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Preface

In the pharmaceutical industry, labeled shelf-life on the immediate container of a
drug product provides the consumer the confidence that the drug product will retain
its identity, strength, quality, and purity throughout the expiration period of the drug
product. Drug shelf-life is usually supported by stability data collected from stability
studies conducted under appropriate storage conditions. The FDA has the authority
to issue recalls for drug products due to a problem occurring in the manufacture or
distribution of the product that may present a significant risk to public health. As
indicated in the FDA Report to the Nation in 2004, stability data not supporting
expiration the date is among the top three reasons for drug recalls in the fiscal year
of 2004, during which 215 prescription drug products and 71 over-the-counter drug
products were recalled. The cost for a recall and possible penalty could be a disaster
for the pharmaceutical company. Thus, stability studies play an important role in drug
safety and quality assurance.

The purpose of this book is to provide a comprehensive and unified presentation
of the principles and methodologies of design and analysis of stability studies. In
addition, this book is intended to give a well-balanced summary of current regulatory
perspectives and recently developed statistical methods in the area. It is our goal to
provide a complete, comprehensive and updated reference and textbook in the area
of stability design and analysis in pharmaceutical research and development.

Chapter 1 provides an introduction to basic concepts regarding stability testing in
pharmaceutical research and development. Also included in this chapter are regulatory
requirements and practical issues for stability studies. Chapter 2 focuses on design and
analysis of short-term stability studies such as accelerated testing. Several methods for
estimating drug expiration dating periods are reviewed in Chapter 3. Chapter 4 com-
pares several commonly employed study designs including bracketing and matrixing
designs. Chapter 5 discusses statistical analysis with fixed batches. Also included in
this chapter are several statistical tests for batch-to-batch variability (or batch simi-
larity). Statistical analysis methods with random batches are discussed in Chapter 6.
Chapter 7 introduces statistical methods for stability analysis under a linear mixed
effects model. Stability analyses with discrete responses, multiple components, and
frozen drug products are studied in Chapters 8–10, respectively. Statistical methods
of stability testing for dissolution including United States Pharmacopeia-National
Formulary (USP-NF) dissolution testing and dissolution profile testing are given
in Chapter 11. Current issues and recent developments in stability studies such as
scale-up and postapproval changes, mean kinetic temperature, and optimality crite-
ria for choosing a stability design are given in the last chapter. Note that some of
the chapters such as Chapter 2 (Accelerated Testing), Chapter 4 (Stability Designs),
Chapter 5 (Stability Analysis with Fixed Batches), and Chapter 6 (Stability Analysis
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with Random Batches) are revised based on chapters in Statistical Design and Anal-
ysis in Pharmaceutical Sciences by Chow, S.C. and Liu, J.P., Marcel Dekker, Inc.,
New York, New York.

From Taylor & Francis, I would like to thank David Grubbs and Sunil Nair for
providing me the opportunity to work on this book and Robert Sims for his editorial
support during the book’s production. I would like to thank colleagues from the
Department of Biostatistics and Bioinformatics and Duke Clinical Research Institute
(DCRI) of Duke University School of Medicine for their support during the prepara-
tion of this book. I wish to thank Annpey Pong, my fiancée, for her encouragement
and support. I also wish to express my gratitude to the following individuals for
their encouragement and support: Robert Califf, M.D., Ralph Corey, M.D., and Kerry
Lee, Ph.D., of Duke Clinical Research Institute; Steven George, Ph.D., of the Cancer
Center at Duke University Medical Center; Yi Tsong, Ph.D., and Greg Campbell,
Ph.D., of the U.S. Food and Drug Administration; and many friends from academia,
the pharmaceutical industry, and regulatory agencies.

Finally, the views expressed are those of the author and not necessarily those of
Duke University School of Medicine. I am solely responsible for the content and
errors of this edition. Any comments and suggestions will be very much appreciated.

Shein-Chung Chow, Ph.D.
Department of Biostatistics and Bioinformatics

Duke University School of Medicine, Durham, North Carolina
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Series Introduction
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ence books for researchers and scientists in academia, industry, and government and to
offer textbooks for undergraduate and graduate courses in the area of biostatistics. This
book series will provide comprehensive and unified presentations of statistical designs
and analyses of important applications in biostatistics, such as those in biopharma-
ceuticals. A well-balanced summary will be given of current and recently developed
statistical methods and interpretations for both statisticians and researchers and sci-
entists with minimal statistical knowledge who are engaged in the field of applied
biostatistics. The series is committed to providing easy-to-understand, state-of-the-art
references and textbooks. In each volume statistical concepts and methodologies will
be illustrated through real-world examples.

For every drug product on the market, the United States Food and Drug Adminis-
tration (FDA) requires that an expiration dating period (or shelf-life) be indicated on
the immediate container label. The expiration date provides the consumer with the
confidence that the drug product will retain its identity, strength, quality, and purity
throughout the expiration period of the drug product. To provide such assurance,
stability studies are often conducted to collect, analyze, and interpret data on the
stability of a drug product under study throughout the expiration period. If the drug
fails to remain within the approved specifications for the identity, strength, quality,
and purity, the drug product is considered unsafe and subject to recall. Statistics plays
an important role in the design and analysis of stability studies for a valid and fair
assessment of the degradation of a drug product under study and consequently for an
accurate and reliable estimation of the expiration dating period of the drug product.

This volume provides a comprehensive and unified presentation of the principles
and methodologies in the design and analysis of stability studies. It gives not only a
well-balanced summary of current regulatory perspectives and recently developed sta-
tistical methods in the area, but also provides a complete, comprehensive, and updated
reference and textbook in the areas of stability design and analysis in pharmaceutical
research and development. It will be beneficial to biostatisticians and pharmaceutical
scientists engaged in the areas of pharmaceutical research and development.

Shein-Chung Chow
Editor-in-Chief

Biostatistics Book Series
Chapman & Hall/CRC
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Chapter 1

Introduction

According to a recent report to the nation issued by the Center for Drug Evaluation
and Research (CDER) of the United States Food and Drug Administration (FDA),
215 prescription drugs and 71 over-the-counter drugs were recalled in the fiscal year
of 2004 (CDER, 2004). The top five reasons for drug recalls in the fiscal year of 2004
were (a) current good manufacturing practice (cGMP) deviations, (b) subpotency, (c)
stability data not supporting expiration date, (d) generic drug or new drug application
discrepancies, and (e) dissolution failure. As indicated in the CDER Report to the
Nation, a drug product must be recalled owing to a problem occurring in the manufac-
ture or distribution of the product that may present a significant risk to public health.
These problems usually but not always occur in one or a small number of batches
of the drug product. Drug stability plays a very important role in pharmaceutical
research and development. For a newly developed drug product, stability analysis not
only provides useful information regarding the degradation of the drug product, but
also determines an expiration dating period of the drug product. For the purpose of
safety and quality assurance, most regulatory agencies such as the FDA require that
an expiration dating period be indicated on the immediate container label for every
drug product on the market.

In the next section, a brief background regarding stability analysis in pharmaceutical
development is provided. Section 1.2 provides an introduction to various aspects of
stability testing such as analytical assay development and validation, accelerated test-
ing, preapproval and postapproval stability testing, and regulatory inspection and
action. Section 1.3 summarizes current regulatory requirements for conduct of stabil-
ity studies. Also included in this section is a comparison of FDA stability guidelines
and International Conference on Harmonization (ICH) guidelines for stability. Some
practical issues that are commonly encountered in design and analysis of stability
studies are discussed in Section 1.4. The aim and scope of the book are described in
the last section of this chapter.

1.1 Background

In early 1970, although some drug products such as penicillin were known to be
unstable, there were no regulations regarding drug stability. Since then it has become a
concern that an unstable drug product may not be able to maintain its identity, strength,
quality, and purity after being stored over a period of time, especially when the drug
product is expected to degrade over time. To ensure the identity, strength, quality, and
purity of drug products, in 1975 the United States Pharmacopeia (USP) included a
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clause regarding the drug expiration dating period. In 1984 the FDA issued the first
stability guideline. However, specific requirements on statistical design and analysis
of stability studies for human drugs and biologics were not available until the FDA
guideline issued in 1987. In 1993 the International Conference on Harmonization
issued guideline on stability based on a strong industrial interest in international
harmonization of requirements for marketing in the European Union (EU), Japan,
and the United States (ICH Q1A, 1993).

The definition of drug stability has evolved over time with different meanings
by different organizations. For example, the stability in the context of dispensing
for pharmacists is defined differently (USP-NF, 2000) from that in the context of
pharmaceutical dosage forms for manufacturers. Carstensen (1990) gave the following
definition: “The term pharmaceutical stability could imply several things. First, it is
applied to chemical stability of a drug substance in a dosage form and this is the
most common interpretation. However, the performance of a drug when given as a
tablet . . . depends also on its pharmaceutical properties (dissolution, hardness, etc.)
All of these aspects must, therefore, be a part of the stability program.” (see also,
Connors et al., 1986; Carstensen and Rhodes, 2000; Yoshioka and Stella, 2000). In
the FDA guidelines for the stability of human drugs and biologics (FDA, 1987, 1998),
stability is defined as “the capacity of a drug product to remain within specifications
established to ensure its identity, strength, quality, and purity.” In this book, unless
otherwise stated, we adopt the definition given in the FDA stability guidelines (FDA,
1987, 1998).

An active ingredient is defined as any component that is intended to furnish phar-
macological activity or other direct effect in the diagnosis, cure, mitigation, treatment,
or prevention of diseases or to affect the structure or any function of the body of man
or other animals. An active ingredient includes those components that may undergo
chemical change in the manufacture of a drug product and be present in the product
in a modified form intended to furnish the specified activity or effect. An inactive
ingredient is defined as any component other than an active ingredient. A component
is any ingredient intended for use in the manufacture of a drug product. A drug
product is considered a finished dosage form, such as tablet, capsule, solution, and
so on, that contains an active ingredient generally, but not necessarily, in asso-
ciation with inactive ingredients. A bulk substance is defined as the pharmaco-
logically active component of a drug product before formulation. The strength
of a drug product is defined as either the concentration of the drug substance or
the potency, which is the therapeutic activity of the drug product as indicated
by appropriate laboratory tests or by adequately developed and controlled clinical
data. A batch of a drug product is defined as a specific quantity of a drug or other
material that is intended to have uniform character and quality, within specific limits,
and is produced according to a single manufacturing order during the same cycle of
manufacture. A lot can be interpreted as a batch, or a specific identified portion of a
batch, having uniform character and quality within specified limits or a drug product
produced in a unit of time or quantity in a manner that ensures its having uniform
character and quantity within specified limits. In stability analysis, the 1987 FDA
stability guideline indicate that manufacturers should establish stability not only for
drug products but also for bulk substances.
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As indicated in the FDA stability guidelines (FDA, 1987, 1998), the purpose of a
stability study is not only to characterize the degradation of a drug product but also
to establish an expiration dating period or shelf-life applicable to all future batches of
the drug product. The ICH stability guidelines indicate that the purpose of stability
testing is to provide evidence on how the quality of a drug substance or drug product
varies with time under the influence of a variety of environmental factors such as
temperature, humidity, and light and enables recommended storage conditions, retest
periods, and shelf-lives to be established (ICH Q1A, 1993; ICH Q1A [R2], 2003).
Some statistical concerns related to the design and analysis of stability studies stated
in the guidelines have become popular topics in the pharmaceutical industry. These
concerns include, but are not limited to, (a) the use of a significant level of 0.25 for
data pooling, (b) the number of batches to be tested, (c) the selection of sampling
time points, and (d) search for optimal designs.

1.2 Regulatory Requirements

As indicated earlier, the U.S. FDA issued the first stability guideline in 1984.
However, specific requirements on statistical design and analysis of stability studies
were not available until 1987 (FDA, 1987). These guidelines were subsequently re-
vised to reflect changes in the regulatory environment for international harmonization
(FDA, 1998). In the interest of having international harmonization of stability testing
requirements for a registration application within the three areas of the EU, Japan,
and the United States, a tripartite guideline for the stability testing of new drug sub-
stances and products was developed by the Expert Working Group (EWG) of the ICH
and released in 1993. In what follows, regulatory requirements for stability testing
as described in the FDA stability guidelines and the ICH guidelines for stability are
briefly described.

1.2.1 FDA Stability Guideline

The purpose of the 1987 FDA stability guideline is twofold. One objective is to
provide recommendations for the design and analysis of stability studies to establish an
appropriate expiration dating period and product requirements. The other objective is
to provide recommendations for the submission of stability information and data to the
FDA for investigational and new drug applications and product license applications.
The 1987 FDA stability guideline indicates that a stability protocol must describe
not only how the stability is to be designed and carried out, but also the statistical
methods to be used for analysis of the data. As pointed out by the 1987 FDA stability
guideline the design of a stability protocol is intended to establish an expiration
dating period applicable to all future batches of the drug product manufactured under
similar circumstances. Therefore, as indicated in the 1987 FDA stability guideline,
the design of a stability study should be able to take into consideration the following
variabilities: (a) individual dosage units, (b) containers within a batch, and (c) batches.
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The purpose is to ensure that the resulting data for each batch are truly representative
of the batch as a whole and to quantify the variability from batch to batch. In addition,
the 1987 FDA stability guideline provides a number of requirements for conducting
a stability study for determination of an expiration dating period for drug products.
Some of these requirements are summarized below.

1.2.1.1 Batch Sampling Consideration

The 1987 FDA guideline indicates that at least three batches and preferably more
should be tested to allow for some estimate of batch-to-batch variability and to test
the hypothesis that a single expiration dating period for all batches is justifiable.
It is a concern that testing a single batch does not permit assessment of batch-to-
batch variability and that testing of two batches may not provide a reliable estimate.
It should be noted that the specification of at least three batches being tested is a
minimum requirement. In general, more precise estimates can be obtained from more
batches.

1.2.1.2 Container (Closure) and Drug Product Sampling

To ensure that the samples chosen for stability study can represent the batch as a
whole, the 1987 FDA stability guideline suggests that selection of such containers
as bottles, packages, and vials from the batches be included in the stability study.
Therefore, it is recommended that at least as many containers be sampled as the
number of sampling times in the stability study. In any case, sampling of at least two
containers for each sampling time is encouraged.

1.2.1.3 Sampling Time Considerations

The 1987 FDA stability guideline suggests that stability testing be done at 3-month
intervals during the first year, 6-month intervals during the second year, and annually
thereafter. In other words, it is suggested that stability testing be performed at 0, 3, 6,
9, 12, 18, 24, 36, and 48 months for a 4-year duration of a stability study. However, if
the drug product is expected to degrade rapidly, more frequent sampling is necessary.

1.2.2 ICH Guidelines for Stability

The ICH Q1A guideline for stability is usually referred to as the parent guideline
for stability because (a) it has been revised a couple of times and (b) it is the foun-
dation of subequent guidelines for stability developed by the ICH EWG since it
was issued in 1993 (ICH Q1A, 1993; ICH Q1A [R2], 2003). The ICH Q1A (R2)
guideline for stability, given in Appendix A, provides a general indication of the
requirements for stability testing but leaves sufficient flexibility to encompass the
variety of practical situations required for specific scientific situations and charac-
teristics for the materials being evaluated. The ICH guidelines for stability establish
the principle that information on stability generated in any of the three areas of the
EU, Japan, and the United States would be mutually acceptable in both of the other
two areas provided that it meets the appropriate requirements of the guideline and the
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TABLE 1.1: ICH Guidelines Related to Stability Testing

ICH Guideline Date Issued Description

Q1A 1993 Stability testing of new drug substances and
products

Q1A (R2) 2003 Stability testing of new drug substances and
products

Q1B 1996 Photostability testing of new drug substance
and products

Q1C 1997 Stability testing of new dosage forms
Q1D 2003 Bracketing and matrixing designs for

stability testing of new drug substances
and products

Q1E 2004 Evaluation of stability data
Q1F 2004 Stability data package for registration

applications in climatic zones III and IV
Q3A 2003 Impurities in new drug substances
Q3B 1996 Impurities in new drug products
Q3B (R) 2003 Impurities in new drug products
Q5C 1995 Stability testing of biotechnological/biological

products
Q6A 1999 Specifications: test procedures and acceptance

criteria for new drug substances and new drug
products: chemical substances

Q6B 1999 Specifications: test procedures and acceptance
criteria for new drug substances and new drug
products: biotechnological/biological products

labeling is in accordance with national and regional requirements. Table 1.1 lists ICH
guidelines related to stability testing issued in the past decade. It should be noted that
the choice of test conditions defined in the ICH guidelines is based on an analysis of
the effects of climatic conditions in the three areas of the EU, Japan, and the United
States. Therefore, the main kinetic temperature in any region of the world can be
derived from climatic data (ICH Q1F, 2004).

Basically, the ICH Q1A (R2) guideline for stability is similar to the 1987 FDA
stability guideline and the current FDA draft guideline for stability (FDA, 1998).
For example, the ICH guidelines suggest that testing under the defined long-term
conditions normally be done every 3 months over the first year, every 6 months over
the second year, and annually thereafter. It requires that the container to be used in the
long-term real-time stability evaluation be the same as or simulate the actual packaging
used for storage and distribution. For the selection of batches, it requires that stability
information from accelerated and long-term testing be provided on at least three
batches and the long-term testing should cover a minimum of 12 months’ duration
on at least three batches at the time of submission. For the drug product, it is required
that the three batches be of the same formulation and dosage form in the containers
and closure proposed for marketing. Two of the three batches should be at least pilot
scale. The third batch may be smaller (e.g., 25,000 to 50,000 tablets or capsules for
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solid oral dosage forms). However, the ICH Q1A (R2) guideline for stability also
requires that the first three production batches of the drug substances or drug product
manufactured postapproval, if not submitted in the original registration application,
be placed on the long-term stability studies using the same stability protocol as in
the approved drug application. For storage conditions, the ICH Q1A (R2) guideline
requires that accelerated testing be carried out at a temperature at least 15◦ C above
the designated long-term storage temperature in conjunction with the appropriate
relative humidity conditions for that temperature. The designated long-term testing
conditions will be reflected in the labeling and retest date. The retest date is the date
when samples of the drug substance should be reexamined to ensure that material
is still suitable for use. The ICH Q1A (R2) guideline for stability also indicates that
where significant change occurs during six months of storage under conditions of
accelerated testing at 40 ± 2◦ C/75 ± 5% relative humidity, additional testing at an
intermediate condition (such as 30 ± 2◦ C/60 ± 5% relative humidity) should be
conducted for drug substances to be used in the manufacture of dosage forms.

For the evaluation of stability data, the ICH Q1A (R2) guideline for stability indi-
cates that statistical methods should be employed to test goodness of fit of the data
on all batches and combined batches (where appropriate) to the assumed degradation
line or curve. If it is inappropriate to combine data from several batches, the overall
retest period may depend on the minimum time a batch may be expected to remain
within acceptable and justified limits. A retest period is defined as the period of time
during which the drug substance or drug product can be considered to remain within
specifications and therefore acceptable for use in the manufacture of a given drug
product, provided that it has been stored under the defined conditions.

1.2.3 Remarks

As indicated earlier, the EU, Japan, and the United States have different but simi-
lar stability requirements (see, e.g., Mazzo, 1998). Based on different requirements,
pharmaceutical companies may have to conduct stability tests repeatedly for different
markets. The ICH guidelines for stability are an attempt to harmonize these require-
ments so that information generated in any of the three areas of the EU, Japan, and the
United States would be acceptable to the other two areas. In what follows, we briefly
summarize the differences in requirements regarding stability aspects among the EU,
Japan, and the United States, which were discussed in a workshop on stability testing
held in Brussels, Belgium, November 5–7, 1991.

1.2.3.1 Minimum Duration of Stability Testing

In the EU it is required to file an application based on the results of stability tests
performed after at least 6 months of storage. In the United States, however, the FDA
requires that a minimum of 12 months of stability data be provided. The Ministry of
Health, Labor, and Welfare (MHLW) of Japan requires 12 months. Statistically, it is
undesirable to extrapolate a drug shelf-life too far beyond the sampling intervals under
study. Therefore, as a rule of thumb, it is suggested that stability extrapolation not ex-
tend beyond 6 months. Stability data should be obtained to cover up to 6 months prior to
the desired expiration dating period. In other words, if a desired shelf-life is 18 months,
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stability testing should cover at least a one year period. However, as indicated in the
1987 FDA stability guideline, although a tentative shelf-life may be granted based
on a short-term stability study, the pharmaceutical companies are expected to have
commitment to obtain complete data that cover the full expiration dating period.

1.2.3.2 Minimum Number of Batches Required for Stability Testing

Under the current stability guideline, the FDA requires at least three batches, and
preferably more should be tested to allow a reasonable estimation of the batch-to-
batch variability and to test the hypothesis that a single expiration dating period for
all future batches is justifiable. However, the EU requires only that stability data on
two batches of the active drug substances be submitted for the evaluation of a drug
expiration period. For the number of batches required in stability testing, the MHLW’s
requirement is consistent with that of the FDA. The 1987 FDA stability guideline
provides some justification for the use of a minimum number of three batches for
stability testing. The 1987 FDA stability guideline indicates that a single batch does
not permit assessment of batch-to-batch variability, and testing two batches provides
an unreliable estimate. To provide a more precise estimate of drug shelf-life, it is
preferred to have stability testing on more batches. However, practical considerations
such as cost, resources, and capacity may prevent the collection of data from more
batches. As a result, the specification that at least three batches be tested has become a
minimum requirement representing a compromise between statistical and regulatory
considerations and actual practice.

1.2.3.3 Definition of Room Temperature

According to the United States Phamacopeia-National Forumlary (USP-NF), the
definition of room temperature is between 15 and 30◦ C in the United States. However,
in the EU, the room temperature is defined as being 15 to 25◦ C, while in Japan, it is
defined being 1 to 30◦ C. If the drug product is sensitive to the temperature range 0
to 30◦ C, degradation of the drug product may vary from one temperature to another
within the range. Therefore, it is important to investigate the stability of the drug
product at different ranges of temperatures if the drug product is to be marketed in
different regions. In this case harmonization of the definition of room temperature
may not be useful. However, if the drug product is not sensitive to this range of
temperatures, harmonization of the definition of room temperatures may be needed
so that similar stability testing need not be conducted repeatedly to fulfill different
requirements.

1.2.3.4 Extension of Shelf-Life

In practice, when a new drug application (NDA) submission is filed, there are usually
limited data available on the stability of the drug product. In the United States it is
a common practice for the FDA to tentatively grant marketing authorization of the
drug product based on limited stability data. However, it is required by the FDA that
a pharmaceutical company submit the results of stability studies obtained up to the
expiration date granted. However, the EU does not accept an extension of shelf-life
beyond real-time data submitted.
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1.2.3.5 Least Stable Batch

When there is a batch-to-batch variation, or the batches are not similar (equivalent), the
European Health Authorities expect the pharmaceutical industry to consider the least
stable batch for the determination of shelf-life and to refrain from averaging the values
statistically. When there is batch-to-batch variation, the 1987 FDA stability guideline
suggests considering the minimum of individual shelf-lives. It should be noted that
the use of the least stable batch for determination of shelf-life is conservative.

1.2.3.6 Least Protective Packaging

The MHLW of Japan prefers to determine the drug shelf-life based on the results of
stability testing using the least stable packaging material instead of testing the product
in all packages. The 1987 FDA stability guideline, however, encourages sampling of
at least two containers of each packaging material for each sampling time in all cases.
The idea of testing the least stable packaging material is well taken. However, how
to identify the least stable packaging material is an interesting statistical question.
To identify the least stable packaging material, a pilot study may be required. As
a result, a fractional factorial design may be applied. However, it should be noted
that the selected pilot design should be able to avoid any possible confounding and
interaction effects.

1.2.3.7 Replicates

In Japan each test must be repeated three times without provision for scientific and
statistical justification. The 1987 FDA stability guideline, however, encourages testing
an increasing number of replicates at later sampling times, particularly the latest
sampling time. The reason for doing this is that it will increase the precision of the
estimation of the expiration dating period because the degradation is most likely to
occur at later sampling time points than at earlier time points for long-term stability
studies. Although the accuracy and precision of the estimated shelf-life based on
replicates of test results will be improved, it is not clear how much improvement the
test replicates will achieve. Replications at each sampling time point not only increase
the precision of the estimated shelf-life, but also provide data on the lack-of-fit test for
fitting individual simple linear regressions to each batch. In practice, it is of interest
to investigate the impact of replicates at each sampling time point on the accuracy
and precision of shelf-life estimation.

1.3 Stability Testing

When a new pharmaceutical compound is discovered, assay and test procedures
are necessarily developed for determining the active ingredient of the compound
in compliance with USP-NF standards for the identity, strength, quality, and purity
of the compound (USP-NF, 2000). An analytical (or assay) method is usually de-
veloped based on instruments such as gas chromatography (GC), high-performance
liquid chromatography (HPLC) and liquid chromatography/mass spectrometry/mass
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spectrometry (LC/MS/MS). cGMP indicates that an instrument must be suitable for
its intended purpose and be capable of producing valid results. The instrument is to
be calibrated, inspected, and checked routinely according to written procedures. For
the development of an assay method, a common approach is to have a number of
known standard concentration preparations put through a given instrument (e.g., GC,
HPLC, or LC/MS/MS) to obtain the corresponding responses (e.g., absorbance or
peak response). On the basis of these standards and their corresponding responses, an
estimated calibration curve (or standard curve) can be obtained by fitting an appro-
priate statistical model between these standards and their corresponding responses.
For a given unknown sample, the concentration can be determined based on the stan-
dard curve by replacing the dependent variable with its response. cGMP indicates
that, where practical, the calibration standards used for assay development must be
in compliance with USP-NF standards. If USP-NF standards are not practical for the
parameter being measured, an independent reproducible standard must be used. If no
applicable standards exist, an in-house standard must be developed and used.

1.3.1 Stability-Indicating Assay

In the pharmaceutical industry, stability testing is referred to as stability-indicating
assay, which is an analytical method that is employed for the analysis of stability
samples collected from stability studies. The ICH Q1A (R2) guideline for stabil-
ity requires that a stability-indicating assay method be established for stability test-
ing. The ICH Q1A (R2) guideline for stability explicitly requires conduct of forced
decomposition studies under a variety of conditions such as pH, light, oxidation, dry
heat, and so on, and separation of drug from degradation products. The stability-
indicating method is expected to allow analysis of individual degradation products
(ICH Q1A, 1993; ICH Q1A (R2), 2003). In the past two decades, ICH has issued
a number of guidelines regarding requirements for stability testing such as the ICH
Q1A guideline for stability-indicating testing and stress testing methods (ICH Q1A,
1993), the ICH Q1B guideline on photostability testing (ICH Q1B, 1996), the ICH
Q3B guideline on impurities and for validation of analytical procedures (ICH Q3B,
1996), the ICH Q6A guideline on specifications (ICH Q6A, 1999), and the ICH
Q5C guideline on stability testing of biotechnological and biological products (ICH
Q5C, 1995). However, none of the ICH guidelines provides an exact definition of a
stability-indicating method.

Elaborate definitions of stability-indicating method are given in the 1987 FDA sta-
bility guideline and the 1998 FDA draft stability guideline. In this book we will adopt
the definition described in the 1998 FDA draft stability guideline. Where stability-
indicating method is defined as a validated quantitative analytical method that can
detect the changes with time in the chemical, physical, or microbiological proper-
ties of the drug substance and drug product and that are specific so that the con-
tents of active ingredients, degradation products, and other components of interest
can be accurately measured without interference (FDA, 1998). Unlike the defini-
tion given in the 1987 FDA stability guideline, the above definition emphasizes the
requirement of validation and the requirement of analysis of degradation products
and other components, apart from the active ingredients.
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Bakshi and Singh (2002) classified the stability-indicating assay method into two
types of assay methods, namely the specific stability-indicating assay method and
the selective stability-indicating assay method. The specific stability-indicating assay
method is defined as a method that is able to measure unequivocally the drug in the
presence of all degradation products, excipients and additives expected to be present
in the formulation. The selective stability-indicating assay method is defined as a
method that is able to measure unequivocally the drug and all degradation products
in the presence of excipients and additives expected to be present in the formulation.
By this definition, the selective stability-indicating assay method is a procedure that
is selective to the drug as well as its degradation products (separates all of them qual-
itatively) and is also specific to all of the components (measures them quantitatively).

Bakshi and Singh (2002) proposed a systematic approach for the development of
a stability-indicating method by following the following steps:

� Step 1: Critical study of the drug structure to assess the likely decomposition
route(s)

� Step 2: Collection of information on physicochemical properties

� Step 3: Stress (forced decomposition) studies

� Step 4: Preliminary separation studies on stress samples

� Step 5: Final method development and optimization

� Step 6: Identification and characterization of degradation products and
preparation of standards

� Step 7: Validation of the stability-indicating assay method

In their review article Bakshi and Singh (2002) pointed out that while the current
requirement is to subject the drug substance to a variety of stress conditions and
then separate the drug from all degradation products, many studies have only shown
the separation of the drug from known synthetic impurities and potential degradation
products without subjecting it to any type of stress. There are also reports in which the
drug has been decomposed by exposing it to one, two, three, four, or more conditions
among acidic, neutral, or alkaline hydrolysis, photolysis, oxidation, and thermal stress.
Very few studies are truly stability-indicating, where the drug has been exposed to
all types of stress conditions and attempts have been made to separate the drug from
degradation products.

1.3.2 Analytical Method Validation

Current Good Manufacturing Practices (cGMP) indicates that the suitability of the
instrument under actual conditions of use must be verified. If computers are used as
part of an automated system, the computer software programs must be validated by
adequate, documented testing. cGMP (see, e.g., Part 21 Codes of Federal Regula-
tions [CFR], Section 211.194 [a]) requires that the assay method must meet certain
standards of accuracy and reliability. Since assays and specifications of the USP-NF
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TABLE 1.2: Analytical
Validation Parameters

Accuracy
Precision
Limit of detection
Limit of quantitation
Selectivity
Range
Linearity
Ruggedness

constitute the legal standards recognized by the official compendia of the Federal
Food, Drug, and Cosmetic Act, the use of assay methods described in the USP-NF is
not required to validate accuracy and reliability. Any new or revised assay methods
proposed for submission to the compendia must be validated and documented with
sufficient laboratory data and information according to the requirements stated in the
USP-NF. The new or revised assay methods are then reviewed for their relative merits
and disadvantages by the members of the USP Committee of Revision. The USP-NF
indicates that the validation of an analytical method is the process by which it is estab-
lished, by laboratory studies, that the performance characteristics of the method meet
the requirements for the intended analytical applications. The performance character-
istics of an analytical method or a testing procedure can be assessed through a set of
analytical validation parameters. A set of analytical validation parameters suggested
by the USP-NF is listed in Table 1.2 (see also, Chow, 1997). Note that validation of
analytical methods has been extensively covered in the ICH Q2A and Q2B guidelines
(ICH Q2A, 1994; ICH Q2B, 1996) and in an FDA guidance (FDA, 2000). Detailed
information regarding statistical methods for assessment of these analytical validation
parameters can be found in Chow and Liu (1995).

1.3.2.1 An Example

Analytical method development and validation is extremely important in stability
testing. An invalidated analytical method could have an impact on stability testing. It
may not be able to characterize the degradation of the drug product over time accu-
rately with certain reliability. Moreover, it may not provide an accurate estimate of
the drug expiration dating period. One typical example is the stability problem found
in levothyroxine sodium products as described in Federal Register (Vol, 62, No. 157,
1997). Levothyroxine sodium is the sodium salt of the levo isomer of the thyroid
hormone thyroxine (T4). Thyroid hormones affect protein, lipid, and carbohydrate
metabolism and growth and development. They stimulate the oxygen consumption of
most cells of the body, resulting in increased energy expenditure and heat production
and possess a cardiostimulatory effect that may be the result of a direct action on the
heart. Levothyroxine sodium was first introduced into the market before 1962 without
an approved NDA. Orally administered levothyroxine sodium is used as replacement
therapy in conditions characterized by diminished or absent thyroid function such as
cretinism, myxefema, nontoxic goiter, or hypothyroidism. The diminished or absent
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thyroid function may result from functional deficiency, primary atrophy, partial or
complete absence of the thyroid gland, or the effect of surgery, radiation, or antithy-
roid agents. Until the HPLC method was used, the assay method based on iodine
content was used, which is not a stability-indicating assay. Using the HPLC method,
there have been numerous reports indicating problems with the stability of orally ad-
ministered levothyroxine sodium products. As a result, the FDA in conjunction with
the United States Pharmacopeial Convention took the initiative in organizing a work-
shop in 1982 to set the standard for the use of a stability-indicating HPLC assay for the
quality control of thyroid hormone drug products (Garnick et al., 1982). In addition
to raising concerns about the consistent potency of orally administered levothyroxine
sodium products, many reports suggest that the customary 2-year shelf-life may not
be appropriate for these products because they are prone to experience accelerated
degradation in response to a variety of factors such as light, temperature, air, and hu-
midity (Won, 1992). Won (1992) indicated that stability data of levothyroxine sodium
exhibit a biphasic first-order degradation profile with an initial fast degradation rate
followed by a slower rate. To compensate for the initial accelerated degradation, some
pharmaceutical companies use an overage of active ingredient in their formulation,
which can lead to occasional instances of superpotency.

1.3.3 Impurities

The USP-NF defines an impurity as any component of a drug substance (excluding
water) that is not the chemical entity defined as the drug substance. It has been
demonstrated that impurities in a finished drug product can cause degradation and
lead to stability problems. Further, some adverse reactions in patients have been traced
to impurities in the active ingredient. Therefore, the presence or absence of impurities
at the time of clinical trial and stability testing is a very important element of drug
testing and development, and the appearance of an impurity in scaled-up product that
was not present during test stages presents serious questions about the stability of the
product and its impact on safety and efficacy.

The FDA expects the manufacturer to establish an appropriate impurity profile
for each bulk pharmaceutical chemical (BPC) based on adequate consideration of
the process and test results (FDA, 1994). Because different manufacturers synthesize
drug substances by different processes and, therefore, will probably have different
impurities, the USP-NF has developed the ordinary impurities test in an effort to
establish some specification (USP-NF, 2000). Also, in order to protect proprietary
information, tests for specific impurities and even solvents are typically not listed in
the compendia. The USP-NF also notes that the impurity profile of a drug substance
is a description of the impurities present in a typical lot of drug substance produced
by a given manufacturing process. Such impurities not only should be detected and
quantitated, but should also be identified and characterized when this is possible with
reasonable effort. Individual limits should be established for all major impurities. The
USP-NF provides extensive coverage of impurities in the following three sections:

� Impurities in Official Articles (USP-NF Section 1086): This section defines
five types of impurities, both known and unknown including foreign substances,
toxic impurities, concomitant components (such as isomers or racemates),
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signal impurities (which are process related), and ordinary impurities. The
USP-NF notes that when a specific test and limit is specified for a known
impurity, generally a reference standard for that impurity is required. Two of
the impurities are singled out for in-depth coverage, ordinary impurities and
organic or volatile impurities.

� Ordinary Impurities (USP-NF Section 466): These are generally specified
for each BPC in the individual monograph. The method of detection involves
comparison with a USP-NF reference standard on a thin-layer chromatographic
(TLC) plate, with a review for spots other than the principal spot. The ordi-
nary impurity total should not exceed 2% as a general limit. Be sure to review
the extensive USP-NF coverage of eight factors that should be considered in
setting limits for impurity levels. Related substances are defined as those struc-
turally related to a drug substance such as a degradation product or impurities
arising from a manufacturing process or during storage of the BPC. Process
contaminants are substances including reagents, inorganics (e.g., heavy metals,
chloride, or sulfate), raw materials, and solvents. The USP-NF notes that these
substances may be introduced during manufacturing or handling procedures.
The third and most recent USP-NF section regarding impurities is one that
appears in the USP-NF XXII third supplement.

� Organic or Volative Impurities (USP-NF Section 467): Several GC methods
are given for the detection of specific toxic solvents, and the determination
involves use of a standard solution of solvents. There are limits for specified
organic volatile impurities present in the BPC unless otherwise noted in the
individual monograph. As the USP notes, the setting of limits on impurities in
a BPC for use in an approved new drug may be much lower than those levels
encountered when the substance was initially synthesized. Further, additional
purity data may be obtained by other methods such as gradient HPLC. Be sure
to ask for complete impurity profiles. In preparation for a BPC inspection, these
sections of the USP-NF should be given a detailed review.

1.3.4 Preapproval and Postapproval Testing

Basically, there are two types of stability studies: short-term and long-term studies.
A typical short-term stability study is an accelerated stability-testing study under
stressed storage conditions. The purpose of an accelerated stability-testing study is
not only to determine the rate of chemical and physical reactions, but also to pre-
dict a tentative expiration dating period under ambient marketing storage conditions.
Information regarding the rate of degradation and tentative expiration dating period are
vital and useful for designing long-term stability studies. Long-term studies, which
include both preapproval and postapproval stability studies are usually conducted
under ambient conditions. A preapproval stability study is also known as an NDA
stability study, while a postapproval stability study is usually referred to as a market-
ing stability study. The purpose of an NDA stability study is to determine (estimate)
a drug expiration dating period applicable to all future batches. The objective of a
marketing stability study is to make sure the drug product currently on the market can



14 Introduction

meet USP-NF specifications up to the end of the expiration dating period (Chow and
Shao, 1990a). The major difference between an NDA stability study and a marketing
stability study is that a marketing study is usually conducted on a large number of
batches with fewer sampling time points.

1.3.5 Regulatory Inspection and Action

As indicated in the FDA Guide to Inspection of Bulk Pharmaceutical Chemicals
(FDA, 1994), regulatory inspection is intended to aid agency personnel in determining
whether the methods used in, and the facilities and manufacturing controls used for,
the production of BPCs are adequate to ensure that they have the quality and purity
that they purport or are represented to possess.

1.3.5.1 Inspectional Approach

The FDA notes that the inspectional approach for coverage of a BPC operation is the
same whether or not that the BPC is referenced as an active ingredient in a pending
application. The purpose, operational limitations, and validation of the critical pro-
cessing steps of a production process should be examined to determine that the firm
adequately controls such steps to ensure that the process works consistently. Over-
all, the inspection must determine the manufacturer’s capability to deliver a product
that consistently meets the specifications of the bulk drug substance that the finished
dosage form manufacturer listed in the application or the product needed for research
purposes. BPC manufacturing plants often produce laboratory scale or pilot batches.
Scale-up to commercial full-scale (routine) production may involve several stages,
and data should be reviewed to demonstrate the adequacy of the scale-up process. Such
scale-ups to commercial size production may produce significant problems in consis-
tency among batches. Pilot batches serve as the basis for establishing in-process and
finished product purity specifications. Typically, manufacturers will generate reports
that discuss the development and limitation of the manufacturing process. Summaries
of such reports should be reviewed to determine if the plant is capable of adequately
producing the bulk substance. The reports serve as the basis for the validation of
the manufacturing and control process and the basic documentation that the process
works consistently.

A good starting point for the BPC inspection is a review of product failures evi-
denced by the rejection of a batch that did not meet specifications, return of a product
by a customer, or recall of the product. The cause of the failure should have been
determined by the manufacturer, a report of the investigation prepared, and subse-
quent corrective action initiated and documented. Such records and documents should
be reviewed to ensure that such product failures are not the result of a process that
has been poorly developed or one that does not perform consistently. In the analyti-
cal laboratory, specifications for the presence of unreacted intermediates and solvent
residues in the finished BPC should be reviewed. These ranges should be at or near
irreducible levels. An inspectional team consisting of investigators and engineers,
laboratory analysts, or computer experts should participate in the inspection, as
appropriate, when resources permit.
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1.3.5.2 Stability Testing

Most BPC manufacturers conduct stability-testing programs for their products; how-
ever, such programs may be less comprehensive than the programs now required
for finished pharmaceuticals. Undetected changes in raw materials specifications, or
subtle changes in manufacturing procedures, may affect the stability of BPCs. This,
together with the generally widespread existence of stability-testing programs, make
it reasonable to require such programs for BPCs. The FDA notes that a stability-
testing program for BPCs should contain the following features: (a) the program
should be formalized in writing, (b) stability samples should be stored in containers
that approximate the market container, (c) the program should include samples from
the first three commercial-size batches, (d) a minimum of one batch a year, if there
is one, should be entered in the program, (e) the samples should be stored under
conditions specified on the label for the marketed product, (f) it is recommended that
additional samples be stored under stressful conditions (e.g., elevated temperature,
light, humidity, or freezing) if such conditions can be reasonably anticipated, and
(g) stability-indicating methods should be used. In addition, the FDA notes that con-
ducting a stability-testing program does not usually lead to a requirement to employ
expiration dates. If testing does not indicate a reasonable shelf-life, for example, two
years or more, under anticipated storage conditions, then the BPC can be labeled with
an expiration date or should be reevaluated at appropriate intervals. If the need for
special storage conditions exists, for example, protection from light, such restrictions
should be placed on the labeling.

It should be noted that reserve samples of the released BPCs should be retained
for one year after distribution is complete or for one year after the expiration or
reevaluation date. In addition, documentation of the BPC manufacturing process
should include a written description of the process and production records similar to
those required for dosage form production. However, it is likely that computer systems
will be associated with BPC production. Computer systems are increasingly used to
initiate, monitor, adjust, and otherwise control both fermentations and syntheses.
These operations may be accompanied by recording charts that show key parameters
(e.g., temperature) at suitable intervals or even continuously throughout the process.
In other cases key measurements (e.g., pH) may be displayed on a television screen
for that moment in time but are not available in hard copy. In both cases conventional
hard-copy batch-production records may be missing. In other words, records showing
addition of ingredients, actual performance of operations by identifiable individuals,
and other information usually seen in conventional records may be missing.

1.3.5.3 Drug Recalls Owing to Stability Problems

As indicated earlier, 215 prescription drugs and 71 over-the-counter drugs were
recalled in the fiscal year of 2004 (CDER, 2004). The top 10 reasons for drug recalls
in the fiscal year of 2004 are listed in Table 1.3. As can be seen, “stability data do
not support expiration date” is listed as the number 3 reason for drug recalls. Most
recently, three drug products were recalled owing to problems in stability. The reasons
include: (a) the incorrect stability test method was used to ensure that the product
meets its specifications throughout its shelf-life (Carbidopa, Mylan), (b) the incorrect
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TABLE 1.3: Top 10 Reasons for Drug Recalls
in Fiscal Year 2004

cGMP deviations
Subpotency
Stability data does not support expiration date
Generic drug or new drug application discrepancies
Dissolution failure
Label mix-ups
Content uniformity failure
Presence of foreign substance
pH failures
Microbial contamination of nonsterile products

expiration date was on the label (Citalopram Hydrobromide, Ivax), and (c) stability
data do not support expiration date (FiberCon, Wyeth).

1.3.6 Other Related Tests

In addition to potency testing for stability, related tests including weight variation
testing, content uniformity testing, dissolution testing, and disintegration testing are
usually performed at various stages of the manufacturing process of a drug product to
ensure that the product meets the USP-NF standards for identity, strength, quality, and
purity of the drug product. These tests are usually referred to as USP tests. As indicated
in the FDA Report to the Nation: 2004, stability data not supporting expiration date,
dissolution failure, and content uniformity are the top 3, 5, and 7 reasons, respectively,
for drug recalls in fiscal year 2004. The USP-NF requires that a specific sampling
plan for the individual USP test be employed and that specific acceptance criteria be
met to pass the test. Although these USP tests are mainly performed for the purpose
of quality assurance and quality control (QA/QC), results of these USP tests may or
may not directly or indirectly have an impact on the stability of the drug product.
Note that the uniformity of dosage units is usually demonstrated either by weight
variation testing or content uniformity testing. Requirements for testing the uniformity
of dosage units are described in the USP-NF. The requirements apply both to dosage
forms containing a single active ingredient and to dosage forms containing two or
more active ingredients. Specific sampling plans, acceptance criteria, and procedures
of these USP tests are briefly outlined below (see also Chow and Liu, 1995).

1.3.6.1 Weight Variation Testing

For the determination of dosage uniformity by weight variation, accurately weigh ten
dosage units individually and calculate the average weight. From the result of the
assay, as directed in the individual monograph of the USP-NF, calculate the content
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of the active ingredient in each of the 10 units, assuming homogenous distribution of
the active ingredient. The requirements for dosage uniformity are met if the amount
of the active ingredient in each of the 10 dosage units lies within the range of 85 to
115% of label claim and the relative standard deviation (or coefficient of variation)
is less than 6.0%. If one unit is outside the range of 85 to 115% of label claim
and no unit is outside the range of 75 to 125% of label claim, or if the relative
standard deviation is greater than 6.0%, or if both conditions prevail, test 20 additional
units. The requirements are met if not more than one unit of the 30 is outside the
range of 85 to 115% of label claim and no unit is outside the range of 75 to 125%
of label claim and the relative standard deviation of the 30 dosage units does not
exceed 7.8%.

1.3.6.2 Content Uniformity Testing

For the determination of dosage uniformity by assay of individual units, the USP-NF
requires that the following be done. First, assay 10 units individually, as described
in the assay in the individual monograph, unless specified otherwise in the test for
content uniformity. Where a special procedure is specified in the test for content
uniformity in the individual monograph, the results should be adjusted. Note that
the requirements as described for weight variation apply only if the average of the
limits specified in the potency definition in the individual monograph is 100% or
less. In the case where the average value of the dosage units tested is greater than or
equal to the average of the limits specified in the potency definition in the individual
monograph, replace “label claim” with “label claim multiplied by the average of the
limits specified in the potency definition in the monograph divided by 100.”

1.3.6.3 Dissolution Testing

The USP-NF contains an explanation of the test for acceptability of dissolution rates.
The requirements are met if the quantities of active ingredient dissolved from the
units conform to the USP-NF acceptance criteria. Let Q be the amount of dissolved
active ingredient specified in the individual monograph, which is usually expressed as
a percentage of label claim. The USP-NF dissolution acceptance criteria is composed
of a three-stage sampling plan. For the first stage (S1), six dosage units are to be tested.
The requirement for the first stage is met if each unit is not less than Q + 5%. If the
product fails to pass S1, an additional six units will be tested at the second stage (S2).
The product is considered to have passed if the average of the 12 units from S1 and S2

is equal to or greater than Q and if no unit is less than Q − 15%. If the product fails
to pass both S1 and S2, an additional 12 units will be tested at a third stage (S3). If the
average of all 24 units from S1, S2 and S3 is equal to or greater than Q, no more than
two units are less than Q − 15%, and no unit is less than Q − 25%, the product has
passed the USP-NF dissolution test. Under this sampling plan and acceptance, Chow,
Shao, and Wang (2002b) derived the probability lower bound for the USP-NF disso-
lution test.
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1.3.6.4 Disintegration Testing

Similar to dissolution testing, disintegration testing has a two-stage sample plan. In the
first stage (S1) of disintegration testing, six dosage units are tested. The requirements
are met if all six units disintegrate completely. Complete disintegration is defined as
that state in which any residual of the unit, except fragments of an insoluble coating
or capsule shell, that may remain on the test apparatus screen is a short mass with no
palpably firm core. If one or two units fail to disintegrate completely, repeat the test
on 12 additional units at the second stage (S2). The requirements are met if no fewer
than 16 units of the total of 18 units tested disintegrate completely.

1.4 Practical Issues

1.4.1 Accelerated Testing

At a very early stage of drug development, the primary stability data usually are not
available to characterize the degradation of the drug product. To determine the rates
of chemical and physical reactions and their relationships with storage conditions
such as temperature, moisture, light (Tonnesen, 2004), and others, accelerated stabil-
ity testing is usually conducted. An accelerated stability test is a short-term stability
study conducted under exaggerated (or stressed) conditions to increase the rate of
chemical or physical degradation of a drug substance or drug product. Thus, ac-
celerated testing is also known as stressed testing. As indicated in the 1987 FDA
stability guideline, exaggerated storage conditions may include temperature (e.g., 5,
50 or 75◦ C), humidity of 75% or greater, exposure to various wavelengths of electro-
magnetic radiation, and storage in an open container. Exaggerated storage conditions
are used to accelerate the reaction rate so that significant degradation of the drug
product can be observed in a relatively short period of time (e.g., a few months).
Based on the degradation data observed, the kinetic parameters of the reaction rate
can be estimated. A predicted shelf-life under marketplace storage conditions can
then be obtained by extrapolation. Note that the extrapolation from stressed testing
conditions to ambient conditions is usually done based on established relationships
between kinetic parameters and storage conditions. In the pharmaceutical industry
the Arrhenius equation is often employed to relate the degradation reaction rate and
the corresponding temperature. Other models such as the Eyring equation (Kirkwood,
1977) can also be used.

The primary objective of accelerated stability testing is to provide an accurate and
reliable estimate of the tentative expiration dating period. To achieve this objective, it
is important to select an efficient design that will provide the maximum information to
an accelerated stability test. Since the amount of information provided by a design is
a function of the inverse of the variance, in practice it is recommended that the design
generate an estimate of time on the logarithmic scale with the smallest possible
variance. More details regarding chemical kinetic reaction, statistical analysis, and
verification of model assumptions for an accelerated testing are given in the next
chapter.
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1.4.2 Batch Similarity

As indicated in the FDA stability guideline, a minimum requirement for a stability
study is to test at least three batches. If batch-to-batch variability is small, it would
be advantageous to combine the data into one overall estimate with high precision
and a large degree of freedom for mean squared error. However, combining the data
should be supported by preliminary testing of batch similarity. The similarity of the
degradation curves for each batch tested should be assessed by applying statistical
tests of the equality of slopes and of zero-time intercepts at a significant level of
α = 0.25% (Bancroft, 1964). Chow and Shao (1989) proposed several tests for
batch-to-batch variability under a normality assumption. If tests for equality of slopes
and for equality of intercepts do not result in rejection at the 25% level of significance,
the data from the batches would be pooled. However, if tests result in p-values less
than 0.25, a judgment would be made by the FDA reviewers as to whether pooling
would be permitted.

It should be noted that there are some criticisms regarding the use of a significance
level of 0.25. Among these criticisms, the following are probably the most common:

� Acceptance of rejection of the null hypothesis if there is no difference in slopes
among batches does not guarantee that the batches have similar degradation
rates. This is because that problem of similarity is incorrectly formulated by
the wrong hypothesis of difference.

� It is not a common practice to increase test power by increasing the level of
significance.

In addition, Lin and Tsong (1991) pointed out that the level of significance required
for a given minimum relative efficiency of the estimate based on results of the pooling
test depends on sample size, time points measured, mean slope of all batches, and
the tightness of the stability data. Hence, for a test of a fixed level of significance, the
pooling test will have low power for a given batch-to-batch difference when either
absolute magnitude of mean slope or within-batch variability is large.

1.4.3 Matrixing and Bracketing Designs

Suppose we are interested in conducting a stability study under ambient conditions
(e.g., 60% relative humidity and 25◦ C room temperature). A complete (full) factorial
stability study consisting of three batches for each combination of three strengths (e.g.,
15 mg, 30 mg, and 60 mg) and three package types (e.g., bottle, blister, and tube) is
considered. As a result, a full factorial design consists of 33 = 27 combinations. If
each combination is to be tested at the time intervals of 0, 3, 6, 9, 12, 18, 24, 36, and 48
months for a 4-year stability study, there are a total of 270 (3 × 3 × 3 × 10) assays. In
practice, if every batch by strength-by-package combination is tested (i.e., a complete
factorial design is used), a substantial expense is involved. Besides, it is in the best
interest of the pharmaceutical companies that a longer shelf-life can be claimed by
testing fewer batches for strength-by-package combinations within a short period of
time. Therefore, for considerations of time and cost, a fractional factorial design is
often used to reduce the total number of tests (or assays).
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Although a fractional factorial design is preferred in the interest of reducing the
number of tests (i.e., cost), it suffers the following disadvantages:

� If there are interactions such as a strength-by-package interaction, the data
cannot be pooled to establish a single shelf-life. In this case it is recommended
that individual shelf-lives be obtained for each combination of strength and
package. However, we may not have three batches for each combination of
strength and package for a fractional factorial design.

� We may not have sufficient precision for the estimated drug shelf-life.

Generally, a reduction of stability tests could be achieved if we apply a different
method such as a matrixing design or a bracketing design (see, e.g., Barron, 1994;
Lin, 1994; Nordbrock, 1994), which are also special cases of fractional factorial
designs. More details regarding matrixing and bracketing designs are provided in
Chapter 4.

1.4.4 Stability Analysis with Random Batches

To establish an expiration dating period, the 1987 FDA stability guideline requires
that at least three batches, and preferably more, be tested in stability analysis to
account for batch-to-batch variation so that a single shelf-life is applicable to all
future batches manufactured under similar circumstances. If there is no documented
evidence for batch-to-batch variation (i.e., all batches have the same shelf-life), the
single shelf-life can be determined based on the ordinary least squares method as the
time point at which the 95% confidence bound for the mean degradation curve of
the drug characteristics intersects the approved lower specification limit. When there
is a significant batch-to-batch variation, a typical approach is to consider so-called
stability analysis with fixed effects model (Chow and Liu, 1995). This fixed effects
model may not be appropriate because statistical inference about the expiration dating
period obtained can only be made to the batches under study and cannot be applied to
future batches. As indicated in the FDA stability guidelines, the batches used in long-
term stability studies for establishment of drug shelf-life should constitute a random
sample from the population of future production batches. As a result, batch should
be considered a random variable in stability analysis (see, e.g., Brandt and Collings,
1989; Murphy and Weisman, 1990; Ruberg and Hsu, 1990; Chow and Shao, 1991;
Ho, Liu, and Chow 1993; Grimes and Foust, 1994; Lee and Gagnon, 1994; Silverberg,
1997) . For this purpose, Chow and Shao (1991) and Shao and Chow (1994) proposed
statistical methods for stability analysis with random batches.

Note that the difference between a random effects model and a fixed effects model
is that the batches used in a random effects model for stability analysis are considered
a random sample drawn from the population of all future production batches. As a
result, the intercepts and slopes, which are often used to characterize the degradation
of a drug product, are no longer fixed unknown parameters but random variables.
More details regarding stability analysis with fixed batches and random batches can
be found in Chapter 5 and Chapter 6, respectively.
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1.4.5 Stability Analysis with Discrete Responses

For solid oral dosage forms such as tablets and capsules, the 1987 FDA stability
guidelines indicate the characteristics of appearance, friability, hardness, color, odor,
moisture, strength, and dissolution for tablets and the characteristics of strength,
moisture, color, appearance, shape, brittleness, and dissolution for capsules should
be studied in stability studies. Some of these characteristics are measured based on
a discrete rating scale. The responses obtained from a discrete rating scale may be
classified into acceptable (pass) and not acceptable (failure) categories, which results
in binary stability data. Although in most stability studies, continuous responses such
as potency are the primary concern, discrete responses such as appearance, color, and
odor should be considered for quality assurance or safety. For establishment of drug
shelf-life based on discrete responses, however, there is little discussion in either the
FDA or the ICH stability guidelines. Chow and Shao (2003) considered the estimation
of the shelf-life of a drug product when the stability data are discrete. When there
is no batch-to-batch variation, their proposed shelf-life is an approximate 95% lower
confidence bound of the true shelf-life. In the presence of batch-to-batch variation,
their proposed shelf-life is an approximate 95% lower prediction bound of the shelf-
life of future batches. As a result, their proposed shelf-life is applicable to all future
batches of the same drug product. More details regarding Chow and Shao’s proposed
method for discrete responses will be provided in Chapter 8.

1.4.6 Stability Analysis with Multiple Components

As most drug products contain a single active ingredient, the 1987 FDA stability
guidelines and the ICH guidelines for stability are developed for drug products with
a single active ingredient. Many drug products consist of multiple ingredients (com-
ponents). For example, Premarin (conjugated estrogens, USP) is known to contain
at least five active ingredients: estrone, equilin, 17α-dihydroequilin, 17α-estradiol,
and 17β-dihydroequilin. Other examples include combinational drug products such
as most traditional Chinese medicine (TCM). For determination of the shelf-life of a
drug product with multiple ingredients, an ingredient-by-ingredient stability analysis
may not be appropriate, since multiple ingredients may have some unknown inter-
actions. In this case Chow and Shao (2007) proposed a statistical method assuming
that ingredients are linear combinations of some factors. Their proposed method was
found to be efficient and useful. Details of Chow and Shao’s method are provided in
Chapter 9 of this book.

1.4.7 Stability Analysis with Frozen Drug Products

Unlike most drug products, some products must be stored at several temperatures,
such as −20◦ C, 5◦ C, and 25◦ C, in order to maintain the stability of the drug products.
Drug products of this kind are usually referred to as frozen products. The determina-
tion of shelf-life for frozen drug products involves the estimation of drug shelf-lives
at different temperatures, which requires multiple-phase linear regression. Mellon
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(1991) suggested obtaining a combined shelf-life by determining shelf-lives based on
data available at different temperatures. This method, however, does not account for
the fact that the shelf-life at the second phase would depend on the shelf-life at the
first phase. As an alternative, Shao and Chow (2001a) proposed a method for deter-
mination of drug shelf-lives for the two phases using a two-phase regression analysis
based on the statistical principle as described in the 1987 FDA stability guidelines
and the ICH Q1A (R2) guidelines for stability. Their proposed method was shown to
be quite satisfactory. More details can be found in Chapter 10.

1.4.8 Stability Testing for Dissolution

As indicated in the FDA Report to the Nation: 2004, dissolution failure is the top
5 reason for drug recalls in fiscal year 2004. In addition to dissolution testing as
described in Section 1.3, the FDA recommends the comparison of dissolution profiles
at initial and at time t = x in order to characterize the degradation in dissolution of
the drug product. The FDA suggests that two dissolution profiles be compared based
on a so-called f2 similarity factor proposed by Moore and Flanner (1996). The use of
the f2 factor, however, has been criticized by many authors. See, for example, Chow
and Liu (1995), Liu, Ma, and Chow (1997), Shah et al. (1998), Tsong et al. (1996),
Ma et al., (1999), and Chow and Shao (2002b). Ma, et al. (2000) studied the size and
power of the f2 similarity factor for assessment of similarity based on the method of
moments and the method of bootstrap. More details regarding the statistical methods
for assessment of similarity between dissolution profiles in terms of f2 similarity
factor are given in the last chapter of this book.

