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  Preface 

 The specifi c topic “Isoquinolines and Beta-Carbolines as Neurotoxins and 
Neuroprotectants: New Perspectives in Parkinson’s Disease Therapy,” was chosen 
in light of accumulating neurobiological evidence indicating that, in addition to 
exogenous neurotoxins (e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP]), 
endogenous compounds may play an important role in the most common neurode-
generative disorders (e.g., Parkinson’s disease). Two groups of amine-related com-
pounds, which appeared chemically like MPTP, were detected in human brain and 
cerebrospinal fl uid (CSF):  b -carbolines (BCs) and tetrahydroisoquinolines (TIQs). 
These are heterocyclic compounds formed endogenously from phenylalanine/
tyrosine (TIQs) and tryptophan, tryptamine, and 5-hydroxytryptamine (BCs), 
respectively, and exert a wide spectrum of psychopharmacological and behavioral 
effects. The TIQs and BCs may bind to their own high-affi nity sites on neuronal 
membranes associated with or located close to the receptors of neurotransmitters. 
Research on TIQs and BCs is stimulated also by their possible role in pathological 
conditions, especially parkinsonism and alcoholism. Recently, clinical interest has 
been spurred by their role as neuroprotective, and even neurorestorative, anticonvul-
sant, and antiaddictive, substances. 

 In this book we are going to summarize, for the fi rst time, the results from behav-
ioral, neurochemical, and molecular experiments, which demonstrate a wide spec-
trum of TIQs and BCs effects – from their rather mild neurotoxic actions to the 
important neuroprotective and antiaddictive properties. 

 Additionally, the recent results of experimental studies in vivo have allowed a 
much better understanding and simultaneous comparison of the neurochemical and 
molecular mechanisms underlying the neuroprotective and neurotoxic actions of 
endogenous TIQs and BCs and have pointed to the possibility of their therapeutic 
applications in neurodegenerative diseases such as Parkinson’s disease.  

Kraków, Poland Lucyna Antkiewicz-Michaluk
Berlin, Germany Hans Rommelspacher 
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  Abstract   1,2,3,4-Tetrahydroisoquinoline (TIQ) is the simplest representative of 
the family of non-catechol TIQs being present naturally in plants and in a variety of 
food products as well as in the brain of humans, primates, and rodents. Concentration 
of this compound in the mammalian brain is very low (0.5–10 ng/g), therefore, its 
determination required a more sensitive method than that for the measurement of 
classical neurotransmitters. The physiological role of TIQ has not been elucidated 
so far, but due to similarity of its chemical structure to MPTP, it was proposed to be 
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an endogenous neurotoxin involved in the pathogenesis of Parkinson’s disease (PD). 
In order to characterize TIQ properties in the brain, this review has summarized 
important aspects concerning the possible pathways of its synthesis, distribution, 
and metabolism in the mammalian organisms. A special attention has been focused 
on behavioral and neurochemical effects produced by TIQ administered, acutely 
and chronically, at pharmacological doses to rodents and monkeys. Since TIQ 
implication in PD is not clear, evidence indicating that it can induce some parkinso-
nian-like changes in animals and those suggesting that TIQ can act as a modulator 
of dopaminergic neurotransmission are thoroughly discussed. Finally, as more 
recent studies have indicated that TIQ can act as a neuroprotective agent, also these 
experimental data were carefully analyzed. We hope that this review can shed a new 
light on TIQ mode of action in the mammalian brain.  

  Keywords   1,2,3,4-Tetrahydroisoquinolines  •  Rat brain  •  Dopamine metabolism  
•  Nitric oxide  •  Glutathione  •  Neurotoxin  •  Neuroprotection      

    1.1   Introduction 

 Tetrahydroisoquinolines (TIQs) are a big family of compounds widespread in plant 
and animal kingdoms (McNaught et al.  1998 ; Rommelspacher and Susilo  1985 ; 
Zarranz de Ysern and Ordonez  1981  ) . In general, TIQs can be formed as condensa-
tion products of biogenic amines (i.e., phenylethylamines and catecholamines) with 
aldehydes or  a -keto acids by the so-called Pictet–Spengler reaction (Rommelspacher 
and Susilo  1985 ; Zarranz de Ysern and Ordonez  1981 ; Nagatsu  1997 ; McNaught 
et al.  1998  ) , although some of them are also synthesized enzymatically (Yamakawa 
and Ohta    1997   ; Yamakawa et al.  1999     ; Naoi et al.  2004  ) . Depending on the chemi-
cal structure of biogenic amines participating in these reactions, TIQs family can be 
divided into compounds with catechol and non-catechol structures. 

 For the fi rst time, TIQs attracted a considerable attention of neurochemists and 
pharmacologists when Davis and Walsh  (  1970a  )  demonstrated that the alcohol 
metabolite acetaldehyde promoted in vitro conversion of [ 14 C]dopamine into [ 14 C]
tetrahydropapaveroline (THP). Simultaneously, THP was identifi ed in the urine of 
parkinsonian patients on  l -DOPA medication (Sourkes  1971 ; Sandler et al.  1973 ; 
Matsubara et al.  1992  )  and in the urine and brain of rats treated with  l -DOPA 
(Turner et al.  1974  ) . Almost at the same time, salsolinol (6,7-dihydroxy-1-methyl-
1,2,3,4-tetrahydroisoquinoline), an adduct of dopamine and acetaldehyde, was 
determined in urine of non-pathologic human volunteers, occurring at high concen-
trations in the urine of intoxicated alcoholics (Collins et al.  1979  )  and in brains of 
rats treated with ethanol (Collins and Bigdeli  1975  ) . Moreover, 3 ¢ ,4 ¢ -deoxynorlaudano-
solinecarboxylic acid (DNLCA), a TIQ derived from dopamine and phenylpyruvic 
acid, was detected in the urine of phenylketonuric children and in the brain of rats 
with experimentally induced hyperphenylalaninemia (Lasala and Coscia  1979  ) . 
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These fi ndings led researchers to suppose that TIQs may play some role in pathological 
conditions especially in alcoholism, parkinsonism, and phenylketonuria (Davis and 
Walsh  1970a,   b ; Nagatsu and Hirata  1987 ; Lasala and Coscia  1979  ) . However, 
despite ongoing efforts, the contribution of TIQ to the pathogenesis of these dis-
eases has not been evidenced as yet. Also, their physiological role in the nervous 
system has not been elucidated so far. 

 This chapter reviews some important aspects concerning the chemistry, distribu-
tion, and pharmacology of 1,2,3,4-TIQ, the simplest representative of the unsubsti-
tuted non-catechol TIQs in the mammalian brain, on the background of other 
compounds from this group. Although TIQ has been proposed to be one of the etio-
logical factors of Parkinson’s disease (PD), its implication in the pathogenesis is not 
clear. Hence, in this chapter both evidence indicating that TIQ can induce some 
parkinsonian-like changes in animals and those suggesting that it can act as a neu-
romodulator are thoroughly discussed.  

    1.2   Chemical Structure and Origin 
of 1,2,3,4-Tetrahydroisoquinoline in the Brain 

 1,2,3,4-TIQ is the simplest representative of the group of non-catechol TIQs which 
occur naturally in plants and in a variety of food products (Makino et al.  1988 ; Niwa 
et al.  1989b  )  as well as in the brain of humans, primates, and rodents (Kohno et al. 
 1986 ; Makino et al.  1988 ; Niwa et al.  1987,   1989a ; Ohta et al.  1987 ; Yamakawa 
et al.  1999  ) . Apart from TIQ, this group also encompasses other TIQ derivatives, 
such as 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTIQ), 2-methyl-1,2,3,4- 
tetrahydroisoquinoline (2-MeTIQ), 1-methyl-3,4-dihydroisoquinoline (1-MeDIQ), 
1-benzyl-1,2,3,4-tetrahydroisoquinoline (1-BnTIQ), 1-(3 ¢ ,4 ¢ -dihydroxy-benzyl)-
1,2,3,4-tetrahydroisoquinoline [1-(3 ¢ ,4 ¢ -DHBn)TIQ], 1-phenyl-1,2,3,4-tetrahy-
droisoquinoline (1-PhTIQ), and 1-phenyl-2-methyl-1,2,3,4-tetrahydroisoquinoline 
(1Ph-2MeTIQ) (Fig.  1.1 ). TIQs were detected in plants much earlier, before they 
were found in humans and animals (Rommelspacher and Susilo  1985 ; Zarranz de 
Ysern and Ordonez  1981  ) .    Finally during the late 1980s, TIQ was identifi ed as an 
endogenous compound in the brain of parkinsonian patients and normal human sub-
jects, using the most suitable method of gas chromatography–mass spectrometry 
(GC/MS). (Niwa et al.  1987,   1989a  ) . Its concentration determined for the fi rst time 
in the frontal cortex of one parkinsonian patient was approximately 10 ng/g vs. less 
than 1 ng/g in the control brain (Niwa et al.  1987  )  (Table  1.1 ). However, a high TIQ 
content in parkinsonian patients was not confi rmed by Ohta et al.  (  1987  ) . What is 
more, a tendency for the TIQ concentration to be lower in PD than in the controls 
(0.54 ng/g vs. 0.86 ng/g, respectively) was described by other researchers (Yoshida 
et al.  1993  ) . Applying the same analytical method, TIQ was determined in the brain 
of healthy, nontreated rats in which its level oscillated from 5 to 7 ng/g tissue (Kohno 
et al.  1986 ; Makino et al.  1988  ) . However, when a highly sensitive high-performance 
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liquid chromatography with fl uorescent detection (detection limits 8–9 fmol per 
injection) was used, TIQ content in the brain of normal rats was assessed to be much 
lower reaching an average value of 0.10 ng/g (0.7 pmol/g) tissue (Inoue et al.  2008  ) . 
Regarding the presence of TIQ in the nigrostriatal dopaminergic system, it was 
indentifi ed in the substantia nigra (SN) and striatum of rats and monkeys (Yoshida 
et al.  1990 ; Ayala et al.  1994 ; Yamakawa et al.  1999    ). In either species, in young 
animals its content was much higher in the SN than in the striatum (Table  1.1 ). In 
contrast, in old rats a declining tendency in TIQ concentration was observed in the 
SN while an increasing trend was characteristic of the striatum (Ayala et al.  1994  ) .   

 Concentrations of two other non-catechol TIQs, 1-MeTIQ and 1-BnTIQ, identi-
fi ed by means of chromatographic methods in the brains of humans, monkeys, and 
rodents as well as in the cerebrospinal fl uid (CSF) of parkinsonian patients and 
healthy controls are compiled in Table  1.1 . 1-MeTIQ is considered to be a possible 
neuroprotective compound (Tasaki et al.  1991 ; Antkiewicz-Michaluk et al.  2004 ; 
Kotake et al.  2005 ; Okuda et al.  2006  )  while 1-BnTIQ is suspected to be neurotoxic 
(Kotake et al.  1995,   1998  ) . Interestingly, 1-MeTIQ amount was reduced in parkin-
sonian patients and tended to decrease with aging (Ohta et al.  1987  ) . In old rats, a 
50% reduction in 1-MeTIQ content was found in the SN while only a small nonsig-
nifi cant increase was observed in the striatum (Ayala et al.  1994  ) . Moreover, 
1-MeTIQ exists in the form of two stereoisomers because of the asymmetric center 
at C-1. The existence of  R - and  S -enantiomers has been confi rmed in mouse 
brain applying GC/MS with negative ion chemical ionization (Makino et al.  1990  ) . 
The proportion of  R - and  S -enantiomers in the mouse brain was 0.60 suggesting 
that 1-MeTIQ could be synthesized, at least partially, in an enzymatic pathway 

  Fig. 1.1    Chemical structure of the non-catechol tetrahydroisoquinolines identifi ed in the mam-
malian brains: (1) TIQ, 1,2,3,4-tetrahydroisoquinoline; (2) 1-MeTIQ, 1-methyl-1,2,3,4-tetrahy-
droisoquinoline; (3) 2-MeTIQ, 2-methyl-1,2,3,4-tetrahydroisoquinoline; (4) 1-MeDIQ, 1-methyl-3,
4-dihydroisoquinoline; (5) 1-BnTIQ, 1-benzyl-1,2,3,4-tetrahydroisoquinoline; (6) 1-(3 ¢ ,4 ¢ -DHBn)
TIQ, 1-(3 ¢ ,4 ¢ -dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline; (7) 1-PhTIQ, 1-phenyl-1,2,3,4-
tetrahydroisoquinoline; and (8) 1Ph-2MeTIQ, 1-phenyl-2-methyl-1,2,3,4-tetrahydroisoquinoline       
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                     Table 1.1    Concentrations of TIQ and its derivatives in the brains and cerebrospinal fl uid of 
humans, monkeys and rodents.   

 TIQ 
deriva-
tives 

 Origin of 
tissue 

 Type of 
tissue 

 Concentration  Method of 
detection 

 References 

 TIQ 
 Human 
 Control patient 
 Parkinsonian 

patient 

 Frontal 
cortex 

 Frontal 
cortex 

 ~ 1ng/g 

 0.54-10 
ng/g 

 GC/
MD 

 Niwa et al.  1987 , 
Niwa et al.    1989a   , 
Ohta et al.    1987    

 Monkey  Striatum 
 SN 

 ~ 20 pmol/g 
 ~ 150 pmol/g 

 GC/MS  Yamakawa et al.  1999  

 Rat  Brain 
 Brain 

 5-7 ng/g 
 0.7 pmol/g 
 (0.10 ng/g) 

 GC/MID 
 HPLC/FD 

 Kohno et al.  1986 , 
Makino et al.  1988   
 Inoue et al.  2008  

 Young rats 

 Old rats 

 Striatum 
 SN 
 Striatum 
 SN 

 ~ 0.6 ng/mg 
 ~ 1.7 ng/mg 
 ~ 1.0 ng/mg 
 ~1.3 ng/mg 

 GC/MS  Ayala et al.  1994  

 Mouse  Brain    1.1 ng/g  GC/MS  Makino et al.  1988 , 
Tasaki et al.  1991  

 1-MeTIQ  Human  Brain  –  –  Ohta et al  (  1987  
 Monkey  Striatum 

 SN 
 300 pmol/g 
 470 pmol/g 

 GC/MS  Yamakawa et al.  1999  

 Rat  Brain  1-3 ng/g 

 3.4 pmol/g 
 (0.1 ng/g) 

 GC/MID 
 GC/MS 
 HPLC/FD 

 Kohno et al.  1986  
 Makino et al.  1988  
 Inoue et al.  2008  

 Young rats 

 Old rats 

 Striatum 
 SN 
 Striatum 
 SN 

 ~ 0.4ng/mg 
 ~ 1.3 ng/mg 
 ~ 0.5 ng/mg 
 ~ 0.6 ng/mg 

 GC/MS  Ayala et al.  1994  

 Mouse  Brain  8.9-10 ng/g  GC/MS  Kotake et al.    1998   , 
Tasaki et al.  1991 , 
Makino et al.  1990  

 1-BnTIQ 
 Human 
 Control patient 
 Parkinsonian 

patient 

 CSF 
 CSF 

 0.4 ng/ml 
 1.17 ng/ml 

 GC/MID 
 GC/MID 

 Kotake et al.  1995      

 Monkey  Striatum 
 SN 

 ~ 25 pmol/mg 
 ~ 120 pmol/mg 

 GC/MS  Yamakawa et al.  1999  

 Rat  Brain  1.3 pmol/g 
 0.3 ng/g 

 HPLC/FD  Inoue et al.  2008  

 Mouse  Brain  5.7 - 7.7 ng/g  GC/MS  Kotake et al.  1995,   1998    

  GC/MID – gas chromatography with multiple ion detection 
 GC/MS – gas chromatography with mass spectrometry 
 FD – fl uorometric detection       

(Makino et al.  1990  ) . If the formation was purely nonenzymatic, then a mixture of 
racemic isomers would be formed. Apart from the above-mentioned TIQ deriva-
tives, brains of parkinsonian patients were also shown to contain 1-PhTIQ and 
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1Ph-2MeTIQ using gas chromatography–tandem mass spectrometry (Kajita et al. 
 1995  ) . In turn, in the mouse brain 1-(3 ¢ ,4 ¢ -DHBn)TIQ was identifi ed as an endoge-
nous compound by means of the GC/MS method (Kawai et al.  1998,   2000  ) . Since 
concentrations of the latter compounds were not determined, they are not presented 
in Table  1.1 . However, it is believed that they exert toxic effects on dopaminergic 
neurons (Kajita et al.  1995 ; Kawai et al.  1998,   2000  ) .  

    1.3   Synthesis of Non-catechol 
1,2,3,4-Tetrahydroisoquinolines 

 It is widely accepted that TIQs are formed by a well-known Pictet–Spengler con-
densation of 2-phenylethylamine (PEA) or catecholamines with aldehydes or  a -keto 
acids (Deitrich and Erwin  1980 ; Rommelspacher and Susilo  1985 ; Zarranz de Ysern 
and Ordonez  1981 ; Nagatsu  1997 ; McNaught et al.  1998 ; Kotake et al.  1998  ) . The 
reaction is thought to proceed through a Schiff’s base formation and cyclization to 
TIQs (Fig.  1.2 ). In general, the synthesis of catechol-bearing TIQs under physiolog-
ical conditions was demonstrated in plants and animals (Zarranz de Ysern and 
Ordonez  1981 ; Nagatsu  1997 ; McNaught et al.  1998  ) . However, the formation of 
the non-catechol TIQs, such as TIQ and 1-MeTIQ, under physiological conditions 
seems to be problematic because it has been reported that PEA which has no elec-
tron-donating substituents (e.g., hydroxyl or alkoxyl groups) on the phenyl ring, 
does not cyclize with aldehydes under physiological conditions (Kohno et al.  1986  ) . 
On the contrary, dopamine, which has an effective substituent (OH group) at the 
appropriate positions in the phenyl ring, can easily cyclize with aldehydes under 
physiological conditions. Therefore, if the non-catechol TIQ derivatives are formed 
in such conditions, it can be assumed that the condensation reaction of PEA with an 
aldehyde is catalyzed enzymatically. Figure  1.3  shows the proposed synthetic reactions 
of the non-catechol TIQs. When PEA is condensed with formaldehyde then the 
simplest TIQ can be formed (Fig.  1.3 , reaction 1). The ( R )-1MeTIQ can be synthe-

  Fig. 1.2    The Pictet–Spengler reaction of  b -arylethylamines (2-phenylethylamine, PEA) with 
carbonyl compounds       
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sized in the condensation reaction of PEA with acetaldehyde or pyruvic acid 
(Fig.  1.3 , reactions 2 and 2 ¢ ). In the case of reaction 2 ¢ , ( R )-1MeTIQ formation is 
followed by a decarboxylation of the condensation product, 1-carboxyl-1-methyl-
1,2,3,4-tetrahydroisoquinolinic acid and next by a reduction of the second interme-
diate 1-MeDIQ (Nagatsu  1997  ) . In addition, the condensation reaction of PEA with 
its own metabolite phenylacetaldehyde or with the dopamine metabolite 3,4-dihy-
droxyphenylacetaldehyde (DOPAL) may lead to the formation of 1-BnTIQ and 
1-(3 ¢ ,4 ¢ -DHBn)TIQ, respectively (Kotake et al.  1998 ; Kawai et al.  1998  ) . Both phe-
nylacetaldehyde and DOPAL are generated by monoamine oxidase (MAO) during 
an oxidative deamination of PEA and dopamine, respectively (Fig.  1.3 , reactions 3 
and 4). It has been demonstrated that the formation of 1-BnTIQ was markedly 
reduced in the mouse brain treated previously with the MAO-B inhibitor deprenyl 
(Kotake et al.  1998  ) , possibly due to the defi cit of phenylacetaldehyde.   

 For a long time, an enzymatic biosynthesis of ( R )-1MeTIQ, from PEA and pyru-
vate was only a strong suggestion (Makino et al.  1990    ; Nagatsu  1997  ) , but fi nally it 
was confi rmed when Yamakawa and Ohta  (  1997  )  identifi ed in the rat brain an 
enzyme involved in this reaction (Fig.  1.4 ). The 1-MeTIQ synthesizing enzyme was 
predominantly localized in the mitochondrial–synaptosomal fraction. The activity 
of this enzyme measured in rat brain homogenate was 750 pmol/h/mg protein 
(Yamakawa and Ohta  1997  ) . A low activity of 1-MeTIQ synthesizing enzyme was 
observed in the nuclear fraction, and no activity was detected in the cytosol fraction. 
In the monkey brain, the 1-MeTIQ synthetic activity was higher in the thalamus, 
cerebrum, and striatum than in the substantia nigra, medulla oblongata, and cerebellum 

  Fig. 1.3    The possible synthetic pathways of the non-catechol tetrahydroisoquinolines: (1) TIQ, 
1,2,3,4-tetrahydroisoquinoline; (2) (R)1MeTIQ, (R)-1-methyl-1,2,3,4-tetrahydroisoquinoline; 
(3) 1BnTIQ, 1-benzyl-1,2,3,4-tetrahydroisoquinoline; (4) 1-(3 ¢ ,4 ¢ -DHBn)TIQ, 1-(3 ¢ ,4 ¢ - dihydroxy
benzyl)-1,2,3,4-tetrahydroisoquinoline via the Pictet–Spengler condensation of 2-phenylethylam-
ine (PEA) with aldehydes (formaldehyde, acetaldehyde, phenylacetaldehyde, 3,4-dihydroxyphe-
nylacetaldehyde) or the  a -keto acid (pyruvic acid) in the mammalian brain       
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(Yamakawa et al.  1999  ) . As the content of 1-MeTIQ was the highest in the substan-
tia nigra, striatum, and cerebrum while in the cerebellum, medulla oblongata, and 
thalamus it was distinctly lower, the authors suggested that 1-MeTIQ which was 
synthesized elsewhere in the brain was transported to these brain regions. 

 It has been demonstrated in the mitochondrial–synaptosomal fraction of rat brain 
that some non-catechol TIQ derivatives, like TIQ, 2-MeTIQ, 1-BnTIQ, and 
1-MeDIQ inhibited the biosynthesis of 1-MeTIQ (Yamakawa and Ohta  1997,   1999  ) . 
Also 1-MeTIQ itself can inhibit an activity of the synthesizing enzyme. The inhibi-
tory activity of  R -enantiomer of 1-MeTIQ was stronger than that of  S -enantiomer 
(Yamakawa and Ohta  1999  ) . In contrast, catechol-TIQ derivatives, like salsolinol 
and norlaudanosoline weakly inhibited or did not inhibit 1-MeTIQ biosynthesis, 
respectively (Yamakawa and Ohta  1997,   1999  ) . As the 1-MeTIQ biosynthetic activ-
ity was inhibited by non-catechol TIQ derivatives, but was not inhibited by catechol 
TIQ derivatives, authors of the study postulated that this enzyme was specifi c for 
TIQs unsubstituted in the aromatic ring (Yamakawa and Ohta  1997  ) . The activity of 
the 1-MeTIQ synthesizing enzyme was also inhibited by parkinsonism-
 inducing substances, like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
and its active metabolite, 1-methyl-4-phenylpyridinium (MPP + ), haloperidol, and 
 b -carboline (Yamakawa and Ohta  1999  ) . The preservation of the TIQ-generating 
enzymatic system in the mammalian brain in the course of evolution suggests that it 
may play an important physiological function. 

 TIQ identifi ed in the mammalian brain may be also of dietary origin, as it has 
been detected in different food products, such as cheese (5.2 ng/g), boiled eggs 
(1.8–2.2 ng/g), banana (2.2 ng/g), broiled beef (1.3 ng/g), milk (3.3 ng/g), and various 
alcoholic beverages including whisky (0.73 ng/g), wine (0.59 ng/g), and beer 
(0.36 ng/g) (Makino et al.  1988 ; Niwa et al.  1989b  ) .  

    1.4   1,2,3,4-Tetrahydroisoquinoline as a Potential Neurotoxin 
with a Proparkinsonian Mode of Action 

 The concept of a TIQ contribution to the pathogenesis of idiopathic Parkinson’s 
disease (PD) sprung from the observation that its chemical structure was similar to 
MPTP, a selective neurotoxin of dopaminergic neurons which evoked a syndrome 

  Fig. 1.4    Enzymatic biosynthesis of 1MeTIQ in the mitochondrial–synaptosomal fraction of the 
rat brain (according to Yamakawa and Ohta    1997  )          
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resembling the clinical picture of the disease in humans and animals (Langston 
et al.  1983 ; Chiueh et al.  1985  ) . Since MPTP is a synthetic compound, it cannot 
be considered as an etiological factor for PD, but TIQ which is both an endog-
enous and an environmental substance seemed to be a good candidate to produce 
parkinsonism. In principle, the selective toxicity of MPTP is grounded on its oxi-
dative MAO-B-dependent transformation to the quaternary ion MPP +  (Bradbury 
et al.  1986 ; Trevor et al.  1988  ) . Then MPP +  ion being a substrate for dopamine 
transporter (DAT) (Javitch et al.  1985  )  is selectively accumulated in the dop-
aminergic neurons fi nally leading to an inhibition of the oxidative phosphoryla-
tion at complex I of the mitochondrial respiratory chain and to the reduction of 
ATP production (Trevor et al.  1987 ; Singer et al.  1988  ) . It is worth underlining 
that the presence of N-methyl group is essential for the manifestation of MPTP 
toxicity, since analogues of MPTP and MPP +  lacking the N-methyl group are 
devoid of such an effect (Bradbury et al.  1985  ) . Hence, it was assumed that TIQ, 
like MPTP, could acquire the neurotoxicity after N-methylation and oxidation. In 
fact, N-methylation of TIQ to 2-MeTIQ by N-methyltransferase was confi rmed 
in vitro, in experiments with the use of the human brain homogenates (Naoi et al. 
 1989b  )  and in vivo in the brain of TIQ-treated monkeys (Niwa et al.  1990  ) . The 
reaction required  S -adenosyl- l -methionine (SAM) as a methyl donor and the 
value of the Michaelis constant,  K  

m
 , and the maximal velocity,  V  

max
 , in terms of 

SAM were 5.11  m M and 7.31 pmol/min/mg protein, respectively. The value of 
 K  

m
  and  V  

max
  in terms of TIQ were 20.9  m M and 7.98 pmol/min/mg protein, 

respectively (Naoi et al.  1989b  ) . Afterwards, it was demonstrated in the human 
brain synaptosomal mitochondria that 2-MeTIQ could be oxidized by both types, 
MAO-A and -B into 2-methylisoquinolinium (2-MeIQ + ) ion, an analogue of MPP +  
(Naoi et al.  1989a  ) . MAO type A had a higher activity for 2-MeTIQ than type B. 
The  K  

m
  and  V  

max
  values of the oxidation by MAO type A and B were 571  m M and 

0.29 pmol/min/mg protein, and 463  m M and 0.16 pmol/min/mg protein, respec-
tively (Naoi et al.  1989a  ) . In comparison, the  V  

max
  value of MAO type A for 

MPTP was 19.4 pmol/min/mg protein in human brain synaptosomal mitochon-
dria (Naoi et al.  1987  ) . The above-mentioned effects clearly indicated that 
2-MeTIQ oxidation was distinctly slower than that of MPTP. Further testing of 
2-MeIQ +  ion mode of action showed in the rat clonal pheochromocytoma PC12h 
cell line that this compound was transported into cells by a DA-specifi c uptake 
system, similarly like MPP +  (Naoi et al.  1989c  ) . Moreover, 2-MeTIQ and 
2-MeIQ +  ion were reported to selectively inhibit complex I activity of the mito-
chondrial electron transport system in isolated mitochondria prepared from the 
mouse brain (Suzuki et al.  1992a  ) . Finally, the selective neurotoxicity of 2-MeIQ +  
toward dopaminergic neurons was demonstrated in the ventral mesencephalic cul-
ture (Niijima et al.  1991 ; Nishi et al.  1994  ) .  

 All the above-described fi ndings provided grounds for the studies whose aim 
was to check whether TIQ was able to induce behavioral and neurochemical changes 
of parkinsonian type in animals.  
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    1.5   Behavioral and Neurochemical Changes 
of Parkinsonian Type Induced by Non-catechol 
1,2,3,4-Tetrahydroisoquinolines in Animals 

 The major clinical signs of an extrapyramidal syndrome in PD, such as akinesia, 
and muscle rigidity appear when the level of dopamine (DA) in the caudate-putamen 
is decreased by 85% and almost 90% of dopaminergic neurons in the substantia 
nigra (SN) are destroyed (Kish et al.  1988  ) . These symptoms also appear in the 
MPTP-treated monkeys suffering from more than 80% reduction in the striatal dop-
amine and from a greater than 80% decrease of dopaminergic cell bodies in the SN 
(Chiueh et al.  1985  ) . 

 In the fi rst experiment performed in marmosets treated subcutaneously with 
TIQ at a high pharmacological dose of 50 mg/kg/day for a period of 16 days, it 
was demonstrated that the most pronounced motor defi cits and muscle rigidity 
were revealed after the last chronic dose of this compound (Nagatsu and Yoshida 
 1988  ) . At that time point, in two examined TIQ-treated marmosets, an almost 
70% decrease in the level of dopamine (DA) was observed in the substantia nigra 
(SN) but only in one marmoset some moderate decrease in its content was found 
in the striatum (Nagatsu and Yoshida  1988  ) . In squirrel monkeys, TIQ adminis-
tered at a moderate pharmacological dose of 20 mg/kg/day for up to 104 days, 
produced motor symptoms similar to parkinsonism conspicuous even 7 days after 
discontinuation of chronic treatment (Yoshida et al.  1990  ) . At that time point, in 
these monkeys only a 23% decline in the nigral level of DA and no changes in its 
striatal level were found (Yoshida et al.  1990  ) . In turn, rats chronically injected 
with TIQ at a dose of 50 mg/kg/day for 19 days exhibited distinct muscle rigidity, 
observable already 1 h after the fi rst TIQ dose, when there were no changes in the 
striatal level of DA (Lorenc-Koci et al.  2000  ) . This symptom was still present at 
72 h after the last chronic dose of TIQ, but then its expression was less pro-
nounced. At the latter time point, in rats withdrawn from chronic TIQ treatment, 
hardly a 23% decline in the striatal level of DA was found (Lorenc-Koci et al. 
 2000  ) . Finally, in C57BL mice injected with the maximal tolerated doses of TIQ 
(60 up to 150 mg/kg/day) for a period of 26 days, no reduction in the content of 
DA and its metabolites was reported in the striatum 5 weeks after discontinuation 
of TIQ treatment (Perry et al.  1988  ) . The only behavioral alteration observed in 
these C57BL mice was sedation occurring for a short period of time after TIQ 
injections at a dose of 80 mg/kg or higher (Perry et al.  1988  ) . As results from the 
above representative studies, TIQ administered chronically at a wide range of 
doses to monkeys and rodents evoked in these animals moderate small or no 
changes in DA concentrations in the striatum and SN. In contrast to the effects 
reported in TIQ-treated animals, even a single dose of MPTP was able to produce 
in humans a drastic loss of striatal DA and a damage of dopaminergic neurons in 
the SN (Langston et al.  1983  ) . 
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 Investigations focusing on the potential toxic action of TIQ on the dopaminergic 
neurons in the SN were performed in C57BL mice treated with TIQ at a dose of 50 mg/
kg for 70 days. In these mice, the numbers of tyrosine hydroxylase immunoreactive 
(TH-ir) neurons in the SN and ventral tegmental area were reduced by 56% when 
measured 24 h after the last chronic dose of TIQ (Ogawa et al.  1989  ) . Such long-lasting 
TIQ treatment did not produce, however, the death of DA neurons because cresyl vio-
let (CV) staining revealed that the numbers of CV-stained neurons in the examined 
structures were almost the same as those of the control mice. So, it was concluded that 
DA neurons were preserved but they were dysfunctional in terms of their ability to 
produce TH protein (Ogawa et al.  1989  ) . Our study carried out on rats receiving TIQ 
at a dose of 100 mg/kg/day chronically for a period of 19 days demonstrated that the 
number of TH-ir neurons in the SN was also reduced but only by 22% in comparison 
to control group (Lorenc-Koci et al.  2000  ) . However, because in this study the histo-
logical analysis of CV-stained neurons was not performed, it was not possible to 
resolve whether TH-ir neurons were preserved or not. Moreover, since 2-MeTIQ was 
recognized as a more toxic derivative than TIQ itself, the effect of this compound on 
dopaminergic neurons in the SN was examined in C57BL/6J mice. 2-MeTIQ was 
administered at a wide range of doses (2, 4, 16, 32, and 64 mg/kg) for 120 days. In all 
groups, 2-MeTIQ evoked a signifi cant decrease in the numbers of TH-ir neurons in the 
SN, although the effects were more pronounced at higher doses of this compound. 
However, despite some atrophic changes observed in the nerve cells of the central part 
of the substantia nigra pars compacta (SNc) and pars lateralis neither neuronal loss 
accompanied by gliosis nor neuronal inclusions were observed (Fukuda  1994    ). 

 All the above-reported effects clearly indicate that the appearance of character-
istic symptoms of parkinsonian type in the TIQ-treated animals do not result from 
the loss of striatal DA and death of dopaminergic cells in the SN, as it happens in 
PD. Since these symptoms were the most distinctly manifested directly after sub-
cutaneous or intraperitoneal administration of TIQ, when its concentration in the 
mammalian brain was very high (Yoshida et al.  1990 ; Lorenc-Koci et al.  2004a  ) , it 
was assumed that the occurrence of these symptoms was related to a specifi c TIQ 
action on dopaminergic neurotransmission. The latter assumption was in line with 
studies showing that exogenous TIQ easily crossed the blood–brain barrier (Niwa 
et al.  1988 ; Yoshida et al.  1990 ; Kikuchi et al.  1991 ; Lorenc-Koci et al.  2004a  )  and 
interacted with the brain DA receptors (Antkiewicz-Michaluk et al.  2000a  ) . Further, 
it was demonstrated that TIQ displaced [ 3 H] apomorphine from its binding sites 
within dopamine D 

1
  and D 

2
  receptors with effectiveness similar to DA and in 

behavior tests inhibited the apomorphine-stimulated locomotor activity 
(Antkiewicz-Michaluk et al.  2000a  ) . The ability of TIQ to interfere with the ago-
nist binding sites within DA receptors inhibiting their function suggests that this 
compound can attenuate the dopaminergic neurotransmission at sites other than 
those to which classical neuroleptics bind. So, it is likely that the neuroleptic-like 
activity of TIQ was responsible for some motor defi cits observed in acutely and 
chronically TIQ-treated animals.  
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    1.6   Catabolism of 1,2,3,4-Tetrahydroisoquinoline 
in the Brain and Peripheral Tissue 

 Although PD occurs sporadically, it is believed that both environmental and genetic 
factors, acting either alone or in concert, contribute to the onset of the disease. 
Genetic susceptibility to endogenous or exogenous neurotoxins may be related to 
the altered activity of some enzymes which regulate their metabolism (Riedl et al. 
 1998  ) . The lack of a metabolic pathway or a defi cit in its function may infl uence 
toxicity. Among different enzymes which are involved in the metabolism of xenobi-
otics, cytochrome P 450 (CYP) isoenzyme CYP2D6 was postulated to be a risk 
factor for PD (Barbeau et al.  1985 ; Bon et al.  1999 ; Checkoway et al.  1998 ; Riedl 
et al.  1998  ) . 

 Isoenzymes of the human CYP2D subfamily are encoded by one active  CYP2D6  
gene and two pseudogenes, while six genes,  CYP2D1-5  and  CYP2D18 , have been 
identifi ed in rats (Kimura et al.  1989 ; Matsunaga et al.  1990  ) . It is still unclear which of 
these six known rat CYP2D subfamily members are homologous to human CYP2D6. 
For a long time it was assumed that CYP2D1 corresponded well with human CYP2D6 
(Barham et al.  1994 ; Miksys et al.  2000 ; Tyndale et al.  1999  ) , but recently it was dem-
onstrated that debrisoquine a classical substrate for CYP2D6 was also metabolized in 
rats to 4-hydroxydebrisoquine by hepatic CYP2D2 (Hiroi et al.  2002  ) . In humans, 
CYP2D6 has high debrisoquine 4-hydroxylation activity while in rats this activity was 
much more specifi c for CYP2D2 (Schulz-Utermoehl et al.  1999  ) . 

 MPTP which evokes parkinsonism in humans is metabolized to N-demethyl 
product by microsomal CYP2D isoenzymes (Coleman et al.  1996 ; Gilham et al. 
 1997  ) . Since MPTP lacking N-methyl group does not exert toxic effects, the 
N-demethylation reaction of MPTP is considered to be detoxifi cation (Coleman 
et al.  1996 ; Weissman et al.  1985  ) . On the other hand, female Dark Agouti rats, a 
model of human poor metabolizer phenotype (PM) with respect to CYP2D6, are 
more sensitive to neurotoxic effect of MPTP than females of other strains (Jiménez-
Jiménez et al.  1991  ) . 

 The hypothesis put forward by Ohta et al.  (  1990  )  linked a potential toxicity of TIQ 
with its defective catabolism in the liver by isoenzymes belonging to the CYP2D 
subfamily. According to this hypothesis, the main metabolic pathway of TIQ elimi-
nation from the body is the reaction of 4-hydroxylation catalyzed by hepatic CYP2D. 
The authors reported that after TIQ administration to Dark Agouti rats, plasma and 
brain levels of this compound were much higher in females of that strain recognized 
as poor debrisoquine metabolizers than in males considered as extensive debriso-
quine metabolizers. Conversely, urinary excretion of a major oxidative metabolite of 
TIQ, 4-hydroxytetrahydroisoquinoline (4-OH-TIQ) was high in Dark Agouti males 
while being signifi cantly reduced in females of that strain. Hence, it was concluded 
that suppression of TIQ metabolism in the liver of poor debrisoquine metabolizers 
resulted in the increased level of TIQ in the brain. Assuming TIQ toxicity for dop-
aminergic neurons, it was postulated that a long-lasting accumulation of this com-
pound in the brains of human poor debrisoquine metabolizers may be one of the 
mechanisms responsible for the onset of PD (Ohta et al.  1990  ) . 
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 To check the accuracy of this hypothesis, the effects of TIQ treatment on the 
disposition of this compound in the brain was examined in rats being models of poor 
CYP2D metabolizers (Lorenc-Koci et al.  2004a  ) . Since the inhibition of CYP2D 
isoenzymes by a specifi c inhibitor, quinine (Kobayashi et al.  1989  ) , in male Wistar 
rats mimics the defect of genes encoding CYP2D isoenzymes; the quinine- pretreated 
Wistars, used in these studies, were considered to correspond to phenotypic poor 
CYP2D metabolizers. On the other hand, male Dark Agouti rats in which the expres-
sion of CYP2D2 isoenzyme was six to eight times lower than that in male Wistars 
(Schulz-Utermoehl et al.  1999  ) , were used as genotypic poor CYP2D metabolizers 
(Lorenc-Koci et al.  2004a  ) . Male Wistar rats with normal function of these isoen-
zymes were the control for phenotypic and genotypic poor CYP2D metabolizers 
(Lorenc-Koci et al.  2004a  ) . TIQ was administered i.p. to male Wistar rats at doses 
of 20, 40, and 100 mg/kg, alone and in combination with quinine (20, 40, 80 mg/kg 
i.p.), acutely or chronically. Only acute experiments were performed in Dark Agouti 
rats receiving TIQ at doses of 20 and 40 mg/kg. Concentrations of TIQ and its main 
metabolite 4-OH-TIQ in plasma and brain samples were determined using HPLC 
with UV detection, described previously by Suzuki et al.  (  1992b  ) . Both in Wistar 
and Dark Agouti rats 2 h after administration of a single dose of TIQ (20, 40, 
100 mg/kg), the level of this compound in the brain depending of the used dose was 
in the range from 86 to 682 nmol/g, while in the plasma it was several-fold lower 
ranging from 24 to 120 nmol/ml. Concentrations of its metabolite, 4-OH-TIQ, were 
very low in both compartments of male Wistars treated with TIQ alone (in plasma 
about 1 nmol/ml; in brain 2.46–3.97 nmol/g) while in those receiving TIQ in com-
bination with quinine or in Dark Agouti males, 4-OH-TIQ was absent or found in a 
trace amount (Lorenc-Koci et al.  2004a  ) . These data clearly indicated that TIQ was 
not easily metabolized via 4-hydroxylation and this reaction in the liver had no 
infl uence on its concentration in the brain. Hence, it was concluded that factors 
other than CYP2D mediated catabolism contributed to the disposition of TIQ in the 
rat brain. 

 It was originally believed that membrane-bound carriers localized in the brain 
barriers were solely responsible for the transport of endogenous substances into and 
out of the brain, and that drug transport across the brain barriers was largely depen-
dent on the physiochemical characteristic of the drug, such as lipophilicity, molecular 
weight, and ionic state (Spector  1990 ; Tamai and Tsuji  2000  ) . TIQ is a basic com-
pound with p K  

a
  value of 9.75, moderate lipophilicity with a log P  value 1.47 ( P  is an 

octanol/water coeffi cient for a nonionized drug, log P  was calculated using a special 
computer program), and low molecular weight (169.99). These physicochemical 
properties of TIQ should allow for its passive diffusion through the blood–brain 
barrier. However, a low level of TIQ (about 50 nmol/g) in the brain of Wistar rats 
receiving this compound (40 mg/kg) jointly with 80 mg/kg of quinine in comparison 
to its high level (244.94 nmol/g) in rats receiving TIQ alone, suggested that there 
was a competition between TIQ and quinine for the same carrier (Lorenc-Koci et al. 
 2004a  ) . Quinine is a substrate for organic cation transporter (OCT) system (Lee et al. 
 2001  ) , therefore, it was supposed that also TIQ could be transported by this 
system. 
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 In order to confi rm OCT contribution to the transport of TIQ from the periphery 
into the brain, an experiment with its specifi c inhibitors was performed in Wistar 
rats. Three distinct types of the OCT system have been identifi ed (OCT1, OCT2, 
OCT3) in the rat brain. Acute administration of progesterone (20 mg/kg) and 
 b -estradiol (0.2 and 1 mg/kg), that are inhibitors of OCT1/OCT2 and OCT3 respec-
tively, to Wistar rats 30 min before TIQ, signifi cantly decreased the concentration of 
TIQ measured 2 h later in the brain tissue. The effect was more pronounced in rats 
pretreated with  b -estradiol than in those pretreated with progesterone (Lorenc-Koci 
et al.  2004a  ) . The obtained results are in line with the abundant expression of OCT3 
and slightly weaker expression of OCT2 in the rat brain (Amphoux et al.  2006 ; 
Shang et al.  2003 ; Wu et al.  1998  ) . From these experiments, it was concluded that 
exogenous TIQ was actively transported from the blood into the brain by OCT 
system, mainly by OCT3 (Lorenc-Koci et al.  2004a  ) . 

