feature of the graphing utility.)

(c) Write the cross-sectional area A as a function of 6.

(d) Use calculus to find the critical number of the function in
part (c) and find the angle that will yield the maximum
cross-sectional area.

(e) Use a graphing utility to graph the function in part (c¢) and
verify the maximum cross-sectional area.

58. Maximum Profit Assume that the amount of money deposited
in a bank is proportional to the square of the interest rate the bank
pays on this money. Furthermore, the bank can reinvest this
money at 12%. Find the interest rate the bank should pay to
maximize profit. (Use the simple interest formula.)

ldF' 59. Minimum Cost The ordering and transportation cost C of the
components used in manufacturing a product is

200 X
C—100<?+x+30), > ]

where C is measured in thousands of dollars and x is the order
size in hundreds. Find the order size that minimizes the cost.
(Hint: Use the root feature of a graphing utility.)

60. Diminishing Returns The profit P (in thousands of dollars)
for a company spending an amount s (in thousands of dollars)
on advertising is

P = —1gs® + 652 + 400.

(a) Find the amount of money the company should spend on
advertising in order to yield a maximum profit.

(b) The point of diminishing returns is the point at which the
rate of growth of the profit function begins to decline. Find
the point of diminishing returns.

Minimum Distance In Exercises 61-63, consider a fuel distri-
bution center located at the origin of the rectangular coordinate
system (units in miles; see figures on next page). The center
supplies three factories with coordinates (4,1), (5,6), and
(10, 3). A trunk line will run from the distribution center along
the line y = mx, and feeder lines will run to the three factories.
The objective is to find m such that the lengths of the feeder
lines are minimized.
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228 Chapter 3  Applications of Differentiation

61. Minimize the sum of the squares of the lengths of the vertical
feeder lines (see figure) given by

S, = (4m — 1)2 + (5m — 6)> + (10m — 3)2.

Find the equation of the trunk line by this method and then
determine the sum of the lengths of the feeder lines.

Al 62. Minimize the sum of the absolute values of the lengths of the

vertical feeder lines (see figure) given by
S, = |4m - 1| + |5m —6| + |10m — 3|.

Find the equation of the trunk line by this method and then
determine the sum of the lengths of the feeder lines. (Hint: Use
a graphing utility to graph the function S, and approximate the
required critical number.)

y y
84 (10, 10m) g
5,6 — 5,6 =
6 ( ) y=mx 6 ( ) y=mx
4+ (5, 5m) 44
L Gam ]/ (10.3) 2t (10.3)
@.1) @.1)
} } } } } X } } } } } X
2 4 6 8 10 2 4 6 8 10

Figure for 61 and 62 Figure for 63

Pp 63. Minimize the sum of the perpendicular distances (see figure and

Exercises 87-92 in Section P.2) from the trunk line to the
factories given by

_ |4m — 1]
m? + 1

|5m — 6]
m2 + 1

|10m—3|
m2+ 1

S5

Find the equation of the trunk line by this method and then
determine the sum of the lengths of the feeder lines. (Hint: Use
a graphing utility to graph the function S, and approximate the
required critical number.)

64. Maximum Area Consider a symmetric cross inscribed in a
circle of radius r (see figure).

(a) Write the area A of the cross as a function of x and find the
value of x that maximizes the area.

(b) Write the area A of the cross as a function of 6 and find the
value of 6 that maximizes the area.

(c) Show that the critical numbers of parts (a) and (b) yield the
same maximum area. What is that area?

PUTNAM EXAM CHALLENGE

65. Find the maximum value of f(x) = x> — 3x on the set of all
real numbers x satisfying x* + 36 < 13x>. Explain your
reasoning.

66. Find the minimum value of

(x + 1/x)° — (x® 4+ 1/x%) — 2
(c+ 1/xP + (3 + 1/%%)

for x > 0.

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

SECTION PROJECT

Connecticut River

Whenever the Connecticut River reaches a level of 105 feet above
sea level, two Northampton, Massachusetts flood control station
operators begin a round-the-clock river watch. Every 2 hours, they
check the height of the river, using a scale marked off in tenths of a
foot, and record the data in a log book. In the spring of 1996, the
flood watch lasted from April 4, when the river reached 105 feet and
was rising at 0.2 foot per hour, until April 25, when the level
subsided again to 105 feet. Between those dates, their log shows that
the river rose and fell several times, at one point coming close to the
115-foot mark. If the river had reached 115 feet, the city would have
closed down Mount Tom Road (Route 5, south of Northampton).

The graph below shows the rate of change of the level of the river
during one portion of the flood watch. Use the graph to answer each
question.

R
4
3
&z 2\ A
25 1% )
S
O a
R R 3 5 9 11 b
%ﬁ_2 N
2 E 2 \\
4 \

Day (0 <> 12:01aM. April 14)

(a) On what date was the river rising most rapidly? How do you
know?

(b) On what date was the river falling most rapidly? How do
you know?

(c¢) There were two dates in a row on which the river rose, then
fell, then rose again during the course of the day. On which
days did this occur, and how do you know?

(d) At 1 minute past midnight, April 14, the river level was
111.0 feet. Estimate its height 24 hours later and 48 hours
later. Explain how you made your estimates.

(e) The river crested at 114.4 feet. On what date do you think
this occurred?

(Submitted by Mary Murphy, Smith College, Northampton,
MA)
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Newton’s Method

(e f0)

(a)

(e f0)

(b)

The x-intercept of the tangent line
approximates the zero of f.
Figure 3.60

NEWTON’S METHOD

Isaac Newton first described the method for
approximating the real zeros of a function
in his text Method of Fluxions. Although

the book was written in 1671, it was not
published until 1736. Meanwhile, in 1690,
Joseph Raphson (1648—1715) published a
paper describing a method for approximating
the real zeros of a function that was very
similar to Newton’s. For this reason, the
method is often referred to as the Newton-
Raphson method.

m Approximate a zero of a function using Newton’s Method.

Newton’s Method

In this section you will study a technique for approximating the real zeros of a
function. The technique is called Newton’s Method, and it uses tangent lines to
approximate the graph of the function near its x-intercepts.

To see how Newton’s Method works, consider a function f that is continuous on
the interval [a, b] and differentiable on the interval (a, b). If f(a) and f(b) differ in sign,
then, by the Intermediate Value Theorem, f must have at least one zero in the interval
(a, b). Suppose you estimate this zero to occur at

X =X First estimate

as shown in Figure 3.60(a). Newton’s Method is based on the assumption that the
graph of f and the tangent line at (x,, f(x;)) both cross the x-axis at about the same
point. Because you can easily calculate the x-intercept for this tangent line, you can
use it as a second (and, usually, better) estimate of the zero of f. The tangent line
passes through the point (x,, f(x,)) with a slope of f/(x,). In point-slope form, the
equation of the tangent line is therefore

y _f(x1) :f/(xl)(x - x1)
y =f’(x1)(x - x1) +f(x1)'

Letting y = 0 and solving for x produces

Y=y — S (xl)
=X, .
f’(x1)
So, from the initial estimate x, you obtain a new estimate
_ f(xl) . .
X, =X — 7 . Second estimate [see Figure 3.60(b)]
f (x1)
You can improve on x, and calculate yet a third estimate
X
X3 = Xy — f,( 2). Third estimate
fx)

Repeated application of this process is called Newton’s Method.

NEWTON’S METHOD FOR APPROXIMATING THE ZEROS OF A FUNCTION

Let f(c) = 0, where fis differentiable on an open interval containing c¢. Then,
to approximate c, use the following steps.
1. Make an initial estimate x, that is close to ¢. (A graph is helpful.)
2. Determine a new approximation
My
n+1 n f/( xn)'

3. If |x, — x,, | is within the desired accuracy, let x, , | serve as the final approx-
imation. Otherwise, return to Step 2 and calculate a new approximation.

Each successive application of this procedure is called an iteration.
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230 Chapter 3  Applications of Differentiation

For many functions, just a EXAMPLE [l] Using Newton’s Method

few iterations of Newton’s Method will

produce approximations having very Calculate three iterations of Newton’s Method to approximate a zero of
small errors, as shown in Example 1. f(x) = x% — 2. Use x, = 1 as the initial guess.

Solution Because f(x) = x> — 2, you have f(x) = 2x, and the iterative process is
given by the formula
f(xn) _ 'xn2 -2

xn+ 1 xn f,(xn) xn 2xn .

The calculations for three iterations are shown in the table.

fe) | r)
fe) | )
1 | 1.000000 | —1.000000 2.000000 | —0.500000 1.500000
1.500000 0.250000 | 3.000000 0.083333 1.416667
1.416667 0.006945 | 2.833334 0.002451 1.414216

1.414216

n X, flx,) f(x,)

e VS

Of course, in this case you know that the two zeros of the function are + V2. To six
decimal places, V2 = 1.414214. So, after only three iterations of Newton’s Method,
The first iteration of Newton’s Method you have obtained an approximation that is within 0.000002 of an actual root. The first
Figure 3.61 iteration of this process is shown in Figure 3.61.

" JExamPLE [EA Using Newton's Method
Use Newton’s Method to approximate the zeros of
flx) =2 + 22— x + 1.
Continue the iterations until two successive approximations differ by less than 0.0001.

Solution Begin by sketching a graph of f, as shown in Figure 3.62. From the graph,

you can observe that the function has only one zero, which occurs near x = —1.2.
fo=23+x2-x+1 2+ Next, differentiate f and form the iterative formula
B flx,) 23 +x2—x, + 1
No R
The calculations are shown in the table.
% | ' f(x) (x,)
-2 / -1 X X,
n x" (xn) /(xn) /7" xn - /7"
Fe) 1 ) ) @,

After three iterations of Newton’s Method,
the zero of fis approximated to the desired 11 —1.20000 0.18400 | 5.24000 0.03511 —1.23511

accuracy. —1.23511 | —0.00771 | 5.68276 & —0.00136 | —1.23375
Figure 3.62
—1.23375 0.00001 | 5.66533 0.00000 | —1.23375

W

—1.23375

Because two successive approximations differ by less than the required 0.0001, you
can estimate the zero of fto be —1.23375. |
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3.8 Newton’s Method 231

When, as in Examples 1 and 2, the approximations approach a limit, the sequence
X1 X5, X3, . . ., X,,. . . 1S said to converge. Moreover, if the limit is ¢, it can be
shown that ¢ must be a zero of f.

Newton’s Method does not always yield a convergent sequence. One way it can
fail to do so is shown in Figure 3.63. Because Newton’s Method involves division by
f(x,), it is clear that the method will fail if the derivative is zero for any x, in the
sequence. When you encounter this problem, you can usually overcome it by choosing
a different value for x,. Another way Newton’s Method can fail is shown in the
next example.

f’(xl):()

|
A
)
L

X

i N7

Newton’s Method fails to converge if f"(x,) = 0.
Figure 3.63

EXAMPLE [EJ] An Example in Which Newton’s Method Fails

The function f(x) = x'/3 is not differentiable at x = 0. Show that Newton’s Method
fails to converge using x;, = 0.1.

Solution  Because f/(x) = 1x~2/3, the iterative formula is

)
T )
1/3
=X T lxn—2/3
3%
=x, — 3x,
= —2x,.

The calculations are shown in the table. This table and Figure 3.64 indicate that x,
continues to increase in magnitude as n — oo, and so the limit of the sequence does

not exist.

! , () ()

f(x):xm n xll f(xn) f (xn) ;/(x ) xn - f/(x )

l 1 0.10000 0.46416 | 1.54720 0.30000 —0.20000

? 2 | —0.20000 | —0.58480 | 0.97467 | —0.60000 0.40000

) x‘s . 3 0.40000 0.73681 | 0.61401 1.20000 —0.80000

4 | —0.80000 & —0.92832 | 0.38680 | —2.40000 1.60000
]
Newton’s Method fails to converge for every In Example 3, the initial estimate x, = 0.1 fails to produce a convergent sequence. Try
x-value other than the actual zero of f. showing that Newton’s Method also fails for every other choice of x, (other than the
Figure 3.64 actual zero). [ ]
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The Granger Collection

NIELS HENRIK ABEL (1802-1829)

The Granger Collection

EVARISTE GALOIS (1811-1832)

Although the lives of both Abel and Galois
were brief, their work in the fields of analysis
and abstract algebra was far-reaching.

It can be shown that a condition sufficient to produce convergence of Newton’s
Method to a zero of fis that

fG) fx)

)P

1 Condition for convergence

on an open interval containing the zero. For instance, in Example 1 this test would
yield f(x) = x2 — 2, f(x) = 2x, f"(x) = 2, and

) f)| |6 = 2)(2)‘ 1_1
P 42 2l

On the interval (1, 3), this quantity is less than 1 and therefore the convergence of
Newton’s Method is guaranteed. On the other hand, in Example 3, you have
flx) = x173, flx) = %x’2/3,f”(x) = —%x’5/3, and

S £ _ 2P (=2/9)x>5)
L P (1/9)*7)

which is not less than 1 for any value of x, so you cannot conclude that Newton’s
Method will converge.

Example 1

=2 Example 3

Algebraic Solutions of Polynomial Equations
The zeros of some functions, such as
f)=x —2x> —x+2

can be found by simple algebraic techniques, such as factoring. The zeros of other
functions, such as

fx)=x>—x+1

cannot be found by elementary algebraic methods. This particular function has only
one real zero, and by using more advanced algebraic techniques you can determine the
zero to be

o _\3/3 - V233 \3/3 + V/23/3
\ 6 6

Because the exact solution is written in terms of square roots and cube roots, it is
called a solution by radicals.

WM Try approximating the real zero of f(x) = x> — x + 1 and compare your result with
the exact solution shown above. |

The determination of radical solutions of a polynomial equation is one of the
fundamental problems of algebra. The earliest such result is the Quadratic Formula,
which dates back at least to Babylonian times. The general formula for the zeros of a
cubic function was developed much later. In the sixteenth century an Italian mathe-
matician, Jerome Cardan, published a method for finding radical solutions to cubic
and quartic equations. Then, for 300 years, the problem of finding a general quintic
formula remained open. Finally, in the nineteenth century, the problem was answered
independently by two young mathematicians. Niels Henrik Abel, a Norwegian
mathematician, and Evariste Galois, a French mathematician, proved that it is not
possible to solve a general fifth- (or higher-) degree polynomial equation by radicals.
Of course, you can solve particular fifth-degree equations such as x> — 1 = 0, but
Abel and Galois were able to show that no general radical solution exists.
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@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, complete two iterations of Newton’s Method
for the function using the given initial guess.

1. f(x) =x* =5, x, =22
3. fx) = cosx, x; = 1.6

2. fx) =x* =3, x, =14
4. f(x) = tanx, x, =0.1

pP' In Exercises 5-14, approximate the zero(s) of the function. Use
Newton’s Method and continue the process until two successive
approximations differ by less than 0.001. Then find the zero(s)
using a graphing utility and compare the results.

5 fx) =x*+ 4 6. flx) =2 —x°
7.fx) =x*+x—1 8. flx) =x+x—1
9. flx) =5V/x — 1 — 2x 10. f(x) =x —2Jx + 1

11. f(x) = x*> — 3.9x> + 4.79x — 1.881
12. fx) = x*+x* -1

13. f(x) = —x + sinx 14. f(x) = x> — cos x

In Exercises 15-18, apply Newton’s Method to approximate the
x-value(s) of the indicated point(s) of intersection of the two

graphs. Continue the process until two successive approxima-
tions differ by less than 0.001. [Hint: Let h(x) = f(x) — g(x).]

15. f(x) = 2x + 1 16. f(x) =3 — x
g) = Vx + 4 gx) =1/ + 1)
y y
572N

2+

1
/ :
—t x %

17. f(x) = x 18. f(x) = x?
g(x) = tan x g(x) = cos x
y y

Lo o

o o s

21+ /, l
| | } } x
| : —x " 4
T 3n -1+ &
2 2

19. Mechanic’s Rule The Mechanic’s Rule for approximating

Ja,a > 0, is

1
X,i1 :E(x"—i_xi)’ n=1273...

n

where x, is an approximation of Ja.

(a) Use Newton’s Method and the function f(x) = x> — a to
derive the Mechanic’s Rule.

(b) Use the Mechanic’s Rule to approximate /5 and /7 to
three decimal places.

20. (a) Use Newton’s Method and the function f(x) = x" — a to
obtain a general rule for approximating x = ¥a.

(b) Use the general rule found in part (a) to approximate Y6
and /15 to three decimal places.

In Exercises 21-24, apply Newton’s Method using the given
initial guess, and explain why the method fails.

2l.y=23-6x2+6x— 1, x, =1
2. y=x—-2x—-2, x,=0

1
A
1

|
T
X

1 ——

[

Figure for 21

1

Figure for 22
23, f(x) = —x3+ 622 — 10x+ 6, x, =2

. 3
24. f(x) = 2sinx + cos 2x, x; = 7

},

[OR A
=

’

e =
w

2

Figure for 23

Figure for 24

Fixed Point In Exercises 25 and 26, approximate the fixed
point of the function to two decimal places. [A fixed point x, of a
function f is a value of x such that f(x,) = x,.]

25. f(x) = cosx
26. f(x) =cotx, 0 <x<m

27. Use Newton’s Method to show that the equation
X,+1 = X,(2 — ax,) can be used to approximate 1/a if x, is an
initial guess of the reciprocal of a. Note that this method of
approximating reciprocals uses only the operations of multipli-
cation and subtraction. [Hint: Consider f(x) = (1/x) — a.]

28. Use the result of Exercise 27 to approximate (a) % and (b) 1]7 to
three decimal places.
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WRITING ABOUT CONCEPTS

29. Consider the function f(x) = x> — 3x2 + 3.
de" (a) Use a graphing utility to graph f.

(b) Use Newton’s Method with x; = 1 as an initial guess.

(c) Repeat part (b) using x, =% as an initial guess and
observe that the result is different.

(d) To understand why the results in parts (b) and (c) are
different, sketch the tangent lines to the graph of fat the
points (1, £(1)) and (4, £(})). Find the x-intercept of each
tangent line and compare the intercepts with the first
iteration of Newton’s Method using the respective initial
guesses.

(e) Write a short paragraph summarizing how Newton’s
Method works. Use the results of this exercise to
describe why it is important to select the initial guess
carefully.

30. Repeat the steps in Exercise 29 for the function f(x) = sin x
with initial guesses of x; = 1.8 and x; = 3.

31. In your own words and using a sketch, describe Newton’s
Method for approximating the zeros of a function.

32. Under what conditions will Newton’s Method fail?

In Exercises 33 and 34, approximate the critical number of f on
the interval (0, 7). Sketch the graph of f, labeling any extrema.

33. f(x) = xcosx 34. f(x) = xsinx

Exercises 35-38 present problems similar to exercises from the
previous sections of this chapter. In each case, use Newton’s
Method to approximate the solution.

35. Minimum Distance Find the point on the graph of
f(x) = 4 — x? that is closest to the point (1, 0).

36. Minimum Distance Find the point on the graph of f(x) = x2
that is closest to the point (4, —3).

37. Minimum Time You are in a boat 2 miles from the nearest
point on the coast (see figure). You are to go to a point Q, which
is 3 miles down the coast and 1 mile inland. You can row at
3 miles per hour and walk at 4 miles per hour. Toward what
point on the coast should you row in order to reach Q in the
least time?

38. Medicine The concentration C of a chemical in the blood-
stream ¢ hours after injection into muscle tissue is given by
C = (32 + 1)/(50 + 3). When is the concentration greatest?

39. Crime The total number of arrests 7' (in thousands) for all
males ages 14 to 27 in 2006 is approximated by the model

T = 0.602x* — 41.44x% + 922.8x — 6330, 14 < x < 27

where x is the age in years (see figure). Approximate the two ages
that had total arrests of 225 thousand. (Source: U.S. Department
of Justice)

T P

400 ~
A\
250 I \e
|
‘

3,000,000

2,000,000

200
150
100

1,000,000

Profit (in dollars)

X X
10 30 50

Arrests (in thousands)

12 16 20 24 28

Age (in years) Advertising expense
(in 10,000s of dollars)
Figure for 39 Figure for 40

40. Advertising Costs A manufacturer of digital audio players
estimates that the profit for selling a particular model is

P = —76x3 + 4830x> — 320,000, 0 < x < 60

where P is the profit in dollars and x is the advertising expense
in tens of thousands of dollars (see figure). Find the smaller of
two advertising amounts that yield a profit P of $2,500,000.

True or False? In Exercises 41-44, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

41. The zeros of f(x) = p(x)/q(x) coincide with the zeros of p(x).

42. If the coefficients of a polynomial function are all positive, then
the polynomial has no positive zeros.

43. If f(x) is a cubic polynomial such that f’(x) is never zero, then
any initial guess will force Newton’s Method to converge to the
zero of f.

44. The roots of </f(x) = 0 coincide with the roots of f(x) = 0.

45. Tangent Lines The graph of f(x) = —sinx has infinitely
many tangent lines that pass through the origin. Use Newton’s
Method to approximate to three decimal places the slope of the
tangent line having the greatest slope.

46. Point of Tangency The graph of f(x) = cosx and a tangent
line to f through the origin are shown. Find the coordinates of
the point of tangency to three decimal places.

f(x) =cos x

NS

-1+
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® Understand the concept of a tangent line approximation.

B Compare the value of the differential, dy, with the actual change in y, Ay.
B Estimate a propagated error using a differential.

B Find the differential of a function using differentiation formulas.