1.4.9 Mean Kinetic Temperature

Haynes (1971) pointed out that changes in the actual field storage temperature could
cause the reaction rate constant of some drug products to change according to the
Arrhenius relationship. Since drug products stored in pharmacies and warehouses
for extended periods of time are exposed to a range of temperatures, the exact de-
termination of drug shelf-life becomes almost impossible. The degradation curve of
a given drug product may not be consistent at different times under different envi-
ronmental conditions. This will definitely have an impact on stability testing of the
drug product. Haynes (1971) proposed establishing the mean kinetic temperature for
a defined period. The mean kinetic temperature is a single derived temperature that
affords the same thermal challenge to a drug substance or drug product as would be
experienced over a range of both higher and lower temperatures for an equivalent
defined period. Based on the mean kinetic temperature, the whole world is divided
into four zones that are distinguished by their characteristic prevalent annual cli-
matic conditions (Grimm, 1985, 1986). At different climatic zones, slightly different
requirements for storage conditions for accelerated testing and long-term stability
testing are imposed. More details are given in the last chapter of this book.
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1.5 Aim and Scope of the Book

The goal of this book is to provide a comprehensive and unified presentation of statis-
tical methods employed for design and analysis of stability studies in pharmaceutical
research and development. In addition, it is intended to give a well balanced summary
of current and recently developed statistical methods in stability analysis. It is our goal
to provide a useful reference book for chemical scientists, pharmaceutical scientists,
development pharmacists, and biostatisticians in the pharmaceutical industry, regu-
latory agencies, and academia. This book can also serve as a textbook for graduate
courses in the areas of pharmacy, pharmaceutical development, stability studies, and
biostatistics. Our primary emphasis is on the application of stability studies in phar-
maceutical research and development. All statistical methods and their interpretations
regarding design and analysis of stability studies are illustrated through real examples
whenever possible.

The scope of this book is restricted to statistical design and analysis of stability
studies. This book consists of 12 chapters. Chapter 1 introduces basic concepts of
stability testing in pharmaceutical research and development. Also included in this
chapter are regulatory requirements and practical issues for stability studies. Chapter 2
focuses on design and analysis of short-term stability studies such as accelerated
testing. Several methods for estimating drug expiration dating periods are reviewed in
Chapter 3. Chapter 4 compares several commonly employed study designs including
matrixing and bracketing designs. Chapter 5 discusses statistical analysis with fixed
batches. Also included in this chapter are several statistical tests for batch-to-batch
variability (or batch similarity). Statistical analysis with random batches are discussed
in Chapter 6. Chapter 7 introduces statistical methods for stability analysis under
a linear mixed effects model. Stability analyses with discrete responses, multiple
components, and frozen drug products are studied in Chapters 8, 9 and 10, respectively.
Statistical methods of stability testing for dissolution including USP-NF dissolution
testing and dissolution profile testing are given in Chapter 11. Current issues and
recent developments in stability studies such as scale-up and postapproval changes,
mean kinetic temperature, and optimality criteria for choosing a stability design are
given in the last chapter.

For each chapter, real examples are given to illustrate the concepts, application,
and limitations of statistical methods whenever possible. The comparisons of stati-
stical methods available in terms of their relative merits and disadvantages are also
discussed. When applicable, topics for possible future research development are
provided.





Chapter 2

Accelerated Testing

As defined in the 1987 FDA stability guideline, the expiration dating period, or shelf-
life, of a drug product is the time interval that the drug product is expected to remain
within specifications after manufacture. The shelf-life of a drug product is usually
established based on the primary stability data. The primary stability data are obtained
from long-term stability studies conducted under approved stability protocols with
ambient storage conditions. Drug products under ambient storage conditions in long-
term stability studies, however, usually degrade very slowly over time. Therefore, for
most drug products, it may take more than a year to observe significant degradation.

As is well known, the development of a drug product is a lengthy process that usu-
ally involves many stages. The goals and meanings of drug stability functions may be
different from stage to stage. For example, the purpose of stability studies before filing
an investigational new drug application (IND) is twofold. First, it is to verify that the
stability of the drug product will be maintained within specifications for animal studies
such as toxicological trials. Second, it is to provide useful stability information for
modification of the formulation of the drug product. At the very early stages of drug
development, however, the primary goal of stability functions is to determine the rates
of chemical and physical reactions and their relationship with storage conditions such
as temperature, moisture, and light. To achieve this goal, accelerated stability testing
is usually conducted. As defined in the 1987 FDA stability guideline, an accelerated
stability test is a short-term stability study conducted under exaggerated (or stressed)
conditions to increase the rate of chemical or physical degradation of a drug substance
or drug product. As stated in the 1987 FDA stability guideline, exaggerated storage
conditions may include temperature, humidity of 75% or greater, exposure to various
wavelengths of electromagnetic radiation, and storage in an open container. The use
of exaggerated storage conditions to accelerate the reaction rate so that significant
degradation of the drug product can be observed allows the kinetic parameters of the
reaction rate to be estimated. A predicted shelf-life under marketplace storage con-
ditions can then be obtained by extrapolation. Note that extrapolation from stressed
testing conditions to ambient conditions is usually done based on established relation-
ships between the kinetic parameters and storage conditions. In the pharmaceutical
industry, the Arrhenius equation is often employed to relate the degradation reaction
rate and the corresponding temperature. Other models such as the Eyring equation
(Kirkwood, 1977) can also be used. In this chapter, however, we focus on application
of the Arrhenius equation to the prediction of drug product shelf-life.

For a given drug product, the estimated shelf-life based on the date obtained from
accelerated stability testing is usually referred to as the tentative expiration period. As

25



26 Accelerated Testing

indicated by the 1987 FDA stability guideline, this period is a provisional expiration
dating period determined by projecting results from less-than-full-term data using the
drug product to be marketed in its proposed container closure. Therefore, the 1987
FDA stability guideline indicates that the results obtained from accelerated testing
can be used only as supportive stability data. However, accelerated testing is useful in
the following ways: (a) the results provide estimates of the kinetic parameters for the
rates of reactions, (b) the results can be used to characterize the relationship between
degradation and storage conditions, and (c) the results supply critical information in
the design and analysis of long-term stability studies under ambient conditions at the
planning stage.

In this chapter our efforts are directed to a discussion of accelerated stability test-
ing in terms of application of the Arrhenius equation for the relationship between
degradation and temperature. In the next section we describe briefly some determin-
istic chemical kinetic models. The Arrhenius equation is also described in this section.
Applications of statistical methods for estimation of kinetic parameters and a tentative
expiration dating period using the Arrhenius equation are given in Section 2.2. Section
2.3 covers determination of the order of a reaction by selection of adequate models.
Also included in this section are issues that often occur in the design of accelerated
stability testing. A numerical example using the data set given in Carstenson (1990) is
given in Section 2.4. A brief discussion regarding other methods and possible future
research topics can be found in Section 2.5.

2.1 Chemical Kinetic Reaction

In this section we describe some functional relationships of chemical kinetic reactions.
Unless otherwise stated, all quantities and equations considered in this chapter will
be deterministic. In other words, there are no random error terms. Carstensen (1990)
indicated that if a reaction with two entities A and B is

A + B → C,

the reaction rate is given by

dY (t)

dt
= −KrA+rB [A]rA [B]rB (2.1)

The reaction is said to be of order rA + rB , where dY (t)/dt is a differential quotient
between concentration and time, Y (t) is the concentration of the species being studied
at time t , [A] and [B] represent the concentrations of A and B, and K is a rate constant.
Note that in the pharmaceutical industry we are only interested in the integer orders
of a reaction (i.e., 0, 1, and 2). The differential equation for a zero-order reaction is
given by

dY (t)

dt
= −K0 (2.2)
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where K0 is the zero-order rate constant, which is expressed as concentration unit per
time unit. Integrating both sides of Equation 2.2 with respect to time gives

∫
dY (t)

dt
= −

∫
K0dt,

or

Y (t) = C0 − K0t, (2.3)

where C0 is a constant. Let Y (0) be the initial concentration at time 0. Then Equation
2.3 becomes

Y (t) = Y (0) − K0t,

or

Y (t) − Y (0) = −K0t, (2.4)

It can be seen from Equation 2.4 that a drug product based on the zero-order reaction
degrades at a constant rate over time that is independent of both concentrations at the
initial and at time t .

However, for the first-order reaction, since the amount of degradation is propor-
tional to the concentration at time t , the corresponding differential equation is given
by

dY (t)

dt
= −K1Y (t), (2.5)

where K1 is the first-order rate of constant. Equation 2.5 can be rewritten as
∫

dY (t)

dt
= −

∫
K0dt. (2.6)

Similarly, integrating both sides of Equation 2.6 with respect to time yields
∫

dY (t)

Y (t)
dt = −

∫
K1dt,

or

ln Y (t) = C1 − K1t, (2.7)

where ln denotes the natural logarithm and C1 is a constant. If the initial concentration
at time 0 is Y (0), it can be shown that

ln Y (t) = ln Y (0) − K1t,

or

ln Y (t) − ln Y (0) = −K1t, (2.8)

Binod April 12, 2007 10:56 C9055 Chapter 2



28 Accelerated Testing

or

ln
Y (t)

Y (0)
= −K1t.

Hence, it can be seen from Equation 2.8 that the degradation of a drug product
described by a first order reaction can be characterized by a rate constant for the
logarithm of concentrations.

For the second-order reaction, since it proceeds at a constant rate that is proportional
to the square of the concentration, that is,

dY (t)

Y (t)
= −K2Y 2(t), (2.9)

or

dY (t)

d(t)

/
Y 2(t) = −K2,

we have
∫

dY (t)

Y 2(t)
dt = −

∫
K2dt,

or

1

Y (t)
= 1

Y (0)
− K2t. (2.10)

As a result, the second-order reaction describes a degradation characterized by a rate
constant for the inverse of concentration.

In the pharmaceutical industry the first-order reaction is probably the most com-
monly employed model for describing the decomposition and the degradation of
active ingredients of a drug product. The zero-order reaction is used occasionally,
but the second-order reaction is rarely adopted. It however, should be noted, that the
discussion above is based on the assumption that there is only one decomposed end
chemical entity for each active ingredient contained in the drug product. In many situ-
ations the active ingredient of a drug product may be decomposed into more than one
end chemical entity. The description and determination of orders for such a reaction
are usually very complicated. In this chapter, for simplicity, we focus on the zero-
and first-order reactions for a single end chemical entity decomposed from one active
ingredient of a drug product.

For thermal stability accelerated testing, samples of drug products are usually stored
over time at different temperatures (e.g., 5◦ C, 50◦ C, or 75◦ C). There are, in general,
two methods for determining the strength (i.e., concentration or potency) of a sample
that has been stored over time t at temperature T (Davies and Hudson, 1981, 1993).
The time is usually expressed in terms of either days or months. Absolute temperature
is used for the study of the relationship between rate constant and temperature. For the
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first method, each sample stored at an elevated temperature over time t is assayed side
by side with a sample stored for the same period of time but at a lower temperature in
which no appreciable degradation can occur. Then the strength of the sample stored
at the elevated temperature is expressed as a percentage of the sample at the lower
temperature. The second method assays the sample stored at temperature T and time
t and a sample prior to storage together against an independent standard. The strength
of the sample at temperature T and time t is scaled to that of the sample prior to
storage, which is made to be 100.

The difference between these two methods is the determination of the strength for
the sample at time 0. The strength at time 0 obtained by the second method is an
observation subject to random error. The first method provides an initial strength by
definition of exactly 100 without error. Because of this advantage in determining the
initial strength at time 0, the first method has become popular in practice. Therefore,
in this chapter, we focus on the projection of a tentative expiration dating period
based on the data obtained from the first method. It should be noted that there are
other sources of variations in the first method that are not discussed in this chapter.
For more details, see Davies (1980).

Based on the first method, since the initial strength at time 0 is 100% of label claim
without error, that is, Y (0) = 100, the equations for the zero- and first-order reactions
given in Equations 2.4 and 2.8 become

Y (t) = 100 − K0t, (2.11)

and

ln[Y (t)] = ln(100) − K1t, (2.12)

respectively. At the early stage of drug development, it is necessary to project the
degradation rate at marketing storage temperature based on the data collected from
thermal stability accelerated testing at elevated temperatures. To achieve this goal,
we first need to establish the relationship between rate constant and temperature. The
relationship between the rate constant (or reaction rate) and absolute temperature can
be expressed by the following Arrhenius equation (see, e.g., Bohidar and Peace, 1988;
Davies and Hudson, 1981; Carstensen, 1990):

d ln K

dT
= E

RT 2
, (2.13)

where T is the absolute temperature, E is the activation energy, and R is the gas
constant. Integrating both sides of Equation 2.13 gives

ln K = − E

R
· 1

T
+ ln A,

or

K = A exp

(
− E

RT

)
, (2.14)
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where A is a frequency factor. Substituting Equation 2.14 into Equations 2.11 and
2.12 yields the following equations:

Y (t) = 100 − A exp

(
− E

RT

)
t, (2.15)

ln[Y (t)] = ln(100) − A exp

(
− E

RT

)
t. (2.16)

Rearranging the terms in Equations 2.15 and 2.16 gives

Y (t) − 100

t
= −A exp

(
− E

RT

)
, (2.17)

and

ln[Y (t)/100]

t
= −A exp

(
− E

RT

)
. (2.18)

The quantities on the left-hand side of Equations 2.17 and 2.18 are the degradation
per time unit based on either the original scale of the strength for the zero-order
reaction or the log scale of the strength for the first-order reaction. [Y (t) − 100]/t
or ln[Y (t)/100]/t can be interpreted as the observed reaction rates that can be used
for estimation of the unknown parameters A and −E/R in Equation 2.14. For the
purpose of estimating the parameters A and −E/R, it is preferable to use the following
negative observed reaction rates:

100 − Y (t)

t
= A exp

(
− E

RT

)
, (2.19)

ln[100/Y (t)]

t
= A exp

(
− E

RT

)
. (2.20)

The estimates obtained from Equations 2.19 and 2.20 are the same as those from
Equations 2.17 and 2.18.

2.2 Statistical Analysis and Prediction

Let Yi j be the strength of a sample stored after time t j at temperature Ti , where
i = 1, 2, . . ., I and j = 1, . . ., J . Since the first method for determination of strength
is used throughout the rest of this chapter, Yi j will not represent the initial strength at
time 0, which is 100 without error, and all Yi j are expressed in terms of percentage.
Define the degradation for the zero- and first-order reactions, respectively, as

Di j (0) = Yi j − 100
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and

Di j (1) = ln(Yi j/100)

= ln Yi j − ln 100, (2.21)

where i = 1, 2, . . ., I and j = 1, 2, . . ., J . The negative reaction rates or the negative
degradation rates per time unit are given, respectively, as follows:

Ki j (0) = − Di j (0)

t j
= 100 − Yi j

t j
,

Ki j (1) = − Di j (1)

t j
= ln(100/Yi j )

t j
, (2.22)

where i = 1, 2, . . ., I and j = 1, 2, . . ., J .
In this section we illustrate the application of some well-established statistical

methods for the estimation of rate constants and the unknown parameters in the
Arrhenius equation. Based on estimates of the unknown parameters and their es-
timated standard deviations and covariance, a projected tentative expiration dating
period can be obtained using the relationship given in Equations 2.15 and 2.16. From
Equations 2.4 and 2.8, the degradation at time t j can be expressed by the following
linear regression model through the origin:

Di j (h) = βi (h)t j + ei j , i = 1, . . . I, j = 1, . . ., J, (2.23)

where

βi (h) = −Khi ,

and

h =
{

0 for the zero-order reaction
1 for the first-order reaction.

It is assumed that random errors ei j in Model 2.23 follow a normal distribution with
mean 0 and variance σ 2

i (h). The least-squares estimator for βi (h) is then given by
(Draper and Smith, 1981):

bi (h) =

J∑
j=1

t j Di j (h)

J∑
j=1

t2
j

. (2.24)

Note that the above estimator is not the same as that obtained from the linear regression
model with intercept. However, they are expressed in a similar form. Under the
normality assumption, bi (h) is the minimum variance unbiased estimator (MVUE)
for −Khi . An unbiased estimator for the error variance can also be obtained as

σ̂ 2
i (h) = SSEi (h)

J − 1
, i = 1, . . ., I , h = 0, 1, (2.25)
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where SSEi (h) is the sum of squares of residuals for the hth order of reaction at
temperature i , that is,

SSEi (h) = SSTi (h) − SSRi (h), (2.26)

where SSTi (h) and SSRi (h) are the total uncorrected sum of squares and the sum of
squares due to regression; that is

SSTi (h) =
J∑

j=1

D2
i j (h), (2.27)

SSRi (h) =
[∑J

j=1 Di j (h)t j

]2

∑J
j=1 t2

j

. (2.28)

The corresponding degrees of freedom for SSTi (h), SSRi (h), and SSEi (h) are J , 1,
and J −1, respectively. The relationship among the total uncorrected sum of squares,
the sum of squares due to regression, and the sum of squares of residuals is the same
as that for the linear regression model with intercept. This relationship is summarized
in the ANOVA table (Table 2.1). The variance of bi (h) can be estimated by

V̂ar[bi (h)] = σ̂ 2
i (h)∑J
j=1 t2

j

, i = 1, .., I, h = 0, 1. (2.29)

Thus, the standard error of bi (h), denoted by SE[bi (h)], is given by

SE[bi (h)] =
√

V̂ar[bi (h)] (2.30)

Under the hypothesis that βi (h) = 0, the statistic

Tb = bi (h)

SE[bi (h)]
(2.31)

TABLE 2.1: ANOVA Table for Simple Linear Regression Without Intercept

Source of
Variation df Sum of Squares Mean Squares F-Value

Regression 1 SSRi (h) MSRi (h) = SSRi (h) F = MSRi (h)
MSEi (h)

Residual J − 1 SSEi (h) MSEi (h) = SSEi (h)/(J − 1)
Total J SSTi (h)

SSRi (h) = [
∑

Di j (h)t j ]2∑
t2
j

SSEi (h) = ∑
D2

i j (h) − [
∑

Di j (h)t j ]2∑
t2
j

SSTi (h) = D2
i j (h)

Source: Chow, S.C. and Liu, J.P. (1995). Statistical Design and Analysis in Pharmaceutical Science.
Marcel Dekker, New York.
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follows a central t distribution with J − 1 degrees of freedom. Based on Equation
2.31, a (1 − α)100% confidence interval for βi (h) can be obtained as follows:

bi (h) ± tα/2,J−1SE[bi (h)], (2.32)

where tα/2,J−1 is the (α/2)th upper quantile of a central t distribution with J − 1
degrees of freedom. To test for a negative reaction after time t j at temperature Ti , we
may consider the following hypotheses:

H0 : βi (h) = 0 vs H0 : βi (h) < 0. (2.33)

The null hypothesis of Equation 2.33 is rejected at the α level of significance if

Tb < −tα,J−1, (2.34)

where tα,J−1 is the αth upper quantile of a central t distribution with J − 1 degrees of
freedom. If one is interested in examining whether the reaction rate is different from
zero, the following hypotheses should be tested:

H0 : βi (h) = 0 vs H0 : βi (h) �= 0. (2.35)

The above null hypothesis of zero reaction rate is rejected at the α level of significance
if

Fi = MSRi (h)

MSEi (h)
> Fα,1,J−1, (2.36)

where Fα,1,J−1 is the αth upper quantile of a central F distribution with 1 and J − 1
degrees of freedom.

We have illustrated the application of a simple linear regression model without
intercept through the least-squares method for the estimation of a rate constant for each
combination of time points and temperature. At the early stage of drug development,
however, strength data are usually available at only a few time points for each elevated
temperature. In this case the estimates of error variances may not be reliable owing
to insufficient degrees of freedom. To enhance the precision of the estimates of error
variances, we may consider the following regression model:

Di j (h) =
I∑

i=1

βi (h)Xi j (h) + ei j , (2.37)

where i = 1, . . ., I , j = 1, . . ., J , h = 0, 1, and the value of Xi j (h) for Di j (h) is t j

if the temperature is Ti and is 0 otherwise; that is,

Xi j (h) =
{

t j if i = j for Di j (h)
0 otherwise.

(2.38)

If the random errors ei j in Model 2.37 are independent and identically distributed as a
normal distribution with mean 0 and variance σ 2, then bi (h), given in Equation 2.24,
is also the MVUE of βi (h) in Model 2.37. The total uncorrected sum of squares,
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the sum of squares due to regression, and the sum of squares of residuals under
Model 2.37 are given, respectively, as in Model 2.24, which is also the MVUE
of βi (h) in Model 2.37. The total uncorrected sum of squares, the sum of squares
due to regression, and the sum of squares of residuals under Model 2.37 are given,
respectively, as

SST(h) =
I∑

i=1

SSTi (h) =
I∑

i=1

J∑
j=1

D2
i j (h), (2.39)

SS R(h) =
I∑

i=1

SSRi (h) =
I∑

i=1




[∑J
j=1 t j Di j (h)

]2

∑J
j=1 t2

j


 ,

SSE(h) =
I∑

i=1

SSEi (h), h = 0, 1.

The corresponding degrees of freedom for SST(h), SSR(h), and SSE(h) are I J , I ,
and I (J − 1), respectively. Table 2.2 gives the analysis of the variance table for
Model 2.37. Since samples obtained at different temperatures are independent of
each other, the sum of squares due to regression under Model 2.37 can be parti-
tioned into I independent sums of squares, that is, SSRi (h), i = 1, . . ., I, which can
be obtained separately under Model 2.23. Under Model 2.37, statistical inference
for the reaction rate can be obtained based on the following estimates for the error
variances

σ̂ 2(h) = M SE(h) = SSE(h)

I (J − 1)
, (2.40)

which has I (J − 1) degrees of freedom. It should be noted that under Equation
2.37, σ 2(h) and the upper quantiles of a central t distribution with I (J − 1) de-
grees of freedom should be substituted for the estimated standard error, (1 −α)100%

TABLE 2.2: ANOVA Table for Simple Regression Without Intercept,
Corresponding to Equation 2.37

Source of Sum of
Variation df Squaresa Mean Squares F-Value

Regression I SSR(h) MSR(h) = SSR(h)/ f F = MSR(h)/MSE(h)
Temp. 1 1 SSR1(h) MSR1(h) = SSR1(h) F1 = MSR1(h)/MSE(h)

. . . . .

. . . . .

. . . . .
Temp. I I SSRI (h) MSRI (h) = SSRI (h) FI = MSRI (h)/MSE(h)

Residual I (J − 1) SSE(h) MSE(h) = SSE(h)/I(j−1)
Total IJ SST(h)

aSST(h) = ∑
SSTi (h); SSR(h) = ∑

SSRi (h); SSE(h) = ∑
SSEi (h).

Source: Chow, S.C. and Liu, J. P. (1995). Statistical Design and Analysis in Pharmaceutical Science,
Marcel Dekker, New York.
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confidence interval, and hypothesis testing of reaction rates βi (h) given in
Equations 2.30 to 2.34 and 2.36, respectively. Although the discussion above
assumes the same time points for all temperatures, the methodology described
above for estimation and inference about rate constants can easily be applied to
the situation where there are different time points at different temperatures without
modification.

Once the rate constants are estimated at each temperature, Bohidar and Peace
(1988) suggested obtaining estimates of the unknown parameters in the Arrhenius
Equation 2.14 by fitting a linear regression (or weighted) model to the logarithm of
the estimated rate constants ln[bi (h)] with temperature as the independent variable.
Since typical thermal accelerated stability testing is usually conducted at three or four
different elevated temperatures, statistical inference about the unknown parameters in
the Arrhenius equation is then based on only one or two degrees of freedom. To over-
come this drawback, one may consider utilizing the observed negative degradation
rate per time unit or observed negative reaction rates Ki j (h), h = 0, 1, i = 1, . . ., I ,
and j = 1, . . ., J . As a result, all observations are used to estimate the two unknown
parameters in the Arrhenius equation, and consequently, statistical inference regard-
ing the tentative expiration dating period can be obtained based on an estimate of the
error variance with I J − 2 degrees of freedom.

Recall that the negative reaction rates obtained are defined as

Ki j (h) = − Di j (h)

t j
=




100−Yi j

t j
if h = 0

ln(100/Yi j )
t j

if h = 1
. (2.41)

However, the Arrhenius equation states that the relationship between the reaction rate
and absolute temperature is

K (h) = A exp

(
− E

RT

)
.

Let α(h) = A, β(h) = −E/R, and X = 1/T . Then the Arrhenius equation can be
rewritten as

K (h) = exp[α(h) + β(h)X ], (2.42)

or

ln[K (h)] = α(h) + β(h)X. (2.43)

For the unknown parameters in Equation 2.42, we may apply the following two
methods to obtain estimates of α(h) and β(h). The first method is to apply ordinary
least squares in a simple linear regression model to the logarithm of the rate constants.
The other method is to simply fit a nonlinear regression model directly to the original
data of the reaction rates.

Let K ∗
i j (h) be the logarithm of the observed negative reaction rate, that is

K ∗
i j (h) = ln[Ki j (h)], i = 1, . . ., I, j = 1, . . ., J.
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Then, according to Equation 2.14, the model for the logarithm of Ki j (h) is given by

K ∗
i j (h) = α(h) + β(h)Xi + ei j , (2.44)

where i = 1, . . ., I and j = 1, . . ., J . Let a(h) and b(h) be the MVUE of α(h) and
β(h). Also, let V̂ar[a(h)] and V̂ar[b(h)] be the estimates of the variances of a(h) and
b(h), respectively. The covariance between a(h) and b(h) can be estimated by

Ĉov[a(h), b(h)] = −σ̂ 2(h)
X̄

J Sxx
, (2.45)

where

X̄ = 1

I

I∑
i=1

Xi ,

Sxx =
I∑

i=1

(Xi − X̄ )2,

and σ̂ 2(h) is an estimate of the error variance.
To obtain an estimate of the tentative expiration dating period, we need to obtain

the predicted mean reaction rate at the marketing storage temperature T for reaction
order h. This can be done by considering the following linear regression model:

K̂ ∗(h) = a(h) + b(h)X (2.46)

where X = 1/T . An estimate of the variance of K̂ ∗(h) can be obtained as

V̂ar[K̂ ∗(h)] = σ̂ 2(h){V̂ar[a(h)] + X2V̂ar[b(h)] (2.47)

+ 2XĈov[a(h), b(h)]}.

From Equation 2.41, it can be verified that the predicted degradation after time t at
the marketing storage temperature T is given by

D̂(h) = − exp[K̂ ∗(h)]t. (2.48)

Let G(h) be the minimum strength required for a drug product to maintain under
reaction order h, that is

G(h) =



100 − P(0) i f h = 0

ln

[
100

100 − P(1)

]
i f h = 1

, (2.49)

where P(h) is the amount of maximum degradation allowed for reaction order h,
where h = 0 or 1. For the zero-order reaction (i.e., h = 0),

D(0) = G(0) − 100 = −P(0)
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It follows that

P(0) = exp[K̂ ∗(0)]t,

or

ln[P(0)] = K̂ ∗(0) + ln(t)

= a(0) + b(0)X + ln(t).

Consequently,

ln(t̂) = ln[P(0)] − [a(0) + b(0)X ]. (2.50)

Since P(0) is a predetermined fixed constant, for example P(0) = 10%, the estimate
of the variance of ln(t̂) is the same as that for K̂ ∗(h) given in Equation 2.47. The
(1 − α)100% lower confidence limit for the time based on the logarithm scale is then
given by

Lt (0) = ln(t̂) − tα,I J−2SE[K̂ ∗(0)], (2.51)

where

SE[K̂ ∗(0)] =
√

V̂ar[K̂ ∗(0)],

and tα,I J−2 is the αth upper quantile of a central t distribution with I J − 2 degrees of
freedom. Thus, an estimate of the tentative expiration dating period for a maximum
allowable degradation of P(0) at the marketing temperature T under the zero-order
reaction is obtained as

tT (0) = exp[Lt (0)]. (2.52)

Note that the estimated tentative expiration dating period given in Equation 2.52 is
not derived from the mean degradation but is based on the 95% lower confidence
limit for degradation. Thus, the obtained tentative expiration dating period ensures
that 95% of future samples at marketing storage temperature T are expected to remain
above the specified minimum strength G(0). For the first-order reaction, we have

G(1) = ln

[
100

100 − P(1)

]

= − ln

[
100 − P(1)

100

]

= − ln

[
Y (t)

100

]
= −D(1).

Thus, a similar method can be applied to obtain an estimate of the tentative expiration
dating period based on the fact that

G(1) = exp[K̂ ∗(1)]t.
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Let a(1) and b(1) be the MVUE of α(1) and β(1). Then

ln[G(1)] = K̂ ∗(1) + ln(t)

= a(1) + b(1)X + ln(t).

Following the same arguments, an estimate of the tentative expiration dating period
for a maximum allowable degradation of P(1) at the marketing temperature T under
the first-order reaction is given by

tT (1) = exp[Lt (1)], (2.53)

where Lt (1) is the (1 − α)100% lower confidence limit for the time based on the
logarithmic scale at temperature T , that is,

Lt (1) = ln(t̂) − tα,I J−2SE[K̂ ∗(1)],

ln(t̂) = ln[G(1)] − [a(1) + b(1)X ],

and SE[K̂ ∗(1)] is defined similarly.
The other method is to fit a nonlinear regression model directly to obtain estimates

of α(h) and β(h) in the Arrhenius equation. Once estimates of α(h) and β(h) and their
variances and covariance are obtained, an estimate of the tentative expiration dating
period at marketing storage temperature T can be obtained similarly using Equations
2.52 and 2.53.

As suggested by the functional relationship stated in Equation 2.42, consider the
following nonlinear regression model for the observed negative reaction rate:

Ki j = exp(α + β Xi ) + ei j , i = 1, . . ., I, j = 1, . . ., J. (2.54)

Note that for simplicity, the index for reaction order was dropped in the model above.
Similarly, we assume that random errors ei j are independent and identically distributed
as a normal distribution with mean zero and variance σ 2.

To obtain estimates of α and β, we consider a Taylor series expansion of Ki j around
K 0

i j with respect to α and β up to the first derivative, where K 0
i j is the value of Ki j

evaluated at a0 and b0, and a0 and b0 are some selected initial values of α and β.
Thus, Model 2.54 can be approximated by the following model:

Ki j = K 0
i j + Z0

αi j (α − a0) + Z0
βi j (β − b0) + ei j (2.55)

i = 1, . . ., I, and j = 1, . . ., J,

where

Z0
αi j = ∂Ki j

∂α

∣∣∣∣
α=a0

= exp(a0 + b0 Xi ), (2.56)

Z0
βi j = ∂Ki j

∂β

∣∣∣∣
β=b0

= Xi exp(a0 + b0 Xi ).

Equation 2.56 can be rewritten as

ki j = Ki j − K 0
i j = Z0

αi jδ
0
0 + Z0

βi jδ
0
1 + ei j (2.57)

i = 1, . . ., I, and j = 1, . . ., J,
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where

δ0
0 = α − a0,

δ0
1 = β − b0.

Let K 0 = (K11 − K 0
11, . . ., K I J − K 0

I J ),

Z0 = (
Z0

α, Z0
β

) =




Z0
α11 Z0

β11

...
...

Z0
α I J Z0

β I J


 ,

δ0 = (
δ0

0, δ
0
1

) = (α − a0, β − b0).

The ordinary least-squares estimator of δ0, which minimizes the sum of squares

I∑
i=1

J∑
j=1

(
Ki j − K 0

i j − Z0
αi jδ

0
0 − Z0

βi jδ
0
1

)2

is given by

δ̂0 = (Z0′ Z0)−1 Z0′K 0. (2.58)

After δ̂0 is obtained, we can repeat the steps from Equations 2.56 to 2.58 to improve
the linear approximation. Denote β = (α, β)′ and let b = (a, b)′ be an estimator of
β. At the uth iteration, the resulting estimator of β is given by

bu = bu−1 + δ̂u−1 (2.59)

= bu−1 + (Z ′
u−1 Zu−1)−1 Z ′

u−1 Ku−1,

where

bu = (au, bu)′,
Zu−1 = (

Zu−1
α , Zu−1

β

)′
,

K u−1 = (
K11 − K u−1

11 , . . ., K I J − K u−1
I J

)′
. (2.60)

Let λ be some prespecified small number (e.g., 10−5). Then the iterative procedure
continues until the following criteria are met:∣∣∣∣au − au−1

au−1

∣∣∣∣ < λ, (2.61)
∣∣∣∣bu − bu−1

bu−1

∣∣∣∣ < λ.

Many statistical software packages for nonlinear regression analysis are available. For
example, the PROC NLIN in SAS provides estimates for the unknown parameters
and their variances and covariance and 95% confidence intervals for the unknown
parameters. Once estimates of the unknown parameters in the Arrhenius equation are
obtained from the nonlinear regression model, an estimate of the tentative expiration
dating period at the marketing storage temperature can be obtained using Equations
2.52 and 2.53 for the zero- and first-order reactions, respectively.
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2.3 Examinations of Model Assumptions

In the previous section we demonstrated how to apply statistical models, including
a simple linear regression model and a nonlinear regression model for obtaining an
estimate of the tentative expiration dating period under the assumption that the reaction
is either zero or first order. The order of the reaction has an impact on the estimate
of the tentative expiration dating period. One of the primary objectives of accelerated
stability testing at the early stage of drug development is to empirically determine the
order of reaction. As indicated earlier, the number of elevated temperatures examined
in an accelerated stability testing study is usually between three and five. Thus, at
each elevated temperature, the degradation of the drug product is evaluated at three to
five time points, including time zero. Based on these few observations, it is difficult
to ensure the accuracy and precision of the empirically determined order of reactions
for the drug product. After the reaction order of the degradation of the drug product
is determined, the next step is to apply the Arrhenius equation. It is then important
to evaluate whether the Arrhenius equation can adequately describe the relationship
between degradation and temperature. In practice, it is suggested that the adequacy of
the two postulated models be examined. It is necessary to check whether the models
of the zero- or first-order reaction can adequately describe the relationship between
degradation and time. In addition, it is of interest to determine which model provides
a better description of the relationship.

At each temperature, a zero-order reaction is generally used to describe a linear rela-
tionship between strength and time based on the original scale, while a first-order reac-
tion dictates a linear relationship between log(strength) and time. To provide a visual
inspection of the linear relationship, scatter plots of the strength and log(strength)
against time points by temperatures are often employed as a useful graphical presen-
tation of reaction orders. If the scatter plots reveal that linearity exists for the strength
on the original (or log) scale, the reaction for the degradation of an ingredient of the
drug product may be of order zero (or one). In practice, however, if the degradation is
not sufficient, it is very difficult to determine the order of reaction either by graphical
or by other sophisticated statistical methods. Carstensen (1990) showed that if degra-
dation is less than 15%, we may not be able to distinguish a first-order reaction from a
zero-order reaction. Let P(t) denote the amount of strength that has been decomposed
after time t . The remaining strength at time t is then given by Y (t) = 100 − P(t), or
equivalently,

Y (t)

100
= 1 − P(t)

100
.

If the reaction is of first order, we have

ln

[
Y (t)

100

]
= −K1t,

or

ln

[
1 − P(t)

100

]
= −K1t.
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If P(t)/100 < 15%, we can approximate

ln

[
1 − P(t)

100

]

by −P(t)/100, that is,

ln

[
1 − P(t)

100

]
≈ − P(t)

100
. (2.62)

Consequently,

P(t)

100
= 1 − Y (t)

100
= K1t. (2.63)

For the zero order reaction, we have

Y (t) − 100 = −K0t, (2.64)

or

1 − Y (t)

100
= K0

100
t.

By comparing Equations 2.63 and 2.64, it appears that the first-order reaction is similar
to a zero-order reaction with a rate constant equal to that of the first-order reaction
normalized by the initial strength at time zero. As a result, when the degradation is
small, it is very difficult to differentiate these two orders.

As indicated earlier, Model 2.37 is employed to describe the relationship between
degradation and time. Suppose there are ri j replicates at time t j and temperature Ti .
The test statistic for lack of fit can be applied to Model 2.37. The sum of squares
of pure error, denoted by SSPE(h) can then be obtained by subtracting the sum of
squares of residuals from SSPE(h). The degrees of freedom for SSPE(h) and SSLF(h)
are given by

d f (SSPE(h)) =
I∑

i=1

J∑
j=1

(ri j − 1) = N − I J,

d f (SSLF(h)) = (N − I ) − (N − I J ) = I (J − 1),

where

N =
I∑

i=1

J∑
j=1

ri j .

Similarly, the mean squares of pure error and lack of fit can be obtained by dividing
the respective sums of squares by their corresponding degrees of freedom as follows:

MSPE(h) = SSPE(h)

N − I J
,

MSLF(h) = SSLF(h)

I (J − 1)
.
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TABLE 2.3: ANOVA Table for Lack of Fit for Equation (2.37)

Source of Sum of
Variation df Squares Mean Squares F-value

Regression I SSR(h) MSR(h) = SSR(h)/I F = MSR(h)
MSE(h)

Residual N − I SSE(h) MSE(h) = SSE(h)/(N − 1)
Lack of fit I (J − 1) SSLF(h) MSLF(h) = SSLF(h)/I (J − 1) FL F = MSLF(h)

MSPE(h)
Pure error N − I J SSPE(h) MSPE(h) = SSPE(h)/(N − I J )
Total N SST(h)

Source: Chow, S.C. and Liu, J.P. (1995). Statistical Design and Analysis in Pharmaceutical Science,
Marcel Dekker, New York.

Table 2.3 provides the analysis of variance table, which partitions the residual sum of
squares into SSPE and SSLF. Model 2.37 is considered adequate for a description of
the relationship between degradation and time if we fail to reject the null hypothesis
of no lack of fit. The null hypothesis of no lack of fit is rejected at the α level of
significance if

FL F = MSLF(h)

MSPE(h)
> Fα,I (J−1),N−I J , (2.65)

where Fα,I (J−1),N−I J is the αth upper quantile of a central F distribution with I (J −1)
and N − I J degrees of freedom. If we fail to reject the null hypothesis of no lack of
fit at the α level of significance, then σ̂ 2(h) given in Model 2.40 provides an unbiased
estimate for the error variance. However, if the null hypothesis of no lack of fit is
rejected, Model 2.37 is considered inadequate. In this case one needs to carefully
examine residual plots for possible outliers. Residual plots may also provide useful
information for alternative models.

If Model 2.37 is considered adequate for a linear relationship between degra-
dation and time, the next step is to investigate whether the Arrhenius equation
can provide a satisfactory description for the relationship between degradation and
temperature. Note that there are I unknown parameters in Model 2.37, while the
Arrhenius Equations 2.42 and 2.43 consist of only two unknown parameters. There-
fore, if the Arrhenius equation is adequate, no statistically significant increase in
sum of squares of residuals would occur. The sum of squares of residuals under the
Arrhenius equation is given by

SSEA(h) =
I∑

i=1

J∑
j=1

[
Di j (h) − D̂i j (h)

]2
, (2.66)

where D̂i j (h) is as given in Equation 2.48.
Let SSEL (h) be the residual sum of squares obtained from Model 2.37. The sum

of squares due to the lack of fit under the Arrhenius equation is then given by

SSLFA(h) = SSEA(h) − SSEL (h). (2.67)
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It follows that the null hypothesis of no lack of fit for the Arrhenius equation is rejected
at the α level of significance if

FA = SSLFA(h)/(I − 2)

MSLL (h)
> Fα,I−2,I (J−1), (2.68)

where MSEL (h) is as defined in Equation 2.40 and Fα,I−2,I (J−1) is the αth upper
quantile for a central F distribution with I − 2 and I (J − 1) degrees of freedom.

Note that it is suggested that the residuals from fitting that Arrhenius equation be
examined thoroughly for special patterns. When the null hypothesis of no lack of fit
is rejected, it is useful to examine the nature of inadequacy and the departure from
the Arrhenius equation by plotting the logarithm of the estimates of the rate constants
obtained from Model 2.37 versus the inverse of the absolute temperature.

2.4 An Example

In this section we use the data set adopted from Carstensen (1990) to illustrate statisti-
cal methods discussed in previous sections for determination of a tentative expiration
dating period. This data set was obtained from an accelerated stability testing study
that consists of three temperatures: 35◦ C, 45◦ C, and 55◦ C. Different time points
were used for different temperatures: 0, 1, 2, and 3 months at 35◦ C; 0, 1, and 3
months at 45◦ C; and 0, 0.5, and 2 month at 55◦ C. All data except those at initial
time points (which are 100%) are reproduced in Table 2.4 along with log(strength),
Di j (0), Di j (1), K ∗

i j (0), and K ∗
i j (1). The scatter plot of assay results versus time by

temperature is provided in Figure 2.1 for the zero-order reaction. The scatter plot of
the logarithm of assay results versus time given in Figure 2.2 is used to examine a
possible first-order reaction. Both plots reveal that a simple linear regression model
can provide a better description of the relationship between strengths and time points
at higher temperature than at lower temperature. This can be explained in part by the
fact that at most 3% was decomposed for the first three months at 35◦ C.

TABLE 2.4: Strength of an Accelerated Stability Testing Study

Temperature Time Strength
(◦C) (months) (mg/mL) ln(strength) Di j (0) Di j (1) K∗

i j (0) K∗
i j (1)

35 1 99.5 4.600 −0.5 −0.005 −0.693 −5.296
35 2 98.0 4.585 −2.0 −0.020 0.000 −4.595
35 3 97.0 4.575 −3.0 −0.031 0.000 −4.590
45 1 98.0 4.585 −2.0 −0.020 0.693 −3.902
45 3 95.2 4.556 −4.8 −0.049 0.470 −4.111
55 0.5 97.5 4.580 −2.5 −0.025 1.609 −2.983
55 1 95.1 4.555 −4.9 −0.050 1.589 −2.991
55 2 90.4 4.504 −9.6 −0.101 1.569 −2.987

Source: Carstensen, J. T. (1990), Drug Stability. Marcel Dekker, New York.
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Figure 2.1: Assay result (mg/mL) versus time in months. Circle 35◦C; plus, 45◦C;
square, 55◦C.
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Figure 2.2: Logarithm of assay result (mg/mL) versus time in months. Circle. 35◦C;
plus, 45◦C; square, 55◦C.
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TABLE 2.5: Results of Estimation of Rate Constants by Equation 2.38

Order of Temperature
Reaction (◦C) Estimate SE Tb p-Value

Zero 35 −0.9643 0.0748 −12.888 <0.0001
45 −1.6400 0.0885 −18.525 <0.0001
55 −4.8286 0.1222 −39.520 <0.0001

First 35 −0.0098 0.0007 −13.353 <0.0001
45 −0.0168 0.0009 −19.378 <0.0001
55 −0.0504 0.0012 −42.203 <0.0001

Test results for estimating rate constants under Model 2.37 for both orders are sum-
marized in Table 2.5. Also included in the table are their standard errors, t statistics,
and p-values for the null hypothesis of a negative reaction rate. It can be seen from
the table that all rate constants are negative and all p-values are less than 0.0001.
Hence, the null hypothesis of Equation 2.33 for each rate constant is rejected at the
5% level of significance. As a result, we conclude that all rate constants are statis-
tically significantly smaller than 0. Table 2.6 also gives the ANOVA table for both
orders. Note that although both orders under Model 2.37 yield a R2 value greater than
99%, this does not guarantee that they gives a good fit. It can be easily verified that
the studentized residual at time point 1 month and temperature 35◦ C exceeds 1.7 for
both orders. Since no replicate tests were conducted at all combinations between time
point and temperature, we are unable to perform a lack-of-fit test for this data set.
However, to demonstrate the techniques, three strengths after 1 month at each of the
three temperatures were added artificially to the data set. The values are 99.2, 97.8,
and 96.1 for 35, 45, and 55◦ C, respectively. The ANOVA table for this modified data
set of one data point under a zero-order reaction and Model 2.37 is given in Table 2.4.
The residual sum of squares is given by 1.426 with 8 degrees of freedom, and the
sum of squares for pure error is 0.565. Since there are only two replicates available
at three combinations of time point and temperature, the degrees of freedom for the
sum of squares of pure error is 3. Therefore, the sum of squares for lack of fit is equal
to 0.861 with 5 degrees of freedom. As a result, the F-value for the lack-of-fit test
is 0.914, with a p-value of 0.433. Hence, we conclude that there is no evidence of
inadequacy for Equation 2.37 with respect to the modified data set.

TABLE 2.6: ANOVA Table Under Model 2.37

Order of Source of Sum of Mean
Reaction Variation df Squares Squares F-value p-value R2

Zero Regression 3 162.318 54.106 690.380 <0.0001 99.76%
Residual 5 0.392 0.078
Total 8 162.710

First Regression 3 0.0175 0.0058
Residual 5 3.75 × 10−5 7.496 × 10−6 778.296 <0.0001 99.79%
Total 8 0.0175
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Figure 2.3: Regression of logarithm of minus loss divided by time versus temper-
ature. Log of − (loss/time) = log[−(y − 100)/time].

The original data set is used to estimate the unknown parameters in the Arrhenius
equation by a nonlinear regression technique. The estimates of α(h) and β(h) obtained
from simple linear regression Equation 2.44 can be used as initial values for nonlinear
regression. These values are 29.57 and −9193.75 for the zero-order reaction and 25.30
and −9294.54 for the first-order reaction. Figures 2.2 and 2.3 display the fitted simple
regression lines for the zero- and the first-order reactions, respectively. Estimates for
α(h), β(h), and their standard errors for Model 2.54 are presented in Table 2.7. The
resulting estimates, which were obtained by fewer than seven iterations, are quite
close to those obtained from a simple linear regression.

Suppose one wishes to establish a tentative expiration dating period at a marketing
temperature 25◦ C such that the strength of the drug product is at least 90% of the label
claim within the tentative expiration dating period. We may extrapolate temperature in
the Arrhenius equation to a marketing temperature of 25◦ C with estimates provided
in Table 2.8. Table 2.9 provides 95% lower confidence limits for the time on the
logarithmic scale and hence the tentative expiration dating period at 25◦ C. Note that
both orders produce a similar tentative expiration dating period. Under the zero-order
reaction, the tentative expiration dating period is 26.6 months, while it is 28.6 months
for the first-order reaction. The adequacy of the Arrhenius equation can be examined
by testing for lack of fit. The residuals from the Arrhenius equation are given in Table
2.10 for both orders of reaction. Table 2.11 provides the results for the tests’ of lack
of fit. It can be seen from Table 2.11 that the p-values of the tests for lack of fit
are less than 0.05 for both orders. Hence, at the 5% level of significance, the null
hypothesis of no lack of fit is rejected for both orders. As a result, for this data set,
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TABLE 2.7: ANOVA Table for the Modified Data for a
Zero-Order Reaction under Model 2.37

Source of Sum of Mean
Variation df Squares Squares F-value p-value

Regression 3 181.974 60.658 340.195a <0.0001
Residual 8 1.426 0.178
Lack of fit 5 0.861 0.172
Pure error 3 0.565 0.188 0.914 0.433
Total 11 183.400

aUse the sum of squares of residuals as the error term.

TABLE 2.8: Summary of Estimates of Parameters in the Arrhenius
Equation

Order of Reaction Parameter Estimate Standard Error Correlation

Zero α 31.091 2.140 −0.9999
β −9682.682 699.439
α 26.883 2.071 −0.9999
β −9803.517 676.885

TABLE 2.9: Summary of the Predicted Tentative Expiration
Dating Period at a Marketing Storage Temperature

Order of Reaction ln(t̂) SE(ln(t̂)) Lt exp(Lt)

Zero 3.6856 0.2071 3.2832 26.66
First 3.7458 0.2008 3.3556 28.66

TABLE 2.10: Residuals from the Arrhenius Equation

Temp Time
(◦C) (months) DIJ (0) D̂IJ (0) R(0)∗ DIJ (1) D̂IJ (1) R(1)∗

35 1 −0.5 −0.719 0.219 −0.0050 −0.0072 0.0022
35 2 −2.0 −1.439 −0.561 −0.0202 −0.0145 −0.0057
35 3 −3.0 −2.158 −0.842 −0.0305 −0.0217 −0.0088
45 1 −2.0 −1.931 −0.069 −0.0202 −0.0197 −0.0005
45 3 −4.8 −5.794 0.994 −0.0492 −0.0590 0.0098
55 0.5 −2.5 −2.441 −0.059 −0.0253 −0.0251 0.0002
55 1 −4.9 −4.882 −0.018 −0.0502 −0.0503 0.0001
55 2 −9.6 −9.764 0.164 −0.1010 −0.1005 0.0004
∗ R(0) and R(1) are residuals for reactions of order 0 and 1, respectively.
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TABLE 2.11: Summary of Residuals for Lack-of-Fit for the Arrhenius Equation

Order of Source of Sum of
Reaction Variation df Squares Mean Squares F−value p-value

Zero Residual from 6 2.0953
the Arrhenius
equation
Residual from 5 0.3919 0.0784
Equation 2.38
Lack of fit 1 1.7034 21.73 0.0055

First Residual from the 6 2.1074 × 10−4

Arrhenius equation
Residual from 5 3.7481 × 10−5 7.4961 × 10−6

Equation 2.38
Lack of fit 1 1.7326 × 10−4 23.11 0.0049

the Arrhenius equation is inadequate for describing the relationship between reaction
rates and temperature. Failure of the Arrhenius equation for both orders becomes
clear in Figures 2.5 and 2.6 when the logarithm of rate constants is plotted against the
inverse of the absolute temperature. Figures 2.5 and 2.6 indicate that the relationship
between rate constant and inverse of the absolute temperature is not linear.
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Figure 2.4: Regression of logarithm of minus log loss divided by time versus tem-
perature. Log of − (log loss/time) = log[−log(y/100)/time].
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Figure 2.5: Regression of logarithm of zero-order rate constant by time versus
temperature.
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Figure 2.6: Regression of logarithm of first-order rate constant versus temperature.
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2.5 Discussion

The FDA stability guidelines provide some general guidance on conditions for stress
testing. For example, it is suggested that the condition of H2O2 from 3% to 35%
be considered for testing for minutes up to days at ambient temperature. For the
conditions of heat and humidity, we may consider heat from 50◦ C to greater than
100◦ C for several days and humidity greater than 90% for up to several days,
respectively. For acid and base, we may consider acid from 0.1 to 1 N HCl as low
as pH = 1 and base from 0.1 to 1 N NaOH as high as pH = 13. For light, the ICH
Q1B guideline for stability recommendations to other wavelengths may be considered
(ICH Q1B, 1996).

For the numerical example presented in the previous section, the null hypothesis of
no lack of fit for the Arrhenius equation is rejected at the 5% level of significance for
both reaction orders. One possible explanation for failure of the Arrhenius equation
is that the study was not designed properly. This may be because no proper prior
information regarding the rate of degradation was available for the selection of time
points and temperature. For example, the maximum degradation in this data set is only
9.6% after a storage period of 2 months at 55◦ C. As indicated earlier, if the proportion
of degradation is less than 15% of the initial strength, it is difficult to distinguish a
zero-order reaction from a first-order reaction. Davies and Hudson (1981) presented
an example that showed that the departure from linearity of strengths versus time for
a zero-order reaction does not become apparent until the degradation exceeds at least
40%. Therefore, unless the strength has decreased by more than 40%, one is unable to
distinguish the first order from the zero order, and consequently, is unable to describe
adequately the relationship among degradation, time, and temperature.

As indicated earlier, the primary objective of an accelerated stability study is to
provide an accurate and reliable estimate of the tentative expiration dating period.
To achieve this objective, it is important to select an efficient design that will pro-
vide the maximum information for accelerated stability testing. Since the amount of
information provided by a design is a function of the inverse of the variance, it is
recommended that the design generate an estimate of time on the logarithmic scale
based on Equation 2.40 with the smallest possible variance.

The relationship among the amount of degradation, temperature, and time stated in
Equations 2.15 and 2.16 implies that the difference between the degradation and time
on the logarithmic scale is a linear function of the absolute temperature. Hence, the
time on the logarithmic scale can be viewed as the residual between the prespecified
maximum allowable degradation and that predicted by the Arrhenius equation. Con-
sequently, the information from an accelerated stability testing study may be defined
as the inverse of the variance for the estimate of the time on the logarithmic scale,
which is a function of the variances of the estimates for the unknown parameters in
the Arrhenius equation.

In general, the principles and sample size determination for designing a calibration
experiment can be applied separately to the selection of time points and tempera-
tures in an accelerated stability testing study. For example, to examine the possible
departure from linearity, at least three design points should be used for both time
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and temperature. The range of time and temperature should be chosen for maximum
degradation to determine the correct order of reaction. However, since the technique
for determining the tentative expiration dating period is the extrapolation of temper-
ature, it is preferable to select the lowest temperature in a stressed test: either lower
than or as close to the marketing storage temperature as possible. In the following
we provide some recommendations for temperatures and time points in the design
selection of an accelerated stability testing program:

� Use at least three design points separately for time and temperature.

� Select the highest temperature such that accurate discrimination of the degra-
dation of a first-order reaction at this temperature from a zero-order reaction
can be reached in a short period of time, for examples, within three months.

� Select the lowest and highest temperature possible that are close to the mar-
keting storage temperature, which will be used in long-term stability studies
under ambient conditions.

� The lowest and highest temperatures should be selected as far apart as scien-
tifically and physically possible. This defines the range of temperatures.

� The lower limit for time points is the initial point, at zero. The upper limit of
the range for time points is suggested as the time point at which the amount of
degradation for an adequate determination of reaction rates can be reached at
the highest temperature selected in the second bullet point.

� Select at least one more data point within the range of temperatures and time
points such that at least three data points are available for an investigation of a
departure from linearity with respect to both time and temperature. Techniques
such as factorial or fractional designs and designs for a response surface (e.g.,
central composite design) can also be applied here, provided that the time and
temperature ranges have been determined.

� Replicates should be obtained at various combinations to test lack-of-fit. The
number of replicates can be determined based on β(h) in Model 2.54.

Equations 2.15 and 2.16 are a combination of linear and nonlinear functions. For
example, degradation relates to time points in a linear fashion but depends on tem-
perature in a nonlinear fashion. The recommendations discussed above fall under the
assumption that the relationship between degradation and temperature is also linear.
As a result, the recommendations above will not provide optimal designs. However, if
one only considers the nonlinear relationship between reaction rate and temperature
in Model 2.54, the method for construction of a design for nonlinear regression pro-
posed by Box and Lucas (1959) might be useful. Let I be the number of temperatures
employed in an accelerated stability study. Define a matrix Z of order I × 2 as

Z = (Zα, Zβ),
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TABLE 2.12: Means and Variances of
Logarithmic Strength by Temperature

Temperature (◦C) Mean Variance

35 4.5866 0.00016
45 4.5705 0.00042
55 4.5463 0.01485

where

Zα = (Zα1, . . ., Zα I )′,

Zβ = (Zβ1, . . ., Zβ I )′,

and Zαi and Zβi are as defined in Equation 2.56. Box and Lucas (1959) suggested
selecting temperatures that maximize the determinant of matrix Z ′ Z . When I = 2, it
can be shown that the temperatures that maximize |Z ′ Z | are lower and upper limits of
the temperature range. However, more research is needed for the selection of optimal
designs that can accommodate both linear and nonlinear parts of Equations 2.15
and 2.16.

The means and variances of the logarithm of strengths for the data set given in Table
2.4 are presented in Table 2.12 by temperature. Table 2.12 reveals that the variance of
the logarithm of strengths increases as the temperature increases. This indicates that
the assumption of a constant error variance might be violated. In addition, it can be
seen from Table 2.8 that the correlation between the estimates of the two unknown
parameters in the Arrhenius equation is close to −1. Therefore, the nonlinear tech-
nique may not converge to obtain estimates owing to the almost perfect correlation.
To alleviate these problems, Davies and Hudson (1981) suggested that the strengths
be weighted by the inverse of sample variance at each temperature. In addition, the
inverse of the absolute temperature in Equations 2.42 and 2.43 needs to be centralized
to avoid high correlation. For more details, see Davies and Hudson (1981).
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Chapter 3

Expiration Dating Period

As indicated earlier, for every drug product on the market, the FDA requires that an
expiration dating period (or shelf-life) be indicated on the immediate container label.
The expiration date provides the consumer with the confidence that the drug product
will retain its identity, strength, quality, and purity throughout the expiration period
of the drug product. If the drug fails to remain within the approved specifications
for the identity, strength, quality, and purity, the drug product is considered unsafe
and subject to recall. To provide such assurance, pharmaceutical companies usually
conduct stability studies to collect, analyze, and interpret data on the stability of
their drug products throughout the expiration period. According to the FDA stability
guidelines, the time at which the average drug characteristic (e.g., potency) remains
within an approved specification after manufacture is recommended as the shelf-life
of the drug product (FDA, 1987, 1998).

Since the true shelf-life of a drug product is usually unknown, it is typically esti-
mated based on assay results of the drug characteristics from a stability study con-
ducted during the process of drug development. In the next section basic concepts
for determining an expiration dating period as given in the FDA stability guidelines
are briefly described. Following this concept, several methods including the method
recommended by the FDA, the direct method, and the inverse method are introduced
in Section 3.2. Also included in this section is a comparison of these methods. Other
methods such as a nonparametric method based on ranks, the slope approach, and the
method of interval estimate are discussed in Section 3.4. Some concluding remarks
are given in the last section of this chapter.

3.1 Basic Concepts

According to the FDA stability guidelines, the expiration dating period or shelf-life of
a drug product can be determined as the time at which the average drug characteristic
(e.g., potency) remains within an approved specification after manufacture (FDA,
1987, 1998). It is suggested that an expiration dating period or shelf-life of a drug
product be determined as the time point at which the 95% lower confidence bound of
the mean drug characteristic (e.g., potency) intersects the approved lower specification
of the drug product. The use of the one-sided 95% lower confidence bound of the
mean degradation of the drug product is to assure that the drug product will remain
within the approved specifications for the identity, strength, quality, and purity prior
to the expiration date.
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3.1.1 Drug Characteristics

Generally, there are different criteria for acceptable levels of stability with respect to
chemical, physical, microbiological, therapeutic, and toxicological characteristics of
drug products (USP-NF, 2000). The requirements of stability on these characteristics
are also different from dosage form to dosage form. Table 3.1 lists drug characteristics
for different dosage forms, which should be evaluated in a stability study. As indicated
earlier, the objective of stability studies is to characterize the degradation of drug
products in terms of some essential drug characteristics and consequently, to establish
an expiration dating period. The approach suggested in the FDA stability guidelines
for determining drug shelf-life is based primarily on a single drug characteristic such as
strength. The strength of a drug product is defined as either: (a) the concentration of the
drug substance or (b) the potency, that is, the therapeutic activity of the drug product,
which can be determined by an appropriate analytical method (laboratory test) or
by adequately developed and controlled clinical data. However, as indicated in the
FDA stability guidelines, the strength of a drug product is interpreted as a quantitative
measure of the active ingredient of a drug product as well as other ingredients requiring
quantitation, such as alcohol and preservatives. For an analysis of stability data, the
FDA requires that percent of label claim, not percent of initial average value, be used
as the primary variable for strength.

