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Preface

Modal logic, the logic created to formalise the concepts of possibility and necessity,
has a long and important history that begins with Aristotle, who claims that

Since there is a difference according as something belongs, necessarily belongs, or may
belong to something else (for many things belong indeed, but not necessarily, others neither
necessarily nor indeed at all, but it is possible for them to belong), it is clear that there
will be different syllogisms to prove each of these relations, and syllogisms with differently
related terms, one syllogism concluding from what is necessary, another from what is, a
third from what is possible. [2, Book I, part 8]

For many years modal logic was exclusively considered a (Hilbertian) syntac-
tic tool. It was not until Kripke’s discoveries of the early 1960s that modal logic
was opened up to semantic research, and it is in this context that its reputation
and development have blossomed. Indeed, today modal logic is mainly seen as a
way of talking about frames and models, and as such it represents one of the most
stimulating and widely studied fields of contemporary logic. But the development of
modal logic from a proof-theoretical point of view has been lacking in comparison
with its progress in semantics. There seems to be a feeling of general dissatisfaction
and disagreement amongst practitioners. As Blackburn, Rijke and Venema note,

modal proof theory and automated reasoning are still relatively youthful enterprises; they
are exciting and active fields, but as yet there is little consensus about methods and few
general results. [11, p. xvi]

In this book we would like to remedy this situation and to restore prestige to
proof theory for modal logic.

Prerequisites

We assume that the reader has attended an undergraduate course in logic and has
a good mastery of the rudiments of classical propositional logic (Hilbert-systems,
truth tables). Some prior acquaintance with modal logic and classical Gentzen cal-
culus is useful, but not essential (these topics are introduced in Sections 1.1 and 2.1,
respectively). The rest of the book is self-contained and accompanies the reader up
to the most recent and specialised research on this area.

v



vi Preface

What This Book Is About

Chapter 1 serves as an introduction to the Gentzen calculus from both a formal
and a conceptual perspective, and contains a description of the properties that a
good Gentzen calculus should satisfy. Some of these properties are linked to proof-
theoretic semantics. We have thus tried to summarise the different views that char-
acterise this topic. Nevertheless our presentation is far from comprehensive.

Chapter 2 is concerned with normal modal logic and ordinary sequent calculi for
this logic. In the last section of the chapter we reach the idea of generalising the
Gentzen calculus.

Chapter 3 deals with the syntactic generalisations of the Gentzen calculus, while
Chapter 4 deals with the semantic ones. The relationships between the extensions
of the sequent calculus for modal logic are the subject of Chapter 5.

Chapter 6 introduces tree-hypersequent calculi from both an intuitive and a for-
mal point of view. Tree-hypersequent calculi are proved to be adequate with respect
to their corresponding Hilbert systems.

Cut-admissibility and decidability of the tree-hypersequent calculi, both proved
in a purely syntactic fashion, will be in the foreground in Chapter 7, while Chapter
8 will deal with a purely semantic proof of the adequacy of the tree-hypersequent
calculi.

Chapter 9 contains a presentation of a hypersequent calculus for the system S5,
while Chapter 10 contains a tree-hypersequent calculus for the modal system GL,
or the logic of provability. In the first case, proofs of adequacy, cut-admissibility and
decidability are given; in the second case, proofs of adequacy and cut-admissibility
are provided.

Chapter 11 is concerned with (i) the relationships between tree-hypersequent
calculi and display calculi, (ii) the logics, other than modal logic, that the tree-
hypersequent method has been applied to, and (iii) the future directions of work.

What This Book Is Not About

There exists a wide variety of research in proof theory for modal logic. Due to
obvious limitations of size, it was not possible to take account of all this work. We
have thus made a selection that we explain in detail.

As concerns modal logic we have only dealt with those systems that are nowa-
days considered the main systems of modal propositional logic, e.g. K, KT, S4,
S5. All the others, as well as the entire field of first-order modal logic, have been
completely omitted. As concerns proof theory, we have concentrated only on the
sequent calculi; there is no mention of Gentzen’s other creation, namely natural
deduction, nor of more recent proof tools.

These omissions can be justified. The first is justifiable on the grounds that
it is sufficiently difficult to find a sequent calculus for those modal systems that
are considered the principal ones, and that also happen to be the simplest ones.
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Finding sequent calculi for more complicated modal logics may be an interesting
field for future research. On the other hand, the restriction to sequent calculi is jus-
tified since, among all attempts to adapt syntactic instruments to the case of modal
logic, progress has been notoriously slow for the case of sequent calculi. We take
this to be a reason in itself to concentrate on this subject.

Earlier Works

Parts or Chapters of the book borrow from various earlier papers, though in a sub-
stantially revised form. In particular, the argument proposed in Section 1.10 is a
more precise version of the one presented in [101]. Moreover, the notation used in
the tree-hypersequent calculi, as well as their presentation, has been improved in the
course of time, and harmonised with the rest of the book. To be precise, the earlier
work has been distributed as follows:

[101] Section 1.10 [104] Sections 5.1, 5.2, 11.1
[100] Chapters 6 and 7 [105] Chapters 6, 7, and 9
[99] Chapter 9 [103] Chapter 10

This book is the direct continuation of the work began during the author’s Ph.D.
thesis at the Department of Philosophy, University of Florence and IHPST, Univer-
sity of Paris 1.

Acknowledgement

First of all, I would like to express my deep gratitude to Pierluigi Minari who has
followed me since the very beginning of my scientific iter with a patience and a trust
that have been invaluable to me. Many years ago Pierluigi Minari introduced me to
the topic of this book and he has been encouraging and supporting the developments
of my research with great care and attention ever since. For this and much more I
owe him my heartfelt thanks.

I express my most sincere and enthusiastic acknowledgement to Heinrich
Wansing who accepted to be a member of the jury of my Ph.D, read a first version
of the book and then encouraged me to undertake this project. I am grateful to him
for his precious advice, and for his unconditional availability. I am also significantly
indebted to him as author of the book Displaying Modal Logic, and several other
articles on the proof theory for modal logic, which have been a main source of
inspiration and a model of accuracy.

I feel extremely grateful to the logic group of the University of Florence, and
in particular to Andrea Cantini, for having provided a welcoming and stimulating
environment for study and research. I would like to thank the University of Paris
1-IHPST, and in particular Gabriel Sandu, for all the great possibilities that were
offered to me during my time there. I deeply acknowledge the support given by



viii Preface

Michel Bourdeau and Peter Schroeder-Heister and the ANR Hypotheses for the
completion of the project. Last but not least, I consider myself very lucky to have
the chance of working as a post-doc in the CLWF group of the Vrije University
of Brussels, and in particular with Sonja Smets and Jean Paul Van Bendegem. I
profoundly thank them for the exceptional freedom conceaded.

B. Hill, P. Minari, F. Paoli, G. Sandu and H. Wansing read a first version of the
manuscript and gave inestimable comments. To them it goes all my gratitude.

For the insights provided, but also for the precious discussions, I am grateful to:
A. Avron, A. Antonelli, A. Baltag, B. Boretti, K. Brunnler, R. Dyckoff, B. Hill.,
L. Humberstone, A. Indrezejczak, P. Minari, S. Negri, T. Piazza, P. Schroeder-
Heister, H. Wansing.

I wish to thank Laura Crosilla and Paolo Mancosu for their help, Kerry Mc
Kenzie and Emilie Prattico for correcting the English.

I would like to thank the anonymous referee, who has accepted the arduous task
of checking my manuscript, for the insightfulness of his comments and remarks. I
also thank the editorial staff of Trends in Logic for their kind assistance.

I wish to thank with immense affection Cesare, Sonia, and Marco for being the
most wonderful family to be supported by. My most loving thank to Brian Hill,
without the help of whom this book would not exist, for having given to me the
happiest moments of my life. To the memory of my grandmother Bianca Guidi
Nesi, I dedicate with all my heart this book.

This work has been financially supported by the Flemish Found for Scientific
Research with grant G. 0152.08 and by the ANR project Hypotheses.

Brussels, Belgium Francesca Poggiolesi
September 2010



Contents

Part I An Overview of the Sequent Calculus

1 What Is a Good Sequent Calculus? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 The Sequent Calculus Gcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Formal Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Philosophical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Logicality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 From Logicality to Inferentialism . . . . . . . . . . . . . . . . . . . 16
1.3.4 Harmony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.5 Inferentialism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Subformula Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Admissibility of the Structural Rules . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.1 Operational vs Global Meaning . . . . . . . . . . . . . . . . . . . . 26
1.6 Admissibility of the Logical Rules . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.7 Explicitness, Separation and Symmetry . . . . . . . . . . . . . . . . . . . . . 28
1.8 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.9 Syntactic Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.10 Došen’s Principle Redefined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.10.1 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Part II Sequent Calculi for Modal Logic

2 Modal Logic and Ordinary Sequent Calculi . . . . . . . . . . . . . . . . . . . . . 39
2.1 Normal Modal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Ordinary Sequent Calculi for Modal Logic . . . . . . . . . . . . . . . . . . 45
2.3 The Idea of Generalising the Gentzen Calculus . . . . . . . . . . . . . . . 51

3 Purely Syntactic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Multiple Sequent Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



x Contents

3.2 Higher-Arity Sequent Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Display Sequent Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Semantic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1 Semantic Modal Sequent Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Indexed Sequent Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Internalised Forcing (Relation) Sequent Calculi . . . . . . . . . . . . . . 92

5 Comparing the Different Generalisations of the Sequent Calculus . 101
5.1 From Multiple Sequent Calculi to Display Sequent Calculi . . . . . 101
5.2 From Higher-Arity Sequent Calculi to Display Sequent Calculi . 104
5.3 From Indexed Sequent Calculi to Internalised Forcing Sequent

Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 From Indexed Sequent Calculi to Semantic Modal Sequent

Calculi and Vice Versa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 From Display Sequent Calculi to Internalised Forcing Sequent

Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Part III Tree-Hypersequent Calculi

6 On the Tree-Hypersequent Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.1 The Calculi Thsk* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Logical Variant of the Tree-Hypersequent Calculi . . . . . . . . . . . . . 126
6.3 Adequacy of the Tree-Hypersequent Calculi . . . . . . . . . . . . . . . . . 138

7 Syntactic Cut-Admissibility and Decidability . . . . . . . . . . . . . . . . . . . . 143
7.1 Cut-Admissibility in the Tree-Hypersequent Calculi . . . . . . . . . . . 143
7.2 Decidability of the Tree-Hypersequent Calculi . . . . . . . . . . . . . . . 156

8 Semantic Adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.1 Semantic Validity of the Tree-Hypersequent Calculi . . . . . . . . . . . 165
8.2 Semantic Completeness of the Tree-Hypersequent Calculi . . . . . . 170

9 A Hypersequent Calculus for the System S5 . . . . . . . . . . . . . . . . . . . . 175
9.1 The Calculus ThS5L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.2 Admissibility of the Structural Rules in ThS5L . . . . . . . . . . . . . . . 177
9.3 Adequacy of ThS5L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.4 Cut-Admissibility in ThS5L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.5 Decidability of ThS5L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10 A Tree-Hypersequent Calculus for the Modal Logic of Provability . 187
10.1 The Calculus ThsglL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.2 Admissibility of the Structural Rules in ThsglL . . . . . . . . . . . . . . . 188



Contents xi

10.3 Adequacy of ThsglL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.4 Cut-Admissibility in ThsglL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

11 Further Results on Tree-Hypersequent Calculi . . . . . . . . . . . . . . . . . . 203
11.1 Tree-Hypersequent Calculi and Other Calculi . . . . . . . . . . . . . . . . 203
11.2 Tree-Hypersequent Calculi and Other Logics . . . . . . . . . . . . . . . . . 206
11.3 Tree-Hypersequent Calculi and Further Developments . . . . . . . . . 207

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Symbols and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



Part I
An Overview of the Sequent Calculus

- D’ora in avanti sarò io a descrivere le città, - aveva detto il Kan. - Tu nei tuoi viaggi
verificherai se esistono. [...] io ho costruito nella mia mente un modello di città da cui
dedurre tutte le città possibili, - disse Kublai - Esso racchiude tutto quello che risponde alla
norma.

[I. Calvino, Le città invisibili, Oscar Mondadori, 2004]



Chapter 1
What Is a Good Sequent Calculus?

In his doctoral thesis of 1935, the young and brilliant student Gerhard Gentzen intro-
duced what is today known as the sequent calculus. Over the last eighty years the
sequent calculus has been the central interest of several illustrious proof theorists.
This has given rise to a broad literature and numerous results. Nevertheless, there
still are problems and issues concerning the sequent calculus that need to be fur-
ther developed and tackled. Amongst these, our attention has been attracted by one
question that can be expressed as follows: what is a good sequent calculus? What, in
other words, are the properties that a sequent calculus needs to satisfy to be consid-
ered good? The aim of this chapter is to attempt to find an answer to this question.

Before beginning our work on this task, let us underline two things. The first is
that, although the literature on this topic is not very extensive, in [6, 27, 63, 145,
149], lists of properties that characterise a good sequent calculus can be found. The
second is the importance of the question itself. Avron’s words [6, pp. 1, 2] give an
indication of why this is:

it is clear that there is no limit to the number of logics that logicians (and non-logicians)
can produce [...]. But what is a good logic? One simple answer might be: a logic which has
applications. This answer is not satisfactory, though. First, systems of logic are frequently
introduced before they find actual applications [...]. Second: Logic is an autonomous mathe-
matical discipline, and as such should have its own independent criteria. One such criterion
is the existence of a simple, illuminating semantic. This indeed is always a very good sign.
A more important criterion (in my opinion, and since logics deal above all with proofs) is
the existence of a good proof system. (Our emphasis.)

1.1 The Sequent Calculus Gcl

We begin our attempt to identify a good sequent calculus by introducing some basic
logical notions which will prove useful later. We exploit the framework of classical
propositional logic.

Definition 1.1 The classical propositional language Lc is composed of a denumer-
able stock of propositional letters (p0, p1, ...) and the logical operators ⊥, ∧, ∨
and →. We shall use p, q, ... as metavariables for propositional letters. Formulas
are constructed as usual; α, β, ... will be used as metavariables for generic formu-
las. PL will denote the set of propositional letters while WF will denote the set of

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_1, C© Springer Science+Business Media B.V. 2011
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4 1 What Is a Good Sequent Calculus?

well-formed formulas of classical propositional logic. We finally introduce the fol-
lowing abbreviations:

α ↔ β:= (α → β) ∧ (β → α)

¬α:= α →⊥
�:= ⊥→ ⊥

Definition 1.2 We understand a formal system S, based on a formal language L, to
include:

– an effective set of well-formed formulas called axioms,
– an effective set of rules, called inference rules, for deriving theorems from the

axioms.

The axioms and the inference rules that determine a formal system S are often called
postulates.

There are various types of formal systems, the three most common are: Hilbert
systems (H), Gentzen systems (G), natural deduction systems (N). In this book we
are mainly concerned with Gentzen systems, also called Gentzen calculi or sequent
calculi, but we will also work with Hilbert systems.

Definition 1.3 A derivation (or deduction) in a Hilbert system H is a finite (upward
growing) tree with a single root; the nodes of the tree are labelled by formulas
and the top nodes are labelled by axioms; for each non-terminal node, its label is
connected with the labels of the immediate predecessor nodes according with one of
the inference rules. The root of the tree is the conclusion of the whole derivation and
its label is a theorem of the Hilbert system H, in symbols: 	H α (or, equivalently,
	 α in H).

In order to introduce the notion of derivation in a Gentzen system, we first have
to introduce the notion of sequent, which is the following:

Definition 1.4 Let M , N , ... vary on finite or empty multisets of well-formed formu-
las; a sequent is an object of the form: M ⇒ N . M and N are called, respectively,
the antecedent and the consequent of the sequent.

Definition 1.5 The interpretation τ of a sequent M ⇒ N is: (M ⇒ N )τ

:=
∧

M → ∨
N . This means that the comma (that separates the formulas belonging

to the multisets M and N ) must be read as a conjunction in the antecedent and as a
disjunction in the consequent, while the arrow corresponds to the implication.

Definition 1.6 A derivation (or deduction) in a Gentzen system G has the same
structure of a derivation in a Hilbert system H except for the fact that the nodes are
labelled by sequents rather than by formulas. A theorem in a Gentzen system G is
the label of the root of a tree, in symbols: 	G M ⇒ N (or, equivalently, 	 M ⇒ N
in G).

We shall denote derivations in Gentzen or Hilbert systems by means of
metavariables d, d

′
, ... For the definition of derivation in a natural deduction system

we refer to [139, pp. 29, 30]. Let us now consider Gentzen systems in more detail.



1.1 The Sequent Calculus Gcl 5

Definition 1.7 The inference rules of the sequent calculus are ordered pairs or
triples of sequents, arranged in either of these two forms:

s
′

s

s
′

s
′′

s
The sequents above the horizontal line are called the upper sequents or the premises
of the rule; the sequent below the line is called the lower sequent or the conclusion of
the rule. The inference rules are divided into structural and logical rules: while the
structural rules operate on the structure of the sequents regardless of the formulas
that constitute them, the logical rules concern the introduction of a logical operator
on the left or on the right side of the sequent.

The postulates of the sequent calculus Gcl for classical propositional logic are
the following:

Axioms

Ax : p ⇒ p A⊥: ⊥ ⇒

Structural Rules
Weakening and Contraction

M ⇒ N

α, M ⇒ N
W A

M ⇒ N

M ⇒ N , α
W K

α, α, M ⇒ N

α, M ⇒ N
C A

M ⇒ N , α, α

M ⇒ N , α
C K

Cut-Rule

M ⇒ N , α α, P ⇒ Q

M, P ⇒ N , Q
cutα

Logical Rules
Propositional Rules

αi , M ⇒ N

α0 ∧ α1, M ⇒ N
∧A

M ⇒ N , α M ⇒ N , β

M ⇒ N , α ∧ β
∧K

α, M ⇒ N β, M ⇒ N

α ∨ β, M ⇒ N
∨A

M ⇒ N , αi

M ⇒ N , α0 ∨ α1
∨K

M ⇒ N , α β, M ⇒ N

α → β, M ⇒ N
→A

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α, M ⇒ N

M ⇒ N , α → β
→K1

M ⇒ N , β

M ⇒ N , α → β
→K2



6 1 What Is a Good Sequent Calculus?

We call the A-rules, left (introduction) rules, and the K-rules, right (introduction)
rules. Note that A stands for Antezedens, while K for Konsequent. A more common
notation is L (left) for A and R (right) for K .

Throughout the book, we will use the following notation: in the rules ∧A and
∨K , we will write αi for i = 0, 1.

Definition 1.8 In the rules of the sequent calculus, the formula occurrences in
M, N , ... are called side formulas or contexts; the formula occurrence of the conclu-
sion that is not a side formula is called the principal or main formula; the formula
occurrences in the premises that are not side formulas are called auxiliary.

Definition 1.9 We associate to each derivation d in G a natural number h(d), which
stands for the height of the derivation d. Intuitively, the height corresponds to the
length, minus one, of the longest branch in a tree-derivation d. We define h(d) by
induction on the construction of d.

– d ≡ M ⇒ N h(d) = 0

– d ≡

... d1

M
′ ⇒ N

′

M ⇒ N
R

h(d) = h(d1)+ 1

– d ≡

... d1

M
′ ⇒ N

′

... d2

M
′′ ⇒ N

′′

M ⇒ N
R

h(d) = max (h(d1) +
1, h(d2)+ 1)

Let d 	n
G M ⇒ N denote: d is a derivation of M ⇒ N in G, with h(d) ≤ n.

Definition 1.10 A rule R, belonging to a calculus G, is said to be (height-
preserving) eliminable in G if, whenever there exists a derivation of height n of
the premise of R, then there also exists a derivation of the conclusion of R, that
does not contain any application of R (and with the height at most n).

If the rule R does not belong to the calculus G, but the condition above still
holds, then R is said to be (height-preserving) admissible in G.

An important feature of Gcl consists in the fact that the cut-rule is eliminable
in it, or, stated otherwise, the sequent calculi Gcl and Gcl minus the cut-rule are
equivalent (a sequent is provable in Gcl if, and only if, it is provable in Gcl minus
the cut-rule). The theorem that states this fact is usually called cut-elimination the-
orem and its proof consists in providing an algorithm that transforms derivations
containing applications of the cut-rule to derivations not containing any application.
Note that another way of proving that the cut-rule is eliminable in a calculus is
obtained by showing that that calculus without the cut-rule is sound and complete
with respect to the corresponding semantics. Nevertheless this second proof loses
any constructive appeal. We will further analyse and discuss these issues in the
following sections (in particular, Sections 1.3 and 1.4).
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Definition 1.11 Let us consider a sequent calculus G and a logical rule R ∈ G
such that, given M ′ ⇒ N

′
, R allows us to infer M ⇒ N . We say that R is a

(height-preserving) invertible rule when its inverse, i.e. the rule that allows us to
infer M ′ ⇒ N

′
from M ⇒ N , is (height-preserving) admissible in the calculus G.

Theorem 1.12 For all formulas α, and for all sequents M ⇒ N ,

if 	 α in Hcl, then 	⇒ α in Gcl.
If 	 M ⇒ N in Gcl, then 	 ∧

M → ∨
N in Hcl.

Proof The proof is by induction on the height of derivations in Hcl and Gcl, respec-
tively (e.g. see [18], pp. 228–30). ��

1.2 Formal Remarks

The sequent calculus for classical propositional logic, like the sequent calculi for
other logics, can be presented in several ways and no particular way is to be pre-
ferred over the others. We divide the possible reformulations of the sequent calculus
into variants and alternatives.1 There are three standard alternatives, and they are
obtained by modifying the very concept of sequent. Each alternative may have sev-
eral variants, each variant being obtained by varying the postulates that compose a
sequent calculus without varying the set of provable sequents. Gcl is then a certain
variant of a certain alternative of the classical sequent calculus (which variant and
which alternative will be specified below). We will present other variants and other
alternatives of the Gentzen calculus, starting with the alternatives.

In Definition 1.4, p. 4, in order to define a sequent, we assumed M and N to be
multisets of formulas, i.e. aggregates of formulas such that the order of the formulas
does not count, but the number of times the same formula occurs does. It is possible
to strengthen, as well as to weaken, this concept. On the one hand, we can assume M
and N to be sequences of formulas, i.e. aggregates of formulas where both the order
of the formulas and the number of times the same formula occurs count. On the other
hand, we can assume M and N to be sets of formulas, i.e. aggregates of formulas
where neither the order of the formulas nor the number of times the same formula
occurs count. In the first case we claim to be in the sequence alternative of the
sequent calculus, while in the second case we are working in the set alternative of
the sequent calculus. If, finally, we work following Definition 1.4, we are employing
the multiset alternative.2

We now read the postulates of the calculus Gcl as if they referred to sequents
where M and N are sets of formulas. It follows as an immediate consequence
that the contraction rules become superfluous. We call Gcl∗ the sequent calculus
obtained this way. But if, on the other hand, we read the postulates of the calcu-
lus Gcl as if they referred to sequents where M and N are sequences of formulas,
another consequence follows, in that we have to adjoin the two structural rules
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M, α, β, N ⇒ P

M, β, α, N ⇒ P
E A

M ⇒ N , α, β, P

M ⇒ N , β, α, P
E K

that are normally called exchange rules. We call Gcl∗∗ the calculus obtained in this
way. Gcl∗ and Gcl∗∗ are, as we will see later, the same kind of variant of Gcl, but
in the set and sequence alternative respectively. It can be shown that Gcl, Gcl∗ and
Gcl∗∗ are in a certain sense “equivalent,” i.e. given adequate translation functions
between sequences, sets and multisets, we can show that they prove the same theo-
rems. For a clear and detailed exposition of these equivalencies see [18, p. 227] and
[139, p. 77].

Let us now consider the variants of the sequent calculus. First of all we wish to
reassure the reader who may feel bewildered in the face of all these possibilities
with Troelstra and Schwichtenberg’s words [139, p. 51],

Gentzen systems for M, I and C (minimal logic, intuitionistic logic and classical logic,
respectively) have many variants. There is no reason for the reader to get confused by this
fact. Firstly, we wish to stress that in dealing with Gentzen systems, no particular variant
is to be preferred over all the others; one should choose a variant suited for the purpose at
hand. Secondly, there is some method in the apparent confusion.

Next it is imperative to underline the following important fact. In the calculus
Gcl, for each of the three connectives ∧, ∨, and →, we can choose between two
equivalent formulations of the left introduction rules and two equivalent formula-
tions of the right introduction rules. The A-rules that we have seen above are one
formulation of the left introduction rules; the other is the following:

α, β, M ⇒ N

α ∧ β, M ⇒ N ∧A
′

α, M ⇒ N β, P ⇒ Q

α ∨ β, M, P ⇒ N , Q ∨A
′

M ⇒ N , α β, P ⇒ Q

α → β, M, P ⇒ N , Q →A
′

The K-rules that we have seen above are one formulation of the right introduction
rules; the other is the following:

M ⇒ N , α P ⇒ Q, β

M, P ⇒ N , Q, α ∧ β ∧K
′

M ⇒ N , α, β

M ⇒ N , α ∨ β ∨K
′

α, M ⇒ N , β

M ⇒ N , α → β →K
′

We normally call the A
′
-rules and the K

′
-rules multiplicative (or context-free),

while the A-rules and K -rules additive (or context-sharing). The proof of the equiva-
lence of these two groups relies on the structural rules of weakening and contraction
to such an extent that if we dropped (the effects of) either weakening or contraction,
or both, we would not be able to define the same connectives. For this reason, in
Gentzen calculi that differ from Gcl in that they lack (the effects of) the structural
rules of weakening and contraction, one usually introduces different symbols for
distinguishing the two groups mentioned above, e.g. the original Gentzen symbol ∧
is kept for the conjunction introduced by additive rules, the new symbol ⊗ is added



1.2 Formal Remarks 9

for the conjunction introduced by multiplicative rules (for more detailed proofs and
definitions, see [94], pp. 11–15).

Definition 1.13 We call a variant of the Gentzen calculus in which the structural and
the logical rules are taken as primitives and their roles are kept separate a general
variant of the calculus.

Gcl is a general variant of the (multiset alternative) Gentzen system for classi-
cal propositional logic, as are Gcl∗ and Gcl∗∗ (of the set and sequent alternatives,
respectively). If in Gcl we substituted the additive version of the logical rules with
their equivalent multiplicative version, we would obtain another general variant of
the (multiset alternative) sequent calculus for classical propositional logic. We des-
ignate the general variant as the “standard” one because it allows us to understand
the sequent calculus in its full generality, as its name indicates.

Definition 1.14 A second variant of the sequent calculus was introduced by Dra-
galin [34], and we will call it logical variant of the Gentzen calculus. We designate
it as this because, in this variant, all the structural rules are dropped since (it can be
proved that) their effects are completely absorbed by the axioms and by the logical
rules.

We are going to introduce GclL , which is a logical variant of the multiset alterna-
tive of the sequent calculus for classical propositional logic. (We leave to the reader
the task of finding logical variants in the sequence and set alternatives.) GclL is
composed of:

Axioms

Ax : p, M ⇒ N , p ⊥A: ⊥, M ⇒ N

Logical Rules
Propositional Rules

α, β, M ⇒ N

α ∧ β, M ⇒ N ∧A
′

M ⇒ N , α M ⇒ N , β

M ⇒ N , α ∧ β
∧K

α, M ⇒ N β, M ⇒ N

α ∨ β, M ⇒ N
∨A

M ⇒ N , α, β

M ⇒ N , α ∨ β ∨K
′

M ⇒ N , α β, M ⇒ N

α → β, M ⇒ N
→A

α, M ⇒ N , β

M ⇒ N , α → β →K
′

The sequent calculus GclL is then obtained from the sequent calculus Gcl with
the following three modifications:

- the original axioms are substituted by the generalised ones;
- the rules ∧A, ∨K and → K are substituted by the rules ∧A

′
, ∨K

′
and → K

′
,

respectively, and
- the structural rules are omitted.
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GclL is equivalent to Gcl, or, in other words, each of the structural rules of
Gcl is (height-preserving) admissible in GclL . In GclL the logical rules are height-
preserving invertible.

Note that there can be many ways of changing a set of axioms and logical rules
of a sequent calculus in order to obtain logical variants, but these changes must
yield logical variants which are equivalent to each other and of course equivalent
to the original calculus. Those changes that do not respect this condition are not
modifications of the original set of axioms and rules but additions (or subtractions)
of logical rules or axioms to it.

Definition 1.15 A third variant of the Gentzen system, which was introduced by
Došen [31], is the structural variant. In this variant certain logical rules are dropped
since (it can be proved that) their effects are completely absorbed by the remaining
rules.

We call GclS the structural variant of the multiset alternative of the sequent calcu-
lus for classical propositional logic. (We again leave to the reader the task of finding
the structural variants in the sequence and set alternatives.) GclS is composed of:

Axioms

Ax : p ⇒ p ⊥A: ⊥ ⇒

Structural Rules
Weakening and Contraction

M ⇒ N

α, M ⇒ N
W A

M ⇒ N

M ⇒ N , α
W K

α, α, M ⇒ N

α, M ⇒ N
C A

M ⇒ N , α, α

M ⇒ N , α
C K

Cut-Rule

M ⇒ N , α α, P ⇒ Q

M, P ⇒ N , Q
cutα

Logical Rules
Propositional Rules

M ⇒ N , α M ⇒ N , β

M ⇒ N , α ∧ β
(∧)

α, M ⇒ N β, M ⇒ N

α ∨ β, M ⇒ N
(∨)

α, M ⇒ N , β

M ⇒ N , α → β
(→)
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where the double line in the logical rules means not only that the conclusion is
derivable from the premise(s), but also that the premise(s) is (are) derivable from
the conclusion.

The sequent calculus GclS is then obtained from the sequent calculus Gcl with
the following two modifications:

– one logical rule for each logical constant is omitted, and
– the logical rules of the calculus acquire a double line form (for this we take the

rule → K in its multiplicative form).

GclS is equivalent to Gcl, or, in other words, the logical rules that have been
dropped are all admissible, with the use of the cut-rule, in GclS .

We conclude this section by pointing out that many other sequent calculi for
many other logics can be obtained by modifying the one for classical logic. We con-
sider two examples. The first one concerns the sequent calculus Gil for intuitionistic
propositional logic, which can be obtained from Gcl by:

[structural part] restricting all axioms and rules to sequents with at most
one formula on the right;

[logical part] replacing the rule → K by its multiplicative counterpart,
→ K

′
, and substituting the rule → A with the following one:

M ⇒ α β, M ⇒ N
α → β, M ⇒ N

Because of the structural restriction, the rule that introduces the symbol ∨ on
the right side of the sequent has uniquely an additive form.

By applying analogous modifications, we can obtain the (logical variant of the)
Gentzen system GilL from GclL , and the (structural variant of the) Gentzen system
GilS from GclS .

The second example concerns the sequent calculus Gll for the linear logic ll
without exponentials. Gll can be obtained from Gcl by:

[structural part] omitting the (effects of the) rules of weakening and con-
traction;

[logical part] as for the logical part, several operations are required. First
of all, we must add left and right introduction rules for the three connectives
⊗ (the multiplicative version of ∧), ⊕ (the multiplicative version of ∨), and
� (the multiplicative version of →). Then, we must adjoin a single and
involutory negation ∼ trough the following rules:

M ⇒ N , α

∼ α, M ⇒ N

α, M ⇒ N

M ⇒ N ,∼ α
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Finally we must split the logical constants ⊥ and � into two operators,
namely, ⊥ and 0, and � and 1, respectively. Appropriate rules and axioms
for each of them are added (see [139], p. 236).

By applying analogous modifications, we can obtain the (structural variant of
the) Gentzen system GllS from GclS . GllL in this case coincides with Gll.

1.3 Philosophical Remarks

The sequent calculus, besides undoubtedly being an useful formal instrument of
computation, also has philosophical significance. We would like to summarise the
three main philosophical ideas directly linked with the Gentzen calculus.

1.3.1 Analyticity

The central notion of the first philosophical idea is that of analytic proof. Therefore
we start by reminding the reader what an analytic proof is by contrasting it with
synthetic proofs.

In this section, we use the term proof to denote a rational procedure by means of
which one may establish the truth of a sentence. Depending on how this procedure is
developed, one usually distinguishes between synthetic proofs and analytic proofs.
Synthetic proofs start from acquired truths and are developed from the top-down,
with the aim of determining the propositions whose truth is assured by the previous
ones. By contrast, analytic proofs start from propositions whose truth is to be estab-
lished and aim, by proceeding bottom-up, to reduce them to propositions whose
truth has already been established.

Presented this way, the contrast between analytic and synthetic proofs is certainly
interesting from an epistemological point of view, but it may hardly seem revealing
from a logical point of view: indeed it seems to amount to little more than a dis-
tinction between different directions in which the same logical object can be read.
But in fact the contrast between analytic and synthetic proofs does not simply boil
down to a distinction between different readings of one and the same object, on the
contrary it can involve deep issues. For example, we can generally state that while
synthetic proofs privilege the conciseness of the structural process by neglecting
the complexity of the expressions involved, the main concern in analytic proofs is
to reduce, in a logically significant way, more complex formulas to simpler ones,
without any care for the length of the inferential procedure.

Support for the analytic method has a long and venerable history in philosophy.
This history extends back to ancient Greece, with both Plato and Aristotle being
advocates of the analytic approach. The predilection of Plato for the analytic method
was noted by Proclus [56, p. 213], in the following passage:

The finest is the method which, by analysis, carries the thing sought up to an acknowledged
principle, a method which Plato, as they say, communicated to Leodamas, and by which the
latter too, is said to have discovered many things.
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For his part, Aristotle demanded mathematicians to respect a method-
ological requirement strictly connected with the one of analysis and which
consisted in the so-called “purity of methods” (the famous conviction of μετά-
βασις ε

¸
ις

¸
άλλo γένoς ): mathematicians should not use in their proofs concepts

belonging to a theoretical domain different from that employed initially.

You cannot prove anything by crossing from another kind – e.g. something geometrical
by arithmetic [...]. Arithmetical demonstrations always contain the kind with which the
demonstrations are concerned, and so too do all other demonstrations. Hence the kind must
be the same, either simpliciter or in some respect, if a demonstration is to cross. [1, p. 12]

The pythagorean Hippocrates of Chius and the third century mathematician Pap-
pus were also supporters of the analytic method. Pappus, especially, was the first
to give, at the end of the book VII of his Mathematical Collections, a complete
exposition of the analytic method (

¸
ανάλυσις): he expressed a clear preference for it

over the synthetic one (σύνϑεσις). He described the analysis as a process that

takes that which is sought as if it were admitted and passes from it through its successive
consequences to something which is admitted as a result of synthesis: for in analysis we
assume that which is sought as if it were (already) done and we inquire what it is from
which this results, and again what is the antecedent cause of the latter, and so on, until by
so retracing our steps we come upon something already known or belonging to the class of
first principles, and such a method we call analysis as being solution backwards. [96, p. 82]

In the early modern era, Descartes, Arnauld and Pascal attributed to analytic
proofs a great fertility and strength: for them, it was through these procedures that
the mathematician succeeded in convincing himself of the certainty of the proposi-
tion(s) at issue. As Descartes wrote,

Analysis shows the true way by which a thing was methodically discovered and derived, as
it were effect from cause, so that, if the reader care to follow it and give sufficient attention
to everything, he understands the matter no less perfectly and makes it as much his own as
if he had himself discovered it. [30, p. 128]

Galileo and Newton also showed a preference for analysis over synthesis. As
Galileo [41, p. 51] said,

That is what is done for the most part in the demonstrative sciences; this comes about
because when the conclusion is true, one may by making use of the analytic method hit upon
some propositions which are already demonstrated, or arrive at some axiomatic principle.

In the first half of the nineteenth century, analytic proofs found support from
the great Bohemian thinker, Bernard Bolzano. Bolzano, in his Beyträge zu einer
begründeteren Darstellung der Mathematik (1810) and later in his Wissenschaft-
slehre (1837), introduced a broader perspective on the notion of analyticity. This
perspective was supported by a new idea of what mathematical proofs should be.
For Bolzano to prove a mathematical truth meant to provide a foundation (Begrün-
dungen), i.e. a process which goes up from that truth to its objective grounds. Proofs
became this way analytic procedures that start from a truth and go up to its reasons.

Let us remark that this position might be seen as a departure from the Aristotelian
idea of “purity of methods.” As Paoli [93, p. 227] says,
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Aristotle stated that mathematicians should not prove arithmetically geometrical truths.
Concerning this Bolzano observes that Aristotle was wrong, since quite often the prop-
erties of the spatial magnitudes have their objective reasons in the properties of the general
magnitudes. (English translation ours.)

Let us now return to Gentzen and to the sequent calculus. Note that in a sequent
calculus where

(i) the cut-rule is admissible, or eliminable (see Definition 1.10, p. 6), and
(ii) in every other rule all the formulas that occur in the premises are subformulas

of the formulas that occur in the conclusion,

we are sure that we can construct only analytic derivations. This is because, if
conditions (i) and (ii) are respected, we know that it is not possible to lose any
formula during the derivation process, and that we can only pass from logically more
complex formulas to logically simpler ones (reading derivation process bottom-up).
A sequent calculus is said to have the subformula property if, and only if, every
provable sequent possesses a derivation such that every formula which occurs in it
is a subformula of the formulas which occur in the conclusion. Observe that, if con-
ditions (i) and (ii) are satisfied, then a sequent calculus has the subformula property.
Gentzen seems to follow the long tradition presented above, in considering such a
property of crucial relevance:

Perhaps we may express the essential properties of such a normal form by saying: it is not
roundabout. No concepts enter into the proof other then those contained in its final result,
and their use was therefore essential to the achievement of that result. [42, pp. 87, 88]

This concludes the exposition of the analytic method and the enumeration of
illustrious thinkers who have preferred and supported it. Last but not least we have
quoted Gerhard Gentzen who seems to attribute great importance to the fact that the
sequent calculus enjoys the subformula property, which ensures the analyticity of
the calculus. We want to conclude the subsection by summing it up in the following
claim:

(I) A Gentzen calculus satisfying the subformula property is a tool for generating
analytic derivations, where the importance of dealing with analytic derivations is
witnessed by a long and important philosophical tradition.

1.3.2 Logicality

The second philosophical idea linked with the Gentzen calculus was recently high-
lighted by Doŝen [33] and consists in the proof-theoretical attempt to answer the
question: what is a logical constant? Or, more specifically, what criteria are there
for logicality of expressions?

In order to explain Došen’s solution to this question, let us proceed from his
initial assumption about logic: (a) (formal) logic is the science of formal deductions.
This conception of logic is not the only one, nor the standard one, but it nevertheless
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represents the appropriate starting point for getting to grips with Došen’s argument.
However, one may at this point be wondering what precisely it is that constitutes
a formal deduction. Došen provides us with an answer: (b) a formal deduction is a
structural deduction. But the question now is what a structural deduction is, and we
may say a structural deduction is a deduction that employs only the structural rules
of the sequent calculus, that is to say a deduction which can be described by restrict-
ing the sequent-language to structural sequents, i.e. schematic sequents where no
constant of the object language appears. Moreover, for Došen, all deductions can be
derived from structural deductions.3

Hopefully this will have alleviated any uncertainty about formal logic and struc-
tural deductions. Combining (a) and (b) yields an important conclusion: logic is
essentially about structural deductions, which is to say, logic is essentially articu-
lated at the structural level. Let us reflect upon the consequences of this observation.
Our goal is to discover a criterion for the logicality of expressions. In other words,
we are seeking a criterion which can determine whether a certain expression, such
as a constant, is logical. If it is true that logic concerns structural elements, then we
must answer the above question with the claim that (c) an expression is logical if
and only if it can be analysed in purely structural terms. This is exactly what Došen
claims on page 368 of [33].

Recall the structural variant of the sequent calculus GclS that we have introduced
with Definition 1.15, p. 10 This variant is composed of the axioms, the four struc-
tural rules of weakening and contraction, the structural cut-rule, and one double
line logical rule for each logical constant. Consider the double line rule for the
constant ∧:

M ⇒ N , α M ⇒ N , β

M ⇒ N , α ∧ β
(∧)

Reading top-down, the rule says that we can link two formulas derivable from
the same multiset M ; bottom-up, it indicates how to go back to the structural met-
alanguage, once the conjunction symbol has been introduced. What is important
here is that every object belonging to the upper sequents is purely schematic, i.e.
these sequents are structural, and that, therefore, the double line rule (∧) estab-
lishes an equivalence between a sequent with a main connective ∧, occurring in the
formula α ∧ β, and two purely structural sequents. It follows that the rule can be
considered as providing an analysis of the logical constant ∧ in purely structural
terms. In other words, following the assumption (c), this rule can be taken to rep-
resent the formal logical criterion for the constant ∧. Since we can generalise the
above remarks to each of the double line logical rules of the calculus GclS , it then
appears that we have found the answer to the questions asked at the beginning of this
subsection:

(II) double line logical rules represent a formal criterion for the logicality of the
constant they introduce in the framework given by the structural variant of the
sequent calculus.4
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1.3.3 From Logicality to Inferentialism

Closely related to our point (II) is the position frequently labelled as inferentialism.
Roughly speaking, inferentialism can be characterised as the thesis that the meaning
of logical constants is fully defined by the inferential rules that govern their use.

At first glance, the reader may be led to wonder whether there is a meaningful
distinction to be made between the analysis of logical constants in structural terms,
discussed in the previous section, and the inferentialist thesis that inference rules
define logical constants. We will alleviate this doubt by illustrating the distinction
between an analysis tout court and a definition. More precisely we will see that there
are two properties that definitions satisfy while analyses do not. It will turn out that
not even analyses in structural terms satisfy these two properties and hence that they
do indeed differ from definitions.

Let us start by explaining what it means to define the meaning of a logical
constant. In this regard, we can distinguish at least two different points of view.5

According to a realist conception, we grasp the meaning of a sentence when we
know what it is for that sentence to be true, where the truth is thought of as some-
thing that a sentence either possesses or lacks independently of our capacity to
recognise it. According to an anti-realist conception, on the other hand, we grasp
the meaning of a sentence when we know how to use it, where the use has to be
understood as “correct use;” for otherwise, as Wansing [147, pp. 6, 7] says,

meaning would depend on the factual linguistic behaviour of certain language users,
and hence meaning would be pragmatic rather than a genuinely semantic and speaker-
independent notion.

This anti-realist conception of the meaning is the conceptual basis of the semantic
theory often called proof-theoretic semantics (the term was coined in the early 1990s
by Schroeder-Heister, see [125]). Inferentialism can be seen as the semantic engine
of proof-theoretic semantics.

The difference between a realist approach and an anti-realist approach to the
meaning of a logical constant can be illustrated by the standard techniques for
defining constants. Let us suppose that we have a logical constant � of a language
L and we want to give a realistic definition of �. This involves two steps: first of all
we specify a language M which does not contain �, and then we formulate, in M
plus �, an equivalence between sentence(s) containing � and the same sentence(s)
containing other appropriate symbol(s) belonging to the language M; by means of
this equivalence we specify the truth values of sentences containing �. We recall
that the sentence containing the � is usually called definiendum, while the ones not
containing the � are called definiens.

Let us now pass to anti-realistic definitions. We suppose that we want to give an
anti-realistic definition of the constant �. This (again) only involves two steps: first
of all we specify a system T which does not contain �, and then we add to T the
constant � via a set of inference rules.

The difference between realistic and anti-realistic definitions of logical constants
should now be clear. Realistic definitions take as central the notions of language and
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truth, and exploit equivalences, in order to give the meaning of logical constants. By
contrast, anti-realistic definitions take as central the notions of system and deriva-
tion, and exploit sets of rules to give the meaning of logical constants.

Returning to the question of analysis, let us consider a constant � of a language L,
and let us suppose that we want to analyse �. There are only two steps to make: first
of all we specify a language M which does not contain �, and then we establish that
a sentence A in M plus �, in which the constant � only occurs once, is equivalent
to a sentence B in M. In this way we analyse the constant �. Given this explanation
of analysis, it is not at all obvious that there is any real difference with respect
to definitions. The situation is made even more ambiguous by the fact that both
definitions (realistic and anti-realistic) and analyses should satisfy the two following
well-known properties:

A1 {adequacy} analyses, as well as definitions, must be sound and complete
(see for details [33, p. 369]),

A2 {uniqueness} the logical constants � and �′ can receive the same analysis, as
well as the same definition (realistic or anti-realistic) if, and only if, � and �′
are the same constant (for further details see Section 1.8).

Nevertheless an equivalence can satisfy A1 and A2, and therefore qualify as an
analysis, without thereby amounting to a definition. It is the satisfaction of at least
two further conditions that an analysis need not satisfy that distinguishes a defini-
tion from an analysis. The formulation of these two conditions varies depending on
the type of definition considered. For the moment we just present those set up for
realistic definitions. They were introduced by the Polish logician Leśniewski [76]
and they are as follows:

E1 {conservativeness} there exists no formula α, not containing any occurrence
of the symbol �, that is valid in L without being already valid in L minus �.

E2 {eliminability} for any formula α of L containing the symbol �, the defini-
tion should enable us to find a formula β not containing the symbol �, such
that β is semantically equivalent to α.

As we will see in Sections 1.4 and 1.5, these two criteria, if respected, ensure that
a definition of a logical constant gives the whole meaning of the logical constant,
and nothing more; an analysis, by contrast, need not satisfy these two criteria, since
it just does not give the meaning of logical constants.

In the light of this account of analysis and definitions, let us now concentrate
on the analysis of logical constants in structural terms. We shall only consider the
analysis of conjunction given by the double line logical rule (∧) (see the previ-
ous Section 1.3.2). In this analysis, the language L is the language of propositional
logic, and M is the deductive metalanguage in which structural deductions can be
explicitly described; more precisely, M is the language of structural sequents. The
sentence A is the lower sequent of (∧), while the sentence B is the upper sequent
of (∧). Double line stands for an equivalence; finally, it can be shown that (∧)
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serves to characterise conjunction soundly, completely and uniquely, i.e. conditions
A1 and A2 are met (e.g. see [31]).We can therefore conclude that (∧) represents
an analysis, in structural terms, of conjunction. On the other hand, the structural
analysis of conjunction given by (∧) does not satisfy conditions E2, and condition
E1 also fails (see [33, p. 374]). Therefore analyses in structural terms differ from
definitions.

By way of a summary, note that we can informally explain the distinction
between analysis in structural terms and definitions by thinking about the question
of what logical constants are, as Hacking famously did in [54]. This question can
be understood in two different ways. One way corresponds to the attempt to capture
what identifies logical constants. Following claim (II), analyses in terms of double
line rules are what is common to logical constants. But having identified logical
constants, one can still ask for their essential nature: how can we grasp the essential
nature, which is to say the meaning, of logical constants? One possible answer is
provided by inferentialism: inferential rules give the meaning to the constants of
which they govern the use. As Došen says,

Our attempt to analyse logical constant [...] should not be confused with [...] (inferential-
ism). First, the main goal of this program is to show that the meaning of logical constants
can be given syntactically, whereas our analyses are neutral with respect to this claim, and
are equally compatible with the view that the meaning of logical constants is to be given in
a more conventional semantical framework. Second, the search for a criterion for being a
logical constant does not always have a very important place in this program. [33, p. 378]

1.3.4 Harmony

One of the main attacks against inferentialism was famously given by Prior [108]
who introduced the two tonk-rules

α

α tonk β

α tonk β

β

in a natural deduction system with the aim of showing that inferentialism was ill-
founded. Indeed, the calculus resulting from their addition can prove α 	 β for any
formula α and β whatsoever, which is of course to say that it is trivial.

The consequence that Prior drew is that not any set of rules is meaning confer-
ring. Although many commentators have taken this as an argument against proof-
theoretic semantics, defenders of this position replied that there are natural con-
straints on logical rules which guarantee them to confer meaning to the constant they
introduce, and that tonk and tonkish connectives do not satisfy these constraints. The
constraint that has received by far the most attention is proof-theoretic harmony.

Informally speaking, harmony is supposed to balance two features of a logical
connectives �: (i) the conditions under which one is entitled to assert a sentence
containing the � connective; (ii) the consequences one is entitled to draw from a
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sentence containing the � connective. There have been many attempts to formally
capture the harmony requirement. These are:

– harmony as conservativeness (Belnap [8] and Dummett [35]),
– harmony as deductive equilibrium (Tennant [136, 137]),
– harmony as reduction (Prawitz [107], Read [113], Schroeder-Heister [126]).

The most recent and most developed account is harmony as reduction; this is
what we will focus on next.

At this point, a further distinction is necessary. On the one hand, Prawitz and
Dummett identify harmony with normalisation (a cut-elimination-like theorem for
natural deduction), which consists of a set of reduction-steps. On the other hand,
Read [114] has shown that this position turns out to be problematic in several sys-
tems of modal logic, and has also proposed a new characterisation of the harmony
requirement, which we call, following Hjortland [61], General Elimination Har-
mony. This characterisation is a local constraint on pairs of natural deduction rules
which allows us to construct elimination rules whose form totally depends on the
form of the corresponding introduction rules.

Francez and Dyckhoff [39], improving on Read [113], present the General Elim-
ination Harmony criterion in the following way. In a natural deduction system the
schematic introduction rule for a logical constant � occurring in α is as follows:

[Σi ] j i
1,..., j i

m

...

π∗
i

βi
α �I ji1,..., j im

where i = 1, ..., n, [Σi ] j i
1,..., j i

m
are (possibly empty) sets of assumptions discharged

by �I , and βi are formulas. The corresponding general elimination rule is then as
follows:

...π
α

...π1

Σ1 . . .

...πn

Σn

[β1]1
...
π
′
1

γ . . .

[βn]n
...
π
′
n

γ
γ �G E1,...,n

where γ is a formula. Note that in the case of the connectives ∧ and →, the general
elimination rule does not coincide with the elimination rule but represents, as is
witnessed by the name, its generalisation (for further details see [113]).

It can be shown that Prior’s tonk-rules do not meet the General Elimination
Harmony criterion and hence it can be claimed that they do not constitute a coun-
terexample to inferentialism. Nevertheless, the criterion does not in itself guarantee
that the calculus is conservative and hence non-trivial. Indeed if we consider the
connective � which has the following two rules:
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M
...¬�
� �I

M
...�

N , [¬�]
...
γ

γ �E

we can claim that the two rules are harmonious according to the General Elimination
Harmony principle, but they are not conservative. Read then draws the conclusions
that there is a discrepancy between harmony and conservativeness and that, though
rules should of course be harmonious, there is no particular reason for them to be
conservative. We would like to argue that this conclusion fails to account for an
important detail.

The rules �I and �E proposed by Read do not satisfy a condition on rules
which we will discuss in Section 1.7, namely the separation condition. In brief, this
condition demands that logical rules only contain the logical constant which they
introduce or eliminate. However, Read’s rules contain two logical constants: � but
also the connective ¬. It follows that, in order to introduce the rules �I and �E
to a system, one must already have introduced the rules for ¬. But in such systems,
Read’s claim that the rules �I and �E are in harmony is false: for the rule �I
is not only a rule that introduces �, but is also a rule that eliminates ¬, and like-
wise the rule �E not only eliminates �, but also eliminates ¬. And, considered
as elimination rules for the connective ¬, these rules do not satisfy the General
Elimination Harmony criterion, because they are not derivable from the standard
introduction rule for ¬. So, contrary to what Read claims, �I and �E do not show
that the General Elimination Harmony criterion differs from conservativeness, for
it is a case where both of these conditions are violated. One might nevertheless ask
whether Read’s criterion does represent a local, and hence desired, constraint for
assuring conservativeness.

Generally speaking, Read criticises conservativeness as formalisation of har-
mony. If harmony is taken to be a sort of balance between introduction and elimina-
tion rules, then it is true that the criterion he proposes, with its local flavour, looks
much more like the appropriate formalisation of harmony. On the other hand, if
inferential rules are taken to be definitions of the symbol they introduce, then, fol-
lowing what we have said in the previous section, these rules must be conservative
to ensure that they do not give anything more than the meaning of the symbol they
define. In other words, here we do not defend conservativeness as the appropriate
formalisation of the notion of harmony, but we do defend it as a a constraint that
definitions must respect in general.

1.3.5 Inferentialism

In the course of our long discussion on inferentialism, we did not touch upon two
important questions: which are the rules that are supposed to give meaning to logical
constants, and what system do they belong to? Traditionally the preferred tools of
proof-theoretic semantics are the natural deduction calculi. There are two reasons
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for this choice: on the one hand, natural deduction systems have a greater intuitive
appeal than sequent calculi; on the other hand, they are best suited to handle intu-
itionistic logic, which is often the reference logic for supporters of proof theoretic
semantics. Recently, however, things seem to have changed and sequent calculus
has been rediscovered. According to Paoli, this has occurred for two reasons:

First of all, intuitionistic logic is no longer the sole constructive logic on the market. Now
we know that, if we embrace linear logic, we can retain the most pleasing aspects of
intuitionism – such as the possibility of assigning a procedural or even a computational
content to its deductions – without being committed to some of its less agreeable features,
e.g., its unwieldy asymmetric sequent calculus. Secondly, cut-free sequent calculi are even
more apt than natural deduction systems for a molecularistic semantics of logical constants:
not only do we have separate rules for each connective, but we are also guaranteed that
larger fragments conservatively extend smaller fragments containing fewer connectives.
[95, p. 536]

In line with this new trend, we choose the sequent calculus as the reference sys-
tem for inferentialism. Moreover, in line with what it is commonly accepted in this
framework (see Hacking [54], Paoli [95] and Wansing [148]), we consider the left
and the right introduction rules of the sequent calculus to provide the meaning of
the constant they introduce. Finally, following a reflection of Sambin:

one has to abandon the traditional scheme which says that the rule introducing a connective
is always the rule operating on the right and the rule on the left is always the elimination
rule. [120, p. 980]

and a remark by Read:

For ‘A⇒ B’ is really no more than the introduction of a conditional into the assump-
tion set, and such an introduction is governed by (what might be called) Gentzen’s left
rule. [113, p. 135]

we think that both A-rules and K -rules provide the grounds for inferring a sentence
containing the connective they define, in the antecedent and in the consequent of a
sequent respectively.

We sum up these several positions in the following claim:

(III) the left and the right introduction rules of the sequent calculus together can
be considered as a definition of the symbol they introduce since they both give the
grounds for asserting a sentence containing the connective they define.

1.3.6 Concluding Remarks

The following general remark concludes this section. Currently there is a flourish
of numerous different logics. The classical sequent calculus is often extended and
modified in order to handle them. However, it seems reasonable and useful to request
that these modifications are judged, at least in part, according to the extent to which
they respect (i) the philosophical significance of the Gentzen calculus, and (ii) the
mathematical strength of the Gentzen calculus. Each of the properties that will be
introduced in Sections 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 1.10 is nothing other than a
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condition for (I) or (II) or (III) to hold; in fact, these properties ensure that a new
sequent calculus has the philosophical significance of the original one. By contrast,
in order to verify the mathematical strength of the new calculus, we will have to “get
our hands dirty” and work with it.

That said, we conjecture the existence of a link between the philosophical and the
mathematical aspects of a Gentzen calculus: a sequent calculus that respects each of
the properties that we will list below and which are tenable mainly for philosophical
reasons will most likely also be a very good mathematical tool.