EXPLORATION

Tangent Line Approximation
Use a graphing utility to graph

fx) = x2

In the same viewing window,
graph the tangent line to the graph
of fat the point (1, 1). Zoom in
twice on the point of tangency.
Does your graphing utility
distinguish between the two
graphs? Use the trace feature to
compare the two graphs. As the
x-values get closer to 1, what can
you say about the y-values?

Tangent Line Approximations

Newton’s Method (Section 3.8) is an example of the use of a tangent line to a graph
to approximate the graph. In this section, you will study other situations in which the
graph of a function can be approximated by a straight line.

To begin, consider a function f that is differentiable at c¢. The equation for the
tangent line at the point (c, f(c)) is given by

y = fle) = flo)lx = ¢)
y = fle) + flo)x = o)

and is called the tangent line approximation (or linear approximation) of f at c.
Because c is a constant, y is a linear function of x. Moreover, by restricting the values
of x to those sufficiently close to c, the values of y can be used as approximations (to
any desired degree of accuracy) of the values of the function f. In other words, as

Tangent line

fx)=1+sinx

ISEES
[SIEES

The tangent line approximation of fat the
point (0, 1)
Figure 3.65

X = c, the limit of y is f(c).

~

\_ EXAMPLE II Using a Tangent Line Approximation

Find the tangent line approximation of
flx) =1+ sinx

at the point (0, 1). Then use a table to compare the y-values of the linear function with
those of f(x) on an open interval containing x = 0.

Solution The derivative of fis

f’(x) = COS X. First derivative

So, the equation of the tangent line to the graph of fat the point (0, 1) is
y = £(0) = f(0)(x — 0)
y—1=(x=-0)
y=1+nx

Tangent line approximation

The table compares the values of y given by this linear approximation with the values
of f(x) near x = 0. Notice that the closer x is to 0, the better the approximation is. This
conclusion is reinforced by the graph shown in Figure 3.65.

x —-05 —0.1 —0.01 0 0.01 0.1 0.5

f(x) =1+ sinx | 0.521 1 0.9002 | 0.9900002 | 1 | 1.0099998 | 1.0998 | 1.479

y=1+x 0.5 0.9 0.99 1 1.01 1.1 1.5
|

Be sure you see that this linear approximation of f(x) = 1 + sin x depends on the
point of tangency. At a different point on the graph of f, you would obtain a different tangent
line approximation. u
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Sfle+ Ax)

When Ax issmall, Ay = f(c + Ax) — f(c)
is approximated by f”(c)Ax.
Figure 3.66

y=2x-1

,,,,,,,,,,,,,

7777777777

Ay
dy

The change in y, Ay, is approximated by the
differential of y, dy.
Figure 3.67

Differentials
When the tangent line to the graph of £ at the point (c, f(c))
y = flc) + flc)x — ¢) Tangent line at (c, £(c))

is used as an approximation of the graph of f, the quantity x — c is called the change
in x, and is denoted by Ax, as shown in Figure 3.66. When Ax is small, the change in
v (denoted by Ay) can be approximated as shown.

Ay = flc + Ax) — f(c) Actual change in y
=~ f(c)Ax Approximate change in y

For such an approximation, the quantity Ax is traditionally denoted by dx, and is
called the differential of x. The expression f/(x)dx is denoted by dy, and is called the
differential of y.

DEFINITION OF DIFFERENTIALS

Let y = f(x) represent a function that is differentiable on an open interval
containing x. The differential of x (denoted by dx) is any nonzero real number.
The differential of y (denoted by dy) is

dy = f/(x) dx.

In many types of applications, the differential of y can be used as an approximation of
the change in y. That is,

Ay=dy or  Ay=f(x)dx.

EXAMPLE |3 Comparing Ay and dy

Lety = x% Find dy whenx = 1 and dx = 0.01. Compare this value with Ay forx = 1
and Ax = 0.01.

Solution Because y = f(x) = x2, you have f/(x) = 2x, and the differential dy is
given by

dy = f’(x) dx =f/(1)(0.01) = 2(0.01) = 0.02. Differential of y
Now, using Ax = 0.01, the change in y is
Ay = f(x + Ax) — f(x) = £(1.01) — £(1) = (1.01)%> — 12 = 0.0201.

Figure 3.67 shows the geometric comparison of dy and Ay. Try comparing other
values of dy and Ay. You will see that the values become closer to each other as dx
(or Ax) approaches 0. |

In Example 2, the tangent line to the graph of f(x) = x> atx = 1 is
y = 2x — 1 or g(x) =2x — 1. Tangent line to the graph of fat x = 1.

For x-values near 1, this line is close to the graph of f, as shown in Figure 3.67. For
instance,

f(1.01) = 1.012 = 1.0201 and g(1.01) = 2(1.01) — 1 = 1.02.

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



i

0.7
Ball bearing with measured radius that is
correct to within 0.01 inch.
Figure 3.68
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Error Propagation

Physicists and engineers tend to make liberal use of the approximation of Ay by dy.
One way this occurs in practice is in the estimation of errors propagated by physical
measuring devices. For example, if you let x represent the measured value of a vari-
able and let x + Ax represent the exact value, then Ax is the error in measurement.
Finally, if the measured value x is used to compute another value f(x), the difference
between f(x + Ax) and f(x) is the propagated error.

Measurement Propagated
error error
S S
flx + Ax) — f(x) = Ay
- N
Exact Measured
value value

EXAMPLE [EJ Estimation of Error

The measured radius of a ball bearing is 0.7 inch, as shown in Figure 3.68. If the
measurement is correct to within 0.01 inch, estimate the propagated error in the
volume V of the ball bearing.

Solution The formula for the volume of a sphere is V = %777‘3, where r is the radius
of the sphere. So, you can write

r=20.7 Measured radius
and
—0.01 < Ar < 0.01. Possible error

To approximate the propagated error in the volume, differentiate V to obtain
dV/dr = 4mrr? and write

AV = dV Approximate AV by dV.
= 4mridr
= 47(0.7)%(x0.01) Substitute for r and dr.
=~ +().06158 cubic inch.
So, the volume has a propagated error of about 0.06 cubic inch. |

Would you say that the propagated error in Example 3 is large or small? The
answer is best given in relative terms by comparing dV with V. The ratio
dV _ 4xridr )
7 = %771’3 Ratio of dVto V
_3dr

r

~ % (+0.01) Substitute for dr and r.

~ £0.0429

Simplify.

is called the relative error. The corresponding percent error is approximately
4.29%.
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Mary Evans Picture Library

GOTTFRIED WILHELM LEIBNIZ (1646—1716)

Both Leibniz and Newton are credited with
creating calculus. It was Leibniz, however,
who tried to broaden calculus by developing
rules and formal notation. He often spent days
choosing an appropriate notation for a new
concept.

Applications of Differentiation

Calculating Differentials

Each of the differentiation rules that you studied in Chapter 2 can be written in
differential form. For example, suppose u and v are differentiable functions of x. By

the definition of differentials, you have
du=u’"dx and dv = v’'dx.

So, you can write the differential form of the Product Rule as shown below.

Differential of uv

dluv] = %[uv] dx

= [uwv + vu'] dx Product Rule
= uv’'dx + vu'dx

=udv+vdu

DIFFERENTIAL FORMULAS

Let u and v be differentiable functions of x.

Constant multiple: d[cu] = ¢ du
Sum or difference: d[u = v] = du + dv

Product: dluv] = udv + vdu
. du —ud
Quotient: d [%] = %

EXAMPLE [EJ Finding Differentials

Function Derivative Differential
d
a y=x’ d—i=2x dy = 2x dx
. dy
b. y = 2sinx EZZCOSX dy = 2 cos x dx
dy . .
C. y = XCOSX £=—xsmx+cosx dy = (—xsinx + cos x) dx
1 dy 1 dx
d y=- - == dy = —— [
YT dx x? Y x?

The notation in Example 4 is called the Leibniz notation for derivatives and
differentials, named after the German mathematician Gottfried Wilhelm Leibniz. The
beauty of this notation is that it provides an easy way to remember several important
calculus formulas by making it seem as though the formulas were derived from
algebraic manipulations of differentials. For instance, in Leibniz notation, the Chain
Rule

dy _ dydu
dx  du dx

would appear to be true because the du’s divide out. Even though this reasoning is
incorrect, the notation does help one remember the Chain Rule.
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4l glx) = éx+2
(16, 4)
2 -4
f) =vx
4 8 12 16 20
2+
Figure 3.69
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EXAMPLE [EJ Finding the Differential of a Composite Function

y = f(x) = sin 3x Original function
f/(x) = 3 cos 3x Apply Chain Rule.
dy = f(x) dx = 3 cos 3x dx Differential form

EXAMPLE ﬂ Finding the Differential of a Composite Function

y=r () = (x* + 1)1/ 2 Original function
1
flx) = §(x2 + 1)712(2x) = 7); = Apply Chain Rule.
dy = f/(x) dx = ﬁ dx Differential form

Differentials can be used to approximate function values. To do this for the function
given by y = f(x), use the formula

flx+ Ax) = fx) + dy = f(x) + fx) dx

which is derived from the approximation Ay = f(x + Ax) — f(x) = dy. The key to
using this formula is to choose a value for x that makes the calculations easier, as
shown in Example 7. (This formula is equivalent to the tangent line approximation
given earlier in this section.)

EXAMPLE Approximating Function Values

Use differentials to approximate /16.5.
Solution Using f(x) = /x, you can write

1
2Vx

Now, choosing x = 16 and dx = 0.5, you obtain the following approximation.

flx+ Ax) = V165 = J16 + 2\}E(O'5) =4+ (é)(;) = 4.0625

flx + Ax) = f(x) + f(x) dx = Jx + dx.

The tangent line approximation to f(x) = /x at x =16 is the line
glx) = %x + 2. For x-values near 16, the graphs of fand g are close together, as shown
in Figure 3.69. For instance,

F(16.5) = /16.5 = 4.0620 and g(16.5) = %(16.5) + 2 = 4.0625.
In fact, if you use a graphing utility to zoom in near the point of tangency (16, 4), you

will see that the two graphs appear to coincide. Notice also that as you move farther
away from the point of tangency, the linear approximation becomes less accurate.
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@ EXBI‘C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, find the equation of the tangent line 7 to the
graph of f at the given point. Use this linear approximation to
complete the table.

X 1.9 | 199 | 2 | 201 | 2.1
fx)
T(x)

250-5 (23

3 fx) =x° (2,32)

4. f() = Vx. (2, V2)
5. f(x) = sinx, (2,sin2)
6. f(x) = cscx, (2,csc2)

In Exercises 7-10, use the information to evaluate and compare
Ay and dy.

7.y = x3 x=1 Ax = dx = 0.1
8. y=1-—2? x=0 Ax = dx = —0.1
9. y=x*+1 x=-1 Ax = dx = 0.01
10. y =2 — x* x=2 Ax = dx = 0.01

In Exercises 11-20, find the differential dy of the given function.

11. y = 3x> — 4 12. y = 3x2/3
+
3.y =11 4. y=9 -
2x — 1
15. y = xJ/1 — x? 16.y=\/}+%
17. y = 3x — sin’x 18. y = xcosx
1 6mx — 1 sec? x
19.y—3cos( 2 ) 20'y_x2+1

In Exercises 21-24, use differentials and the graph of f to
approximate (a) f(1.9) and (b) f(2.04). To print an enlarged
copy of the graph, go to the website www.mathgraphs.com.

21. v 22. v
5+ 5+
4+ st \s
3+ f 3+
2+ 2+
i 0 T e
A TN

23. ¥

} }
T T X

1 2 3 4 5

=

In Exercises 25 and 26, use differentials and the graph of g’ to
approximate (a) g(2.93) and (b) g(3.1) given that g(3) = 8.

25,y 26. ¥

27. Area The measurement of the side of a square floor tile is
10 inches, with a possible error of ;12 inch. Use differentials to
approximate the possible propagated error in computing the
area of the square.

28. Area The measurements of the base and altitude of a triangle
are found to be 36 and 50 centimeters, respectively. The
possible error in each measurement is 0.25 centimeter. Use
differentials to approximate the possible propagated error in
computing the area of the triangle.

29. Area The measurement of the radius of the end of a log is
found to be 16 inches, with a possible error of ; inch. Use
differentials to approximate the possible propagated error in
computing the area of the end of the log.

30. Volume and Surface Area The measurement of the edge of a
cube is found to be 15 inches, with a possible error of 0.03 inch.
Use differentials to approximate the maximum possible
propagated error in computing (a) the volume of the cube and
(b) the surface area of the cube.

31. Area The measurement of a side of a square is found to be
12 centimeters, with a possible error of 0.05 centimeter.

(a) Approximate the percent error in computing the area of the
square.

(b) Estimate the maximum allowable percent error in measuring
the side if the error in computing the area cannot exceed
2.5%.
32. Circumference The measurement of the circumference of a
circle is found to be 64 centimeters, with a possible error of
0.9 centimeter.
(a) Approximate the percent error in computing the area of the
circle.
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(b) Estimate the maximum allowable percent error in
measuring the circumference if the error in computing the
area cannot exceed 3%.

33. Volume and Surface Area The radius of a spherical balloon
is measured as 8 inches, with a possible error of 0.02 inch. Use
differentials to approximate the maximum possible error in
calculating (a) the volume of the sphere, (b) the surface area of
the sphere, and (c) the relative errors in parts (a) and (b).

34. Stopping Distance The total stopping distance T of a vehicle
is

T = 2.5x + 0.5x2

where T is in feet and x is the speed in miles per hour.
Approximate the change and percent change in total stopping
distance as speed changes from x = 25 to x = 26 miles per
hour.

Volume 1In Exercises 35 and 36, the thickness of each shell is
0.2 centimeter. Use differentials to approximate the volume of
each shell.

35. 02cm 36. 0.2 cm
) /.

40 cm

— =100 cm—>-
5cm

37. Pendulum The period of a pendulum is given by

L
T=27rf
8

where L is the length of the pendulum in feet, g is the
acceleration due to gravity, and 7 is the time in seconds. The
pendulum has been subjected to an increase in temperature
such that the length has increased by %%.

(a) Find the approximate percent change in the period.

(b) Using the result in part (a), find the approximate error in
this pendulum clock in 1 day.

38. Ohm’s Law A current of [ amperes passes through a resistor
of R ohms. Ohm’s Law states that the voltage E applied to the
resistor is E = IR. If the voltage is constant, show that the
magnitude of the relative error in R caused by a change in [ is
equal in magnitude to the relative error in /.

39. Triangle Measurements The measurement of one side of a
right triangle is found to be 9.5 inches, and the angle opposite
that side is 26°45” with a possible error of 15”.

(a) Approximate the percent error in computing the length of
the hypotenuse.

(b) Estimate the maximum allowable percent error in measuring
the angle if the error in computing the length of the
hypotenuse cannot exceed 2%.

3.9 Differentials 241

40. Area Approximate the percent error in computing the area of
the triangle in Exercise 39.

41. Projectile Motion The range R of a projectile is

2

= LYO
R=%

(sin 20)

where v, is the initial velocity in feet per second and 6 is the
angle of elevation. If v, = 2500 feet per second and 6 is
changed from 10° to 11°, use differentials to approximate the
change in the range.

42. Surveying A surveyor standing 50 feet from the base of a
large tree measures the angle of elevation to the top of the tree
as 71.5°. How accurately must the angle be measured if the
percent error in estimating the height of the tree is to be less
than 6%?

In Exercises 43-46, use differentials to approximate the value of
the expression. Compare your answer with that of a calculator.

43. /994 44. 326
45. /624 46. (2.99)3

PF’ In Exercises 47 and 48, verify the tangent line approximation of
the function at the given point. Then use a graphing utility to
graph the function and its approximation in the same viewing

window.

Function Approximation Point
47. f(x) = Sx + 4 y:2+§ (0,2)
48. f(x) = tanx y=x (0,0)

WRITING ABOUT CONCEPTS

49. Describe the change in accuracy of dy as an approximation
for Ay when Ax is decreased.

50. When using differentials, what is meant by the terms
propagated error, relative error, and percent error?

51. Give a short explanation of why the approximation is valid.
(a) V402 =2+ 1(0.02)
(b) tan 0.05 = 0 + 1(0.05)

52. Would you use y = x to approximate f(x) = sinx near
x = 0? Why or why not?

True or False? 1In Exercises 53-56, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.
53. If y = x + ¢, then dy = dx.
54. If y = ax + b, then Ay/Ax = dy/dx.
55. If y is differentiable, then Alim0 (Ay — dy) = 0.

—

56. If y = f(x), fis increasing and differentiable, and Ax > 0, then
Ay = dy.
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@ R E V I E W E X E R C I S E S See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

1. Give the definition of a critical number, and graph a function f
showing the different types of critical numbers.

2. Consider the odd function f'that is continuous and differentiable
and has the functional values shown in the table.

x -5 -4, -10 2 3 6

f&) 1 3 2 0O -1]-410

(a) Determine f(4).

(b) Determine f(—3).

(c) Plot the points and make a possible sketch of the graph of f
on the interval [—6, 6]. What is the smallest number of
critical points in the interval? Explain.

(d) Does there exist at least one real number ¢ in the interval
(=6, 6) where f(c) = —1? Explain.

(e) Is it possible that liII(l) f(x) does not exist? Explain.

xX—>

(f) Is it necessary that f/(x) exists at x = 2? Explain.

In Exercises 3—6, find the absolute extrema of the function on
the closed interval. Use a graphing utility to graph the
function over the given interval to confirm your results.

3. f(x) = x2 + 5x, [—4,0] 4. h(x) =3/x —x, [0,9]

X

6. f(x) = NoEnt

In Exercises 7-10, determine whether Rolle’s Theorem can be
applied to f on the closed interval [a, b]. If Rolle’s Theorem can
be applied, find all values of ¢ in the open interval (a, b) such
that f’(c) = 0. If Rolle’s Theorem cannot be applied, explain
why not.

5. g(x) = 2x + 5cosx, [0,2m7] [0,2]

7. f(x) =2x2 =17, [0,4]
8. f(x) = (x — 2)(x + 3)2, [—3,2]

X2

9. f00) =1 [-2.2]
10. f(x) = [x — 2| — 2, [0,4]

11. Consider the function f(x) = 3 — |x — 4.
(a) Graph the function and verify that £(1) = £(7).

(b) Note that f(x) is not equal to zero for any x in [1,7].
Explain why this does not contradict Rolle’s Theorem.

12. Can the Mean Value Theorem be applied to the function
f(x) = 1/x? on the interval [ —2, 1]? Explain.

In Exercises 13-18, determine whether the Mean Value
Theorem can be applied to f on the closed interval [a, b]. If the
Mean Value Theorem can be applied, find all values of ¢ in the

open interval (a,b) such that f'(c) = W. If the Mean

Value Theorem cannot be applied, explain why not.

13. f(x) = x5, [1,8] 14, f(x)%, [1,4]

15. f(x) = |5 — x|, [2,6]

16. f(x) = 2x — 3/x, [-1,1]
17. f(x) = x — cos x, [—g, %T]
18. f(x) = Vx — 2x, [0,4]

19. For the function f(x) = Ax?> + Bx + C, determine the value of ¢
guaranteed by the Mean Value Theorem on the interval [x,, x, ].

20. Demonstrate the result of Exercise 19 for f(x) = 2x? — 3x + 1
on the interval [0, 4].

In Exercises 21-26, find the critical numbers (if any) and the
open intervals on which the function is increasing or decreasing.
21, f(x) = x>+ 3x — 12

23, f(x) = (x — 1)%(x — 3)

25. h(x) = Vx(x —3), x>0
26. f(x) = sinx + cosx, [0, 27]

22. h(x) = (x +2)'3 + 8
24. g(x) = (x + 1)3

In Exercises 27-30, use the First Derivative Test to find any
relative extrema of the function. Use a graphing utility to
confirm your results.

=&

27. f(x) = 4x* — 5x )

28. g(x)
29. h(1) = %14 — 8t

mX

30. g(x) = %m(T - 1), [0, 4]

31. Harmonic Motion The height of an object attached to a spring
is given by the harmonic equation

y = %cos 12t — isin 12¢

where y is measured in inches and 7 is measured in seconds.

(a) Calculate the height and velocity of the object when
t = /8 second.

(b) Show that the maximum displacement of the object is 157
inch.

(c) Find the period P of y. Also, find the frequency f (number
of oscillations per second) if f= 1/P.

32. Writing The general equation giving the height of an oscillating
object attached to a spring is

. k k
y = Asin fz+Bcos ft
m m

where k is the spring constant and m is the mass of the object.
(a) Show that the maximum displacement of the object is
VA% + B2

(b) Show that the object oscillates with a frequency of
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In Exercises 33-36, determine the points of inflection and
discuss the concavity of the graph of the function.

33. f(x) = x> — 92 4. glx) =xJ/x+5
35. f(x) = x + cosx, [0,2m7] 36. f(x) = (x + 2)*(x — 4)

In Exercises 37-40, use the Second Derivative Test to find all
relative extrema.

37. fx) = (x +9)

38. h(x) =x — 2cosx, [0,4n]
39. g(x) = 2x%(1 — x?)

40. 1) =1 — 4S7 T 1

Think About It In Exercises 41 and 42, sketch the graph of a
function f having the given characteristics.

41. f(0) = f(6) = 0 42. f(0) = 4, f(6) =
f3)=rf(5=0 F(x) <0ifx <2orx >4
flx) > 0 ifx <3 £/(2) does not exist.
flx) >0if3 <x <35 f4)=0
fix) <0ifx > 5 fx) >0if2 <x <4
f(x) < 0ifx<3orx>4 f(x) <0ifx+#2

(

fx) >0if3 <x <4

43. Writing A newspaper headline states that “The rate of growth
of the national deficit is decreasing.” What does this mean? What
does it imply about the graph of the deficit as a function of time?