 The cited study also revealed that 4-OH-TIQ was formed not only by hepatic 
CYP2D isoenzymes but also by their brain isoforms. In Wistar rats with normal 
function of CYP2D isoenzymes, 2 h after the last chronic dose of TIQ (50 mg/kg, 
two times per day for 14 days), concentrations of this metabolite in the plasma and 
brain were 2.54 nmol/ml and 11.51 nmol/g, respectively, while concomitant con-
centrations of TIQ in these compartments were 84.73 nmol/ml and 556.30 nmol/g, 
respectively. Much higher concentration of 4-OH-TIQ in the brain than in plasma 
suggested that TIQ was able to induce brain CYP2D isoenzymes. Therefore, it 
seems that the reaction of 4-hydroxylation although meaningless for elimination of 
a large amount of exogenous TIQ, may be important for the elimination of TIQ 
formed endogenously in the brain under physiological conditions. 

 Concentrations of TIQ and its metabolite were also determined in the dopamin-
ergic structures of normal Wistar rats treated acutely and chronically with TIQ. At 
2 h after administration a single dose of TIQ (50 mg/kg), concentration of this com-
pound was almost equal in the striatum and the SN (about 200 nmol/g). However, 
2 h after the last chronic dose (50 mg/kg, two times per day for 14 days) the level of 
TIQ in the SN (415 nmol/g) was about twofold higher than that in the striatum 
(222 nmol/g). The concentrations of 4-OH-TIQ in the striatum and the SN were 
2.23 and 14.98 nmol/g, respectively. TIQ content in either structure distinctly 
declined 24 h after cessation of chronic treatment (47.69 nmol/g in the striatum and 
37.32 nmol/g in the SN), which meant that this compound was relatively easily 
eliminated from the brain of Wistar rats. The calculated half-life of TIQ in the brain 
was  t  

1/2
  = 3.58 h while its value in plasma was  t  

1/2
  = 2.38 h. In turn, in Wistar rats 

receiving the same dose of TIQ chronically in combination with quinine (40 mg/kg, 
two times per day for 14 days) the TIQ level was high in both structures, but its 
distribution was altered (430 nmol/g in the striatum and 229.90 nmol/g in the SN). 
4-OH-TIQ was not detected in the structures under study. Moreover, 24 h after with-
drawal from the combined chronic treatment, TIQ concentrations in the striatum 
and SN (125.80 and 78.05 nmol/g, respectively) were markedly higher than those in 
Wistars receiving TIQ alone (47.69 and 37.32 nmol/g, respectively). The latter 
effects indicated that the rate of TIQ elimination from the examined structure was 
distinctly slower in Wistar rats treated with quinine than in those receiving TIQ 
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alone. Since quinine is an inhibitor of P-glycoprotein (P-gp) which is involved in the 
extrusion of xenobiotics from the brain (Lee et al.  2001 ; Silverman  1999  ) , it was 
thought that P-gp could have contributed to the elimination of TIQ from the rat 
brain. Indeed, in Wistar rats receiving TIQ, in combination with verapamil, the most 
specifi c inhibitor of P-gp, the TIQ concentration measured in the brain tissue 6 h 
later, was markedly higher than in rats treated with TIQ alone. This experiment 
confi rmed that P-gp contributed to the elimination of TIQ from the rat brain. Hence, 
it was concluded that the genetic defect of P-gp, but not  CYP2D2/CYP2D6  as pos-
tulated previously (Ohta et al.  1990  ) , could favor, if any, the accumulation of TIQ in 
the mammalian brain (Lorenc-Koci et al.  2004a  ) . 

 The above-presented study touches a very important problem in the pathogenesis 
of PD, namely the genetic background underlying the accumulation of specifi c neuro-
toxins with proparkinsonian mode of action in the brain dopaminergic structures. The 
above-reported study suggests that a defective function of P-gp may be a risk factor 
for PD. This assumption is in agreement with a more recent study by Furuno et al. 
 (  2002  )  who showed that the frequency of 3435T/T genotype, which is associated with 
a decreased P-gp expression and function, was higher in parkinsonian patients 
suffering from both early- and late-onset disease than in control. The decreased func-
tion of P-gp was also confi rmed directly in the brain of parkinsonian patients using 
[(11)C]-verapamil positron emission tomography (Kortekaas et al.  2005  ) .  

    1.7   Effect of 1,2,3,4-Tetrahydroisoquinoline 
Administration on Dopamine Metabolism 

 The loss of striatal dopamine (DA) in a consequence of degeneration of the nigros-
triatal dopaminergic neurons is the most characteristic neurochemical feature of 
Parkinson’s disease. Therefore, early studies, which attempted to demonstrate that 
TIQ evoked neurochemical changes of parkinsonian type in animals, focused just 
on determination of the striatal level of DA at different time points after cessation of 
chronic TIQ treatment (Nagatsu and Yoshida  1988 ; Yoshida et al.  1990 ; Perry et al. 
 1988  ) . However, a direct effect of this compound on DA catabolism was not ana-
lyzed in those studies. 

 It is well known that catabolism of DA to its fi nal metabolite homovanillic 
acid (HVA) runs both intra- and extraneuronally. DA present in neuronal cyto-
plasma is N-oxidized by mitochondrial outer membrane enzyme MAO to form 
3,4-dihydroxyphenylacetic acid (DOPAC), which is then extraneuronally 
O-methylated by catechol- O -methyltransferase (COMT) to form HVA. DA released 
into the synaptic cleft may be then taken up by DAT localized on DA terminals or 
extraneuronally O-methylated by COMT to form 3-methoxytyramine (3-MT) which 
is then N-oxidized by glial MAO 

B
  to a fi nal metabolite HVA. The formation of 

DOPAC is accompanied by production of a potent, non-radical oxidant hydrogen 
peroxide. Its decomposition in the presence of ion-II may be a signifi cant source of 
the most deleterious radicals that is hydroxyl radicals (Chiueh et al.  1993  ) . Moreover, 
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hydrogen peroxide can oxidize glutathione (GSH) and other cellular thiols 
(thioredoxins, cysteine) which are involved in the maintenance of the redox state of 
cells (Jones  2008 ; Kemp et al.  2008  ) . Excessive generation of hydrogen peroxide 
may disrupt the cellular function of these thiols fi nally leading to pathological 
changes. Therefore, the oxidative MAO-dependent pathway of DA catabolism may 
play an important role in the progressive and selective loss of the dopaminergic 
neurons in the SN during the development of PD. On the other hand, the enhanced 
catabolism of DA through COMT-dependent O-methylation leading to 3-MT accu-
mulation may constitute an oxidative defense mechanism (Miller et al.  1996  ) . 

 Due to a short half-life of TIQ in the rat brain ( t  
1/2

  = 3.58 h), a detailed analysis of 
DA metabolism in the striatal and nigral homogenates originating from TIQ-treated 
rats, was performed 2 h after the fi rst and last chronic dose of this compound 
(50 mg/kg i.p, two times a day for 14 days) (Lorenc-Koci et al.  2004b  ) . This analy-
sis revealed that TIQ administered at a single dose of 50 mg/kg signifi cantly 
increased the DA level in the striatum and injected chronically, also in the SN. An 
increasing tendency in DA content was still observed in the striatum 2 h after the 
last chronic dose of TIQ. As to DA metabolites, TIQ strongly depressed the level of 
the intraneuronal DA metabolite DOPAC and enhanced that of the extraneuronal 
3-MT in the striatum and the SN after either treatments. The level of the fi nal DA 
metabolite HVA was enhanced only in the striatum after acute treatment, but it was 
unchanged after chronic treatment in both structures. 

 The decreased level of DOPAC indicated that the enzymatic activity of both 
MAO-A and -B that metabolize DA in the rat brain and the DA reuptake system 
were inhibited by TIQ administration.    In turn, the increased level of 3-MT showed 
that the COMT-dependent pathway of DA catabolism was activated. Moreover, a 
rapid accumulation of 3-MT indirectly indicated that TIQ was able to release DA in 
the striatum and SN. The above conclusions drawn from the analysis of DA catabo-
lism were in line with the previous studies which demonstrated that TIQ was an 
inhibitor both for MAO-A and -B (Maruyama et al.  1993 ; Patsenka and Antkiewicz-
Michaluk  2004  )  and a substrate for DA re-uptake system (McNaught et al.  1996  ) . 
The enhanced release of DA (by 280% of basal level) in the striatum of rats receiv-
ing a single dose of TIQ (100 mg/kg) was directly confi rmed by means of microdi-
alysis method (Lorenc-Koci et al.  2000  ) . In the latter study, it was evidenced that 
apart from DA, TIQ also released serotonin (5-HT). Extracellular levels of DA and 
5-HT metabolites, DOPAC, HVA, and 5-hydroxyindoleacetic acid (HIAA) in the rat 
striatum were decreased by 40–60% of the basal values. The ability of TIQ to shift 
DA catabolism from N-oxidation towards O-methylation suggests that it can modu-
late DA catabolism in a manner similar to MAO inhibitors which are considered as 
neuroprotective compounds (Magyar et al.  1998 ; Stern  1998  ) . Such a mode of TIQ 
action in the rat brain seems to oppose the view that this compound is an endoge-
nous neurotoxin. 

 It is commonly known that DA is formed from  l -tyrosine by two enzymes tyrosine 
hydroxylase (TH) and aromatic  l -amino acid decarboxylase. In PD, activity of TH, 
the initial and rate-limiting enzyme in the biosynthesis of DA, was markedly reduced 
both in the striatum and in the SN, due to degeneration of nigrostriatal dopaminergic 
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neurons. TIQ administration affected not only DA catabolism but also its synthesis. 
In early studies, the measurement of TH activity based on DOPA accumulation was 
performed in marmosets and monkeys chronically treated with TIQ (Nagatsu and 
Yoshida  1988 ; Yoshida et al.  1990  ) . In marmosets, it was demonstrated that TIQ 
decreased TH activity both in the striatum and SN (Nagatsu and Yoshida  1988  ) . 
However, in the TIQ-treated monkeys, enzymatic activity of TH was unchanged in 
the striatum though it was markedly reduced in the SN (Yoshida et al.  1990  ) . 
Histological analysis of TH-ir and CV-stained neurons performed in the mouse SN 
(Ogawa et al.  1989  )  suggested that chronic TIQ treatment might lead to the diminu-
tion of TH protein production. Therefore, in our study, the level of TH protein was 
determined by a Western blot method in the striatum and SN of rats chronically 
treated with TIQ (Lorenc-Koci et al.  2004b  ) . In that study, it was demonstrated that 
2 h after the last chronic dose of TIQ, the TH protein level in the striatum was mark-
edly decreased (by 40 % of the control level) though DA content in that structure 
indicated an increasing tendency. In the SN, although the level of TH protein was 
unchanged, a marked increase in DA content was observed (Lorenc-Koci et al. 
 2004b  ) . The TH protein level does not refl ect activity of this enzyme, however, a high 
concentration of DA in the rat striatum and concomitantly decreased level of TH sug-
gested that activity of the remaining part of the enzyme had to be elevated. 

 TH is an oxidatively labile enzyme whose level of activity is determined by the 
redox status of its cysteine sulfhydryl groups. Oxidants of –SH groups like per-
oxynitrite and catechol-quinones reduce TH activity to an extent that is proportional 
to cysteine modifi cation (Kuhn et al.  1999a,   b  ) . Recently, it has been demonstrated 
that this enzyme was regulated by S-glutathionylation. This redox-sensitive post-
translational modifi cation relies upon the reaction in which glutathione disulfi de 
(GSSG) reacts with protein sulfhydryl groups forming protein–glutathione mixed 
disulfi des (Giustarini et al.  2004  ) . When six of seven cysteinyl groups in TH are 
S-glutathionylated, the activity of this enzyme is lowered by 70–80% (Borges et al. 
 2002  ) . S-Glutathionylated proteins which are accumulated under oxidative/nitrosa-
tive stress conditions can be readily reduced to free –SH groups by glutaredoxin, an 
enzyme that requires optimal cellular GSH level for its effi cient function (Kenchappa 
and Ravindranath  2003  ) . 

 Recently, it has been demonstrated that TIQ administration signifi cantly increased 
the level of reduced GSH in the whole rat brain as well as in its dopaminergic struc-
tures, i.e., the striatum and SN (Lorenc-Koci et al.  2005a  ) . In TIQ-treated rats 
GSH:GSSG ratios in the striatum and SN were signifi cantly higher than in controls, 
indicating that oxidation/reduction (redox) state of GSH/GSSG couple was shifted 
in favor of reduction reactions. In such conditions, TH activity could rise in conse-
quence leading to the increased synthesis of DA. In fact, 2 h after the fi rst TIQ dose, 
a 21% increase in DA content was observed in the rat striatum (Lorenc-Koci et al. 
 2004b  ) . Then, in chronically TIQ-treated rats, 2 h after the last dose, the striatal 
concentration of DA was still slightly higher than in control ones though TH level 
was markedly decreased (Lorenc-Koci et al.  2004b  ) . It seems likely that in these rats 
due to a long-term maintaining of a high redox state of GSH/GSSG couple and con-
nected with this high activity of TH, a compensatory decline of TH protein level 
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could occur in order to prevent an excessive production of DA. On the other hand, 
3 days after termination of chronic TIQ treatment when the redox state of GSH/
GSSG couple returned to control level and TH protein content was still below phys-
iological level, a small 23% decline of DA content in the rat striatum was still present 
(Lorenc-Koci et al.  2000 ; Antkiewicz-Michaluk et al.  2000b  ) . 

 These results indicate that TIQ raising cellular GSH content can affect the 
activity of TH and possibly other GSH-related enzymes. Hence, the above-reported 
effects suggest that TIQ through the infl uence on the redox state of GSH/GSSG 
couple can modulate DA synthesis in the nigrostriatal dopaminergic system.  

    1.8   Infl uence of 1,2,3,4-Tetrahydroisoquinoline 
on the Levels of Glutathione and Nitric Oxide 
in the Brain: Neuroprotective Effects in Cell Culture 
and in Animal Models 

 Apart from a dramatic loss of DA in the nigrostriatal dopaminergic system in PD, 
a marked decrease in the concentration of the reduced GSH, the most abundant 
antioxidant in the mammalian brain, has been reported in the SN (Perry et al.  1982 ; 
Sofi c et al.  1992 ; Sian et al.  1994a ; Fitzmaurice et al.  2003  ) . The decrease in GSH 
content is regarded to be an early biochemical marker of PD because it precedes the 
appearance of the most characteristic biochemical changes visible in the advanced 
stage of the disease, such as a decline of DA concentration in the striatum, reduction 
of mitochondrial complex I activity, and alteration of ion metabolism (Pearce et al. 
 1997 ; Riederer et al.  1989  ) . The reason for the decline of GSH level in PD has not 
been elucidated so far. However, it does not seem to result from the decreased syn-
thesis of this antioxidant as the activity of  g -glutamylcysteine synthetase, the rate 
limiting enzyme in the GSH biosynthesis was not altered in the brain of parkinso-
nian patients (Sian et al.  1994b  ) . On the other hand, a marked increase of  g -glutamyl 
transpeptidase ( g -GT) activity, a membrane-bound enzyme responsible for extracel-
lular degradation of GSH, was demonstrated in the SN of PD patients (Sian et al. 
 1994b  ) . It is assumed that the increase of  g -GT is a compensatory change in response 
to the loss of GSH in the SN, since cysteine released during the extracellular GSH 
degradation after uptake into the cell can be reused for de novo GSH biosynthesis. 

 As mentioned in Sect.  1.7 , TIQ administered both acutely and chronically 
increased GSH level in the whole rat brain as well as in the dopaminergic structures 
(SN, striatum, and cortex). Moreover, it markedly inhibited the  g -GT enzymatic 
activity in the studied structures (Lorenc-Koci et al.  2001,   2005a  ) . These results 
clearly showed that the effects of TIQ on the GSH level and  g -GT activity were in 
contradiction to the changes observed in PD. TIQ mode of action contrasted also 
with MPTP activity which reduced GSH content in the nigrostriatal dopaminergic 
system in mice (Ferraro et al.  1986 ; Yong et al.  1986 ; Oishi et al.  1993  ) . Moreover, 
it was demonstrated that GSH depletion did not cause per se any damage to the 
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nigrostriatal pathway (Toffa et al.  1997  ) ; however, it increased the susceptibility of 
DA neurons to the toxicity of MPTP and 6-OHDA (Pileblad et al.  1989 ; Wüllner 
et al.  1996  ) . In contrast to MPTP, it seems that TIQ rising GSH level in the dop-
aminergic structures increases the antioxidant capacities of DA neurons and in this 
way protects them against toxic insults. In line with the latter assumption, to check 
potential neuroprotective properties of TIQ, the compound in question was admin-
istered to rats unilaterally lesioned with disodium malonate (Lorenc-Koci et al. 
 2005b  ) . Malonate, a reversible inhibitor of the mitochondrial enzyme succinate 
dehydrogenase (SDH), is frequently used as a model neurotoxin to induce lesion of 
the nigrostriatal dopaminergic system in animals due to particular sensitivity of DA 
neurons to energy impairment. In our study, the administration of malonate into the 
rat medial forebrain bundle (MFB) resulted in a 54% decrease in DA concentration 
and a 24–44% reduction of [ 3 H]GBR12,935 binding to the DAT 7 days after surgery 
(Lorenc-Koci et al.  2005b  ) . TIQ administration (50 mg/kg), 4 h before malonate 
infusion and next once daily for 7 days, prevented the decrease in DA content and 
in [ 3 H]GBR12,935 binding to DAT. These results indicate that TIQ may act as a 
neuroprotective agent in the nigrostriatal dopaminergic system. However, the mech-
anisms by which TIQ exerts neuroprotective effect in this model are unknown. It 
seems that at least in part this effect may be attributed to antioxidant properties of 
GSH the level of which was signifi cantly increased in the rat striatum after TIQ 
administration (Lorenc-Koci et al.  2001,   2005a  ) . Furthermore, TIQ-mediated inhi-
bition of MAO-dependent pathway of DA catabolism may also play an important 
role in the protection of striatal DA terminals from malonate destructive insults 
(Lorenc-Koci et al.  2000,   2005a  ) . 

 There are also other experimental data that seem to indicate neuroprotective 
properties of TIQ. In particular, it was demonstrated in DAT cDNA transfected cell 
lines that TIQ prevented toxicity of MPP +  and 2-MeIQ +  ion (Storch et al.  2002  ) . 
Moreover, in an abiotic system TIQ inhibited hydroxyl radical generation and in the 
rat SN it decreased production of free radicals (Antkiewicz-Michaluk et al.  2006 ; 
Lorenc-Koci et al.  2001  ) . In mouse embryonic primary cultures, TIQ reduced glu-
tamate toxicity measured as caspase-3 activity and lactate dehydrogenase release 
(Antkiewicz-Michaluk et al.  2006  ) . 

 Recently, there has been a great controversy regarding a possible contribution of 
nitric oxide (NO) to the neurodegeneration of DA neurons in PD. Some studies have 
suggested that NO is a toxic molecule mediating death of DA neurons (LaVoie and 
Hastings  1999 ; Przedborski et al.  1996  ) , whereas others have demonstrated its pro-
tective capacity against the oxidative stress (Kagan et al.  2001 ; Sharpe et al.  2003 ; 
Wink et al.  1996  ) . Our study demonstrated that TIQ administered acutely and 
chronically (50 mg/kg i.p, two times per day for 14 days) signifi cantly increased the 
tissue concentration of NO, measured as the level of nitrites, in the striatum, SN, 
and cortex, and in the whole rat brain (Lorenc-Koci et al.  2005a  ) . Treatment with 
TIQ also increased the level of  S -nitrosothiols, mainly  S -nitrosoglutathione (GSNO) 
formed in the reaction between NO and GSH, in the whole rat brain and in the 
cortex though it reduced their level in the striatum. Blockade of the constitutive NO 
synthase by  l -NAME in the presence of TIQ caused reduction in the GSH and 
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 S -nitrosothiol levels (Lorenc-Koci et al.  2005a  ) . The latter effect strongly suggested 
that NO affected biosynthesis of GSH and  S -nitrosothiols in the rat brain. In the 
previous study (Lorenc-Koci et al.  2001  ) , it was postulated that an increase in the 
GSH content after TIQ injection was a consequence of  g -GT inhibition and referred 
mainly to the extracellular pool of this peptide. However, the lack of elevation in the 
GSH content, by combined administration of  l -NAME and TIQ, excludes such 
explanation. Hence, it has been postulated that TIQ acting via NO can increase GSH 
synthesis. However, a detailed mechanism of this modulation requires further 
experiments. 

 NO plays an important role as a cellular signaling molecule, vasodilator, anti-
infectious agent, and as the most recently recognized, as an antioxidant (Kagan 
et al.  2001 ; Sharpe et al.  2003  ) . A functional study demonstrated that TIQ at a 
dose of 50 mg/kg produced a strong and long-lasting (from 1 until 24 h after single 
dose) hypotensive effect, having decreased both systolic and diastolic blood pres-
sure in rats (Michaluk et al.  2002  ) . Authors of that paper have thought that this 
effect resulted from high affi nity of TIQ for  a  

2
 -adrenergic receptors, but we sup-

pose that both NO and GSH, the levels of which were markedly increased by TIQ 
treatment, could evoke this effect. Interestingly, soluble guanylyl cyclase, the 
target enzyme for NO-mediated signal transduction, is regulated by GSH, and 
under reduced oxygen tension, GSH- and NO-induced activation of this enzyme is 
additive (Niroomand et al.  1989,   1991  ) . Since in TIQ treated rats the increase of 
NO was observed in the presence of high GSH concentration, it is likely that both 
these molecules act as antioxidants. Moreover, an increase of  S -nitrosothiol level, 
mainly GSNO which is a 100-fold more potent antioxidant than GSH (Chiueh and 
Rauhala  1999    ), suggests that TIQ administration enhanced the antioxidant capacity 
of the rat brain. 

 The above-discussed results concerning the effect of TIQ on the levels of NO, 
GSH, and  S -nitrosothiols seems to abrogate the hypothesis that TIQ may be a par-
kinsonism-inducing compound.  

    1.9   Conclusions 

 The experimental data assembled in the present review allow for a more precise 
characterization of the activity of the exogenous TIQ in the mammalian brain, espe-
cially in the nigrostriatal dopaminergic system. Based on these studies, the following 
conclusions may be drawn:

    1.    Exogenous TIQ indicated a high affi nity for the brain tissue. Its concentration in 
the rat brain was several-fold higher than that in plasma both after acute and 
chronic treatment. In the nigrostriatal dopaminergic system, TIQ concentration 
after chronic treatment was twofold higher in the SN than that in the striatum. 
A half-life of TIQ in the rat brain was  t  

1/2
  = 3 h 58 min while the respective value 

in the plasma was  t  
1/2

  = 2 h 38 min.  
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    2.    Exogenous TIQ was metabolized to a minimal extent via 4-hydroxylation catalyzed 
in the rat liver by CYP isoenzymes belonging to CYP2D subfamily. Hence, this 
reaction in the liver has no infl uence on TIQ accumulation in the brain and on its 
elimination from the rat organism.  

    3.    Exogenous TIQ was actively transported from the blood into the brain by OCT 
system, mainly by OCT3, and quickly eliminated from it by P-gp. Inhibition of 
P-gp activity slowed down TIQ elimination from the rat brain, suggesting that 
the accumulation of this compound in the brain, postulated previously to be a 
risk factor of PD, could be coupled rather with a genetic defect of P-gp than with 
that of CYP2D.  

    4.    TIQ increased the level of the reduced GSH and GSH:GSSG ratio in the whole 
rat brain and in the dopaminergic structures what meant that the redox state of 
GSH/GSSG couple was shifted in a favor of the reduction reactions. In the reduc-
tive environment, there is no danger of excessive disulfi de formation, so in such 
a condition TH cannot be inactivated by S-glutathionylation. This effect suggests 
that TIQ affecting the redox state of GSH/GSSG couple may increase the activity 
of TH and in this way it can modulate DA synthesis.  

    5.    TIQ increased DA release in the striatum and SN which was directly confi rmed 
using a microdialysis method and indirectly by the enhanced level of extracel-
lular DA metabolite 3-MT.  

    6.    TIQ inhibited the oxidative MAO-dependent DA catabolism and activated the 
COMT-dependent pathway. Such effects of TIQ on the course of both these 
reactions suggest that the compound in question may possess neuroprotective 
properties.  

    7.    TIQ displaced [ 3 H] apomorphine from its binding sites within dopamine D 
1
  and 

D 
2
  receptors with effectiveness similar to DA and in a behavioral test inhibited 

the apomorphine-stimulated locomotor activity. The latter effect suggests that 
TIQ can attenuate dopaminergic neurotransmission at sites other than classical 
neuroleptics. Neuroleptic-like activity of TIQ could be responsible for some 
motor defi cits observed in acutely and chronically TIQ-treated animals.  

    8.    TIQ increased the antioxidant capacity of brain cells as it simultaneously 
enhanced the levels of GSH, NO, and  S -nitrosothiols, mainly GSNO, and all 
these compounds possess neuroprotective properties. In the unilaterally malonate-
lesioned rats, TIQ prevented the loss of DA and decline of [ 3 H]GBR12,935 
binding to DAT. Moreover, in mouse embryonic primary cultures, TIQ reduced 
glutamate toxicity measured by caspase-3 activity.  

    9.    Despite its structural similarity with MPTP, TIQ does not seem to be a toxic 
compound. Effects of TIQ on the synthesis, release, and catabolism of DA and 
on the binding of [ 3 H] apomorphine to dopamine D 

1
  and D 

2
  receptors suggest 

that this compound can modulate dopaminergic neurotransmission. Moreover, 
TIQ infl uence on GSH, NO, and  S -nitrosothiol levels and its activity in the 
malonate and glutamate models of toxicity indicate that this compound can act 
not only as a modulator of dopaminergic neurotransmission but also as a neuro-
protective agent.          
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  Abstract   Derivatives from the isoquinoline group were found in many plants, food 
as well as in the mammalian brain. The interest with these substances appeared 
about 20 years back, after the exploration of their chemical structures similar to the 
well-known exogenous neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP). Tetrahydroisoquinolines such as 1-benzyl-1,2,3,4-tetrahydroisoquinoline 
(1BnTIQ) and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) 
show the neurotoxic activity to the dopamine neurons and this way it has been pro-
posed as endogenous factors leading risks to Parkinson’s disease. In animals, 
research indicates that chronic administration of 1BnTIQ as well as salsolinol 
induced parkinsonian-like symptoms. Both compounds produce disturbances in the 
function of dopaminergic neurons, intensify oxidative stress, and inhibit mitochon-
drial complex I and/or II activity   . In consequence, this mechanism of action leads to 
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cell death via apoptosis. This review briefl y describes the properties of 1BnTIQ and 
salsolinol in mammalian brain. This chapter presents the chemical structures of both 
compounds and possible pathways of their synthesis in the brain. A special focus 
was put on neurochemical effects of acute and chronic administration of 1BnTIQ 
and salsolinol on dopamine release as well as their metabolism in rat brain   . 
Additionally, the effects of dopamine metabolism have been shown as a source of 
free radical generation in the brain.  

  Keywords   1-Benzyl-1,2,3,4-tetrahydroisoquinoline  •  Salsolinol  •  Rat brain  
•  Oxidative stress  •  Neurotoxins  •  Dopamine metabolism  •  In vivo dopamine release  
•  Parkinson’s disease  

   Abbreviations 

  BBB    Blood–brain barrier   
  1BnTIQ    1-Benzyl-1,2,3,4-tetrahydroisoquinoline   
  COMT    Catechol- O -methyltransferase   
  CSF    Cerebrospinal fl uid   
  DA    Dopamine   
  DAT    Dopamine transporter   
  DOPAC    3,4-Dihydroxyphenylacetic acid   
  H 

2
 O 

2
     Hydrogen peroxide   

  HVA    Homovanilic acid   
   l -DOPA    3,4-Dihydroxy- l -phenylalanine   
  MPTP    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine   
  MAO    Enzyme monoamine oxidase   
  PEA    Phenylethylamine   
  PD    Parkinson’s disease   
  ROS    Reactive oxygen species   
  TH    Tyrosine hydroxylase   
  TIQ    1,2,3,4-Tetrahydroisoquinoline         

    2.1   Introduction 

 Isoquinoline derivatives, e.g. tetrahydroisoquinolines, are widely distributed in the 
environment, being present in many plants and foods such as cheese, milk, red 
wine, bananas, etc. The exogenously administered tetrahydroisoquinolines easily 
cross the blood–brain barrier (BBB) and migrate into the brain, producing behav-
ioral and biochemical effects in monoamine systems (Antkiewicz-Michaluk et al. 
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 2000a,   b,   2001 ; Kikuchi et al.  1991 ; Michaluk et al.  2002  ) . These compounds 
belong to the isoquinoline group and their structure closely resembles the well-
known exogenous toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). 
The neurotoxic role of MPTP depends crucially on its metabolite MPP + , formed in 
glial cells in a reaction catalyzed by the MAO 

B
  enzyme. The assumption that 

tetrahydroisoquinolines may be neurotoxic is based on their ability to form tetra-
hydroisoquinoline ions, analogous to MPP +  (Maruyama et al.  1997 ; Naoi et al. 
 1994 ,  1989a,   b  ) , in fact an experimental parkinsonism was induced by TIQ in 
monkeys (Nagatsu and Yoshida  1988    ) and by a salsolinol derivative in rats (Naoi 
et al.  1996  ) . While MPTP acts rapidly and produces irreversible neurotoxic changes 
after a single injection and its effects are strictly limited to the nigrostriatal dop-
amine system (Burns et al.  1985    ), tetrahydroisoquinolines produce no immediate 
neurotoxic effects; after acute administration, they produce marginal biochemical 
effects. Furthermore, tetrahydroisoquinolines do not potentiate the action of dop-
amine receptor antagonists but very effectively counteract the action of dopamine 
receptor agonists. In addition, tetrahydroisoquinolines bind to the agonistic sites of 
dopamine receptors.  

    2.2   The Chemical Structure of the Endogenous 
Neurotoxins: 1-Benzyl-1,2,3,4-Tetrahydroisoquinoline 
and 1-Methyl-6,7-Dihydroxy-1,2,3,4-
Tetrahydroisoquinoline (Salsolinol) (Fig.  2.1    )  

    2.3   The Synthesis of 1BnTIQ and Salsolinol in the Brain 

 1BnTIQ can be formed in vivo by mammalian brain enzymes from PEA and pheny-
lacetaldehyde (metabolite of PEA) generated by MAO-B. 

 The biosynthetic pathway of 1BnTIQ (Fig.  2.2 ).   
 In vivo 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) can 

be formed in the mammalian brain by three different mechanisms: (1) via the 

NH

1BnTIQ

NH
HO

HO

CH3

Salsolinol

  Fig. 2.1    Chemical structures 
of 1BnTIQ and salsolinol 
based on Naoi et al.  2004 ; 
Wąsik et al.  2009        
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nonenzymatic Pictet–Spengler condensation of dopamine and aldehydes producing 
salsolinol in two racemic isomers ( R  or  S ); (2) by the nonenzymatic condensation of 
dopamine and pyruvate yielding 1-carboxyl-tetrahydroisoquinoline, followed by 
decarboxylation and reduction, which produce ( R )-salsolinol; (3) by the selective 
synthesis of ( R )-salsolinol from dopamine and acetaldehyde. 

 The original Pictet–Spengler reaction was a reaction of  b -phenylethylamine with 
the dimethyl acetal of formaldehyde and hydrochloric acid, which yielded tetrahy-
droisoquinoline (Figs.  2.3  and  2.4 ).    

NH2

MeO

MeO

RCHO

N

MeO

MeO

R

HCl

NH

MeO

MeO

R

the Pictet-Spengler reaction

  Fig. 2.3    The Pictet–Spengler reaction based on Whaley and Govindachari  1951        
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  Fig. 2.4    Salsolinol synthesis based on Naoi et al.  2004        
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    2.4   The Oxidation of Dopamine 

 There are many natural sources of oxidative stress e.g., environmental toxins (her-
bicides, pesticides, heavy metals), heat shock, UV radiation, and infl ammation. 
Reactive oxygen species (ROS) are products of normal cellular metabolism. Also, 
dopamine can generate ROS via enzymatic and nonenzymatic pathways (Cohen 
et al.  1997 ; Berman and Hastings  1999 ; Gluck et al.  2002    ). During a dopamine 
catabolism process, ROS are formed which are very dangerous to living cells. 
A high concentration of ROS leads to damage to a number of biomolecules, such as 
DNA, proteins, and lipids. In consequence, cell death is induced via apoptosis. 
Complexes I, II, and III of the mitochondrial respiration, pyruvate dehydrogenase, 
and  a -ketoglutarate complexes are highly sensitive to the blocked effect of ROS 
(Vinogradov et al.  1976 ; Bunik et al.  1990 ; Bulteau et al.  2003 ; Bunik  2003    ). Gluck 
et al. ( 2002 ) reported that dopamine at low concentrations inhibited mitochondrial 
respiration, predominately by a MAO-dependent mechanism involving H 

2
 O 

2
  and 

downstream hydroxyl radical formation. The production of superoxide anion occurs 
mostly within cell mitochondria (Cadenas and Sies  1998    ). In neurons, dopamine is 
nonenzymatically oxidized by the molecular oxygen to form hydrogen peroxide 
(H 

2
 O 

2
 ) and the corresponding  O -quinone (Oq). Then, this Oq undergoes intramo-

lecular cyclization which is immediately followed by a cascade of oxidative reac-
tions resulting in the formation of neuromelanin – a black pigment characteristic of 
dopaminergic neurons (Graham  1978 ; Graham et al.  1978  ) . Additionally, dopamine 
can also be enzymatically deaminated by monoamine oxidase (MAO) to form H 

2
 O 

2
  

and 3,4-dihydroxyphenylacetaldehyde. This process is shown by the following 
formula:

     + + ¾¾¾® + +BMAO
2 2 3 2 2DA O H O DOPAC NH H O     

 Subsequently, 3,4-dihydroxyphenylacetaldehyde is oxidized by aldehyde dehy-
drogenase to form 3,4-dihydroxyphenylacetic acid (DOPAC), which is methylated 
by catechol- O -methyltransferase (COMT) to yield homovanilic acid (HVA), which 
is a fi nal dopamine metabolite. Therefore, both autoxidation and MAO-mediated 
metabolism of dopamine lead to the production of H 

2
 O 

2
 . This compound can be 

subject to the Fenton reaction, which consists in reducing H
2
O

2
 in the presence of 

ferrous iron (Fe 2+ ). Further, in consequence come into the being the hydroxyl radical 
( • OH), which is considered the most damaging free radical to living cells.   

     
+ + -+ ® + +2 3 •

2 2Fe H O Fe OH OH     

 The formation of a free radical during both the biosynthesis and the turnover of 
dopamine leads to a loss of many dopaminergic neurons (Fornstedt et al.  1990  ) . It is 
evident that the subsequent excessive autoxidation and catabolism of dopamine are 
involved in the development of many neurodegenerative and age-related disorders 
(e.g., Parkinson’s disease). Furthermore, these phenomena are enhanced by the 
presence of neuromelanin in dopaminergic neurons due to its reported ability to 
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accumulate iron (Enoch et al.  1994  ) ; consequently, neuromelanin can act by promoting 
the Fenton reaction   . Hermida-Ameijeiras et al.  (  2004  )  reported that the continuous 
production of  • OH during the dopamine incubation with mitochondrial preparations 
obtained from rat brain was maintained under the physiological conditions of pH 
and temperature. That production was reduced when MAO activity was blocked by 
the preincubation of mitochondrial preparations with the MAO inhibitor, pargyline. 
Thus, on the one hand the dopamine protects against both the hazardous Fenton 
reaction and the propagation of lipid peroxidation but, on the other, it generates  • OH 
and promotes protein oxidation. Furthermore, these properties are differently 
enhanced by the presence of Fe 2+  and Fe 3+ . The hydroxyl ion OH − , also produced in 
the Fenton reaction, is considerably less toxic (10 14 ) than the hydroxyl radical. Iron 
plays an important role in this reaction. It may originate from neuromelanin or fer-
ritin. It should be emphasized that in the course of Parkinson’s disease, neuromelanin-
containing dopaminergic neurons are those which die, which suggests that Fe 2+ , 
essential for the Fenton reaction to occur, can be released from this compound by 
unknown toxic factors (Antkiewicz-Michaluk  2002 ; Ben-Shachar et al.  1991a,   b  ) .    
Thus, dopamine metabolism leads to the formation of the toxic hydroxyl radical, 
which poses a serious threat to nervous cells causing their damage and death in the 
process of apoptosis. 

 The process of dopamine autoxidation in the presence of Fe 3+  is shown by the 
following formula (Fig.  2.5 ).   

    2.5   The Effect of Acute and Chronic Treatment 
with 1BnTIQ and Salsolinol on Dopamine 
Metabolism in Rat Brain 

 1-Benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ) is an endogenous neurotoxin 
which has been proposed as one of the etiological factors of idiopathic Parkinson’s 
disease (PD) (Kotake et al.  1995  ) . The level of 1BnTIQ in the CSF of patients with 
idiopathic PD was found to be three times higher than that in CSF of neurological 
control subjects (Kotake et al.  1995  ) . Chronic administration of 1BnTIQ induced 
parkinsonian-like symptoms in rodents and primates (Kotake et al.  1995 ;  1996  ) . In 
vitro studies showed that 1BnTIQ is toxic to human SH-SY5Y neuroblastoma cells 
and cultured primary neurons (Kotake et al.  2003 ; Shavali and Ebadi  2003 ; Shavali 
et al.  2004  ) . Some evidence demonstrated that 1BnTIQ dose-dependently elevated 
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  Fig. 2.5    Dopamine autoxidation based on Hermida-Ameijeiras et al. 2004       
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the level of the pro-apoptotic protein Bax and decreased the concentration of the 
anti-apoptotic protein Bcl-xL. Additionally, 1BnTIQ produced an increase in the 
formation of active caspase-3 protein fragments (Shavali and Ebadi  2003  ) . 1BnTIQ 
induced cell death via apoptosis. A morphological analysis of SH-SY5Y cells 
treated with 1BnTIQ showed nuclear defects and the presence of apoptotic-like 
bodies and nuclear fragments (Shavali et al.  2004  ) . Dopaminergic cells deteriorated 
and slowly died, their number being gradually reduced. The neurotoxicity of 
1BnTIQ was correlated with the overall exposure (concentration multiplied by time 
of exposure). The prolonged exposure of dopaminergic neurons to a low concentra-
tion of 1BnTIQ initially induced a decrease in the dopamine level, after which the 
shrinkage of the cell body led to cell death    (Kotake et al.  2003  ) . Different TIQ 
derivatives inhibited mitochondrial respiration and electron transfer complexes. 
1BnTIQ was found to be a more potent inhibitor than MPTP and MPP+ (Morikawa 
et al.  1996,   1998  ) . 1BnTIQ also blocked the dopamine transporter (DAT) leading to 
inhibition of dopamine uptake. Okada et al. ( 1998    ) reported that 1BnTIQ can be 
taken up via DAT into dopaminergic neurons similarly to MPP +  in vivo. Otherwise, 
those agents can only bind to the DAT like cocaine. However, since salsolinol 
(structurally similar to THP) seems to be taken up into rat striatal slices (Hirata et al. 
 1990 ) and PC 12h cells (Maruyama et al.  1993 ) 1BnTIQ can also be accumulated in 
DAT-HEK. 1BnTIQ, which is synthesized endogenously in the body and/or is 
obtained exogenously in the diet, can be taken up by neurons via DAT; furthermore, 
it accumulates in dopaminergic neurons and exerts some pathological effects lead-
ing to parkinsonism, and it disturbs the effi cacy of  l -DOPA chemotherapy in par-
kinsonian patients. Kotake et al.  (  2003  )  showed that the exposure to 1BnTIQ for 
24 h or 7 days caused a dose-dependent decrease in dopamine content in mesen-
cephalic slices. Kohta et al. ( 2010    ) found that 1BnTIQ bound to tubulin  b  in mid-
brain neurons and reduced the formation of high-molecular-weight polyubiquitinated 
tubulin  b . The latter fi ndings suggest that 1BnTIQ may impair tubulin  b  ubiquitina-
tion, similarly to mutant parkin in AR-JP. Even low concentrations of 1BnTIQ can 
decrease the polyubiquitination of tubulin  b  if present for a long time (Kohta et al. 
 2010 ). The overexpression of tubulin  b  is toxic (Burke et al.  1989 ) and causes dis-
turbances in the functioning of dopaminergic neurons. 1BnTIQ acts by inhibiting 
the enzymes involved in dopamine biosynthesis. Ex vivo biochemical studies 
showed that a single dose of 1BnTIQ (50 mg/kg) produced a dramatic fall in the 
dopamine level in rat brain (approx. 40%) and increased the concentration of its 
metabolites, DOPAC and HVA. Additionally, 1BnTIQ markedly reduced the level 
of extraneuronal dopamine metabolite, 3-MT. 1BnTIQ evoked strong (nearly three-
fold) activation of the oxidative MAO-dependent catabolic pathway (Wąsik et al. 
 2009  ) . Dopamine oxidation is directly connected with the production of free radi-
cals, oxidative stress, as well as with cell death and neurodegeneration (Schapira 
et al.  1990 ; Adams and Odunze  1991    ; Miller et al.  1996 ; Chan  1998    ; Dykens  1999  ) . 
At the same time, 1BnTIQ signifi cantly inhibits the COMT-dependent O-methylation 
pathway. Striatum and nucleus accumbens represent brain regions where the depres-
sion of dopamine produced by 1BnTIQ is most powerfully expressed, this effect 
being specifi c to dopaminergic neurons. The biochemical effects of the chronic 
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administration of 1BnTIQ are considerably weaker. This pattern of changes suggests 
that during chronic 1BnTIQ administration some tolerance to its dopamine- 
depressing effect develops, while the impairment of dopamine synthesis ensues 
(Wąsik et al.  2009  ) . After chronic (14 doses) 1BnTIQ administration the decrease in 
dopamine level was weaker (approx. 20%). However, in the mixed group in which 
rats received  l -DOPA with the last dose of 1BnTIQ, the effects of  l -DOPA were 
signifi cantly reduced. Such an effect was observed 2 h after the last 1BnTIQ 
injection, as well as after its 24-h withdrawal. Hence, dopamine production was 
disturbed after chronic 1BnTIQ administration, the effect being long lasting 
(Antkiewicz-Michaluk et al.  2010  ) . 