1.4 Subformula Property

The subformula property states that every provable sequent of a Gentzen calculus
should possess a derivation such that every formula that occurs in it is a subformula
of the formulas that occur in the conclusion. As we have seen in the Section 1.3.1, a
sequent calculus has the subformula property provided that it satisfies the following
two conditions:

(i) the cut-rule is admissible (or eliminable), and
(ii) in each of its rules all the formulas that occur in the premises are subformulas

of the formulas that occur in the conclusion.

For reasons related to analyticity, it is essential for a Gentzen system to possess
the subformula property. The relevant question is whether there are any other rea-
sons for requiring that a sequent calculus has the subformula property. The answer
is affirmative, and we turn to it in more detail.

The first reason is technical: the subformula property yields several results. To
mention just one, it often allows us to prove the decidability of a given calculus.

The second reason is linked with our claim (III), which, recall, says that the
left and right introduction rules of the sequent calculus constitute the definition of
the symbol they introduce. In Section 1.3.3, we have explained that definitions, in
order to be such, must be conservative and eliminable. We will now see what anti-
realistic conservativeness consists in. In the next section we will deal with anti-
realistic eliminability.

Let us first of all remind the reader that a realistic definition, whose central
notions are those of language and truth, is conservative (see point E1 above) when
it does not modify the truth value of the sentences not containing the symbol to be
defined, i.e. it is conservative when it does not give anything more than the mean-
ing (in terms of truth values) of the symbol to be defined. By naturally adapting
this explanation to the anti-realistic definitions, whose central notions are those of
system and derivation, we can claim that an anti-realistic definition is conserva-
tive when it does not allow one to prove any new sentence formulated in the old
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vocabulary, i.e. it is conservative when it does not give anything more than the
meaning (in terms of derivation) of the symbol to be defined.

This explanation of “anti-realistic conservativeness,” though correct, may still be
modified to better fit our requirements. Indeed, the above definition of anti-realistic
conservativeness is intended to cover a wide range of systems, and we are not inter-
ested in systems in general, but only in Gentzen’s systems. We therefore introduce
a more detailed definition of anti-realistic conservativeness: a calculus G

′
obtained

by adding to the calculus G one or more connectives and rules concerning these
connectives, is said to conservatively extend the calculus G, when G

′
proves no

sequent containing just the old connectives which was not already provable in G.
With the definition of anti-realistic conservativeness in hand, the question is now

what property can guarantee that the logical rules of a sequent calculus, as defini-
tions for the symbol they introduce, are conservative. According to many (e.g. see
[71, 94, 147]) the answer is precisely the subformula property. Indeed if a sequent
calculus G

′
enjoys the subformula property, any formula which occurs in a deriva-

tion of G must occur as a subformula of the end-sequent itself and this is enough
to ensure that no new rule of G

′
needs to be used for establishing this end-sequent.

Hence the subformula property enables us to show that the introduction rules of a
sequent calculus are conservative, which is to say that they do not give anything
more than the meaning of the symbol they introduce. This is the third good reason
for considering this property as desirable for a sequent calculus.

We conclude this section with an important observation. Sometimes a new
sequent calculus where the cut-rule is left out is proposed, e.g. the multiple sequent
calculi, Section 3.1, or the semantic modal sequent calculi, Section 4.1. Quite often
the cut-rule is not formulated since it is difficult to establish how it would be formu-
lated. If one then wants to show that the sequent calculus has the subformula prop-
erty, one must prove that it is complete with respect to the corresponding semantic
class of frames or models (and then check that condition (ii) is respected). In such a
situation the reader may think that the inability to state a cut-rule, and the inability
to provide a syntactic cut-elimination proof are not serious problems: a syntactic
proof seems superfluous if we already have a semantic proof; as for the cut-rule, we
have argued that in any case we must be able show its redundancy, so why should
we worry whether it can be formulated?

Let us start by underlying the importance of having a syntactic proof of cut-
elimination. This proof is important for its deeply constructive character, and
because it represents the conditio sine qua non for a constructive proof of the equiv-
alence between a Gentzen system and a Hilbert system.6

By contrast, as regards the formulation of a cut-rule, Boolos [13] and D’agostino
and Mondadori [29] have emphasised that the total absence of a cut-rule from a
sequent calculus is quite undesirable. Let us briefly explain why. Let us start with a
quote from Descartes:

But it [the analytic method] contains nothing to incite belief in an inattentive and hostile
reader; for if the very least thing brought forward escapes his notice, the necessity of the
conclusion is lost [...] Synthesis contrariwise employs an opposite procedure, one in which
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the search goes as it were from effect to cause (...). It does indeed clearly demonstrates
its conclusions, and it employs a long series of definitions, postulates, axioms, theorems
and problems [...] Thus the reader, however hostile and obstinate, is compelled to render
his assent. Yet this method is not as satisfactory as the other and does not equally well
content the eager learner, because it does not show the way in which the matter taught was
discovered. [30, p. 128]

Descartes, though a supporter of the analytic method, recognises that this method
is not commonly adopted. Indeed, in our reasoning, we often employ synthetic
proofs in which we use subsidiary conclusions that help us to shorten the process of
demonstration. The cut-rule is nothing but the formal equivalent of this exploitation
of subsidiary conclusions, and this is the reason why it is desirable for a sequent
calculus to possess it: the cut-rule allows us to continue using auxiliary lemmas in a
formal way.

Note that this argument also implies that an unrestricted cut-rule is to be preferred
over an analytic cut-rule, where an application of cut

M ⇒ N , α α, P ⇒ Q

M, P ⇒ N , Q

is said to be analytic if the cut-formula α is a subformula of some formula in the
conclusion.

To conclude, we must distinguish between:

• Subformula property when the cut-rule is formulated and there exists a syntactic
proof of cut-elimination.

• Subformula property when the cut-rule is formulated but there does not exist a
syntactic proof of cut-elimination.

• Subformula property when the cut-rule is not formulated and there does not exist
a syntactic proof of cut-elimination.

• Subformula property when the calculus has an analytic cut-rule.

Obviously a good sequent calculus should satisfy the first condition.

1.5 Admissibility of the Structural Rules

As we have said in Section 1.2, a sequent calculus can have several variants, each
of which is suited for a different purpose. In addition to the general variant (see
Definition 1.13, p. 9), which should be used to introduce any sequent calculus since
it allows one to understand it in its full generality, we have also focussed on two
other variants: the logical variant (see Definition 1.14, p. 9) and the structural variant
(see Definition 1.15, p. 10). Not all sequent calculi have these two variants. In this
section we explain the reasons why any good Gentzen system should have a logical
variant, while in the next section we will explain why it should have the structural
one too.
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There are two reasons: a technical one and a philosophical one. The technical
reason is the same as for the subformula property. In the framework offered by the
logical variant of the Gentzen calculus, several results can be proved in an easy
and elegant way, e.g. the invertibility of the logical rules, or the decidability of the
calculus.

The philosophical reason, on the other hand, is linked with claim (III), and hence
with the intuition that the logical rules define the constants they introduce. As we
have said at the end of Section 1.3.3, (realistic or anti-realistic) definitions should
satisfy not only the characteristics relating to analyses (see conditions A1 and A2),
but also the criteria of conservativeness and eliminability. While we already know
what realistic and anti-realistic conservativeness (see condition E1 and the previous
section, respectively) and realistic eliminability (see condition E2) consist in, we
must still determine what anti-realistic eliminability is. Let us try to plug that gap
by starting to examine what exactly the eliminability criterion is, or better, what it
is a criterion for. For this, consider a language L plus a constant �, and the same
language L minus the constant �. A realistic definition of the constant � is proposed,
i.e. an equivalence between a definiens and a definiendum. Is this a good definition?
One could answer: a definition is a good definition if it gives the whole meaning
of the expression (in this case a logical constant) that it is supposed to define.
According to the realist conception, to give the meaning of an expression means
to give the conditions under which the expression is true. Therefore, for a realist,
to ask whether an equivalence gives the whole meaning of the logical constant that
it defines amounts to asking the equivalence to enable us to find, for any sentence
containing the constant �, a sentence not containing the symbol � which has the
same truth value. But this is exactly the eliminability criterion (compare with E2)
for realistic definitions. Therefore we can conclude that the eliminability criterion
is a criterion for establishing whether a definition gives the whole meaning of the
expression that it defines.

Let us now try to repeat the same reasoning for anti-realistic definitions in order
to get an anti-realistic eliminability criterion. Consider a calculus G that does not
contain the constant � nor a set of rules that introduce it, and a calculus G

′
that

contains the constant � and a set of rules that introduce it. Now the question is: can
these rules be considered as good definitions of the constant �? Well, as above, one
might answer that these rules are good definitions of the constant � if they give us the
whole meaning of the constant �. Following the anti-realist conception, to give the
meaning of an expression means to give the conditions under which the expression
can be asserted. Therefore, for an anti-realist, the question of whether a definition
gives the whole meaning of the logical constant that it defines amounts to whether
the logical rules that introduce � determine exactly which sentences containing the
constant � can be asserted. But this is the anti-realistic eliminability criterion that
we are looking for.

Nevertheless, our investigation has not reached its term. Given that we have
found the eliminability criterion for anti-realistic definitions, we can now ask which
property of the sequent calculus ensures that the logical rules satisfy this criterion.
The answer is simple: the proof of the admissibility of the structural rules.7 Indeed,
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if this requirement is not met, then there will be sequents involving the new constant
which cannot be established solely on the basis of the logical rules for that symbol
together with the old rules, restricted to the old vocabulary. If this requirement is
met, on the other hand, then the logical rules for the new symbol enable us to infer
all the sequents involving the new vocabulary, without having to apply the old rules
except for formulas involving the old vocabulary.

Recall that a logical variant of the sequent calculus is composed of only axioms
and logical rules. The cut-rule, as well as the other structural rules, are all admis-
sible, and hence the two criteria of anti-realistic conservativeness and eliminability
are satisfied, if we accept the argument proposed in the last two sections. We can
thus draw the conclusion that, thanks to the introduction rules, it is a logical variant
of the sequent calculus that allows us to get a handle on the meanings of the logical
constants.

This conclusion is correct but incomplete. We should verify another fact: we not
only need that the structural rules and the cut-rule are admissible, but also that the
sequents of the form α ⇒ α are. According to Belnap the admissibility of α ⇒ α

constitutes

half of what is required to show that the meaning of formulas . . . is not context-sensitive,
but that instead formulas mean the same in both antecedent and consequent position. (The
[Cut] Elimination Theorem . . . is the other half of what is required for this purpose). [8, p.
383]

A similar remark can be found in [44, p. 31].
We can therefore claim that in a logical variant of the sequent calculus in which

sequents of the form α ⇒ α are admissible, the logical rules give the whole mean-
ing of the symbol they introduce and nothing more, and that this meaning is not
context-sensitive. This is one of the reasons for demanding from a good sequent
calculus that it has a logical variant, if we find the idea expressed by claim (III)
compelling.

1.5.1 Operational vs Global Meaning

In a recent article [95], Paoli, in order to defuse Quine’s meaning-variance argument
against the existence of deviant logics and genuine rivalry between logics (see [109–
111]), introduces the distinction between the operational and the global meaning of
logical constants:

– the operational meaning of a logical constant � is fully specified by the right and
left introduction rules for �;

– the global meaning of a logical constant � is fully specified by the class of prov-
able sequents containing �.

While the set of provable sequents varies from system to system, the logical
rules are (or at least they might be selected in a way such that they are) always the
same, therefore the two notions come apart. However, Paoli suggests identifying the
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meaning of logical constants with the operational meaning in order to block Quine’s
meaning-variance argument. This contradicts what we have been arguing here –
namely that the logical rules give the whole meaning of the constant they introduce
when they are considered in a logical variant of the sequent calculus, i.e. when they
prove by themselves all the sequents containing the symbol they introduce. Let us
thus examine Paoli’s position.

There are at least two arguments against Paoli’s notion of operational meaning.
The first one was proposed by Hjortland [61, p. 16] who claims that

Inferentialism leaves it open whether all inferential rules are meaning-conferring or only
some (and does not even consider structural assumptions not in rule-form), but meaning-
theoretically the choice makes considerable difference. [...] Inferentialism is based on the
idea that, at least for logical constants, the entrenched use of the expressions fully deter-
mines their meaning. But, if some aspects of the inferential role of these expressions come
short of being semantically significant, then we need a corresponding use-theoretic distinc-
tion to explain how meaning supervenes on some (systematic) use of an expression but not
all (systematic) use of an expression.

The second argument is the following. If the rules of inference tout court deter-
mine the meaning of the constants they introduce, i.e. if the meaning of the constants
is their operational meaning, then we must accept that in the classical sequent cal-
culus the constants ∧, ∨ and → may have (at least) two different meanings: an
additive and a multiplicative one. This is clearly an unacceptable conclusion. To
counter it, one could reply that the above conclusion is not entirely correct since
additive and multiplicative rules can be shown to be equivalent, and so that the
different meanings they provide are in reality the same. This is certainly true, but
crucially the equivalence between the additive and multiplicative rules can be shown
to hold only from a global point of view since we require structural rules to prove
it (see Section 1.2). Hence the reply is not decisive, and also the second argument
would appear to go against the operational meaning.

The problem is that, if we accept the view according to which the meaning of
logical constants is global, and therefore may vary from system to system, we no
longer seem to have a defence against Quine’s attack. Shall we then accept the con-
clusion that logical constants of different calculi are incomparable? Not necessarily.
If we start comparing constants for their logicality and not for their meaning, then
we still have something to say against Quine’s attack. Indeed, while the left and
right introduction rules (of the logical variants of the sequent calculus) vary from
calculus to calculus, the double line logical rules (of the structural variant of the
sequent calculus) are always the same. To put it differently, the meaning of logical
constants varies from calculus to calculus, but their logicality is invariant. This is
precisely the point that we can exploit against Quine’s argument: we cannot compare
the meaning of, say, the constant ∧ in two different calculi, but we can recognise
that in both calculi ∧ is a logical constant by means of the same double line logical
rule.

The moral that we draw from this discussion is that the distinction between oper-
ational and global meaning made by Paoli encounters some problems, but if we
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substitute the logicality criterion for the operational meaning, we have a defensible
position against Quine’s objection.

1.6 Admissibility of the Logical Rules

We will use this section to argue that it is important for a good sequent calculus to
have the structural variant. In fact, much of the job has already been done. Recall
that in Section 1.3.2 we have fully explained the close link between the structural
variant of the sequent calculus and the idea of analysing the logical constants. The
argument was as follows.

We started out looking for a formal criterion for logicality of expressions that
captures the following condition: a constant is logical if and only if it can be anal-
ysed in purely structural terms. We considered double line logical rules. These rules
do no more than translate the logical constants that they introduce into structural
expressions. We then concluded that double line logical rules are the desired formal
criterion for logicality of expressions.

This conclusion, though correct, is incomplete. Indeed it only holds if the trans-
lation is made in a purely structural framework which ensures that the analysis has
really been done in structural terms. Such a framework is provided by the structural
variant of the sequent calculus.

Therefore, thanks to the double line logical rules, the structural variant of the
sequent calculus provides us with the ideal means of getting a grip on what char-
acterises logical constants. This is one of the reasons for demanding from a good
sequent calculus that it has the structural variant, if we find the idea expressed by
claim (II) compelling.

1.7 Explicitness, Separation and Symmetry

Explicitness, separation and symmetry describe natural conditions on the format
that the logical rules should have in a logical variant of the sequent calculus, if we
take them to define the symbol they introduce. Let us explain these three conditions
one by one.8

The introduction rules for a constant � will be called weakly explicit if they
exhibit � in their lower sequent only, and they will be called explicit if, in addition
to being weakly explicit, they exhibit only one occurrence of � on the right or on the
left side of the sequent arrow.

The introduction rules for a constant � will be called separated, if they do not
exhibit any connective other than �.

The introduction rules for a constant � will be called weakly symmetric, if every
rule either belongs to the A-rules set (the set of left introduction rules), or to the
K-rules set (the set of right introduction rules). The introduction rules for a constant
� will be called symmetric, if they are weakly symmetric and both �A and �K are
non-empty.
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The separation property has been introduced by Zucker and Tragesser [151],
while the other two by Wansing [145], who rightly says that

separation, symmetry and explicitness of the rules imply that in a sequent calculus for a
given logic L, every connective that is explicitly definable in L also has separated, symmet-
ric and explicit introduction rules. [145, p. 127]

To sum up, the three properties of explicitness, separation and symmetry are
characterised by two important features: first of all, all three are local properties,
and secondly they are all related to claim (III). (One may note that the explicitness
and separation properties are linked with claim (II) as well.) This explains why we
have presented them in a single section.

1.8 Uniqueness

The uniqueness property, proposed by Došen [31], is a property that on the one hand
concerns the logical rules, and on the other hand it is related to claims (II) and (III).
(As we have already seen in Section 1.3.3, point A2, analyses and definitions should
satisfy the uniqueness property).

We can describe this property in the following way. Suppose that S is a formal
system containing the connective �. Let S

′
be the result of rewriting � everywhere

in S as �′, and let S
′′

be the result of the union of the two systems S and S
′

in the
language with both � and �′. Let α� denote a formula (in this language) that contains
a certain occurrence of �, and let α�′ denote the result of replacing this occurrence
of � in α by �′. The connectives � and �′ are said to be uniquely characterised in S

′′

if, and only if, for every formula α� in the language of S
′′
, α� is provable in S

′′
if,

and only if, α�′ is provable in S
′′
. In [31] it is shown that the uniqueness property is

a non-trivial property.

1.9 Syntactic Purity

One can distinguish two different notions of syntactic purity: a strong notion, and a
weak notion. The first one claims that

[a sequent calculus] should be independent of any particular semantics. One should not be
able to guess, just from the form of the structures which are used, the intended semantic of
a given proof system. [6, p. 2]

The weak notion claims that

a sequent calculus should not make any use of explicit semantic elements.

In this section our aim is twofold: we would, first of all, aim to explain why the
strong syntactic purity condition is too strong, and, secondly, to provide a defense
of weak syntactic purity.



30 1 What Is a Good Sequent Calculus?

Our first aim is indeed quite simple in the light of an undoubtable correspon-
dence that holds between the definitions, in terms of truth values, of the constants of
classical propositional logic, and the logical rules of the sequent calculus GclL . Let
us illustrate this correspondence within an example. Consider the realistic definition
and the logical rules of the symbol ∧, which, recall, are respectively the following:

α ∧ β is true if, and only if,
α is true and β is true

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α, β, M ⇒ N

α ∧ β, M ⇒ N ∧A
′

M ⇒ N , α M ⇒ N , β

M ⇒ N , α ∧ β ∧K
′

If in the logical rules we ignore the contexts and read the formulas on the left side
of the sequent as false formulas, we have that the right introduction rule corresponds
to the left-right direction of the equivalence:

M ⇒ N , α M ⇒ N , β

M ⇒ N , α ∧ β ∧K
′

if α is true and β is true, then
α ∧ β is true

while the left introduction rule corresponds to the right-left direction of the
equivalence9:

α, β, M ⇒ N

α ∧ β, M ⇒ N ∧A
′ if α is false or β is false, then α ∧ β is false

Thus we can say that the logical rules of GclL reflect at the syntactic level (or
may be read in terms of) the semantic definitions of each constant: the elements of
the structure of the sequent calculus (i.e. the sequent arrow and the comma) remind
us of the metalinguistic elements of the definitions (i.e. if .. then and and and or);
the positions of the formulas in the sequent (i.e. the left or the right sides of the
sequent) remind us of the truth values in the equivalencies (i.e. false or true).

Given these remarks, there are two possible solutions: either we reject the strong
syntactic purity property as too strong a property, or we are forced to admit that even
the original Gentzen system Gcl would not be a good sequent calculus. Since the
second solution is not acceptable, we draw the conclusion that the strong syntactic
purity requirement should be abandoned. To those who could contest that classical
logic is a questionable example since it is too special a case, we reply that although it
is certainly true that classical logic represents a peculiar case – though not a unique
one – it is nevertheless a case that must be taken into account, given its enormous
importance.

Having achieved the first aim, let us now pass to the second aim: we would like
to require from a Gentzen system that it does not use any explicit semantic ele-
ment. This requirement seems to be widely accepted in proof theory. Nevertheless,
nobody, as far as we know, has ever attempted to establish in a clear and detailed
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manner precisely what a semantic element is. We propose the following criterion
which has been inspired by the remarks of Hein, Stewart and Stouppa [57, 134].

We say that a sequent (or a set of sequents) does not contain a semantic element if
every element that serves to define the sequent (or set of sequents) may be translated
in such a way that it forms, together with the translation of the other elements, a
formula equivalent to the sequent. Classical sequents – objects of the form M ⇒
N – do not contain any semantic element; indeed, as we can see in Definition 1.5, p.
4, each metalinguistic element finds its own translation and forms together with the
other elements the formula

∧
M → ∨

N . More precisely, the comma must be read
as a conjunction in the antecedent and as a disjunction in the consequent, while the
sequent arrow corresponds to the implication. Semantic sequents (see Section 4.1),
tableaux (see Section 4.2) and internalised forcing sequents (see Section 4.3) are, by
contrast, examples of sequents that contain semantic elements. More precisely: in
semantic sequents and tableaux, the symbol R cannot be translated (see Definitions
4.2, p. 78 and 4.9, p. 86, respectively); in internalised forcing sequents, neither the
variables i, j, ..., nor relational atoms can be translated.

Having clarified this point, we are in a position to address the question of why we
should want the sequent calculus to be free of semantic elements. There are at least
three reasons. The first one relates to the methodological form of Ockham’s razor:
adding semantic parameters means adding redundant objects (since they cannot even
be translated), but why should we complicate matters to obtain the same results? If it
is possible for us to stay within the domain of syntactic objects, there is no rationale
for burdening the derivations and the calculus with superfluous semantic elements.

The second and the third reasons are linked with claims (II) and (III) respectively.
What these claims have in common is the more or less tacit assumption that in the
sequent calculus we operate only with formulas and inferences, and not with truth
values or variables ranging over possible worlds. This way we can state that logical
rules offer the meaning of the logical constants in terms of their use, and that they
provide us with a criterion of logicality. Therefore it is clear that if we betray this
assumption by introducing explicit semantic elements, the Gentzen calculus can
no longer defend the philosophical claims expressed by (II) and (III). We hence
conclude that the use of semantic objects is a kind of modification that cannot be
allowed since it violates two of the main philosophical constraints related with the
Gentzen system.

1.10 Došen’s Principle Redefined

Let us bring this chapter to a close with a discussion of the well known principle
called “Došen’s principle.”

Došen’s principle states that one sequent calculus can be obtained from another
by systematically varying the structural rules, whilst leaving the logical rules intact.
As Došen puts it, “The rules for the logical operations are never changed: all changes
are made in the structural rules” [32, p. 353]. As opposed to the other properties,
Došen’s principle does not involve a characteristic that should be satisfied by any
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Gentzen system if it is to be good, but instead it is taken to indicate a suppos-
edly “good” way to obtain new Gentzen systems from old ones. Our aim in this
section is twofold: we firstly want to put forward some arguments that Došen’s
principle is incorrect; secondly we want to propose a new property which cap-
tures what, in our opinion, Došen was aiming at. In order to achieve these goals,
we start by briefly summarising the argument given by Došen in support of his
principle.

Let us start by pointing out that – unlike many other logicians – Došen does
not work with a general variant of the sequent calculus but with the structural one.
The structural variant of the Gentzen calculus is indeed the variant which best
reflects his own philosophical conception. To briefly sum up this conception, we
can say that Došen believes that between the structural part and the logical part of
the sequent calculus there is a difference of level: the first one has a higher and
determinant level, while the second one has a lower and determinate level. This
conception follows from the idea, already explained in Section 1.3.2, that logic is the
science of structural deductions, and that logical form can be expressed in structural
terms.

By considering three different sequent calculi (for three different logics) in their
structural variants, Došen remarks that they have the same double line logical rules.
This is the case, if, for example, we compare GclS and GilS . The conclusion he
draws is that, if two good sequent calculi differ, they do so in their structural rules
and not in their logical rules.

There are at least three arguments against this conclusion.

(1) First of all, Došen’s principle has a direct and undesirable consequence: sequent
calculi which respect it may not necessarily have logical variants (and this con-
tradicts what has been established in Section 1.5). Consider, for example, the
Hilbert systems of modal logics K and KT. K results from Hcl by adding the
distribution axiom and the rule of necessitation; while KT results from K by
adding the axiom T : �α → α (for further detail see Section 2.1). Consider
also two corresponding Gentzen calculi (in one of their general variants) which
satisfy Došen’s Principle:

Gk Gkt
↓

Gk + the stru-
ctural rule t

At this point, the interesting question is: do Gk and Gkt have logical vari-
ants? Suppose that Gk and Gkt both have a logical variant. Let us call them
GkL and GktL , respectively. GkL is equivalent to Gk and GktL is equivalent
to GktL , but of course GkL and GktL are not equivalent. Nevertheless they
have been obtained by the same set of axioms and logical rules. Therefore,
following what we have said in Section 1.2, after Definition 1.14, one of the
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two has been obtained by the addition (or the elimination) of a logical rule or an
axiom. In both cases, this contradicts our assumption that they satisfy Došen’s
Principle. Thus the conclusion follows that either Gk or Gkt does not have a
logical variant.

(2) Secondly, if we do not specify that the sequent calculi must be considered in
their structural variants, we can quite easily find counterexamples to Došen’s
principle. For example Gcl and Gil (see Section 1.2), which are general vari-
ants of classical and intuitionistic logics, respectively, differ in their logical and
structural rules. Even GclL and GilL , which are logical variants of classical and
intuitionistic logics, respectively, do not differ in their structural rules, but in
their logical rules.

Note that one could still reply to this objection that it is possible to give
structural or general variants of the classical and intuitionistic sequent calculi
that differ only in their structural parts, so that Došen is in fact right. While
this objection is certainly correct, it is based on too narrow a view of the
Gentzen calculus. Indeed, we firmly believe that in order to fully understand
a sequent calculus, one should consider it in its fullest generality, i.e. by taking
into account the several variants and alternatives it might have. Only in this
way can one appreciate its characteristics and properties. The same of course
holds when two different Gentzen systems are to be compared. It would be
misleading to confront them by taking into account only one of their variants.
It would moreover generate the natural question of why we are choosing this
variant for comparing them and not another one.

Hence in the case of the Gentzen calculi for classical and intuitionistic logic,
if we take a broader view, we find out that they differ not only in structural
aspects but also in logical ones.

(3) Finally, it seems that even Došen was reluctant to claim that sequent calculi
considered in their general variants are distinguished by means of their struc-
tural rules. On the contrary, it seems that what he really wanted to assert is that
sequent calculi considered in their structural variant are distinguished exclu-
sively by means of their structural rules.

In light of this, one easy solution would be to slightly change Došen’s principle
by specifying that it only holds when the sequent calculi are considered in their
structural variant. As a result the principle is no longer incorrect: GclS and GilS

respect the principle, and no undesirable consequence follows from it. Nevertheless
we are not completely satisfied with this arrangement for the following reasons. If
we observe concrete Gentzen systems (see Section 1.2), we notice that their logical
parts and structural parts may well differ in importance but they are never unrelated.
Every change at the structural level is reflected at the logical level, and every logical
change comes from (if we think that the structural rules are somehow deeper than
logical ones) or produces (if we do not think so) a structural change. Logical and
structural parts go hand in hand, and Došen’s principle, even when it is slightly
modified, cannot account of such a relationship.
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Therefore, a new property should (i) account for the equilibrium between logical
rules and structural rules, and (ii) try to capture what Došen was aiming at. Our
proposal is the following.

Došen’s Principle Redefined. Given a general variant of a sequent calculus G
which satisfies all the properties of a good sequent calculus, a general variant of
a sequent calculus G

′
can be obtained from it by both varying its logical and

structural parts in such a way that even G
′

can have a logical and a structural
variant.

Let us consider this definition more carefully. We can easily observe that it
respects the two conditions that we set ourselves: on the one hand, like the old
Došen’s principle, it indicates the way to obtain a Gentzen calculus from another one
(“G

′
can be obtained from it by”); on the other hand, it takes into account both the

logical and the structural levels (“by both varying its logical and structural parts”).
We therefore think that it is a good substitute for the original Došen’s principle.

1.10.1 Modularity

In the literature, Došen’s principle is sometimes also referred to as the “modularity
property.” We find this second name a possible source of misunderstanding. Došen’s
principle describes the relationships between different sequent calculi, while the
modularity property requires the link between Hilbert systems and Gentzen systems
to be straightforward. Therefore the two properties are related but not the same. In
order to clarify the situation, consider the following example. Let us take a Hilbert
system H

′
obtained from the Hilbert system H by the addition of one new axiom.

The modularity property demands the Gentzen system to systematically reflect the
addition of this new axiom in its formalism. Došen’s principle redefined tells us
that this new axiom should correspond to a logical change and a structural change.
Having stated this distinction, we claim that a good sequent calculus should enjoy
both these properties.

Notes

1. This terminology comes from Casari [18].
2. There exists a fourth and less well-known alternative of the sequent calculus introduced by

Gabbay [40] and obtained by dropping the (hidden) structural rule of associativity. In this
alternative of the sequent calculus one deals with the so-called structural databases in place
of sets, multisets or sequences.

3. By attaching this importance to structural deductions, Došen seems to endorse P. Hertz’s posi-
tion (e.g. see [58, 59]).

4. We underline, as Došen does, that the lack of double line logical rules cannot show us that a
constant is not logical. Double line logical rules just serve to show what is common to all those
constants which are assumed to be logical.
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5. In [148] Wansing distinguishes many more.
6. For the reasons why we cannot prove constructively the equivalence between Gentzen system

and Hilbert system without a syntactic proof of cut-elimination, see [18, pp. 228, 229].
7. Kremer in [71] reaches an analogous conclusion.
8. Each of the following definitions of explicitness, separation and symmetry, comes from [145,

p. 127].
9. We point out that the left introduction rule does not properly reflect the right-left direction of

the realistic equation, but its contraposition. However, as is well-known, the two expressions
α → (β ∧ γ ) and (¬β ∨ ¬γ ) → ¬α are logically equivalent and therefore no problem arises
for our argument.



Part II
Sequent Calculi for Modal Logic

La solution de ce terrible problème ne se trouve que dans un travail constant, soutenu,
car les difficultés matérielles doivent être tellement vaincues, la main doit être si châtiée,
si prête et si obéissante, que le sculpteur puisse lutter âme à âme avec cette insaisissable
nature idéale qu’il faut transfigurer en la matérialisant.

[H. de Balzac, La cousine Bette, Folio Classique, Gallimard, 1972]



Chapter 2
Modal Logic and Ordinary Sequent Calculi

In the first chapter we introduced the Gentzen calculus for classical logic considered
not only from a formal point of view, but also with respect to its philosophical
importance. In this second chapter we will see how this calculus has been adapted
to the case of modal logic, by examining the research carried out between the 1950s
and the 1990s.

The first part of the chapter will be dedicated to a brief summary of the main
notions and results of what is usually called normal modal logic. In the second part
of the chapter we will present the ordinary sequent calculi that have been developed
for modal logic. It will turn out that these calculi do not satisfy many of the prop-
erties of a good sequent calculus. In the last section we will begin to consider how
one might generalise the classical sequent calculus.

2.1 Normal Modal Logic

Modal logic is the logic that results from classical logic by adding the two operators
� and �. The standard interpretation of � and � is in terms of, respectively, necessity
and possibility: necessity and possibility are said to be alethic modalities from the
Greek word

¸
αλήϑεια, which means truth. Modalities qualify the truth of a sentence:

a sentence is said to be possible if it can hold, and necessary if it must hold. However
the two symbols � and � can be interpreted in many other ways: e.g. epistemically
(� being interpreted as “it is known that”), deontically (� being interpreted as “it is
compulsory that”), and mathematically (� being interpreted as “it is provable that”).
The term modal logic usually covers all interpretations.

Definition 2.1 The propositional modal language L� is composed of the classical
language Lc (see Definition 1.1, p. 3) plus the symbols � and �. The well-formed
formulas α of the modal language L� are given by the rule:

α ::= p | ⊥ | α ∧ β | α ∨ β | α → β | � α | � α

WMF will denote the set of well-formed modal formulas

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_2, C© Springer Science+Business Media B.V. 2011
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Remark 2.2 From now on, we will take the two connectives ¬ and ∧ and the sen-
tential operator � to be primitive; we will indicate this assumption by writing
L�{¬,∧,�}. All the other connectives can be defined as usual, while the sentential
operator � can be defined in the following way: �α: = ¬�¬α.

Definition 2.3 We define the complexity of a formula α, cmp(α), in the following
inductive way:

– cmp(p) = 0
– cmp(¬α) = cmp(�α) = cmp(α) + 1
– cmp(α ∧ β) = max(cmp(α), cmp(β)) + 1

Syntactically we will deal with normal modal Hilbert systems that can be defined
as follows.

Definition 2.4 A normal modal system NMS is a set ⊆ WMF such that:

– it contains all the classical tautologies and the distribution axiom

�(α → β) → (�α → �β)

– it also contains:

• modus ponens: given α and α → β, prove β,
• uniform substitution: given α, prove γ , where γ is obtained from α by uni-

formly replacing propositional letters in α by arbitrary formulas,
• the necessitation rule: given α, prove �α.

The notions of derivation and of theorem in a normal modal system can be easily
obtained from the ones introduced in Definition 1.3, p. 4.

The system Hk, that from now on, following the tradition, we will simply call K,
is the weakest normal system of modal logic: it contains the axioms and the rules
that we have listed above. The other normal modal systems extend K with different
axioms (we will come to this at p. 44).

Semantically we will work with Kripke semantics whose tools can be defined as
follows.

Definition 2.5 A frame F is a pair (W, R) such that:

– W is a non empty set (of possible worlds), and
– R ⊆ W × W is a binary relation on W . R is usually called accessibility relation.

For reasons that will become clear later (see the beginning of Chapter 6), we
want to stress a particular “form” of frame normally called tree.

Definition 2.6 A tree-frame T , or simpler a tree, is a frame (W, R) that forms a
finite (upward growing) tree with a single root (compare with Definiton 1.3, p. 4);
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the nodes of the tree are labelled by the variables i, j, ... of the set W , and the
connection between nodes is established by the relation R.

Definition 2.7 Let F = (W, R). We define the transitive closure R+ of R as the
smallest transitive relation on W that contains R, that is

R+ =
⋂

{R
′ |R′

is a transitive binary relation on W and R ⊆ R
′ }

Furthermore R∗, the reflexive transitive closure of R, is the smallest reflexive and
transitive relation on W which contains R, that is

R∗ =
⋂

{R
′ |R′

is a reflexive and transitive binary relation on W and R ⊆ R
′ }

Note that from Definitions 2.6 and 2.7, it follows that in a tree-frame every world
j is reachable from the root i thanks to the transitive closure of the relation R.

Definition 2.8 A model M is a pair (F , v), where F is a frame and v is the following
valuation on F :

v := W ⊗ PL → {0, 1}

We say that a model M = (F , v) is based on the frame F .

Note that informally speaking the function v specifies which propositional letters
are true in which worlds, i.e.

v(i, p) =
{

1 : p is true at the world i,
0 : p f alse at the world i.

Definition 2.9 Given a model M = 〈(W, R), v〉, i ∈ W , α ∈ WMF, the relation

i |�M α [or v(i, α) = 1, or α is true at the world i of the model M]

usually called satisfability relation, is inductively defined in the following way:

– i |�M p iff v(i , p) = 1
– i |�M ¬β iff i �M β

– i |�M β ∧ γ iff i |�M β and i |�M γ

– i |�M �β iff (∀ j ∈ W ) (i R j → j |�M β)

Definition 2.10 We say that a formula α is true in a model, in symbols: |�M α, if
it is true at every world in the model. We say that a formula α is valid in a frame,
in symbols: |�F α, if α is true in every model based on that frame. We say that a
formula α is valid in a class of frames, in symbols: |�C α, if α is valid in every
frame which belongs to that class.
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There exists an interesting property called the tree-model property. In order to
explain this property, we first need some preliminary definitions.

Definition 2.11 Let M and M
′

be two models. A mapping f : M = 〈(W, R), v〉
→ M

′
= 〈(W

′
, R

′
), v

′ 〉 is a bounded morphism (also p-morphism), if it satisfies the
following conditions:

– w and f (w) satisfy the same propositional letters,
– f is a homomorphism with respect to the relation R (that is f is a homomorphism

from (W, R) to (W
′
, R

′
) as first-order structures), and

– if f (i) R
′

j
′
, then there exists a j such that i R j and f ( j) = j

′
(this is called the

back condition).

If there is a surjective bounded morphism from M to M
′
, then we say that M

′
is a

bounded morphic image, or a bisimulation, of M, and we write M � M
′
.

Lemma 2.12 Let M and M
′

be two models such that f is a bounded morphism
from M to M

′
. Then, for all modal formulas α, and all elements i of W , we have

i |�M α if, and only if, f (i) |�M′ α. In words, modal satisfaction is invariant under
bounded morphism.

Proof See [11], p. 62. ��
A simple application of Lemma 2.12 is the above mentioned tree-model property,

which says that any satisfiable formula can be satisfied in a tree-like model, where
a tree-like model is a model based on a tree-frame.

Theorem 2.13 For all rooted-models M, there exists a tree-like model M
′
such that

M � M
′
. Hence any M-satisfiable formula is satisfiable in a tree-like model.

Proof See [11], p. 63. We emphasise that the method used to construct the tree-like
model M

′
from M is well know in modal logic and computer science under the

name of unraveling. ��
Definition 2.14 A modal system S is said to be sound with respect to a class of
frames C, if each theorem of S is valid in C.

Definition 2.15 A modal system S is said to be complete with respect to a class of
frames C if, and only if, every formula α valid in C is a theorem of S.

As Fine [37] and Thomason [138] have demonstrated, there exist some incom-
plete modal systems.

Definition 2.16 A modal formula α defines (or characterises) a class of frames C if,
for all frames F , F is in C if, and only if, |�F α. In short, a modal formula defines
a class of frames if the formula pins down precisely the frames that are in that class
via the concept of validity.

Following Definition 2.16, a modal formula can characterise a class of frames.
Since a class of frames may enjoy a certain property, we also say that a modal for-
mula defines a property if it defines the class of frames which enjoys that property.
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On the other hand, since frames are nothing but relational structures, the proper-
ties that they enjoy can also be defined by non-modal formulas, e.g. by first-order
and second-order formulas. It is natural to ask what sort of link there is between
modal and non-modal formulas that describe the same frame property. To answer
this question, let us consider the following definitions.

Definition 2.17 (Frame Languages) The first-order correspondent language of the
modal language L�{¬,∧,�} is the first-order language whose only descriptive sym-
bols are the identity symbol together with an (n+1)-ary relation symbol R (that
corresponds to the modal operator). We denote this language with L1

�.
Let P L∗ be any set of propositional letters. The second-order correspondent lan-

guage of the modal language L�{¬,∧,�} over P L∗ is the monadic second-order
language obtained by augmenting L1

� with a P L∗-indexed collection of monadic
predicate variables, and by allowing only monadic second-order quantification. We
denote this language with L2

�.

Definition 2.18 If a class of frames, or a property, can be defined by a modal formula
α and by a formula β from one of the frame languages L1

� and L2
�, then we say that

α and β are frame correspondents of each other.

Frame definability is an inherently second-order notion, and the second-order
correspondent of any modal formula can be straightforwardly computed using a sim-
ple second-order translation (see [11], p. 135). There are, however, many modal for-
mulas with first-order correspondents. These formulas are of particular interest here.
Although modal language(s) do(es) not define all the classes that can be defined by
first-order formulas (the simple first-order formula ∀x(¬x Rx), which defines the
irreflexivity property, does not correspond to any modally expressible axiom), the
first-order definable frames class that is modally definable can be isolated (see [46]).

We will not consider all the modal axioms which have first-order correspondents,
but we will focus on a subset of those that have the form

G : �h�iα → � j �k α where h, i, j, k ≥ 0

The set of this kind of axioms is called Scott-Lemmon set. An example of an
axiom that does not belong to this set, since it does not match the G-form, even if
its frame correspondent is a first-order formula (namely the formula (∀xy)(x Ry →
y Ry)), is the axiom �(�α → α). Scott and Lemmon [75] have shown that each
of the axioms belonging to the Scott-Lemmon set enjoys the following important
feature.

Theorem 2.19 The condition on frames which corresponds exactly to any axiom of
the G-form is the following:

(hjik-Convergence) (∀xyz)(x Rh y ∧ x R j z) → (∃w)(y Riw ∧ z Rkw)

where Rn is the result of the composition of R with itself n-times, R0 being the
identity.
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Name Axiom Semantic Frame Property
D α (∀x)(∃y)(xRy): seriality

T α →

→

α (∀x)(xRx): reflexivity

4 α → α (∀xyz)(xRy ∧ yRz → xRz): transitivity

B α → (∀xy)(xRy → yRx): symmetry

5 �α → � α

� α

� α

(∀xyz)(xRy ∧ xRz → yRz): euclideanness

Fig. 2.1 Modal axioms and corresponding properties

Scott and Lemmon have also shown the adequacy (soundness and completeness)
of any system that extends K with a selection of G-form axioms. This result has
subsequently been generalised by Sahlqvist [119].

In what follows we will focus on the Scott-Lemmon axioms that are listed
in Fig. 2.1, and that give rise to the principal Hilbert systems of normal modal
logic, when they are added to the system K. Philosophically, these systems have
an undoubted interest (e.g. see [62]); formally, they have the properties of the Scott-
Lemmon axioms. We will call these systems SLH-systems. Here are some examples
(following traditional notation, we write the names of the Hilbert systems in capital
letters and without the initial H):

KD: K + the axiom D
KT: K + the axiom T
K4: K + the axiom 4
KB: K + the axiom B
S4: KT + the axiom 4
S5: KT + the axiom 5, or equivalently: S4 + the axiom B

The remaining Hilbert systems are named according to the concatenation of
the names of their axioms. We stress that each SLH-system (except the weak-
est one K, and the strongest one S5) extends and is extended by another sys-
tem, so that they can be set out in a cube known as the cube of normal modal
logics.

Finally we are also interested in the Hilbert system GL, from the initials
of Gödel and Löb, or the logic of provability. Syntactically GL is equiva-
lent to K4 plus the Löb’s axiom: �(�α → α) → �α, while semantically
it defines the class of transitive frames without infinite ascending R-chains.
Even if this last property can only be defined by a second-order logic for-
mula, and therefore is distinguished from the frame properties listed in Fig. 2.1,
this system merits attention given its deep importance, both mathematical and
philosophical.
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2.2 Ordinary Sequent Calculi for Modal Logic

The first attempts at finding (good) sequent calculi for the SLH-systems plus GL
exploit the standard sequent calculus: several logical rules for the symbol � (and �,
if taken as primitive) have been added to Gcl. This section presents the main results
obtained this way.

Amongst others, Leivant [74], Mints [80] and Sambin and Valentini [121] agree
on adding the rule

M ⇒ α

�M ⇒ �α
k

to Gcl to obtain the sequent calculus Gk for the system K, where �M =
{�α | α ∈ M}. As Sambin and Valentini stress, in the rule k the consequent must
contain exactly one formula. If, for example, it contains two, we can prove the fol-
lowing formula:

α ⇒ α

⇒ α,¬α

⇒ �α,�¬α

⇒ �α ∨ �¬α

which is not a theorem of K. On the other hand, if the consequent of the rule k is
allowed to be empty, then we can get the sequent calculus for the system KD. This
fact was also noted by Goble [45] who introduced the calculus Gkd. Gkd results
from Gk by the addition of the rule

α, M ⇒
�α,�M ⇒ d

Moreover Goble showed how to obtain a sequent calculus for the Hilbert system
KD4: it suffices to substitute the rule k in Gkd with the rule

M
′ ⇒ α

�M ⇒ �α
d4

where M
′

results from M by prefixing zero or more formulas in M by the symbol
�. Following Ohnishi and Matsumoto [89], the sequent calculus Gkt for the system
KT results from Gk by adjoining the rule

α, M ⇒ N

�α, M ⇒ N
t

Given what we have seen so far, one could expect to add the following rule
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M ⇒ N ,�α

M ⇒ N ,��α
4+

to Gcl in order to obtain the calculus for the system K4. It is easy to prove that Gcl
plus the rule 4+ is sound and complete with respect to the system K4, but is not
cut-free, a counterexample being the sequent �(�α → β),�α ⇒ �β. Sambin and
Valentini [121] solved the problem by straightening the rule k in following way:

M,�M ⇒ α

�M ⇒ �α
4

and by adding the new rule 4 to the calculus Gcl. This way they obtained the calculus
Gk4 for the system K4.

Following Takano [135], the sequent calculi Gkb and Gkb4 result from Gcl by
including, respectively, the rules

M ⇒ �N , α

�M ⇒ N ,�α
b

M,�M ⇒ �N ,�T, α

�M ⇒ �N , T,�α
b4

Takano also presents the calculi Gktb and Gkdb which are obtained from Gkb
by adjoining, respectively, the rule t and the rule

M ⇒ �N

�M ⇒ N
db

The calculus for the system S4 was first given by Curry [27] and Feys [36],
and then analysed again by Ohinshi and Matsumoto [89]. Gs4 results from Gcl by
including the rule t and the rule

�M ⇒ α

�M ⇒ �α
s4

Let us summarise our presentation with the following figure.1 As Fig. 2.2 clearly
shows, we have deemed it interesting to specify (i) the type of sequent used by
the author(s), and (ii) the set of calculi explicitly mentioned by the author(s) in the
article listed in the left column.

Articles Type of sequent K KD KD4 KT K4 KB KB4 S4 GL
[27] sequences X
[45] sequences X X X X
[74] sets X X

[89], [90] sequences X X
[135] sequences X X
[121] sets X X X

Fig. 2.2 Ordinary sequent calculi for modal logic
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Concerning the rules for the symbol �, when taken as primitive, the following
rules represent the “possibility” counterparts of the rules k, t , and s4, respectively:

α ⇒ N

�α ⇒ �N k
′

M ⇒ N , α

M ⇒ N ,�α t
′

α ⇒ �N

�α ⇒ �N s4
′

The rules d, d4, 4, b, b4, db do not have an analogue counterpart. Kripke [72]
remarked that we cannot show the equivalence between � and ¬ � ¬ and between
� and ¬�¬ by means of the rules k

′
, t

′
and s4

′
. As a solution (only for the system

S4) he proposed to reformulate the calculus Gs4 by adding to the calculus Gk the
rules t , t

′
and the following two:

�M ⇒ �N , α

�M ⇒ �N ,�α

α,�M ⇒ �N

�α,�M ⇒ �N

As Wansing [149, p. 64] claims: “Such rules fail to give a separate account of the
inferential behavior of � and �, since only the combined use of these operations is
specified.”

Let us now move to the calculus for the system S5, which turns out to be the most
difficult one. We can cite many attempts: Braüner’s [14] and Mints’s2 [81], Ohnishi
and Matsumoto’s [90], Rautenberg’s [112], and finally Sato’s [124]. We will briefly
present each of them.

Braüner and Mints’s Calculi for S5. Braüner’s and Mints’s calculi can be
presented in the same paragraph since they rely on the same idea. They both make
the most of the fact that S5 can be embedded into monadic predicate logic, the first-
order logic of unary predicates. The main difference between Braüner’s calculus and
Mints’s calculus consists in their use of semantic elements: while Mints exploits this
resource, Braüner does not. Let us present both calculi in detail.

Braüner’s calculus, Gs5b, is a strict imitation of the Gentzen calculus for
monadic predicate logic. More precisely, Gs5b is obtained by adding to Gcl the
rule t (that seems to be the modal correspondent of the left introduction rule for
the universal quantifier in the sequent calculus for monadic predicate logic), and a
rule that introduces the � on the right side of a sequent, furnished with a simple
and precise side condition, just as for the right introduction rule for the universal
quantifier in the sequent calculus for monadic predicate logic. Given the relevance
of this side condition, let us try to explain it in detail. Before doing so, it is necessary
to make further terminological specifications.

Definition 2.20 If in a derivation d a side formula α in the premise(s) is mapped to
a side formula β in the conclusion by the obvious bijection between side formulas
in the premise(s) and side formulas in the conclusion, then β is said to be inherited
from α.

Definition 2.21 Two formula occurrences α and β in a derivation d are immediately
connected in d if, and only if, there exists a rule instance R in d such that one of the
following four conditions is satisfied:
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– α is a principal formula of R and β is an auxiliary formula of R or vice versa.
– R is an axiom and α, as well as β, are principal formulas of R.
– R is a cut and α, as well as β, are auxiliary formulas of R.
– α and β are side formulas of R and α is inherited from β or vice versa.

A list of formula occurrences γ1, ..., γn in a derivation d is a connection between γ1
and γn in d if, and only if, for each i ∈ {1, ...,n−1}, the formula occurrences γi and
γi+1 are immediately connected in d.

Intuitively, connections start in axioms and go through a derivation as expected.
Thanks to the notion of connection, we can define the notion of dependency between
formula occurrences in a derivation d. A formula in which each occurrence of a
propositional letter is within the scope of a � and a � is called modally closed.

Definition 2.22 Let α and β be formula occurrences in a derivation d. We say that
α and β are dependent in d if, and only if, there exists a connection between α and
β in d which does not contain any occurrence of a modally closed formula.

We can now state the rule which introduces the symbol � on the right side of the
sequent in the calculus Gs5b,

M ⇒ N , α

M ⇒ N ,�α
s5b

where applications of this rule in a derivation d must be such that in d none of the
formula occurrences in M and N depend on the displayed occurrence of α.

Rules for the symbol �, if taken as primitive, are the mirror image of the rules for
the symbol �. This means that the side condition of s5b also holds for the rule that
introduces the � on the left side of the sequent.

Let us now turn to Mints’s calculus. Mints’s calculus Gs5m employs indexed
sequents that are sequents of the form

(α1, i1), ..., (αn, in) ⇒ (β1, j1), ...(βm, jm)

where α1, ..., αn , β1, ..., βm are well-formed modal formulas, and i1, ..., in ,
j1, ..., jm are natural numbers. Informally, an indexed sequent is a sequent where
each formula is indexed by a natural number. Rules are supplemented with appro-
priate indeces; more precisely, the rules for the symbol � are the following:

(α, i), M ⇒ N

(�α, k), M ⇒ N
s5m1

M ⇒ N , (α, i)

M ⇒ N , (�α, k)
s5m2

where in s5m2 it holds that the index i should be different from each index occurring
in M or in N . The rules for the symbol � can be easily obtained from the ones for
the symbol �. The other rules do not change indeces.

It is interesting to notice that every derivation in Gs5m can become a derivation
in Gs5b by removing indeces, while the contrary, i.e. decorating every derivation in
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Gs5b with indeces in such a way that it becomes a derivation in Gs5m, does not
hold unless we assume that the axioms in Gs5b do not contain � or �.

Ohnishi and Matsmoto’s Calculus for S5. Ohnishi and Matsmoto’s calcu-
lus for S5 can be obtained from the calculus Gs4 by modifying the rule s4 in the
following way:

�M ⇒ �N , α

�M ⇒ �N ,�α
s5om

Unfortunately this calculus is not cut-free as the following proof of the axiom b
shows.

α ⇒ α

α,¬α ⇒ ¬A

α,�¬α ⇒ t

α ⇒ ¬�¬α
¬K

�¬α ⇒ �¬α

⇒ �¬α,¬�¬α
¬K

⇒ �¬α,�¬�¬α
s5om

¬�¬α ⇒ �¬�¬α
¬A

α ⇒ �¬�¬α
cut¬�¬α

⇒ α → �¬�¬α
→K

Reading the derivation bottom-up, it appears clearly that we come to a halt after
the first inference: on the left side, the formula α is not preceded by a connective or
modal operator, on the right side, we cannot apply the rule s5om, since, precisely,
the only formula belonging to the antecedent is not boxed. Therefore, in order to
reach the axioms, we need to use the cut-rule.

Although Ohnishi and Matsmoto’s calculus is not cut-free, it nevertheless has the
following property: any derivable sequent M ⇒ N , where each formula occurrence
in M and in N is modally closed, has a cut-free derivation.

Rautenberg’s Calculus for S5. This calculus3 is obtained by adding to the
calculus Gs4 the two rules

M ⇒ N ,��α,�α

M ⇒ N ,�α
s5r

M ⇒ N , α,�α α, M ⇒ N ,�α

M ⇒ N ,�α
sc

It must be emphasised that the right side rule is an example of what is normally
called analytic cut (see Section 1.4). It is worth recalling that an analytic cut is a
cut-rule with the additional condition that the cut-formula must be a subformula of
one of the formulas of the conclusion.

Sato’s Calculus for S5. The basic idea of this calculus consists in labelling
each well-formed formula α, as positive α+ or as negative α−. The mapping is
defined in the following way:

– ⊥+ = ⊥− = ⊥
– �+ = �− = �
– p+ = �
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– p− = ⊥
– (α → β)+ = α− → β+
– (α → β)− = α+ → β−
– (�α)+ = (�α)− = (�α)

Sato’s calculus is then obtained by making two changes to Ohnishi and Mat-
sumoto’s calculus:

(i) the rule → A is substituted with the following one:

M ⇒ N , α, β β, M ⇒ N , α α, β, M ⇒ N

α → β, M ⇒ N
→As

(ii) the rule S5s is added,

M ⇒ N , α−

M ⇒ N ,�α
S5s

Two observations are in order. The first one concerns the analyticity of the cal-
culus: even if Sato’s system is cut-free, it does not enjoy the subformula property.
The second one concerns signed formulas: it is not clear how, during a derivation,
an unsigned formula can become signed. Suppose we want to prove the formula
α → �(�(α →⊥) →⊥). We have

α, (�(α →⊥))− ⇒ ⊥+

α ⇒ (�(α →⊥) →⊥)−
→K

α ⇒ �(�(α →⊥) →⊥)
S5s

⇒ α → �(�(α →⊥) →⊥)
→K

In order to reach the axioms, we need a rule that unsigns the formula ⊥. Such
a rule is unavailable; on the other hand, if we understand the definitions of signed
formulas as two-ways rules, we can complete the derivation thus:

α ⇒ ⊥, α,⊥ α,⊥ ⇒ ⊥, α α,⊥, α ⇒ ⊥
α, α →⊥⇒ ⊥ →As

α,�(α →⊥) ⇒ ⊥ t

In conclusion, let us recall the only attempt made at finding an ordinary sequent
calculus for the Hilbert system GL. This attempt is quite simple to present. Indeed
the sequent calculus Ggl results from Gcl by the addition of the rule

M,�M,�α ⇒ α

�M ⇒ �α
gl
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Several authors have tried to prove the cut-elimination theorem for this sequent
calculus. The first proof was proposed by Leivant [74], but unfortunately it contains
a gap, as Valentini [140] pointed out. A second attempt was made by Valentini
himself (see again [140]) and his proof has given rise to an interesting discussion.
Firstly, Moen [83] has pointed out that in Valentini’s proof one makes an essential
use of the notion of set in a sequent, i.e. if one dealt with multisets, instead of sets,
the proof would not work; subsequently, Goré and Ramanayake [50] have shown
that these difficulties do not subsist. Finally, there even exists a third proof offered
by Sasaki [122]. This proof, thought it is quite complicated, has not given rise to
discussion.