44. Inventory Cost The cost of inventory depends on the ordering
and storage costs according to the inventory model

o=+l

Determine the order size that will minimize the cost, assuming
that sales occur at a constant rate, Q is the number of units sold
per year, r is the cost of storing one unit for 1 year, s is the cost
of placing an order, and x is the number of units per order.

ldF" 45. Modeling Data Outlays for national defense D (in billions of

dollars) for selected years from 1970 through 2005 are shown
in the table, where 7 is time in years, with = 0 corresponding
to 1970. (Source: U.S. Office of Management and Budget)

t 0 5 10 15 20

D | 817 | 86.5 | 134.0 | 252.7 | 299.3

t 25 30 35

D | 272.1 | 294.5 | 4953

(a) Use the regression capabilities of a graphing utility to fit a
model of the form

D=at*+ b +ct>2+dt+e

to the data.

Review Exercises 243

(b) Use a graphing utility to plot the data and graph the model.

(c) For the years shown in the table, when does the model
indicate that the outlay for national defense was at a
maximum? When was it at a minimum?

(d) For the years shown in the table, when does the model
indicate that the outlay for national defense was increasing
at the greatest rate?

ldP' 46. Modeling Data The manager of a store recorded the annual

sales S (in thousands of dollars) of a product over a period of
7 years, as shown in the table, where ¢ is the time in years, with
t = 1 corresponding to 2001.

t 1 2 3 4 5 6 7

S |54 69 115 155 | 19.0 | 22.0 | 23.6

(a) Use the regression capabilities of a graphing utility to find
a model of the form S = at® + bt*> + ¢t + d for the data.

(b) Use a graphing utility to plot the data and graph the model.

(c) Use calculus and the model to find the time r when sales
were increasing at the greatest rate.

(d) Do you think the model would be accurate for predicting
future sales? Explain.

In Exercises 47-56, find the limit.

47. lim (8 + 1) 48. lim —>—~
X—00 X X—00 2)6 + 5
2x2 2x
4. Iim 2 s 50. lim 22 s
N
51 lim X 52. lim Y%
x—>-oco X + 5 xX——00 —2x
5 cos x
53, lim 222X 54. i
xinolo X rirgo X
55, lim — % 56.

m -
x——oco X + COS X x——o0 2 8in x

In Exercises 57-60, find any vertical and horizontal asymptotes
of the graph of the function. Use a graphing utility to verify
your results.

3 5x2
57. fx) = -2 58. gx) = 5

2x + 3 3x
59. h(x) - 60. f(’() = \/m

ldP‘ In Exercises 61-64, use a graphing utility to graph the function.

Use the graph to approximate any relative extrema or
asymptotes.

61. f(x) = x3 +% 62. f(x) = |x3 — 3x2 + 2x|
63. flx) = L 64 ()—12—4 + cos2
flx L+ 3.2 - 8l) =3 cos x + cos 2x
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244 Chapter 3  Applications of Differentiation

In Exercises 65-82, analyze and sketch the graph of the
function.

65. f(x) = 4x — x? 66. f(x) = 4x> — x*

67. f(x) = x/16 — x? 68. f(x) = (x> — 4)2

69. f(x) = (x — 1)*(x — 3)? 70. f(x) = (x — 3)(x + 2)°
71. f(x) = xV3(x + 3)%3 72. f(x) = (x — 2)Y3(x + 1)?3
7. ) =22 . ) =

75, f() = sz 76. () = 'fx4

77. f(x) = x3 +x+%

79. f(x) = |x = 9]

80. f(x) =[x — 1] + |x — 3]

81. f(x) =x +cosx, 0<x<27m

82. f(x) = 7l_r(Z sinmx —sin2mwx), —1<x<1

83. Find the maximum and minimum points on the graph of
x2+4y?—2x— 16y +13=0

(a) without using calculus.
(b) using calculus.
84. Consider the function f(x) = x" for positive integer values of 7.

(a) For what values of n does the function have a relative
minimum at the origin?

(b) For what values of n does the function have a point of
inflection at the origin?

85. Distance At noon, ship A is 100 kilometers due east of ship
B. Ship A is sailing west at 12 kilometers per hour, and ship B
is sailing south at 10 kilometers per hour. At what time will the
ships be nearest to each other, and what will this distance be?

86. Maximum Area Find the dimensions of the rectangle of
maximum area, with sides parallel to the coordinate axes, that
can be inscribed in the ellipse given by

2 2

LS
144 * 16 L

87. Minimum Length A right triangle in the first quadrant has
the coordinate axes as sides, and the hypotenuse passes through
the point (1, 8). Find the vertices of the triangle such that the

length of the hypotenuse is minimum.

88. Minimum Length The wall of a building is to be braced by a
beam that must pass over a parallel fence 5 feet high and 4 feet
from the building. Find the length of the shortest beam that can
be used.

89. Maximum Area Three sides of a trapezoid have the same
length 5. Of all such possible trapezoids, show that the one of
maximum area has a fourth side of length 2s.

90. Maximum Area Show that the greatest area of any rectangle
inscribed in a triangle is one-half the area of the triangle.

91. Distance Find the length of the longest pipe that can be car-
ried level around a right-angle corner at the intersection of two
corridors of widths 4 feet and 6 feet. (Do not use trigonometry.)

92. Distance Rework Exercise 91, given corridors of widths a
meters and b meters.

93. Distance A hallway of width 6 feet meets a hallway of width
9 feet at right angles. Find the length of the longest pipe that
can be carried level around this corner. [Hint: If L is the length
of the pipe, show that

L=6csch+ 9csc<g— 9>
where 0 is the angle between the pipe and the wall of the
narrower hallway.]

94. Length Rework Exercise 93, given that one hallway is of
width a meters and the other is of width » meters. Show that
the result is the same as in Exercise 92.

Minimum Cost In Exercises 95 and 96, find the speed v, in
miles per hour, that will minimize costs on a 110-mile delivery
trip. The cost per hour for fuel is C dollars, and the driver is
paid W dollars per hour. (Assume there are no costs other than
wages and fuel.)

2 2

Vv V
95. Fuel cost: C = 500 96. Fuel cost: C = 500

Driver: W = $7.50

Driver: W = $5

In Exercises 97 and 98, use Newton’s Method to approximate
any real zeros of the function accurate to three decimal places.
Use the zero or root feature of a graphing utility to verify your
results.

97. f(x) =x> —3x — 1

98. f(x) =x>+2x + 1

In Exercises 99 and 100, use Newton’s Method to approximate,
to three decimal places, the x-value(s) of the point(s) of intersec-
tion of the equations. Use a graphing utility to verify your
results.

99, y = x* 100. y = sin 7x
y=x+3 y=1—-x

In Exercises 101 and 102, find the differential dy.
101. y = x(1 — cosx) 102. y = /36 — x?

103. Surface Area and Volume The diameter of a sphere is
measured as 18 centimeters, with a maximum possible error of
0.05 centimeter. Use differentials to approximate the possible
propagated error and percent error in calculating the surface
area and the volume of the sphere.

104. Demand Function A company finds that the demand for its
commodity is

1
p:7571x.

If x changes from 7 to 8, find and compare the values of Ap
and dp.
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@ PROBLEM SOLVING

1.

Graph the fourth-degree polynomial p(x) = x* + ax> + 1 for
various values of the constant a.

(a) Determine the values of a for which p has exactly one
relative minimum.

(b) Determine the values of a for which p has exactly one
relative maximum.

(c) Determine the values of a for which p has exactly two
relative minima.

(d) Show that the graph of p cannot have exactly two relative
extrema.

. (a) Graph the fourth-degree polynomial p(x) = ax* — 6x2 for

a=—3,—-2,—1,0, 1,2, and 3. For what values of the con-
stant @ does p have a relative minimum or relative maximum?

(b) Show that p has a relative maximum for all values of the
constant a.

(c) Determine analytically the values of a for which p has a
relative minimum.

(d) Let (x,y) = (x, p(x)) be a relative extremum of p. Show that
(x, y) lies on the graph of y = —3x2. Verify this result graph-
ically by graphing y = — 3x? together with the seven curves
from part (a).

c .
. Let f(x) = < + x2. Determine all values of the constant ¢ such

that f'has a relative minimum, but no relative maximum.

. (@) Let f(x) = ax® 4+ bx + ¢, a # 0, be a quadratic polynomial.

How many points of inflection does the graph of f have?
(b) Let f(x) = ax® + bx*> + ¢x + d, a # 0, be a cubic polyno-
mial. How many points of inflection does the graph of fhave?
(c) Suppose the function y = f(x) satisfies the equation
dy y)
e A 1 — <
dx ky< L

Show that the graph of fhas a point of inflection at the point

where k and L are positive constants.

where y = > (This equation is called the logistic differential

equation.)

. Prove Darboux’s Theorem: Let f be differentiable on the closed

interval [a, b] such that f(a) =y, and f(b) = y,. If d lies
between y, and y,, then there exists ¢ in (a, b) such that

fle) =d.

. Let f and g be functions that are continuous on [a, b] and

differentiable on (a,b). Prove that if f(a) = g(a) and
g’(x) > f/(x) for all x in (a, b), then g(b) > f(b).

. Prove the following Extended Mean Value Theorem. If fand f”

are continuous on the closed interval [a, b], and if f” exists in
the open interval (a, b), then there exists a number ¢ in (a, b)
such that

116) = 1(@) + fa)lb = a) + 5 7> = a)

8.

10.

11.

PS. Problem Solving 245

(a) Let V = x3. Find dV and AV. Show that for small values of
x, the difference AV — dV is very small in the sense that
there exists & such that AV — dV = gAx, where ¢ =0 as
Ax—0.

(b) Generalize this result by showing that if y = f(x) is a
differentiable function, then Ay — dy = eAx, where e >0
as Ax—0.

. The amount of illumination of a surface is proportional to the

intensity of the light source, inversely proportional to the
square of the distance from the light source, and proportional to
sin 6, where 6 is the angle at which the light strikes the surface.
A rectangular room measures 10 feet by 24 feet, with a 10-foot
ceiling (see figure). Determine the height at which the light
should be placed to allow the corners of the floor to receive as
much light as possible.

Consider a room in the shape of a cube, 4 meters on each side.
A bug at point P wants to walk to point Q at the opposite
corner, as shown in the figure. Use calculus to determine the
shortest path. Can you solve the problem without calculus?

P

4m

Q

4m 4 m

The line joining P and Q crosses the two parallel lines, as
shown in the figure. The point R is d units from P. How far
from Q should the point S be positioned so that the sum of the
areas of the two shaded triangles is a minimum? So that the
sum is a maximum?

S Y
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12.

13.

14.

FE 1.

e 16.

e 1.

Chapter 3  Applications of Differentiation

The figures show a rectangle, a circle, and a semicircle
inscribed in a triangle bounded by the coordinate axes and the
first-quadrant portion of the line with intercepts (3, 0) and
(0, 4). Find the dimensions of each inscribed figure such that its
area is maximum. State whether calculus was helpful in finding
the required dimensions. Explain your reasoning.

y
4
3
2
1
X
1 2 3 4

(c) Let L be a real number. Prove that if lim f(x) = L, then
lim f (l) =L
y—0+ y

Find the point on the graph of y =

y y

4 -4

2Ak

]Ak

— X x
1 23 4 1 23 4

(a) Prove that lim x2 = oo.

X—oo

W
}
S

1
(b) Prove that lim (;) = 0.

1
11 (see figure) where

the tangent line has the greatest slope, and the point where the
tangent line has the least slope.

(a) Let x be a positive number. Use the table feature of a
graphing utility to verify that /1 + x < %x + 1.

(b) Use the Mean Value Theorem to prove
1+x< %x + 1 for all positive real numbers x.

that

(a) Letx be a positive number. Use the table feature of a graph-
ing utility to verify that sinx < x.

(b) Use the Mean Value Theorem to prove that sin x < x for all
positive real numbers x.

The police department must determine the speed limit on a
bridge such that the flow rate of cars is maximum per unit time.
The greater the speed limit, the farther apart the cars must be in
order to keep a safe stopping distance. Experimental data on
the stopping distances d (in meters) for various speeds v (in
kilometers per hour) are shown in the table.

v | 20 40 60 80 100

d | 51 | 137 | 272 | 442 | 664

18.

19.

20.

(a) Convert the speeds v in the table to speeds s in meters per
second. Use the regression capabilities of a graphing utility
to find a model of the form d(s) = as® + bs + ¢ for the
data.

(b) Consider two consecutive vehicles of average length
5.5 meters, traveling at a safe speed on the bridge. Let T be
the difference between the times (in seconds) when the
front bumpers of the vehicles pass a given point on the
bridge. Verify that this difference in times is given by

de) | 55
) )

(c) Use a graphing utility to graph the function 7 and estimate
the speed s that minimizes the time between vehicles.

(d) Use calculus to determine the speed that minimizes 7. What
is the minimum value of 7’7 Convert the required speed to
kilometers per hour.

(e) Find the optimal distance between vehicles for the posted
speed limit determined in part (d).

A legal-sized sheet of paper (8.5 inches by 14 inches) is folded
so that corner P touches the opposite 14-inch edge at R (see

figure). (Note: PO = J/C* — xz.)

14 in.
x,/,’ R\\\
Y AN 8.5 in.

. N

P (o]

2x3
a) Show that C? = —————.
@ 2x — 8.5

(b) What is the domain of C?

(c) Determine the x-value that minimizes C.

(d) Determine the minimum length C.

The polynomial P(x) = ¢, + ¢,(x — a) + ¢,(x — a)? is the
quadratic approximation of the function f at (a,f(a)) if
P(a) = f(a), P'(a) = fa), and P"(a) = f"(a).

(a) Find the quadratic approximation of

at (0, 0).

(b) Use a graphing utility to graph P(x) and f(x) in the same
viewing window.

Let x>0 and n > 1 be real numbers. Prove that

(I +x)">1+ nx
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Integration

In this chapter, you will study an important
process of calculus that is closely related
to differentiation—integration. You will
learn new methods and rules for solving
definite and indefinite integrals, including
the Fundamental Theorem of Calculus.
Then you will apply these rules to find
such things as the position function for an
object and the average value of a function.

In this chapter, you should learn the
following.

B How to evaluate indefinite integrals using
basic integration rules. (4.1)

® How to evaluate a sum and approximate
the area of a plane region. (4.2)

B How to evaluate a definite integral using
a limit. (4.3)

B How to evaluate a definite integral using
the Fundamental Theorem of Calculus.
(4.4)

B How to evaluate different types of
definite and indefinite integrals using m—
a variety of methods. (4.5)

B How to approximate a definite integral
using the Trapezoidal Rule and
Simpson’s Rule. (4.6)

© Chuck Pefley/Alamy

Although its official nickname is the Emerald City, Seattle is sometimes called the
Rainy City due to its weather. But there are several cities, including New York and

— Boston, that typically get more annual precipitation. How could you use integration
to calculate the normal annual precipitation for the Seattle area? (See Section 4.5,
Exercise 117.)

The area of a parabolic region can be approximated as the sum of the areas of rectangles. As you increase the number
of rectangles, the approximation tends to become more and more accurate. In Section 4.2, you will learn how the limit
process can be used to find areas of a wide variety of regions.

247
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248 Chapter 4 Integration

@ Antiderivatives and Indefinite Integration

H Write the general solution of a differential equation.
m Use indefinite integral notation for antiderivatives.
B Use hasic integration rules to find antiderivatives.
B Find a particular solution of a differential equation.

Antiderivatives

Suppose you were asked to find a function F whose derivative is f(x) = 3x2 From

EXPLORATION your knowledge of derivatives, you would probably say that

Finding Antiderivatives For d

L . — .3 3] — 242
each derivative, describe the F(x) = x> because a[x | = 3x%
original function F.

a F() =2 b Flx) = x The function F is an antiderivative of f.

¢ Fla)=x d Fl0)="5 DEFINITION OF ANTIDERIVATIVE

e. F/(x) = % f. F(x) = cosx A function F is an antiderivative of f on an interval I if F'(x) = f(x) for all x in L.

What strategy did you use to find
F? Note that F is called an antiderivative of f, rather than the antiderivative of f. To
see why, observe that

F(x) =x3% Fyx)=x*—5, and Fyx) = x>+ 97

are all antiderivatives of f(x) = 3x In fact, for any constant C, the function given by
F(x) = x*+ C is an antiderivative of f.

THEOREM 4.1 REPRESENTATION OF ANTIDERIVATIVES

If F is an antiderivative of f on an interval /, then G is an antiderivative of f
on the interval I if and only if G is of the form G(x) = F(x) + C, forall x in I
where C is a constant.

The proof of Theorem 4.1 in one direction is straightforward. That is, if
G(x) = F(x) + C, F'(x) = f(x), and C is a constant, then

Glx) = Q%[F(x) L= F) + 0 = ().

To prove this theorem in the other direction, assume that G is an antiderivative of f.
Define a function H such that

H(x) = G(x) — F(x).

For any two points a and b (¢ < b) in the interval, H is continuous on [a, b] and
differentiable on (a, b). By the Mean Value Theorem,

H(b) — H(a)

H'le) = b—a

for some ¢ in (a, b). However, H'(c) = 0, so H(a) = H(b). Because a and b are
arbitrary points in the interval, you know that H is a constant function C. So,
G(x) — F(x) = C and it follows that G(x) = F(x) + C. [
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Functions of the formy = 2x + C
Figure 4.1

(i3 In this text, the notation
[ f(x) dx = F(x) + C means that F is
an antiderivative of f on an interval.

4.1  Antiderivatives and Indefinite Integration 249

Using Theorem 4.1, you can represent the entire family of antiderivatives of a
function by adding a constant to a known antiderivative. For example, knowing that
D [x*] = 2x, you can represent the family of all antiderivatives of f(x) = 2x by

Gx)=x*+C Family of all antiderivatives of f(x) = 2x

where C is a constant. The constant C is called the constant of integration. The
family of functions represented by G is the gemeral amtiderivative of f, and
G(x) = x> + C is the general solution of the differential equation

G'(x) = 2x. Differential equation

A differential equation in x and y is an equation that involves x, y, and
derivatives of y. For instance, y’ = 3x and y’ = x> + 1 are examples of differential
equations.

EXAMPLE [l Solving a Differential Equation

Find the general solution of the differential equation y” = 2.

Solution To begin, you need to find a function whose derivative is 2. One such
function is

y = 2x. 2x is an antiderivative of 2.

Now, you can use Theorem 4.1 to conclude that the general solution of the differential
equation is

y=2x+ C. General solution

The graphs of several functions of the form y = 2x + C are shown in Figure 4.1.
|

Notation for Antiderivatives

When solving a differential equation of the form

& _

=1

it is convenient to write it in the equivalent differential form

dy = f(x) dx.

The operation of finding all solutions of this equation is called antidifferentiation (or
indefinite integration) and is denoted by an integral sign [. The general solution is
denoted by

Variable of Constant of
integration integration

|

|
y = Jf(x) dx = F(x) + C.
T !

Integrand An antiderivative

of f(x)

The expression [f(x)dx is read as the antiderivative of f with respect to x. So, the
differential dx serves to identify x as the variable of integration. The term indefinite
integral is a synonym for antiderivative.
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250 Chapter 4 Integration

Basic Integration Rules

The inverse nature of integration and differentiation can be verified by substituting
F(x) for f(x) in the indefinite integration definition to obtain

J F'(x) dx = F(x) + C. Integration is the “inverse” of differentiation.
Moreover, if [ f(x) dx = F(x) + C, then
i flx) dx | = f(x). Differentiation is the “inverse” of integration.
X

These two equations allow you to obtain integration formulas directly from
differentiation formulas, as shown in the following summary.

BASIC INTEGRATION RULES

Differentiation Formula Integration Formula

d

—[C|=0 Odx =C

dx[ ] J dx

d

Lld=k jkdekx+C

dx

d y

2 K] = kf(x) kf(x) dx = k| f(x) dx

d /| /|

D[40 2 g0] = £ £ 500 L+ st = st = [sr
d xn+1

a[x"] = px" | x"tdx = 1 +C, n#—1 Power Rule
i[sinx]=cosx cosxdx =sinx + C

dx

d . .

a[cosx]= —sin x sinxdx = —cosx + C

d
— [sec x] = sec x tan x secxtan x dx = secx + C

dx

d
a[cotx] = —csc2x csc2xdx = —cotx + C
4

cscxcotxdx = —cscx + C
dx

[csc x] = —cscx cot x

J
J
J
% [iami] = secx Jseczxdx — tanx + C
J
J
J

LI Note that the Power Rule for Integration has the restriction that n # —1. The
evaluation of [1/x dx must wait until the introduction of the natural logarithmic function in
Chapter 5. u
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4.1  Antiderivatives and Indefinite Integration 251

EXAMPLE |3 Applying the Basic Integration Rules

Describe the antiderivatives of 3x.

Solution J3x dx = 3J’x dx Constant Multiple Rule
= 3Jx1 dx Rewrite x as x'.
x2
=3 E + C Power Rule (n = 1)
3., -
= Ex + C Simplify.

So, the antiderivatives of 3x are of the form %xz + C, where C is any constant.

When indefinite integrals are evaluated, a strict application of the basic integration
rules tends to produce complicated constants of integration. For instance, in Example 2,
you could have written

X2 3
3xdx =3 xdx=3?+C =§x2+3C.

However, because C represents any constant, it is both cumbersome and unnecessary
to write 3C as the constant of integration. So, %xz + 3C is written in the simpler form,
3.2
-+ C.