TABLE 3.1: Drug Characteristics for Different Dosage Forms

Dosage Form Drug Characteristics

Tablets appearance, friability, hardness, color, odor,
moisture, strength, dissolution

Capsules strength, moisture, color appearance, shape,
brittleness, dissolution

Emulsions appearance, color, odor, pH, viscosity
strength

Oral solution and appearance, strength, pH, color, odor,
suspensions redispersibility, dissolution, clarity

Oral powder appearance, pH, dispersibility , strength

Metered dose ophthalmic strength delivered dose per actuation, number
preparations of metered doses, color, clarity, particle size,

loss of propellant, pressure, valve corrosion,
spray pattern

Topical and ophthalmic appearance, clarity, color, homogeneity, odor,
preparations pH, redispersibility, consistency, particle size

distribution, strength, weight loss

Small-volume parenterals strength, appearance, color, particulate matter,
pH, starility, pyrogenicity

Large-volume parenterals strength, appearance, color, clarity, particulate
matter, pH, volume, extractables, sterility,
pyrogenicity

Suppositories strength, softening, range, appearance, dissolution
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As can be seen from Table 3.1, for a given dosage form, the FDA guidelines require
that a number of drug characteristics be evaluated for determination of drug shelf-
life. However, in most stability studies, shelf-life is usually determined based on the
primary drug characteristic of interest such as strength (or potency) of the drug product
rather than all of the drug characteristics. On the other hand, a drug product may have
more than one active ingredient. In practice, to fulfill the FDA requirements, we
may determine shelf-lives for each drug characteristic of each active ingredient and
consider the minimum shelf-life if different drug characteristics of different active
ingredients have different shelf-lives of the drug product. Chow and Shao (2007)
proposed an alternative approach for determining drug shelf-life for drug products
with multiple ingredients (or components). Their method will be discussed in detail
in Chapter 9.

3.1.2 Model and Assumptions

For a given batch, let y j be the assay result (percent of label claim) of a pharmaceutical
compound at time x j , j = 1, . . ., n. The following simple linear regression model is
usually assumed:

y j = α + βx j + e j , j = 1, . . ., n, (3.1)

where α and β are unknown parameters, x j ’s are deterministic time points selected
in the stability study, and e j ’s are measurement errors independently and identically
distributed as a normal random variable with mean 0 and variance σ 2, denoted by
N (0, σ 2). Under model (3.1), the average drug characteristic at time x is α + βx .
Assuming that the drug characteristic decreases as time increases, that is, β in Model
3.1 is negative, the drug product expires if its average characteristic is below a given
specification limit η. Thus, the true shelf-life, denoted by θ , is the solution of

η = α + βx .

Hence, we have

θ = η − α

β
.

Note that α and β are the intercept and slope of the degradation curve, where α is the
average drug characteristic at the time of manufacture (i.e., x = 0), which is usually
larger than η. Thus, θ > 0. The slope β is also known as stability loss in the drug
characteristic over time.

Let θ̂ be an estimator of the true shelf-life θ based on (y j , x j )’s. It is desirable that
θ̂ ≤ θ be statistically evident; that is, θ̂ is a conservative estimator. According to the
1987 FDA stability guideline, the probability of θ̂ ≤ θ should be nearly 95%, that is,
θ̂ is approximately a 95% lower confidence bound for θ . Thus, θ̂ has a negative bias of
the same order of magnitude as the standard deviation of θ̂ . Studying the magnitude
of the bias of θ̂ is particularly important for pharmaceutical companies, because the
closeness of θ̂ to θ is directly related to the bias of θ̂ , and a less biased shelf-life
estimator is preferred.
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3.2 Shelf-Life Estimation

Following the concept of determination of a drug shelf-life as suggested by the FDA,
several methods have been proposed in the literature (see, e.g., Pong (2000); Shao
and Chow, 2001b). These methods are described below.

3.2.1 The FDA’s Approach

Let (α̂, β̂) be the least squares estimator of (α, β) based on stability data (y j , x j )′s
under Model 3.1. For any fixed time x , a 95% lower confidence bound for α + βx is
given by

L(x) = α̂ + β̂x − σ̂ tn−2

√
1

n
+ (x − x̄)2

Sxx
, (3.2)

where tn−2 is the 95th percentile of the t-distribution with n − 2 degrees of freedom,
x̄ is the average of x j ’s,

σ̂ 2 = 1

n − 2

(
Syy − S2

xy

Sxx

)

in which

Syy =
n∑

j=1

(y j − ȳ)2,

Sxx =
n∑

j=1

(x j − x̄)2,

Sxy =
n∑

j=1

(x j − x̄)(y j − ȳ),

and ȳ is the average of y j ’s. The FDA recommends the following as the shelf-life
estimator:

θ̂F = inf{x ≥ 0 : L(x) ≤ η},
the smallest x ≥ 0 satisfying L(x) = η. Thus, the points where Equation 3.2 intersects
the acceptable lower specification limit η (if it exists) are the two roots of the following
quadratic equation:

[η − (α̂ + β̂x)]2 = σ̂ 2t2
n−2

[
1

n
+ (x − x̄)2

Sxx

]
. (3.3)

The two roots, denoted by xL and xU , of Equation 3.3 constitute the lower and upper
limits of the 90% confidence interval of (η − α)/β. Denote

SE(x) =
{

σ̂ 2

[
1

n
+ (x − x̄)2

Sxx

]}1/2

,
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and let

Tα̂ = α̂ − η

SE(α̂)
and Tβ̂ = β̂

SE(β̂)
. (3.4)

If the slope is statistically significantly smaller than zero and the intercept is statisti-
cally significantly larger than η, which is the acceptable lower specification limit at
the 5% level of significance, that is,

(a) Tβ̂ = β̂

SE(β̂)
< −t0.05,n−2, (3.5)

(b) Tα̂ = α̂ − η

SE(α̂)
> t0.05,n−2, (3.6)

then the 90% confidence interval for (η − α)/β is an inclusive and close interval
[xL , xU ]. In this case the expiration dating period of a single batch is defined as
θ̂F = xL (Kohberger, 1988). However, in other cases the 90% confidence intervals
for (η−α)/β is either the entire real line or two disjoint open intervals; consequently,
the expiration dating period is not defined.

Note that the above approach is based on the 95% lower confidence limit for
mean degradation line. Its interpretation in terms of hypothesis testing is given below
(Easterling, 1969). Under Model 3.1, the pth upper quantile of the distribution for
the percent of label claim at a given time point t = x is α + βx + z pσ , where z p

is the pth upper quantile of a standard normal distribution. The null hypothesis that
the pth upper quantile of the distribution for the percent of label claim at time point
t = x0 is larger than the acceptable lower specification η can be stated as

H0 : α + βx0 + σ z p ≥ η vs Ha : α + βx0 + σ z p < η,

which can be rewritten as

H0 : η − (α + βx0 + σ z p) ≤ 0 vs Ha : η − (α + βx0 + σ z p) > 0.

Furthermore, the hypotheses can be expressed in terms of time point t = x0 as follows
(with β < 0):

H0 :
η − α − σ z p

β
≤ x0 vs Ha :

η − α − σ z p

β
> x0. (3.7)

For estimation of the shelf-life of a drug product, as specified in the 1987 FDA
guideline, the mean degradation line is to be used. Hence, p = 0.5 is chosen. When
p = 0.5 and zp = 0, the hypotheses of 3.7 reduces to

H0 :
η − α

β
≤ x0 vs Ha :

η − α

β
> x0. (3.8)

Note that (η−α)/β is the time point at which the mean degradation line intersects the
acceptable lower specification limit η. The null hypothesis of 3.7 is to test whether
this time point is less than t = x0. Therefore, if the null hypothesis is tested at the
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5% level of significance, the corresponding set of x for which the null hypothesis
of Equation 3.7 is not rejected at the 5% level of significance constitutes the 95%
one-sided confidence interval, that is, (xL , ∞) for (η − α)/β. The lower limit of the
95% one-sided confidence interval for (η − α)/β is xL , which can be obtained as the
smaller root of the quadratic Equation 3.3.

3.2.1.1 Asymptotic Bias

By definition, θ̂F > θ implies L(θ ) > η and

P(θ̂F > θ ) ≤ P(L(θ ) > η) = 5%

since L(θ ) is a 95% lower confidence bound for α + βθ = η. This means θ̂F is a
conservative 95% lower confidence bound for θ. Shao and Chow (2001b) studied the
asymptotic bias and asymptotic mean squared error of the above estimator suggested
by the FDA. Define

An = σ̂ 2t2
n−2

(
1

n
+ x̄2

Sxx

)
, Bn = − x̄ σ̂ 2t2

n−2

Sxx
, (3.9)

and

Cn = σ̂ 2t2
n−2

Sxx
.

Without loss of generality, assume that Sxx is exactly of order n. Then An, Bn , and Cn

are exactly of order n−1. Thus, asymptotically, θ̂F is the unique solution of L(x) = η.
A straightforward calculation shows that the solution is given by

1

β̂2 − Cn
{(η − α̂)β̂ + Bn −

√
[(η − α̂)β̂ + Bn]2 − (β̂2 − Cn)[(η − α̂)2 − An]}.

Removing terms of order n−1, we have

θ̂F = η − α̂

β̂
−

√
Anβ̂2 + 2Bn(η − α̂)β̂ + Cn(η − α̂)2

β̂2
+ op(n−1/2). (3.10)

From the asymptotic theory for the least squares estimators, and Taylor’s expansion,
we have

(
η − α̂

β̂
− η − α

β

) /
α

|β|

√
1

n
+ (θ − x̄)2

Sxx
−→ N (0, 1) . (3.11)

Since θ = (η−α)/β, the asymptotic expectation of θ̂ −θ (i.e., (η−α̂)/β̂−(η−α)/β)
is 0. Since

α̂ −→p α, β̂ −→p β, and σ̂ −→p σ
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the asymptotic expectation of the second term on the right-hand side of Equation 3.10
is given by

−σ tn−2

β2

√(
1

n
+ x̄

Sxx

)
β2 − 2x̄(η − α)β

Sxx
+ (η − α)2

Sxx

= −σ tn−2

|β|

√
1

n
+ (θ − x̄)2

Sxx
. (3.12)

This is the asymptotic bias of θ̂F as n −→ ∞ and is of order n−1/2. Furthermore, it
follows from Equations 3.11 and 3.12 that the asymptotic mean squared error of θ̂F

is given by

σ 2(1 + t2
n−2)

β2

[
1

n
+ (θ − x̄)2

Sxx

]
. (3.13)

Note that stability studies are often conducted under controlled conditions so that the
assay measurement error variance σ 2 is usually very small. This leads to the study of
the small error asymptotics. When n is fixed and σ −→ 0, we have

β̂ = Sxy

Sxx
=

∑n
j=1(x j − x̄)y j

Sxx

= β +
∑n

j=1(x j − x̄)e j

Sxx

= β + Op(σ )
p−→ β,

where Op(σ ) denotes a random variable of order σ as σ −→ 0. This result holds
because e j/σ is N (0, 1). Similarly, we have

α̂ = ȳ − β̂ x̄

= α + Op(σ )
p−→ α,

Furthermore, (n − 2)σ̂ 2/σ 2 has the chi-square distribution with (n − 2) degrees of
freedom. Thus Equation 3.10 holds with op(n−1/2) replaced by op(σ ). The asymptotic
(σ −→ 0) bias of the second term on the right-hand side of Equation 3.10 is given by
Equation 3.12, which is now of order σ. Using Taylor’s expansion and the fact that
α̂ − α and β̂ − β are jointly normal with mean 0 and covariance matrix

σ 2

Sxx

(
x̄2 + n−1Sxx − x̄

−x̄ 1

)
,

we conclude that Equation 3.11 holds when σ −→ 0 and n is fixed. Hence, the
asymptotic bias and mean squared error of θ̂F , in the case of σ −→ 0, are the same
as those for the case of n −→ ∞, given by Equations 3.12 and 3.13, respectively.

Note that Equations 3.12 and 3.13 indicate that, when n and x j ’s are fixed, the
asymptotic bias and mean squared error of θ̂F depend mainly upon the noise-to-
signal ratio σ/ |β| . If σ/ |β| cannot be controlled to a desirable level, then an increase
of sample size n is necessary to reduce bias and mean squared error.
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3.2.2 The Direct Method

As discussed above, the labeled shelf-life is determined as the time point at which
the 95% one-sided lower confidence limit for the mean degradation curve intersects
the lower acceptable specification limit. Alternatively, we may consider the 95%
lower bound for the time point at which the mean degradation curve intersects the
lower acceptable specification limit as the labeled shelf-life. Shao and Chow (2001b)
referred the above method as the direct method for obtaining a shelf-life estimator.

From the discussion above, by the asymptotic theory (either n −→ ∞ or σ −→ 0),
we have

(
η − α̂

β̂
− θ

) /
α̂∣∣β̂∣∣

√
1

n
+ 1

Sxx

(
η − α̂

β̂
− x̄

)2

−→ N (0, 1) .

Let z be the 95th percentile of the standard normal distribution. Then, an approximate
(large n or small σ ) 95% lower confidence bound for θ is given by

θ̂D = η − α̂

β̂
− σ̂ z∣∣β̂∣∣

√
1

n
+ 1

Sxx

(
η − α̂

β̂
− x̄

)2

.

Using An , Bn , and Cn given in Equation 3.2, the above estimator becomes

θ̂D = η − α̂

β̂
− z

tn−2

√
Anβ̂2 + 2Bn(η − α̂)β̂ + Cn(η − α̂)2

β̂2
. (3.14)

Note that when n −→ ∞, z/tn−2 −→ 1. It follows from Equations 3.10 and 3.14
that

θ̂D − θ̂F = op(n−1/2).

Hence, the shelf-life estimators obtained by using the FDA’s method and the direct
method are asymptotically equivalent, and their large-sample asymptotic bias and
mean squared error agree. The small error asymptotic bias and mean squared error of
θ̂D are given by

− σ z

|β|

√
1

n
+ (θ − x̄)2

Sxx
,

and

σ 2(1 + z2)

β2

[
1

n
+ (θ − x̄)2

Sxx

]
,

respectively. When n is fixed, z/tn−2 is a fixed constant less than 1. Hence, θ̂D > θ̂F

holds asymptotically as σ −→ 0, that is, θ̂D is less conservative than θ̂F . This result
indicates that, when σ 2 is small, θ̂D is preferred.
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3.2.3 The Inverse Method

Another shelf-life estimator can be obtained using so-called inverse regression method
(Krutchkoff, 1967; Halperin, 1970). To derive the inverse estimator, we start with

x j = α∗ + β∗y j + e∗
j , j = 1, . . ., n (3.15)

which is the same as Model 3.1 except that x j and y j are switched. In a stability
study, however, the x j ’s are deterministic time points and the y j ’s are assay results.
Therefore, the error term e∗

j is not independent of y j . Nevertheless, suppose that we fit
Model 3.15 based on (x j , y j )’s. Since the true shelf-life is the x-value when the mean
of y is η, the shelf-life estimator, denoted by θ̂I , based on the inverse method is the
95% lower confidence bound for α∗ +β∗η. Treating Model 3.15 as an ordinary linear
regression model, we obtain the least squares estimators of α∗ and β∗ as follows

α̂∗ = x̄ − ȳ
Sxy

Syy
,

β̂∗ = Sxy

Syy
.

As a result, an unbiased estimator of the variance of α̂∗ + β̂∗η can be obtained as

1

n − 2

(
Sxx − S2

xy

Syy

)[
1

n
+ (η − ȳ)2

Syy

]

= σ̂ 2 Sxx

Syy

[
1

n
+ (η − ȳ)2

Syy

]
.

Consequently, the shelf-life estimator based on the inverse method is given by

θ̂I = x̄ + Sxy

Syy
(η − ȳ) (3.16)

− σ̂ tn−2

√
Sxx

Syy

[
1

n
+ (η − ȳ)2

Syy

]
.

Under Equation 3.1 with Sxx having order n−1 as n −→ ∞, θ̂I has the same limit as

x̄ + β

β2 + σ 2n
Sxx

(η − α − β x̄) =
σ 2n
Sxx

β2 + σ 2n
Sxx

+ β2

β2 + σ 2n
Sxx

θ,

which is a convex combination of x̄ and θ . Unless x̄ = θ , θ̂I has a nonzero limiting
bias as n −→ ∞. Since x̄ is the average of the time values used in the stability study,
it is usually much smaller than the true shelf-life θ . Hence, the limiting bias of θ̂I is
negative, that is, θ̂I can be too conservative. If x̄ < θ for all n, then

lim
n−→∞ P(θ̂I < θ ) = 1.
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When n is fixed but σ −→ 0, the difference between the last term on the right-hand
side of Equation 3.16 and the quantity on the right-hand side of Equation 3.12 is of
the order op(σ ). Thus,

θ̂I − θ̂F = op(σ )

and the small error asymptotic properties of θ̂I are the same as those of θ̂F . The
inverse method has a better asymptotic performance when σ −→ 0 than if n −→ ∞
since Model 3.15 and 3.1 are asymptotically the same as σ −→ 0 but asymptotically
different from n −→ ∞. Note that Models 3.1 and 3.15 are the same if and only if
σ = 0, regardless of how large n is. The inverse method is appealing because of its
simplicity. However, it is not valid unless σ −→ 0.

Chow and Shao (1990b) compared the two estimators (i.e., the FDA’s approach and
the inverse method) in a different setting for calibration in assay development, which
is similar to the case where the two estimates of the time point t = x at which the mean
degradation curve intersects the lower acceptable specification limit. Denote the two
estimates by x̂F and x̂ I , respectively. Chow and Shao (1990b) assessed the closeness
between the two estimators in terms of their ratio (i.e., x̂ I /x̂F ) and relative ratio (i.e.,
[x̂ I − x̄]/[x̂F − x̄]). In other words, we have

x̂ I

x̂F
= 1 + (1 − R2)

(
x̄

x̂F
− 1

)
(3.17)

and

x̂ I − x̄

x̂F − x̄
= R2, (3.18)

where

R2 = S2
xy

Sxx Syy
.

From Equations 3.17 and 3.18, we have the following observations:

� The difference between the two estimates is zero if and only if R2 = 1 (i.e.,
there is a perfect fit between x and y or η = ȳ).

� Since R2 ≤ 1, the inverse estimate is always closer to x̄ than x̂F .

� The distribution of the relative ratio is independent of the unknown shelf-life.

Chow and Shao (1990b) also evaluated the closeness between x̂F and x̂ I in terms
of the probabilities that (x̂ I − x̄)/(x̂F − x̄) and x̂ I /x̂F differ from unity by the small
amount δ. Let λ = β2/σ 2. Then, the probability that (x̂ I − x̄)/(x̂F − x̄) differs from
unity by δ can be expressed as

p(λ) = P

{
1 − x̂ I − x̄

x̂F − x̄
> δ

}
(3.19)

= P

{
F <

(n − 2)(1 − δ)

δ

}
,
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where

F = (n − 2)R2

1 − R2

has a noncentral F distribution with 1 and n −2 degrees of freedom and noncentrality
parameter Sxxλ. Note that x̂F is derived from the regression of y and x, where x is
assumed to be fixed, while x̂ I can be viewed as it can be obtained from the regression
of x on y, where x is assumed to be random and y is fixed. It can be verified that

R2

1 − R2
= SSR

SSE
,

where

SSR = S2
xy

Sxx
,

and

SSE = Sxx − SSR.

Thus, the probability given in Equation 3.19 is a decreasing function of λ. Therefore,
the probability is small if the ration |β| /σ is large. To provide a better understanding,
Chow and Shao (1990b) provided a table of p(λ) with respect to λ (with n = 12) for
various values of δ (see Table 3.2). From Table 3.2, it can be seen that the difference
between x̂ I and x̂F is not appreciable when λ ≥ 152 for δ = 1%. Chow and Shao
(1990b) also examined the closeness between x̂ I and x̂F in terms of the following
probability:

P

{∣∣∣∣ x̂ I

x̂F
− 1

∣∣∣∣ ≥ δ

}
.

Since there exists no closed form for the distribution of x̂ I /x̂F , Chow and Shao (1990b)
suggested using the following approximation:

P

{∣∣∣∣ x̂ I

x̂F
− 1

∣∣∣∣ ≥ δ

}
≈




t(λ, xη) + s(λ, xη) if δ < 1 − r

t(λ, xη) if δ = 1 − r

t(λ, xη) + s(λ, xη) − 1 if δ > 1 − r

, (3.20)

where xη is the true x value corresponding to y = η,

r = 1

(1 + λ−1�−1)
,

t(λ, xη) = 	
{[

(1 − r + δ)−1(1 − r )x̄ − xη

]
λ1/2

}
,

s(λ, xη) = 	
{[

xη − (1 − r + δ)−1(1 − r )x̄
]
λ1/2

}
,

and 	(x) is the standard normal distribution function. Note that for the above approx-
imation, we assume that as n → ∞, x̄ → µx and n−1Sxx → �, where � is some
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TABLE 3.2: Values of p(θ ), δ and λ = Sxxθ/n(n = 12)

Values of λ for the following values of δ:

p(θ ) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

1.00 3 1 1 0 0 0 0 0 0 0
0.95 32 16 10 8 6 5 4 3 3 3
0.90 40 20 13 9 7 6 5 4 4 3
0.85 46 23 15 11 9 7 6 5 4 4
0.80 51 25 16 12 10 8 6 6 5 4
0.75 55 27 18 13 11 9 8 7 6 5
0.70 60 30 19 14 11 9 8 7 6 6
0.65 64 32 21 16 12 10 9 7 6 6
0.60 68 34 23 17 13 11 9 8 7 6
0.55 73 36 24 18 14 12 10 8 7 7
0.50 77 38 25 19 15 12 10 9 8 7
0.45 82 40 27 20 16 13 11 10 8 8
0.40 87 43 28 21 17 14 12 10 9 8
0.35 92 45 30 23 18 15 12 11 10 9
0.30 98 48 32 24 19 16 13 12 10 9
0.25 104 52 34 25 20 17 14 12 11 10
0.20 111 55 37 27 22 18 15 13 12 10
0.15 120 60 40 30 23 19 17 14 13 11
0.10 133 66 44 33 26 21 18 16 14 13
0.05 152 75 50 38 30 25 21 18 16 15
0.01 193 96 64 48 38 31 27 23 21 19

Source: Chow, S.C. and Shao, J. (1990b). Journal of the Royal Statistics Society, C, 39,
219–228.

positive number. Let q(λ, xη) be the function given on the right-hand side of Equation
3.13. Then, q(λ, xη) is a continuous function of δ since s(λ, xη) → 0 as δ ↑ 1 − r
and s(λ, xη) → 1 as δ ↓ 1 − r . Furthermore, since r → 1 as λ → ∞ (� is fixed),
t(λ, xη) → 0 and s(λ, xη) → 1 for any δ > 0. Hence, q(λ, xη) is small if λ is large.
Note that probability Equation 3.20 can be approximated by

q(λ̂, xη) =




t(λ̂, xη) + s(λ̂, xη) if δ < 1 − R2

t(λ̂, xη) if δ = 1 − R2

t(λ̂, xη) + s(λ̂, xη) − 1 if δ > 1 − R2,

where λ̂ is an estimator of λ. It can be seen that q(λ̂, xη) also depends on the unknown
xη.

3.2.4 Comparison of Methods

Shao and Chow (2001b) compared the finite sample performance of the FDA’s ap-
proach (θ̂F ), the direct method (θ̂D), and the inverse method (θ̂I ) for estimation of
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the expiration dating period of a drug product through a simulation study. They also
studied whether the asymptotic bias and mean squared error formulas for Equations
3.13 and 3.14 described above are close to the bias and mean squared error given by
simulation.

In their simulation study Shao and Chow (2001b) considered a typical study design:

x j = 0, 3, 6, 9, 12, 18, and 24 months

with three replicates at each x j . Thus, n = 21. Values of α (initial assay at month 0, or
manufacture), β (rate of degradation), and η (product specification limit) were chosen
to be 105, −0.5 and 90, respectively, so that θ = 30. To see the asymptotic effect,
they considered values of σ ranging from 0.1 to 2.0. Based on 2000 simulations,
Table 3.3 lists (a) the bias (BIAS) and mean squared error (MSE) of θ̂F , θ̂D, and
θ̂I , (b) the asymptotic bias (ABIAS) and asymptotic mean squared error (AMSE)
computed using Equations 3.13 and 3.14, and (c) the coverage probability (CP) when
θ̂F , θ̂D, and θ̂I are considered to be 95% lower confidence bounds for θ . The results
are summarized below:

� The performances of θ̂F and θ̂D are quite satisfactory, especially when σ is
small. The coverage probabilities for θ̂F and θ̂D are close to 95% and never
below 94%. Comparing θ̂F and θ̂D , we found that θ̂D is slightly better when σ

is small, whereas θ̂F is slightly better when σ is large.

� For θ̂F or θ̂D, asymptotic bias and mean squared error from Equations 3.13 and
3.14 are very close to exact bias and mean squared error when σ is small. For
large σ , the asymptotic bias (or the asymptotic mean squared error) is quite
different from the exact bias (or the exact mean squared error).

� In general, θ̂I is too conservative unless σ is very small, which supports the
results described in the previous section. Even when σ = 0.2, the bias and
mean squared error of θ̂I are still much larger than those of θ̂F (or θ̂D), and the
coverage probability of θ̂I is over the nominal level by more than 2%.

3.2.5 Remarks

According to current regulatory practice of the FDA for approving shelf-life, the
labeled shelf-life is limited to be within 12 months beyond the last stability testing
date when the 95 to 105% of label claim is used as the specification limit. It is limited
to 6 months beyond the last testing date when 90 to 110% of label claim is used
as the specification limit. It should be noted, however, that the above comparison of
methods did not take this regulatory practice into consideration. As indicated earlier,
the asymptotic bias of θ̂F is proportional to σ/ |β| and could be large if σ/ |β| is not
well controlled. Under the current regulatory practice that the labeled shelf-life must
extrapolate to no more than 12 months beyond the last testing date, the bias can be
better controlled. In this situation the difference between θ̂D and θ̂F is often very small
for regulatory shelf-life.
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TABLE 3.3: Simulation Averages of Bias (ABIAS), Mean
Squared Error (MSE), and Coverage Probability (CP)
of Shelf-Life Estimators

σ Estimator Bias ABIAS MSE AMSE CP

0.1 θ̂F −0.2002 −0.2044 0.0545 0.0557 0.9510
θ̂D −0.1922 −0.1944 0.0513 0.0518 0.9460
θ̂I −0.2136 −0.2044 0.0603 0.0557 0.9615

0.2 θ̂F −0.4042 −0.4088 0.2193 0.2230 0.9585
θ̂D −0.3917 −0.3889 0.2093 0.2071 0.9525
θ̂I −0.4571 −0.4088 0.2667 0.2230 0.9720

0.3 θ̂F −0.5850 −0.6132 0.4617 0.5017 0.9475
θ̂D −0.5715 −0.5833 0.4462 0.4660 0.9430
θ̂I −0.7020 −0.6132 0.6170 0.5017 0.9760

0.4 θ̂F −0.7757 −0.8176 0.8138 0.8920 0.9445
θ̂D −0.7646 −0.7777 0.7972 0.8284 0.9425
θ̂I −0.9824 −0.8176 1.1865 0.8920 0.9755

0.5 θ̂F −0.9437 −1.0219 1.2001 1.3937 0.9505
θ̂D −0.9382 −0.9721 1.1909 1.2944 0.9485
θ̂I −1.2599 −1.0219 1.9117 1.3937 0.9820

0.6 θ̂F −1.1588 −1.2263 1.7660 2.0069 0.9580
θ̂D −1.1623 −1.1666 1.7742 1.8639 0.9580
θ̂I −1.6088 −1.2263 3.0227 2.0069 0.9915

0.8 θ̂F −1.4868 −1.6351 2.9398 3.5678 0.9495
θ̂D −1.5169 −1.5554 3.0291 3.3135 0.9535
θ̂I −2.2552 −1.6351 5.8382 3.5678 0.9915

1.0 θ̂F −1.8407 −2.0439 4.4785 5.5747 0.9555
θ̂D −1.9111 −1.9443 4.7305 5.1774 0.9615
θ̂I −3.0114 −2.0439 10.128 5.5747 0.9970

1.5 θ̂F −2.5670 −3.0658 8.8510 12.543 0.9490
θ̂D −2.7854 −2.9164 9.8985 11.649 0.9630
θ̂I −4.9163 −3.0658 26.042 12.543 0.9990

2.0 θ̂F −3.2363 −4.0878 13.940 22.299 0.9475
θ̂D −3.6868 −3.8885 16.659 20.710 0.9710
θ̂I −6.9898 −4.0878 51.426 22.299 0.9990

Source: Shao, J. and Chow, S.C. (2001b). Statistica Sinica, 11,737–745.
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3.3 Other Methods

In addition to the method suggested by the FDA, the direct method, and the in-
verse method, other methods for determining drug shelf-life are also available. These
methods include a nonparametic method, a slope approach, and an interval estimate
(see, e.g., Rahman, 1992; Chen et al. 2003; Kiermeier et al. 2004), which are briefly
described below.

3.3.1 Nonparametric Method

Chen et al. (2003) considered a nonparametric method for determining drug shelf-life
based on ranks (see also Min, 2004). For a single batch, consider the model

y j = α + βx j + e j , j = 1, . . ., n.

Under the null hypothesis of β = 0, a standard rank test statistic is given by

U =
n∑

j=1

(x j − x̄)R(y j ),

where x̄ is the mean of x j ’s and R(y1), R(y2), . . . , and R (yn) are the ranks of y1, y2,

. . . , yn , respectively. When β is not necessarily zero, Chen et al. (2003) suggested
considering the residuals, that is, e j = y j − (α + βx j ) :

U (β) =
n∑

j=1

(x j − x̄)R(e j ).

Note that E(U (β)|β) = 0. As a result, it is reasonable to solve the unbiased estimating
equation of U (β) to obtain an estimate of β, that is,

U (β̂) = 0.

Since U (β) is a monotonically decreasing step function in β, there may not exist
values of β that satisfy U (β) = 0. Alternatively, as indicated by Chen et al. (2003),
one may obtain the rank estimate β̂ by minimizing

D(β) =
n∑

j=1

w j [R(e j )]e j ,

where w j (.) is the nonconstant sequence of scores such that w j + wn− j+1 = 0
(Jaeckel, 1972). Thus, D(β) is a nonnegative, continuous, and convex function of β.

Specifically, we may consider the Wilcoxon scores of

w( j) = φ[ j/n + 1],

where

φ(u) =
√

12(u − 1/2).
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By Theorem 5.2.3 of Hettmansperger (1984), we have

n1/2(β̂ − β)
D→ N (0, τ 2�−1),

where

τ =
(√

12
∫ ∞

0
f 2(u)du

)−1

,

and

� = lim
n→∞ n−1 X ′

c Xc,

which is the centered X (and is assumed to be positive definite) by

Xc = X − 1(x̄1, x̄2, . . ., x̄ p),

where x̄i is the mean of i th column in X .
For the estimation of α, it should be noted that α is not estimable from U (β)

because the ranks are invariant to the constant intercept. In practice, we may consider
the median of (y j − β̂x j ), j = 1, . . ., n as an estimate of α. However, when the
distribution of error terms is symmetric, α can be estimated by the median of the
Walsh average of residuals of (ei + e j )/2, 1 ≤ i ≤ j ≤ n (see, e.g., Hettmansperger,
1984; Hettmansperger and McKean, 1998). When α̂ is the median of ê j = y j − β̂x j ,

it can be shown that

n1/2[(α̂, β̂)′ − (α, β)′]

has an asymptotic distribution of multivariate normal with mean zero and variance-
covariance

V = τ 2

[
{2 f (0)τ }−2 + µ′�−1µ −µ′�−1

−µ′�−1 �−1

]
,

where µ is the mean vector of y j ’s and f (.) is the density function of e j ’s. Note that
when α̂ is the Walsh average, n1/2

[
(α̂, β̂)′ − (α, β)′

]
has the asymptotic distribution

of multivariate normal with mean zero and variance–covariance V = τ 2�−1, where

�−1 = lim
n→∞[1, X ]′[1, X ]

where 1 is the unit vector and X is the design matrix. As a result, an approximately
one-sided 95% lower confidence bound for E(y) is given by

L(x) = α̂ + β̂x + z0.05
[
(1, X )V̂ (1, X )′

]1/2
.
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Thus, an estimate of shelf-life can be obtained at which the above 95% lower confi-
dence bound for the mean degradation curve intersects the lower approved specifica-
tion limit η.

3.3.2 Slope Approach

Rahman (1992) indicated that some pharmaceutical companies consider the following
alternative method for estimation of drug shelf-life based on the 95% confidence
interval of the slope of the true mean degradation line.

β̂L = β̂ − t0.05,n−2SE(β̂)

Thus, a new estimated degradation line can be constructed from the same estimated
intercept and β̂L as follows:

L(x) = α̂ + β̂L x

The expiration dating period can then be estimated as the time interval at which
the new estimated degradation line intersects the acceptable lower specification limit
η. We will refer to this approach as the slope approach. In other words, the slope
approach yields an estimated shelf-life, denoted by θ̂S, as the time point t = x ′

L such
that

L(x ′
L ) = α̂ + β̂L x ′

L

= α̂ + [β̂ − t0.05,n−2SE(β̂)]x ′
L

= η.

The above equation is a linear function of x ′
L . Hence, the solution for x ′

L always exists
and is given by

θ̂S = x ′
L

= η − α̂

β̂ − t0.05,n−2SE(β̂)
.

Rahman (1992) showed that there exists one and only one point of intersection between
L(x) and L(x ′

L ), which is given as

x∗ =
∑n

j=1 x2
j

2
∑n

j=1 x j
.

If the sampling time points in a stability study are those recommended in the FDA
guideline for up to five years (i.e., 0, 3, 6, 9, 1, 18, 24, 36, 48, and 60 months), x∗ is
about 19.4 months, which is about one-third of the entire length of the study period.
Rahman (1992) also pointed out that when x ≤ x∗,

P{L(x) > L(x ′
L )} < 0.95
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and when x > x∗,

P{L(x) > L(x ′
L )} > 0.95

Furthermore, under usual practical situations, xL is always longer than x ′
L . Hence, x ′

L
is much more conservative than x ′

L . Note that the estimated expiration dating period
derived from the 95% lower confidence interval for the degradation rate is not based
on the mean degradation line as suggested in the FDA guideline. Moreover, the prob-
ability statement about the relationship among time points, observed percent of label
claim, and the acceptable lower specification limit cannot be made by this method.
Therefore, this approach may not be appropriate for estimation of the expiration dating
period following the basic concept as described in the FDA stability guidelines.

3.3.3 Interval Estimates

As suggested by the FDA stability guidelines, drug shelf-life can be determined as
the time at which the 95% one-sided lower confidence limit for the mean degradation
curve intersects the approved specification limit, which is often used as the labeled
shelf-life. The labeled shelf-life provides the consumer with confidence that the drug
product will retain its identity, strength, quality, and purity throughout the expiration
period. Although there is no assurance that the drug product will retain its identity,
strength, quality, and purity or that the drug product will be safe beyond the expiration
dating period, the expired drug product may still be used by the consumer. It should be
noted, however, that point estimates of shelf-life may overestimate or underestimate
the true shelf-life. If the labeled shelf-life underestimates the true shelf-life, the drug
product will retain its identity, strength, quality, and purity beyond the expiration
period. If the labeled shelf-life overestimates the true shelf-life, the expired drug
product is no longer safe. According to Lyon et al. (2006), of 119 drug products
tested, all except for four or five were stable beyond their original expiration dates.
Some were stable for as long as 10 years beyond their expiration dates. As a result, it is
suggested that consumers follow expiration dates or beyond-use dates very carefully
(see also Kellicker, 2006). The California Board of Pharmacy (CBP 2001) also advised
that the pharmacy is not to dispense expired drugs. During an inspection, the inspector
will randomly select some filled prescriptions to compare the expiration dates to the
manufacturer’s container. If the expiration date on the prescription label exceeds the
manufacturer’s date, this is a violation.

In general, it is believed that the drug product beyond the expiration period will
maintain its identity, strength, quality, and purity for a short period of time. We
will refer to this short period of time as the safety margin for the drug product.
Pharmaceutical companies often receive queries regarding the safety of newly expired
drug products. It is a common practice for them to suggest that consumers not take
any expired drug products. However, it may be of interest for the pharmaceutical
companies to establish an interval estimate rather than a point estimate for the drug
shelf-life. An interval estimate may provide useful information regarding drug safety
beyond labeled shelf-life. To establish an interval estimate, a conservative approach
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is to consider (θ̂L , θ̂F ), where θ̂L = θ̂F − , and  is the safety margin. In other
words, we consider θ̂L (instead of θ̂F ) the labeled shelf-life.

3.4 Concluding Remarks

In the previous sections, we considered shelf-life estimation for a single batch. In
practice, drug products are usually manufactured in multiple batches. Thus, the values
of α and β in Model 3.1 may be different for different batches. As a result, there
are four possible scenarios: (a) common intercept and common slope, (b) common
intercept but different slopes, (c) different intercepts but common slope, and (d)
different intercepts and different slopes. Different intercepts or slopes may indicate
that there is batch-to-batch variation in intercepts or slopes. If there is no batch-to-
batch variation, then the results described in the previous sections can be applied after
combining data from different batches. If there is batch-to-batch variation, statistical
methods for single batches described above cannot be applied based on pooled stability
data to justify a single shelf-life. In this case two approaches are typically applied.
The first approach is so-called stability analysis with fixed batches, and the second
approach is known as stability analysis with random batches. These two approaches
will be introduced in Chapter 5 and Chapter 6, respectively.

For determining drug shelf-life, it is often assumed that the primary drug charac-
teristic such as potency for stability testing will decrease linearly over time. In some
cases, however, this is not the case. A typical example is drug products containing
levothyroxine sodium. In a stability study Won (1992) reported that levothyroxine
sodium exhibits a biphasic first-order degradation profile with an initial fast degra-
dation rate followed by a slower rate. This observation suggests a time-dependent
degradation for drug products containing levothyroxine sodium. In this case, the
usual approach for determining drug shelf-life is not appropriate.

For determining drug shelf-life, the FDA stability guideline recommends that
Equation 3.1, be used. In Model 3.1 the response variable y is assumed to be a
continuous variable. Under normality assumptions, the shelf-life can be determined.
In practice, however, some drug characteristics, such as particle size, odor, color,
and hardness, are discrete rather than continuous variables. For discrete or categor-
ical response variables, Chow and Shao (2003) proposed a method for determining
drug shelf-life following a concept similar to that described in the previous sections.
More details regarding stability analysis with discrete response variables are given in
Chapter 8.

The methods introduced in the previous sections are mainly for drug products with
a single active ingredient. These methods are not applicable for drug products with
multiple ingredients (components). For determining the shelf-life of a drug product
with multiple ingredients, an ingredient-by-ingredient stability analysis may not be
appropriate since multiple ingredients may have unknown interactions. In this case
Chow and Shao (2007) proposed a statistical method assuming that ingredients are
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linear combinations of some factors. Their proposed method was found to be efficient
and useful. Details of this method are provided in Chapter 9.

As indicated earlier, frozen drug products must be stored at several different tem-
peratures, such as −20◦ C, 5◦ C, and 25◦ C, to maintain their stability. Thus, the
determination of shelf-life for frozen drug product involves the estimation of drug
shelf-lives at different temperatures, which requires multiple-phase linear regression.
Although we may obtain a combined shelf-life by applying the methods described
in the previous sections based on stability data available at different temperatures
(Mellon, 1991), this method, does not account for the fact that the shelf-life at the
second phase would depend on the shelf-life at the first phase. As an alternative,
Shao and Chow (2001a) proposed a method of determining drug shelf-lives for the
two phases using a two-phase regression analysis following a similar concept and
statistical principle as described in the previous sections. Their proposed method was
shown to be quite satisfactory. More details can be found in Chapter 10.
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Chapter 4

Stability Designs

In the pharmaceutical industry stability programs are usually applied at various stages
of drug development. For example, at an early stage of drug development, a stability
program is necessarily carried out to study the stability of bulk drug substances. The
purpose is to evaluate excipient compatibility under various storage factors, such as
heat, humidity, light, and container type. At a later stage it is required to conduct
a stability program for the formulations used in preclinical and clinical studies to
make sure the drug product is within USP-NF specifications during the entire study.
For the proposed market formulation, a stability program is required to establish an
expiration dating period applicable to all future batches of the drug product. For the
production batches, it is a common practice to have a stability monitoring program
in place to ensure that all drug characteristics remain within USP-NF specifications
prior to the established expiration date. The success of a stability program requires
an approved stability study protocol in which reasons for choosing an appropriate
stability design should be described in detail. In addition, the 1987 FDA stability
guideline indicates that a stability study protocol must describe: (a) how the stability
study is to be designed and carried out, and (b) statistical methods to be used in
analyzing the data. Since the design of a stability study is intended to establish an
expiration dating period, the design should be chosen so that it can reduce bias and at
the same time identify and control any expected or unexpected sources of variations.
The goal for selection of an appropriate stability design is to improve the accuracy
and precision of the established shelf-life.

The remainder of this chapter is organized as follows. In the next section, we pro-
vide some basic design considerations at the planning stage of a stability program. In
Section 4.2 various long-term stability designs, including factorial design and frac-
tional factorial designs, are introduced. Also included in this section are some useful
new drug application (NDA) stability designs proposed by Nordbrock (1992). Section
4.3 focuses on commonly used matrixing and bracketing designs. Criteria proposed
in the literature for comparing stability study designs are discussed in Section 4.4.
A brief discussion is given in the last section of this chapter.

4.1 Basic Design Considerations

As pointed out by Chow and Liu (1995) and Lin and Chen (2003), a good stability
study design is the key to a successful stability program. The program should start
with a stability protocol that clearly specifies the study objective, the study design,
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technical details of the drug substance and excipients, batch and packaging infor-
mation, specification, time points, storage conditions, sampling plan, and planned
statistical analysis. The protocol should be well designed and followed rigorously,
and data collection should be complete and in accordance with the protocol. The
planned statistical analysis should be described in the protocol to produce the most
desirable outcome at the time of data analysis. Any deviations from the design makes
it difficult to interpret the resulting data. Any changes made to the design or analysis
plan without modification to the protocol or after the examination of the data col-
lected should be clearly documented. Pogany (2006) provided the following list of
basic considerations for inclusion in a stability protocol:

� Study objectives and design

� Batch tested

� Container and closure system

� Literature and supporting data

� Testing plan

� Test parameters

� Test results

� Other requirements

� Conclusions

For the batch tested, Pogany (2006) suggested that: (a) batch number, (b) date of
manufacture, (c) site of manufacture, (d) batch size (kg) and units, (e) primary packing
materials, and (f) date of initial analysis be clearly specified in the study protocol. In
addition, the test results must be dated and signed by the responsible personnel with
a signature indicating Quality Assurance approval. In this section, some basic design
considerations as described in the 1987 FDA stability guideline are discussed (see
also Chow and Liu, 1995; Lin and Chen, 2003). These baisc design considerations
include background information, regulatory considerations, design factors, sampling
time considerations, sample size, statistical analysis, and other issues, which are
described below.

4.1.1 Background Information

When choosing an appropriate stability study design, some background information
must be obtained to ensure the success of the study. In practice, it is helpful to have
some knowledge regarding marketing requirements, manufacturing practice, previous
formulation study results, and the variability of the assay method. For marketing
requirements, the following questions may affect the direction of a stability study:

� What package types will be used for the drug product?

� What are the USP-NF specifications for the drug product?
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� What is the desired shelf-life?

� When will the stability data be filed with the regulatory agency?

� Where is the drug product to be marketed?

In practice it is recognized that degradation of a drug product may differ from one
package type to another. The specifications for the characteristics of the drug prod-
uct can usually be found in the USP-NF (USP-NF, 2000). The information regarding
which package type is to be used for the drug product is useful in determining whether
the desired shelf-life can be achieved. Moreover, if a pharmaceutical company wants
to file a submission in a short period of time, a short-term stability test such as an ac-
celerated test may be desirable to establish a tentative shelf-life. Therefore, knowledge
of the lead time prior to regulatory submission is critical in planning an appropriate
stability study. Finally, different regulatory agencies in different countries (e.g., the
European Union [EU] and Japan) may have different requirements on stability. Infor-
mation on where the drug product is to be marketed is useful in devising a strategy at
an early stage of planning a stability study.

In addition, knowledge of manufacturing practices is usually helpful in the design
of a stability study. For example, answers to the following questions provide crucial
information for the selection of an appropriate stability design.

� How many strengths of the same formulation will be manufactured?

� Will multiple strengths be made out of a common granulation batch?

� Will a common encapsulation batch be made into multiple package types?

An adequate stability study should be designed to evaluate the stability of the drug
product across batch, strength, and package type. Other information such as previous
formulation study results and the variability of the assay method are also helpful in the
design of a stability study. Previous formulation study results may provide important
information about factors that might affect the stability of drug products of this kind
under certain storage conditions. The variability of an assay method, such as that
between and within run coefficient of variations (CVs) are useful for sample size
determination, which ensures the establishment of a reliable drug shelf-life.

4.1.2 Regulatory Considerations

For a stability study, the FDA requires that pharmaceutical companies describe how
the study is to be designed and carried out. An appropriate stability design can help to
achieve the objective of a stability study. The 1987 FDA stability guideline provides
design considerations for long-term stability studies under ambient conditions. These
design considerations include:

� Batch sampling considerations

� Container-closure and drug product sampling

� Sampling-time considerations
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These designs considerations focus primarily on how data are to be collected. The
purpose of these considerations is to ensure that the data are representative of all
future production batches.

For batch sampling considerations, the FDA stability guidelines recommend that
at least three batches, and preferably more, be tested to allow for batch-to-batch vari-
ability and to test the hypothesis that a single expiration dating period for all batches
is justifiable (see also Ahn et al., 1995). For a consideration of container-closure and
drug product sampling, the FDA emphasizes that the selection of containers from the
batches chosen for inclusion in the study should be carried out so as to ensure that the
samples chosen represent the batch as a whole. For sampling time, the FDA stability
guidelines suggest that stability testing be done at 3-month intervals during the first
year, 6-month intervals during the second year, and annually thereafter. For a drug
product that degrades rapidly, more frequent sampling is necessary.

4.1.3 Design Factors

As a drug product may be available in different strengths and different container
sizes, a long-term stability study may involve the following design factors: strength,
container size, and batch (or lot). As indicated in Chow and Liu (1995) and Nordbrock
(1992), the following hypotheses should be examined:

� Do all package-by-strength combinations have the same stability at room
temperature?

� Do all packages have the same stability at room temperature?

� Do all batches have the same stability at room temperature?

� Do all strengths have the same stability at room temperature?

� Do all storage conditions have the same stability for all packages?

� Do all storage conditions have the same stability for all batches?

� Do all storage conditions have the same stability for all strengths?

An appropriate stability design can provide useful information to address these
questions. For example, we may examine the following hypotheses at room temper-
ature in order to address some of the above questions.

� Are degradation rates among packages consistent across strengths?

� Are degradation rates the same for all packages?

� Are degradation rates the same for all strengths?

� Are degradation rates the same for all batches?

If we fail to reject the hypotheses above, stability data may be pooled to establish
a single shelf-life that can reflect the expiration period for all batches manufactured
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under similar circumstances. The establishment of a single shelf-life applicable to all
future batches is the primary objective of a stability study. However, if the hypothesis
that degradation rates among packages are consistent across strengths is rejected,
the differences in degradation rate between package types are not consistent across
strengths. In this case, there is a significant interaction between package type and
strength. Thus, the data cannot be pooled and shelf-lives for each combination of
package types and strengths should be established. In addition to interaction, an
appropriate design should be able to separate any possible confounding effects.

4.1.4 Sampling Time Considerations

The 1987 FDA stability guideline suggests that sampling times be chosen so that
any degradation can be adequately characterized (i.e., at a sufficient frequency to
determine with reasonable assurance the nature of the degradation curve). Usually,
the relationship can be represented adequately by a linear, quadratic, or cubic function
on an arithmetic or logarithmic scale of the percent of label claim. As a rule of thumb,
more frequent sampling should be taken where a curvature of the degradation curve is
expected to occur in order to adequately characterize degradation of the drug product.
The 1987 FDA stability guideline also encourages testing an increased number of
replicates at later sampling times, particularly the latest sampling time, because this
will increase the average sampling time toward the desired expiration dating period.

Assuming that the drug characteristic is expected to decrease with time, for long-
term stability studies under ambient conditions such as NDA stability studies, the
1987 FDA stability guideline suggests that stability testing be done at 3-month
intervals during the first year, 6-month intervals during the second year, and annually
thereafter. However, for drug products predicted to degrade rapidly, more frequent
sampling is necessary. For marketing stability studies, less frequent sampling is usu-
ally considered from more batches. Note that if a reduced design (e.g., some selected
levels of combinations of design factors with fewer sampling time points) is to be
applied to a long-term stability study (For example, a 2 year stability study), the FDA
suggests that every selected level combination of design factors such as batch, stength,
and package type should be tested at 0, 12, and 24 months and at least one additional
time point within the first year. As indicated earlier, the purposes of a stability test
are to characterize the degradation of the drug product and, consequently, to establish
drug shelf-life. For these purposes, the following statistical issues are of concern and
must be considered when planing a stability study:

� How can the number and allocation of time points be selected such that the
degradation of ingredients of a drug product will be adequately characterized?

� How frequently is sampling necessary to have a desired degree of accuracy and
precision for the estimated shelf-life?

� Is it necessary to have replicates at each sampling time point?

� How can the number of assays at each sampling time point be allocated effi-
ciently if a fixed number of assays are to be done?
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Mathematically, if the degradation curve is linear, it can be determined uniquely by
two time points. One may consider having stability testing at the initial (i.e., the time
at which the batch is manufactured) and the latest sampling time points. However, it
should be noted that, statistically, there are no degrees of freedom for the error term if
only two sampling time points are considered. In practice pharmaceutical companies
are usually interested in acquiring stability information regarding the drug product
within a short period of time after the drug product is manufactured. If only two time
points are considered in a long-term stability study, no information about degradation
can be obtained between the two time points. In addition, if the second sampling time
point is too close to the initial point, the fitted degradation line may not be reliable for
establishing an expiration dating period beyond the time interval under study because
we may not observe a significant degradation in a short period of time.

It is therefore of interest to study the impact of the frequency of the sampling on
the characterization of the degradation curve and the determination of drug shelf-life.
Moreover, the 95% confidence interval for mean degradation at time points such as
the initial and final time points, which is further away from the middle of the range
of time points, could be very wide. Consequently, the estimated shelf-life may not be
reliable. The reliability of an estimated drug shelf-life beyond the time interval under
study is then an interesting and important topic in stability analysis, which is worthy
of further research.

4.1.5 Sample Size

Suppose the desired shelf-life of a drug product is 4 years. It is easy to determine the
number of stability tests for a given combination of design factors according to the
FDA’s suggestions for sampling intervals. In practice, however, it may be too costly
or time consuming to perform stability tests at every time point for each combination
of design factors. Therefore, pharmaceutical companies often have an interest in
reducing the total number of stability tests by either reducing the combinations of
design factors or performing stability tests at the selected time points. This is often
done, provided that the reduction of stability tests can reach an acceptable degree of
precision for the established shelf-life without losing much information.

Basically, before the sample can be chosen in an appropriate stability design, the
following issues should be addressed.

� How many observations are to be taken?

� How large a difference in degradation rate is to be detected between design
factors?

� How much variation is present?

For the first issue, if stability tests are to be performed at every sampling interval,
the total number of assays can be determined. In some cases, as indicated earlier,
pharmaceutical companies may not be able to perform stability tests at every time
point owing to limited resources. Instead, stability tests may be done at selected time
points. Suppose that a pharmaceutical company is able to handle N assays according
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to its capacity or budget constraint. These N assays may not be large enough to cover
every time point but will cover some selected time points or a few time points twice.
In other words, we may test the stability at some time points once or have replicates at
a few time points. In this case it is important to determine how many observations are
to be taken at each time point, which can have an impact on the estimated shelf-life.

When there are a number of design factors in a stability study, it is often of interest
to investigate the impact of these design factors on stability. For example, it is of
interest to determine whether degradation rates are the same for all packages. To
address this questions, the sample size should be chosen so that there is sufficient
statistical power for detection of a meaningful difference in stability loss between
packages. Therefore, it is important to determine how large a difference in degradation
rate detected between packages is meaningful. The sample size selected should have
sufficient power for detection of meaningful differences in degradation rate among
the design factors under study.

Sample size determination and justification are usually done based on a prestudy
power analysis, which is very sensitive to the variability. Thus, it is important to have
some prior knowledge regarding the variation. The variation may include variabilities
from different sources, such as location, analyst, and manufacturing process. For
example, with large containers, dosage units near the cap of a bottle may have different
stability properties than dosage units in other parts of the container. Thus, it may be
desirable to sample dosage units from all parts of the container. In this case the
location in the container from which they are drawn should be identified and taken
into consideration for sample size justification.

4.1.6 Statistical Analysis

For a given stability design, statistical methods used for data analysis should reflect
the design to provide a valid statistical inference for the established shelf-life. For
example, we may test the hypotheses listed in the previous subsections based on a
linear model using PROC from GLM of SAS. Let Y be the potency (expressed as
percent of label claim) and T be the time (in months), which is a continuous covariate.
Also, let B, S, and P denote the batch, strength, and package, respectively. Note that
B, S, and P are class variables. PROC GLM models are as follows (see also, Lin,
1990; Lin and Chow, 1992; Lin and Lin, 1993; Chen et al., 1997):

� Model 1: Y = B S B ∗ S T B ∗ T S ∗ T P ∗ T S ∗ P ∗ T

� Model 2: Y = B S B ∗ S T B ∗ T S ∗ T P ∗ T

Note that the term P is not included in the models above because there is no reason
to believe that the initial potency will be different for different package types. Each
model has separate intercepts for each batch-by-strength combination. Model 1 has
separate slopes for each package-by-strength combination and has separate slopes for
each batch. Model 2 has separate slopes for each batch, for each strength, and for
each package. Model 1 is used to test the P ∗ S ∗ T term and associated contrasts. If
the P ∗ S ∗ T term and associated contrasts are not significant, model 2 is used for
further analysis.
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In the models above, we assume that the term B is a fixed class variable. However,
Chow and Shao (1991) indicate that the term B should reflect the shelf-life for all future
batches. The following chapters discuss statistical methods for estimating of drug
shelf-life under the assumptions that: (a) the term batch is a fixed effect (Chapter 5),
(b) the term batch is a random effect (Chapter 6), and (c) the term batch is a linear
mixed effects model (Chapter 7).

4.1.7 Other Considerations

The 1987 FDA guideline indicates that an appropriate stability design should take into
consideration the variability of individual dosage units, of containers within a batch,
and of batches to ensure that the resulting data for each batch are truly representative
of the batch as a whole and to quantify the variability from batch to batch. Other
sources of variation may also affect the efficiency of the stability design. These
sources of variation may include variabilities from different assay methods, different
analysts, different laboratories, and different locations or sites. In addition, expected
and unexpected variabilities that may occur during each stage of the manufacturing
process can have an impact on the stability design. An appropriate stability design
should be able to avoid bias and achieve the minimum variability. As a result, the
FDA requires that the analytical method for stability-indicating assay be validated
according to some validation performance characteristics before it can be applied to
the intended stability study.

It should also be noted that for any drug product that is intended for use as an
additive to another drug product, the possibility of incompatibilities may exist. In such
a case the FDA guidelines require that a drug product labeled to be administered by
addition to another drug product (e.g., parenterals or aerosols) be studied for stability
and compatibility in a mixture with the other product. A suggested stability protocol
should provide for tests to be conducted at 0-, 6-, to 8-, and 24-hour intervals, or as
appropriate over the intended period of use. These tests should include assay of the
drug product and additive, pH (especially for unbuffered large-volume parenterals),
color, clarity, particulate matter, and interaction with the container.

4.2 Long-Term Stability Designs

In this section we introduce some stability designs that are commonly used when
conducting stability studies. These designs include complete (or full) factorial design,
fractional factorial design, and some reduced designs proposed by Nordbrock (1992).
To illustrate these designs consider the following example.

Suppose a newly developed pharmaceutical compound is to be manufactured in
tablets with three different strengths: 15 mg, 30 mg, and 60 mg. To fulfill the needs
of various markets, it is suggested that three packaging types be taken into consi-
deration: glass bottle, PVC (polyvinyl chloride) blister, and PE (polyethylene) tubes.
In addition, to study the impact of heat and moisture on the product over the desired
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expiration dating period (e.g., 60 months), we have to store three batches of the
finished product to simulating the adverse effects of storage under the conditions to
which the product might be subjected during distribution, shipping, handling, and
dispensing. The storage conditions of interest are:

� 21◦ C and 45% relative humidity

� 25◦ C and 60% relative humidity

� 30◦ C and 35% relative humidity

� 30◦ C and 70% relative humidity

In other words, we store three batches of three different strengths kept in three
types of packages under four different conditions. In this section we assume that the
degradation curve is linear. If there is an exponential decay, it may be linearized by
transformation. The drug characteristic of interest is the potency (percent of label
claim). Stability testing is to be done at the following times if we consider stability
testing up to 4 years:

T1 = {0, 3, 6, 9, 12, 18, 24, 36, 48}
In the interest of balance, we assume that sampling times are fixed across all design

factors.

4.2.1 Factorial Design

Suppose we are interested in conducting a stability study under ambient conditions
(e.g., 25◦ C room temperature and 60% relative humidity). A full factorial design
consists of 33 = 27 combinations (see Table 4.1). If each combination is to be tested
at T1 time points, there are a total of

N = 3 × 3 × 3 × 10 = 270

assays. In practice, if every batch by strength-by-package combination is tested (i.e.,
a complete factorial design is used), a substantial expense is involved. Besides, it
is in the best interest of the pharmaceutical companies that a longer shelf-life can
be claimed by testing fewer batches as to strength-by-package combinations within
a short period of time. Therefore, for considerations of time and cost, a fractional
factorial design is often used to reduce the total number of tests (or assays). Although
a fractional factorial design is preferred in the interest of reducing the number of tests
(i.e., cost), it has the following disadvantages. First, if there are interactions such as a
strength-by-package interaction, the data cannot be pooled to establish a single shelf-
life. In this case it is recommended that individual shelf-lives be established for each
combination of strength and package. However, we may not have three batches for
each combination of strength and package for a fractional factorial design. Second,
we may not have sufficient precision for the estimated drug shelf-life.

As pointed out by Lin and Chen (2003), a good stability study design is the key
to a successful stability program. The program should start with a stability proto-
col that clearly specifies the study objective, the study design, technical details of
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TABLE 4.1: 33 Complete Factorial Design

Combination Batch Strength Package

1 1 15 Bottle
2 1 15 Blister
3 1 15 Tube
4 1 30 Bottle
5 1 30 Blister
6 1 30 Tube
7 1 60 Bottle
8 1 60 Blister
9 1 60 Tube

10 2 15 Bottle
11 2 15 Blister
12 2 15 Tube
13 2 30 Bottle
14 2 30 Blister
15 2 30 Tube
16 2 60 Bottle
17 2 60 Blister
18 2 60 Tube
19 3 15 Bottle
20 3 15 Blister
21 3 15 Tube
22 3 30 Bottle
23 3 30 Blister
24 3 30 Tube
25 3 60 Bottle
26 3 60 Blister
27 3 60 Tube

drug substance and excipients, batch and packaging information, specification, time
points, storage conditions, sampling plan, and planned statistical analysis. The pro-
tocol should be well designed and followed rigorously, and data collection should be
complete and in accordance with the protocol. The planned statistical analysis should
be described in the protocol to avoid the appearance of choosing an approach to pro-
duce the most desirable outcome at the time of data analysis. Any departure from
the design makes it difficult to interpret the resulting data. Any changes made to the
design or analysis plan without modification to the protocol or after the examination
of the data collected should be clearly identified.