As a conclusion to this long enumeration of results, we would like to stress that
in Goré [47], Shvarts [129] and Zeman [150] the reader can find ordinary sequent
calculi for others systems of modal logic.

Now that the ordinary sequent calculi for the main systems of modal logic have
been presented, we turn to their assessment. On the one hand, we can emphasise
their qualities:

Systems of this sort have many virtues; rules are simple and self-evident and some of the
most popular logics, including K, T, S4, GL, obtained, practically simple proof procedures.
[63, p. 17]

On the other hand, we cannot ignore their shortcomings: they lack almost all
the properties of a good sequent calculus. To borrow Sambin and Valentini’s
words [121, p. 316], the problem does not seem to be that of choosing suit-
able rules for each modal logic, but that of finding rules (and calculi) that sat-
isfy certain special properties. In order to solve this problem, provided we are
convinced by Došen’s redefined principle (see Section 1.10), the best strategy
to adopt seems to consist in enhancing not only the logical rules of Gcl, but
also the features of its deducibility relation. A similar conclusion is reached by
Blamey and Humberstone [12, p. 776], as well as by a number of other proof
theorists:

This strongly suggests that the move from truth-functional to modal logic is not one best
made simply by adding a new primitive connective with new rules governing it, but rather
by extending one’s conception of the objects to be manipulated by such rules.

We will deal with this topic in the next section and in the following chapters.

2.3 The Idea of Generalising the Gentzen Calculus

In the early 1980s, the failures of the search for a sequent calculus for modal logic
gave rise to the idea that the standard Gentzen calculus could only account for classi-
cal and intuitionistic logics and should therefore be enriched. Logicians thus started
creating methods capable of generating extensions of the sequent calculus and hence
suitable for providing modal logic, as well as other logics, with computational tools.
These methods can be divided in two groups: the first group consists of methods that
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generate purely syntactic sequent calculi, while the second group includes methods
that extend the standard sequent calculus by adding explicit semantic elements, such
as possible worlds or truth values. In the next chapter we will deal with calculi
belonging to the first group, while in the fourth chapter we will deal with calculi
belonging to the second group. The following pages will serve to clarify two impor-
tant points.

Firstly, we may reasonably expect a proof theory for modal logic to have a unique
framework in which it is possible to formulate good sequent calculi for at least all
the SLH-systems. Only in this way is it possible to observe the relationships and the
differences amongst several normal modal logics at the proof-theoretical level. The
ordinary sequent calculus fails to provide such a framework; hence the decision to
extend it. Now we will obviously require that these extensions of the sequent cal-
culus be flexible enough to generate calculi for at least the SLH-systems, since there
would be no benefit in formulating them otherwise. Given these considerations, let
us apply the following condition.

Condition 2.1 In order to be presented and analysed in this book, a generalisation
of the standard sequent calculus should have been used for obtaining a wide set of
calculi for the main systems of modal propositional logic.

Those extensions that do not respect the above condition will be merely cited but
not further examined.

The second point concerns the symbols taken as primitive. Here we take ¬, ∧, �
as primitive, indicating this with L�

{¬,∧,�} (see Remark 2.2, p. 40). Consequently,
when presenting the calculi for modal logic, we will only show the logical rules for
these symbols without mentioning the rules for the connectives ∨, →, and �. On
the other hand, a feature of a good sequent calculus for modal logic should consist
in (i) being able to prove the equivalences �α ↔ ¬�¬α and �α ↔ ¬�¬α, and in
(ii) having parallel rules for the two modal operators � and �. In many cases these
conditions are fulfilled and in such cases we will leave it to the reader to (i) prove the
interdefinability of these two connectives, and (ii) deduce the rules for the symbol
� from the ones for the symbol �. By contrast, in those cases in which the rules for
the symbols � and � are not the image of each other, we will analyse the situation
in detail.

In conclusion, let us sum up how we will present the several generalisations
that extend the sequent calculus: (i) we will first introduce the syntactic notation
necessary to show the generalisation that we are interested in, (ii) we will define
the notion of sequent used in the calculi and its intended interpretation, (iii) we will
introduce the calculus for the system K in one of its general variants (see Definition
1.13, p. 9), and then we will illustrate the rules by which one obtains the calculi
for the other systems of modal logic, (iv) we will give the main results that can be
obtained within the generalisation and an example of derivation in the calculi, (v)
we will make some general remarks, (vi) finally we will indicate open (interesting)
problems when they arise.
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Notes

1. Note that the attempt at finding a calculus for the system GL is presented at the end of the
current section.

2. Mints [79] has also proposed a sequent calculus for a quantified version of S5. This calculus,
even if cut-free, does not enjoy the subformula property.

3. We emphasise that in [112] Rautenberg proposes alternative formalisations of the calculi Gkd
and Gktb. As it has been stressed by Goré [47], the cut-elimination theorem for these alternative
formalisations seems difficult to prove.



Chapter 3
Purely Syntactic Methods

When thinking about classical sequents, a question naturally arises: can a more
abstract version of them be found? There are at least six ways of answering this
question in the affirmative:

– we can deal with more than just one sequent arrow (multiple sequent calculi);
– we can deal with more than just one antecedent and one succedent (higher-arity

sequent calculi);
– we can deal with n different sequents at the same time (hypersequent

calculi);
– we can deal with different ways of bunching formulas together (display calculi);
– we can deal with sequents as “vertical” objects (higher-dimensional sequent cal-

culi);
– we can deal with sequents which have on both sides of the sequent arrow finite

sets of sequents (higher-level sequent calculi).

Each of the methods that generate purely syntactic calculi arise from one of the
above ideas. The methods inspired by the last two ideas are, respectively, Masini’s
[77], and Došen’s [31]. We will not present these two generalisations in detail since
none of them respects Condition 2.1. On the one hand, Masini’s method has been
applied to the system KD only. As Wansing [149, p. 75] remarks,

This sequent system for KD admits cut-elimination, � and � are interdefinable, and the
introduction rules are separate, symmetrical, and explicit, but no indication is given of how
to present axiomatic extensions of KD as higher-dimensional sequent systems.

On the other hand, Došen’s method has only been applied to the systems S4 and S5.
As Wansing [149, p. 74] has observed,

In Došen’s higher-level framework it is not clear how restrictions similar to the one used
to obtain S4p/D from S5p/D would allow to capture further axiomatic systems of normal
modal propositional logic.

Moreover Došen’s calculi do not satisfy the cut-elimination theorem at the upper
levels.

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_3, C© Springer Science+Business Media B.V. 2011
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The method of hypersequents does not respect Condition 2.1 either since it has
only been applied to the system S5 independently by Avron [6] and Restall [117].
However, this method is strictly related to the tree-hypersequent method, and there-
fore we will often refer to it in the third and last part of the book (see in particular,
Chapters 6 and 9).

A new and recent generalisation of the sequent calculs, called calculus of struc-
tures (e.g. see [53, 132, 133]), also exists. It is a generalization rather different from
the ones that were introduced in the foregoing: is not obtained by introducing a
more abstract version of the notion of sequent, but by changing the structure of the
sequent calculus itself. Since it breaks away from the original Gentzen calculus, we
will not address it in what follows.

3.1 Multiple Sequent Calculi

Let us start our presentation of the syntactic sequent calculi for modal logic with the
multiple sequent calculi that were introduced by Indrzejczak [63, 64]. These calculi
are based on the idea, which seems to go back to Curry [27] and Zeman [150], of
dealing with two different types of sequent arrow: the normal one (⇒) and the modal
one (�⇒). Intuitively the difference between these two types of sequent arrow can
be explained by considering that a classical sequent is said to be unsatisfiable if,
simply, the antecedent is true and the consequent false. The same holds for modal
sequents even if, in this case, we must make reference to two different worlds of
Kripke semantics: the antecedent is true in one, while the consequent false in the
other.

Syntactic Notation

– The structural connectives of the multiple sequent calculi are the sequent arrow,
the comma and the unary connective “−.”

– For any α ∈ WMF, −α is a well-formed multiple structure. The set WMS of
well-formed multiple structures is defined in the following way: WMS:= {−α | α
∈ WMF}. WMF−:= WMF

⋃
WMS.

– For every α ∈ WMF−, α∗ :=

{
β, i f α ≡ −β,

−α, otherwise.
– M∗ := {α | −α ∈ M} ∪ {−α | α ∈ M}.
– We call B-formula any formula of the form �α or �¬α that occurs in the

antecedent of a sequent. Accordingly, B[M] stands for: the multiset M is com-
posed of B-formulas.

Definition 3.1 Given two WMF− multisets1 M and N , we define a modal sequent
in the following inductive way:

– M �⇒
0

N := M ⇒ N
– M �⇒

n+1
N := M��⇒n N
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In the calculi for the B-systems n = 0, 1, ..., in the rest of the calculi n = 0, 1.

We remark that the relation

Γ 	 α if, and only if, for some γ1, ..., γn ∈ Γ , 	 γ1, ..., γn�⇒n α

is not a consequence relation for many of the calculi considered below, because in
general α �⇒n α does not hold.

Definition 3.2 Given a translation δ from the well-formed multiple structures to
the well-formed formulas of the language L�{¬,∧,�} such that (−α)δ:= ¬α, the
translation τ is defined in the following way:

(M �⇒n N )τ :=
∧

(M)δ ⇒
n

︷ ︸︸ ︷
�...�

∨
(N )δ

where (M)δ := {α | α ∈ M} ∪ {¬α | −α ∈ M}.
The calculus Msk for the system K is composed of:

Initial Sequents

α ⇒ α

Structural Rules
Weakening and Contraction

M �⇒n N

α, M �⇒n N
W A

M �⇒n N

M �⇒n N , α
W K

α, α, M �⇒n N

α, M �⇒n N
C A

M �⇒n N , α, α

M �⇒n N , α
C K

Shifting Rules

M ⇒ N , α

α∗, M ⇒ N
S A

α, M ⇒ N

M ⇒ N , α∗ SK

Necessitation Rule

⇒ N

�⇒1 N
rn

Logical Rules
Propositional Rules

−α, M �⇒n N

¬α, M �⇒n N
¬A

M �⇒n N ,−α

M �⇒n N ,¬α
¬K

α, β, M �⇒n N

α ∧ β, M �⇒n N ∧A
′

M �⇒n N , α P �⇒n Q, β

M, P �⇒n N , Q, α ∧ β ∧K
′
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Modal Rules
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M �⇒1 N ,−α

�α, M �⇒1 N �A1

α �⇒n N

�α �⇒n+1 N �A2

M �⇒n+1 α

M �⇒n �α
�K

There are several observations to make about the calculus Msk. The first and
most evident is that there is no cut-rule. The second is the presence of shifting rules
that make use of the symbol “−” and that shift a formula α from one side of the
sequent to the other, i.e. they do what in Gcl is part of the “job” of the ¬A and ¬K
rules (and also of the → A and → K rules, if the symbol → is taken as primitive).
The distinction between shifting rules and logical rules was firstly introduced by
Fitting [38] in order to prove the interpolation theorem; here it is used to guarantee
that the logical rules might be applied to any type of sequent, classical (n = 0) and
modal (n > 0).

A third and final remark: the calculus that results from Msk by dropping (the
effects of) the necessitation rule is a calculus for the system C, where the axiomati-
zation of C can be obtained by replacing the necessitation rule in K by the weaker
rule: from (α ∧ β) → γ , prove (�α ∧�β) → �γ . See Chellas [24].

In order to obtain the calculi for the remaining normal modal systems, we add
combinations of the rules below to the calculus Msk. Each rule corresponds to one
of the axioms (or frame properties) listed in Section 2.1, p. 44.

Special Structural Rules

M �⇒n+1

M �⇒n d
M �⇒n+1 N

M �⇒n N
t

B(M) �⇒n N

B(M) �⇒n+1 N
4

M �⇒n N

(N )∗ �⇒n (M)∗ b

We have thus introduced all the necessary rules for obtaining calculi for the SLH-
systems. Let us dwell for a moment on an important point. As we have already noted
at the beginning of this section, there is a precise difference between the calculi for
the B-systems and the calculi for the systems that do not contain the B axiom. This
difference consists in the way one can vary the n of the modal sequents: in the
first case n = 0, 1, ..., while in the second case n = 0, 1. A curious reader could
rightly wonder about the reason of this distinction. To see why, consider the rule
�A2 in the calculi for the systems without the B axiom. Intuitively, this rule, if we
read it top-down, take us from an unique world i to two possible worlds i and j
related by the accessibility relation R. In the systems without the B axiom, the new
world j and its relationship with the old one is irrelevant, since we must never look
backwards. Syntactically, this means that using the rule �K after the rule �A2 is
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not limitative, even if �K erases the new world j and takes us back to a classical
sequent. In the calculi for the B-systems matters are different. In these symmetric
calculi the possibility of looking backwards must be left open: thus it is restrictive to
demand that the rule �K takes us only from modal sequents to classical sequents.
This is why we must modify the structure of the sequents, and allow the reiteration
of the symbol � in front of the sequent n times.

Theorem 3.3 Each of the calculi Msk∗2 is sound and complete with respect to the
corresponding class of frames.

Proof The soundness proof is by induction on the height of derivations. The com-
pleteness proof, on the other hand, changes depending on whether it is applied to
the calculi that do not contain the b rule (first group), or to the ones that contain
such a rule (second group). The completeness proof for the first group is inspired
by a method introduced by Smullyan [131], and then used by Fitting [38]. This
method, in a nut-shell, consists in defining a set of consistency properties (which
are sufficient to build a model) for the formal system under consideration. If the
deducibility relation of the formal system satisfies these properties, then the formal
system is shown to be complete. The completeness proof for the second group sim-
ply consists in the definition of an automatic procedure of proofs search. Finally, in
both of these proofs Indrzejczak deals with sets of formulas, and does not use the
rules of contraction. ��

Example 3.4 Here is an example of a derivation in the calculi Msk∗3:

α ⇒ α β ⇒ β

α → β, α ⇒ β
→A′

α ⇒ β,−(α → β)
SK

�α �⇒1 β,−(α → β)
�A2

�α,�(α → β) �⇒1 β
�A1

�α,�(α → β) ⇒ �β
�K

⇒ −�α,−�(α → β),�β
SK ∗

⇒ −�(α → β),�α → �β
→K

⇒ �(α → β) → (�α → �β)
→K

At the end of his article [63] Indrzejczak remarks that in the case of the
system S5 the method of multiple sequents allows for considerable simplifi-
cations. For the sake of completeness, we will attempt to present this simpli-
fied multiple sequent calculus for the system S5 (for a detailed analysis see
[64]).

First of all, let the n of modal sequents be such that n = 0, 1. Therefore, we will
simply write ⇒, when n = 0, �⇒, when n = 1, and (⇒), when n = 0, 1. The
calculus Mss5s is composed of:
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Initial Sequents

α ⇒ α

Structural Rules
Weakening and Contraction

M(⇒)N

α, M(⇒)N
W A

M(⇒)N

M(⇒)N , α
W K

α, α, M(⇒)N

α, M(⇒)N
C A

M(⇒)N , α, α

M(⇒)N , α
C K

Shifting Rules

M ⇒ N , α

α∗, M ⇒ N
S A

α, M ⇒ N

M ⇒ N , α∗ SK

M �⇒ N

(N )∗ �⇒ (M)∗ Ss

Necessitation Rule

M ⇒ N

M �⇒ N
rns where M(N ) = ∅ or M(N ) contains

only boxed formulas or their nega-
tions.

Logical Rules
Propositional Rules

−α, M(⇒)N

¬α, M(⇒)N
¬A

M(⇒)N ,−α

M(⇒)N ,¬α
¬K

α, β, M(⇒)N

α ∧ β, M(⇒)N ∧A
′

M(⇒)N , α P(⇒)Q, β

M, P(⇒)N , Q, α ∧ β ∧K
′

Modal Rules

α, M(⇒)N

�α, M(⇒)N �As

M �⇒ �N , α

M ⇒ �N ,�α
�Ks

The calculus Mss5s is sound and complete with respect to the system S5 and it
is also cut-free.

A final question pertaining to the multiple sequent calculi Msk∗ concerns what
happens if the symbol � is taken as primitive. To answer this, we must once again
distinguish between the b-calculi and the calculi that do not contain the b rule. In
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the first case, there is no particular change except for the addition of suitable rules
for the symbol �. In the second case, by contrast, the changes are more substantial
and can be explained in detail as follows.

In the case of the symbol �, we introduced the sequent arrow �⇒. Semanti-
cally, the passage from a classical sequent arrow to a modal sequent arrow can be
conveyed thus:

⇒ ! �⇒
◦i ! ◦i → ◦ j

What happens in the case of the symbol �? The answer appears clearly: we intro-
duce another sequent arrow �⇒ , and we semantically interpret the passage from a
classical sequent arrow to this new sequent arrow in the following way:

⇒ ! �⇒
◦i ! ◦ j → ◦i

Given this explanation, the reason why in the b-calculi the second modal sequent
arrow becomes superfluous, should be clear. Indeed the b-calculi it holds that

◦ j−→←◦i

Let us now consider the calculi Msk∗ that do not contain the b rule and in which
the symbol � is taken as primitive. The following modifications become necessary:
first of all, as we have already seen, we must assume a second modal sequent arrow,
�⇒, such that (M �⇒n N )τ := �∧

(M)δ ⇒ ∨
(N )δ . As a result we must add the

rules

α �⇒ N

�α ⇒ N
�A

M ⇒ α

M �⇒ �α
�K1

−α, M �⇒ N

M �⇒ N ,�α
�K2

M ⇒
M �⇒ r p

M �⇒ N

(N )∗ �⇒ (M)∗ tr
M �⇒ N

(N )∗ �⇒ (M)∗ tr

We also have the counterparts of the special structural rules

�⇒ N

⇒ N
�d

M �⇒ N

M ⇒ N
�t

M ⇒ B(N )

M �⇒ B(N )
�4

Remark 3.5 On the one hand, the calculi Msk∗ respect the main purpose of the
author, which is the simplicity of derivations. On the other hand, the calculi Msk∗
fail to satisfy many relevant properties. First of all, as we have pointed out above, the
calculi do not have an explicit cut-rule. Secondly, the calculi do not have a logical
variant because of the special and shifting structural rules and, in the cases of certain
calculi at least, because of the contraction rules. Thirdly, a structural variant is not
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available either since the cut-rule is absent. Finally, the explicitness and modularity
properties, as well as the new definition of Došen’s principle, are clearly not satis-
fied, and no new rule corresponds to the 5 axiom.

The notation we have used to present the multiple sequent calculi is slightly
different from the one employed by the author. Moreover, we would like to bring
the reader’s attention to the fact that a recent work of Indrzejczak [65] discusses
sequent calculi for modal hybrid logics.

Problem 3.6 (i) What would a cut-rule for the multiple-sequent calculi look like?
(ii) Is there a syntactic way to prove the cut-elimination theorem? (iii) Is there a way
to formalise the rule for the axiom 5?

3.2 Higher-Arity Sequent Calculi

The idea of increasing the arity of a sequent was first introduced by Schröter [52],
and then further explored by Rousseau [118] and Gottwald [127]. The idea orig-
inated as a natural solution to the problem of the lack of a sequent calculus for
the Lukasiewicz n-valued logics. Indeed, if two-place sequents were adequate to
formalise two truth-values logics, then n-place sequents would have been suitable
for formalising n-valued logics. More precisely, a classical sequent M ⇒ N holds
if, and only if, at least one of the M’s is false or at least one of the N ’s is true. In
other words, it holds if, and only if, at least one of the M’s assume the value 0, or
at least one of the N ’s assume the value 1. The n-valued sequent M0, M1, ..., Mn−1
for a n-valued logic holds if, and only if, there is a j ≤ n such that at least one of
the M j ’s assumes the value j .

This intuition has been taken up recently and adapted to modal logic. In this
case one considers 4-place sequents in which the “two new truth values” are
the necessarily true and the possibly false. Sato [123] was the first to apply the
higher-arity sequent method to modal logic: unfortunately he only obtained a cal-
culus for the system S5. Blamey and Humberstone [12] constructed calculi with
3-ary sequents, and 4-ary sequents, for all the SLH-systems. Let us turn to their
work.

Definition 3.7 Given four WMF multisets4 M , N , S and T , a higher-arity sequent
is an object of the form

M ⇒T
S N :=

⎧
⎨

⎩

M ⇒ N , i f S, T = ∅,

M ⇒T
S N , otherwise.

Definition 3.8 The interpretation τ of a higher-arity sequent is the following:

– if the higher-arity sequent is a classical sequent M ⇒ N , then (M ⇒ N )τ :=∧
M → ∨

N ,
– if the higher-arity sequent has the form M ⇒T

S N , then (M ⇒T
S N )τ :=

(
∧

M ∧
∧

�S) → (
∨

N ∨
∨

�T )
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The calculus H-ask for the system K is composed of:

Initial Higher-Arity Sequents

Ax : α ⇒∅
∅ α V ertical Ax : ∅ ⇒α

α ∅

Structural Rules
Weakening and Contraction

M ⇒T
S N

α, M ⇒T
S N

W A
M ⇒T

S N

M ⇒T
S N , α

W K

α, α, M ⇒T
S N

α, M ⇒T
S N

C A
M ⇒T

S N , α, α

M ⇒T
S N , α

C K

Higher-arity Weakening and Contraction

M ⇒T
S N

M ⇒T
α,S N

Wn A
M ⇒T

S N

M ⇒T,α
S N

Wn K

M ⇒T
α,α,S N

M ⇒T
α,S N

Cn A
M ⇒T,α,α

S N

M ⇒T,α
S N

Cn K

Cut-Rules

α, M ⇒T
S N M ⇒T

S N , α

M ⇒T
S N cut1

α

M ⇒T
α,S N M ⇒T,α

S N

M ⇒T
S N cut2

α

M ⇒ α P ⇒W
Z , α Q

P ⇒W
Z , M Q

Ucutα

Logical Rules
Propositional Rules

M ⇒T
S N , α

¬α, M ⇒T
S N

¬A
α, M ⇒T

S N

M ⇒T
S N ,¬α

¬K

α, β, M ⇒T
S N

α ∧ β, M ⇒T
S N ∧A

′
M ⇒T

S N , α P ⇒W
Z Q, β

M, P ⇒T,W
S,Z N , Q, α ∧ β

∧K
′
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Modal Axioms

�α ⇒α
∅ ∅ � A ∅ ⇒∅

α �α � K

Note that Ucutα stands for Undercut of α. Note also that in this calculus it is
possible to derive the two rules

M ⇒T
α,β,S N

M ⇒T
α∧β,S N ∧n A

′
M ⇒T, α

S N P ⇒W, β
Z Q

M, P ⇒T,W, α∧β
S,Z N , Q ∧n K

′

that are nothing but the logical rules for the connective ∧ applied on a higher-level.
As Blamey and Humberstone say [12, p. 774],

This can be thought of as a way of saying that necessity distributes over conjunction without
actually mentioning necessity.

Below are the proofs of their derivability. The symbol W ∗ denotes the repeated
applications of the four rules of weakening (classical and higher-arity ones).

∧n A
′ :

M ⇒T
α,β,S N

M ⇒T
α,β,α∧β,S N

Wn A

α ⇒ α

α, β ⇒ α
W A

α ∧ β ⇒ α
∧A′

∅ ⇒α
α ∅

∅ ⇒α
α∧β ∅

M ⇒T,α
β,α∧β,S N

W ∗

Ucutα

M ⇒T
α∧β,β,S N

cut2
α

β ⇒ β

α, β ⇒ β
W A

α ∧ β ⇒ β
∧A′

∅ ⇒β
β ∅

∅ ⇒β
α∧β ∅

M ⇒T,β
α∧β,S N

W ∗

Ucutβ

M ⇒T
α∧β,S N

cut2
β

∧n K :

α ⇒ α β ⇒ β

α, β ⇒ α ∧ β
∧K ′

∅ ⇒α∧β
α∧β ∅

∅ ⇒α∧β
α,β ∅

M ⇒T,α∧β
α,β,S N

W ∗

Ucutα∧β

M ⇒T,α
β,S N

M ⇒T,α,α∧β
β,S N

Wn A

M ⇒T,α∧β
β,S N

M, P ⇒T,W,α∧β
β,S,Z N , Q

W ∗

cut2
α

P ⇒W,β
Z Q

M, P ⇒T,W,β,α∧β
S,Z N , Q

M, P ⇒T,W,α∧β
S,Z N , Q

cut2
β

On the contrary, the rules

M ⇒T,α
S N

M ⇒T
S, ¬α N

¬n A
M ⇒T

S, α N

M ⇒T, ¬α
S N

¬n K
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are not derivable. This fact comes as no surprise but rather as a reassurance since
these inferences are clearly not K -valid. The rule ¬n A becomes valid and derivable
in the calculi for the D-systems.

Finally, it is worth stressing the particular form of the rules cut1
α and cut2

α in
which the order of the premises is inverted with respect to the usual one.

In order to obtain the calculi for the remaining normal modal systems, we add
combinations of the rules below to the calculus H-ask. Each rule corresponds to one
of the axioms (or frame properties) listed in Section 2.1, p. 44.

Special Structural Rules

M ⇒∅
∅ ∅

∅ ⇒∅
M ∅ d ∅ ⇒∅

α α t

S ⇒∅
S α M ⇒∅

α, S′ N

M ⇒∅
S,S′ N

4
S ⇒N

∅ α M ⇒T
α, S N

M ⇒T
S N

b

Theorem 3.9 Each of the calculi H-ask∗ is sound and complete with respect to the
corresponding class of frames.

Proof The soundness proof is by induction on the height of derivations. The com-
pleteness proof, instead, is developed following the Scott-Makinson adaptation of
Henkin completeness proof (e.g. see [128]), which basically consists in constructing
canonical structures. Finally, in both of these proofs, Blamey and Humberstone deal
with sets of formulas and do not use the rules of contraction. ��
Example 3.10 Below is an example of a derivation in the calculi H-ask∗:

∅ ⇒α
α ∅ ⇒β �β

∅ ⇒∅
α→β, α �β

→A
′
2 �(α → β) ⇒α→β

�(α → β) ⇒α �β
cut2

α→β �α ⇒α

�(α → β),�α ⇒ �β
cut2

α

�(α → β) ⇒ �α → �β
→K

⇒ �(α → β) → (�α → �β)
→K

At the formal level, at least three comments concerning the higher-arity sequent
calculi are in order. The first remark is about two alternatives for obtaining the cal-
culus H-ask. Indeed,

– the modal axioms (�A) and (�K ) are interreplaceable with the following rules,
respectively:

M ⇒T
α,S N

�α, M ⇒T
S N �A

′
�α, M ⇒T

S N

M ⇒T
α,S N �K

′
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Notice that even with these rules the calculi are not cut-free, as the derivation of
the axiom ¬�¬α ∧�β → ¬�¬(α ∧ β) shows.

– the V ertical Ax . and the Undercut-rule delivers the rule

M ⇒∅
∅ α

∅ ⇒α
M ∅ rn

and vice versa. In the rule rn the consequent should contain exactly one formula;
if, for example, it does not contain any formula, that is to say if it is empty, then
the rule rn becomes the rule d.

The second comment concerns a second way to obtain the calculus H-askt. The
axiom t can be substituted by the rule

α, M ⇒∅
S N

M ⇒∅
α,S N t

′

The third and final comment concerns the symbol �. It is worth underlining that
if the symbol � is taken as primitive, the rules that mirror the rules �A

′
and �K

′
fail

to introduce the symbol � (they are not valid). On the other hand, Blamey and Hum-
berstone do not offer any alternative solution, such as the one we have presented in
the previous section for the multiple-sequent calculi.

Remark 3.11 The main purpose of the authors, as they themselves claim in the intro-
duction of their paper, is to find a notion of sequent which reflects, at the purely
syntactic level, several properties enjoyed by the classes of frames characterised by
the SLH-axioms. In this respect, they certainly succeed, if we do not consider the
fact that no new rule corresponds to the 5 axiom. On the other hand, the higher-
arity sequent calculi have significant flaws: they are not cut-free, they do not have a
logical variant, and the new definition of Došen’s principle is not satisfied.

Problem 3.12 (i) Is there a way to modify and enrich the higher-arity sequent calculi
in order to render them cut-free? (ii) Is there a way to formulate the rules for the
symbol �? (iii) Is there a way to formalise the rule for the axiom 5?

3.3 Display Sequent Calculi

The term display logic is normally used to refer to a general proof theoretic frame-
work introduced by Belnap [8–10]. This framework has been fully exploited not
only in the field of modal logic, where the work of Wansing [145, 147, 149] stands
out, but also in other fields such as substructural logics [48, 115] and in particular
subintuitionistic logic [146].

The basic idea behind display logic is to consider the sequent arrow as represent-
ing a deducibility relation between finite possible complex data. In line with this
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interpretation, one no longer works with finite multisets of formulas, but starts to
deal with the so called Gentzen terms or structures, and adds new structural symbols
that are applicable to such Gentzen terms or structures. Thanks to these innovations,
it becomes possible to simulate, in the framework of the sequent calculus, the most
natural and desirable data-operations that we can think of, e.g. combining or trans-
ferring the data, or moving the data around.

Syntactic Notation

– The structural connectives of display logic are the sequent arrow and the follow-
ing four5:

I : nullary operation,
•, ∗: unary operations,
◦: binary operation,

– M , N , ... vary on structures.

Let us explain how the four new structural connectives should be understood.

I is the empty structure,
◦ is the structure composition,
∗ shifts structures from one side to the other,
• marks the structure in its scope as intensional.

Definition 3.13 A display structure is given by the rule:

M ::= I | α | • M | M∗ | M ◦ N

Therefore every formula is considered to be as a structure, and the struc-
tural connectives are used to build up more complex structures in the obvious
way. A sequent is now a relation between structures, as the following definition
shows.

Definition 3.14 A display sequent is an object of the form M ⇒ N , where M and
N are structures.

The structure M(N ) is the antecedent (succedent) of M ⇒ N . An antecedent
(succedent) part of a sequent M ⇒ N is a positive occurrence of a substructure
of M or a negative occurrence of a substructure of N (a positive occurrence of a
substructure of N or a negative occurrence of a substructure of M).

In order to translate display sequents, the language of modal logic L�
{¬,∧,�} is

not enough. Not only do we need the two constants � and ⊥, but, more peculiarly,
we need the tense operator P for “sometimes in the past.” Indeed, one of most
meaningful characteristics of display logic consists in exploiting the well-known
notion of residuated pair of unary operations (for a clear exposition of this and other
related notions see [34, pp. 30–33]). This is done by means of the symbol • that can
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be either translated by the constant �, or by the tense operator P . � – alias [F] for
“always in the future” – and P precisely form a residuated pair.

Definition 3.15 Let LP�
{¬,∧,�} be a (modal) tense language that extends the lan-

guage L�
{¬,∧,�} by adding the falsity and the truth constants ⊥ and �, respectively,

and the tense operator P . We give the following translation τ of sequents into for-
mulas of the language LP�

{¬,∧,�}:

(M ⇒ N )τ := (M)τ1 → (N )τ2

where τi (i = 1, 2) is defined as follows:

(α)τi = α

(I )τ1 = �
(I )τ2 = ⊥
(M∗)τ1 = ¬(M)τ2

(M∗)τ2 = ¬(M)τ1

(M ◦ N )τ1 = (M)τ1 ∧ (N )τ1

(M ◦ N )τ2 = (M)τ2 ∨ (N )τ2

(•M)τ1 = P(M)τ1

(•M)τ2 = �(M)τ2

Note that the display structural connectives I , ◦ and • do not differ from the clas-
sical structural connectives in being context-sensitive at the interpretational level.

The calculus Dsk for the system K is composed of:

Initial Sequents

p ⇒ p

Structural Rules
Weakening and Contraction

M1 ⇒ N

M1 ◦ M2 ⇒ N
W

M1 ⇒ N

M2 ◦ M1 ⇒ N
W

M ◦ M ⇒ N

M ⇒ N
C

Associativity, Commutativity and Identity

M1 ◦ (M2 ◦ M3) ⇒ N

(M1 ◦ M2) ◦ M3 ⇒ N
A

M1 ◦ M2 ⇒ N
M2 ◦ M1 ⇒ N

C
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M ⇒ N

I ◦ M ⇒ N
I+

M ⇒ N

M ◦ I ⇒ N
I+

I ◦ M ⇒ N

M ⇒ N
I−

M ◦ I ⇒ N

M ⇒ N
I−

I ⇒ N

M ⇒ N
I A

M ⇒ I

M ⇒ N
I K

Basic Structural Rules

M ◦ S ⇒ N
M ⇒ N ◦ S∗
S ⇒ M∗ ◦ N

M ⇒ N ◦ T
M ◦ T ∗ ⇒ N
N∗ ◦ M ⇒ T

M ⇒ N
N∗ ⇒ M∗
M ⇒ N∗∗

M ⇒ •N
•M ⇒ N

Necessitation Rule

I ⇒ N

•I ⇒ N
rn

Cut-Rule

M ⇒ α α ⇒ Q

M ⇒ Q
cutα

Logical Rules
Propositional Rules

α∗ ⇒ N

¬α ⇒ N
¬A

M ⇒ α∗

M ⇒ ¬α
¬K

α ◦ β ⇒ N

α ∧ β ⇒ N ∧A
′

M ⇒ α P ⇒ β

M ◦ P ⇒ α ∧ β ∧K
′

Modal Rules

α ⇒ N

�α ⇒ •N �A
•M ⇒ α

M ⇒ �α
�K

There are at least two remarks to make about this calculus. The first one concerns
the basic structural rules, i.e. the rules that determine the simple and clear inferential
behaviour of the four structural connectives. If two sequents are interderivable by
means of the basic structural rules, then these sequents are said to be structurally
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equivalent. Note that the basic structural rules are not named; therefore if we need
to use them in a derivation, we will indicate each of their applications with a
generic sr .

The second remark concerns certain structural rules that are easily derivable from
the structural rules assumed as primitive, and that, at the same time, are descriptive
of the display calculus. Below are a few examples.

I ⇒ N
I ∗ ⇒ N

M ⇒ N1

M ⇒ N1 ◦ N2

M ⇒ N ◦ N
M ⇒ N

So let us suppose that we want to derive the rule

I ∗ ⇒ N
I ⇒ N

we have

I ∗ ⇒ N
I ◦ I ∗ ⇒ N
N∗ ◦ I ⇒ I

N∗ ◦ I ⇒ N
I ◦ N∗ ⇒ N
I ⇒ N ◦ N

I ⇒ N

In order to obtain the calculi for the remaining normal modal systems, we add
combinations of the rules below to the calculus Dsk. Each rule corresponds to one
of the axioms (or frame properties) listed in Section 2.1, p. 44.

Special Structural Rules

•M ◦ •N ⇒ I ∗

M ⇒ N∗ d
M ⇒ •N

M ⇒ N
t

M ⇒ •N

M ⇒ • • N
4

(•(M∗))∗ ⇒ N

•M ⇒ N
b

(•(M∗))∗ ⇒ N

•((•(M∗))∗) ⇒ N
5

Though we have already emphasised many important aspects of display logic, we
still have not clarified the origin of its name. The reason consists in the fact that any
substructure of a given display sequent s may be displayed as the entire antecedent
or succedent, respectively, of a structurally equivalent sequent s

′
. More precisely,

the Display Theorem states that:
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Theorem 3.16 For all sequents s of Dsk∗, and all antecedent (succedent) parts M
of s, there exists a sequent s

′
structurally equivalent with s, such that M is the

antecedent (succedent) of s
′
.

Proof There are (at least) two proofs of this theorem: Belnap’s [8] and Restall’s
[115]. ��

If a logic satisfies the Display Theorem, it is said to satisfy the display property.
As Wansing remarks [147, p. 36], the basic structural rules that we have presented
above suffice to prove the Display Theorem. Nevertheless there are other combina-
tions of basic structural rules that guarantee the display property.

The Display Theorem has both a technical and a philosophical significance. On
the technical level, it allows an elegant and general proof of the cut-elimination
theorem (see the proof of Theorem 3.18). On the philosophical level, the Display
Theorem involves a property that is usually called segregation, and that can be seen
as a straightening of the separation property (see Section 1.7). Indeed, the separation
property requires a logical rule not to exhibit any other connective except the one
it introduces (so that we can have a non holistic definition of the meaning of the
introduced symbol). The segregation property, instead, requires a logical rule not
to display any other formula (or structure) in its antecedent (or succedent) than the
one(s) it is going to operate on. This way a logical rule is able to impart information
about the meaning of the symbol it introduces without involving any reference to
context. As Belnap [10, p. 81] explains,

[t]he nub is this. If a rule for → only shows how α → β behaves in context, then that rule is
not merely explaining the meaning of →. It is also and inextricably explaining the meaning
of the context. Suppose we give sufficient conditions for

α → β, M ⇒ N

in part by the rule
M ⇒ N , α β, M ⇒ N

α → β, M, P ⇒ N , Q

Then we are not explaining α → β alone. We are simultaneously involving the comma
not just in our explicans (that would surely be all right), but in our explicandum. We are
explaining two things at once. There is no way around this. You do not have to take it as a
defect, but it is a fact. (Notation adjusted.)

Paoli [94] calls this view on the meaning-giving status of the logical rules the
undeterministic view. He associates it with Sambin’s position on the meaning of
connectives and with his visibility requirement (see for further details [120]).

Theorem 3.17 Each of the calculi Dsk∗ is sound and complete with respect to the
corresponding Hilbert system.

Proof By induction on the height of derivations in the appropriate Hilbert system
and calculus, respectively. ��
Theorem 3.18 Each of the calculi Dsk∗ is cut-free.
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Proof The proof is developed following the technique first proposed by Curry [28]
and then developed by Belnap [8]. This technique consists in enumerating eight
conditions (see for further details [8], pp. 387–390) which, if satisfied by the cal-
culus under consideration, ensure the eliminability of the cut-rule. Each of these
conditions can be verified by sight except the last one, C8, which is the Elim-
inability of principal constituents. In this instance both premises of cut introduce
the cut-formula. If the cut-formula has the form �α, we have

•M ⇒ α

M ⇒ �α
�A

α ⇒ N
�α ⇒ •N

�K

M ⇒ •N
cut�α

which we reduce to

•M ⇒ α α ⇒ N
•M ⇒ N

cutα

M ⇒ •N
sr

In the other cases, we proceed in the standard way. ��
A calculus is said to be a proper display calculus if its rules satisfy the eight

conditions mentioned in the proof of cut-elimination. If a system S can be presented
as a proper display calculus, then S is said to be properly displayable. Belnap [8]
proves that in every properly displayable system, a derivation of a sequent s can be
converted into a derivation of s not containing any application of cut. Wansing [147]
shows that for certain (modal) logics, it is possible to prove a strong cut-elimination
theorem: every (sufficiently long) sequence of steps in the process of cut-elimination
terminates. Despite these results, we cannot establish whether the calculi Dsk∗ are
decidable.

Theorem 3.19 The decidability of a display calculus is undecidable.

Proof The proof involves a simulation of a Thue-process. The details can be found
in [69]. A counterexample can be produced, based on a result found by Grefe and
Kracht [70]. ��

We would like to conclude this long list of results obtainable in display logic
with the next one, which characterises the properly displayable extensions of K,
and which has been established by Kracht.

Definition 3.20 A first-order sentence over two binary relations symbols R and R̆
(that is the converse relation of R) is said to be primitive if it has the form (∀)(∃)α,
where every quantifier is restricted with respect to R and R̆, and α is built up from
∧, ∨ and the atomic formulas: x = y, x Ry, x R̆y, where at least one of x , y is not
in the scope of an existential quantifier.

Theorem 3.21 A class of Kripke frames is describable by a set of primitive first-
order sentences if, and only if, the modal (and tense) logic of this class can be
properly displayed.
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Proof See [70]. ��
On the one hand, this theorem sheds light on the great expressive power of dis-

play logic at the first-order level. On the other hand, it also clarifies the limit of this
method with respect to the system GL and other modal systems. Notice that there
is also a syntactic variant of this theorem.

Definition 3.22 A modal axiom schema is said to be primitive if it has the form
α → β, and α contains each propositional atom once, and α and β are built up from
the symbols: �,∧,∨ and �.

Theorem 3.23 An axiomatic extension of K is properly displayable if, and only if, it
can be axiomatized by a set of modal primitive axiom schema.

Proof See [70]. ��
Example 3.24 Below is an example of a derivation in the calculi Dsk∗:

α ⇒ α β ⇒ β

α → β ⇒ α∗ ◦ β
→A′

�(α → β) ⇒ •(α∗ ◦ β)
�A

�(α → β) ◦ �α ⇒ •(α∗ ◦ β)
W

•(�(α → β) ◦ �α) ⇒ α∗ ◦ β
sr

α ⇒ β ◦ (•(�(α → β) ◦�α))∗
sr

�α ⇒ •(β ◦ (•(�(α → β) ◦�α))∗) �A

�(α → β) ◦ �α ⇒ •(β ◦ (•(�(α → β) ◦�α))∗) W

•(�(α → β) ◦ �α) ⇒ β ◦ (•(�(α → β) ◦�α))∗
sr

•(�(α → β) ◦ �α) ◦ •(�(α → β) ◦ �α) ⇒ β
sr

•(�(α → β) ◦ �α) ⇒ β
C

�(α → β) ◦�α ⇒ �β
�K

�(α → β) ⇒ (�α → �β)
→K

I ◦�(α → β) ⇒ (�α → �β)
I+

I ⇒ �(α → β) → (�α → �β)
→K

Remark 3.25 The display method is undoubtedly a quite powerful method, not only
because of its applicability to a wide range of different logics, but also for the inter-
esting results that can be obtained with it. Beyond all the results that we have already
mentioned, Wansing [147] also proves (i) the admissibility of axioms of the form
α ⇒ α, (ii) the interdefinability of the symbols � and �, (iii) the invertibility of the
logical rules and of the modal rule �K (by using the cut-rule), and (iv) the fact that
the display rules satisfy the uniqueness property.

The display method is not, however, faultless: display calculi do not satisfy
the redefined Došen’s principle, and they do not have the logical variant (at least)
because of the shifting rules.

The satisfiability of the subformula property by the display calculi has been at
the source of an interesting discussion. According to Avron [6, p. 2] display calculi
fail to meet this desideratum.
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A use of “structural connectives” that can arbitrarily be nested, usually violates this princi-
ple. It seems to me that this is the weak point of Belnap’s framework of Display Logic.

While, according to Wansing [149, p. 71], what the display calculi do not satisfy
is the substructure property, not the subformula property:

In a sequent calculus with an enriched structural language, the subformula property need
not be accompanied by a substructure property.

Without contributing to this debate directly, we can nevertheless emphasise a fact
that is often overlooked. As opposed to the other methods, in the display calculi the
new introduced symbols do not operate on sequents, but on formulas, turning them
into structures. This gives them great expressive power, but also poses an interesting
problem. What we prove with the display calculi are structures, not formulas and,
in particular, not modal formulas. Therefore the question seems to be: can we really
assert that these calculi are computational instruments for modal logic, that is to say
a logic composed by formulas? In Section 4.3, we shall see how this question comes
up again.

Let us recall that there is another method for generalising the Gentzen sequent
calculus which was introduced by Cerrato [21] and which, like the display method,
is characterised by a rise of the number of meta-linguistic connectives. The two
meta-linguistic symbols added in this generalisation are 〈 〉 and [ ]. They can sign
any formula – 〈α〉, [α] – and are supposed to “stress on the modal nature of the
formula”. The classical structural rules operate on signed and unsigned formulas;
the logical rules only affect unsigned formulas. The modal rules are

α, M ⇒ N

〈α〉, [M] ⇒ 〈N 〉 �A
M ⇒ N , α

[M] ⇒ 〈N 〉, [α] �K

Finally, four extra rules must be added; these rules are called duality rules and
they convert the two new meta-linguistic signs into modal operators, together with
transforming the “possibly” into “necessarily,” and vice versa. There are also struc-
tural or logical rules for obtaining calculi for all the SLH-systems.

Cerrato proves the cut-elimination theorem for the calculus for the system K.
As Goré [22] points out, the other sequent calculi do not seem to be cut-free: the
S4-theorem ��(�α → ��α), for example, cannot be proved without the use of the
cut-rule.

Notes

1. In [63] M and N are sets of formulas.
2. With the notation: name of the calculus for the system K (in this case Msk) + *, we mean all

the extensions of the calculus for the system K by combinations of special (structural or/and
logical) rules. From now on we will take this assumption for granted.

3. Notice that we use the derived rules for the connective →. Moreover in the case where repeated
running applications of a same rule R take place, we write the rule R with the symbol * as
index. From now on we will take these assumptions for granted.

4. In [12] M , N , S and T are sets of formulas.
5. Note that the comma is not used.



Chapter 4
Semantic Methods

As noted in Section 2.3, there are two types of methods for extending the ordinary
sequent calculus: the first type modifies the structure of the classical sequent in a
purely syntactic fashion (see the previous chapter); the second type enriches a clas-
sical sequent by adjoining semantic elements. This chapter will be entirely dedicated
to the analysis of the calculi generated by means of this latter method.

At least two kinds of semantic elements can be introduced in a sequent: algebraic
elements and Kripke semantics elements. We will only address those generalisations
that exploit this second type of elements. Therefore, those extensions of the Gentzen
calculus that use algebraic elements, and in particular those of Viganò [143], and
Orlowska [91, 92], will not be considered further.

How is it possible to internalise semantic elements in the language or in the
meta-language of the sequent calculus? In order to answer this question, we need
to recall, first, that semantically modal logic can be seen as a tool for talking about
frames (see Definition 2.5, p. 40), and, secondly, that modal logic possesses the
so-called tree-model property which, roughly speaking, says that it is not limitative
to work only with tree-like frames (see Proposition 2.13, p. 42). One important fact
that we have not pointed out up to this point, and that happens to be quite useful here,
is that there are at least three different albeit equivalent ways to present tree-frames.
This is what we turn to next.

1. We can describe a tree-frame in a ‘graphic’ way. Given a non-empty set W
of points and a binary relation →, the following figures are examples of
tree-frames:

(A) (B)
◦ ◦ ◦ ◦
↖ ↑ ↗ ↗

◦ ◦ → ◦ → ◦
We then assume a binary relation R on W that extends → to hold. The properties
of R vary depending on the properties enjoyed by the tree-frame.

2. We can describe a tree-frame by enumerating its worlds. Given a non-empty set
W containing distinct finite sequences σ of natural numbers, σ := 〈i0, i1, i2, ...〉,
we can form a tree with a root 0 by concatenating the distinct finite sequences
by means of the relation “being a proper initial segment of,” where σ is a proper

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_4, C© Springer Science+Business Media B.V. 2011
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initial segment of τ when, if σ = < a1, ..., an > and τ = < b1, ..., bm >, then
n < m and ai = bi (1 ≤ i ≤ n). Therefore, another way to describe the tree-frame
figures (A) and (B) is

(A) 0; 0, 0; 0, 1; 0, 2 (B) 0; 0, 0; 0, 0, 0; 0, 0, 1

We then assume that a binary relation R holds between the finite sequences of
natural numbers. R varies depending on the properties enjoyed by the tree-frame.

3. We can finally describe a tree-like frame by simply assuming a non-empty set
of variables W := 〈i, j, z, ...〉, equipped with a binary relation R. Hence, another
way to describe the tree-frame figures (A) and (B) is:

∃i , ∃ j , ∃z, ∃w, such that

(A) i R j and i Rz and i Rw (B) i R j and j Rz and j Rw

If the tree-frame enjoys certain properties as seriality or reflexivity, we will
express them with the following first-order logic formulas: ∀x∃ j(x R j) and
∀x (x Rx), respectively.

Each of the methods presented in this chapter makes use of one of these three
notations in order to introduce Kripke semantics elements in the (meta-)language
of the sequent calculus. While the methods which use the first two notations keep
the tree-structure of the frames in their internalisation of Kripke semantics, the one
which uses the third notation does not. Other methods use Kripke semantics, but
we will not address them since they do not satisfy Condition 2.1, p. 52. These
are: Kanger’s [67], which generates calculi only for the systems T, S4 and S5, and
Kushida and Okada’s [73], which only concerns a quantified version of S4. There is
also Pliuškevičiene’s [97, 98], which is for predicate modal logics, including those
containing the Barcan axiom.

The idea of internalising Kripke semantics in the syntax, in order to provide
modal propositional logic with computational instruments, has also been adopted
in:1 tableaux systems [19, 38, 49, 87], natural deduction [130, 142] and labelled
deductive systems [40, 141].

4.1 Semantic Modal Sequent Calculi

Cerrato introduced three different methods for generalising the Gentzen calculus.
The first, [21], which is purely syntactic, has already been presented at the end of
Section 3.3: its basic idea consists in adding meta-linguistic symbols to separate
modal behaviours from propositional ones. This method can be applied to several
systems of modal logic, but it does not work very well for cut-elimination.

The second and third methods are similar: in one of them [20], Cerrato introduces
semantic modal sequents, which are trees of sequents together with the accessibil-
ity relation R of Krikpe semantics; in the other [23], Cerrato uses trees of single
sequences of formulas, called modal tree-sequents, and he operates without the
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aforementioned accessibility relation R. In this section we shall only deal with the
former of these two methods, since it yields better results:

Semantic modal sequents directly introduce Kripke accessibility relation into the structure
of the calculus, leading to an uniform treatment that is cut-free for all those SLH-systems.
The semantic proof exhibited [...] bypasses the problem of syntactic cut-elimination, that is
afforded by modal tree-sequents. (Notation adjusted.) [22, p. 1]

To start with Cerrato’s calculi, it is necessary to understand, at the intuitive level,
how a semantic modal sequent is constructed. Let us recall the ‘graphic’ way of
presenting tree-frames introduced at point 1. of the previous section. We had objects
of the form2

◦ −→ ◦
↙ ↘

◦ ◦

◦
↓
◦

↙ ↘
◦ ◦

By simply substituting classical sequents for points, according to determined
rules that we will present below, we obtain semantic modal sequents

Γ −→ Γ1
↙ ↘

Γ2 Γ3

Γ

↓
Γ1

↙ ↘
Γ2 Γ3

where Γi , 0 ≤ i ≤ 3 is a classical sequent. A binary minimal relation R, that
extends → and is called accessibility relation, is assumed to hold between sequents.
Thus both, the relations → and the relation R, become part of the meta-linguistic
apparatus of semantic modal sequents.

Note that in semantic modal sequents every formula is determined by two
‘co-ordinates:’ the position that the formula has in a sequent, i.e. on the left or on
the right side of the sequent arrow, and the position that it has in the network made
by sequents and arrows.

Syntactic Notation

– → and R are two new meta-linguistic symbols.
– G, H , ... denote trees of sequents.

Definition 4.1 A sequent in the semantic modal sequent calculi, or shortly a seman-
tic modal sequent, is a triple 〈W,→, R〉 where

W is a non-empty set of classical sequents,3

→ is a strict tree-ordering on W ; W and → give rise to trees of sequents that we
can inductively define in the following way:

– if M ⇒ N is a classical sequent, then M ⇒ N is a tree of sequents;
– if M ⇒ N is a classical sequent and G1, ..., Gn are trees of sequents, then:
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M ⇒ N
↙ .... ↘ is a tree of sequents.

G1 ... Gn

R is a binary relation on W that extends →, called accessibility relation. R puts the
corresponding semantic accessibility relation into sequents; namely, if Ax1, ...,
Axn are modal axioms, R is the minimal relation containing →, R(Ax1), ...
R(Axn), where the correspondence between axioms and relations is given by the
following table:

Axiom R(Ax)

K →
T reflexive closure of →
4 transitive closure of →
B symmetric closure of →
5 euclidean closure of →

Definition 4.2 The interpretation τ of a semantic modal sequent is definable in the
following inductive way:

– (M ⇒ N )τ :=
∧

M → ∨
N

–
M ⇒ N := ∧

M → (∨
N ∨�Gτ

1, ...,∨�Gτ
n

)

↙ ... ↘
G1...Gn

Note that only the relation → influences the translation τ .
If we assume the relation R to be →, then we have that the calculus Ssk for the

system K is composed of:

Initial Sequents

α ⇒ α

Structural Rules
Internal Weakening and Contraction

H
↓

M ⇒ N
↙ .... ↘

G1 ..... Gn
—————–W A

H
↓

α, M ⇒ N
↙ .... ↘
G1 ..... Gn

H
↓

M ⇒ N
↙ .... ↘
G1 ..... Gn

——————–W K
H
↓

M ⇒ N , α

↙ .... ↘
G1 ..... Gn
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H
↓

α, α, M ⇒ N
↙ .... ↘

G1 ..... Gn
—————–C A

H
↓

α, M ⇒ N
↙ .... ↘
G1 ..... Gn

H
↓

M ⇒ N , α, α

↙ .... ↘
G1 ..... Gn

——————–C K
H
↓

M ⇒ N , α

↙ .... ↘
G1 ..... Gn

External Weakening and Merge

H
↓

M ⇒ N
↙ .... ↘
G1 ..... Gn

—————–EW
H

↙ .... ↘
M ⇒ N ... S ⇒ T
↙ .... ↘
G1 ..... Gn

Rule of merge:

from a semantic modal sequent s having two
(points-)sequents D ⇒ F and M ⇒ N with
(D ⇒ F) R (M ⇒ N ), and one (point-)sequent
S ⇒ T such that (D ⇒ F) → (S ⇒ T ), infer
the modal semantic sequent s

′
obtained from s by

collapsing the sequent S ⇒ T into the sequent
M ⇒ N , in such a way that instead of M ⇒ N ,
we have M, S ⇒ N , T . Note that the rest of
the structure in the semantic modal sequent rests
unchanged.

Necessitation Rule

G
↓

———–rn
⇒
↓
G

Logical Rules
Propositional Rules

H
↓

M ⇒ N , α

↙ .... ↘
G1 ..... Gn
—————–¬A

H
↓

¬α, M ⇒ N
↙ .... ↘
G1 ..... Gn

H
↓

α, M ⇒ N
↙ .... ↘
G1 ..... Gn
——————–¬K

H
↓

M ⇒ N ,¬α

↙ .... ↘
G1 ..... Gn
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H
↓

αi , M ⇒ N
↙ .... ↘
G1 ..... Gn

—————–∧A
H
↓

α0 ∧ α1, M ⇒ N
↙ .... ↘
G1 ..... Gn

H H
↓ ↓

M ⇒ N , α M ⇒ N , β

↙ .... ↘ ↙ .... ↘
G1 ..... Gn G1 ..... Gn

—————————————–∧K
H
↓

M ⇒ N , α ∧ β

↙ .... ↘
G1 ..... Gn

Modal Rules

Rule �A

from a semantic modal sequent s hav-
ing two (points-)sequents M ⇒ N and
α, S ⇒ T with (M ⇒ N ) R (α, S ⇒
T ), infer the semantic modal sequent s

′

obtained from s by substituting (both in
the domain and in the relations → and R)
the sequents M ⇒ N and α, S ⇒ T with
�α, M ⇒ N and S ⇒ T , respectively.

H
↓

M ⇒ N
↙ ... ↓ .... ↘
G1 ⇒ α Gn
——————–�K

H
↓

M ⇒ N , �α

↙ .... ↘
G1 ..... Gn

Semantic Modal Sequent Calculi for other Normal Modal Systems

– In order to obtain semantic modal calculi for the systems containing the axiom
D, we use the rule

G
↓
⇒

———–d

G

– In order to obtain semantic modal calculi for the systems containing the T axiom
or the B axiom, we vary the rule of merge and the rule �A in accordance with
the fact that the accessibility relation R is the reflexive or the symmetric closure,
respectively, of the relation →.