 It is common by known that enantiomer ( R )-salsolinol is synthesized in human 
and mammalian brain, whereas enantiomer ( S ) penetrates into the organism with 
foods. A low concentration of salsolinol was detected in normal human cerebrospi-
nal fl uid (Moser and Kompf  1992  ) , brain, and urine (Dostert et al.  1989  ) . In con-
trast, both parkinsonian patients treated with  l -DOPA and chronic alcoholics 
showed a signifi cant elevation in the concentration of salsolinol in CSF and urine 
(Cohen and Collins  1970 ; Collins et al.  1979 ; Moser and Kompf  1992 ; Sandler et al. 
 1973  ) . Salsolinol is a dopamine metabolite and its toxicity is closely connected with 
catecholaminergic nerve terminals. Salsolinol is structurally similar to MPTP which 
produces a parkinsonian-like syndrome in human and nonhuman primates. It was 
suggested that under special conditions salsolinol may act as a false neurotransmit-
ter, causing – among other effects – neurodegeneration. It was found that tetrahy-
droisoquinoline may produce parkinsonism-like symptoms in primates (Nagatsu 
and Yoshida  1988  ) . Salsolinol acts as inhibitor both of tyrosine hydroxylase (TH) 
and MAO. Patsenka and Antkiewicz-Michaluk  (  2004  )  have reported that different 
TIQs inhibited MAO activity in a dose-dependent manner. Salsolinol inhibited 
MAO 

A
  activity most effectively in rat frontal cortex, and less effi ciently in other rat 

and mouse brain structures. Moreover, from different TIQs only salsolinol was 
effective as an inhibitor of TH activity. This compound is regarded as an inhibitor of 
catecholamine uptake in rat brain synaptosomes and it causes the release of cate-
cholamines stored in rat brain (Heikkila et al.  1971  ) . Storch et al.  (  2000  )  concluded 
that salsolinol was toxic to dopaminergic neuroblastoma SH-SY5Y cells by blocking 
the cellular energy supply via inhibition of mitochondrial complex II activity. The 
latter authors found that incubation of human SH-SY5Y dopaminergic neuroblas-
toma cells with salsolinol resulted in a rapid, dose- and time-dependent decrease in 
the intracellular level of ATP and ATP/ADP ratio of intact cells. In vitro studies 
showed that salsolinol induced specifi c changes in cellular energy metabolism, sim-
ilar to those caused by MPP + , which consistently preceded cell death (Storch et al. 
 2000  ) . As reported by Morikawa et al.  (  1998  )  salsolinol inhibited mitochondrial 
complex II activity. It caused a rapid loss of intracellular ATP and maximal turnover 
of glycolysis without compensating fast energy depletion. Additionally, the block-
ade of complex II did not change the level of NADH. Selective binding of salsolinol 
was confi rmed not only in dopaminergic structures such as e.g., the striatum, but 
also in the pituitary gland, cortex, and hypothalamus (Homicsko et al.  2003 ). 
Salsolinol also inhibited vesicular monoamine transporters in dopaminergic terminals. 
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The latter fi ndings suggest that salsolinol may regulate the function of dopamine 
neurons as a neurotransmitter and may act as a mediator in the neuroendocrine system, 
through its specifi c binding sites and via intervention in the dopamine system (Naoi 
et al.  2004  ) . Salsolinol antagonized behavioral action of  l -DOPA and apomorphine, 
a dopamine agonist (Ginos and Doroski  1979 ; Antkiewicz-Michaluk et al.  2000a,   b  ) . 
Binding studies demonstrated that salsolinol displaced [ 3 H]apomorphine, but not 
dopamine D 

1
  ([ 3 H]SCH23,390) and D 

2
  ([ 3 H]spiperone) receptor antagonists, from 

their binding sites, its effectiveness being comparable to that of dopamine 
(Antkiewicz-Michaluk et al.  2000a,   b  ) . The above data suggest that salsolinol may 
suppress dopaminergic transmission by acting on the agonistic sites of dopaminergic 
receptors, which are different from neuroleptic binding sites. Salsolinol showed an 
antidopaminergic profi le since it induced only a weak effect on spontaneous loco-
motor activity; moreover, it produced effective antagonism to behavioral and bio-
chemical effects of apomorphine and induced muscle rigidity (Antkiewicz-Michaluk 
et al.  2000a,   b ; Lorenc-Koci et al.  2000 ; Vetulani et al.  2001  ) . Ex vivo biochemical 
studies demonstrated that a single dose of salsolinol (100 mg/kg) produced no 
changes in dopamine concentration as well as its metabolites in different rat brain 
structures. On the other hand, administration of salsolinol jointly with  l -DOPA 
enhanced its effect. In fact, the level of dopamine and all its metabolites was signifi -
cantly higher compared to a group treated with  l -DOPA (data not shown). Chronic 
(14 doses) salsolinol administration did not produce any changes in dopamine con-
centration and in the level of its metabolites. However, in a mixed group of rats 
which were given, the last dose of salsolinol jointly with  l -DOPA, the effect of 
 l -DOPA was signifi cantly reduced. Similar to experiment with 1BnTIQ, the latter 
effect was observed 2 h after the last salsolinol injection as well as after its 24-h 
withdrawal. Hence, it has been demonstrated that chronic injection of salsolinol 
produces long-lasting disturbances in dopamine production in the brain (Antkiewicz-
Michaluk et al.  2010  ) .  

    2.6   The Effect of 1BnTIQ and Salsolinol on In Vivo 
Dopamine Release in Rat Striatum 

 An in vivo microdialysis study demonstrated that 1BnTIQ given systemic markedly 
reduced dopamine release into the synaptic cleft of freely moving rats, and pro-
duced a long-lasting decrease in extracellular dopamine in rat striatum (about 30%). 
In contrast, the concentration of all the dopamine metabolites was signifi cantly ele-
vated after acute 1BnTIQ administration (approx. 100%) (Wąsik et al.  2009  ) . The 
above fi ndings suggest that 1BnTIQ may show injury properties to vesicular trans-
porter in dopaminergic neurons, leading to a pathological release of dopamine into 
the cytosol. In contrast, an acute dose of salsolinol produced only a slight reduction 
of dopamine level. The latter fi ndings indicate that both acute and repeated adminis-
tration of 1BnTIQ results in the development of abnormalities in the function of dop-
amine neurons (Wąsik et al.  2009  ) . Such disturbances are particularly observed in 
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animals treated with 1BnTIQ concomitant with  l -DOPA, because chronic administration 
of 1BnTIQ in contrast to its acute injection signifi cantly reduces the increase in 
dopamine release, produced by  l -DOPA; furthermore, it completely antagonizes 
the  l -DOPA-induced rise in DOPAC and 3-MT levels in rat striatum (Antkiewicz-
Michaluk et al.  2010  ) . In the light of all these data we suggest that therapy with 
 l -DOPA may not be effi cient in PD patients with an elevated endogenous 1BnTIQ 
level in the brain.  

    2.7   Conclusions 

 It is reported that both isoquinoline derivatives (1BnTIQ and salsolinol) are endog-
enous neurotoxins synthesized in human and mammalian brain. The action of both 
these compounds is closely connected with dopaminergic neurons. Their exogenous 
administration elevates dopamine oxidation which leads to an increase in the forma-
tion of ROS in dopaminergic neurons. In consequence, these substances inhibit the 
mitochondrial complex I or/and II and induce cell death via apoptosis. Chronic 
administration of 1BnTIQ as well as salsolinol produced parkinsonian-like symp-
toms both in rodents and rhesus. Both acute and chronic administration of 1BnTIQ 
and salsolinol leads to the development of the abnormalities in the functioning of 
dopamine neurons. The accumulated evidence suggests that isoquinoline deriva-
tives may be one of the etiological factors of idiopathic PD and additionally a 
therapy with  l -DOPA may not be effi cient in PD patients with a high endogenous 
level of 1BnTIQ and/or salsolinol in the brain.      
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  Abstract   1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ), unlike several other 
tetrahydroisoquinolines, displays neuroprotective properties. To elucidate this action 
we compared the effects of 1MeTIQ with 1,2,3,4-tetrahydroisoquinoline (TIQ), a 
compound sharing many activities with 1MeTIQ (e.g., reducing free radicals formed 
during dopamine catabolism) but offering no clear neuroprotection. We found that 
the compounds similarly inhibit free radical generation in an abiotic system, as well 
as indices of neurotoxicity, caspase-3 activity, and lactate dehydrogenase release 
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induced by glutamate in mouse embryonic primary cell cultures. 1MeTIQ also 
prevents the glutamate-induced cell death and  45 Ca 2+  infl ux, whereas TIQ did not. In 
vivo microdialysis study has shown that 1MeTIQ prevents kainate-induced release 
of excitatory amino acids from the rat frontal cortex. Additionally, 1MeTIQ protects 
against rotenone-induced mortality, oxidative stress as well as dopaminergic neuro-
degeneration in the extrapyramidal structures produced by intracerebral injection of 
rotenone. The results suggest that 1MeTIQ offers a unique and complex mechanism 
of neuroprotection in which free radicals scavenging properties and inhibition of 
glutamate-induced excitotoxicity may play a very important role, and indicates the 
potential of 1MeTIQ as a therapeutic agent in various neurodegenerative illnesses of 
the central nervous system.  

  Keywords   1-Methyl-1,2,3,4-tetrahydroisoquinoline  •  Rat brain  •  Dopamine 
metabolism  •  MAO inhibition  •  Rotenone  •  Glutamate  •  Oxidative stress  •  Free radi-
cals  •  Neuroprotection  •  Parkinson’s disease      

    3.1   Introduction 

 Tetrahydroisoquinolines, compounds of which 1-methyl-1,2,3,4-tetrahydroquinoline 
(1MeTIQ) is a representative, form an interesting group among several classes of 
brain chemicals. Numerous tertrahydroisoqunoline compounds were found to be 
present in the brain tissue (Zarranz de Ysern and Ordonez  1981 ; Niwa et al.  1987  ) , 
some of them being endogenous, others taken up with foods, still others being at the 
same time endo- and exogenous (Niwa et al.  1989 ; Deng et al.  1997 ; Duncan and 
Smythe  1982  ) . Although tetrahydroisoquinolines are present in normal brains only in 
minute quantities (Weiner  1981  ) , they may be generated or accumulated in critical 
sites of the brain, for example, in the vicinity of dopamine neurons, and exerting 
various biological activities may importantly interfere with specifi c brain structures 
and functions. The compounds of this class have some biological activities essentially 
similar [e.g., antagonism of receptors and/or attenuation of neurotransmitter release in 
dopaminergic (Antkiewicz-Michaluk et al.  2000,   2001 ; Ginos and Doroski  1979  ) ] and 
glutamatergic structures (Lorenc-Koci et al.  2009 ; Ueda et al.  1999 ; Ludwig et al. 
 2006  ) , while they differ profoundly among themselves in their neurotoxicity. Some of 
them, for example, N-methyl, 1,2,3,4-tetrahydroisoquinoline (N-MeTIQ) are highly 
neurotoxic (Maruyama et al.  1993  ) , others, like 1MeTIQ, possess neuroprotective 
properties (Tasaki et al.  1991  ) . The neuroprotective action of some of them may be 
related to their inhibitory action on monoamine oxidase activity and/or on their action 
as free radical scavengers (Maruyama et al.  1995  ) . Some derivatives were even 
reported to protect against NMDA-induced neural damage (Ohkubo et al.  1996  ) . 

 Nevertheless, the fact that neurotoxic tetrahydroisoquinolines are preserved in 
the brain in the course of evolution together with nonneurotoxic species suggests 
that both groups play a physiological role in the brain, and we proposed that they 
may be natural regulators of the dopaminergic system, preventing its excessive pha-
sic activity without affecting the tonic one (Vetulani et al.  2003a  ) . 
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 Even before their discovery in the brain, tetrahydroisoquinolines aroused the 
interest of pharmacologists. The early studies on 1,2,3,4-tetrahydroisoquinoline 
(TIQ) and its derivatives revealed their neuroleptic-like properties (Ginos and 
Doroski  1979  )  and our more recent results suggest that TIQ and its derivatives are 
antagonists of agonistic conformation of dopamine D2 receptor (Antkiewicz-
Michaluk et al.  2000 ; Vetulani et al.  2001 ; Vetulani et al.  2003a  ) . This explains why 
TIQ and its congeners effectively block dopaminergic stimulation without affecting 
much the basal locomotor activity. The fi nding that TIQ potentiated morphine-
induced running fi t in mice (Vetulani et al.  2001  )  corroborated the assumption that 
tetrahydroisoquinolines do not block dopamine receptors in a manner similar to that 
of classical neuroleptics and focused our attention on a possible interaction of these 
compounds with other actions of morphine. This line of research led to the 
discovery of potentiation of morphine and oxotremorine-induced analgesia by sim-
ple tetrahydroisoquinolines, including 1MeTIQ (Vetulani et al.  2003b  ) , prevention 
of morphine abstinence syndrome (Wasik et al.  2007  )  and attenuation of cocaine 
sensitization (Wasik et al.  2010  )  and prevention of cocaine-induced relapse to self-
administration (Filip et al.  2007  ) . 

 Pharmacologically tetrahydroisoquinolines aroused also an interest as potential 
NMDA receptor antagonists (Ortwine et al.  1992  ) . Some of them were described as 
effective antagonists of the PCP site (Rogawski et al.  1989  ) . However, most of tet-
rahydroisoquinolines, do not substitute for PCP (Nicholson and Balster  2003  ) . 

 Among several endogenous tetrahydroisoquinolines 1MeTIQ has a special posi-
tion, as very early it was described in the brain (Kohno et al.  1986 ; Makino et al. 
 1990 ; Niwa et al.  1987 ; Ohta et al.  1987  ) , and shortly after recognized as a potential 
antiparkinsonian agent on the base of reversal of bradykinesia induced by MPTP, 
TIQ, or 1BnTIQ (Tasaki et al.  1991 ; Kotake et al.  1995  ) .  

    3.2   Synthesis of 1MeTIQ in the Brain 

 1-MeTIQ was identifi ed in normal rat brains in 1986 (Kohno et al.  1986  ) , and sub-
sequently found to be present in foods rich in 2-phenylethylamine, from which it 
may enter the brain (Makino et al.  1988  ) , but it is also synthesized in the brain 
(Niwa et al.  1990 ; Tasaki et al.  1993  ) . Its cerebral concentration in normal rat brains 
was recently determined as 3.4 ± 1.5 (0.50 ± 0.22 ng/g), exceeding threefold to fi ve-
fold the concentrations of other simple tetrahydroisoquinolines (Inoue et al.  2008  ) . 
Having an asymmetric carbon atom, 1MeTIQ may appearing the form of R and S 
stereoisomers, and the product found in brain and in foods is a racemate (Makino 
et al.  1990  )  and the stereoisomers differ in some respect in their biological action 
(Abe et al.  2001  ) . 

 1MeTIQ is enzymatically formed in the brain from 2-phenethylamine and pyru-
vate. The enzyme involved, 1MeTIQase, was localized in the mitochondrial– 
synaptosomal fraction of rat brain, isolated and purifi ed. 1MeTIQase may be 
important in the pathogenesis of Parkinson’s disease. (Yamakawa and Ohta  1997  ) . 
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Its activity is spread throughout the brain, the highest activity being observed in the 
dopaminergic areas that are implicated in the etiology of Parkinson’s disease (stria-
tum and substantia nigra) and in the cortex. During aging the activity of 1-MeTIQse 
falls (by approximately 50%) in the areas of its highest activity (Absi et al.  2002  ) . 

 Most of the studies on 1MeTIQ were carried out on rodents’ brains, but the 
results on monkeys, showing that the regional distribution of contents of 1MeTIQ, 
and other simple tetrahydroisoquinolines and activity of    1MeTIQase presented a 
similar pattern of distribution (Yamakawa et al.  1999  ) . 

 1MeTIQ synthesis is inhibited by agents that induce experimental Parkinsonism 
(Tasaki et al.  1991 ; Yamakawa and Ohta  1999 ; Igarashi et al.  1999  ) , its concentra-
tion in the substantia nigra declines in aged rats (up to 50%) and in Parkinsonian 
patients (Ayala et al.  1994  ) . All those data indicate that the change of the 1-MeTIQ 
content in the brain plays an important role in the pathogenesis of toxin-induced 
Parkinsonism, and that the degeneration of the dopaminergic neurons may proceed 
as a result of the loss of neuroprotection offered by 1-MeTIQ. 

 When injected systematically 1MeTIQ easily passes through the blood–brain 
barrier, and accumulates in the brain (Kikuchi et al.  1991  ) . As mentioned earlier, 
1MeTIQ may appear in stereoisomeric forms, R and S, which have different bio-
logical properties. It appears that (R)-1-MeTIQ, and not (S)-enantiomer, plays a 
crucial role as a neuroprotective antiparkinsonian agent (Abe et al.  2001  ) .  

    3.3   Scavenging of Free Radicals by 1MeTIQ 

 To fi nd out whether 1MeTIQ may protect against oxidative stress we investigated its 
capacity to inhibit hydroxyl radical generation in vitro. Oxidative stress leads to the 
production of reactive oxygen species (Harman  1981  ) , such as superoxide anion 
radical (O2-) and hydroxyl radical (OH) that are known to damage all cellular 
biomacromolecules (lipids, sugars, proteins, and polynucleotides), and this damage 
can lead to equally damaging secondary products (Sayre et al.  2008  ) , Owing to that 
the oxidative stress was since long regarded as a universal mechanism of inducing 
cell death (Dykens  1999  ) . In the brain the main source of toxic hydroxyl radical 
formation and H 

2
 O 

2
  generation is the oxidative deamination of monoamines by the 

action of MAO (for review see Singer and Ramsay  1995  ) . Thus, the excessive dop-
amine catabolism by MAO augments the formation of free radicals in the brain. 
After having demonstrated that 1MeTIQ and other simple tetrahydroisoquinolines 
inhibit MAOA and MAOB activities from mouse and rat brains, thus having poten-
tially antioxidant properties, (Patsenka and Antkiewicz-Michaluk  2004  ) , a direct 
study on the free radical scavenging capacity of 1MeTIQ was carried out. To mea-
sure the antioxidant capacity of free radical scavengers the Fenton reaction is suit-
able, as it generates the hydroxyl radicals in a manner similar to their in vivo 
generation. In this “inorganic” model 1MeTIQ inhibited the free radical formation 
and completely abolished the dopamine-enhanced effi ciency of Fenton reaction 
(Antkiewicz-Michaluk et al.  2006  ) . 
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 Those results demonstrate that regardless of its interaction with biological struc-
tures, 1MeTIQ has intrinsic antioxidant properties.  

    3.4   Neuroprotection of 1MeTIQ in Relation 
to Dopaminergic Mechanisms 

    3.4.1   Effect of Acute and Chronic 1MeTIQ Administration 
on Dopamine Metabolism in the Brain: Inhibition 
of MAO-Dependent Dopamine Oxidation 
Pathway In Vivo 

 Several tetrahydroisoquinolines and their congeners interfere with monoamine oxi-
dases (MAO). Many isoquinolines were found to selectively inhibit either MAO A 
or (less frequently) MAO B. Stereoselective competitive inhibition of MAO A was 
found with the (R) enantiomer of all the stereoisomers tested (Bembenek et al. 
 1990  ) . In those early experiments 1MeTIQ was not tested, but 2-Me-1,2,3,4-
tetrahydroisoquinoline was much more potent than unsubstituted 1,2,3,4-tetrahy-
droisoquinoline, and both preferably inhibited MAOB. Later on the inhibitory effect 
of 1MeTIQ and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline were found 
to inhibit the activity of MAOB, indicating that they may be neuroprotective agents 
in the brain, and their involvement in the pathogenesis of Parkinson’s disease was 
discussed (Naoi and Maruyama  1993  ) . Afterward Thull et al.  (  1995  )  investigated 45 
isoquinoline derivatives and found most of them reversible inhibitors of MAOA and 
B, often selective to the A form. Their studies brought to the forefront the question 
of the physiological signifi cance of endogenous MAO inhibitors and suggested a 
role for endogenous tetrahydroisoquinolines in the control of neurotransmitter func-
tion, and prevention of neurotoxicity related to MAO activity in the brain. More 
recently the effectiveness of 1MeTIQ as an inhibitor of MAOA and MAOB was 
compared with that of 1,2,3,4-tetrahydroisocarboline, and 1MeTIQ was found 
roughly equipotent with its unsubstituted congener as MAOA inhibitor, while less 
effective in regard to MAOB (Patsenka and Antkiewicz-Michaluk  2004  ) . 

 The data from ex vivo neurochemical experiments have shown stereospecifi city 
of 1MeTIQ enantiomers in respect of their effects on dopamine catabolism. While 
both the enantiomers increased the concentrations of dopamine and its extraneu-
ronal metabolite, 3-MT in rat striatum, they differently affected dopamine catabo-
lism. Thus, (R)-1MeTIQ signifi cantly increased both the level of the fi nal DA 
metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%), while 
(S)-1MeTIQ signifi cantly depressed the DOPAC and HVA levels (by 60 and 40%, 
respectively), and attenuated the rate of DA metabolism (by about 60%) (Antkiewicz-
Michaluk et al.  2011  ) . These data suggest that the (S)- enantiomer may offer greater 
protection against neurotoxicity.  
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    3.4.2   Lack of Noxious Effect of 1MeTIQ Administration 
on Dopamine Neurons 

 As tetrahydroisoquinolines show structural resemblance to 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), a potent neurotoxin capable of producing persis-
tent parkinsonism in humans (Langston et al.  1983  )  which could be employed for 
producing experimental Parkinson’s disease in laboratory animals (Jenner and 
Marsden  1986  ) , initially they all were assumed to cause damage to dopamine neurons 
In fact the early studies reported that they generally are neurodegenerating agents 
(Suzuki et al.  1990  ) , the most neurotoxic being 1,2,3,4-tetrahydroisoquinoline (TIQ), 
1-benzyl-TIQ, and (R)-1,2-dimethyl-5,6-dihydroxy-TIQ (R)-N-methyl-salsolinol 
(Nagatsu  1997  ) . This fi nding contrasted with an earlier report which found no neuro-
toxicity of TIQ on nigrostriatal dopamine neurons (Perry et al.  1988  ) .    The most recent 
studies, in which the actions of 1MeTIQ and TIQ were directly compared, suggested 
that TIQ in fact produces some damage to dopaminergic neurons, which is refl ected 
by a mild but signifi cant decrease in the striatal dopamine concentration in rats that 
were chronically administered with TIQ. In contrast, 1MeTIQ never caused a decline 
in the dopamine levels in brain structures, although both tetrahydroisoquinolines simi-
larly affected dopamine catabolism (Antkiewicz-Michaluk et al.  2000  ) .  

    3.4.3   Action of 1MeTIQ on Dopamine Nerve Terminals 

 Interaction with presynaptic dopamine receptors was investigated by studying 
1MeTIQ-induced displacement of dopamine receptor ligands from their binding 
sites. In general tetrahydroisoquinolines do not displace antagonistic ligands bound 
to dopamine D2 receptors (Antkiewicz-Michaluk et al.  2000 ; Vetulani et al.  2003a  ) , 
the exception being [ 11 C]raclopride. 

 Depression of binding of [ 11 C]raclopride may be interpreted as the sign of 
increased synaptic dopamine concentrations, which competes with raclopride at D2 
receptor sites (Laruelle  2000  ) . Tetrahydroisoquinolines were shown to displace 
[ 11 C]raclopride, and (S)-enantiomer of 1MeTIQ and TIQ were most potent in this 
respect. The effect of TIQ continued for 7 h and was followed by an increase until 
10 days after the single and subchronic administration of TIQ. These fi ndings sug-
gest that TIQ analogs profoundly stimulated dopamine release which resulted in the 
competitive inhibition of the binding of [ 11 C]raclopride to dopamine D2 receptors, 
but did not induce degeneration of the receptors (Ishiwata et al.  2001  ) . 

 Another D2 receptor ligand displaced by TIQ was the D2 receptor agonist, [ 3 H] 
apomorphine (Antkiewicz-Michaluk et al.  2000 ; Vetulani et al.  2003a  ) . In con-
trast to antagonists, an agonist radioligand binds preferentially to the high-affi nity 
state and is expected to have greater sensitivity to DA, which is the endogenous 
agonist. Studies on the effects of amphetamine on displacement of D2 receptor 
ligands, an agonist [ 11 C](R)-2-CH 

3
 O-N-n-propylnorapomorphine and agonist, 

[ 11 C]raclopride demonstrated that the agonist is more sensitive than antagonist to 
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displacement by endogenous dopamine (Seneca et al.  2006  ) . Thus, the experiments 
with [ 3 H]apomorphine displacement confi rm that tetrahydroisoquinoliones may 
release dopamine from dopaminergic terminals. However, owing to their MAO-
inhibiting properties they do not cause neurodegeneration of dopaminergic neurons. 

 In stereoselective study, it has been documented that the neuroprotective action of 
1MeTIQ against neurotoxicity is closely related with the presence of (R)-1MeTIQ 
enantiomer as well as raceme, the mixture of (R)- and (S)-enantiomers (Abe et al. 
 2001  ) . In biochemical studies assessing activity of 1-MeTIQ synthesizing enzyme 
(1MeTIQ-ase), it has been reported that the parkinsonism-inducing substances such 
as MPTP and  b -carbolines considerably inhibited the activity of 1MeTIQ-ase 
(Yamakawa and Ohta  1999  ) . It is also well established by behavioral and biochemical 
study that (R,S)-1MeTIQ demonstrates neuroprotective activity by antagonizing the 
behavioral and biochemical effects of dopaminergic neurodegeneration induced by 
numerous experimental neurotoxins such as MPTP, 1BnTIQ, rotenone (Antkiewicz-
Michaluk et al.  2003,   2004 ; Kotake et al.  1995,   2005 ; Tasaki et al.  1991  ) .   

    3.5   Neuroprotection of 1MeTIQ Against Rotenone, 
a Dopaminergic Neurotoxin 

    It was recently shown by Betarbet et al.  (  2000  )  that rotenone, an environmental 
toxin may be used to produce a more realistic MPP +  animal model of Parkinson’s 
disease. Rotenone, a natural compound, is a classical, lipophilic inhibitor of mito-
chondrial complex I (Gutman et al.  1970 ; Horgan et al.  1968  ) , and selectively toxic 
to dopaminergic neurons (Marey-Semper et al.  1993  ) . Injected directly into brain 
structures, rotenone acts similarly to MPTP (Heikkila et al.  1985  ) . 

 Rotenone is the only neurotoxin known today that induces the formation of Lewy 
bodies, which are the most characteristic histopathological feature of Parkinson’s 
disease (Betarbet et al.  2000  ) . A defect of mitochondrial function due to complex I 
inhibition was postulated to be the cause of rotenone-induced neurodegeneration 
(Jenner  2001 ; Greenamyre et al.  2001  ) . Rotenone also causes dopamine release, as 
evidenced by microdialysis and neurochemical data (Santiago et al.  1995 ; Thiffault 
et al.  2000  ) , and this may also contribute to the degeneration of dopaminergic neu-
rons. We have found that rotenone administered peripherally in a single dose did not 
produce evident behavioral or biochemical effects. In contrast, repeated administra-
tion of rotenone (12 mg/kg s.c.) causing abnormalities in general behavior, pro-
duced considerable mortality and dramatic increases in dopamine metabolism, 
which may be ascribed to an increase in the oxidative pathway, and strongly 
depressed the concentration of the extracellular dopamine metabolite, 3-MT. These 
behavioral and biochemical changes were effectively counteracted by administra-
tion of 1MeTIQ before each dose of rotenone (Antkiewicz-Michaluk et al.  2003  ) . 
Additionally, intracerebral-administered rotenone (2  m g into the medial forebrain 
bundle, MFB) produced a considerable decrease in dopamine and dopamine metab-
olites content in the striatum and substantia nigra, without affecting the serotonin 
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system (Antkiewicz-Michaluk et al.  2004  ) . T   hose changes were observed 21 days 
after the intracerebral injection of rotenone, which suggest a durable neurotoxic 
effect. Peripheral administration of 1MeTIQ (50 mg/kg i.p.) before and then daily 
for 21 days signifi cantly reduced the fall of striatal dopamine concentration 
(Antkiewicz-Michaluk et al.  2004  ) . 

 The above data suggest that 1MeTIQ is able to counteract the damaging action of 
dopaminergic neurotoxin, rotenone, and seems to be a potential neuroprotective agent.  

    3.6   Neuroprotection of 1MeTIQ Against Glutamate-Evoked 
Neurotoxicity 

 Recently, it was demonstrated that 1MeTIQ shares many activities with TIQ, and 
found that the compounds similarly inhibit free-radical generation in an abiotic sys-
tem, as well as indices of neurotoxicity (caspase-3 activity and lactate dehydrogenase 
release) induced by glutamate in mouse embryonic primary cell cultures (Antkiewicz-
Michaluk et al.  2006  ) . However, in granular cell cultures obtained from 7-day-old rats, 
1MeTIQ prevented the glutamate-induced cell death and  45 Ca 2+  infl ux, whereas TIQ 
did not. Such profi le of action of 1MeTIQ suggested specifi c effects of this compound 
on an excitatory amino acids (EAA) receptors. Additionally, it was shown in an in vivo 
microdialysis experiment that 1MeTIQ prevents kainate-induced release of excitatory 
amino acids from the rat frontal cortex (Antkiewicz-Michaluk et al.  2006  ) . 

 Comparing the chemical structure of 1MeTIQ with other known compounds 
containing tetrahydroisoquinoline skeleton and their molecular mechanism of 
action, one can fi nd similarities between 1MeTIQ and N-cetyl-1-(4-chlorophenyl)-
6,7-dimethoxy-TIQ; and 1,1-pentamethylene-TIQ the derivatives which are non-
competitive AMPA/kainate receptor antagonists and protect the animals in the 
maximal electroshock seizure, pentylenetetrazole, and audiogenic DBA/2 mice 
seizure models (Ferreri et al.  2004 ; Gitto et al.  2003  ) .    In fact, 1MeTIQ exerts the 
anticonvulsant effects increasing the threshold for electroconvulsions and potentia-
tion, the antiseizure action of carbamazepine and valproate against maximal elec-
troshock (Luszczki et al.  2006  ) .  

    3.7   Conclusion 

 In the light of all these experiments 1MeTIQ offers a unique and complex mecha-
nism of neuroprotection in which inhibitory effect on MAO connected with free 
radicals scavenging properties, and antagonism to the glutaminianergic system may 
play a very important role.      
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  Abstract   Drug abuse disorder is induced by a variety of substances and results 
from their interaction with the brain reward system. It is characterized by a high 
frequency of relapse, usually associated with craving. In this Chapter it is demon-
strated that 1-methyl-1,2,3,4-tetrahydroisoquinoline, an endogenous compound 
with antidopaminergic and neuroprotective activity prevented the development of 
morphine dependence and morphine-induced abstinent syndrome as well as cocaine-
induced reinstatement in cocaine-dependent, self-administering rats. The changes 
in catecholamine metabolism persist for a considerable period after cessation of 
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cocaine self-administration suggesting a long-lasting functional impairment of 
dopamine and noradrenaline systems. In contrast, the changes in the serotonergic 
system are transient showing the lack of involvement of serotonin in long-term 
consequences of exposure to cocaine. The depression of dopaminergic activity in 
the limbic structures may be responsible for craving. The fact that 1MeTIQ elevates 
the concentration of dopamine preferentially in the limbic structures (nucleus 
accumbens) in cocaine-dependent rats may be responsible for its inhibition of 
 reinstatement. The results strongly support the view that 1-methyl-1,2,3,4- 
tetrahydroisoquinoline has considerable potential as a drug for combating substance 
abuse disease through the attenuation of craving, and suggested a possibility of 
clinical application of 1MeTIQ at least in morphine and cocaine addiction.  

  Keywords   1-Methyl-1,2,3,4-tetrahydroisoquinoline  •  Addiction  •  Animal models  
•  Cocaine  •  Self-administration  •  Morphine dependence  •  Rat brain  •  Monoamine 
metabolism  •  MAO inhibition  

  Abbreviations  

  AMPA    Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate   
  COMT    Catechol-O-methyltransferase   
  DA    Dopamine   
  DOPAC    3,4-Dihydroxyphenylacetic acid   
  5-HT    Serotonin   
  5-HIAA    5-Hydroxyindoleacetic acid   
  HVA    Homovanillic acid   
  MAO    Monoamine oxidase   
  1MeTIQ    1-Methyl-1,2,3,4-tetrahydroisoquinoline   
  MHPG    3-Methoxy-4-hydroxyphenylglycol   
  3-MT    3-Methoxytyramine   
  NA    Noradrenaline         

    4.1   Addiction: A General View 

 Addiction is a complex disease process of the brain which results from recurring 
drug intoxication and is modulated by genetic, developmental, experiential, and 
environmental factors. Drug addiction is one of the most diffi cult medical and social 
problems in industrialized countries; furthermore no effective pharmacotherapy has 
been available so far. Until recently, it was believed that addiction was associated 
with neuroplasticity in the corticostriatal brain circuitry, which is important for adap-
tive behavior and predominantly involved reward processes mediated by limbic cir-
cuits, whereas results from recent neuroimaging studies have implicated additional 
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brain areas, especially the frontal cortex (Goldstein and Volkow  2002  ) . The World 
Heath Report 2002 stated that 8.9% of the total burden of the disease was caused by 
the use of psychoactive substances (WHO, Neuroscience of psychoactive substance 
use and dependence, World Health Organization, Geneva (2004). Drug addiction is 
often defi ned by the pharmacological terms:  tolerance, sensitization, dependence, 
and withdrawal. Tolerance  refers to the phenomenon where repeated administration 
of a drug at the same dose causes a diminishing effect or a need for an increasing 
drug dose to produce the same effect.  Sensitization  refers to the opposite condition, 
where repeated administration of the same drug dose produces an escalating effect. 
Interestingly, the same drug can simultaneously evoke tolerance and sensitization to 
its numerous diverse effects (e.g., in the case of morphine, tolerance to its analgesic 
effect and sensitization to its locomotor effect).  Dependence  is defi ned as a need for 
continual drug exposure to avoid a  withdrawal  syndrome, which is characterized by 
physical or motivational disturbances when the drug is withdrawn. 

 The neurobiological changes that accompany drug addiction have not been 
understood so far; however, drugs of abuse are unique in terms of their reinforcing 
properties (Table  4.1 ). Dopaminergic mechanisms are a traditional target in the 
fi eld of addiction, since the acute rewarding effects of addictive drugs are mediated 
by enhancing dopamine transmission; moreover, dopamine release reinforces 
reward learning (   Berridge and Robinson  1998 ; Kelley  2004a  ) . Both natural rewards 
and drugs of abuse appear to use the same systems within the brain to infl uence and 
reinforce behavior; furthermore, it is well known that these systems are involved in 
learning and memory, particularly in connecting motivations and memories with 
behaviors. A question arises about the neurobiological substrate of reward. The 
nucleus accumbens (NAc) as a ventral striatum is considered to be crucial point of 

   Table 4.1    The pharmacological actions and reinforcing properties of different drugs of abuse   

 Drugs  Actions 

 Cocaine  Inhibitor of monoamine 
reuptake transporters 

 Reinforcing activity by an increase of the 
extraneuronal concentration of DA, NA, 
5-HT (Koob and Nestler  1997 ; Edwards 
and Koob  2010 ; Kuhar et al.  1991  )  

 Opiates  Agonist at  m ,  d , and 
 k  receptors 

 Activation of  m  and  d  receptors mediate the 
reinforcing action of opiates (Mansour 
et al.  1995  )  

 Amphetamine  Stimulates DA and 
NA release 

 Reinforcing activity (Elverfors and Nissbrandt 
 1992  )  

 Nicotine  Agonist at nicotinic 
acetylcholine receptor 

 Reinforcing activity (Biała and Budzynska 
 2008 ; Risinger and Roger  1995  ; Biała  2003 )   

 Ethanol  Facilitates GABA 
A
  receptor 

function and inhibits 
NMDA receptor 

 Reinforcing activity (Biała and Budzyńska 
 2010 ; Hoshaw and Lewis  2001  )  

 Hallucinogens  Partial agonist 5-HT 
2A

  
receptors 

 Reinforcing activity (Fantegrossi  2007  )  

 Phencyclidine 
(PCP) 

 NMDA receptor 
antagonist 

 Reinforcing properties (Rodefer and Carroll 
 1999 ) 
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integration of information by receiving emotional and cognitive inputs, and by 
projecting to motor output regions (Mogenson et al.  1980 ; Kelley  2004b  ) . The 
NAc, along with the hippocampus, frontal cortex (FCx), and basolateral amygdala 
receives dopamine input from the ventral tegmental area (VTA); furthermore, as it 
has been shown by many authors, the majority of dopamine neurons that innervate 
the forebrain are located in the midbrain, specifi cally in the VTA and substantia 
nigra (SN) (Fallon and Loughlin  1995 ; Pitkanen  2000  ) . The SN innervates the 
dorsal striatum (caudate-putamen), whereas the VTA provides an input to the rest 
of the forebrain, including the ventral striatum (NAc), FCx, amygdala, and hip-
pocampus. Early theories on drugs of abuse and natural rewards suggested that 
activation of dopamine neurons in VTA, and the release of dopamine in target 
structures signaled reward, especially in the NAc (Di Chiara  2002 ; Ungless  2004  ) . 
However, aversive stimuli also increase dopamine release in a variety of brain 
structures, which indicates a role of dopamine beyond reward (Inglis and 
Moghaddam  1999  ) . However, it is noteworthy that some evidence points to dif-
ferential of dopamine responses to aversive vs. rewarding stimuli (Schultz  2002  ) . 
Special interest is the fact that common effects produced by different drugs of 
abuse with a diverse pharmacological action including alcohol, cocaine and heroin, 
lead to an increase in the release of dopamine in the NAc which is critical for drugs 
to reinforce behavior (Table  4.1 ). Some recent studies have also shown that gluta-
mate system and its release is an important factor in drug addiction, and that imbal-
ance in glutamate homeostasis engenders changes in neuroplasticity, which impair 
communication between the prefrontal cortex and the NAc (Kalivas  1995 ; Ma 
et al.  2006 ; Nagy  2004 ; Popik et al.  1998  ) .  

    4.1.1   Animal Models of Drug Addiction 

 As the basic mechanisms underlying addiction are similar in animals and humans, 
the animal models may be used for studying the mechanisms of substance abuse 
disease (Markou et al.  1993 ; Ranaldi and Roberts  1996  ) . One major model is drug-
induced  locomotor sensitization . In rodents, acute administration of many drugs of 
abuse increase the animal locomotor activity, and after chronic treatment produce 
even bigger increases in locomotor activity. Sensitization is a phenomenon charac-
terized by enhancement of behavioral responses (locomotor hyperactivity, stereo-
typy, positive reinforcing effects) to the readministered psychostimulant (challenge 
dose) after discontinuation of its repeated treatment (Kalivas et al.  1988 ; Pierce 
and Kalivas  1997 ; Robinson and Berridge  1993  ) . The above described phenome-
non seems interesting, since it may be caused by the same mechanisms that are 
responsible for psychoses or craving for drugs of abuse in humans addicted to 
cocaine or other psychostimulants (Robinson and Berridge  1993 ). 

 Another, frequently used model is conditioned place preference (CPP). Animals 
are administered a drug of abuse before being placed in one chamber of a two-
chamber apparatus. Then, they are given a control injection before being put into the 
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other chamber. By repeating this procedure, the animals learn to associate one 
chamber with the drug of abuse. They are tested by being allowed to freely explore 
the entire apparatus; the animals that have learned the drug-chamber association 
spend more time in the drug-associated chamber. This model is particularly useful 
for investigating contextual learning which take place during drug consumption 
(Hoffman  1989 ; Popik and Wróbel  2002  ) . 

 The best animal model of addiction is  self-administration . In this paradigm, ani-
mals are trained to perform a response (usually, pressing a lever) in order to receive 
a small amount of the drug. In contrast to sensitization and CPP, when experiment-
ers administer a drug of abuse, the advantage of the latter model is like in the case 
of a human who must perform certain actions to obtain and consume a drug of 
abuse – that an animal has to exhibit a particular behavior in order to receive the 
drug. Self-administration is called a “gold-standard” of addiction. 

 Drugs of abuse, especially their repeated administration, alter the functioning of 
a number of structures in the brain, of which the NAc and FCx are particularly 
important due to their apparent role in addiction.   

    4.2   Cocaine Addiction 

 Cocaine, a potent inhibitor of monoamine transporters (Woolverton and Johnson 
 1992  ) , belongs to the most powerful addictive substances and its abuse poses a high 
risk of relapse (Carroll et al.  1994  ) . It has been reported that even a single injection 
produces persistent neurochemical changes (Guan et al.  1995  ) ; moreover, a long-
lasting changes changes have also been observed after withdrawal from the chronic 
administration of cocaine (Kuhar and Pilotte  1996  ) . The factors or molecular pro-
cesses that are responsible for relapses of cocaine abuse have not been fully under-
stood so far. An overwhelming desire to take drugs (craving) is regarded as a main 
cause of relapse (Koob and LeMoal  2001  ) . 

 In addiction studies, one of the critical issues is the use of an appropriate animal 
model for the behavior under study. The animal model that seems to be the most ade-
quate for studying the craving and relapse phenomena is an extinction/reinstatement 
task in self-administration procedures. In this paradigm, the animals learn to self-
administer a solution of a drug (e.g., cocaine) by pressing “the active lever” installed in 
the experimental cage. Cocaine self-administration serves as a  reward , but the response 
may be strengthened by pairing it with the conditioned stimulus (e.g., light + tone). 
When after establishing a stable response rate the drug solution is replaced with saline, 
the responding rate decreases and the animal enters the  extinction phase . Administration 
of a priming dose of cocaine during this phase results in  reinstatement , expressed as the 
resumption of pressing the active lever. Furthermore, the presentation of the condi-
tioned stimulus alone is suffi cient to cause reinstatement of drug-seeking behavior 
measures as an increase in the number of lever presses in the absence of cocaine; how-
ever, such an effect is weaker than in the case of drug reinstatement (Cervo et al.  2003 ; 
   Antkiewicz-Michaluk et al.  2006a,       2007  )   . 
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 In rats self-administering cocaine, the rate of monoamines (dopamine, noradren-
aline, and serotonin) metabolism as well as their turnover was depressed (Antkiewicz-
Michaluk et al.  2006a,   b,   2007  ) . Activation of a receptor (e.g., dopamine, 
noradrenaline, serotonin) by cocaine which is a potent inhibitor of monoamine 
transporters during the stabilized self-administration (when cocaine is present in the 
brain) would result in a feedback inhibition of neurotransmitter release (owing to 
activation of autoreceptors) and, consequently, the depression of neurotransmitter 
metabolism without signifi cant changes in neurotransmitter concentration in the 
neuron (Antkiewicz-Michaluk et al.  2006a,   b ; Karoum et al.  1990 ; Trulson and 
Ulissey  1987  ) . In the extinction period catecholaminergic neurons show signs of 
long-lasting impairment, while the extracellular concentration of dopamine is 
reduced in the limbic areas of the central nervous system (Kuhar and Pilotte 
 1996 ; Cervo et al.  2003 ; Antkiewicz-Michaluk et al.  2006a,   b  ) . Interestingly, the 
stimulus associated with cocaine availability (e.g., light + tone) activates the 
catecholaminergic system after the extinction procedure and causes reinstatement 
of self-administration.  