A full design can provide not only valid statistical tests for the main effects of the
design factors under study, but also estimates for interactions with better precision.
Hence, the precision of the estimated drug shelf-life for a full design is better than
a reduced design. A reduced design is preferred to a full design for the purpose
of reducing the number of test samples and consequently the cost. However, it has
the following disadvantages: (a) one may not be able to evaluate some interaction
effects for certain designs; (b) if there are interactions between two factors, the data
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cannot be pooled to establish a single shelf-life; (c) if there are many missing factor
combinations, there may not be sufficient precision for the estimated shelf-life.

In practice it is generally impossible to test the assumption that the higher-order
terms are negligible. Hence, if the design does not permit the estimation of interac-
tions or main effects, it should be used only when it is reasonable to assume that these
interactions are very small. This assumption must be made on the basis of theoreti-
cal considerations of the formulation, manufacturing process, chemical and physical
characteristics, or data from other studies. Thus, to achieve a better precision of the
estimated shelf-life, a design should be chosen to avoid possible confounding and
interaction effects. Once the design is chosen, statistical analysis should reflect the
nature or the design selected.

4.2.2 Reduced Designs

An appropriate stability design can help achieve the objective of a stability study.
Basically, a stability design consists of two parts: the selection of design factors
(e.g., batch, strength, and package type) and the choice of sampling intervals (e.g., 3
month during the first year, 6 month during the second year, and yearly thereafter).
We will refer to the set of sampling time points or intervals as time protocol or time
vector. For selection of design factors, the stability designs commonly employed are
the full factorial design and fractional factorial designs. In the interest of reducing
the number of sampling intervals for stability testing, Nordbrock (1992) introduced
various choices of subsets of sampling intervals for the intended stability studies for
up to four years. Nordbrock (1992) considered the following subsets:

T2 = {0, 3, 9, 18, 36, 48},

T3 = {0, 6, 12, 24, 48},

T5 = {0, 3, 12, 36, 48},

T6 = {0, 6, 18, 48},

T7 = {0, 9, 24, 48},

T8 = {0, 3, 9, 12, 24, 36, 48},

T9 = {0, 3, 6, 12, 18, 36, 48},

TA = {0, 6, 9, 18, 24, 48}.

In practice the above subsets can be divided into three groups: (a) T2 and T3, (b)
T5, T6, and T7, and (c) T8, T9, and TA. For a given stability design, if the first group
of subsets is applied, half of the stability tests will be done at 3, 6, 9, 18, 36, and
48 months, and the other half will be done at 6, 12, 24, and 48 months. Half of the
stability tests will be done at each time point except at 48 months. A design of this
type is usually referred to as one-half design. If the first group of subsets is applied
to a complete factorial design, we will refer to the design as a complete– one-half
design. Similarly, for a given design, if a second group of subsets (i.e., T5, T6, and
T7) is applied, one-third of stability tests will be done at 3, 12, 36, and 48 months;
one-third will be tested at 6, 18, and 48 months; and one-third will be tested at 9, 24,
and 48 months. The design then becomes a one-third design. For the third group of
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subsets (i.e., T8, T9, and TA), the resulting design is a two-thirds design because each
group consists of two-thirds of the total time points. Note that the idea for applying
the three groups of subsets above to a design is to reduce the total number of stability
tests by one-half, one-third, and two-thirds, respectively, at each time point except
the last. In such a case, the test results obtained at each time point are balanced.

Based on the appropriate choice of a subset of T1, Nordbrock (1992) provided
some useful reduced stability designs for long-term stability studies at room
temperature:

Design 1 (complete): Every batch-by-strength-by-package combination is cho-
sen. All combinations chosen are tested at every time point.

Design 2 (complete–two-thirds): Every batch-by-strength-by-package com-
bination is chosen. Two-thirds of the combinations chosen are tested at each
time point. One-third of the combinations chosen are tested at 3, 9, 12, 24, 36,
and 48 months; one-third are tested at 3, 6, 12, 18, 36, and 48 months; and
one-third are tested at 6, 9, 18, 24, and 48 months.

Design 3 (complete–one-half): Every batch-by-strength-by-package combi-
nation is chosen. Half the combinations chosen are tested at 3, 9, 18, 36, and
48 months, and the other half are tested at 6, 12, 24, and 48 months.

Design 4: (complete–one-third): Every batch-by-strength-by-package com-
bination is chosen. One-third of the combinations chosen are tested at 3, 12, 24,
and 48 months; one -third are tested at 6, 18, 36, and 48 months; and one-third
are tested at 9, 24, and 48 months.

Design 5 (fractional): Two-thirds of the batch-by-strength-by-package com-
binations are chosen. All combinations chosen are tested at every time point.

Design 6 (two strengths per batch): Two strengths per batch are selected, and
then all packages for this selection are chosen. All combinations chosen are
tested at every time point.

Design 7 (two packages per strength): Two packages per strength are selected,
and then all batches for this selection are chosen. All combinations chosen are
tested at every time point.

Design 8 (fractional–one-half): Two-thirds of the batch-by-strength-by-package
combinations are chosen. Half the combinations chosen are tested at 3, 9,
18, 36, and 48 months, and the other half are tested at 6, 12, 24, and 48
months.

Design 9 (two strengths per batch–one-half): Two strengths per batch are
selected, and then all packages for this selection are chosen. Half the combi-
nations chosen are tested at 3, 9, 18, 36, and 48 months, and the other half are
tested at 6, 12, 24, and 48 months.
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Design 10 (two packages per strength–one-half): Two packages per strength
are selected, and then all batches for this selection are chosen. Half the combi-
nations chosen are tested at 3, 9, 18, 36, and 48 months, and the other half are
tested at 6, 12, 24, and 48 months.

Details of the designs above are given in Table 4.2. For each reduced stability
design, the total number of stability tests required and the relative percentage of
reducing stability tests as compared to the full design (i.e., the complete factorial
design, including every time point) are summarized in Table 4.3. It can be seen from
the table that designs 8 to 10 may reduce the total number of stability tests as much
as 59.3%. Note that sample sizes in terms of the number of assays for designs 2 and
4 to 10 are all the same except at 48 months. The reduced stability designs described
above can easily be modified if the four storage conditions described at the beginning
of this section are to be incorporated.

4.2.3 Matrixing and Bracketing Designs

Generally, a reduction of stability tests could be achieved if we applied a different
method, such as bracketing and matrixing, which are special cases of fractional facto-
rial designs. There is no universal definition for a matrixing design. For example, the
ICH Q1A (R2) (2003) defines a matrixing design as the design of a stability schedule
such that a selected subset of the total number of possible samples for all factor com-
binations is tested at a specified time point. At a subsequent time point, another subset
of samples for all factor combinations is tested. The design assumes that the stability
of each subset of samples tested represents the stability of all samples at a given time
point. The differences in the samples of the same drug product should be identified
as, for example, covering different batches, different strengths, different sizes of the
same container closure system, and possibly in some cases, different container closure
systems. The ICH Q1A (R2) guideline for stability indicates that matrixing can cover
reduced testing when more than one design factor is being evaluated. As a result, the
design of the matrix will be dictated by the factors needing to be covered and evalu-
ated. For a matrixing design, the ICH suggests that in every case all batches be tested
initially and at the end of the long-term testing. As an alternative, Chow (1992) gave
a definition of a matrixing design, suggesting that any subset of a complete factorial
design be considered as a matrixing design. For example, in Table 4.1, if we only
consider two packages per strength and batch or two strengths per package and batch,
these two types of designs are considered matrixing designs.

Helboe (1992) discussed some examples of applications of matrixing designs for
long-term stability studies. For example, he considered an example concerning a drug
product that was manufactured at three dosage strengths from three different batches
of granulation. The same granulations A, B, and C, were used in all three dosage
strengths. Three types of containers, one blister pack and two sizes of high-density
polyethylene (HDPE) bottle, were considered. As a result, the stability study involves
three design factors, with three levels in each. In this case if a full factorial design
is adopted, a total of 27 combinations need to be tested at each sampling time point.
Instead, one may consider a matrixing design to reduce the total number of tests.
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TABLE 4.2: Long-Term Stability Designs

Batch Strength Bottle Blister Tube Bottle Blister Tube
Design 1: Complete Design 2: Complete

Factorial Design Two-Thirds Design

1 15 T1 T1 T1 T8 T9 TA
30 T1 T1 T1 T9 TA T8
60 T1 T1 T1 TA T8 T9

2 15 T1 T1 T1 TA T8 T9
30 T1 T1 T1 T8 T9 TA
60 T1 T1 T1 T9 TA T8

3 15 T1 T1 T1 T9 TA T8
30 T1 T1 T1 TA T8 T9
60 T1 T1 T1 T8 T9 TA

Design 3: Complete Design 4: Complete
One-Half Design One-Third Design

1 15 T2 T3 T2 T5 T6 T7
30 T3 T3 T2 T6 T7 T5
60 T3 T2 T3 T7 T5 T6

2 15 T2 T2 T3 T7 T5 T6
30 T2 T3 T3 T5 T6 T7
60 T3 T3 T2 T6 T7 T5

3 15 T3 T2 T3 T6 T7 T5
30 T3 T2 T2 T7 T5 T6
60 T2 T3 T2 T5 T6 T7

Design 5: Fractional Design 6: Two Strength
Factorial Design Per Batch Design

1 15 T1 T1 — T1 T1 T1
30 T1 — T1 T1 T1 T1
60 — T1 T1 — — —

2 15 — T1 T1 — — —
30 T1 T1 — T1 T1 T1
60 T1 — T1 T1 T1 T1

3 15 T1 — T1 T1 T1 T1
30 — T1 T1 — — —
60 T1 T1 — T1 T1 T1

Design 7: Two Packages Design 8: Fractional
Per Strength Design One-Half Design

1 15 T1 — T1 T2 T3 —
30 T1 T1 — T3 — T2
60 — T1 T1 — T2 T3

2 15 T1 — T1 — T2 T3
30 T1 T1 — T2 T3 —
60 — T1 T1 T3 — T2

3 15 T1 — T1 T3 — T3
30 T1 T1 — — T2 T2
60 — T1 T1 T2 T3 —

(Continued)
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TABLE 4.2: Long-Term Stability Designs (Continued)

Batch Strength Bottle Blister Tube Bottle Blister Tube
Design 9: Two Strength per Design 10: Two-Half Packages

Batch One-Half Design per Strength One-Half Design

1 15 T2 T3 T2 T2 — T3
30 T3 T3 T2 T3 T2 —
60 — — — — T3 T2

2 15 — — — T2 — T3
30 T2 T3 T3 T2 T3 —
60 T3 T3 T2 — T2 T3

3 15 T3 T2 T3 T3 — T2
30 — — — T3 T2 —
60 T3 T3 T2 — T3 T2

Table 4.4 presents a two-thirds matrixing design. Helboe (1992) indicated that this
design was actually implemented at one major pharmaceutical company in the United
States. In Table 4.4, at each time point, the combinations in parentheses were not
tested. It can be seen from Table 4.4 that only two-thirds of 27 combinations of the

TABLE 4.3: Summary of Long-Term Stability Designs

Number of
Design Description Sample Time Intervals Assays†

Complete All tested using T1 9kab

Complete–two-thirds One-third tested using T8 20kab/3∗
One-third tested using T9
One-third tested using TA

Complete–one-half One-half tested using T2 11kab/2∗
One-half tested using T3

Complete–one-third One-third tested using T5 13kab/3∗
One-third tested using T6
One-third tested using T7

Fractional All tested using T1 6kab

Two strengths per batch All tested using T1 18ka

Two packages per strength All tested using T1 18kb

Fractional One-half One-half tested using T2 11kab/3∗
One-half tested using T3

Two strengths per batch–one-half One-half tested using T2 11ka
One-half tested using T3

Two packages per strength–one-half One-half tested using T2 11kb
One-half tested using T3

† a: number of packages, b: number of strengths, k = the number of batches
∗ Integer part plus 1 if this number is not an integer
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TABLE 4.4: Two-Thirds Matrixing Design

Dosage Strength/Lot of Granulationa

50 mg 75 mg 100 mg

Package Type A B C A B C A B C

Blister + + (+) (+) + + + (+) +
HDPE1 (+) + + + (+) + + + (+)
HDPE2 + (+) + + + (+) (+) + +
a(+) not tested at this time point
Source: Helboe, P. (1992). Drug Information Journal, 26, 629–634.

full factorial design were tested. At each sampling time point each container, dosage
strength, and granulation were tested six times.

Another design of particular interest is so-called bracketing design. The ICH Q1A
(R2) guideline for stability defines a bracketing design as the design of a stability
schedule such that only the samples on the extremes of certain design factors, for
example, strength and package size, are tested at all time points as in a full design.
The design assumes that the stability of any intermediate levels is represented by the
stability of the extremes tested. Where a range of strengths is to be tested, bracket-
ing is appliable if the strangths are identical or very closely related in composition
(e.g., for a table range made with different compression weights of a similar basic
granulation or a capsule range made by filling different plug fill weights of the same
basic composition into different-size capsule shells). Bracketing can be applied to
different container sizes or different fills in the same container-closure system. In this
case, it is believed that testing the highest and lowest strengths will provide suffi-
cient stability information for the drug product. Therefore, there is no need to test
the middle strengths. The samples for the middle strengths, which are bracketed, are
kept as backup in case there is a significant difference in stability loss between the
highest and lowest strengths. The same idea can be applied to packaging. We only
test for the largest and smallest package sizes and leave the middle size samples as
backup. When we have a stable active ingredient in the form of tablets, if we take the
example given earlier, we would test samples kept at 25◦ C/60% relative humidity
and 30◦ C/70% relative humidity over the expiration dating period. The other sam-
ples, which are bracketed, are kept as backup in case one condition is found to be

TABLE 4.5: Example of Bracketing Design

Storage Condition Testing Intervala (Months)

Temp. (◦C) Relative Humidity (%) 3 6 9 12 18 24 36 48

21 45 (+) (+) (+) (+) (+) (+) (+) (+)
25 60 + + + + + + + +
30 35 (+) (+) (+) (+) (+) (+) (+) (+)
30 70 + + + + + + + +

a Parentheses indicate that the corresponding stability tests are omitted.
Source: Helboe, P. (1992). Drug Information Journal, 26, 629–634.
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TABLE 4.6: Example of Bracketing Design

Dosage Strength/Raw Material Lota

50 mg 75 mg 100 mg

Package Type A B C A B C A B C

Blister + + + (+) (+) (+) + + +
HDPE/15 + + + (+) (+) (+) + + +
HDPE/100 (+) (+) (+) (+) (+) (+) (+) (+) (+)
HDPE/500 + + + (+) (+) (+) + + +

a(+): Not tested at this time point.
Source: Helboe, P. (1992). Drug Information Journal, 26, 629–634.

too severe. The details of this bracketing design are given in Table 4.5. For strength,
we only test the lowest and highest strengths (i.e., 15 mg and 60 mg) and bracket the
30-mg tablets. As a result, the design achieves a 50% reduction in total tests. It should
be noted that this design cannot provide stability information for 75-mg strength or for
HDPE/100.

Note that the bracketing design given in Table 4.5 does not use the lower extremes of
21◦ C and relative humidity 35% to bracket temperature and relative humidity factors.
Hence, strictly speaking, it is not a bracketing design with respect to temperature and
relative humidity. To provide a better understanding of bracketing design, consider
the example given in Helboe (1992). This stability study considers three strengths,
three batches of granulations, with each granulation used in all three strengths, and
one size of blister pack and three sizes of HDPE bottles. If the study is bracketed
on strength and bottle size, the resulting bracketing design is as given in Table 4.6.
Helboe pointed out that the fundamental assumption for the validity of a bracketing
design is that the stability of multiple levels for a design factor can be determined by
the stability of the extremes.

4.2.3.1 Uniform Matrix Designs

As discussed above, various subsets of T1 can be applied to a reduced design with
respect to the design factors of batch, strength, package type, and storage condition.
As an alternative, Murphy (1996) proposed so-called uniform matrix stability designs.
A uniform matrix design is defined as a matrix design in which the same time protocol
is used for all combinations of the other design factors. For example, Table 4.7 and
Table 4.8 illustrate how a uniform matrix design differs from a typical two-thirds
matrix design. For this particular situation, three batches, A, B, and C, together with
three package types, 1, 2, and 3, and the three time protocols, T7, T8, and T9, are
arranged in a 3×3 Latin square design. Note that other designs, not necessarily Latin
squares, would be used for cases where the number of package types is different or
where there are other or additional factors. As can be seen in Table 4.8, by contrast,
the corresponding uniform matrix design uses the same time protocol U4 for all three
batches and all three package types. It can be easily verified that the uniform time
protocol U4 is derived from the standard full time protocol by eliminating the 6-
month and 9-month time points and moving the 18-month time point to 21 months.
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TABLE 4.7: Typical Two-Thirds Matrix Design

Batch A Batch B Batch C

Sample Times Pkg 1 Pkg 2 Pkg 3 Pkg 1 Pkg 2 Pkg 3 Pkg 1 Pkg 2 Pkg 3

0 X X X X X X X X X
3 X X X X X X
6 X X X X X X
9 X X X X X X

12 X X X X X X
18 X X X X X X
24 X X X X X X
36 X X X X X X X X X

T7 T8 T9 T8 T9 T7 T9 T7 T8

Source: Murphy J.R. (1996). Journal of Biopharmaceutical Statistics, 6, 477–494.

As indicated by Murphy (1996), the term uniform matrix design emphasizes that the
same uniform time protocol is used for every batch and every package type in the
study.

The motivation for the uniform matrix design is the simple idea that when fitting a
regression line, a more reliable estimate of the regression slope results when the data
points are concentrated at the beginning and at the end of the study. For the example
given in Table 4.8, it is assumed that statistical analysis of the study would be desired
at the 12-month time point, at the 24-month time point, and/or at the 36-month time
point. For the situation where only 24-month dating is desired, the uniform matrix
design could simply eliminate the 36-month time point. For the two-thirds matrix
design, a different matrix utilizing different time protocols would be necessary, since
the ICH guidelines for stability specify that testing be done at the beginning and at
the end of the study.

TABLE 4.8: Uniform Matrix Design

Batch A Batch B Batch C

Sample Times Pkg 1 Pkg 2 Pkg 3 Pkg 1 Pkg 2 Pkg 3 Pkg 1 Pkg 2 Pkg 3

0 X X X X X X X X X
3 X X X X X X X X X
6
9

12 X X X X X X X X X
21 X X X X X X X X X
24 X X X X X X X X X
36 X X X X X X X X X

U4 U4 U4 U4 U4 U4 U4 U4 U4

Sources: Murphy J.R. (1996). Journal of Biopharmaceutical Statistics, 6, 477–494.
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4.2.3.2 Factors Acceptable for Matrixing Design

Lin (1994, 1999a, 1999b) studied the applicability of matrixing and bracketing to
stability study designs. She indicated that a matrixing design may be applicable to
strength if there is no change in proportion of active ingredients, container size, and
intermediate sampling time points. The application of a matrixing design to situations
such as (a) closure systems; (b) orientation of containers during storage; (c) packaging
form, such as: glass, plastic, and foil; (d) manufacturing process (e.g., mixing times);
and (e) batch size (e.g., proportion of container filled, such as liquid) should be
evaluated carefully. Lin also discussed some situations where a matrixing design is
not applicable. For example, if there is a significant change in proportions of active
ingredients, the matrixing design is not suitable for strength. Lin indicated that a
matrixing design should not be applied to sampling times at two endpoints (i.e., the
initial and the last) or at any time points beyond the desired expiration date. If the drug
product is sensitive to temperature, humidity, and light, the matrixing design should
be avoided. Nordbrock (2003) provided a summary of when factors are acceptable
to a matrix based on a document prepared by the PhRMA Stability Working Group
(Nordbrock and Valvani, 1995):

� It is acceptable to use a matrix at all stages of development for a drug product
and also for a drug substance. It is acceptable for NDA studies, investiga-
tional new drug application (IND) studies, supplements, and marketed product
studies.

� It is acceptable to use a matrix for all types of products, such as solids,
semisolids, liquids, and aerosols.

� It is acceptable to use a matrix after bracketing.

� It is acceptable to use a matrix when there are multiple sources of raw materials
(e.g., drug products).

� It is acceptable to use a matrix if there are multiple sites of drug manufacture.

� It is acceptable to use a matrix when identical formulations are manufactured
into several strengths.

� It is acceptable to use a matrix if formulations are closely related (e.g., difference
in colorant or flavoring).

� Matrixing design is applicable to the orientation of containers during storage.

� Matrixing design may be applicable in certain cases when closely related for-
mulations are used for different strengths (e.g., if an inactive is replaced by an
active gredient).

� A matrix across container and closure systems may be applicable if justified.
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� It is acceptable to use a matrix within a package composition type, for example
for, of different sizes if the fill (i.e., head space) is the same, or for the same
size but different fills (head space). It may be acceptable to use a matrix if
container size and fill size change, if there is adequate explanation. It is not
acceptable to use a matrix across package composition types (e.g., blister and
HDPE).

� It is not acceptable to use a matrix across storage conditions. However, it is
acceptable to do a separate matrix design for each storage condition.

� It is not acceptable to use a matrix across parameters, such as dissolution and
potency. However, it is acceptable to do a separate design for each
parameter.

� Matrixing design is applicable regardless of method precision. However, when
using a matrix design, the resulting shelf-life is generally shorter than when
a complete design is used and that when the method precision is larger, the
difference between a complete design and a matrixed design will be larger (i.e.,
a larger penalty to the sponsor, resulting in a shorter shelf-life for the matrix
design than the complete design).

� Matrixing design is applicable regardless of the stability of the product. How-
ever, comments similar to those in the preceding point apply, and if a product
has a poor stability profile (e.g., shelf-life of 1 year), matrixing design will
usually result in an even shorter shelf-life.

Nordbrock (2003) also indicated that matrix designs are generally applicable to
many situations and can result in significant savings, with the two-thirds matrix on
time being readily acceptable for stable products. Larger reductions in testing than
those given by the two-thirds matrix on time are sometimes acceptable. However, it
is suggested that several general rules be followed when designing stability studies
(Nordbrock, 2003):

� Matrix designs should be approximately balanced (i.e., for all one-way and
two-way combinations of batch, package, and strength that are ever tested,
approximately the same number of tests should be done cumulatively to every
time point).

� When every batch-by-strength-by-package combination is not tested, every
strength-by-package combination that is ever tested should be tested in at least
two batches (i.e., for every package-by-strength combination that is ever tested,
there should be at least two batches tested).

� Unless there are manufacturing restrictions such as in the above example, it
is probably acceptable to use a matrix on batch-by-strength-by-package com-
binations only when there are more than three strengths or more than three
packages.
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TABLE 4.9: Classification of
Reduced Designs

Design Factors Sampling Times

Type 1 Complete Partial
Type 2 Matrixing All
Type 3 Matrixing Partial

4.2.4 Classification of Designs

Chow and Liu (1995) classified reduced stability designs into the following categories
(Table 4.9):

� Type 1: Complete design with partial sampling time points

� Type 2: Matrixing design with all sampling time points

� Type 3: Matrixing design with partial sampling time points

Assuming that there are three batches (1, 2, and 3), three strengths (15 mg,
30 mg, and 60 mg), and three package types (bottle, blister, and tube) and the stability
testing will be done over a 4-year period, for each reduced stability design described
in Table 4.2, the total number of stability tests required and the relative percentage
of reducing stability tests as compared to the full design (i.e., the complete factorial
design, including every time point) are summarized in Table 4.10. It can be seen from
Table 4.10 that type 3 designs might reduce the total number of stability tests as much
as 59.3%. Note that type 1, 2, and 3 designs are also referred to as reduced designs.

TABLE 4.10: Number of Stability Tests Required for Various Designs

Type Design Description Number of Assays Percent Reduceda

— Complete 243 —
1 Complete–two-thirds 180 25.9
1 Complete–one-half 142 41.6
1 Complete–one-third 117 51.9
2 Fractional 162 33.3
2 Two strengths per batch 162 33.3
2 Two packages per strength 162 33.3
3 Fractional–one-half 99 59.3
3 Two strengths per 99 59.3

batch–one-half
3 Two packages per 99 59.3

strength–one-half
aCompared to the complete factorial design
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4.3 Design Selection

Many criteria for the selection of an appropriate design have been proposed in the
literature. For example, Nordbrock (1992) proposed a criterion for choosing a design
with the highest power among designs with the same sample size. Murphy (1996)
suggested choosing a design under the criteria of moment, D-efficiency, uncertainty,
G-efficiency, and statistical power. DeWoody and Raghavarao (1997) proposed a
method for choosing the time vectors such that the design is optimal for comparing
slope differences in terms of maximum information per unit cost. DeWoody and
Raghavarao (1997) and Pong and Raghavarao (2000) considered choosing a design
in terms of power for detection of significant difference between slopes. These criteria
mainly focus on the power of detecting factor effect, which are briefly described below.

4.3.1 Moment

Statistically, design moment measures the degree to which the time protocols for
a given stability design are spread out toward the endpoints. In other words, when
fitting least squares regression lines, the greater the design moment, the less uncertain
are the estimated slopes of the lines. For a stability study with multiple batches, the
design moment is defined as

Moment =
∑
i, j

(xi j − x̄i )
2

where xi j is the j th time point of the i th batch. Note that moment of a design is a
function only of the times at which the results are measured and does not depend on
the results themselves.

4.3.2 D-Efficiency

D-efficiency is a standard metric for comparing designs and is related to how well
regression coefficients of a particular model are estimated. As a result, D-efficiency
is defined as

D − efficiency = 100 × 1

n
|X ′ X |1/p

where |X ′ X | is the determinant of the design matrix, n is the number of points in the
design, and p is the number of parameters.

4.3.3 Uncertainty

As indicated in Murphy (1996), another comparison of interest is the reliability of the
shelf-life estimates, which depends on the reliability of the estimated slopes. Another
measure of uncertainty is width of a confidence interval on the fitted slope, which,
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for a fixed amount of residual variation, depends only on the number and spacing of
the data points. Murphy (1996) defined an uncertainty index at time xt as

UIndex(xt ) = xt t0.95,n−2

[
k

M

]1/2

,

where t0.95,n−2 is the one-sided t-value for 95% confidence, M is the total moment,
and k is the number of fitted lines. Note that the uncertainty index is a 90% confidence
interval half width for a typical fitted slope (assuming that the residual variance is equal
to 1), multiplied by time. Multiplying by time permits a comparison of uncertainty
on a common basis at different times.

4.3.4 G-Efficiency

Uncertainty is closely related to another standard metric for comparing designs called
G-efficiency, which is defined as

G − efficiency = 100

[ p
n

]1/2

σmax
,

where σmax is the maximum standard error of prediction over the design, n is the
number of points in the design, and p is the number of parameters. Note that for a
typical stability design, the maximum standard error of prediction will occur at the
last time point, for example, t = xT and

σmax = σ

[
1

n
+ (xT − x̄)2

Sxx

]
,

where Sxx is the sum of squares of the x values (time points), n is the number of points
in the time protocol, and σ is the residual error.

4.3.5 Statistical Power

Nordbrock (1992) proposed a criterion for design selection based on the power of
detection of a significant difference between slopes (stability loss). For a fixed sample
size, the design with the highest power of detection of a significant difference between
slopes is the best design. For a fixed power, the design with the smallest sample size
is the best design. Consider the following model for a single batch:

y j = α + βx j + e j , j = 1, ..., n,

where y j is the assay result at time x j . The power for detecting a significant degradation
(e.g., β = �) for the null hypothesis of β = 0 is given by

Power = P

{∣∣β̂∣∣ > z1−α/2
σ√
Sxx

|β = �

}
,

where β̂ is the least squares estimator of β, which follows a normal distribution with
mean β and variance σ 2/Sxx and

Sxx =
n∑

j=1

(x j − x̄)2.
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It can be seen from the above that the power increases as Sxx increases. When there
are two batches, statistical power for detection of a significant difference rate per time
unit can be obtained similarly. Let yi j be the assay result of the i th batch at time x j .
Then, yi j can be described by the following linear model:

yi j = αi + βi xi j + ei j , j = 1, ..., n, i = 1, 2,

where it is assumed that ei j is an independent and identically distributed normal with
mean zero and variance σ 2. The power for detecting a significant difference between
β1 and β2 (i.e., β1 − β2 = �) can be obtained similarly, as follows:

Power = 1 − �

[
z1−α/2 − �

σ

(
1

S2
1

+ 1

S2
2

)−1/2
]

+ �

[
−z1−α/2 − �

σ

(
1

S2
1

+ 1

S2
2

)−1/2
]

,

where

S2
i =

n∑
j=1

(xi j − x̄i )
2,

and

x̄i = 1

n

n∑
j=1

xi j .

Note that when

S2
1 = S2

2 = Sxx ,

the above power reduces to

Power = 1 − �

[
z1−α/2 − �√

2σ

√
Sxx

]

+ �

[
−z1−α/2 − �√

2σ

√
Sxx

]
.

4.3.6 Remarks

The criterion of statistical power for detecting a significant difference in degradation
rate, however, may not be appropriate because the primary objective of a stability
study is to establish drug shelf-life rather than to examine the effect of strength,
package, batch, and storage time. Information regarding the differences in stability
losses among packages, across strengths, between packages, between strengths, and
between batches is useful for deciding whether the data should be pooled to establish
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a single shelf-life. As an alternative, Chow (1992) and Ju and Chow (1995) proposed
the following critera:

Criterion 1: For a fixed sample size, the design with the best precision for shelf-life
estimation is the best design.

Criterion 2: For a fixed desired precision of shelf-life estimation, the design with the
smallest sample size is the best design.

As a result, Ju and Chow proposed the following measure of relative efficiency be-
tween two candidate designs: design A and design B

λ = x̄ ′(t)(X ′
B X B)−1 x̄(t)

x̄ ′(t)(X ′
A X A)−1 x̄(t)

,

where x̄ ′(t) is the average drug characteristic at time t , and X A and X B are the
design matrices for design A and design B, respectively. λ can be viewed as a relative
efficiency index of design B as compared to design A. For example, if λ < 1, we
conclude that design B is at least as efficient as design A. If λ > 1, design A is
superior to design B in terms of its relative efficiency.

4.4 Discussion

For a long-term stability study, it is of interest to adopt a complete factorial design by
testing stability at every time point. A complete factorial design can not only provide
valid statistical tests for main effects of design factors under study, but can also provide
estimates for interactions with the maximum precision. As a result, it improves the
precision of the estimated drug shelf-life. A complete factorial design is considered
an ideal design if applied to more homogenous drug products. However, a complete
factorial design is usually too costly and time consuming to perform. In practice, it
is of interest to consider a matrixing or bracketing design. It should be noted that a
matrixing or bracketing design may not be able to evaluate interaction effects. For
example, for a 24−1 fractional factorial design, two-factor effects are confounded with
each other. In this case we might not be able to determine whether the data should be
pooled.

In practice it is preferred to have a single shelf-life applicable to all future batches.
For this purpose, it is desirable to pool the data across all design factors to achieve
a better statistical inference on the estimated shelf-life. It is suggested, however, that
some preliminary tests for interactions be conducted to determine whether the data
should be pooled. If a significant interaction is observed, the data should not be
pooled. On the contrary, individual shelf-lives for each combination of the factors
with significant interaction should be carefully evaluated. Thus, to achieve a better
statistical inference on the estimated shelf-life, a design should be chosen to avoid
possible confounding and interaction effects. Once the design is chosen, statistical
analysis should reflect the nature of the design selected.
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Since the primary objective of a stability study is to establish an expiration dating
period, the selection of an appropriate design should be based on the precision of shelf-
life estimation rather than statistical power for detection of a meaningful difference.
The relative efficiency index λ proposed by Ju and Chow (1995) can be applied to
evaluate the efficiency of a stability design. If two designs have the same efficiencies,
the relative merits and disadvantages should be taken into account for design selection.
In practice since all the reduced stability designs can be classified into one of the three
type of designs (i.e., types 1, 2, and 3) for a given sample size N (e.g., the total number
of stability tests or assays), it is of interest to determine an optimal design within each
type of design. This needs further investigation.

As mentioned earlier, a complete factorial design for any stability study is fully
efficient in the sense that it provides 100% information regarding design factors
considered in the stability program. Matrixing and bracketing designs are versions of
fractional factorial designs that will not provide full efficiency for all design factors.
If previous experience showed that the variability in degradation is small across
different strengths that might be manufactured by increasing the size of the tablets
but that were made from the same granulation by the same manufacturing process,
the strength might be a candidate for matrixing or bracketing. However, the relative
efficiency of such fractional factorial design should be evaluated carefully based on
the criterion proposed by Ju and Chow (1995).

Following the concept of the criterion proposed by Ju and Chow (1995), Hedayat,
et al. (2006) proposed a number of optimality criteria for choosing an appropriate
design under different considerations of design factors of batch, strength, package
type, and sampling times. More details are provided in the last chapter of this book.



Chapter 5

Stability Analysis with Fixed Batches

As mentioned in previous chapters, the labeled expiration dating period or shelf-life
of a drug product is usually established based on the primary stability data obtained
from long-term stability studies that are conducted under ambient conditions. For the
determination of a labeled shelf-life, the FDA stability guidelines require that at least
three batches, and preferably more, be tested to allow for a reliable estimate of batch-
to-batch variability and to test the hypothesis that a single expiration dating period
for all batches is justifiable. In addition to individual shelf-lives estimated from each
batch, it is desirable to establish a single shelf-life for a drug product. As indicated
by the FDA stability guidelines, this single labeled expiration dating period should
be applicable to all future batches. Before one can combine stability data from all
batches, it is required by the FDA stability guidelines to perform preliminary tests
for batch similarity. Batch similarity is usually evaluated by testing the equality of
intercepts and the equality of slopes of degradation lines among different batches.
For testing the hypotheses of the equality of intercepts and the equality of slopes
among batches, the FDA stability guidelines suggest the 0.25 level of significance be
used. If the hypotheses of equal intercepts and equal slopes are not rejected at the
0.25 level of significance, a single expiration dating period can be estimated using
the methods described in Chapter 3 by fitting a single degradation curve based on
pooled stability data of all batches under the assumption that batch effects are fixed.
If the hypotheses of equal intercepts and equal slopes are rejected at the 0.25 level
of significance, the FDA suggests that a single expiration dating period of the drug
product be determined based on the minimum of the individual shelf-lives obtained
from each batches. This method, however, lacks statistical justification (Chow and
Shao, 1991). Under the assumption of fixed batch effects, as an alternative, Ruberg
and Hsu (1992) proposed a method for estimating an expiration dating period using
multiple comparison techniques for pooling stability data with the worst batches.

Since the method for determining an expiration dating period for a single batch
suggested in the FDA stability guidelines has been described in Chapter 3, in the next
section, the method of analysis of covariance is applied to derive tests for the hypothe-
ses of equal intercepts and equal slopes for batch similarity. The minimum approach
for estimating a single expiration dating period for multiple batches described in
the FDA stability guidelines is given in Section 5.2. In Section 5.3 we describe the
multiple comparison procedures proposed by Ruberg and Hsu (1992) for pooling
stability data with the worst batch. A numerical example is provided in Section 5.4
to illustrate various methods of determining drug shelf-life with fixed batch effects.
A brief discussion is given in Section 5.5 including the use of the nonparametric
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method described in Chapter 3 and a discussion of the choice between the original
and logarithmic scale of percent of label claim for determining of drug shelf-life.

5.1 Preliminary Test for Batch Similarity

The FDA stability guideline requires that at least three batches, and preferably more,
be tested to allow some estimate of batch-to-batch variability and at the same time to
test the hypothesis that a single expiration dating period for all batches is justifiable.
Justification for a single expiration dating period estimated from the pooled stability
data of all batches can be verified, as suggested in the FDA stability guideline, by
testing batch similarity. The 1987 FDA stability guideline also points out that batch
similarity of the degradation lines can be evaluated in terms of the equality of slopes
and the equality of intercepts obtained from the stability data of individual batches.
If the batch-to-batch variability is small, it would be advantageous to combine the
data from different batches for an overall shelf-life estimation with high precision.
However, combining the data from different batches should be supported by a pre-
liminary test of batch similarity. The 1987 FDA stability guideline recommends a
preliminary test for batch-to-batch variation be performed at the significance level of
0.25 (Bancroft, 1964), though it has been criticized by many researchers (see, e.g.,
Ruberg and Stegeman, 1991; Chow and Liu, 1995). In this section we will introduce
some tests proposed by Chow and Shao (1989) for testing batch-to-batch variability.

Let yi j be the assay results (percent of label claim) of the i th batch for a drug
product at sampling time xi j . If the degradation is to decrease linearly over time for
all batches, Model 3.1 for a single batch can be extended to describe the degradation
for multiple batches as follows:

yi j = αi + βi xi j + ei j , i = 1, . . . , K , j = 1, . . . , ni , (5.1)

where αi and βi are the intercept and slope of the degradation line for batch i , and
ei j are assumed to be independent and identically distributed as a normal distribution
with mean zero and variance σ 2. Note that αi can be viewed as the i th batch effect at
time zero, and βi is the degradation rate (or stability loss) per time unit.

Tests for the hypotheses of equality of slopes and equality of intercepts are in
essence tests for homogeneity of the degradation lines among batches, which can be
examined by testing the following hypotheses for intercepts and slopes, respectively;

H0α : αi = αi ′ for all i �= i ′ (5.2)

H0β : βi = βi ′ for all i �= i ′. (5.3)

The typical analysis of covariance (ANCOVA) for a completely randomized design
can be applied to obtain test statistics for both hypotheses 5.2 and 5.3 (see, e.g.,
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Snedecor and Cochran [1980] and Wang and Chow [1994]). Let Sxx (i), Syy(i), and
Sxy(i) be the sum of squares of time points, the percent of label claim, and the sum of
cross products between time points and percent of label claims for batch i individually
and

Sxx (W ) =
K∑

i=1

Sxx (i),

Syy(W ) =
K∑

i=1

Syy(i),

Sxy(W ) =
K∑

i=1

Sxy(i),

where N = ∑
ni . The least squares estimate of the slope and the intercept for batch

i are given, respectively, by

β̂i = Sxy(i)

Sxx (i)
,

and

α̂i = ȳi. − β̂i x̄i.,

where

x̄i. = 1

ni

ni∑
j=1

xi j and ȳi. = 1

ni

ni∑
j=1

yi j .

The residual sum of squares for batch i is given as

SSE(i) = Syy(i) −
[
Sxy(i)

]2

Sxx (i)
.

The combined residual sum of squares is the sum of the individual residual sum of
squares over all batches, that is,

SSE =
K∑

i=1

SSE(i),

which has N − 2K degrees of freedom. The residual sum of squares computed from
Sxx (W ), Sxy(W ), and Syy(W ) is given by

SSE(W ) = Syy(W ) −
[
Sxy(W )

]2

Sxx (W )
, (5.4)

Binod April 12, 2007 10:59 C9055 Chapter 5



102 Stability Analysis with Fixed Batches

which has N − K − 1 degrees of freedom. It follows that the sum of squares for the
difference in slopes is given by

SS(β) = SSE(W ) − SSE.

Therefore, the null hypothesis of equality of slopes is rejected at the α level of
significance if

Fβ = MS(β)

MSE
> Fα,K−1,N−2K ,

where

MS(β) = SS(β)

K − 1
,

and

MSE = SSE

N − 2K
,

and Fα,K−1,N−2K is the αth upper quantile of a central F distribution with K − 1 and
N − 2K degrees of freedom.

Let wi = 1/Sxx (i) and β̄ be the weighted mean of the least squares estimates of
slopes, that is,

β̄ =

K∑
i=1

wi β̂i

K∑
i=1

wi

.

The sum of squares for the differences of slopes can be obtained as

SS(β) =
K∑

i=1

wi (β̂i − β̄)2. (5.5)

If the null hypothesis of equal slopes is not rejected at the α level of significance, βi

in Model 5.1 can be replaced by a common slope β, and Model 5.1 reduces to

yi j = αi + βxi j + ei j , i = 1, . . . , K , j = 1, . . . , ni . (5.6)

The null hypothesis of equal intercepts can be treated as the null hypothesis of equal
batch effects after adjustment for the linear regression between time and percent of
label claim. This can be obtained by a direct application of the analysis of covariance.
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Now, define

Sxx (T ) =
K∑

i=1

ni∑
j=1

(xi j − x̄..)
2,

Syy(T ) =
K∑

i=1

ni∑
j=1

(yi j − ȳ..)
2,

Sxy(T ) =
K∑

i=1

ni∑
j=1

(xi j − x̄..)(yi j − ȳ..),

Sxx (B) =
K∑

i=1

ni (x̄i. − x̄..)
2,

Syy(B) =
K∑

i=1

ni (ȳi. − ȳ..)
2,

Sxy(B) =
K∑

i=1

ni (x̄i. − x̄..)(ȳi. − ȳ..). (5.7)

where

x̄.. = 1

N

K∑
i=1

ni∑
j=1

xi j ,

ȳ.. = 1

N

K∑
i=1

ni∑
j=1

yi j .

The total sum of deviations from regression is given as

SST = Syy(T ) −
[
Sxy(T )

]2

Sxx (T )
.

Similarly, the within-batch sum of deviations from regression is SSE(W ) given in
Equation 5.4. The between-batch sum of deviations from regression can be obtained
by subtraction as

SSB = SST − SSE(W ).

The degrees of freedom associated with SST, SSW, and SSB are N − 2, N − K − 1,
and K − 1, respectively. Hence, the corresponding between- and within-batch mean
squares after adjustment for regression are given by

MSB = SSB

K − 1
,

and

MSW = SSE(W )

N − K − 1
,
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respectively. The null hypothesis of equality of intercepts is rejected if

F ′
α = MSB

MSW
> Fα,K−1,N−K−1,

where Fα,K−1,N−K−1 is the αth upper quantile of a central F distribution with K − 1
and N −K −1 degrees of freedom. Note that the least squares estimate of the common
slope in Model 5.6 is given by

β̂ = Sxy(W )

Sxx (W )
.

The inference about β in Model 5.6 can be obtained based on β̂ and

SE(β̂) = MSW

Sxy(W )
.

It should also be noted that test statistic F ′
α is derived under the assumption that there

is a common slope as described in Model 5.6. Therefore, F ′
α is the test statistic for

the following hypotheses:

H0 : αi = αi ′ ; βi = βi ′ for all i �= i ′

versus

Ha : αi �= αi ′ for some i �= i ′ and βi �= βi ′ for some i �= i ′.

The test statistic for the unrestricted null hypothese of hypotheses 5.2 can be obtained
as

Fα = MSB

M SE
.

We then reject the unrestricted null hypothesis of equal intercepts if

Fα > Fα,K−1,N−2K .

These results are summarized in the analysis of covariance table (see Table 5.1). Note
that the sum of squares due to the common slope is given by

SSS =
[
Sxy(W )

]2

Sxx (W )
.

It can easily be verified that the sum of squares for the sum of the differences of slopes
in Equation 5.5 is also the sum of squares due to the interaction between time and
batch.

The 1987 FDA stability guideline indicates that the preliminary tests for the equality
of slopes and the equality of intercepts should be performed at the 0.25 level of
significance as suggested by Bancroft (1964). Bancroft suggested that one preliminary
test be performed for the two commonly used models: the two-stage nested model and

Binod April 12, 2007 10:59 C9055 Chapter 5



5.2 Minimum Approach for Multiple Batches 105

TABLE 5.1: ANCOVA Table for Model (5.1)

Source Variation df Sum of Squares Mean Square F Statistic

Intercept K – 1 SSB MSB Fα =MSB/MSE
(batch)

Time 1 SSSa MSS Fs = MSS/MSE
(common slope)

Different in slope K – 1 SS(β) MS(β) Fβ = MS(β)/MSE
(batch-by-time)

Error N−2K SSE MSE
Total N−1 SST

aSSS = [Sxy (W )]2/Sxx (W ).

Source: Chow, S.C. and Liu, J.P. (1995). Statistical Design and Analysis in Pharmaceutical Science,
Marcel Dekker, New York.

the two-way cross-classification mixed model. However, as discussed above, testing
for batch similarity on degradation lines involves two preliminary tests: one for the
equality of slopes and the other one for the equality of intercepts. The 1987 FDA
stability guideline does not state clearly whether the 0.25 level of significance should
be applied to each of the two preliminary tests separately or should be used as the
overall significance level for the following joint hypotheses:

H0 : αi = αi ′ and βi = βi ′ for all i �= i ′

versus

Ha : αi �= αi ′ or βi �= βi ′ for some i �= i ′.

5.2 Minimum Approach for Multiple Batches

If the preliminary tests for the equality of slopes and the equality of intercepts are not
rejected at the 0.25 level of significance for the null hypothesis of batch similarity
of the degradation lines among batches, all batches are considered from the same
population of production batches with a common degradation pattern. As a result,
Model 5.1 reduces to

yi j = α + βxi j + ei j , i = 1, . . . , K , j = 1, . . . , ni , (5.8)

where α and β are the common intercept and common slope for Model 5.8 and the
same normality assumption is posed for ei j . The procedure for estimating an expiration
dating period of a single batch described in Section 3.2 can be applied directly to the
pooled stability data from all batches. The least squares estimates of β, α and σ 2
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are then given by

β̂C = Sxy(T )

Sxx (T )

α̂C = ȳ.. − β̂C x̄..,

s2
C = Syy(T ) − β̂C Sxy(T )

N − 2

where Sxx (T ), Syy(T ), Sxy(T ), x̄.., ȳ.., and N are as defined in Equation 5.7. The least
squares estimate of the mean degradation line at time point t = x is then given as

y(x) = α̂C + β̂C x

with its least squares estimate of the variance

V̂ [y(x)] = s2
C

[
1

N
+ (x − x̄..)2

Sxx (T )

]
.

Therefore, the 95% lower confidence limit for the mean degradation line is given as

LC (x) = α̂C + β̂C x − t0.05,N−2SE(x),

where

SE(x) = (V̂ [y(x)])1/2,

and t0.05,N−2 is the 5% upper quantile of a central t distribution with N − 2 degrees
of freedom. Hence, the overall expiration dating period can be estimated as the small
root xL (C) of the following quadratic equation:

[
η − (α̂C + β̂C x)

]2 = t2
0.05,N−2s2

C

[
1

N
+ (x − x̄..)2

Sxx (T )

]
. (5.9)

The conditions for the existence of the root xL (C) for the quadratic equation above
are the same as those given in Equations 3.5 and 3.6 for a single batch. However,
the standard error of the slope and intercept estimated from the pooled stability data
should be used to evaluate the two conditions. Under the assumption that all batches
come from a population for which the degradation pattern can be described accu-
rately by Model 5.8 with the common slope and intercept, the pooled stability data
from all batches provide more precise least squares estimates of slope, intercept, and
variability. Hence, the 95% confidence limit for the mean degradation line becomes
much narrower because it is based on the pooled stability data with N − 2 degrees
of freedom. Therefore, if Model 5.8 is adequate, the expiration dating period esti-
mated from the pooled stability data is longer than those estimated from individual
batches.

If preliminary tests based on the F statistics described in the previous section are
rejected at the 0.25 level of significance, the degradation lines of individual batches
cannot be considered the same because of different slopes or different intercepts.
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TABLE 5.2: ANCOVA Table for Data Set 1

Source of Variation df Sum of Squares F-Statistic P-Value

Intercepts 5 0.60 2.85 0.038
Time 1 21.52 503.24 <0.001
Difference in slopes 5 0.35 1.64 0.186
Error 25 1.07

Source: Ruberg S.J. and Stegeman J.W. (1991). Biometrics, 47, 1059–1069.

In this case, according to the 1987 FDA stability guideline, the overall expiration
dating period may depend on the minimum time that a batch is expected to remain
within acceptable limits. Therefore, let xL (i) be the estimated shelf-life for batch i ,
i = 1, . . . , K . An intuitive estimate of the overall expiration dating period, which
meets the FDA requirements, may be obtained as follows:

xL (min) = min{xL (1), . . . , xL (K )}. (5.10)

Since xL (min) is the shortest shelf-life among all batches, this estimate will provide
a 95% confidence that the strength of the drug product will remain above the accept-
able lower specification limit η until xL (min) for all batches. However, xL (min) is a
conservative estimate of the overall expiration dating period because it provides more
than 95% confidence for all batches except the batch from which it is estimated. The
approach above is usually referred to as the minimum approach.

The minimum approach for estimating of the overall shelf-life of a drug product
is used when the preliminary tests for batch similarity are rejected (i.e., there are
different intercepts and different slopes) at the 0.25 level of significance. However,
the procedure for testing the batch similarity of degradation lines and the minimum
approach for determining shelf-life as the estimated overall expiration dating period
have received considerable criticism because of their drawbacks. For example, Chow
and Shao (1991) indicated that the minimum approach lacks statistical justification.
Ruberg and Stegeman (1991) and Ruberg and Hsu (1992) illustrated the disadvantages
of using the minimum approach through two numerical data sets of six batches. Ruberg
and Stegeman analysis of covariance tables for the two stability data sets are reported
in Tables 5.2 and Table 5.3, respectively. The results of fitting the least squares to
individual batches and to the pooled stability data with the estimated shelf-lives for
both data sets are summarized in Tables 5.4 and 5.5, respectively. Figures 5.1 and 5.2
give the stability data and individual regression lines. Note that the overall shelf-life

TABLE 5.3: ANCOVA Table for Data Set 2

Source of Variation df Sum of Squares F-Statistic P-Value

Intercepts 5 15.93 4.01 0.009
Time 1 4.14 5.21 0.032
Difference in slopes 5 4.60 1.16 0.359
Error 25 18.28

Source: Ruberg S.J. and Stegeman J.W. (1991). Biometrics, 47, 1059–1069.
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TABLE 5.4: Results of Least Squares Regression for Stability Data Set 1

Batch n Intercept Slope s2 Sxx Shelf-Life

1 9 100.49 −1.515 0.019 14.63 6.7
2 7 103.66 −1.449 0.043 7.83 6.8
3 7 101.25 −1.682 0.062 5.14 5.5
4 6 102.45 −1.393 0.035 1.38 6.2
5 4 102.45 −1.999 0.011 0.61 4.4
6 4 99.98 −1.701 0.124 0.61 3.5

Pooled 99.90 −1.534 0.047 6.2

Source: Ruberg, S.J. and Stegeman, J.W. (1991). Biometrics, 47, 1059–1069.

presented in Tables 5.4 and 5.5 were obtained under Equation 5.6 with a common
slope and different intercepts in Ruberg and Stegeman.

From Table 5.2, the F statistic for overall difference in slopes obtained from stability
data set 1 is 1.64 with a p-value of 0.186. Hence, the null hypothesis of equal slopes
is rejected at the 0.25 level of significance. According to the FDA stability guidelines,
the stability data of six batches in data set 1 cannot be pooled. Hence, the overall
expiration dating period was determined using the minimum approach. Since batch 6
gives the minimum shelf-life of the six batches, the estimated shelf-life of 3.5 years
from batch 6 is used as the overall expiration dating period. For data set 2, the null
hypothesis of equal slopes is not rejected at the 0.25 level of significance, because
the p-value for the difference in slopes is 0.359, as shown in Table 5.3. Ruberg and
Stegeman (1991) pooled the stability data over six batches to estimate the overall
expiration dating period, which gives a shelf-life of 18.2 years under Model 5.6.

It is evident from Figures 5.1 and 5.2 that the variability of stability data set 1 is much
smaller than that of data set 2. However, following the FDA stability guideline for the
use of the significance level of 0.25 for the null hypothesis of the equality of slopes,
stability data set 2, with a much larger variability, can be pooled, but stability data
set 1, with a smaller variability, cannot be pooled over batches. Therefore, a paradox
occurs. As indicated by Ruberg and Stegeman (1991), well-designed and carefully
executed stability studies generate reliable and less variable data to provide least
squares estimates of the mean degradation lines and their variance with high precision
and efficiency. However, the accuracy, precision, and efficiency of these estimates
cannot be utilized for estimation of the overall expiration dating period simply because

TABLE 5.5: Results of Least Squares Regression for Stability Data Set 2

Batch n Intercept Slope s2 Sxx Shelf-Life

1 9 100.48 −0.109 0.343 14.63 32.3
2 6 103.63 −0.449 0.703 2.96 9.6
3 7 101.24 −0.778 1.189 5.14 7.0
4 5 102.21 0.194 0.221 1.26 16.2
5 4 102.21 −2.218 0.256 0.61 3.2
6 4 100.07 −1.045 2.973 0.61 1.7

Pooled 100.41 −0.330 0.628 18.2

Source: Ruberg S.J. and Stegeman J.W. (1991). Biometrics, 47, 1059–1069.

Binod April 12, 2007 10:59 C9055 Chapter 5



5.2 Minimum Approach for Multiple Batches 109

the less variable data are able to detect smaller differences of no practical importance
in slopes as being of statistical significance because of an arbitrary choice of the
significance level of 0.25. Therefore, good stability studies are penalized for their
small variability by recommendation of the choice of the significance level in the
FDA stability guidelines.

Another possible explanation for the paradox is that the null hypotheses of equal
slopes and equal intercepts are wrong for batch similarity of degradation lines among
batches. Failure to reject the null hypotheses of equal intercepts and equal slopes
does not prove that the slopes and intercepts are the same across all batches. As an
alternative, the following hypotheses may be more reasonable for batch similarity:

H0β : max |βi − βi ′ | ≥ �β for some i �= i ′ (5.11)

vs. Haβ : max |βi − βi ′ | < �β for all i �= i ′

H0α : max |αi − αi ′ | ≥ �α for some i �= i ′ (5.12)

vs. Haα : max |αi − αi ′ | < �α for all i �= i ′

where �β and �α are prespecified equivalence limits for the allowable differences
between batches for slopes and intercepts, respectively.
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Figure 5.1: Stability data and individual regression lines for data set 1. [From
Ruberg and Stegeman (1991).]
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Figure 5.2: Stability data and individual regression lines for data set 2. [From
Ruberg and Stegeman (1991).]

Since each batch represents an independent sample from the population of produc-
tion batches, the least squares estimates of slopes and intercepts of different batches
are independent of each other. Therefore, an estimated variance of the difference in
least squares estimates of slopes between any pair of batches is given by

V̂ (β̂i − β̂i ′ ) = MSE(wi + wi ′ ), 1 ≤ i �= i ′ ≤ K

where wi = 1/Sxx (i). Then

Tβ̂(i, i ′) = β̂i − β̂i ′ − (βi − βi ′ )

SE(β̂i − β̂i ′ )
, 1 ≤ i �= i ′ ≤ K

follows a central t distribution with N − 2K degrees of freedom, where

SE(β̂i − β̂i ′ ) = [
V̂ (β̂i − β̂i ′ )

]1/2
. (5.13)

Let

Tmax(β) = max
1≤i<i ′≤K

∣∣Tβ̂(i, i ′)
∣∣ .
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Then,
√

2Tmax(β) is distributed as the range of K independent standard normal random
variables divided by the square root of a central chi-square random variable with
N − 2K degrees of freedom divided by N − 2K . Since

max |βi − βi ′ | = βmax − βmin, 1 ≤ i �= i ′ ≤ K ,

the hypotheses of the similarity for slopes in Equation 5.11 can be reformulated as

H0β : βmax − βmin ≥ �β for some i �= i ′ (5.14)

vs. Haβ : βmax − βmin < �β for all i �= i ′,

where

βmax = max{β1, . . . , βK } (5.15)

βmin = min{β1, . . . , βK }.

Then, the (1−α)×100% upper confidence interval for the maximum of all pair-wise
differences between βi and βi ′ for i �= i ′ or βmax − βmin is given as Umax(β), where

Umax(β) = β̂max − β̂min + (0.5)1/2 Qα,K ,N−2K SE(β̂max − β̂min) (5.16)

where β̂max, β̂min, and SE(β̂max − β̂min) are defined similarly to Equations 5.15 and
5.13, respectively, and Qα,K , N−2K is the αth upper quantile of studentized range
distribution with K and N − 2K degrees of freedom. A procedure for testing the
interval hypothesis of Equation 5.11 of the similarity of slopes among batches is to
reject H0β if the (1 − α) × 100% upper confidence interval Umax(β) is smaller than
�β . Let

TU (β) = β̂max − β̂min − �β

(0.5)1/2SE(β̂max − β̂min)
(5.17)

Then, H0β in Equation 5.14 is rejected at the α level of significance if

TU (β) < −Qα,K , N−2K

Note that the confidence limit approach given in Equation 5.16 is operationally equiv-
alent to the hypothesis testing procedure described in Equation 5.17. Similarly, the
(1−α)×100% upper confidence interval and the testing procedure can be applied to
Equation 5.12 for the similarity of intercepts among batches. Note that the estimated
variance of the difference in least squares estimates of intercepts between two batches
is given as

V̂ (α̂i − α̂i ′ ) = MSE

[
USxx (i)

ni Sxx (i)
+ USxx (i)

ni Sxx (i)

]
,

where 1 ≤ i �= i ′ ≤ K , and USxx (i) is the uncorrected sum of squares of x for batch i .
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5.3 Multiple Comparison Procedure for Pooling Batches

As discussed in the previous section, the current FDA recommendation for pooling
stability data over batches has some disadvantages. First, the choice of the significance
level of 0.25 for testing batch similarity may penalize good stability studies with
small variabilities. Second, the minimum approach ignores the information from
other batches for estimation of an overall expiration dating period. Finally, the use of
wrong hypotheses of equality to test batch similarity in terms of intercepts and slopes
of degradation lines among batches may alter the poolability of stability data.

Under the assumption of fixed batch effects for Model 5.1, Ruberg and Hsu (1992)
proposed an approach using the concept of multiple comparison to derive criteria for
pooling batches with the worst batches. Instead of testing the null hypothesis of the
equality of slopes, they suggested investigating a simultaneous confidence interval
for

θi = βi − min
i �=i ′ βi ′ for i = 1, . . . , K . (5.18)

From Equation 5.18, the worst batch is defined as the batch with the largest degradation
rate or minimum slope. If �β is some equivalence limit for the allowable difference
between batches, Ruberg and Hsu’s (1992) idea for combining stability data from a
certain number of batches is to pool the batches:

θi = βi − min
i �=i ′ βi ′ < �β.

In other words, Ruberg and Hsu’s procedure is to pool the batches that have slopes
similar to the worst degradation rate with respect to the equivalence limit �β. To
illustrate this procedure, let us start with an arbitrary batch, batch i , as the reference
batch. We first calculate all possible lower confidence limits:

lii ′ = (β̂i − β̂i ′ ) − di (α)SE(β̂i − β̂i ′ ) for 1 ≤ i �= i ′ ≤ K ,

where SE(β̂i − β̂i ′ ) is as defined before, and di (α) is the (1 − α) × 100% critical
values for the confidence interval of βi − mini �=i ′ βi ′ , which depends on the degrees
of freedom for the combined residual sum of squares and the (K − 1) × (K − 1)
correlation matrix of

β̂i − β̂i ′
i �=i ′

, i = 1, .., K .