– In order to obtain semantic modal calculi for the systems containing the 4 axiom
or the 5 axiom, we vary the rule �A in accordance with the fact that the
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accessibility relation R is the transitive closure or the euclidean closure of the
relation →, respectively. Moreover we add the following two rules, respectively:

Rule 4̃

from a semantic modal sequent s hav-
ing a sequent M ⇒ N that occurs
at a node n different from the root
of the tree, infer the semantic modal
sequent s

′
obtained from s by mov-

ing the sequent M ⇒ N to a node n
′

related to n by the relation R.

Rule 5̃

from a semantic modal sequent s hav-
ing a sequent M ⇒ N that occurs at
a node different from the root of the
tree, infer the semantic modal sequent
s
′

obtained from s by moving the
sequent M ⇒ N to an arbitrary node,
except the root.

In the calculi for the systems containing the 4 and the 5 axiom, the rule of merge
is applied only in those cases in which R is neither the transitive closure nor the
euclidean closure of →.

We can make several observations concerning the semantic sequent calculi. The
first and most evident is that there is no cut-rule. The second observation concerns
the rule of merge and the rule �A4: indeed, it would be legitimate to ask why these
rules have only been ‘described,’ but not graphically represented. There are two
reasons for this. The first is that these rules can be described in general terms; so, for
example, in order to get calculi for all the SLH-systems, it suffices to say that merge
and �A change in accordance with the relation R. By contrast, their graphical rep-
resentation would have never allowed this level of simplicity and suppleness. The
second reason why merge and �A have only been described is related to the fact
that it is difficult to draw certain variants of these rules. Let us, for example, consider
the case of the semantic modal calculus Sskt. This calculus can be introduced in the
following two equivalent ways: (i) the calculus Ssk is extended by assuming R to
be the reflexive closure of → a; (ii) in the calculus Ssk the descriptions of the rules
merge and �A is substituted by their graphical representations, which are

H
↙ .... ↘

M ⇒ N S ⇒ T
↙ .... ↘ ↙ .... ↘
G1.....Gn G

′
1.....G

′
n

————————————-merge f

H
↓

M, S ⇒ N , T
↙ .... ↘

G1.....Gn G
′
1.....G

′
n
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H
↓

M ⇒ N
↙ ... ↓ .... ↘

... α, S ⇒ T ...
↙ .... ↘

G1 ..... Gn
————————–� A f

H
↓

�α, M ⇒ N
↙ ... ↓ ... ↘

... S ⇒ T ...
↙ .... ↘

G1 ..... Gn

and then the following two rules, that are just the variants of the rule of merge f

and of the rule �A f , respectively, if the relation R is the reflexive closure of →, are
added:

H
↓

M ⇒ N
↙ ... ↓ .... ↘

... S ⇒ T ...
↙ .... ↘

G1 ..... Gn
————————–t̃

H
↓

M, S ⇒ N , T
↙ ... ↓ ... ↘

... G1 ... Gn ...

H
↓

α, M ⇒ N
↙ .... ↘

G1 ..... Gn
————————–t

H
↓

�α, M ⇒ N
↙ .... ↘

G1 ..... Gn

The foregoing shows that the graphical representations given in (ii) follow the
instructions given in (i) verbatim. Thus, for the calculus for the system KT, we
have a double option: we can either describe the rule of merge and the rule �A
or graphical represent them. This option does not hold for all the semantic modal
calculi, e.g. it seems rather difficult to represent in a graphic and correct way the
variants of the rule of merge and the rule �A for the calculus Sskt5.

Let us now move to the third observation relating to the semantic sequent cal-
culi. This observation concerns the difference between internal structural rules and
propositional rules, on the one hand, and external structural rules and modal rules,
on the other hand. While internal structural rules and propositional rules leave the
structure of the tree unaltered, and affect only one sequent (for tree) at a time, the
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rule �A affects more than one sequent at a time, while the rule �K , as well as the
external structural rules, visibly modify the configuration of the tree.

Let us finally note that a derivation in this type of calculi, considered bottom-up,
is nothing but an out-and-out construction of a tree-network, following the given
rules; e.g. we start from

Γ

thanks to the rule �K , we can have

Γ

↓
Γ1

and then with the rule of merge we obtain

Γ

↙ ↘
Γ1 Γ2

and then with one of the propositional rules, we have

Γ
′

↙ ↘
Γ1 Γ2

and so on ...

Theorem 4.3 Each of the calculi Ssk∗ is sound and complete with respect to the
corresponding class of frames.

Proof The soundness theorem is established thanks to the soundness result holding
between the SLH-systems and the corresponding classes of frames, and the follow-
ing three steps: (i) we extend the translation τ to a translation from sequent-style
inferences to Hilbert-style inferences; (ii) we isolate the sequent(s) affected by the
rule, and prove the corresponding implication; (iii) we transport that implication up
all along the tree, so that, by modus ponens, we immediately have the thesis. The
completeness theorem is established by means of a simplified version of the proof
used in [43] for classical logic, adapted to modal systems. We underline that Cerrato
proves the adequacy of his calculi by using a variant of the calculi where we only
have generalised axioms, internal structural rules, propositional and modal rules,
rules obtained from �A by varying the relation R. ��
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Example 4.4 Here is an example of a derivation in the calculi Ssk∗:

⇒ ⇒
↓ ↓

α → α β → β

———————————-→A′
⇒
↓

α → β, α ⇒ β

——————————————� A∗
�(α → β), �α ⇒

↓
⇒ β

�(α → β), �α ⇒ �β
�K

�(α → β) ⇒ �α → �β
→K

⇒ �(α → β) → (�α → �β)
→K

Remark 4.5 As we can easily see from the rules of the calculi Ssk∗ or from the
example of derivation in the calculi Ssk∗, the notation of the semantic calculi is
rather awkward. Moreover, the cut-rule is not formulated, and therefore the struc-
tural variants are not available. In addition, the external structural rules, as well
as the necessitation rule, are not mentioned in [20], nor in [22]. Finally, in a recent
article by Restall [116], the reader can find an idea similar to the one of the semantic
sequent calculi, which is not however fully developed.

4.2 Indexed Sequent Calculi

In the previous section we saw how it is possible to create semantic modal sequents
simply by considering tree-frames formalised in a ‘graphic way,’ and by substituting
points with classical sequents (according to determinate rules). In the current section
we will complete a similar operation: we will consider finite sequences of natural
numbers (which, as we have seen at point 2. at the beginning of the chapter, can form
tree-frames, if conveniently concatenated), and we will ‘attach’ a classical sequent
to each of them; in short we will deal with objects of the form

σ1, s1, σ2, s2, ..., σn, sn

where σi and si (1 ≤ i ≤ n) are an index and a classical sequent, respectively. These
objects are called tableaux and can be interpreted thus:

s1 is true at the world σ1, ..., sn is true at a world σn

Kripke [72] was the first to use tableaux in order to establish a complete-
ness result with Kripke semantics; indeed, he was the one who posed the prob-
lem of the cut-elimination theorem for this type of calculi. Mints [82] solved the
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problem, and we shall present his results. However, before turning to this topic,
let us mention some works in which Kripke-style systems are studied by modal-
theoretical means; these are: Hughes and Cresswell’s [62], Ohlbach’s [88], and
Wallen’s [144]. As Mints underlines, in (most of) these works the sequences of nat-
ural numbers are applied to particular formulas, and not to a sequent as a whole, i.e.
we have objects of the form: (σα), (σβ)⇒(σγ ),(σδ), instead of objects of the form:
σα, β ⇒ γ, δ.

Syntactic Notation

– σ1, σ2, ... denote finite sequences of natural numbers, 〈i0, i1, ..., i p〉.
– � will denote concatenation: the expression σ1 � σ2 stands for the concatenation

of the two sequences σ1 and σ2. The immediate successor of a sequence σ is any
sequence of the form σ � 〈i〉, which, for simplicity, is written σ � i .

– Γ,Δ, ... denote classical sequents.
– G, H, ... denote tableaux.

Definition 4.6 Given n + 1 classical sequents Γ , Γ1, ..., Γn , and n distinct, finite
and non-empty sequences of natural numbers σ1, ..., σn , a sequent in the indexed
sequent calculi, or simply, a tableau, is an object of the form

Γ ; σ1Γ1; σ2Γ2; ...; σnΓn

where the σi (1 ≤ i ≤ n), that we can call from now on the indices of the classical
sequents, form a tree with a root ∅ under inclusion of sequences:

σ < τ i f τ = σ � σ
′
, for some σ

′

Moreover, it is assumed that a binary relation R of immediate accessibility between
finite sequences is given with the following properties:

(i) σ Rσ � i ,
(ii) σ Rσ

′
implies (σ = σ

′
, or σ

′ = σ � i , or σ = σ
′
� i).

The relation R is reflexive if σ Rσ holds for every sequence σ ; R is symmetric if
σ Rσ

′
implies σ

′
Rσ . Notice that (ii) prevents R from being transitive.

We now have a precise definition of tableau; let us consider the following exam-
ple of tableau:

(�) M ⇒ N ; 〈0〉S ⇒ T ; 〈0, 0〉P ⇒ Q; 〈0, 1〉Z ⇒ W

As the reader can observe, there are sequences of numbers (〈0〉, 〈0, 0〉, 〈0, 1〉), and
to each sequence of numbers, or, simpler, to each index, a classical sequent is asso-
ciated. Indices and sequents form a tree with root ∅ under inclusion of sequents.
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One cannot help but notice the strong resemblance between a tableau and a
semantic modal sequent: e.g. the tableaux � is nothing other than the following
semantic modal sequent and vice versa,

M ⇒ N
↓

S ⇒ T
↙ ↘

P ⇒ Q Z ⇒ W

They are just two ways, a ‘graphic’ way and an ‘indexed’ way, of expressing the
same kind of object. This resemblance will be fully analysed in Section 5.4.

In order to give the intended translation of tableaux, we first need the following
two definitions.

Definition 4.7 Let us assume the notation

i � (Γ ; σ1Γ1; ...; σnΓn)

which stands for the result of concatenating i in front of all indices of sequents,
which is to say

{i} Γ ; ({i} � σ1) Γ1; ...; ({i} � σn) Γn

Definition 4.8 If a tableau G contains non-empty indices, it can be written as

G = M ⇒ N ; i1 � H1; ...; in � Hn

where i1, ..., in are all unit indices in G.

Definition 4.9 The interpretation τ of a tableaux with non-empty indices is defin-
able in the following inductive way:

– (M ⇒ N )τ :=
∧

M → ∨
N

– (M ⇒ N ; i1 � G1; ...; in � Gn)τ :=
∧

M → (∨
N ∨ �Gτ

1 ∨ ... ∨ �Gτ
n

)

If we assume the relation R to be an accessibility relation that does not enjoy any
particular property, then the calculus Isk for the system K is composed of:
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Initial Sequents

α ⇒ α

Structural Rules
Internal Weakening and Contraction

G; σ M ⇒ N

G; σ α, M ⇒ N
W A

G; σ M ⇒ N

G; σ M ⇒ N , α
W K

G; σ α, α, M ⇒ N

G; σ α, M ⇒ N
C A

G; σ M ⇒ N , α, α

G; σ M ⇒ N , α
C K

External Weakening and Merge

G

G;G ′ EW
G; σ � i M ⇒ N ; σ ′

P ⇒ Q

G; σ ′ M, P ⇒ N , Q
merge

where in the rule of merge we have σ Rσ
′

and i does not occur in G, σ
′
.

Necessitation Rule

G

∅ ⇒; i � G
rn

Logical Rules
Propositional Rules

G; σ M ⇒ N , α

G; σ ¬α, M ⇒ N
¬A

G; σ α, M ⇒ N

G; σ M ⇒ N ,¬α
¬K

G; σ αi , M ⇒ N

G; σ α0 ∧ α1, M ⇒ N
∧A

G; σ M ⇒ N , α G; σ M ⇒ N , β

G; σ M ⇒ N , α ∧ β
∧K

Modal Rules

G; σ M ⇒ N ; σ ′
α, S ⇒ T

G; σ �α, M ⇒ N ; σ ′ S ⇒ T �A
G; σ M ⇒ N ; σ � i ⇒ α

G; σ M ⇒ N ,�α
�K

where in the rule �A we have σ Rσ
′
, while in the rule �K the index σ � i is new,

reading the rule bottom-up.

In order to define the cut-rule, we need to introduce some definitions and
lemmas.
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Definition 4.10 A tableau is pure if components of the indices σi are unique. A
component is unique when it occurs in a given index at most once; if a component i
occurs in σ j and σk , j ,= k, then σ j < σk or σk < σ j .

A derivation is pure if all tableaux in it are pure and a component i introduced
by the rule �K is encountered only above the rule which introduces it.

Lemma 4.11 Every derivation can be made pure by renaming indices.

Proof Go up the derivation and rename components i in the rule �K , so that the
purity condition is satisfied. ��
From now on we assume all tableaux and all derivations to be pure.

Definition 4.12 A product Γ � Δ of two classical sequents Γ = M ⇒ N and Δ =
P ⇒ Q is the sequent

Γ � Δ = M, P ⇒ N , Q

The product of two tableaux with the same set of indices

U = σ1Γ1; ...; σnΓn V = σ1Δ1; ...; σnΔn

is, by definition, the tableau

U � V = σ1Γ1 � Δ1; ...; σnΓn � Δn

Finally, take two tableaux

U
′ = U ;U1 V

′ = V ; V1

with common indices in U and V , and different indices in U1 and V1, then the
product is a tableau of the form

U
′ � V

′ = U � V ;U1; V1

or, more informally, the common part is multiplied as before, and the remaining
parts are added at the end.

We are now in a position to present the cut-rule, which is:

Cut-Rule

G; σ M ⇒ N , α G
′ ; σ α, P ⇒ Q

G � G ′ ; σ M, P∗ ⇒ N∗, Q
Mixcutα

where N and P might contain α, and N∗ and P∗ are the same multisets as N and
P , respectively, except that they do not contain an occurrence of the formula α.
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Indexed sequent calculi for other normal modal systems

In order to obtain the indexed sequent calculi for the systems containing the T axiom
or the B axiom, we vary the rule of merge and the rule �A in accordance with the
fact that the relation R is reflexive or symmetric, respectively. The calculi for the
systems containing the 4 axiom are obtained by adjoining the logical and structural
rules

G; σ M ⇒ N ; σ ′�α, S ⇒ T

G; σ�α, M ⇒ N ; σ ′ S ⇒ T
4

G; σ � i M ⇒ N

G; σ ′
� i M ⇒ N

4̃

where in the rule 4 we have σ Rσ
′
, while in the rule 4̃ we have σ Rσ

′
and i does not

occur in G, σ
′
.

No rule is given for the axiom D, nor for the axiom 5.

As usual, some remarks are in order. Particularly, we would like to focus on
the cut-rule, as well as on the rule of merge and on the rule �A. Let us start
with the cut-rule, which, at the first glance, might appear quite complex, although
it is based on a simple and natural idea. Let us consider the tableau � and the
following:

M
′ ⇒ N

′ ; 〈0〉S′ ⇒ T ′; 〈1〉P
′ ⇒ Q

′ ; 〈0, 0〉Z ′ ⇒ W
′ ; 〈1, 0〉E ⇒ F

For the sake of clarity, let us draw the two trees that the indices of these tableaux
describe, respectively,

◦
↓
〈0〉

↙ ↘
〈0, 0〉 〈0, 1〉

◦
↙ ↘

〈0〉 〈1〉
↓ ↓

〈0, 0〉 〈1, 0〉

Suppose that we want to apply a cut on the two sequents with the index 〈0〉, i.e.
the sequents S ⇒ T and S

′ ⇒ T ′. If, following the pattern of the classic cut, we are
sure that, after the cut, we must collapse the sequents S ⇒ T and S

′ ⇒ T ′ together,
obtaining the sequent S, S

′ ⇒ T, T ′, we might wonder what to do with the rest of
the structure. Following the definition of the Mixcut rule presented above, we know
that we must collapse the sequents that have the same index together (i.e. operating
as in the case of the sequents where we cut), and leave the others separated. So, if
we cut whichever formula belonging to both sequents S ⇒ T and S

′ ⇒ T ′ of the
two tableaux considered above, the resulting tableau is

M, M
′ ⇒ N , N

′ ; 〈0〉S, (S
′
)∗ ⇒ (T )∗, T ′; 〈1〉P

′ ⇒ Q
′ ; 〈0, 0〉P, Z

′ ⇒ Q, W
′ ;

〈0, 1〉Z ⇒ W ; 〈1, 0〉E ⇒ F
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The indices of this tableau describe the tree

◦
↙ ↘

〈0〉 〈1〉
↙ ↘ ↓

〈0, 0〉 〈0, 1〉 〈1, 0〉

As we shall see in Section 6.1, a similar idea will be used for tree-hypersequents.
The role of the cut-rule in indexed sequent calculi is now clear, and we can turn

to the rule of merge and the rule �A. First of all, notice that in both these rules the
relation R has such a central role that they vary depending on the property satisfied
by R. This situation is similar to that of the rule of merge and of the rule �A of
the semantic sequent calculi (see the previous section). Nevertheless, there exists
a deep difference between the two cases: in semantic sequent calculi we could
only “describe” these rules. We could not formulate them, since this would have
jeopardized correctness and generality. By contrast, in indexed sequent calculi, we
can formulate both the rule of merge and the rule �A without incurring a loss in
generality and correctness, thanks to a more flexible notation.

Let us see in detail how the �A and merge rules change depending on the prop-
erty enjoyed by the relation R. First, we consider the rule �A in which σ Rσ

′
holds.

Let us suppose that R is an accessibility relation that does not enjoy any particular
property, then we have σ

′
= σ � i , and �A becomes

G; σ M ⇒ N ; σ � i α, S ⇒ T

G; σ �α, M ⇒ N ; σ � i S ⇒ T �A f

Let us instead suppose that the relation R is reflexive, then we have

G; σ α, M ⇒ N

G; σ�α, M ⇒ N
t

The same happens with the rule of merge; let us suppose that the relation R does
not enjoy any particular property, we have

G; σ � i M ⇒ N ; σ � j P ⇒ Q

G; σ � j M, P ⇒ N , Q
merge f

On the contrary, if R is reflexive, we have

G; σ � i M ⇒ N ; σ P ⇒ Q

G; σ M, P ⇒ N , Q t̃

Let us finally note that both the rules 4 and 4̃ are subject to the same kind of
variation.
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We shall now present the results obtained in the indexed sequent calculi. Before
doing so, it is important to note that Mints does not use the calculi Isk∗ in order
to prove these results; rather, he uses a variant obtained by dropping the weakening
rules (W A, W K and EW ), the rule of merge and the necessitation rule, and substi-
tuting the axioms by the generalised ones. As for the calculi containing the rule 4,
the rule 4̃ is also dropped. Let us denote this variant of the calculi with Isk∗+.

Lemma 4.13 The rules of external and internal weakening, necessitation, merge
(in all its variants) and 4̃ (whenever the rule 4 is present) are (height-preserving)
admissible in the calculi Isk∗+.

Proof By induction on the height of derivations. ��
Theorem 4.14 Each of the calculi Isk∗+ is sound and complete with respect to the
corresponding Hilbert system.

Proof By induction on the height of derivations in the appropriate Hilbert system
and calculus, respectively. ��
Lemma 4.15 Every derivation of a pure sequent in any of the calculi Isk∗+ ending in
a Mixcut, and containing no other application of Mixcut, can be transformed into
a cut-free derivation of the same sequent by a finite number of standard reductions.

Proof The proof is by induction on the complexity of the cut-formula (see Defini-
tion 2.3, p. 40), and by subinduction on the sum of the heights of the derivations
of the premises of Mixcut . Note the use of a mixcut rule in order to solve the
case of the contraction rules; for the rest, the proof is developed in the standard
syntactic way, i.e. by distinguishing and analysing several cases depending on the
last applied rule to the premises of the cut. The only difficult case is the one in
which the cut-formula has the form �β, and has been introduced in the left premise
by the rule �K , while in the right premise by the rule 4. This case is solved with the
help of an auxiliary lemma where one makes essential use of the rule 4̃ (see [82],
pp. 686–688). ��
Theorem 4.16 Each of the calculi Isk∗+ is cut-free.

Proof It follows from the previous lemma by induction on the number of cuts. ��
Example 4.17 Below is an example of a derivation in the calculi Isk∗:

⇒ ; 0 α ⇒ α ⇒ ; 0 β ⇒ β

⇒ ; 0 α, α → β ⇒ β
→A′

�(α → β),�α ⇒ ; 0 ⇒ β
�A∗

�(α → β),�α ⇒ �β
�K

�(α → β) ⇒ �α → �β
→K

⇒ �(α → β) → (�α → �β)
→K

Remark 4.18 As we have already stressed, the indexed sequent calculi have a more
handy and flexible notation than the semantic modal sequent calculi. In addition, in



92 4 Semantic Methods

this case the cut-rule is formulated. On the other hand, no rule corresponds to the
axiom D nor to the axiom 5, and some delicate operations with the indices are here
required.

Finally, let us point out that the calculi for systems containing the 4 axiom can
be obtained in an alternative way: instead of postulating the rule 4, it is possible to
extend the rule �A allowing σ R+σ

′
, where R+ is the transitive closure of R (see

Definition 2.7, p. 41). We call this variant of the rule �A, 4′. As the next chapter
will show, the rule 4′ will happen to be a quite useful rule.

Problem 4.19 Is it possible to formulate a 5 rule for the index sequent calculi (notice
that it is quite easy to obtain a rule for the axiom d)?

4.3 Internalised Forcing (Relation) Sequent Calculi

The first two semantic methods for extending the Gentzen calculus that we have
presented, namely the semantic modal method and the indexed method, have much
in common. The third and last semantic generalisation of the classical sequent cal-
culus, which is the object of this section, and which was introduced by Negri [85],
departs considerably from the other two.

The main idea of Negri’s generalisation consists in the internalisation, in the
language of the sequent calculus, of the satisfiability relation of Kripke semantics
(see Definition 2.9, p. 41). In order to internalise such a relation, Negri operates
in the following way: (i) she considers as well-formed formulas objects of the form
i : α, where the symbol “:” simply substitutes the symbol |�M. This means that now
each modal formula α carries with itself the idea of being satisfied at a certain world
i of a model M. (ii) She adds to the language and to the new well-formed formulas
of the form i : α, objects of the form i R j that (exactly as in Kripke semantics)
should be interpreted as: the world i is related by the relation R to the world j
(this idea is also common to Orlowska’s relational proof systems [91]). This way
the sequent calculus has all the (semantic) elements for expressing the notion of a
formula α being satisfied in a model M. Consider for example the paradigmatic case
of the satisfiability relation:

(�) i |�M �β iff ∀ j (i R j → j |�M β)

And suppose that we want to formulate in “sequent-calculus-terms” the right-left
implication of the equivalence �. We can express it with

i R j, j : α ⇒
i R j, i : �α ⇒

The rule, read bottom-up, says that if �α is true at a world i such that i R j , than
α is true at j . The left-right implication of � will be instead conveyed by
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i R j ⇒ j : α
⇒ i : �α

If �α is false at a world i , then we can construct a world j such that i R j and j
does not satisfy α.

Syntactic Notation

– Let L�: {¬,∧,�} be a language that extends the language L�{¬,∧,�} by adding
(i) the symbol R for the accessibility relation, (ii) the symbol “:” to express the
forcing relation, and (iii) a bunch of variables, i , j , z, ... which range in a set W .

– The set of well-formed modal formulas WMF: of the language L�: {¬,∧,�}
consists of

– labelled formulas: i : α, for every α ∈ WMF, and for every i ∈ W , and
– relational atoms: i R j , for every i , j ∈ W .

Definition 4.20 Given two WMF: multisets M and N , an internalised forcing
sequent is an object of the form M ⇒ N .

The calculus Ifsk for the system K is composed of:

Initial Internalised Forcing Sequents

i : p ⇒ i : p i R j ⇒ i R j

Structural Rules
Weakening and Contraction

M ⇒ N

i : α, M ⇒ N
W1 A

M ⇒ N

M ⇒ N , i : α W1 K

i : α, i : α, M ⇒ N

i : α, M ⇒ N
C1 A

M ⇒ N , i : α, i : α
M ⇒ N , i : α C1 K

Relational Atoms Weakening and Contraction

M ⇒ N

i R j, M ⇒ N
W2 A

M ⇒ N

M ⇒ N , i R j
W2 K

i R j, i R j, M ⇒ N

i R j, M ⇒ N
C2 A

M ⇒ N , i R j, i R j

M ⇒ N , i R j
C2 K
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Necessitation Rule

⇒ i : α
⇒ i : �α

rn

Cut-Rule

M ⇒ N , i : α i : α, P ⇒ Q

M, P ⇒ N , Q
cuti :α

Logical Rules
Propositional Rules

M ⇒ N , i : α
i : ¬α, M ⇒ N

¬A
i : α, M ⇒ N

M ⇒ N , i : ¬α
¬K

i : αi , M ⇒ N

i : α0 ∧ α1, M ⇒ N
∧A

M ⇒ N , i : α M ⇒ N , i : β
M ⇒ N , i : α ∧ β

∧K

Modal Rules

j : α, i R j, M ⇒ N

i : �α, i R j, M ⇒ N �A
i R j, M ⇒ N , j : α

M ⇒ N , i : �α
�K

where in the rule �K the variable j is new, reading the rule bottom-up.

Although the internalised forcing sequent calculi differ from the semantic modal
calculi and from the indexed calculi with respect to how they internalise Kripke
semantics in the Gentzen system, the modal rules of these three types of calculi are
quite similar. More particularly, in the rule �K of the internalised forcing calculi,
the variable j is required not to have been used before, reading the rule bottom-up,
as in Mints the index σ � i of the rule �K is required to be new.

Before showing the special logical rules by means of which the calculi for the
other normal modal systems can be obtained, we have to introduce a condition, said
closure condition, that these rules should satisfy.

Definition 4.21 Consider a rule R of the form

α, β1, ..., βm, βm+1, βm+1, M ⇒ N
β1, ..., βm, M ⇒ N

The result of the application of the closure condition on R is the rule Rc that is
obtained from R by substituting the βm+1, βm+1, with a single βm+1. Rc has then
the form

α, β1, ..., βm, βm+1, M ⇒ N
β1, ..., βm, M ⇒ N
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In order to obtain calculi for the SLH-systems, we add to the calculus Ifsk (i)
combinations of the following special logical rules, each of which corresponds to
one of the axioms (or frame properties) listed in Section 2.1, p. 44, and (ii) the rules
that result from the application of the closure condition on the special logical rules
(unless these rules happen to be redundant).

Special Logical Rules

i R j, M ⇒ N

M ⇒ N
d

i Ri, M ⇒ N

M ⇒ N
t

i Rz, i R j, j Rz, M ⇒ N

i R j, j Rz, M ⇒ N
4

j Ri, i R j, M ⇒ N

i R j, M ⇒ N
b

i Rz, i R j, j Rz, M ⇒ N

i R j, i Rz, M ⇒ N
5

where in the rule d the variable j does not belong to M nor to N .

In the case of the internalised forcing method, the procedure to obtain calculi
for the SLH-systems is slightly different from the one used by the other methods.
Suppose indeed that we want to obtain the calculus for the system K + 5. Then we
must consider the calculus Ifsk and add

– the rule 5, as usual; plus
– the rule

i R j, j R j, M ⇒ N

i R j, M ⇒ N 5c

which is the rule that results from the application of the closure condition to the
rule 5.

The procedure for obtaining the rule 5c from the rule 5 is the following. Consider
the rule 5 in the form

i R j, i R j, j R j, M ⇒ N

i R j, i R j, M ⇒ N

The premise of this rule contains two occurrences of the formula i R j . We thus
apply the closure condition, i.e. we contract the two occurrences of the formula i R j
in just one occurrence, and we obtain the rule 5c.

Suppose that we want to obtain the internalised forcing calculus for the system
K+T+5. According to the foregoing instructions, it would seem necessary to add to
the calculus Ifsk
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– the rule t (note that no new rule results from the application of the closure con-
dition to the rule t),

– and the rules 5 and 5c.

On the contrary, in this case, the rule 5c is superfluous because of the rule t .
Hence, in order to obtain the calculus for the system K+T+5, it suffices to add to
the calculus Ifsk the rules t and 5. The conclusion that we can draw from this fact is
that the internalised forcing sequent calculi do not satisfy the modularity property.

Thanks to her method, Negri is able to provide a calculus for the system GL. In
this case (since it is a quite peculiar case, see Section 2.1), instead of adding a new
logical rule, we must change our modal rules in the following way:

i R j, M ⇒ N , j : �α j : α, i R j, M ⇒ N

i : �α, i R j, M ⇒ N �Agl

j : �α, i R j, M ⇒ N , j : α
M ⇒ i : �α

�Kgl

where in the rule �Kgl the variable j is new, reading the rule bottom-up.

The calculus Ifsgl is obtained from the calculus Ifsk by (i) allowing initial
sequent of the form

i : �α, M ⇒ N , i : �α

(ii) replacing the rules �A and �K by the rules �Agl and �Kgl , respectively, and
(iii) adding the rule 4 and the following one:

i Ri, M ⇒ N
irr.

We have thus seen that the internalised forcing method can be applied to all the
SLH-systems plus GL; let us now present the results obtained in these calculi. Let
us note, before doing so, that Negri presents her calculi in a logical variant, that we
will denote with Ifsk∗L and IfsglL , respectively.

Lemma 4.22 In Ifsk∗L and IfsglL we have that: (i) the axioms of the form α ⇒ α

are admissible, (ii) the logical and modal rules are height-preserving invertible,5

and (iii) the classical and relational atoms structural rules are (height-preserving)
admissible.

Proof By induction on the height of derivations. ��
In order to be able to prove that the rule of necessitation is admissible in Ifsk∗L

and IfsglL , Negri uses a substitution lemma that she introduces thus [85, p. 516]:

Although we are considering a propositional system, the use of explicit elements of the
syntax creates a strong analogy to first-order logic. The substitution lemma is similar, both in
the statement and in the proof, to the substitution lemma of the classical predicate calculus.
(Our emphasis.)
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Let us see how the substitution lemma works. First, we must define substitution
in the following way:

i R j (z/w) ≡ i R j if w ,= i and w ,= j

i R j (z/ i) ≡ z R j if i ,= j

i R j (z/j) ≡ i Rz if i ,= j

i Ri (z/ i) ≡ z Rz

i : α (z/j) ≡ i : α if j ,= i

i : α (z/ i) ≡ z : α

and extend the definition to multisets componentwise.

Lemma 4.23 If M ⇒ N is derivable in Ifsk∗L , then M( j/ i) ⇒ N ( j/ i) is also
derivable, with the same derivation height.

Proof By induction on the height of the derivation of M ⇒ N . ��
As we will see in a while, the substitution lemma is used by Negri in the proof of

cut-elimination. We will make use of the substitution lemma in Sections 5.3 and 5.5.

Theorem 4.24 Each of the calculi Ifsk∗L + IfsglL is sound and complete with respect
to the corresponding class of frames.

Proof The soundness proof is trivial, while the completeness one is by induction on
the height of derivations. ��
Theorem 4.25 Each of the calculi Ifsk∗L is cut-free.

Proof The proof is by induction on the complexity of the cut-formula (see
Definition 2.3, p. 40) with subinduction on the sum of the heights of the derivations
of the premises of cut, and it has the same structure of the proof of admissibility
of cut presented in [86], Theorem 6.2.3. In case the rule d is considered, the proof
follows the pattern of [84]. In all the cases of permutation of cuts that may result in a
clash with the variable conditions in the rules �K and d, an appropriate substitution
(Lemma 4.23) prior to the permutation will be used. ��

We have excluded the calculus IfsglL from Theorem 4.25 not because it is not
cut-free, but because the cut-elimination proof for IfsglL requires the introduction
of some important preliminary notions.

Definition 4.26 Consider the rule �Kgl

j : �α, i R j, M ⇒ N , j : α
M ⇒ i : �α

�Kgl

The variables j occurring in the premise of the rule are said to be proper variables
(Negri call them eigenvariables).
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Definition 4.27 Derivations are said to be pure when the proper variables used at
step �Kgl appear only in the subtree above the rule introducing them. (Clearly, by
Lemma 4.23, such a condition can always be met.)

Definition 4.28 The range of a variable i in a derivation d is the (finite) set of worlds
j such that either i R j or, for some n � 1, and for some i1, ..., in , the atoms i Ri1,
i1 Ri2, ..., in Ri j appear in the antecedent of sequents of d. Ranges of variables are
ordered by set inclusion.

The range of a variable i is, roughly, the set of all the variables to which i is directly
(e.g. i R j) or more indirectly (i Ri1, i1 Ri2, ..., in Ri j ), connected by relational atoms.
In the calculus IfsglL the contraction rules are range-preserving admissible, where
a rule is said to be range-preserving admissible if the elimination of the rule does
not increase the ranges of variables in the derivation.

Theorem 4.29 The calculus IfsglL is cut-free.

Proof The proof follows the pattern of the proof of Theorem 4.25, but with a modi-
fied induction parameter. Indeed the proof is developed by induction on

1. the complexity of the cut-formula α,
2. the range of i ,
3. the sum of the heights of the derivations of the premises of cut.

Following Negri, let us comment on how to treat cases of loops that may occur
in a proof. If a loop x Rx1, x1 Rx2, ..., xn Rx occurs in the conclusion of cut, then the
conclusion can be obtained without cut from the rule irr. and several applications of
the rule 4. Otherwise, if there is no loop in the conclusion of cut, there is no loop in
the premises either. The only way then to produce a loop would be by introducing
proper variables at steps of �Kgl that violate either the variable or the pureness
condition. ��

Negri proves that (certain) internalised forcing sequent calculi are decidable.

Theorem 4.30 The calculi Ifsk, Ifskt, Ifskb, Ifsktb, Ifss4 and Ifss5 allow terminat-
ing proofs search.

Proof The proof is developed in a purely syntactic way. We do not explain it in detail
since we will use the same kind of proof for the method of tree-hypersequents, and
therefore the interested reader can see Section 7.2. ��
Example 4.31 Here is an example of a derivation in the calculi Ifsk∗:

i R j, j : α ⇒ j : α j : β ⇒ j : β
i R j, j : α → β, j : α ⇒ j : β →A′

i R j, i : �(α → β), i : �α ⇒ j : β �A∗

i : �(α → β), i : �α ⇒ i : �β
�K

i : �(α → β) ⇒ i : �α → �β
→K

⇒ i : �(α → β) → (�α → �β)
→K
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Let us finally note that the internalised forcing method can be used to give a
syntactic account of those first-order frame properties that do not correspond to
any modally expressible axioms (see Definition 2.18, p. 43 and what follows). For
example, the irreflexivity property ∀x(¬x Rx) corresponds to the zero-premise rule
(that we have already seen before)

i Ri, M ⇒ N
irr.

In the internalised sequent calculi obtained by adding to the calculus Ifsk this kind of
rules, it is possible to prove, within a conservativity theorem, that no modal formula
corresponds to such first-order definable frame properties.

Remark 4.32 The method introduced by Negri can be applied to several systems,
even to GL, and it offers interesting results, such as decidability or admissibility of
structural rules. On the other hand, it is not modular, it does not satisfy the Došen’s
principle redefined, and the calculi do not have a structural variant because of the
lack of the special structural rules. Moreover the subformula property is not satis-
fied, as Negri herself remarks:

Our calculi, although not satisfying a full subformula property, enjoy a subterm property:
all terms in minimal derivations are terms found in the endsequent. [85, p. 508]

Restall [116, pp. 6, 7] proposes two solutions for repairing the lack of the sub-
formula property in Negri’s calculi,

the rules here do not satisfy the subformula property [...]. We could repair this in two ways.
One is to take relational facts to not be formulas properly so-called, or to take R the predicate
to be present as a part of the operator �.

Neither of Restall’s solutions is satisfactory. The first because, as Negri herself
makes clear, relational atoms are part of the language of the internalised forcing
calculi. The second because it is limited to the case of the rule �K , and does not
consider the case of the special logical rules. In addition, even Restall [116, p. 7]
mentions a third important reason for being sceptical about the possibility of avoid-
ing the lack of subformula property,

However, satisfying the subformula property in this way (the second way) seems unsatis-
factory [...] we still have no genuine subformula property since we still have to deal with
renaming variables.[...] Reworking our proof-theoretical analysis to deal with variables and
quantification seems like a high price to pay to deal with modal inference which does not
explicitly mention such things. (Brackets ours.)

By way of conclusion, let us bring up a problematic point that was also raised in
the case of the display calculi (see Section 3.3). Note that in the internalised forcing
sequent calculi, we do not deal with out-and-out modal formulas, but with modal
formulas enriched with labels or with relational atoms. This means that we can
never prove a modal formula of the form �α, but only labelled objects of the form
i : �α. As a result, a question naturally arises: can we really assert that these calculi
are computational instruments for modal logic, a logic where labels or relational
atoms do not usually appear?

Problem 4.33 Is there a way to make the internalised forcing calculi modular?
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Notes

1. The following list is by no means complete.
2. For the sake of uniformity with what follows, we let the trees grow top-down, and not bottom-up

as in the figure of point 1. of the previous section; this change, of course, is not of any deep
importance.

3. In [20] M , N are sequences of formulas.
4. What we are going to say on the rules merge and �A also holds for the rules 4̃ and 5̃.
5. Let us specify that the rule �Kgl is just invertible.



Chapter 5
Comparing the Different Generalisations
of the Sequent Calculus

We have thus introduced the main generalisations of the sequent calculus for modal
propositional logic. Their analysis may be further developed, in particular from the
perspective of deepening our understanding of the links between these generalisa-
tions. Wansing [147, p. 171] stresses the importance of this issue:

In view of the diversity of these types of proof systems it becomes increasingly important
to investigate their interrelations and their advantages and disadvantages.

In the following sections we will address this problem by comparing the sequent
calculi introduced in Chapters 3 and 4. In the course of this discussion, other pecu-
liarities and features of each calculus will emerge.

5.1 From Multiple Sequent Calculi to Display Sequent Calculi

We start the comparison between the numerous types of Gentzen systems for modal
logic by showing how to embed the calculi Msk∗ in the calculi Dsk∗.

We firstly define a translation δ from the well-formed formulas and the well-
formed multiple structures to display structures in the following way:

– (∅)δ :=
⎧
⎨

⎩

I, i f i t is the antecedent,

I ∗, i f i t is the consequent.
– (α)δ := α

– (−α)δ := α∗
– (M∗)δ := (Mδ)∗

Given the translation δ, we can define the translation τ in the following way:

– (α, M �⇒0 N , β)τ := (α)δ ◦ (M)δ ⇒ (N )δ ◦ (β)δ

– (α, M �⇒n N , β)τ := •n((α)δ ◦ (M)δ) ⇒ (N )δ ◦ (β)δ

where •n M stands for:
n

︷ ︸︸ ︷•, ..., • M .

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_5, C© Springer Science+Business Media B.V. 2011
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We are now in a position to prove the following theorem.

Theorem 5.1 Let M �⇒n N be any modal sequent of the calculi Msk∗. Then every
derivation of M �⇒n N in Msk∗ can be translated into a derivation of (M �⇒n N )τ

in Dsk∗.

Proof The proof is by induction on the derivation of the modal sequent M �⇒n N in
Msk∗.1

If M �⇒n N is an initial sequent, then its translation τ is an admissible initial
sequent of the form α ⇒ α in display calculi. If M �⇒n N has been inferred by one
of the structural rules or one of the shifting rules or one of the propositional rules
for the connective ¬, then the procedure is straightforward. However, let us consider
the example of the rule ¬K ,

M �⇒n N ,−α

M �⇒n N ,¬α
¬K � •n(M)δ ⇒ (N )δ ◦ α∗

•n(M)δ ◦ ((N )δ)∗ ⇒ α∗

•n(M)δ ◦ ((N )δ)∗ ⇒ ¬α

•n(M)δ ⇒ (N )δ ◦ ¬α

¬K

If M �⇒n N has been inferred by the rule∧K
′
(for the rule that∧A

′
the procedure

is analogous but easier), then we have

M �⇒n N , α P �⇒n Q, β

M, P �⇒n N , Q, α ∧ β ∧K
′ �

•n(M)δ ⇒ (N )δ ◦ α

(M)δ ⇒ •n((N )δ ◦ α)

(M)δ ◦ (P)δ ⇒ •n((N )δ ◦ α)

•n((M)δ ◦ (P)δ) ⇒ (N )δ ◦ α

•n((M)δ ◦ (P)δ) ◦ ((N )δ)∗ ⇒ α

•n(P)δ ⇒ (Q)δ ◦ β

(P)δ ⇒ •n((Q)δ ◦ β)

(M)δ ◦ (P)δ ⇒ •n((Q)δ ◦ β)

•n((M)δ ◦ (P)δ) ⇒ (Q)δ ◦ β

•n((M)δ ◦ (P)δ) ◦ ((Q)δ)∗ ⇒ β

•n((M)δ ◦ (P)δ) ◦ •n((M)δ ◦ (P)δ) ◦ ((N )δ)∗ ◦ ((Q)δ)∗ ⇒ α ∧ β
∧K ′

•n((M)δ ◦ (P)δ) ◦ •n((M)δ ◦ (P)δ) ⇒ (N )δ ◦ (Q)δ ◦ α ∧ β

•n((M)δ ◦ (P)δ) ⇒ (N )δ ◦ (Q)δ ◦ α ∧ β
C

If M �⇒n N is of the form �α, M �⇒
1

N and has been inferred by the rule �A1,
then we have

M �⇒
1

N ,−α

�α, M �⇒
1

N �A1 �
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α ⇒ α

�α ⇒ •α �A

�α ◦ (M)δ ⇒ •α
•(�α ◦ (M)δ) ⇒ α

•(M)δ ⇒ (N )δ ◦ (α)∗

α ⇒ (N )δ ◦ (•(M)δ)∗

•(�α ◦ (M)δ) ⇒ (N )δ ◦ (•(M)δ)∗
cutα

•(M)δ ⇒ (N )δ ◦ (•(�α ◦ (M)δ))∗

(M)δ ⇒ •((N )δ ◦ (•(�α ◦ (M)δ))∗)
�α ◦ (M)δ ⇒ •((N )δ ◦ (•(�α ◦ (M)δ))∗)
•(�α ◦ (M)δ) ⇒ (N )δ ◦ (•(�α ◦ (M)δ))∗

•(�α ◦ (M)δ) ◦ •(�α ◦ (M)δ) ⇒ (N )δ

•(�α ◦ (M)δ) ⇒ (N )δ
C

If M �⇒n N is of the form �α �⇒n N and has been inferred by the rule �A2, then
we have

α �⇒n N

�α �⇒n+1 N �A2 � •nα ⇒ (N )δ

α ⇒ •n(N )δ

�α ⇒ •n+1(N )δ

•n+1�α ⇒ (N )δ

�A

If M �⇒n N is of the form M �⇒n �α and has been inferred by the rule �K , then
we have

M �⇒n α

M �⇒n−1 �α
�K � •n(M)δ ⇒ α

•n−1(M)δ ⇒ �α
�K

We finally analyse each of the cases in which M �⇒n N has been inferred by one
of the special structural rules d, t, b, 4.

M �⇒n
M �⇒n−1

d � •n(M)δ ⇒ I ∗

•n(M)δ ◦ •I ⇒ I ∗

•n−1(M)δ ⇒ I ∗ d

M �⇒n N

M �⇒n−1 N
t � •n(M)δ ⇒ (N )δ

(M)δ ⇒ •n(N )δ

(M)δ ⇒ •n−1(N )δ

•n−1(M)δ ⇒ (N )δ

t

B(M) �⇒n N

B(M)�⇒n+1 N
4 � •n(B(M))δ ⇒ (N )δ

(B(M))δ ⇒ •n(N )δ

(B(M))δ ⇒ •n+1(N )δ

•n+1(B(M))δ ⇒ (N )δ

4
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M �⇒n N

N∗�⇒n M∗ b � •n(M)δ ⇒ (N )δ

•n(M)δ ⇒ ((N )δ)∗∗

(M)δ ⇒ •n(((N )δ)∗∗)
(•n(((N )δ)∗∗))∗ ⇒ ((M)δ)∗

•n(((N )δ)∗) ⇒ ((M)δ)∗ b

��

5.2 From Higher-Arity Sequent Calculi to Display
Sequent Calculi

We will now draw another comparison between modal sequent calculi. Specifically,
we will consider higher-arity sequent calculi and display calculi. Analogously to
the previous section, we will show that each derivation in the higher-arity sequent
calculi can be transformed in a derivation in display calculi.

We firstly define the translation τ in the following way:

(
M ⇒T

S N
)τ :=

∧
�S ◦ M ⇒ ©• T ◦ N

where ©• T should be seen as analogous to
∧

�S: each formula belonging to T is
preceded by the symbol •, and linked to the others by the symbol ◦. Informally the
translation τ can be explained in the following way: all the formulas of the higher-
arity sequent are linked together by the symbol ◦, except the ones belonging to the
multiset S that become a conjunction of boxed formulas. Moreover, each of the
formulas belonging to the multiset T is preceded by the symbol •. If T ≡ N ≡ ∅,
we have

(
M ⇒∅

S ∅
)τ :=

∧
�S ◦ M ⇒ I ∗

If S ≡ M ≡ ∅, we have

(
∅ ⇒T

∅ N
)τ := I ⇒©• T ◦ N

We are now in a position to prove the following theorem.

Theorem 5.2 Let R ⊆ {d, t} and M ⇒S
T N be any higher-arity sequent of the

calculi H-ask + R. Then, every derivation of M ⇒S
T N in H-ask + R can be

translated into a derivation of
(
M ⇒S

T N
)τ

in Dsk + R.

Proof The proof is by induction on the derivation of the higher-arity sequent M ⇒T
S

N in H-ask +R.
If M ⇒T

S N is an initial higher-arity sequent, then its translation τ is an admis-
sible initial sequent of the form α ⇒ α in display calculi. If M ⇒T

S N has been
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inferred by one of the classical or higher-arity rules of weakening, or by the classi-
cal rules of contraction, or by one of the propositional rules, then the procedure is
straightforward. If M ⇒T

S N has been inferred by the rule Cn A (for the rule Cn K
the procedure is analogous but easier), then we have

M ⇒T
α,α,S N

M ⇒T
α,S N

Cn A �

�α ∧ �α ∧ ∧
�S ◦ M ⇒©• T ◦ N

�α ∧ �α ∧ ∧
�S ⇒©• T ◦ N ◦ M∗

�α ∧ �α ◦ ∧
�S ⇒©• T ◦ N ◦ M∗ ∧A′

�α ∧ �α ⇒©• T ◦ N ◦ M∗ ◦ (
∧

�S)∗

�α ◦�α ⇒©• T ◦ N ◦ M∗ ◦ (
∧

�S)∗ ∧A′

�α ⇒©• T ◦ N ◦ M∗ ◦ (
∧

�S)∗ C

�α ◦ ∧
�S ⇒©• T ◦ N ◦ M∗

�α ∧ ∧
�S ⇒ ©• T ◦ N ◦ M∗ ∧A′

�α ∧ ∧
�S ◦ M ⇒©• T ◦ N

Note that in both the second and the fourth inferences counting from the top, we
are exploiting the fact that in display calculi propositional rules are invertible (see
Section 3.3); more precisely we are using the invertibility of the rule ∧A

′
, that we

have indicated with the notation ∧A
′
.

If M ⇒T
S N is of the form �α ⇒α

∅ ∅, i.e. it is the modal axiom �A, then we
have

α ⇒ α

�α ⇒ •α �A

If M ⇒T
S N is of the form ∅ ⇒∅

α �α, i.e. it is the modal axiom �K , then its
translation τ is an admissible axiom of the form �α ⇒ �α in display calculi. If
M ⇒T

S N is of the form ∅ ⇒α
M ∅, and has been derived by the necessitation rule

M ⇒∅
∅ α

∅ ⇒α
M ∅ rn

then we have a quite long derivation to deal with, and we develop it in the following
several steps. Suppose that M ≡ γ1, ..., γn . If we apply the translation τ on the
premise of the necessitation rule, we obtain γ1 ◦ ...◦γn ⇒ α, and then we can derive

γ1 ◦ ... ◦ γn ⇒ α

γ1 ∧ ... ∧ γn ⇒ α

�(γ1 ∧ ... ∧ γn) ⇒ •α �A

Let us then observe these n analogous proofs
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γ1 ⇒ γ1

�γ1 ⇒ •γ1

�γ1 ◦ ... ◦�γn ⇒ •γ1

�γ1 ∧ ... ∧�γn ⇒ •γ1

•(�γ1 ∧ ... ∧ �γn) ⇒ γ1

�A

...

γn ⇒ γn

�γn ⇒ •γn

�γ1 ◦ ... ◦�γn ⇒ •γn

�γ1 ∧ ... ∧�γn ⇒ •γn

•(�γ1 ∧ ... ∧ �γn) ⇒ γn

�A

By applying the rule ∧K
′

on the n premises •(�γ1∧ ... ∧�γn) ⇒ γ1 ...•(�γ1 ∧
...∧�γn) ⇒ γn , n-times, we obtain •(�γ1 ∧ ...∧�γn)◦ ...◦•(�γ1 ∧ ...∧�γn) ⇒
γ1 ∧ ... ∧ γn . Then we can proceed in the following way:

•(�γ1 ∧ ... ∧ �γn) ◦ ... ◦ •(�γ1 ∧ ... ∧ �γn) ⇒ γ1 ∧ ... ∧ γn

•(�γ1 ∧ ... ∧ �γn) ⇒ γ1 ∧ ... ∧ γn

�γ1 ∧ ... ∧ �γn ⇒ �(γ1 ∧ ... ∧ γn)
�K

Note that what we have just proven is that the sequent
∧

(�M) ⇒ �(
∧

M) is
derivable in display calculi. We can now apply a cut and reach our conclusion

�γ1 ∧ ... ∧ �γn ⇒ �(γ1 ∧ ... ∧ γn) �(γ1 ∧ ... ∧ γn) ⇒ •α
�γ1 ∧ ... ∧ �γn ⇒ •α cut�(γ1,...,γn )

If M ⇒T
S N has been inferred by the rule cut2

α (for the rule cut1
α the procedure

is analogous but easier), then we have

M ⇒T
α,S N M ⇒T,α

S N

M ⇒T
S N cut2

α
�

�α ∧ ∧
�S ◦ M ⇒©• T ◦ N

�α ◦ ∧
�S ◦ M ⇒©• T ◦ N

∧A′

(©• T ◦ N )∗ ◦∧
�S ◦ M ⇒ �α∗

(©• T ◦ N )∗ ◦∧
�S ◦ M ⇒ ¬�α

∧
�S ◦ M ⇒ •α ◦© • T ◦ N

(©• T ◦ N )∗ ◦ ∧
�S ◦ M ⇒ •α

•((©• T ◦ N )∗ ◦ ∧
�S ◦ M) ⇒ α

(©• T ◦ N )∗ ◦ ∧
�S ◦ M ⇒ �α

�K

∧
�S ◦ M ⇒©• T ◦ N ◦ �α

�α∗ ⇒ © • T ◦ N ◦ (
∧

�S ◦ M)∗
¬�α ⇒©• T ◦ N ◦ (

∧
�S ◦ M)∗

(©• T ◦ N )∗ ◦ ∧
�S ◦ M ⇒©• T ◦ N ◦ (

∧
�S ◦ M)∗

cut¬�α

∧
�S ◦ M ◦ ∧

�S ◦ M ⇒©• T ◦ N ◦© • T ◦ N
∧

�S ◦ M ⇒©• T ◦ N

We finally analyse the cases in which M ⇒T
S N has been inferred by one of the

special structural rules d, t .
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M ⇒∅
∅ ∅

∅ ⇒∅
M ∅ d �

∧
(�M) ⇒ �(

∧
M)

M ⇒ I ∗∧
M ⇒ I ∗

�(
∧

M) ⇒ •(I ∗)
•�(

∧
M) ⇒ I ∗

•�(
∧

M) ◦ •I ∗ ⇒ I ∗

�(
∧

M) ⇒ I ∗ d

∧
(�M) ⇒ I ∗

cut�(
∧

M)

Note that we could use the sequent
∧

(�M) ⇒ �(
∧

M), since we have already
shown that it is derivable in display sequent calculi.

∅ ⇒∅
α α t � α ⇒ α

�α ⇒ •α
�α ⇒ α

t

��

To conclude, there exists a result of Wansing [149], obtained by embedding mul-
tiple sequents in higher-arity sequents. It is important to emphasise that: (i) this
result only holds for those multiple sequent calculi that do not contain the b rule; (ii)
Wansing only shows that a sequent is provable in Msk + R, where R ⊆ {d, t, 4}, if,
and only if, its translation in higher-arity terms is valid in the correspondent Hilbert
system.

Problem 5.3 Is there a way to prove that, given a multiple sequent M �⇒n N , every
derivation of M �⇒n N in Msk∗ can be translated into a derivation of that sequent
appropriately translated in higher-arity terms in the calculi H-ask∗?

5.3 From Indexed Sequent Calculi to Internalised Forcing
Sequent Calculi

In the last two sections we compared different syntactic methods; the following two
sections will be concerned with the relationships between semantic methods.

Let us start by showing how to embed indexed sequent calculi into internalised
forcing sequent calculi. It is important to note that both these calculi have a logi-
cal variant (in the case of Negri’s calculi, see Section 4.3). Following the notation
introduced in the first chapter, we will indicate these logical variants with Isk∗L and
IfskL + R, where R ⊆ {t, 4, b}, respectively.

In the calculi Isk∗L , see Fig. 5.1 of the next page, instead of presenting the rule
�A in the form

G; σ �α, M ⇒ N ; σ ′
α, S ⇒ T

G; σ �α, M ⇒ N ; σ ′ S ⇒ T �A
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Initial Indexed Sequents

G; σ α, M ⇒ N, α

Logical Rules
Propositional Rules

G; σ M ⇒ N, α
G; σ ¬α, M ⇒ N

¬A
G; σ α, M ⇒ N

G; σ M ⇒ N, ¬α
¬K

G; σ α, β, M ⇒ N

G; σ α ∧ β, M ⇒ N ∧A

G; σ M ⇒ N, α G ; σ M ⇒ N, β
G; σ M ⇒ N, α ∧ β

∧K

Modal Rules

G; σ α, M ⇒ N ; ⇒ T

G; σ α, M ⇒ N ; ⇒ T
A

G; σ M ⇒ N ; ⇒ α

G; σ M ⇒ N, α
K

where in the rule K the index is new, reading the rule bottom-up

Special Logical Rules

G; σ α, α, M ⇒ N

G; σ α, M ⇒ N
t

G; σ α, M ⇒ N ; α, S ⇒ T

G; σ M ⇒ N ; α, S ⇒ T
b

G; σ α, M ⇒ N ; α, S ⇒ T

G; σ α, M ⇒ N ; ⇒ T
41

G; σ α, M ⇒ N ; α, S ⇒ T

G; σ M ⇒ N ; α, S ⇒ T
42

Fig. 5.1 Logical variant of the indexed sequent calculi

with the side condition σ Rσ
′

(as it is done in Section 4.2), and obtaining the rules t
and b by simply requiring the relation R to be reflexive and symmetric, respectively,
we have preferred to change the notation, and specify the three rules �A, t and b.2

An analogous operation has been applied on the rule 4: if we want to obtain calculi
for the systems K4 or S4, we use the rule 41. If we want to obtain calculi for the
systems K4B or S5, we use both the rules 41 and 42. These changes will prove
useful in what follows.