    4.3   1-Methyl-1,2,3,4-Tetrahydroisoquinoline (1MeTIQ) 
and Cocaine Addiction 

    4.3.1   1MeTIQ: A Partial Dopamine Agonist 
and Neuroprotectant in the Mammalian Brain 

 1,2,3,4-Tetrahydroisoquinoline (TIQ) and its close methyl-derivative, 1-methyl-
1,2,3,4-tetrahydroisoquinoline (1MeTIQ) are both present in the food and mamma-
lian brain which are believed to play a physiological role as natural regulators of the 
dopaminergic neurotransmitter system (Antkiewicz-Michaluk et al.  2000,   2001  ) . 
One of the most evident physiological roles proposed is antidopaminergic activity, 
which may control the effect of temporary, excessive dopaminergic stimulation 
(Antkiewicz-Michaluk and Vetulani  2001 ;    Vetulani et al.  2003a,   b  ) . It was initially 
believed that tetrahydroisoquinolines, structurally resemble 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), were neurotoxic; however, it was later discov-
ered that some of them exerted a neuroprotective effect. The action of different 
compounds of this group ranges from neurotoxicity to neuroprotection, as exempli-
fi ed by the neurotoxin 1-benzyl-1,2,3,4-tetrahydroisoquinoline (1BnTIQ), and the 
neuroprotectants, TIQ and its close methyl derivative, 1MeTIQ (Abe et al.  2005 ; 
Antkiewicz-Michaluk et al.  2006a,   b ; McNaught et al.  2001 ; Nagatsu  1997 ; Wąsik 
et al.  2009  ) . Importantly, various TIQs differ in their effect on dopamine catabolic 
pathways: the monoamine oxidase (MAO)-dependent and the catechol-O-methyl-
transferase (COMT)-dependent one. The neurotoxic, 1BnTIQ shifts dopamine 
catabolism toward oxidative desamination, whereas neuroprotectants studied 
(TIQ and 1MeTIQ) strongly inhibit the MAO-dependent pathway and shift the 
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COMT-dependent catabolism toward O-methylation (Antkiewicz-Michaluk et al. 
 2001  ) . In fact, in vitro studies have shown that both compounds are inhibitors of 
monoamine oxidase A and B in rat brain structures (Patsenka and Antkiewicz-
Michaluk  2004  ) . Since oxidative desamination generates free hydroxyl radicals, 
differences in the biochemical effects of tetrahydroisoquinolines could account for 
their diverse neurotoxic/neuroprotective profi les of action (Patsenka et al.  2004  ) . 
The most evident neuroprotection in CNS was described for 1MeTIQ (Tasaki et al. 
 1991 ; Antkiewicz-Michaluk et al.  2003,   2004,   2006a,   b ; see Chap.   3    ), a compound 
which has an interesting pharmacological profi le and may play a role of a natural 
agent protecting the brain against Parkinson’s disease (   Fig.  4.1 ).  

 1MeTIQ which is present in the brain, is a mixture of (R)- and (S)-enantiomers 
enzymatically synthesized from 2-phenylethylamine (PEA) and pyruvate by the 
1MeTIQ-synthesizing enzyme, a membrane-bound protein localized in the mito-
chondrial synaptosomal fraction (Yamakawa and Ohta  1997,   1999 ; Yamakawa et al. 
 1999  ) . 1MeTIQ was shown to act as an antidopaminergic agent, but in contrast to 
typical neuroleptics, it did not induce catalepsy in animals (Antkiewicz-Michaluk 
et al.  2000  ) . In functional studies 1MeTIQ inhibited the apomorphine-induced 
hyperactivity at doses at which it had no effect on spontaneous locomotor activity 
of rats (Antkiewicz-Michaluk et al.  2001  ) . In addition, 1MeTIQ also displaced ago-
nists, but not antagonists, of the dopamine receptor from their binding sites with an 
affi nity comparable to that of dopamine (Antkiewicz-Michaluk et al.  2007  ) . This 
observation suggests that the compound shows affi nity for the agonistic (active), but 
not antagonistic, conformation of dopamine receptors. Summing up, 1MeTIQ exerts 
effects characteristic of dopamine partial agonists. Regardless of the mechanism of 
action of drugs of abuse, the essential role of the mesolimbic dopaminergic system 
in addiction has been well established (Goldstein and Volkow  2002 ; Grimm et al. 
 2003 ; Moore et al.  1998a,   b  ) ; to this end, several antidopaminergic drugs were tested 
as potential antiabuse agents (Berger et al.  1996 ; Smelson et al.  2004  ) . 

 Although, neuroleptics were previously found not to be useful in this respect, 
partial agonists of the dopamine D 

2
  and D 

3
  receptor aroused some hopes (Campiani 

et al.  2003 ; Le Foll et al.  2005 ; Mach et al.  2004  ) . Furthermore, a dopamine reuptake 
inhibitor could be expected to partially substitute for cocaine and other drugs of 
abuse, hence self-administration would be diminished and craving minimized (Ritz 
et al.  1987 ; Wilcox et al.  2000 ;    Carroll  2003 ; Carroll et al.  2004  ) . This type of sub-
stitution pharmacotherapy has been found to be highly effective in the treatment of 
nicotine and heroin addiction (methadone). Hence, studies of partial agonists with 
an antidopaminergic profi le of action different from that of classic neuroleptics 
seem justifi ed. In the light of the above data, 1MeTIQ is an interesting candidate for 
future clinical studies. 

NH

CH3

  Fig. 4.1    Chemical structure 
of 1-methyl-1,2,3,4-
tetrahydroisoquinoline 
(1MeTIQ)       
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 A vast body of evidence indicates that, apart from the dopaminergic system also 
glutamatergic system is involved in the addiction to drugs of abuse (see Table  4.1 ). 
Hence of special interest are the observations that 1MeTIQ antagonizes the kainate-
induced release of glutamate and aspartate in rat frontal cortex and shows 
neuroprotection against the excitotoxicity produced by glutamate in culture cells 
(Antkiewicz-Michaluk et al.  2006a,   b  ) . Additionally, 1MeTIQ antagonizes the 
MK-801-produced behavioral and neurochemical effects (Pietraszek et al.  2009  )  
and shares tolerance to excitotoxicity in rat with some well-established uncompeti-
tive NMDA receptor antagonists (Kuszczyk et al.  2010  ) . The latest results reveal a 
new mechanism of the 1MeTIQ-evoked neuroprotection based on the induction of 
neuronal tolerance to excitotoxicity.  

    4.3.2   Effect of 1MeTIQ on the Cocaine-Induced Locomotor 
Sensitization, Self-Administration, and the Expression 
of Cocaine Reinstatement 

 In rodents, acute administration of the drug of abuse: cocaine, amphetamine 
( psychostimulants), and opiates increases the locomotor activity of animals. 
Repeated administration of the drug of abuse induces neurobiological changes, such 
that later (e.g., after 10 days of withdrawal) acute administration of the drug pro-
duces even greater increase in locomotor activity, called sensitization. Both behav-
ioral sensitization, self-administration, and drug-reinstatement of seeking behavior 
are the major models of drug addiction (Pierce and Kalivas  1997  ) . The compounds 
which antagonize locomotor sensitization and self-administration in animals may 
demonstrate anti-addictive properties in a clinic (Narayanan et al.  1996  ) . 

 The exogenously applied 1MeTIQ, an endogenous substance constantly present 
in the brain signifi cantly antagonized the cocaine-induced locomotor sensitization, 
cocaine self-administration and cocaine-induced reinstatement of seeking behavior 
(Filip et al.  2007 ; Wąsik et al.  2010  ) . The phenomenon is of interest, since it might 
be caused by the same mechanisms as those responsible for psychoses or craving 
for drugs of abuse in humans abusing cocaine or other psychostimulants (Robinson 
and Berridge  1993 ; Segal et al.  1981  ) . Both clinical and preclinical studies indicate 
that the behavioral response to cocaine including the discriminative stimulus and 
rewarding effects as well as reinstatement of cocaine seeking behavior depend on 
the drug ability to block the dopamine transporter (Di Chiara  1995 ; Heidbreder and 
Hagan  2005  ) . Since, 1MeTIQ produced parallel decreases in cocaine self- 
administration and cocaine-induced relapse, the compound may suppress the moti-
vation for drug seeking by decreasing the reinforcing effects of cocaine, and 
generally by attenuation the reinforcing effect of drugs of abuse. 

 In fact, activation of both the dopaminergic and glutaminergic systems has sig-
nifi cance in altering the maintenance of cocaine self-administration (Cornish et al. 
 1999 ; Pulvirenti et al.  1992  ) , and drug-priming induced reinstatement of cocaine 



654 1-Methyl-1,2,3,4-Tetrahydroisoquinoline and Addiction: Experimental Studies

seeking (Ito et al.  2002 ; Kalivas and McFarland  2003  ) . 1MeTIQ’s inhibitory 
mechanism on cocaine maintained responding and relapse may include complex 
interaction with both dopaminergic and/or glutaminergic transmission (as it was 
shown above, in part 3.1.).  

    4.3.3   Neurochemical Changes Produced by 1MeTIQ 
in Cocaine-Dependent Rats 

 Cocaine, is a potent inhibitor of monoamine transporters, belongs to the most pow-
erful addictive substances in humans and its abuse has a high risk of relapse (Gawin 
 1991  ) . The studies on the involvement of biogenic amines in cocaine addiction have 
shown a contribution of dopamine and serotonin to the maintenance of cocaine self-
administration, extinction, and reinstatement of drug-seeking behavior. Dopamine 
was the most extensively investigated amine, possibly because of its assumed role 
as the main neurotransmitter of reward (Di Chiara et al.  2004  ) . How it was demon-
strated by several authors during cocaine self-administration, the extracellular con-
centrations of dopamine and serotonin in the striatum increase (Di Ciano et al.  1995 ; 
Gratton and Wise  1994 ; Wąsik et al.  2010  ) , but the rate of monoamines metabolism 
and the concentrations of their metabolites in brain structures decrease (Antkiewicz-
Michaluk et al.  2006a,   b  ) . The functional signifi cance of the observed depression of 
the level of monoamine metabolites requires explanation. The determination of 
changes in metabolism rate yields information about effi ciency of the neurotrans-
mitter system. Depending on the state of receptor and the rate of synthesis of a 
neurotransmitter, the changes in metabolite levels in the same direction may have 
different consequences. Activation of a receptor (e.g., dopamine receptor) during 
stabilized self-administration of cocaine would result in a feedback inhibition of 
neurotransmitter release by activation of autoreceptor and, the depression of neu-
rotransmitter metabolites without signifi cant changes in neurotransmitter concen-
tration in the neuron. This is refl ected by a decrease in the neurotransmitter 
metabolism index. As the stimulation is indirect, through inhibition of neurotrans-
mitter reuptake, the interaction between the neurotransmitter and receptor is 
enhanced rather than depressed. On the contrary, during cocaine withdrawal, dop-
amine and noradrenaline concentrations as well as concentration of their metabo-
lites were diminished, suggesting cocaine-induced impairment in the function of 
catecholamine neurons, what leads to decrease in the synthesis and release of the 
neurotransmitters (Parsons et al.  1995 ; Weiss et al.  1992 ; Antkiewicz-Michaluk 
et al.  2006a,   b  ) . 

 Much less attention was focused on the involvement of noradrenaline in cocaine 
reward. It has been reported that multiple cocaine administration depresses the 
responsiveness of the alpha2-adrenoceptor, as measured by the decline in the growth 
hormone response to clonidine (Baumann et al.  2004  ) . Moreover, Valentino and 
Curtis  (  1991  )  reported the inhibition of fi ring of locus coeruleus neurons after long-
term cocaine treatment. 
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 While catecholamines seem to be involved in cocaine addiction, the role of sero-
tonin seems to be limited. Specifi c serotonin agonists do not seem to have signifi -
cant reinforcing effi cacy (Locke et al.  1996  ) . The clinical fi ndings also indicate the 
ineffi ciency of serotonergic manipulation in combating cocaine dependence (Lima 
et al.  2003  ) . Although, serotonin metabolism is inhibited in the presence of cocaine, 
in contrast to alterations in catecholaminergic system, the change is transient. 

 Basically, a chronic cocaine self-administration similar to passive administration 
suppresses the metabolism – both synthesis and release of monoamines in several brain 
structures (Karoum et al.  1990 ; Trulson and Ulissey  1987 ; Antkiewicz-Michaluk et al. 
 2006a,   b  ) . The changes in catecholamine metabolism persist for a considerable period 
after cessation of cocaine self-administration suggesting a long-lasting functional 
impairment of dopamine and noradrenaline systems. In contrast, the changes in the 
serotonergic system are transient showing the lack of involvement of serotonin in long-
term consequences of exposure to cocaine (Antkiewicz-Michaluk et al.  2006a,   b  ) .  

    4.3.4   Neurochemical Effect of 1MeTIQ During Cocaine 
Reinstatement 

 The suggestion that 1MeTIQ is a potential antiabuse agent is due to the fact that the 
drugs that reduce cocaine-seeking behavior also reduce cocaine craving (Fuchs 
et al.  1998 ; Baker et al.  2001  ) . The possible antiabuse properties of 1MeTIQ are 
particularly interesting, as the compounds of this group are proposed to act as regu-
lators of brain homeostasis (Antkiewicz-Michaluk et al.  2000 ; Vetulani  2001  ) . The 
question arises whether 1MeTIQ can reach the brain in concentrations producing 
pharmacological effects. In contrast to catechol tetrahydroisoquinolines (e.g., sal-
solinol), noncatechol tetrahydroisoquinolines as TIQ and 1MeTIQ penetrate to the 
brain easily and induce a variety of central effects. The native concentrations of 
tetrahydroisoquinolines in the brain are in the nanomolar range, and the highest 
concentration was observed in substantia nigra: in the monkey substantia nigra 
1MeTIQ reaches up to 500 pmol/g tissue (Yamakawa et al.  1999  ) , and it is depressed 
in aged rats (Ayala et al.  1994  ) . No direct measurements of 1MeTIQ concentration 
in the brain after parenteral administration of the compound have been carried out, 
but its close congener, TIQ after administration of 40 mg/kg to the rat reached the 
concentration of 250 nmole/g (Lorenc-Koci et al.  2004  ) . 

 In cocaine-dependent rats, the intraperitoneal administration of a single rein-
statement evoking cocaine dose causes the inhibition of dopamine metabolism in 
the brain structures of rat. This is possible because of the consequence of the dop-
amine transporter blockade, and the feedback response of the nerve ending to an 
increase in the concentration of dopamine in the vicinity of the receptor sites. It 
should be added that priming dose of cocaine also affects other monoaminergic 
neurons, and inhibits also the metabolism of noradrenaline and serotonin. As in the 
case of dopamine, a feedback mechanism seems to be involved (Antkiewicz-
Michaluk et al.  2007  ) . 
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 In cocaine-dependent rats receiving a priming dose of cocaine in the presence of 
previously administered 1MeTIQ, the concentration of dopamine in the limbic struc-
tures was signifi cantly higher than in the rats receiving cocaine alone. It might be 
assumed that the blockade of reinstatement by 1MeTIQ is related to this effect 
(Antkiewicz-Michaluk et al.  2007  ) . There is the long established view that depres-
sion of dopaminergic activity in the limbic structures may be responsible for craving 
(Rossetti et al.  1992 ; Little et al.  1996  ; Wise et al.  1990 ) . The fact that 1MeTIQ ele-
vates the concentration of dopamine preferentially in the limbic structures (nucleus 
accumbens) in cocaine-dependent rats, and at the same time inhibits dopamine 
metabolism in structures containing cell bodies (substantia nigra, VTA), may be 
responsible for its inhibition of reinstatement (Antkiewicz-Michaluk et al.  2007  ) . 

 Another neurochemical action of 1MeTIQ, possibly related to its anticraving 
effect, is activation of the noradrenergic system in the brain. This effect may be 
related to the antagonistic action of 1MeTIQ on alpha2-adrenoceptors. Such an 
activity was described previously for other, closely related tetrahydroisoquinolines 
(Michaluk et al.  2002 ; Vetulani et al.  2003a,   b  ) . The ability of 1MeTIQ to increase 
the level of the main metabolite of noradrenaline in CNS, 3-methoxy-4-hydroxy-
phenylglycol (MHPG), as well as its extraneuronal metabolite, normetanephrine 
(NM) refl ects the antagonistic effect of 1MeTIQ on the alpha2-adrenoceptor 
(Antkiewicz-Michaluk, unpublished data). Inhibition of alpha2-adrenoceptors 
would result in an increase in noradrenaline release from the nerve endings, and 
consequently activating the noradrenergic system. 

 In the light of the recent experimental data it looks that serotonin plays a less 
important role in the phenomenon of cocaine reinstatement. It was shown, that 
cocaine depresses serotonin metabolism only transiently, and that the changes do 
not persist throughout the withdrawal period in contrast to dopamine and noradren-
aline systems (   Antkiewicz-Michaluk et al.  2005  ) .   

    4.4   1MeTIQ and Morphine Addiction 

    4.4.1   The Infl uence of 1MeTIQ on the Morphine-Induced 
Analgesia, Tolerance, and Abstinence Syndrome 

 Morphine acts through activation of opioid  m -receptors and produces antinociceptive 
effect called analgesia. It is well known that activation of opioid  m -receptors is closely 
related with inhibition of calcium uptake and this process is responsible for opioid-
induced analgesia (Kamikubo et al.  1983 ; Chapman and Way  1982  ) . It was presented 
that 1MeTIQ administered alone have shown a slight antinociceptive effect in the 
“hot-place” test in rats but coadministered in morphine strongly potentiated its anal-
gesia (Wąsik et al. 2007; Vetulani et al.  2003a,   b  ) . Moreover, 1MeTIQ applied before 
each morphine injection completely inhibited the development of morphine toler-
ance, as well as prevented the naloxone-induced precipitation of the abstinence 
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syndrome (the head-twiches and the body weight loss) in the morphine-dependent 
rats (Wąsik et al.  2007 ). The question arises what was the mechanism responsible for 
1MeTIQ-induced potentiation of morphine-analgesia, prevention of morphine- 
produced tolerance and abstinence syndrome? Some authors postulated that the 
activity of monoamine oxidaze (MAO), the enzyme crucial for monoamine and spe-
cial dopamine catabolism, and the production of free radicals play a very important 
role in opiate analgesia, tolerance, and dependence (Garzon et al.  1979 ; Grassing and 
He  2005 ). In fact, it was shown that deprenyl, an irreversible inhibitor of MAOB and 
other antioxidants, such as vitamin C produced an increase in morphine antinocicep-
tion and could prevent the development of morphine tolerance and physical depen-
dence in rodents (Sanchez-Blazquez et al.  2000 ; Khanna and Sharma  1983  ) . 1MeTIQ, 
a neuroprotective substance inhibits MAO and possesses free radicals scavenging 
properties (Antkiewicz-Michaluk et al.  2006a,   b  )  how it was mentioned above, and 
this mechanism would be responsible for its antinociception and antiaddictive effects. 
Additionally, 1MeTOQ is also effective in prevention of morphine-induced place 
preference and of alcohol intake (Antkiewicz-Michaluk et al.  2005  ) . 

 Moreover, it was also shown by many authors that morphine did not trigger effec-
tively the processes leading to the development of tolerance and dependence when 
administered during Ca 2+  channel blockade. Blockade of the voltage-dependent L-type 
Ca 2+  channels effectively facilitates the analgesic action of morphine and prevents the 
behavioral and neurochemical signs of naloxone-precipitated abstinence syndrome 
(Contreras et al.  1988 ; Del Pozo et al.  1987 ; Michaluk et al.  1998  ) . Another way for 
calcium infl ux to the cell is NMDA glutamate receptors which may be also involved 
in the induction of morphine sensitization (Vanderschuren and Kalivas  2000  ) . It 
should be taken into account that 1MeTIQ prevented glutamate-induced cell death 
and  45 Ca 2+  infl ux in granular cell cultures (Antkiewicz-Michaluk et al.  2006a,   b  ) . Thus, 
1MeTIQ besides the inhibitory infl uence on the activity of MAO and free radical 
scavenging properties possesses also a mild activity at NMDA receptors.   

    4.5   Conclusions 

 Drug abuse disorder is induced by a variety of substances and results from their 
interaction with the brain reward system. Exogenous administration of 1MeTIQ, an 
endogenous compound with antidopaminergic and neuroprotective activity, com-
pletely inhibits the expression of reinstatement of cocaine self-administration, mor-
phine abstinent syndrome and prevents the development of morphine tolerance, 
simultaneously potentiating morphine-induced analgesia in the rat. To explain the 
mechanism of the antiaddictive effects of 1MeTIQ, its wide spectrum of action in 
the CNS should be considered. Functional studies have shown that 1MeTIQ acts as 
an antidopaminergic agent but, in contrast to typical neuroleptics, it induces no 
sedation or catalepsy in animals. Moreover, 1MeTIQ indicates a direct interaction 
with the agonistic conformation of dopamine receptors, proposed for dopamine par-
tial agonists. On the other hand, it also displays a moderate effect on the NMDA 
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receptor and the glutaminergic system, and offers neuroprotection against the 
glutamate-induced excitotoxicity in rat. This ability of 1MeTIQ may be of clinical 
importance and raises hope for its application in the neurodegeneration disease 
(e.g., Parkinson’s disease) and addiction evoked by drugs of abuse. 

 In summary, the presented results strongly support the view that 1MeTIQ is a 
drug which has a considerable potential suitable to combat drug addiction, particu-
larly through attenuation of the abstinence syndrome and craving.      
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  Abstract   Tetrahydro- b -carbolines (TH b Cs) and  b -carbolines ( b Cs) are bioactive 
naturally occurring indole alkaloids and structural analogs of 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP + ) 
Parkinsonian neurotoxins. Humans are daily exposed to these compounds through 
the diet, smoking, and plants, and they are also found endogenously in human tis-
sues and brain.  b Cs can be converted by  N -methyltransferases occurring in the 
mammalian brain into  N -methyl- b -carbolinium cations ( b C + s) which are neurotox-
ins. These  b C cations have been detected in the human brain and share with MPP +  
several toxicological features such as inhibition of mitochondrial complex I, increase 
of ROS production and induction of cell apoptosis. As a result, they produce neuro-
toxicity in vitro and in vivo. Among  b C cations, the most potent neurotoxins are 
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 N , N -dimethylated  b C cations (2,9-diMe- b C + s) that are produced from sequential 
 N -methylation of  b Cs at the  N-2  (pyrido) and  N-9  (indole) nitrogens. Toxicity of 
2,9-diMe- b C + s approaches that of MPP +  although it is less selective for dopaminer-
gic cells. TH b Cs and  b Cs are metabolized by several cytochrome P450 enzymes to 
hydroxylated derivatives in a detoxifi cation process that may compete with their 
bioactivation to neurotoxins by  N -methyltransferases. Alternatively,  N -methylTH b Cs 
could be also bioactivated to aromatic  b Cs by heme peroxidases. These metabolic 
features affect the toxicological outcome of these compounds. Taken together, 
TH b Cs and  b Cs could be potential environmental and endogenous proneurotoxins 
that after bioactivation might play a role in the pathogenesis of neurodegenerative 
diseases in susceptible individuals. In the future, new studies are needed to clarify if 
the physiological levels of TH b Cs and  b Cs that reach and accumulate in the human 
brain may induce signifi cant neurotoxicity in the sort and/or long-term or in contrast 
they may exert alternatively other bioactive actions including neuroprotection.  

  Keywords   Tetrahydro- b -carbolines  •   b -Carbolines  •  MPTP  •  MPP +   •  Neurotoxins  
•  Dopaminergic cell culture  •  MAO  •  N-methyltransferase  •  Cytochrome P450  
•  Free radicals  •  Mitochondrial function  •  Cell culture      

    5.1   Introduction 

  b -Carboline alkaloids ( b Cs) (9 H -pyrido-(3,4- b )indole) are naturally occurring indole 
compounds that exhibit a broad range of biological and pharmacological activities 
including antimicrobial, antiviral, antioxidant, and antitumoral actions. They also 
exert a variety of psychoactive, physiological and neurological effects such as altera-
tion of brain neurotransmitters, changes in body temperature, convulsion, vascular 
relaxation, antidepressant actions, and effects on drug withdrawal and appetite 
(Airaksinen and Kari  1981a,       ; Rommelspacher et al.  1991a      ; Herraiz  2008 ; Robinson 
et al.  2003  ) . Simple molecules of  b Cs have been detected endogenously in mamma-
lian tissues and brain (i.e., called “mammalian” alkaloids) and its presence related 
with pathophysiological conditions (Airaksinen and Kari  1981  b ; Rommelspacher 
et al.  1991b   ; Parker et al.  2004 ; Buckholtz  1980  ) . Mammalian  b Cs might function as 
neuromodulators via effects on monoamine oxidase (MAO), monoamine uptake and 
interaction with brain serotonin, benzodiazepine, dopamine, and opiate receptors and 
imidazoline-binding sites (Airaksinen and Kari  1981a   ; Rommelspacher et al.  1991a  , 
  1994 ; Robinson et al.  2003 ; Buckholtz  1980 ; Herraiz and Chaparro  2005  ) . Concerning 
toxicology,  b Cs have received attention as co-mutagens, precursors of mutagens and 
as neurotoxicants (Herraiz  2008 ; Totsuka et al.  1998 ; Hamann et al.  2006 ; Collins and 
Neafsey  1985  ) . Additionally,  b -carboline alkaloids occur in foods, tobacco smoke and 
medicinal plants such as  Peganum harmala  and  Banisteriopsis caapi  (Herraiz  2004a, 
  b,   2008 ; Herraiz et al.  2010  ) , suggesting that environmental sources (i.e., diet and 
smoking) contribute to the presence of these alkaloids in the human tissues and fl uids. 
Human exposure to  b Cs is a current matter of interest because these compounds exert 
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many biological and toxicological actions and may accumulate in the brain. The cur-
rent chapter provides an overview on  b C alkaloids as putative neurotoxins involved in 
neurodegenerative diseases.  

    5.2   MPTP Neurotoxin and Its  b -Carboline Analogs 

 In the late 1970s, idiopathic Parkinson’s disease (PD) was reported in drug abusers 
after self-administration of a meperidine analog contaminated with 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Langston et al.  1983  )  (Fig.  5.1 ). MPTP 
destroys nigrostriatal dopaminergic cells in the substantia nigra (dopamine deple-
tion) causing irreversible Parkinsonism in humans, non-human primates, and 
rodents. This neurotoxin readily crosses the blood–brain barrier and is bioactivated 
by astrocytes and glial cells to pyridinium species which are directly acting neuro-
toxins in dopaminergic cells. Bioactivation of MPTP is carried out by the MAO-B 
that catalyzes its conversion to 1-methyl-2,3-dihydro-4-phenylpyridinium (MPDP + ) 
(Heikkila et al.  1984 ; Herraiz et al.  2006  ) . MPDP +  undergoes two electron oxidation 
by autooxidation, disproportionation, or oxidation catalyzed by enzymes to give the 
directly acting neurotoxicant 1-methyl-4-phenylpyridinium (MPP + ). MPP +  is selec-
tively uptaken into the nigrostriatal dopaminergic neurons via the high-affi nity dop-
amine transporter (DAT). Within dopaminergic cells, MPP +  concentrates in the 
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mitochondrial matrix inhibiting electron transport chain at the complex I level and 
leading to the cessation of oxidative phosphorylation, ATP depletion, increased pro-
duction of reactive oxygen species (ROS), mitochondrial dysfunction, and neuronal 
cell death by apoptosis (Przedborski and Vila  2003  ) . Bioactivation by MAO-B is 
essential to generate Parkinsonism in animals exposed to MPTP and neurotoxicity 
is blocked by MAO-B inhibitors such as deprenyl (Heikkila et al.  1984  ) , underlying 
the utility of inhibitors of this enzyme as potential neuroprotective agents (Herraiz 
et al.  2009  ) .  

 The discovery of MPTP stimulated the hypothesis that PD and perhaps other 
neurodegenerative diseases are initiated in genetically predisposed subjects by 
unknown environmental or endogenous toxins. PD is the second most frequent neu-
rodegenerative disorder and its predominant neuropathological feature is the degen-
eration of dopaminergic neurons in the substantia nigra. Epidemiological studies 
suggest that PD is associated with exposure to environmental factors such as rural 
life, pesticides, and industrial solvents (Di Monte et al.  2002  ) . Since the discovery 
of MPTP, other chemical toxins such as rotenone, 6-hydroxydopamine and pesti-
cides (paraquat, diquat) have been used to generate experimental Parkinsonism. 
Simultaneously, in the 1980s new research appeared suggesting that naturally occur-
ring  b -carbolines could be MPTP-like neurotoxins involved in PD (Collins and 
Neafsey  1985  )  (Fig.  5.1 ). Tetrahydro- b -carbolines (TH b Cs) show structural resem-
blance to MPTP (including a nitrogen bridge) whereas aromatic  b C cations ( b -car-
bolinium) show structural similarity to MPP +  (Fig.  5.2 ). Interestingly, MPP +  and  b C 
cations share several functional and toxicological properties. Both are substrates for 
DAT and inhibit dopamine uptake (Storch et al.  2004  b    ; Drucker et al.  1990  ) , inhibit 
mitochondrial respiration at complex I level (Albores et al.  1990 ; Collins et al. 
 1992  ) , increase ROS, are toxic to neuron cell cultures inducing apoptosis (Hamann 
et al.  2006  ) , and produce neurotoxicity in mice and rats generating bradykinesia, 
reducing dopamine content in the striatum and midbrain and diminishing tyrosine 
hydroxylase immunoreactive cells (Matsubara et al.  1998a      ; Neafsey et al.  1989 ; 
Collins et al.  1996  ) . In contrast to MPTP/MPP + ,  b Cs do occur in nature and have 
been detected in the human brain. Therefore, although  b C + s are usually less toxic 
than MPTP/MPP + , they might still contribute to the degeneration of dopaminergic 
neurons during chronic exposure in predisposed subjects (Wernicke et al.  2007 ; 
Matsubara et al.  1992  b    ). Recent results indicate that quaternary  b C + s containing 
both 2 N - and 9[indole]- N -methyl groups (e.g., 2,9-diMe- b C + s) (Collins et al.  1992 ; 
Collins et al.  1996  )  are the most potent carboline-based neurotoxic entities (Hamann 
et al.  2006 ; Collins et al.  1992 ; Collins et al.  1996 ; Wernicke et al.  2007  ) . 2,9-diMe-
 b C + s are potent mitochondrial inhibitors with neurotoxic effects resembling MPP + , 
although with lower selectivity to dopaminergic cells (Fig.  5.1 ).  b -Carbolinium cat-
ions ( b C + s) would be produced by  N -methylation from hydrophobic and blood–
brain barrier-permeable  b Cs and/or TH b Cs. A number of factors may affect the 
neurotoxicity of  b Cs, including their toxic potency but also their bioactivation, 
metabolism, DAT transport, and the occurrence of exogenous and endogenous  b Cs. 
They are reviewed below.   
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    5.3   Bioactivation and Oxidative Metabolism of  b -Carbolines 

    5.3.1   N-Methylation of  b  -Carbolines 

 In order to become neurotoxins, neutral and hydrophobic  b Cs are converted (i.e., 
bioactivated) into  N -methylated  b Cs analogs of MPP +  which are sequestered 
within the brain due to its cationic nature.  b Cs are bioactivated into neurotoxins 
by  N -methyltransferases (NMTs) and a number of NMT enzymes catalyzing the 
 N -methylation of  b Cs in both the  N [2]- and  N [9]-nitrogens to give  b -carbolinium 
cations ( b C + s) have been already reported (Collins and Neafsey  1998 ; Gearhart 
et al.  1997  ) . NMT activities have been detected in human brain (Collins and 
Neafsey  1998 ; Matsubara et al.  1993 ; Gearhart et al.  2000,   2002a      ) as well as in 
bovine, guinea pig, and rat brain (Matsubara et al.  1992a,   b ; Gearhart et al.  1997 ; 
Collins et al.  1992  ) . The reaction requires  S -adenosyl- l -methionine (SAM) as a 
methyl donor and the bioactivation process involves the sequential  N -methylation 
of  b Cs, fi rst in the 2 b - and then in the 9[indole] nitrogen to give the highly 
neurotoxicant 2,9-dimethylated  b C cations (2,9-diMe- b C + ) (Fig.  5.3 ). The 
2- N -methylation activity would have an initial key role in trapping hydrophobic 
pyridoindoles within the brain (Collins and Neafsey  1998  ) . Following methyla-
tion at  N -2, the  b C is partly in the form of anhydrobase which facilitates the 
subsequent  N -methylation at the indole nitrogen to give 2,9-dimethylated  b C cat-
ions. Although  N -methylation may occur in both nitrogens of  b C, methylation in 
the 9[indole] nitrogen appears to be the rate-limiting step in the development of 
toxicity (Collins et al.  1992 ; Matsubara et al.  1998a    ) . Alternatively, a bioactiva-
tion process by NMT may also occur in TH b Cs (Fig.  5.3 ). A 2- N- methylation 
activity at the tetrahydropyrido ring to form 2 b - N -methylated TH b Cs was detected 
in guinea pig and rat brain (Collins and Neafsey  1998 ; Matsubara et al.  1992a    ) . 
However, in contrast to aromatic  b Cs,  N -methylation at the 9-nitrogen has not 
been observed so far for TH b Cs (Matsubara et al.  1992a    ) . Nevertheless, alterna-
tive routes of bioactivation might occur for TH b Cs such as an oxidation to aro-
matic  b Cs (Herraiz et al.  2007  ) .  

 Sequential  N -methylation of endogenous  b Cs might be an unique route to give 
toxic  N- 2, N -9-dimethylated  b -carbolinium ions in vivo and the presence of these 
compounds in the human brain has been hypothesized as a causative factor in the 
pathogenesis of PD (Matsubara et al.  1993,   1998a    ) . Higher levels of  N -methylated 
 b C cations were found in cerebrospinal fl uid (CSF) of Parkinsonian patients than 
in age-matched controls (Matsubara et al.  1995  ) . Hypothetically, an excess or 
 aberrant  N -methylation of  b Cs might activate neutral  b Cs into neurotoxins playing a 
role in the pathogenesis of PD (Gearhart et al.  1997,   2000 ; Aoyama et al.  2000 ; 
Matsubara et al.  2002  ) . NMT enzymes with  b C  N -methylating capacity were signifi -
cantly higher in CSF of younger patients suffering PD compared with control 
(Matsubara et al.  2002  )  and the expression of a nicotinamide  N -methyltransferase 
with ability to  N -methylate  b Cs was elevated in idiopathic PD (Aoyama et al.  2000 ; 
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Parsons et al.  2003  ) . In addition, other brain enzymes such as phenylethanolamine-
 N -methyltransferase convert  b Cs, such as 9-methylnorharman into 2 N -methylated 
 b -carbolinium cations (Gearhart et al.  2002a    )  and might play a role in the bioactiva-
tion processes of  b Cs to neurotoxicants. An increased activity of  b C 
9- N -methyltransferase was found in the frontal cortex in postmortem human brain 
with PD (Gearhart et al.  2000  ) , suggesting a role for this enzyme in PD as it might 
lead to increased formation of toxic 2,9-diMe- b C + s available for dopaminergic neu-
ron uptake.    In summary,  b Cs can be sequentially  N -methylated by NMT enzymes 
into 2-Me- b C + s and 2,9-diMe- b C + s (Fig.  5.3 ) which are potent mitochondrial toxi-
cant analogs of the Parkinsonian neurotoxin MPP + .  
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    5.3.2   Oxidative Metabolism of MPTP and Its  b  -Carboline 
Analogs 

 The metabolic outcome of MPTP and  b Cs greatly affects their neurotoxic actions. 
MPTP is metabolized in the liver and extrahepatic tissues by fl avin monooxygenase 
(FMO) and cytochrome P450 enzymes 2D6 and 1A2 (Coleman et al.  1996  )  to give 
MPTP- N -oxide, PTP (N-demethylation) and  p -hydroxyMPTP ( p -hydroxylation) 
(Herraiz et al.  2006  )  (Fig.  5.4 ). The metabolic route by P450 2D6 is a potential route 
for detoxifi cation of MPTP neurotoxin in the human liver and brain and may com-
pete with its oxidation by MAO to neurotoxicant pyridinium cations (bioactivation 
route) (Herraiz et al.  2006  ) . P450 2D6 is expressed in the liver and brain and partici-
pates in the metabolism of centrally acting drugs and endogenous neurochemicals. 
The presence of P450 2D6 in the brain where its expression is high in some regions 
(e.g., substantia nigra) may result in altered localization and inactivation of neuro-
toxins (Mann et al.  2008  ) . In humans, P450 2D6 expression is highly polymorphic 
with poor, intermediate, extensive, and ultrarapid metabolizers, and it has been epi-
demiologically related with PD in poor metabolizers (Elbaz et al.  2004  ) . Polymorphic 
variants of human P450 2D6 (2D6*1 and 2D6*10 allelic variants) highly differ in 
the metabolism of MPTP neurotoxin to PTP and  p -hydroxyMPTP (Herraiz et al. 
 2006  ) , whereas overexpression of 2D6 in neuronal cells may be neuroprotective 
against MPP +  (Matoh et al.  2003 ; Mann and Tyndale  2010  ) . As occur with MPTP, 
TH b Cs are also metabolized by cytochrome P450 enzymes (Herraiz et al.  2006  ) . 
 N -Methylated TH b Cs (e.g.,  N (2)-methyl-1,2,3,4-tetrahydro- b -carboline), which are 
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close analogs of MPTP neurotoxin, are metabolized by P450 2D6 to 6-hydroxy and 
7-hydroxy derivatives (Fig.  5.4 ). Therefore, P450 2D6 participates in the detoxifi ca-
tion of  N -methylTH b Cs by an active hydroxylation pathway. The P450 2D6*1 
enzymatic variant exhibited much higher biotransformation of 2-Me-TH b C than the 
2D6*10 defective variant, highlighting the importance of P450 2D6 polymorphism 
in the oxidation of these protoxins (Herraiz et al.  2006  ) . Taken together, these results 
indicate that P450 2D6 play an important role in the metabolic outcome of both 
MPTP and  b Cs, suggesting a possible role for this cytochrome in neuroprotection 
against neurotoxins.  

 In contrast to MPTP, their  N -methylated TH b Cs analogs, 2-methyl-1,2,3,4-tetra-
hydro- b -carboline (2-Me-TH b C) and 2,9-dimethyl-1,2,3,4-tetrahydro- b -carboline 
(2,9-diMe-TH b C) are not oxidized to toxic  b C + s cations with the participation of 
MAO enzymes (Herraiz et al.  2007  ) . Neither, cytochrome P450 enzymes were able 
to carry out this aromatic oxidation in a signifi cant manner. Interestingly, however, 
they were oxidized to 2-methyl-3,4-dihydro- b -carbolinium cations (2-Me-DH b C + , 
2,9-diMe-DH b C + ) as major metabolites and detectable amounts of 2-methyl-
 b -carbolinium cations (2-Me- b C + , 2,9-diMe- b C + ) by different heme peroxidases 
including human myeloperoxidase and lactoperoxidase (Fig.  5.5 ). These results 
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suggest a possible role for this class of oxidoreductases in the toxic bioactivation of 
 N -methylTH b Cs proneurotoxins. It is noticeable that MPDP + , the direct metabolite 
of MPTP from MAO oxidation, was enzymatically oxidized to the directly acting 
MPP +  neurotoxin by the same peroxidases (Herraiz et al.  2007  ) .  

 Metabolic and kinetic studies using human P450 enzymes and human liver 
microsomes (HLM) showed that neutral  b Cs (norharman and harman) are effi -
ciently oxidized to several ring-hydroxylated and  N -oxidation products. This oxi-
dative metabolism was done by P450s 1A2 and 1A1 but also with the participation 
of 2D6, 2E1, 2C19 (Herraiz et al.  2008  )  (Fig.  5.6 ). 6-Hydroxy- b -carboline 
(6-hydroxynorharman and 6-hydroxyharman) was a major metabolite effi ciently 
produced by P450 1A1 and 1A2 and to a minor extent by P450 2D6, 2C19 and 
2E1. 3-Hydroxy- b -carboline (3-hydroxynorharman and 3-hydroxyharman) was 
produced by P450 1A1 and 1A2, whereas  b -carboline- N (2)-oxide (harman-2-oxide 
and norharman-2-oxide) was produced by P450 2E1. Although  N -demethylation 
(detoxifi cation) of  N -methylated  b -carbolines and MPP +  was not signifi cantly cata-
lyzed by P450 2D6 or a mixture of human P450s, several of those  b -carbolines 
were hydroxylated to hydroxy- b -carbolines (Herraiz et al.  2006  ) . Methoxylated 
 b Cs such as harmine and harmaline were also substrates of P450 2D6 (Yu et al. 
 2003a,   b  ) . These results suggest that individual variations in the levels, localization 
and activities of cytochrome P450 may highly change the biotransformation of  b C 
alkaloids affecting their biological and toxicological actions. Of further toxicologi-
cal interest is the differential expression of polymorphic P450 2D6 in human brain 
as well as the induction of P450s such as 1A1 by  b Cs reported recently (Mann 
et al.  2008 ; El Gendy and El-Kadi  2010  ) . Metabolism of  b Cs in the liver and 
peripheral tissues by P450 enzymes may surely serve a detoxifi cation route because 
it may divert those compounds from its  N -methylation to neurotoxins. Nevertheless, 
it may also offer an alternative bioactivation route to potentially novel neurotoxic 
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compounds since those hydroxylated  b Cs produced during  b C metabolism are 
toxic to cells (Wernicke et al.  2007 ; Schott et al.  2006  ) . Further studies are needed 
to clarify those questions.    

    5.4   Neurotoxicity of  b -Carbolines 

 A characteristic feature of neutral aromatic  b Cs is their selective retention in several 
regions of the brain. Higher levels of norharman and harman have been detected in 
the human pigmented substantia nigra than in the cortex (Matsubara et al.  1993  ) . 
These  b Cs bind with high affi nity to melanin and exhibit long-term retention in 
brain pigmented tissues of mice and frogs (a species having neuromelanin) 
(Östergren et al.  2004  ) . Harman and norharman accumulate in the adrenal glands of 
rats and throughout the brain with much higher levels appearing in the brain than 
plasma (Rommelspacher et al.  1994 ; Anderson et al.  2006 ; Fekkes and Bode  1993  ) . 
Accumulation of  b Cs in the brain may increase cell stress and apoptosis and induce 
neurotoxicity (Östergren et al.  2007 ; Yang et al.  2008  ) . Exposure to neutral  b Cs 
produces neurotoxic features in nonprimate animals (Matsubara et al.  1998a    ) . High 
doses of norharman injected in C57BL/6 mice (3 and 10 mg/kg) twice per day for 
fi ve consecutive days induced motoric impairment and glial activation in substantia 
nigra although the number of tyrosine hydroxylase positive cells were unchanged 
(Östergren et al.  2006  ) . Long-term exposure to norharman in rats (0.1-1 mg/kg)  
exacerbates 6-hydroxydopamine-induced Parkinsonism in animals (Haghdoost-
Yazdi et al.  2010  ) . Nevertheless, the concentrations of  b Cs used in those studies are 
generally very high and may lack physiological signifi cance. Apparently, low doses 
of neutral  b Cs may increase dopamine and perhaps exhibit protective properties 
(Herraiz and Chaparro  2005 ; Wernicke et al.  2010 ; Sällström Baum et al.  1996 ; 
Herraiz and Chaparro  2006 ; Lee et al.  2000  ) , whereas chronic exposure and/or high 
doses may trigger neurotoxicicity (Matsubara et al.  1998a   ; Yang et al.  2008 ; 
Haghdoost-Yazdi et al.  2010 ; Ergene and Schoener  1993 ; Storch et al.  2004a    ) . 