The lower limit of the (1 − α) × 100% confidence interval for θi is then given by

Li = min(li , 0), i = 1, . . . , K , (5.19)

where

li = max
i �=i ′ (lii ′ ), i = 1, . . . , K .
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We then repeat the procedure above with each batch as the reference batch to compute
the lower limit Li , i = 1, . . . , K . Note that if lii ′ > 0, according to Equation 5.19,
the lower limit for the (1 − α) × 100% confidence interval is zero. Therefore, the
degradation rate is statistically significantly different from the true minimum slope,
and the i th batch is not the worst batch. Let G be the set of all batches with the smallest
slope:

G = {i, li < 0}.

Hence, G is the set that contains all possible worst batches. The computation of the
upper limit of the (1−α)×100% confidence interval for θi depends on the number of
batches in G. If G contains only a single batch g, batch g has the largest degradation
rate, and the upper limit of the (1 −α) x 100% confidence interval for θi is then given
by

Ui =
{

0 if i = g
(β̂i − β̂g) + dg(α)SE(β̂i − β̂g) if i �= g.

If G contains more than one batch, calculate all possible upper confidence limits using
the batches in G as the candidate batches for the worst batches as follows:

uig = (β̂i − β̂g) + dg(α)SE(β̂i − β̂g)

for all g ∈ G and i �= g. The upper limit of the (1 − α) × 100% confidence interval
for θi is then given by

Ui = max(ui , 0),

where

ui = max
i �=g

(uig).

Note that calculation of critical values di (α) depends on the correlation matrix of

β̂i − β̂i ′
i �=i ′

, i = 1, .., K . (5.20)

Let

λi ′ =
[

1 + Sxx (i)

Sxx (i ′)

]−1/2

.

Then, the off-diagonal elements of the correlation matrix of Equation 5.20 are given
as

ri ′i ′′ = λi ′λi ′′ , i ′ �= i ′′.
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If Sxx (i) = Sxx (i ′) for 1 ≤ i �= i ′, then di (α) is Dunnett’s one-sided αth upper quantile
with K − 1 and N − 2K degrees of freedom. However, if Sxx (i) �= Sxx (i ′) for some
i �= i ′, di (α) is the solution of integration of the multivariate t distribution, as shown
in Ruberg and Hsu (1992). In practice, numerical integration is required to obtain
di (α). Since numerical integration of the multivariate t distribution is sometimes
quite tedious and computer routines for numerical integration may not be available,
Ruberg and Hsu (1992) suggested the use of the Tukey-Kramer procedure for all pair-
wise comparisons of degradation rates. The critical values used in the Tukey-Kramer
procedure are the upper quantile of the studentized range distribution Qα,K , N−2K

given in Equation 5.16. The Tukey-Kramer (1 −α) × 100% simultaneous confidence
interval for all pair-wise comparisons between βi and βi ′ is given by

uii ′ (lii ′ ) = β̂i − β̂i ′ ± (0.5)1/2 Qα,K , N−2K SE(β̂i − β̂i ′ )

where 1 ≤ i �= i ′ ≤ K . Consequently, the lower and upper limits for the (1 − α) ×
100% confidence interval for

θi = βi − min
i �=i ′ βi ′

are given, respectively, as

Li = max
i �=i ′ (lii ′ ),

and

Ui = max
i �=i ′ (uii ′ ).

Ruberg and Hsu (1992) also suggested two sets of decision rules for pooling stability
data over batches. The first uses an FDA-like approach (FDA, 1987), and the second
is a bioequivalence-like approach (Chow and Liu, 2000). In the FDA-like approach,
75% simultaneous confidence intervals are calculated. The decision rules for pooling
batches are as follows:

� If Li = 0, batch i is not a candidate for the worst batch.

� Since the event Ui = 0 can only occur for at most one batch, if Ui = 0, batch
i is the only candidate for the worst batch.

� If Li < 0 and Ui > 0, pool all such batches for slope estimation because they
are candidates for the worst batch.

Since this approach is the version of confidence intervals for the null hypothesis of
the equality of slopes recommended in the FDA stability guidelines, it suffers the same
drawbacks. Stability studies with a poor design and large variability will produce a
wide simultaneous confidence interval for θi and allow too many batches to be pooled.
Fewer batches from good stability studies cannot be pooled for an accurate, precise,
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and efficient estimation because of narrower confidence intervals for θi due to small
variability. For the bioequivalence-like approach, we first compute the 95% upper
confidence limits Ui for all θi , i = 1, . . . , K . Then we pool batches with Ui > �β ,
where �β is a prespecified upper allowable specification limit. If all Ui > �β, no
batch can be pooled. In this case shelf-lives are computed separately for each batch,
and the minimum among all batches is used to estimate the overall expiration dating
period. This is a much more reasonable approach because it is based on the concept of
similarity, as discussed in Section 5.2. As a result, good studies with tight upper confi-
dence limits will not be penalized any more by using the bioequivalence-like approach.
The most recent development on the application of the equivalence-like approach for
batch pooling can be found in Yoshioka et al. (1997) and Tsong et al. (2003b).

5.3.1 Remarks

For the method of Ruberg and Stegeman’s equivalence testing of slopes, Lin and Tsong
(1991) pointed out that given the same �β , when pooling slopes if max |βi − βi ′ | <

�β leads to a different impact when βi ≈ 0 than βi is much smaller than 0 (see also
Tsong et al., 2003b). For Ruberg and Hsu’s (1992) method of pooling slopes that is
equivalent to the worse slope, it should be noted that the worst slope is not necessarily
the batch of worst shelf-life. This approach may lead to pooling the direction opposite
to the expectated direction. For a given equivalence limit, the impact on shelf-life can
be large. In addition, with the regulatory limitation of extrapolation, a complicated
pooling approach could lead to impractical differences.

5.4 An Example

To illustrate the statistical methods described in the previous sections, consider the
following example. A stability study was conducted on 300-mg tablets of a drug
product to establish an overall expiration dating period. Tablets from five batches were
stored at room temperature in two types of containers (i.e., high-density polyethylene
bottle and blister package). The tablets were tested for potency at 0, 3, 6, 9, 12, and
18 months. The assay results (expressed as percent of label claim) were reported in
Shao and Chow (1994). These results are given in Table 5.6. Note that this data set
contains sampling time intervals only up to 18 months, which does not cover the
entire range of sampling time points up to 60 months or more. In addition, assays of
all batches were performed at the same time points. Therefore, this data set represents
the simplest structure of a stability study. For simplicity, assay results from bottles
are selected to illustrate statistical concepts and computational procedures discussed
in this chapter.

Figure 5.3 displays the scatter plot of stability data (for bottle) given in Table 5.6
with the acceptable lower specification limit equal to 90%. The stability data of batch
1 using the bottle in Table 5.6 are chosen to illustrate the computation of the shelf-life
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TABLE 5.6: Assay Results in Percent of Label Claim

Sampling Time (months)

Package Batch 0 3 6 9 12 18

Bottle 1 104.8 102.5 101.5 102.4 99.4 96.5
2 103.9 101.9 103.2 99.6 100.2 98.8
3 103.5 102.1 101.9 100.3 99.2 101.0
4 101.5 100.3 101.1 100.6 100.7 98.4
5 106.1 104.3 101.5 101.1 99.4 98.2

Blister 1 102.0 101.6 100.9 101.1 101.7 97.1
2 104.7 101.3 103.8 99.8 98.9 97.1
3 102.5 102.3 100.0 101.7 99.0 100.9
4 100.1 101.8 101.4 99.9 99.2 97.4
5 105.2 104.1 102.4 100.2 99.6 97.5

Source: Shaw & Chow (1944). Biometrics, 50, 753–763.

for a single batch. It can be easily verified that

x̄ = 8,

ȳ = 101.183,

Sxx = 210,

Sxy = −88.9,

and

Syy = 41.508.

Therefore, the least squares estimates of slope, intercept, and error variance are given,
respectively, as

β̂ = Sxy

Sxx
= −88.9

210
= −0.423,

α̂ = ȳ − β̂ x̄ = 101.183 − (−0.423)(8) = 104.57,

s2 = Syy − β̂Sxy

n − 2
= 41.508 − (−0.423)(−88.9)

6 − 2
= 0.969.

Hence, the least squares estimate of the mean degradation line at time t = x is given
as

y(x) = 104.57 − 0.423x .

The corresponding ANOVA table is provided in Table 5.7, and the standard error of
the least squares estimates for slope and intercept are given by

SE(β̂) =
[

s2

Sxx

]1/2

=
[

0.969

210

]1/2

= 0.0679,
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Figure 5.3: Scatter plot of stability data (bottle) in Table 5.6 ×, Batch 1; + batch
2; *. batch 3; , batch 4, �, batch 5.

and

SE(α̂) =

s2


 1

nSxx

n∑
j=1

x2
j







1/2

=
[

0.969

(
594

6 × 210

)]1/2

= 0.676,

TABLE 5.7: ANOVA Table for Batch 1 of Bottle Container
Stability Data Set in Table 5.6

Source Sum of Mean
Variation df Squares Squares F-Value P-Value

Regression 1 37.634 37.634 38.858 0.0034
Residual 4 3.874 0.969

Total 5 41.508

Binod April 12, 2007 10:59 C9055 Chapter 5



118 Stability Analysis with Fixed Batches

respectively. Before we apply Equation 3.3 to calculate the shelf-life, we need to
check Equations 3.5 and 3.6. For η = 90,

Tα̂ = α̂ − η

SE(α̂)
= 104.57 − 90

0.676
= 21.55,

with a p-value less than 0.001 and

Tβ̂ = β̂

SE(β̂)
= −0.423

0.0679
= −6.234

with a p-value of 0.0017. Both conditions are met. Thus, the shelf-life is estimated
as the smaller root of the following equation:

{90 − [104.57 + (−0.423)x]}2 = (2.132)2(0.969)

[
1

6
+ (x − 8)2

210

]
.

Therefore, the estimated expiration dating period for batch 1 with a bottle is 27.5
months. The stability data with estimated regression line, the 95% lower confidence
limit for the mean degradation line, and the acceptable lower specification limit of
90% are plotted in Figure 5.4.

A summary of the results of estimating slopes and intercepts by least squares
regression is provided in Table 5.8 along with the corresponding standard errors. It
can be verified that Equations 3.5 and 3.6 are both satisfied for all batches except
for batch 3. The slope of batch 3 is estimated as −0.168 with a standard error of
0.08. Therefore, Tβ̂ is −2.1, with a p-value of 0.053. Thus, the slope of batch 3
is not statistically significantly smaller than zero at the 5% level of significance.
Consequently, the shelf-life cannot be estimated by the method described in Section
3.2. Table 5.9 provides the ANCOVA table for the data set given in Table 5.6. The
F-value for the difference in slopes is 4.36, with a p-value of 0.0107. Thus, according
to the 1987 FDA stability guideline, the stability data presented in Table 5.6 cannot
be pooled for estimation of a common slope for all batches.

Suppose from previous experience that the specification for the minimum allowable
degradation rate is 0.35% of the label claim per month. From Table 5.7, β̂max =
−0.135 and β̂min = −0.441. Thus,

TU (β) = −0.135 − (−0.441) − 0.35

0.0676
= −0.651

TABLE 5.8: Summary Results of Least Squares Estimation
of Slopes and Intercepts

Batch Intercept SE(α) Slope SE(β) s2

1 104.57 0.676 −0.423 0.068 0.969
2 103.50 0.742 −0.280 0.075 1.166
3 102.67 0.800 −0.168 0.080 1.358
4 101.51 0.488 −0.135 0.049 0.505
5 105.29 0.614 −0.441 0.062 0.800

Pooled 103.51 0.374 −0.289 0.038
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Figure 5.4: Degradation line and 90% lower confidence limit for batch 1.

which is larger than −Q0.05,5,20 = −4.232. Hence, the null hypothesis of hypotheses
5.4 is not rejected at the 5% level of significance. Thus, the stability data given in Table
5.5 cannot be pooled with respect to a �β of 0.35% per month. It can be verified that
if �β was chosen to be 0.6%, the null hypothesis would have been rejected. Note that
�β = 0.35% (or 0.6%) per month is equivalent to 4.2% (or 7.2%) per year, which are
considered too big for �β in practice. Therefore, knowledge and experience with the
maximum allowable degradation rate of a drug product is very important in making
the decision about pooling stability data.

TABLE 5.9: ANCOVA Table for the Stability Data Set in Table 5.6

Source Sum of Mean
Variation df Squares Squares F-Value p-Value

Intercept 4 19.09 4.77 4.97 0.0060
Time 1 87.84 87.84 91.53 <0.0001
Difference 4 16.75 4.19 4.36 0.0107

in slopes
Error 20 19.19 0.96

Total 29 129.37
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TABLE 5.10: 95% Confidence Interval of θI = βi –minβ
†
i

Method∗ Batch 95% Confidence Interval

MCW 1 (−0.21, 0.24)
2 (−0.07, 0.39)
3 (0.00, 0.50)
4 (0.00, 0.53)
5 (−0.24, 0.21)

TK 1 (−0.27, 0.30)
2 (−0.12, 0.45)
3 (−0.01, 0.56)
4 (0.02, 0.59)
5 (−0.30, 0.27)

†di (α) = 2.39, the Dunnett’s upper one-sided critical value with parameter 5 and
20 degrees of freedom; Q(0.05,5,20) = 4.232.
∗MCW: Multiple comparison with the worst; TW: Tukey–Kramer simultaneous
confidence intervals.

Since Sxx (i) = Sxx (i ′) = 210 for all i , the Dunnett’s upper 5% one-sided critical
value with parameter K − 1 = 5 and degrees of freedom N − 2K = 20 is used
for illustration of Ruberg and Hsu’s multiple comparison procedure with the worst
batch. The results are summarized in Table 5.10 with those computed from the Tukey-
Kramer simultaneous confidence intervals. Since l1 > 0 for batches 3 and 4, the set
of all possible worst batches includes batches 1, 2, and 5. Therefore, the upper limits
of the 95% confidence interval for θi were computed from all possible confidence
bounds using batches 1, 2, and 5 as candidates for the worst batches by the multiple
comparison procedure.

From Table 5.11, the 95% confidence interval of βi − mini �=i ′ βi by a multiple
comparison procedure are narrower than those obtained from the Tukey-Kramer
method. However, if �β = 0.35% per month is still selected as the upper allowable

TABLE 5.11: Summary of Estimation of Shelf-Lives for
Data Set in Table 5.6

Method Batch Shelf-Life (months)

Individual 1 27.5
2 33.5
3 —
4 51.4
5 28.6

Pooled All 39.5
FDA minimum 27.5
MCW/TKa 1,5 30.3

2,3,4 49.2
†MCW-TK, multiple comparison with the worst and Tukey–Kramer
simultaneous confidence interval.
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degradation rate, by the bioequivalence-like approach, batches 1 and 5 can be pooled
for estimation of a common slope and the overall expiration dating period. Table 5.11
lists the shelf-lives by individual batches. Batch 4 has the longest shelf-life, while
batch 1 has the shortest shelf-life. The shelf-life estimation from the data by pooling
all five batches is 39.5 months. The pooled data set from batches 1 and 5 generates
a shelf-life of 30.3 months compared to the minimum approach of 27.5 months for
batch 1. The combined data set from the other three batches (2, 3, and 4) gives a
shelf-life of 49.2 months. Examination of slopes in Table 5.8 and Figure 5.3 reveals
that those five batches can basically be classified into two groups: one group consists
of batches 1 and 5, which have a degradation rate more than 0.4% per month, and the
other group contains batches 2, 3, and 4, which have a degradation rate less than 0.3%
per month. Therefore, the overall expiration dating periods estimated either by batch
1 alone or by batches 1 and 5 combined using the multiple comparison procedure are
still quite conservative because the other three batches have much slower degradation
rates.

5.5 Discussion

In pharmaceutical development, the data from stability tests are required to be sub-
mitted to the regulatory authority to establish the labeled shelf-life of the drug product
at the stage of new drug application (NDA). For this reason, data from stability tests
are usually limited to a few batches (e.g., three batches) and less than a two-year test.
As a result, stability data are often evaluated by statistical reviewers at the regulatory
authority using analysis methods with fixed batches.

As shown in Table 5.11 and Figure 5.3, the estimated shelf-lives for all batches for
the stability data considered in the example above are beyond the range of observed
time intervals. These estimated shelf-lives are obtained based on extrapolation from
the estimated regression line over the range of the time intervals observed. However,
it is not known whether an empirical linear relationship between the strength and time
still holds from the last observed time interval to the estimated shelf-life. If the true
relationship is not linear between these two time points, the shelf-life estimated by
extrapolation beyond the range of observed time points is seriously biased. It should
be noted that current U.S. regulatory practice is to approve labeled shelf-life with
an increment of six months when it is longer than one year. For example, when the
estimated shelf-life is 27 months based on data of 18 months of testing, the regulatory
shelf-life (or labeled shelf-life) is approved at 24 months rather than 27 months.

Comparison of regression lines includes not only examination of the similarity of
slopes and intercepts, but also the equivalence of the within-batch variability. How-
ever, the similarity of within-batch variability is often ignored during the decision
making for pooling stability data over batches. Tables 5.4 and 5.5 indicate that the
ratio of the maximum within-batch variability to the minimum is 11.3 and 13.45,
respectively, for stability data given in Ruberg and Stegeman (1991), while the same
ratio is 2.69 for the data set of the bottle given in Table 5.3. Hence, large differences
in within-batch variability exist for both data sets of Ruberg and Stegeman (1991).
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More interestingly, the extremes of within-batch variability occur in the batches with
the fewest data points in their data sets. Either Bartlett’s chi-square test or Hartley’s
Fmax test (Gill, 1978) can be applied to examine the null hypothesis of equality of
within-batch variability. Bartlett’s test is quite sensitive to the departure of normality,
although it can be generalized to the unequal number of observations with each batch.
However, Hartley’s Fmax test is rather robust against nonnormality, but it can be ap-
plied only when each batch has the same number of assays. Since the upper 5%
quantile of the distribution for Fmax with five batches and 4 residual degrees of free-
dom is 25.2 and the observed Fmax is 2.69 for the stability data of the bottle for the
data set given in Table 5.6, the null hypothesis of equal within-batch variability is not
rejected at the 5% level of significance. It should be noted that these procedures are
for the equality; further research is required for testing the similarity of within-batch
variability.

An ideal situation for examining the similarity of the degradation lines among
batches is for all batches to have the same range of time points as shown by the data set
given in Table 5.6. However, in practice, during the early stage of drug development,
the duration of time points may be quite different from batch to batch. For example,
in both data sets presented by Ruberg and Stegeman (1991), the duration of time
points was more than 4 years for one batch, between 2 to 3 years for two batches, 1.5
years for one batch, and 1 year for two batches. Since the entire degradation pattern
is not fully understood for these batches with a short duration, one probably should
not test the similarity of degradation lines unless batches have reached similar ranges
of duration.

In Chapter 3 we introduced a nonparametric approach based on rank regression for
determining drug shelf-life for a single batch. This method can be similarly applied to
multiple batches. Chen et al. (2003) considered the following three models assuming
that ni = n for all i :

yi j = αi + βxi j + ei j , i = 1, . . . , K , j = 1, . . . , ni , (5.21)

yi j = α + βi xi j + ei j , i = 1, . . . , K , j = 1, . . . , ni , (5.22)

yi j = αi + βi xi j + ei j , i = 1, . . . , K , j = 1, . . . , ni . (5.23)

Models 5.21 to 5.23 describe situations where: (a) there are different intercepts but
common slope, (b) there are different slopes but common intercept, and (c) there are
different intercepts and different slopes, respectively.

Under Model 5.21, when the batch-to-batch variation is present, consider

U (β) =
K∑

i=1

Ui ,

where

Ui =
ni∑

j=1

(xi j − x̄i )R(ei j ),
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in which

x̄i = 1

ni

ni∑
j=1

xi j ,

and

ei j = yi j − (αi + βxi j ).

Similar to the case for a single batch, U (β) is not able to estimate αi ’s. However, the
medians of yi j − βxi j , j = 1, . . . , ni can be used to estimate αi , i = 1, . . . , K ,

individually. Under Model 5.22, when there is batch-to-batch variation, to estimate
individual βi , consider solving the following equation for β̂i for every individual i

Ui (β̂i ) = 0.

Thus, the medians of yi j − βxi j , j = 1, . . . , ni , can be used to estimate α. For the
case where there are different intercepts and different slopes, similarly, under Model
5.23, we can estimate individual β̂i by solving Ui (β̂i ) = 0 and use the medians of
yi j − βxi j , j = 1, . . . , ni to estimate αi , i = 1, . . . , K individually. Based on the
set of (α̂i , β̂i ), the shelf-life can be obtained based on either confidence bound or
prediction bounds of the average values of αi and βi following the approaches by
Chow and Shao (1991), Shao and Chow (1994), and Shao and Chen (1997).
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Chapter 6

Stability Analysis with Random Batches

As indicated earlier, to establish an expiration dating period, the FDA stability guide-
lines require that at least three batches, and preferably more, be tested in stability
analysis to account for batch-to-batch variation so that a single shelf-life is applicable
to all future batches manufactured under similar circumstances. Under the assumption
that the drug characteristic decreases linearly over time, the FDA stability guidelines
indicate that if there is no documented evidence for batch-to-batch variation (i.e., all
the batches have the same shelf-life), the single shelf-life can be determined, based
on the ordinary least squares method, as the time point at which the 95% lower con-
fidence bound for the mean degradation curve of the drug characteristic intersects
the approved lower specification limit. Several methods for determination of drug
shelf-life have been proposed, as discussed in detail in the previous chapter. As in-
dicated in the 1987 FDA stability guideline, the batches used in long-term stability
studies for establishment of drug shelf-life should constitute a random sample from
the population of future production batches. In addition, the guidelines require that all
estimated expiration dating periods be applicable to all future batches. In this case the
statistical methods discussed in the previous chapter, which are derived under a fixed
effects model, may not be appropriate. This is because statistical inference about the
expiration dating period obtained from a fixed effects model can only be made to the
batches under study and cannot be applied to future batches. Since the ultimate goal of
a stability study is to apply the established expiration dating period to the population
of all future production batches, statistical methods based on a random effects model
seem more appropriate. In the past two decades several statistical methods for deter-
mining drug shelf-life with random batches have been proposed. See, for example,
Chow and Shao (1989, 1991), Murphy and Weisman (1990), Chow (1992), Ho, Liu,
and Chow (1993), Shao and Chow (1994), and Shao and Chen (1997).

The difference between a random effects model and a fixed effects model is that
the batches used in a random effects model for stability analysis are considered a
random sample drawn from the population of all future production batches. As a
result, the intercepts and slopes, which are often used to characterize the degradation
of a drug product, are no longer fixed unknown parameters but random variables.
The objectives of this chapter are twofold: first, to derive some statistical tests for
batch-to-batch variability and some related fixed effects, such as the effects due to
packages, strength, and nonlinearity over time. Second, the chapter will introduce
statistical methods for the determination of drug shelf-life under a random effects
model.
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The rest of this chapter is organized as follows. In the next section we introduce a
linear regression model with random coefficients. Statistical tests for random batch
effects and some related fixed effects are discussed in Section 6.2. In Section 6.3
we introduce several methods for estimating drug shelf-life with random batches.
These methods include methods proposed by Chow and Shao (1991), Shao and Chow
(1994), and Ho, Liu, and Chow (1993). These methods are compared with the FDA’s
minimum approach in Section 6.4 through a simulation study. Also included in this
section is an example of a long-term stability study that is used to illustrate these
methods. A statistical method for determining drug shelf-life based on the concept of
lower prediction bound proposed by Shao and Chen (1997) is described in Section
6.5. Some concluding remarks are given in the last section of this chapter.

6.1 Linear Regression with Random Coefficients

Consider modifying Model 5.1 as follows:

yi j = X ′
i jβi + ei j , i = 1, . . . , K , j = 1, . . . , n, (6.1)

where i is the index for the batch; Xi j is a p x 1 vector of nonrandom covariates of the
form (1, ti j , wi j )′, (1, ti j , ti jwi j )′, or (1, ti j , wi j , ti jwi j )′; ti j is the j th time point for the
i th batch; wi j is the j th value of a vector of nonrandom covariates (e.g., package type
and strength); βi is an unknown p ×1 vector of parameters; and ei j ’s are independent
random errors in observing yi j ’s. Note that X ′

i jβi is the mean drug characteristic for
the i th batch at Xi j (conditional on βi ). The primary assumptions for Model 6.1 are
summarized below.

� βi , i = 1, . . . , K are independent and identically distributed (i.i.d.) as
Np(β, �β), where β is an unknown p × 1 vector and �β is an unknown p × p
nonnegative definite matrix.

� ei j , i = 1, . . . , K , j = 1, . . . , ni are i.i.d. as N (0, σ 2
e ), and {ei j }, and {βi } are

independent.

� ni > p and Xi = (Xi1, . . . , Xini )
′ is of full rank for all i .

Note that the K batches constitute a random sample from the population of all
future batches of the drug product manufactured under similar circumstances. Hence,
�β reflects batch-to-batch variation. If �β = 0 (i.e., βi = β for all i), there is
no batch-to-batch variation. In such a case Model 6.1 reduces to Model 5.1, which
is a fixed effects linear regression model. When �β �= 0, there is batch-to-batch
variation and βi is a p × 1 vector of unobserved random effects. Consequently,
Model 6.1 becomes a mixed effects linear regression model. Note that the fixed
effects linear regression model, i.e., Model 5.1, is a special case of the general mixed
effects model.
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Model 6.1 is known as a linear regression model with random coefficients. If
K is large, Hildreth and Houck (1968) recommended that a weighted least squares
(WLS) approach be used to estimate the mean of βi . In practice, however, K is
usually small except for postapproval (or marketing) stability studies. The current
FDA stability guidelines require that only three batches (i.e., K = 3) be tested to
establish an expiration dating period for the drug product. Thus, the method suggested
by Hildreth and Houck is not appropriate. It is interesting to note that Model 6.1 is a
special case of a regression model with random coefficients based on the fact that the
values of the regressor Xi are the same for each batch i .

6.2 Random Batch Effect and Other Fixed Effects

Under Model 6.1, we are able to test for the random batch effect and other fixed effects,
such as the package effect, the strength effect, and the effect due to nonlinearity over
time. Let

Xi = (Xi1, . . . , Xini )
′,

yi = (yi1, . . . , yini )
′,

εi = (ei1, . . . , eini )
′.

Then, Model 6.1 can be rewritten as follows:

yi = Xiβi + εi , i = 1, . . . , K . (6.2)

Under the assumptions of Model 6.1 described in the previous section, yi ,

i = 1, . . . , K are independently distributed as

Nni (Xiβ, Di ),

where

Di = Xi�β X ′
i + σ 2

e Ini ,

and Ini is the identity matrix of order ni . If �β = 0, then βi = β is nonrandom and
Model 6.2 reduces to

yi = Xiβ + εi , i = 1, . . . , K , (6.3)

which is an ordinary regression model. If ni = n and Xi = X for all i , Models 6.2
and 6.3 are called balanced models. The maximum likelihood estimator (MLE) of
β in the balanced case is the same as the ordinary least squares estimator, which is
given by

β̄ = (X ′ X )−1 X ′ ȳ,
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where

ȳ = 1

K

K∑
i=1

yi .

Since the yi are normal, we have

β̄ ∼ Np

(
β,

1

K
[�β + (X ′ X )−1]

)
.

The l ′β̄ is the uniformly minimum variance unbiased estimator (UMVUE) of l ′β,
where l is any fixed p × 1 vector. When �β �= 0, β̄ is the ordinary least squares
estimator of β and l ′β̄ is still the UMVUE of l ′β for any fixed p × 1 vector l, since
β̄ is, in fact, obtained from

β̄ = (X ′ D−1 X )−1 X ′ D−1 ȳ,

which is well known in the literature. See, for example, Section 4.1 in Laird et al.
(1987).

6.2.1 Testing for Batch-to-Batch Variation

For illustration and simplicity, we first consider the special case where Xi j = (1, x j )′

and βi = (αi , βi )′. In this case, Model 6.2 reduces to the following model considered
by Chow and Shao (1989):

yi j = αi + βi x j + ei j , i = 1, . . . , K , j = 0, 1, . . . , n − 1, (6.4)

where αi and βi are random variables with distributions N (α, σ 2
α ) and N (β, σ 2

β ),
respectively, and αi , βi , and ei j are mutually independent. If σ 2

α = 0 and σ 2
β = 0,

Model 6.4 becomes

yi j = α + βx j + ei j , i = 1, . . . , K , j = 0, 1, . . . , n − 1.

If σ 2
α > 0 but σ 2

β = 0 (i.e., different intercepts but common slope), the ordinary least
squares method for the estimation of drug shelf-life described in the previous chapters
is still valid since

yi j = α + βx j + ui j

with

ui j = αi − α + ei j

being independent N (0, σ 2
α+ σ 2

e ). If, however, σ 2
β > 0, the ordinary least squares

method is not appropriate. A commonly accepted test procedure for the hypothesis
that σ 2

β = 0 is the likelihood ratio test. Let

L = L
(
α, β, σ 2, σ 2

β

)
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denote the log-likelihood function (given the data yi j ), where σ 2 = σ 2
α+ σ 2

e . The
likelihood ratio test rejects the null hypothesis that σ 2

β = 0 if

A > χ2
α,1,

where

A = sup
α,β,σ 2

L(α, β, σ 2, 0) − sup
α,β,σ 2,σ 2

β

L
(
α, β, σ 2, σ 2

β

)
,

and χ2
α,1 is the αth upper quantile of the chi-square distribution with 1 degree of

freedom. A straightforward calculation shows that

A = K
n−1∑
j=1

ln
(
σ̂ 2

β x2
j + σ̂ 2

) − K n ln(σ̃ 2),

where

σ̃ 2 = 1

nK − 2

K∑
i=1

n−1∑
j=1

(yi j − α̂ − β̂x j )
2,

α̂ and β̂ are the ordinary least squares estimates of α and β under Model 6.4, and σ̂ 2
β

and σ̂ 2 are solutions of the following system:

K∑
i=1

n−1∑
j=0

yi j − α − βx j

σ 2
β x2

j + σ 2
= 0,

K∑
i=1

n−1∑
j=0

x j
yi j − α − βx j

σ 2
β x2

j + σ 2
= 0,

K∑
i=1

n−1∑
j=0

(yi j − α − βx j )2

σ 2
β x2

j + σ 2
= K n,

K∑
i=1

n−1∑
j=0

(
yi j − α − βx j

σ 2
β x2

j + σ 2

)2

=
n−1∑
j=0

1

σ 2
β x2

j + σ 2
.

In addition to the likelihood ratio test, under the assumption that σ 2
α = 0, Chow and

Shao (1989) proposed the following three statistics for testing the null hypothesis that
H0 : σ 2

β = 0. The case where σ 2
α �= 0 was examined in Chow and Shao (1991) and

will be discussed later in this section. The first test procedure, which was referred to
as test procedure I in Chow and Shao (1989), is described below.

Since x0 = 0, yi0, i = 1, . . . , K are independently distributed as N (α, σ 2), where
σ 2 = σ 2

α + σ 2
e ,

s2
0 = 1

K − 1

K∑
i=1

(yi0 − ȳ0)2,
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where

ȳ0 = 1

K

K∑
i=1

yi0

is an unbiased and consistent (as K → ∞) estimator of σ 2, and

(K − 1)s2
0

σ 2

is distributed as a chi-square variable with K − 1 degrees of freedom. Under the
hypothesis that σ 2

β = 0,

yi j = α + βx j + ui j , i = 1, . . . , K , j = 1, . . . , n − 1

is a simple linear regression model with errors ui j independently distributed as
N (0, σ 2). Let

x̄(0) = 1

n − 1

n−1∑
j=1

x j ,

ȳ(0) = 1

K (n − 1)

K∑
i=1

n−1∑
j=1

yi j ,

s1 = K
n−1∑
j=1

(x j − x̄(0))
2,

s2 =
K∑

i=1

n−1∑
j=1

(x j − x̄(0))(yi j − ȳ(0)).

Then, β̂ = s2/s1 and α̂ = ȳ(0) − β̂ x̄(0) are the ordinary least squares estimators of β

and α under Model 6.1. Let

ri j = yi j − α̂ − β̂x j , i = 1, . . . , K , j = 1, . . . , n − 1.

Under the null hypothesis that σ 2
β = 0, we have

s2
r = 1

m − 2

K∑
i=1

n−1∑
j=1

r2
i j ,

where m = K (n − 1) is an unbiased and consistent estimator of σ 2, and

(m − 2)s2
r

σ 2
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is distributed as a chi-square variable with m − 2 degrees of freedom. If σ 2
β > 0,

E
(
s2

r

) = 1

m − 2

K∑
i=1

n−1∑
j=1

E
(
r2

i j

)

= σ 2 +

 K

m − 2

n−1∑
j=1

(1 − w j )x
2
j


 σ 2

β ,

where

w j =
∑n−1

l=1 x2
l − 2x j

∑n−1
l=1 xl + (n − 1)x2

j

K

[
(n − 1)

∑n−1
l=1 x2

l −
(∑n−1

l=1 xl

)2
] .

Since 0 < w j < 1 and x2
j > 0 for j = 1, . . . , n − 1, E(s2

r ) is larger than σ 2 if
σ 2

β > 0. Hence,

s2
r

s2
0

>> 1

indicates that σ 2
β > 0. Since s2

0 and s2
r are independent under the null hypothesis that

σ 2
β = 0, s2

r /s2
0 is distributed as an F distribution with m − 2 and K − 1 degrees of

freedom. Hence, we reject the null hypothesis that σ 2
β = 0 at the α level of significance

if

s2
r

s2
0

> Fα,m−2,K−1,

where Fα,m−2,K−1 is the αth upper quantile of the F distribution with m −2 and K −1
degrees of freedom.

For the second procedure (i.e., test procedure II), Chow and Shao (1989) considered

s2
j = 1

K − 1

K∑
i=1

(yi j − ȳ j )
2,

where

ȳ j = 1

K

K∑
i=1

yi j .

It can be verified that

E
(
s2

j

) = σ 2
β x2

j + σ 2, j = 1, . . . , n − 1.

The s2
j are independent and identically distributed if σ 2

β = 0. Note that

E
(
s2

0

)
< E

(
s2

1

)
< · · · < E

(
s2

n−1

)
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provided that σ 2
β > 0. Chow and Shao (1989) suggested using the following test

procedure, which rejects the null hypothesis that σ 2
β = 0 if

s2
0 < s2

1 < · · · < s2
n−1.

Under the hypothesis that σ 2
β = 0

P
{

s2
0 < s2

1 < · · · < s2
n−1

} = 1

n!
.

Hence, this test has level 1/n!. Chow and Shao (1989) indicated that test procedure
II is a robust procedure because it does not require the normality assumptions for ei j ,

αi , and βi . However, this procedure has some disadvantages. First, one cannot choose
a desired test level, and the p-value is unknown. Second, if n ≥ 6, the test level 1/n!
is either too small or too large. In this case Chow and Shao suggested that the test
procedure be modified. Finally, test procedure II requires that there be exactly the
same number of observations at each x j . Thus, unlike test procedure I, one cannot
use test procedure II when there are missing observations.

When K is small (e.g., K = 3) and n is larger than 5, test procedures I and II may
not be appropriate. Chow and Shao (1989) suggested the following alternative (test
procedure III). Let h = n/2 if n is even and h = (n − 1)/2 if n is odd. Denote the
least squares estimators of α and β under the model

yi j = α + βx j + ui j , i = 1, . . . , K , j = 0, 1, . . . , h − 1

by α̂1 and β̂1, respectively, and under the model

yi j = α + βx j + ui j , i = 1, . . . , K , j = h, . . . , n − 1

by α̂2 and β̂2, respectively. Also, let

s2
r1 = 1

K h − 2

K∑
i=1

h−1∑
j=1

(yi j − α̂1 + β̂1x j )
2,

s2
r2 = 1

K (n − h) − 2

K∑
i=1

n−1∑
j=h

(yi j − α̂2 + β̂2x j )
2.

Under the hypothesis that σ 2
β = 0,

(K h − 2)s2
r1

σ 2
and

[K (n − h) − 2]s2
r2

σ 2

are distributed as chi-square variables with K h − 2 and K (n − h) − 2 degrees of
freedom, respectively. Since s2

r1 and s2
r2 are independent, s2

r2/s2
r1 is distributed as an F

with K (n−h)−2 and K h −2 degrees of freedom. Thus, we reject the null hypothesis
that σ 2

β = 0 if

s2
r2

s2
r1

> Fα,K (n−h)−2,K h−2.
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The above test procedure is of level α. It’s p-value can be calculated as follows:

P

{
F >

s2
r2

s2
r1

}
.

For the use of the three test procedures described above, Chow and Shao (1989) have
recommended the following:

� When K is large or moderate, the first test procedure is preferred.

� When K is small, but n is larger than 5, the third test procedure is recommended.

� When both K and n are small (e.g., n = 4 or n = 5), it is suggested that the
second test procedure be used.

As indicated by Chow and Shao (1989), test procedure III provides a quick exam-
ination of batch-to-batch variation and is robust against non-normality. However, the
restriction on n limits its utility. Test procedures I through III are valid only under
the assumption that σ 2

α = 0. In practice, σ 2
α may not be zero, and there exists vari-

ability between batches with respect to other class variables, such as package type or
strength. In this case the following test procedures for general case are useful.

Consider the general case and the following hypotheses:

H0 : �β = 0 vs. K0 : �β �= 0 (6.5)

If K0 is concluded, there is batch-to-batch variation. The sum of squared ordinary
least squares residuals can be decomposed as follows:

SSR = tr (S) + SE,

where

SE = K ȳ′[In − X (X ′ X )−1 X ′]ȳ, (6.6)

and tr (S) is the trace of the matrix

S =
K∑

i=1

(yi − ȳ)(yi − ȳ)′. (6.7)

Thus, we have the following results.

Theorem 6.1 Under the assumptions of Model 6.1, we have the following:

(a) SE/σ 2
e is distributed as the χ2

n−p, the chi-square random variable with n − p
degrees of freedom.

(b) S in Equation 6.7 has a Wishart distribution W (K − 1, X�β X ′ + σ 2
e In) and

E[tr (S)] = (K − 1)
[
tr(X�β X ′) + nσ 2

e

]
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(c) If H0 in Hypotheses 6.5 holds, tr (S)/σ 2
e is distributed as χ2

n(K−1).

(d) Statistics β̄, SE, and S are independent.

Proof (a) follows directly from Equation 6.6. Since yi are i.i.d. normal, S has a
Wishart distribution W (K − 1, D), where

D = X�β X ′ + σ 2
e In.

Hence,

E[tr (S)] = (K − 1)tr(D)

= (K − 1)
[
tr(X�β X ′) + nσ 2

e

]
.

This proves (b). If H0 in Hypotheses 6.5 holds D = σ 2
e In , and therefore the diagonal

elements of S are independent. Thus, (c) follows since each diagonal element of S is
distributed as σ 2

e χ2
K−1. Since yi are i.i.d. normal, ȳ and S are independent. Hence, S

and (β̂, SE) are independent. Since

(In − H )X = 0,

where

H = X (X ′ X )−1 X ′

E[(In − H )ȳ] = (In − H )Xβ = 0,

Cov[(In − H )ȳ, X ′ ȳ] = E[(In − H )ȳ ȳ′ X ]

= (In − H )[D/K + E(ȳ)E(ȳ′)]X

= (In − H )[(X�β X ′ + σ 2
e In)/K + Xββ ′ X ′]X

= 0.

As a result, (In − H )ȳ and X ′ ȳ are independent. Therefore,

SE = K ȳ′(In − H )ȳ

= K [(In − H )ȳ]′(In − H )ȳ,

and

β̄ = (X ′ X )−1 X ′ ȳ

are independent. This proves (d).

From the above theorem, SE/(n − p) estimates σ 2
e . Under H0,

tr (S)

n(K − 1)
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also estimates σ 2
e . Therefore, the statistic

T = (n − p)tr (S)

n(K − 1)SE
(6.8)

should be around 1. If �β �= 0, there is another positive component,

1

n
tr(X�β X ′)

in the expectation of

tr(S)

n(K − 1)
,

and T in Equation 6.8 would be large. Hence, we may use T to test H0 in Hypotheses
6.5. Under H0, T follows an F distribution with n(K − 1) and n − p degrees of
freedom. At the α level of significance, we would reject H0 if

T > Fα,n(K−1),n−p,

where Fα,n(K−1),n−p is the αth upper quantile of an F distribution with n(K − 1) and
n − p degrees of freedom. If H0 is rejected, we conclude that there is significant
batch-to-batch variation.

6.2.2 Estimation of Batch Variation

For the estimation of σ 2
α and σ 2

β under Model 6.4 for the special case, Chow and Shao
(1989) considered the following consistent estimators. Let d jl be the (i, l)th element
of D̂, where

D̂ = 1

K − 1

K∑
i=1

(yi − ȳ)(yi − ȳ)′.

Then, d jl is a consistent estimator of σ jl , where

σ jl =
{

σ 2
α + σ 2

β x2
j + σ 2

e if j = l
σ 2

α + σ 2
β x j xl if j �= l

.

Since σ jl is a linear function of σ 2
α , σ 2

β , and σ 2
e , consistent estimators of σ 2

α and σ 2
β

can be obtained by solving the following linear equations:

σ̂ 2
α = 1

n − 1

n∑
l=2

d1l ,

σ̂ 2
β =

∑n
j=2

∑n
l= j+1 d jl − (n − 2)/2

∑n
l=1 d1l∑n

j=2

∑n
l= j+1 x j xl

.

As an alternative, Chow and Wang (1994) proposed two unbiased estimators for batch-
to-batch variation based on a transformed model under certain conditions. The idea
can be applied to some general estimation procedures such as a restricted maximum
likelihood estimator.
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6.2.3 Tests for Fixed Effects

In stability analysis, we may need to test the effects of some covariates, such as package
type and dosage strength. In practice, we may want to determine the following:

� Is the degradation rate the same from package type to package type and from
strength to strength?

� Are the differences in degradation rate between strengths the same across pack-
age types?

� Is the degradation rate linear or quadratic in t?

Each of the above questions can be formulated and tested as follows. Let m be a
fixed integer; 1 ≤ m < p; and i1, i2, . . . , im be given integers between 1 and p. For
any p × 1 vector l, let l(m) be the subvector of l containing the (i1)th, (i2)th, . . . , and
(im)th components of l. Similarly, for any p × p matrix A, let A(m) be the m × m
submatrix of A containing elements that are in the (i1)th, (i2)th, . . . , and (im)th rows
and columns of A. Since βi is random, the (i1)th, (i2)th, . . . , and (im)th terms in
Model 6.1 have no effect if and only if both β(m) = 0 and �β(m) = 0. Hence, we
consider the following hypotheses:

Hm : β(m) = 0 and �β(m) = 0

vs. Km : Hm does not hold.

Under Hm , we have (β̂(m) ∼ Nm(0, K −1σ 2
e A(m),) where β̂(m) is the corresponding

subvector of β̂,

A(m) = [(X ′ X )−1](m),

K (β̂(m))
′ A(m)β̂(m) ∼ σ 2

e χ2
(m).

Let ζ be the p × 1 vector whose (i1)th, (i2)th, . . . , and (im)th components are 1, and
the other components are 0. Under Hm, ζ ′�βζ = 0. Hence, by (b) of the theorem
described earlier,

Sm = ζ ′(X ′ X )−1 X ′SX (X ′ X )−1ζ

ζ ′(X ′ X )−1ζ

∼ σ 2
e χ2

K−1.

Furthermore, from (d) of the theorem,

SE + Sm ∼ σ 2
e χ2

n+K−p−1

and is independent of (β̂(m))′ A(m)β̂(m). Therefore,

Tm = n + K − p − 1

m

K (β̂(m))′ A(m)β̂(m)

SE + Sm

has an F distribution with m and n + K − p − 1 degrees of freedom. At the α level
of significance, we would reject Hm if

Tm > Fα,m,n+K−p−1.
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6.3 Shelf-Life Estimation with Random Batches

For simplicity, the following notations are used in this chapter. We let tlabel denote
the established expiration dating period that appears on the container label of a drug
product. Also, ttrue is the true shelf-life of a particular batch of the drug product.
Since ttrue is unknown, it is reasonable to assume that tlabel will not be granted by
the regulatory agency unless ttrue ≥ tlabel is statistically justified. According to the
FDA stability guidelines, under a fixed effects model, it can be shown that tlabel is
a confidence lower bound for ttrue, and therefore, if t0 is chosen to be less than or
equal to tlabel, ttrue ≥ t0 provides strong statistical evidence. As indicated earlier, in
long-term stability studies Xi j is usually chosen to be x j for all i , where x j is a p × 1
vector of nonrandom covariates, which could be of the form (1, t j , w j )′, (1, t j , t jw j )′,
or (1, t j , w j , t jw j )′, where t j is the j th time point and w j is the j th value of a q × 1
vector of nonrandom covariates (e.g., package type and strength). For convenience,
let x j = x(t j , w j ), where x(t, w) is a known function of t and w. In practice, most
of the time we need a labeled shelf-life for a fixed value of covariate (e.g., a fixed
package type and a fixed dosage strength). Thus, for simplicity, when w is fixed, we
denote x(t, w) by x(t).

In the simple case where �β = 0 (i.e., there is no batch-to-batch variation), the
average drug characteristic at time t is x(t)′β, and the true shelf-life is equal to

t̄true = inf
{

t : x(t)′β ≤ η
}

,

which is an unknown but nonrandom quantity, where η is the approved lower spec-
ification limit for the drug characteristic. In this case, as indicated in the previous
chapter, the labeled shelf-life can be determined as follows.

Suppose x(t)′β is continuous and decreasing in t . Under Model 6.3, for any given
t , an (1 − α) × 100% lower confidence bound for x(t)′β is given by

L(t) = x(t)′β̄ − tα,nK−p

[
x(t)′(X ′ X )−1x(t)

K (nK − p)
SSR

]1/2

,

where SSR is the usual sum of squared residuals from the ordinary least squares
regression under Model 6.3, and tα,u is the αth upper quantile of the t distribution
with u degrees of freedom. Define

t̂ = inf {t : L(t) ≤ η} . (6.9)

The 1987 FDA stability guideline suggests that t̂ be used as the labeled shelf-life (i.e.,
tlabel = t̂). This is based on the fact that t̂ is an (1 − α) × 100% lower confidence
bound for t̂true, that is,

PY
{

t̂ < t̄true
} = PY {L(t̄true) ≤ η} (6.10)

= PY {L(t̄true) ≤ x(t̄true)′β̂}
= 1 − α,
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where PY is the probability with respect to y1, . . . , yK . The last quantity of Equation
6.10 follows from the fact that t̄true is nonrandom when �β = 0 and L(t̄true) is an
(1 − α) × 100% lower confidence bound for x(t)′β.

6.3.1 Chow and Shao’s Approach

Under Model 6.2, for a given batch i , x(t)′βi is the average characteristic of the drug
product at time t , where βi is random and distributed as Np(β, �β). The true shelf-life
for this batch is then given by

ttrue = inf{t : x(t)′βi ≤ η}.
When there is batch-to-batch variation (i.e., �β �= 0), ttrue is random since βi is
random. In this case x(t)′βi follows a normal distribution with mean x(t)′β and
variance

1

K
x(t)′

[
�β + σ 2

e (X ′ X )−1
]
x(t).

Consequently, the procedure described above is not appropriate even if Equation 6.10
holds. It should be noted that

PY {tlabel ≤ ttrue}
might be much smaller than

PY {tlabel ≤ t̄true}
since t̄true is the median of ttrue. Also, if tlabel ≤ t̄true,

Pβi
{tlabel ≤ ttrue}

could be quite high, where Pβi
is the probability with respect to βi . Define

	(t) = Pβi
{ttrue ≤ t}

= Pβi
{x(t)′βi ≤ η}

= 


(
η − x(t)′β

σ (t)

)
, (6.11)

where 
 is the standard normal distribution function and

σ (t) = [x(t)′�β x(t)]1/2

is the standard deviation of x(t)′βi .
Chow and Shao (1991) and Shao and Chow (1994) proposed an (1 − α) × 100%

lower confidence bound of the εth quantile of ttrue as the labeled shelf-life, where ε

is a given small positive constant. We will refer to this method as Chow and Shao’s
approach. That is,

PY {tlabel ≤ tε} ≥ 1 − α, (6.12)
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where tε satisfies

Pβi
{ttrue ≤ tε} = ε.

It follows from Equation 6.11 that

tε = inf{t : x(t)′β − η = zεσ (t)}, (6.13)

where zε = 
−1(1 − ε). The use of a labeled shelf-life satisfying Equation 6.12 can
be justified from another point of view. Note that tlabel ≤ t if and only if

Pβi
{ttrue ≤ tlabel} ≤ ε.

Hence, Equation 6.12 is equivalent to

1 − α ≤ PY
{

Pβi
{ttrue ≤ tlabel} ≤ ε

}
= PY {	(tlabel) ≤ ε} ,

where 	(t) is as defined in Equation 6.11, which can be viewed as the future failure
rate (i.e., the percentage of future batches that fail to meet the specification) at time
t . Thus Equation 6.12 ensures, with (1 −α) × 100% assurance, that the future failure
rate at time tlabel is no more than ε. For small K , Shao and Chow (1994) suggested
the following improved procedure for both balanced and imbalanced cases. We first
consider the balanced case.

6.3.1.1 Balanced Case

Consider the following balanced model (i.e., ni = n and Xi = X for all i). When
Model 6.2 is balanced, it can be written as

yi = Xβ + ε∗
i , i = 1, . . . , K , (6.14)

where

ε∗
i = X (βi − β) + εi

are independently distributed as Nn(0, D) with D = X�β X ′+σ 2
e In.Under Model 6.14,

the ordinary least squares estimator β̄ of β is given by

β̄ = (X ′ X )−1 X ′ ȳ.

Since the covariance matrix D has a special structure, x(t)′β̄ is the best linear estimator
of x(t)′β under Model 6.14 (see, e.g., Rao [1973], p. 312). Note that t̂ in Equation 6.9
is equal to

t̂ = inf
{

t : x(t)′β̄ ≤ η̂(t)
}

,

where

η̂(t) = η + tα,nK−p

[
x(t)′(X ′ X )−1x(t)SSR

K (nK − p)

]1/2

Binod April 12, 2007 11:1 C9055 Chapter 6



140 Stability Analysis with Random Batches

can be viewed as an adjusted lower specification limit. In the case of �β �= 0, we
may apply the same idea to obtain a valid tlabel. Let

v(t) = 1

K − 1
x(t)′(X ′ X )−1 X ′SX(X ′ X )−1x(t),

where S is as defined in Equation 6.7. From Theorem 6.1, (K − 1)v(t) is distributed
as a(t)χ2

K−1, where

a(t) = x(t)′
[
�β + σ 2

e (X ′ X )−1
]
x(t) (6.15)

≥ x(t)′
[
�β + σ 2

e (X ′ X )−1
]
x(t)

= [σ (t)]2.

Define

η̃(t) = η + cK (ε, α)zε

√
v(t),

t̃ = inf{t : x(t)′β̄ ≤ η̃(t)}, (6.16)

where for given ε, α, and K ,

cK (ε, α) = 1√
K zε

tα,K−1,
√

K zε
, (6.17)

and tα,K−1,
√

K zε
is the αth upper quantile of the noncentral t distribution with K − 1

degrees of freedom and noncentrality parameter
√

K zε . Similar to η̂(t), η̃(t) is an
adjusted lower specification limit. The values of cK (ε, α) are given in Table 6.1. Shao
and Chow (1994) proposed using t̃ in Equation 6.16 as the labeled shelf-life. This is
justified by the following result.

Theorem 6.2 For any given ε, α, and K , Equation 6.9 holds for tlabel = t̃ . If we
let σe tend to zero or X ′ X tend to infinity, the quantity in Equation 6.9 holds.

Proof Let T (K ,λ) denote a noncentral t random variable with K degrees of freedom
and noncentrality parameter λ. By the Theorem 6.1, we have

√
K [x(tε)′β̂ − η]√

v(tε)
= T (K − 1, λε),

TABLE 6.1: Values of cK (ε, 0.05) Defined by Equation 6.17

K

ε 3 4 5 6 7 8 9 10

0.01 4.536 3.027 2.468 2.176 1.995 1.872 1.781 1.711
0.02 4.570 3.056 2.493 2.199 2.016 1.891 1.799 1.729
0.03 4.599 3.081 2.515 2.218 2.034 1.907 1.815 1.743
0.04 4.627 3.104 2.535 2.236 2.051 1.923 1.829 1.757
0.05 4.654 3.127 2.555 2.254 2.067 1.938 1.843 1.770
0.10 4.803 3.248 2.658 2.346 2.150 2.015 1.915 1.837
0.15 4.993 3.396 2.784 2.457 2.250 2.107 2.001 1.918
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where

λε =
√

K [x(tε)′β − η]√
a(tε)

tε and a(t) are given in Equations 6.13 and 6.15, respectively. Thus,

PY {tε < t̃} = PY {x(tε)′β̂ > η̃(tε)}

= PY

[
x(tε)′β̂ − η√

v(tε)
> cK (ε, α)

]

= PY {T (K − 1, λε) >
√

K cK (ε, α)zε}
≤ PY {T (K − 1,

√
K zε) >

√
K cK (ε, α)zε}

= α

where the first equality follows from the definition of t̃ , while the second and third
equalities follow from the definitions of η̃(t) and T (K −1,λε). The inequality follows
from

λε ≤
√

K zε

under Equations 6.13 and 6.15 and the last equality follows from Equation 6.17. The
last assertion follows from the fact that

a(t) → [σ (t)]2 as σe → 0 or X ′ X → ∞.

This completes the proof.

To provide a better understanding of the above procedure, Figures 6.1 and 6.2
give graphical presentation of the relationship among mean degradation curve, lower
specification limit, and the labeled shelf-life for t̂ and t̃ , respectively.

mean degradation curve

specification limit η

L(t)

t̂

t

Figure 6.1: Labeled shelf-life t̂ .
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t

t

η

η(t)

x(t)΄β

Figure 6.2: Labeled shelf-life t̃ .

6.3.1.2 Unbalanced Case

In the unbalanced case where the ni are not equal or the Xi are not identical, it is dif-
ficult to obtain exact fixed sample (small K ) results without any further assumptions.
In some cases we may have a large number of observations for each tested batch, and
therefore we may assume that

ni → ∞ and X ′
i Xi → ∞, i = 1,.., K . (6.18)

Apparently, Equation 6.18 cannot always be fulfilled. We can, however, adopt an
alternative approach, which we will refer to as the small-error asymptotic approach,
by assuming that

σ 2
e → 0. (6.19)

Equation 6.19 simply means that the assay measurement errors are small to ensure
that their variance σ 2

e is small. This can be done for stability data obtained under well-
controlled conditions. With either Equation 6.18 or Equation 6.19, we can extend the
above result to the unbalanced case as follows. Let

β̂i = (X ′
i Xi )

−1 X ′
i yi ,

where Xi and yi are as defined before. Under the assumptions of Model 6.1, the β̂i

are independent, and

β̂i ∼ Np

(
β, �β + σ 2

e (X ′
i Xi )

−1
)

. (6.20)

Under either Equation 6.18 or Equation 6.19, it follows from Equation 6.20 that,
approximately,

β̂i ∼ Np(β, �β).
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Hence, approximately,

β̃ = β̄ = 1

K

K∑
i=1

β̂i ∼ Np(β, �β̂/K ),

where

�β̂ = �β + 1

K
σ 2

e

K∑
i=1

(X ′
i Xi )

−1.

Define

ṽ(t) = 1

K − 1

K∑
i=1

x ′(t)(β̂i − β̄)(β̂i − β̄)′x(t). (6.21)

Let η̃(t) be defined as in Equation 6.16 with v(t) replaced by ṽ(t) in Equation 6.21,
and let t̃ be defined as in Equation 6.16 with β̄ replaced by β̃. Then, Equation 6.12
still holds approximately for t̃ . Therefore, t̃ can be used as the labeled shelf-life.

In the balanced case where ni = n and Xi = X for all i , it follows that

β̃ = β̄ = (X ′ X )−1 X ′ ȳ. (6.22)

Similarly, from Equations 6.21 and 6.22, we have

ṽ(t) = 1

K − 1

K∑
i=1

x ′(t)(X ′ X )−1 X ′(yi − ȳ)(yi − ȳ)′ X (X ′ X )−1x(t),

which is the same as v(t). Thus, the results described in the previous section (Section
6.2) are a special case of that derived in this section, except that the result in Section 6.2
is exact.

In the pharmaceutical industry the imbalance of the model is often caused by
missing values. That is, in the original design, ni = n and Xi = X for all i , but the
actual data set, ni ≤ n and Xi , is a submatrix of X, i = 1, . . . , K . In such a case,
even if neither Equation 6.18 nor Condition 6.19 is satisfied, the use of t̃ as the labeled
shelf-life is still approximately valid as long as

(X ′
i Xi )

−1(X ′ X ) − Ip

is nearly equal to the zero matrix for all i .

6.3.1.3 Sampling Distribution of the Estimated Shelf-Life

Sun et al. (1999) examined sampling distribution of the estimated shelf-life proposed
by Shao and Chow (1994). Consider Model 6.2. Let S2

α̂ and S2
β̂

be the sample variances
of α̂i and β̂i , respectively, and Sα̂β̂ be the sample covariance of α̂i and β̂i . Then

v2(t) = S2
α̂ + 2Sα̂β̂ t + S2

β̂
t2.
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The covariance matrix of (α̂i , β̂i ) is given by

W =
(

S2
α Sαβ

Sαβ S2
β

)

=




σ 2
α + σ 2

e

n∑
j=1

x2
j

n
n∑

j=1
(x j −x̄)2

σαβ − σ 2
e

x̄
n∑

j=1
(x j −x̄)2

σαβ − σ 2
e

x̄
n∑

j=1
(x j −x̄)2

σ 2
α + σ 2

e
1

n∑
j=1

(x j −x̄)2


 . (6.23)

Assume β < 0, zε Sα < α − η, and β2 �= z2
ε S2

β. Let

ρK = cK (ε, α)zε .

First, we show that the equation

α̂ + β̂t = η + ρK v(t) (6.24)

has a unique positive solution t̃ as the estimated drug shelf-life. A simple calculation
shows that

|W | = S2
α S2

β − S2
αβ > 0.

Hence, we have S2
α̂ S2

β̂
−S2

α̂β̂
> 0 almost surely for large K . This implies that v2(t) > 0

for all t and

v′(t) =
S2

β̂
t + Sα̂β̂

v(t)
,

and

v′′(t) =
S2

α̂ S2
β̂

− S2
α̂β̂

v3(t)
> 0.