We will show that the calculi Isk∗L can be embedded into the calculi IfskL + R
(which are shown in Fig. 5.2). The translation will proceed in two steps: firstly, the
multisets of indexed sequents used by Mints, i.e. the tableaux, will be translated into
multisets of internalised forcing sequents; then, these multisets will be reduced to
single internalised forcing sequents. Let G be a tableaux and σ M ⇒ N be a sequent
that occurs in G. To complete the first stage, we define a function δ. We begin by
defining δ on single indexed sequents σ M ⇒ N .

(σ M ⇒ N )δ :=
if σ = ∅ then the translation is simply (M)i ⇒ (N )i , where the notation (M)i

((N )i ) stands for: each formula α of M (or of N ) is labelled by a variable i
(i : α).



5.3 From Indexed Sequent Calculi to Internalised Forcing Sequent Calculi 109

Initial Internalised Forcing Sequents

i : p, M ⇒N, i : p iRj, M ⇒ N, iRj

Logical Rules
Propositional Rules

M ⇒N, i : α

i : ¬α, M ⇒ N
¬A

i : α, M ⇒ N

M ⇒N, i : ¬α
¬K

i : α, i : β, M ⇒ N

i : α ∧ β, M ⇒ N ∧A

M ⇒N,  i: α M ⇒N, i : β

M ⇒ N, i : α ∧ β
∧K

Modal Rules

i : α, j :α, iRj, M⇒ N

i : α, iRj, M ⇒ N A
iRj, M ⇒ N, j : α

M ⇒ N, i : α K

where in the rule K the variable j is new, reading the rule bottom-up.

Special Logical Rules

iRi, M ⇒ N

M ⇒ N
t

jRi, iRj, M ⇒ N

iRj, M ⇒ N
b

iRj, jRz, iRzM⇒ N

iRj, jRz, M ⇒ N
4

Fig. 5.2 Logical variant of the internalised forcing sequent calculi

if σ = σ
′
� z and all the formulas of the sequent indexed by σ

′
have already been

labelled by the variable i , then the translation is i R j, (M) j ⇒ (N ) j , where
each formula α of M and of N is labelled by the variable j ( j : α) and the
variable j has not been already used in the translation δ.

Then, we extend the definition of δ to tableaux as follows:

i f G = M ⇒ N ; z1 � S1 ⇒ T1; ...; zn � Sn ⇒ Tn

then (G)δ is

(M)i ⇒ (N )i ; i R j1, (S1)
j1 ⇒ (T1)

j1; ...; i R jn, (Sn) jn ⇒ (Tn) jn

The translation τ from Mints’s tableaux into Negri’s internalised forcing sequents
can now be defined, using δ, as follows:

(G)τ := (Gδ)A ⇒ (Gδ)C
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where

(Gδ)A is the multiset composed by those elements (of the form i : α, or i R j)
which are in antecedent position in each sequent that comes out from the
translation δ of the tableaux G.

(Gδ)C is the multiset composed by those elements (of the form i : α) which are
in consequent position in each sequent that comes out from the translation δ

of the tableaux G.

Therefore the translation τ of the tableaux G,

G = M ⇒ N ; z1 � S1 ⇒ T1; ...; zn � Sn ⇒ Tn

is

i R j1, ..., i R jn, (M)i , (S1)
j1 , ..., (Sn) jn

︸ ︷︷ ︸
⇒ (N )i , (T1)

j1, ..., (Tn) jn
︸ ︷︷ ︸

(Gδ)A ⇒ (Gδ)C

We are now ready to prove the following theorem.

Theorem 5.4 Let G be any tableaux of the calculi Isk∗L . Then every derivation of
G in Isk∗L can be translated into a derivation of (G)τ in IfskL + R, where R ⊆
{t, 4, b}.
Proof The proof is by induction on the derivation of the tableaux G in Isk∗L .

If G is an initial sequent, then its translation τ is an initial internalised forcing
sequent in IfskL +R. If G has been inferred by one of the propositional rules, then
the procedure is straightforward. If G has been inferred by the modal rule �A, then
we have

G; σ �α, M ⇒ N ; σ � i α, S ⇒ T

G; σ �α, M ⇒ N ; σ � i S ⇒ T �A �

(Gδ)A, i R j, i : �α, j : α, (M)i , (S) j ⇒ (N )i , (T ) j , (Gδ)C

(Gδ)A, i R j, i : �α, (M)i , (S) j ⇒ (N )i , (T ) j , (Gδ)C �A

If G has been inferred by the modal rule �K , then we have

G; σ M ⇒ N ; σ � i ⇒ α

G; σ M ⇒ N ,�α
�K �

(Gδ)A, i R j, (M)i ⇒ (N )i , j : α, (Gδ)C

(Gδ)A, (M)i ⇒ (N )i , i : �α, (Gδ)C �K

If G has been inferred by the rule t , then we have
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G; σ�α, α, M ⇒ N

G; σ�α, M ⇒ N
t �

(Gδ)A, i : �α, i : α, (M)i ⇒ (N )i , (Gδ)C

(Gδ)A, i Ri, i : �α, i : α, (M)i ⇒ (N )i , (Gδ)C

(Gδ)A, i Ri, i : �α, (M)i ⇒ (N )i , (Gδ)C

(Gδ)A, i : �α, (M)i ⇒ (N )i , (Gδ)C t

�A

W2 A

If G has been inferred by the rule 41, then we have

G; α, M ⇒ N ; α, S ⇒ T
G; α, M ⇒ N ; ⇒ T 41

⇒ i : α → α
i : α ⇒ i : α →K

(G δ )A , iRj, j : α, i : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C

(G δ )A , iRj, i : α, j : α, i : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C

(G δ )A , iRj, i : α, i : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C
A

W A

(G δ )A , iRj, i : α, i : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C
cut α

(G δ )A , iRj, i : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C
CA

Note that in the first inference of the left-side derivation of the second deduction,
we have used the height-preserving invertibility of the rule → K

′
(see Section 4.3),

indicated with the notation → K
′
.

If G has been inferred by the rule 42, then we have

G; α, M ⇒ N ; α, S ⇒ T

G; M ⇒ N ; α, S ⇒ T 42

⇒ j : α → α
j : α ⇒ j : α → K

(G δ )A , iRj, j : α, i : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C

(G δ )A , iRj, jRi, j : α, i : α, (M ) i , (S )j ⇒ (N ) i , (T ) j , (G δ )C

(G δ )A , iRj, jRi, j : α, j : α, i : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C
W A

W 2 A

(G δ )A , iRj, jRi, j : α, j : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C
A

(G δ )A , iRj, j : α, j : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C
b

(G δ )A , iRj, j : α, j : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C
cut α

(G δ )A , iRj, j : α, (M ) i , (S ) j ⇒ (N ) i , (T ) j , (G δ )C
CA

Note that we could use the rule b, since we are treating the case of the rule 42.
Moreover, even in this case we have exploited the invertibility of the rule → K

′
.

Finally, we underline that the rule 4
′

too (see Remark 4.18, p. 91) can be translated
(without the use of the cut-rule) in internalised forcing terms. On the other hand, the
proof of this translation is quite long and tedious.

If G has been inferred by the rule b, then we have
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G; σα, M ⇒ N ; σ � i �α, S ⇒ T

G; σ M ⇒ N ; σ � i �α, S ⇒ T
b �

(Gδ)A, i R j, j : �α, i : α, (M)i , (S) j ⇒ (N )i , (T ) j , (Gδ)C

(Gδ)A, i R j, j Ri, j : �α, i : α, (M)i , (S) j ⇒ (N )i , (T ) j , (Gδ)C

(Gδ)A, i R j, j Ri, j : �α, (M)i , (S) j ⇒ (N )i , (T ) j , (Gδ)C

(Gδ)A, i R j, j : �α, (M)i , (S) j ⇒ (N )i , (T ) j , (Gδ)C b

� A

W2 A

��

5.4 From Indexed Sequent Calculi to Semantic Modal Sequent
Calculi and Vice Versa

Following what was announced previously, this section will deal with another rela-
tionship between semantic methods. More precisely, we will show how to embed
the indexed sequent calculi Isk∗ in the semantic modal sequent calculi Ssk∗, and
vice versa. These operations reveal a straightforward link between the two different
semantic methods, as it was pointed out in Section 4.2.

Let us start by defining the translation τ from tableaux to trees of sequents in the
following way. Let G be the tableau

M ⇒ N ; i1 � H1; ...; in � Hn

which under the translation τ becomes

M ⇒ N

↙ .... ↘
H1 .... Hn

In reverse, let us define the translation φ from the trees of sequents to the tableaux
in the following way. Let G be the tree of sequents

M ⇒ N

↙ .... ↘
H1 .... Hn

which under the translation φ becomes

M ⇒ N ; i1 � H1; ...; in � Hn

Moreover, both authors assume a relation R (that does not affect the two trans-
lations τ and φ, and may enjoy, depending on the system that one wants to treat,
several properties) to hold between the indexed sequents and the semantic sequents.
This fact increases the similarity between the two methods.
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In what follows the indexed sequent calculi for the modal systems containing the
axiom 4 are obtained by means of the rule 4

′
(see Remark 4.18, p. 91). and not by

the usual rule 4. We will indicate this fact by writing Isk◦ instead of Isk∗.

Theorem 5.5 Let G be any tableaux of the calculi Isk◦. Then every derivation of G
in Isk◦ can be translated into a derivation of (G)τ in Ssk∗.

Proof The proof is by straightforward induction on the derivation of the tableaux G
in Isk◦. ��
Theorem 5.6 Let R ⊆ {t, b, 4} and G be any tree of sequents of the calculi
Ssk + R. Then every derivation of G in Ssk + R can be translated into a derivation
of (G)φ in Isk◦.

Proof The proof is by straightforward induction on the derivation of the tree of
sequents G in Ssk +R. ��

5.5 From Display Sequent Calculi to Internalised Forcing
Sequent Calculi

Let us finally turn to the relationship between a syntactic method, display logic, and
a semantic method, namely, the one proposed by Negri.

Let us first of all consider the reasons why we chose display calculi and inter-
nalised forcing sequent calculi as the best candidates for building a bridge between
syntactic and semantic methods. Even the first glance reveals that display calculi
and internalised forcing calculi have several common points. They have similar dis-
advantages (see Remarks 3.25, p. 73, and 4.32, p. 99), but they also share a great
expressive power (witnessed by at least two facts: (i) the other generalisations of the
Gentzen calculus can be plugged into them, and (ii) they can be applied to a wide
range of modal systems). The more interesting question is then whether the com-
monalities between display calculi and internalised forcing sequents are explicable
by a deeper formal reason. The affirmative answer can be spelled out as follows.

In other generalisations of Gentzen calculi, the new proof tools – metalinguistic
or linguistic, syntactic or semantic – are applied to the entire sequent or to the entire
context. This is not the case for display calculi and internatised forcing sequents.
Rather, for these types of calculi, the new proof tools are applied to single formulas.
Our formal translation will rest on this common characteristic.

Given a display sequent M ⇒ N , its translation is the internalised forcing
sequent

nr
i (M), pr

i (N ) ⇒ pl
i (N ), nl

i (M)

where nr
i , nl

i , pr
i , pl

i are translation functions that we shall define recursively.
Let us first provide an informal interpretation: the letters n for negative, and p for

positive, indicate the position of the display structure M in the display sequent. The
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I α M∗ M ◦ N •M

nl
i − i : α

i : α

l
i nl

i nl
i jRi , nl

j

nr
i pr

i nr
i nr

i nr
j

pl
i nl

i pl
i pl

i iRj, pl
j

pr
i −

p

− −

− −

nr
i (M)

(M)

(M)

(N)

(N)

(N)

(N) (M)

(M)

(M)

(M)

(M),

(M),

(M),

(M),

(M)

pr
i pr

i pr
j

Fig. 5.3 Translation functions

letters r for right, and l for left, indicate the position of the translated display struc-
ture M in the internalised forcing sequent. Finally, the letter i stands for the Kripke
semantics world at which the translated display structure M is true. Functions are
defined as in Fig. 5.3.

For the sake of clarity, let us make an example. Let us consider the display
sequent •(α∗ ◦ β) ◦ δ ⇒ γ ∗. It is translated as follows:

nl
i (•(α∗ ◦ β)), nl

i (δ), pl
i (γ

∗) ⇒ nr
i (•(α∗ ◦ β)), nr

i (δ), pr
i (γ

∗)

that becomes

j Ri, j : β, i : γ, i : δ ⇒ j : α

This translation is based on a result by Restall [116], that we have managed to
improve. We are now in a position to prove the following theorem.

Theorem 5.7 Let M ⇒ N be any display sequent of the calculi Dsk∗. Then
every derivation of M ⇒ N in Dsk∗ can be translated into a derivation of
nr

i (M), pr
i (N ) ⇒ pl

i (N ), nl
i (M) in Ifsk∗.

Proof The proof is by induction on the derivation of the sequent M ⇒ N in the
calculi Dsk∗.

If M ⇒ N is an initial sequent, then its translation τ is an initial internalised
forcing sequent in IfskL +R. If M ⇒ N has been inferred by one of the structural
rules, or one of the basic structural rules or one of the propositional rules, then the
procedure is straightforward. If M ⇒ N has been inferred by the modal rule �A,
then we have

α ⇒ N

�α ⇒ •N �A �
i : α, pl

i (N ) ⇒ pr
i (N )

j : α, pl
j (N ) ⇒ pr

j (N )

i R j, j : α, pl
j (N ) ⇒ pr

j (N )

i R j, i : �α, pl
j (N ) ⇒ pr

j (N )
�A

W2 A

SL
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Note that in the first inference of the right-side derivation, we have used the substi-
tution lemma that from now on we are going to indicate with SL .

If M ⇒ N has been inferred by the modal rule �K , then we have

•M ⇒ α

M ⇒ �α
�K �

j Ri, nl
j (M) ⇒ nr

j (M), i : α
nl

j (M) ⇒ nr
j (M), j : �α

nl
i (M) ⇒ nr

i (M), i : �α
SL

�K

If M ⇒ N has been inferred by the rule d, then we have

•M ◦ •N ⇒ I ∗

M ⇒ N∗ d �
j Ri, j Ri, nl

j (M), pl
j (N ) ⇒ nr

j (M), pr
j (N )

j Ri, nl
j (M), pl

j (N ) ⇒ nr
j (M), pr

j (N )

nl
j (M), pl

j (N ) ⇒ nr
j (M), pr

j (N )

nl
i (M), pl

i (N ) ⇒ nr
i (M), pr

i (N )
SL

d

C A

If M ⇒ N has been inferred by the rule t , then we have

M ⇒ •N

M ⇒ N
t �

i R j, nl
i (M), pl

j (N ) ⇒ nr
i (M), pr

j (N )

i Ri, nl
i (M), pl

i (N ) ⇒ nr
i (M), pr

i (N )

nl
i (M), pl

i (N ) ⇒ nr
i (M), pr

i (N )
t

SL

If G has been inferred by the rule 4, then we have

M ⇒ •N

M ⇒ • • N
4 �

i R j, nl
i (M), pl

j (N ) ⇒ nr
i (M), pr

j (N )

i Rz, nl
i (M), pl

z(N ) ⇒ nr
i (M), pr

z (N )

i Rz, i R j, j Rz, nl
i (M), pl

z(N ) ⇒ nr
i (M), pr

z (N )

i R j, j Rz, nl
i (M), pl

z(N ) ⇒ nr
i (M), pr

z (N )
4

W2 A∗
SL

If G has been inferred by the rule b, then we have

(•(M∗))∗ ⇒ N

•M ⇒ N
b �

i R j, nl
j (M), pl

i (N ) ⇒ nr
j (M), pr

i (N )

i R j, j Ri, nl
j (M), pl

i (N ) ⇒ nr
j (M), pr

i (N )

j Ri, nl
j (M), pl

i (N ) ⇒ nr
j (M), pr

i (N )
b

W2 A

If G has been inferred by the rule 5, then we have

(•(M∗))∗ ⇒ N

•((•(M∗))∗) ⇒ N
5 �

i R j, nl
j (M), pl

i (N ) ⇒ nr
j (M), pr

i (N )

i Rz, nl
z(M), pl

i (N ) ⇒ nr
z(M), pr

i (N )

j Rz, j Ri, i Rz, nl
z(M), pl

i (N ) ⇒ nr
z(M), pr

i (N )

j Rz, j Ri, i Rz, nl
z(M), pl

i (N ) ⇒ nr
z(M), pr

i (N )
5

W2 A∗
SL

��
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Multiple Sequent
Calculi

Indexed Sequent
Calculi

Display
Sequent
Calculi

Internalised Forcing
Sequent Calculi

Semantic Modal
Sequent Calculi

Higher-Arity
Sequent Calculi

Fig. 5.4 Relationships between sequent calculi for modal logic

We have thus finished presenting the relationships that unite the several Gentzen
systems for modal logic. They are summed up in Fig. 5.4: on the left side, are the
syntactic methods, while on the right side are the semantic ones. There are two
“bridges” connecting them: the first one is represented by the link between indexed
sequent calculi and display calculi, and has been proved by Mints [82]; the sec-
ond one is represented by the link between internalised forcing calculi and display
calculi, which we have just proved.

Finally there are two other translations between sequent calculi for modal logic:
the first one holds between the hypersequent calculus Hss5 of Avron (see [6])
and the corresponding display calculus. This link has been established by Wansing
[149]. The second one holds between display calculi and the calculi of structures
(see the beginning of Chapter 3), and was established by Goré and Tiu [51].

Notes

1. Notice that, in order to shorten the derivations in the calculi Dsk∗, we may use several rules in
a row, and indicate them with just one inference. For this reason and also not to overload the
derivations, we will not specify the names of the rules used in the derivations, except for the
most significant ones.

2. Mints himself suggests this alternative presentation.
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Tree-Hypersequent Calculi
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Chapter 6
On the Tree-Hypersequent Calculi

In the first part of the book we defined what it means for a sequent calculus to be
good and we explained the reasons why it is important for a logic to have a good
Gentzen calculus. In the second part of the book we set out the numerous attempts
made at providing the main systems of modal logic with a proof calculus while
showing their limits and their benefits. Our aim in this last part of the book is to
present and deeply analyse a new method for generating good extensions of the
sequent calculus for the SLH-systems plus GL.

This new method is called tree-hypersequent method, and before introducing
it formally, let us briefly present the basic idea behind it. The basic idea of the
tree-hypersequent method consists in reproducing, at the proof-theoretical level, the
structure of the tree-frames of Kripke semantics. As we saw in Sections 4.1 and 4.2,
this idea is not original. The novelty of this attempt lies in reflecting the structure of
the tree-frames without the support of explicit semantic parameters; this represents
a remarkable improvement at least on the conceptual level.

How do we internalise the structure of the tree-frames of Kripke semantics with-
out the aid of explicit semantic parameters? We can use the following simple tree-
frame of Kripke semantics to offer a good explanation:

(A)
◦ ◦ ◦
↖ ↑ ↗

◦

Let us consider the worlds of this tree-frame: we have a root, i.e. a world at
distance zero, and linked to this, three worlds at distance one. The worlds of a tree-
frame will be represented, at the proof-theoretical level, by sequents, i.e. we will
have

(B)
Γ2 Γ3 Γ4

Γ1

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_6, C© Springer Science+Business Media B.V. 2011
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120 6 On the Tree-Hypersequent Calculi

where Γi , 1 � i � 4 is a classical sequent. The sequent Γ1 stands for the root, while
the three sequents Γ2, Γ3, Γ4 stand for the three worlds at distance one linked to the
root.

Let us now come back to the figure (A), and restrict our attention on the three
worlds at distance one. These three worlds, though all linked to the root and all
at distance one, are separated. We want something in our meta-linguistic language
that indicates this separation. We will use the semicolon to represent this, i.e. (B)
becomes

(C)
Γ2; Γ3; Γ4

Γ1

The task is almost complete: the last element to internalise is the accessibility
relation between worlds. A simple move would be the following:

(D)
Γ2; Γ3; Γ4

↖ ↑ ↗
Γ1

This move not only brings us back to semantic modal calculi (see Section 4.1),
the disadvantages of which have already been shown, but, more importantly, it also
happens to be redundant. Indeed, we can express the fact that the world-sequent Γ1
is linked with the world-sequents Γ2, Γ3, Γ4, simply by changing the order of the
sequents, and by using the symbol “/” as follows:

Γ1/ Γ2; Γ3; Γ4

This is an example of tree-hypersequent. We can intuitively interpret the object
Γ1/ Γ2; Γ3; Γ4 as the world-sequent Γ1 being linked to three other world-sequents
Γ2, Γ3, Γ4.

For the sake of clarity, let us give another couple of examples of tree-
hypersequents. Below is the first one.

Γ1/(Γ2/Γ3); (Γ4/Γ5)

which corresponds to the tree-frame

◦ ◦
↖ ↗
◦ ◦
↖ ↗
◦
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More precisely, the sequent Γ1 corresponds to the root of the tree, the sequents
Γ2 and Γ4 to the two worlds at distance one, each of which is linked to one of
the two worlds at distance three, which are represented by the sequents Γ3 and Γ5,
respectively.

Below is the second example. We consider the tree-hypersequent

Γ1/Γ2; (Γ3/Γ4); (Γ5/Γ6;Γ7)

which intuitively corresponds to this tree-frame

◦ ◦ ◦
↖ ↖ ↗
◦ ◦
↖ ↗
◦ −→◦

More precisely the sequent Γ1 corresponds to the root of the tree, the sequents
Γ2, Γ3 and Γ5 to the three worlds at distance one, and the sequents Γ4, Γ6, Γ7 to the
three worlds at distance three.

Thanks to these two examples, it should now be clear what a tree-hypersequents
is, and what its interpretation is. However, the reason why tree-hypersequents
are called thus remains to be elucidated. More specifically, while the term “tree”
is evidently appropriated, we may still ask ourselves why they are also termed
“hypersequents.”

We introduced the term “hypersequent” at the beginning of Chapter 3: hyperse-
quents are a syntactic generalisation of the Gentzen calculus, obtained by dealing
with n sequents a time. More precisely, a hypersequent is an object of the form

Γ1/Γ2/.../Γn

which is to say n sequents separated by n − 1 slashes. Note that the order of the
sequents is irrelevant and that therefore a hypersequent is just a multiset of sequents.
Hypersequents were first introduced by Pottinger [106] and then studied by Avron
[3–6]. They are widely used in proof theory, e.g. [7, 25, 78].

Another way of looking at tree-hypersequents is by considering hypersequents.
Tree-hypersequents are hypersequents where the order of the sequents is taken into
account, and where the semicolon supplements the metalinguistic symbol slash.

The tree-hypersequent method was studied by Brünnler [15], Kashima
[55, 66, 68], and Poggiolesi [100, 105]. While Kashima calls the tree-hypersequents,
nested-sequents, Brünnler calls them deep-sequents. Kashima and Brünnler use the
same notation, which is different from the one used here (first introduced in [100]).
Moreover, Kashima and Brünnler only deal with semantic proofs (which will be
presented in Chapter 8), while this book is mainly devoted to syntactic proofs, and
builds on and improves the results presented in [60, 100, 102, 103, 105].
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6.1 The Calculi Thsk*

Syntactic Notation

– “;” and “/” are two new meta-linguistic symbols.
– Γ , Δ, ... denote sequents (SEQ).
– G, H , ... denote tree-hypersequents (THS).
– X , Y , ... denote multisets of tree-hypersequents (MTHS).

For the sake of brevity, we will adopt the following convention.

Convention 6.1 Given Γ ≡ M ⇒ N and Π ≡ P ⇒ Q, instead of writing α, M ⇒
N , β, we substitute M ⇒ N with Γ , and we write α, Γ, β. Moreover, we write Γ �Π
instead of M, P ⇒ N , Q. Consequently, instead of writing α, M, P ⇒ N , Q, β,
we write α, Γ � Π,β.

Definition 6.1 The notion of tree-hypersequent is inductively defined in the follow-
ing way:

– if Γ ∈ SEQ, then Γ ∈ THS,
– if Γ ∈ SEQ and G1, ..., Gn ∈ THS, then Γ/G1; ...; Gn ∈ THS.

Definition 6.2 The intended interpretation τ of a tree-hypersequent is inductively
defined in the following way:

– (M ⇒ N )τ : =
∧

M → ∨
N

– (Γ /G1; ...;Gn)τ : = Γ τ ∨ �Gτ
1 ∨ ... ∨ �Gτ

n

In order to display the rules of the calculi, we will use the notation G[∗] defined
as follows.

Definition 6.3 The notion of zoom tree-hypersequent (ZTHS) is inductively defined
in the following way:

– [∗] ∈ ZTHS,
– if G1, ..., Gn ∈ THS, then [∗]/G1; ...;Gn ∈ ZTHS,
– if G1[∗] ∈ ZTHS, G2, ..., Gn ∈ THS, then [∗]/G1[∗]; ...;Gn ∈ ZTHS,
– if Γ ∈ SEQ, G1[∗] ∈ ZTHS and G2, ..., Gn ∈ THS, then Γ/G1[∗]; ...;Gn ∈

ZTHS.
– if Γ ∈ SEQ, G1[∗][∗] ∈ ZTHS, G2, ..., Gn ∈ THS, then Γ/G1[∗][∗]; ...;Gn ∈

ZTHS.
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Definition 6.4 For all zoom tree-hypersequents G[∗], or G[∗][∗], and tree-
hypersequents H and I , we define G[H ] and G[H ][I ], the result of substituting
H into G[∗], and the result of substituting H and I in G[∗][∗], respectively, as
follows:

– if G[∗] = [∗], then G[H ] = H
– if G[∗] = [∗]/G1; ...;Gn and H = Δ/J1; ...; Jm, then G[H ] = Δ/G1; ...;Gn;

J1; ...; Jm

– if G[∗][∗] = [∗]/G1[∗]; ...;Gn and H = Δ/J1; ...; Jm, then G[H ][I ] =
Δ/G1[I ]; ...;Gn; J1; ...; Jm

– if G[∗] = Γ/G1[∗], ..., Gn, then G[H ] = Γ/G1[H ], ..., Gn

– if G[∗][∗] = Γ/G1[∗][∗], ..., Gn, then G[H ][I ] = Γ/G1[H ][I ], ..., Gn

Note that a sequent is a tree-hypersequent so that Definition 6.4 also applies to
the case of substituting a sequent into a zoom tree-hypersequent.

The last two definitions can be approached from the perspective of their intuitive
meaning. G[∗] can be thought of as a tree-hypersequent G together with one hole
[∗], where the hole should be understood, metaphorically, as a zoom by means of
which we can focus on a particular part, ∗, of G. The substitution fills the hole
with a sequent or a tree-hypersequent, and therefore allows us to make explicit the
particular part of the tree-hypersequent that we want to concentrate on. Similarly
for G[∗][∗].

Let us consider an arbitrary tree-hypersequent G. Let us suppose that we want
to focus on a particular sequent Γ of this tree-hypersequent G. Then, following
Definitions 6.3 and 6.4, we write G[Γ ]. By contrast, let us suppose that we want
to focus, not on the sequent Γ , but on the tree-hypersequent Γ/X . According to
Definitions 6.3 and 6.4, we write G

′ [Γ/X ]. From one case to another, we change
notation: we go from G[∗] to G

′ [∗]. Indeed, even if the tree-hypersequent G is the
same in both cases, while in the first case the multiset of tree-hypersequents X is
included in the notation G[∗], in the second case it is not, and we must somehow
indicate this change. In order to avoid any confusion in what follows (see in par-
ticular Sections 7.1 and 10.4), we will indicate changes of this type, not with a
generic index as we have done above, but with the aid of (n occurrences of) the
symbol dot over the tree-hypersequent that we want to work with. Consider the
above example anew; if we denote with G[Γ ] the fact that we focus on the sequent
Γ of the tree-hypersequent G, then the fact that we focus on the tree-hypersequent
Γ/X of the same tree-hypersequent G, is signalled with Ġ[Γ/X ].

According to the order (see Section 2.3, p. 52) adopted for presenting the other
syntactic and semantic methods, we start by showing the calculus Thsk in one of its
general variants. The calculus Thsk is composed of:

Initial Tree-hypersequents

G[p ⇒ p]
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Structural Rules
Internal Weakening and Contraction

G[Γ ]
G[α, Γ ] W A

G[Γ ]
G[Γ, α] W K

G[α, α, Γ ]
G[α, Γ ] C A

G[Γ, α, α]
G[Γ, α] C K

External Weakening and Merge

G[Γ ]
G[Γ/Σ] EW

G[Δ/(Γ/X); (Π/X
′
)]

G[Δ/(Γ � Π/X; X
′
)] merge

Necessitation Rule

G

⇒ /G
rn

Logical Rules
Propositional Rules

G[Γ, α]
G[¬α, Γ ] ¬A

G[α, Γ ]
G[Γ,¬α] ¬K

G[αi , Γ ]
G[α0 ∧ α1, Γ ] ∧A

G[Γ, α] G[Γ, β]
G[Γ, α ∧ β] ∧K

Modal Rules

G[Γ/(α,Σ/X)]
G[�α, Γ/(Σ/X)] �A

G[Γ/ ⇒ α]
G[Γ,�α] �K

In order to introduce the cut-rule, we first need the following notions.

Definition 6.5 Given two tree-hypersequents G[Γ ] and G
′ [Γ ′ ], the relation of

equivalent position between two of their sequents, in this case Γ and Γ
′
, G[Γ ] ∼

G
′ [Γ ′ ], is inductively defined in the following way:

– Γ ∼ Γ
′

– Γ/X ∼ Γ
′
/X

′

– If H [Γ ] ∼ H
′ [Γ ′ ], then Δ/H [Γ ]; X ∼ Δ

′
/H

′ [Γ ′ ]; X
′

Definition 6.6 Given two tree-hypersequents G[Γ ] and G
′ [Γ ′ ] such that G[Γ ] ∼

G
′ [Γ ′ ], the operation of product, G[Γ ] ⊗ G

′ [Γ ′ ], is inductively defined in the
following way:
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– Γ ⊗ Γ
′

:= Γ � Γ
′

– (Γ/X) ⊗ (Γ
′
/X

′
) := Γ � Γ

′
/X; X

′

– (Δ/H [Γ ]; X) ⊗ (Δ
′
/H

′ [Γ ′ ]; X
′
) : = Δ � Δ

′
/(H [Γ ] ⊗ H

′ [Γ ′ ]); X; X
′

Cut-Rule

Given two tree-hypersequents G[Γ, α] and G
′ [α,Π ] such that G[Γ, α] ∼ G

′ [α,Π ],
the cut-rule is

G[Γ, α] G
′ [α,Π ]

G ⊗ G ′ [Γ � Π ] cutα

The above definition clearly suggests that the cut-rule should respect two impor-
tant conditions. The first one says that given two tree-hypersequents, we can cut
on any two sequents belonging to them provided that they are in equivalent posi-
tion. The second one says that after a cut the two tree-hypersequents on which we
have applied the cut, should not be randomly mixed, but fused according to the
inductive definition of product. These two conditions are fundamental because they
serve to ensure that the result of a cut between two tree-hypersequents is still a
tree-hypersequent, which is to say that the tree-shape is kept.

In order to obtain the calculi for the remaining systems, we add combinations of
the pairs of rules (one logical and one structural) listed below to the calculus Thsk.
Each pair corresponds to one of the axioms (or frame properties) listed in Section
2.1, p. 44.

Special Structural and Logical Rules

G[Γ/α ⇒]
G[�α, Γ ] d

G[Γ/ ⇒]
G[Γ ] d̃

G[α, Γ ]
G[�α, Γ ] t

G[Γ/(Σ/X)]
G[Γ � Σ/X ] t̃

G[Γ/(�α,Σ/X)]
G[�α, Γ/(Σ/X)] 4

G[Γ/(Σ/X)]
G[Γ/(⇒ /Σ/X)] 4̃

G[α, Γ/(Σ/X)]
G[Γ/(�α,Σ/X)] b

G[Γ/(Σ/(Δ/X); X
′
)]

G[Γ � Δ/(Σ/X
′
); X ] b̃

In the calculi where both the pair of rules for the axiom 4 and the pair of rules
for the axiom b are present, we should add the pair of rules

G[�α, Γ/(Σ/X)]
G[Γ/(�α,Σ/X)] 5

G[Γ/(Σ/(Δ/X); X
′
)]

G[Γ/(Δ/X); (Σ/X
′
)] 5̃
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Contrary to all the other pairs of rules, 5 and 5̃ do not reflect the strength and
the power of the axiom 5: indeed the calculus Thsk plus 5 and 5̃ is not cut-free,
while the calculus Thsk plus the pair 5 and 5̃, and the pair t and t̃ is not complete.
Therefore, the pair of rules 5 and 5̃ just serve to complete the calculi obtained by
adding the rules 4, 4̃, b and b̃ to the calculus Thsk. Brünnler [15] has proposed
a partial solution to these problems, consisting in two other rules for the axiom 5
that, added to the calculus Thsk, form a tree-hypersequent calculus Thsk5 which is
sound and complete with respect to the system K5. On the other hand, Thsk5 +t+ t̃
is still incomplete (we cannot prove the axiom 4), and the cut-elimination proof for
Thsk5 is purely semantic.

In conclusion, the two disadvantages of the tree-hypersequent calculi come to
the fore: they are not fully modular, and the axiom 5 is difficult to capture in
this framework. Nevertheless their precious benefits will be the objects of the next
sections.

6.2 Logical Variant of the Tree-Hypersequent Calculi

In this section we will start by introducing the tree-hypersequent calculi in
one of their logical variants, and then we will show which structural rules
are (height-preserving) admissible in this variant (for the definition of (height-
preserving) admissibility, see Definition 1.10, p. 6). Moreover, we will prove that
the propositional and modal rules are height-preserving invertible (for the definition
of (height-preserving) invertibility, see Definition 1.11, p. 7). In the next chapter the
admissibility of the cut-rule will be proved.

ThskL , a logical variant of the calculus Thsk, is composed of:

Initial Tree-hypersequents

G [p, Γ, p]

Logical Rules
Propositional Rules

G[Γ, α]
G[¬α, Γ ] ¬A

G[α, Γ ]
G[Γ,¬α] ¬K

G[α, β, Γ ]
G[α ∧ β, Γ ] ∧A

′
G[Γ, α] G[Γ, β]

G[Γ, α ∧ β] ∧K

Modal Rules

G[�α, Γ/(α,Σ/X)]
G[�α, Γ/(Σ/X)] �A

G[Γ/ ⇒ α]
G[Γ,�α] �K
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ThskL is then obtained from Thsk by means of the following four changes:

– the initial tree-hypersequents are substituted with the generalised ones,
– the rule ∧A is substituted with its multiplicative counterpart ∧A

′
,

– in the rule �A, the formula �α is added to the premise, and
– all the structural rules are dropped.

The first two and the last changes are the same as the ones that we used for
obtaining the sequent calculus GclL from the calculus Gcl (see Definition 1.14,
p. 9). The third change is, on the other hand, similar to the one usually adopted with
the rule that introduces the universal quantifier on the left side of the sequent, in the
sequent calculus for first-order classical logic. Note that, even if the rule �A now
contains the formula �α in its premise, we do not consider the explicitness property
(see Section 1.7) to be lost. Indeed the addition of the formula �α to the premise of
the rule �A is just the simplest way to obtain some results in the calculus ThskL .

The tree-hypersequent calculi Thsk∗L are obtained thanks to the

Special Logical Rules

G[�α, Γ/α ⇒]
G[�α, Γ ] d

G[�α, α, Γ ]
G[�α, Γ ] t

G[�α, Γ/(�α,Σ/X)]
G[�α, Γ/(Σ/X)] 4

G[α, Γ/(�α,Σ/X)]
G[Γ/(�α,Σ/X)] b

The following three remarks concerning the special logical rules are in order.

– The special logical rules have been modified in a way similar to that of the rule
�A: the formula �α has been added to each of their premises.

– In the calculi where both the rules 4 and b are present, we should add the rule

G[�α, Γ/(�α,Σ/X)]
G[Γ/(�α,Σ/X)] 5

– Another way of obtaining the calculi for the systems containing the axiom 4
consists in substituting the rule 4 with the rule

G[�α, Γ ][α,Σ]
G[�α, Γ ][Σ] 4

′

Recall that a special structural rule corresponds to each special logical rule (see
the previous section). We will show that in the case where a special logical rule R is
added to the calculus ThskL , i.e. we have ThskL + R, the correspondent structural
rule R̃ is proved to be (height-preserving) admissible. As we will see in the next
chapter, special structural rules have a fundamental role in the cut-elimination proof.
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Definition 6.7 By analogy with Definition 1.8, p. 6, we will call auxiliary those
sequents that are explicitly displayed in the premise(s) of the rules of the tree-
hypersequent calculi.

Remark 6.8 In the following proofs of (height-preserving) admissibility of the struc-
tural rules and height-preserving invertibility of the propositional and modal rules,
we will only take into account those cases in which the last applied rule operates
on the auxiliary sequent(s) of the rule that we want to show to be admissible or
invertible. All the other cases are dealt with easily, as Lemmas 6.20 and 6.21 prove
at the end of the current section.

We will write (recall Definition 1.9, p. 6) d 	n
Thsk∗L

G, or shortly nG, for: there

exists a derivation d of G in Thsk∗L , with h(d) ≤ n.

Lemma 6.9 Tree-hypersequents of the form G[α, Γ, α], with α an arbitrary modal
formula, are derivable in Thsk∗L .

Proof By straightforward induction on α. ��
Lemma 6.10 The rule of necessitation

G

⇒ /G
rn

is height-preserving admissible in Thsk∗L .

Proof By induction on the derivation of the premise.
If G is an initial tree-hypersequent, then so is the conclusion. If G is inferred

by a propositional rule, then the inference is clearly preserved. Let us consider the
example of the rule ¬K ,

〈n−1〉G[α, Γ ]
〈n〉G[Γ,¬α] ¬K �25

〈n−1〉 ⇒ /G[α, Γ ]
〈n〉 ⇒ /G[Γ,¬α] ¬K

If G is inferred by a modal rule, then the inference is preserved. Let us consider
the example of the rule �K ,

〈n−1〉G[Γ/ ⇒ α]
〈n〉G[Γ,�α] �K �

〈n−1〉 ⇒ /G[Γ/ ⇒ α]
〈n〉 ⇒ /G[Γ,�α] �K

Finally, if G is inferred by one of the special logical rules, then the inference is
preserved. Let us consider the example of the rule t ,

〈n−1〉G[�α, α, Γ ]
〈n〉G[�α, Γ ] t �

〈n−1〉 ⇒ /G[�α, α, Γ ]
〈n〉 ⇒ /G[�α, Γ ] t

��
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Lemma 6.11 The rules of internal and external weakening:

G[Γ ]
G[α, Γ ] W A

G[Γ ]
G[Γ, α] W K

G[Γ ]
G[Γ/Σ] EW

are height-preserving admissible in Thsk∗L .

Proof By straightforward induction on the derivation of the premise. ��
Lemma 6.12 The rule of merge

G[Δ/(Γ/X); (Π/X
′
)]

G[Δ/(Γ � Π/X; X
′
)] merge

is height-preserving admissible in Thsk∗L .

Proof By induction on the derivation of the premise. As the rule of merge has three
auxiliary sequents, Δ, Γ and Π , we should, for each rule R applied to the premise,
distinguish three subcases: one in which the rule R has been applied to the sequent
Δ, one in which the rule R has been applied to the sequent Γ , and one in which the
rule R has been applied to the sequent Π . On the other hand, these three subcases
are similar, and therefore we do not need to analyse all of them; on the contrary, we
will develop the proof by choosing the most significant one each time.

If the premise is an initial tree-hypersequent, then so is the conclusion. If the
premise is inferred by a propositional rule, then the inference is preserved. Let us
consider the example of the rule ¬K ,

〈n−1〉G[Δ/(α, Γ/X); (Π/X
′
)]

〈n〉G[Δ/(Γ,¬α/X); (Π/X
′
)] ¬K �

〈n−1〉G[Δ/(α, Γ � Π/X; X
′
)]

〈n〉G[Δ/(Γ � Π,¬α/X; X
′
)] ¬K

If the premise is inferred by the modal rule �K , then the inference is preserved.

〈n−1〉G[Δ/(Γ/ ⇒ α; X); (Π/X
′
)]

〈n〉G[Δ/(Γ,�α/X); (Π/X
′
)] �K �

〈n−1〉G[Δ/(Γ � Π/ ⇒ α; X; X
′
)]

〈n〉G[Δ/(Γ � Π,�α/X; X
′
)] �K

If the premise is inferred by the rule �A, then the inference is preserved.

〈n−1〉G[�α,Δ/(α, Γ/X); (Π/X
′
)]

〈n〉G[�α,Δ/(Γ/X); (Π/X
′
)] �A �

〈n−1〉G[�α,Δ/(α, Γ � Π/X; X
′
)]

〈n〉G[�α,Δ/(Γ � Π/X; X
′
)] �A
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If the premise is inferred by the rule d, then the case can be dealt with analogously to
the case of the rule �K . If the premise is inferred by the rule t , then the case can be
dealt with analogously to the case of the logical rules. If the premise is inferred by
the rule 4 or by the rule b or by the rule 5, then the case can be dealt with analogously
to the case of the rule �A. ��
Lemma 6.13 The rule d̃

G[Γ/ ⇒]
G[Γ ] d̃

is admissible in those tree-hypersequent calculi that contain the rule d.

Proof By induction on the derivation of the premise.
If the premise is an initial tree-hypersequent, then so is the conclusion. If the

premise is inferred by a logical rule, then the inference is preserved. Let us consider
the example of the rule ¬K ,

〈n−1〉G[α, Γ/ ⇒]
〈n〉G[Γ,¬α/ ⇒] ¬K � G[α, Γ ]

G[Γ,¬α] ¬K

If the premise is inferred by the modal rule �K , then the inference is preserved.

〈n−1〉G[Γ/ ⇒;⇒ α]
〈n〉G[Γ,�α/ ⇒] �K � G[Γ/ ⇒ α]

G[Γ,�α] �K

If the premise is inferred by the rule �A, then we have (we analyse the following
special case)

〈n−1〉G[�α, Γ/α ⇒]
〈n〉G[�α, Γ/ ⇒] �A � G[�α, Γ/α ⇒]

G[�α, Γ ] d

If the premise is inferred by the rule d, then the case can be dealt with analogously
to the case of the rule �K . If the premise is inferred by the rule t , then the case
can be dealt with analogously to the case of the propositional rules. If the premise
is inferred by the rule 4, then we have (we analyse the following special case)

〈n−1〉G[�α, Γ/�α ⇒]
〈n〉G[�α, Γ/ ⇒] 4 � G[�α, Γ/�α ⇒]

G[�α, Γ/�α, α ⇒]
G[�α, Γ/α ⇒]

G[�α, Γ ] d

4

W A

If the premise is inferred by the rule b, then the case can be dealt with analogously
to the case of the rule �A; if the premise is inferred by the rule 5, then the case can
be dealt with analogously to the case of the rule 4. However, neither with the rule b
nor with the rule 5, there is a special case to treat. ��
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Lemma 6.14 The rule t̃
G[Γ/(Σ/X)]
G[Γ � Σ/X ] t̃

is height-preserving admissible in those tree-hypersequent calculi that contain the
rule t .

Proof By induction on the derivation of the premise. As the rule t̃ has two auxiliary
sequents, Γ and Σ , we should, for each rule R applied to the premise, distinguish
two subcases: one in which the rule R has been applied to the sequent Γ , and one
in which the rule R has been applied to the sequent Σ . On the other hand, since the
two subcases are similar, we will only sketch the proof for one of them.

If the premise is an initial tree-hypersequent, then so is the conclusion. If the
premise is inferred by a propositional rule, then the inference is preserved. Let us
consider the example of the rule ¬K ,

〈n−1〉G[α, Γ/(Σ/X)]
〈n〉G[Γ,¬α/(Σ/X)] ¬K �

〈n−1〉G[α, Γ � Σ/X ]
〈n〉G[Γ � Σ,¬α/X ] ¬K

If the premise is inferred by the modal rule �K , then the inference is preserved.

〈n−1〉G[Γ/ ⇒ α; (Σ/X)]
〈n〉G[Γ,�α/(Σ/X)] �K �

〈n−1〉G[Γ � Σ/ ⇒ α; X ]
〈n〉G[Γ � Σ,�α/X ] �K

If the premise is inferred by the rule �A, then we have

〈n−1〉G[�α, Γ/(α,Σ/X)]
〈n〉G[�α, Γ/(Σ/X)] �A �

〈n−1〉G[�α, α, Γ � Σ/X ]
〈n〉G[�α, Γ � Σ/X ] t

If the premise is inferred by the rule d, then the case can be dealt with analogously
to the case of the rule �K . If the premise is inferred by the rule t , then the case
can be dealt with analogously to the case of the propositional rules. If the premise
is inferred by the rule 4, then we have

〈n−1〉G[�α, Γ/(�α,Σ/X)]
〈n〉G[�α, Γ/(Σ/X)] 4 �

〈n−1〉G[�α,�α, Γ � Σ/X ]
〈n〉G[�α, Γ � Σ/X ] C A

If the premise is inferred by the rule b, then the case can be dealt with analogously
to the case of the rule �A. If the premise is inferred by the rule 5, then the case can
be dealt with analogously to the case of the rule 4. ��
Lemma 6.15 The rule 4̃

G[Γ/(Σ/X)]
G[Γ/(⇒ /(Σ/X))] 4̃

is admissible in those tree-hypersequent calculi that contain the rule 4.
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Proof By induction on the derivation of the premise. As the rule 4̃ has two auxiliary
sequents, Γ and Σ , we should, for each rule R applied to the premise, distinguish
two subcases: one in which the rule R has been applied to the sequent Γ , and one in
which the rule R has been applied to the sequent Σ . On the other hand, since these
two subcases are similar, we will only sketch the proof for one of them.

If the premise is an initial tree-hypersequent, then so is the conclusion. If the
premise is inferred by a logical rule, this inference is preserved. Let us consider the
example of the rule ¬K ,

〈n−1〉G[α, Γ/(Σ/X)]
〈n〉G[Γ,¬α/(Σ/X)] ¬K � G[α, Γ/(⇒ /(Σ/X))]

G[Γ,¬α/(⇒ /(Σ/X))] ¬K

If the premise is inferred by the modal rule �K , this inference is preserved.

〈n−1〉G[Γ/ ⇒ α; (Σ/X)]
〈n〉G[Γ,�α/(Σ/X)] �K � G[Γ/ ⇒ α; (⇒ /(Σ/X))]

G[Γ,�α/(⇒ /(Σ/X))] �K

If the premise is inferred by the rule �A, then we have

〈n−1〉G[�α, Γ/(α,Σ/X)]
〈n〉G[�α, Γ/(Σ/X)] �A � G[�α, Γ/(⇒ /(α,Σ/X))]

G[�α, Γ/(�α ⇒ /(α,Σ/X))]
G[�α, Γ/(�α ⇒ /(Σ/X))]

G[�α, Γ/(⇒ /(Σ/X))] 4

�A

W A

If the premise is inferred by the rule d, then the case can be dealt with analogously
to the case of the rule �K . If the premise is inferred by the rule t , then the case
can be dealt with analogously to the case of the propositional rules. If the premise
is inferred by the rule 4, then we have

〈n−1〉G[�α, Γ/(�α,Σ/X)]
〈n〉G[�α, Γ/(Σ/X)] 4 � G[�α, Γ/(⇒ /(�α,Σ/X))]

G[�α, Γ/(�α ⇒ /(�α,Σ/X))]
G[�α, Γ/(�α ⇒ /(Σ/X))]

G[�α, Γ/(⇒ /(Σ/X))] 4

4

W A

If the premise is inferred by the rule b, then we have2

〈n−1〉G[α, Γ/(�α,Σ/X)]
〈n〉G[Γ/(�α,Σ/X)] b � G[α, Γ/(⇒ /(�α,Σ/X))]

G[α, Γ/(�α ⇒ /(�α,Σ/X))]
G[Γ/(�α ⇒ /(�α,Σ/X))]

G[Γ/(⇒ /(�α,Σ/X))] 5

b

W A

If the premise is inferred by the rule 5, then the case can be dealt with analogously
to the case of the rule 4. ��
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Lemma 6.16 The rule b̃

G[Γ/(Σ/(Δ/X); X
′
)]

G[Γ � Δ/(Σ/X
′
); X ] b̃

is height-preserving admissible in those tree-hypersequent calculi that contain the
rule b.

Proof By induction on the derivation of the premise. As the rule b̃ has three aux-
iliary sequents, Γ , Σ and Δ, we should, for each rule R applied to the premise,
distinguish three subcases: one in which the rule R has been applied to the sequent
Γ , one in which the rule R has been applied to the sequent Σ , and one in which the
rule R has been applied to the sequent Δ. On the other hand, these three subcases
are similar, and therefore we do not need to analyse all of them; on the contrary, we
will develop the proof by choosing the most significant one each time.

If the premise is an initial tree-hypersequent, then so is the conclusion. If the
premise is inferred by a propositional rule, this inference is preserved. Let us con-
sider the example of the rule ¬K ,

〈n−1〉G[Γ/(Σ/(α,Δ/X); X
′
)]

〈n〉G[Γ/(Σ/(Δ,¬α/X); X
′
)] ¬K �

〈n−1〉G[α, Γ � Δ/(Σ/X
′
); X ]

〈n〉G[Γ � Δ,¬α/(Σ/X
′
); X ] ¬K

If the premise is inferred by the modal rule �K , this inference is preserved.

〈n−1〉G[Γ/(Σ/(Δ/ ⇒ α; X); X
′
)]

〈n〉G[Γ/(Σ/(Δ,�α/X); X
′
)] �K �

〈n−1〉G[Γ � Δ/(Σ/X
′
);⇒ α; X ]

〈n〉G[Γ � Δ,�α/(Σ/X
′
); X ] �K

If the premise is inferred by the rule �A, then we have

〈n−1〉G[Γ/(�α,Σ/(α,Δ/X); X
′
)]

〈n〉G[Γ/(�α,Σ/(Δ/X); X
′
)] �A �

〈n−1〉G[α, Γ � Δ/(�α,Σ/X
′
); X ]

〈n〉G[Γ � Δ/(�α,Σ/X
′
); X ] b

If the premise is inferred by the rule d, then the case can be dealt with analogously
to the case of the rule �K . If the premise is inferred by the rule t , then the case
can be dealt with analogously to the case of the propositional rules. If the premise
is inferred by the rule 4, then we have3
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〈n−1〉G[Γ/(�α,Σ/(�α,Δ/X); X
′
)]

〈n〉G[Γ/(�α,Σ/(Δ/X); X
′
)] 4 �

〈n−1〉G[�α, Γ � Δ/(�α,Σ/X
′
); X ]

〈n〉G[Γ � Δ/(�α,Σ/X
′
); X ] 5

If the premise is inferred by the rule b, then we have

〈n−1〉G[Γ/(α,Σ/(�α,Δ/X); X
′
)]

〈n〉G[Γ/(Σ/(�α,Δ/X); X
′
)] b �

〈n−1〉G[�α, Γ � Δ/(α,Σ/X
′
); X ]

〈n〉G[�α, Γ � Δ/(Σ/X
′
); X ] �A

If the premise is inferred by the rule 5, then we have

〈n−1〉G[Γ/(�α,Σ/(�α,Δ/X); X
′
)]

〈n〉G[Γ/(Σ/(�α,Δ/X); X
′
)] 5 �

〈n−1〉G[�α, Γ � Δ/(�α,Σ/X
′
); X ]

〈n〉G[�α, Γ � Δ/(Σ/X
′
); X ] 4

��
Lemma 6.17 The rule 5̃

G[Γ/(Σ/(Δ/X); X
′
)]

G[Γ/(Δ/X); (Σ/X
′
)] 5̃

is admissible in those tree-hypersequent calculi that contain the rule 5 (and there-
fore also the rules 4 and b).

Proof By induction on the derivation of the premise. As the rule 5̃ has three auxiliary
sequents Γ , Σ and Δ, we should, for each rule R applied to the premise, distinguish
three subcases: one in which the rule R has been applied to the sequent Γ , one in
which the rule R has been applied to the sequent Σ , and one in which the rule R has
been applied to the sequent Δ. On the other hand, these three subcases are similar,
and therefore we do not need to analyse all of them; on the contrary, we will develop
the proof by choosing the most significant one each time.

If the premise is an initial tree-hypersequent, then so is the conclusion. If the
premise is inferred by a propositional rule, then the inference is preserved. Let us
consider the example of the rule ¬K ,

〈n−1〉G[Γ/(Σ/(α,Δ/X); X
′
)]

〈n〉G[Γ/(Σ/(Δ,¬α/X); X
′
)] ¬K � G[Γ/(α,Δ/X); (Σ/X

′
)]

G[Γ/(Δ,¬α/X); (Σ/X
′
)] ¬K
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If the premise is inferred by the modal rule �K , then the inference is preserved.

〈n−1〉G[Γ/(Σ/(Δ/ ⇒ α; X); X
′
)]

〈n〉G[Γ/(Σ/(Δ,�α/X); X
′
)] �K �

G[Γ/(Δ/ ⇒ α; X); (Σ/X
′
)]

G[Γ/(Δ,�α/X); (Σ/X
′
); X

′′ ] �K

If the premise is inferred by the rule �A, then we have

〈n−1〉G[Γ/(�α,Σ/(α,Δ/X); X
′
)]

〈n〉G[Γ/(�α,Σ/(Δ/X); X
′
)] �A �

G[Γ/(α,Δ/X); (�α,Σ/X
′
)]

G[�α, Γ/(α,Δ/X); (�α,Σ/X
′
)]

G[�α, Γ/(Δ/X); (�α,Σ/X
′
)]

G[Γ/(Δ/X); (�α,Σ/X
′
)] 5

�A

W A

If the premise is inferred by the rule d, then the case can be dealt with analogously
to the case of the rule �K . If the premise is inferred by the rule t , then the case
can be dealt with analogously to the case of the propositional rules. If the premise
is inferred by the rule 4, then we have

〈n−1〉G[Γ/(�α,Σ/(�α,Δ/X); X
′
)]

〈n〉G[Γ/(�α,Σ/(Δ/X); X
′
)] 4 �

G[Γ/(�α,Δ/X); (�α,Σ/X
′
)]

G[�α, Γ/(�α,Δ/X); (�α,Σ/X
′
)]

G[�α, Γ/(Δ/X); (�α,Σ/X
′
)]

G[Γ/(Δ/X); (�α,Σ/X
′
)] 5

4

W A

If the premise is inferred by the rule b, then the case can be dealt with analogously
to the case of the rule �A. Finally, if the premise is inferred by the rule 5, then the
case can be dealt with analogously to the case of the rule 4. ��
Lemma 6.18 The propositional rules, the modal rules and the special logical rules
of Thsk∗L are height-preserving invertible.