    5.4.1   Dopamine Transporter and  b  -Carbolines 

 Neurodegeneration by Parkinsonian neurotoxins such as MPTP implies a high 
degree of selectivity for dopaminergic neurons. The DAT which is the uptake sys-
tem for dopamine also transports MPP +  in these neurons explaining the selectivity 
of this neurotoxicant. Neurotoxic  b Cs are also transported into dopaminergic cells 
through the DAT. In mouse striatal synaptosomes, neutral  b Cs (norharman and 
harman) were unfavorable substrates for DAT, whereas quarternization of these 
compounds to give  b -carbolinium cations ( b C + s) highly increased the affi nity for 
the transporter (Storch et al.  2004a   ; Matsubara et al.  1998  b  ) . 2[ N ]-Methylated  b C 
cations (2-Me- b C + s) were transported through DAT although with lower effi ciency 
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than dopamine or MPP + , and showed enhanced cytotoxicity in DAT-expressing 
cells, suggesting a mechanism for their selective toxicity toward dopaminergic neu-
rons (Storch et al.  2004a    ) . Nevertheless, the requirements for cytotoxicity in DAT-
expressing cells suggested a considerable difference between  b Cs in the transport 
effi ciency and the toxicity of some  b C cations was independent of DAT (Wernicke 
et al.  2007  ) . This suggests that other ways of uptake of neurotoxic  b C cations 
(2-Me- b C + s and 2,9-diMe- b C + s) might be operative in addition to DAT (Hamann 
et al.  2006  ) . Once inside the cells, the  b C + s are concentrated inside the mitochondria 
similar to MPP +  in a process driven by the transmembrane electrochemical gradient 
(negative inside, positive outside) against their concentration gradient (Ramsay 
et al.  1989  ) .  

    5.4.2   Toxicicity of  b  -Carbolines In Vitro 

 TH b Cs do not cause MPP + -like neuronal damage (Collins and Neafsey  1985 ; Rollema 
et al.  1988 ; Perry et al.  1986  ) , whereas neutral  b Cs like harman and norharman are 
weak toxicants. In contrast, the cationic forms of  b Cs (e.g., 2-Me- b C + ) are highly 
cytotoxic against neuronal cells. Table  5.1  compares the toxicological features of neu-
tral  b Cs (e.g., norharman), MPP +  and  b C cations (2-Me- b C +  and 2,9-diMe- b C + ). The 
 b C cations are potent mitochondrial toxins interfering with energy metabolism. 
Differential cytotoxicities of  N -methyl- b -carbolinium analogs of MPP +  were 
investigated in PC12 cells (Cobuzzi et al.  1994  ) . The 2,9-diMe- b C + s (2,9-diMe-nor-
harmanium, 2,9-diMe-harmanium, and 2-Me-harmalinium) approached or surpassed 
the toxicity of MPP +  and were more cytotoxic than 2-mono- N -methylated  b C cations 
(Collins et al.  1992 ; Cobuzzi et al.  1994  ) . Charged  b -carbolines (e.g., 2,9-diMe- b C + ) 
accumulate in the mitochondria and inhibit complex I with similar or higher potency 
than MPP +  (Albores et al.  1990 ; Collins et al.  1992 ; Ramsay et al.  1989  ) . Methylation 
in both nitrogens of  b C appears to be necessary to convert a  b C into a highly potent 
mitochondrial toxin and neurotoxicant while methoxylation in the indole ring 
(2-Me-harmine cation) increases cytotoxicity (Wernicke et al.  2007 ; Collins and 
Neafsey  1998  ) . The cationic  b Cs are less selective for dopaminergic neurones than 
MPP +  because of their lower affi nity for DAT, and as a result, dimethylated  b - carbolines 
(2,9-diMe- b C + ) were 25-fold less effective as neurotoxins than MPP +  in rat mesen-
cephalic dopaminergic neurons (Collins and Neafsey  1998  ) .  

 The neurotoxic mechanism of 2,9-dimethyl- b -carbolinium (2,9-diMe- b C +  or 
2,9-diMe-norharmanium) was investigated in primary dopaminergic culture of the 
mouse mesencephalon (Hamann et al.  2006  )  and neuroblastome cells (Pavlovic 
et al.  2006  ) . 2,9-diMe- b C +  was a potent inhibitor of mitochondrial complex I and 
highly cytotoxic. It decreased respiratory activity and ATP content and increased 
free radical production and caspase-3 activity. Its toxicity pointed to apoptosis as a 
primary mode of cell death although necrosis was also observed (Hamann et al. 
 2006  ) . 2,9-diMe- b C +  reached high intracellular concentrations and caused 
preferential death of dopaminergic  neurones compared to nondopaminergic cells 
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   Table 5.1    Neurotoxicological features of neutral  b Cs (e.g., norharman), MPP +  and its  b C + s 
analogs (2-Me- b C +  refer to 2-Me-norharmanium cation; 2.9-diMe- b C +  refer to 2,9-diMe- 
norharmanium cation)   

 Toxicological feature  MPP +  vs.  b Cs analogs  References 

 Inhibition of complex I and 
mitochondrial respiration 
(mitochondrial toxins) 

 2,9-diMe- b C +  > MPP +  >> 
2-Me- b C +  (in both 
norharman and harman 
series) 

 Albores et al. ( 1990 ), 
Collins and Neafsey 
( 1998 ), and 
Collins et al. ( 1992    )  

 Toxicity and decrease 
of neuronal cell viability 

 MPP +  = 2,9-diMe- b C +  (toxic 
at  m M levels) > 2-Me- b C +  > 
norharman (toxic at mM 
order) = 9-Me-norharman 
(9-Me- b C) 

 Hamann et al. ( 2006 ), 
Pavlovic et al. ( 2006 ), 
and Bonnet et al. ( 2004  )    

 DAT transporter effi cacy  MPP +  >> 2,9-diMe- b C +  > 
norharman (inactive) 

 Hamann et al. ( 2006 ), 
Storch et al.  2004a , and 
Matsubara et al.  (  1992  b  )  

 Toxicity in neuronal cell 
expressing-DAT 
(dopaminergic-like 
neurons) 

 MPP +  > 2,9-diMe- b C +  > 
2-Me- b C +  >> 
norharman 

 Storch et al. ( 2004a, b ), 
Collins et al. ( 1996  ) , 
Wernicke et al. ( 2007 ), 
Pavlovic et al. ( 2006 ), 
and Bonnet et al. ( 2004 )   

 Apoptosis  2,9-diMe- b C +  and MPP +  
are highly apoptotic. 
Norharman is weak 
(only at 1 mM) 

 Hamann et al. ( 2006 ) and 
Pavlovic et al. ( 2006 )   

 Production of reactive 
oxygen 
species (ROS) 

 2,9-diMe- b C +  > MPP +  > 
norharman 

 Hamann et al. ( 2006 ) and 
Pavlovic et al. ( 2006 )   

 Changes in mitochondrial 
transmembrane potential 

 MPP +  > 2,9-diMe- b C +  >> 
norharman 

 Hamann et al. ( 2006 ) and 
Pavlovic et al. ( 2006 )   

 Inhibition of triosephosphate 
isomerase (TPI) 

 2,9-diMe- b C +  > 2-Me- b C +  > 
norharman. MPP +  and 
9-Me- b C did not inhibit 
this enzyme (1 mM) 

 Bonnet et al.  2004  )    

 Neurotoxicity in vivo 
(animals) 

 MPP +  > 2,9-diMe-
 b C +  > 2-Me- b C +  >  b C 
(norharman) = 9-Me- b C 
(9-Me-norharman) 

 Collins et al. ( 1992 ), 
Matsubara et al.  (  1998a ),  
Neafsey et al. ( 1989 ), 
Ostergren et al. ( 2006 ), 
Pavlovic et al. ( 2006 ), 
and Neafsey et al.  1995  )  

although cellular uptake via DAT might not play a higher role in its toxicity (Hamann 
et al.  2006  ) . The effects of 2,9-diMe- b C +  on apoptotic changes and free radical 
production resembled those induced by MPP + , whereas the neutral  b C norharman 
only showed a weak potency at the very high doses, suggesting that  N -methylation 
is needed for cell apoptosis (Pavlovic et al.  2006  )  (Table  5.1 ). 2,9-diMe- b C +  and 
MPP +  can induce permeability transition pores leading to rupture of the outer 
mitochondrial membrane and the release of the proapoptotic components, cyto-
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chrome c and apoptosis induction factor (AIF) (Pavlovic et al.  2006  ) . On the other 
hand,  b C cations (2-Me-norharman cation) may interact with brain proteins being a 
target for neurotoxicity (Gearhart et al.  2002  b ; Bonnet et al.  2004  ) . I   n this regard, 
the triosephosphate isomerase (TPI) is of particular interest (Bonnet et al.  2004  ) . 
2,9-diMe- b C +  (2,9-diMe-norharmanium) is a potent inhibitor of TPI and it can 
interfere with glycolysis reducing neuronal cell viability and contributing to neuro-
toxicity (Bonnet et al.  2004  ) . 2,9-diMe- b C +  showed higher inhibitory potency on 
TPI than 2-Me- b C +  or norharman, whereas MPP +  was inactive, indicating that 
2,9-dimethylation signifi cantly increased neurotoxicity by this mechanism 
(Table  5.1 ). Finally, although TH b Cs are less toxic than aromatic  b Cs or  b C cations, 
TH b Cs are converted into toxins when they are permanent cations (e.g., 2,2-diMe-
TH b C + s) (Fig.  5.2 ). Then, toxic TH b C cations (TH b C + s) might resemble aromatic 
 b C cations ( b C + s) (Wernicke et al.  2007  ) .  

    5.4.3   Neurotoxicity of  b  -Carbolines In Vivo 

 Initial attempts to generate neurotoxicity in animal models using  b Cs were done with 
TH b Cs such as 2-Me-TH b C (Collins and Neafsey  1985 ; Perry et al.  1986  ) . 2-Me-TH b C 
is a naturally occurring compound found in plants and mammalian brain (Barker et al. 
 1981  )  that might be converted to cationic species in a process similar to MPTP/MPP +  
(Fig.  5.2 ). However, to become a neurotoxin, 2-Me-TH b C requires a previous dehy-
drogenation step to give 2-Me- b C +  cation and therefore very high doses were needed 
to induce any apparent neuronal loss after intraperitoneal treatment in mice (Collins 
and Neafsey  1998  ) . In contrast, injection of the MPP + -like  N -methylnorharmanium 
cation (2-Me- b C + ) into the substantia nigra of rats produced nigral cell loss and highly 
decreased striatal dopamine and their metabolites, indicating neurotoxicity (Neafsey 
et al.  1989,   1995  ) . 2-Me- b C +  exerted appreciable neurotoxicity when administered by 
microdialysis into the striatum (Rollema et al.  1988  )  but it was several orders of mag-
nitude less potent than MPP +  following acute intranigral administration (Neafsey et al. 
 1989  ) .  N -Methyl- b -carbolinium cations ( b C + s) caused nigrostriatal toxicity following 
injections in the substantia of rats and three  b -carbolinium cations produced lesions 
that approached that of MPP +  (defi ned as 100%): 2,9-diMe-harman (94%), 
2-Me-harmol (74%), and 2,9-diMe-norharman (57%) (Neafsey et al.  1995  ) . Other  b C 
cations or neutral  b Cs produced smaller lesions or were ineffective (e.g., 2-Me- b C + s, 
norharman). MPP +  highly reduced striatal dopamine whereas various  b C cations 
reduced striatal dopamine in a lesser extent: 2,9-diMe-harman (37%), 2,9-diMe- 
norharman (42%), and 2-Me-harman (63%). When all  b C cations are considered, 
there was a roughly lineal negative relationship (corr. coeff. −0.65) between lesion 
size and striatal dopamine level (Neafsey et al.  1995  ) . This weak correlation may be 
due to the fact that the most cytotoxic  b C cations were not highly selective toxins for 
dopaminergic cells in vivo when compared to MPP + . 
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 The highest neurotoxicity in vivo is generally produced by 2,9-dimethylated- b -
carbolinium cations (2,9-diMe- b C + s). The neurotoxic potential of 2,9-diMe-norhar-
manium (2,9-diMe- b C + ) was demonstrated by direct nigrostriatal injection in rats, 
which caused lesions in the substantia nigra and a reduction of dopamine levels in 
the striatum (Collins et al.  1992 ; Pavlovic et al.  2006 ; Neafsey et al.  1995 ; Matsubara 
et al.  2001  ) . Toxicity of 2,9-diMe-norharmanium to nigrostriatal dopaminergic ter-
minals was only an order of magnitude less toxic than MPP +  (Collins et al.  1992  ) . 
A PD-like syndrome was induced in rats by intranigral administration of 2,9-diMe-
 b C +  that caused a signifi cant decrease in the striatal levels of dopamine and its 
metabolites, accompanied by an enhancement of muscle tone and electromyo-
graphic activity (equivalent to muscle rigidity in PD) as well as a signifi cant decrease 
in the total number of tyrosine hydroxylase-immunoreactive neurons and shrinkage 
of the substantia nigra (Lorenc-Koci et al.  2006  ) . Relative neurotoxicity in vivo of 
neutral  b Cs, 2-Me- b C + , and 2,9-diMe- b C +  derivatives is consistent with neurotoxicity 
in cell cultures (Table  5.1 ). Under the same conditions, 2-Me- b C + s or neutral com-
pounds (norharman) cause little neurotoxic effects compared with dimethylated 
compounds (2,9-diMe- b C + s) or MPP + . Nevertheless, repeated injection of high 
doses of norharman, 2-Me-norharmanium (2-Me- b C + ), or 9-Me-norharman to mice 
decreased motor activity and produced Parkinsonian defi cits (Matsubara et al. 
 1998  b ; Östergren et al.  2006  ) . The numbers of tyrosine hydroxylase (TH)-positive 
cells in the substantia nigra pars compacta of norharman and 9-Me-norharman-
treated mice diminished to 76 and 66% of the values in control mice, respectively 
(Matsubara et al.  1998a    ) . These results suggest that neutral  b Cs (e.g., norharman) 
might induce nigrostriatal toxicity probably after their bioactivation by  N -methylation 
when administered in high doses (Collins et al.  1992 ; Matsubara et al.  1995  ) . 
Chemically, 2-Me- b C +  may form neutral anhydrobases after dissociation of the 
proton in 9-position and thereby it can cross the biological barriers and reach 
the brain in a way resembling neutral  b Cs (e.g., norharman, 9-Me-norharman). 
However, both neutral and 2-Me- b C +  are less concentrated than 2,9-diMe- b C + s in 
cell mitochondria where the electrochemical gradient is in place and consequently 
are less cytotoxic.  

    5.4.4   Tetrahydro- b  -Carbolines and Halogenated 
TH b Cs as Neurotoxins 

 In contrast to TH b Cs, 2,2-dimethyltetrahydro- b -carboline cations (TH b C + s) having 
a quaternary nitrogen were highly cytotoxic to DAT-expressing cells (Wernicke 
et al.  2007  )  and their toxic potency did not differ much from aromatic  b C cations. 
In order to become neurotoxicants, TH b Cs and  N -methylTH b Cs may be converted 
into permanent  b C cations by  N -methylation or aromatic oxidation (Herraiz et al. 
 2007  )  (Figs.  5.2 ,  5.3 , and  5.5 ). More attention is given to halogenated TH b Cs such 
as 1-trichloromethyl-1,2,3,4-tetrahydro- b -carboline (TaClo) (Fig.  5.2 ). TaClo may 
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originate in the human body from a Pictet–Spengler condensation of tryptamine and 
the hypnotic agent chloral hydrate (trichloroacetaldehyde) (Bringmann et al.  1996  ) . 
Chloral hydrate is also a metabolite of trichloroethylene, a common industrial sol-
vent. TaClo is permeable through the blood–brain barrier and induce PD-like symp-
toms in rats (Riederer et al.  2002  ) . Similar to MPP +  and  b C + s, TaClo inhibits the 
electron transfer of respiratory chain at complex I (Janetzky et al.  1995  ) , is toxic to 
PC12 cells (Bringmann et al.  2006  ) , induces apoptosis in human neuroblastome 
cells (Riederer et al.  2002 ; Akundi et al.  2004  ) , and affects catecholamine biosyn-
thesis by inhibiting tyrosine hydroxylase (Bringmann et al.  2002  ) . Chloral-derived 
 b -carbolines are not specifi c neurotoxicants toward dopaminergic cells (Riederer 
et al.  2002 ; Storch et al.  2006  )  and in contrast to MPP +  (and  b C + s), they are highly 
lipophilic crossing neuronal membranes and mitochondria by passive diffusion. 
However, TaClo was not detected in human plasma after therapeutic administration 
of chloral hydrate questioning its endogenous formation (Leuschner et al.  1998  ) .   

    5.5   Environmental and Endogenous  b -Carbolines 

 Humans are continuously exposed to  b Cs and their precursors through the diet and 
tobacco smoke. Foods contain TH b Cs resulting from a Pictet–Spengler condensa-
tion between indolethylamines/indoleamino acids and aldehydes or  a -ketoacids 
(Fig.  5.7 ) (Herraiz  2004  b    ). Condensations arising from tryptophan afford tetra-
hydro- b -carboline-3-COOH (TH b C-3-COOH) whereas tryptamine and serotonin 
afford TH b Cs and 6-hydroxytetrahydro- b -carbolines (6-OH-TH b Cs), respectively. 
Reactions of tryptophan with glucose provide carbohydrate-derived TH b Cs and 
phenolic aldehydes give phenolic-derived TH b Cs. TH b Cs appear in many foods 
from different origins and processing conditions (vegetable, animal, or fermented 
origin) (for a review see Herraiz  2008  ) . TH b C-3-COOH are the main class of 
TH b Cs in foods reaching up to hundreds of mg/kg whereas TH b Cs and 6-OH-TH b Cs 
may reach up to 30 and 4 mg/kg, respectively (Herraiz  1996 ; Herraiz and Galisteo 
 2003 ; Gutsche and Herderich  1997 ; Herraiz and Papavergou  2004  ) . As suggested 
from the concentration ranges, the content of TH b Cs in commercial foods shows a 
large variability. Nevertheless, human exposure to TH b Cs through the diet can eas-
ily reach the level of several mg/person/day. The fully aromatic  b Cs norharman and 
harman also occur in many foodstuffs (Fig.  5.7 ). With a few exceptions, the level of 
these  b Cs in foods is low (i.e., in the low  m g/L or ng/g order) with processed foods 
containing the highest amount (Herraiz  2004a,     2008  ) . The highest occurrence of 
norharman and harman was found in brewed coffee (Herraiz  2002  )  and raisins 
(Herraiz  2007  ) . Variable levels of harman were found in fermented products and 
seasonings. Norharman appears in toasted breads, breakfast cereals, and cookies 
whereas both norharman and harman occur in “well-done” cooked fi sh and meats 
(level up to 160 ng/g) (Herraiz  2004a    ) . Although the level of aromatic  b Cs in food-
stuffs is rather low compared to TH b Cs, the successive ingestion of foodstuffs con-
taining these compounds will raise substantially the exposure to these substances. 
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Besides foods, smoking is another important source of human exposure to aromatic 
 b Cs. Harman and norharman are present in relative high concentration in cigarette 
smoke (from 200 to 2,800 ng/cigarette) Herraiz  2004a . Human exposure to neutral 
and fully aromatic  b Cs may reach the level of hundreds or even thousands of  m g/
person/day (Herraiz  2004a  ,   2008  ) . On the other hand, exposure to  b Cs also occurs 
through the ingestion of edible and medicinal plants. Two examples are  P. harmala  
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and  B. caapi . These plants contain high levels of harmaline, harmine, tetrahydro-
harmine, harmol and harmalol which in  P. harmala  seeds reach up to 10% w/w 
(Herraiz et al.  2010  ) . They are employed for medical uses and increasingly used for 
recreational purposes as psychoactive analogs of Ayahuasca beverage. Ingestion of 
these preparations may produce toxicological and neurotoxicological effects 
(Herraiz et al.  2010  ) . Taken together, these results indicate that exposure to xenobi-
otic  b Cs (foods, smoking) increases the endogenous presence of  b Cs in humans 
(Herraiz  2004a,   b,   2008 ; Spijkerman et al.  2002 ; Kuhn et al.  1995a      ; Pfau and Skog 
 2004 ; Tsuchiya et al.  1994 ; Rommelspacher et al.  2002  ) .  

 A number of TH b Cs and  b Cs have been found endogenously in mammalian fl uids 
and tissues (Fig.  5.8 ). Environmental sources (i.e., food, smoking) may contribute to 
this presence. In addition,  b Cs may form endogenously by a chemical or enzymatic 
cyclization of indoleamines with aldehydes or  a -ketoacids (Rommelspacher et al. 
 1991a   ; Airaksinen and Kari  1981  b  ) . Briefl y, tetrahydronorharman (1,2,3,4-tetrahydro-
 b -carboline) 1a occurs in human urine, platelets and plasma, and rat brain (Robinson 
et al.  2003 ; Airaksinen and Kari  1981  b ; Tsuchiya et al.  1994 ; Musshoff et al.  1996 ; 
Honecker and Rommelspacher  1978  ) ; tetrahydroharman (1-methyl-TH b C) 1b in rat 
brain and urine, and in human platelets, plasma and urine (Tsuchiya et al.  1994 ; 
Musshoff et al.  1996 ; Rommelspacher et al.  1980  ) ; 6-hydroxytetrahydroharman 2b in 
human and cat urine and rat brain (Musshoff et al.  1996 ; Beck et al.  1986  ) , 6-hydroxytet-
rahydronorharman 2a in human urine and rat brain and platelets (Musshoff et al.  1996 ; 
Rommelspacher et al.  1979  ) , pinoline 3a in rat brain and  adrenal gland, and in human 
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pineal gland (Robinson et al.  2003 ; Airaksinen and Kari  1981  b  ) ; 1-methyl-6-meth-
oxyTH b C 3b in rat urine (Robinson et al.  2003  ) ; 1-methyl-TH b C-3-COOH 4b in 
human urine and lens and rat brain (Manabe et al.  1996 ; Fukushima et al.  1992 ; Adachi 
et al.  1991  ) ; 2-methyl-TH b C 5a in rat brain (Barker et al.  1981  ) ; the  b Cs norharman 
6a and harman 6b were detected in rat urine, plasma, arcuate nucleus and brain, 
bovine lung, and in human platelets, urine, plasma, and brain (Rommelspacher et al. 
 1991a  ,   1994 ; Parker et al.  2004 ; Matsubara et al.  1998a ; Kuhn et al.  1995a  ,   1996 ; 
Fekkes et al.  1992  ) . Endogenous  b Cs have been correlated with several pathological 
conditions in humans. Thus, elevated plasma levels of  b Cs (norharman and harman) 
have been found in alcoholics (Rommelspacher et al.  1991   b  ) , whereas harman has 
been correlated with essential tremor (Louis et al.  2002  ) . Plasma levels of norharman 
were signifi cantly higher in PD patients compared to controls and although harman 
was also elevated its difference was not signifi cant (Kuhn et al.  1995  b  ) . The levels of 
these  b Cs were also signifi cantly higher in CSF of PD patients than in patients without 
neurological diseases (Kuhn et al.  1996  ) . These results may suggest a possible role 
of harman and norharman in the pathophysiological processes initiating neurode-
generative diseases.  

 Neutral  b Cs coming from the diet or formed endogenously could be precursors of 
neurotoxic  N -methylated  b Cs as they can be sequentially  N -methylated to 2-Me- b C + s 
and 2,9-diMe- b C + s (Fig.  5.3 ). Interestingly, an increase of 2,9-diMe- b C +  (2,9-diMe-
norharmanium cation) was reported in the cerebrum of mice after systemic treatment 
with the 2,9-diMe b C +  precursors, norharman, 9-Me- b C (9-Me-norharman), and 
2-Me- b C +  (2-Me-norharmanium cation), suggesting that simple neutral  b Cs may 
induce toxicity via their  N -methylation (Matsubara et al.  1995,   1998a    ) .  N -Methylated 
 b C cations 7a,b 8a,b (Fig.  5.8 ) have been found in human brains taken during foren-
sic autopsies and their presence considered a possible causative factor in the patho-
genesis of PD. Higher concentrations of 2-methyl- b -carbolinium 7a and 
2,9-dimethyl- b -carbolinium 8a cations were found in the substantia nigra than in the 
cortex (0.77 and 0.1 pmol/g, respectively, for 8a) in control brains (Matsubara et al. 
 1993  ) . In the cortex, 2-Me-norharmanium ion 7a and 2,9-diMe-norharmanium ion 
8a were detected in almost all samples while 2-Me-harmanium ion 7b and 2,9-diMe-
harmanium ion 8b were detectable in only two samples. Their neutral  b C precursors, 
norharman 6a and harman 6b were also present in almost all samples and their levels 
were signifi cantly higher in the nigra than in the cortex (16 and 0.58 pmol/g, respec-
tively, for norharman) Matsubara et al. ( 1993  ) . Moreover,  N -methylation in vitro of 
the 2[ b ] and 9[indole] nitrogens was measured both in the cortex and in the nigra by 
using 9-methylnorharman and 2-methylnorharmanium cation  7a  as substrates, and 
the 2[ b ]- N -methylation activity was signifi cantly higher than 9[indole]- N -methyla-
tion activity in both regions (Gearhart et al.  1997 ; Matsubara et al.  1993  ) . Detectable 
levels of 2,9-diMe-norharmanium cation  8a  were found in CSF in half of PD patients, 
but absence in controls (Matsubara et al.  1995  ) . 2-Me-norharmanium cation 7a was 
found in both controls and PD patients with a slightly higher level in PD patients than 
controls and the total content of  N -methylated  b C +  was signifi cantly higher in PD 
patients than in control (Matsubara et al.  1995  ) . The contents of the 2-Me- b C +   7a  
signifi cantly increased with the progression of PD, but the 2,9-diMe- b C +   8a  decreased 
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as the disease exacerbated, supporting the hypothesis that “bioactivated”  b C + s, espe-
cially 2,9-diMe- b C + s, may be endogenous causative factors underlying PD 
(Matsubara et al.  1995  ) . Future studies are needed to clarify the neurotoxic relevance 
of these  b C cations present in human brain. 

 Environmental TH b Cs and  b Cs from foodstuffs and tobacco smoke (Herraiz 
 2004a,   b  )  are potential precursors of neurotoxic  N -methyl- b C cations. However, 
only a very small fraction if any of the  b Cs ingested are expected to be converted 
into 2-Me- b C + s and 2,9-diMe- b C + s in the human body and brain. From previous 
results in mice (Matsubara et al.  1998a    ) , a very high i.p. doses of norharman (0.5 
mmol/Kg) produced approx. 0.73 pmol/g tissue of the 2,9-diMe- b C +   8a  and 
7.5 pmol/g tissue of the 2-Me- b C +   7a  in the cerebrum of mice. Human exposure to 
norharman and harman from the diet and smoking will be much lower and the level 
of toxic  b C cations produced might be probably very low to induce signifi cant neu-
rotoxicity. Aromatic  b Cs are relatively high in smoke and coffee which are associ-
ated with a reduced incidence of PD in epidemiological studies and this is against a 
direct role of these exogenous  b Cs in the pathogenesis of PD. Nonetheless, a long-
term exposure to  b Cs (exogenous or endogenous) might still play a role in neurode-
generation after their brain accumulation and conversion to  b C cations in predisposed 
and susceptible subjects. In fact,  N -methylated  b C cations were found in human 
brain reaching concentrations of 0.1–3.1 pmol/g tissue, and  N -methylation activity 
of  b Cs was also detected (Gearhart et al.  1997 ; Matsubara et al.  1993,   1995  ) . 
Administration of high doses of neutral  b Cs led to neurotoxicity (Matsubara et al. 
 1998a   ; Ostergren et al.  2006  )  and  b Cs (norharman, harman, and 2-Me-norharmanium 
cation) accumulated (20-fold) preferentially in the substantia nigra compared with 
the cortex, suggesting a possible role for these compounds as selective nigral toxins 
even in the absence of high affi nity for DAT (Östergren et al.  2004  ) . 

 In summary, neutral  b Cs may act as putative neurotoxins through their bioactiva-
tion into neurotoxicant pyridinium cations. Alternatively, a number of evidences sug-
gest that neutral  b Cs may also exert protective actions. Thus, TH b Cs and  b Cs are 
antioxidants, radical scavengers, and MAO inhibitors (Herraiz  2008 ; Lee et al.  2000 ; 
Herraiz and Galisteo  2004  ) . Interestingly, 9-methyl- b -carboline (9-Me-norharman) 
at low doses exerts neurostimulatory, neuroprotective, neuroregenerative, and anti-
infl ammatory effects in primary dopaminergic culture (Wernicke et al.  2010 ; Hamann 
et al.  2008  ) . These results suggest that while exposure to low doses of  b C cations 
produces neurotoxicity, neutral  b Cs and particularly 9-methylnorharman may exert 
protective actions. Contradictory results between toxic and protective effects may be 
explained by the different doses of  b Cs employed in the studies.  

    5.6   Concluding Remarks and Future Directions 

 The discovery of MPTP as a neurotoxin causing idiopathic PD has encouraged the 
hypothesis that environmental substances are causative agents in PD (Di Monte et al. 
 2002  ) . A search for structural and functional analogs of MPTP has led to naturally 
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occurring  b C alkaloids. These compounds are converted into  b C cations ( b C + s) 
which are neurotoxins resembling MPP + . The following conclusions can be drawn:

    1.    Humans are daily exposed to environmental TH b Cs and  b Cs coming from the diet 
and other sources (tobacco smoke, edible and medicinal plants). It is currently 
unknown whether dietary exposure to TH b Cs and  b Cs has neurotoxicological 
signifi cance.  

    2.    A number of TH b Cs and  b Cs, including neurotoxic  b C cations occur endoge-
nously in mammalian tissues, including the human brain. This presence might be 
affected by environmental exposure and/or be related with pathological 
conditions.  

    3.    High doses of neutral  b Cs (norharman, harman, 9-methylnorharman) induce sev-
eral neurotoxicological features in animals. In contrast, low doses might lack 
neurotoxicity and exert protective actions.  

    4.    TH b Cs and  b Cs are bioactivated into  N -methyl- b -carbolinium cations ( b C + s) by 
NMTs. These activities have been found in animal and human brain. A sequen-
tial  N -methylation at the pyrido and indole nitrogens affords the highly neuro-
toxicants 2,9-diMe- b C + s.  

    5.    TH b Cs and  b Cs are oxidized and biotransformed by cytochrome P450 enzymes 
and other oxidoreductases affording new bioactive molecules such as hydroxy-
lated and aromatic  b Cs. These enzymes play an important role in the outcome of 
the biological and toxicological effects of TH b Cs and  b Cs. Metabolic inactiva-
tion prevents the compounds from conversion into neurotoxic substances.  

    6.     N -Methylated  b -carbolinium cations ( b C + s) can be uptaken by DAT into dop-
aminergic cells although with less effi ciency than MPP + . Their selectivity for 
dopaminergic neurons is lower than MPP +  but other routes of uptake can work 
for  b C cations.  

    7.     N -Methyl- b C + s (2-Me- b C + s and 2,9-diMe- b C + s) are neurotoxic in vitro and 
cause neuronal cell death by inhibition of mitochondrial respiration and glycoly-
sis, oxygen radical production, and apoptosis. Potencies of dimethylated  b C 
compounds (2,9-diMe- b C + s) as mitochondrial toxins and apoptotic agents 
approach that of MPP +  and were higher than 2-Me- b C + s. 2,2-diMe-TH b C cat-
ions (TH b C + s) are also toxic to cells and might resemble aromatic  b C cations.  

    8.    Direct exposure of the brain to  N -methylated  b -carbolinium cations (2,9-diMe-
 b C + s) produces neurotoxicity in animals. These  b C + s have been detected in the 
human brain.     

 In summary, a long-term exposure to xenobiotic or endogenous TH b Cs and  b Cs 
may induce a neurotoxicological risk in humans as these compounds can be bioac-
tivated into putative toxins ( b C cations) that are trapped and accumulated in the 
brain. Nevertheless, most of the studies performed so far were studies in vitro and 
using high doses of  b Cs (neutral  b Cs) or directly applying  b C cations in brain. 
Then, their physiological signifi cance regarding actual human exposure to TH b Cs 
and  b Cs is questionable. The toxicological risk of  b -carbolines is affected by key 
factors such as their bioactivation by NMTs and their metabolic biotransformation 
by cytochrome P450 enzymes and other oxidoreductases. Only a very small fraction 
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of exogenous or endogenous  b Cs if any is expected to be converted into putative 
toxic  N -methyl b C cations in the brain. Future studies are warranted to highlight the 
importance of metabolism in  b C toxicity, including individual P450 polymorphism 
and induction. Studying the possible epidemiological associations between exoge-
nous and endogenous  b Cs and neurodegenerative diseases as well as the assessment 
of the presence of  b Cs and neurotoxicant  b C cations in the human brain of patients 
in relation to different stages of disease would be of much interest to estimate the 
neurotoxicological signifi cance of  b C compounds. Noticeably,  b Cs are bioactive 
substances in many targets and these alkaloids may also exert neuroprotective 
actions (see other chapters) suggesting that still unknown factors may delimitate or 
defi ne whether these substances function as neuroprotectants or neurotoxicants.      
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  Abstract   Studies clearly demonstrated biosynthesis of  b  - carbolines ( b Cs) in ani-
mals and humans. Precursor compounds include serotonin (syn. 5-hydroxytryptam-
ine), tryptamine, and tryptophan with either acetaldehyde or pyruvate as cosubstrates. 
 b Cs are metabolized effi ciently. Alcohol consumption and smoking affect their bio-
synthesis and biodegradation. Alcohol consumption increases the biosynthesis of 
harman (1-me- b C) which induces voluntary alcohol intake possibly by increasing 
the activity of dopamine neurons of the mesolimbic system (see Chap.   10    ). On the 

    H.   Rommelspacher   (*)
     Department of Psychiatry ,  Charité-University Medicine, Campus Benjamin Franklin , 
  Charitéplatz 1 ,  10117   Berlin ,  Germany  

   Department of Psychiatry ,  Charité-University Medicine, Campus Mitte , 
  Charitéplatz 1 ,  10117   Berlin ,  Germany    
e-mail:  hans.rommelspacher@charite.de  

     C.   Wernicke           
     Department of Psychiatry ,  Charité-University Medicine, Campus Mitte , 
  Charitéplatz 1 , 10117   Berlin ,  Germany    
e-mail:  catrin.wernicke@charite.de   

    J.   Lehmann  
     Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy ,  University of Jena , 
  Philosophenweg 14 ,  Jena   07743 ,  Germany   
e-mail:  j.lehmann@uni-jena.de    

    Chapter 6   
  b -Carbolines: Occurrence, Biosynthesis, 
and Biodegradation       

          Hans   Rommelspacher      ,    Catrin   Wernicke, and       Jochen   Lehmann      

Contents

6.1  Introduction ....................................................................................................................... 106
6.2  Biosynthesis ...................................................................................................................... 106
6.3  Biodegradation .................................................................................................................. 109

6.3.1  Unsubstituted bCs ................................................................................................. 109
6.3.2  Substituted bCs ..................................................................................................... 110

References .................................................................................................................................. 111

L. Antkiewicz-Michaluk and H. Rommelspacher (eds.), Isoquinolines and Beta-Carbolines 
as Neurotoxins and Neuroprotectants, Current Topics in Neurotoxicity 1,
DOI 10.1007/978-1-4614-1542-8_6, © Springer Science+Business Media, LLC 2012



106 H. Rommelspacher et al.

other hand, smoking induces the biodegradation of  b Cs. Norharman-2-N-oxide, a 
metabolite of norharman ( b C) in brain and liver protects norharman from methyla-
tion to neurotoxic  b Cs. Furthermore,  b Cs form complexes with acetic acid and other 
hydrogen donors which may prevent the N-methylation to the toxic quaternary cat-
ions. Progesterone binding to CYP17 is completely blocked by norharman in con-
trast to harman which indicates inhibition of androgen biosynthesis. These fi ndings 
point to multiple functions and interactions of  b Cs some of which will be presented 
in more detail in subsequent chapters.  

  Keywords   Biosynthesis  •  Tryptophan  •  Tryptamine  •  5-Hydroxytryptamine  
•  Pyruvate  •  Acetaldehyde  •  Biodegradation  •  Cytochrome  •  Alcohol  •  Smoking  
•  Norhaman-N-oxide  •  Complex with acetic acid  •  Androgen      

    6.1   Introduction 

  b -carbolines ( b Cs) have been identifi ed and characterized from a variety of mam-
malian tissues in both in vitro and in vivo studies (Wyatt et al.  1975 ; Hsu and 
Mandell  1975 ; Rommelspacher et al.  1976 ; Honecker and Rommelspacher  1978 ; 
Shoemaker et al.  1978 ; Airaksinen and Kari  1981a ; Baker et al.  1981  ) . Several 
reviews have been published since the fi rst wave of publications in the 1970s 
reporting the evidence for the natural occurrence of the  b Cs in plants, animals, and 
humans (Deitrich and Erwin  1980 ; Airaksinen and Kari  1981a,  b ; Collins  1985 ; 
Rommelspacher and Susilo  1985 ; Rommelspacher et al.  1991 ; Brossi  1993 ; Pfau 
and Skog  2004 ; Cao et al.  2007 ; Abramovitch and Spenser  1964 ) the latter review 
focuses on the interaction of  b Cs with DNA and antitumor, antiviral, antimicrobial, 
antiparasitic, and antithrombotic activities). To introduce in the topic, selected 
aspects will be presented here before reporting the evidence for the neuroprotective 
and neurorestorative properties of some  b Cs.  

    6.2   Biosynthesis 

 1-Unsubstituted  b Cs: The in vitro and in vivo formations of the compounds 
1,2,3,4-tetrahydro- b -carboline (TH b C), 3,4-dihydro- b -carboline, and the fully aro-
matic  b C 9 H -pyrido[3,4- b ]indole (trivial name: norharman) were investigated by 
administration of possible precursors (Scheme  6.1 ).  

 The studies revealed that the biosynthesis involves a carbon unit transfer from 
5-methyl-tetrahydrofolate (MTHF) to tryptamine followed by a cyclization reaction 
yielding TH b C (Lauwers et al.  1975  ) . The other  b Cs depicted above (Scheme  6.1 ) are 
formed consecutively by oxidation (=dehydrogenation). It is not clear whether the 
oxidation steps involve enzymes in vivo (Barchas et al.  1974 ; Wyatt et al.  1975 ; 
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Mandel et al.  1974 ; Hsu and Mandell  1975 ; Rommelspacher et al.  1976  ) . To investi-
gate whether also tryptophan serves as a precursor, smokers and nonsmokers received 
an oral tryptophan load and both tryptophan as well as norharman (formula: 
Scheme  6.1 ) were determined in plasma. The levels of both compounds were elevated 
in the individuals who received tryptophan. The levels of norharman in smokers were 
higher under control and smoking conditions. The authors calculated that tryptophan 
contributes to 26% of the plasma levels of norharman (Fekkes et al.  2001  ) . 

 Substituted  b Cs: The biosynthesis of 1-methyl- b Cs may proceed in mammals by 
three different modes of cyclodehydration shown in Scheme  6.2 . Kveder and Mc 
Issac  (  1961  )  detected trace amounts of 6-methoxyharmalan in the urine of rats after 
administration of [ 14 C]melatonin (N-acetyl-6-methoxytryptamine) suggesting a 
Bischler–Napieralski mode of cyclization (Scheme  6.2  route I). It is notable that 
under in vitro conditions both nitrogens of  b Cs are complexed by acetic acid 
(Reyman et al.  2007 , see end of chapter biodegradation for details).  
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 The biosynthesis with aldehydes, in particular acetaldehyde, is favored by some 
investigators because aldehydes are very reactive agents (route II, cyclization accord-
ing to Pictet–Spengler). Ethanol loading – the precursor of acetaldehyde in rats and 
humans increased  b C concentrations in plasma, urine, and rat brain indicating that 
this route of formation occurs in vivo (Peura et al.  1980 ; Rommelspacher et al.  1980, 
  1984  ) . 6-OH-THH was identifi ed in human and cat urine with different proportions 
of the (S)(−)- and (R)(+)-enantiomers (Beck et al.  1986  ) . The third route is a conden-
sation reaction with  a -ketoacids, for example, pyruvate, yielding 1-carboxy-tetrahy-
droharman (1-CTHH, route III, reaction according to Pictet–Spengler). Collins et al. 
 (  1982  )  detected 6-hydroxy-1-CTHH in the cerebrospinal fl uid from monkeys indi-
cating serotonin and pyruvate as the precursor compounds. Another study was con-
ducted to demonstrate that this mode of formation occurred in vivo. 

 [ 3 H]Tryptamine and pyruvic acid were injected into the lateral cerebral ventricle of 
rats pretreated with an inhibitor of monoamineoxidase. [ 3 H]1-CTHH was detected in 
brain tissue within 5 min after application suggesting a rapid cyclodehydration reac-
tion in vivo (Fig.  6.1 ). High doses of the monoamine oxidase inhibitor prevented the 
formation of the  b C suggesting an enzymatic formation (Susilo and Rommelspacher 
 1987  ) . The next step in the formation of tetrahydroharman (THH), harmalan, and har-
man is the decarboxylation. [4- 14 C]1-CTHH was given to rats intraperitoneally 
(Fig.  6.1 , Susilo and Rommelspacher  1988   ; Susilo et al.  1987  ). A time-dependent 
formation of [ 14 C]THH was found in lung and spleen indicating an important role of 
these organs in the biosynthesis of THH. [ 14 C]harmalan was detected as the major 
metabolite in all tissues including brain. The amount of harman was clearly lower. The 
metabolism of [4- 14 C]1-CTHH in the brain was investigated after injection into the 
cerebral ventricle. High levels of [ 14 C]harmalan were detected in hippocampus and 
hypothalamus and lower levels in other brain regions. The largest amount of [ 14 C]har-
man was detected in the lung, whereas far lower levels were found in all other organs 
(Susilo and Rommelspacher  1988  ) . Investigations of the oxidative decarboxylation 
reaction were also conducted in mouse brain homogenate and compared with the 
reaction in buffer. The reaction was sixfold increased in brain homogenates indicating 

  Fig. 6.1    In vitro decarboxylation of [3H]tetrahydroharman-1-carboxylic acid. Radiochromatograms 
after thin layer chromatography separation. Boiled brain homogenate was incubated with radiola-
beled 1-CTHH, control, left panel, untreated brain homogenate was incubated with radiolabeled 
1-CTHH, middle panel, and liver homogenate, right panel.       
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an enzymatic catalysis (Gynther et al.  1986  ) . These fi ndings suggest that the in vivo 
formation of  b Cs methylated in position 1 proceeds mainly via an enzymatic oxida-
tive decarboxylation of 1-CTHH.   