In Example 2, note that the general pattern of integration is similar to that of
differentiation.

Original integral >  Rewrite > Integrate >  Simplify

O EXAMPLE [EJ Rewriting Before Integrating

Original Integral Rewrite Integrate Simplify
S fi 1 _ x72 1
— QTP Some software a. jdx j e e L
programs, such as Maple, x? -2 2x?
Mathematica, and the TI-89, are Y2 )
capable of performing integration b. J Vx dx J‘X V2 dx 3 +C EXS/ 2+ C
symbolically. If you have access to
such a symbolic integration utility, c. J2 sin x dx 2Jsin xdx  2(—cosx) + C —2cosx + C
try using it to evaluate the indefinite
integrals in Example 3. |

Remember that you can check your answer to an antidifferentiation problem by
differentiating. For instance, in Example 3(b), you can check that 3x¥2 + C is the
correct antiderivative by differentiating the answer to obtain

2 2\(3
D, |:§x3/2 + C] = (3) <2>x V2 = \/;C Use differentiation to check antiderivative.

The icon 6 indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.
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252 Chapter 4 Integration

The basic integration rules listed on page 250 allow you to integrate any
polynomial function, as shown in Example 4.

EXAMPLE n Integrating Polynomial Functions

a. de = jl dx Integrand is understood to be 1.
=x+C Integrate.
b. J(x + 2)dx = dex + Jde
x2
= B +C, +2x+ C, Integrate.
32
:E+ZX+C C=C + ¢

The second line in the solution is usually omitted.

5 3 2
c. J‘(3x4 —5x2+ x)dx = 3(%) - 5(2) + XE +C Integrate.

5 1
= ng — §x3 + 5)(2 + C Simplify.

EXAMPLE B Rewriting Before Integrating

jx 1 d. J( al + L )d Rewrit fracti
X = = = X ewrite as two fractions.
Ux NCRENE:

Rewrite with fractional
_ 1/2 —1/2
- J (¥ + x7V2) dx exponents.
2 x2
=—+——+C Integrate.
327 1/2
2 3/2 1/2 : s
= EX‘/ + 22+ C Simplify.
2
Relnembe.:r that }.101.1 can _ =z \/;c( Y+ 3) +C -
check your answer by differentiating. 3

N[® When integrating quotients, do not integrate the numerator and denominator
separately. This is no more valid in integration than it is in differentiation. For instance, in
Example 5, be sure you understand that

+ 1 2 _ + 1 I
Jx dx = =x(x + 3) + Cis not the same as S Jdx _ 3¢ +x +

Vx 3 Y %x\/}-l—cz. u

EXAMPLE [ Rewriting Before Integrating

sin x 1 sin x )
> dx = dx Rewrite as a product.
COS~ X COS X/ \COS X
Rewrite using trigonometric
= |secxtanxdx OWITLe USIng trig
identities.
=secx + C Integrate. |
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Initial Conditions and Particular Solutions

y You have already seen that the equation y = [ f(x)dx has many solutions (each
T . 4) differing from the others by a constant). This means that the graphs of any two
45 e . . . ) . .
antiderivatives of f are vertical translations of each other. For example, Figure 4.2
C=4 shows the graphs of several antiderivatives of the form
3,,
c=3 y = J(3x2 —Ddx=x*—-x+2C General solution
2,,
Co2 for various integer values of C. Each of these antiderivatives is a solution of the
A differential equation
dy
| | X a = 3x2 - 1.
-2 2
In many applications of integration, you are given enough information to
determine a particular solution. To do this, you need only know the value of
y = F(x) for one value of x. This information is called an initial condition. For
example, in Figure 4.2, only one curve passes through the point (2, 4). To find this
curve, you can use the following information.
Fx)=x*—-x+2C General solution
F(2) =4 Initial condition
C=-4
. By using the initial condition in the general solution, you can determine that
Fr=x=x+C F(2) = 8 — 2 + C = 4, which implies that C = —2. So, you obtain
The particular solution that satisfies the initial Flx) =3 —x — 2. Particular solution
condition F(2) = 4is F(x) = x> — x — 2.
Figure 4.2
EXAMPLE Finding a Particular Solution
Find the general solution of
P!
F (x) = ;, x>0
y
Co4 and find the particular solution that satisfies the initial condition F(1) = 0.
3 . . Lo .
Solution To find the general solution, integrate to obtain
Cc=3
2 1
F(x) = Jz dx F(x) = [F'(x)dx
c=2 X
l —
(%/_ = sz dx Rewrite as a power.
Gy ——
| Cc=0 = _71 + C Integrate.
- 1
ol C=-l =—+4+C, x>0. General solution
X
i €=-2 Using the initial condition F(1) = 0, you can solve for C as follows.
Cc=-3 1
F(x):—%+C F()==—7+C=0 > C=1

The particular solution that satisfies the initial S, the particular solution, as shown in Figure 4.3, is
condition F(1) = 0is F(x) = —(1/x) + 1,
x> 0. 1

' Fx)=—+1, x>0. Particular solution |
Figure 4.3 X
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s(f) = —161% + 64t + 80

150 + r=2

140 + AN

130 + P ‘e 1=3
120+ =1 |
o4+ A \
100+ + !
90 Y\
80 ¢

704
60 + )
50+ '
40 + k
30 4 \
20+ A
10+ 5

Height (in feet)

\}
1
} } } } ¢ t
1 2 3 4 5
Time (in seconds)

Height of a ball at time ¢
Figure 4.4

L3 In Example 8, note that the
position function has the form

s(t) = %gtz + ot + 5,

where g = —32, vy is the initial velocity,
and sy is the initial height, as presented
in Section 2.2.

So far in this section you have been using x as the variable of integration. In
applications, it is often convenient to use a different variable. For instance, in the
following example involving time, the variable of integration is t.

EXAMPLE [E] Solving a Vertical Motion Problem

A ball is thrown upward with an initial velocity of 64 feet per second from an initial
height of 80 feet.

a. Find the position function giving the height s as a function of the time .
b. When does the ball hit the ground?

Solution
a. Letr = O represent the initial time. The two given initial conditions can be written
as follows.
s(0) = 80 Initial height is 80 feet.
s'(0) = 64

Initial velocity is 64 feet per second.

Using —32 feet per second per second as the acceleration due to gravity, you can
write

s'(t) = =32
s() = js”(t) dt = J—32dt = —32t+ C,.

Using the initial velocity, you obtain s/(0) = 64 = —32(0) + C,, which implies
that C; = 64. Next, by integrating s’(¢), you obtain

s(t) = Js’(z) dt = J(—32¢ + 64) dt = — 161> + 64t + C,.

Using the initial height, you obtain
s(0) = 80 = —16(0%) + 64(0) + C,
which implies that C, = 80. So, the position function is

s(t) = — 161% + 64t + 80. See Figure 4.4.

b. Using the position function found in part (a), you can find the time at which the
ball hits the ground by solving the equation s(f) = 0.

s(f) = — 162 + 64t + 80 = 0
—16(t+ 1)t —5) =0
t=-1,5

Because ¢ must be positive, you can conclude that the ball hits the ground
5 seconds after it was thrown. [ |

Example 8 shows how to use calculus to analyze vertical motion problems in
which the acceleration is determined by a gravitational force. You can use a similar
strategy to analyze other linear motion problems (vertical or horizontal) in which the

acceleration (or deceleration) is the result of some other force, as you will see in
Exercises 81-89.
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4.1  Antiderivatives and Indefinite Integration 255

Before you begin the exercise set, be sure you realize that one of the most
important steps in integration is rewriting the integrand in a form that fits the basic
integration rules. To illustrate this point further, here are some additional examples.

Original Integral ~ Rewrite Integrate Simplify

J 2 4 2J 1/2 g 2("1/2) c 412 + ¢
—=dx X~ x —= | t+ x'/c +
Jx 1/2

5 3
J(12+1)2dt f(t4+2t2+1)dt %+ (t)+t+C *t5+§t3+t+C

43
Jxxz dx

JE/}(x — 4) dx f(X“/3 — 4x'/3) dx

3

2 -1
f(x 3 T 3(’“) rc 2e-2ic

-1

2
73 <x4/3) 3

- —4l=—+C ,7/3_34/3
7/3 ~ "\4/3 7* *

@ EXBI‘C ISBS See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-4, verify the statement by showing that the
derivative of the right side equals the integrand of the left side.

6 2
1. J(—;)dx :;‘i‘ C
2 <8x3+L>dx:2x4*i+C
: 2x2 2x

3. J(x —4)(x + 4)dx = %x3 —l6x + C

2 2
" x31dx:2(x+3)+c
x3/2 3%
In Exercises 5-8, find the general solution of the differential
equation and check the result by differentiation.

g dr _
5. dt—9t 6. 40 T
dy _ 3/2 dy _ 4
7. e X 8. it 2x

In Exercises 9-14, complete the table.

Original Integral Rewrite

9. Jé/;cdx

€
©) 4x?

II.J 1 dx
XV X

12. Jx(x3 + 1) dx

1
13. J2x3 dx

1
14. J G &

Integrate Simplify

10 dx

In Exercises 15-34, find the indefinite integral and check the
result by differentiation.

15. j(x + 7) dx 16. J(lS‘ — x) dx

17. J(Zx — 3x?) dx 18. J(8x3 — 9x% + 4) dx
19. J’(x5 + 1) dx 20. J(x3 — 10x — 3) dx
1
21, | (32 + 2x + 1) dx 22. J(ﬁ + —) dx
J ( ) 2V
23. J?/)?dx 24. J(i‘/;? + 1) dx
1 1
25. JE dx 26. J; dx
x+6 X2 +2x—3
27. J NG dx 28. J o dx
29. J’(x + 1)(3x — 2) dx 30. J(2t2 — 1)2dt

31. Jﬁfy dy 32. J(l + 30)2dr

33. de 34. J14 dt

In Exercises 35-44, find the indefinite integral and check the
result by differentiation.

35. j(S cos x + 4 sinx) dx 36. J(ﬂ — cos t) dt

37. J(l — csctcott)dt 38. J(GZ + sec26) df

39. J(sec2 0 — sin 0) d0 40. Jsec y(tany — secy) dy
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256 Chapter 4 Integration

41. J(tanzy + 1) dy 42. J(4x — csc2x) dx

T R
1 — cos?x 1 — sin“x

In Exercises 45-48, the graph of the derivative of a func-
tion is given. Sketch the graphs of two functions that have the
given derivative. (There is more than one correct answer.) To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

45. y 46. y
6 2+
, f
f 4
2+ —_— —t—x
-2 -1 12
—1 > x T
-4 -2 2 4
-2+ _2,,
47. y 48. y
, -\
f :
1+ 14+
- I x — — x
-2 /-1 1\2 -2 -1 12
-1+ -1+
-2+ -2+

In Exercises 49 and 50, find the equation of y, given the deriva-
tive and the indicated point on the curve.

dy _ ., 5
49. Iy 2x — 1 50. I 2x — 1)

'dF’ Slope Fields In Exercises 51-54, a differential equation, a

point, and a slope field are given. A slope field (or direction field)
consists of line segments with slopes given by the differential
equation. These line segments give a visual perspective of the
slopes of the solutions of the differential equation. (a) Sketch
two approximate solutions of the differential equation on the
slope field, one of which passes through the indicated point. (To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.) (b) Use integration to find the particular
solution of the differential equation and use a graphing utility to
graph the solution. Compare the result with the sketches in
part (a).

52.
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53. dy _ cos x, (0, 4)
dx

y y

_4\\\\ -

NNN~——
SNNSN———
~NNN~—=2-

S o—=NNNN
s s—=~NNN

rdp' Slope Fields In Exercises 55 and 56, (a) use a graphing utility

to graph a slope field for the differential equation, (b) use
integration and the given point to find the particular solution of
the differential equation, and (c) graph the solution and the
slope field in the same viewing window.

55. D 0y (<2, -2
dx

6 % =2Vx (4,12)

In Exercises 57-64, solve the differential equation.

57. f((x) = 6x, f(0) = 8 58. g/(x) = 62 g(0) = —1
59. h'(r) = 82 + 5, h(1) = —4

60. f'(s) = 10s — 1253, f(3) =2
61. f"(x) = 2, f(2) =5, f(2) = 10
62. f"(x) = x% f10) = 8, £(0) = 4
63. f"(x) = x732, f(4) =2, f(0) =0
64. f ()_Slnx,.’()=1,f()=

65. Tree Growth An evergreen nursery usually sells a certain
type of shrub after 6 years of growth and shaping. The growth
rate during those 6 years is approximated by dh/dt = 1.5t + 5,
where 7 is the time in years and /£ is the height in centimeters.
The seedlings are 12 centimeters tall when planted (r = 0).

(a) Find the height after ¢ years.
(b) How tall are the shrubs when they are sold?

66. Population Growth The rate of growth dP/dt of a population
of bacteria is proportional to the square root of ¢, where P is the
population size and ¢ is the time in days (0 < ¢ < 10). That is,
dP/dt = k/t. The initial size of the population is 500. After
1 day the population has grown to 600. Estimate the population
after 7 days.
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WRITING ABOUT CONCEPTS

67. What is the difference, if any, between finding the
antiderivative of f(x) and evaluating the integral [ f(x) dx?

68. Consider f(x) = tan®>x and g(x) = sec?x. What do you

notice about the derivatives of f(x) and g(x)? What can you
conclude about the relationship between f(x) and g(x)?

69. The graphs of fand f” each pass through the origin. Use the
graph of f”shown in the figure to sketch the graphs of fand
7. To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

CAPSTONE

70. Use the graph of f” shown in the figure to answer the
following, given that f(0) = —4.

(a) Approximate the slope of fat x = 4. Explain.

(b) Is it possible that £(2) = —1? Explain.

(¢) Isf(5) — f(4) > 0? Explain.

(d) Approximate the value of x where f is maximum.
Explain.

(e) Approximate any intervals in which the graph of fis
concave upward and any intervals in which it is concave
downward. Approximate the x-coordinates of any
points of inflection.

(f) Approximate the x-coordinate of the minimum of f”(x).

(g) Sketch an approximate graph of f. To print an enlarged
copy of the graph, go to the website
www.mathgraphs.com.

Vertical Motion In Exercises 71-74, use a(f) = —32 feet per
second per second as the acceleration due to gravity. (Neglect
air resistance.)

71. A ball is thrown vertically upward from a height of 6 feet with an
initial velocity of 60 feet per second. How high will the ball go?

4.1  Antiderivatives and Indefinite Integration 257

72. Show that the height above the ground of an object thrown
upward from a point s, feet above the ground with an initial
velocity of v, feet per second is given by the function

flt) = —=1612 + vyt + s,

73. With what initial velocity must an object be thrown upward
(from ground level) to reach the top of the Washington
Monument (approximately 550 feet)?

74. A balloon, rising vertically with a velocity of 16 feet per
second, releases a sandbag at the instant it is 64 feet above the
ground.

(a) How many seconds after its release will the bag strike the
ground?

(b) At what velocity will it hit the ground?

Vertical Motion In Exercises 75-78, use a(f) = —9.8 meters
per second per second as the acceleration due to gravity.
(Neglect air resistance.)

75. Show that the height above the ground of an object thrown
upward from a point s, meters above the ground with an initial
velocity of v, meters per second is given by the function

flt) = =491 + vt + s,

76. The Grand Canyon is 1800 meters deep at its deepest point. A
rock is dropped from the rim above this point. Write the height
of the rock as a function of the time ¢ in seconds. How long will
it take the rock to hit the canyon floor?

77. A baseball is thrown upward from a height of 2 meters with
an initial velocity of 10 meters per second. Determine its
maximum height.

78. With what initial velocity must an object be thrown upward (from
a height of 2 meters) to reach a maximum height of 200 meters?

79. Lunar Gravity On the moon, the acceleration due to gravity
is — 1.6 meters per second per second. A stone is dropped from
a cliff on the moon and hits the surface of the moon 20 seconds
later. How far did it fall? What was its velocity at impact?

80. Escape Velocity The minimum velocity required for an object
to escape Earth’s gravitational pull is obtained from the
solution of the equation

1
jv dv = —GMJ? dy

where v is the velocity of the object projected from Earth, y is
the distance from the center of Earth, G is the gravitational
constant, and M is the mass of Earth. Show that v and y are
related by the equation

1 1
=yl + ZGM(* - *)

y R
where v, is the initial velocity of the object and R is the radius
of Earth.
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Rectilinear Motion In Exercises 81-84, consider a particle
moving along the x-axis where x(¢) is the position of the particle
at time ¢, x'(¢) is its velocity, and x”(¢) is its acceleration.

8. x()=r—-62+9—2, 0<r<5
(a) Find the velocity and acceleration of the particle.

(b) Find the open -intervals on which the particle is moving to
the right.

(c) Find the velocity of the particle when the acceleration is 0.

82. Repeat Exercise 81 for the position function
xX)=@t—-1)r—-3?% 0<tr<5

83. A particle moves along the x-axis at a velocity of v(f) = 1/ 1,
t > 0. Attime ¢ = 1, its position is x = 4. Find the acceleration
and position functions for the particle.

84. A particle, initially at rest, moves along the x-axis such that its
acceleration at time ¢ > 0 is given by a(f) = cos t. At the time
t = 0, its position is x = 3.
(a) Find the velocity and position functions for the particle.

(b) Find the values of  for which the particle is at rest.

85. Acceleration The maker of an automobile advertises that it
takes 13 seconds to accelerate from 25 kilometers per hour to
80 kilometers per hour. Assuming constant acceleration,
compute the following.

(a) The acceleration in meters per second per second
(b) The distance the car travels during the 13 seconds

86. Deceleration A car traveling at 45 miles per hour is brought
to a stop, at constant deceleration, 132 feet from where the
brakes are applied.

(a) How far has the car moved when its speed has been reduced
to 30 miles per hour?

(b) How far has the car moved when its speed has been reduced
to 15 miles per hour?

(c) Draw the real number line from 0 to 132, and plot the points
found in parts (a) and (b). What can you conclude?

87. Acceleration At the instant the traffic light turns green, a car
that has been waiting at an intersection starts with a constant
acceleration of 6 feet per second per second. At the same
instant, a truck traveling with a constant velocity of 30 feet per
second passes the car.

(a) How far beyond its starting point will the car pass the truck?
(b) How fast will the car be traveling when it passes the truck?

88. Acceleration Assume that a fully loaded plane starting from
rest has a constant acceleration while moving down a runway.
The plane requires 0.7 mile of runway and a speed of 160 miles
per hour in order to lift off. What is the plane’s acceleration?

pF" 89. Airplane Separation Two airplanes are in a straight-line

landing pattern and, according to FAA regulations, must keep
at least a three-mile separation. Airplane A is 10 miles from
touchdown and is gradually decreasing its speed from
150 miles per hour to a landing speed of 100 miles per hour.
Airplane B is 17 miles from touchdown and is gradually
decreasing its speed from 250 miles per hour to a landing speed
of 115 miles per hour.

(a) Assuming the deceleration of each airplane is constant, find
the position functions s, and s, for airplane A and airplane
B. Let t = 0 represent the times when the airplanes are 10
and 17 miles from the airport.

(b) Use a graphing utility to graph the position functions.
(c) Find a formula for the magnitude of the distance d between
the two airplanes as a function of ¢. Use a graphing utility

to graph d. Is d < 3 for some time prior to the landing of
airplane A? If so, find that time.

True or False? 1In Exercises 90-95, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

90. Each antiderivative of an nth-degree polynomial function is an
(n + 1)th-degree polynomial function.

91. If p(x) is a polynomial function, then p has exactly one
antiderivative whose graph contains the origin.

92. If F(x) and G(x) are antiderivatives of f(x), then
F(x) = G(x) + C.

93. If f/(x) = g(x), then fg(x) dx = f(x) + C.
94. [f(x)g(x) dx = [f(x) dx [g(x) dx

95. The antiderivative of f(x) is unique.

96. Find a function f such that the graph of f has a horizontal
tangent at (2, 0) and f”(x) = 2x.

97. The graph of f”is shown. Sketch the graph of f given that fis
continuous and £(0) = 1.

¥
2+ o—o0
f/
1k
 o—e v
1 2 3 4
-1 ¢=—0
-2+
98. 1f fr) =1 " 0=V 4 i df(1) =3
LI f(x) = 3, 25x55’fls continuous, and f(1) = 3,

find f. Is f differentiable at x = 27

99. Let s(x) and ¢(x) be two functions satisfying s(x) = c(x) and
c’(x) = —s(x) for all x. If s(0) = 0 and c(0) = 1, prove that
[s()] + [e@)]? =

PUTNAM EXAM CHALLENGE

100. Suppose fand g are nonconstant, differentiable, real-valued
functions on R. Furthermore, suppose that for each pair of
real numbers x and y, f(x +y) = f(x)f(y) — glx)g(y)
and g(x + y) = flx)g(y) + glx)f(y). If f(0) = 0, prove
that ( f(x))?> + (g(x))> = 1 for all x.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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FOR FURTHER INFORMATION For
a geometric interpretation of summation
formulas, see the article, “Looking at

Y kand > k* Geometrically” by Eric
k=1 k=1
Hegblom in Mathematics Teacher. To

view this article, go to the website
www.matharticles.com.
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B Use sigma notation to write and evaluate a sum.
B Understand the concept of area.

B Approximate the area of a plane region.

B Find the area of a plane region using limits.

Sigma Notation

In the preceding section, you studied antidifferentiation. In this section, you will look
further into a problem introduced in Section 1.1—that of finding the area of a region
in the plane. At first glance, these two ideas may seem unrelated, but you will discover
in Section 4.4 that they are closely related by an extremely important theorem called
the Fundamental Theorem of Calculus.