Hence, v(t) is a positive convex function. Under the conditions that β < 0, zε Sα <

α − η, and β2 �= z2
ε S2

β, we have β̂ < 0, v(0) = ρK Sα̂ < α̂ − η, and β̂2 �= ρ2
K S2

β̂
for

large K. Therefore, Equation 6.24 has unique positive solution t̃ . Squaring both sides
of Equation 6.24 and solving the equation gives the solutions

t̃ = −[
β̂(α̂ − η) − ρ2

K Sα̂β̂

] ± θ̂

ϕ̂
, (6.25)

where

ϕ̂ = β̂2 − ρ2
K S2

β̂
,

and

θ̂ = [(
ρ2

K Sα̂β̂ − β̂(α̂ − η
))2

− (
(α̂ − η)2 − ρ2

K S2
α̂

)(
β̂2 − ρ2

K S2
β̂

)]1/2
.
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If −zε Sβ > β, then for large K , we have

−ρK v′(∞) = −ρK Sβ̂ > β̂,

which implies that both solutions are positive and t̃ is the smaller one. The estimated
shelf-life t̃ is the one found by using the negative sign in Equation 6.25 since ϕ̂ is
positive. If −zε Sβ < β, then for large K , we have

ρK v′(−∞) = −ρK Sβ̂ < β̂,

which implies that one solution is positive and the other one is negative, and t̃ is the
positive one found by using the negative sign in Equation 6.25 since in this case ϕ̂ is
negative. The estimated shelf-life is given by

t̃ = f
(
α̂ − η, β̂, S2

α̂, S2
β̂
, Sα̂β̂ , ρ2

K

)

≈ −[
β̂(α̂ − η) − ρ2

K Sα̂β̂

] − θ̂

φ̂
. (6.26)

By the law of large numbers, we know that α̂, β̂, S2
α̂, S2

β̂
, and Sα̂β̂ have respective

limits α, β, S2
α, S2

β, and Sαβ. Let ϕ and θ be the limits of ϕ̂ and θ̂ , respectively. To
assess the sampling distribution of t̃ , it is helpful to introduce the following notations:

f0 = ( − [
β(α − η) − ρ2

K Sαβ

] − θ
)
/ϕ, (6.27)

f ′
α = ( − β − ρ2

K

[
(α − η)S2

β − βSαβ

]
/θ

)
/ϕ,

f ′
β = ([ − α + η − ρ2

K

(
βS2

α − (α − η)Sαβ

)
/θ

]
φ − 2βϕ f0

)
/ϕ2,

f ′
S2

α
= ( − [ − ρ4

K S2
β + ρ2

K β2
])

/(2ϕθ ),

f ′
Sαβ

= (
ρ2

K

[
1 − (

ρ2
K Sαβ − β(α − η)

)
/θ

])
/ϕ,

f ′
S2

β
= ( − [ − ρ4

K S2
α + ρ2

K (α − η)2
])

/(2ϕθ ) + ρ2
K f0/ϕ.

Here, f ′
α, f ′

β, f ′
S2

α
, f ′

Sαβ
, and f ′

S2
β

are the respective partial derivatives of the function

f (α−η, β, S2
α, Sαβ, S2

β, ρ2
K ). Using the standard delta method and well-known results

on the asymptotic distribution of (α̂, β̂, S2
α̂, Sα̂β̂ , S2

β̂
) (see, e.g., Muirhead, 1982, p. 43),

we obtain the asymptotic distribution of t̃ as K → ∞ as
√

K
[
t̃ − f (α − η, β, S2

α, Sαβ, S2
β, ρ2

K

] d→ N (0, σ 2), (6.28)

where

σ 2 = (
f ′
α, f ′

β

)
W

(
f ′
α, f ′

β

)T

+ (
f ′

S2
α
, f ′

Sαβ
, f ′

S2
β

)
U

(
f ′

S2
α
, f ′

Sαβ
, f ′

S2
β

)T
,

and ρK in σ 2 is replaced by zε since ρK → zε as K → ∞. Hence, W is as given
before and

U =

 2S4

α 2Sαβ S2
α 2S2

αβ

2Sαβ S2
α S2

α S2
β + S2

αβ 2S2
β Sαβ

2S2
αβ 2S2

β Sαβ 2S4
β


.
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Thus, W/K is the asymptotic covariance of (α̂, β̂) and U/K is the asymptotic covariance
of (S2

α̂, Sα̂β̂ , S2
β̂
). When there is no batch-to-batch variation (i.e., σ 2

α = σ 2
β = 0), the

true shelf-life ttrue is a constant. The estimated shelf-life t̃ may be considered as the
(1 − α) level lower confidence bound of the ε = 0.5th quantile of the true shelf-life.
In what follows we obtain the following expression for the case:

ρ2
K = t2

α,K−1/K ,

S2
α = σ 2

e

n∑
j=1

x2
j

n
n∑

j=1
(x j − x̄)2

,

S2
β = σ 2

e
n∑

j=1
(x j − x̄)2

,

Sαβ = −σ 2
e

x̄
n∑

j=1
(x j − x̄)2

,

θ = tα,K−1σe√
K




β2
n∑

j=1
x2

j + 2β(α − η)nx̄ + (α − η)2n

n
n∑

j=1
(x j − x̄)2


 ,

and

f
(
α − η, β, S2

α, Sαβ, S2
β, ρ2

K

)
(6.29)

= −α − η

β
− θ

β2
+ o(1) as K → ∞,

where tα,K−1 is the (1 − α)th quantile of the t distribution with K − 1 degrees of
freedom. To obtain the asymptotic variance σ 2, by letting ρK = z0.5 = 0, we get

f ′
α = −1/β,

f ′
β = α − η

β2
,

and

f ′
S2

α
= f ′

Sαβ
= f ′

S2
β

= 0.

Thus,

σ 2 =
(

x̄

β
− η − α

β2

)2
σ 2

e∑n
j=1(x j − x̄)2

+ σ 2
e

nβ2
. (6.30)
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Inserting Equations 6.29 and 6.30 into Equation 6.28, we obtain the following limit
distribution of t̃ as K → ∞ for the case when there is no batch-to-batch variation:

√
K

(
t̃ − η − α

β

)
d→ N


− tα,K−1

β2

[
β2

n
+ (β x̄ + α − η)2∑n

j=1(x j − x̄)2

]1/2

, σ 2


 ,

where σ 2 is given in Equation 6.30.

6.3.2 The HLC Method

Chow and Shao’s approach described above is based on the concept that the true
shelf-life is the minimum of the time point at which any observed total stability
loss for any future batch randomly chosen from the population of the production
batches is equal to or greater than the lower specification limit η with a high degree of
confidence. One approach suggested by the FDA stability guidelines for establishing
drug shelf-life is to estimate the expiration dating period as the time point at which
the 95% one-sided lower confidence limit for mean degradation curve intersects the
acceptable lower specification limit. Therefore, the statistical concept and procedure
for estimating shelf-lives described in the FDA stability guidelines is based on the
95% lower confidence limit for the mean degradation curve so that the mean strength
of the drug product will remain within specifications until the labeled expiration date
for 95% of the future batches (FDA, 1987, 1998).

For an estimation of drug shelf-life with multiple batches, there are two major
sources of variations: within-batch variation and between-batch variation. It is sug-
gested that these two sources be taken into account in stability analysis. It should be
noted that the statistical methods described in Chapter 5 are derived under a fixed
effects model, which considers only the within-batch variability. The consequence of
the methods derived from a fixed effects model is that statistical inference can only
be made to the batches under study. This is because the statistical inference obtained
does not account for the between-batch variability. To account for this problem, Ho,
Liu, and Chow (1993) suggested an alternative statistical procedure for estimating the
expiration dating period. The method not only uses the 95% lower confidence limit
approach, but also takes into account the between-batch variability. In this chapter we
refer to their method as the HLC method.

To introduce the HLC method, we first consider a simple linear regression model
without covariates for the balanced case where the time points are the same for all
batches. Extension to the unbalanced case with different time points will be reviewed
later. For a given batch i, consider the following simple linear regression model that
was given in Model 5.1:

yi j = αi + βi x j + ei j , i = 1, . . . , K , j = 1, . . . , n,

where αi , βi , and ei j are defined in Model 5.1. Let Bi denote batch i , i = 1, . . . , K .
Then, {Bi , i = 1, . . . , K } represents a random sample from the population of the
production batches. Let

βi = (αi , βi )
′, i = 1, . . . , K
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Then, βi is a random vector that describes the degradation pattern of drug product
characteristic. Under the assumptions described under Model 6.1, βi , i = 1, . . . , K
are i.i.d. as N2(β, �β), where

β = (α, β)′,

and �β is a 2 × 2 nonnegative definite covariance matrix. Therefore, Model 5.1
becomes a regression model with a random coefficient (Gumpertz and Pantula, 1989;
Carter and Yang, 1986; Vonesh and Carter, 1987). Let

β̂i = (α̂i , β̂i )
′, i = 1, . . . , K

be the least squares estimates of βi for batch i , where α̂i and β̂i are as defined in
Section 5.1. Under the assumptions of Model 6.1, the maximum likelihood estimator
(MLE) of β is given by

β̄ = (X ′ X )−1 X ′ ȳ

= 1

K

K∑
i=1

(X ′ X )−1 X ′yi

= 1

K

K∑
i=1

β̂i

= (ᾱ, β̄)′,

where

ᾱ = 1

K

K∑
i=1

α̂i ,

and

β̄ = 1

K

K∑
i=1

β̂i .

Hence, the MLE of β is simply the average of the ordinary least squares estimates
over the K batches. As indicated in Section 6.2, we have

β̄ ∼ N (β, �β̂),

where

�β̂ = 1

K

[
�β + σ 2

e (X ′ X )−1
]
.

Note that β̄ is also an unbiased estimator of β under the balanced case. In addition, the
covariance matrix of β̄ consists of the within-batch variability, that is, σ 2

e (X ′ X )−1, and
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the between-batch variability, that is, �β. Therefore, under the assumptions of Model
6.1, a random effects model can account for both the within-batch and between-batch
variabilities for estimation of shelf-life. The unbiased estimators of �β̂, σ 2

e , and �β

are given, respectively, as

Sβ̂ = 1

K − 1

K∑
i=1

(β̂i − β̄)(β̂i − β̄)′,

σ̂ 2
e = MSE = 1

N − 2K
SSE = 1

N − 2K

K∑
i=1

SSE(i),

�̂β = Sβ̂ − σ̂ 2
e (X ′ X )−1,

where MSE, SSE, and SSE(i) are defined in Section 5.1. �̂β is obtained as the difference
between Sβ̂ and σ̂ 2

e (X ′ X )−1. It should be noted, however, that �̂β might not be positive

definite because of the probability that
∣∣Σ̂β

∣∣ < 0 may be greater than zero. In this
case the estimator suggested by Carter and Yang (1986) is recommended to estimate
�β . Note that �̂β is not required for estimation of drug shelf-life in a balanced
case.

For any arbitrary 2×1 vector x = (1, x)′, the minimum variance unbiased estimator
is x ′β̄, which follows a univariate normal distribution with mean x ′β and variance
σ 2

x = x ′�β̂ x . An unbiased estimator for σ 2
x is given as follows:

σ̂ 2
x = x ′Sβ̂ x,

which is distributed as σ 2
x χ2

K−1. Since x ′β̄ and σ̂ 2
x are independent of each other, we

have

T = x ′(β̄ − β)√
σ̂ 2

x /K
, (6.31)

which follows a central t distribution with K − 1 degrees of freedom. Consequently,
the 95% lower confidence limit for the mean degradation line x ′β at x is given by

L(x) = x ′β̄ − t0.05,K−1

√
σ̂ 2

x

K
. (6.32)

Note that

x ′β̄ = ᾱ + β̄x

σ̂ 2
x = 1

K − 1

K∑
i=1

[
(α̂i − ᾱ)2 + 2x(α̂i − ᾱ)(β̂i − β̄) + x2(β̂i − β̄)2

]
.

The 95% lower confidence limit for the mean degradation curve α+βx is constructed
from both within- and between-batch variability. Hence, statistical inference about
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the expiration dating period based on L(x) in Equation 6.32 can be made to all future
production batches.

Similar to the method described in Section 3.2, the time points at which Equation
6.32 intersects the acceptable lower specification limit η (if it exists) are the two roots
of the following quadratic equation:

[η − (ᾱ + β̄x)]2 = t2
0.05,K−1

1

K (K − 1)

K∑
i=1

[(α̂i − ᾱ)2

+ 2x(α̂i − ᾱ)(β̂i − β̄)

+ x2(β̂i − β̄)2].

These two roots, denoted by xL and xU , constitute the lower and upper limits of the
90% confidence interval for (η − α)/β. Let

SE(ᾱ) =
[

1

K (K − 1)

K∑
i=1

[(α̂i − ᾱ)2

]1/2

,

SE(β̄) =
[

1

K (K − 1)

K∑
i=1

[(β̂i − β̄)2

]1/2

,

Tᾱ = ᾱ − η

SE(ᾱ)
,

Tβ̄ = β̄

SE(β̄)
.

If the slope is statistically smaller than zero and the intercept is statistically greater
than η at the 5% level of significance, that is

(i) Tβ̄ < −t0.05,K−1, (6.33)

(ii) Tᾱ > t0.05,K−1,

the 90% confidence interval for (η − α)/β is a close interval [xL , xU ]. Hence, xL is
defined as the estimated shelf-life for all future production batches. In other cases,
however, the 90% confidence interval for (η − α)/β is either the entire real line or
two disjoint open intervals. Consequently, the estimated expiration dating period is
not defined.

When the number of time points is the same for all batches but the time points are
different from batch to batch, Model 5.1 can be expressed in the following matrix
form:

yi = Xiβi + εi , i = 1, . . . , K , (6.34)

where

yi = (yi1, . . . , yin),

Xi =




1 xi1
...

...
1 xin


 ,
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βi and εi are as defined in Model 6.2. Under Model 6.34 and the assumptions of
Model 6.1, β̄ is also distributed as a bivariate normal vector with mean vector β and
covariance matrix

�β̂ = �β + 1

K
σ 2

K∑
i=1

(X ′
i Xi )

−1.

Hence, β̄ is still unbiased for β and Sβ̂ is an unbiased estimator of �β̂ . However, for
any arbitrary 2 × 1 vector x ,

σ̂ 2
x = x ′Sβ̂ x

is no longer distributed as a chi-square random variable. As a result, the T statistic
defined in Equation 6.31 does not have a central t distribution. Gumpertz and Pantula
(1989) showed that when the product of the number of batches and number of time
points becomes large, T follows approximately a central t distribution with v degrees
of freedom, where

v = vN

vD
,

vN =
{

x ′�β x+ 1

K
σ 2

e

[
K∑

i=1

x ′(X ′
i Xi )

−1x

]}2

,

vD =
(

x ′�β x

K − 1

)2

+
{

σ 2
e

K 2(n − 2)

[
K∑

i=1

x ′(X ′
i Xi )

−1x

]}2

. (6.35)

If the condition in Equation 6.33 is satisfied, the expiration dating period can be
estimated by the smaller root xL of the quadratic equation:

[η − (ᾱ + β̄x)]2 = t2
0.05,vσ̂

2
x .

Application of Equation 6.35 to estimate the v degrees of freedom involves the
unknown time point at which the mean degradation line intersects the lower speci-
fication limit η, the unknown between-batch covariate matrix �β , and the unknown
within-batch variability σ 2

e . However, σ 2
e and �β can be estimated by their unbiased

estimators, which are given, respectively, as

σ̂ 2
e = MSE = 1

N − 2K

K∑
i=1

SSE(i),

�̂β = Sβ̂ ∼ σ̂ 2
e

1

K

K∑
i=1

(X ′
i Xi )

−1.

It is suggested that the unknown time point be estimated by its maximum likelihood
estimate

x̂0 = η − ᾱ

β̄
.
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For �β , as indicated earlier, �̂β might not be positive definite. In this case the estimator
suggested by Carter and Yang (1986) can be used. Note that when ni = n and Xi = X
for i = 1, . . . , K , the exact inference of the shelf-life is based on the number of
batches. However, the approximation by a central t distribution with v degrees of
freedom can still be applied as long as nK is large. When the number of time points
are different from batch to batch, the estimated generalized least squares estimator
for β suggested by Carter and Yang (1986) and Vonesh and Carter (1987) might be
useful for construction of the 95% lower confidence limit for the mean degradation line
α+βx . However, the statistical inference of their methods is based on the asymptotic
results as either the number of batches becomes large or the minimum number of time
points becomes large.

6.4 Comparison of Methods for Multiple Batches

Under the assumptions for the random effects model, two methods for estimating the
expiration dating period were presented in the previous sections. Chow and Shao’s
method was derived from the probability statement for a given future batch selected
randomly from the population of the production batches. The HLC method incorpo-
rates the between-batch variability into the construction of the 95% lower confidence
limit for the mean degradation curve. Under the simple linear regression model with-
out covariates, for the balanced case where all time points are the same, the estimated
shelf-life by Chow and Shao’s method is the solution to the following equation:

ᾱ + β̄x = η + cK (ε, α)zε

√
v(t).

In other words, the smaller root of the following quadratic equation, if it exists, will
be the estimated shelf-life

[η − (ᾱ + β̄x)]2 = [cK (ε, α)zε]2 v(t). (6.36)

Note that

[cK (ε, α)zε]2 =
[

tα,K−1,
√

K zε√
K zε

zε

]2

= 1

K

[
tα,K−1,

√
K zε

]2
.

In addition, since

S =
K∑

i=1

(yi − ȳ)(yi − ȳ)′,
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it follows that

(X ′ X )−1 X ′SX (X ′ X )−1

=
K∑

i=1

(X ′ X )−1 X ′(yi − ȳ)(yi − ȳ)′ X (X ′ X )−1

=
K∑

i=1

(β̂i − β̄)(β̂i − β̄)′

= (K − 1)Sβ̂ .

As a result, for any arbitrary 2 × 1 fixed vector x , v(t) gives

v(t) = 1

K − 1
x ′(X ′ X )−1 X ′SX (X ′ X )−1x

= 1

K − 1
x ′Sβ̂ x

= σ̂ 2
x .

Hence, Equation 6.36 reduces to

[η − (ᾱ + β̄x)]2 = 1

K
σ̂ 2

x [tα,K−1,
√

K zε
]2. (6.37)

Recall that the estimated shelf-life determined by the HLC method is the smaller root,
if it exists, of the following equation:

[η − (ᾱ + β̄x)]2 = 1

K
σ̂ 2

x [tα,K−1]2. (6.38)

If ε = 0.5 and zε = 0, Equation 6.37 becomes Equation 6.38. In addition,

L̃(x) = (ᾱ + β̄x) −
(

1

K
σ̂ 2

x

)1/2

tα,K−1,
√

K zε
,

which is the (1 − α) × 100% lower ε-content tolerance limit. Since for ε < 0.5, a
(1−α)×100% lower ε-content tolerance limit is the (1−α)×100% lower confidence
limit for the εth quantile of the distribution under study (Hahn and Meeker, 1991), the
estimated expiration dating period by Chow and Shao’s method is the time point at
which the (1−α)×100% lower confidence limit for the εth quantile of the distribution
of the random degradation line αi + βi x intersects the lower specification limit η.
When ε = 0.5, the 50% quantile of a normal distribution is the mean. Therefore, the
HLC method is a special case of Chow and Shao’s method. However, if ε < 0.5,

tα,K−1 ≤ tα,K−1,
√

K zε
.

Hence, the estimated shelf-life determined by Chow and Shao’s method is always
shorter than the shelf-life given by the HLC method. It should be noted that the
interpretation of the estimates are different. The estimate by the HLC method provides
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a 95% confidence that the average characteristic of the dosage units in future batches
will remain within specification up to the end of the estimated shelf-life. Chow and
Shao’s method suggests that use of an estimate that gives a 95% confidence that at
least a 1-ε proportion of the distribution of the drug characteristic for future batches
will be within specifications until the end of the estimated shelf-life.

6.4.1 An Example

To illustrate Chow and Shao’s approach and the HLC method for determining drug
shelf-life, consider the stability data given in Table 5.6. The lower specification limit
for the drug product is η = 90%. For simplicity, consider the following random
effects model:

yi j = x ′
jβi + ei j

where i = 1, . . . , 5; j = 1, . . . , 12; and x j = (1, t j , w j , t jw j )′, in which w j = 0
for a bottle and w j = 1 for a blister package, and t j are sampling times, which are as
follows:

j 1 2 3 4 5 6 7 8 9 10 11 12

t j 0 3 6 9 12 18 0 3 6 9 12 18

w j 0 0 0 0 0 0 1 1 1 1 1 1

We first use T statistic in Equation 6.8 to examine the random effect. the data set
given in Table 5.6 gives tr (S) = 88.396 and SE = 4.376. Since n = 12, p = 4, and
K = 5, we have

T = (n − p)tr (S)

n(K − 1)SE
= (12 − 4)(88.396)

(12)(5 − 1)(4.376)
= 3.367

which is greater than F0.05,48,9 = 2.8. Hence, we conclude that there is a batch-to-
batch variation at the 5% level of significance.

Although all of the assay results at 18 months are clearly higher than the lower
specification limit η = 90%, this does not imply that tlabel ≥ 18 months can be used
as the labeled shelf-life, since the assay results are from five batches, which should be
considered as a random sample from the population of all future batches. A labeled
shelf-life should be determined by statistically analyzing the assay results by using
the procedures described in the previous sections. For Chow and Shao’s method, since
the unit of the shelf-life is a month, we need to evaluate x(t)′β̂ and η̃(t) for integer
values of t in a reasonable range in order to calculate t̃ . The results of the calculation
for both package types are shown in Table 6.2. It shows that if ε is selected to be 0.05,
we may use 22 months (with α = 5%) as the labeled shelf-life for the blister package.
If ε is chosen to be 0.01, then 19 months can be used as the labeled shelf-life for both
bottle and blister package. Note that in this example the trade-off for reducing ε from
0.05 to 0.01 is 2 to 3 months of shelf-life.

We now compare the minimum approach with Chow and Shao’s method using the
assay results for bottle in this example. The difference between the two methods is
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TABLE 6.2: Results from Stability Analysis

Values of Statistics†

Bottle Blister Package

t(months) X (t)′β̂
√

v(t) X(t)′β̂
√

v(t)
18 98.304 1.140 98.057 1.220
19 98.015 1.275 97.779 1.350
20 97.725 1.411 97.501 1.482
21 97.437 1.548 97.222 1.615
22 97.147 1.686 96.944 1.749
23 96.858 1.825 96.666 1.885
24 96.569 1.963 96.387 2.020
25 96.280 2.102 96.109 2.157
26 95.990 2.242 95.381 2.294

Labeled Shelf-Life t (months: α = 0.05)
ε Bottle Blister Package

0.01 19 19
0.02 20 19
0.03 21 20
0.04 21 21
0.05 22 21
0.10 23 23
0.15 25 24

Source: Chow, S.C. and Liu, J.P. (1995). Statistical Design and Analysis in
Pharmaceutical Science. Marcel Dekker, New York.

significant, since t̂min = 27.5 months. For ε = 0.05, t̂min − t̃ is 5.5 months, and for
ε = 0.01, t̂min − t̃ is 8.5 months. However, the minimum approach is not justifiable,
since it only ensures that the shelf-lives of the five batches, rather than the shelf-lives
of future batches, are longer than the lower specification limit with certainty. t̂ = 27.5
if ε is chosen to be greater than 0.2. This indicates that t = 27.5 months is a valid
labeled shelf-life if we allow the future failure rate at the indicated date of expiration
to be as large as 20%. A risk of 20% future failure rate is usually too high for a
pharmaceutical company.

From Table 5.8, it can be verified that

β̄ = (ᾱ, β̄)′ = (103.51, −0.289),

Sβ̂ =
[

2.250 −0.2058
−0.2058 0.01994

]
,

σ̂ 2
e = 0.9597,

σ̂ 2
e (X ′ X )−1 =

[
0.452 −0.0366

−0.0366 0.00457

]
,

�̂β = Sβ̂ − σ̂ 2
e (X ′ X )−1

=
[

1.798 −0.1692
−0.1692 0.0154

]
.
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Hence,

SE(ᾱ) = 0.671 and SE(β̄) = 0.0632.

Since

Tᾱ = 103.51 − 90

0.671
= 20.141 > t0.05,4 = 2.132,

Tβ̄ = −0.289

0.0632
= −4.58 < −t0.05,4 = −2.132,

both conditions in Equation 6.25 are satisfied, and the estimate of the shelf-life by the
HLC method is the smaller root of the following equation:

[90 − (103.51 − 0.289x)]2 = (2.132)

(
1

5

)
[2.250 − 0.4116x + (0.01994x)2],

which is 35.1 months. If the asymptotic procedure of the HLC method is applied,
then

x̂0 = 90 − 103.51

−0.289
= 46.71,

v̂N = 703.42,

v̂D = 97.657.

Thus, the estimated degrees of freedom is given by

v̂ = v̂N

v̂D
= 703.42

97.657
= 7.2.

The estimated shelf-life is 36.1 months.

6.4.2 Comparison of Methods

Ho, Liu, and Chow (1993) conducted a simulation study to compare four methods
of estimating drug shelf-life with multiple batches. These four methods include the
FDA’s minimum approach, Ruberg and Hsu’s method under the fixed effects model
discussed in the previous chapter, Chow and Shao’s method, and the HLC procedure
under the random effects model described in this chapter. Model 5.1 was employed
to generate random samples. The intercept and slope were chosen to provide true
shelf-life ttrue = (90 − α)/β to be 4, 6.67, and 20 months. Three sets of sampling
time points were selected:

� 1. 0, 3, 6, 9, and 12 months

� 2. 0, 3, 6, 9, 12, 18, and 24 months

� 3. 0, 3, 6, 9, 12, 18, 24, 36, and 48 months
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The within-batch variabilities σ 2
e were selected to be 0.25, 0.75, and 1.25. The

following three between-batch covariance matrices were considered in the simulation:

m1 =
[

0 0
0 0

]
, m2 =

[
1.00 0.03
0.03 0.01

]
, m3 =

[
1.00 0.03
0.03 0.02

]
.

In addition, the impact of sample size was also studied by examining three batches:
3, 6, and 9. For each of the 81 combinations, 1000 random samples were generated
to estimate the shelf-life by the four methods. For Ruberg and Hsu’s method, the
bioequivalence-like approach was used with the upper allowable specification limit
�β chosen as recommended by Ruberg and Stegeman (1991). The coverage prob-
ability, average bias, and mean squared error of the corresponding estimates with
respect to (90 − α)/β were computed. In general, if the relationship between drug
characteristic and time points is still linear beyond the observed range of time points
as assumed in the simulation, the results are consistent even when an extrapolation
is required. When both variabilities are large and the number of batches is small, the
coverage probabilities of all four methods are relatively lower than those obtained
from other combinations that have smaller variabilities and large numbers of batches.

Since Chow and Shao’s method is not used for the mean drug characteristic but
rather for the ε quantile of the distribution, where ε < 0.5, not surprisingly, their
method has the highest, but excessive, coverage probability uniformly greater than
the nominal level of 0.95. As a consequence, this method has the largest average
bias and mean squared error. This indicates that Chow and Shao’s method often
underestimates the shelf-life and is the most conservative of the four methods. The
FDA’s minimum approach exhibits a pattern similar to Chow and Shao’s method. It
provides a coverage probability greater than the 0.95 nominal level for a large number
of batches and small within- and between-batch variabilities. However, the coverage
probability can drop below 0.95 in the presence of a large variability with a small
number of batches. If the observed range is 12 months, the coverage probability can
be below 0.90. For example, with an observed range of 48 months and a true shelf-
life of 20 months, the coverage probability for three batches decreases to about 0.90.
Although the FDA’s minimum approach is conservative, it may not provide enough
coverage probability for some cases with three batches.

In summary, the FDA’s minimum approach results in large average bias and mean
squared errors. Ruberg and Hsu’s method yields an adequate coverage probability
near the nominal level of 0.95 in the absence of between-batch variability. However,
the coverage probability provided by Ruberg and Hsu’s method is the lowest of the
four methods if there is a batch-to-batch variation. Although both the FDA’s minimum
approach and Ruberg and Hsu’s method were derived from the fixed effects model, the
FDA’s minimum approach is more robust with respect to between-batch variability
than Ruberg and Hsu’s procedure. It should be noted that the performance of Ruberg
and Hsu’s method depends on the choice of �β .

Since the sampling distribution (exact or asymptotic) of the HLC method is based on
the number of batches rather than the number of total assays, the coverage probability
decreases to 0.87 in some cases when the number of batches is small (e.g., K = 3).
However, when the number of batches becomes large (e.g., K = 6 or 9), the HLC
method provides adequate coverage probability around 0.95, which is within the
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95% confidence interval (0.9365, 0.9635) obtained from the 1000 random samples
with respect to a nominal level of 0.95. The average bias and mean squared error is
relatively smaller than Chow and Shao’s method and the FDA’s minimum procedure.
More details regarding the simulation results can be found in Ho, Liu, and Chow
(1993) and Chow and Liu (1995).

6.5 Determining Shelf-Life Based on the Lower Prediction Bound

Shao and Chen (1997) considered the following model

yi j = x(ti j )
′βi + ei j , i = 1, . . . , K , j = 1, . . . , ni (6.39)

where i is the index for the batch and the sampled time intervals may differ in different
batches. βi may differ and, therefore, Model 6.39 contains K different regression
curves. Under Model 6.39, assume that

βi ∼ Np(b, �),

ei j ∼ N
(
0, σ 2

e

)
,

and that βi and ei j are independent. Let

yi = (yi1, . . . , yini )
′,

Xi = (x(ti1), . . . , x(tini ))
′,

and

ei = (ei1, . . . , eini )
′,

where i = 1, . . . , K . Then, we can rewrite Model 6.39 as

yi = Xiβi + ei , i = 1, . . . , K . (6.40)

Assume that Xi are of full rank. Then, under the i th model in (6.40), the least squares
estimator of βi is given by

β̂i = (X ′
i Xi )

−1 X ′
i yi .

Conditional on βi ,we have

β̂i ∼ Np
(
βi , σ

2
e (X ′

i Xi )
−1

)
.

Unconditionally, we have

β̂i ∼ Np
(
b, � + σ 2

e (X ′
i Xi )

−1
)
.

As a result, an approximate 1 − α lower prediction bound for ttrue can be obtained as

t̂ = inf{t :L(t) ≤ η}, (6.41)

Binod April 12, 2007 11:1 C9055 Chapter 6



6.5 Determining Shelf-Life Based on the Lower Prediction Bound 159

where η is a given lower specification limit,

L(t) = x(t)′b̂ − ρ(k, α)
√

v(t)/K (6.42)

is a lower confidence bound for x(t)′b, where

b̂ = 1

k

K∑
i=1

βi ,

and

v(t) = x(t)′
[

1

k − 1

K∑
i=1

(βi − b̂)(βi − b̂)′
]

x(t)

is an estimate of the variance of x(t)′b̂, ρ(K , α) satisfies
∫ 1

0
P{TK (u) ≤ ρ(K , α)}du = 1 − α, (6.43)

where TK (u) denotes a random variable with noncentral t-distribution having K − 1
degrees of freedom and noncentrality parameter

√
K
−1(1 − u), and 
 is the stan-

dard normal distribution function (i.e., ρ(K , α) is the 1 − α quantile of the random
variable TK (U ), where U is uniform on [0,1]). Values of ρ(K , α) for α = 0.01, 0.05,

and 0.1 and K = 3, 4, . . . , and 20 are given in Table 6.3.

TABLE 6.3: Values of p(k,α)

α

k 0.01 0.05 0.10

3 13.929 5.840 3.771
4 10.153 5.262 3.662
5 9.178 5.222 3.756
6 8.903 5.331 3.905
7 8.889 5.496 4.072
8 8.994 5.684 4.245
9 9.160 5.881 4.417

10 9.358 6.080 4.587
11 9.574 6.279 4.753
12 9.800 6.475 4.916
13 10.031 6.669 5.074
14 10.265 6.859 5.229
15 10.498 7.045 5.380
16 10.730 7.228 5.527
17 10.961 7.407 5.671
18 11.189 7.583 5.812
19 11.417 7.755 5.590
20 11.637 7.924 6.084

Source: Shao, J. and Chen, L. (1997). Statistics in Medicine, 16, 1167–1173.
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The t̂ given in Equation 6.41 is an approximate 1 − α lower prediction bound,
provided that either

min
i=1,... ,K

X ′
i Xi −→ ∞ (6.44)

or

σe → 0. (6.45)

Equation 6.44 is usually fulfilled if ni → ∞ for all i . Equation 6.45 is satisfied when
the assay measurement error is small under controlled conditions in stability analysis.
To show that

P{t̂ ≤ ttrue} ≈ 1 − α

holds under either conditions 6.44 or 6.45, we let Ftrue denote the distribution function
of ttrue. Thus, ξu = F−1

true(u) and σ 2(t) = x(t)′�x(t). Note that

Ftrue(t) = P{x(t)′β ≤ η} = 


(
η − x(t)′b

σ (t)

)
,

and

u = Ftrue(ξu) = 


(
η − x(ξu)′b

σ (ξu)

)
.

Hence,


−1(1 − u) = x(ξu)′b − η

σ (ξu)
≈ x(ξu)′b − η√

E[v(ξu)]
(6.46)

since

E[v(t)] = σ 2(t) + σ 2
e

K

K∑
i=1

x(t)′(X ′
i Xi )

−1x(t) ≈ σ 2(t)

under either Equation 6.44 or 6.45. Therefore,

P{ttrue < t̂} =
∫ ∞

0
P(t < t̂)dFtrue(t)

=
∫ ∞

0
P[(L(t) > η]dFtrue(t)

=
∫ ∞

0
P[(L(ξu) > η]du

=
∫ 1

0
P

{
x(ξu)′b̂ − η√

v(ξu)/K
> ρ(K , α)

}
du

≈
∫ 1

0
P{TK (u) ≤ ρ(K , α)}du (6.47)

= α,
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where the approximation in Equation 6.47 holds because Equation 6.46 and the last
equality follow from Equation 6.43, the definition of ρ(K , α).

When K is large, we can remove the normality assumption on ei j . In this case the
result still holds. When K is large, we can also replace the normality assumption on
βi by the assumption that the distribution on βi is from a location-scale family, that is,

P{x(t)′β ≤ η} = 	

(
η − x(t)′b

σ (t)

)

with a known distribution function 	. In such a case the result still holds with 


replaced by 	 in the definition of ρ(k, α) in Equation 6.43.

6.5.1 An Example

Consider the example given in Shao and Chow (1994), in which 300-mg tablets from
K = 5 batches of a drug product were stored at room temperature in two types
of containers (bottles and blister packages). The tablets were tested for potency at
t j = 0, 3, 6, 9, 12, and 18 months. The assay results are summarized in Table 5.6.
Consider Model 6.31 with

x(ti j )
′ = (1, t j , t jw j ),

where w j = 0 for the bottles and 1 for the blister packages. A test conducted by Shao
and Chow (1994) shows a batch-to-batch variation at the 5% level of significance.
Table 6.4 lists values of L(t) given by Equation 6.42. For η = 90% and α = 0.05, the
labelled shelf-life is 27 months for bottles and 26 months for blister packages. The
minimum approach suggested by the FDA gives a labelled shelf-life of 26 months for
bottles. Thus, if the assurance level is α = 5%, the minimum approach is slightly too
conservative. If the assurance level is α = 1%, the minimum approach gives a much
too long labelled shelf-life.

TABLE 6.4: Values of L(t)

Bottle Blister Package

t (in months) α = 0.01 α = 0.05 α = 0.01 α = 0.05

18 93.625 95.642 93.049 95.208
19 92.782 95.037 92.238 94.626
20 91.934 94.430 91.418 94.040
21 91.083 93.822 90.593 93.450
22 90.227 93.210 89.765 92.859
23 89.367 92.596 88.929 92.264
24 88.512 91.985 88.095 91.670
25 87.652 91.371 87.256 91.072
26 86.788 90.754 86.415 90.474
27 85.928 90.145 85.575 89.884
28 85.073 89.537 84.730 89.304

Source: Shao, J. and Chen, L. (1997). Statistics in Medicine, 16, 1167–1173.
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The method by Shao and Chow (1994) and the method by Shao and Chen (1997)
are in general not comparable since these were proposed under different perspectives.
With ε ≤ 0.05 in this example, the method by Shao and Chow is more conservative
than the method by Shao and Chen. An advantage of Shao and Chen’s prediction-
bound approach is that it does not require the specification of an ε when it is not
preassigned. In addition, Shao and Chen’s prediction bound approach is applicable
to any problem in which the data follow a linear random effects model and one is
interested in estimating (or predicting) the intersection of the mean regression curve
and a given curve. Examples of such applications include reliability analysis based
on random effects degradation models (Lu and Meeker, 1993) and the determination
of the regions for clean-up of contaminated soil in the U.S. Superfund program (Shao
and Chen, 1997).

6.6 Concluding Remarks

For estimating drug shelf-life with random batches, in addition to Chow and Shao’s
method and the HLC method, Murphy and Weisman (1990) proposed the use of
random slopes. Their idea is briefly outlined below. For the simple linear regression
model, the slope βi , i = 1, . . . , K is assumed to be i.i.d. as a normal random variable
with mean zero and variance σ 2

β . Hence, the expected value of M S(β) in the analysis
of covariance table presented in Table 5.1 is then given by

E[MS(β)] = σ 2
e + Rσ 2

β ,

where

R = 1

K − 1


Sxx (W ) −

K∑
i=1

S2
xx (i)

Sxx (W )


 ,

and Sxx (i) and Sxx (W ) are as defined in Section 5.1. The same F statistic

F = MS(β)

MSE

can be applied to test the following hypotheses:

H0 : σ 2
β = 0 vs Ha : σ 2

β > 0.

Depending on whether the null hypothesis above is rejected at the 0.25 level of
significance or MS(β) is larger than MSE, Murphy and Weisman (1990) proposed three
methods to estimate shelf-life. Basically, their methods assume that the initial value
of the strength at time zero is a fixed nonrandom quantity (i.e., 100% of label claim)
for all three batches. Then, slope is use a to determine drug shelf-life. In other words,
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Murphy and Weisman’s method ignores the information observed at the initial time
(i.e., time 0). As a result, their method suffers from the same drawbacks as the method
suggested by Rahman (1992), which was discussed in Chapter 3. Even when the
batch effect is assumed to be random, the same disadvantages remain in Murphy and
Weisman’s methods. It should be noted that Murphy and Weisman’s methods are not
based on the mean degradation line. Therefore, no probability statements can be made
regarding the estimated shelf-life, observed strength, and lower specification limit.
Moreover, in their simulation study the FDA’s minimum approach was not considered
as the referenced method for comparison. In addition, no coverage probabilities of
their methods were reported.

For Chow and Shao’s method, in practice, it may be difficult to choose an
appropriate ε. Too large an ε can certainly increase the chance of the product be-
ing recalled prior to the expiration date, whereas too small an ε may increase the
cost. By calculating t̃ for various values of ε, we can determine a labeled shelf-life by
balancing the relative merits and disadvantages of having a longer labeled shelf-life
against the risk of being recalled. In the situation where the final decision is made
by the FDA, the research scientist or statistician may report t̃ for several values of
ε in a reasonable range. When �β = 0, both t̃ and t̂ are valid labeled shelf-lives,
but t̂ is usually longer than t̃ . When �β �= 0, however, t̂ could be much too large.
In practice, it is usually difficult to justify �β = 0 since controlling the type II error
for any procedure testing the null hypothesis H0 is difficult owing to the complexity
of the alternative hypothesis K0. Thus, even if we cannot reject the hypothesis H0,
the use of t̂ is still questionable. In this situation, however, the estimated shelf-lives
determined by t̂ and t̃ are close to each other because of the small contribution of �β

due to there being no evidence for the presence of batch-to-batch variability.
Lin (1990) investigated statistical analysis of stability data in terms of the intercept

and slope of the degradation curve. Under the assumption of a fixed effects model, Lin
described the possible situations for the slopes and intercepts encountered in the anal-
ysis of stability data: (a) common slope and common intercept, (b) different slopes
and common intercept, (c) common slope and different intercepts, and (d) different
slopes and different intercepts. As an alternative approach, Lin also described the
possible use of a confidence limit (interval) approach for determining an expiration
dating period when the drug characteristic increases or decreases with time. In addi-
tion, Lin pointed out some common deficiencies and concerns of statistical analyses
that FDA reviewers often cite in their reviews of stability data submission.
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Chapter 7

Stability Analysis with a Mixed Effects Model

As indicated earlier, a stability analysis is usually performed to characterize the degra-
dation pattern or curve of a drug product by testing a limited number of batches
under appropriate storage coniditions. Since different batches of a drug product may
have different degradation patterns for various reasons (e.g., different stranghts, dif-
ferent package types, different storage conditions), both the FDA and ICH require
that at least three batches, and preferably more, be tested to allow for some esti-
mates of batch-to-batch variability and to test the hypothesis that a single expiration
dating period period (shelf-life) is justifiable for all (future) batches. The expiration
dating period is determined based on a statistical confidence (or prediction) interval
analysis.

When there is no batch-to-batch variability, stability data from different batches can
be pooled to determine a single shelf-life using the methods described in Chapter 3.
When batch-to-batch variability is present, statistical methods for stability analysis
as described in Chapters 5 (fixed batches) and 6 (random batches) are useful for
determining a single shelf-life. In this chapter, as an alternative to the least sequares
methods proposed by Chow and Shao (1991) and Shao and Chow (1994), we describe
Chen, Hwang, and Tsong (1995) EM (Expectation and Maximization) algorithm pro-
cedure to obtain the maximum likelihood estimates of the regression coefficients of
the fixed effects, random effects, and variance components under linear mixed effects.
The likelihood ratio test of equal regression coefficients for the random effects com-
ponents is used as a preliminary test of batch-to-batch variation for model selection.

In the next section a linear mixed effects model with replicates is introduced. Log-
likelihood ratio tests under various hypotheses are given in Section 7.2. Section 7.3
provides details of the EM algorithm for obtaining maximum likelihood estimates of
the parameters of the linear mixed effects model. An example is given in Section 7.4
to illustrate the use of the method proposed by Chen, Hwang, and Tsong (1995). A
discussion is given in the last section to conclude this chapter.

7.1 Linear Mixed Effects Model

Chen, Hwang, and Tsong (1995) use the following linear mixed effects model to
describe stability data collected from multiple batches:

yi jk = α + βxi j + ai + bi xi j + ei jk, (7.1)
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where yi jk is the assay result (percent of label claim) from the kth replicate in the j th
time point of the i th batch. i = 1, . . . , K ; j = 1, . . . , ni ; k = 1, . . . , mi j . xi j is the
time of the stability sample corresponding to yi jk , ai is the i th batch effect (intercept),
bi is the effect of the degradation rate of the i th batch, and ei jk is the random error in
observing yi jk .The random errors ei jk are assumed to be independent and normally
distributed with mean zero and variance σ 2. The random effects coefficients ai and
bi are also assumed to be independent and normally distributed with mean 0 and
variance σ 2

a and σ 2
b , respectively. In addition, random variables ei jk, ai and bi are

assumed to be mutually independent. If mi j = 1 for all i and j (i.e., there are no
replicates), then Model 7.1 reduces to

yiy = αi + βi xi j + ei j ,

where αi = α + ai and βi = β + bi . Under Model 7.1, the marginal mean of yi jk is

E(yi jk) = α + βxi j = µi j ,

and the variance and covariance are given by

Var(yi jk) = σ 2
a + σ 2

b xi j + σ 2,

and

Cov(yi jk, yi j ′k ′ ) = σ 2
a + σ 2

b xi j xi j ′ ,

respectively. Model 7.1 represents a model of separate intercepts and separate slopes.
If a1 = a2 = · · · = aK = 0 and b1 = b2 = · · · = bK = 0 (i.e., σ 2

a = 0 and
σ 2

b = 0), then Model 7.1 has a common intercept and common slope. Similarly, if
b1 = b2 = · · · = bK = 0 (i.e., σ 2

b = 0), then Model 7.1 reduces to a common
slope model. Furthermore, if ai = bi for i = 1, . . . , K , then Model 7.1 has common
variance components (i.e., σ 2

a = σ 2
b ). This model was proposed by Chow and Wang

(1994).

7.2 Model and Hypotheses

Chen, Hwang, and Tsong (1995) considered the following hypothesis tests for deter-
mining the poolability of different batches:

� Hypothesis 1: Test for equality of slopes.

� Hypothesis 2: Test for equality of intercepts given a common slope.

As a result, one of the following models can be selected for determining the degra-
dation pattern of the drug product by testing the above hypotheses.
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� Model 1: A common slope and common intercept if both hypotheses are not
rejected

� Model 2: A common slope but different intercepts if the null hypothesis of
equal intercepts is rejected but the hypothesis of equal slopes is not rejected

� Model 3: Separate slopes and separate intercepts if both hypotheses are rejected

As discussed in the previous chapters, if model 1 is selected, the shelf-life can be
estimated as the time at which the 95% one-sided lower (or upper) confidence limit
for the mean degradation curve intersects the acceptable lower (or upper) specifica-
tion limit as given in the USP-NF (USP-NF 2000). If either model 2 or model 3 is
selected, the FDA suggests obtaining the shelf-life of an individual batch and using
the minimum of the obtained shelf-lives as the estimated shelf-life. In addition to the
above models, Chen et al. also considered the following model

� Model 4: Common variance model

Model 4 assumes that ai = bi for i = 1, . . . , K , that is, σ 2
a = σ 2

b .

7.3 Restricted Maximum Likelihood Estimation

To introduce the log-likelihood ratio tests proposed by Chen, Hwang, and Tsong
(1995) under the above models, for simplicity, throughout this chapter we assume
mi j = m for all replicates and ni = n for all i . Let N = m × n,

yi = (yi11, . . . , yi1m, yi21, . . . , yi2m, . . . , yin1, . . . , yinm)′

be an N -vector of responses for the i th batch, Xi be an N × 2 matrix whose first
column is a vector of 1s and second column is

xi = (xi1, . . . , xi1, xi2, . . . , xi2, . . . , xin, . . . , xin)′,

and D be a 2 × 2 diagonal matrix with d11 = σ 2
a and d22 = σ 2

b . Then, the covariance
matrix of yi can be expressed as

Vi = σ 2 I + Xi DX ′
i

= σ 2 I + σ 2
a J + σ 2

b xi x
′
i ,

where J is an N × N matrix containing 1s. The likelihood function for the data in
the i th batch is then given by

L(yi ) = 1

(2π |Vi |)N/2
exp

{
−1

2
(yi − µi )

′V −1
i (yi − µi )

}
,

where

µi = (µi1, . . . , µin)′.
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Thus, the log-likelihood is

L L(y1, . . . , yK ) = C − N

2

K∑
i=1

log(|Vi |) (7.2)

−1

2

K∑
i=1

(yi − µi )
′V −1

i (yi − µi ).

Although maximum likelihood estimates of the parameters of the regression coeffi-
cients for fixed effects, random effects, and the variance components, can be obtained
using numerical methods such as the familiar Newton-Raphson procedures, Chen,
Hwang, and Tsong (1995) suggested using the EM algorithm of Dempster et al.
(1977) for obtaining maximum likelihood estiamtes of the parameters of interest.
This is because the EM estimates are well conditioned to lie within the parameter
space, and the solution is robust to poor starting values. Details of the EM procedure
are described in the next section.

Under Model 7.1, the significance of the random effects coefficients can be tested
using the likelihood ratio test. Let L Lmax be the maximum value of the log-likelihood
in Equation 7.2 under a separate slopes and separate intercepts model and L Lab be
the maximum value of the log-likelihood with the constraints

a1 = a2 = · · · = aK = 0 and b1 = b2 = · · · = bK = 0

under Model 7.1 with a common slope and common intercept. Under the null hypoth-
esis of Model 7.1, the likelihood ratio test

LRab = 2(L Lmax − L Lab)

has a chi-square distribution with 2K degrees of freedom. The likelihood ratio test
LRab for testing a common slope model or the likelihood ratio statistic LRa for testing
a common intercept given a common slope can be computed similarly.

7.4 The EM Algorithm Procedure

The EM algorithm procedure consists of two steps: the E-step and the M-step. The
E-step evaluates the expectation of the log-likelihood function, and the M-step maxi-
mizes the expectation. The two steps are repeated for obtaining maximum likelihood
estimates of the parameters of interest. To apply the EM algorithm, for convenience’s
sake, we rewrite Model 7.1 as follows:

Y = X1θ1 + X2θ2 + X3θ3, (7.3)
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where θi is normal with mean vector zero and covariance matrix �i , and i = 1, 2, 3.

The relations between the above general form of Equation 7.3 and Model 7.1 are

Y ′ = (y111, . . . , y11m, y121, . . . , y12m, . . . , yK n1, . . . , yK nm),

θ ′
1 = (a1, a2, . . . , aK , b1, b2, . . . , bK ),

θ ′
2 = (e111, . . . , e11m, e121, . . . , e12m, . . . , eK n1, . . . , eK nm),

where the covariance matrices are given by

�1 → ∞,

�2 = diag
(
σ 2

a IK , σ 2
b IK

)
,

�3 = diag
(
σ 2 IN , σ 2 IN , . . . , σ 2 IN

)
,

and the three design matrices are formed as

[X1|X2|X3]

=




1 x1

1 x2
...

...
1 xK

∣∣∣∣∣∣∣∣∣

1 0 · · · 0 x1 0 · · · 0
0 1 · · · 0 0 x2 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · xK

∣∣∣∣∣∣∣∣∣

IN 0 · · · 0
0 IN · · · 0
...

...
. . .

...
0 0 · · · IN


 .

The joint normal distribution of Y and θ is then given by
[

Y
θ

]
∼

([
0
0

]
,

[
Q X�

�X ′ �

])
, (7.4)

where

X = (X1, X2, X3),

θ ′ = (θ ′
1, θ

′
2, θ

′
3),

� = diag(�1, �2, �3),

and

Q = X�X ′.

The conditional distribution of θ̂ , given Y , is then given by

θ̂ |Y ∼ N (θ, C), (7.5)

where θ̂ = U ′Y, U = Q−1 X�, and C = � − �X ′ Q−1 X�.
Let

� = Q−1
− − Q−1

− X1(X ′
1 Q−1

− X1)−1 X ′
1 Q−1

− ,

where

Q− = Q − X1�1 X ′
1.
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Then, the θ̂i ’s and submatrices Cii ’s of C corresponding to �i ’s in Equation 7.5 can
be expressed as

θ̂1 = Y ′ Q−1
− X1(X ′

1 Q−1
− X1)−1,

θ̂2 = Y ′�X2�2,

θ̂3 = Y ′�X3�3,

C11 = (X ′
1 Q−1

− X1)−1,

C22 = �2 − �2 X2�X2�2,

C12 = C11 X ′
1 Q− X2�2,

C33 = �3 − �3 X3�X3�3.

Estimation methods for the linear covariance components model were developed
and illustrated by Dempster et al. (1981). These techniques include Bayesian esti-
mation of fixed and random effects when the variances and covariances are known
and point estimation of unknown variances and covariances using the EM algorithm.
The EM algorithm proceeds by alternatively filling in values (E-step) for the random
effects (more precisely, for the corresponding sufficient statistics), using conditional
expectations given the observed Y and current estimated variances, and obtaining
new estimates (M-step) from the filled-in data. This iterative procedure, in general,
increases the likelihood at every step (Dempster et al. 1977). Conditions for conver-
gence to a global maximum of the likelihood are complicated, but practical experience
with variance component models has shown generally good results, although conver-
gence may be very slow.

The E-step computes the conditional expectation of the sufficient statistic (θ ′
2θ2,

θ ′
3θ3) given estimates of σ 2

a , σ 2
b , and σ 2 at the pth iteration. That is,

τ (p)
a = θ̂ ′

2a θ̂2a + Tr(C221),

τ
(p)
b = θ̂ ′

2bθ̂2b + Tr(C222),

τ (p) = θ̂ ′
3θ̂3 + Tr(C33),

where θ̂2a and θ̂2b are the two subvectors of θ̂2, and C221 and C222 are the two diagonal
blocks of C22 corresponding to the two random components ai and bi . The M-step
produces the maximum likelihood estimates of σ 2

a , σ 2
b , and σ 2 at the (p + 1)th

iteration. That is,

σ 2, (p+1)
a = τ (p)

a /K ,

σ
2, (p+1)
b = τ

(p)
b /K ,

σ 2, (p+1) = τ (p)/(K × N ).

After the procedure converges, one may also obtain an estimate of fixed effect θ̂1 and
the conditional covariance matrix C11 in addition to the three variance component
estimates.

The estimate (mean) of the drug characteristic at time ti for the i th batch is

p(ti ) = α̂ + β̂ti + âi + b̂i ti (7.6)
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with the variance

V (p(ti )) = [V (α̂) + V (âi ) + 2Cov(α̂, âi )]

+2[Cov(α̂, β̂) + Cov(âi , b̂i )]ti
+[V (β̂) + V (b̂i ) + 2Cov(β̂, b̂i )]t

2
i . (7.7)

It can be shown that in the balanced model, the variance and covariance terms are
equal for all i in Equation 7.7. Thus, the variance of the predicted drug characteristic
at time t for future batches is

V (p(t)) = [V (α̂) + V (â) + 2Cov(α̂, â)]

+2[Cov(α̂, β̂) + Cov(â, b̂)]t

+[V (β̂) + V (b̂) + 2Cov(β̂, b̂)]t2. (7.8)

In the case of the unbalanced model, Chen, Hwang, and Tsong (1995) proposed the
following for estimating the variance:

V (p(t)) = [V (α̂) + V̄ (â) + 2Cov(α̂, â)]

+2[Cov(α̂, β̂) + Cov(â, b̂)]t

+[V (β̂) + V̄ (b̂) + 2Cov(β̂, b̂)]t2, (7.9)

where

V̄ (â) =
∑

i j V (âi )∑
j mi j

,

V̄ (b̂) =
∑

i j V (b̂i )∑
j mi j

,

Cov(α̂, â) =
∑

i j Cov(α̂, âi )∑
j mi j

,

Cov(β̂, b̂) =
∑

i j Cov(β̂, b̂i )∑
j mi j

,

and

Cov(â, b̂) =
∑

i j Cov(âi , b̂i )∑
j mi j

.

Without loss of generality, assume the drug characteristic decreases as time increases.
Let η be a given lower specification limit. A 95% lower confidence bound for the
predicted drug characteristic at t for future batches is

η = α̂ + β̂t − t0.95

√
V (p(t). (7.10)

Thus, for a given η, an estimate of shelf-life is the solution of Equation 7.10.
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7.5 An Example

Consider the example given in Chow and Shao (1991). The data set consists of 24
batches. The potency results were obtained at 0, 12, 24, and 36 months (Table 7.1).
Based on the FDA-recommended approach, the data from individual batches support
neither the hypothesis of common slope nor the hypothesis of common intercept. The
minimum of the 24 shelf-life estimates is 26 months (the range of the 24 estimates
is between 26 and 69). Table 7.2 contains the maximum likelihood estimates of α,

β, σ 2
a , σ 2

b , and σ 2, the maximum value of the log-likelihood, and the 95% lower
confidence limit estimate of shelf-life under model 1 (common slope and common
intercept), model 2 (common slope but different intercepts), model 3 (separate slopes
and separate intercepts), and model 4 (common variance model). The results indicate
that the maximum values of log-likelihood under models 1, 2, and 3 are −196.14,
−163.49, and −148.28, respectively. The maximum value under model 4 of a common
variance component is −167.58, which is smaller than that under a common slope
model.

TABLE 7.1: Potency Assay Results (Percent of Label Claim)

Age (Month)

Batch 0 12 24 36

1 105 104 101 98
2 106 102 99 96
3 103 101 98 95
4 105 101 99 95
5 104 102 100 96
6 102 100 100 97
7 104 103 101 97
8 105 104 101 100
9 103 101 99 99
10 103 102 97 96
11 101 98 93 91
12 105 102 100 95
13 105 104 99 95
14 104 103 97 94
15 105 103 98 96
16 103 101 99 96
17 104 102 101 98
18 106 104 102 97
19 105 103 100 99
20 103 101 99 95
21 101 101 94 90
22 102 100 99 96
23 103 101 99 94
24 105 104 100 97

Source: Chow, S.C. and Shao, J. (1991). Biometrics, 47, 1071–1079.
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TABLE 7.2: Maximum Likelihood Estimates and 95% Confidence Limits
(Shelf-Life Estimates) for a Marketing Stability Data Set

Coefficients Variance Components

Model α β σ 2
a σ 2

b σ 2 LL Shelf-Life

1 104.15(0.322) −0.2198(0.0144) 0 0 3.5582 −196.14 59.65
2 104.15(0.365) −0.2198(0.0089) 2.225 0 1.3800 −163.49 59.35
3 104.15(0.300) −0.2198(0.0119) 1.536 0.0021 0.8985 −148.28 55.62
4 104.15(0.215) −0.2198(0.0161) 0.004 0.004 1.5745 −167.58 53.75

Source: Chen, J.J, Hwang, J.S. and Tsong, Y. (1995). Journal of Biopharmaceutical Statistics, 5, 131–140.

The likelihood ratio test statistic LRab for the null hypothesis of a common intercept
and common slope versus separate intercepts and separate slopes is

χ2
46 = 2(−148.278 + 196.142) = 95.728

with a p-value less than 0.0001. Thus, the null hypothesis is rejected. The likelihood
ratio test LRb for separate intercepts and a common slope versus separate intercepts
and separate slopes is

χ2
23 = 2(−148.278 + 163.486) = 30.416

with a p-value of 0.138. If the level of significance is set to be 0.25, then the common
slope model is rejected. Hence, model 3 is selected. The lower confidence limit shelf-
life estimate is 55.62 months. For comparison, the likelihood ratio test statistic LRa

for a common intercept and common slope versus separate intercepts and a common
slope is

χ2
23 = 2(−163.486 + 196.142) = 65.312

with a p-value less than 0.0001. Thus, a common intercept given a common slope
model is rejected. The estimates of shelf-life are 59.65, 59.35, and 53.75 for models
1, 2, and 4, respectively.

7.6 Discussion

Chen, Hwang, and Tsong (1995) proposed a procedure for a marketing stability anal-
ysis using the EM algorithm. This procedure can be applied to either a balanced
or an unbalanced design. The shelf-life estimate obtained from the EM approach is
generally well behaved and lies within the range of shelf-life estimates of individ-
ual batches. The EM algorithm generally performs better than the commonly used
Newton-Raphson procedure for unbalanced designs, although the convergence may
be slow.
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The simple linear mixed effects model presented in this chapter can be extended
to a general linear models setting. For example, the fixed effects component X1θ1

in Model 7.3 can include variables such as different dosage forms, strengths, and
package types, in addition to the intercept and slope of the simple linear regression
coefficients in Model 7.1. The random effects component X2θ2 would include the
coefficients of these added variables. The homogeneity of the degradation patterns
across the dosages, strengths, and package types can be tested by the likelihood ratio
procedure. However, the amount of data (number of batches and time points) required
to support this model remains to be studied. Additional research is needed to determine
relationships between the numbers of the random and fixed effects components, the
number of batches, and the time points within each batch.
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Chapter 8

Stability Analysis with Discrete Responses

For solid oral dosage forms such as tablets and capsules, the 1987 FDA stability
guideline indicates that the characteristics of appearance, friability, hardness, color,
odor, moisture, strength, and dissolution for tablets and the characteristics of strength,
moisture, color, appearance, shape brittleness, and dissolution for capsules should be
studied in stability studies. Some of these characteristics are measured based on a
discrete rating scale. For example, an intensity scale of 0 (none) to 4 (severe) may
be used for odor. A continuous response discredited by rounding is another example.
The responses obtained from a discrete rating scale may be classified into acceptable
(pass) and not acceptable (failure) categories, which results in binary stability data.
Although in most stability studies, continuous responses such as potency are the
primary concern, discrete responses such as appearance, color and odor should be
considered for quality assurance or safety. For establishing drug shelf-life based on
discrete responses, however, there is little discussion in either the FDA or the ICH
stability guidelines.