    6.3   Biodegradation 

    6.3.1   Unsubstituted  b Cs 

 In vitro experiments: Using human liver microsomes and recombinant P450 isoen-
zymes revealed that the aromatic  b C norharman is effi ciently metabolized (Herraiz 
and Guillén  2008  ) . Individual isoenzymes preferred the N-oxidation and hydroxyla-
tion of specifi c sites of the molecule. This becomes evident by comparing the  V  

max
  

values of experiments with liver microsomes (1.9 pmol/min and pmol P450) and 
recombinant P450 1A2 (115 pmol/min and pmol P450), and P450 1A1 (22 pmol/
min and pmol P450) in the formation of 6-OH-norharman, the main metabolite. 
Other metabolites were identifi ed as 3-OH-norharman and norharman-2-N-oxide, 
the latter formed by P450 2E1. Interestingly, no substituent in the 7-position was 
identifi ed. The authors pointed to the fact that P450 1A1 is a highly inducible CYP, 
for instance by tobacco smoke (Guengerich  2005  )  and that the  K  

m
  for norharman 

was lower than that for harman. Furthermore, in contrast to P450 1A2, the P450 
isoenzymes 1A1, 2D6, and 2E1 are expressed in lung and brain where  b Cs are 
likely to occur and accumulate, for example, in smokers. This means that in smokers 
the induced enzymes convert the  b Cs in the brain rapidly into the inactive metabo-
lites notably to the 2-N-oxide which prevents the N-methylation to the neurotoxic 
2-methyl- b C + . These conditions may be one of the reasons that the prevalence of 
Parkinson’s disease is lower in smokers than in the general population. This point 
will be addressed later in the text. 

 Norharman binds with high affi nity to steroidogenic cytochromes CYP11 (cho-
lesterol monooxygenase and steroid-11 b -monooxygenase) and CYP17 (steroid-
17  a   monooxygenase/steroid-C17, 20-lyase). Progesterone binding to CYP17 was 
competitively inhibited in contrast to harman and other  b Cs which were nearly inef-
fective (Kühn-Velten  1993  ) . These fi ndings implicated norharman but not harman 
as an inhibitor of androgen biosynthesis and possibly of other steroid hormones. 

 In vivo experiments: Experiments were conducted by administration of 
[1- 14 C]1,2,3,4-tetrahydro- b -carboline in rats. At least six metabolites were excreted 
into the urine. Both 6- and 7-hydroxy-1,2,3,4-tetrahydro- b -carboline occurred in 
approximately equal amounts. This observation points to the possibility of an inter-
mediate epoxidation and ringopening again. This is in contrast to the fi ndings with 
human microsomes (see above). The metabolites differed between the sexes: the 
fraction of sulfate conjugates was larger in male than in female rats. An alternative 
pathway yielded norharman. Norharman was subsequently biodegradated by oxy-
genation in position 2 resulting in N-oxide and a further conversion via an oxaziri-
dine to 1,2-dihydro- b -carboline-1-one. This  b C was converted to 1-ol, depending 
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on the thermically preferred tautomer (Greiner and Rommelspacher  1984  ) . As the 
nitrogen is not basic anymore, N-methylation is not possible to occur provided no 
respective enzyme is present in vivo. 

 [1- 14 C]6-MeO-TH b C was given to rats by intraperitoneal injection. The major 
metabolic pathways were hydroxylation in the 7-position and demethylation of the 
6-methoxy group. The metabolites were excreted in the urine in nearly equal 
amounts, almost entirely as glucuronide and sulfate conjugates with the latter pre-
dominating. Both conjugated metabolites were also detected in the bile. At all time 
intervals, the level of radioactivity in the brain consisted of 85–95% of the unchanged 
[1- 14 C]6-MeO-TH b C (Ho et al.  1972  ) . 

 In conclusion in vitro and in vivo experiments with [ 3 H]norharman demonstrated, 
that the  b C binds preferentially to cytochrome P450 2E1 and to a lesser extent to 
1A1/2. Interestingly, ethanol displaced the ligand from recombinant 2E1 microsomes 
in contrast to harman which was inactive. At the end of a forced treatment period of 
rats with ethanol, the levels of norharman in plasma were signifi cantly elevated sup-
porting the contention of a competition of norharman and ethanol at the level of the 
metabolizing enzyme (Stawowy et al.  1999  ) .  

    6.3.2   Substituted  b Cs 

 In vitro experiments: The metabolism of harman was investigated in microsomes 
from mice pretreated either with vehicle (controls), phenobarbitone, or 3-methyl-
cholanthrene. The latter compounds served as inducers of cytochromes. The 
major metabolite of harman was identifi ed as 6-OH-harman under all condi-
tions. Initial reaction rates for harman disappearance showed a fourfold induc-
tion by phenobarbitone and 10.6-fold by methylcholanthrene. The authors 
concluded that the rapid metabolization is important in detoxication because the 
metabolite was less active in pharmacological tests (   Tweedie and Burke  1987 ; 
Tweedie et al.  1988  ) . 

 Studies with human microsomes and recombinant P450 isoenzymes revealed 
that harman is metabolized to the 1-methyl substituted metabolites analogous to 
those described for norharman above (Herraiz and Guillén  2008  ) . 

 The O-demethylation of harmin and harmalin by human liver microsomes and 
individual recombinant CYPs was investigated to assess whether CYPs could ame-
liorate the tremorigenic action of  b Cs. It had been reported that the demethylated 
 b Cs were much less tremorigenic than harmin and harmalin. CYP 2D6 catalyzed 
the O-demethylation of harmaline and CYP 2D6 and 1A1 that of harmin. The turn-
over numbers of CYP 2D6 were among the highest ever reported for CYP 2D6 
substrates (Yu et al.  2003  ) . Both CYP 1A1 and 2D6 are expressed in the brain and 
notably, 2D6 was elevated in alcoholics (Strobel et al.  2001 ; Mikays et al.  2002  ) . 

 In vivo experiments: [ 3 H]Harmin was given by intraperitoneal injection to male 
rats. The compounds excreted in the urine were harmin and harmol both as the free 
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base and in addition harmol as conjugates (69% sulfate and 18% glucuronide) 
(Slotkin and DiStefano  1970  ) . 

 Tetradeuterated 1-methyl-1,2,3,4-tetrahydro- b -carboline was orally adminis-
tered to a human subject. The urine was collected and the metabolites were identi-
fi ed as 6-OH-1methyl-T b C and 7-OH-1methyl-T b C and their conjugation products 
(Tsuchiya et al.  1995  ) . 

 The N-methylation of  b Cs is reported by Herraiz in Chap.   5     of this book. 
 An additional aspect should be mentioned. It has been found by NMR experi-

ments that hydrogen bonding between  b Cs and two (norharmane) or three (har-
mane) molecules of acetic acid leads to complexes (Reyman et al.  2007  )  in which 
the pyridine nitrogen is kind of blocked by serving as the hydrogen bond acceptor. 
Accordingly, one could speculate that such complexations with acetic acid or other 
hydrogen donors may prevent the N-methylation to the toxic quaternary cations.       
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  Abstract   Recent studies with MAO B inhibitors do not support the notion of 
neuroprotective actions by direct inhibition of the isoenzyme nor by inhibition of 
MAO A. MAO activity is present in the brain in large amounts. MAO B is increased 
in Parkinson’s disease (PD) due to gliosis and in smokers by a compensatory mech-
anism for the inhibition of the enzyme by compounds contained in tobacco smoke. 
Both isoenzymes should be inhibited to a certain extent to achieve neuroprotection 
by decreasing the production of detrimental reactive oxygen species (ROS). 
The correlation between the levels of the  b Cs norharman (inhibitor of MAO B) and 
harman (inhibitor of MAO A) in tobacco smoke and the proportion of the inhibited 
isoenzymes in the human brain measured by PET strongly support the notion that 
these two  b Cs are responsible for the inhibition of MAO A and B in human brain 
from smokers. Epidemiologic studies show that smoking subjects have a reduced 
risk for developing PD. Studies using in vivo microdialysis and electrophysiology 
demonstrate a preference of the  b Cs for dopamine neurons. Provided smoking a full 
cigarette results in more than 88% nicotinic receptor occupancy associated with 
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desensitization of these receptors, we postulate that the  b Cs contribute substantially 
not only to the neuroprotective actions of smoke with a reduced risk for PD but also 
to the addictive effects specifi cally to improve mood and pleasure.  

  Keywords   Monoamine oxidase A  •  Monoamine oxidase B  •  Norharman  •  Harman  
•  Neuroprotection  •  Smoking  •  Nicotinic receptor  •  Parkinson’s disease  •  Addiction           

    7.1   Introduction 

 Monoamine oxidase (MAO, EC 1.3.3.4) is localized in the outer mitochondrial 
membrane and catalyzes the oxidative desamination of a range of monoamines, 
including 5-hydroxytryptamine (5-HT, syn. serotonin), histamine, and the cate-
cholamines dopamine (DA), noradrenaline, and adrenaline. The reaction produces 
hydrogen peroxide, the corresponding aldehyde, and either ammonia in the case of 
primary amines or a substituted amine from the secondary amines, for example, 
methylamine from adrenaline. Two isoenzymes of MAO (MAO A and MAO B) are 
present in most mammalian tissues. MAO A catalyzes the oxidation of 5-HT, 
whereas both isoenzymes catalyze the oxidation of dopamine, noradrenaline, adren-
aline, tryptamine, and tyramine in most species. In human brain MAO B constitutes 
~80% of the total MAO activity (Kornhuber et al.  1989  ) . 

 The active site of MAO A consists of a hydrophobic cavity of ~550 and ~450 Å 3  
in the human and rat enzymes, respectively. An important and unique component of 
the structure of the active site of hMAO A is a loop conformation which differs in 
that of hMAO B and rat MAO A and B. Thus, there is an intriguing difference 
between the active sites of human and rat MAO A and put into question the use of 
MAO A from nonhuman sources in drug development for use in humans. The active 
site of human MAO B is a hydrophobic cavity with a volume of 700 and of 490 Å 3  
in the rat. The site is occupied by the redox-active isoalloxazine ring of the cova-
lently bound FAD coenzyme (De Colibus et al.  2005  ) .  

    7.2   Neuroprotective Actions of Conventional MAO Inhibitors 

 Low molecular weight materials that can act as endogenous MAO inhibitors include 
isoquinolines,  b -carbolines, isatin, phosphatidylserine, and quinolinic acid. On the 
other hand, cigarette smoke is probably the main source of exogenous MAO inhibi-
tors. Yu and Boulton  (  1987  )  reported that small compounds in tobacco smoke inhibit 
both isoforms of MAO. MAO A is effectively inhibited on average of 28% in human 
brain. By comparison, treatment with tranylcypromine (10 mg per day) for 3 days 
reduced MAO A activity by 58% (Fowler et al.  1996a  ) . Brains of living smokers 
showed a 40% decrease in the level of MAO B relative to nonsmokers or former 
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smokers (   Fowler et al.  1996a,   b  )  and a signifi cant reduction of platelet MAO B 
(Rommelspacher et al.  2002  ) . Thus, smoking is associated with enhanced activity of 
dopamine and other monoamine neurotransmitters as well as with decreased pro-
duction of hydrogen peroxide, a source of reactive oxygen species (ROS), a primary 
factor in neurodegeneration. These conditions may explain why lowered MAO B 
activity is associated with a reduced risk of Parkinson’s disease (PD) in smokers 
(Scott et al.  2005  ) . 

 Levels of MAO B are increased in the brains of patients with PD and Alzheimer’s 
disease (AD) as a consequence of gliosis (Kennedy et al.  2003  )  which might con-
tribute to oxidative stress in these disorders (Birks and Flicker  2003  ) . There are 
insuffi cient data to conclude whether any MAO B inhibitor signifi cantly delays dis-
ease progression in early PD and AD [neither inhibition of MAO A nor MAO B 
affects steady state levels of brain dopamine: only when both forms are inhibited 
does dopamine activity increase (Green et al.  1977  ) ]. We will come back to this 
point later in this chapter. 

 Neurodegenerative diseases share many of the pathological features of PD and 
AD such as oxidative stress, iron accumulation, excitotoxicity, infl ammatory pro-
cesses, misfolding of toxic proteins that cannot be degraded after ubiquitination, 
and apoptosis. Elevated ROS production has been proposed to be a causative agent 
in several neurodegenerative diseases (Emerit et al.  2004 ; Barnham et al.  2004 ; 
Andersen  2004  ) . 

 Several studies suggested that MAO B inhibitors  L (−)deprenyl (selegiline, 
N-methyl-N-[(2R)-1-phenylpropan-2-yl]prop-2-yn-1-amine), rasagiline (1(R)-N-
prop-2-ynyl-2,3-dihydro-1H-inden-1-amine), and other propargylamines act as 
neuroprotectants specifi cally in models of PD and that MAO B-catalyzed reactions 
might contribute to neurotoxicity. However, not all MAO B inhibitors are effective 
in neuroprotection (Ansari et al.  1993 ; Mytilineou  1998  )  and it seems that MAO 
inhibition might not be the principal protective mechanism shared by these com-
pounds. The doses of  L (−)deprenyl required were lower than those reported neces-
sary to inhibit the enzyme (Ansari et al.  1993  )  and the (S)-enantiomer of rasagiline, 
which does not inhibit MAO B, was also protective (Huang et al.  1999  ) . It has been 
suggested that the protective compounds act as antioxidants. Although the protec-
tive concentrations are too low for a direct antioxidant action to be important, they 
do appear to increase cellular antioxidant capacity (Mytilineou  1998  ) . 

 Structure–activity studies revealed that a free propargylamine moiety with a 
hydrophobic structure is essential for MAO inhibition. Free propargylamine inhibits 
MAO A but not MAO B, suggesting that the hydrophobic moiety increases the 
affi nity to MAO B (Yu and Davies  1999  ) . Changes in the stereochemical properties 
and the ring size and alternative substitution of the hydrophobic structure affect the 
MAO-inhibiting activities. Furthermore,  L (−)deprenyl and other propargylamine 
derivatives are generally antiapoptotic. They prevent the mitochondrial permeabil-
ity transition, the decline in membrane potential and cytochrome-C release in isolated 
mitochondria and the decline of antiapoptotic Bcl-2 proteins (Akao et al.  2002  ) . 
Rasagiline-related propargylamines even stimulated their formation in MAO-A-
containing cells but not in MAO-B-containing cells, suggesting the involvement of 
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MAO A and not MAO B in the antiapoptotic activities (Naoi et al.  2006  ) . These 
fi ndings suggested that the dose required for induction of Bcl-2 proteins must be 
relatively high. Apoptosis occurs in neurodegenerative diseases, thus it was not sur-
prising that many of the complex events were attenuated or reversed by the propar-
gylamines (Magyar and Szende  2004  ) . It has been suggested that a key event of 
antiapoptotic actions is the specifi c binding of propargylamine compounds to glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12), shown to be an 
important mediator of neuronal apoptosis (Kragten et al.  1998  ) . GAPDH binding of 
propargylamines prevented the translocation of GAPDH together with the tran-
scriptional activator transforming growth factor-beta-inducible early gene 2 (TIEG2) 
into the nucleus and secondarily dense GAPDH nuclear accumulation typical of 
GAPDH-associated apoptosis while allowing the enzyme to retain the glycolytic 
capacity. Inactivation of GAPDH decreased the synthesis of proapoptotic proteins 
like Bcl-2-associated X protein (BAX), cJun, prevented the TIEG2-induced MAO-B 
gene expression (Ou et al.  2009  ) , and increased the synthesis of antiapoptotic pro-
teins like Bcl-2, Cu/Zn-SOD, and heat-shock protein 70 (Tatton et al.  2002  ) . 

 Although the neuroprotective activity of  L (−)deprenyl in PD patients remains con-
troversial possibly because its metabolite methamphetamine counteracts the neuro-
protection afforded by  L (−)deprenyl (Palhagen et al.  2006  ) , it has antioxidant and 
neuroprotective effects in experimental studies (Youdim and Bakhle  2006  ) . Its 
restricted derivative, rasagiline, which is different from  L (−)deprenyl in that it is not 
metabolized to amphetamine and/or methamphetamine but instead to the neuropro-
tective metabolite aminoindan (Bar-Am et al.  2007  ) , has been shown to be effective in 
early PD (Bayes et al.  2006 ; Parkinson study group  2004  ) . A recent study provided 
evidence supporting both neuroprotective and neurorestorative activities for rasagiline 
in an animal model of PD. Neurodegeneration was produced by inhibition of the 
ubiquitin-proteasome system (UPS) by lactacystin (   Zhu et al.  2008  ) . Again, these 
studies confi rmed, that MAO B inhibitory activity cannot explain either the neuropro-
tective or neurorescue properties of MAO inhibitors  L (−)deprenyl and rasagiline. In 
fact, MAO B inhibitors have been reported to possibly enhance neurotoxicity by pro-
teasome inhibition (Fornai et al.  2003  ) . In addition optical isomers of rasagiline and 
 L (−)deprenyl are devoid of MAO B inhibitory activity, but they had the same potency 
in neuroprotection (Youdim et al.  2001 ; Olanow  2006  ) . In addition both promoted free 
radical scavenging by enhancing superoxide dismutase (SOD) and catalase activities 
(Tabakman et al.  2004  ) . Both drugs increased production of neurotrophins such as 
nerve growth factor, brain-derived neurotrophic factor, glial cell line-derived neu-
rotrophic factor and protected neurons from infl ammatory processes (Nagatsu and 
Sawada  2006  ) . Furthermore, as mentioned earlier in this chapter, the propargylamines 
bound to glyceraldehyde-3-phosphate dehydrogenase to decrease synthesis of proapo-
totic proteins and increased synthesis of antiapoptotic proteins (Tatton et al.  2003  ) . 

 A further mode of action of MAO inhibitors is binding to an imidazoline binding 
site of the enzyme, which might contribute to neuroprotection (Raddatz et al.  1995  ) . 
MAO inhibitors bind to other proteins besides MAO, such as semicarbacide-sensitive 
amine oxidase (EC 1.4.3.4; Holt et al.  2004  )  and dopamine D1 and D2 receptors 
(Levant  2002  ) .  
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    7.3   Inhibition of MAO A and MAO B by  b -Carbolines 

 The  b Cs inhibit monoamine oxidase. Although the fi ndings in the previous section 
did not support the notion that direct inhibition of MAO A or MAO B acts as a neu-
roprotectant. None of the studies investigated whether inhibition of both enzymes 
simultaneously backs neuroprotection. The reason for considering this condition is 
the lack of a suffi cient explanation for the well-documented fact that the prevalence 
of smoking is reduced in patients with Parkinson’s disease compared with the gen-
eral population (Baron  1986 ; Morens et al.  1995 ; Checkoway and Nelson  1999 ; 
Gorell et al.  1999  ) . These fi ndings strongly suggest protection of dopaminergic neu-
rons in the brain by constituents of tobacco smoke. The neuroprotective action of 
tobacco smoke cannot be generalized to all types of neurons because such an asso-
ciation was not consistently demonstrated in Alzheimer’s disease. Positron emis-
sion tomography studies showed a 40% decrease in binding capacity of the tracer 
substance of monoamine oxidase B in the brains of active smokers relative to non-
smokers or former smokers (Fowler et al.  1996b  ) . An inhibitor of monoamine oxi-
dase B, which is found in tobacco smoke in remarkably high concentrations, is 
norharman (synonymous with  b -carboline). An amount of 12.6  m g norharman/g 
tobacco is present in bright cigarette smoke (Poindexter and Carpenter  1962 ; 
Totsuka et al.  1999  ) . Norharman preferentially inhibits monoamine oxidase B 
( K  

i
  = 730 nM, brain tissue, rats, May et al.  1991  ) . It occurs naturally in human blood 

plasma (Rommelspacher et al.  1991  ) . The highest natural concentration was found 
in human substantia nigra (16 nmol/kg tissue, Matsubara et al.  1993  ) . The levels 
were increased in plasma from acutely smoking subjects (Breyer-Pfaff et al.  1996 ; 
Rommelspacher et al.  2002  ) . Norharman readily crosses the blood–brain barrier and 
is accumulated in the brain (partition factor 3, Fekkes and Bode  1993  ) .  L (−)depre-
nyl inhibited specifi c [ 3 H]norharman binding to crude mitochondrial membranes 
from rat brain with a  K  

i
 -value of 130 nM, supporting the notion of high-affi nity 

binding of norharman to the active site of monoamine oxidase B in brain tissue 
(Pawlik and Rommelspacher  1988  ) . Harman, a methylated derivative of norharman, 
was also present in tobacco smoke (3.6  m g/g tobacco measured in bright cigarette 
smoke, Poindexter and Carpenter  1962  )  and inhibited monoamine oxidase A 
( K  

i
  = 220 nM, in tissue from rat brain (May et al.  1991 ; Rommelspacher et al.  1994  )  

and 55 nM in recombinant human MAO A (Herraiz and Chaparro  2005  ) , the differ-
ence in  K  

i
 -values is explained by the difference of the human and rat binding site of 

MAO A, see above). Other compounds in tobacco smoke exerted lower affi nity to 
MAO (for review see van Amsterdam et al.  2006  ) . 

 Smokers had a baseline concentration of norharman of 20 nM in platelets and 
28 nM after smoking two cigarettes. The respective values for harman were 6.8 and 
16.2 nM. Studies of the elimination kinetics indicated that heavy smokers can easily 
achieve 100 to 150 nM norharman in platelets by smoking ten cigarettes within a 
few hours. Considering a loss of norharman during work-up of the platelets and the 
accumulation of the lipophilic compound in brain (Fekkes and Bode  1993  )  and 
moreover in the microenvironment of the monoamine oxidase, the contribution of 
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the  b C to the inhibition of monoamine oxidase B in smokers amounts to approximately 
30% (Rommelspacher et al.  2002  ) , similar to the inhibition observed by positron 
emission tomography in human brain (40%,    Fowler et al.  1996a,   b  ) . It is notewor-
thy, that harman occurred in tobacco smoke by about a fourth of the amount of 
norharman. The inhibition of MAO A, the target of harman in the brain of smokers, 
was 28% (Fowler et al.  1996a  ) . These fi ndings strongly support the notion that these 
two  b Cs contained in tobacco smoke essentially contributed to the inhibition of both 
isoforms of MAO in vivo. 

 Dopamine, the most affected neurotransmitter in PD, is metabolized by both 
forms of monoamine oxidase in human brain tissue. The ratio of activities vary 
considerably from brain region to brain region, from about 1:1 in cerebral and cer-
ebellar cortex to about 1:2 in pons and medulla oblongata. In cerebral cortex, the 
 K  

m
 -values for monoamine oxidase A and B toward DA were found to be 240 and 

230  m M, respectively (O’Carroll et al.  1983  ) . Therefore, provided the inhibition of 
monoamine oxidase contributes to the postulated protective effect of cigarette 
smoke, the high concentration of the two  b Cs in tobacco smoke with differing affi n-
ity to both isoforms would make norharman and harman attractive candidates for 
the compounds involved. By comparing the  K  

i
 -values for norharman and harman 

(both  b Cs are not substrates of the enzyme) with the  K  
m
 -values for DA it is notewor-

thy that the affi nity of norharman was about 330- and of harman 1,000-times higher 
than that of DA to the respective isoenzymes. 

 In conclusion, recent studies with higher concentrations of clinically used MAO 
B inhibitors do not support the notion of their neuroprotective actions by direct inhi-
bition of the enzyme or by inhibition of MAO A.  However, the fi ndings do not refute 
the rationale behind the studies with those drugs. Dopamine is metabolized preferen-
tially by MAO A at least in rats (Green et al.,  1977 ). Total MAO activity is present in 
the brain in large amounts and it is only when both isoenzymes are inhibited the 
dopamine level increase. In addition, the amount of MAO B is increased in PD due 
to gliosis and a compensatory mechanism for the inhibition of the enzyme in smok-
ers (Launay et al.  2009 ). Therefore, both isoenzymes should be inhibited to a certain 
extent to achieve neuroprotection by decreasing e.g. the detrimental ROS production 
by the enzyme activity of MAO. The correlation between the levels of the bCs nor-
harman (inhibitor of MAO B) and harman (inhibitor of MAO A) in tobacco smoke 
and the proportion of the inhibited isoenzymes in the human brain strongly support 
the view that these two  b Cs are important substances responsible for the inhibition of 
MAO A and B in human brain and other organs. On the other hand, the large study 
showing smoking subjects to have a reduced risk for developing PD support the view 
of preferential neuroprotection of dopamine neurons by inhibition of both isoforms 
of MAO. The preference for dopamine neurons was suggested by the observation 
that the risk to develop AD was not reduced by smoking. 

 Although it is beyond the scope of this chapter, one additional aspect that should 
be mentioned concerns the contribution of  b C-induced dopamine release in the ven-
tral striatum, a brain region linked to improved mood and pleasure (e.g. Brody et al. 
 2008 ) to addiction in smokers. In vivo microdialysis experiments in rats revealed that 
norharman (2.44 micromole/ kg body weight, intraperitoneal application, this are 
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0.44 mg/ kg) and harman (2.27 micromole/ kg) caused an increased dopamine release 
(+70% and +72% respectively over basal) in the nucleus accumbens of rats (Sällström 
et al.  1995 ,  1996 ). Harman (2mg/ kg i.v.) increased the fi ring rate of ventral tegmen-
tal dopaminergic neurons recorded in vivo in rats. The effect was 18-times greater 
than that of nicotine (11 µg/ kg i.v.). The effect was not caused by inhibition of MAO 
A because it was not observed in rats treated with an MAO A inhibitor (befl oxatone, 
Arib et al.  2010 ). Provided smoking a full cigarette results in more than 88% nico-
tinic receptor occupancy associated with desensitization of these receptors (Brody et 
al.  2006 ), we postulate that the  b Cs contribute substantially to the addictive effects of 
smoking, specifi cally to improve mood and pleasure.      

      References 

    Akao Y, Maruyama W, Shimizu S et al (2002) Mitochondrial permeability transition mediates 
apoptosis induced by N-methyl(R)salsolinol, an endogenous neurotoxin, and is inhibited by 
Bcl-2 and rasagiline, N-propargyl-1(R)-amminoindan. J Neurochem 277:49473–49480  

    Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 
10:S18–S25  

    Ansari KS, Yu PH, Kruck TP, Tatton WG (1993) Rescue of axotomized immature rat facial 
motoneurons by R(−)-deprenyl stereospecifi city and independence from monoamine oxidase 
inhibition. J Neurosci 13:4042–4053  

    Arib O, Rat P, Molimard R, Chait A, Faure P, de Beaurepaire R (2010) Electrophysiological char-
acterisation of harmane-induced activation of mesolimbic dopamine neurons. Eur J Pharmacol 
629:47–52  

    Bar-Am O, Amit T, Youdim MBH (2007) Aminoindan and hydroxyaminoindan, metabolites of 
rasagiline and ladostigil respectively, exert neuroprotective properties in vitro. J Neurochem 
103:500–508  

    Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat 
Rev Drug Discov 3:205–214  

    Baron JA (1986) Cigarette smoking and Parkinson’s disease. Neurology 36:1490–1496  
    Bayes M, Rabasseda X, Prous JR (2006) Gateways to clinical trials. Methods Find Exp Clin 

Pharmacol 28:657–678  
      Birks J, Flicker L (2003) Selegiline for Alzheimer’s disease. Cochraine Collaboration is the interna-

tional reference institution for evidence based medicine  
    Breyer-Pfaff U, Wiatr G, Stevens I, Gaertner H-J, Mundle G, Mann K (1996) Elevated norharman 

plasma levels in alcoholic patients and controls resulting from tobacco smoking. Life Sci 
58:1425–1432  

    Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D, Jon J, Allen V, 
Chefer SI, Koren AO, Mukhin AG (2006) Cigarette smoking saturates brain alpha 4 beta 2 
nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915  

    Brody AL, Mandelkern MA, Olmstead RE, Allen-Martinez Z, Scheibal D, Abrams AL et al (2009) 
Ventral striatal dopamine release in response to smoking a regular vs. denicotinized cigarette. 
Neuropsychopharmacology 34:282–289  

    Checkoway H, Nelson LM (1999) Epidemiologic approaches to the study of Parkinson’s disease 
etiology. Epidemiology 10:327–336  

    De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional 
structure of human monoamone oxidase A (MAO A): relation to the structures of rat MAO A 
and human MAO B. Proc Natl Acad Sci USA 102:12684–12689  



122 H. Rommelspacher

    Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed 
Pharmacother 58:39–46  

    Fekkes D, Bode WT (1993) Occurrence and partitions of the  b -carboline norharman in rat organs. 
Life Sci 52:2045–2054  

    Fornai F, Lenzi P, Gesi M et al (2003) Fine structure and biochemical mechanisms under-
lying nigrostriatal inclusions and cell death after proteasome inhibition. J Neurosci 23:
8955–8966  

    Fowler JS, Volkow ND, Wang G-J, Pappas N, Logan J, MacGregor R, Alexoff D, Shea C, Schlyer 
D, Wolf AO, Warner D, Zezulkova I, Cilento R (1996a) Inhibition of monoamine oxidase B in 
the brains of smokers. Nature 379:733–736  

    Fowler JS, Volkow ND, Wang G-J, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR, Schlyer 
DJ, Zezulkova I, Wolf AP (1996b) Brain monoamine oxidase A inhibition in cigarette smokers. 
Proc Natl Acad Sci USA 93:14065–14069  

    Gorell JM, Rybicki BA, Johnson CC, Peterson EL (1999) Smoking and Parkinson’s disease, a 
dose-response relationship. Neurology 52:115–119  

    Green AR, Mitchell BD, Tordoff FC, Youdim MBH (1977) Evidence for dopamine deamination 
by both type A and type B monoamine oxidase in rat brain in vivo and for the degree of inhibi-
tion of enzyme necessary for increased functional activity of dopamine and 5-hydroxytryptam-
ine. Br J Pharmacol 60:343–349  

    Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: beta-
carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 
326:378–386  

    Holt A, Wieland B, Boulton AA (2004) On the binding site of monoamine oxidase inhibitors to 
some sites distinct from the MAO active site and effects thereby elicited. Neurotoxicology 
25:251–266  

    Huang W, Chen Y, Shohami E, Weinstock M (1999) Neuroprotective effect of rasagiline, a selec-
tive monoamine oxidase B inhibitor, against closed head injury in the ouse. Eur J Pharmacol 
366:127–135  

    Kennedy BP, Ziegler MG, Alford M, Hansen LA, Thal LJ, Masliah E (2003) Early and persistent 
alterations in prefrontal cortex MAO A and MAO B in Alzheimer’s disease. J Neural Transm 
110:789–801  

    Kornhuber J, Konradi C, Mack-Burkhardt F, Riederer P, Heinsen H, Beckmann H (1989) 
Ontogenesis of monoamine oxidase-A and -B in the human frontal cortex. Brain Res 
499:81–86  

    Kragten E et al (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the anti-
apoptotic compounds CGP 3466 and R(−)-deprenyl. J Biol Chem 273:5821–5828  

    Launay JM, Del Pino M, Chironi G, Callebert J, Peoc’h K, Mégnien JL, Mallet J, Simon A, Rendu 
F (2009) Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regu-
lation. PLoS One 4(11):e7959  

    Levant B (2002) Novel drug interactions at D2 dopamine receptors: modulation of [3H]quipirole 
binding by monoamine oxidase inhibitors. Life Sci 71:2691–2700  

    Magyar K, Szende B (2004) (−)-Deprenyl, a selective MAO-B inhibitor with apoptotic and anti-
apoptotic properties. Neurotoxicology 25:233–242  

    Matsubara K, Collins MA, Akane A, Ikebuchi J, Neafsey EJ, Kagawa M, Shiono H (1993) Potential 
bioactivated neurotoxicants,  N -methylated  b -carbolinium ions, are present in human brain. 
Brain Res 610:90–96  

    May T, Rommelspacher H, Pawlik M (1991) [ 2 H]harman binding experiments: I. A reversible and 
selective radioligand for monoamine oxidase subtype A in the CNS of the rat. J Neurochem 
56:490–499  

    Morens DM, Grandinetti A, Reed D, White LR, Ross GW (1995) Cigarette smoking and protec-
tion from Prakinson’s disease: false association or etiologic clue? Neurology 45:1041–1051  

    Mytilineou C (1998) Deprenyl and desmethylselegiline protect mesencephalic neurons from toxicity 
induced by glutathione depletion. J Pharmacol Exp Ther 284:700–706  



1237  β -Carbolines and Neuroprotection: Inhibition of Monoamine Oxidase

    Nagatsu T, Sawada M (2006) Molecular mechanisms of the relation of monoamine oxidase B and 
its inhibitors to Parkinson’s disease: possible implications of glial cells. J Neural Transm Suppl 
71:53–65  

    Naoi M, Maruyama W, Akao Y, Yi H, Yamaoka T (2006) Involvement of type A monoamine oxi-
dase in neurodegeneration: regulation of mitochondrial signaling leading to cell death or neu-
roprotection. J Neural Transm Suppl 71:67–77  

    O’Carroll AM, Fowler CJ, Phillips JP, Tobbia I, Tipton KF (1983) The deamination of dopamine 
by human brain monoamine oxidase: specifi city for the two forms in seven brain regions. 
Naunyn Schmiedebergs Arch Pharmacol 322:198–202  

    Olanow CW (2006) Rationale for considering the propargylamines might be neuroprotective in 
Parkinson’s disease. Neurology 66(suppl 4):S69–S79  

    Ou XM, Stockmeier CA, Meltzer HY, Overholser JC, Jurjus GJ, Dieter L, Chen K, Lu D, Johnson C, 
Youdim MB, Austin MC, Luo J, Sawa A, May W, Shih JC (2009) A novel role for glyceralde-
hyde-3-phosphata dehydrogenase and monoamineoxidas B cascade in ethanol-induced cellular 
damage. Biol Psychiatry 67:855–863  

    Palhagen S, Heinonen E, Hagglund J, Kaugesaar T, Maki-Ikola O, Palm R (2006) Selegilin slows 
the progression of the symptoms of Parkinson disease. Neurology 66:1200–1206  

    Parkinson Study Group (2004) A controlled, randomized, delayed-start study of rasagiline in early 
Parkinson disease. Arch Neurol 61:561–566  

    Pawlik M, Rommelspacher H (1988) Demonstration of a distinct class of high-affi nity binding 
sites for [ 3 H]norharman ([ 3 H]  b -carboline) in the rat brain. Eur J Pharmacol 147:163–171  

    Poindexter EH Jr, Carpenter RD (1962) The isolation of harmane and norharmane from tobacco 
and cigarette smoke. Phytochemistry 1:215–221  

    Raddatz R, Parini A, Lanier SM (1995) Imidazoline guanidinium binding domains on monoamine 
oxidase. J Biol Chem 270:27961–27968  

    Rommelspacher H, May T, Susilo R (1991)  b -Carbolines and tetrahydroisoquinolines: detection 
and function in mammals. Planta Med 57:85–92  

    Rommelspacher H, May T, Salewski B (1994) Harman (1-methyl- b -carboline) is a natural inhibi-
tor of monoamine oxidase type A in rats. Eur J Pharmacol 252:51–59  

    Rommelspacher H, Meier-Henco M, Smolka M, Kloft C (2002) The levels of norharman are high 
enough after smoking to affect monoamineoxidase B in platelets. Eur J Pharmacol 441:115–125  

    Sällström Baum S, Hill R, Rommelspacher H (1995) Norharman-induced changes of extracellular 
concentrations of dopamine in the nucleus accumbens of rats. Life Sci 56:1715–1720  

    Sällström Baum S, Hill R, Rommelspacher H (1996) Harman-induced changes of extracellular 
concentrations of neurotransmitters in the nucleus accumbens of rats. Eur J Pharmacol 
314:75–82  

    Scott WK, Zhang F, Stajich JM, Scott BL, Stacy MA, Vance JM (2005) Family-based case-control 
study of cigarette smoking and Parkinson disease. Neurology 64:442–447  

    Tabakman R, Lecht S, Lazarovici P (2004) Neuroprotection by monoamine oxidase B inhibitors: 
a therapeutic strategy for Parkinson’s disease? Bioessays 26:80–90  

    Tatton WG, Chalmers-Redman RM, Ju WJ, Mammen M, Carlile GW, Pong AW, Tatton NA (2002) 
Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor 
(NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301:733–764  

    Tatton W, Chalmers-Redman R, Tatton N (2003) Neuroprotection by deprenyl and other propar-
gylamines: glyceraldehydes-3-phosphate dehydrogenase rather than monoamine oxidase B. 
J Neural Transm 110:509–515  

    Totsuka Y, Ushiyama H, Ishihara J, Sinha R, Goto S, Sugimura T, Wakabayashi K (1999) 
Quantifi cation of the co-mutagenic beta-carbolines, norharman and harman, in cigarette smoke 
condensates and cooked food. Cancer Lett 143:139–143  

    Van Amsterdam J, Talhout R, Vleeming W, Opperhuizen A (2006) Contribution of monoamine 
oxidase (MAO) inhibition to tobacco and alcohol addiction. Life Sci 79:19969–19973  

    Youdim MBH, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s 
disease and depressive illnesss. Pharmacol Biochem Behav 84:158–161  



124 H. Rommelspacher

    Youdim MBH, Wadia A, Tatton W, Weinstock M (2001) The anti-Parkinson drug rasagiline and its 
cholinesterase inhibitor derivative exert neuroprotection unrelated to MAO inhibition in cell 
culture and in vivo. Ann NY Acad Sci 939:450–458  

    Yu PH, Boulton AA (1987) Irreversible inhibition of monoamine oxidase by some components of 
cigarette smoke. Life Sci 41:675–682  

    Yu PH, Davies BA (1999) Inversion of selectivity of N-substituted propargylamine oxidase inhibi-
tors following structural modifi cations to quaternary salts. Int J Biochem Cell Biol 
31:1391–1397  

    Zhu W, Xie W, Pan T, Jankovic J, Li J, Youdim MBH, Le W (2008) Comparison of neuroprotective 
and neurorestorative capabilities of rasagiline and selegiline against lactacystin-induced nigros-
triatal dopaminergic degeneration. J Neurochem 105:1970–1978      



125

  Abstract   The neurotoxin MPP +  was infused into the left lateral ventricle of rat 
brain for 4 weeks followed by infusion of saline and 9-methyl- b C, respectively, for 
2 weeks. A dose of MPP +  was selected which reduced the level of dopamine (DA) 
in the striatum by approximately 50% at the end of the 6-week infusion period with 
MPP + /saline. This condition should correspond to an early stage of Parkinson’s disease. 
The mitochondrial proteome was investigated with emphasis on the composition, 
abundance, structure, and activity of membrane proteins and supercomplexes. 
We did not fi nd changes in the catalytic activity of supercomplexes containing complex 
I in striatal homogenates from rats treated with MPP + /saline. The in-gel measure-
ment of the nicotinamide adenine dinucleotide dehydrogenase activity revealed that 
9-methyl- b C stimulated the enzyme activity of complex I in rats pretreated with 
MPP +  (+80%). This increase was primarily caused by a specifi c supercomplex 
(I 

1
 III 

2
 IV 

2
 ), which was approximately three times more active in MPP + /9 - methyl -  b C 
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than in MPP + /saline treated rats. The abundance of complex IV was not different 
among groups. These fi ndings suggest that 9-methyl- b C specifi cally interacts with 
the dimer of complex IV in supercomplex I 

1
 III 

2
 IV 

2
 . The improvement of the perfor-

mance of the respiratory chain probably contributed to the observed restorative 
effects of the  b C by providing more ATP and by protecting mitochondria from the 
deleterious action of toxic oxygen species by reducing their production.  

  Keywords    N -methyl-4-phenylpyridinium  •  Parkinson’s disease  •  9-Methyl- b  -
 carboline  •  Dopamine  •  Respiratory chain  •  Complexes  •  Supercomplexes  
•  NADH:ubiquinone reductase  •  Neuroprotection  •  ATP  •  Reactive oxygen species      

    8.1   Introduction 

  b -Carbolines ( b Cs) methylated on nitrogen in the 2-position are permanent cations 
and structural analogues of the neurotoxic  N -methyl-4-phenylpyridinium ion 
(MPP + ). The latter compound exerts neurotoxic effects by inhibition of complex I of 
the respiratory chain in mitochondria (Nicklas et al.  1985  ) . Certain N-methylated 
derivatives of the  b Cs inhibit the respiratory chain in mitochondria also, in particular 
complex I (Albores et al.  1990  ) , which causes neurodegeneration (Lorenc-Koci 
et al.  2006  ) . There are numerous examples of compounds that exert dose-dependent 
effects, which may even oppose each other related to variation of substituents e.g., 
behavioral activation vs. sedation by benzodiazepines (Rommelspacher et al.  1982 ; 
Pinna et al.  2006  )  and neuroprotection vs. neurotoxicity by ethanol (Collins et al. 
 2010  ) . Thus, with respect to the  b Cs, they might not only inhibit but also positively 
modulate the respiratory chain again dependent on the substituents. In the latter 
case, the  b Cs would likely increase the effi ciency of electron/proton fl ow and hence 
ATP synthesis while also minimizing the generation of potentially toxic reactive 
oxygen species (ROS) proposed to be involved in the pathogenesis of neurodegen-
erative diseases and in aging. A small degree of inactivation of complex I resulted 
in a signifi cant increase in ROS formation (Sipos et al.  2003  )  while the arrangement 
of complexes to supercomplexes in the respiratory chain reduced the generation of 
ROS (Schägger and Pfeiffer  2000  ) . The present view of the nature of the organiza-
tion of the complexes is that the components are assembled into huge supramolecular 
energy-converting machines, i.e., supercomplexes with variable composition, 
depending, e.g., on metabolism and age (Fig.  8.1 , Frenzel et al.  2010  ) . The enzy-
matic activity of the individual complexes within the respective supercomplex has 
been determined which allowed comparison and assessment of the favorable com-
positions related to overall supercomplex function. Quantifi cation of NADH dehy-
drogenase activity of complex I revealed that complex I in supercomplex I 

1
 III 

2
 IV 

1
  

displayed the 2.3-fold activity of supercomplex I 
1
 III 

2
 . Complex III (ubiquinol-

cytochrome c oxidoreductase) was active in supercomplex I 
1
 III 

2
 IV 

1
 , but showed 

only minor cytochrome c reductase activity in supercomplex I 
1
 III 

2
  (16.5-fold differ-

ence, Schäfer et al.  2006 ; complex III occurs in bovine mitochondria only as dimer). 
Complex IV is therefore essential for the increased activity of complexes I and III 

2
 . 
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The 3D map of complex I 
1
 III 

2
 IV 

1
  showed spatial arrangement of both complexes 

III 
2
  and IV with I. Besides higher structural stability of the complexes, these arrange-

ments result in short diffusion distances for the small mobile electron carriers 
ubiquinone (also called coenzyme Q) and cytochrome c, thus facilitating the elec-
tron transfer from complex I via complex III, performed by ubiquinone, and to 
complex IV, performed by cytochrome c. In addition, this possibly reduces ROS 
generation (Seelert et al.  2009  ) . The MF 

0
 F 

1
  ATP synthase exists as a monomer, 

dimer, and homooligomer, probably as “ATP synthasome,” composed of ATP syn-
thase with carriers for phosphate and ADP/ATP (complex V; Schon and Dencher 
 2009  ) . The ATP synthase is probably not part of a supercomplex with complexes I, 
III 

2
 , and IV.   