This section begins by introducing a concise notation for sums. This notation is
called sigma notation because it uses the uppercase Greek letter sigma, written as .

SIGMA NOTATION
The sum of n terms a,, a,, as, . . ., a, is written as
Eai=a1+a2+a3+- - toa,

i=1

where i is the index of summation, ¢, is the ith term of the sum, and the
upper and lower bounds of summation are n and 1.

(i3 The upper and lower bounds must be constant with respect to the index of summation.
However, the lower bound doesn’t have to be 1. Any integer less than or equal to the upper
bound is legitimate. u

EXAMPLE [l Examples of Sigma Notation

i=1+2+3+4+5+6

Mcx

a.

(+1)=1+2+3+4+5+6

=2
o

Il
o

JP=3 42+ 52462+ 72

The

~
I
w

(4 1) = (24 1)+ @2+ D)+t 2+ 1)

S =

s
D=
S =

~
Il

FG) Ax = flx) Ax + flxy) Ax + - - - + f(x,) Ax

i

From parts (a) and (b), notice that the same sum can be represented in different ways
using sigma notation. |

Although any variable can be used as the index of summation i, j, and k are often
used. Notice in Example 1 that the index of summation does not appear in the terms
of the expanded sum.
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THE SUM OF THE FIRST 100 INTEGERS

A teacher of Carl Friedrich Gauss (1777-1855)
asked him to add all the integers from 1 to
100. When Gauss returned with the correct
answer after only a few moments, the teacher
could only look at him in astounded silence.
This is what Gauss did:

L+ 24 3+ -+ 100
100 + 99 + 98 + - - + 1
100 + 1001 + 101 + - - + 101
100;101:5050

This is generalized by Theorem 4.2, where

100
Zi: 7100(2101) = 5050.
t=1

i+l _n+3
" A nr T 2n
10 0.65000
100 0.51500
1,000 0.50150
10,000 0.50015

The following properties of summation can be derived using the associative and
commutative properties of addition and the distributive property of addition over
multiplication. (In the first property, k is a constant.)

; = kiai

=1
n
4+ b E

The next theorem lists some useful formulas for sums of powers. A proof of this
theorem is given in Appendix A.

=
[Nk
»
o

g
=
Py

2

HM:

THEOREM 4.2 SUMMATION FORMULAS

n ol + 1
1. i;c =cn 2. 12 = 7)
d n( D2n + 1) 2(n + 1)

. n + 1L
3. 212= 6 Z

EXAMPLE |3 Evaluating a Sum

1 for n = 10, 100, 1000, and 10,000.

Evaluate E
i=1

Solution  Applying Theorem 4.2, you can write

it
izl n’

—i(i 1)

w’_‘

Factor the constant 1/n2 out of sum.

1 n n
=— i+ 1 Write as two sums.
n\i=1 =1
1 nn +1)
= 7 5 + n Apply Theorem 4.2.
n
1[n>+3 o
= 7 ) Simplify.
n
n 3 Simplif’
= mplify.
2n

Now you can evaluate the sum by substituting the appropriate values of n, as shown
in the table at the left. n

In the table, note that the sum appears to approach a limit as n increases. Although
the discussion of limits at infinity in Section 3.5 applies to a variable x, where x can
be any real number, many of the same results hold true for limits involving the
variable n, where n is restricted to positive integer values. So, to find the limit of
(n + 3)/2n as n approaches infinity, you can write

..n+3 . (n 3\ _ . (1 3\ 1 _1
S _nILTo(zn+2n>_n1530<2+2n>_2+0_2‘
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Triangle: A = %bh
Figure 4.5
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ARCHIMEDES (287212 B.c.)

Archimedes used the method of exhaustion

to derive formulas for the areas of ellipses,

parabolic segments, and sectors of a spiral.
He is considered to have been the greatest

applied mathematician of antiquity.

FOR FURTHER INFORMATION For an
alternative development of the formula for
the area of a circle, see the article “Proof
Without Words: Area of a Disk is 7R?”
by Russell Jay Hendel in Mathematics
Magazine. To view this article, go to the
website www.matharticles.com.
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Area

In Euclidean geometry, the simplest type of plane region is a rectangle. Although
people often say that the formula for the area of a rectangle is A = bh, it is actually
more proper to say that this is the definition of the area of a rectangle.

From this definition, you can develop formulas for the areas of many other plane
regions. For example, to determine the area of a triangle, you can form a rectangle
whose area is twice that of the triangle, as shown in Figure 4.5. Once you know
how to find the area of a triangle, you can determine the area of any polygon by
subdividing the polygon into triangular regions, as shown in Figure 4.6.

Parallelogram Hexagon Polygon
Figure 4.6

Finding the areas of regions other than polygons is more difficult. The ancient
Greeks were able to determine formulas for the areas of some general regions
(principally those bounded by conics) by the exhaustion method. The clearest
description of this method was given by Archimedes. Essentially, the method is a
limiting process in which the area is squeezed between two polygons—one inscribed
in the region and one circumscribed about the region.

For instance, in Figure 4.7 the area of a circular region is approximated by an
n-sided inscribed polygon and an n-sided circumscribed polygon. For each value of n,
the area of the inscribed polygon is less than the area of the circle, and the area of the
circumscribed polygon is greater than the area of the circle. Moreover, as n increases,
the areas of both polygons become better and better approximations of the area of
the circle.

n=06 n=12

The exhaustion method for finding the area of a circular region
Figure 4.7

A process that is similar to that used by Archimedes to determine the area of a
plane region is used in the remaining examples in this section.
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The Area of a Plane Region

Recall from Section 1.1 that the origins of calculus are connected to two classic
problems: the tangent line problem and the area problem. Example 3 begins the
investigation of the area problem.

EXAMPLE ﬂ Approximating the Area of a Plane Region

Use the five rectangles in Figure 4.8(a) and (b) to find two approximations of the area

5 ) =-x2+5 of the region lying between the graph of
flx) = —x2+5
4 —+
and the x-axis between x = 0 and x = 2.
3 4+

Solution

a. The right endpoints of the five intervals are %i, where i = 1, 2, 3, 4, 5. The width
of each rectangle is % and the height of each rectangle can be obtained by evaluating
fat the right endpoint of each interval.

: s s s om [OEHMHEQHQ]FB]
>0 5 5 511551555515 5

(a) The area of the parabolic region is greater
than the area of the rectangles. T T T T T

Evaluate f at the right endpoints of these intervals.

S

o

y The sum of the areas of the five rectangles is
5 Height Width
f(x) — —X2 +5 —
S(3)(3) - 2[5 +5](5) - 55 o
3L ~7\5)\5 “~ 5 5 25 o
Because each of the five rectangles lies inside the parabolic region, you can
T conclude that the area of the parabolic region is greater than 6.48.
1+ b. The left endpoints of the five intervals are %(z — 1), where i = 1, 2,3,4,5. The
. width of each rectangle is %, and the height of each rectangle can be obtained by
2 4 6 s 10 evaluating f at the left endpoint of each interval. So, the sum is
5 5 5 5 5
(b) The area of the parabolic region is less Height ~ Width
than the area of the rectangles. =

Figure 4.8 5 22\ (2) < 2 — 2\2 A
fo( : ><5>_,~21[_<5) +5}<5>_ 25 08

Because the parabolic region lies within the union of the five rectangular regions,
you can conclude that the area of the parabolic region is less than 8.08.

By combining the results in parts (a) and (b), you can conclude that

6.48 < (Area of region) < 8.08. ]

([ By increasing the number of rectangles used in Example 3, you can obtain closer and
closer approximations of the area of the region. For instance, using 25 rectangles of width %
each, you can conclude that

7.17 < (Area of region) < 7.49. [ ]
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The region under a curve
Figure 4.9

fm)

[ |a b

/

The interval [a, b] is divided into n
b—a

subintervals of width Ax =

Figure 4.10

4.2 Area 263

Upper and Lower Sums

The procedure used in Example 3 can be generalized as follows. Consider a plane
region bounded above by the graph of a nonnegative, continuous function y = f(x), as
shown in Figure 4.9. The region is bounded below by the x-axis, and the left and right
boundaries of the region are the vertical lines x = @ and x = b.

To approximate the area of the region, begin by subdividing the interval [a, b] into
n subintervals, each of width Ax = (b — a)/n, as shown in Figure 4.10. The
endpoints of the intervals are as follows.

a = x, X, X, x,=b

a+ 0Ax) <a+ 1(Ax) <a+ 2(Ax) < - - - < a+ n(Ax)

Because f is continuous, the Extreme Value Theorem guarantees the existence of a
minimum and a maximum value of f(x) in each subinterval.

f(m;) = Minimum value of f(x) in ith subinterval
f(M;) = Maximum value of f(x) in ith subinterval

Next, define an inscribed rectangle lying inside the ith subregion and a
circumscribed rectangle extending outside the ith subregion. The height of the ith
inscribed rectangle is f(m;) and the height of the ith circumscribed rectangle is f(M;).
For each i, the area of the inscribed rectangle is less than or equal to the area of the
circumscribed rectangle.

<Area of inscribed

Area of circumscribed)
rectangle

rectangle

) = stm) ax < g ax = (

The sum of the areas of the inscribed rectangles is called a lower sum, and the sum
of the areas of the circumscribed rectangles is called an upper sum.

Lower sum = s(n) = f(ml) Ax Area of inscribed rectangles

e

Il
—

f(Ml) Ax Area of circumscribed rectangles

i

Upper sum = S(n) =

From Figure 4.11, you can see that the lower sum s(#) is less than or equal to the upper
sum S(n). Moreover, the actual area of the region lies between these two sums.

s(n) < (Area of region) < S(n)

ft y=f) ) " y=f(x)
y=fx)
s(n) S(n)
[la b [la b [la n
Area of inscribed rectangles Area of region Area of circumscribed
is less than area of region. rectangles is greater than

area of region.
Figure 4.11
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f) =x?

f@) =x?

-1 1

Circumscribed rectangles
Figure 4.12

EXAMPLE [EJ Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of f(x) = x? and

the x-axis between x = 0 and x = 2.
Solution  To begin, partition the interval [0, 2] into n subintervals, each of width
— 2—-0 2
Av=2=4 ==

n n n

Figure 4.12 shows the endpoints of the subintervals and several inscribed and
circumscribed rectangles. Because fis increasing on the interval [0, 2], the minimum
value on each subinterval occurs at the left endpoint, and the maximum value occurs
at the right endpoint.

Left Endpoints Right Endpoints
m,.=0+(i—1)<2>:2(’_1) Mi=0+i<2>=21
n n n n
Using the left endpoints, the lower sum is
1 2
s(n)=2 flm,) Ax = Ef[ ](n)
SR
=1 n n
58
= <—3)(i2 —-2i+1)
i=1 n

8 n n . n
A Y
8 [n(n+ 1)2n + 1) [ (n + 1)}
= — -2 n
n3 2
4
=-—2n* = 3n> +n)
3n3
_8 4 4 L
3 n 3}12' OWer sum

Using the right endpoints, the upper sum is
ul 2i\(2
s = 3 sopax = 3 1(%) ()
=1 n/\n

I

nin + 1)2n + 1)]

Il
s

Il
M=
— "

|oo =[R2

Il
| \%E
//
S
w
N~————
~
15

Il
S,
1

6
4 2
§(2n + 3n% + n)
844 .
=37, 32 pper sum
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EXPLORATION

For the region given in Example 4,
evaluate the lower sum

8 4 4
+

and the upper sum

8 4 4
=—+ -+ —
Stw) 3 n 3n?
for n = 10, 100, and 1000. Use
your results to determine the area
of the region.

/ €\ b
Yo

7u

The width of the ith subinterval is
Ay =x; — x;_,.
Figure 4.13

4.2 Area 265

Example 4 illustrates some important things about lower and upper sums. First,
notice that for any value of n, the lower sum is less than (or equal to) the upper sum.
8 4 4 8 4 4
= to5<s+-+:5=50n
3 n 31 3 n 3n? (n)
Second, the difference between these two sums lessens as n increases. In fact, if you
take the limits as n — oo, both the upper sum and the lower sum approach %

lims(n)=1im(8—4+4>:8 Lowe it
n—oo n—oo \3 n 3]12 3 OWer sum [mi
i o (34 48 .

nll»rgo S(n) = ,,11{20 <3 + n + 3n2> =3 Upper sum limit

The next theorem shows that the equivalence of the limits (as n — oo) of the upper
and lower sums is not mere coincidence. It is true for all functions that are continuous
and nonnegative on the closed interval [a, b]. The proof of this theorem is best left to
a course in advanced calculus.

THEOREM 4.3 LIMITS OF THE LOWER AND UPPER SUMS

Let fbe continuous and nonnegative on the interval [a, b]. The limits as

n — oo of both the lower and upper sums exist and are equal to each other.
That is,

n—oo

lim s(n) = lim if(mi) Ax
n—oo &4

lim if(Mi)Ax
n—0oo l=1

lim S(n)

n—00

where Ax = (b — a)/n and f(m,) and f(M,) are the minimum and maximum
values of f on the subinterval.

Because the same limit is attained for both the minimum value f(m;) and the
maximum value f(M,), it follows from the Squeeze Theorem (Theorem 1.8) that the
choice of x in the ith subinterval does not affect the limit. This means that you are free
to choose an arbitrary x-value in the ith subinterval, as in the following definition of
the area of a region in the plane.

DEFINITION OF THE AREA OF A REGION IN THE PLANE

Let f be continuous and nonnegative on the interval [a, b]. The area of the
region bounded by the graph of f, the x-axis, and the vertical lines x = a and
x=0>bis

Y fle)Ax, xS <x
=

Area = lim

n—0oo

where Ax = (b — a)/n (see Figure 4.13).
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EXAMPLE E Finding Area by the Limit Definition

" Find the area of the region bounded by the graph f(x) = x, the x-axis, and the vertical
lines x = 0 and x = 1, as shown in Figure 4.14.

L (LD Solution  Begin by noting that fis continuous and nonnegative on the interval [0, 1].

f=x> Next, partition the interval [0, 1] into n subintervals, each of width Ax = 1/n.
According to the definition of area, you can choose any x-value in the ith subinterval.
For this example, the right endpoints ¢; = i/n are convenient.

n n i 3 1 ;
| . Area = lim flc;) Ax = lim () () Right endpoints: ¢; = —
(0, 0) i i - n—oo i; n—oo 1.21 n n n
1 n
= lim =33
. nLHO]O nﬂ;ll
The area of the region bounded by the graph
of £, the x-axis, x = 0, andx = 1 is1. oy L[nn 12
Figure 4.14 n—co n 4
i (bt L)
n—oo \4 2n 4]12
_1
4

The area of the region is %.

O EXAMPLE ﬂ Finding Area by the Limit Definition

" Find the area of the region bounded by the graph of f(x) = 4 — x2, the x-axis, and the
vertical lines x = 1 and x = 2, as shown in Figure 4.15.

Solution The function fis continuous and nonnegative on the interval [1, 2], and so
begin by partitioning the interval into n subintervals, each of width Ax = 1/n.
Choosing the right endpoint

. i
¢, =a+ iAx =1+ — Right endpoints
n
of each subinterval, you obtain

Area = lim anf(Ci)Ax = lim 121[4 a <1 - rlt>2]< )

n—oo i

N o 1 & 22 1
-t (53 - 5855
The area of the region bounded by the graph = lim [3 — <1 + l) — (1 + 1 + %ﬂ
of f, the x-axis, x = I, and x = 2is3. n—co n 3 2n o6n
Figure 4.15 1
=3_-1—-=
3
_3
3
The area of the region is % |
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The last example in this section looks at a region that is bounded by the y-axis
(rather than by the x-axis).

EXAMPLE JEBl A Region Bounded by the y-axis

" Find the area of the region bounded by the graph of f(y) = y? and the y-axis for
0 <y =< 1, as shown in Figure 4.16.
Solution When f is a continuous, nonnegative function of y, you still can use the
| (1.1 same basic procedure shown in Examples 5 and 6. Begin by partitioning the interval
/|/T | [0, 1] into n subintervals, each of width Ay = 1/n. Then, using the upper endpoints
¢; = i/n, you obtain
Area = lim if(c) Ay = lim i (i>2(1> Upper endpoints: ¢, = i
) =y> n—oo &4 n—o0 [Z\n/ \n b
R
= Jim 2502
0.0 i x ~ lim l[n(n + 1)(2n + 1)]
The area of the region bounded by the graph n—oe n? 6
of fand the y-axisfor 0 < y < lis % . 1 1 1
Figure 4.16 B nlggo 3 * n ' 6n?
-1
3
The area of the region is % n

@ EXBI‘C ISGS See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1-6, find the sum. Use the summation capabilities 3\21/3 3n\2]/(3
13. (2 + -+ 2[1

of a graphing utility to verify your result. b+ n * n

n n

1. [:1(31 +2) 2 kzsk(k —4) -\ B » B
4 7
3. 2 21 4. Eg In Exercises 15-22, use the properties of summation and
Eoks+ 1 j=4J Theorem 4.2 to evaluate the sum. Use the summation capabili-
4 4 . . oe .
5 E . 6. E (= 1)+ (i + 1] ties of a graphing utility to verify your result.
1

~,
Il
Il

12 30
15. 37 16. > —18
i=1 i=1

In Exercises 7—14, use sigma notation to write the sum.

24 16
1 1 1 17. Y 4i 18. ' (5i — 4)
ottt o pa <
™50 T 50 T 50) 5(11) = =
9 9 9 9 19. E(i - 1) 20. E(i2 - 1)
S it T2 Tt TTr "]:51 "1:0‘
i Vil =12 - (i +
9. 7<l> + 5] + [7(3> + 5] Fo 4 [7<§) + 5] 2 P ii = 1) 2 le(l D
L \6 6 6 J i
10 _] _ <1 1ol - 2)2 T P i>2 P In Exercises 23 and 24, use the summation capabilities of a
L 4 4 graphing utility to evaluate the sum. Then use the properties of
T/2\3 21/2 wm\s 2l/2 summation and Theorem 4.2 to verify the sum.
u _<n> n](n) [( n > n ](n) i( ) ) 15 ( 5 )
- 23. i2+3 24. i3 =2
2 2
S IRER) - R (Rt - I
B n n n n
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25. Consider the function f(x) = 3x + 2.

(a) Estimate the area between the graph of f and the x-axis
between x = 0 and x = 3 using six rectangles and right
endpoints. Sketch the graph and the rectangles.

(b) Repeat part (a) using left endpoints.
26. Consider the function g(x) = x> + x — 4.

(a) Estimate the area between the graph of g and the x-axis
between x = 2 and x = 4 using four rectangles and right
endpoints. Sketch the graph and the rectangles.

(b) Repeat part (a) using left endpoints.

In Exercises 27-32, use left and right endpoints and the given
number of rectangles to find two approximations of the area of
the region between the graph of the function and the x-axis over
the given interval.
27. f(x) = 2x + 5, [0, 2], 4 rectangles

. f(x) =9 — x,[2, 4], 6 rectangles
29. g(x) =2x> — x — 1,[2, 5], 6 rectangles
30. g(x) = x2 + 1,[1, 3], 8 rectangles

31. f(x) = cos x, [0, g], 4 rectangles
32. g(x) = sin x, [0, 7], 6 rectangles

In Exercises 33-36, bound the area of the shaded region by
approximating the upper and lower sums. Use rectangles of
width 1.

33. v 3. v
5+ ; T 54 ;
4+ 4+
3+ 3+

1 2 3 4 5 1 2 3 4 5
35. v 36. v

54 5

f

4+ 4

34 34 ,

2+ 2 -

177 l \'__

—t—t—t—t—x —t—t—1—"t=x

1 2 3 4 5 1 2 3 4 5

In Exercises 37— 40, find the limit of s(12) as n — co.

37. s(n) = %_M]
38. 5(n) %_n(n + 1)6(2n + 1)]
39. 5(n) —L—f?”(”; 1)] 40. 5(n) 12[ (”; 1)]

In Exercises 41-44, use upper and lower sums to approximate
the area of the region using the given number of subintervals (of
equal width).

41. y = Jx 02.y=Jx+2
y y
1+ ~ 3
2
1
. 1 1 f X
! ! 1 2
43.y=£ 4. y= /1 —x?
y y
l,
1,,
f 1 } I X
1 2 f x
1

In Exercises 45—-48, use the summation formulas to rewrite the
expression without the summation notation. Use the result to
find the sums for n = 10, 100, 1000, and 10,000.

462

1 42(

482

i=1

4]+3

In Exercises 49— 54, find a formula for the sum of n terms. Use
the formula to find the limit as n — co.

y _ 2i\(2

49. nll)lgo i; n2 50. nan’;lo Z(n)(n)
" n i\2

51 lim ) %(z’ - 12 52, lim E(l * &> (g)

g i\(2 (4 2)(2

53. lim Z}(l + n)(n) 54. lim 2<1 * n> <n>

55. Numerical Reasoning Consider a triangle of area 2 bounded
by the graphs of y = x, y = 0, and x = 2.

(a) Sketch the region.

(b) Divide the interval [0, 2] into n subintervals of equal width
and show that the endpoints are

0 < 1(%) < c<(n— 1)(%) < n(%)
(c) Show that s(n) = 3! [(i - 1)(%)](%)
(d) Show that S(n) = 2[;(%)](%)
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(e) Complete the table. " s 110! 50! 100

s(n)
S(n)

(f) Show that lim s(rn) = lim S(n) = 2.