The purpose of this chapter is to review statistical methods of estimating drug shelf-
life with discrete stability data, according to the principle of shelf-life estimation for
continuous data as described in the 1987 and 1998 FDA stability guidelines (Chow
and Shao, 2003). This is useful for quality assurance of the drug product prior to the
expiration date established based on a primary drug characteristic such as the strength
(potency) of the drug product. In the next section we will consider the binary case
without batch-to-batch variation. Section 8.2 considers shelf-life estimation in the
binary case when batch-to-batch variation is present. A statistical test for batch-to-
batch variation is proposed in Section 8.3. In Section 8.4 we consider an example to
illustrate the proposed procedure. Section 8.5 discusses methods for ordinal responses.

8.1 Binary Data Without Batch-To-Batch Variation

Suppose there are K batches of a drug product in a stability study and that from the
i th batch, yi j , j = 1, . . . , ni , are binary responses observed at some time points.
When there is no batch-to-batch variation, we assume that yi j ’s are independent and
follow the following logistic regression model:

E(yi j ) = ψ(β ′xi j ), (8.1)

Var(yi j ) = τ (β ′xi j ),
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where i = 1, . . . , K ; j = 1, . . . , ni ,

ψ(z) = ez

1 + ez

τ (z) = ψ(z)[1 − ψ(z)],

and xi j is a p-vector of covariates (time and other covariates such as the bottle size
or container type), β is a p-vector of unknown parameters, and β ′ is its transpose.
Typically, x ′

i j = (1, ti j ), (1, ti j , t2
i j ), (1, ti j , wi j ti j ), or (1, ti j , wi j , wi j ti j ), where ti j is

the j th time point for batch i and wi j is a vector of covariates such as the bottle size
or container type.

We now define the true (unknown) shelf-life of the drug product. Let x(t) be xi j with
ti j replaced by t and wi j = w, a fixed particular value. The mean drug characteristic
at time t (with other covariates fixed at a particular value) is ψ(β ′x(t)) under Model
8.1. Assume the mean drug characteristic decreases as t increases; that is, β ′x(t) is
a decreasing function of t . Since ψ(z) is a strictly increasing function of z, the true
shelf-life t∗ satisfies β ′x(t∗) = ψ−1(η), where η is the approved specification limit.

Under Model 8.1, β̂, the maximum likelihood estimator of β, can be obtained by
solving the following equation:

K∑
i=1

ni∑
j=1

xi j [yi j − ψ(β ′xi j )] = 0.

When the total number of responses N = ∑K
i=1 ni is large, β̂ − β is approximately

distributed as N (0, V ), where

V =

 K∑

i=1

ni∑
j=1

xi j x
′
i jτ (β ′xi j )




−1

,

see, for example, Shao (1999, Section 4.4–4.5). Consequently, an approximate 95%
lower confidence bound for β ′x(t) is given by

L(t) = β̂ ′x(t) − z0.95

√
x(t)′V̂ x(t), (8.2)

where za is the 100ath percentile of the standard normal distribution and V̂ is V with
β replaced by β̂. Following the same principle of shelf-life for continuous data as
described in the 1987 FDA stability guideline and the ICH Q1A (R2) guideline for
stability, we propose the following estimated shelf-life:

t̂∗ = inf{t : L(t) ≤ ψ−1(η)}, (8.3)

which satisfies

PY
(
t̂∗ > t∗) ≤ PY (L(t∗) > ψ−1(η))

= PY (L(t∗) > β ′x(t∗))

≈ 5%.
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That is t̂∗ is an approximate 95% lower confidence bound for the true shelf-life t∗,
where PY is the probability related to the responses y′

i j s, and the approximation is
based on the normal approximation to the distribution of β̂ according to the central
limit theorem. If L(t) in Equation 8.2 is strictly decreasing in t , then t̂∗ satisfies
L(t∗) = ψ−1(η).

Unlike the continuous responses, a large number of observations are required for
binary responses. In an application (such as a new drug application) with a small K , a
large number of time points or some replicates at each time point are recommended.
In sample size determination one may carry out some simulation studies using some
initial guessing values of parameters.

8.2 The Case of Random Batches

When there is batch-to-batch variation, the parameter vector β in Model 8.1 takes
different values for different batches and, thus, should be denoted by βi , i = 1, . . . , K .
Some researchers (e.g., Ruberg and Hsu, 1992) considered βi ’s as unknown fixed
effects in estimating shelf-life. The fixed-effect approach, however, may not provide
a shelf-life estimator that is applicable to all future batches (of the same drug product)
based on stability data from the K batches. A more reasonable approach is to consider
the K batches as a random sample from a population of all future batches (Shao and
Chow, 1994). Consequently, βi ’s are random effects. Hence, the following mixed-
effect model is considered:

E(yi j |βi ) = ψ(β ′xi j ), (8.4)

Var(yi j |βi ) = τ (β ′xi j ),

where i = 1, . . . , K ; j = 1, . . . , ni , β ′
i s are independently distributed as N (β, �),

where ψ and τ are the same as those given in Model 8.1; E(yi j |βi ) and Var(yi j |βi ) are,
respectively, the conditional expectation and variance of yi j , given that the random
effect βi , β = E(βi ) is an unknown covariance matrix. If � = 0, then there is no
batch-to-batch variation, and Model 8.4 reduces to Model 8.1.

Let ψ[β ′
futurex(t)] be the mean degradation at time t for a future batch of the drug

product. The true shelf-life for this batch is then given by

t∗
future = inf{t : β ′

futurex(t) ≤ ψ−1(η)},

which is a random variable since βfuture is random. Consequently, a shelf-life estimator
should be a 95% lower prediction bound (instead of a lower confidence bound) for
t∗
future.

Since βi ’s are unobserved random effects, the prediction bound has to be obtained
based on the marginal model specified by

E(yi j ) = E[E(yi j |βi )] = E[ψ(β ′
i xi j )],
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and

Var(yi j ) = Var[E(yi j |βi )] + E[Var(yi j |βi )]

= Var[ψ(β ′
i xi j )] + E[τ (β ′

i xi j )].

However, neither E(yi j ) nor Var(yi j ) is an explicit function of β ′
i xi j , so an efficient

estimator of β, such as the maximum likelihood estimator, is difficult to compute.
Furthermore, when k is small (which is typically the case in stability analysis for a
new drug application), the computation of the maximum likelihood estimator requires
an iteration process that may not converge.

Alternatively, the following method is proposed for a small k such as 3. Assume
that ni ’s are large so that Model 8.1 can be fitted within each fixed batch. For each
fixed i , let β̂i be a solution of the equation

ni∑
j=1

xi j [yi j − ψ(β ′
i xi j )] = 0.

That is, β̂i is the maximum likelihood estimator of βi based on the data observed from
the i th batch, given βi . For large ni , β̂i is approximately distributed as N [βi , Vi (βi )],
depending on βi , where

Vi (βi ) =

 ni∑

j=1

xi j x
′
i jτ (β ′

i xi j )




−1

.

Unconditionally, β̂i is approximately distributed as N (β, Di ), where

Di = E[Var(β̂i |βi )] + Var[E(β̂i |βi )]

≈ E[Vi (βi )] + Var(βi )

= E[Vi (βi )] + �.

Let

β̂ = 1

K

K∑
i=1

β̂i .

Then, β̂ is approximately distributed as N (β, K −1 D), where

D = 1

K

K∑
i=1

Di .

Define

v(t) = x(t)′
[

1

K − 1

K∑
i=1

(β̂i − β̂)(β̂i − β̂)′
]

x(t).
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Then,

β̂ ′x(t) − ψ−1(η)√
v(t)/K

is approximately distributed as the noncentral t distribution with K − 1 degrees of
freedom and the noncentrality parameter of

β̂ ′x(t) − ψ−1(η)√
x(t)′�x(t)

.

Following the idea of Shao and Chen (1997), Chow and Shao (2003) proposed the
following approximate 95% lower prediction bound for t∗

future as an estimated shelf-
life:

t̂∗
future = inf

{
t : L(t) ≤ ψ−1(η)

}
, (8.5)

where

L(t) = β̂ ′x(t) − ρ0.95(K )
√

v(t)/K , (8.6)

and ρa(K ) satisfies

∫ 1

0
P {TK (u) ≤ ρa(K )} du = a.

TK (u) denotes a random variable, with the noncentral t distribution having K − 1
degrees of freedom and the noncentrality parameter of

√
K�−1(1 − u); � is the

standard normal distribution function.
Let Fshelf be the distribution function of the random true shelf-life t̂∗

future. Then

Fshelf(t) = P(t∗
future ≤ t)

= P(ψ(β ′
futurex(t) ≤ η))

= P(β ′
futurex(t) ≤ ψ−1(η))

= �

(
ψ−1(η) − β ′x(t)√

x(t)�x(t)

)
.

Let ξu = F−1
shelf(u). Then

u = Fshelf(ξu)

= �

(
ψ−1(η) − β ′x(ξu)√

x(ξu)�x(ξu)

)

and, thus, the noncentrality parameter of

β̂ ′x(ξu) − ψ−1(η)√
v(ξu)/K
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is
√

K�−1(1 − u) = β̂ ′x(ξu) − ψ−1(η)√
x(ξu)�x(ξu)/K

.

Then, for t̂∗
future as defined in Equations 8.5 and 8.6, we have

P
(
t∗
future < t̂∗

future

) =
∫ ∞

0
PY

(
t < t̂∗

future

)
d Fshelf(t)

=
∫ ∞

0
PY

{
L(t) > ψ−1(η)

}
d Fshelf(t)

=
∫ 1

0
PY

{
L(ξu) > ψ−1(η)

}
du

=
∫ 1

0
PY

{
β̂ ′x(ξu) − ψ−1(η)√

v(ξu)/K
> ρ0.95(K )

}
du

≈
∫ 1

0
P {TK (u) > ρ0.95(K )} du

= 0.05.

This shows that t̂∗
future in Equation 8.5 is indeed an approximate 95% lower prediction

bound for the true shelf-life t∗
future. Note that t̂∗

future in Equation 8.5 has the same form
as the t̂∗ in Model 8.3 except that L(t) in Model 8.2 is replaced by a more conservative
bound in Equation 8.6 that incorporates the batch-to-batch variability.

8.3 Testing for Batch-To-Batch Variation

If the batch-to-batch variability is not statistically significant, it would be advanta-
geous to combine the data from different batches and apply the shelf-life estimation
procedure given in the previous section. However, combining the data from different
batches should be supported by a preliminary test for batch similarity. For continuous
responses, the 1987 FDA stability guideline recommends that a preliminary test for
batch-to-batch variation be performed at the 25% level of significance as suggested
by Bancroft (1964).

Chow and Shao (2003) proposed some tests for batch-to-batch variation to de-
termine which of the methods described in the previous sections should be applied.
Testing for batch-to-batch variation is equivalent to testing the following hypotheses:

H0 : � = 0 versus Ha : � �= 0.

First, consider the case where xi j = x j and ni = n for all i (i.e., the stability designs
for all batches are the same). From the results described in the previous section, under
H0, approximately

[V0(β̂)]−1/2(β̂i − β) ∼ N (0, Ip),
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where Ip is the identity matrix of order p and

V0(β) =

 n∑

j=1

x j x
′
jτ (β ′x j )




−1

.

Since β̂i ’s are independent, under H0, approximately

T0 =
K∑

i=1

(β̂i − β̂)′[V0(β̂)]−1(β̂i − β̂) ∼ χ2
p(K−1), (8.7)

where χ2
r denotes the chi-square distribution with r degrees of freedom. Under Ha ,

since

Var(β̂i ) = � + E[Vi (βi )].

E(T0) is much larger than p(K − 1), which is E(T0) under H0. Therefore, a large
value of T0 indicates that Ha is true. Chow and Shao (2003) proposed that the p-value
for testing batch-to-batch variation is then given by

1 − χ2
p(K−1)(T0).

According to the 1987 FDA stability guideline (for continuous responses), to obtain
an estimated shelf-life we can apply the method in Section 8.1 when the p-value is
larger than or equal to 0.25 and apply the method in Section 8.2 when the p-value is
smaller than 0.25.

Next, consider the general case where xi j ’s depend on i . Let c = (c1, . . . , cK ) be
a constant vector satisfying

∑K
i=1 ci = 0. From the result in Section 8.2, under H0,

approximately
[

K∑
i=1

ci V (β̂)

]−1/2 K∑
i=1

ci β̂i ∼ N (0, Ip),

where

Vi (β) =

 ni∑

j=1

xi j x
′
i jτ (β ′

i xi j )




−1

.

Then, approximately

T =
K∑

i=1

ci β̂
′
i

[
K∑

i=1

ci Vi (β̂)

]−1 K∑
i=1

ci β̂i ∼ χ2
p

under H0. Our proposed p-value for testing batch-to-batch variation is then

1 − χ2
p(T ).

The constant vector c can be chosen as follows. If K = 3, we can choose c =
(1, 1, −2). If K is even, we can choose c = (1, −1, 1, −1, . . . , 1, −1). If K is odd
and K ≥ 5, we can choose c = (1, 1, −2, 1, −1, . . . , 1, −1).
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8.4 An Example

A stability study was conducted on the dosage form of tablets of a drug product.
Tablets from three batches were stored at room temperature (25◦C) in two types of
containers. In addition to the potency test, the tablets were tested for odor at 0, 3, 6, 9,
12, 18, 24, 30, and 36 months. At each time point, five independent assessments were
performed. The results of the odor intensity tests were expressed as either “acceptable”
(denoted by 0) or “not acceptable” (denoted by 1). Table 8.1 displays the data from
the odor intensity tests.

TABLE 8.1: Test Results for Odor Intensity

Sampling Time (Months)

Package Batch Replicate 0 3 6 9 12 18 24 30 36

Bottle 1 1 0 0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0
4 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 0 1
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

Blister 1 1 0 0 0 0 0 0 0 1 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 1 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 1 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 0 0
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With x ′
j = (1, t j , w j t j ), where w j is the indicator for container type, the statistic

T0 given in Equation 8.7 is equal to 0.5035 based on the data in Table 8.1, which
results in a p-value of 0.9978, that is, the batch-to-batch variation is not significant.
Thus, the shelf-life estimation procedure described in Section 8.1 should be applied
by combining data in different batches. L(t) in Equation 8.2 was computed. For a
given η, the intersect of the horizontal line and L(t) gives the shelf-life of the drug
product. For η = 90%, the estimated shelf-life is about 21 months for container type
1 and 22 months for container type 2.

8.5 Ordinal Responses

In this section we consider the situation where yi j is an ordinal response with more
than two categories. We introduce the following three approaches.

8.5.1 Generalized Linear Models

Suppose a parametric model (conditional on the covariate) can be obtained for the
response yi j . For example, yi j follows a binomial distribution or a (truncated) Poisson
distribution, given xi j . Then, Model 8.1 (which is a generalized linear model) still
holds with a proper modification of the variance function τ . For example, if yi j is
binomial with values 0, 1, . . . , m, then τ (z) = mψ(z)[1 − ψ(z)]. Consequently, the
results described in the previous sections can still be applied with the modification
of the function τ . Under this approach, it is assumed that the mean of the discrete
response is an appropriate summary measure for the stability analysis.

8.5.2 Threshold Approach (Multivariate Generalized Models)

Suppose the ordinal response y is a categorized version of a latent continuous vari-
able U . For example, if y is a grouped continuous response, then U may be the
unobserved underlying continuous variable. Suppose the relationship between y and
U is determined by

y = r if and only if θr < U ≤ θr+1, r = 0, 1, . . . , m,

where θ0 = −∞, θm = ∞, and θr , r = 1, . . . , m − 1 are unknown parameters.
Assume further that the latent variable U and the covariate x follow a linear regression
model,

U = −β ′x + ε,

where ε is a random error with distribution function F . Then,

P(y ≤ r |x) = F(θr+1 + β ′x), r = 0, 1, . . . , m.
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This is referred to as the threshold approach (Fahrmeir and Tutz, 1994). If F(z) =
1/(1 + e−z/σ ) (the logistic distribution with mean 0 and variance σ 2π2/3), then

P(y ≤ r |x) = e(θr+1+β ′x)/σ

1 + e(θr+1+β ′x)/σ
= ψ(θ̃r+1 + β̃ ′x),

where θ̃r = θr/σ and β̃ = β/σ .
Consider the case of no batch-to-batch variation. Suppose the shelf-life of the drug

product is defined to be the time interval that the mean of U remains above the
specification ψ−1(η). Let y(r )

i j = I (yi j ≤ r ), where I (·) is the indicator function.
Then, an extension of Model 8.1 is

E
(

y(r )
i j

) = ψ(β̃ ′xi j ), i = 1, . . . , K , (8.8)

Var
(

y(r )
i j

) = τ (β̃ ′xi j ), j = 1, . . . , ni ,

r = 0, 1, . . . , m − 1. Since y(r )
i j , r = 0, 1, . . . , m are dependent, Equation 8.8

is a multivariate generalized linear model. Maximum likelihood estimation can be
carried out as described in Section 3.4 of Fathrmeir and Tutz (1994). Let L(t) be
an approximate 95% lower confidence bound for β̃ ′x(t) based on the maximum
likelihood estimation. Then, the estimated shelf-life can still be defined by Equation
8.3. A combination of this approach and the method in Section 8.2 can be used to
handle the case where random batch-to-batch variation is present.

8.5.3 Binary Approach

The threshold approach involves some complicated computation, since a multivariate
generalized linear model has to be fitted. A simple but not very efficient approach is
to binarize the ordinal responses. Let r0 be a fixed threshold and define ỹi j = 0 if
yi j ≤ r0 and 1 otherwise. If the ordinal response y follows the model described in the
threshold approach, then

P(y ≤ r0|x) = F(θr0+1 + β ′x) = ψ(θ̃r0+1 + β̃ ′x)

and Model 8.1 holds for the summary data set {ỹi j }. Thus, we can apply the methods
described in the previous sections.

8.6 Concluding Remarks

In practice, the appearance, color, and odor of a drug product may not have a direct
impact on the potency (strength) of a drug product. However, changes in appearance,
color, and odor may be an indication that a significant change in potency has occurred.
If this occurs, it is suggested that a retest of stability of the same batch be conducted to
confirm that the potency of the drug product remains within approved specifications

Binod April 12, 2007 11:4 C9055 Chapter 8



8.6 Concluding Remarks 185

prior to its expiration dating period. As indicated earlier, stability tests for appearance,
color, and odor (discrete responses) are often conducted for quality assurance and
quality control. The possible causes (related or unrelated to the degradation of the
drug product) of significant changes in appearance, color, or odor should be identified,
controlled, and removed before the drug product is released for marketplace.

Unlike stability tests for potency, we consider an approximate 95% lower prediction
bound for t∗

future rather than an approximate 95% lower confidence bound for t∗
future

as an estimated shelf-life for some secondary characteristics of drug products such
as appearance, color, and odor. These characteristics may be related to one another.
Individual estimates of drug shelf-lives based on these discrete responses may provide
a much shorter drug shelf-life. In this case it is suggested that either (a) the quality
of the drug product in terms of the discrete response be improved or (b) the product
specification of the discrete response be adjusted to achieve the established drug
shelf-life estimated based on the strength of the drug product.
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Chapter 9

Stability Analysis with Multiple Components

In the previous chapters we only considered a drug product with a single active
ingredient. In practice, while most drug products consist of a single active ingredient,
some drug products contain multiple active ingredients (see e.g., Pong and Raghavarao
(2001) Chow, Pong, and Chang, 2006). For example, Premarin (conjugated
estrogens, USP) is known to contain at least five active ingredients: estrone, equi-
lin, 17α-dihydroequilin, 17α-estradiol, and 17β-dihydroequiliin. Other examples
include combinational drug products, such as the traditional Chinese medicines
(see, e.g., Stefan and Chantal, 2005; Chow, Pong, and Chang, 2006). For a drug
product with multiple active ingredients (or components), an ingredient-by-ingredient
(or component-by-component) stability analysis may not be appropriate, since these
active ingredients may have some unknown interactions.

In the next section the basics of obtaining an estimate of drug shelf-life for drug
products with multiple components is described. The model and assumptions are
given in Section 9.2. In Section 9.3 we introduce the statistical method proposed by
Chow and Shao (2007) for estimating drug shelf-life for drug products with multiple
components. An example concerning a traditional Chinese medicine is given in
Section 9.4 to illustrate the described statistical method. A brief discussion is given
in the last section of this chapter.

9.1 Basic Idea

Let y(t, k) be the potency of the kth ingredient at time t after the manufacture of
a given drug product, k = 1, . . . , p. For ingredient k, its shelf-life is the time
interval at which E[y(t, k)] (the expectation of y[t, k]) remains within a specified
limit, whereas the shelf-life for the drug product may be the time interval at which
E[ f (y(t, 1), . . . , y(t, p))] remains within the specified limits, where f is a function
(such as a linear combination of y[t, 1], . . . , y[t, p]) that characterizes the impact
of all active ingredients. In general, f is a vector-valued function with a dimension
q ≤ p.

If data are observed from y(t, 1), . . . , y(t, p) and the function f in the previous
discussion is a known function, then stability analysis can be made by using the
transformed data z(t) = f [y(t, 1), . . . , y(t, p)]. If the dimension of f is 1, then z(t)
can be treated as a single ingredient. If the dimension of f is q > 1, then one may
define the shelf-life to be the minimum of the shelf-lives τ1, . . . , τq , where τh is the
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shelf-life when the hth component of z(t) is treated as a single ingredient. One special
case is where f is the identity function so that the shelf-life is the minimum of all
shelf-lives corresponding to different ingredients y(t, k), k = 1, . . . , p.

In practice, however, f is typically unknown. Although the best way to estimate
f is to fit a model between the y and z variables, it requires data observed from both
y and z, which is not a common practice in the pharmaceutical industry, because the
variable z is not clearly defined in many problems, such as the traditional Chinese
medicines (see, e.g., Chow, Pong, and Chang 2006). Chow and Shao (2007) assumed
that the components of z are linear combinations of the components of y and proposed
a method to establish the shelf-life. Note that Chow and Shao’s approach is basically
an application of the factor model in multivariate analysis (see, e.g., Johnson and
Wichern, 1998).

9.2 Models and Assumptions

Let y(t) denote the p dimensional vector whose kth component is the potency of the
kth ingredient at time t after the manufacture of a given drug product, k = 1, . . . , p.
We assume that the drug potency is expected to decrease with time. If p = 1, that
is, y(t) is univariate, the current established procedure to determine a shelf-life is
to use the time at which a 95% lower confidence bound for the mean degradation
curve E[y(t)] intersects the acceptable lower product specification limit as specified
in the 1987 FDA stability guideline (see also ICH Q1A (R2), 2003). Let η be the
vector whose kth component is the lower product specification limit as specified in
the USP/NF for the kth component of y(t).

Assume that, for any t ,

y(t) − E[y(t)] = LFt + εt , (9.1)

where L is a p × q nonrandom unknown matrix of full rank, Ft and εt are un-
observed independent random vectors of dimensions q and p, respectively, E(Ft ) = 0,
Var(Ft ) = Iq (the identity matrix of order q), E(εt ) = 0, Var(εt ) = 
, and 
 is an
unknown diagonal matrix of order p. Note that Model 9.1 with the assumptions on Ft

and εt is the so-called orthogonal factor model (see Johnson and Wichern, 1998). If εt

is treated as a random error, then Model 9.1 assumes that the p dimensional ingredient
vector y(t) is governed by a q dimensional unobserved vector Ft . Normally q is much
smaller than p.

Let z(t) = (L ′L)−1L ′[y(t) − η]. It follows from Model 9.1 that

z(t) − E[z(t)] = Ft + (L ′L)−1L ′εt . (9.2)

If L is known, then Model 9.2 suggests performing a stability analysis based on
the transformed data observed from z(t). In practice, since L is unknown, if we can
estimate L based on Model 9.1 and the observed data from y(t), then we can carry
out a stability analysis using the transformed z(t) with L replaced by its estimate.
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Let x(t) be an s dimensional covariate vector associated with y(t) at time t . For
example, x(t) = (1, t)′ (s = 2) or x(t) = (1, t, t2)′ (s = 3). We assume the following
model at any time t :

E[y(t) − η] = Bx(t), Var[y(t)] = �, i = 1, . . . , m, j = 1, . . . , n,

(9.3)

where B is a p × s matrix of unknown parameters and � > 0 is an unknown p × p
positive definite covariance matrix. Since z(t) = (L ′L)−1L ′[y(t)−η], it follows from
Model 9.3 that

E[z(t)] = γ ′x(t), i = 1, . . . , m, j = 1, . . . , n, (9.4)

where γ = B ′L(L ′L)−1.

9.3 Shelf-Life Determination

Suppose we independently observe data yi j , i = 1, . . . , m, j = 1, . . . , n, where yi j

is the j th replicate of y(ti ) and t1, . . . ,tm are designed time points for the stability
analysis. Define

xi = x(ti ), zi j = (L ′L)−1L ′(yi j − η), i = 1, . . . , m, j = 1, . . . , n (9.5)

First consider the case of q = 1; that is, zi j in Model 9.5 is univariate. If zi j ’s are
observed, then an approximate 95% lower confidence bound for E[z(t)] = γ ′x(t) is

l(t) = γ̂ ′x(t) − t0.95,mn−s σ̂
√

D(t) (9.6)

where γ̂ is the least squares estimator of γ in Model 9.4 based on data from zi j ’s
and xi ’s, σ̂ 2 is the usual sum of squared residuals divided by its degrees of freedom
mn − s, t0.95,mn−s is the 95th percentile of the t-distribution with degrees of freedom
mn − s, and

D(t) =
[

n
m∑

i=1

x(t)′xi x
′
i x(t)

]−1

.

Hence, if zi j ’s are observed, a shelf-life according to the 1987 FDA stability
guideline is

τ = inf{t : l(t) ≤ 0}. (9.7)

In our problem yi j ’s, not zi j ’s, are observed. Hence, the lower confidence bound
l(t) in Equation 9.6 needs to be modified. Since γ ′ = (L ′L)−1L ′ B, we can ob-
tain an estimator of γ in two steps. At the first step we use Model 9.3, observed
data yi j ’s and xi ’s, and the multivariate linear regression (see, e.g., Johnson and
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Wichern, 1998) to obtain a least squares estimator B̂ of B. At the second step we
consider the orthogonal factor model of Model 9.1 and apply the method of principal
components (see, e.g., Johnson and Wichern, 1998) to obtain an estimator L̂ of L ,
using yi j −η− B̂xi , i = 1, . . . , m, j = 1, . . . , n. More precisely, L̂ is the normalized
eigenvector corresponding to the largest eigenvalue of the sample covariance matrix
based on yi j − B̂xi , i = 1, . . . , m, j = 1, . . . , n. Let γ̂ = B̂ ′ L̂(L̂ ′ L̂)−1. The lower
confidence bound in Equation 9.6 is modified to

l(t) = γ̂ ′x(t) − t0.95,mn−s

√
x(t)′Vx(t), (9.8)

where V is the jackknife variance estimator of γ̂ (see, e.g., Shao and Tu, 1995); that
is,

V = mn − 1

mn

m∑
i=1

n∑
j=1

(γ̂i, j − γ̂ )(γ̂i, j − γ̂ )′,

where γ̂i, j is the estimator of γ calculated using the same method as in the calculation
of γ̂ but with the (i, j)th data point deleted.

The result for q = 1 is sufficient for applications with a small or moderate p. When
p is large, we propose the following procedure with 1 < q < p. Let B̂ be defined
as before, λk be the kth largest eigenvalue of the sample covariance matrix based on
yi j − η − B̂xi , i = 1, . . . , m, j = 1, . . . , n, and ek be the normalized eigenvector
corresponding to λk . Then, our estimator L̂ of L is the p×q matrix whose kth column
is λkek , k = 1, . . . , q . Our estimator of γ is still γ̂ = B̂ ′ L̂(L̂ ′ L̂)−1, which is an s × q
matrix. Let γ̂k be the kth column of γ̂ , k = 1, . . . , q,

lk(t) = γ̂ ′
k x(t) − t1−0.05/q,mn−s

√
x(t)′Vk x(t), (9.9)

and

Vk = mn − 1

mn

m∑
i=1

n∑
j=1

(
γ̂k,i, j − γ̂k

) (
γ̂k,i, j − γ̂k

)′
,

where γ̂k,i, j is the same as γ̂k but calculated with the (i, j)th data point deleted. Then,
lk(t), k = 1, . . . , q are approximate 95% simultaneous lower confidence bounds
for ζk(t), k = 1, . . . , q , where ζk(t) is the kth component of E[z(t)] = γ ′x(t). An
approximate level 95% shelf-life for the drug product (when the sample size mn is
large) is

τ = min
k=1,... ,q

τk,

where each τk is defined by the right-hand side of Equation 9.7 with l(t) replaced by
lk(t) and is a shelf-life for the kth component of z with confidence level (1−0.05/q)%.

9.4 An Example

To illustrate the proposed method for determining the shelf-life of a drug product
with multiple active ingredients, consider a stability study conducted for a traditional
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TABLE 9.1: List of Components
of a Traditional Chinese Medicine

Component Formulation

HE 60 mg
B 25 mg
C 25 mg
Excipient 90 mg

Total 200 mg

Chinese herbal medicine, which is newly developed for treatment of patients with
rheumatoid arthritis. This medicine contains three active botanical components,
namely Herba epimedii (H E), B extract, and C extract. Each of the three components
has been used as an herbal remedy since ancient times and is well documented in
the Chinese Pharmacopeia. The proportions of each components are summarized in
Table 9.1.

To establish a shelf-life for this product, a stability study was conducted for a time
period of 18 months under a testing condition of 25◦C/60% relative humidity. The
lower product specification limit for each component is 90%.

Stability data (percent of label claim) at each sampling time point for the three
components are given in Table 9.2.

Since p = 3, we consider that q = 1. Using the proposed procedure described in
the previous sections, we obtain l(t) in Equation 9.8 for various t (month), which are
given in Table 9.3.

Hence, the estimated shelf-life for this product is 27 months.

TABLE 9.2: Stability Data of the Traditional
Chinese Medicine

Sampling Time Point (Month)

Component 0 3 6 9 12 18

HE 99.6 97.5 96.8 96.2 94.8 95.3
99.7 98.3 97.0 96.0 95.1 94.8

100.2 99.0 98.2 97.1 95.3 94.6

B 99.5 98.4 96.3 95.4 93.2 91.0
100.5 98.5 97.4 94.9 94.5 92.1

99.3 99.0 97.3 95.0 93.1 91.5

C 100.0 99.5 98.9 98.2 97.9 97.5
99.8 99.4 99.0 98.5 98.0 97.9

101.2 99.9 100.3 99.5 98.9 98.0
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TABLE 9.3: �(+) Values for Various t

t 19 20 21 22 23 24 25 26 27 28
l(t) 4.97 4.36 3.75 3.14 2.52 1.90 1.28 0.66 0.03 −0.60

9.5 Discussion

This chapter introduces the method for determining the shelf-life of a drug product
with p active ingredients proposed by Chow and Shao (2007). Basically, Chow and
Shao (2007) assume that these active ingredients are linear combinations of q factors.
Since these factors are chosen using principal components, the first factor can be
viewed as the primary active factor, and the second factor can be viewed as the
secondary active factor. Chow and Shao (2007) assume that active ingredients decrease
with time. If one or more ingredients increase with time, then a transformation such
as g(y) = −y or g(y) = 1/y may be applied. If p is small or moderate, then q = 1
is recommended. If p is large, then adding a few more factors may be considered.
Since the principal components are orthogonal, adding more factors will not affect
the previous selected factors (except that t0.95,mn−s is changed to t1−0.05/q,mn−s) so
that one can compare the results in a sensitivity analysis. Finally, adding more factors
always results in a more conservative procedure.

Note that in their proposed approach, Chow and Shao (2007) assume that there
is no significant toxic degradant in the test drug product with multiple components.
This is a reasonable assumption for most traditional Chinese medicines since multi-
ple ingredients are used to reduce toxicities when used in conjunction with primary
therapy. However, when toxic degradation products are detected, special attention
should be paid to: (a) identity (chemical structure), (b) cross reference to informa-
tion about biological effects and the significance of the concentration likely to be
encountered, and (c) indications of pharmacological action or inaction as indicated in
the FDA guidelines for stability analysis. Chow and Shao’s approach is useful when
different ingredients degrade not independently of each other, which is the case for
most traditional Chinese medicines. If multiple ingredients degrade independently,
then an ingredient-by-ingredient analysis may be appropriate. If Chow and Shao’s
approach is applied, it is suggested that q be selected as q = 1 or q = 2 factors that
are ingredients having the most variability.



Chapter 10

Stability Analysis with Frozen Drug Products

Unlike most drug products, some drug products must be stored at specific tempera-
tures, such as −20◦C (frozen temperature), 5◦C (refrigerator temperature), and 25◦C
(room temperature), to maintain stability until use (Mellon, 1991). Drug products of
this kind are usually referred to as frozen products. Unlike the other drug products,
a typical shelf-life statement for frozen drug products usually consist of multiple
phases with different storage temperatures. For example, a commonly adopted shelf-
life statement for frozen products could be 24 months at −20◦C followed by 2 weeks at
5◦C. As a result, the drug shelf-life is determined based on a two-phase stability study.
However, no discussion of the statistical methods for estimating two-phase shelf-life
is available in either the FDA stability guidelines or the ICH stability guidelines.
Mellon (1991) suggested that data obtained from the two-phase stability study be
analyzed separately to obtain a combined shelf-life for the frozen products. Mellon’s
method does not account for the fact that stability at the second phase may depend
on the stability at the first phase. That is, an estimated shelf-life at the second phase
following 3 months of the first phase may be longer than that following 6 months
of the first phase. To overcome this problem, Shao and Chow (2001a) proposed a
method for a two-phase stability study using a two-phase linear regression based on
the statistical principle described in both the FDA and ICH stability guidelines.

In the next section, the concept of a two-phase stability study is introduced, followed
by statistical methods for two-phase shelf-life estimation (Section 10.2). An example
is given in Section 10.3 to illustrate the use of the described method. Section 10.4
provides a brief discussion of two-phase shelf-life estimation in stability analysis.

10.1 Two-Phase Stability Study

In the pharmaceutical industry two-phase stability studies are usually conducted to
characterize degradation of frozen drug products. The first phase is to determine drug
shelf-life under a frozen storage condition such as −20◦C, and the second phase is
to estimate drug shelf-life under a refrigerated condition. A first-phase stability study
is usually referred to as a frozen study, and a second-phase stability study is known
as a thawed study. The frozen study is usually conducted like a regular long-term
stability study, except that the drug is stored in frozen conditions. In other words,
stability testing will be normally conducted at 3-month intervals during the first year,
6-month intervals during the second year, and annually thereafter. Stability testing for
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the thawed study follows the stability testing for the frozen study. It may be performed
at 1-week (or 1-day) intervals up to several weeks.

Concerns in the design and analysis of two-phase stability studies for frozen prod-
ucts are as follows (Mellon, 1991):

� When are the best times to assay?

� How many assays should be made?

� Does frozen time affect thawed degradation?

� Does concentration level at time points during the frozen state (i.e., strength)
affect degradation during the thawed state?

� Do different lots affect degradation?

Mellon (1991) also provided a number of approaches that may be used for the
analysis of frozen drug products:

� Cell means model

� Estimation of trends separately for each lot and temperature

� One grand regression, including lot and temperature

� Regression of frozen and thawed data separately

With separate analyses for frozen and thawed studies, Mellon (1991) suggested
that the following approximate confidence intervals be obtained:

� Bonferroni intervals

� Confidence intervals based on asymptotic theory

� Confidence intervals using bootstrap or jackknife procedures

� Confidence intervals using the Satterthwaite approximation

The most important issue for determining shelf-life for frozen drug products is
that the same acceptable lower specification limit cannot be used for both frozen
and thawed studies. The strength of a frozen drug product at the time it is to be
administered at room temperature is very likely to be below the acceptable lower
specification limit if it is used to establish the shelf-life for the frozen drug product.
Second, determination of the shelf-life for refrigerated and ambient conditions should
be analyzed separately from that for frozen conditions. The shelf-life for frozen
conditions, measured in months, is usually much longer than that under refrigerated
or ambient conditions, measured in either weeks or days. Therefore, the design for
the thawed study should have different measures for time points than the frozen study.
If one uses only one regression model to fit the data from both states, the resulting
estimated shelf-lives under refrigerated and ambient conditions may not be reliable,
owing to rapid degradation and a much shorter time interval for the thawed study.
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As indicated earlier, unlike the usual stability studies, the stability at the second
phase (thawed study) may depend on the stability at the first phase (frozen study).
Thus, it is very likely that an estimated shelf-life from the thawed study following
3 months of frozen storage may be different from that following 6 months of frozen
storage. As a result, design strategies for selecting the sampling time points as well
as the sample size in the second phase need to be further studied. Shao and Chow
(2001a) suggested having shorter sampling time intervals for the second phase in later
months to have a more accurate assessment of the degradation of the drug products.
In other words, collect assay more frequently in later weeks.

10.2 Stability Data and Model

For estimating the first-phase shelf-life, we have the following stability data

yik = α + βti + eik,

where yik is the drug characteristic of interest (e.g., potency, dissolution, etc.), i =
1, . . . , I � 2; k = 1, . . . , Ki � 1; α and β are unknown parameters, and eik’s
are independent and identically distributed random errors with mean 0 and variance
σ 2

i > 0. Typically, ti = 0, 3, 6, 9, 12, and 18 months. Thus, the total number of data
for the first phase is

n1 =
∑

i

Ki ,

which equals IK if Ki = K for all i . Since stability studies are usually conducted
under well-controlled conditions, the error variance σ 2

i is expected to be small. Thus,
the sample size n1 is often not very large.

At time ti , Ki j ≥ 1 second-phase stability data are collected at time intervals ti j ,

j = 1, . . . , J ≥ 2. The total number of data for the second phase is

n2 =
∑

i

∑
j

Ki j ,

which equals IJK if Ki j = K for all i and j . Data from the two phases are independent.
Typically,

ti j = ti + s j

where s j is time in the second phase and s j = 1, 2, 3 days (or weeks) and so on.
Since the degradation lines for the two phases intersect, the intercept of the second-
phase degradation line at time t is α + βt. Let γ (t) be the slope of the second-phase
degradation line at time t . Then, at time ti , i = 1, . . . , I, we have second-phase
stability data

yi jk = α + βti + γ (ti )s j + ei jk,
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where ei jk’s are independent and identically distributed random errors with mean 0
and variance σ 2

2i > 0. For simplicity, we assume that γ (t) is a polynomial in t with
unknown coefficients. Typically, γ (t) could be

� γ (t) = γ0 (common slope model)

� γ (t) = γ0 + γ1t (linear trend model)

� γ (t) = γ0 + γ1t + γ2t2 (quadratic trend model)

In general, γ (t) could be expressed as

γ (t) =
H∑

h=0

γhth, (10.1)

where γh’s are unknown parameters and

H + 1 <
∑

j

Ki j , for all i and H < I.

In the pharmaceutical industry drug products are usually manufactured in different
batches and the FDA requires testing of at least three batches, and preferably more,
in a stability analysis to account for batch-to-batch variation. Thus, typically,

Ki = Ki j = K

is the number of batches tested in a stability analysis. According to the FDA, if the
p-value in testing batch-to-batch variation is larger than 0.25, then batch-to-batch
variation can be ignored and the analysis can be done by treating data from different
batches as replicates; otherwise, the shelf-life for the drug product is the minimum of
the shelf-lives of different batches, where each shelf-life for a batch is obtained using
data from the given batch only.

10.2.1 Estimating the First-Phase Shelf-Life

Following the 1987 FDA stability guideline and the ICH Q1A (R2) guideline for
stability, the first-phase shelf-life can be estimated based on the first-phase data, that
is, {yik} as the time point at which the lower product specification limit intersects the
95% lower confidence bound of the mean degradation curve (FDA, 1987; ICH Q1A
[R2], 2003). We first consider the case where there is no batch-to-batch variation
(or the batch-to-batch variation can be ignored). Let α̂ and β̂ be the least squares
estimators of α and β based on the first phase data. Now, let

L(t) = α̂ + β̂t − t0.95,n1−2

√
v(t)
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be the 95% lower confidence bound for x + βt , where t0.95,m is the 95th quantile of
the t-distribution with m degrees of freedom and

v(t) = σ̂ 2
1

[
1

n1
+ (t − t̄)2∑

i Ki (ti − t̄)2

]
,

t̄ = 1

n1

∑
i

Ki ti ,

and

σ̂ 2
1 = 1

n1 − 2

∑
i,k

(yik − α̂ − β̂ti )
2,

which is the usual error variance estimator based on residuals. Suppose the lower
limit for the drug characteristic is η (we assume that x +βt decreases as t increases).
Then, the first phase shelf-life is the first solution of L(t) = η, that is

t̂ = inf{t : L(t) ≤ η}.
The first-phase shelf-life is constructed so that

P{t̂ ≤ the true first-phase shelf-life} = 95% (10.2)

assuming that eik’s are normally distributed. Without the normality assumption, the
above result approximately holds for small σ 2

1 /n1 (large sample size n1 or small error
variance σ 2

1 ). In practice, t̂ may be much larger than the study range, the maximum
of ti ’s in the study. The validity of the shelf-life t̂ depends on the validity of the
statistical model assumption for t-values beyond the study range. Usually, the FDA
allows an estimated shelf-life beyond the study range for up to 6 months. Unless the
drug product is relatively stable, the FDA may question an estimated shelf-life of
more than 6 months beyond the study range.

If there is batch-to-batch variation, which is a fixed (nonrandom) effect, then the
shelf-life is

t̂ = min
k

t̂k,

where t̂k is the shelf-life obtained using data from the kth batch and the method
described in Chapter 3. When there is batch-to-batch variation, the methods described
in Chapter 5 (fixed batch effects) and Chapter 6 (random batch effects) are useful for
establishing the first-phase shelf-life.

10.2.2 Estimating the Second-Phase Shelf-Life

We now consider the second-phase shelf-life, under Equation 10.1. Again, we first
consider the case where there is no batch-to-batch variation (or the batch-to-batch
variation can be ignored). Since the slope of the second-phase degradation line may
vary with t , we estimate the slope at time ti using the second-phase data at ti :

bi =
∑

j,k(s j − s̄)yi jk∑
j,k(s j − s̄)2

,



198 Stability Analysis with Frozen Drug Products

where s j ’s are the second-phase time intervals, and s̄ is the average of s j ’s. Since
H < I , the unknown parameters γh in Equation 10.1 can be estimated by the least
squares estimators under the following model:

bi =
H∑

h=0

γhth
i + error, (10.3)

that is, the parameter vector γ = (γ0, γ1, . . . , γH )′ can be estimated by

γ̂ = (W ′W )−1W ′b, (10.4)

where A′ is the transpose of a vector or matrix A, that is,

b = (b1, b2, . . . , bI )′,
W ′ = [l(t1), . . . , l(tI )],

and

l(t) = (1, t, . . . , t H )′.

Consequently, the slope γ (t) can be estimated by

γ̂ (t) = [l(t)]′γ̂ = [l(t)]′(W ′W )−1W ′b.

The covariance matrix of γ̂ is given by

V (γ̂ ) = (W ′W )−1W ′W (W ′W )−1,

where  is an I × I diagonal matrix whose i th diagonal element is

σ 2
2i∑

j,k(s j − s̄)2
.

Each σ 2
2i can be estimated by

σ̂ 2
2i = 1∑

j Ki j − (H + 2)

∑
j,k

[yi jk − ȳi − bi (s j − s̄)]2,

where ȳi is the average of yi jk over all j and k. Under the assumption of equal
variances (i.e., σ 2

2i = σ 2
2 ) for all i , σ 2

2 can be estimated by the combined estimator

σ̂ 2
2 = 1

n2 − I (H + 2)

∑
i, j,k

[yi jk − ȳi − bi (s j − s̄)]2. (10.5)

Let ̂ be the same as  but with σ 2
2i replaced by σ̂ 2

2i or σ̂ 2
2 . Then γ̂ and its estimated

covariance matrix (W ′W )−1W ′̂W (W ′W )−1 can be used to form approximate t-tests
to select a polynomial model in Equation 10.1. The variance of γ̂ can be estimated
by

V̂ [γ̂ (t)] = [l(t)]′(W ′W )−1W ′̂W (W ′W )−1[l(t)].
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For fixed t and s, let

v(t, s) = v(t) + V̂ [γ̂ (t)]s2,

and

L(t, s) = α̂ + β̂t + γ̂ (t)s − t0.95,n1+n2−2−I (H+2)

√
v(t, s).

For any fixed t less than the first-phase true shelf-life, that is, t satisfying α + βt >

η, the second-phase shelf-life can be estimated as

ŝ(t) = inf{s ≥ 0 : L(t, s) ≤ η}
If L(t, s) < η for all s, then ŝ(t) = 0. That is, if the drug product is taken out of the
first-phase storage condition at time t , then the estimated second-phase shelf-life is
ŝ(t). The justification for ŝ(t) is that for any t satisfying α + βt > η,

P{ŝ(t) ≤ the true second phase shelf-life} ≈ 95%

for large sample sizes or small error variances.
In practice, the time at which the drug product is taken out of the first-phase storage

condition may be unknown. In such a case we may apply the following method to
assess the second-phase shelf-life. Select a set of time intervals

tl < t̂, l = 1, . . . , L

and construct a table (or a figure) for [tl , ŝ(tl+1)], l = 1, . . . , L (see, for example,
Table 10.1). If a drug product is taken out of the first-phase storage condition at time
t0, which is between tl and tl+1, then its second-phase shelf-life is ŝ(tl+1). If there is
batch-to-batch variation, which is a fixed effect, we can apply the method to the data
from each batch and use the FDA’s approach by taking the minimum. Extensions to
the case of random batch-to-batch variation require further study.

10.3 An Example

To illustrate the application of the method for determining the shelf-life for the frozen
product described in the previous section, we consider a stability test conducted for
characterizing the degradation of a frozen product at a pharmaceutical company. The
pharmaceutical company wants to establish a shelf-life for the product at a frozen
condition of −20◦C followed by a shelf-life at a refrigerated condition of 5◦C. As
a result, the stability study consisted of a frozen phase at −20◦C and a refrigerated
phase (or thawed phase) at 5◦C. During the frozen phase the product stored at −20◦C
was tested at 0, 3, 6, 9, 12, and 18 months. At each sampling time point of the frozen
phase, the product was tested at 1, 2, 3, and 5 weeks at the refrigerated condition
of 5◦C. Three batches of the drug product were used at each sampling time point
(i.e., Ki = Ki j = 3). Assay results in percent of label claim (i.e., labeled concentration
at g/50 ml) are given in Table 10.2. The p-values from F-tests of batch-to-batch
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TABLE 10.1: Lower Confidence Bounds and Estimated Shelf-Lives

First Phase Second Phase

Common Slope Model Linear Trend Model

Month t ŷ(t) [V̂ (ŷ(t))]1 / 2 L(t) Day s L(t, s) Day s L(t, s)

1 −0.2056 0.0037 99.70 40 90.14 42 90.21
2 −0.2087 0.0034 99.41 39 90.05 41 90.08
3 −0.2118 0.0031 99.11 38 90.21 39 90.19
4 −0.2149 0.0029 98.82 37 90.15 38 90.06
5 −0.2180 0.0027 98.52 36 90.09 36 90.15
6 −0.2211 0.0025 98.22 35 90.02 35 90.01
7 −0.2242 0.0024 97.93 33 90.19 33 90.10
8 −0.2273 0.0024 97.34 32 90.13 31 90.19
9 −0.2304 0.0024 97.34 31 90.06 30 90.03

10 −0.2335 0.0025 97.02 29 90.23 28 90.12
11 −0.2366 0.0027 96.72 28 90.17 26 90.21
12 −0.2397 0.0029 96.42 27 90.10 25 90.05
13 −0.2428 0.0031 96.11 26 90.04 23 90.16
14 −0.2459 0.0034 95.81 24 90.20 22 90.01
15 −0.2490 0.0037 95.50 23 90.14 20 90.14
16 −0.2521 0.0040 95.20 22 90.07 19 90.01
17 −0.2552 0.0043 94.89 20 90.23 17 90.17
18 −0.2583 0.0046 94.59 19 90.16 16 90.06
19 −0.2614 0.0050 94.28 18 90.09 14 90.25
20 −0.2645 0.0054 93.97 17 90.02 13 90.17
21 −0.2676 0.0057 93.67 15 90.18 12 90.09
22 −0.2707 0.0061 93.36 14 90.11 11 90.03
23 −0.2738 0.0064 93.05 13 90.04 9 90.28
24 −0.2769 0.0068 92.75 11 90.20 8 90.24
25 −0.2800 0.0072 92.44 10 90.13 7 90.20
26 −0.2831 0.0076 92.13 9 90.05 6 90.18
27 −0.2862 0.0080 91.82 7 90.21 5 90.16
28 −0.2893 0.0083 91.52 6 90.14 4 90.15
29 −0.2924 0.0087 91.21 5 90.06 3 90.15
30 0.2955 0.0091 90.90 3 90.22 2 90.15
31 −0.2986 0.0095 90.60 2 90.14 1 90.15
32 −0.3017 0.0099 90.30 1 90.07 0 90.30
33 −0.3048 0.0103 89.98

Source: Shao, J. and Chow, S.C. (2001a). Statistics in Medicine. 20, 1239–1248.

variation for two phases of data are larger than 0.25. Thus, we combined three batches
in the analysis. As discussed in the previous section, if batch-to-batch variation is
significant, we should consider the minimum of within-batch shelf-lives.

Assay results indicate that the degradation of the drug product at the refrigerated
phase is faster at later sampling time points of the frozen phase. Assuming the linear
trend model,

γ (t) = γ0 + γ1t
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TABLE 10.2: Stability Data

Time Stability Data

t (months) s (days) Frozen Condition Refrigerated Condition

0 100.0, 100.1, 100.1
3 99.2, 99.0, 99.1

7 97.7, 97.4, 97.4
14 96.5, 96.2, 95.9
21 94.8, 94.5, 94.6
35 91.7, 91.8, 91.4

6 98.2, 98.2, 98.1
7 96.7, 96.5, 96.7
14 95.4, 95.2, 95.1
21 93.6, 93.5, 93.6
35 90.3, 90.6, 90.5

9 97.5, 97.4, 97.5
7 95.9, 95.6, 95.7
14 94.5, 94.3, 94.1
21 92.7, 92.5, 92.5
35 89.3, 89.5, 89.3

12 96.4, 96.5, 96.5
7 94.5, 94.7, 94.8
14 92.8, 93.3, 93.4
21 91.3, 91.4, 91.5
35 88.2, 88.2, 87.9

18 94.4, 94.6, 94.5
7 92.6, 92.6, 92.4
14 91.0, 91.1, 90.6
21 88.9, 89.0, 89.0
35 85.1, 85.6, 85.6

Source: Shao, J. and Chow, S. C. (2001a). Statistics in Medicine, 20, 1239–1248.

which is the case where H = 1 in Equation 10.1. Using Equation 10.4, we obtain the
following estimates:

γ̂0 = −0.2025 and γ̂1 = −0.0031

with estimated standard errors 0.0037 and 0.0004, respectively, where the combined
estimator given in Equation 10.5 was used to estimate the second-phase error vari-
ances. This results in, the null hypothesis that γ1 = 0 (which leads to the common
slope model γ (t) = γ0) is rejected based on an approximate t-test with significance
level ≤ 0.0001.

For convenience’s sake, Table 10.1 lists the lower confidence bounds L(t) and
L(t, s), where L(t) is obtained by using the FDA’s method and ignoring the data
from the second-phase, and L(t, s) is computed by using the method described in
the previous section. For comparison, the results are given under both common slope
and linear trend models. The acceptable lower product specification limit in this
example is 90%. Thus, the first-phase (frozen) shelf-life for the drug product is given
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as 32 months. Since the study range for the first-phase is 18 months, a first-phase
shelf-life of 24 months can be granted from the FDA. A longer first-phase shelf-life
might be granted since the drug product is very stable.

Note that the results for L(t, s) in Table 10.1 are given at s’s such that L(t, s) > 90%,
whereas L(t, s + 1) < 90%. Thus, the s’s listed in Table 10.1 are the second-phase
(refrigerated) shelf-lives for various t’s. For example, if the drug product comes out
of the frozen storage condition at month 10, its refrigerated shelf-life is 29 days under
the common slope model or 28 days under the linear trend model. In practice, if we
are unable to determine which of the two methods (common slope and linear trend) is
significantly better, we could adopt a conservative approach by selecting the shorter of
the shelf-lives computed under the two methods. A higher-degree polynomial model
does not always produce shorter shelf-lives at the second phase. In our example
the linear trend model gave shorter shelf-lives in later months but longer second-
phase shelf-lives in early months. This is because under the common slope model,
the estimated common slope is the average of the five estimated slopes (in different
months) that are getting more negative with time t since γ̂1 < 0.

10.4 Discussion

In practice, the assumption of simple linear regression in two phases of stability
studies may not be appropriate. For example, there may be acceleration in decay with
s in the second phase. Shao and Chow’s method can be easily extended to the case
where polynomial regression models are considered in both phases. For example,
suppose that in the second phase

yi jk = α + βti + γ (ti )s j + ρ(ti )s
2
j + ei jk,

where both γ (t) and ρ(t) are polynomials. At month ti , let bi and ci be the least
squares estimates of the coefficients of the linear and quadratic terms in the second-
phase quadratic model. Then, estimators of γ (t) and ρ(t) can be obtained using

bi = γ (ti ) + error,

and

ci = ρ(t) + error,

which is similar to Equation 10.3. Usual model diagnostic methods may be applied
to select an adequate model. Further research on models more complicated than
polynomials is needed.

The selection of sampling time points in the second-phase stability test depends
on how fast the degradation would be. It may be a good idea to have shorter time
intervals for the second phase in later months. For example, we may collect assays
more frequently in later weeks. Design strategies on how to select the sampling time
points as well as the sample sizes in the second phase need to be further studied as
well.



Chapter 11

Stability Testing for Dissolution

In the previous chapters we focused on stability testing for strength (potency) and
some discrete drug characteristics such as odor, color, and hardness of oral solid
dosage form. In practice, it is also important to make sure other characteristics such
as dissolution will remain within approved specification limits prior to the drug
expiration date. In the pharmaceutical industry in vitro dissolution testing is one
of the primary United States Pharmacopeia-National Formulary (USP-NF) tests that
is often performed to ensure that a drug product meets the USP-NF standards for
identity, strength, purity, stability, and reproducibility. As indicated in Chapter 1, dis-
solution failure was one of the top 10 reasons for drug recalls in the fiscal year of
2004 (it becomes the top two reasons for drug recalls in the fiscal year of 2005). As
a result, dissolution testing at various critical stages of the manufacturing process for
in-process controls, at the end of manufacturing process (final product) for quality
assurance, and at commercial marketing for stability plays an important role to en-
sure that the drug product meets the USP-NF standards prior to its expiration date.
In addition, after a drug is approved for commercial use, there may be changes with
respect to chemistry, manufacturing, and controls. Before the postapproval change
formulation can be approved, the Food and Drug Administration (FDA) requires that
similarity in dissolution profiles between postchange and prechange formulations be
established. In this chapter dissolution testing including the USP-NF dissolution test
and stability testing for dissolution profiles are discussed.

The rest of this chapter is organized as follows. In the next section sampling plans,
testing procedures, and acceptance criteria for USP-NF dissolution testing are briefly
outlined. Also included in this section are the assessment of the probability lower
bound of the USP-NF dissolution test (Chow and Shao, 2002b) and a set of recently
proposed three-stage sequential dissolution test rules (Tsong et al., 2004). In Section
11.2 the concept of assessing similarity between dissolution profiles is introduced.
The f2 similarity factor recommended by the FDA is also discussed in this section.
Statistical methods based on a time series model and a set of hypotheses for the sim-
ilarity factors for assessment of similarity between dissolution profiles are discussed
in Section 11.3. Section 11.4 illustrates the described statistical methods through
numerical examples. Concluding remarks are given in the last section of this chapter.

11.1 USP-NF Dissolution Testing

Dissolution testing is typically performed by placing a dosage unit in a transparent
vessel containing a dissolution medium. A variable-speed motor rotates a cylindrical
basket containing the dosage unit. The dissolution medium is then analyzed to

203



204 Stability Testing for Dissolution

determine the percentage of the drug dissolved. Dissolution testing is usually per-
formed on six units simultaneously. The dissolution medium is routinely sampled at
various predetermined time intervals to form a dissolution profile.

11.1.1 Sampling Plan and Acceptance Criteria

Dissolution testing usually involves a sampling plan and a set of acceptance criteria
for passage of the test. In what follows, commonly considered sampling plan and
acceptance criteria are briefly described.

11.1.1.1 USP-NF Three-Stage Acceptance Criteria

As indicated in Chapter 1, the USP-NF recommends a three-stage sampling plan and
acceptance criteria for dissolution testing. For the first stage (S1), six dosage units are
tested. The requirement for the first stage is met if each unit is not less than Q +5%. If
the product fails to pass S1, an additional six units are tested at the second stage (S2).
The product is considered to have passed S2 if the average of the 12 units from S1 and
S2 is equal to or greater than Q and if no unit is less than Q − 15%. If the product
fails to pass both S1 and S2, an additional 12 units are tested at a third stage (S3).
If the average of all 24 units from S1, S2, and S3 is equal to or greater than Q, no
more than two units are less than Q − 15%, and no unit is less than Q − 25%, the
product has passed the USP-NF dissolution test. To provide a better understanding,
the three-stage acceptance rule is summarized in Figure 11.1.

11.1.1.2 Three-Stage Sequential Dissolution Testing Rules

Tsong et al. (1995) criticized the USP-NF three-stage acceptance criteria for lacking
discriminating capability. In other words, the USP-NF three-stage acceptance criteria
often fail to reject batches or lots with large percentages below specifications. As an
alternative, Tsong et al. (2004) proposed a three-stage sequential dissolution testing
procedure based on the concept of O’Brien and Fleming’s (1979) alpha spending
function. Their proposed procedure is described below:

� At the first stage, based on a sample of six dosage units, accept the batch if
ȳ1 − Q > A1, where A1 = C(α1)(s1

√
6) − s1z0.1, ȳ1, and s1 are the sample

mean and sample standard deviation of the six dosage units, and C(αk) =
t1−αk ,nk−1(−√

nk z1−p) is the (1 − αk)th quantile of a noncentral t-distribution
with nk − 1 degrees of freedom and a noncentrality parameter of −√

nk z1−p.
Note that p is the regulatory required percent of dosage units that dissolve at
least Q percent of the label claim at a specific time. Otherwise, move to the
second stage and sample six more dosage units.