    8.2   Age-Related Changes of the Respiratory Chain 

 The respiratory chain residing in the inner mitochondrial membrane is subject to 
age-associated changes in its composition, architecture, and activity (Frenzel et al. 
 2010  ) . The abundance of ATP synthase was decreased 1.2-fold (even 1.5-fold in the 

  Fig. 8.1    Schematic representation of the complexes of the respiratory chain in the inner mitochon-
drial membrane. Electrons are transferred from NADH or succinate to the terminal acceptor 
molecular oxygen. Key components of this process are large transmembrane protein complexes 
(complexes I–IV) and the smaller mobile electron carriers ubiquinone and cytochrome c. 
Complexes I, III, and IV generate thereby an electrochemical proton gradient across the membrane 
(symbolized by  gray arrows ). The ATP synthase utilizes this gradient to produce the energy cur-
rency ATP. The representation of complex I bases on the shape from a single particle analysis of 
the  Yarrowia lipolytica  complex intuitively combined with the X-ray structure of the soluble 
domain from  Thermus thermophilus . The illustration of complex II includes the crystal structures 
from the porcine heart enzyme. For the complexes III and IV the homodimeric forms from bovine 
heart mitochondria are shown. In case of the ATP synthase X-ray data from F 

1
  portion together 

with the c-ring and from the peripheral stalk were fi tted in the contour from single particle analysis 
of the complete bovine heart mitochondrial complex V (from Seelert H et al (2009) Biochim 
Biophys Acta 1787:657–671 with permission)       
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case of the monomer) in rat cerebral cortex of 30-month-old male rats compared to 
5-month-old rats. Thus, the declined amount of ATP synthase may be related to the 
reduced ATP levels reported in senescent human cells (Stöckl et al.  2007 , Wang 
et al.  2003 , Zwerschke et al.  2003  ) . Aging is accompanied by a 2.8-fold increase of 
unbound F 

1
  of complex V (containing the three ATP generating catalytic sites in the 

intact enzyme) which will deleteriously hydrolyse ATP in the tissue. Therefore, 
even a small decrease in the amount of ATP synthase might have a signifi cant impact 
on ATP level. In addition, an age-associated increase in homooligomeric states 
(V 

3
 –V 

4
 ) occurs at the expense of the monomeric MF 

0
 F 

1
  ATP synthase. The synthase 

dimers and oligomers are involved in cristae formation, e.g., by inducing curvature 
of the inner mitochondrial membrane. The extent of cristae invagination has an 
effect on the spatial distribution of respiratory complexes and the effi ciency of 
energy conversion in mitochondria (Zick et al.  2009  ) . The extent of cristae remodeling 
by the observed age-associated decreased abundance of ATP synthase and increased 
oligomerization is not clear. 

 Only a small 1.2-fold age-associated decrease in the abundance of individual com-
plexes III 

2
  and IV occurred. Complex I was present <5% as an individual complex in 

rat brain of this preparation. However, since quantifi cation of changes in the abundance 
of supercomplexes revealed a signifi cant loss of complex I containing supercomplexes 
(1.6-fold), overall complex I abundance declined 1.6-fold. The supercomplex I 

1
 III 

2
  

even declined by in amount 2.4-fold. However, the change in the relative proportion 
of the supercomplex I 

1
 III 

2
 IV 

1
  having the highest specifi c activity of I compared to all 

other supercomplexes was only 1.4-fold. This could in part compensate for the overall 
abundance decline in respiratory complexes and supercomplexes with age (Frenzel 
et al.  2010  ) . These fi ndings demonstrated the dynamics of the inner mitochondrial 
membrane supercomplexes, their enzymatic possibility to compensate for defi cits, 
and suggested possible targets for compensating compounds.  

    8.3   9-Methyl- b C Increases the Performance 
of the Respiratory Chain In Vivo 

 To mimic a condition of deteriorated respiratory chain in vivo, we infused MPP +  
(dissolved in physiological saline) into the left lateral ventricle of the brain from 
3-month-old rats for 4 weeks. After replacement of the osmotic mini pump, the 
infusion was continued by either saline or 9-methyl- b C (dissolved in saline) for 2 
weeks. A dose of MPP +  was selected which reduced the levels of dopamine (DA) in 
the striatum by approximately 50% at the end of the 6-week infusion period with 
MPP + /saline. This condition should correspond to an early stage of Parkinson’s dis-
ease (Wernicke et al.  2010  ) . Notably, the levels of DA normalized to the amount of 
sham-operated controls in rats infused with MPP + /9-methyl- b C (for details see 
Chap.   10    ). The mitochondria were isolated separately from left and right striatal 
tissues. The mitochondrial proteome was investigated with emphasis on the composition, 
abundance, structure, and activity of membrane proteins as well as supercomplexes. 
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The changes induced by the two treatment conditions were compared to mitochondria 
from rats sham operated twice. Using blue-native electrophoresis, i.e., separating 
proteins in their native state and preserving all functional relevant protein–protein 
interactions, we were able to identify and quantify distinct protein bands containing 
either the individual respiratory complexes or their supercomplexes with a defi ned 
stoichiometry. The complexes and the supercomplexes could already be detected in 
the fi rst-dimension native gel. Unambiguous complex assignment was possible 
from the analysis of the subunit pattern of denatured complexes and supercom-
plexes in the second dimension. We did not fi nd pronounced differences in the rela-
tive proportion of individual complexes and specifi c supercomplexes or in the 
monomeric vs. oligomeric (dimers, trimers, and tetramers) arrangements of the 
proton-ATP synthase. This is in line with a previous study that analyzed the substan-
tiae nigrae, tegmentae, and cerebellae of PD patients (Schägger  1995  ) . Others 
reported that in mitochondria from frontal cortex of PD patients the 8 kDa subunit 
of complex I was decreased in abundance by 34% and that the proteins comprising 
the catalytically active core of complex I were oxidatively damaged (Keeney et al. 
 2006  ) . Moreover, we found that the abundance of mitochondrial HSP60, a stress 
response protein that acts as an important chaperone, was not affected by the vari-
ous treatments (Wernicke et al.  2010  ) . 

 The NADH dehydrogenase activity of complex I as an individual complex and in 
all supercomplexes containing complex I was similar in all striata except in the 
striatum from rats treated with MPP + /9-methyl- b C. Thus, MPP +  had been elimi-
nated during the 2-week saline treatment period. The activity of complex I from the 
MPP + /9-methyl- b C treated striata was approximately 80% higher than that from 
sham-operated rats and 75% higher than in rats treated with MPP + /saline. It is worth 
mentioning that about 90% of all complex I was found as part of the various super-
complexes in this preparation. Further analyses of the specifi c NADH dehydroge-
nase activity of supercomplexes specifi c in composition revealed that only the 
activity of supercomplex I 

1
 III 

2
 IV 

2
  was approximately three times higher in the left 

striatum from rats with the MPP + /9-Me- b C treatment as compared to the MPP + /
saline treatment and two times higher than sham-operated rats. The complex I activ-
ity in all other supercomplexes was unchanged. When evaluating these fi ndings it 
should be taken into account that MPP +  solely affects DA neurons which only com-
prise 1–2% of the population of neurons in the striatum while the effects of 9-methyl-
 b C probably occur in all mitochondria of both neurons and glial cells. Therefore, if 
residual effects of MPP +  existed in mitochondria from DA neurons despite a wash-
out period of 2 weeks during the infusion of saline and 9-methyl- b C respectively, 
we should be unable to detect them. Finally, these fi ndings of an increased perfor-
mance of the mitochondrial respiratory chain in vivo are consistent with results of a 
previous study. Exposition of primary embryonic murine DA neurons to 9-methyl- b C 
for 48 h induced an increase in ATP levels, strongly suggesting an increased perfor-
mance of the respiratory chain under these in vitro conditions (Hamann et al.  2008  ) . 
Besides 9-methyl- b C only methylene blue (3,7-bis-dimethylamino-phenazathionium) 
has been reported to exert similar protective effects on the respiratory chain (for review 
see Atamna and Kumar  2010  ) .      
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  Abstract   In general all  b -carbolines can be considered as molecules with  antioxidant 
properties. On the one hand chemically, for radical consuming reasons, because of 
the reactivity of the indole part towards oxygen derived radicals, on the other hand 
enzymatically, because of monoamine oxidase inhibition. Hydrogenation of the 
pyridine part to tetrahydro- and dihydro- b -carbolines, as well as hydroxylation to 
phenolic derivatives will usually increase the chemically directed antioxidant capac-
ity. Some studies conclude that the antioxidant activity of  b -carbolines might yield 
into cell- and tissue protective actions including neuroprotection.  
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    9.1   Introduction 

 Supply of oxygen is certainly necessary for all aerobic organisms, on the other 
side, oxygen can be considered as a toxic molecule. It is a diradical itself ( • O–O • ) 
and leads to formation of further oxygen derived radicals such as hydroxyl ( • OH), 
the hyperoxide or formerly called superoxide anion (O  

2
  •−  ), perhydroxyl (HOO • ), 

or reactive molecules such as hydrogen peroxide (H 
2
 O 

2
 ), singlet oxygen ( 1 O 

2
 ), and 

peroxynitrite (ONO  
2
  −  ). Radicals are molecules or atoms with an unpaired single 

electron und thus chemically highly reactive towards not only other radicals but 
basically towards all endogenous molecules crossing their way. The oxygen 
derived radicals perform oxidation of other biomolecules which sometimes leads 
to their oxidative degradation, which can be concluded as oxidative stress. 
Oxidative degradation of unsaturated fatty acids, due to their high reactivity 
towards radicals at the allylic carbons in neighborhood to the double bonds, is a 
typical and pathophysiologically important example. The brain contains large 
amounts of polyunsaturated fatty acids which are accordingly highly susceptible 
to degradation by oxygen derived radicals and unfortunately, brain has a low anti-
oxidant capacity. 

 Humans have an O 
2
  consumption of ~250 mL/min and approximately 2–4% 

of it is converted to other reactive oxygen species (ROS) (Pless et al.  1999  ) . 
The highest toxicity may be attributed to the h   ydroxyl radicals. Those can be gen-
erated in vivo via Fenton reaction from the hydrogen peroxide which is formed 
endogenously in the brain (Sinet et al.  1980  ) . And, of course, hydroxyl causes 
degenerative reactions such as lipid peroxidation in cell membranes. Other ROS 
may do the same, since in general, neurons are highly sensitive to free radical 
injury, have low activities of antioxidant enzyme systems, and low concentrations 
of free radical scavengers (Pless et al.  1999  ) . Accordingly, the progression of neu-
rodegenerative diseases, such as Alzheimer’s disease (Papolla et al.  1997  ) , 
Parkinson’s disease (Götz et al.  1994  ) , and the mental deterioration associated 
with Down’s syndrome (Kedziora and Bartosz  1988    ) was shown to involve dam-
age by free radicals. 

 Accordingly, an antioxidant treatment suggests itself and well-established anti-
oxidant substances such as ascorbic acid (vitamin C) or vitamin E are recommended 
and in use. In the following it will be outlined by discussing results from the more 
recent literature that beyond these vitamins, also  b -carboline derivatives, obtained 
by chemical synthesis or isolated from natural sources, display antioxidant proper-
ties, although they have been earlier in discussion to display phototoxic properties 
by producing ROS (Larson et al.  1988 ; Pari et al.  2000  ) .  
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    9.2   Antioxidant  b -Carbolines 

    9.2.1   Indoles Versus  b -Carbolines: What Is the Difference? 

 The radical scavenging antioxidant properties of melatonin, which is an N-acetylated 
5-methoxy-indole, have been in focus up to now for many years. Lately the investi-
gations of Herraiz and Galisteo  (  2004  )  demonstrated that not only melatonin but 
rather indoles in general, including several tryptamine and tryptophan derivatives, 
are antioxidants due to their ability to scavenge radicalic cations and then them-
selves turn to indolic oxidized degradation products via indolyl radicals (Fig.  9.1 ). 
Since the  b -carbolines can considered as 2,3-disubstituted indoles and furthermore, 
the 1,2,3,4-tetrahydro- b -carbolines as cyclized tryptamines, it is no surprise that 
they have antioxidant capacity as well.   

 Theoretically, the 1,2,3,4-tetrahydro- b -carbolines should be expected to be supe-
rior to both indoles and the fully aromatic  b -carbolines regarding the antioxidant 
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  Fig. 9.1    Proposed reactivity of indoles (Herraiz and Galisteo  2004 ) towards ROS compared to 
 b - carboline and 1,2,3,4-tetrahydro- b -carboline. ABTS radical cation (generated from 
ABTS = 2,2 ¢ -azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) used in the assay as model com-
pound for ROS       
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potency, because they may consume more of the ROS by undergoing an additional 
oxidation from the tetrahydro- to the fully aromatic derivatives (Fig.  9.1 ). 

 Pless et al.  (  1999  )  demonstrated the advantages of tetrahydro- b -carbolines com-
pared to indoles experimentally by measuring the antioxidant potency of melatonin and 
pinoline, which is 6-methoxy-1,2,3,4-tetrahydro- b -carboline, towards the commonly 
used oxidative model compound 2,2 ¢ -azinobis-3-ethylbenzthiazoline-6-sulfonic acid 
(ABTS). Furthermore, they measured the decrease in lipid peroxidation induced by 
these compounds. These results are given in Table  9.1  and show the activity of both 
compounds with the tetrahydro- b -carboline being superior to the indole derivative.  

 These results are contrary to the ones of Pähkla et al.  (  1998  )  who found mela-
tonin to be more active than pinoline. But they have used a cell-free system, while 
the results of Pless et al.  (  1999  )  were obtained from homogenized tissues. And they 
are more in coincidence with the fact that a tetrahydro- b -carboline such as pinoline, 
contrary to a simple indole, can be oxidized further to an aromatic  b -carboline and 
consequently should have a higher consumption of oxidizing agents. Tse et al. also 
confi rmed that  b -carbolines with a partially hydrogenated pyridine ring such as the 
usual tetrahydro- b -carbolines are superior with regard to antioxidant capacity com-
pared to the fully dehydrogenated derivatives (Tse et al.  1991  ) . In another previous 
study, Kawashima et al.  (  1995  )  had found the antioxidant capacity of 12  b -carboline 
derivatives which were structurally very similar to pinoline. 

 In addition to those antioxidant properties which are purely based on the chem-
istry of the molecules (see Fig.  9.1 ), another antioxidant effect specifi cally for the 
 b -carbolines should be discussed: The action of monoamine oxidases may also lead 
to oxidative stress due to the production of hydrogen peroxide (Edmondson et al. 
 2009  ) . Since many of the  b -carbolines inhibit monoamine oxidases (Chap.   7    ) they 
display a second very different mode of antioxidant action, contrary to indoles in 
general and contrary to other antioxidants like ascorbic acid or vitamin E. Thus, 
 b -carbolines can be considered as synergistic antioxidants with a dual mechanism.   

   Table 9.1    IC 
50

  (mM) values for melatonin and pinoline in 
inhibiting H 

2
 O 

2
 -induced lipid peroxidation in brain 

homogenates   

 

N
H

H
N

O
H3CO

CH3
H3CO

N
H

NH

PinolineMelatonin
 

 Cerebellum  0.66  0.13 
 Hypothalamus  0.51  0.13 
 Cortex  0.50  0.10 
 Hippocampus  0.35  0.06 
 Striatum  0.16  0.04 

  The IC 
50

  values represent the observed mean of 50% inhi-
bition of lipid peroxidation in the different brain homoge-
nates. Lipid peroxidation was induced with 5 mM H 

2
 O 

2
  for 

60 min (taken from Pless et al.  1999  )   
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  Fig. 9.2    Broad spectrum of more or less antioxidant  b -carboline derivatives formed by biosynthe-
sis and further biotransformations (Susilo and Rommelspacher  1988        )

    9.3   Antioxidant  b -Carbolines from Natural Sources 

 Tetrahydro- b -carbolines are formed via Pictet–Spengler cyclization reaction between 
indolylethylamines, e.g., tryptamine, tryptophan (yielding  b -carboline-3-carboxylic 
acids) and carbonyl compounds, e.g., acetaldehyde (yielding 1-methyl-tetrahydro-
 b -carbolines), or pyruvic acid (leading to 1-methyl-tetrahydro- b -carboline-1-carboxylic 
acids, see Fig.  9.2 ). This synthesis is a “biomimetic” one (Susilo et al.  1987  ) . It proceeds 
endogenously in mammals (Susilo and Rommelspacher  1988  ) , plants, or in the extracts 
taken from those during extracting or storage, without any enzymatic catalysis, just at 
acidic or physiological pH but also can be performed similarly in a chemical laboratory. 
It is quite understandable that the Pictet–Spengler reaction and other chemical transfor-
mations extending the variety of  b -carboline derivatives, at least the nonenzymatic ones, 
also proceed during food production, fermentation, processing, or even storage. Synthesis 
of tryptophan- or pyruvic acid-derived  b -carbolines can be followed by decarboxylation 
(Gynther et al.  1986 ; Susilo and Rommelspacher  1988    ), thus producing the same deriva-
tives which result from the reaction of tryptamine or acetaldehyde. Furthermore, in enzy-
matically active biological systems, the primary tetrahydro- b -carbolines may metabolize 
via ring hydroxylation (Beck et al.  1988  )  to yield phenolic tetrahydro- b -carbolines, which 
is supposed to increase, and dehydrogenation (=oxidation = aromatization) to decrease 
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the antioxidant capacity (see Sect.  9.1 ). Methylations and other biotransformation 
reactions may further extend the spectrum of  b -carboline derivatives with more or less 
antioxidant activities, available from biological tissues. 

 Thus, it is quite understandable that many  b -carboline derivatives were origi-
nally isolated from biological materials and also total extracts of plants or other 
tissues have been investigated on their antioxidant capacity. 

    9.3.1   Garlic 

 Garlic ( Allium sativum ) has been used not only for fl avoring food but also as func-
tional food and in traditional medicine. Antioxidant properties have been reported 
already before the  b -carboline discussion came up (Rietz et al.  1993 ; Numagami 
et al.  1996 ; Ide et al.  1996  ) . The organic sulfur compounds in garlic have been pos-
tulated to be responsible for benefi cial properties such as antioxidant activity (Imai 
et al.  1994 ; Ide and Lau  1997,   1999    ), cancer prevention (Amagase and Milner  1993    ), 
and antiatherogenic (Efendy et al.  1997  )  and antiplatelet aggregation activity    
(Rahman and Billington  2000 ; Steiner and Li  2001    ). But in fact, garlic contains a 
variety of  b -carbolines, especially the aged garlic extract (AGE). AGE is manufac-
tured by a long-term extracting process, which takes more than 10 months at room 
temperature. Since biosynthesis and biotransformation of  b -carbolines is expected 
to go on during extraction time, the variety and the amount of  b -carbolines in AGE 
(Ichikawa et al.  2006 ) but also in is short-term fermented (40 days at 60–70°C) 
garlic (Sato et al.  2006 ) is superior to that in raw, sliced, baked, boiled, crushed, or 
freeze-dried garlic preparations (Ichikawa et al.  2006 ; Sato et al.  2006  ) . 

 Both 1-methyl-1,2,3,4-tetrahydro- b -carboline-3-carboxylic acids and the corre-
sponding 1,3-dicarboxylic acids have two chiral carbons and four stereoisomers are 
possible of each. In total, only four of those eight (Fig.  9.3 ) were found even in the 
AGE (Ichikawa et al.  2006  ) . The  S -tryptophan derived part of the molecule keeps 
its  S -confi guration in the corresponding tetrahydro- b -carboline-3-carboxylic acids 
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  Fig. 9.3    Tetrahydro- b -carbolines found in aged garlic extract (Ichikawa et al.  2006 ; Sato et al.  2006  )        
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  Fig. 9.4    Organic sulfur compounds, sugars in garlic, and alcohol may enhance the synthesis of 
tetrahydro- b -carboline-carboxylic and -dicarboxylic acids (taken from Ichikawa et al.  2006  )        

(position 3), otherwise Fig.  9.3  would show eight instead of four compounds.    
Obviously, stereochemistry is relevant regarding the antioxidant capacity. Ichikawa 
et al. found 1 S ,3 S -MTCdiC easily reaching the potency of ascorbic acid and supe-
rior to the other three compounds in Fig.  9.3  (Ichikawa et al.  2006  ) .  

 Conclusively, these authors (Ichikawa et al.  2006  )  pointed out that there is a very 
special situation in garlic since the typical organosulfur compounds contribute to 
the formation of  b -carboline-carboxylic acids as outlined in Fig.  9.4  for the cycliza-
tion of tryptophan. Any processing of garlic, even just cutting it, causes the major 
organosulfur compound alliin to be transformed into allicin via allylsulfenic acid. 
Pyruvic acid, which is able to generate tetrahydro- b -carboline-1-carboxylic acids is 
formed as a byproduct in this reaction. Further pyruvic acid can be formed by oxida-
tion of the pyruvic aldehyde which results from reducing sugars by the Maillard 
reaction pathway (Wnorowski and Yaylayan  2000    ). Last but not least, ethanol is 
easily oxidized to acetaldehyde, which is highly reactive in the Pictet–Spengler 
cyclization. It is obvious that 1-methyl- b -carboline synthesis can be promoted 
whenever ethanol is present in any processing or extraction of garlic (AGE!) or 
other biological materials containing tryptophan or tryptamine.  

 After all, extracts of garlic contain two different synergistic antioxidant princi-
ples, both the sulfur compounds and the  b -carbolines and furthermore the presence 
of ethanol creates a chemical setting which notably enhances the formation of 
 b -carboline derivatives.  

    9.3.2   Fruits and Fruit Juices 

 It is understandable that all biological materials which contain amino acids or pro-
teins, serving as a source of tryptophan or tryptamine, and carbohydrates, as a source 
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of pyruvate or acetaldehyde, are expected to accumulate  b -carbolines. Accordingly, 
Herraiz and Galisteo found 0.02–0.66 mg/L 1,2,3,4-tetrahydro- b -carboline-3-car-
boxylic acid (TCC) and the steroisomeric 1 S ,3 S -1-methyl-1,2,3,4-tetrahydro- b -
carboline-3-carboxylic acid (1 S ,3 S -MTCC) and 1 R ,3 S -1-methyl-1,2,3,4-
tetrahydro- b -carboline-3-carboxylic acid (1 R ,3 S -MTCC) in all of the investigated 
juices tomato, peach, pear, apple, orange, grapefruit, kiwi, pineapple, banana, tropi-
cal fruits, and grape. Also, up to 1.69 mg/L in banana and 2.03 mg/L in tomato of 
6-hydroxy-1-methyl-1,2,3,4-tetrahydro- b -carboline (HMTC) was found in several 
of those fruits, but not in peach, pear, apple, orange, grapefruit, and grape. 1-Methyl-
1,2,3,4-tetrahydro- b -carboline (MTC) was only found in kiwi (0.39    mg/L) and 
tomato (0.13 mg/L), but not or very little in all the other fruit juices (Herraiz and 
Galisteo  2003    ). 

 Antioxidant potency was measured for 1 R ,3 S -MTCC, MTC, TCC, and HMTC by 
radical scavenging of the cationic ABTS radical and all of these compounds, above all 
the phenolic HMTC, proved to be superior to both ascorbic acid and Trolox, which is 
the soluble form of vitamin E. Again, fruit juices distinguish themselves by two dif-
ferent antioxidant ingredients: ascorbic acid and the  b -carbolines. Based on the in vitro 
results of Herraiz and Galisteo  (  2003  )  and assuming that absorption and bioavailabil-
ity of the  b -carbolines are much better than of the highly hydrophilic ascorbic acid, it 
can be concluded that the  b -carbolines represent the more relevant one.   

    9.4   Protective Effects of  b -Carbolines 

 As outlined above, several in vitro models revealed antioxidant properties of  b -carbo-
lines. Further studies suggest that these activities turn into general protective effects 
against oxidative stress. After Tse et al. had demonstrated the antioxidant effects of 
 b -carbolines by measuring thiobarbiturate reactive products formed by lipid oxidation 
(Tse et al.  1991  ) , Garcia et al. went further and showed a brain-protective effect of the 
very simple 1,2,3,4-tetrahydro- b -carboline (tryptoline) and its 6-methoxy analogue 
pinoline in homogenated rat brain. Lipid peroxidation induced by hydrogen peroxide 
was totally prevented and based on these results the authors speculate that these  b -car-
bolines may be neuroprotective agents (Garcia et al.  2000  ) . 

 Lee et al. used not only PC12 cells in culture but also the mouse brain in vivo to 
elucidate the protective effects of some  b -carbolines (harmaline, harmalol, and harmin) 
on oxidative neuronal damage (Lee et al.  2000  ) . They found that treatment of mice 
with MPTP increases the activities of superoxide dismutase, catalase, and glutathione 
peroxidase, and enhances the formation of tissue peroxidation products such as malon-
dialdehyde. But a coadministration of 48 mg/kg harmalol attenuates all these MPTP 
effects. Harmaline, harmalol, and harmine also attenuated both the MPP+-induced 
inhibition of electron fl ow plus membrane potential formation and the dopamine-
induced thiol oxidation in the mitochondria. Accordingly, a dopamine-induced viability 
loss in PC12 cells was also attenuated by these  b -carbolines. A scavenging action of 
hydroxyl radicals was confi rmed by the inhibition of deoxyribose degradation, the 
 b -carbolines alone did not exhibit any cytotoxic effects. The authors conclude that both 



1419 Antioxidant Properties of  β -Carbolines

dopamine-induced brain mitochondrial damage in vivo and PC12 cell death in culture 
are prevented through a scavenging action on ROS, the blocking monoamine oxidase 
and thiol oxidation. In a following multitarget in vitro study, including the rate of vita-
min E disappearance, DPPH radical scavenging, aggregation of the LDL protein 
induced by oxidation, and LDL oxidation induced by copper, Berrougi et al. confi rmed 
the antioxidant and potentially protective properties of  b -carbolines and they found 
harmaline to be superior to harmine (Berrougui et al.  2006  ) . 

    9.4.1   Human Eye 

 Meanwhile, it is well known that  b -carbolines are found ubiquitously in a variety of 
foods and, perhaps as a consequence of this, but certainly also by independent biosyn-
thesis, appear in animal and human fl uids and tissues such as blood, urine, kidney, 
liver, and brain. Some  b -carbolines (Fig.  9.5 ) were even found in the lenses of the 
human eye (Manabe et al.  1996 ; Dillon et al.  1976    ), among them the 1-vinyl deriva-
tive MVTCC (Pari et al.  2000  ) . The quantities of these  b -carbolines increase with age 
and are the highest in senile cataract and diabetic cataract lenses (Pari et al.  2000  ) . Pari 
et al. have shown that these lenticular     b -carbolines have little or no adverse photody-
namic properties but rather display an antioxidant and thus a protective role. They 
quench singlet oxygen, superoxide, and hydroxyl radicals. Beyond this, they inhibit 
the oxidative formation of higher aggregates of a relevant protein named eye lens 
 b -crystallin. All these fi ndings support the hypothesis that the eye lens derived  b -
carbolines do not induce a cataractic disease but rather act protective in the eye.   

    9.4.2   Reperfusion Injury and Thrombosis 

 Atherosclerotic plaques lead to a prolonged reduction in coronary blood fl ow and 
consequently to necrotic damages of the myocardium. On the other hand, reperfu-
sion of a hypoxic cardiac tissue with fresh blood and oxygen will paradoxically 
produce further cell damage. This type of reperfusion injury is hypothesized to be 
associated with the generation of oxygen derived radicals after resupply with rela-
tively excessive oxygen. 
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  Fig. 9.5     b -Carbolines found in the human eye lens (Pari et al.  2000  )        
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 Bi et al. have synthesized hybrid compounds which combine a phenolic substi-
tuted tetrahydro- b -carboline with a short peptide side chain (Fig.  9.6 ) and they 
showed that these  b -carbolines are scavengers of free radicals such as  • OH,  • NO in 
PC12 cells and also neutralize the action of hydrogen peroxide. Scavenging of the 
endogenous vasodilator NO (nitric oxide) was further confi rmed by a vasorelax-
ation assay. Last but not least, the  b -carboline-peptide derivatives showed to be 
effi cacious in the treatment of rat arterial thrombosis and were also active in a plate-
let aggregation assay. Since both free radicals and thrombogenesis are important 
risk factors in myocardial ischemic/reperfusion injuries, the radical scavenging and 
antithrombotic activities of these  b -carboline derivatives suggest them as an option 
for an appropriate treatment.   

    9.4.3   Neuroprotection 

  Banisteriopsis caapi  is a tropical South American genus and its aqueous extract was 
found to display MAO inhibitory and antioxidant properties. Samoylenko et al. 
( 2010    ) isolated and identifi ed harmol, tetrahydroharmin, harmaline, and harmin but 
also novel azepino(1,2- a )tetrahydro- b -carboline derivatives (banistenosides, 
Fig.  9.7    ) as active components with regard to antioxidant activity. Due to both 
chemical antioxidant reactivity and enzymatic inhibition of human brain monoamine 
oxidase, resulting from these  b -carbolines, the authors postulate a claim for the 
treatment of parkinsonism, including other neurodegenerative disorders.      
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  Fig. 9.7    MAO A inhibitory and antioxidant banistenoside from  Banosteriopsis caapi        
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    9.4.4   Survival from Oxidative Stress 

 Another step from antioxidant effects in vitro to protective properties in vivo was 
performed by using  Saccharomyces cerevisiae  strains, profi cient and defi cient in 
antioxidant defense, for investigating the antioxidant  b -carbolines harmane, 
harmine, harmol, and the dihydro- b -carbolines harmaline and harmalol in vivo. 
A signifi cant survival of yeast cells exposed to H 

2
 O 

2
  or paraquat was observed in 

case of pretreatment with one of the  b -carboline derivatives mentioned above, as a 
consequence of their antioxidant effect. Again, the phenolic 7-hydroxy-dihydro-
 b -carboline harmalol demonstrated the strongest antioxidant effect with regard to 
the survival time of yeast cells (Moura et al.  2007  ) .       
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  Abstract   Several in vitro and in vivo studies demonstrate that some  b -carbolines 
( b C) exert neuroprotective effects. The noncationic 9-methyl- b C enhanced the 
enzyme activity of triosephosphate isomerase (TPI), whereas the cationic 2-methyl-
 b C and 2,9-dimethyl- b C inhibited enzyme activity. TPI is a rate-limiting enzyme 
for glycolysis and its activation improves the energy supply of the cell. In murine 
primary neurons, exposition to 9-methyl- b C increased the number of dopamine 
(DA) neurons by up to 50% and of gene transcripts of several genes involved in dif-
ferentiation while transcripts of proinfl ammation, proapoptosis, and stress were 
downregulated. Chronic exposure to rotenone, a toxin which acts by inhibiting complex 
I of the respiratory chain, decreased the number of DA neurons. After rotenone with-
drawal further deterioration was observed as well as ongoing proliferation of microglia. 
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Exposure of cultures to 9-methyl- b C after rotenone withdrawal, resulted in 
conspicuous regeneration of DA neurons and a reversal of the number of microglia. 
In an animal model of PD, 9-methyl- b C normalized the decline of DA levels in the 
striatum. Expression of genes involved in neuronal differentiation, regeneration, 
and survival were upregulated including brain-derived neurotrophic factor, con-
served DA neurotrophic factor, and nerve growth factor while transcripts of infl am-
mation and apoptosis-inducing factors were downregulated. Further neuroprotective 
effects are reported in Chaps.   8     and   9    .  

  Keywords   Triosephosphate isomerase  •  9-Methyl-ß-carboline  •  Murine primary 
neurones  •  Genes  •  Infl ammation  •  Apoptosis  •  Neurotrophins  •  BDNF  •  NGF  
•  CDNF  •  GDNF  •  Armetl  •  Rat  •  Parkinson’s disease  •  Dopamine  •  Striatum      

    10.1   Introduction 

  b -carbolines ( b Cs) are produced in mammals from tryptophan and tryptophan-
derived indolealkylamines including serotonin. Autoradiographic studies revealed 
enriched high-affi nity binding sites of [ 3 H]norharman ([ 3 H] b C) in locus coer-
uleus > hypothalamus, thalamus > nucleus accumbens, amygdaloid nuclei, hip-
pocampus > neocortex, and olfactory-related structures (Pawlik et al.  1990  ) . Further 
studies demonstrated three binding sites in the forebrain of rats using a low concen-
tration of [ 3 H] b C (~2 nM) (May et al.  1994  ) . Pharmacological investigations identi-
fi ed one of them as monoamineoxidase B comprising 85% of labeled sites. [ 3 H] b C 
bound to the two non-MAO B sites with high affi nity (86 and 560 nM resp.; about 
equal amount of the sites). The high-affi nity binding sites in bovine medulla dis-
played a similar pharmacology, while those in the liver were different. The binding 
sites were specifi c for  b Cs because the affi nity of other compounds was lower, e.g., 
tryptamine (230 nM), benzodiazepines (8  m M), serotonin (180  m M), muscarinic 
cholinergic receptor ligands (133  m M), dopamine D2 receptor ligands (317  m M), 
and steroids with the least affi nity (Müller et al.  1981 , Pawlik and Rommelspacher 
 1988 , May et al.  1994  ) . The two sites were postulated to represent specifi c  b C bind-
ing sites. This is in line with fi ndings of extracellular single-unit recording experi-
ments in rat nucleus accumbens neurons superfused with low concentrations of 
harman (1-methyl- b C). Harman (10 −11  to 10 −9  mol/L) activated 80% of neurons 
while higher concentrations (10 −8  to 10 −6  mol/L) inhibited 75% of neurons, identi-
fi ed as dopamine (DA) neurons (Ergene and Schoener  1993  ) . The high harman sen-
sitivity of mesolimbic DA neurons was confi rmed by a recent in vivo electro-
physiological study utilizing intravenous drug application. Harman (2 mg/kg) 
increased the fi ring rate approximately 18 times more than nicotine (11  m g/kg), 
whereas the activation of DA neurons by norharman (2 mg/kg) was in the same 
range as nicotine (~threefold). The effect of harman was not due to MAO A inhibition 
(Arib et al.  2010  ) . These and other studies using in vivo microdialysis demonstrated 
that norharman and harman display a preference for DA neurons with stimulation of 
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DA release by low doses and inhibition by higher ones, despite their serotonin-like 
chemical structure (Sällström Baum et al.  1995,   1996  ) .  

    10.2   In Vitro Studies 

 It is well known that the  b Cs induce a broad spectrum of effects dependent on the 
substituents. Due to their structural homology to the neurotoxin 1-methyl-4-phenyl-
pyridinium ion (MPP + ),  b Cs were investigated with respect to their neurotoxic prop-
erties. In several investigations it was shown that some  b Cs may exert neurotoxic/
cytotoxic properties. However, we demonstrated that several derivatives exerted dif-
ferent actions. For instance, the permanent cationic derivative 2,9-dimethyl- b C 
induced ROS-production and apoptosis in murine Neuro2a neuroblastoma cells 
comparable to MPP + . The noncationic derivative norharman did not induce ROS-
production and apoptosis in the same concentration range (Pavlovic et al.  2006  ) . In 
a structure-activity investigation (Wernicke et al.  2007  )  we demonstrated that cat-
ionic  b Cs are primarily transported by DAT (high-affi nity DA transporter), whereas 
noncationic derivatives may penetrate the plasma membrane and mitochondrial 
membrane by diffusion. Furthermore, the noncationic  b C, 9-methyl- b C enhanced 
the enzyme activity of triosephosphate isomerase (TPI), whereas the cationic  b Cs 
2-methyl- b C and 2,9-dimethyl- b C inhibited enzyme activity (Bonnet et al.  2004  ) . 
TPI is important for glycolysis and activation of the enzyme by this pathway 
improves the energy supply of the cell. We therefore rationalized that some  b Cs 
exert neuroprotective and even neurorestorative effects, whereas others are neuro-
toxic dependent on their substituents. To explore this possibility, we selected two 
cell models with dopaminergic properties because  b Cs showed a preference for 
those neurons (see Sect.  10.1 ). The hypothesis that 9-methyl- b C may exert neuro-
protective properties was fi rst investigated in murine primary embryonic neurons 
from the mesencephalon (Hamann et al.  2008  ) . Primary cells were exposed to 
9-methyl- b C for 48 h. DA neurons were identifi ed by tyrosine hydroxylase immu-
nostaining (THir). The number of DA neurons increased by approximately 20% in 
contrast to the numbers of control cells which remained constant during the short 
time period. Nevertheless, it was possible that a dynamic equilibrium existed 
between the spontaneous death of cells and induction of new neurons, including 
their differentiation under control conditions (Maxwell et al.  2005  ) . DA neurons 
exposed to the  b C produced a higher number and greater length of neurites with 
more ramifi cations than control cells. DA levels were slightly increased as was the 
high-affi nity uptake of [ 3 H]DA. The total number of cells did not change within 
48 h, while the total number of neurons tended to be increased and that of DA neu-
rons increased signifi cantly. This increase was not due to an enhanced proliferation 
of THir cells as the number of BrdU-positive cells was decreased. Lactate dehydro-
genase (LDH), a measure of the demise of cells, was reduced in the medium of 
exposed cultures, the number of necrotic cells was diminished by 50% and caspase 
3 activity was reduced suggesting cell-protective and antiapoptotic actions of the  b C. 
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The increased level of ATP may have contributed to an improved energy supply in 
exposed cells due to activated glycolysis and improved effi ciency of the respiratory 
chain (see Chap.   8    ). Gene transcription analyses after 24 h of exposure to 9-methyl-
 b C revealed increased markers of DA neurons in particular DAT, TH, and the alde-
hyde dehydrogenase family 1, subfamily 1 which is the only presently available 
marker of DA progenitor cells. The transcripts of several genes involved in DA 
neuron cell differentiation were increased (sonic hedgehog, promotes specifi cation 
of neuroepithelial cells; Wnt1, increases proliferation and neurogenesis of ventral 
mesencephalic precursor cells and promotes the generation of TH+ cells from Nurr 
1-expressing precursors; and Wnt5a, which promotes the generation of TH+ cells 
from Nurr1-expressing precursors more potently than Wnt1), while downregulation 
of transcripts of proinfl ammation and proapoptosis genes was observed. Notably, 
these experiments were conducted with embryonic tissue. Three independent regu-
latory cascades have been characterized in early postmitotic, maturating, and mature 
DA neurons (Vitalis et al.  2005    ). From each cascade a member was selected: 
engrailed1, orphan nuclear receptor Nurr1, and paired-like homeodomain transcrip-
tion factor Pitx3. All three factors were increased by 9-methyl- b C. Using a PCR-
array, genes involved in differentiation were upregulated (hedgehog pathway: bone 
morphogenic proteins Bmp2 and 4, hedgehog interacting protein (Hhip), Wnt path-
way: lymphoid enhancer binding factor 1 (Lef1), vascular endothelial growth factor 
A (Vegfa)), whereas genes involved in infl ammation (Jak-Stat pathway: chemokine 
ligand 9 (Cxcl9), interferon regulatory factor (Irf1), NFAT pathway: Fas ligand 
(Fasl; Tnf superfamily member 6), NFkB pathway: intercellular adhesion mole-
cule1 (Icam1), tumor necrosis factor  a  (Tnf a ), vascular cell adhesion molecule1 
(Vcam1), mitosis (potassium voltage-gated channel, shaker-related subfamily beta 
member 2 (Nab2) and apoptosis (p53 pathway: death domain associated protein 
Fas, growth arrest and DNA-damage-inducible protein 45 alpha (Gadd45a), and 
stress (heat-shock protein1 (Hspb1, synonymous: Hsp25)) were downregulated. 
Additionally, glycogensynthase1 (Gys1) and hexokinase2 (Hk2), which belong to 
the insulin pathway, were both upregulated. Taken together, these fi ndings indicate 
a pronounced shift from proliferation to differentiation and the activation of anti-
apoptotic factors, as well as the reduction of the transcription of genes involved in 
infl ammation and stress. This initial study identifi ed 9-methyl- b C as a compound 
with dual actions, capable of increasing the number of functional DA neurons by 
upregulating DA transcription factors including specifi c markers and by exerting 
neuroprotective effects (Hamann et al.  2008  ) . 

 The differentiating properties of 9-methyl- b C were investigated in the human 
neuroblastoma cell line SH-SY5Y. The proliferation was reduced, whereas the cells 
differentiated into a neuronal phenotype with long branched neurites, which created 
a network between the clusters of neuron-like cells. 

 Considering the short exposure of the culture to 9-methyl- b C it was not neces-
sarily expected that the additional mature DA neurons were primarily derived from 
neuronal stem cells, progenitor, or precursor cells. An alternative explanation would 
be that previously THir-negative DA neurons and/or neurons of a different type 
resulted in DA neurons from trans-differentiation processes, a question answered in 
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the subsequently reported study. Again primary embryonic cultures were utilized. 
The increase in THir neurons exposed to 9-methyl- b C reached a maximum of 48% 
above controls within 48 h (Polanski et al.  2010  ) . This effect could be explained by 
recruitment of preexisting DOPA decarboxylase (DDC)-positive rather than THir-
negative neurons. 9-Methyl- b C induced the transcription of several TH-relevant 
transcription factors which may have explained these effects. In addition, cultures 
were exposed to EdU, a thymidine analog that is incorporated into DNA during 
active synthesis. Coexposure with 9-methyl- b C did not augment the incorporation 
of EdU indicating little recruitment of progenitor cells, if at all. When 9-methyl- b C 
was withdrawn, the number of THir neurons decreased to 8–10% above control 
values and was maintained at this level until the end of the observation period. 
The rapid decline of THir neurons may be attributed to the short, 68 h, half-life of 
the TH enzyme, reported in the adrenal medulla (Chuang et al.  1975  ) . Chronic 
exposure to 9-methyl- b C maintained the 20–30% increased numbers of THir cells, 
while the expression of TH protein was increased by 75% indicating a higher level 
of enzyme per cell. The anti-infl ammatory action of 9-methyl- b C was confi rmed in 
addition to a reduction of the transcription of the respective genes. A strong reduction 
of the toxin-induced microglial reaction and of LDH levels in the medium was also 
reported. Preincubation and co-incubation of 9-methyl- b C with toxins of different 
modes of action prevented the proliferation of microglia and the increase in levels 
of LDH, in particular lipopolysaccharide (LPS), MPP + , rotenone, and 2,9-dimethyl-
 b C. The toxin-induced decrease in numbers of THir cells was reversed with LPS 
and the  b C, whereas the number was only slightly affected with rotenone and MPP + . 
Co-treatment with LPS and 9-methyl- b C increased the expression of THir, DDC, 
Creb I, and Crebbp markedly compared with 9-methyl- b C alone. These factors are 
important for functionality and/or survival (Parlato et al.  2006  ) . Chronic exposure 
(6 days) to rotenone, a toxin which acts by inhibiting complex I of the respiratory 
chain, decreased the number of THir neurons to 67% compared to control cultures. 
After rotenone withdrawal further deterioration of THir neurons to 54% was 
observed compared with controls, as well as ongoing proliferation of microglia up 
to 384%. After exposure to 9-methyl- b C (8 days) after rotenone withdrawal, cul-
tures showed conspicuous regeneration of THir neurons up to 87% of control and a 
reversal of the number of microglia. Thus, 9-methyl- b C emerged as a compound 
with restorative potential for DA neurons and anti-infl ammatory actions. 