56. Numerical Reasoning Consider a trapezoid of area 4 bounded
by the graphs of y = x,y = 0, x = 1, and x = 3.

(a) Sketch the region.

(b) Divide the interval [1, 3] into n subintervals of equal width
and show that the endpoints are

l<1+1<%><---<1+(n71)<%><1+n<%>.
[
(d) Show that S(n) = _ 1[1 + 1<%>:<%)

(e) Complete the table.

(c) Show that s(n) =

=

3

n 5110 | 50 | 100

s(n)
S(n)

(f) Show that lim s(n) = lim S(n) = 4.
n—oo n—oe
In Exercises 57-66, use the limit process to find the area of the
region between the graph of the function and the x-axis over the
given interval. Sketch the region.

57.y=—4x+5, [0,1] 58. y=3x—2, [2.5]
59.y=x>+2, [0,1] 60. y =x>+ 1, [0,3]
61. y =25 —x2, [1,4] 62. y =4 —x2 [-2,2]
63. y =27 —x3 |[1,3] 64. y =2x — 3, [0, 1]
65.y=x>—x, [—1,1] 66. y = x> —x3, [—1,0]

In Exercises 67-72, use the limit process to find the area of the
region between the graph of the function and the y-axis over the
given y-interval. Sketch the region.

67. f(y) =4y,0 <y <2 68. g(y):%y,2§y54
69. f(y) =y, 0=y <5 70. f(y) =4y —y%, 1 <y <2
T g(y) =42 -y, 1<y<3720h(y) =y +1,1<y=<2

In Exercises 73-76, use the Midpoint Rule
O (Xt Xioa
Area ;21 f ( 5 )Ax

with n = 4 to approximate the area of the region bounded
by the graph of the function and the x-axis over the given
interval.

73. f(x) = x2 + 3, [0,2]

75. f(x) = tan x, [0, ﬂ

74. f(x) = x2 + 4x, [0, 4]

76. f(x) = sin x, [o, g]

4.2 Area 269

ldF’ Programming Write a program for a graphing utility to

approximate areas by using the Midpoint Rule. Assume that the
function is positive over the given interval and that the subintervals
are of equal width. In Exercises 77-80, use the program to
approximate the area of the region between the graph of the func-
tion and the x-axis over the given interval, and complete the table.

n 4 1 8 |12 16 | 20

Approximate Area

77. f(x) = Vx, [0,4]

8
78. f(x) = i

[2.6]

79. f(x) = tan %) [1,3]

80. 7(x) = cos Vx, [0,2]
WRITING ABOUT CONCEPTS

Approximation In Exercises 81 and 82, determine which
value best approximates the area of the region between the
x-axis and the graph of the function over the given interval.
(Make your selection on the basis of a sketch of the region
and not by performing calculations.)

81. f(x) = 4 — 2 [0,2]
@-2 M6 ©10 3 (38

82. f(x) = sin % [0, 4]

@3 M1 () -2 (@8 (b6

83. In your own words and using appropriate figures, describe
the methods of upper sums and lower sums in approximating
the area of a region.

84. Give the definition of the area of a region in the plane.

85. Graphical Reasoning Consider the region bounded by the
graphs of f(x) = 8x/(x + 1), x =0, x =4, and y =0, as
shown in the figure. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

(a) Redraw the figure, and complete y
and shade the rectangles
representing the lower sum when
n = 4. Find this lower sum.

(b) Redraw the figure, and complete
and shade the rectangles 2
representing the upper sum when o
n = 4. Find this upper sum.

(c) Redraw the figure, and complete
and shade the rectangles whose heights are determined by
the functional values at the midpoint of each subinterval
when n = 4. Find this sum using the Midpoint Rule.
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(d) Verify the following formulas for approximating the area of
the region using n subintervals of equal width.

Sle-ml)
Upper sum: S(n Ef[ ]( )
2JulG)

i=1
(e) Use a graphing utility and the formulas in part (d) to
complete the table.

Lower sum: s(n) =

Midpoint Rule: M(n) = E f[(

i=1

n 4 8
s(n)

S(n)
M(n)

20 | 100 | 200

(f) Explain why s(n) increases and S(n) decreases for
increasing values of n, as shown in the table in part (e).

Consider a function f(x) that is increasing on the interval

[1, 4]. The interval [1, 4] is divided into 12 subintervals.

(a) What are the left endpoints of the first and last
subintervals?

(b) What are the right endpoints of the first two
subintervals?

(c) When using the right endpoints, will the rectangles lie
above or below the graph of f(x)? Use a graph to
explain your answer.

(d) What can you conclude about the heights of the rectan-
gles if a function is constant on the given interval?

True or False? 1In Exercises 87 and 88, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

87.
88.

89.

The sum of the first n positive integers is n(n + 1)/2.

If fis continuous and nonnegative on [a, b], then the limits as
n—oo of its lower sum s(n) and upper sum S(n) both exist and
are equal.

Writing  Use the figure to write a short paragraph explaining
why the formula 1 + 2+ - - -+ n = %n(n + 1) is valid for
all positive integers n.

Figure for 89

Figure for 90

90.

'dP'91

Graphical Reasoning Consider an n-sided regular polygon
inscribed in a circle of radius . Join the vertices of the polygon to
the center of the circle, forming n congruent triangles (see figure).

(a) Determine the central angle 6 in terms of n.
(b) Show that the area of each triangle is %,,2 sin 6.

(c) Let A, be the sum of the areas of the n triangles. Find
lim A,.

n—oo
Modeling Data The table lists the measurements of a lot
bounded by a stream and two straight roads that meet at right
angles, where x and y are measured in feet (see figure).

x 0 50 | 100 | 150 | 200 | 250 | 300

y | 450 | 362 | 305 | 268 | 245 | 156 0

(a) Use the regression capabilities of a graphing utility to find
a model of the form y = ax3 + bx> + cx + d.

(b) Use a graphing utility to plot the data and graph the model.
(c) Use the model in part (a) to estimate the area of the lot.

y
,_Road

450 H
360 - Stream
270 +
180 +
Road |
90 +
/ n is even.
F——+—+—+—P>x
50 100 150 200 250 300

Figure for 91 Figure for 92

92. Building Blocks A child places n cubic building blocks in a

93.

PUTNAM EXAM CHALLENGE

94. A dart, thrown at random, hits a square target. Assuming that

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

row to form the base of a triangular design (see figure). Each
successive row contains two fewer blocks than the preceding
row. Find a formula for the number of blocks used in the
design. (Hint: The number of building blocks in the design
depends on whether n is odd or even.)

Prove each formula by mathematical induction. (You may need
to review the method of proof by induction from a precalculus
text.)

(a) izi =nn+1) M
i=1

) 37 =

any two parts of the target of equal area are equally likely to
be hit, find the probability that the point hit is nearer to the
center than to any edge. Write your answer in the form
(a Jb + c) /d, where a, b, c, and d are positive integers.
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@ Riemann Sums and Definite Integrals

B Understand the definition of a Riemann sum.
B Evaluate a definite integral using limits.
B Evaluate a definite integral using properties of definite integrals.

Riemann Sums

In the definition of area given in Section 4.2, the partitions have subintervals of equal
width. This was done only for computational convenience. The following example
shows that it is not necessary to have subintervals of equal width.

EXAMPLE [l A Partition with Subintervals of Unequal Widths

Consider the region bounded by the graph of f(x) = /x and the x-axis for0 < x < 1,
as shown in Figure 4.17. Evaluate the limit

lim » f(c,) Ax,
n—o00o =1

where c; is the right endpoint of the partition given by ¢; = i%2/n? and Avx; is the width
of the ith interval.

x Solution The width of the ith interval is given by
) ; 2
1 _i2_i=1)
AT T T
The subintervals do not have equal widths. 2240 —1
Figure 4.17 =
n
_2i—1
n?
So, the limit is
L L i2(2i—1
nll)nolo izlf(ci) Ax; = nlggo izl n2 ( n2 >
1 n
= 2
y ~ lim lg[z(n(n + 1)(2n + 1)) ~nln + 1)]
5 n—oo 1~ 6 2
xX=y
4n® + 3n% — n
1+ (1, 1) .
Area = % | nlgIolo 6n3
1 _2. ]
! 3
(0, 0) ﬂ

1 ! From Example 7 in Section 4.2, you know that the region shown in Figure 4.18
has an area of % Because the square bounded by 0 < x < 1and 0 < y < [ has an
area of 1, you can conclude that the area of the region shown in Figure 4.17 has an

The area of the region bounded by the graph area of % This agrees with the limit found in Example 1, even though that example

of x = y*and the y-axis for 0 < y < 1 used a partition having subintervals of unequal widths. The reason this particular
is % partition gave the proper area is that as n increases, the width of the largest subinterval
Figure 4.18 approaches zero. This is a key feature of the development of definite integrals.
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The Granger Collection

GEORG FRIEDRICH BERNHARD RIEMANN
(1826-1866)

German mathematician Riemann did his most
famous work in the areas of non-Euclidean
geometry, differential equations, and number
theory. It was Riemann’s results in physics
and mathematics that formed the structure
on which Einstein’s General Theory of Relativity
is based.

0| — =
INEES
B[ —

n— oo does not imply that [|A||— 0.
Figure 4.19

In the preceding section, the limit of a sum was used to define the area of a region
in the plane. Finding area by this means is only one of many applications involving
the limit of a sum. A similar approach can be used to determine quantities as diverse
as arc lengths, average values, centroids, volumes, work, and surface areas. The
following definition is named after Georg Friedrich Bernhard Riemann. Although the
definite integral had been defined and used long before the time of Riemann, he
generalized the concept to cover a broader category of functions.

In the following definition of a Riemann sum, note that the function f has no
restrictions other than being defined on the interval [a, b]. (In the preceding section,
the function f was assumed to be continuous and nonnegative because we were dealing
with the area under a curve.)

DEFINITION OF RIEMANN SUM

Let fbe defined on the closed interval [a, b], and let A be a partition of [a, b]
given by

a=X) <X, <X, < -<x,_,<x,=b
where Ax, is the width of the ith subinterval. If ¢, is any point in the ith
subinterval [x;_,, x,], then the sum

n

> fle)Axyy xS ¢ < x

i=1

is called a Riemann sum of f for the partition A.

(i3 The sums in Section 4.2 are examples of Riemann sums, but there are more general
Riemann sums than those covered there. |

The width of the largest subinterval of a partition A is the norm of the partition
and is denoted by [|A||. If every subinterval is of equal width, the partition is regular
and the norm is denoted by

1Al = Ax =2—2

Regular partition

For a general partition, the norm is related to the number of subintervals of [a, b] in
the following way.

b-a =n G 1 partiti

A = eneral partition

A

So, the number of subintervals in a partition approaches infinity as the norm of the
partition approaches 0. That is, [|A|| = 0 implies that n — oo.

The converse of this statement is not true. For example, let A, be the partition of
the interval [0, 1] given by

1 1 1 1 1

O<gi<ai< "<g<y<3

As shown in Figure 4.19, for any positive value of n, the norm of the partition A,, is %
So, letting n approach infinity does not force [|A|| to approach 0. In a regular partition,
however, the statements ||A|| = 0 and n — oo are equivalent.
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FOR FURTHER INFORMATION For
insight into the history of the definite
integral, see the article “The Evolution
of Integration” by A. Shenitzer and J.
Steprans in The American Mathematical
Monthly. To view this article, go to the
website www.matharticles.com.

Later in this chapter,
you will learn convenient methods for
calculating f £(x) dx for continuous
functions. For now, you must use the
limit definition.
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Definite Integrals

To define the definite integral, consider the following limit.
Ax; =L
\AII—>0 ,Zlf
To say that this limit exists means there exists a real number L such that for each
& > 0 there exists a 8 > 0 so that for every partition with [|A]| < § it follows that

L—Ef ) Ax,

i=1

regardless of the choice of ¢; in the ith subinterval of each partition A.

DEFINITION OF DEFINITE INTEGRAL

If fis defined on the closed interval [a, b] and the limit of Riemann sums over
partitions A

||A||—>0 lzlf
exists (as described above), then f'is said to be integrable on [a, b] and the
limit is denoted by

lim ﬁlf(ci) Ax;, = f f(x) dx

-0 &

The limit is called the definite integral of f from « to b. The number a is the
lower limit of integration, and the number b is the upper limit of integration.

It is not a coincidence that the notation for definite integrals is similar to that used
for indefinite integrals. You will see why in the next section when the Fundamental
Theorem of Calculus is introduced. For now it is important to see that definite
integrals and indefinite integrals are different concepts. A definite integral is a
number, whereas an indefinite integral is a family of functions.

Though Riemann sums were defined for functions with very few restrictions, a
sufficient condition for a function fto be integrable on [a, b] is that it is continuous on
[a, b]. A proof of this theorem is beyond the scope of this text.

THEOREM 4.4 CONTINUITY IMPLIES INTEGRABILITY

If a function fis continuous on the closed interval [a, b], then fis integrable
on [a, b]. That is, J f(x) dx exists.

EXPLORATION

The Converse of Theorem 4.4 1s the converse of Theorem 4.4 true? That is,
if a function is integrable, does it have to be continuous? Explain your reasoning
and give examples.

Describe the relationships among continuity, differentiability, and
integrability. Which is the strongest condition? Which is the weakest? Which
conditions imply other conditions?
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/L

Because the definite integral is negative, it
does not represent the area of the region.
Figure 4.20

/ a b !

You can use a definite integral to find the
area of the region bounded by the graph of
£, the x-axis, x = a,and x = b.

Figure 4.21

EXAMPLE [J Evaluating a Definite Integral as a Limit

1
Evaluate the definite integral J 2x dx.
-2
Solution The function f(x) = 2x is integrable on the interval [—2, 1] because it is
continuous on [—2, 1]. Moreover, the definition of integrability implies that any par-
tition whose norm approaches O can be used to determine the limit. For computational
convenience, define A by subdividing [ —2, 1] into n subintervals of equal width
b—a 3

Ax; = Ax = = -
n n

Choosing c; as the right endpoint of each subinterval produces

3
ci=a+i(Ax)=—2+;l.

So, the definite integral is given by

1 n
J 2xdx = lim ' f(c;) Ax,
=

2 lal—o0 &

= lim if(ci)Ax

n—oo &4

ul 3i\(3
= li 2l =2+ ==

= lim6i(—2+3i>

n—)ooni:l n
i 6{_2n +3[n<n+1>]}
n—oo N n 2
= lim <—12+9+2>
n—oo n
= —3. |

Because the definite integral in Example 2 is negative, it does not represent the
area of the region shown in Figure 4.20. Definite integrals can be positive, negative,
or zero. For a definite integral to be interpreted as an area (as defined in Section 4.2),
the function £ must be continuous and nonnegative on [a, b], as stated in the following
theorem. The proof of this theorem is straightforward—you simply use the definition
of area given in Section 4.2, because it is a Riemann sum.

THEOREM 4.5 THE DEFINITE INTEGRAL AS THE AREA OF A REGION

If fis continuous and nonnegative on the closed interval [a, b], then the area
of the region bounded by the graph of f, the x-axis, and the vertical lines
x = aand x = b is given by

b
Area = J F(x) dx.

(See Figure 4.21.)
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flx) =4x— x2
4 —+
3 =+
2 —+
1 —+
t t t \ x
1 2 3 4
Area = [ (4r — x?) d
Figure 4.22

The variable of integration in
a definite integral is sometimes called
a dummy variable because it can be
replaced by any other variable without
changing the value of the integral. For
instance, the definite integrals

J3 (x +2) dx

and

J3 (t+2)dt

have the same value.
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As an example of Theorem 4.5, consider the region bounded by the graph of
flx) = 4x — x?

and the x-axis, as shown in Figure 4.22. Because f is continuous and nonnegative on
the closed interval [0, 4], the area of the region is

4
Area = j (4x — x2) dx.
0

A straightforward technique for evaluating a definite integral such as this will be
discussed in Section 4.4. For now, however, you can evaluate a definite integral in two
ways—you can use the limit definition or you can check to see whether the definite
integral represents the area of a common geometric region such as a rectangle, triangle,
or semicircle.

EXAMPLE [EJ] Areas of Common Geometric Figures

Sketch the region corresponding to each definite integral. Then evaluate each integral
using a geometric formula.

3 3
a.J4dx b.j(x—i—Z)dx
1 0

Solution A sketch of each region is shown in Figure 4.23.

2
c. j V4 — x?dx
-2

a. This region is a rectangle of height 4 and width 2.

3
J 4 dx = (Area of rectangle) = 4(2) = 8
1

b. This region is a trapezoid with an altitude of 3 and parallel bases of lengths 2 and
5. The formula for the area of a trapezoid is %h(b1 + b,).

3
j (x + 2) dx = (Area of trapezoid) = %(3)(2 +5) = %
0

c. This region is a semicircle of radius 2. The formula for the area of a semicircle is

1
ST,

2
.. 1
J V4 — x? dx = (Area of semicircle) = 577(22) =27
-2

Y fw=4 Y f=x+2 Y
4 + 5+ 4+
N 4 NI [ =+4-x
3 —
24 2
1+ 14 1+
——F—"1—>x F—t—F——"—>=x ! } } ' X
1 2 3 4 123 45 -2 -1 1 2
(a) (b) (c)
Figure 4.23 ]
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276 Chapter 4 Integration

Properties of Definite Integrals

The definition of the definite integral of f on the interval [a, b] specifies that a < b.
Now, however, it is convenient to extend the definition to cover cases in which a = b
ora > b. Geometrically, the following two definitions seem reasonable. For instance,
it makes sense to define the area of a region of zero width and finite height to be 0.

DEFINITIONS OF TWO SPECIAL DEFINITE INTEGRALS

1. If fis defined at x = a, then we define J f(x) dx = 0.

b

2. If fis integrable on [a, b], then we define J f(x) dx = —J £(x) dx.
b

a

O EXAMPLE n Evaluating Definite Integrals

a. Because the sine function is defined at x = 1, and the upper and lower limits of
integration are equal, you can write

J sin x dx = 0.

ks

b. The integral f;’(x + 2) dx is the same as that given in Example 3(b) except that the
upper and lower limits are interchanged. Because the integral in Example 3(b) has
a value of %, you can write

Jo(x+2)dx=—J3(x+2)dx=—221. n

In Figure 4.24, the larger region can be divided at x = ¢ into two subregions
whose intersection is a line segment. Because the line segment has zero area, it
follows that the area of the larger region is equal to the sum of the areas of the two
smaller regions.

THEOREM 4.6 ADDITIVE INTERVAL PROPERTY

If fis integrable on the three closed intervals determined by a, b, and ¢, then

' E \ J flx)dx = jcf(x) dx + J f(x) dx.

EXAMPLE E Using the Additive Interval Property

S
=

1 0 1
J |x| dx = J —xdx + J X dx Theorem 4.6
a f’ ~1 —1 0
[ dx + [y dx _1. 1 Area of a triangle
i A 2 2
Figure 4.24 =1 [ |
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a b

ff(x) i < f ¢(x) dx

Figure 4.25
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Because the definite integral is defined as the limit of a sum, it inherits the
properties of summation given at the top of page 260.

THEOREM 4.7 PROPERTIES OF DEFINITE INTEGRALS

If fand g are integrable on [a, b] and k is a constant, then the functions kf and
f *+ g are integrable on [a, b], and

1. jb kf(x) dx = kf f(x) dx

b

2. | [fx) % glx)]dx = J flx) dx + J g(x) dx.

a a

Note that Property 2 of Theorem 4.7 can be extended to cover any finite number of
functions. For example,

b b

glx) dx + J h(x) dx.

a

j [f(x) + glx) + h(x)] dx = j flx) dx + j

a a

EXAMPLE [} Evaluation of a Definite Integral

3

Evaluate J (—x2 + 4x — 3) dx using each of the following values.
1

3 3 3
fxzdx=26, dex=4, de=2
1 3 1 1

Solution

j (—x + 4x — 3) dx = J (—x) dx + J A dx + J (—3) dx

3 3 3
—J xzdx+4J xdx—SJ dx
1 1 !

(2)

I
|
RS
|
~ —
+
N
—
N
~
|
O8]

If fand g are continuous on the closed interval [a, b] and
0= f(x) = gl

for a < x < b, the following properties are true. First, the area of the region bounded
by the graph of fand the x-axis (between a and b) must be nonnegative. Second, this
area must be less than or equal to the area of the region bounded by the graph of g and
the x-axis (between a and b), as shown in Figure 4.25. These two properties are
generalized in Theorem 4.8. (A proof of this theorem is given in Appendix A.)
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278 Chapter 4 Integration

THEOREM 4.8 PRESERVATION OF INEQUALITY

1. If fis integrable and nonnegative on the closed interval [a, b], then

< ff(x) dx

2. Iffand g are integrable on the closed interval [a, b] and f(x)
every x in [a, b], then

Jf dx <J g(x) dx.

< g(x) for

@ EXB I'C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 1 and 2, use Example 1 as a model to evaluate the

limit

jim 37

over the region bounded by the graphs of the equations.
f)=Vx, y=0, x=0, x=3
(Hint: Let ¢, = 3i%/n>)

2.f(x)=\3/;c, y=0, x=0, x=1

(Hint: Letc, = i3/n3.)

In Exercises 3-8, evaluate the definite integral by the limit
definition.

6 3
3. J 8 dx 4. J x dx
2 -2

1 4
5. J X3 dx 6. J 4x? dx
—1 1

2 1
7. J (x> + 1) dx 8. J (2x% + 3) dx
1

-2

In Exercises 9-12, write the limit as a definite integral on the
interval [a, b], where c; is any point in the ith subinterval.