Proof The proof is by induction on the derivation of the premise of the rule con-
sidered. The cases of the propositional rules are dealt with in the classical way.
The only differences – the fact that we are dealing with tree-hypersequents, and the
cases where the last applied rule is one of the modal rules or one of the special
logical rules – do not pose a major obstacle.
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The rules �A, d, t , 4, b and 5 are trivially height-preserving invertible since each
of their premises is obtained by weakening from the conclusion, and weakening is
height-preserving admissible, as we have shown in Lemma 9.5, p. 178.

We now turn to showing the invertibility of the rule �K in detail. If G[Γ,�α]
is an initial tree-hypersequent, then so is G[Γ/ ⇒ α]. If G[Γ,�α] is obtained by a
propositional rule R, we apply the inductive hypothesis to the premise(s) G[Γ ′

,�α]
(G[Γ ′′

,�α]), and we obtain derivation(s), of height n − 1, of G[Γ ′
/ ⇒ α]

(G[Γ ′′/ ⇒ α]). By applying the rule R, we obtain a derivation of height n of
G[Γ/ ⇒ α]. If G[Γ,�α] is of the form Ġ[�β, Γ

′
,�α/(Σ/X)] and is obtained by

the modal rule �A, we apply the inductive hypothesis to Ġ[�β, Γ
′
,�α/(β,Σ/X)],

and we obtain a derivation of height n−1 of Ġ[�β, Γ
′
/ ⇒ α; (β,Σ/X)]. By apply-

ing the rule �A, we obtain a derivation of height n of Ġ[�β, Γ
′
/ ⇒ α; (Σ/X)].

If G[Γ,�α] is obtained by one of the special logical rules, or by the modal rule
�K in which �α is not the principal formula, then these cases can be dealt with
analogously to the case of the rule �A. Finally, if G[Γ,�α] is preceded by the
modal rule �K and �α is the principal formula, the premise of the last step gives
the conclusion. ��

Lemma 6.19 The rules of contraction

G[α, α, Γ ]
G[α, Γ ] C A

G[Γ, α, α]
G[Γ, α] C K

are height-preserving admissible in Thsk∗L .

Proof By induction on the derivation of the premises G[α, α, Γ ] and G[Γ, α, α].
We only analyse the case of the rule C K . The case of the rule C A is similar.

If G[Γ, α, α] is an initial tree-hypersequent, so is G[Γ, α]. If G[Γ, α, α] is
obtained by a rule R that does not have any of the two occurrences of the for-
mula α as principal, we apply the inductive hypothesis to the premise(s) G[Γ ′

, α, α]
(G[Γ ′′

, α, α]), obtaining derivation(s) of height n − 1 of G[Γ ′
, α] (G[Γ ′′

, α]). By
applying the rule R we obtain a derivation of height n of G[Γ, α].

If G[Γ, α, α] is obtained by a propositional or modal rule and one of the two
occurrences of the formula α is principal, then the rule that concludes G[Γ, α, α] is
a K -rule, and we must analyse the following three cases: ¬K , ∧K , �K .

¬K :

〈n−1〉G[β, Γ,¬β]
〈n〉G[Γ,¬β,¬β] ¬K 		
4

〈n−1〉G[β, β, Γ ]
〈n−1〉G[β, Γ ]
〈n〉G[Γ,¬β] ¬K

i.h.
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∧K :

〈n−1〉G[Γ, β, β ∧ γ ] 〈n−1〉G[Γ, γ, β ∧ γ ]
〈n〉G[Γ, β ∧ γ, β ∧ γ ] ∧K 		


〈n−1〉G[Γ, β, β]
〈n−1〉G[Γ, β] i.h.

〈n−1〉G[Γ, γ, γ ]
〈n−1〉G[Γ, γ ] i.h.

〈n〉G[Γ, β ∧ γ ] ∧K

�K :

〈n−1〉G[Γ,�β/ ⇒ β]
〈n〉G[Γ,�β,�β] �K 		


〈n−1〉G[Γ/ ⇒ β;⇒ β]
〈n−1〉G[Γ/ ⇒ β, β]
〈n−1〉G[Γ/ ⇒ β]

〈n〉G[Γ,�β] �K

i.h.

merge

��

G[Γ ]
G[α, Γ ] W A

G[Γ ]
G[Γ, α] W K

G[α, α, Γ ]
G[α, Γ ] C A

G[Γ, α, α]
G[Γ, α] C K

G[Γ ]
G[Γ/Σ] EW

G[Δ/(Γ ); (Π/X
′
)]

G[Δ/(Γ � Π/X; X
′
)] merge

G

⇒ /G
rn

G[Γ/(Σ/X)]
G[Γ � Σ/X ] t̃

G[Γ/(Σ/(Δ/X); X
′
)]

G[Γ � Δ/(Σ/X
′
); X ] b̃

Fig. 6.1 Height-preserving admissible rules

G[Γ/ ⇒]
G[Γ ] d̃

G[Γ/(Σ/X)]
G[Γ/(⇒ /Σ/X)] 4̃

G[Γ/(Σ/(Δ/X); X
′
)]

G[Γ/(Δ/X); (Σ/X
′
)] 5̃

Fig. 6.2 Admissible rules
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Lemma 6.20 Let G[H ] be any tree-hypersequent of the calculi Thsk∗L , and G∗[H ]
the result of the application of one of the (height-preserving admissible) rules - rn,
W A, W K , EW , merge, t̃ , b̃, C A and C K - or of one of the (admissible) rules - d̃,
4̃, 5̃ - on G[H ]. If, for a rule R, we have

G[H ′ ]
G[H ] R

then it holds that

G∗[H ′ ]
G∗[H ] R

Proof By induction on the form of the tree-hypersequent G[H ]. ��
Lemma 6.21 Let G[H ] be any tree-hypersequent of the calculi Thsk∗L , and G[H ′ ]
the result of the application of one of the propositional rules or of the rule �K on
G[H ]. If, for a rule R, we have

G∗[H ′ ]
G[H ′ ] R

then it holds that

G∗[H ]
G[H ] R

Proof By induction on the form of the tree-hypersequent G[H ′ ]. ��
Note that the results obtained in this section (except for Lemma 6.18) are all

summed up in Figures 6.1 and 6.2.

6.3 Adequacy of the Tree-Hypersequent Calculi

Let us show that the calculi Thsk∗L prove exactly the same formulas as their corre-
sponding systems, which will be referred to as K∗.

Theorem 6.22 For all tree-hypersequents G, and all formulas α,

[i] if 	 α in K∗, then 	⇒ α in Thsk∗L .
[ii] If 	 G in Thsk∗L , then 	 (G)τ in K∗.

Proof By induction on the height of derivations in K∗ and Thsk∗L , respectively.
Concerning [ii], we omit the proof which is easy but quite tedious.29 However we
sketch the technique to develop this proof. We must prove that [iia] the translations
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of the initial tree-hypersequents are K∗-theorems, and that [iib] the translations of
the rules of the Thsk∗L calculi hold in K∗. As for [iia] this is trivial; as for [iib] the
procedure is the following. We firstly isolate the sequent(s) affected by the rule, and
we prove the corresponding implication. Secondly, we transport the implication up
to the tree so that, by modus ponens, the desired result appears immediately.

In order to better be acquainted with the calculi Thsk∗L , let us verify [i]. The
classical axioms and the modus ponens rule are derived as usual. We restrict the
current presentation to a derivation of the distribution axiom, and of the axioms: D,
T , 4, B and 5.

Thsk∗L 	⇒ �(α → β) → (�α → �β)

�(α → β),�α ⇒ /α ⇒ α, β �(α → β),�α ⇒ /α, β ⇒ β

�(α → β),�α ⇒ /α → β, α ⇒ β
→A

�(α → β),�α ⇒ /α ⇒ β
�A

�(α → β),�α ⇒ / ⇒ β
�A

�(α → β),�α ⇒ �β
�K

�(α → β) ⇒ �α → �β
→K

⇒ �(α → β) → �α → �β
→K

Thskd∗L 	⇒ �α → ¬�¬α

�α,�¬α ⇒ /α ⇒ α

�α,�¬α ⇒ /¬α, α ⇒ ¬A

�α,�¬α ⇒ /α ⇒ �A

�α,�¬α ⇒ d

�α ⇒ ¬�¬α
¬K

⇒ �α → ¬�¬α
→K

Thskt∗L 	⇒ �α → α

�α, α ⇒ α

�α ⇒ α
t

⇒ �α → α
→K

Thsk4∗L 	⇒ �α → ��α

�α ⇒ /�α ⇒ /α ⇒ α

�α ⇒ /�α ⇒ / ⇒ α
�A

�α ⇒ /�α ⇒ �α
�K

�α ⇒ / ⇒ �α
4

�α ⇒ ��α
�K

⇒ �α → ��α
→K
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Thskb∗L 	⇒ α → �¬�¬α

α ⇒ α/�¬α ⇒
α,¬α ⇒ /�¬α ⇒ ¬A

α ⇒ /�¬α ⇒ b

α ⇒ / ⇒ ¬�¬α
¬K

α ⇒ �¬�¬α
�K

⇒ α → �¬�¬α
→K

Thskb45∗L 	⇒ ¬�¬α → �¬�¬α

�¬α ⇒ /α ⇒ α;�¬α ⇒
�¬α ⇒ /¬α, α ⇒;�¬α ⇒ ¬A

�¬α ⇒ /¬α ⇒ ¬α;�¬α ⇒ ¬K

�¬α ⇒ / ⇒ ¬α;�¬α ⇒ �A

⇒ / ⇒ ¬α;�¬α ⇒ 5

⇒ / ⇒ ¬α;⇒ ¬�¬α
¬K

⇒ �¬α/ ⇒ ¬�¬α
�K

⇒ �¬α,�¬�¬α
�K

¬�¬α ⇒ �¬�¬α
¬A

⇒ ¬�¬α → �¬�¬α
→K

��

The characteristic axioms D, T , 4, B and 5 can also be proved by means of their
corresponding special structural rules. Let us consider the example of the axioms 4
and B established by means of the rules 4̃ and b̃, respectively.

�α ⇒ /α ⇒ α

�α ⇒ / ⇒ α
�A

�α ⇒ / ⇒ / ⇒ α
4̃

�α ⇒ / ⇒ �α
�K

�α ⇒ ��α
�K

⇒ �α → ��α
→K

⇒ /�¬α ⇒ /α ⇒ α

⇒ /�¬α ⇒ /¬α, α ⇒ ¬A

⇒ /�¬α ⇒ /α ⇒ �A

⇒ / ⇒ ¬�¬α/α ⇒ ¬K

α ⇒ / ⇒ ¬�¬α
b̃

α ⇒ �¬�¬α
�K

⇒ α → �¬�¬α
→K

More precisely, in [16] it is shown that tree-hypersequent calculi composed
by generalised initial tree-hypersequents, propositional rules, modal rules, special
structural rules and contraction rules are sound and complete with respect to their
corresponding Hilbert systems. Moreover they are cut-free and modular.
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Notes

1. The symbol � means: the premise of the right side is obtained by applying the inductive
hypothesis to the premise of the left side.

2. Note that we can use the rule 5, since we are in a calculus where both the rule 4 and the rule b
are present.

3. Ditto.
4. The symbol ��� means: the premise of the right side is obtained by applying Lemma 6.18 to

the premise of the left side.
5. In Chapter 8, the reader can find a detailed semantic proof of soundness.



Chapter 7
Syntactic Cut-Admissibility and Decidability

In Section 6.2 we proved that the weakening (internal and external) rules, the con-
traction rules, the rule of merge, the rule of necessitation and the special structural
rules are all (height-preserving) admissible in the calculi Thsk∗L . These results are
satisfactory both from a technical and from a conceptual point of view. The central
question remains open: is the cut-rule admissible in the tree-hypersequent calculi?
The answer is affirmative and it will be presented in the next section. More precisely,
we will provide an algorithm for transforming derivations involving the cut-rule to
derivations which are cut-free.

The second result, that will take up the remainder of this chapter, is the decid-
ability of (certain) tree-hypersequent calculi. Once again, we shall develop proofs
in a purely syntactic and constructive way.

7.1 Cut-Admissibility in the Tree-Hypersequent Calculi

This section will offer a proof that the cut-rule is admissible in the Thsk∗L calculi.
Consequently, we must first show the following lemma.

Lemma 7.1 Given three zoom tree-hypersequents I [∗], J [∗] and H [∗] such that
I [∗] ∼ J [∗] ∼ H [∗], if there is a rule R of Thsk∗L and a sequent Γ such that

J [Γ ]
I [Γ ] R

then, for any Δ, we have that

J ⊗ H [Δ]
I ⊗ H [Δ] R

Proof By induction on the form of the tree-hypersequents I [∗], J [∗] and H [∗].
(A) I [∗], J [∗] and H [∗] ≡ ∗. Nothing to prove.
(B) I [∗], J [∗] and H [∗] ≡ resp. ∗/X , ∗/Y and ∗/Z . In this case, if we have

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_7, C© Springer Science+Business Media B.V. 2011
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Γ/X

Γ/Y R

we want, for any Δ,

Δ/X; Z

Δ/Y ; Z R

This case is easily solvable since X and Z , and Y and Z , are kept completely sepa-
rate.
(C)

I [∗]: Φ/I
′ [∗]; X

J [∗]:Φ ′
/J

′ [∗]; X
′

H [∗]: Φ
′′
/H

′ [∗]; X
′′

Let

Φ/I
′ [Γ ]; X

Φ
′
/J ′ [Γ ]; X

′ R

We want, for any Δ, that

Φ � Φ
′′
/I

′ ⊗ H
′ [Δ]; X; X

′′

Φ
′ � Φ

′′
/J ′ ⊗ H ′ [Δ]; X

′ ; X
′′ R

We shall distinguish several subcases.
(C.1.) The rule R operates on Φ. We shall again distinguish between:

(C.1.1.) the rule R only operates on Φ,

(C.1.2.) the rule R operates between Φ and I
′ [Γ ]; X .

(C.2.) The rule R operates on X .
(C.3.) The rule R operates on I

′
.

We shall examine each of these subcases, starting with (C.1.1.).
(C.1.1.) Let us suppose that R is the one premise rule ¬K (for the other rules the

proceeding is analogous), we have

β,Φ/I
′ [Γ ]; X

Φ,¬β/I ′ [Γ ]; X
¬K

Then, for any Δ, if we have as premise β,Φ �Φ ′′
/I

′ ⊗ H
′ [Δ]; X; X

′′
, we obtain the

conclusion by applying the rule ¬K :

β,Φ � Φ
′′
/I

′ ⊗ H
′ [Δ]; X; X

′′

Φ � Φ
′′
,¬β/I ′ ⊗ H ′ [Δ]; X; X

′′ ¬K
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(C.1.2.) Modal rules and special logical rules (except the rule t) are the only
rules that can operate between Φ and I

′ [Γ ]; X . We will analyse each of them in
turn, starting with the modal rules.

[–] R is the rule �K . We must distinguish two subcases: (i) I
′ [Γ ]; X is of the

form ⇒ β; I
′ [Γ ]; X

′′′
(i.e. ⇒ β is one of the tree-hypersequents of the multiset

X ); (ii) I
′ [Γ ]; X is of the form ⇒ β; I

′′′ [Γ ]; X (i.e. ⇒ β is included in the tree-
hypersequent I

′ [Γ ]). Since these two subcases are similar, we will deal with just
one of them, (i), and the other can be solved analogously. Suppose that we have

Φ/ ⇒ β; I
′ [Γ ]; X

′′′

Φ,�β/I ′ [Γ ]; X
′′′ �K

Then, for any Δ, if we have as premise Φ � Φ
′′
/ ⇒ β; I

′ ⊗ H
′ [Δ]; X

′′ ; X
′′′

, we
obtain the conclusion by applying the rule �K :

Φ � Φ
′′
/ ⇒ β; I

′ ⊗ H
′ [Δ]; X

′′ ; X
′′′

Φ � Φ
′′
,�β/I ′ ⊗ H ′ [Δ]; X

′′ ; X
′′′ �K

[–] R is the rule �A. We must distinguish two subcases: (i) the case where �A
has been applied between Φ and X , and (ii) the case where �A has been applied
between Φ and I

′ [Γ ]. Since these two subcases are similar, we will deal with just
one of them, (i), and the other can be solved analogously. In order to show the
resolution of (i), we assume that X ≡ (β,Σ/X

′
); X

′′′
and we have

�β,Φ/I
′ [Γ ]; (β,Σ/X

′
); X

′′′

�β,Φ/I ′ [Γ ]; (Σ/X
′
); X

′′′ �A

Then, for any Δ, if we have as premise, �β,Φ �Φ ′′
/I

′⊗H
′ [Δ]; (β,Σ/X

′
); X

′′′ ; X
′′
,

we obtain the conclusion by applying the rule �A:

�β,Φ � Φ
′′
/I

′ ⊗ H
′ [Δ]; (β,Σ/X

′
); X

′′′ ; X
′′

�β,Φ � Φ
′′
/I ′ ⊗ H ′ [Δ]; (Σ/X

′
); X

′′′ ; X
′′ �A

[–] If R is the rule d, the case can be dealt with similarly to the one where R is
the rule �K .

[–] If R is the rule 4 or b or 5, the case can be dealt with similarly to the one
where R is the rule �A.

(C.2.) This subcase can be dealt with similarly to the case (B).
(C.3.) In order to solve this subcase, we should analyse again I

′ [Γ ], J
′ [Γ ],

H
′ [Γ ]. Let us suppose that I

′ [Γ ], J
′ [Γ ] and H

′ [Γ ] ≡ Γ . Then there is noting
to prove. Let us suppose that I

′ [Γ ], J
′ [Γ ] and H

′ [Γ ] ≡ Γ/W , Γ/Y and Γ/Z ,
respectively. Then we have

Φ/(Γ/W ); X

Φ/(Γ/Y ); X R
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and we want, for any Δ, that

Φ � Φ
′′
/(Δ/W ; Z); X; X

′′

Φ � Φ
′′
/(Δ/Y ; Z); X; X

′′ R

By applying the inductive hypothesis to I
′ [Γ ], J

′ [Γ ] and H
′ [Γ ], we obtain that, for

any Δ, Δ/Y ; Z , which is to say: Φ/(Δ/Y ; Z); X . Thanks to several applications of
the rules of internal and external weakening, we have Φ � Φ

′′
/(Δ/Y ; Z); X; X

′′
.

Finally let us suppose that

I [Γ ]: Σ/I
′′ [Γ ]; Z

J [Γ ]: Σ
′
/J

′′ [Γ ]; Z
′

H [Γ ]: Σ
′′
/H

′′ [Γ ]; Z
′′

Then we have

Φ/(Σ/I
′′ [Γ ]; Z); X

Φ/(Σ
′
/J ′′ [Γ ]; Z

′
); X

R

and we want, for any Δ, that

Φ � Φ
′′
/(Σ � Σ

′′
/I

′′ ⊗ H
′′ [Δ]; Z; Z

′′
); X; X

′′

Φ � Φ
′′
/(Σ

′ � Σ
′′
/J ′′ ⊗ H ′′ [Δ]; Z

′ ; Z
′′
); X; X

′′ R

By applying the inductive hypothesis to I
′ [Γ ], J

′ [Γ ] and H
′ [Γ ], we obtain that,

for any Δ, Σ
′ � Σ

′′
/J

′′ ⊗ H
′′ [Δ]; Z

′ ; Z
′′
, which is to say: Φ/(Σ

′ � Σ
′′
/J

′′ ⊗
H

′′ [Δ]; Z
′ ; Z

′′
); X; X

′′
. Thanks to several applications of the rules of internal and

external weakening, we have Φ � Φ
′′
/(Σ

′ � Σ
′′
/J

′′ ⊗ H
′′ [Δ]; Z

′ ; Z
′′
); X; X

′′
. ��

Lemma 7.2 Let G[Γ, α] and G
′ [α,Π ] be such that G[Γ, α] ∼ G

′ [α,Π ]. If

... d1

G[Γ, α]
... d2

G[α,Π ]
G ⊗ G

′ [Γ � Π ]
cutα

and d1 and d2 do not contain any other application of the cut-rule, then we can
construct a derivation of G ⊗ G

′ [Γ � Π ] with no application of the cut-rule.

Proof The proof is by induction on the complexity of the cut-formula cmp(α) (see
Definition 2.3, p. 40), with subinduction on the sum of the heights of the derivations
of the premises of the cut-rule. We will distinguish cases according to the last rule
applied to the left premise.
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Case 1. G[Γ, α] is an initial tree-hypersequent. Then either the conclusion is also a
tree-hypersequent, or the cut can be replaced by various applications of the internal
and external weakening rules to G

′ [α,Π ].
Case 2. G[Γ, α] is inferred by a rule R in which α is not principal. This case can
be standardly solved by induction on the sum of the heights of the derivations of
the premises of the cut-rule. As a matter of fact, no rule can change the position
of the sequent where the cut occurs, and, on the other hand, the definition of prod-
uct ensures that the structure of the tree-hypersequent stays unchanged, so that any
problems are avoided. Some examples will help to clarify. More precisely, we will
analyse those significant cases where the rule R has been applied on the sequent
Γ, α. Note that the cases where R has been applied on a sequent different from Γ, α

can be dealt with analogously, thanks to Lemma 7.1.
Let us suppose that the rule before G[Γ, α] is the rule �K (the case where R

is the rule d is analogous) applied to the sequent Γ, α and without α as principal
formula.

G[Γ, α/ ⇒ β]
G[Γ, α,�β] �K

...

G ′ [α,Π ]
G ⊗ G ′ [Γ � Π,�β] cutα

We reduce to

G[Γ, α/ ⇒ β] G
′ [α,Π ]

G ⊗ G
′ [Γ � Π/ ⇒ β]

G ⊗ G ′ [Γ � Π,�β] �K

cutα

Let us suppose that the rule before G[Γ, α] is the rule �A (the cases where R is
the rule t , b, 4 or 5 are analogous) applied between the sequent Γ, α and the sequent
immediately successive to it, and without α as principal formula.

Ġ[�β, Γ, α/(β,Σ/X)]
Ġ[�β, Γ, α/(Σ/X)] �A

...

G ′ [α,Π ]
Ġ ⊗ G ′ [�β, Γ � Π/(Σ/X)] cutα

We reduce to

Ġ[�β, Γ, α/(β,Σ/X)] G
′ [α,Π ]

Ġ ⊗ G
′ [�β, Γ � Π/(β,Σ/X)]

Ġ ⊗ G ′ [�β, Γ � Π/(Σ/X)] �A

cutα
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Case 3. G[Γ, α] is inferred by a rule R in which α is principal. We can distinguish
two subcases: in one subcase R is a propositional rule, in the other R is a modal
rule.
Case 3.1. Supposing, for illustration, that the rule that introduces G[Γ, α] is ¬K
and α ≡ ¬β, we have

G[β, Γ ]
G[Γ,¬β] ¬K

...

G ′ [¬β,Π ]
G ⊗ G ′ [Γ � Π ] cut¬β

By applying Lemma 6.18, p. 135 to G
′ [¬β,Π ], we obtain G

′ [Π,β]. We replace the
previous cut with the following, which is eliminable by induction on the complexity
of the cut-formula:

G
′ [Π,β] G[β, Γ ]
G ⊗ G ′ [Γ � Π ] cutβ

Case 3.2. R is �K and α ≡ �β. We have the following situation:

G[Γ/ ⇒ β]
G[Γ,�β] �K

...

G ′ [�β,Π ]
G ⊗ G ′ [Γ � Π ] cut�β

We must consider the last rule R′
of d2. If no rule R′

introduces G
′ [�β,Π ] because

G
′ [�β,Π ] is an initial tree-hypersequent, then we can solve the case as in 1. If �β

is not principal in the rule R′
, then we solve the case as in 2. Only those cases where

R′
is one of the following rules: �A, d, t , 4, b, 5, are problematic. We will analyse

each of them in turn.

�A:

G[Γ/ ⇒ β]
G[Γ,�β] �K

Ġ
′ [�β,Π/(β,Ψ/Y )]
Ġ ′ [�β,Π/(Ψ/Y )] �A

G ⊗ Ġ ′ [Γ � Π/(Ψ/Y )] cut�β

We reduce to1

G[Γ/ ⇒ β]
G[Γ,�β] Ġ

′ [�β,Π/(β,Ψ/Y )]
G ⊗ Ġ

′ [Γ � Π/(β,Ψ/Y )]
cut�β

G ⊗ G ⊗ Ġ
′ [Γ � Γ � Π/(Ψ/Y )]

cutβ

G ⊗ Ġ
′ [Γ � Π/(Ψ/Y )]

C A∗+C K ∗+merge∗
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where the first cut is eliminable by induction on the sum of the heights of the deriva-
tions of the premises of the cut-rule, and the second cut is eliminable by induction
on the complexity of the cut-formula.

d:

G[Γ/ ⇒ β]
G[Γ,�β] �K

G
′ [�β,Π/β ⇒]
G ′ [�β,Π ] d

G ⊗ G ′ [Γ � Π ] cut�β

We reduce to

G[Γ/ ⇒ β]
G[Γ,�β] G

′ [�β,Π/β ⇒]
G ⊗ G

′ [Γ � Π/β ⇒]
cut�β

G ⊗ G ⊗ G
′ [Γ � Γ � Π/ ⇒]

cutβ

G ⊗ G ⊗ G
′ [Γ � Γ � Π ] d̃

G ⊗ G
′ [Γ � Π ]

C A∗+C K ∗+merge∗

where the first cut is eliminable by induction on the sum of the heights of the deriva-
tions of the premises of the cut-rule, and the second cut is eliminable by induction
on the complexity of the cut-formula. Note that, in order to obtain the conclusion of
the cut-rule, we use the admissible rule d̃ (see Fig. 6.2, p. 137).

t :

G[Γ/ ⇒ β]
G[Γ,�β] �K

G
′ [�β, β,Π ]
G ′ [�β,Π ] t

G ⊗ G ′ [Γ � Π ] cut�β

We reduce to

G[Γ/ ⇒ β]
G[Γ, β] t̃

G[Γ,�β] G
′ [�β, β,Π ]

G ⊗ G
′ [β, Γ � Π ]

cut�β

G ⊗ G ⊗ G
′ [Γ � Γ � Π ]

cutβ

G ⊗ G
′ [Γ � Π ]

C A∗+C K ∗+merge∗

where the first cut is eliminable by induction on the sum of the heights of the
derivations of the premises, and the second cut is eliminable by induction on the
complexity of the cut-formula. Note that, in order to cut the formula β, we must use
the height-preserving admissible rule t̃ (see Fig. 6.1, p. 137).

b:

G̈[Δ/(Γ/ ⇒ β; X
′
)]

G̈[Δ/(Γ,�β/X
′
)] �K

G̈
′ [β,Φ/(�β,Π/Y

′
)]

G̈ ′ [Φ/(�β,Π/Y
′
)] b

G̈ ⊗ G̈ ′ [Δ � Φ/(Γ � Π/X
′ ; Y

′
)] cut�β
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We reduce to

G̈[Δ/(Γ/ ⇒ β; X
′
)]

G̈[Δ,β/(Γ/X
′
)] b̃

G̈[Δ/(Γ,�β/X
′
)] G̈

′ [β,Φ/(�β,Π/Y
′
)]

G̈ ⊗ G̈
′ [β,Δ � Φ/(Γ � Π/X

′ ; Y
′
)]

cut�β

G̈ ⊗ G̈ ⊗ G̈
′ [Δ � Δ � Φ/(Γ � Π/X

′ ; Y
′
); (Γ /X

′
)]

cutβ

G̈ ⊗ G̈
′ [Δ � Φ/(Γ � Π/X

′ ; Y
′
)]

C A∗+C K ∗+merge∗

where the first cut is eliminable by induction on the sum of the heights of the deriva-
tions of the premises of the cut-rule, and the second cut is eliminable by induction
on the complexity of cut-formula. Note that, in order to cut the formula β, we must
use the height-preserving admissible rule b̃ (see Fig. 6.1, p. 137).

We have left the cases where R is the rule 4 or the rule 5 for last, since they both
require a similar and more complicated technique compared to the one that was used
for the other rules. Below is the analysis of each of the cases.

4:

G[Γ/ ⇒ β]
G[Γ,�β] �K

Ġ
′ [�β,Π/(�β,Ψ/Y )]
Ġ ′ [�β,Π/(Ψ/Y )] 4

G ⊗ Ġ ′ [Γ � Π/(Ψ/Y )] cut�β

In order to solve this case, we must analyse each of the rules that may have intro-
duced the tree-hypersequent Ġ

′ [�β,Π/(�β,Ψ/Y )]. We go up the derivation until
either a rule R′′

applies to a formula different from the �β’s, or a rule R′′
different

from 4 applies to some of the �β’s; this way we stop in front of the following sit-
uation (i.e. this way we stop in front of the tree-hypersequent that is the conclusion
of the rule R′′

):

� Ġ
′ [�β,Π/(�β,Ψ/(�β)Y )]

where with (�β)Y we indicate all the formulas �β that can occur on the left side
of the sequents that are on the same branch of the sequent Π , and belong to the
multiset of tree-hypersequents Y .

We analyse each of the rules that can have inferred this tree-hypersequent.

– � is an axiom. Then, as �β cannot be principal, even the conclusion of the cut
is an axiom, and the case is solved.

– � has been inferred by a rule R′′
that does not have any �β as principal for-

mula. In this case the technique consists of (i) applying the rule 4, n-times, to the
premise of the rule R′′

, and (ii) operating as in case 2.
– � has been inferred by a rule R′′

that has one of the �β’s as principal formula.
R′′

can either be the rule �A or one of the special logical rules. The technique
for solving the cases where R′′

is the rule �A or the rule d or the rule t are
analogous; therefore, we will only show in detail the case where R′′

is the rule
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�A (the others can be dealt with similarly2). We will conclude by also analysing
the cases where R′′

is the rule b or the rule 5.

• Let us suppose that R′′
is the rule �A. We shall first of all distinguish the follow-

ing two subcases. (a) The rule �A has been applied to two sequents belonging
to (�β), Y , let us suppose the sequents �β,Ξ/�β, β,Ω . Hence we have the
following situation:

G[Γ/ ⇒ β]
G[Γ,�β] �K

...
G

′ [�β,Π ][�β,Ξ/(�β, β,Ω/Y
′′
)]

...
G

′ [�β,Π ][�β,Ξ/(�β,Ω/Y
′′
)]

�A

...

4

...
G

′ [�β,Π ][Ξ/(Ω/Y
′′
)]

4

G ⊗ ...
G

′ [Γ � Π ][Ξ/(Ω/Y
′′
)]

cut�β

We proceed in three steps.

(a1) We apply the rule 4, n-times, to the tree-hypersequent
...
G

′ [�β,Π ][�β,Ξ/

(�β, β,Ω/Y
′′
)]. As a result, we obtain the tree-hypersequent

...
G

′ [�β,Π ][Ξ/(β,Ω/Y
′′
)]

(a2) We apply the admissible rule 4̃ (see Fig. 6.2, p. 137) to the tree-hypersequent
G[Γ/ ⇒ β] a number of times sufficient to get ⇒ β in an equivalent position

with the sequent β,Ω of the tree-hypersequent
...
G

′ [�β,Π ][Ξ/ (β,Ω/Y
′′
)]. This

way we obtain a tree-hypersequent where ⇒ β is no longer after Γ , but n empty
sequences after. Let us note this as G[Γ ][⇒ β].
(a3) We are now in a position to apply two cuts: the first eliminable by induction
on the sum of the heights, the second by induction on the complexity of the
cut-formula.

G[Γ ] [⇒ β]
G[Γ,�β] ...

G
′ [�β,Π ] [Ξ/(β,Ω/Y

′′
)]

G ⊗ ...
G

′ [Γ � Π ] [Ξ/(β,Ω/Y
′′
)]

cut�β

G ⊗ G ⊗ ...
G

′ [Γ � Γ � Π ] [Ξ/(Ω/Y
′′
)]

cutβ

G ⊗ ...
G

′ [Γ � Π ] [Ξ/(Ω/Y
′′
)]

C A∗+C K ∗+merge∗

(b) The rule �A, with �β as principal formula, has been applied to the sequents
�β,Π/�β, β, Ψ . In this case we firstly proceed as in the subcase (a1) (i.e. we
use n times the rule 4), and then as in the case �A above.
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• Let us now suppose that R′′
is the rule b. We shall first of all distinguish the

following three subcases. (a) The rule b has been applied to a pair of sequents
belonging to (�β), Y . This case can be dealt with similarly to the subcase (a)
above. (b) The rule b, with �β as principal formula, has been applied to the
sequents β,Φ/�β,Π . This case can be dealt with similarly to the subcase (b)
above. (c) The rule b has been applied to the sequents �β, β,Π/�β,Ψ . We have
the following situation:

G[Γ/ ⇒ β]
G[Γ,�β] �K

Ġ
′ [�β, β,Π/(�β,Ψ/(�β) Y )]
Ġ

′ [�β,Π/(�β,Ψ/(�β) Y )] b

...

4

Ġ
′ [�β,Π/(Ψ/Y )] 4

G ⊗ Ġ
′ [Γ � Π/(Ψ/Y )]

cut�β

We proceed in the following way. First of all, we apply the rule 4, n-times, to
the tree-hypersequent Ġ

′ [�β, β,Π/(�β,Ψ/(�β) Y )], obtaining this way the
tree-hypersequent Ġ

′ [�β, β,Π/(Ψ/Y )]. Then we continue the derivation with
two cuts: the first eliminable by induction on the sum of the heights, the second
by induction on the complexity of the cut-formula.

G[Γ/ ⇒ β]
G[Γ/(⇒ / ⇒ β)] 4̃

G[Γ, β/ ⇒] b̃

G[Γ,�β] Ġ
′ [�β, β,Π/(Ψ/Y )]

G ⊗ Ġ
′ [β, Γ � Π/(Ψ/Y )]

cut�β

G ⊗ G ⊗ Ġ
′ [Γ � Γ � Π/(Ψ/Y );⇒]

cutβ

G ⊗ Ġ
′ [Γ � Π/(Ψ/Y )]

C A∗+C K ∗+merge∗

• Let us finally suppose that R′′
is the rule 5. We shall distinguish the following

two subcases: (a) the rule 5 has been applied to a pair of sequents belonging
to (�β), Y , let us suppose the sequents �β,�β,Ξ/�β,Ω . Hence we have the
following situation:

G[Γ/ ⇒ β]
G[Γ,�β] �K

...
G

′ [�β,Π ] [�β,�β,Ξ/(�β,Ω/Y
′′
)]

...
G

′ [�β,Π ] [�β,Ξ/(�β,Ω/Y
′′
)]

5

...

4

...
G

′ [�β,Π ] [Ξ/(Ω/Y
′′
)]

4

G ⊗ ...
G

′ [Γ � Π ] [Ξ/(Ω/Y
′′
)]

cut�β

By applying the height-preserving admissible rule of contraction C A once, and n
times the rule 4, we obtain a derivation of lower height of the tree-hypersequent
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...
G

′ [�β,Π ] [Ξ/(Ω/Y
′′
)]. Therefore we are in a position to apply the following

cut, which is eliminable by induction on the sum of the heights:

G[Γ,�β] ...
G

′ [�β,Π ] [Ξ/(Ω/Y
′′
)]

G ⊗ ...
G

′ [Γ � Π ] [Ξ/(Ω/Y
′′
)]

cut�β

(d) The rule 5, with �β as principal formula, has been applied to the sequents
�β,Φ/�β,Π . In this case we apply the rule 4 n-time, and then we proceed as
in the following case 5.

5:

G̈[Δ/(Γ/ ⇒ β; X
′
)]

G̈[Δ/(Γ,�β/X
′
)] �K

G̈
′ [�β,Φ/(�β,Π/Y

′
)]

G̈ ′ [Φ/(�β,Π/Y
′
)] 5

G̈ ⊗ G̈ ′ [Δ � Φ/(Γ � Π/X
′ ; Y

′
)] cut�β

In order to solve this case, we must analyse each of the rules that may have intro-
duced the tree-hypersequent G̈

′ [�β,Φ/(�β,Π/Y
′
)]. We go up the derivation

until either a rule R′′
applies to a formula different from the �β’s, or a rule R′′

different from 5 applies to some of the �β’s (the situation is analogous to the
one encountered in the case of the rule 4). Let us indicate with the symbol � the
tree-hypersequent that is the conclusion of the rule R′′

. We distinguish cases by
the type of rule R′′

.

– � is an axiom. Then, as �β cannot be principal, even the conclusion of the
cut is an axiom, and the case is solved.

– � has been inferred by a rule R′′
that does not have any �β as principal

formula. In this case the technique consists of (i) applying the rule 5, n-times,
to the premise of the rule R′′

, and (ii) operating as in case 2.
– � has been inferred by a rule R′′

that has �β as principal formula. R′′
can

either be the rule �A or one of the special logical rules. The technique for
solving the cases where R′′

is the rule �A or the rule d are analogous; there-
fore, we will only show in detail the case where R′′

is the rule �A (the other
can be dealt with similarly3). We will conclude by also analysing the case
where R′′

is the rule t (in case R′′
is the rule b, the procedure is analogous)

and the rule 4.

• Let us suppose that R′′
is the rule �A, we shall first of all distinguish the fol-

lowing two subcases. (a) The rule �A has been applied to a pair of sequents that
precede the sequent Π and are on its same branch, let us suppose the sequents
�β,Ξ/�β, β,Ω . Hence we have the following situation:
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...
G[Ξ ′

/(Ω
′
/Z

′
)][Γ/ ⇒ β]

...
G[Ξ ′

/(Ω
′
/Z

′
)][Γ,�β] �K

....
G

′ [�β,Ξ/(�β, β,Ω/(�β)Z)] [�β,Π ]
....
G

′ [�β,Ξ/(�β,Ω/(�β)Z)] [�β,Π ]
�A

...

5

....
G

′ [Ξ/(Ω/Z)] [�β,Π ]
5

...
G ⊗ ....

G
′ [Ξ � Ξ

′
/(Ω � Ω

′
/Z; Z

′
)][Γ � Π ]

cut�β

where with (�β)Z we indicate all the formulas �β that can occur on the left side
of the sequents that are on the same branch of the sequent Π and belong to the
multiset of tree-hypersequent Z .
We proceed in three steps.

(a1) We apply the rule 5, n-times, to the tree-hypersequent
....
G

′ [�β,Ξ/

(�β, β,Ω/(�β)Z)] [�β,Π ]. As a result, we obtain the tree-hypersequent

....
G

′ [Ξ/(β,Ω/Z)] [�β,Π ]

(a2) We apply the admissible rule 5̃ (see Fig. 6.2., p. 137) to the tree-
hypersequent

...
G[Ξ ′

/(Ω
′
/Z

′
)][Γ/ ⇒ β] a number of times sufficient to get

⇒ β in an equivalent position with the sequent β,Ω of the tree-hypersequent
....
G

′ [Ξ/(β,Ω/Z)] [�β,Π ]. This way we obtain a tree-hypersequent where ⇒ β

is no longer after Γ , but n sequents before (and separated from the other (tree-
hyper)sequents by the semicolon). Let us note this as

...
G[Ξ ′

/(Ω
′
/Z ′);⇒ β].

(a3) We are now in a position to apply two cuts: the first eliminable by induction
on the sum of the heights, the second by induction on the complexity of the cut
formula.

...
G[Ξ ′

/(Ω
′
/Z

′
);⇒ β]

...
G[Ξ ′

/(Ω
′
/Z

′
)][Γ,�β] ....

G
′ [Ξ/(β,Ω/Z)] [�β,Π ]

...
G ⊗ ....

G
′ [Ξ � Ξ

′
/(β,Ω � Ω

′
/Z

′ ; Z)] [Γ � Π ]
cut�β

...
G ⊗ ...

G ⊗ ....
G

′ [Ξ � Ξ
′ � Ξ

′
/(Ω � Ω

′
/Z; Z

′
); (Ω ′

/Z
′
)] [Γ � Π ]

cutβ

...
G ⊗ ....

G
′ [Ξ � Ξ

′
/(Ω � Ω

′
/Z; Z

′
)] [Γ � Π ]

C A∗+C K ∗+merge∗

(b) The rule �A, with �β as principal formula, has been applied to the
sequents �β,Π/β,Ψ . In this case we firstly proceed as in the subcase (a1) (i.e.
we use the rule 5 n-times), and then as in the case �A above.

• Let us now suppose that R′′
is the rule t . We shall first of all distinguish the

following three subcases. (a) The rule t has been applied to a pair of sequents that
precede the sequent Π on its same branch. This case can be dealt with similarly to
the subcase (a) above. (b) The rule t , with �β principal formula, has been applied
to the sequent �β, β,Π . This case can be dealt with similarly to the subcase (b)
above. (c) The tree-hypersequent G has the form Δ/(Γ,�β/W );W

′
, while the
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tree-hypersequent G
′
has the form Φ/(�β,Π/V ); V

′
, and we have the following

situation:

Δ/(Γ/ ⇒ β;W );W
′

Δ/(Γ,�β/W );W
′ �K

�β, β,Φ/(�β,Π/V ); V
′

�β,Φ/(�β,Π/V ); V
′ t

Φ/(�β,Π/V ); V
′ 5

Δ � Φ/(Γ � Π/W ; V );W
′ ; V

′ cut�β

We firstly apply the rule 5 to the tree-hypersequent �β, β,Φ/(�β,Π/V ); V
′
,

and we obtain this way the tree-hypersequent β,Φ/(�β,Π/V ); V
′
. Then we

continue the derivation with two cuts: the first eliminable by induction on the sum
of the heights, the second by induction on the complexity of the cut-formula.

Δ/(Γ/ ⇒ β;W );W
′

Δ/(Γ/W );⇒ β;W
′ 5̃

Δ,β/(Γ/W );W
′ t̃

Δ/(Γ,�β/W );W
′

β,Φ/(�β,Π/V ); V
′

β,Δ � Φ/(Γ � Π/W ; V );W
′ ; V

′ cut�β

Δ � Δ � Φ/(Γ � Π/W ; V ); (Γ /W );W
′ ;W

′ ; V
′ cutβ

Δ � Φ/(Γ � Π/W ; V );W
′ ; V

′ C A∗+C K ∗+merge∗

• Let us finally suppose that R′′
is the rule 4. We shall distinguish the following two

subcases. (a) The rule 4 has been applied to a pair of sequents that precede the
sequent Φ on its same branch, let us suppose the sequents �β,Ξ/�β,�β,Ω .
Hence we have the following:

...
G[Ξ ′

/(Ω
′
/Z

′
)] [Γ/ ⇒ β]

...
G[Ξ ′

/(Ω
′
/Z

′
)] [Γ,�β] �K

....
G

′ [�β,Ξ/(�β,�β,Ω/(�β)Z)] [�β,Π ]
....
G

′ [�β,Ξ/(�β,Ω/(�β)Z)] [�β,Π ]
4

...

5

....
G

′ [Ξ/(Ω/Z)] [�β,Π ]
5

...
G ⊗ ....

G
′ [Ξ � Ξ

′
/(Ω � Ω

′
/Z

′ ; Z)] [Γ � Π ]
cut�β

By applying the height-preserving admissible rule of contraction C A once, and n
times the rule 5, we obtain a derivation of lower height of the tree-hypersequent
....
G

′ [Ξ/(Ω/Z)] [�β,Π ]. Therefore we are in a position to apply the following
cut, which is eliminable by induction on the sum of the heights:

...
G[Ξ ′

/(Ω
′
/Z

′
)] [Γ,�β] ....

G
′ [Ξ/(Ω/Z)] [�β,Π ]

...
G ⊗ ....

G
′ [Ξ � Ξ

′
/(Ω � Ω

′
/Z

′ ; Z)] [Γ � Π ]
cut�β
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(b) The rule 4, with �β as principal formula, has been applied to the sequents
�β,Π/�β,Ψ . In this case we firstly proceed as in the subcase (a1) (i.e. we use
n times the rule 5), and then as in the case 4 above. ��

Theorem 7.3 Every derivation d in Thsk∗L can be effectively transformed into a
derivation d

′
where there is no application of the cut-rule.

Proof It follows from the previous Lemma 7.2 by induction on the number of
cuts. ��

7.2 Decidability of the Tree-Hypersequent Calculi

In this section, we would like to prove that (certain) tree-hypersequent calculi are
decidable, i.e. that given any tree-hypersequent G belonging to these calculi, there
is an algorithm that determines whether G is provable in them or not.

First of all, let us observe that our calculi satisfy the subformula property since
(i) the cut-rule is admissible (see Theorem 7.3), and (ii) in each of their rules all the
formulas that occur in the premise(s) are subformulas of the formulas that occur in
the conclusion. Moreover, even the contraction rules are height-preserving admissi-
ble (see Lemma 6.19, p. 136). These facts would seem to eliminate any source of
potentially non-terminating proof search; nevertheless, this is not the case because
of the repetition of the principal formula in each of the special logical rules and in the
rule �A. In order to avoid this problem, and prove that (certain) tree-hypersequent
calculi are indeed decidable, we shall obtain a bound on the number of applications
of the special logical rules and of the rule �A.

To do this, let us start by taking into account only minimal derivations, which is
to say, derivations where shortenings are not possible. Then we prove, by means of
the following lemmas and their corollaries, that in minimal derivations it is enough
to apply the rules d, t , b and 5, only once on any given formula of the form �α

occurring on the left side of the sequent, and the rules �A and 4, only once on any
given pair of sequents. This technique is mostly inspired by the one used in [85].

Lemma 7.4 Each of the rules d, t , b and 5 permutes down with respect to the others,
the propositional rules, the modal rules and the special logical rule 4.

Proof We restrict our analysis to the case of the rule t , since the other three
cases can be dealt with similarly. First of all, consider the permutation with one-
premise propositional rules, which is straightforward. Consider the example of the
rule ¬K ,

G[β, α,�α, Γ ]
G[β,�α, Γ ]

G[�α, Γ,¬β] ¬K

t

↓
G[β, α,�α, Γ ]
G[α,�α, Γ,¬β]

G[�α, Γ,¬β] t

¬K
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Secondly consider the permutation with the two-premises rule ∧K . We have the
following derivation:

G[α,�α, Γ, β]
G[�α, Γ, β] t

.

.

.

G[�α, Γ, γ ]
G[�α, Γ, β ∧ γ ] ∧K

↓

G[α,�α, Γ, β]

.

.

.
G[�α, Γ, γ ]

G[α,�α, Γ, γ ] W A

G[α,�α, Γ, β ∧ γ ] ∧K

G[�α, Γ, β ∧ γ ] t

The transformation of the first derivation into the second one is achieved by means
of an application of the height-preserving admissible rule of (internal) weakening
W A.

Let us now consider the permutation in case of the modal rule �K ,

G[α,�α, Γ/ ⇒ β]
G[�α, Γ/ ⇒ β]
G[�α, Γ,�β] �K

t

↓
G[α,�α, Γ/ ⇒ β]

G[α,�α, Γ,�β]
G[�α, Γ,�β] t

�K

Finally let us analyse the permutation in case of the special logical rule 4, we have

G[α,�α, Γ/(�α,Σ/X)]
G[�α, Γ/(�α,Σ/X)]

G[�α, Γ/(Σ/X)] 4

t

↓
G[α,�α, Γ/(�α,Σ/X)]

G[α,�α, Γ/(Σ/X)]
G[�α, Γ/(Σ/X)] t

4

��
Lemma 7.5 The rules �A and 4 permute down with respect to the other, the propo-
sitional rules and the special logical rules. They also permute with instances of the
rule �K in the case where their auxiliary formulas, α and �α, respectively, are not
active in the sequent where the auxiliary formula of �K occurs.

Proof The proof is analogous to the one of Lemma 7.4. ��
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Corollary 7.6 In a minimal derivation in4, respectively, Thskd∗L , Thskt∗L , Thskb∗L
and Thskb45∗L , the rules d, t , b and 5 cannot be applied more than once on the
same formula of the form �α occurring on the left side of the sequent.

Proof Consider a minimal derivation where the rule d has been applied to the same
formula of the form �α twice,

G
′ [�α, Γ

′
/α ⇒]

G ′ [�α, Γ
′ ] d

·
·
·

G[�α, Γ/α ⇒]
G[�α, Γ ] d

By permuting down d with respect to the steps in the dotted part of the derivation,
we obtain a derivation of the same height ending with

G[�α, Γ/α ⇒;α ⇒]
G[�α, Γ/α ⇒]

G[�α, Γ ] d

d

By applying the height-preserving admissible rules of merge and C A to the two
occurrences of the formula α in place of the upper d, we obtain a shortened deriva-
tion, contrary to the assumption of minimality.

Let us suppose we have a minimal derivation where the rule t has been applied
twice on the same formula �α,

G
′ [α,�α, Γ

′ ]
G ′ [�α, Γ

′ ] t

·
·
·

G[α,�α, Γ ]
G[�α, Γ ] t

By permuting down t with respect to the steps in the dotted part of the derivation,
we obtain a derivation of the same height ending with

G[α, α,�α, Γ ]
G[α,�α, Γ ]

G[�α, Γ ] t

t
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By applying the height-preserving admissible rule C A to the two occurrences of the
formula α in place of the upper t , we obtain a shortened derivation, contrary to the
assumption of minimality.

The cases of the rules b and 5 can be treated analogously to the previous ones.
��
Corollary 7.7 In a minimal derivation in, respectively, Thsk∗L and Thsk4∗L , the
rules �A and 4 cannot be applied more than once on the same pair of sequents
of any branch.

Proof The proof is analogous to the one of Corollary 7.6. However, for the sake of
clarity, we show the case of the rule �A. Let us suppose to have a minimal derivation
where the rule �A has been applied twice on the same pair of sequents,

G
′ [�α, Γ

′
/(α,Σ

′
/X)]

G ′ [�α, Γ
′
/(Σ

′
/X)] �A

·
·
·

G[�α, Γ/(α,Σ/X)]
G[�α, Γ/(Σ/X)] �A

By permuting down �A with respect to the steps in the dotted part of the derivation,
we obtain a derivation of the same height ending with

G[�α, Γ/(α, α,Σ/X)]
G[�α, Γ/(α,Σ/X)]

G[�α, Γ/(Σ/X)] �A

�A

By applying the height-preserving admissible rule C A to the two occurrences of the
formula α in place of the upper �A, we obtain a shortened derivation, contrary to
the assumption of minimality. ��

We can finally prove that the modal logic K is decidable by showing effective
bounds on proof search in the calculus ThskL .

Theorem 7.8 The calculus ThskL allows terminating proof search.

Proof Place a tree-hypersequent G, for which we are looking for a proof search,
at the root of the procedure. Apply first the propositional rules and then the modal
rules. The propositional rules reduce the complexity of the tree-hypersequent. The
rule �K removes the modal constant �, and adds a new sequent, the rule �A
increases the complexity. However, by Corollary 7.7, the rule �A cannot be applied
more than once to the same pair of sequents. Therefore, the number of applications
of the rule �A is bounded by the number of sequents that may appear in the deriva-
tion. The latter, in its turn, is bounded by the number of sequents belonging to the
tree-hypersequent to prove, and the sequents that can be introduced by applications
of the rule �K .
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Let us explain how to calculate explicit bounds. Let us first of all define the
negative and positive parts of the tree-hypersequent G, as the union of the nega-
tive and positive parts of the translation into formulas of each of the sequents that
compose G. Recall that any sequent M ⇒ N belonging to a tree-hypersequent G,
corresponds to

∧
M →

∨
N

For any given tree-hypersequent G, let n(�) be the number of � in the negative part
of the tree-hypersequent G, and p(�) be the number of � in the positive part of the
tree-hypersequent G.

In case the root-tree-hypersequent is just a sequent, the number of applications
of the rule �A in a minimal derivation is bounded by

n(�) · p (�)

In case the root-tree-hypersequent is a tree-hypersequent, and s is the number of
sequents that occur in it, the number of applications of the rule �A in a minimal
derivation is bounded by

n(�) · (p (�) + s)
��
By a similar argument we have:

Theorem 7.9 The calculus ThsktL allows terminating proof search.

Proof The order of the application of the rules rests unchanged: the rule t should
indeed be applied after the others. On the other hand we should specify how to
calculate explicit bounds for the rule t . Given the fact that this rule cannot be applied
more than once on a same formula of the form �α occurring on the left side of
the sequent, we have that the number of its applications in a minimal derivation is
simply bounded by

n(�)

��
As for the decidability of the calculus ThskdL , the situation is somewhat more

difficult. Indeed the rule d, like the rule �K , creates a new sequent, and therefore
the calculation of the bound on the applications of the rule �A should take into
account this fact. As a result, we have:

Theorem 7.10 The calculus ThskdL allows terminating proof search.

Proof The order of the applications of the rules slightly varies: we firstly apply the
propositional rules, then the rule �K , then the rule d, and finally the rule �A. The
number of applications of the rule d in a minimal derivation is bounded by

n(�)
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In case the root-tree-hypersequent is just a sequent, the number of applications
of the rule �A in a minimal derivation is bounded by

n(�) · (p (�) + n(�))

In case the root-tree-hypersequent is a tree-hypersequent, and s is the number of
sequents which occurs in it, the number of applications of the rule �A in a minimal
derivation is bounded by

n(�) · (p (�) + s + n(�))

��
Theorem 7.11 The calculi ThskbL and ThsktbL allow terminating proof search.

Proof The order of the application of the rules rests unchanged: the rule b is indeed
applied after the others. Thanks to the above Theorems 7.8 and 7.9, we should only
explain how to calculate explicit bounds for the rule b. The number of applications
of the rule b in a minimal derivation is bounded by

n(�)

��
In Thss4L the situation is more complicated. In order to illustrate and solve this

situation, we use Negri’s ideas (see [85, pp. 536, 537]) once more.
Let us start by explaining the problem. In the calculus Thss4L , the interaction

of the rule 4 with the rule �K means that one can construct chains of sequents
on which the rule �A can be applied ad libitum: this way the aim of finding a
terminating proof-search seems to be impracticable. On the other hand, thanks to
the height-preserving admissible rules of contraction and t̃ , we can truncate an
attempted proof search after a finite number of steps. Before showing how, let us
illustrate this method with an example. Let us then try to find a derivation for the
sequent ⇒ �¬�α → �β.

...
�¬�α ⇒ /�¬�α ⇒ β/ ⇒ α/ ⇒ α

�¬�α ⇒ /�¬�α ⇒ β/ ⇒ α,�α
�K

�¬�α ⇒ /�¬�α ⇒ β/¬�α ⇒ α
¬A

�¬�α ⇒ /�¬�α ⇒ β/ ⇒ α
�A

�¬�α ⇒ / ⇒ β/ ⇒ α
4

�¬�α ⇒ / ⇒ β,�α
�K

�¬�α ⇒ /¬�α ⇒ β
¬A

�¬�α ⇒ / ⇒ β
�A

�¬�α ⇒ �β
�K

⇒ �¬�α → �β
→K
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Consider the top tree-hypersequent. By applying the height-preserving rule t̃ (see
Fig. 6.1., p. 137) to it, we obtain a derivation of the same height of

�¬�α ⇒ /�¬�α ⇒ β/ ⇒ α, α

By applying the rule of contraction C K , we obtain a derivation of the same height
of

�¬�α ⇒ /�¬�α ⇒ β/ ⇒ α

with a resulting shortening by three steps of the original derivation. Since we can
assume that the attempted proof search is for a minimal derivation, we have a con-
tradiction, and thus we can conclude that the sequent is not derivable.