 Recently, the antihistamine dimebon with a tetrahydro- g   C structure was 
reported to block apoptosis of cortical neurons exposed to amyloid beta peptide 
(Bachurin et al.  2001  ) . Anecdotal evidence of its effi cacy against Alzheimer’s dis-
ease (AD) and age-related cognitive decline (O’Brien  2008 , Burns and Jacoby 
 2008  )  prompted clinical trials to determine dimebon’s effi cacy in treating several 
forms of neurodegenerative diseases. While phase II data appeared exceptionally 
encouraging (Doody et al.  2008  ) , results from a phase III study showed that dime-
bon offered no benefi t for patients suffering from AD (Miller  2010  ) . We initiated 
a study to compare the effi cacy of 9-monofl uorethyl-  g  C (9-Feth- g C) and 9-trifl uo-
rethyl-  g   C (9-triFeth-  g   C) with 9-methyl- b C in the human neuroblastoma SH-SY5Y 
cell model. 
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 Figure  10.1  shows the effect of increasing concentrations of the test compounds 
after 7 days of exposure. All three compounds reduced proliferation and switched 
the cells toward differentiation. The neuronal phenotype was expressed instead of 
the indifferentiated phenotype, with smaller and narrower cell bodies, some of them 
more roundish and with an increasing number and length of neurites per cell. The 
cultures exposed to 9-Feth-  g  C showed more accumulation of cell debris than 
9-methyl- b C, especially at the higher concentrations. This suggested toxic actions, 
which were even more marked in 9-triFeth-  g  C exposed cultures. To investigate the 
toxicity of the substances, a cell viability test confi rmed that the   g  Cs were more 
toxic than 9-methyl- b C and that toxicity increased with an increasing number of 
fl uoride-substituents (Fig.  10.2 ).    

    10.3   In Vivo Studies 

 Based upon the in vitro fi ndings, we investigated the neuroregenerative effect of 
9-methyl- b C in an animal model of PD (Wernicke et al.  2010  ) . Rats received the 
neurotoxin MPP +  via a micropump which constantly injected the neurotoxin into the 
left ventricle for 4 weeks. The amount was adjusted to produce a 50% reduction of 

  Fig. 10.1    Effect of increasing concentrations of the   g  -carbolines 9-monofl uorethyl-  g  C (9-Feth-
  g  C) and 9-trifl uorethyl-  g  C (9-triFeth-  g  C) in comparison with 9-methyl- b C on the morphology of 
human neuroblastoma SH-SY5Y cell after 7 days of exposure       
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DA in the left striatum. The right side served as an individual control. Afterwards the 
pumps were replaced and the animals received either 9-methyl- b C or equimolar 
saline for 14 days. Rats sham-operated and vehicle-injected twice served as controls. 
Stereological investigation of the substantia nigra pars compacta (SNpc) revealed a 
signifi cant reduction of the number and density of THir cells on the left side of 
MPP + /saline-treated animals, whereas the number of THir cells and density were 
normalized in MPP + /9-methyl- b C-treated animals compared to the right SNpc of the 
respective animal. The amount of DA was reduced up to 50% in the left striatum of 
MPP + /saline-treated animals. Combined treatment rescued DA levels in the left stria-
tum up to the amount of the right striatum of each individual animal (Fig.  10.3 ).  

 It is well established that DA neurons receive neurotrophic support from neigh-
boring cells and vice versa in the striatum. Therefore, we investigated the expression 
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  Fig. 10.3    Concentration of dopamine (DA) in the left striatum ( fi lled columns ) and the right stria-
tum ( hatched columns ) of individual rats. The animals were treated with 1-methyl-4-phenyl-
pyridinium (MPP + ) continuously for 28 days delivered into the anterior left ventricle of the brain, 
followed by either saline for 14 days ( left plot ) or 9-methyl- b C ( right plot ). The levels of DA were 
measured after the 42-day period. The DA levels in the left striata differed signifi cantly between 
the MPP + /saline and the MPP + /9-methyl- b C treated rats ( p  < 0.01)       
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of 84 genes involved in neuronal cell growth, differentiation, regeneration, and survival 
in the striatum using real-time RT-PCR array for neurotrophins (RT Profi ler PCR 
Array for rat neurotrophins and receptors version 2.0 by SuperArray). In order to 
confi rm and extend the fi ndings, we applied single real-time RT-PCR using FRET-
probes for selected genes. A number of factors which are known to be important in 
neuronal survival were upregulated. The most obvious results were previously 
reported (Wernicke et al.  2010  ) . These included the upregulation of several tran-
scripts involved in neurotrophic support and cell survival by MPP + /9-methyl- b C 
compared to sham-operated and MPP + /saline-treated animals. Specifi c transcripts 
upregulated included brain-derived neurotrophic factor (BDNF), cerebellin1 (Cbln1), 
conserved dopamine neurotrophic factor (CDNF, also denoted Armetl1), nerve 
growth factor (Ngf), the receptors for glial-derived neurotrophic factors (GDNF), 
and ciliary neurotrophic factor (CNTF). 

 Tyrosine hydroxylase (TH) was not changed in the striatum at the transcription 
level, but was enhanced at the protein level. The increased TH level per cell pro-
duced by 9-methyl- b C was reported for primary neurons as well (see above). The 
confl icting fi ndings concerning the transcription and protein level of TH may be 
based on the fact that mRNA is located in the cell bodies of DA neurons and the 
mature protein is located only in the nerve terminals. The heat-shock protein b1 
(Hspb1) was upregulated in the right striatum and was further enhanced after com-
bined treatment with MPP + /9-methyl- b C on the right side and increased on the left 
side. Hspb1 was shown to be involved in the control of differentiation of olfactory 
precursor cells (Mehlen et al.  1999  )  and in the protection against  a -synuclein-
induced apoptosis (Zourlidou et al.  2004  ) . It is downregulated in a mouse model of 
ALS (Maatkamp et al.  2004  ) . 

 In addition to these fi ndings (Wernicke et al.  2010  ) , there were further differ-
ences in the transcription of several genes between the three groups of rats investi-
gated, which were less prominent or did not reach statistical signifi cance, mainly 
due to the high degree of variability. The importance of changes in transcription lies 
not only in the amount of change with respect to a single gene, but also in the pattern 
of changes in a cluster of genes with related functions.  

    10.4   Upregulation of Neurotrophic Factors by 9-Methyl- b C 

 Figure  10.4  illustrates the transcription changes for genes involved in neurotrophic 
support and survival presented as percent of control in the left and right striatum, 
respectively. Artemin (Artn) belongs to the GDNF family of neurotrophins. It binds 
to the GDNF family receptor alpha (Gfra) and signals through the RET receptor 
tyrosine kinase. Artn has been reported to be upregulated in the 6-OHDA-lesioned 
striatum of rats. Furthermore, lentiviral gene transfer of Artn into the striatum pre-
vented nigral DA neurons from 6-OHDA-induced cell death (Rosenblad et al.  2000  ) . 
Further, chronic administration of Artn increased survival and morphological dif-
ferentiation of THir neurons (Zihlmann et al.  2005  ) . In our experiment, Artn was 
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  Fig. 10.4    Depicted are transcription changes of neurotrophic and related factors in the left and 
right striatum after MPP + /saline and MPP + /9-methyl- b C treatment compared to sham-operated 
animals       
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upregulated by 50% after MPP + /saline treatment on the left side and unchanged on 
the right side. MPP + /9-methyl- b C treatment enhanced expression by 80 and 50%, 
respectively. As reported earlier Gfra levels were also upregulated by MPP + /9-
methyl- b C treatment in the same experiment (Wernicke et al.  2010  ) .  

 Leukemia inhibitory factor (Lif) was reported to promote auditory neurons sur-
vival of early postnatal spinal ganglion cells from rats and potentiates neurotrophin-
3-mediated survival synergistically (Marzella et al.  1997  ) . The expression level of 
Lif was below the detection limit of this method. However the receptor was slightly 
enhanced after MPP + /saline treatment and further enhanced by 50 and 130% after 
MPP + /9-methyl- b C treatment on both sides. 

 Neurotrophic factor 3 (Ntf3) was downregulated by 40% on the left side by both 
treatments and by 20% on the right side after MPP + /saline treatment which was 
enhanced by 20% after MPP + /9-methyl- b C treatment. Ntf5 was nearly unaltered. 
Neurotrophin tyrosine kinase1 (Ntrk1) and 2, also denoted as TrkA and B, are 
known to mediate the differentiation and protective effects of several neurotrophic 
factors including NGF and BDNF. Baydyuk et al.  (  2011  )  demonstrated that a chron-
ically reduced TrkB signaling leads to selective late-onset degeneration of DA neu-
rons. In our setting Ntrk1 expression was only upregulated on the left side under 
both treatments, and Ntrk2 was upregulated by MPP + /saline by 20 and 40% on both 
sides, respectively. MPP + /9-methyl- b C increased the expression by 50 and 80%, 
respectively. 

 Neuregulins (Nrg) are polypeptide factors that infl uence growth and differentia-
tion through interaction with the Erbb family of receptors. Erbb4 is expressed in 
midbrain DA neurons and was signifi cantly reduced in the SNpc but not in the VTA 
in middle-aged and old rats compared to young rats. This decrease was accompa-
nied by a decreased TH expression in the SN (Dickerson et al.  2009  ) . These fi ndings 
implicate a role for Nrg/Erbb4 in the trophic support of DA neurons in the SN. In 
the cerebral spinal fl uid the levels of neuregulins were slightly reduced in patients 
with cerebral spinal sclerosis and PD, but signifi cantly increased in Alzheimer’s 
disease (Pankonin et al.  2009  ) . In our study transcripts of Nrg1 were increased by 
40–50% on the left side and 30–100% on the right side under both treatments, 
respectively. Nrg2 was slightly decreased by MPP + /saline on both sides. After 
MPP + /9-methyl- b C treatment Nrg2 was normalized on the left, but unchanged on 
the right side. 

 Neuropeptide Y (Npy) was slightly increased after MPP + /saline treatment on 
both sides and upregulated by about 50% after MPP + /9-methyl- b C treatment. Npy1r 
was increased by 20 and 35% on the left side by both treatments and by 50 and 
130% on the right side. Npy2r was decreased by 30% by MPP + /saline treatment on 
the left side. MPP + /9-methyl- b C treatment revealed 35% upregulation compared to 
controls on the left side. The treatments increased Npy2r expression on the right 
side by 25 and 80%, respectively. The recovery of Npy2r is important as it has been 
demonstrated that Npy exerts its neuroprotective action against excitotoxicity via 
the Npy2r, whereas an Npy1r agonist was not protective in this model (Smialowska 
et al.  2009  ) . The differing role of Npyr2 and Npyr1 in neuroprotection was also 
demonstrated by Xapelli et al.  (  2008  ) . 
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 Maged1, also known as Dixin-1, facilitates cell death by interaction with 
p75NTR. However, in the presence of Ngf it increased cell survival and neuronal 
differentiation via an interaction with the neurotrophin receptor TrkA, by activating 
the MEK (neuritogenesis) and Akt (survival) pathway (Reddy et al.  2010  ) . Maged1 
was slightly upregulated on the left side after the combined treatment. Both treat-
ments induced an upregulation on the right side of 40 and 90%, respectively. As 
reported previously, Ngf was increased after MPP + /saline and further by MPP + /9-
methyl- b C treatment in our experiments (Wernicke et al.  2010  ) . 

 Fibroblast growth factor (Fgf) family members are involved in mitogenic and 
angiogenic activities. Winner et al.  (  2008  )  demonstrated that Fgf2 together with the 
epidermal growth factor enhanced cell proliferation and numbers of doublecortin-
expressing neuroblasts in the subventricular zone and its migration into the striatum 
in a 6-OHDA animal model of PD. Jensen et al.  (  2008  )  demonstrated an improve-
ment of survival and grafting of ventral mesencephalic precursor cells after Fgf2 
treatment. Huang et al.  (  2009  )  reported on Fgf9 downregulation by MPP +  treatment 
and the ability to prevent MPP + -induced cell death of DA neurons by adding Fgf9. 
In our experiments the expression of Fgf2 (and to a minor extent Fgf1) was reduced 
on the left side of sham-operated animals. This could be an explanation for the dif-
ferent fi ndings where Fgf2 was enhanced by nearly 50% by MPP + /saline on the left 
side but not on the right one. MPP + /9-methyl- b C treatment enhanced the expression 
only slightly on the left side, but by about 100% on the right side compared to 
MPP + /saline-treated rats. The change in expression of Fgf1 was nearly identical to 
that of Fgf2. Fgf9 was enhanced on both sides by 40 and 30% after MPP + /saline 
treatment and by 60 and 140% after MPP + /9-methyl- b C treatment. The enhanced 
expression after MPP + /saline treatment is in contrast to the fi ndings by Huang et al. 
 (  2009  ) . One explanation could be that in our experiment the animals had a 14-day 
period of recovery, in which some self-healing processes may occur, which are with 
respect to Fgf further supported by the fi ndings after MPP + /9-methyl- b C 
treatment. 

 Transforming growth factor b (Tgfb1) is a key mediator of cell proliferation, dif-
ferentiation and apoptosis. It was reported to enhance survival of DA neurons and to 
protect against MPP +  toxicity (Kriegelstein and Unsicker  1994    ; Poulsen et al.  1994  ) . 
However, the inhibition of survival was also reported (Tgfb1 was nearly unchanged 
after both treatments on both sides). The Tgfb-induced transcript (Commissiong 
et al.  1997  )  Tgfb1i1, also known as Hic-5, seemed to mediate survival as knock-out 
mice displayed enhanced vascular apoptosis. A function for Tgfb1i1 in the CNS has 
not yet been reported. Tgfb1i1 was upregulated on both sides by MPP + /saline by 
30% and further increased by 40 and 60% after MPP + /9-methyl- b C treatment. 

 The corticotropin-releasing hormone (Crh) is secreted by the hypothalamic para-
ventricular nucleus in response to stress. A reduction in this protein was observed in 
patients with Alzheimer’s disease. Neuroprotective effects were reported for low 
concentrations of Crh in cerebellar and hippocampal cell cultures and higher con-
centration in cortical neurons (Bayatti et al.  2003  ) . These effects were PKA-
dependent and resulted in CREB activation and inactivation of GSK3beta. In vivo 
administration of Crh-enhanced neuronal survival of CA1 neurons in an ischemia 
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model of rats (Charron et al.  2008  ) . In our study, Crh was upregulated by 30 and 
100%, respectively, after MPP + /9-methyl- b C treatment. Crhbp and Crhr1 were 
upregulated by MPP + /saline treatment, which was further enhanced by MPP + /9-
methyl- b C treatment. Crhr2 was downregulated after MPP + /saline by 30% and 
upregulated by 50% after MPP + /9-methyl- b C treatment on the left side. The right 
side was unaffected. 

 Galanin has been demonstrated to modulate hippocampal neuronal survival and 
several studies point to the type 2 receptor mediating antiapoptotic effects (Elliott-
Hunt et al.  2007 ; Hulse et al.  2011  ) . Schauwecker  (  2010  )  reported a higher suscep-
tibility to excitotoxic injuries and following kainate administration in Galr1 
knock-out mice. In our experiment Galr1 was reduced by 30% after MPP + /saline 
treatment on the left side which was normalized after MPP + /9-methyl- b C treatment. 
On the right side the expression was not affected by MPP + /saline and was enhanced 
by 130% after MPP + /9-methyl- b C treatment. Galr2 was not affected on either side 
by MPP + /saline and upregulated by MPP + /9-methyl- b C treatment by 70 and 50%, 
respectively. 

 Hypocretin1 (Hcrt), also known as orexin A is a neuropeptide involved in feed-
ing behavior, hormone secretion, sleeping behavior and arousal. Low levels of Hcrt 
in the CSF were associated with sleep symptoms in PD (Hag et al.  2010  ) . Hcrt was 
upregulated on the left side after both treatments by 20 and 30%, respectively. On 
the right side it was upregulated by 90% after MPP + /9-methyl- b C treatment. Their 
respective receptors, Hcrtr1 and Hcrtr2, were upregulated on the left side after com-
bined treatment by 60 and 65%. On the right side the expression was enhanced by 
60 and 30% after MPP + /saline treatment and Hcrtr1 was further enhanced by 240% 
after the 9-methyl- b C treatment, whereas Hcrtr2 was only enhanced by 30%.  

    10.5   Transcription Changes of Chemokines, Signal 
Transducers, Interleukins, and Other Factors Involved 
in Apoptosis and Infl ammation by 9-Methyl- b C 

 Figure  10.5  presents the transcript changes of genes involved in apoptosis, infl am-
mation and further signal cascades. The chemokine receptor1 (Cx3cr1) protects DA 
neurons from toxin effects. Knock-out mice lacking this receptor developed a more 
extensive neuronal cell loss in a toxic model of PD and a transgenic ALS-model 
than their Cx3cr1-expressing littermates (Cardona et al.  2006  ) . In our study, the 
receptor was marginally enhanced on the left side by both treatments and was up 
60% on the right side after MPP + /9-methyl- b C treatment. Cxcr4 is upregulated in 
PD and the upregulation precedes the loss of DA neurons in MPTP-treated mice 
(Shimoji et al.  2009  ) . The Cxcr4 receptor, which together with its ligand Cxl12 
promotes neuronal apoptosis, was enhanced 1.5- to 1.3-fold on both sides after 
MPP + /saline treatment and normalized on both sides after MPP + /9-methyl- b C 
treatment.  
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 Members of the signal transducer and activator of transcription (Stat) family are 
activated by phosphorylation in response to cytokines and growth factors. They 
mediate the expression of a variety of genes. IL6 is an activator of Stat1. Stat1 was 
upregulated by up to 50% on the left side after both treatments and on the right side 
after MPP + /9-methyl- b C treatment. Stat2 was upregulated by up to 40% on the left 
side after both treatments and to 70–100% on the right side. This protein can not 
bind directly to DNA. It has been demonstrated that the transcription adaptor P300/
CBP (EP300/Crebbp) specifi cally interacts with Stat2, blocking IFN a -response by 
adenoviruses. In null or haploinsuffi cient transgenic mice for Stat1 and Stat2, 
respectively, IFN a  produced a more severe and accelerated neurodegeneration or 
severe infl ammation (Campbell  2005  ) . Stat3 transcription was marginally increased 
on the left side after both treatments and twofold on the right side after MPP + /9-
methyl- b C treatment. Wang et al.  (  2009  )  reported the disruption of Stat3 signaling 
by 6-hydroxydopamine (6-OHDA) in SH-SY5Y cells and its restoration by (−)-epigal-
locatechin-3-gallate which protects these cells against 6-OHDA-induced cell death. 
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Stat 4 transcription was increased 2- to 2.5-fold after MPP + /saline and 2.5- to 3-fold 
after MPP + /9-methyl- b C treatment. Stat4 is activated by IL12 and is critical in the 
regulation of infl ammation and T-helper type 1 lineage development in the murine 
system. Several studies showed an association of this gene with autoimmune dis-
eases like Sörensen syndrome, multiple sclerosis, and rheumatoid arthritis. Mt3 is a 
metal-binding protein with antioxidative properties. Neuronal damage was dramati-
cally increased in Mt3-KO mice after transient cerebral ischemia (Koumura et al. 
 2009  ) . The protein was unchanged on either side by MPP + /saline treatment and 
upregulated by nearly 30 and 50% after MPP + /9-methyl- b C treatment. 

 The main criterion for a cell to enter into the apoptosis pathway is the ratio 
between Bax and Bcl. In the left striatum the ratio was higher after MPP + /saline treat-
ment (1.9) compared to MPP + /9-methyl- b C treatment (1.6). These fi ndings are con-
sistent with results reported by Zhao et al.  (  2010  ) , who found a ratio of 2 in 
MPTP-treated mice (i.p. daily for 5 days) and a ratio of 1.6 in mice treated with 
MPTP, and subsequently 10 mg/kg echinacoside (i.p. daily for 14 days) 72 h after the 
last MPTP administration. In the right striatum the ratio was equal after both treat-
ments (1.1). Bcl is a downstream product of CNTF signaling. As mentioned above, 
CNTF was enhanced after MPP + /9-methyl- b C treatment, whereas MPP + /saline 
resulted in CNTF downregulation. Fos, in combination with Jun is denoted transcrip-
tion factor AP1, which regulates proliferation, differentiation, and transformation. 
Under certain circumstances AP1 induces apoptotic cell death. Fos was slightly 
downregulated by MPP + /saline treatment and further downregulated by MPP + /9-
methyl- b C treatment. The downregulation in the left striatum with MPP + /saline 
treatment could be the result of a compensatory mechanism after withdrawal of the 
toxin. The tumor necrosis factor receptor super family members (Tnfrsf) 5 and 6 
were both twofold enhanced in the left striatum by MPP + /saline and 1.5-fold by 
MPP + /9-methyl- b C. A reduction by MPP + /9-methyl- b C was also produced in the 
right striatum. Tnfrsf5 is also known as CD40 and mediates immune and infl amma-
tory responses by increasing COX-2 and iNOS (Okuno et al.  2005  ) . Tnfrsf6 is also 
known as Fas and this isoform, containing the death domain, induces apoptosis. The 
expression of Fas was increased in the 6-OHDA rat model of PD (Pan et al.  2007  ) . 
TP 53 was nearly unchanged under all treatments. The JNK-p53-GADD45alpha 
apoptotic cascade mediates oxidative cytotoxicity (Choi et al.  2011  ) . The nearly 
unchanged expression in the left striatum after MPP + /saline application is surprising 
and may be due to a mild oxidative damage, which probably had been overcome over 
after 14-day vehicle infusion, the time-point of tissue preparation. Zfp110, also 
known as neurotrophin receptor interacting factor (NRIF), is an essential mediator of 
apoptotic signaling in the nervous system by the p75 neurotrophin receptor. Linggi 
et al.  (  2005  )  demonstrated that NRIF expression is suffi cient to induce cell death 
through a mechanism that requires p53. MPP + /saline enhanced expression by 40 and 
50% on both sides which was diminished by 20% after MPP + /9-methyl- b C. Zfp91 is 
localized in nuclei and shows several characteristics of other transcription factors. It 
may play a role in cell proliferation and/or antiapoptosis. This transcript was upregu-
lated in the left striatum by both treatments, whereas the right striatum was nearly 
unaffected. Ptger2 encodes the prostaglandin E2 receptor subtype 2. It is expressed by 
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microglia and neurons. It was demonstrated that this receptor is signifi cantly induced 
in astrocytes and microglia of the SOD mouse model of ALS. After deletion of this 
receptor in the mouse model proinfl ammatory effectors were reduced (Liang et al. 
 2008  ) . Furthermore, Jin et al.  (  2007  )  demonstrated a regulative role of the receptor in 
the clearance of aggregated  a -synuclein by microglial cells. This property was 
upregulated in Ptger2-ablated cells and mice lacking this receptor demonstrated 
attenuated neurotoxicity and  a -synuclein aggregation after MPTP treatment. 
Conversely, Carrasco et al.  (  2008  )  demonstrated a protective effect of this receptor to 
6-OHDA-mediated low oxidative stress in DA neurons. This action was PKA-
dependent. Therefore, it is important to determine whether this receptor is expressed 
by microglia or neurons. In our setting the interpretation of our data was diffi cult 
since we could not distinguish between neuron and glial cell expression. Since glia 
normally outnumber neurons, it is more likely that the transcript was primarily 
derived from glial cells. This assumption was also supported by the fact that surgery 
itself, which was performed on the left side, induced an increased expression in the 
left striatum of the sham-operated controls compared to the right side. By taking into 
account the left to right differences, Ptger2 was by 25% higher after MPP + /saline 
treatment than after MPP + /9-methyl- b C treatment on both sides. 

 IL10 has pleiotropic effects in immunregulation and infl ammation. It downregu-
lates the expression of Th1 cytokines and mediates immunosuppressive and neuro-
protective effects. It is signifi cantly increased in PD but so far not affected by 
treatment (Rentzos et al.  2009  ) . IL10 gene transfer has been demonstrated to be pro-
tective in a rat model of PD (Johnston et al.  2008  ) . In our study, the transcripts of 
IL10 were near the limits of detection in the striatum. However the IL10 receptor 
alpha was upregulated on both sides by up to 20% after MPP + /saline treatment and 
up to 40 and 120% on the left and right side, respectively, after MPP + /9-methyl- b C 
treatment. The proinfl ammatory interleukin IL1b was enhanced by 80–100% after 
MPP + /saline treatment on both sides and normalized after MPP + /9-methyl- b C treat-
ment. This is consistent with the expression pattern of its receptor IL1r1 with an 
upregulation of 100 and 60% by MPP + /saline and a reduced upregulation on the left 
side after MPP + /9-methyl- b C treatment and normalization on the right side. IL1b has 
been demonstrated to be elevated in the MPTP rat model of PD (Bian et al.  2009  ) . It 
was shown to be elevated in the striatum and the SN of PD patients. IL6 and IL6 
signal transducers were only marginally changed. IL6 induces transcriptional infl am-
matory response by the IL6 receptor alpha, which was upregulated by nearly 50% on 
the left side and by nearly 20% on the right side after both treatments. 

 Nurr1, Pitx3, Bmp2, and BMP4 were not changed. This is consistent with the 
fact that these factors are important in the maturation of DA neurons. In our setting 
it is more likely that the rescue depends on the protection of mature neurons which 
had been impaired by MPP + . In the human neuroblastoma cell line SH-SY5Y 
9-methyl- b C induces the expression of Pitx 3 and BMP 2, which is in line with the 
differentiation of these cells from an immature to a mature neuronal cell (Wernicke 
et al., unpublished results). 

 Taken together, the treatment with 9-methyl- b C resulted in an upregulation of 
several transcripts that are known to play an important role in cell survival and neu-
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ronal differentiation. Although, the individual differences in expression of numer-
ous transcripts were not signifi cant, the consistent upregulation of protective factors 
and downregulation of infl ammatory and apoptosis-inducing factors reveal a pattern 
that is unlikely to be the result of chance. Nevertheless, further investigations are 
necessary to confi rm these fi ndings. Notably, our investigation represents the results 
of a single time-point of an in vivo model of PD. The unpublished in vitro studies 
demonstrate that the extent of the expression of individual genes change over time 
and the composition of a group of genes with similar functions changes over time as 
well. The expression changes in such a huge number of genes points to the involve-
ment of an upstream pathway.   

 This pathway may be triggered by one of the high-affi nity binding sites described 
by Lichtenberg-Kraag et al. ( 1997 ). [3H]Norharman binds to SH-SY5Y membranes 
with a K

D
 of ~500 pM and of ~ 6 nM. The simple  b Cs norharman and harman activate 

neurons by low concentrations/ doses and inhibit them by somewhat higher ones which 
is consistent with the fi ndings of the binding experiments (in vitro neurophysiology, 
Ergene and Schoener,  1993 , in vivo microdialysis, Sällström-Baum et al.  1996 ). 
Pharmacological characterization of the [3H]norharman binding sites revealed dis-
placement of the ligand by  b Cs, to a weaker extend by indoleamines, but not by opi-
oids, muscarinic receptor agonists, metabotropic glutamate receptor agonists or several 
peptide neurotransmitters.  Inositol phosphate accumulation was only slightly affected 
by the  b Cs. However, the action of carbachol was clearly facilitated in a dose-depen-
dent and pertussis toxin-insensitive manner. Pretreatment of the cells with  Clostridium 
diffi cile  toxin B blocked the facilitating effect of the ßCs by concentrations which did 
not affect the action of carbachol alone. This suggests that low molecular weight 
GTPase proteins, specifi cally RhoA and/ or Cdc-42, are involved in the facilitating 
action of the  b Cs. Further experiments demonstrated  b C-induced generation of phos-
phatidylinositol-4,5-bisphosphate (PtdIns-4,5-P

2
), the key component in the activation 

of phosphoinositide-phospholipase C. These interactions and the subsequent cascade 
which fi nally activates phosphorylation of CREB are depicted in (Fig  10.6 ).  

 The ßCs may activate CREB by a second cascade. Experiments aimed at identi-
fying binding proteins of  b Cs revealed Raf kinase inhibitor protein (RKIP) as a 
target protein (Bonnet et al.  2004 ). RKIP is phosphorylated by PKC and dissociates 
from the Raf/ MEK complex to the G-protein kinase 2 which is inhibited by phos-
phorylated RKIP. This prevents reduction of GPCR activity and prolongation of 
cAMP formation. cAMP activates PKA from which the catalytic unit diffuses into 
the nucleus and phosphorylates CREB (Hellmann et al.  2010 ). Finally, neurotro-
phins activate the Ras/Raf/MEK/ERK cascade leading to the phosphorylation of 
CREB. The activation of these cascades may explain the remarkable stimulation of 
CREB phosphorylation observed after exposition of SH-SY5Y human neuroblas-
toma cells for 48 h applying the dual luciferase method (4fold by 30µM  and 8-fold 
by 70 µM 9-methyl- b C, unpublished results). The activation of these cascades may 
occur partly consecutively and may be compensated by other intracellular mecha-
nisms. Many of the neuroprotective and neurorestorative actions of the  b Cs may be 
based on these processes.      
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  Abstract   Animal studies clearly demonstrate that either dying neurons are revived 
or remaining healthy neurons sprout new processes in response to neurotrophic fac-
tors. Thus, in view of their restorative potential, specifi c alignments of neurotrophic 
factors may be called the “natural repair system” for damaged neurons. However, 
several serious hurdles remain to be overcome before the neurotrophins themselves 
are applicable for the treatment of patients with Parkinson’s disease (PD) and other 
neurodegenerative disorders. Alternatively, the antioxidant, the effi ciency of the 
respiratory chain improving, antiphlogistic, anti-apoptotic, prodifferentiating, and 
neurotrophin-activating  b -carbolines are promising small molecules with neuropro-
tective and even restorative potential. They may become alternative compounds for 
the therapy of PD and other neurodegenerative diseases in the foreseeable future.  
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    11.1   Pathogenesis of Neurodegenerative Disorders 

 The pathogenesis of neurodegenerative disorders appears to be multifactorial with 
genetic predisposition, exogenous factors including environmental toxins, heavy 
metals, and viruses as well as aging being important factors in disorder initiation 
and progression. Several factors have been elaborated underlying Parkinson’s dis-
ease (PD), the focus of our studies. Cumulative evidence supports an “oxidative 
stress hypothesis” for nigral dopamine (DA) neuron loss in PD. Essentially, the 
substantia nigra (SN) has a high metabolic rate combined with both a high content 
of oxidative species including DA and DA-derived reactive oxygen species (ROS), 
neuromelanin, polyunsaturated fatty acids and iron, and a low content of antioxi-
dants especially glutathione, the major cellular redox buffer used to counteract oxi-
dative stress. Thus, oxidative stress can easily overwhelm the natural defenses and 
initiate apoptosis of DA neurons. One important feature of this hypothesis is the 
active, self-perpetuating cycle of chronic infl ammation that includes microglia acti-
vation, increased chemokine and cytokine production, and nitric oxide (NO) and 
hyperoxide (syn. superoxide) production leading to neurodegeneration (Hald and 
Lotharius  2005  ) . Therefore, trapping free radical oxidants and inhibition of the glial 
reaction and infl ammatory processes represent attractive therapeutic targets to com-
bat the disease. 

 Neurotoxins, such as 1-methyl-4-phenyl-pyridinium (MPP+) and rotenone 
inhibit the respiratory chain in mitochondria. This results in the excess production 
of ROS, ATP depletion, and initiation of cascades of cellular disturbances that 
include DNA damage and activation of cell-death-related pathways including 
apoptosis. NO contributes to DA neuron death through mechanisms that are not 
completely understood, but are likely to involve nitration of  a -synuclein and 
nitrosylation of parkin. Evidence continues to accumulate that the cycle of neu-
roinfl ammation triggered by these neurotoxins may continue to progress long after 
the initial insult abates.  

    11.2   Existing Therapies for Parkinson’s Disease 

 Moderate disease management can be achieved through dopamine (DA) replace-
ment therapy. Such drugs include the DA precursor levodopa, DA receptor agonists, 
and inhibitors of the DA degrading enzymes catechol- O -methyltransferase and 
monoamineoxidase, specifi cally subtype B inhibitors. However, all these pharma-
cological interventions have side effects and limited effi cacy. A number of studies 
have indicated that levodopa itself may be neurotoxic and contribute to the progres-
sion of PD. 

 Since PD results primarily from loss of a very specifi c population of DA neurons 
in the SN pars compacta, another potential therapeutic strategy involves cell replace-
ment therapy with fetal ventral mesencephalon grafts or adult and embryonic stem 
cells. Conceptual and clinical problems have been encountered in the development 
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of cell-based treatments including low graft survival, poor engraftment, and limited 
reestablishment of neural circuits leading to functional restoration. 

 Postmortem examination of SN revealed massive astrogliosis, the presence of 
activated microglia, and elevated levels of infl ammatory cytokines (Mogi et al.  1994    ). 
Therefore, an emerging area of interest involves strategies to inhibit the glial reac-
tion and act to sustain the cycle of microglia-derived oxidative stress (Barcia et al. 
 2003 ; Hirsch et al.  2005 ; Imamura et al.  2003  ) . A recent prospective study found 
that the incidence of sporadic PD among chronic users of over-the-counter non-
steroidal anti-infl ammatory drugs was 45% lower compared to that of age-matched 
nonusers (Chen et al.  2003  ) . 

 One important apoptosis effector molecule is caspase-3 which is overexpressed 
in PD (Hartmann et al.  2000  ) . Pramipexole increased the production of Bcl2 which 
blocks apoptosis (Kitamura et al.  1998  ) . Furthermore, that targeting the c-jun kinase 
signaling pathway, which is often activated by cellular stress and correlated with 
neuronal death, has shown inhibitors to be neuroprotective and being investigated 
for use in stroke and PD    (Kuan and Burke  2005 ; Silva et al.  2005  ) . 

 One other area of interest concerns the neurotransmitter glutamate whose neo-
cortical input to the SN is hyperfunctional in PD. Certain glutamate receptor antag-
onists have anti-parkinsonian activity (Chase et al.  2000  ) . A further area concerns 
the possible role of neurotrophic factor depletion in the etiology or progression of 
PD. Conditional ablation of glial cell line-derived neurotrophic factor (GDNF) in 
mice resulted in a progressive hypokinesia and pronounced death of catecholamin-
ergic neurons (Pascual et al.  2008  ) . It has been proposed that age-related loss of 
GDNF in the nigrostriatal system may be associated with increased vulnerability of 
DA neurons to neurotoxic and/or oxidative insults. Early promising fi ndings with 
GDNF were followed by disappointing effi cacy results perhaps due to differences in 
dosage, delivery mode, and catheter size (Kotzbauer  2006  ) . Neurturin, a member of 
the GDNF family, which is expressed endogenously in the nigrostriatal system, was 
found to promote the survival of DA neurons both in vitro and in vivo with similar 
effi cacy as GDNF. Phase I clinical trials to test the effi cacy of neurturin in PD 
patients demonstrated the safety, tolerability, and potential effi cacy of AAV-neurturin 
(Marks et al.  2008  ) . The Phase II trial failed to demonstrate improvement of primary 
end point (Ceregene  2011    ). 

 Several other neurotrophic factors are involved in survival of DA neurons. BDNF 
is synthesized by DA neurons in the SN of rats and the expression level is decreased 
in the SN of PD patients (Howells et al.  2000  ) . Animal studies demonstrated the 
restorative potential of BDNF. However, clinical trials of intrathecal infusion of 
recombinant BDNF have been negative and caused severe side effects (Ochs et al. 
 2000  ) . A neurotrophic factor with selective effect on the survival of rat primary DA 
neurons is mesencephalic astrocyte-derived neurotrophic factor (MANF; Petrova 
et al.  2003  ) . MANF provided DA neuroprotection when administered 6 h before 
and 4 weeks after administration of the neurotoxin 6-hydroxydopamine (Voutilainen 
et al.  2009  ) . Conserved dopamine neurotrophic factor (CDNF) is a vertebrate-
specifi c paralogue of human MANF. CDNF is highly produced in various brain regions, 
including cortex, hippocampus, SN, cerebellum, and locus coeruleus in adult mice. 
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When administered into the striatum from rats 4 weeks after 6-OHDA, CDNF was 
able to restore DA function and prevent degeneration of DA neurons in the SN 
(Lindholm et al.  2007  ) . Thus, data are available in animals that either dying neurons 
are revived or the remaining healthy neurons sprout new processes in response to 
neurotrophic factors. These fi ndings strongly suggest that the most promising 
approach for the treatment of patients with Parkinson’s disease and possibly other 
neurodegenerative disorders involves the neurotrophins.  

    11.3   The Neuroprotective and Neurorestorative Potential 
of  b -Carbolines 

 On the background of these fi ndings we explored the prospects of our drug develop-
ment studies for the treatment of PD. Several promising fi ndings indicate the thera-
peutic potential of some of the  b -carbolines ( b Cs). 

 Concerning the “oxidative stress hypothesis” for nigral DA neuron loss, the  b Cs 
target several factors. All  b Cs can be considered as molecules with signifi cant anti-
oxidant properties. First, this is for purely chemical reasons because of the reactivity 
of the indole part toward oxygen-derived radicals and of the pyridine part of tetra-
hydro- and dihydro- b Cs, as well as hydroxylation to phenolic derivatives. It is notable 
and not generally recognized that  b Cs are present in many foodstuffs, for example, 
in fruit juices that contain two different antioxidative ingredients: ascorbic acid and 
the  b Cs. Based on the in vitro results of Herraiz and Galisteo  (  2003  )  and assuming 
that absorption and bioavailability of the  b Cs are much better than those of the 
highly hydrophilic ascorbic acid, it can be concluded that the  b Cs represent the 
more relevant class of antioxidants in fruit juices and possibly other foodstuffs (see 
Chapter 9). A second action with antioxidant consequences is the potent inhibition 
of monoamine oxidase (MAO) A and B by some  b Cs. Total MAO activity is present 
in the brain in large amounts and it is only apparent when both isoenzymes are inhib-
ited that the DA level increases. In addition, the amount of MAO B is increased in 
PD due to gliosis and in smokers due to a compensatory mechanism for the inhibi-
tion of the enzyme caused by smoke constituents (Launay et al.  2009  ) . Both isoen-
zymes should be inhibited to a certain extent to achieve neuroprotection by 
decreasing, e.g., the detrimental ROS production by the enzyme activity. The remark-
able correlation between the levels of the  b Cs, norharman (inhibitor of MAO B) and 
harman (inhibitor of MAO A) in tobacco smoke and the proportion of the inhibited 
isoenzymes in the human brain found in PET studies, strongly support the view that 
these two  b Cs are reasonable candidates responsible for the inhibition of MAO A 
and B in human brain and other organs from active smokers. The large fi eld study 
showing smoking subjects to have a reduced risk for developing PD support the 
view of preferential neuroprotection of DA neurons by these  b Cs, a preference 
which has also been found previously in electrophysiological and microdialysis 
experiments in rats. A third action concerns the reduced formation of ROS by 
9-methyl- b C (other  b Cs have not yet been investigated). This action is due to 
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improvement in the effi ciency of the respiratory chain in mitochondria, the main 
source of ROS (see chapter 8). ROS induces a glia cell reaction and infl ammatory 
processes in the tissue. In vitro and in vivo studies reported anti-infl ammatory effects 
of 9-methyl- b C not only by reducing the amount of cytokines but also by reducing 
the microglial reaction (see chapter 10). 

 The most promising action of  b Cs with respect to neuroprotective and even 
restorative effects in PD and other neurodegenerative disorders is the induction of 
the transcription of neurotrophic factors. Unpublished data strongly suggest that the 
activation primarily involves stimulation of the protein kinase A-CREB (cAMP-
response-element-binding-protein) signaling pathway (eightfold stimulation in 
human neuroblastoma cells after 7 days of exposition). CREB is the fi nal transcrip-
tion factor of several intracellular cascades including those stimulated by AMPA 
and NMDA glutamate receptors. In addition, CREB and its cofactor CREB binding 
protein are regarded as canonical TH gene regulating transcription factors (Kim 
et al.  1993 ; Ghee et al.  1998 ; Lewis-Tuffi n et al.  2004  ) . 

 Several neurotrophins are produced by DA neurons and others support survival 
specifi cally of DA neurons. Most of the attention within the last 10 years or so has 
focused on two factors: GDNF and neurturin. These factors seem to be the ones 
that work the best on dopaminergic neurons. Other trophic factors extensively 
explored for their therapeutic potential in PD include other neurotrophins, such as 
CDNF and MANF. One of the biggest challenges with developing neurotrophic 
factors as a treatment is getting them into the brain. Trophic factors are proteins, 
and proteins are excluded from the blood–brain barrier (BBB). So, administering 
the factors orally or by intravenous injection is not an option at this point. Studies 
are underway to explore intranasal therapy to deliver GDNF directly to the brain, 
bypassing the BBB. 

 Surgery is the most advanced method for delivering neurotrophins. In one type 
of surgery, the protein is infused into the brain. A concern is that a protein could 
trigger an immune reaction. In the other surgical method, a gene that encodes for the 
protein is delivered within a viral vector to the brain (gene therapy). 

 With viral delivery, the gene for the neurotrotrophic factor is taken up by the 
patient’s cells and the protein is, in theory, produced indefi nitely. Currently, there is 
no way to regulate the gene after it is delivered if an adverse event occurs. Protein 
infusion and gene therapy approaches work very well in animal models of PD, but 
clinical trials produced disappointing results. Therefore, the strategy of applying a 
small molecule which passes the BBB easily and activates the transcription of neu-
rotrophic factors seems to be promising. By activating the natural mechanisms 
involved in gene regulation there is no concern with respect to immune reactions. 
A further advantage of  b Cs is the preference for DA neurons which has been dem-
onstrated in electrophysiological and in vivo microdialysis experiments. Our lead 
compound 9-methyl- b C activated a number of neurotrophins in the striatum in vivo 
(Wernicke et al.  2010  )  and in primary mesencephalic culture from embryonic mice 
(Hamann et al.  2008 ; Polanski et al.  2011    ). Unpublished studies with human neuro-
blastoma cells demonstrate that the stimulation of the transcription of neurotrophic 
factors changes over time. This concerns not only the amount of single factors but 
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also their absolute presence. Thus, regulation seems to depend on certain, yet 
unknown conditions.      
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