Limit Interval

9. lim (3¢ + 10) Ax; [-1,5]
lal—0 /&4

10. lim 2 6¢;(4 — ¢;)* Ax; [0, 4]
a0 &4

11. Hl‘i‘m ¥ Ve +4Ax, [0, 3]
All—-0 /=7

12. lim Y (i>Ax- [1,3]
lal—o &4 \e?)

In Exercises 13-22, set up a definite integral that yields the area
of the region. (Do not evaluate the integral.)

13. f(x) =5

y

14. f(x) = 6 — 3x

5 -+
4+
3+
2
1+

=

y y
8+ 44
6 3+
4 24+
N
f } } Y x } } } } X
-4 -2 2 4 -1 1 2 3
4
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19. f(x) = cosx

X

INERS
[SIER

21. g(y) = y?

I
ST

22. f(y) = (y — 2

In Exercises 23-32, sketch the region whose area is given by the
definite integral. Then use a geometric formula to evaluate the

integral (a > 0,7 > 0)

23

4

25. J X dx
0
2

27. J (Bx + 4) dx
’

29. J (1 — |x|) dx
-1

31. J V49 — x% dx
-7

3 a
. J 4 dx 24. j
0 —a

*x
26. —dx
3
28. | (6 —x)dx
30. J (a — |x|) dx

32. r? — x%dx

—r

In Exercises 33—-40, evaluate the integral using the following
values.

4 4 4
jx3ﬁ=60, dex=6, de=
2 2 2
2 2
33. dex 34. Jx3dx
4 2
4 4
35. J 8x dx 36. j 25 dx
2 2

37.

39.

41

J4(x —9) dx

4
j (323 — 3x + 2) dx
2

4
38. J (x> + 4) dx
2

4
40. J (10 + 4x — 3x3) dx
2

5 7
. Given JO f(x) dx = 10 and L f(x) dx = 3, evaluate

7
(a) J f(x) dx.
0

0
®) j £ d.

42.

43.

4.

45.

46.

47.

4.3 Riemann Sums and Definite Integrals 279

5 5
(¢) j F(x) do. d) J 3f(x) dx.
5 0

3 6
Given jo f(x)dx = 4 and L f(x) dx = —1, evaluate

6 3
@) f F() dx. (b) ff(x) dx.
0 6

3 6
© j £6) di. @ f =S50 d
3 3

6 6
Given L f(x) dx =10 and L g(x) dx = —2, evaluate

@ j ) + g@lds. b f [e() — F(] dx.

6 6
(c) J 2g(x) dx. (d) J' 3f(x) dx.
2 2

1
Given f

f(x) dx = 0and jol_f(x) dx = 5, evaluate
0

(@) f(x) dx.
~1

1
(¢) 3f(x) dx.
-1

o) f ) Lf(X) .

1
(d) f 3f(x) dx.
0

Use the table of values to find lower and upper estimates of
(;Of (x) dx. Assume that fis a decreasing function.

X

0

2

4

6

8

10

f) 1322412 —4| —20 | 36

Use the table of values to estimate f; f(x) dx. Use three equal
subintervals and the (a) left endpoints, (b) right endpoints, and
(c) midpoints. If fis an increasing function, how does each esti-
mate compare with the actual value? Explain your reasoning.

x 0 1123 4 5 6

f&)

—6

0

8

18

30

50

80

Think About It The graph of f consists of line segments and
a semicircle, as shown in the figure. Evaluate each definite
integral by using geometric formulas.

4.2

(=4.-D

2 6 2
(@) Jf (x)dx  (b) J f)dx () J f(x) dx
0 2 —4

(d) J14f(x) dx  (e) Jﬁ4|f(x)| dx () J,4[f(x) + 2] dx
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280 Chapter 4 Integration

48. Think About It The graph of f consists of line segments, as
shown in the figure. Evaluate each definite integral by using
geometric formulas.

y
4 -+
3T (3.2 42
2T /‘—\ (11, 1)
I /

] ] ] ] ]

T T T } T T } T T x
-1 A/i 2 3 4 5 6 8 10 11

2k
3L (8,-2)
_4
1 4
@ | ) ax ®) j 34(0)
0 3
7 11
(©) | flx)dx (d) J flx) dx
011 510
(e) flx) dx

) | fx)dx
4

49. Think About It Consider the function f that is continuous on
the interval [—35, 5] and for which

fmm=4

Evaluate each integral.

m>£uu%+ﬂw w>ﬁg&+mdx

5 5
(c) J f(x) dx (fiseven.)  (d) J f(x) dx (fis odd.)
-5 -5

50. Think About It A function fis defined below. Use geometric
formulas to find fé‘ f(x) do.

) ={4, x <4

x, x=4
51. Think About It A function fis defined below. Use geometric
formulas to find fy° f(x) dx.

) = {6, x>6

—%x+9, x<6

CAPSTONE

52. Find possible values of ¢ and b that make the statement
true. If possible, use a graph to support your answer. (There
may be more than one correct answer.)

(@LJ@M+£f®ﬂ=waﬂ

3 6 b 6
(b) j fx) dx + J flx) dx — J' Sx) dx = J Jx) dx
-3 3 a -1
b
() J sinxdx < 0

b
(d) j cosxdx =0

WRITING ABOUT CONCEPTS

In Exercises 53 and 54, use the figure to fill in the blank with
the symbol <, >, or =.
y
6 -+
5 -+
4 -+
3 -+
2 -+
1 —

Il
T

T T N T
—
1 2 3 4 5 6

X

53. The interval [1, 5] is partitioned into n subintervals of equal
width Ax, and x; is the left endpoint of the ith subinterval.

Jl flx) dx

54. The interval [1, 5] is partitioned into n subintervals of equal
width Ax, and x; is the right endpoint of the ith subinterval.

ZMMx Jﬁmw

55. Determine whether the function f(x) =

1 is integrable
on the interval [3, 5]. Explain.

56. Give an example of a function that is integrable on the
interval [— 1, 1], but not continuous on [—1, 1].

In Exercises 57-60, determine which value best approximates
the definite integral. Make your selection on the basis of a
sketch.

57. r Sx dx

(:) 5 (b) =3 (c) 10 (d 2 (e) 8
58. J'l/24cos X dx

<;14 M35 @16 (@27 (o) =6
59. Jl 2 sin 7x dx

é6 M3 ©4 (@3
60. J;g(l + Vx) dx

(a) =3 (b) 9 (c) 27 (d) 3

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



4.3 Riemann Sums and Definite Integrals 281

ldP' Programming Write a program for your graphing utility to 72. Find the Riemann sum for f(x) = sinx over the interval
approximate a definite integral using the Riemann sum [0, 27], where x, =0, x, = 7/4, x, = 7/3, x; = 7, and
R x, = 2m, and where ¢, = 7/6, ¢, = w/3, ¢ = 2m/3, and
Ef(ci)Axi ¢y = 37/2.
i=1 b p? — g2
where the subintervals are of equal width. The output should 73. Prove that L X = 2

give three approximations of the integral, where c; is the » b — &
left-hand endpoint L(zz), the midpoint M(n), and the right-hand 74. Prove that j X2 dx = 3

endpoint R(n) of each subinterval. In Exercises 61-64, use the ¢
program to approximate the definite integral and complete the

75. Think About It Determine whether the Dirichlet function

table. () = 1, xisrational
fix 0, xis irrational
n 4 181216 | 20
is integrable on the interval [0, 1]. Explain.
L(n) 76. Suppose the function f is defined on [0, 1], as shown in the
M(ll) ﬁgure.
R(n) o = (1), x=0
;, 0<x <1

3 3
61. J X3 — xdx 62. J %dx v
0 0 -

+1

/2 3
63. J sin® x dx 64. J X sin x dx
0 0

True or False? In Exercises 65-70, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

0.5 1.0 1.5 2.0

b

s [ b+ stolas = [ goacs [ewas

a

Show that f; f(x) dx does not exist. Why doesn’t this contradict

66. Lb f(x)glx) dx = [Lb fx) dx][Lb g(x) dx] Theorem 4.4?

77. Find the constants a and b that maximize the value of

67. If the norm of a partition approaches zero, then the number of b
subintervals approaches infinity. J (1 = x?) dx.
68. If fis increasing on [a, b], then the minimum value of f(x) on ‘
[a, b] is f(a). Explain your reasoning.

69. The value of [” f(x) dx must be positive. 78

2
. Evaluate, if possible, the integral J [x] dx.
70. The value of [5 sin (x?) dx is 0. 0

79. Determine
71. Find the Riemann sum for f(x) = x> + 3x over the interval |
[0, 8], where x, = 0, x;, = 1, x, = 3, x; = 7, and x, = 8, and lim —[12+ 22 + 32+ - - + n?]
where ¢, = 1,¢, = 2,¢3 =5,and ¢, = 8. e
y y by using an appropriate Riemann sum.

100 + 1.5+
80 + 1.0+

PUTNAM EXAM CHALLENGE
604 054 / 80. For each continuous function f: [0,1]—R, let

I(f) = [ x2f(x) dx and J(x) = [, x(f(x))* dx. Find the

40 + } } . .
. ‘ x 3 maximum value of I( f) — J( f) over all such functions f.
T T 2 2
| (A R T X 1 This problem was composed by the Committee on the Putnam Prize Competition.
> 4 6 8 10 © The Mathematical Association of America. All rights reserved.
-2 | 2 4 6 810 s
Figure for 71 Figure for 72
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Integration

@ The Fundamental Theorem of Calculus

EXPLORATION

Integration and Antidifferentiation
Throughout this chapter, you have
been using the integral sign to
denote an antiderivative (a family
of functions) and a definite integral
(a number).

Antidifferentiation: J fx) dx

b
Definite integration: J flx) dx

The use of this same symbol for
both operations makes it appear
that they are related. In the early
work with calculus, however, it
was not known that the two
operations were related. Do you
think the symbol [ was first
applied to antidifferentiation or to
definite integration? Explain your
reasoning. (Hint: The symbol was
first used by Leibniz and was
derived from the letter S.)

Evaluate a definite integral using the Fundamental Theorem of Calculus.
Understand and use the Mean Value Theorem for Integrals.

Find the average value of a function over a closed interval.

Understand and use the Second Fundamental Theorem of Calculus.
Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus

You have now been introduced to the two major branches of calculus: differential
calculus (introduced with the tangent line problem) and integral calculus (introduced
with the area problem). At this point, these two problems might seem unrelated—but
there is a very close connection. The connection was discovered independently by
Isaac Newton and Gottfried Leibniz and is stated in a theorem that is appropriately
called the Fundamental Theorem of Calculus.

Informally, the theorem states that differentiation and (definite) integration are
inverse operations, in the same sense that division and multiplication are inverse
operations. To see how Newton and Leibniz might have anticipated this relationship,
consider the approximations shown in Figure 4.26. The slope of the tangent line was
defined using the guotient Ay/Ax (the slope of the secant line). Similarly, the area of
a region under a curve was defined using the product AyAx (the area of a rectangle).
So, at least in the primitive approximation stage, the operations of differentiation and
definite integration appear to have an inverse relationship in the same sense that
division and multiplication are inverse operations. The Fundamental Theorem of
Calculus states that the limit processes (used to define the derivative and definite
integral) preserve this inverse relationship.

Tangcnt Area of
line region
under
curve
_______ A;_ JE
Slope = Ax Area = AyAx Area = AyAx

(a) Differentiation
Differentiation and definite integration have an “inverse”relationship.
Figure 4.26

(b) Definite integration

THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS

If a function fis continuous on the closed interval [a, ] and F is an antideriv-
ative of f on the interval [a, b], then

j f(x) dx = F(b) — F(a).
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4.4 The Fundamental Theorem of Calculus 283

The key to the proof is in writing the difference F(b) — F(a) in a convenient
form. Let A be any partition of [a, b].

a=xy <X <X, <--""<x, ,<x,=b
By pairwise subtraction and addition of like terms, you can write

F(b) — F(a) = F(x,) — F(xn,l) + F(xn,l) — = F(x,) + F(x,) — F(xo)

n

SF() — Fir,_ ).

i=1

By the Mean Value Theorem, you know that there exists a number ¢, in the ith subin-
terval such that

Fle) = F(x;) — F(xl-_l)'

i _
Xi T X

Because F'(c;) = f(c;), you can let Ax; = x; — x,_, and obtain

This important equation tells you that by repeatedly applying the Mean Value
Theorem, you can always find a collection of ¢,’s such that the constant F(b) — F(a)
is a Riemann sum of fon [a, b] for any partition. Theorem 4.4 guarantees that the limit
of Riemann sums over the partition with |A|| — 0 exists. So, taking the limit
(as |A]| = 0) produces

F(b) — Fla) = J f(x) dx. ]

The following guidelines can help you understand the use of the Fundamental
Theorem of Calculus.

GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF CALCULUS

1. Provided you can find an antiderivative of f, you now have a way to evaluate
a definite integral without having to use the limit of a sum.

2. When applying the Fundamental Theorem of Calculus, the following notation
is convenient.

fﬂx) dx = F(2)|
= F(b) — F(a)

b
a

For instance, to evaluate [ x3 dx, you can write

3 473 4 4
s, X3 18l 1
ﬁxdx 4]1 1 1 1 1 20.

3. It is not necessary to include a constant of integration C in the antiderivative
because

Lbf(x) dy = [F(x) + C]

= [F(b) + C] — [F(a) + C]
= F(b) — F(a).

b

a
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O EXAMPLE ] Evaluating a Definite Integral

Evaluate each definite integral.

2 4 /4
a. J (x2 — 3) dx b. J 3V x dx c. j sec? x dx
I I 0

Solution
. 3 2 (8 1 2
2 _ I _(° _ _ (L _ _=
a. Jl (x2 — 3) dx [3 3x}1 (3 6) <3 3> 3
4 4 x3/2 4
b. f 3 /xdx = 3f X2 dx = 3[—} =2(4)%2 — 2(1)¥2 = 14
1 1 3/2 1

/4

/4
c. J seczxdx=tanx] =1-0=1
0 0

v oy=lax-1| EXAMPLE |3 A Definite Integral Involving Absolute Value

2
Evaluate J |2x — 1| dx.
0

Solution Using Figure 4.27 and the definition of absolute value, you can rewrite the
integrand as shown.

I2¢ — 1] :{—(Zx— 1), x<
2x — 1, X =

o= N—

From this, you can rewrite the integral in two parts.

I I I
T T T X

-1 1 2 2 1/2 2
j |2x—1|dx=J —(Zx—l)dx-i-J (2x — 1) dx
0 0 1

y=—2x-1) | y=2x—1 /2
1/2 2
The definite integral of y on [0, 2] is 3. = [—x2 + x] + [x2 — x}
Figure 4.27 0 12
—(—1+1>—(0+0)+(4—2)—(]—1>
4 2 4 2
_3
2
y : .
ao3een EXAMPLE [EJ Using the Fundamental Theorem to Find Area
4 Find the area of the region bounded by the graph of y = 2x> — 3x + 2, the x-axis, and
the vertical lines x = 0 and x = 2, as shown in Figure 4.28.
T Solution Note that y > 0 on the interval [0, 2].
2
7 Area = J (2x2 —3x + 2) dx Integrate between x = 0 and x = 2.
0
14 3 2 2
= [Zi - 3 + Zx} Find antiderivative.
3 2 0
L2 s 4 16
= ? —6+4)]—-(0—-0+0) Apply Fundamental Theorem.
The area of the region bounded by the graph
o = — 9 10 10 o
of y, the x-axis, x = 0,andx = 21is 5. =— Simplify. m
Figure 4.28 3
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Mean value rectangle:

0 —a) = j 15 de
Figure 4.29

4.4 The Fundamental Theorem of Calculus 285

The Mean Value Theorem for Integrals

In Section 4.2, you saw that the area of a region under a curve is greater than the area
of an inscribed rectangle and less than the area of a circumscribed rectangle. The
Mean Value Theorem for Integrals states that somewhere “between” the inscribed and
circumscribed rectangles there is a rectangle whose area is precisely equal to the area
of the region under the curve, as shown in Figure 4.29.

THEOREM 4.10 MEAN VALUE THEOREM FOR INTEGRALS

If fis continuous on the closed interval [a, b], then there exists a number ¢ in
the closed interval [a, b] such that

Jf b - a).

Case 1: If fis constant on the interval [a, b], the theorem is clearly valid because ¢
can be any point in [a, b].

Case 2: If f is not constant on [a, b], then, by the Extreme Value Theorem, you can
choose f(m) and f(M) to be the minimum and maximum values of f on [a, b].
Because f(m) < f(x) < f(M) for all x in [a, b], you can apply Theorem 4.8 to write
the following.

j f(m) dx < be(x) dx f fmM See Figure 4.30.
(m)b —a) = J f&dx = f(M)(b — a)
flm) = 5 — af fx)dx < f(M)

From the third inequality, you can apply the Intermediate Value Theorem to conclude
that there exists some ¢ in [a, b] such that

or  fle)b—a)= rf(x) dx
/ /—‘
f f__/ /l f)

a b a b a b

f(Vn){

Inscribed rectangle Mean value rectangle Circumscribed rectangle
(less than actual area) (equal to actual area) (greater than actual area)

b
J f(m) f(m)(b — a) J' f(x) dx J f(M) dx M)(b — a)

Figure 4.30

(i3 Notice that Theorem 4.10 does not specify how to determine c. It merely
guarantees the existence of at least one number c in the interval. |

Copyright 2010 Cengage Learning. All Rights Reserved.
May not be copied, scanned, or duplicated, in whole or in part.



286 Chapter 4 Integration

Average value

//-\ e
N

a b

1 b
Average value = b—aJ f(x) dx
Figure 431 '

104 (4, 40)
30 -+ f(X) 3X - 2x
20

1
10 + ! Average

: value = 16

1, -
t ! x
1 2

Figure 4.32

Average Value of a Function

The value of f(c) given in the Mean Value Theorem for Integrals is called the average
value of f on the interval [a, b].

DEFINITION OF THE AVERAGE VALUE OF A FUNCTION ON AN INTERVAL

If fis integrable on the closed interval [a, b], then the average value of f on
the interval is

L e

Notice in Figure 4.31 that the area of the region under the graph of fis equal to the
area of the rectangle whose height is the average value. |

To see why the average value of f is defined in this way, suppose that you
partition [a, b] into n subintervals of equal width Ax = (b — a)/n. If ¢; is any point in
the ith subinterval, the arithmetic average (or mean) of the function values at the ¢;’s
is given by

1
= ;[f(c,) +f(62) + - +f(Cn):|. Average of f(c,),. . ., f(c,)

By multiplying and dividing by (b — a), you can write the average as
1 b—a z b—a
Sl - S ( )

b —a 2 1

1
Finally, taking the limit as n— oo produces the average value of f on the interval
[a, b], as given in the definition above.

This development of the average value of a function on an interval is only one
of many practical uses of definite integrals to represent summation processes. In
Chapter 7, you will study other applications, such as volume, arc length, centers of
mass, and work.

EXAMPLE [EJ Finding the Average Value of a Function

Find the average value of f(x) = 3x2 — 2x on the interval [1, 4].

Solution The average value is given by

| 4
- 2 _
4_1J‘1(3x 2x) dx

—l 3 2:|4
3[X X 1

1 48
=364 —16 - (1 -] = =16.

(See Figure 4.32.) [ ]
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George Hall/Corbis

The first person to fly at a speed greater
than the speed of sound was Charles
Yeager. On October 14, 1947, Yeager was
clocked at 295.9 meters per second at an
altitude of 12.2 kilometers. If Yeager had
been flying at an altitude below 11.275
kilometers, this speed would not have
“broken the sound barrier.” The photo
above shows an F-14 Tomcat, a supersonic,
twin-engine strike fighter. Currently,

the Tomcat can reach heights of 15.24
kilometers and speeds up to 2 mach
(707.78 meters per second).

4.4 The Fundamental Theorem of Calculus 287

EXAMPLE JE] The Speed of Sound

At different altitudes in Earth’s atmosphere, sound travels at different speeds. The
speed of sound s(x) (in meters per second) can be modeled by

—4x + 341, 0<x<l1l5
295, 115 <x <22

s(x) = {3x + 2785, 22 <x<32
3 + 25455, 32 < x <50

<
3¢ + 40435, 50 < x < 80

where x is the altitude in kilometers (see Figure 4.33). What is the average speed of
sound over the interval [0, 80]?

Solution  Begin by integrating s(x) over the interval [0, 80]. To do this, you can break
the integral into five parts.

11.5

115 115
J s(x) dx = J (—4x + 341) dx = [—2x2 + 341x] = 3657
0 0 0

2 2 2
J s(x) dx = f (295) dx = [295x] = 3097.5
1 1

1.5 1.5 11.5
32

32 32
f s(x) dx = J (3x + 278.5) dx = [§x2 + 278.5x] = 2987.5
22 22 22

50

50 50
f s(x) dx = J (3x + 254.5) dx = [%xz + 254.5x] = 5688
32 32 32

80

80 80
f s(x) dx = f (—3x + 404.5) dx = [—%ﬁ + 404.54 = 9210
5 5

0 0 50

By adding the values of the five integrals, you have
80
J s(x) dx = 24,640.
0

So, the average speed of sound from an altitude of 0 kilometers to an altitude of
80 kilometers is
80

1
Average speed = — | s(x) dx
80 |,

_ 24,640

0 308 meters per second.

A PN
310 \ / \
300 \ / \

290

Speed of sound (in m/sec)

280

Altitude (in km)

Speed of sound depends on altitude.
Figure 4.33 |
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EXPLORATION

Use a graphing utility to graph
the function

F(x) = J cos t dt
0

for 0 < x < . Do you recognize
this graph? Explain.