This argument can be formalised by providing a bound on the number of suc-
cessive applications of the rule �K with principal formula �α, on sequents that
occur one after another and that all belong to the same branch. Intuitively, only
those applications that contribute to unfold all the boxed negative subformulas of
the endsequent through steps of �A are required. Additional steps are superfluous
as they give rise to duplications as soon as the inner-most boxed formula in the
negative part has been reached, as the above example shows.

Lemma 7.12 In a minimal derivation of a tree-hypersequent in Thss4L , for each
formula �α in its positive part, there are at most n(�) applications of the rule �K
iterated on a chain of sequents that occur one after another and all belong to the
same branch, with principal formula �α.

Proof Let m be n(�) and suppose that the antecedent of the derivable tree-
hypersequent contains a formula of the form �mF , where �m denotes a block of
m boxes. This assumption can be made without loss of generality. The modalities
in the negative part of the sequent do not necessarily occur in a block, but may
be interwoven with propositional connectives. However, these connectives can be
unfolded by the application, root-first, of propositional rules without changing the
number of applications of �K that are necessary to reach the innermost non-modal
formula. Suppose that we iterate �K on a chain of successive sequents. After the
first application of �K , we obtain a new sequent and application of �A produces
in this new sequent an antecedent containing �m−1F . After the second application
of the rule �K , we obtain another new sequent, which succeeds to the previous
one. By the rule 4 and the rule �A, we can produce an antecedent containing the
formulas �m−2F , �m−1F in this new sequent. After m applications, there will be
a sequent at distance m, containing in the antecedent also the formulas F , �m−1F
and in the succedent α. Let us apply the rule �K once more. In this way, we create a
m + 1 sequent, and the formulas F , �m−1F can be reproduced in the antecedent of
this new sequent, thanks to the rules 4 and �A. These latter steps are superfluous.
Indeed, we can apply the two admissible rules t̃ and C A, and eliminate the last
m + 1 sequent, while maintaining the elimination height. This way we obtain a
shorter derivation of the sequent reached after m steps of �K . ��
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Theorem 7.13 The calculus Thss4L allows terminating proof search.

Proof The order of the application of the rules varies slightly: we firstly apply the
propositional rules, then the rule �K , then the rule 4, and finally the rule �A an t .
The above Lemma 7.12 ensures that the interaction between the rule �K and the
rule 4 do not generate non terminating proof searches. Finally, we calculate explicit
bound for the rule 4. In case the root-tree-hypersequent is just a sequent, the number
of applications of the rule 4 in a minimal derivation is bounded by

n(�) · p (�)

In case the root-tree-hypersequent is a tree-hypersequent and s is the number of
sequents that occurs in it, the number of applications of the rule 4 in a minimal
derivation is bounded by

n(�) · (p (�) + s)

��
By Corollary 7.6 and Theorems 7.11 and 7.13, and the fact that the number of

applications of the rule 5 in a minimal derivation is bounded by n(�), we have that
also the calculus Thss5L allows terminating proof search.

Notes

1. Note that we use the notation R∗ + R′∗ + R′′∗ to stand for: repeated applications of the rules
R, R′

and R′′
take place. The order of the several applications of these three rules is straight-

forward to deduce. From now on we will take this notation for granted.
2. The only difference consists in the use, illustrated in the cases d and t above, of the special

structural rules d̃ and t̃ , respectively.
3. The only difference consists in the use, illustrated in the case d, of the special structural rules d̃.
4. With the notation: name of the tree-hypersequent calculus + ∗, we mean all the extensions of that

calculus by a combination of special logical rules. From now on we will take this assumption
for granted.



Chapter 8
Semantic Adequacy

In Section 6.3 we proved that the tree-hypersequent calculi are sound and complete
with respect to their corresponding Hilbert systems. All the proofs were purely syn-
tactic. In this chapter, we tackle the same issues from a semantic point of view,
giving alternative (though less constructive) proofs. This operation can shed further
light on the tree-hypersequent calculi.

8.1 Semantic Validity of the Tree-Hypersequent Calculi

This section will provide a proof that each of the tree-hypersequent calculi Thsk∗L
is sound with respect to the corresponding class of Kripke frames. We must first
introduce the following definition and lemma.

Definition 8.1 Let M = 〈W, R, v〉, i ∈ W , G ∈ THS,

i |�M G

is inductively defined in the following way:

– i |�M M ⇒ N iff ∃β ∈ M(i �M β) or ∃γ ∈ N (i |�M γ ),
– i |�M Γ/X iff i |�M Γ or ∃G ∈ X ∀ j (i R j → j |�M G).

By adopting the convention, for P multiset of formulas,

i |�M P := ∃α ∈ P(i |�M α)

we can more succinctly write

i |�M M ⇒ N iff i |�M ¬M, N

where ¬M := {¬β | β ∈ M}.
By adopting the convention

i |�∗
M ... := ∀ j (i R j → j |�M ...)

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_8, C© Springer Science+Business Media B.V. 2011

165



166 8 Semantic Adequacy

we can more succinctly write

i |�M Γ/X iff i |�M Γ or ∃G ∈ X , i |�∗
M G

Given a class of frames C, we will write i |�C G to mean that for every model M
based on any frame that belongs to the class C, we have i |�M G. We will use the
notation C f to indicate the class of all frames, while, to indicate the class of frames
that enjoy certain properties, we will substitute the f in C f with the name of the
rule that corresponds to that property. For example we will write Ct to indicate the
class of reflexive frames.

Lemma 8.2 (a) For all sequents Γ , Δ, and all tree-hypersequents G,

if ∀i (i |�C f Γ → i |�C f Δ)
then, ∀i (i |�C f G[Γ ] → i |�C f G[Γ/Δ])

(b) For all sequents Γ1, Γ2, Δ, and all tree-hypersequents G,

if ∀i (i |�C f Γ1 and i |�C f Γ2 → i |�C f Δ)
then, ∀i (i |�C f G[Γ1] and i |�C f G[Γ2] → i |�C f [Γ/Δ])

(c) For all tree-hypersequents (that are not sequents) J , H, and G,

if ∀i (i |�C f J → i |�C f H)
then, ∀i (i |�C f G[J ] → i |�C f G[J/H ])

Proof (a) By induction on G. (i) If G ≡ Γ , then the claim is obvious. (ii) If G ≡
Γ/X , then the claim is obvious. (iii) If G ≡Φ/G1; ...;Gm;G0[Γ ], then G[Γ/Δ] ≡
Φ/G1; ...;Gm;G0[Γ/Δ]. By inductive hypothesis we have that, for any i , i |�C f
G0[Γ ], implies i |�C f G0[Γ/Δ]. So we also have

� for any i, i |�∗
C f G0[Γ ], implies i |�∗

C f G0[Γ/Δ]

Now suppose k |�C f Φ/G1; ...;Gm;G0[Γ ], then k |�C f Φ or k |�∗
C f G1, or ..., or

k |�∗
C f Gm , or k |�∗

C f G0[Γ ]. Therefore, by �, we have k |�C f Φ, or k |�∗
C f G1,

or, ..., or k |�∗
C f Gm , or k |�∗

C f G0[Δ], i.e. k |�C f Φ/G1; ...;Gm;G0[Δ].
The proofs of (b) and (c) can be developed in the same way as the one for (a).

��
Theorem 8.3 For all tree-hypersequents G, if 	 G in Thsk∗L , then |�Cf∗ G, where
|�Cf∗ G stands for: G is valid in the corresponding class of frames.

Proof By induction on the derivation of the premise. The validity of the initial tree-
hypersequents and of the propositional rules is proved, exploiting Lemma 8.2, in the
usual way. We just prove the validity of the modal rules and of the special logical
rules.

– �K . Let us consider the rule in the form

Γ/ ⇒ α

Γ,�α
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By the inductive hypothesis, we have ∀i (i |�Cf Γ or i |�∗
Cf α). By definition of

the forcing relation (see Definition 2.9, p. 41), we have ∀i (i |�Cf Γ or i |�Cf �α),
which is nothing other than the conclusion of the rule. By Lemma 8.2, we have that
the rule �K is valid in the class of all frames.

– �A. Let us consider the rule in the form

�α, Γ/(α,Σ/X)

�α, Γ/(Σ/X)

By the inductive hypothesis, we have ∀i (i |�Cf ¬�α, Γ or i |�∗
Cf ¬α,Σ or

j |�∗
Cf X), i.e. ∀i (i �Cf �α or i |�Cf Γ or ∀ j (i R j → j �Cf α or j |�Cf Σ

or ∀z ( j Rz → z |�Cf X))). From this, we obtain

1 ∀i (i �Cf �α or i |�Cf Γ or ∀ j((i R j → j |�Cf α) → (i R j → j |�Cf Σ or ∀z ( j Rz →
z |�Cf X))))

2 ∀i (i �Cf �α or i |�Cf Γ or ∀ j(i R j → j |�Cf α) → ∀ j (i R j → j |�Cf Σ or ∀z ( j Rz →
z |�Cf X)))

3 ∀i (i �Cf �α or i |�Cf Γ or ¬∀ j(i R j → j |�Cf α) or ∀ j (i R j → j |�Cf Σ or ∀z ( j Rz →
z |�Cf X)))

4 ∀i (i �Cf �α or i |�Cf Γ or ∃ j(i R j and j �Cf α) or ∀ j (i R j → j |�Cf Σ or ∀z ( j Rz →
z |�Cf X)))

5 ∀i (i �Cf �α or i |�Cf Γ or i �Cf �α or ∀ j (i R j → j |�Cf Σ or ∀z ( j Rz → z |�Cf X)))

6 ∀i (i �Cf �α or i |�Cf Γ or ∀ j (i R j → j |�Cf Σ or ∀z ( j Rz → z |�Cf X)))

The last line of the proof is the conclusion of the rule. From this argument and
Lemma 8.2, we conclude that the rule �A is valid in the class of all frames.

– d. Let us consider the rule in the form

�α, Γ/α ⇒
�α, Γ

By the inductive hypothesis, we have ∀i (i |�Cd ¬�α, Γ or i |�∗
Cd ¬α), i.e. ∀i

(i �Cd �α or i |�Cd Γ or ∀ j (i R j → j �Cd α)). From this, we get

1 ∀i (i �Cd �α or i |�Cd Γ or ∀ j (i R j → j �Cd α or j |�Cd ⊥))

2 ∀i (i �Cd �α or i |�Cd Γ or ∀ j ((i R j → j |�Cd α) → (i R j → j |�Cd ⊥)))

3 ∀i (i �Cd �α or i |�Cd Γ or ∀ j (i R j → j |�Cd α) → ∀ j(i R j → j |�Cd ⊥))

4 ∀i (i �Cd �α or i |�Cd Γ or ¬∀ j (i R j → j |�Cd α) or ∀ j(i R j → j |�Cd ⊥))

5 ∀i (i �Cd �α or i |�Cd Γ or ∃ j (i R j and j �Cd α) or ∀ j(i R j → j |�Cd ⊥))

6 ∀i (i �Cd �α or i |�Cd Γ or i �Cd �α or ∀ j(i R j → j |�Cd ⊥))

7 ∀i (i �Cd �α or i |�Cd Γ or ¬∃ j (i R j))

Since the formula ¬∃ j (i R j) contradicts the seriality property, we can drop it and
this way obtain ∀i (i |�Cd ¬�α or i |�Cd Γ ), which is nothing other than the
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conclusion of the rule. From this argument and Lemma 8.2, we conclude that the
rule d is valid in the class of serial frames.

– t . Let us consider the rule in the form

�α, α, Γ

�α, Γ

By the inductive hypothesis, we have ∀i (i |�Ct ¬α,¬�α, Γ ), i.e. ∀i (i �Ct α or
i �Ct �α or i |�Ct Γ ). Since we are dealing with reflexive frames, we have

1 ∀i (i Ri and i �Ct α or i �Ct �α or i |�Ct Γ )

2 ∀i (∃ j (i R j and j �Ct α) or i �Ct �α or i |�Ct Γ )

3 ∀i (i �Ct �α or i �Ct �α or i |�Ct Γ )

4 ∀i (i �Ct �α or i |�Ct Γ )

The last line of the proof is the conclusion of the rule. From this argument and
Lemma 8.2, we conclude that the rule t is valid in the class of reflexive frames.

– 4. Let us consider the rule in the form

�α, Γ/(�α,Σ/X)

�α, Γ/(Σ/X)

By the inductive hypothesis, we have ∀i (i |�C4 ¬�α, Γ or i |�∗
C4 ¬�α,Σ or

j |�∗
C4 X ), i.e. ∀i (i �C4 �α or i |�C4 Γ or ∀ j (i R j → j �C4 �α or j |�C4 Σ or

∀z ( j Rz → z |�C4 X))). From this, we have

1 ∀i (i �C4 �α or i |�C4 Γ or ∀ j (¬i R j or j �C4 �α or j |�C4 Σ or ∀z ( j Rz → z |�C4 X)))

2 ∀i (i �C4 �α or i |�C4 Γ or ∀ j (¬i R j or ∃w ( j Rw and w �C4 α) or j |�C4 Σ or ∀z ( j Rz →
z |�C4 X)))

3 ∀i (i �C4 �α or i |�C4 Γ or ∀ j ∃w (¬i R j or ( j Rw and w �C4 α) or j |�C4 Σ or ∀z ( j Rz →
z |�C4 X)))

From 3, since we are dealing with transitive frames, we have

4 ∀i (i �C4 �α or i |�C4 Γ or ∀ j ∃w (¬i R j or ((¬i R j or i Rw) and w �C4 α) or j |�C4 Σ or

∀z ( j Rz → z |�C4 X)))

5 ∀i (i �C4 �α or i |�C4 Γ or ∀ j ∃w (¬i R j or (¬i R j or (i Rw and w �C4 α)) or j |�C4 Σ or

∀z ( j Rz → z |�C4 X)))

6 ∀i (i �C4 �α or i |�C4 Γ or ∀ j ∃w (¬i R j or ¬i R j or (i Rw and w �C4 α) or j |�C4 Σ or

∀z ( j Rz → z |�C4 X)))

7 ∀i (i �C4 �α or i |�C4 Γ or ∀ j (¬i R j or ∃w (i Rw and w �C4 α) or j |�C4 Σ or ∀z

( j Rz → z |�C4 X)))

8 ∀i (i �C4 �α or i |�C4 Γ or ∀ j (¬i R j or i �C4 �α or j |�C4 Σ or ∀z ( j Rz → z |�C4 X)))

9 ∀i (i �C4 �α or i |�C4 Γ or i �C4 �α or ∀ j (¬i R j or j |�C4 Σ or ∀z ( j Rz → z |�C4 X)))

10 ∀i (i �C4 �α or i |�C4 Γ or ∀ j (i R j → j |�C4 Σ or ∀z ( j Rz → z |�C4 X)))
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The last line of the proof is the conclusion of the rule. From this argument and
Lemma 8.2, we conclude that the rule 4 is valid in the class of transitive frames.

– b. Let us consider the rule in the form

α, Γ/(�α,Σ/X)

Γ /(�α,Σ/X)

By the inductive hypothesis, we have ∀i (i |�Cb ¬α, Γ or i |�∗
Cb ¬�α,Σ or

j |�∗
Cb X), i.e. ∀i (i �Cb α or i |�Cb Γ or ∀ j (i R j → j �Cb �α or j |�Cb Σ or

∀z ( j Rz → z |�Cb X)). From this, we get

1 ∀i (i �Cb α or i |�Cb Γ or ∀ j (¬i R j or j �Cb �α or j |�Cb Σ or ∀z ( j Rz → z |�Cb X)))

2 ∀i ∀ j (i �Cb α or ¬i R j or i |�Cb Γ or j �Cb �α or j |�Cb Σ or ∀z ( j Rz → z |�Cb X ))

From 2, since we are dealing with symmetric frames, we have

3 ∀i ∀ j (( j Ri and i �Cb α) or ¬i R j or i |�Cb Γ or j �Cb �α or j |�Cb Σ or ∀z ( j Rz →
z |�Cb X ))

4 ∀i ∀ j (∃w( j Rw and w �Cb α) or ¬i R j or i |�Cb Γ or j �Cb �α or j |�Cb Σ or ∀z ( j Rz →
z |�Cb X ))

5 ∀i ∀ j ( j �Cb �α or ¬i R j or i |�Cb Γ or j �Cb �α or j |�Cb Σ or ∀z ( j Rz → z |�Cb X ))

6 ∀i ∀ j (¬i R j or i |�Cb Γ or j �Cb �α or j |�Cb Σ or ∀z ( j Rz → z |�Cb X ))

7 ∀i (i |�Cb Γ or ∀ j (i R j → j �Cb �α or j |�Cb Σ or ∀z ( j Rz → z |�Cb X )))

The last line of the proof is the conclusion of the rule. From this argument and
Lemma 8.2, we conclude that the rule b is valid in the class of symmetric frames.

– 5. Let us consider the rule in the form

�α, Γ/(�α,Σ/X)

Γ /(�α,Σ/X)

By the inductive hypothesis, we have ∀i (i |�Cb4 ¬�α, Γ or i |�∗
Cb4 ¬�α,Σ

or j |�∗
Cb4 X), i.e. ∀i (i �Cb4 �α or i |�Cb4 Γ or ∀ j (i R j → j �Cb4 �α or

j |�Cb4 Σ or ∀z ( j Rz → z |�Cb4 X))). From this, we get

1 ∀i (i �Cb4 �α or i |�Cb4 Γ or ∀ j (¬i R j or j �Cb4 �α or j |�Cb4 Σ or ∀z ( j Rz →
z |�Cb4 X)))

2 ∀i ∀ j (i �Cb4 �α or i |�Cb4 Γ or ¬i R j or j �Cb4 �α or j |�Cb4 Σ or ∀z ( j Rz →
z |�Cb4 X))

3 ∀i ∀ j (∃w (i Rw and w �Cb4 α) or i |�Cb4 Γ or ¬i R j or j �Cb4 �α or j |�Cb4 Σ or ∀z ( j Rz

→ z |�Cb4 X))

4 ∀i ∀ j ∃w((w �Cb4 α and i Rw) or i |�Cb4 Γ or ¬i R j or j �Cb4 �α or j |�Cb4 Σ or ∀z ( j Rz

→ z |�Cb4 X))

From 4, since we are dealing with transitive and symmetric – and hence euclidean –
frames, we have
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5 ∀i ∀ j ∃w((w �Cb4 α and (¬i R j or j Rw)) or i |�Cb4 Γ or ¬i R j or j �Cb4 �α or j |�Cb4 Σ

or ∀z ( j Rz → z |�Cb4 X))

6 ∀i ∀ j ∃w((w �Cb4 α and j Rw) or ¬i R j or i |�Cb4 Γ or ¬i R j or j �Cb4 �α or j |�Cb4 Σ

or ∀z ( j Rz → z |�Cb4 X))

7 ∀i ∀ j (∃w(w �Cb4 α and j Rw) or i |�Cb4 Γ or ¬i R j or j �Cb4 �α or j |�Cb4 Σ or ∀z

( j Rz → z |�Cb4 X))

8 ∀i ∀ j ( j �Cb4 �α or i |�Cb4 Γ or ¬i R j or j �Cb4 �α or j |�Cb4 Σ or ∀z

( j Rz → z |�Cb4 X))

9 ∀i ∀ j (i |�Cb4 Γ or ¬i R j or j �Cb4 �α or j |�Cb4 Σ or ∀z ( j Rz → z |�Cb4 X))

10 ∀i (i |�Cb4 Γ or ∀ j (i R j → j �Cb4 �α or j |�Cb4 Σ or ∀z ( j Rz → z |�Cb4 X))

The last line of the proof is the conclusion of the rule. From this argument and
Lemma 8.2, we conclude that the rule 5 is valid in the class of transitive and sym-
metric – and hence euclidean – frames. ��

8.2 Semantic Completeness of the Tree-Hypersequent Calculi

This section is concerned with the proof that our calculi are complete with respect to
the corresponding class of frames. In [15] Brünnler gives an elegant proof for this.
He provides a terminating proof search procedure, which, when it fails, can serve as
the basis for the construction of a countermodel. We turn to this below.

The first idea of Brünnler’s proof is to prove completeness not directly of the
Thsk∗L calculi, but of different equivalent calculi that we are going to call

(
Thsk∗L

)+,
and that are defined as follows.

For each rule R, we define a rule R+ which keeps the main formula from the
conclusion. For the rule �A and the special logic rules we have R = R+. For the
other rules we have

G[¬α, Γ, α]
G[¬α, Γ ] (¬A)+

G[α, Γ,¬α]
G[Γ,¬α] (¬K )+

G[α, β, α ∧ β, Γ ]
G[α ∧ β, Γ ] (∧A

′
)+

G[Γ, α, α ∧ β] G[Γ, β, α ∧ β]
G[Γ, α ∧ β] (∧K )+

G[Γ,�α/ ⇒ α]
G[Γ,�α] (�K )+ where the sequent Γ,�α does

not have any immediate successive
sequent (or more succinctly, child-
sequent) that contains the formula α

on the left side.

G[�α, Γ/α ⇒]
G[�α, Γ ] (d)+ where the sequent �α, Γ does not

have any child-sequent.
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Definition 8.4 The set tree-hypersequent of the tree-hypersequent Γ/G1; ...;Gn is
the underlying set of

Δ/H1; ...; Hn

where H1; ...; Hn are the set tree-hypersequent of G1; ...;Gn . Clearly the set tree-
hypersequent of a tree-hypersequent is still a tree-hypersequent since a set is a mul-
tiset.

Any rule R+ carries the proviso that for all of its premises the set tree-
hypersequent is different from the set tree-hypersequent of the conclusion.

Given a calculus Y ∈ Thsk∗L , the calculus (Y)+ is obtained by replacing each

rule R of Y by the corresponding rule (R)+. The calculi Thsk∗L and
(
Thsk∗L

)+ will
happen to be equivalent. For now we prove the following.

Lemma 8.5 For all tree-hypersequents G,

i f 	 G in
(
Thsk∗L

)+
, then 	 G in Thsk∗L

Proof By straightforward induction on the height of derivations in
(
Thsk∗L

)+, using
contraction and weakening. ��

In order to prove completeness, let us introduce some closure relations. For the
sake of brevity we will use the following names: se, re, tr, sy to denote the proper-
ties of: seriality, reflexivity, transitivity, symmetry, respectively.

Definition 8.6 Let → be a binary relation on a set W . Then ← denotes its inverse,
↔ its symmetric closure, →+ its transitive closure, and →∗ its reflexive-transitive
closure. More generally, for X ⊆ {re, tr, sy}, →X denotes the smallest relation that
includes → and has the properties in X .

Lemma 8.7 Let → be a binary relation on a set W . Then for all X ⊆ {re, tr, sy},
the relation →X is well-defined.

Proof It is easy to check. ��
Definition 8.8 Let → be a binary relation on a set W . Its serial closure, denoted
→se, is obtained from → by adding loops on all elements of W that violate seriality.
For X ⊆ {re, tr, sy} the relation →X∪se is defined as (→X )se.

Lemma 8.9 Let → be a binary relation on a set W . If → satisfies a frame condition
in {re, tr, sy}, then →se also satisfies that frame condition.

Proof Concerning reflexivity, this is clear since a reflexive relation is its own serial
closure. Concerning symmetry, this is clear since only loops are added, which are
their own inverses. Concerning transitivity, we see the contrapositive. Assume that
→se is not transitive. Then we have i →se j and j →se z, but not i →se z. But
then i ,= j and j ,= z, and thus i → j and j → z, but not i → z.
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Concerning euclideanness, we also see the contrapositive. Assume that →se is
not euclidean. Then we have i →se j and i →se z, but not j →se z. But then
i ,= j , and thus i → j , but not j → z. To show that → is not euclidean we need
that i → z. If i ,= z then this is clear. Assume that i = z. Since i →se z, and since
i does not violate seriality, we have i → z. ��
Definition 8.10 A leaf of a tree-hypersequent (thinking the tree-hypersequent as a
tree-frame of Kripke semantics) is cyclic if in its branch there exists a sequent that
contains the same set of formulas.

Definition 8.11 A sequent of a tree-hypersequent is finished for a tree-hypersequent
calculus Y if no rule of that calculus applies to one of its formulas. A tree-
hypersequent is finished for a tree-hypersequent calculus Y if all sequents that com-
pose it are finished or cyclic.

Definition 8.12 We define a procedure prove(G, (Y)+), which takes a tree-
hypersequent G and a calculus (Y)+ ∈ (

Thsk∗L
)+, and builds a derivation tree for G

by applying rules from that calculus to non-initial and unfinished derivation leaves
in a bottom-up fashion, as follows:

1. keep applying all the rules of (Y)+ which are not the rules (�K )+ and (d)+ as
long as possible;

2. wherever possible, apply the rules (�K )+ and (d)+ once.

Repeat this operation until each non-initial derivation leaf of the tree-hypersequent
G is finished. If prove (G, (Y)+) terminates and all derivation leaves are initial then
it succeeds; otherwise, i.e. if it terminates and there is a non initial derivation leaf, it
fails.

Definition 8.13 The size of a tree-hypersequent G, s(G), is the number of sequents
that compose it. The set of subformulas of a tree-hypersequent G, denoted sf(G), is
the set of all subformulas of all formulas that compose all sequents that belong to
the tree-hypersequent.

Lemma 8.14 For all calculi
(
Thsk∗L

)+
and for all tree-hypersequents G, the pro-

cedure prove (G, (Y)+) terminates after at most 2|s f (G)| iterations.

Proof Consider a sequence of tree-hypersequents along a given branch of the
derivation starting from the root. None of the rules that we can apply in accor-
dance with step 1 creates new sequents in the tree-hypersequent, but each of them
causes the set of formulas of some sequent belonging to the tree-hypersequent to
strictly grow. By the subformula property, only finitely many formulas can occur
in a sequent, so step 1 terminates. If after step 1 there is an unfinished leaf in a
tree-hypersequent, then the size of the tree-hypersequent strictly grows in step 2.
Since there are only 2|s f (G)| different sets of formulas that can occur, each unfinished
tree-hypersequent leaf has to be cyclic eventually. ��

After the next definition, we will prove the completeness theorem for our
(
Thsk∗L

)+ calculi.
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Definition 8.15 In this definition we exploit the strong analogy between tree-
hypersequents and tree-frames of Kripke semantics. In particular, a tree-
hypersequent H is an immediate subtree of a tree-hypersequent G if G is of the
form Γ/H ; H1; ...; Hn . It is a proper subtree if it is an immediate subtree either of
G or of a proper subtree of G, and it is a subtree if it is either a proper subtree of G
or G = H . The set of all subtrees of G is denoted by st (G).

Theorem 8.16 For all X ⊆ {se, re, tr, sy} and all tree-hypersequents G, we have
that

(i) if G is valid with respect to a X-frame, then the tree-hypersequent calculus Y
∈ Thsk∗L that corresponds to the X-frame is such that 	 G in Y.

(ii) If prove(G, (Y)+) fails, then G is not valid in the frame that corresponds to
the calculus (Y)+.

Proof The contrapositive of (i) follows from (ii). If � G in a calculus Y ∈ Thsk∗L ,

then by Lemma 8.5, also � G in (Y)+ ∈ (
Thsk∗L

)+, and thus, in particular,
prove(G, (Y)+) cannot yield a derivation and by Lemma 8.14 has to fail. For (ii),
we define a model M on an X -frame, for X ⊆ {se, re, sy, tr}, for which we prove
that it is a countermodel for G.

Let G� be the set tree-hypersequent of the non initial tree-hypersequent obtained.
Let Υ be the set of all cyclic leaves in G�. Let W = st (G�)\Υ . Let f : Υ → W
be some function which maps a cyclic leaf to a tree-hypersequent in W whose root
carries the same set of formulas, and extend f to st (G∗) by the identity on W .
Define a binary relation → on W such that I → H if, and only if, either (i) H is
an immediate subtree of I , or (ii) I has an immediate subtree J ∈ Υ and f (J ) = H .
Let v(G, p) such that

v(G, p) =
{

1 : p occurs on the le f t side of a sequent Γ ∈ G
0 : otherwise

Let M = (W,→X , v).

Claim 1. For all I , H ∈ W such that I →X H , for all α occurring on the left side of
a sequent that belongs to the tree-hypersequent G, we have: if �α ∈ I , then α ∈ H .
X = ∅. By the definition of → there is an immediate subtree of I whose root sequent
carries the same set of formulas as the root node of H . By the �A rule we have α

in (the root sequent of) all immediate subtrees of I .
X = {re}. I →re H if, and only if, I → H or I = H . In the second case α ∈ H
follows from the t rule.
X = {tr}. I →tr H if, and only if, there is a sequence

I = I0 → I1 → I2 → ... → In = H

with n � 1. An induction on i gives us that �α ∈ Ii , for 0 � i � n, for the rule 4.
That α ∈ In follows from that by the �A rule.
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X = {sy}. I →sy H if, and only if, I → H or H → I . In the second case α ∈ H
follows from the b rule.
X = {re, sy}. I →re,sy H if, and only if, I → H or H → I or I = H . In these cases
α ∈ H follows from the �A, b and t rules, respectively.
X = {re, tr}. I →re,tr H if, and only if, I →+ H or I = H . In the first case α ∈ H
follows from the 4 rule, in the second case from the t rule.
X = {tr, sy}. I →tr,sy H if, and only if, I ↔+ H . Thus there is a tree-hypersequent
J such that either J → H or J ← H . The rules 4 and 5 imply that �α is in every
subtree of G�, and thus in particular in J . We have α ∈ H in the first case by the
�A rule, in the second case by the b rule.
X = {re, tr, sy}. I →re,tr,sy H iff I ↔∗ H . We have �A in all subtrees of G� by
the rules 4, 5, and thus also α by the t rule.
X ⊆ {re, tr, sy} and I →X∪se H . The argument for all these cases is similar to the
arguments for the cases X without the serial closure. Indeed I →X∪se H if, and
only if, I →X H or (I = H and there is no I

′
with I →X I

′
). In the second case,

thanks to the rule (d)+, there is no formula �α in I and thus our claim is trivially
true.

Claim 2. For all I ∈ W , we have:

– for all α ∈ I such that they occur on the left side of the sequent, I |�M α

– for all α ∈ I such that they occur on the right side of the sequent, I �M α

By induction on the complexity of the formula α. Concerning atoms, it follows
from the definition of the valuation function, and the fact that G� is not an initial
tree-hypersequent. Concerning the propositional connectives, it is clear from the
shape of the (¬)+ rules and the (∧)+ rules. If α = �β and it occurs on the right side
of the sequent, then by the (�K )+ rule, we have at least one H ∈ I with β ∈ H .
By the inductive hypothesis, we have H �M β and thus I �M �β. If α = �β and
it occurs on the left side of the sequent, then, by Claim 1, we have β ∈ H for all
H with I →X H . Thus, by the inductive hypothesis, we have H |�M β and then
I |�M �β.

Claim 3. For all I ∈ st (G�), f (I ) �M I .
By induction on the complexity of the tree-hypersequent I . If the tree-hypersequent
I is just a classical sequent, then it follows from Claim 2 and the fact that a formula
is in I if, and only if, it is in f (I ). So let

I = Δ/I1; ...; In f or n > 0

Then f (I ) = I . We have f (I ) �M Δ by Claim 2, and f (I ) �M Ii because
I → f (Ii ) and by inductive hypothesis f (Ii )�M Ii .
Since all rules seen top-down preserve countermodels Claim 3 implies that �M G.
��



Chapter 9
A Hypersequent Calculus for the System S5

S5 is undoubtedly one of the most important and well-known of all SLH-systems.
When considered from the point of view of Kripke semantics, S5 is rather peculiar
since it can be described in two different albeit equivalent ways. The first one (that
we illustrated in Section 2.1) specifies the properties that the accessibility relation
of a Kripke frame should satisfy: S5 is sound and complete with respect to the
class of reflexive, transitive and symmetric frames (or, equivalently, with respect to
the class of reflexive and euclidean frames). A second and easier way to study S5
semantically exploits Kripke frames where the accessibility relation is absent: S5 is
sound and complete with respect to the class of frames which are just non-empty
sets of worlds. (From now on, we will call this kind of frame S5 Kripke frames.)
This second way is evidently simpler. It would then be useful and interesting to
reflect this simplicity at the syntactic level, within a Gentzen system.

In the previous sections we introduced the calculus Thss5L for the system S5.
Thss5L reflects, at the syntactic level, the more complex semantic description that
can be given of S5: indeed it is composed of the rules t , 4, b and 5, that are
meant to reflect the semantic properties of reflexivity, transitivity, symmetry and
euclideaness, respectively. We have already proved (see Lemma 6.17, p. 134) that
the rule

G[Γ/(Σ/(Δ/X); X
′
)]

G[Γ/(Δ/X); (Σ/X
′
)] 5̃

is admissible in Thss5L .1 Roughly speaking, this rule allows one to pass from the
symbol / to the symbol ;, which is to say, in more intuitive terms, this rule allows
one to pass from the presence of an accessibility relation to its absence. Given this
result, an idea naturally arises: we could construct an alternative sequent calculus for
S5 where we still have n different sequents at a time, but where there is no longer
an order on these sequents, i.e. there is no longer an accessibility relation over the
set of worlds. Thus, in this sequent calculus, we no longer need to deal with the two
symbols / and ;, but with one of them only.

This section will be dedicated to the realisation of such an idea: we will develop
a new Gentzen system for the modal logic S5, which, by contrast with Thss5L ,

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_9, C© Springer Science+Business Media B.V. 2011

175



176 9 A Hypersequent Calculus for the System S5

will reflect, at the syntactic level, the simplicity of the S5 Kripke frames. In this
new sequent calculus we will use hypersequents – where the only meta-linguistic
symbol is the semi-colon – and not tree-hypersequents. Let us however emphasise
that the return to hypersequents is motivated by the work with tree-hypersequents. In
other words, hypersequents stand to tree-hypersequents, as S5 Kripke frames stand
to Kripke frames.

9.1 The Calculus ThS5L

Syntactic Notation

– ; denote a meta-linguistic symbol.
– Γ , Δ, ...: classical sequents.
– G, H , ...: hypersequents.

We will adopt the Convention 6.1, p. 122.

Definition 9.1 A hypersequent is a syntactic object of the form

Γ1;Γ2; ...; Γn

where Γi (i = 1, ..., n) is a classical sequent.

Definition 9.2 The interpretation τ of a hypersequent is definable in the following
inductive way:

– (M ⇒ N )τ : =
∧

M → ∨
N

– (Γ1;Γ2; ... ;Γn)τ : = �Γ τ
1 ∨ �Γ τ

2 ∨ ... ∨ �Γ τ
n

A hypersequent is then a multiset of classical sequents, which is to say, the order
of the sequents in a hypersequent does not count.

The postulates of the calculus ThS5L are2:

Initial Hypersequents

G; p, Γ, p

Logical Rules
Propositional Rules

G;Γ, α

G; ¬α, Γ
¬A

G;α, Γ

G;Γ,¬α
¬K

G;α, β, Γ

G;α ∧ β, Γ ∧A
′

G;Γ, α G;Γ, β

G;Γ, α ∧ β
∧K
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Modal Rules

G;α,�α, Γ

G;�α, Γ
�A1 G;Γ ;⇒ α

G;Γ,�α
�K

G;�α, Γ ;α,Σ

G;�α, Γ ;Σ �A2

Two remarks on modal rules are in order. The first one concerns the rules �Ai

(i = 1, 2) only. The repetition of the principal formula �α in the premise of each
of these rules only serves to prove in a short and simple manner the main results
obtainable in the calculus, as was the case for the rule �A and the special logical
rules in the calculi Thsk∗L . The second remark concerns the three modal rules. It is
easy to informally understand these rules if we compare the hypersequent to an S5
Kripke frame, and the sequents that compose the hypersequent to different worlds
of the S5 Kripke frame. From this perspective, the rule �K says, if read bottom-up,
that, if the formula �α is false at a world i , then we can create a new world j where
the formula α is false; on the other hand, the rules �Ai tell us, if they are read
bottom-up and considered together, that, if the formula �α is true at a world i , then
the formula α is true in any world of the frame.

9.2 Admissibility of the Structural Rules in ThS5L

In this section we will show which structural rules are admissible in the calculus
ThS5L . Moreover we will prove that all the propositional and modal rules are
height-preserving invertible. The proof of the admissibility of the cut-rule will be
shown in Section 9.4.

Lemma 9.3 Hypersequents of the form G;α, Γ, α, with α an arbitrary modal for-
mula, are derivable in ThS5L .

Proof By straightforward induction on α. ��
Lemma 9.4 The rule of merge

G;Γ ;Σ
G;Γ � Σ

merge

is height-preserving admissible in ThS5L .

Proof By induction on the derivation of the premise.
If the premise is an initial hypersequent, then so is the conclusion. If the premise

is inferred by a propositional rule, then the inference is clearly preserved. Let us
consider the example of the rule ¬K ,

〈n−1〉G;α, Γ ;Σ
〈n〉G;Γ,¬α;Σ ¬K � 3

〈n−1〉G;α, Γ � Σ

〈n〉G;Γ � Σ,¬α
¬K
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If the premise is inferred by the modal rule �K , then the inference is preserved.

〈n−1〉G;Γ ;Σ;⇒ α

〈n〉G;Γ,�α;Σ �K �
〈n−1〉G;Γ � Σ;⇒ α

〈n〉G;Γ � Σ,�α
�K

If the premise is inferred by the modal rule �A1, then the inference is preserved.

〈n−1〉G;α,�α, Γ ;Σ
〈n〉G;�α, Γ ;Σ �A1 �

〈n−1〉G;�α, α, Γ � Σ

〈n〉G;�α, Γ � Σ
�A1

If the premise is inferred by the modal rule �A2, there are two significant cases to
analyse: the one where the rule �A2 has been applied between the two sequents Γ

and Σ ; and the one where the rule �A2 has been applied between a third sequent,
let us call it Φ, and Γ (or, equivalently, Σ). The two situations are similar, therefore,
we will limit a detailed analysis to the first case.

〈n−1〉G;�α, Γ ;α,Σ

〈n〉G;�α, Γ ;Σ �A2 �
〈n−1〉G;�α, α, Γ � Σ

〈n〉G;�α, Γ � Σ
�A1

��
Lemma 9.5 The rule of external weakening

G

G;Γ EW

is height-preserving admissible in ThS5L .

Proof By straightforward induction on the derivation of the premise. ��
Lemma 9.6 The rule of internal weakening

G;Γ
G;Γ � Σ

I W

is height-preserving admissible in ThS5L .

Proof It follows by the height-preserving admissibility of the two rules of merge and
external weakening. ��
Lemma 9.7 The propositional and modal rules of ThS5L are height-preserving
invertible.

Proof The proof is by induction on the height of the derivation of the premise of the
rule considered. The cases of the propositional rules are dealt with in the classical
way. The only differences – the fact that we are dealing with hypersequents, and the
cases where the last applied rule is one of the rules �Ai or �K – are dealt with
easily.
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The rules �Ai are trivially height-preserving invertible since both their premises
are obtained by weakening from their respective conclusions, and weakening is
height-preserving admissible.

Let us show in detail the invertibility of the rule �K . If G;Γ,�α is an initial
hypersequent, then so is G;Γ ;⇒ α. If G;Γ,�α is obtained by a propositional rule
R, we apply the inductive hypothesis on the premise(s) G

′ ;Γ ′
,�α (G

′′ ;Γ ′′
,�α),

and we obtain derivation(s), of height n − 1, of G
′ ;Γ ′ ;⇒ α (G

′′ ;Γ ′′ ;⇒ α). By
applying the rule R, we obtain a derivation of height n of G;Γ ;⇒ α. If G;Γ,�α

is of the form G;�β, Γ
′
,�α, then it may have been obtained by the rule �A1, as

well as by the rule �A2. Since the procedure is the same in both cases, analysing one
of the rules is sufficient. We will consider the case of �A1. We apply the inductive
hypothesis on G;�β, β, Γ

′
,�α, and we obtain a derivation of height n − 1 of

G;�β, β, Γ
′ ;⇒ α. By applying the rule �A1, we obtain a derivation of height n

of G;�β, Γ
′ ;⇒ α.

If G;Γ,�α is obtained by the modal rule �K and �α is not the principal for-
mula, then this case can be treated analogously to the one of the rules �Ai . Finally,
if G;Γ,�α is obtained by the modal rule �K and �α is the principal formula, the
premise of the last step gives the conclusion. ��
Lemma 9.8 The rules of contraction

G;α, α, Γ

G;α, Γ
C A

G;Γ, α, α

G;Γ, α
C K

are height-preserving admissible in ThS5L .

Proof By induction on the derivation of the premises G;α, α, Γ and G;Γ, α, α. We
only analyse the case of the rule C K . The case of the rule C A is similar.

If G;Γ, α, α is an initial hypersequent, so is G;Γ, α. If G;Γ, α, α is obtained by
a rule R that does not have any of the two occurrences of the formula α as principal,
we apply the inductive hypothesis to the premise(s) G

′ ;Γ ′
, α, α (G

′′ ;Γ ′′
, α, α),

obtaining derivation(s) of height n − 1 of G
′ ;Γ ′

, α (G
′′ ;Γ ′′

, α). By applying the
rule R, we obtain a derivation of height n of G;Γ, α.

If G;Γ, α, α is obtained by a propositional or modal rule, and one of the two
occurrences of the formula α is principal, then the rule that concludes G;Γ, α, α is
a K -rule, and we must analyse the following three cases: ¬K , ∧K , �K .
¬K :

〈n−1〉G;β, Γ,¬β

〈n〉G;Γ,¬β,¬β
¬K 		
 4

〈n−1〉G;β, β, Γ

〈n−1〉G;β, Γ

〈n〉G;Γ,¬β
¬K

i.h.

∧K :

〈n−1〉G;Γ, β, β ∧ γ 〈n−1〉G;Γ, γ, β ∧ γ

〈n〉G;Γ, β ∧ γ, β ∧ γ
∧K 		
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〈n−1〉G;Γ, β, β

〈n−1〉G;Γ, β
i.h.

〈n−1〉G;Γ, γ, γ

〈n−1〉G;Γ, γ
i.h.

〈n〉G;Γ, β ∧ γ
∧K

�K :

〈n−1〉G;Γ,�β;⇒ β

〈n〉G;Γ,�β,�β
�K 		


〈n−1〉G;Γ ;⇒ β;⇒ β

〈n−1〉G;Γ ;⇒ β, β

〈n−1〉G;Γ ;⇒ β

〈n〉G;Γ,�β
�K

i.h.

merge

��
9.3 Adequacy of ThS5L

This section will show that the sequent calculus ThS5L proves exactly the same
formulas as the corresponding Hilbert system S5.

Theorem 9.9 For all hypersequents G, and for all formulas α,

(i) if 	 G in ThS5L , then 	 (G)τ in S5.
(ii) If 	 α in S5, then 	⇒ α in ThS5L .

Proof By induction on the height of derivations in S5 and ThS5L , respectively. (i)
The case of the axioms is trivial, while, for the induction steps with the propositional
rules, all we need is classical logic and the fact that if S5 	 α1 → (α2 → ... →
(αn → β)...), then S5 	 �α1 → (�α2 → ... → (�αn → �β)...). For what
concerns the induction steps for modal rules, we again exploit the fact that, if S5
	 α1 → (α2 → ... → (αn → β)...), then S5 	 �α1 → (�α2 → ... → (�αn →
�β)...), and the axiom �α → α.

(ii) The classical axioms and modus ponens are derived as usual. The derivations
of the axiom T , the axiom 4, the axiom B are the same as the ones we have shown
in the proof of Theorem 6.22, p. 138. The only difference consists in using one of
the rules �Ai instead of the special logical rules t , 4 and b. The derivation of the
axiom 5 is different since now we deal with hypersequents.

ThS5L 	⇒ ¬�¬α → �¬�¬α

⇒;�¬α ⇒;α ⇒ α

⇒;�¬α ⇒;⇒ ¬α, α
¬K

⇒;�¬α ⇒;¬α ⇒ ¬α
¬A

⇒;�¬α ⇒;⇒ ¬α
�A2

⇒;⇒ ¬�¬α;⇒ ¬α
¬K

⇒ �¬α;⇒ ¬�¬α
�K

⇒ �¬α,�¬�¬α
�K

¬�¬α ⇒ �¬�¬α
¬A

⇒ ¬�¬α → �¬�¬α
→K ��
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9.4 Cut-Admissibility in ThS5L

In this section we prove that the cut-rule is admissible in the calculus ThS5L .

Lemma 9.10 Let G;Γ, α and G
′ ;α,Π be two hypersequents. If

... d1

G;Γ, α

... d2

G
′ ;α,Π

G;G
′ ;Γ � Π

cutα

and d1 and d2 do not contain any other application of the cut-rule, then we can
construct a derivation of G;G

′ ;Γ � Π with no application of the cut-rule.

Proof The proof is developed by induction on the complexity of the cut-formula
(see Definition 2.3, p. 40), with subinduction on the sum of the heights of the deriva-
tions of the premises of the cut-rule. We will distinguish cases according to the last
rule applied to the left premise.

Case 1. G;Γ, α is an initial hypersequent. Then either the conclusion is also a
hypersequent, or the cut can be replaced by various applications of the internal and
external weakening rules to G

′ ;α,Π .

Case 2. G;Γ, α is inferred by a rule R in which α is not principal. The reduction is
done in the standard way by induction on the sum of the heights of the derivations
of the premises of the cut-rule. However, for the sake of clarity, we consider the
example of the rule �K ,

G;Γ, α ;⇒ β

G;Γ, α,�β
�K

...

G ′ ;α,Π

G;G ′ ;Γ � Π,�β
cutα

We reduce to

G;Γ, α;⇒ β G
′ ;α,Π

G;G
′ ;Γ � Π ;⇒ β

G;G ′ ;Γ � Π,�β
�K

cutα

where this cut is eliminable by induction on the sum of the heights of the derivations
of the premises of the cut-rule.

Case 3. G;Γ, α is inferred by a rule R in which α is principal. We can distinguish
two subcases: in one subcase R is a propositional rule, in the other R is a modal
rule.

Case 3.1. Supposing, for illustration, that the rule before G;Γ, α is ¬K and α ≡
¬β, we have



182 9 A Hypersequent Calculus for the System S5

G;β, Γ

G;Γ,¬β
¬K

...

G ′ ; ¬β,Π

G;G ′ ;Γ � Π
cut¬β

By applying Lemma 9.7 to G
′ ; ¬β,Π , we obtain G

′ ;Π,β. Therefore, we can
replace the previous cut with the following one, which is eliminable by induction on
the complexity of the cut-formula:

G
′ ;Π,β G;β, Γ

G;G ′ ;Γ � Π
cutβ

Case 3.2. R is �K and α ≡ �β. We have the following situation:

G;Γ ;⇒ β

G;Γ,�β
�K

...

G ′ ;�β,Π

G;G ′ ;Γ � Π
cut�β

We must consider the last rule R′
of d2. If no rule R′

introduces G
′ ;�β,Π because

G
′ ;�β,Π is an initial hypersequent, then we can solve the case as in 1. If �β is

not principal in the rule R′
, we solve the case as in 2. Only the case where R′

is
one of the rules �Ai is problematic. Since the procedure is the same in both cases,
analysing one of the rule is sufficient. We will consider the rule �A2 and the other
can be dealt with in an analogous fashion.

G;Γ ;⇒ β

G;Γ,�β
�K

G
′ ;�β,Π;β,Ψ

G ′ ;�β,Π;Ψ �A2

G;G ′ ;Γ � Π;Ψ cut�β

We reduce to

G;Γ ;⇒ β

G;Γ,�β G
′ ;�β,Π;β,Ψ

G;G
′ ;Γ � Π;β,Ψ

cut�β

G;G;G
′ ;Γ ;Γ � Π;Ψ

cutβ

G ; G
′ ;Γ � Π;Ψ

C A∗+C K ∗+merge∗

where the first cut is eliminable by induction on the sum of the heights of the deriva-
tions of the premises of the cut-rule, and the second cut is eliminable by induction on
the complexity of cut-formula. ��
Theorem 9.11 Every derivation d in ThS5L can be effectively transformed into a
derivation d

′
where there is no application of the cut-rule.

Proof It follows from Lemma 9.10 by induction on the number of cuts. ��
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9.5 Decidability of ThS5L

This section will prove that the calculus ThS5L is decidable. The situation is anal-
ogous to the case of the calculi Thsk∗L . On the one hand, (i) the contraction rules
are height-preserving admissible (see Lemma 9.8), (ii) the cut rule is admissible
(see Theorem 9.11), and (iii) in each of the rules of the calculus ThS5L , all the
formulas that occur in the premise(s) are subformulas of the formulas that occur
in the conclusion. Hence it seems that no difficulty arises. On the other hand, the
repetition of the principal formula in each of the rules �Ai is a source of potentially
non-terminating proof search. In order to avoid this problem, and prove that our
calculus is decidable, we shall apply the same technique of Section 7.2, and obtain
a bound on the number of applications of the rules �Ai .

Let us take into account minimal derivations, which are, as we have already said,
derivations where shortenings are not possible. Then we can prove that in minimal
derivations applying the rule �A1 once on any given pair of principal formulas, and
the rule �A2 once on any given pair of sequents is sufficient.

Lemma 9.12 The rule �A1 permutes down with respect to the rules ¬A, ¬K , ∧A
′
,

∧K , �A2 and �K .

Proof Let us first of all consider the permutation with one-premise propositional
rules, which is straightforward. Let us consider the example of the rule ¬K ,

G;β, α,�α, Γ

G;β,�α, Γ

G;�α, Γ,¬β
¬K

�A1

↓
G;β, α,�α, Γ

G;α,�α, Γ,¬β

G;�α, Γ,¬β
�A1

¬K

Let us now consider the permutation with the two premises-rule ∧K . We have
the following derivation:

G;α,�α, Γ, β

G;�α, Γ, β
�A1

...

G;�α, Γ, γ

G;�α, Γ, β ∧ γ
∧K

↓
...

G;α,�α, Γ, β

G;�α, Γ, γ

G;α,�α, Γ, γ
I W

G;α,�α, Γ, β ∧ γ

G;�α, Γ, β ∧ γ
�A1

∧K
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The transformation of the first derivation into the second one is achieved by means
of an application of the height-preserving admissible rule of internal weakening.

Finally, this is the permutation in case of the rule �K :

G;α,�α, Γ ;⇒ β

G;�α, Γ ;⇒ β

G;�α, Γ,�β
�K

�A1

↓
G;α,�α, Γ ;⇒ β

G;α,�α, Γ,�β

G;�α, Γ,�β
�A1

�K

��
Lemma 9.13 The rule �A2 permutes down with respect to the rules ¬A, ¬K , ∧A

′
,

∧K , �A1. It also permutes with instances of the rule �K when the auxiliary for-
mula α of its premise is not active in the sequent where the auxiliary formula of the
premise of �K occurs.

Proof The proof is analogous to the one of Lemma 9.12. ��
Corollary 9.14 In a minimal derivation in ThS5L , the rule �A1 cannot be applied
more than once on the same pair of auxiliary formulas of any branch.

Proof Let us suppose we have a minimal derivation where the rule �A1 has been
applied twice on the same pair of formulas,

G
′ ;α,�α, Γ

′

G ′ ;�α, Γ
′ �A1

·
·
·

G;α,�α, Γ

G;�α, Γ
�A1

By permuting down �A1 with respect to the steps in the dotted part of the derivation,
we obtain a derivation of the same height ending with

G;α, α,�α, Γ

G;α,�α, Γ

G;�α, Γ
�A1

�A1

By applying the height-preserving admissible rule C A on the two occurrences of the
formula α in place of the upper �A1, we obtain a shorter derivation, contrary to the
assumption of minimality. ��
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Corollary 9.15 In a minimal derivation in ThS5L , the rule �A2 cannot be applied
more than once on the same pair of sequents of any branch.

Proof The proof is analogous to the one of Corollary 9.14. ��
Now let us prove that the modal logic S5 is decidable by showing effective

bounds on proof search in the calculus ThS5L .

Theorem 9.16 The calculus ThS5L allows terminating proof search.

Proof Place a hypersequent G, for which we are looking for a proof search, at the
root of the procedure. Apply first the propositional rules and then the modal rules.
The propositional rules reduce the complexity of the hypersequent. The rule �K
removes the modal constant � and adds a new sequent, each of the rules �Ai

increases the complexity. However, by Corollary 9.14, the rule �A1 cannot be
applied more than once on the same pair of formulas, while, by Corollary 9.15, the
rule �A2 cannot be applied more than once on the same pair of sequents. Therefore,
the number of applications of the two rules �A1 and �A2 is bounded by the number
of �’s occurring in the negative part (see definition below) of the hypersequent to
prove, and by the number of sequents that may appear in the derivation, respectively.
The latter, in turn, is bounded by the number of sequents belonging to the hyperse-
quent to prove, and the sequents which can be introduced by applications of the rule
�K .

In order to calculate explicit bounds, we first define the negative and positive
parts of the hypersequent M1 ⇒ N1; ...; Mn ⇒ Nn , as the negative and positive
parts of each of the following conjuncts and disjuncts:

∧
M1 →

∨
N1, ...,

∧
Mn →

∨
Nn

For any given hypersequent G, let n(�) be the number of �’s in the negative part
of the hypersequent G, and p(�) be the number of �’s in the positive part of the
hypersequent G. The number of applications of the rule �A1 in a minimal derivation
is bounded by

n(�)

In the case where the root-hypersequent is just a sequent, the number of applica-
tions of the rule �A2 in a minimal derivation is bounded by

n(�) · p (�)

In the case where the root-hypersequent is a hypersequent, and s is the number of
sequents which occurs in it, the number of applications of the rule �A2 in a minimal
derivation is bounded by

n(�) · (p (�) + s)

��
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Notes

1. For the sake of completeness, we underline that it is an easy (but quite tedious) exercise to show
that the rule 5̃ is invertible.

2. For the sake of brevity, we present only a logical variant of the hypersequent calculus for the
system S5. The reader interested in a general variant should be able to obtain it on his own.

3. Recall that the symbol � means: the premise of the right side is obtained by applying the
inductive hypothesis to the premise of the left side (see Section 6.2, p. 128).

4. The symbol ��� means: the premise of the right side is preceded by application of Lemma 9.7
to the premise of the left side.



Chapter 10
A Tree-Hypersequent Calculus
for the Modal Logic of Provability

GL, the logic of provability, was elaborated at the end of the 1970s in order to “cap-
ture” the properties of the provability predicate of Peano arithmetic in the simple
framework of modal logic.

As Section 2.1 highlighted, GL is sound and complete with respect to the class
of transitive frames without infinite ascending R-chains. The property of not having
infinite ascending R-chains is a property that cannot be described with a first-order
logic formula. This is the first relevant difference between GL and the other SLH-
systems. The second one, which is probably not unrelated to the first, consists in the
fact that it is particularly difficult to find a sequent calculus for this system. Indeed
we only know of two such attempts. The first attempt Ggl (that was introduced
in Section 2.2) is Leivant’s [74]. Ggl presents many disadvantages: the proof of
cut-elimination is complicated, the structural rules are not eliminable, and the rules
are neither explicit nor symmetric.

Some of these shortcomings have been overcome. The second attempt for a cal-
culus for GL, which we owe to Negri (see Section 4.3), aims to do that. Neverthe-
less, this calculus is not free from imperfections either. In particular, we can single
out three flaws: the violation of the explicitness and syntactic purity properties, and
the requirement of axioms of the form �α ⇒ �α.