The Second Fundamental Theorem of Calculus

Earlier you saw that the definite integral of f on the interval [a, b] was defined using
the constant b as the upper limit of integration and x as the variable of integration.
However, a slightly different situation may arise in which the variable x is used in the
upper limit of integration. To avoid the confusion of using x in two different ways, ¢
is temporarily used as the variable of integration. (Remember that the definite integral
is not a function of its variable of integration.)

The Definite Integral as a Number The Definite Integral as a Function of x
’ F is a function of x.
b X
[t ax A = [ st
a \ a \

fisa fisa
Constant function of x. Constant function of 7.

EXAMPLE [ The Definite Integral as a Function

Evaluate the function
F(x) = J cos t dt

atx = 0, w/6, w/4, /3, and /2.

Solution  You could evaluate five different definite integrals, one for each of the

given upper limits. However, it is much simpler to fix x (as a constant) temporarily

to obtain

X X
f costdt=sint} = sinx — sin 0 = sin x.
0 0

Now, using F(x) = sin x, you can obtain the results shown in Figure 4.34.

X
Fx) = f cos ¢ dt is the area under the curve f(f) = cos ¢ from 0 to x.
0

Figure 4.34

You can think of the function F(x) as accumulating the area under the curve
f(t) = costfromt = 0tot = x. For x = 0, the area is 0 and F(0) = 0. For x = 7/2,
F(m/2) = 1 gives the accumulated area under the cosine curve on the entire interval
[0, 7r/2]. This interpretation of an integral as an accumulation function is used often
in applications of integration.
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4.4 The Fundamental Theorem of Calculus 289

In Example 6, note that the derivative of F is the original integrand (with only the
variable changed). That is,

d%[F(x)] _ d%[sin x] = ch[,[:

This result is generalized in the following theorem, called the Second Fundamental
Theorem of Calculus.

costdt] = COS X.

THEOREM 4.11 THE SECOND FUNDAMENTAL THEOREM OF CALCULUS

If fis continuous on an open interval / containing a, then, for every x in the
interval,

d‘i[fﬂr) ar| = o)

Begin by defining F as
F(x) = J £(t) dt.

Then, by the definition of the derivative, you can write

F(x + Ax) — F(x)

Fa) = Aljgo Ax
1 - [x+ Ax X
= AI}ElOAxL f(t) dt — Lf(t) dt}
1 - (x+ Ax a
= Aligloﬂ L f(t) dr + L () dt]
1 - [x+Ax V
= Alxiglorx L f() a’t}.

From the Mean Value Theorem for Integrals (assuming Ax > 0), you know there
exists a number c in the interval [x, x + Ax] such that the integral in the expression
above is equal to f (c) Ax. Moreover, because x < ¢ < x + Ay, it follows that c > x
as Ax— 0. So, you obtain

, 1
0 Flx) = lim [B fle) Ax]
dim, /1€)

7 ‘ ).

A similar argument can be made for Ax < 0. |

>
<
Il

)
L3 Using the area model for definite integrals, you can view the approximation

x+ Ax

X x+hAx f(x)Axxj f(t) dt

X

x+ Ax
f(x) Ax = f f(1) dt as saying that the area of the rectangle of height f(x) and width Ax is approximately equal to
x the area of the region lying between the graph of fand the x-axis on the interval [x, x + Ax], as
Figure 4.35 shown in Figure 4.35. [ ]
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Integration

Note that the Second Fundamental Theorem of Calculus tells you that if a func-
tion is continuous, you can be sure that it has an antiderivative. This antiderivative
need not, however, be an elementary function. (Recall the discussion of elementary
functions in Section P.3.)

EXAMPLE Using the Second Fundamental Theorem of Calculus

Evaluate d%c [j Jt2+ 1 dt}.
0

Solution Note that f(f) = /> + 1 is continuous on the entire real line. So, using
the Second Fundamental Theorem of Calculus, you can write

chU J2+1 dt} = J/x2+ 1. ]
0

The differentiation shown in Example 7 is a straightforward application of the
Second Fundamental Theorem of Calculus. The next example shows how this theorem
can be combined with the Chain Rule to find the derivative of a function.

EXAMPLE [E] Using the Second Fundamental Theorem of Calculus

X3

Find the derivative of F(x) = J cos t dt.
/2

Solution Using u = x3, you can apply the Second Fundamental Theorem of
Calculus with the Chain Rule as shown.

dF du
F'(x) = Ju dx Chain Rule
d du dF
=—|F(x)|— Definition of —
du[ ()] dx du
-3
dl [* du ) o
= — cos tdt|— Substitute cos t dt for F(x).
dul |, dx /2
d " du )
= — cos tdt|— Substitute u for x>.
dul J ./ dx
= (COS u)(3x2) Apply Second Fundamental Theorem of Calculus.
= (COS x3)(3x2) Rewrite as function of x. |

Because the integrand in Example 8 is easily integrated, you can verify the
derivative as follows.

3
A X3

‘ . . . .
F(x) = J cos t dt = sin t} =ginx® — sin— = (sinx?) — 1
/2 /2 2

In this form, you can apply the Power Rule to verify that the derivative is the same as
that obtained in Example 8.

F'(x) = (cos x3)(3x?)
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Net Change Theorem

The Fundamental Theorem of Calculus (Theorem 4.9) states that if fis continuous on
the closed interval [a, b] and F is an antiderivative of f on [a, b], then

J f(x) dx = F(b) — F(a).

But because F'(x) = f(x), this statement can be rewritten as

where the quantity F(b) — F(a) represents the net change of F on the interval [a, b].

THEOREM 4.12 THE NET CHANGE THEOREM

The definite integral of the rate of change of a quantity F’(x) gives the total
change, or net change, in that quantity on the interval [a, b].

b
J F’(x) dx = F(b) - F(Cl) Net change of F

a

EXAMPLE [EJ Using the Net Change Theorem

A chemical flows into a storage tank at a rate of 180 + 3¢ liters per minute, where
0 = r = 60. Find the amount of the chemical that flows into the tank during the first
20 minutes.

Solution Let ¢(r) be the amount of the chemical in the tank at time ¢. Then ¢’(f)
represents the rate at which the chemical flows into the tank at time ¢. During the first
20 minutes, the amount that flows into the tank is

20 20
f c'(t)dt = J (180 + 3¢) dr
0 0

3 5 20
= + —
[ISOt 2t ]O

= 3600 + 600 = 4200.

So, the amount that flows into the tank during the first 20 minutes is 4200 liters.
|

Another way to illustrate the Net Change Theorem is to examine the velocity of
a particle moving along a straight line where s(¢) is the position at time ¢. Then its
velocity is v(t) = s’() and

f v(t) dt = s(b) — s(a).

a

This definite integral represents the net change in position, or displacement, of the
particle.
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v(1)

A, A,, and A, are the areas of the shaded
regions.
Figure 4.36

v(r)

-2+

Figure 4.37

When calculating the fotal distance traveled by the particle, you must consider the
intervals where v(f) < 0 and the intervals where v(f) = 0. When v(f) < 0, the
particle moves to the left, and when v(f) = 0, the particle moves to the right. To
calculate the total distance traveled, integrate the absolute value of velocity |v(7)]. So,
the displacement of a particle and the total distance traveled by a particle over [a, b]
can be written as

b
Displacement on [a, b] = J v(t)dt = A, — A, + A,

a

b
Total distance traveled on [a, b] = J |v(t)| dt = A, + A, + A,

(see Figure 4.36).

EXAMPLE [[i] Solving a Particle Motion Problem

A particle is moving along a line so that its velocity is v(r) = * — 102 + 29¢ — 20
feet per second at time 7.

a. What is the displacement of the particle on the time interval 1 < r < 5?
b. What is the total distance traveled by the particle on the time interval 1 < ¢t < 5?

Solution

a. By definition, you know that the displacement is

5 5

J v(t) dt = J (» — 1072 + 29t — 20) dt
1 1

5

=2 - 20t]

1

So, the particle moves % feet to the right.

b. To find the total distance traveled, calculate [} |v(z)| dr. Using Figure 4.37
and the fact that v(¢) can be factored as (+ — 1)(r — 4)(t — 5), you can determine
that v(r) = O on[1,4]and v(r) < 0on [4,5]. So, the total distance traveled is

f |v(2)| dt = r v(t) dt — JS v(t) dt

= J (2 — 102 + 29t — 20) dt — J (» — 1072 + 29¢ — 20) dt
1 4

4 4 4 5
= [t— S0a 2 201‘] - [t— 10 2 ZOt}

4 3 2 1 4 3 2 4
45 <_l>
4 12
= %feet. [ |
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@ EXEI’C ISES See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

'dF" Graphical Reasoning In Exercises 1-4, use a graphing utility
to graph the integrand. Use the graph to determine whether the
definite integral is positive, negative, or zero.

T 4 T
1. ———d> 2. J
sz-i-ldx J;cosxdx
2 2
3. J xVx2+ ldx 4. j X2 — xdx
2 -2

In Exercises 5-26, evaluate the definite integral of the algebraic
function. Use a graphing utility to verify your result.

2 9
5. J 6x dx 6. J 5dv
0 4

0 5
7. (2x — 1) dx 8. J (=3v+4)dv
-1 2
1 7
9. J (12 — 2) dt 10. J (6x2 + 2x — 3) dx
-1
1
11. J (2t — 1)2dt 12. 3-91d
0

u—— a’u

23
13. J (—2— 1>dx 14. j
1 X
4
u—2
15. 16. 134
Jl Ju j e
E/E ~J‘

17. Jll( —2)dt 18. f

1
19.Jx X 4 20. | 2 - 0)ide
0

0 —
113 — 12/3) g 22. J % — x*
( ) RN

5 4
23. J [2x — 5] dx 24. j(S— |x = 3]) dx
0 1

21.

4

4
25. | |x® —9]dx 26. J |x? — 4x + 3| dx
0 0

In Exercises 27-34, evaluate the definite integral of the trigono-
metric function. Use a graphing utility to verify your result.

27. J (1 + sin x) dx 28. J (2 + cos x) dx
0 0
/4 . /4

1 — sin%0 sec? 0
29. —_— . —
? L cos?0 a6 30 J; tan? 6 + 1 d6

/6

31. J sec?x dx
—/6

/2
32. J (2 — csc2x) dx

/3
33. J 4 sec Otan 0dO
—m/3

34. J (2t + cos t) dt
—m/2

In Exercises 35-38, determine the area of the given region.

35. y = x — x? 36.y=;12

y y

-

1 f } x
1 2
37. y = cosx 38. y =x + sinx
y y
4,,
1 34+
2,,
1,,
} \ x } f x
fid b4 T T
4 2 2

In Exercises 39—44, find the area of the region bounded by the
graphs of the equations.

39. y=5x>+2, x=0, x=2, y=0

40. y=x*+x, x=2, y=0

41. y=1+ ¥x, x=0, x=8, y=0

2.y=063-xVx, y=0

43. y= —x>+4x, y=0 4. y=1—-x% y=0

In Exercises 45-50, find the value(s) of ¢ guaranteed by the

Mean Value Theorem for Integrals for the function over the
given interval.

45. f(0) = 2, [0,3] 46. f(x) = % [1,3]
47. f(x) = Vx, [4,9] 48. f(x) = x — 2Vx, [0,2]
49. f( ) = 2secx, [—m/4, w/4]
flx) =cosx, [—m/3, w/3]
In Exercises 51-56, find the average value of the function over

the given interval and all values of x in the interval for which the
function equals its average value.

51 f(x) =9 — 22, [-3,3]

5250 -y
53. fx) = %, [O, 1]

4. f(x) = —-3x3 [—1,2]
55. f(x) = sinx, [0, 7]
56. f(x) = cosx, [0, /2]
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294 Chapter 4 Integration

57. Velocity The graph shows the velocity, in feet per second, of 63. Respiratory Cycle The volume V, in liters, of air in the lungs
a car accelerating from rest. Use the graph to estimate the during a five-second respiratory cycle is approximated by the
distance the car travels in 8 seconds. model V = 0.1729¢ + 0.1522¢> — 0.0374¢3, where ¢ is the time

v v in seconds. Approximate the average volume of air in the lungs

g 150 ’—g 100 during one cycle.

2 120 — ] bt %0 {dp' 64. Average Sales A company fits a model to the monthly sales
‘g % p) data for a seasonal product. The model is

5 90 / 5 60\

< < \ S(z)=5+18+05sin(ﬂ) 0<r<24

é 60 \5/ 40 N 4 . B 6 ) <t =<

2 3 2 2 N

8 8 N ~. where S is sales (in thousands) and ¢ is time in months.

> 408 12 16 20 rg N ! (a) Use a graphing utility to graph f(t) = 0.5 sin(7t/6) for

Time (in seconds) Time (in seconds) 0 =t = 24. Use the graph to explain why the average
value of f(t) is 0 over the interval.

Figure for 57 Figure for 58 (b) Use a graphing utility to graph S(1) and the line

58. Velocity The graph shows the velocity, in feet per second, of a g(t) = /4 + 1.8 in the same viewing window. Use the
decelerating car after the driver applies the brakes. Use the graph graph and the result of part (a) to explain why g is called
to estimate how far the car travels before it comes to a stop. the trend line.

ldP' 65. Modeling Data An experimental vehicle is tested on a

WRITING ABOUT CONCEPTS straight track. It starts from rest, and its velocity v (in meters per

59. The graph of fis shown in the figure. second) is recorded every 10 seconds for 1 minute (see table).
i t | 0|10 20| 30 40 | 50 | 60
4 +
v 10| 5 |21 |40 62| 78 | 83
3L
2+ f (a) Use a graphing utility to find a model of the form
L v = at® + bt*> + ct + d for the data.
e (b) Use a graphing utility to plot the data and graph the model.
1 2 3 4 5 6 7

(c) Use the Fundamental Theorem of Calculus to approximate

. the distance traveled by the vehicle during the test.
(a) Evaluate [, f(x) dx.

(b) Determine the average value of f on the interval [1, 7]. CAPSTONE
(c) Determine the answers to parts (a) and (b) if the graph 66. The graph of fis shown in the figure. The shaded region
is translated two units upward. A has an area of 1.5, and [§ f(x) dx = 3.5. Use this

inf tion to fill in the blanks.
60. If r'(¢) represents the rate of growth of a dog in pounds tniormation to Tk m the blanks

per year, what does r(t) represent? What does [5 r/(1) dt @ | fx)dx = y
represent about the dog? 0
6
) | flx)dx =
2
61. Force The force F (in newtons) of a hydraulic cylinder in a 6 A
press is proportional to the square of sec x, where x is the © | |f&x)|dx = : ‘
distance (in meters) that the cylinder is extended in its cycle. 72 2405 6 *
The domain of F is [0, 7/3], and F(0) = 500. @ J 25
(a) Find F as a function of x.
(b) Find the average force exerted by the press over the (e) f 2+ f(x)]dx =
interval [0, 7/3]. 0
62. Blood Flow The velocity v of the flow of blood at a distance (f) The average value of f over the interval [0, 6] is
r from the central axis of an artery of radius R is
v =k(R?> —r?) : . :
In Exercises 67-72, find F as a function of x and evaluate it at
where k is the constant of proportionality. Find the average rate x=2x=35andx = 8.
of flow of blood along a radius of the artery. (Use O and R as x x
the limits of integration.) 67. Flx) = J' (4r = 7) dr 68. F(x) = J (£ + 2t = 2)dr
0 2
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69. F(x) = J %dv 70. F(x) = j —=dt
1V L

X

71. F(x) = J cos 0dO

1

x

72. Flx) = j sin 0.d0
0

73. Let g(x) = [y f(2) dt, where f is the function whose graph is
shown in the figure.
(a) Estimate g(0), g(2), g(4), g(6), and g(8).

(b) Find the largest open interval on which g is increasing. Find
the largest open interval on which g is decreasing.

(c) Identify any extrema of g.
(d) Sketch a rough graph of g.

y y

f T

4 2

: : [

2 } t
| f SN 235678
| t -2

12234 7.8 3

-2 -4
Figure for 73 Figure for 74

74. Let g(x) = [y f(¢) dt, where f is the function whose graph is
shown in the figure.
(a) Estimate g(0), g(2), g(4), g(6), and g(8).
(b) Find the largest open interval on which g is increasing. Find
the largest open interval on which g is decreasing.

(c) Identify any extrema of g.
(d) Sketch a rough graph of g.

In Exercises 75— 80, (a) integrate to find F as a function of x and
(b) demonstrate the Second Fundamental Theorem of Calculus
by differentiating the result in part (a).

75. F(x) = J (t +2) dt 76. F(x) = J (2 + 1) de
0 0

77. F(x) = Vit 78. F(x) = j Jidt
8 4

79. F(x) = J sec2tdt 80. F(x) = j sec ttan ¢ dt
/4 /3

In Exercises 81-86, use the Second Fundamental Theorem of
Calculus to find F'(x).

X x t2
= 2 = 51
81. F(x) L(t 21) dt 82. F(x) J1 L

83. F(x) = J ST Id 84, Flx) = J Yidr

85. F(x) = J tcostdt 86. F(x) = j sec’ t dt
0 0

In Exercises 87-92, find F'(x).
x+2 X

87. F(x) = J (4t + 1) dt 88. F(x) = J 3 dt

X —x

89.

91.

93.

9.

95.

96.

4.4 The Fundamental Theorem of Calculus 295

sin x

J1dt

90. F(x) = J t%dz

2

F(x) = )

X3
F(x) = J sin t2 dt

0

x2

92. F(x) = J sin 02 d0

0

Graphical Analysis  Sketch an approximate graph of g on the
interval 0 < x < 4, where g(x) = [y f(r) dt. Identify the
x-coordinate of an extremum of g. To print an enlarged copy of
the graph, go to the website www.mathgraphs.com.

-2+

Use the graph of the function f shown in the figure and the
function g defined by g(x) = [ f(¢) dt.

4t i
—+ (o ——
2,,
—e

T
+ 2 4 6 8 10
-2+ o—————————
_4,,

(a) Complete the table.

x 1|23/ 4|/5 6,78 910

g(x)

(b) Plot the points from the table in part (a) and graph g.
(c) Where does g have its minimum? Explain.
(d) Where does g have a maximum? Explain.

(e) On what interval does g increase at the greatest rate?
Explain.

(f) Identify the zeros of g.

Cost The total cost C (in dollars) of purchasing and maintain-
ing a piece of equipment for x years is

X

C(x) = 5000(25 + 3J /4 dz).

0
(a) Perform the integration to write C as a function of x.
(b) Find C(1), C(5), and C(10).

Area The area A between the graph of the function
g() = 4 — 4/¢* and the t-axis over the interval [1, x] is

Alx) = ﬁ (4 - %) .

(a) Find the horizontal asymptote of the graph of g.

(b) Integrate to find A as a function of x. Does the graph of A
have a horizontal asymptote? Explain.
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296 Chapter 4 Integration

In Exercises 97-102, the velocity function, in feet per second, is
given for a particle moving along a straight line. Find (a) the
displacement and (b) the total distance that the particle travels
over the given interval.

97. v(t) =5t—17, 0<t<3

98. v(t) =P —t—12, 1 <t<5

9. v(t) = — 102+ 27t — 18, 1 <t<7

100. v(t) = — 82+ 151, 0<t<5

101. v(t)=i, l<tr<4 102. v(r) = cost, 0 <t <3mw
Nz

103. A particle is moving along the x-axis. The position of the par-
ticle at time ¢ is given by x(r) = — 6>+ 9r — 2,
0 =r = 5. Find the total distance the particle travels in
5 units of time.

104. Repeat Exercise 103 for the position function given by
xt)=0—-1)(Fr—-3)%0<t<5.

105. Water Flow Water flows from a storage tank at a rate of
500 — 5t liters per minute. Find the amount of water that
flows out of the tank during the first 18 minutes.

106. Oil Leak At 1:00 p.M., oil begins leaking from a tank at a
rate of 4 + 0.75¢ gallons per hour.

(a) How much oil is lost from 1:00 p.M. to 4:00 p.Mm.?
(b) How much oil is lost from 4:00 p.M. to 7:00 p.M.?

(c) Compare your answers from parts (a) and (b). What do
you notice?

In Exercises 107-110, describe why the statement is incorrect.

107. 171 —1=-2

110. CSC X CO =
/2

111. Buffon’s Needle Experiment A horizontal plane is ruled
with parallel lines 2 inches apart. A two-inch needle is tossed
randomly onto the plane. The probability that the needle will
touch a line is

/2
P = EJ sin 6 d6
T Jo

where 6 is the acute angle between the needle and any one of
the parallel lines. Find this probability.

d v(x)
112. Prove that 7[
dx ),

£0) dr] — A () — Ao,

True or False? 1In Exercises 113 and 114, determine whether
the statement is true or false. If it is false, explain why or give
an example that shows it is false.

113. If F’(x) = G’(x) on the interval [a, b], then F(b) — F(a) =
G(b) — Gla).

114. If fis continuous on [a, b], then fis integrable on [a, b].

115. Show that the function

is constant for x > 0.
116. Find the function f(x) and all values of ¢ such that

fo(t)dt=x2+x*2.

117. Let G(x) = J [sj f(t)dt] ds, where fis continuous for all
0 0

real . Find (a) G(0), (b) G’(0), (c) G”(x), and (d) G”(0).

SECTION PROJECT

Demonstrating the Fundamental Theorem

Use a graphing utility to graph the function y, = sin®7 on the
interval 0 < ¢ < . 