In the light of this state of affairs, it is worth proposing a new sequent calculus
for GL, obtained by means of the tree-hypersequent method. As the next sections
will make explicit, this sequent calculus has all the advantages of Negri’s calculus
(and also some of its disadvantages, e.g. axioms of the form �α ⇒ �α), since it is
mainly inspired from it; moreover it is syntactic pure.

10.1 The Calculus ThsglL

In order to get the tree-hypersequent calculus ThsglL ,1 we will employ the same
technique adopted by Negri. Therefore, contrary to what we have done for the
several Thsk∗L systems, we will not add a new special logical rule to the calcu-
lus Thsk4L , but we will modify it by (i) substituting the rules �A and �K with,
respectively

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_10, C© Springer Science+Business Media B.V. 2011
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G[Γ/�α ⇒ α]
G[Γ,�α] �Kgl

G[�α, Γ/(Σ,�α/X)] G[�α, Γ/(α,Σ/X)]
G[�α, Γ/(Σ/X)] �Agl

and (ii) allowing as initial tree-hypersequents, tree-hypersequents of the form

G[�α, Γ,�α]

In view of this second modification, we cannot properly consider ThsglL to be
a logical variant of the sequent calculus Thsgl. On the other hand, since the other
structural rules are all admissible, this approximation is allowed.

The postulates of the calculus ThsglL are:

Initial Tree-Hypersequents

G [p, Γ , p] G [�α, Γ , �α]

Logical Rules
Propositional Rules

G[Γ, α]
G[¬α, Γ ] ¬A

G[α, Γ ]
G[Γ,¬α] ¬K

G[α, β, Γ ]
G[α ∧ β, Γ ] ∧A′

G[Γ, α] G[Γ, β]
G[Γ, α ∧ β] ∧K

Modal Rules

G[�α, Γ/(Σ,�α/X)] G[�α, Γ/(α,Σ/X)]
G[�α, Γ/(Σ/X)] �Agl

G[Γ/�α ⇒ α]
G[Γ,�α] �Kgl

Special Logical Rule

G[�α, Γ/(�α,Σ/X)]
G[�α, Γ/(Σ/X)] 4

10.2 Admissibility of the Structural Rules in ThsglL

This section is dedicated to the proofs of the admissibility of the structural rules and
the invertibility of the logical rules in ThsglL . In these proofs, thanks to Lemmas
6.9–6.12 and 6.15, we will merely check the cases where the last applied rule is one
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of the new modal rules, since all the others have already been verified. Note that in
analysing these cases we will take into account the Remark 6.7, p. 128.

Lemma 10.1 Tree-hypersequents of the form G[α, Γ, α], with α arbitrary formula,
are derivable in ThsglL .

Proof By straightforward induction on α. ��
Lemma 10.2 The rule of necessitation

G

⇒ /G
rn

is height-preserving admissible in ThsglL .

Proof By induction on the derivation of the premise.
If G is inferred by the modal rule �Kgl , then the inference is preserved.

〈n−1〉G[Γ/�α ⇒ α]
〈n〉G[Γ,�α] �Kgl �

〈n−1〉 ⇒ /G[Γ/�α ⇒ α]
〈n〉 ⇒ /G[Γ,�α] �Kgl

If G is inferred by the modal rule �Agl , then the inference is preserved.

〈n−1〉G[�α, Γ/(Σ,�α/X)] 〈n−1〉G[�α, Γ/(α,Σ/X)]
〈n〉G[�α, Γ/(Σ/X)] �Agl

�
〈n−1〉 ⇒ /G[�α, Γ/(Σ,�α/X)] 〈n−1〉 ⇒ /G[�α, Γ/(α,Σ/X)]

〈n〉 ⇒ /G[�α, Γ/(Σ/X)] �Agl

��
Lemma 10.3 The rules of internal and external weakening

G[Γ ]
G[α, Γ ] W A

G[Γ ]
G[Γ, α] W K

G[Γ ]
G[Γ/Σ] E A

are height-preserving admissible in ThsglL .

Proof By straightforward induction on the derivation of the premise. ��
Lemma 10.4 The rule of merge

G[Δ/(Γ/X); (Π/X ′)]
G[Δ/(Γ � Π/X; X ′)] merge

is height-preserving admissible in ThsglL .

Proof By induction on the height of the derivation of the premise. As the rule of
merge has three auxiliary sequents, Δ, Γ and Π , we should, for each rule R applied
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to the premise, distinguish three subcases: one in which the rule R has been applied
to the sequent Δ, one in which the rule R has been applied to the sequent Γ , one in
which the rule R has been applied to the sequent Π . On the other hand, since these
subcases are similar, we will sketch the proof for one of them only.

If G is inferred by the modal rule �Kgl , then the inference is preserved.

〈n−1〉G[Δ/(Γ/�α ⇒ α; X); (Π/X ′)]
〈n〉G[Δ/(Γ,�α/X); (Π/X ′)] �Kgl �

〈n−1〉G[Δ/(Γ � Π/�α ⇒ α; X; X ′)]
〈n〉G[Δ/(Γ � Π,�α/X; X ′)] �Kgl

If the premise is inferred by the rule �Agl , then the inference is preserved.

〈n−1〉G[�α,�/(�,�α/X); (�/X
′
)] 〈n−1〉G[�α,�/(α, �/X); (�/X

′
)]

〈n〉G[�α,�/(�/X); (�/X
′
)] �Agl

�
〈n−1〉G[�α,�/(� � �,�α/X; X

′
)] 〈n−1〉G[�α,�/(α, � � �/X; X

′
)]

〈n〉G[�α,�/(� � �/X; X
′
)] �Agl

��
Lemma 10.5 The rule 4̃

G[Γ/(Σ/X)]
G[Γ/(⇒ /Σ/X)] 4̃

is admissible in ThsglL .

Proof By induction on the height of the derivation of the premise. As the rule 4̃ has
two auxiliary sequents, Γ and Σ , we should, for each rule R applied to the premise,
distinguish two subcases: one in which the rule R has been applied to the sequent
Γ , and one in which the rule R has been applied to the sequent Σ . On the other
hand, since the two subcases are similar, we will sketch the proof for one of them
only.

If G is inferred by the modal rule �Kgl , then the inference is preserved.

〈n−1〉G[Γ/�α ⇒ α; (Σ/X)]
〈n〉G[Γ,�α/(Σ/X)] �Kgl � G[Γ/�α ⇒ α; (⇒ /Σ/X)]

G[Γ,�α/(⇒ /Σ/X)] �Kgl

If G is inferred by the modal rule �Agl , then the inference is preserved.
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〈n−1〉G[�α, Γ/(Σ,�α/X)] 〈n−1〉G[�α, Γ/(α,Σ/X)]
〈n〉G[�α, Γ/(Σ/X)] �Agl

�
G[�α, Γ/(⇒ /Σ,�α/X)]

G[�α, Γ/(�α ⇒ /Σ,�α/X)] W A
G[�α, Γ/(⇒ /α,Σ/X)]

G[�α, Γ/(�α ⇒ /α,Σ/X)] W A

G[�α, Γ/(�α ⇒ /Σ/X)] �Agl

G[�α, Γ/(⇒ /Σ/X)] 4

��
Lemma 10.6 The propositional rules, the modal rules and the special logical rule
of ThsglL are invertible.

Proof The proof is by induction on the height of the derivation of the premise of the
rule considered. The cases of the propositional rules are dealt with in the classical
way. The only differences – the fact that we are dealing with tree-hypersequents,
and the cases where the last applied rule is one of the modal rules or the special
logical rule – are dealt with easily.

The rules �Agl and 4 are (height-preserving) invertible by the (height-
preserving) admissibility of internal weakening.

Let us now consider the invertibility of the �Kgl rule. If G[Γ,�α] is an ini-
tial tree-hypersequent and �α is not the principal formula, then G[Γ/�α ⇒ α]
is also an initial tree-hypersequent. On the other hand, if G[Γ,�α] is an initial
tree-hypersequent and �α is the principal formula, then Γ will be of the form
�α, M ′ ⇒ N , and we need to prove that G[�α, M ′ ⇒ N/�α ⇒ α] is derivable.
This follows by �Agl from the initial tree-hypersequent G[�α, M ′ ⇒ N/�α ⇒
�α, α] and the derivable tree-hypersequent G[�α, M ′ ⇒ N/�α, α ⇒ α]. The
rest of the proof continues in the standard way. ��
Lemma 10.7 The rules of contraction

G[α, α, Γ ]
G[α, Γ ] C A

G[Γ, α, α]
G[Γ, α] C K

are admissible in ThsglL .

Proof By induction on the complexity of the formula α, cmp(α), with subinduction
on the height of derivations of the premises. Let C A<n and C An mean that C A is
admissible for cmp(α) < n and for cmp(α) = n, respectively. Analogously for
C K<n and C Kn . We prove successively that

(i) for every k: if C A<k and C K<k , then C Ak ,
(ii) for every k: if C Ak and C K<k , then C Kk .

Thus, if C A<k and C K<k , then C Ak and C Kk , and the conclusion follows by com-
plete induction on k.
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k = 0 is trivial. So suppose k = n, for n > 0. We treat this case in detail. As the
reader will see, we are going to use the two (inductive) hypothesis C A<n and CK<n .
We will indicate their use by i.h.

(i) We only analyse those cases in which G[α, α, Γ ] is obtained by a rule R that
has one of the two occurrences of the formula α as principal. The others can be
solved easily by subinduction on the height of derivations.

– α ≡ ¬β and has been obtained by the rule ¬A.

〈n−1〉G[¬β, Γ, β]
〈n〉G[¬β,¬β, Γ ] ¬A 		
 2 G[Γ, β, β]

G[Γ, β]
G[¬β, Γ ] ¬A

i.h.

– α ≡ β ∧ γ and has been obtained by the rule ∧A′.

〈n−1〉G[β ∧ γ, β, γ, Γ ]
〈n〉G[β ∧ γ, β ∧ γ, Γ ] ∧A′ 		
 G[β, β, γ, γ, Γ ]

G[β, γ, γ, Γ ]
G[β, γ, Γ ]

G[β ∧ γ, Γ ] ∧A′
i.h.

i.h.

– α ≡ �β and has been obtained by the rule �Agl .

〈n−1〉G[�β,�β, Γ/(Σ,�β/X)] 〈n−1〉G[�β,�β, Γ/(β,Σ/X)]
〈n〉G[�β,�β, Γ/(Σ/X)] �Agl �

G[�β, Γ/(Σ,�β/X)] G[�β, Γ/(β,Σ/X)]
G[�β, Γ/(Σ/X)] �Agl

– α ≡ �β and has been obtained by the rule 4.

〈n−1〉G[�β,�β, Γ/(�β,Σ/X)]
〈n〉G[�β,�β, Γ/(Σ/X)] 4 �

G[�β, Γ/(�β,Σ/X)]
G[�β, Γ/(Σ/X)] 4

We have thus established (i) for k = n. We now turn to (ii) for k = n.
(ii) We will restrict our analysis to those cases in which G[Γ, α, α] is obtained

by a rule R that has one of the two occurrences of the formula α as principal. The
others can be dealt with easily by subinduction on the height of derivations.

– α ≡ ¬β and has been obtained by the rule ¬K . This case can be dealt with
analogously to the case (i) - ¬A above.
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– α ≡ α ∧ β and has been obtained by the rule ∧K . This case can be dealt with
analogously to the case (i) - ∧A′ above.

– α ≡ �β and has been obtained by the rule �Kgl

〈n−1〉G[Γ,�β/�β ⇒ β]
〈n〉G[Γ,�β,�β] �Kgl 		
 G[Γ/�β ⇒ β;�β ⇒ β]

G[Γ/�β,�β,⇒ β, β]
G[Γ/�β ⇒ β, β]

G[Γ/�β ⇒ β]
G[Γ,�β] �Kgl

i.h.

(i)

merge

��
Lemma 10.8 Let G[H ] be any tree-hypersequent of the calculus ThsglL , and
G∗[H ] the result of the application of one of the (height-preserving admissible)
rules - rn, W A, W K , EW , merge - or of one of the (admissible) rules - C A, C K ,
4̃ - on G[H ]. If, for a rule R, we have

G[H ′]
G[H ] R

then it holds that

G∗[H ′]
G∗[H ] R

Proof By induction on the form of the tree-hypersequent G[H ]. ��
Lemma 10.9 Let G[H ] be any tree-hypersequent of the calculus ThsglL , and
G[H ′] the result of the application of one of the propositional rules or of the rule
�Kgl on G[H ]. If, for a rule R, we have

G∗[H ′]
G[H ′] R

then it holds that

G∗[H ]
G[H ] R

Proof By induction on the form of the tree-hypersequent G[H ′]. ��

10.3 Adequacy of ThsglL

This section will show that the sequent calculus ThsglL proves exactly the same
formulas as the corresponding Hilbert system GL. In order to reach this result, the
following lemma, established by Negri [85], is necessary.
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Lemma 10.10 For all interpretations in transitive frames without infinite ascending
R-chains, for all Kripke semantics words i , and for all formulas α,

i |� �α i f, and only i f, ∀ j (i R j and j |� �α → j |� α)

Proof The direction from the right to the left is easily provable by taking the stan-
dard forcing relation and by reasoning a fortiori.

For the converse, assume the right-hand side and suppose i � �α. Then there
exists a j1 such that i R j1 and j1 � α. The assumption allows us to derive that j1 �

�α, and so that there exists a j2 such that j1 R j2 and j2 � α. By the transitivity of the
relation R, as we have i R j1 and j1 R j2, we also have i R j2 and, consequently, j2 �

�α. This way we can build an infinite ascending R-chain, i R j1, j1 R j2, j2 R j3, ...
against the hypothesis. ��
Lemma 10.11 For all the tree-hypersequents G, if 	 G in ThsglL, then |�Cfgl G,
where |�Cfgl G stands for: the translation τ of G is valid in the class of transitive
frames without infinite ascending R-chains.

Proof By induction on the derivation of the premise. The validity of the axiom, the
propositional rules, and the special logical rule 4, is established as in the proof of
Theorem 8.3, p. 166. We will prove the validity of the two new modal rules only.

– �Kgl . Let us consider the rule in the form

Γ/�α ⇒ α

Γ,�α

By the inductive hypothesis, we have ∀i (i |�Cfgl Γ or i |�∗
Cfgl ¬�α, α), i.e. ∀i

(i |�Cfgl Γ or ∀ j (i R j → j �Cfgl �α or j |�Cfgl α)). From this, we get ∀i
(i |�Cfgl Γ or ∀ j (i R j → ( j |�Cfgl �α → j |�Cfgl α))), and hence we have
∀i (i |�Cfgl Γ or ∀ j (i R j and j |�Cfgl �α → j |�Cfgl α)). By definition of
the forcing relation in transitive frames without infinite ascending R - chains (see
Lemma 10.10), we have ∀i (i |�Cfgl Γ or i |�Cfgl �α), which is nothing other
than the conclusion of the rule. Finally, by Lemma 8.2, p. 166, we have that the rule
�Kgl is valid in the class of transitive frames without infinite ascending R-chains.

– �Agl . Let us consider the rule in the form

�α, Γ/(Σ,�α/X) �α, Γ/(α,Σ/X)

�α, Γ/(Σ/X)

By the inductive hypothesis we have ∀i (i |�Cfgl ¬�α, Γ or i |�∗
Cfgl �α,Σ or

j |�∗
Cfgl X ) and ∀i (i |�Cfgl ¬�α, Γ or i |�∗

Cfgl ¬α,Σ or j |�∗
Cfgl X ), i.e. ∀i

((i |�Cfgl ¬�α, Γ or i |�∗
Cfgl �α,Σ or j |�∗

Cfgl X ) and (i |�Cfgl ¬�α, Γ or
i |�∗

Cfgl ¬α,Σ or j |�∗
Cfgl X )). From this, we obtain
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1 ∀i (i �Cfgl �α or i |�Cfgl Γ or ((i |�∗
Cfgl �α,Σ or j |�∗

Cfgl X ) and (i |�∗
Cfgl ¬α,Σ or

j |�∗
Cfgl X )))

2 ∀i (i �Cfgl �α or i |�Cfgl Γ or (∀ j (i R j → j |�Cfgl �α or j |�Cfgl Σ or ∀z ( j Rz →
j |�Cfgl X )) and ∀ j (i R j → j �Cfgl α or j |�Cfgl Σ or ∀z ( j Rz → z |�Cfgl X ))))

3 ∀i (i �Cfgl �α or i |�Cfgl Γ or ∀ j((i R j → j |�Cfgl �α or j |�Cfgl Σ or ∀z ( j Rz →
z |�Cfgl X )) and (i R j → j �Cfgl α or j |�Cfgl Σ or ∀z ( j Rz → z |�Cfgl X ))))

4 ∀i (i �Cfgl �α or i |�Cfgl Γ or ∀ j(i R j → j |�Cfgl �α or j |�Cfgl Σ or j �Cfgl α or

j |�Cfgl Σ or ∀z ( j Rz → z |�Cfgl X )))

5 ∀i (i �Cfgl �α or i |�Cfgl Γ or ∀ j(i R j → j |�Cfgl �α or j |�Cfgl Σ or j �Cfgl α or ∀z

( j Rz → z |�Cfgl X ))))

6 ∀i (i �Cfgl �α or i |�Cfgl Γ or ∀ j((i R j → j �Cfgl �α and j |�Cfgl α) → (i R j →
j |�Cfgl Σ or ∀z ( j Rz → z |�Cfgl X ))))

7 ∀i (i �Cfgl �α or i |�Cfgl Γ or ∀ j(i R j → j �Cfgl �α and j |�Cfgl α) → ∀ j (i R j →
j |�Cfgl Σ or ∀z ( j Rz → z |�Cfgl X )))

8 ∀i (i �Cfgl �α or i |�Cfgl Γ or ¬∀ j(i R j → j �Cfgl �α and j |�Cfgl α) or ∀ j(i R j →
j |�Cfgl Σ or ∀z ( j Rz → z |�Cfgl X )))

9 ∀i (i �Cfgl �α or i |�Cfgl Γ or ∃ j(i R j and ( j |�Cfgl �α or j �Cfgl α)) or ∀ j(i R j →
j |�Cfgl Σ or ∀z ( j Rz → z |�Cfgl X )))

10 ∀i (i �Cfgl �α or i |�Cfgl Γ or i �Cfgl �α or ∀ j(i R j → j |�Cfgl Σ or ∀z ( j Rz →
z |�Cfgl X )))

11 ∀i (i �Cfgl �α or i |�Cfgl Γ or ∀ j(i R j → j |�Cfgl Σ or ∀z ( j Rz → z |�Cfgl X )))

The last line of the proof is the conclusion of the rule. From this argument, by
Lemma 8.2, we conclude that the rule �Agl is valid in the class of transitive frames
without infinite ascending R-chains. ��
Corollary 10.12 For all the tree-hypersequents G, if 	 G in ThsglL , then 	 (G)τ

in GL.

Proof By Lemma 10.11 and the completeness theorem between the class of tran-
sitive frames without infinite ascending R-chains and the Hilbert-style system GL.
��

In order to prove the completeness of the calculus ThsglL , we start by presenting
the following lemma and its corollary.

Lemma 10.13 All the tree-hypersequents of the form G[�α, Γ/(Σ,�α/X)] are
derivable in ThsglL .

Proof Root-first, by steps of �Kgl , 4 and �Agl . ��
Corollary 10.14 The rule

G[�α, Γ/(α,Σ/X)]
G[�α, Γ/(Σ/X)] �A

is derivable in ThsglL .

Proof By Lemma 10.13, the left premise of �Agl is derivable in ThsglL . ��
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Although the two rules �A and �Agl are interderivable, the use of �Agl is
essential in the proof of cut-elimination, as we will see in a moment. However, it is
possible to think of a tree-hypersequent calculus Thsgl◦L obtained by substituting, in
ThsglL , the rule �Agl with the rule �A. The two tree-hypersequent calculi ThsglL
and Thsgl◦L are equivalent. Thsgl◦L and Negri’s calculus G3KGL have the same
structural properties which are exposed in [85, p. 529].

Lemma 10.15 For all formulas α, if 	 α in GL, then 	⇒ α in ThsglL .

Proof By induction on the height of derivations in GL. The derivation of the Löb’s
axiom will provide better acquaintance with the calculus ThsglL .
ThsglL 	⇒ �(�α → α) → �α

�(�α → α) ⇒ /�α ⇒ α,�α �(�α → α) ⇒ /α,�α ⇒ α

�(�α → α) ⇒ /�α → α,�α ⇒ α
→A

�(�α → α) ⇒ /�α ⇒ α
�A

�(�α → α) ⇒ �α
�Kgl

⇒ �(�α → α) → �α
→K

��
Theorem 10.16 The calculus ThsglL is sound and complete with respect to the sys-
tem GL.

Proof By Corollary 10.12 and Lemma 10.15. ��

10.4 Cut-Admissibility in ThsglL

This section shows that the cut-rule is admissible in the calculus ThsglL . In order to
prove this theorem, we must first introduce the following lemma and the following
definition.

Lemma 10.17 Given three zoom tree-hypersequents I [∗], J [∗] and H [∗], such that
I [∗] ∼ J [∗] ∼ H [∗], if there is a rule R of ThsglL and a sequent Γ such that

J [Γ ]
I [Γ ] R

then, for any Δ, we have

J ⊗ H [Δ]
I ⊗ H [Δ] R

Proof By induction on the form of the tree-hypersequents I [∗], J [∗] and H [∗]. The
proof is developed similarly to the proof of Lemma 7.1, p. 143. ��
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Definition 10.18 When we consider a finite tree-frame semantically, we can talk
about its longest branch, i.e. a branch such that no other branch of the tree con-
tains more worlds. Analogously, we can talk about the longest branch of a tree-
hypersequent as the branch such that no other branch of the tree-hypersequent con-
tains more sequents.

Let us call the length of a tree-hypersequent the number of sequents con-
tained in its longest branch. The position of a sequent Γ in a tree-hypersequent
G in a derivation d is defined as the difference between the length of the longest
tree-hypersequent occurring in the derivation d and the number of sequents that
precede Γ .

Lemma 10.19 Let G[Γ, α] and G ′[α,Π ] be such that G[Γ, α] ∼ G ′[α,Π ]. If

... d1

G[Γ, α]
... d2

G ′[α,Π ]
G ⊗ G ′[Γ � Π ] cutα

and d1 and d2 do not contain any other application of the cut-rule, then we can
construct a derivation of G ⊗ G ′[Γ � Π ] with no application of the cut-rule.

Proof The proof is developed by induction on cmp(α), with subinduction on the
position of the two sequents on which we apply the cut (see Definition 10.18), and
with a third subinduction on the sum of the heights of the derivations of the premises
of the cut-rule. We will distinguish cases according to the last rule applied on the
left premise.

Case 1. G[Γ, α] is an initial tree-hypersequent. Then either the conclusion is also
an initial tree-hypersequent, or the cut can be replaced by various applications of
the internal and external weakening rules on G ′[α,Π ].
Case 2. G[Γ, α] is inferred by a rule R in which α is not principal. This case can
be standardly solved by induction on the sum of the heights of the derivations of
the premises of the cut-rule, with the help of Lemma 10.17. As a matter of fact, no
rule can change the position of the sequent where the cut occurs, and, on the other
hand, the definition of product ensures that the structure of the tree-hypersequent
stays unchanged, so that any problems are avoided. However, for the sake of clarity,
let us consider the example of the rule �Kgl .

G[Γ, α/�β ⇒ β]
G[Γ, α,�β] �Kgl

...

G ′[α,Π ]
G ⊗ G ′[Γ � Π,�β] cutα

We reduce to

G[Γ, α/�β ⇒ β] G ′[α,Π ]
G ⊗ G ′[Γ � Π/�β ⇒ β]

G ⊗ G ′[Γ � Π,�β] �Kgl

cutα
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Case 3. G[Γ, α] is inferred by a rule R in which α is principal. We distinguish two
subcases: in one subcase R is a propositional rule, in the other R is a modal rule.

Case 3.1. Supposing, for the sake of illustration, that the rule that introduces
G[Γ, α] is ¬K and α ≡ ¬β, we have

G[β, Γ ]
G[Γ,¬β] ¬K

...

G ′[¬β,Π ]
G ⊗ G ′[Γ � Π ] cut¬β

By applying Lemma 10.6 on G ′[¬β,Π ], we obtain G ′[Π,β]. We replace the pre-
vious cut with the following which is eliminable by induction on the complexity of
the cut-formula3:

G ′[Π,β] G[β, Γ ]
G ⊗ G ′[Γ � Π ] cutβ

Case 3.2. R is �Kgl and α ≡ �β. We have the following situation:

G[Γ/�β ⇒ β]
G[Γ,�β] �Kgl

...

G ′[�β,Π ]
G ⊗ G ′[Γ � Π ] cut�β

We must consider the last rule R′ of d2. If no rule R′ introduces G ′[�β,Π ] because
G ′[�β,Π ] is an initial tree-hypersequent, then we can solve the case as in 1. If �β

is not principal in the rule R′, we solve the case as in 2. Only those cases where R′
is the rule �Agl or the rule 4 are problematic. We will analyse each of them.
�Agl :

G[�/�β ⇒ β]
G[�,�β] �Kgl

Ġ
′ [�β,�/(�,�β/Y )] Ġ

′ [�β,�/(β,�/Y )]
Ġ ′ [�β,�/(�/Y )] �Agl

G ⊗ Ġ ′ [� � �/(�/Y )] cut�β

The reduction unfolds in several steps. We expose them one-by-one.

First step:

G[Γ,�β] Ġ ′[�β,Π/(Ψ,�β/Y )]
G ⊗ Ġ ′[Γ � Π/(Ψ,�β/Y )] cut�β

this cut is eliminable by induction on the sum of the heights of the derivations of the
premises of the cut-rule.
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Second step:

G[Γ,�β] Ġ ′[�β,Π/(β,Ψ/Y )]
G ⊗ Ġ ′[Γ � Π/(β,Ψ/Y )] cut�β

this cut is eliminable by induction on the sum of the heights of the derivations of the
premises of the cut-rule.

Third step:

G ⊗ Ġ ′[Γ � Π/(Ψ,�β/Y )] G[Γ/�β ⇒ β]
G ⊗ G ⊗ Ġ ′[Γ � Γ � Π/(Ψ, β/Y )] cut�β

this cut is eliminable by induction on the position of the sequents that contain the
cut-formula.

Fourth step:

G ⊗ G ⊗ Ġ ′[Γ � Γ � Π/(Ψ, β/Y )] G ⊗ Ġ ′[Γ � Π/(β,Ψ/Y )]
G ⊗ G ⊗ Ġ ′ ⊗ G ⊗ Ġ ′[Γ � Γ � Π � Γ � Π/(Ψ � Ψ/Y ; Y )]

G ⊗ Ġ ′[Γ � Π/(Ψ/Y )] C A∗+C K ∗+merge∗
cutβ

This cut is eliminable by induction on the complexity of the cut-formula.

4:

G[Γ/�β ⇒ β]
G[Γ,�β] �Kgl

Ġ ′[�β,Π/(�β,Ψ/Y )]
Ġ ′[�β,Π/(Ψ/Y )] 4

G ⊗ Ġ ′[Γ � Π/(Ψ/Y )] cut�β

In order to solve this case, it is necessary to analyse each rule that may have intro-
duced the tree-hypersequent Ġ ′[�β,Π/(�β,Ψ/Y )]. We go up the derivation until
either a rule R′′

applies to a formula different from the �β’s, or a rule R′′
different

from 4 applies to some of the �β’s. Let us indicate with the symbol � the tree-
hypersequent that is the conclusion of this rule R′′

. We make a distinction between
cases according to the type of rule R′′

is.

– � is an initial tree-hypersequent. If �β is not the principal formula of the axiom,
then even the conclusion of the cut is an initial tree-hypersequent and the case
is solved. Otherwise, there is a sequence in � that contains the formula �β on
both its right and left sides. This sequent can be the sequent �β,Π , and then
we get the conclusion by several applications of the rules of external and internal
weakening on the left premise of the cut. Otherwise, this sequent may be n steps
after �β,Π . In this case we apply the (admissible) rule 4̃, n + 1 times, to the
left premise G[Γ/�β ⇒ β], and we obtain a tree-hypersequent where �β ⇒ β
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is no longer after Γ , but n empty sequences after it. By first applying the rule
�Kgl , then the rules of external and internal weakening repetitively to this tree-
hypersequent, we reach the conclusion.

– � has been inferred by a rule R′′
that does not have any �β as principal for-

mula. In this case the technique consists of (i) applying the rule 4, n-times, to the
premise of the rule R′′

, and (ii) operating as in case 2.
– � has been inferred by the modal rule �Agl that has �β as principal formula. Let

us first of all distinguish two subcases. (a) The rule �Agl has been applied to two
sequents that are n steps after �β,Π , let us suppose the sequents �β,Ξ/�β,Ω .

G[Γ/�β ⇒ β]
G[Γ, �β]

�Kgl

G̈′[�β, Π] [�β, Ξ/(�β, Ω, �β/Y
′′

)] G̈′[�β, Π] [�β, Ξ/(�β, β, Ω/Y
′′

)]
G̈′[�β, Π] [�β, Ξ/(�β, Ω/Y

′′
)]

� Agl

.

.

.

4

G̈′[�β, Π] [Ξ/(Ω/Y
′′

)]
4

G ⊗ G̈′[Γ � Π] [Ξ/(Ω/Y
′′

)]
cut�β

We proceed in three steps.

(a1) We apply the rule 4, n-times, to the premises of the rule �Agl . We thus obtain
the two tree-hypersequents

Th1 G̈ ′[�β,Π ] [Ξ/(Ω,�β/Y
′′
)]

Th2 G̈ ′[�β,Π ] [Ξ/(β,Ω/Y
′′
)]

(a2) We apply the rule 4̃ to the tree-hypersequent G[Γ/�β ⇒ β] a number of times
sufficient to get �β ⇒ β in an equivalent position with the sequent β,Ω of the
tree-hypersequent Th2 (and therefore also with the sequent Ω,�β of the tree-
hypersequent Th1). We thus obtain a tree-hypersequent where �β ⇒ β is no
longer after Γ , but n empty sequences after. Let us note this as G[Γ ] [�β ⇒
β].

(a3) We are now in a position to apply the following reductions.

First step:

G[Γ,�β] G̈ ′[�β,Π ] [Ξ/(Ω,�β/Y
′′
)]

G ⊗ G̈ ′[Γ � Π ] [Ξ/(Ω,�β/Y
′′
)] cut�β

this cut is eliminable by induction on the sum of the heights of the derivations
of the premises of the cut-rule.

Second step:

G[Γ,�β] G̈ ′[�β,Π ] [Ξ/(β,Ω/Y
′′
)]

G ⊗ G̈ ′[Γ � Π ] [Ξ/(β,Ω/Y
′′
)] cut�β
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this cut is eliminable by induction on the sum of the heights of the derivations
of the premises of the cut-rule.

Third step:

G ⊗ G̈ ′[Γ � Π ] [Ξ/(Ω,�β/Y
′′
)] G[Γ ][�β ⇒ β]

G ⊗ G ⊗ G̈ ′[Γ � Γ � Π ][Ξ/(Ω, β/Y
′′
)] cut�β

this cut is eliminable by induction on the position of the sequents that contain
the cut-formula.

Fourth step:

G ⊗ G ⊗ G̈ ′[Γ � Γ � Π ][Ξ/(Ω, β/Y
′′
)] G ⊗ G̈ ′[Γ � Π ] [Ξ/(β,Ω/Y

′′
)]

G ⊗ G ⊗ G̈ ′ ⊗ G ⊗ G̈ ′[Γ � Γ � Π � Γ � Π ] [Ξ � Ξ/(Ω � Ω//Y
′′ ; Y

′′
)]

G ⊗ G̈ ′[Γ � Π ] [Ξ/(Ω/Y
′′
)] C A∗+C K ∗+merge∗

cutβ

this cut is eliminable by induction on the complexity of the cut-formula.

(b) The rule �Agl , with �β principal formula, has been applied to the sequents
�β,Π/�β,Ψ,�β and �β,Π/�β, β, Ψ . In this case we apply the rule 4, n-
times (see (a1)), to the premises of the rule �Agl , and then we simply proceed
as in �Agl . ��

Theorem 10.20 Every derivation d in ThsglL can be effectively transformed into a
derivation d ′ where there is no application of the cut-rule.

Proof It follows from Lemma 10.19, by induction on the number of cuts. ��

Notes

1. For the sake of brevity, we present only a logical variant of the tree-hypersequent calculus for
the system GL. The reader interested in a general variant should be able to obtain it on his own.

2. This symbol means: the premise of the right side is concluded by application of Lemma 10.6
on the premise of the left side.

3. Since we eliminate the cut by primary induction on the complexity of the cut-formula, the fact
that the logical rules are invertible, and not height-preserving invertible, does not affect the
course of the proof.



Chapter 11
Further Results on Tree-Hypersequent Calculi

Tree-hypersequent calculi have several characteristics in addition to those presented
above; the object of this chapter is to provide an overview of them. Specifically,
in the first section, we will explore the link between tree-hypersequent calculi and
display calculi. In this way we will supplement Table 5.4, p. 116. In the second
section we will mention logics to which the tree-hypersequent method has been
applied that are not modal logics. We will bring our analysis to a close by suggesting
further developments employing the framework of tree-hypersequent calculi.

11.1 Tree-Hypersequent Calculi and Other Calculi

In Chapter 5, we showed the relationships between the several extensions of the
classical sequent calculus for modal logic. In this section, we will deal with the
proof that tree-hypersequents can be simulated by display sequents.

Before reaching this result, let us introduce some translations, which are similar
to the ones Mints [82] introduced:

(α1, ..., αn ⇒ β1, ..., βm)s = α1 ◦ ... ◦ αn ⇒ β1 ◦ ... ◦ βm

(M1, ..., Mn ⇒ N1, ..., Nm)p = (M1)
∗ ◦ ... ◦ (Mn)∗ ◦ N1 ◦ ... ◦ Nm

In other words, the translation s allows one to substitute the comma with the
symbol ◦; while the translation p allows one to transform, by moving the antecedent
in the appropriate way, two-side sequents into one-side sequents.

For G ≡ M ⇒ N/H1; ...; Hn , set

(G)s = (M ⇒ N ◦ •(H1)
sp ◦ ... ◦ •(Hn)sp)s

Remark 11.1 In what follows, if Γ ≡ M ⇒ N , then Γ † will denote M∗ ◦ N . More-
over, we will use the notation •X to mean that, if X is the multiset composed by
H1, ..., Hn , then each Hi , 1 ≤ i ≤ n, is of the form •Hi .

F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Trends in Logic 32,
DOI 10.1007/978-90-481-9670-8_11, C© Springer Science+Business Media B.V. 2011
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Lemma 11.2 Given a tree-hypersequent G[H ] in its translation (G[H ])s , we can
always rewrite the tree-hypersequent H in the following way:

R ⇒ (H)sp

where R is some display structure that depends on G.

Proof By induction on the tree-hypersequent G[H ].
If G[H ] ≡ H , then the procedure is straightforward. If H ≡ M ⇒ N/I1; ...; In

and G[H ] ≡ M ⇒ N/I1; ...; In; H1; ...; Hm , then we have

M ⇒ N ◦ •(I1)
sp ◦ ... ◦ •(In)sp ◦ •(H1)

sp ◦ ... ◦ •(Hm)sp

(•(H1)
sp ◦ ... ◦ •(Hm)sp)∗ ◦ M ⇒ N ◦ •(I1)

sp ◦ ... ◦ •(In)sp

(•(H1)sp ◦ ... ◦ •(Hm)sp)∗ ⇒ Γ † ◦ •(I1)sp ◦ ... ◦ •(In)sp

If, finally, G[H ] ≡ M ⇒ N/G
′ [H ]; H1; ...; Hm , then we have M ⇒ N ◦

•(G ′ [H ])sp ◦ •(H1)
sp ◦ ... ◦ •(Hm)sp. By inductive hypothesis on G

′ [H ], we obtain
(•(G ′

)sp)∗ ◦ M ⇒ N ◦ (H)sp ◦ •(H1)
sp ◦ ... ◦ •(Hm)sp, and from this we easily

obtain (N ◦ •(H1)
sp ◦ ... ◦ •(Hm)sp)∗ ◦ (•(G ′

)sp)∗ ◦ M ⇒ (H)sp. ��
Theorem 11.3 Let G[H ] be any tree-hypersequent of the calculi Thsk∗L . Then every
derivation of G[H ] in Thsk∗L can be translated into a derivation of R ⇒ (H)sp,
where R is some display structure that depends on G, in Dsk∗.

Proof The proof is by induction on the derivation of the sequent G[H ].1
If G[H ] is an axiom, then R ⇒ (H)sp is derivable in Dsk∗ by several applica-

tions of the rules of weakening on admissible axioms of the form α ⇒ α. If G[H ]
has been inferred by one of the propositional rules for the connectives ¬ and ∧, then
the procedure is straightforward. If G[H ] has been inferred by the modal rule �K ,
then we have

G[Γ/ ⇒ α]
G[Γ,�α] �K �

R ⇒ Γ † ◦ •(I ∗ ◦ α)

(Γ †)∗ ◦ R ⇒ •(I ∗ ◦ α)

•((Γ †)∗ ◦ R) ⇒ I ∗ ◦ α

•((Γ †)∗ ◦ R) ⇒ α

(Γ †)∗ ◦ R ⇒ �α

R ⇒ �α ◦ Γ †

�K

If G[H ] has been inferred by the modal rule �A, then we have

G[�α, Γ/(α,Σ/X)]
G[�α, Γ/(Σ/X)] �A �
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R ⇒ �α∗ ◦ Γ † ◦ •(α∗ ◦ Σ† ◦ •X)

(�α∗ ◦ Γ †)∗ ◦ R ⇒ •(α∗ ◦ Σ† ◦ •X)

•((�α∗ ◦ Γ †)∗ ◦ R) ⇒ α∗ ◦Σ† ◦ •X

(Σ† ◦ •X)∗ ◦ •((�α∗ ◦ Γ †)∗ ◦ R) ⇒ α∗

α ⇒ ((Σ† ◦ •X)∗ ◦ •((�α∗ ◦ Γ †)∗ ◦ R))∗

�α ⇒ •((Σ† ◦ •X)∗ ◦ •((�α∗ ◦ Γ †)∗ ◦ R))∗
�A

•�α ⇒ ((Σ† ◦ •X)∗ ◦ •((�α∗ ◦ Γ †)∗ ◦ R))∗

(Σ† ◦ •X)∗ ◦ •((�α∗ ◦ Γ †)∗ ◦ R) ⇒ (•�α)∗

•((�α∗ ◦ Γ †)∗ ◦ R) ⇒ (•�α)∗ ◦ Σ† ◦ •X

(�α∗ ◦ Γ †)∗ ◦ R ⇒ •((•�α)∗ ◦ Σ† ◦ •X)

�α ◦ (�α∗ ◦ Γ †)∗ ◦ R ⇒ •((•�α)∗ ◦Σ† ◦ •X)

•(�α ◦ (�α∗ ◦ Γ †)∗ ◦ R) ⇒ (•�α)∗ ◦Σ† ◦ •X

•�α ⇒ (•(�α ◦ (�α∗ ◦ Γ †)∗ ◦ R))∗ ◦Σ† ◦ •X

�α ⇒ •((•(�α ◦ (�α∗ ◦ Γ †)∗ ◦ R))∗ ◦Σ† ◦ •X)

�α ◦ (�α∗ ◦ Γ †)∗ ◦ R ⇒ •((•(�α ◦ (�α∗ ◦ Γ †)∗ ◦ R))∗ ◦Σ† ◦ •X)

•(�α ◦ (�α∗ ◦ Γ †)∗ ◦ R) ⇒ (•(�α ◦ (�α∗ ◦ A)∗ ◦ R))∗ ◦Σ† ◦ •X

•(�α ◦ (�α∗ ◦ Γ †)∗ ◦ R) ◦ •(�α ◦ (�α∗ ◦ A)∗ ◦ R) ⇒ Σ† ◦ •X

•(�α ◦ (�α∗ ◦ Γ †)∗ ◦ R) ⇒ Σ† ◦ •X
C A

�α ◦ (�α∗ ◦ Γ †)∗ ◦ R ⇒ •(Σ† ◦ •X)

(�α∗ ◦ Γ †)∗ ◦ R ⇒ �α∗ ◦ •(Σ† ◦ •X)

R ⇒ �α∗ ◦�α∗ ◦ Γ † ◦ •(Σ† ◦ •X)

R ⇒ �α∗ ◦ Γ † ◦ •(Σ† ◦ •X)

If G[H ] has been inferred by the special logical rule t , then we have

G[�α, α, �]
G[�α, �] t �

R ⇒ �α∗ ◦ α∗ ◦ �†

α ⇒ R∗ ◦ �α∗ ◦ �†

�α ⇒ •(R∗ ◦�α∗ ◦ �†)

�α ⇒ R∗ ◦�α∗ ◦ �†

�α ◦ �α ⇒ R∗ ◦ �†

�α ⇒ R∗ ◦ �†

R ⇒ �α∗ ◦ �†

t

�A
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If G[H ] has been inferred by the special logical rule b, then we have

G[α, Γ/(�α,Σ/X)]
G[Γ/(�α,Σ/X)] b �

R ⇒ α∗ ◦ Γ † ◦ •(�α∗ ◦ Σ† ◦ •C)

(Γ † ◦ •(�α∗ ◦ Σ† ◦ •C))∗ ◦ R ⇒ α∗

α ⇒ ((Γ † ◦ •(�α∗ ◦ Σ† ◦ •C))∗ ◦ R)∗

�α ⇒ •((Γ † ◦ •(�α∗ ◦ Σ† ◦ •C))∗ ◦ R)∗
�A

(•((Γ † ◦ •(�α∗ ◦Σ† ◦ •C))∗ ◦ R)∗)∗ ⇒ �α∗

•((Γ † ◦ •(�α∗ ◦ Σ† ◦ •C))∗ ◦ R) ⇒ �α∗
b

•((Γ † ◦ •(�α∗ ◦Σ† ◦ •C))∗ ◦ R) ⇒ �α∗ ◦Σ† ◦ •C

(Γ † ◦ •(�α∗ ◦ Σ† ◦ •C))∗ ◦ R ⇒ •(�α∗ ◦Σ† ◦ •C)

R ⇒ •(�α∗ ◦Σ† ◦ •C) ◦ Γ † ◦ •(�α∗ ◦ Σ† ◦ •C)

R ⇒ Γ † ◦ •(�α∗ ◦Σ† ◦ •C)
C K

If G[H ] has been inferred by the special logical rule 4, then we use the same proce-
dure adopted for the rule �A plus we exploit the special display structural rule 4. If
G[H ] has been inferred by the special logical rule 5, then we use the same procedure
adopted for the rule b plus we exploit the special display structural rule 4. ��

Multiple Sequent
Calculi

Tree-hyper
Sequent
Calculi

Indexed Sequent
Calculi

Display
Sequent
Calculi

Internalised Forcing
Sequent Calculi

Higher-Arity
Sequent Calculi Hypersequent

Calculus

Semantic Modal
Sequent Calculi

Fig. 11.1 Relationships between sequent calculi for modal logic

11.2 Tree-Hypersequent Calculi and Other Logics

In the present part of the book, we observed the applicability of the
tree-hypersequent method to a broad number of modal logic systems, such as the
systems K, KT, KB, S4, S5, GL. It is worth mentioning that the tree-hypersequent
method has also been applied to other logics. A notable example is Kashima’s
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result [55], which consists in the application of the tree-hypersequent method to
first-order constructive logics with negation. Another significant instance of the
application of the tree-hypersequent method to other logics can be found in the
work of Ishigaki and Kikuchi [66], where tree-hypersequents are applied to subintu-
itionistic predicate logics. Also noteworthy is the work of Bünnler and Stüder, [17],
on syntactic cut-elimination for common knowledge. Finally, Hill and Poggiolesi
[60] have also put forward interesting results, where tree-hypersequents are used to
provide propositional dynamic logic with a sequent calculus.

11.3 Tree-Hypersequent Calculi and Further Developments

There are at least three different routes for further developments of the tree-
hypersequent framework. The first one concerns the results that are provable with
it. It would be interesting to prove the interpolation theorem, or to find an algorithm
that, given a modal axiom, it generates the corresponding tree-hypersequent rule
(similarly to display calculi, see Section 3.3, and in line with the work developed in
[26]).

Following the second route for future research would lead one to analyse the
relationship between tree-hypersequent calculi and other proof-systems, in one of
two ways. On the one hand, one could compare tree-hypersequent calculi to other
types of calculi. This task would be fairly simple using tableaux systems, but it
would be more arduous using natural deduction calculi. On the other hand, tree-
hypersequent calculi could serve as inspiration to enhance our knowledge of more
recent proof-tools. A particularly relevant and interesting example would be proof-
nets. As Restall [117] also suggests, proof-nets for modal logic remain unexplored,
and there is no doubt that tree-hypersequents could contribute to developing useful
results.

A third and final option for future research would be to focus on the applica-
bility of the tree-hypersequent method to other logics. We just saw that much has
already been done in this respect, but there is still room for further enquiry. What
about, for instance, the use of tree-hypersequents for temporal logics or for dynamic
epistemic logics ?

Given what we have said in the book, in each of these potential developments,
one may expect the tree-hypersequent method to yield valuable, and perhaps unex-
pected, results.

Note

1. In order to shorten the derivations in the calculi Dsk∗, we may use several rules in a row and
indicate them with just one inference. For this reason and also not to burden the derivations,
we will not specify the names of the rules used in the derivations except for the most signifi-
cant ones.
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Symbols and Notations

Below we list the symbol that either appear in the text more than just locally, or
are important for other reasons. The more relevant conventions and notations in use
throughout the book are found in Sections 1.1 and 2.1.

Logical Operators

¬,∧,∨,→,↔ p. 3 (propositional operators)
⊥ p. 3 (falsity)
� p. 3 (truth)
�,� p. 39 (modal operators)
⇒ p. 4 (sequent arrow)∧

,
∨

p. 4 (iterated conjunction and disjunction)

Languages and Well-Formed Formulas

Lc p. 3 (classical propositional language)
L� p. 39 (modal propositional language)
L�
¬,∧,� p. 40 (modal propositional language restricted

to the connectives ¬, ∧, �)
WF p. 3 (set of well-formed formulas)
PL p. 3 (propositional letters)
WMF p. 39 (set of well-formed modal formulas)

Measures on Formulas and Derivations

d, d
′

p. 4 (formal derivations)
cmp(α) p. 40 (complexity of a formula)
h(d) p. 6 (height of a derivation)
s(G) p. 172 (size of a tree-hypersequent)
sf(G) p. 172 (set of subformulas of a tree-hypersequent)
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Turnstiles Symbols

	H p. 4 (deducibility in a Hilbert system)
	G p. 4 (deducibility in a Gentzen system)
d 	n

G p. 6 (deducibility with height ≤ n in a Gentzen
system)

i |�M p. 41 (satisfability)
|�C p. 41 (validity in a class of frames)

Formalisms

- general formalisms

S p. 4 (formal system)
NMS p. 40 (normal modal system)
SLH p. 44 (Scott-Lemmon Hilbert system)
H p. 4 (Hilbert system)
G p. 4 (Gentzen system)
N p. 4 (natural deduction system)

- non modal formalisms

Gcl p. 5 (Gentzen system for classical logic)
GclL p. 9 (logical variant of the Gentzen system

for classical logic)
GclS p. 10 (structural variant of the Gentzen system

for classical logic)
Gil p. 11 (Gentzen system for intuitionistic logic)
Gll p. 11 (Gentzen system for linear logic without

exponentials)
Hcl p. 7 (Hilbert system for classical logic)

- Hilbert modal formalisms

K p. 40 KD p. 44
KT p. 44 K4 p. 44
KB p. 44 S4 p. 44
S5 p. 44 GL p. 44

- Gentzen modal formalisms

Msk∗ p. 59 (multiple sequent calculi)
H-ask∗ p. 65 (higher-arity sequent calculi)
Dsk∗ p. 71 (display sequent calculi)
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Ssk∗ p. 83 (semantic sequent calculi)
Isk∗ p. 91 (indexed sequent calculi)
Ifsk∗ p. 98 (internalised forcing sequent calculi)
Thsk∗ p. 127 (tree-hypersequent calculi)

Syntactic Tools

Let � ∈ {∧,∨,→, W, C}
R p. 6 (rule)
R∗ p. 74 (repeated running application of the same

rule)
R∗ + R′∗ + R′′∗ p. 163 (repeated running application of different

rules)
�A, �K p. 5 (left and right introduction rules)
Ax , A⊥ p. 5 (axioms)
cutα p. 5 (cut-rule)

Semantic Tools

i, j, ... p. 40 (variables for possible worlds)
R p. 40 (accessibility relation)
F p. 40 (frame)
M p. 41 (model)
T p. 40 (tree-frame)

Other Notations

� p. 7 (end-of-proof symbol)
δ,τ p. 4 (translations and embedding)
� p. 141 (application of the inductive hypothesis)
		
 p. 141 (application of the invertibility of the

logical rules)
prove(G, (Y)+) p. 172 (procedure for building derivation trees in

tree-hypersequent calculi)
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height-preserving, 6
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sequence, 7
set, 7
structural databases, 34
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Axioms, 4
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Pliuškevičiene, 76
Postulates, 4
Pottinger, 121

Prawitz, 19
Prior, 18
Proclus, 12
Product

of two tableaux, 88
of two tree-hypersequents, 124

Proof
analytic, 12
synthetic, 12

Proof-nets, 207
Proof-theoretic semantics, 16
Proper variable, 97
Property

irreflexivity, 43, 99
Propositional dynamic logic, 207
Pure derivation, 88, 98

Q
Quine, 26, 28

R
Ramanayake, 51
Range, 98
Rautenberg, 47, 53
Read, 19–21
Restall, 56, 71, 84, 99
Rousseau, 62

S
Sahlqvist, 44
Sambin, 21, 45, 46, 51, 71
Sasaki, 51
Satisfability relation, 41, 92
Sato, 47, 50, 62
Schroeder-Heister, 16, 19
Schröter, 62
Scott, 43, 44
Segregation, 71
Semantic element, 31

algebraic elements, 75
Kripke semantics elements, 75, 76

Semantic modal sequent, 77
Semantic modal sequent calculi, 77, 112
Separation, 20, 28
Sequent, 4

antecedent of, 4
auxiliary, 128
consequent of, 4

Shvarts, 51
Smullyan, 59
Soundness, 44, 165
Stewart, 31
Stouppa, 31
Structural deduction, 15



222 Index

Stüder, 207
Subformula property, 14, 22, 99
Substitution

substitution in zoom tree-hypersequents,
123

substitution lemma, 97
Subintuitionistic predicate logics, 207
Substructure property, 74
Subterm property, 99
Subtree, 173

immediate, 173
proper, 173

Symmetry, 28
Syntactic purity

strong, 29
weak, 29

T
Tableau, 85

pure, 88
Takano, 46
Tennant, 19
Theorem, 4

in a Gentzen system, 4
in a Hilbert system, 4

Thomason, 42
Tragesser, 29
Tree-hypersequent, 122

leaf of, 172

length of, 197
negative part of, 160
position of a sequent in, 197
positive part of, 160
set, 171
size of, 172
zoom, 122

U
Undecidability, 72
Uniqueness, 29
Unraveling, 42

V
Valentini, 45, 46, 51
Variant, 7

general, 9
logical, 9, 24, 66, 73, 126, 186, 201
structural, 10, 28, 61, 84, 99

Visibility, 71

W
Wallen, 85
Wansing, 21, 29, 47, 55, 66, 71–74, 101, 107,

116

Z
Zeman, 51, 56
Zucker, 29


	Preface
	Contents
	Part I An Overview of the Sequent Calculus
	1  What Is a Good Sequent Calculus?
	1.1  The Sequent Calculus Gcl
	1.2  Formal Remarks
	1.3  Philosophical Remarks
	1.3.1  Analyticity
	1.3.2  Logicality
	1.3.3  From Logicality to Inferentialism
	1.3.4  Harmony
	1.3.5  Inferentialism
	1.3.6  Concluding Remarks

	1.4  Subformula Property
	1.5  Admissibility of the Structural Rules
	1.5.1  Operational vs Global Meaning

	1.6  Admissibility of the Logical Rules
	1.7  Explicitness, Separation and Symmetry
	1.8  Uniqueness
	1.9  Syntactic Purity
	1.10  Došen's Principle Redefined
	1.10.1  Modularity

	Notes


	Part II Sequent Calculi for Modal Logic
	2  Modal Logic and Ordinary Sequent Calculi
	2.1  Normal Modal Logic
	2.2  Ordinary Sequent Calculi for Modal Logic
	2.3  The Idea of Generalising the Gentzen Calculus
	Notes

	3  Purely Syntactic Methods 
	3.1  Multiple Sequent Calculi
	3.2  Higher-Arity Sequent Calculi
	3.3  Display Sequent Calculi
	Notes

	4  Semantic Methods 
	4.1  Semantic Modal Sequent Calculi
	4.2  Indexed Sequent Calculi
	4.3  Internalised Forcing (Relation) Sequent Calculi
	Notes

	5  Comparing the Different Generalisations of the Sequent Calculus
	5.1  From Multiple Sequent Calculi to Display Sequent Calculi
	5.2  From Higher-Arity Sequent Calculi to Display Sequent Calculi
	5.3  From Indexed Sequent Calculi to Internalised Forcing Sequent Calculi
	5.4  From Indexed Sequent Calculi to Semantic Modal Sequent Calculi and Vice Versa
	5.5  From Display Sequent Calculi to Internalised Forcing Sequent Calculi
	Notes


	Part III Tree-Hypersequent Calculi
	6  On the Tree-Hypersequent Calculi
	6.1  The Calculi Thsk*
	6.2  Logical Variant of the Tree-Hypersequent Calculi
	6.3  Adequacy of the Tree-Hypersequent Calculi
	Notes

	7  Syntactic Cut-Admissibility and Decidability
	7.1  Cut-Admissibility in the Tree-Hypersequent Calculi
	7.2  Decidability of the Tree-Hypersequent Calculi
	Notes

	8  Semantic Adequacy
	8.1  Semantic Validity of the Tree-Hypersequent Calculi
	8.2  Semantic Completeness of the Tree-Hypersequent Calculi

	9  A Hypersequent Calculus for the System S5 
	9.1  The Calculus ThS5L
	9.2  Admissibility of the Structural Rules in ThS5L
	9.3  Adequacy of ThS5L
	9.4  Cut-Admissibility in ThS5L
	9.5  Decidability of ThS5L
	Notes

	10  A Tree-Hypersequent Calculus for the Modal Logic of Provability
	10.1  The Calculus ThsglL
	10.2  Admissibility of the Structural Rules in ThsglL
	10.3  Adequacy of ThsglL
	10.4  Cut-Admissibility in ThsglL

	11  Further Results on Tree-Hypersequent Calculi 
	11.1  Tree-Hypersequent Calculi and Other Calculi
	11.2  Tree-Hypersequent Calculi and Other Logics
	11.3  Tree-Hypersequent Calculi and Further Developments
	Note


	References
	Symbols and Notations
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