� At the second stage, accept the batch if ȳ2−Q > A2,where A2 = C(α2)(s2

√
12)

−s2z0.1 and ȳ2 and s2 are the sample mean and sample standard deviation of
the 12 dosage units; otherwise, move to the third stage and sample 12 more
dosage units.
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Stage 1, sample 6 tablets

No

Yes

Accept
No

Accept

Yes

No

Accept

Yes
Reject

Stage 2, sample additional 6 tablets

Stage 3 sample additional 12

Min (X) > Q + 5%

(X) ≥ Q
Min (X) > Q – 5%

(X) ≥ Q, Min (X) > Q – 15%

No more than 2 tablets < Q – 5%

Figure 11.1: USP-NF three stage acceptance rule. Source: Tsong, Chen, and Shah
(2004).

� At the third stage, accept the batch if ȳ3−Q > A3,where A3 = C(α3)(s3

√
24)−

s3z0.1 and ȳ3 and s3 are the sample mean and sample standard deviation of the
24 dosage units; otherwise reject the batch.

Note that αk can be selected like O’Brien and Fleming’s alpha spending function
(Lan and DeMets, 1983; O’Brien and Fleming, 1979). To provide a better understand-
ing, the three-stage sequential dissolution testing rules are summarized in Figure 11.2.

11.1.1.3 Remarks

The European Pharmacopeia uses the same criteria as USP-NF. The Japanese (Katori
et al., 1998), however, suggests a sampling plan based on a sampling mean that accepts
the unit when ȳ − 0.8226s > Q and min(y) ≥ Q − 10% in the first stage with six
dosage units, where ȳ and s are the sample mean and sample standard deviation,
respectively. If the unit is not accepted at the first stage, another six dosage units
are sampled, and the batch is accepted at the second stage if ȳ − 0.5184s > Q and
min(y) ≥ Q − 10%. The plan rejects the batch otherwise.

11.1.2 Probability Lower Bound

Under the three-stage sampling plan and acceptance criteria, it is of interest to evaluate
the probability of passing the USP-NF dissolution test, denoted by PDT . Knowledge
of PDT is useful in establishing a set of in-house specification limits for dissolution
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Stage 1, sample 6 tablets

No

Yes

Accept
No

Accept

Yes

No
Accept

Yes

Reject

Stage 2, sample additional 6 tablets

Stage 3, sample additional

12 tablets

(X1 – Q) > A1

(X2 – Q) > A2

(X3 – Q) > A3

Figure 11.2: Three-stage group sequential testing method. Source: Tsong, Chen,
and Shah (2004).

testing. Bergum (1990) provided the following lower bound for PDT :

PB = P24
Q−15 + 24P23

Q−15(PQ−25 − PQ−15)

+ 276P22
Q−15(PQ−25 − PQ−15)2 − P(ȳ24 ≤ Q),

where

Px = P(y ≥ x),

and ȳ24 is the average of the dissolution testing results from all three stages. Although
Bergum’s probability lower bound is easy to compute, it is somewhat conservative.
Alternatively, Chow, Shao, and Wang et al. (2002b) proposed a better probability
lower bound, which is described below.

Let yi , i = 1, . . . , 6, be the dissolution testing results from the first stage, yi ,

i = 7, . . . , 12, be the dissolution testing results from the second stage, yi , i =
13, . . . , 24, be the dissolution testing results from the third stage, and ȳk be the
average of y1, . . . , yk . Let Si denote the event that the i th stage of a k-stage USP-NF
test is passed. Also, let Ci j be the event that the j th criterion at the i th stage is met,
where j = 1,. . . , mi and i = 1, . . . , k. Then,

Si = Ci1 ∩ Ci2 ∩ · · · ∩ Ci mi , i = 1, . . . , k
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and the event of passing the USP-NF test is

S1 ∪ S2 ∪ · · · ∪ Sk .

Define the following events:

S1 = {yi ≥ Q + 5, i = 1, . . . , 6} ,

C21 = {yi ≥ Q − 15, i = 1, . . . , 12} ,

C22 = {ȳ12 ≥ Q} ,

C31 = {yi ≥ Q − 25, i = 1, . . . , 24} ,

C32 = {no more than two yi ’s < Q − 15} ,

C33 = {ȳ24 ≥ Q} ,

S2 = C21 ∩ C22,

S3 = C31 ∩ C32 ∩ C33.

Then,

PDT = P (S1 ∪ S2 ∪ S3) .

Bergum’s lower bound PB is obtained by using the inequalities

P (S1 ∪ S2 ∪ S3) ≥ P(S3),

and

P (C31 ∩ C32 ∩ C33) ≥ P (C31 ∩ C32) − P
(
Cc

33

)
,

where Ac denotes the complement of the event A and the fact that S3 = C31∩C32∩C33

and yi ’s are independent and identically distributed. When the probability P(Cc
33) is

not small, these inequalities are not sharp enough. From the equation

PDT = P(S3) + P
(

S2 ∩ Sc
3

) + P
(

S1 ∩ Sc
2

) + P
(

S1 ∩ Sc
2 ∩ Sc

3

)
,

a lower bound for PDT can be obtained by deriving lower bounds for P(S3), P(S2∩Sc
3),

and P(S1 ∩ Sc
2 ∩ Sc

3). We take Bergum’s bound PB as the lower bound for P(S3). For
P(S1 ∩ Sc

2), consider that

P
(

S2 ∩ Sc
3

) = P
(
C21 ∩ C22 ∩ S2

3

) ≥ P
(
C21 ∩ S2

3

) − P
(
Cc

22

)
= P

(
C21 ∩ Cc

31

) + P
(
C21 ∩ C31 ∩ Cc

32

) + P
(
C21 ∩ C31 ∩ C32 ∩ Cc

33

)
−P(ȳ12 < Q) ≥ P

(
C21 ∩ Cc

31

) + P
(
C21 ∩ C31 ∩ Cc

32

) − P(ȳ12 < Q).

Since yi ’s are independent and identically distributed,

P
(
C21 ∩ Cc

31

) = P(C21) − P(C21 ∩ C31)

= P12
Q−15 − P12

Q−15 P12
Q−25.
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Note that

P(C21 ∩ C31 ∩ C32) = P(yi ≥ Q − 15, i = 1, . . . , 24)

+12P

(
yi ≥ Q − 15, i = 1, . . . , 23

Q − 25 ≤ y24 < Q − 15

)

+
(

12
2

)
P

(
yi ≥ Q − 15, i = 1, . . . , 22

Q − 25 ≤ yi < Q − 15, i = 23, 24

)

= P24
Q−15 + 12P23

Q−15(PQ−25 − PQ−15) + 66P22
Q−15(PQ−25 − PQ−15)2.

Hence,

P
(
C21 ∩ C31 ∩ Cc

32

) = P (C21 ∩ C31) − P (C21 ∩ C31 ∩ C32)

= P12
Q−15 P12

Q−25 − P24
Q−15 − 12P23

Q−15(PQ−25 − PQ−15)

−66P22
Q−15(PQ−25 − PQ−15)2.

Thus, a lower bound for P(S2 ∩ Sc
3) is

PC = P12
Q−15 − P24

Q−15 − 12P23
Q−15(PQ−25 − PQ−15)

− 66P22
Q−15(PQ−25 − PQ−15)2 − P(ȳ12 < Q).

This lower bound is good when P(ȳ12 < Q) is small. However,

P
(

S2 ∩ Sc
3

) = P[C21 ∩ C22 ∩ (C31 ∩ C32 ∩ C33)c]

≥ P
(
C21 ∩ C22 ∩ Cc

33

)
≥ P

(
C22 ∩ Cc

33

) − P
(
Cc

21

)
= P(ȳ12 ≥ Q, ȳ24 < Q) − (

1 − P12
Q−15

)
.

The previous two inequalities provide an accurate lower bound if P(Cc
21) and P(C21 ∩

Cc
31 ∪ Cc

32) are small. Thus, a better lower bound for P(S2 ∩ Sc
3) is the larger of PC

and

PD = P(ȳ12 ≥ Q, ȳ24 < Q) − (
1 − P12

Q−15

)
.

For P(S1 ∩ Sc
2 ∩ Sc

3), consider that

P
(

S1 ∩ Sc
2 ∩ Sc

3

) = P
(

S1 ∩ Cc
21 ∩ Sc

3

) + P
(

S1 ∩ C21 ∩ Cc
22 ∩ Sc

3

)
≥ P

(
S1 ∩ Cc

21 ∩ Sc
3

)
= P

(
S1 ∩ Cc

21 ∩ Cc
31

) + P
(

S1 ∩ Cc
21 ∩ C31 ∩ Cc

32

)
+P

(
S1 ∩ Cc

21 ∩ C31 ∩ Cc
32 ∩ Cc

33

)
≥ P

(
S1 ∩ Cc

21 ∩ Cc
31

) + P
(

S1 ∩ Cc
21 ∩ C31 ∩ Cc

32

)
= P

(
S1 ∩ Cc

21 ∩ Cc
31

) + P
(

S1 ∩ Cc
21 ∩ C31

)
−P

(
S1 ∩ Cc

21 ∩ C31 ∩ C32
)

= P
(

S1 ∩ Cc
21

) − P
(

S1 ∩ C31 ∩ C32
)

+ P(S1 ∩ C21 ∩ C31 ∩ C32).
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Since

P
(

S1 ∩ Cc
21

) = P(S1) − P(S1 ∩ C21)

= P6
Q+5 − P6

Q+5 P6
Q−15,

then

P(S1 ∩ C31 ∩ C32) = P

(
yi ≥ Q + 5, i = 1, . . . , 6

yi ≥ Q − 15, i = 7, . . . , 24

)

+ 18P


 yi ≥ Q + 5, i = 1, . . . , 6

yi ≥ Q − 15, i = 7, . . . , 23
Q − 25 ≤ y24 < Q − 15




+
(

18
2

)
P


 yi ≥ Q + 5, i = 1, . . . , 6

yi ≥ Q − 15, i = 7, . . . , 22
Q − 25 ≤ yi < Q − 15, i = 23, 24




= P6
Q+5 P18

Q−25 + 18P6
Q+5 P17

Q−15(PQ−25 − PQ−15)

+ 153P6
Q+5 P16

Q−15(PQ−25 − PQ−15)2,

and

P(S1 ∩ C21 ∩ C31 ∩ C32) = P

(
yi ≥ Q + 5, i = 1, . . . , 6

yi ≥ Q − 15, i = 7, . . . , 24

)

+ 12P


 yi ≥ Q + 5, i = 1, . . . , 6

yi ≥ Q − 15, i = 7, . . . , 23
Q − 25 ≤ y24 < Q − 15




+
(12

2

)
P


 yi ≥ Q + 5, i = 1, . . . , 6

yi ≥ Q − 15, i = 7, . . . , 22
Q − 25 ≤ yi < Q − 15, i = 23, 24




= P6
Q+5 P18

Q−15 + 12P6
Q+5 P17

Q−15(PQ−25 − PQ−15)

+ 66P6
Q+5 P16

Q−15(PQ−25 − PQ−15)2.

A lower bound for P(S1 ∩ Sc
2 ∩ Sc

3) is given by

PE = P6
Q+5 − P6

Q+5 P6
Q−15 − 6P6

Q+5 P17
Q−15(PQ−25 − PQ−15)

− 87P6
Q+5 P16

Q−15(PQ−25 − PQ−15)2.

Combining these results, the following lower bound for PDT can be obtained

PDT = max(0, PB) + max(0, PC , PD) + PE .

This lower bound is given in terms of six probabilities: PQ+5, PQ−15, PQ−25,

P(ȳ12 < Q), P(ȳ24 < Q), and P(ȳ12 ≥ Q, ȳ24 < Q). If yi is normally distributed
with mean µ and variance σ 2, then

Px = 1 − �

(
x − µ

σ

)
,

P(ȳk < Q) = �

(√
k(Q − µ)

σ

)
.
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and

P(ȳ12 ≥ Q, ȳ24 < Q) = P(ȳ24 < Q) − P(ȳ12 < Q, ȳ24 < Q)

= �

(√
24(Q − µ)

σ

)
− �(Q − µ, Q − µ),

where x = Q + 5, Q − 15, or Q − 25; k = 12 or 24; � is the standard normal
distribution function; and � is the bivariate normal distribution with mean 0 and
covariance matrix

σ 2

24

(
2 1
1 1

)
.

If µ and σ 2 are unknown, they can be estimated using data from previously sampled
test results. Chow, Shao, and Wang et al. (2002b) studied the probability lower bound
through a simulation study. The results indicate that the probability lower bound for
PDT described above is better than Bergum’s lower bound and is a very accurate
approximation to PDT when σ ≥ 5. More details regarding the simulation results can
be found in Chow, Shao, and Wang et al. (2002b). Note that an improved method for
estimation of the probability lower bound of passing the dissolution test was recently
proposed by Wang (2007).

11.2 Dissolution Profile Testing

To characterize the dissolution profile, dissolution testing is typically performed by
placing a dosage unit in a transparent vessel containing a dissolution medium. The
dissolution medium is routinely sampled at various predetermined time points, for
example, at 15, 30, 45, 60, and 120 minutes or until asymptote is reached. For a
drug product, the curve of the mean dissolution rate over time is referred to as its
dissolution profile.

11.2.1 Scale-Up and Postapproval Changes

After a drug is approved for commercial marketing, there may be some changes with
respect to chemistry, manufacturing, and controls. Before the postchange formula-
tion can be approved for commercial use, its quality and performance need to be
demonstrated to show similarity to the prechange formulation. Because drug absorp-
tion depends on the dissolved state of drug products, in vitro dissolution testing is
believed to provide a rapid assessment of the rate and extent of drug release. As a
result, Leeson (1995) suggested that in vitro dissolution testing be used as a substitute
for in vivo bioequivalence studies to assess equivalence between the postchange and
prechange formulations. For this purpose, the FDA has issued several guidances re-
garding scale-up and postapproval changes (see, e.g., SUPAC-IR, 1995; SUPAC-MR,
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1997, and SUPAC-SS, 1997). These SUPAC guidances make recommendations to the
sponsors of new drug applications, abbreviated new drug applications, and abbrevi-
ated antibiotic drug applications regarding the following four types of postapproval
changes:

� The components or compositions

� The site of manufacture

� The scale-up/scale-down of manufacture

� The manufacturing process and equipment of a formulation

If dissolution profile similarity is demonstrated between the prechange drug product
and the postchange formulation, in vivo bioequivalence testing can be waived for most
changes.

11.2.2 Dissolution Profile Comparison

In practice, depending on the study objectives, we may want to compare dissolution
profiles of a given batch of a drug product at two different sampling time intervals,
different batches of a drug product at a given time sampling time interval, or two drug
products at a given sampling time interval. For comparison of dissolution profiles,
several methods have been proposed in the literature. These methods include model-
dependent and model-independent methods, which are described below.

11.2.2.1 Model-Dependent Methods

For comparison of dissolution profiles between a test product and a reference product,
Tsong et al. (1995) suggested modeling the dissolution profile curves based on previ-
ously approved batches for the reference drug product. For example, Langenbucher
(1972) indicated that the dissolution profile can be approximated by Weibull distri-
bution after linearization. Dawoodbhai et al. (1991) considered the Gompertz model
to characterize the dissolution profile, while Pena Romero et al. (1991) introduced
the use of the logistic curve, which was found useful in the study of water uptake
and force development in an optimized prolonged release formulation. Kervinen and
Yliruusi (1993) proposed three control factor models for S-shaped dissolution profile
curves to connect the curves with the physical phenomenon of dissolution. Tsong et al.
(1995) indicated that we can consider a sigmoid curve or a probit model to describe
the dissolution profile. After a parametric model is chosen, unknown parameters in
the model are estimated based on dissolution data. If the estimated parameters of the
test product fall within some predetermined specifications, we can conclude that the
two drug products have similar dissolution profiles.

This approach may sound reasonable, but, how do we select an appropriate model
for the dissolution profile? Does the dissolution profile of the test product follow the
same model as that of the reference product? These questions remain unsolved, which
limits the application of this approach.
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11.2.2.2 Mondel-Independent Methods

Some model-independent approaches such as the analysis of variance, the analy-
sis of covariance, and the split-plot analysis are considered in assessing similarity
between the two dissolution profiles. However, these methods are not appropriate
because dissolution testing results over time are not independent owing to the nature
of dissolution testing. As an alternative, Tsong et al. (1996) proposed a multivariate
analysis by considering the distance between the mean dissolution rates of the two
drug products at two time points. The idea is to use a Hotelling T 2 statistic to construct
a 90% confidence region for the difference in dissolution means of two batches of
the reference product at the two time points. This confidence region is then used as
equivalence criteria for assessing similarity between dissolution profiles. For a given
test product, if the constructed confidence region for the difference in dissolution
means between the test product and the reference product at the two time points is
within the equivalence region, we can conclude that the two dissolution profiles are
similar at the two time points. One disadvantage of this method is that it is impossible
to visualize the confidence region when there are more than two time points.

Another model-independent approach is to consider the method of analysis of vari-
ance with repeated measures proposed by Gill (1988). The idea is to consider a nested
model with a covariate error structure to account for correlation between observations
(repeated measurements). This model is useful in: (a) comparing dissolution rates
between drug products at given time points, (b) detecting time effect within treatment,
and (c) comparing mean dissolution rate changes from one time point to another. One
disadvantage of Gill’s method is that the dissolution profiles can only be compared
at each time point when there is a significant treatment-by-time interaction.

11.2.3 Concept of Similarity

Unlike the concept of equivalence in in vivo bioequivalence testing, there exists no
universal definition for similarity in in vitro dissolution testing. Many criteria for
assessment of similarity have been proposed in the literature (see, e.g., Moore and
Flanner, 1996; Chow and Ki, 1997; Tsong et al., 1996). These criteria are briefly
described below.

11.2.3.1 Local/Global Similarity

Since dissolution profiles are curves over time, we introduce the concepts of local
similarity and global similarity. Two dissolution profiles are said to be locally similar
at a given time point if their difference or ratio at the given time point is within
some equivalence limits, denoted by (δL , δU ). Two dissolution profiles are considered
globally similar if their differences or ratios are within the equivalence limits (δL , δU )
across all time points. Note that global similarity is also referred to as uniformly
similar by many researchers. Chow and Ki (1997) suggested the following equivalence
limits

δL = Q − δ

Q + δ
,
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and

δU = Q + δ

Q − δ
,

where Q is the desired mean dissolution rate of a drug product as specified in
the USP-NF individual monograph, and δ is a meaningful difference of scientific
importance in mean dissolution profiles of two drug products under consideration.
In practice, δ is usually determined by a pharmaceutical scientist. For more details
regarding the derivation of the equivalence limits, see Chow and Ki (1997). It should
be noted that the concept of global similarity or uniformly similarity was not adopted
by the FDA due to its over-stringency.

11.2.3.2 The f2 Similarity

Instead of comparing two dissolution profiles, we may consider a statistic that mea-
sures the closeness of two dissolution profiles. Such a statistic is called a similarity
factor. Two dissolution profiles are considered to be similar if the similarity factor
is within some specified equivalence limits. Moore and Flanner (1996) considered a
similarity factor that is referred to as the f2 similarity factor. The f2 similarity factor
can be described as follows. Since the FDA SUPAC guidances require that all profiles
be conducted on at least 12 individual dosage units, we assume that at each time
point and for each drug product, there are n individual dosage units. Let yhti be the
cumulative percent dissolved for dosage unit i at the t th sampling time point for drug
product h, where i = 1, . . . , n, t = 1, . . . , T ; and h = 1, 2. Denote the average
cumulative percent dissolved at the t th time point for product h as

ȳht = 1

n

n∑
i=1

yhti ,

and the sum of squares of difference in average cumulative percent dissolved between
the two drug products over all sampling time points as

D =
T∑

t=1

(ȳ1t − ȳ2t )
2.

The f2 similarity factor proposed by Moore and Flanner (1996) is then defined to be the
logarithmic reciprocal square root transformation of one plus the mean squared (the
average sum of squares) difference in observed average cumulative percent dissolved
between the two products over all sampling time points, that is,

f2 = 50 × log10


 100√

1 + D
T




= 100 − 25 log10

(
1 + D

T

)
, (11.1)

where log10 denotes the logarithmic base 10 transformation. f2 is a strictly decreasing
function of D. If there is no difference in average cumulative percent at all sampling
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time points (D = 0), f2 reaches its maximum value 100. A large value of f2 indicates
the similarity of the two dissolution profiles. For immediate-release solid dosage
forms, the FDA suggests that two dissolution profiles are considered to be similar if
the f2 similarity factor is between 50 and 100 (SUPAC-IR, 1995).

The use of the f2 similarity factor has been discussed and criticized by many
researchers (see, e.g., Liu et al., 1997; Shah et al., 1998; Tsong et al., 1996; Ma
et al., 1999). Chow and Shao (2002b) pointed out two main problems in using the
f2 similarity factor for assessing similarity between the dissolution profiles of two
drug products. The first problem is its lack of statistical justification. Since f2 is a
statistic and, thus, a random variable, P( f2 > 50) may be quite large when the two
dissolution profiles are not similar. However, P( f2 > 50) can be very small when
the two dissolution profiles are similar. Suppose the expected value E( f2) exists and
that we can find a 95% lower confidence bound for E( f2), which is denoted by f̃2.
A reasonable modification to the approach of using f2 is to replace f2 by f̃2; that is,
two dissolution profiles are considered to be similar if f̃2 > 50. However, Liu et al.
(1997) indicated that the distribution of f2 is very complicated and almost intractable
because of the unnecessary logarithmic reciprocal square root transformation, which
they believe exists just to make the artificial acceptable range from 50 to 100. Since
f2 is a strictly decreasing function of D/T , f2 > 50 if and only if D/T < 99. Hence,
an alternative method is to consider a 95% upper confidence bound D̃/T for E(D)/T
as the similarity factor; that is, two dissolution profiles are similar if D̃/T < 99. Note
that

E(D)

T
= 1

T

T∑
t=1

µ2
Dt + 1

nT

T∑
t=1

σ 2
Dt ,

where µDT = E(y1ti − y2ti ) is the difference between two dissolution profiles at the
i th time point, and σ 2

Dt = Var(y1ti − y2ti ). However, the construction of an upper
confidence bound for E(D)/T is still a difficult problem, and more research is
required.

The second problem with using the f2 similarity factor is that the f2 similarity
factor assesses neither local similarity nor global similarity, owing to the use of the
average of (ȳ1t − ȳ2t )2, t = 1, . . . , T . To illustrate the problem, let us consider the
following example. Suppose n is large enough so that

D ≈ E(D) =
T∑

t=1

µ2
Dt ,

and that T is an even integer, µDt = 0 when t = 1, . . . , T/2, and |µDt | = 10 when
t = T/2 + 1, . . . , T . Since

E(D)

T
= 102

2
= 50 < 99,

the value of f2 is less than 50. However, the two dissolution profiles are not globally
similar, if a difference of ±10 is considered to be large enough for nonsimilarity. At
time points t = T/2 + 1, . . . , T , the two dissolution profiles are not locally similar
either.
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11.2.3.3 Other Similarity Factors

Moore and Flanner (1996) suggested a different similarity factor, f1, which is defined
as the ratio of the sum of absolute mean differences and the sum of cumulative
dissolution of the reference product. As a result, it is a reference-dependent metric
and is more complicated in its interpretation. Besides, statistical properties of f1 are
not well understood.

Since the f2 similarity factor is derived based on the average squared mean differ-
ence, it can be expressed as a function g as follows:

g

[
T∑

t=1

wt (ȳ1t − ȳ2t )
2

]
,

where wt is a prespecified weight at time point t . For the f2 similarity factor, equal
weights are applied, that is, wt = w = 1/T . Alternatively, unlike the f2 factor,
Ma et al. (2000) considered the so-called g1 similarity factor, which is a function of
the absolute mean difference between two dissolution profiles. In other words, they
considered

g

(
1

T

) T∑
t=1

wt |ȳ1t − ȳ2t | ,

where wt is a prespecified weight at time point t . For example, we may consider the
area between two time points. That is, we may use

w1 = t1
2

,

w2 = t3 − t1
2

,

...

wk = tk+1 − tk−1

2
,

...

wT = tT − tT −1

2
.

As a result, if we consider average distance, this leads to the criterion that is defined
as follows:

g1 = 1

T

T∑
t=1

|ȳ1t − ȳ2t | .

The possible values of g1 range from 0 to 100. Unlike the f2 factor, this range is based
on the original untransformed scale. Because g1 is a simple linear monotone function
of the difference cumulated at each time point, the interpretation of g1 is straight-
forward and easily understood by chemists, pharmacologists, and nonstatisticians.
However, with the difference squared in f2, the similarity factor is more sensitive
than g1 for large profile differences at a single time point.
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11.2.3.4 Remarks

Shah et al. (1998) and Chow and Shao (2002), pointed out that the similarity fac-
tors introduced by Moore and Flanner (1996) are statistics. Thus, they are random
variables, which suffer from some deficiencies. To overcome this problem, we may
modify the criteria as follows. For the same dosage unit, we consider

yht = (yht , yht2, . . . , yhtn)′

with mean

µh = (µh1, µh2, . . . , µhn)′

and covariance matrix �h , h = 1, 2. Since yhti is the cumulative percent dissolved,
we have

yht1 ≤ yht2 ≤ . . . ≤ yhtn,

and

µh1 ≤ µh2 ≤ . . . ≤ µhn.

Now, we redefine the f2 similarity factor as follows:

f2 = 50 × log10


 100√

1 + W
T




= 100 − 25 log10

(
1 + W

T

)
, (11.2)

where

W =
T∑

t=1

(µ1t − µ2t )
2.

Similarly, g1 is redefined as

g1 = 1

T

T∑
t=1

|µ1t − µ2t | . (11.3)

The newly defined f2 and g1 similarity factors are no longer statistics, but are unknown
parameters.

11.3 Statistical Methods for Assessing Similarity

In this section we introduce statistical methods based on the concept of local and global
similarity and the f2 similarity factor for assessing similarity between two dissolution
profiles. Other similarity factors such as the g1 similarity factor are also considered.
For the concept of local and global similarity, a time series model proposed by Chow
and Ki (1997) and Chow and Shao (2002b) are considered. For similarity factors
f2 and g1, the method of hypotheses testing proposed by Ma et al. (2000) is discussed.
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11.3.1 Time Series Model

For assessing dissolution profiles between two drug products Chow and Ki (1997)
considered the ratio of the dissolution results of the i th dosage unit at the t th time
point, denoted by

Rti = y1ti

y2ti
, (11.4)

which can be viewed as a measure of the relative dissolution rate at the i th dissolution
medium (or the i th location) and the t th time point. In the following discussion, Rti

can be replaced by the difference y1ti − y2ti or the log-transformation on y1ti/y2ti .

Since the dissolution results at the t th time point depend on the results at the previous
time point t − 1, the dissolution results are correlated over time. To account for this
correlation, Chow and Ki (1997) considered the following autoregressive time series
model for Rti :

Rti − γt = φ(R(t−1)i − γt−1) + εti , i = 1, . . . , n, t = 2, . . . , T, (11.5)

where γt = E(Rti ) is the mean relative dissolution rate at the t th time point, |φ| < 1 is
an unknown parameter, and εti ’s are independent and identically normally distributed
with mean 0. When γt does not vary with t , Chow and Ki (1997) derived a method
of assessing similarity between dissolution profiles of two drug products based on
Equation 11.5 and methods from time series analysis. Consider the case where γt = γ

for all t . Chow and Ki proposed to construct a 95% confidence interval (L , U ) for
γ and then compare (L , U ) with the similarity limits (δL , δU ). If (L , U ) is within
(δL , δU ), we claim that the two dissolution profiles are similar. Under Model 11.5,
we have

E(Rti ) = γ and Var(Rti ) = σ 2
R,

where

σ 2
R = σ 2

ε

1 − φ2
.

Let

γ̂ = 1

nT

T∑
t=1

n∑
i=1

Rti .

Then

E(γ̂ ) = γ,

and

Var(γ̂ ) = 1

n
Var

(
1

T

T∑
t=1

Rti

)

= σ 2
R

nT

(
1 + 2

T∑
t=1

T − t

T
φt

)
.

Binod April 12, 2007 11:5 C9055 Chapter 11



218 Stability Testing for Dissolution

If σ 2
R and φ are known, a 95% confidence interval for γ is (L , U ) with

L = γ̂ − z0.975

√
Var(γ̂ ),

and

U = γ̂ + z0.975

√
Var(γ̂ ),

where za is the 100 × ath percentile of the standard normal distribution. When σ 2
R

and φ are unknown, we replace them in L and U by their estimators

σ 2
R = 1

nT − 1

T∑
t=1

n∑
i=1

(Rti − γ̂ )2,

and

φ̂ =

T −1∑
t=1

n∑
i=1

(Rti − γ̂ )(R(t+1)i − γ̂ )

T∑
t=1

n∑
i=1

(Rti − γ̂ )2

,

respectively, which results in an approximate 95% confidence interval (L , U ) for γ

since σ̂ 2
R and φ̂ are consistent estimators as nT → ∞.

In practice, however, γt usually varies with t . Chow and Ki (1997) considered a
random effects model for γt , in which γt ’s are assumed to be independent and normally
distributed random variables with mean γ and variance σ 2

γ . For a fixed t , we have

Rti |γt ∼ N
(
γt , σ

2
R

)
,

and

R̄t |γt ∼ N

(
γt ,

1

n
σ 2

R

)
.

Hence, unconditionally,

R̄t ∼ N

(
γ,

1

n
σ 2

R + σ 2
γ

)
,

where R̄t is the average of Rti , i = 1, . . . , n. Then,

γt |R̄t ∼ N

(
σ 2

R/n

σ 2
R/n + σ 2

γ

+ σ 2
γ

σ 2
R/n + σ 2

γ

R̄t ,
σ 2

γ σ 2
R

σ 2
R + nσ 2

γ

)
.

Therefore, when γ , σ 2
R , and σ 2

γ are unknown, we replace γ with γ̂ and σ 2
R with its

unbiased estimator,

σ 2
R = 1

T (n − 1)

T∑
t=1

n∑
i=1

(Rti − R̄t )
2.
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Note that since

s2 = 1

T − 1

T∑
t=1

(R̄t − γ̂ )2

is an unbiased estimator of σ 2
R/n + σ 2

γ , σ 2
γ can be estimated by

σ̂ 2
γ = max

{
0, s2 − σ̂ 2

R/n
}

.

As a result, the prediction limits are given by

Lt = R̄t − min

{
1,

σ̂ 2
R

ns2

}
(R̄t − γ̂ ) − z0.975

σ̂γ σ̂R

s
√

n
,

and

Ut = R̄t − min

{
1,

σ̂ 2
R

ns2

}
(R̄t − γ̂ ) + z0.975

σ̂γ σ̂R

s
√

n
.

Thus, the two dissolution profiles are considered to be locally similar at the time point
if (Lt , Ut ) is within (δL , δU ). It should be noted that, under the random effects model
approach, it is difficult to assess the global similarity between two dissolution profiles.
We consider instead the similarity of the two dissolution profiles at all time points
considered in dissolution testing. That is, we construct the simultaneous prediction
interval (L̃ t , Ũt ), t = 1, . . . , T , satisfying

P
(

L̃ t < γt < Ũt , t = 1, . . . , T |R̄t , t = 1, . . . , T
) ≥ 95%,

and consider the two dissolution profiles to be globally similar when (L̃ t , Ũt ) is within
(δL , δU ) for t = 1, . . . , T . Using Bonferroni’s method, simultaneous prediction in-
tervals can be constructed using the limits

L̃ t = R̄t − min

{
1,

σ̂ 2
R

ns2

}
(R̄t − γ̂ ) − z1−0.025/T

σ̂γ σ̂R

s
√

n
,

and

Ũt = R̄t − min

{
1,

σ̂ 2
R

ns2

}
(R̄t − γ̂ ) + z1−0.025/T

σ̂γ σ̂R

s
√

n
.

11.3.1.1 Remarks

Note that the random effects approach described above has two disadvantages. First,
there are often deterministic and monotone trends in γt , t = 1, . . . , T , which cannot
be appropriately described by random effects. Second, it is difficult to use the random
effects approach to assess the global similarity between two dissolution profiles, since
the global similarity should also apply to time points that are not in the sample.

Binod April 12, 2007 11:5 C9055 Chapter 11



220 Stability Testing for Dissolution

Alternatively, Chow and Shao (2002b) proposed a method based on the time series
model (Model 11.5) and the following polynomial model for γt :

γt = β0 + β1xt + β2x2
t + · · · + βpx p

t , (11.6)

where xt is the value of the tth time point and β j ’s are unknown parameters. The
variances σ 2

t = Var(εti ), t = 1, . . . , T may depend on t . Let

R̄ =




R̄1

R̄2
...

R̄T


 , X =




1 x1 x2
1 · · · x p

1
1 x2 x2

2 · · · x p
2

...
...

...
. . .

...
1 xT x2

T · · · x p
T


 , β =




β0

β1
...

βp


 ,

and R̄t be the average of Rti , i = 1, . . . , n, where Rti is given by Equations 11.4 and
Model 11.5. Then, the ordinary least squares estimator of β is

β̂OLS = (X ′ X )−1 X ′ R̄,

which is unbiased with

Var(β̂OLS) = 1

n
(X ′ X )−1 X ′Vε X (X ′ X )−1,

where Vε is a T ×T matrix whose element of the tth row and sth column is φ|t−s|σtσs .

Let

σ̂ 2
t = 1

n − 1

n∑
i=1

(Rti − R̄t )
2,

and

φ̂ =

T −1∑
i=1

n∑
i=1

zti z(t+1)i

T −1∑
i=1

n∑
i=1

z2
ti

,

where

zti = Rti − (
1, xt , . . . , x p

t

)
β̂OLS.

Then, approximately (when nT is large),

β̂OLS − β[
1
n (X ′ X )−1 X ′V̂ε X (X ′ X )−1

]1/2 ∼ N (0, Ip+1),

where V̂ε is Vε with σt replaced by σ̂t and φ replaced by φ̂ and Ip+1 is the identity
matrix of order p + 1. Consequently, an approximate (1 − α) × 100% confidence
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interval for the mean relative dissolution rate at time x (which may be different from
any of xt , t = 1, . . . , T ) is [L(x), U (x)] with

L(x) = β̂ ′
OLSa(x) − z1−α/2

√
n−1a(x)′(X ′ X )−1 X ′V̂ε X (X ′ X )−1a(x),

and

U (x) = β̂ ′
OLSa(x) + z1−α/2

√
n−1a(x)′(X ′ X )−1 X ′V̂ε X (X ′ X )−1a(x),

where a(x) = (1, xt , . . . , x p
t )′ and z1−α/2 is the (1−α/2)th percentile of the standard

normal distribution. Thus, two dissolution profiles are locally similar at time x if
[L(x), U (x)] is within (δL , δU ).

To assess the global similarity of two dissolution profiles, we can consider the
simultaneous confidence intervals [L̃(x), Ũ (x)], where L̃(x) and Ũ (x) are the same
as L(x) and U (x), respectively, with z1−α/2 replaced by

√
χ2

1−α/2,p+1,

which is the square root of the (1 − α/2)th percentile of the chi-sqaure distribution
with p − 1 degrees of freedom. Thus, two dissolution profiles are globally similar
if [L̃(x), Ũ (x)] is within (δL , δU ) for all possible time values x . The ordinary least
squares estimator β̂OLS may be improved by the generalized least squares estimator

β̂GL S = (X ′V̂ −1
ε X )−1 X ′V̂ −1

ε R̄,

which has its asymptotic variance–covariance matrix (see, e.g., Fuller, 1996)

1

n
(X ′V −1

ε X )−1.

Therefore, the previously described procedures for assessing similarity can be mod-
ified by replacing β̂OLS and (X ′ X )−1 X ′V̂ε X (X ′ X )−1 with β̂GL S and (X ′V −1

ε X )−1,

respectively. This method may result in shorter confidence intervals and, thus, a more
efficient statistical method for assessing similarity.

11.3.2 Hypotheses Testing for Similarity Factors

Under Equations 11.2 and 11.3, it can be easily verified that the maximum of f2 is
100. When µi t = µ2t for all time points, two dissolution profiles are similar if f2

is greater than some allowable lower limit, for example, θ0. As a result, the hypothesis
for evaluation of dissolution profile similarity based on f2 is a one-sided hypothesis
expressed as

H0 : f2 ≤ θ0 or H0 : f2 < θ0. (11.7)

Similarly, based on g1, the dissolution profiles between the two drug products are
concluded similarly if g1 is smaller than an allowable upper limit, for example, δ0.
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The corresponding hypothesis can be formulated as

H0 : g1 ≤ δ0 or H0 : g1 < δ0. (11.8)

Under these hypotheses, statistical tests can be derived. As discussed earlier, f2 and g1

can be estimated, respectively, by

f̂ 2 = 100 − 25 log10

(
1 + D

T

)
, (11.9)

and

ĝ1 = 1

T

T∑
t=1

|ȳ1t − ȳ2t | , (11.10)

where D, ȳ1t , and ȳ2t are as defined before.
Let x = y1 − y2, where yh = 1

n

∑n
i=1 yhi and h = 1, 2. We assume that yhi =

(yh1i, yh2i , . . . , yhT i )′ follows a multivariate normal distribution with mean vector
µh = (µh1, µh2, . . . , µhT )′ and covariance matrix �h for h = 1, 2. Then, x also
follows an T -variate normal distribution with mean µd = µ1 − µ2 and covariance
matrix

�d = 1

n
[�1 + �2].

The expected value of D is given by

E(D) = µ2
D + σ 2

D,

where

µ2
D = µ′

dµd =
T∑

t=1

µ2
Dt ,

σ 2
D = 1

T

T∑
t=1

σ 2
Dt ,

µDt = µ1t − µ2t ,

σ 2
Dt = σ 2

1t + σ 2
2t ,

where σ 2
ht is the tth diagonal element of �h for t = 1, . . . , n; h = 1, 2. The expected

value of f̂ 2 can then be approximated by Taylor’s expansion about E(D) as follows

E( f̂ 2) ≈ 100 − 25 log10

[
1 + E(D)

T

]

= 100 − 25 log10

[
1 + W

T
+ σ 2

D

]

≤ f2.
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Because σ 2
D ≥ 0, E( f̂ 2) ≤ f2. As a result, Shah et al. (1998) indicated that f̂ 2 is

conservative in evaluation of dissolution profile similarity. However, as T→ ∞, f̂ 2

is asymptotically unbiased for f2. The expected value of ĝ1 is given as follows (see,
also Ma et al., 1999)

E(ĝ1) = 1

T

T∑
t=1

{µDt [2�(
√

nµDt/σDt ) − 1] + 2(σDt/
√

n)φ(
√

nµDt/σDt )},

and its bias is

E(ĝ1) − g1 = 1

T

T∑
t=1

{µDt [2�(
√

nµDt/σDt ) − 1]

+ 2(σDt/
√

n)φ(
√

nµDt/σDt ) − |µDt |}, (11.11)

where � and φ are the cumulative probability function and probability density func-
tion, respectively, of the standard normal random variable.

From Equation 11.11, it can be easily verified that ĝ1 is also a consistent estimator
of g1. The bias of ĝ1 goes to zero as the number of dosage units becomes large. Under
the normality assumption, the sampling distribution function of f̂ 2 is complex, and its
expected value does not have a closed form. In addition, the asymptotic distribution of
f̂ 2 is also complicated by the fact that the Taylor series expansion of log10(1 + D/T )
converges only if D/T < 1. However, the absolute value is not continuous at zero.
Both distribution and asymptotic distribution of ĝ1 depend on not only the sign of
µDt but also on whether µDt is zero. As a result, the distribution of ĝ1 is complex.

Because of the complexity of the distributions and because f̂ 2 and ĝ1 are model
dependent, Ma et al. (2000) suggested relaxing the normality assumption and applying
nonparametric bootstrap method (Efron, 1993) to evaluate the sampling distributions
and for testing the hypotheses described in Equations 11.7 and 11.8. Ma et al. (2000)
suggested the following bootstrap procedure.

� Step 1: Based on dosage unit, generate bootstrap samples

y∗
ht = (y∗

ht1, . . . , y∗
htT )′

by sampling with replacement from T -variate vectors of the observed cumula-
tive percent dissolved:

yht = (yht1, . . . , yhtT )′.

Sampling should be performed independently and separately for samples of
dosages units from both drug products.

� Step 2: Calculate f̂ ∗
2 and ĝ∗

1 based on the bootstrap sample according to Equa-
tions 11.9 and 11.10, respectively.

� Step 3: Repeat steps 1 and 2 many times (e.g., B = 3, 000 times).
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� Step 4: The (1 −α) × 100% lower confidence limit for f2, L f is the α × 100%
quantile of the bootstrap values of f̂ ∗

2. The (1 − α) × 100% lower confidence
limit for g1, Ug is the (1 − α) × 100% quantile of the bootstrap values of ĝ∗

1 .

� Step 5: Based on criterion f2, reject the null hypothesis in Equation 11.7 at
the α level of significance and conclude that the dissolution profiles of the two
drug products are similar if L f > θ0. Based on criterion g1, reject the null
hypothesis in Equation 11.8 at the α level of significance and conclude that the
dissolution profiles of the two drug products are similar if Ug < δ0.

This confidence limit approach for assessing similarity was also proposed by Shah
et al. (1998) based on f̂ 2 using the bootstrap method. Bias and potential correction of
bias and the correct hypotheses that f̂ 2 is testing for were also described and discussed
by Shah et al. (1998).

11.4 Numerical Examples

We will now consider two examples, one from Tsong et al. (1996) and the other from
Shah et al. (1998), to illustrate the use of the statistical methods under a time series
model and under a hypothesis testing framework as described in the previous section,
respectively.

11.4.1 Example 1: Time Series Model

Consider the dissolution data given by Tsong et al. (1996) and Chow and Ki (1997).
For illustration, we consider dissolution data from the new lot as the dissolution data
of the test product (y1ti ’s) and dissolution data from lot 1 as the dissolution data
of the reference product (y2ti ’s). Based on the dissolution data, which are listed in
Table 11.1, D and the f2 similarity factor are 193.3 and 63.6, respectively. Since the
f2 similarity factor is between 50 and 100, the two dissolution profiles are considered
to be similar according to the criterion of using the f2 similarity factor.

Consider the ratio of the dissolution data Rti under Model 11.5, Figure 11.2 shows
that γt varies with t , and a quadratic relationship between γt and the time (hour) is
revealed. Using the random effects approach of Chow and Ki (1997) and the data
in Table 11.1, prediction bounds Lt and Ut and simultaneous prediction bounds
L̃ t and Ũt are summarized in Table 11.2. To apply the method introduced in the
previous section, we choose a quadratic model for γt , that is, p = 2 in Equation
11.3. The corresponding confidence bounds L(xt ) and U (xt ) and the simultaneous
confidence bounds L̃(xt ) and Ũ (xt ) are also given in Table 11.2. These confidence
and prediction bounds are shown in Figure 11.3 for comparison. Suppose the desired
mean dissolution rate is Q = 75% and δ = 5%. Then, the equivalence limits for
similarity are (δL , δU ) = (87.5, 114.3%), which are plotted in Figure 11.3. Under
these equivalence limits, it can be seen from Table 11.2 or Figure 11.3 that the two
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TABLE 11.1: Dissolution Data (Percent Label Claim)

Times (hours)

Product Location 1 2 3 4 6 8 10

Test 1 34 45 61 66 75 85 91
2 36 51 62 67 83 85 93
3 37 48 60 69 76 84 91
4 35 51 63 61 79 82 88
5 36 49 62 68 79 81 89
6 37 52 65 73 82 93 95
7 39 51 61 69 77 85 93
8 38 49 63 66 79 84 90
9 35 51 61 67 80 88 96

10 37 49 61 68 79 91 91
11 37 51 63 71 83 89 94
12 37 54 64 70 80 90 93

Reference 1 50 56 68 73 80 86 87
2 43 48 65 71 77 85 92
3 44 54 63 67 74 81 82
4 48 56 64 70 81 84 93
5 45 56 63 69 76 81 83
6 46 57 64 67 76 79 85
7 42 56 62 67 73 81 88
8 44 54 60 65 72 77 83
9 38 46 54 58 66 70 76

10 46 55 63 65 73 80 85
11 47 55 62 67 76 81 85
12 48 55 62 66 73 78 85

Source: Chow, S.C. and Shao, J. (2002b). Journal of Biopharmaceutical Statistics, 12, 311–321.

TABLE 11.2: Analysis of Similarity

Time (hours) xt 1 2 3 4 6 8 10

Mean (%) R̄t 0.81 0.93 1.00 1.02 1.06 1.08 1.08
Lower bound (%) Lt 78.2 89.3 95.6 97.3 101.9 103.5 103.6

L̃ t 76.7 87.8 94.1 95.8 100.4 102.0 102.1
Lt (xt ) 80.0 87.9 93.9 98.4 104.2 105.9 102.4
L̃ t (xt ) 77.7 86.1 92.2 96.6 102.1 103.8 99.9

Upper bound (%) Ut 86.5 97.7 103.9 105.7 110.2 111.8 111.9
Ũt 88.0 99.2 105.4 107.2 111.7 113.3 113.4

U (xt ) 88.3 94.4 100.1 105.1 111.6 113.3 111.3
Ũ (xt ) 90.7 96.2 101.8 106.9 113.7 115.4 113.8

Source: Chow, S.C. and Shao, J. (2002b). Journal of Biopharmaceutical Statistics, 12, 311–321.
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Figure 11.3: Dissolution data and their average over locations. Source: Chow and
Shao (2002b).

dissolution profiles are not globally similar, although they are locally similar when
xt ≥ 2. The simultaneous bounds obtained using the method proposed by Chow
and Shao (2002b) and the random effect approach are similar. However, the bounds
obtained using Chow and Shao (2002b)’s method apply to all time points between
1 and 10, whereas the bounds obtained using the random effects approach only apply
to time points 1 to 4, 6, 8, and 10.

11.4.2 Example 2: Hypotheses Testing

Consider the dissolution data listed in Table 11.3 taken from Shah et al. (1998).
For illustration, we consider the cumulative percent dissolved of a prechange batch
and the postchange batch 4. The coefficients of variation at 30, 60, 90, and 180
minutes are 6.76%, 4.27%, 3.76%, and 2.87%, respectively, for the prechange batch
and are 15.24%, 4.77%, 3.76%, and 2.87%, respectively, for the postchange batch.
The mean cumulative percents dissolved are the same for both postchange batch 4
and the prechange batch at all sampling time points except for 30 minutes, where
a mean difference of 19.84% is observed. To have a stable and precise confidence
limit, the bootstrap procedure is carried out with 10,000 bootstrap samples. Table 11.4
presents the results of the samples. The results indicate that the bootstrap sampling
distributions of f̂ 2 and ĝ1 are skewed to the right (i.e., their medians are smaller
than the means). However, the bootstrap distribution of g1 is more skewed than that
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11.4 Numerical Examples 229

TABLE 11.4: Results of Bootstrap for
Comparison of Dissolution Profiles Between the
Prechange Batch and Postchange Batch 4

Statistics f̂2 ĝ1

Observed value 50.07 4.96
Bootstrap mean 49.99 5.63
Bootstrap median 49.97 5.55
5% quantile 48.39 4.97
95% quantile 51.64 6.53
p-value for normality 0.011 0.001

Number of bootstrap samples = 10,000
Source: Ma, M.C., Wang, B.B.C., Liu, J.P., and Tsong, Y. (2000).
Journal of Biopharmaceutical statistics, 10, 229–249.

of f̂ 2. The corresponding p-values for normality are 0.011 and 0.0001 for f̂ 2 and
ĝ1, respectively. This implies that asymptotic normal approximation to the sampling
distribution for both statistics computed from this data set is not adequate.

The observed estimates of f2 and g1 from the samples are 50.07 and 4.95, respec-
tively, with the means of 49.99 and 5.63, respectively, from their bootstrap distribu-
tions. The 95% lower confidence limit for f̂ 2 can be estimated by the 5% quantile
of the bootstrap sampling distribution, which is 48.39. Because 48.39 is smaller than
the allowable lower limit of 50, based on f̂ 2 and at the 5% significance level the
dissolution profile of postchange batch 4 is not similar to that of the prechange batch.
The 95% quantile of the bootstrap sampling distribution of ĝ1 is 6.53%. Based on ĝ1

and at the 5% level of significance, the dissolution profiles of postchange batch 4 and
the prechange batch would be claimed similar since the 95% upper confidence limit
of 6.53% is smaller than the allowable upper limit of 10%. Table 11.5 summarizes

TABLE 11.5: Results of Comparisons of Dissolution Profiles Based on
Data in Table 11.3a

Quantile
Observed Bootstrap

Comparisonb Statistics Value Mean 5% 95% Similarity

T1 vs. R f̂2 60.035 60.425 53.219 — Yes
ĝ1 5.825 5.854 — 8.001 Yes

T2 vs. R f̂2 51.082 51.022 48.275 — No
ĝ1 8.850 8.877 — 10.296 No

T3 vs. R f̂2 51.184 51.197 48.342 — No
ĝ1 4.960 5.625 — 6.533 Yes

T5 vs. R f̂2 48.052 48.022 46.022 — No
ĝ1 9.375 9.381 — 10.513 No

aThe number of bootstrap samples = 10,000
bT: postchange batch, and R: prechange batch
Source: Ma, M.C., Wang, B.B.C., Liu, J.P., and Tsong, Y. (2000). Journal of Biopharmaceutical
Statistics, 10, 229–249.
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230 Stability Testing for Dissolution

the individual results for comparisons of the dissolution profiles of all postchange
batches in Table 11.3 versus the prechange batch. From Table 11.5, for this data set,
the bootstrap means are close to their observed values. In general, for f2, the bootstrap
mean is smaller than the observed values, while the observed value of g1 is smaller
than the bootstrap means. At the 5% level of significance and an allowable lower limit
of 50, for f2. Only the dissolution profiles of postchange batch 1 are concluded to be
similar to that of the prechange batch. For g1, the dissolution profiles of postchange
batches 1 and 4 are both declared to be similar to that of the prechange batch at the 5%
level of significance and an allowable upper limit of 10%. This example demonstrates
the sensitivity of f̂ 2 with a large difference at a single time point and the liberalism
of ĝ1 in concluding similarity in such cases.

11.5 Concluding Remarks

In comparison to f2, g1 has a direct interpretation on the untransformed data. As
shown in Ma et al. (1999), g1 is independent of the number of sampling time points.
If one directly tests the hypotheses Equations 11.7 and 11.8 by the observed values of
f2 or g1, respectively, the type I error rate could be large when the within-time-point
variation is large. For example, at the 5% level of significance and with δ = 10, the
empirical type I error rate from using the observed value of f2 as the test statistic is at
least 44%. Therefore, Shah et al. (1998) suggested the employment of the confidence
limit approach via the bootstrap method. The confidence interval approach is more
important when the observed value is less than 60. From the simulation, the bootstrap
confidence interval procedure based on g1 slightly inflates the size.

As discussed in the previous sections, f̂ 2 underestimates f2. The magnitude of the
underestimate bias is reduced when the difference between the two profiles increases
(i.e., δ increases). For example, for 12 tablets, it is reduced to less than −1.5 when
δ ≥ 6. This property is helpful for testing Equation 11.7 with θ0 = 50. Shah et al.
(1998) have proposed a bias correction estimated by

D′ = D − 1

n(n − 1)

T∑
t=1

n∑
i=1

(yhti − ȳht )
2

and f2 is estimated by

f̂ ′
2 = 100 − 25 log10

(
1 + D′

T

)
.

The distribution of f̂ ′
2 is even more complicated than that of f̂ 2. Ma et al. (2000)

conducted a simulation under the same conditions and combinations as described in
the previous sections. The results indicated that when δ = 0, f̂ ′

2 still underestimates f2,
but the magnitude of underestimation reduces to within 9. However, when δ > 0, f̂ ′

2
overestimates f2 by a range of 0.33 to 9.5. As a result, the magnitude of overestimation
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11.5 Concluding Remarks 231

TABLE 11.6: Empirical Proportion of Negative Bias
Correction Factora

Dissolution Difference at Each
Time Point

Number of Sampling
Time Points δ = 0 δ = 3 δ = 6

3 63.6 20.8 2.5
4 63.3 19.4 2.1
5 63.0 18.4 2.0
6 62.9 17.9 1.9
7 63.1 17.4 1.8

aBased on 10,000 simulated samples
Source: Shah et al. (1998). Pharmaceutical Research, 15, 889–896.

by f̂ ′
2 (of f2) is much larger than f̂ 2. The reason is that D′ can be negative. When

D′ is negative, D′ is set to be 0 and f̂ ′
2 is 100. Table 11.6 provides proportions of D′

smaller than 0 from the simulation. For δ = 0, the proportion of D′ less than zero
is about 63%. Even when δ = 6, about 2% of D′ can be negative. Hence, until the
issue of handling a negative D′ for estimation of f2 is resolved, f̂ ′

2 should be used
cautiously.

If the coefficient of variation (CV) is 10%, even when δ = 0, insufficient power is
provided by both procedures if the number of dosage units is small. Power increases
drastically if the number of dosage units increases from 6 to 12. Therefore, we rec-
ommend that the number of dosage units be at least 12 for comparison of dissolution
profiles. As demonstrated in the simulation, when the number of dosage units is 12,
the proposed confidence limit approach based on f̂ 2 not only can control the type I
error rate under 5%, but also provides adequate power when the two dissolution
profiles are similar. Although the confidence limit approach based on f̂ 2 is a bit con-
servative, it is an adequate method for assessing similarity of dissolution profiles
between the changed and unchanged drug products. In comparison to g1, f2 is more
sensitive to large differences at a few time points.
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Chapter 12

Current Issues and Recent Developments

As indicated in the previous chapters, the shelf-life of a drug product is estimated
based on stability data collected from long-term stability studies. These long-term
stability studies are usually conducted under certain assumptions about controlled
design factors such as storage conditions (e.g., temperature and humidity) and pack-
age types. These assumptions include, but are not limited to: (a) the drug product
is expected to degrade linearly over time, (b) the drug is stored under ambient stor-
age conditions such as 25◦C and 60% relative humidity, and (c) the components and
composition remain unchanged. Once these assumptions are met, an optimal design
is selected to achieve the best precision for estimating the drug shelf-life. In prac-
tice, these assumptions may not be met, especially when: (a) there are postapproval
changes in components and composition, site, batch size (scale-up or scale-down),
or manufacturing equipment and processes, and (b) the drug product is shipped to
foreign markets or different regions. In this case regulatory agencies may require
additional stability data to be collected to support the changes.

In the next section regulatory requirements for stability testing for scale-up and
postapproval changes are discussed. Also included in this section is the impact of
scale-up and postapproval changes on dissolution testing. Section 12.2 introduces
the approach for classification of countries according to climatic zones I, II, III, and
IV (Dietz et al., 1993; Grimm, 1998). Recent development on proposed optimality
criteria for choosing a stability design is discussed in Section 12.3. Section 12.4
discusses issues of stability analysis. These issues include the use of overage, assay
sensitivity, assessment of multiple drug characteristics, batch similarity, deviation
from linearity, and sample size. Section 12.5 includes software for stability analysis
(i.e., the SAS/PC program system STAB) developed by the FDA.

12.1 Scale-Up and Postapproval Changes

Between 1995 and 1997, the FDA published a number of guidances regarding
scale-up and postapproval changes. We will refer to these guidances as SUPAC guid-
ances. SUPAC guidances include guidances for scale-up and postapproval changes
for immediate-release solid oral dosage forms (SUPAC-IR, 1995), modified-release
solid oral dosage forms (SUPAC-MR, 1997), and nonsterile semisolid dosage forms
(SUPAC-SS, 1997). SUPAC initiatives are aimed at lowering the regulatory burden
in the industry by providing informal and nonbinding communication that currently
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234 Current Issues and Recent Developments

represents the best scientific judgement of the FDA. SUPAC guidances provide
recommendations to pharmaceutical sponsors of new drug applications, abbreviated
new drug applications, and abbreviated antibiotic drug applications who intend to
make postapproval changes to: (a) the components and composition of the drug, (b)
the manufacturing process or equipment, (c) the batch size, or (d) the site of manufac-
turing. For each of these four categories, the SUPAC guidances define what constitutes
the difference between levels 1, 2, and 3 changes, which testing methods should be
employed to support each level of changes. and which type of filing documentation
will be required in accordance with the levels of change. The levels of change are
generally categorized according to the probable impact on the drug due to the post-
approval changes. In other words, a level 1 change will be a minor change, a level 2
change will be a moderate change, and a level 3 change will be a major or significant
change.

In this section we will discuss the impact of SUPAC guidances on stability testing
and dissolution testing with respect to postapproval changes. Owing to the similarity of
these guidances, for illustration, we will focus on SUPAC-IR as an example. Impacts
on stability testing with respect to postapproval changes in; (a) the components and
composition of the drug, (b) the manufacturing process or equipment, (c) the batch
size, and (d) the site of manufacturing are summarized below.

12.1.1 Components and Composition

For changes in components and composition, the SUPAC guidances define level 1
changes as changes that are unlikely to have detectable impact on formulation quality
and performance. As a result, one batch on long-term stability testing is required, and
the stability data should be reported in an annual report. The SUPAC guidances define
changes that could have a significant impact on formulation quality and performance
as level 2 changes. Thus, SUPAC guidances require that one batch with 3 months’
accelerated stability testing and one batch on long-term stability testing be conducted.
Level 3 changes are changes that are likely to have a significant impact on formulation
quality and performance. Hence, SUPAC guidances recommend that one batch with
3 months’ accelerated stability data be reported in a supplement and one batch on long-
term stability data reported in an annual report if a significant body of information
is available. A significant body of information on the stability of the drug product is
likely to exist after five years of commercial experience for new molecular entities or
three years of commercial experience for new dosage forms. If a significant body of
information is not available, it is suggested that up to three batches with 3 months’
accelerated stability data be reported in a supplement and one batch on long-term
stability data be reported in an annual report.

12.1.2 Manufacturing Site

Site changes consist of changes in location of the site of manufacture for both
company-owned and contract manufacturing facilities. The SUPAC guidances
indicate that level 1 changes consist of site changes within a single facility, where the
same equipment, standard operating procedures (SOPs), environmental conditions
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12.1 Scale-Up and Postapproval Changes 235

such as temperature and humidity and controls, and personnel common to both man-
ufacturing sites are used and where no changes are made to manufacturing batch
records, except for administrative information and the location of the facility. Level 2
changes in manufacturing site consist of site changes within a contiguous campus
or between facilities in adjacent city blocks, where the sample equipment, SOPs,
environmental conditions and controls, and personnel common to both manufactur-
ing sites are used and where no changes are made to the manufacturing batch records,
except for administrative information and the location of the facility. No stability
testing is required for level 1 and level 2 changes in manufacturing site.

Level 3 changes consist of changes in manufacturing site to a different campus.
A different campus is defined as one that is not on the same original contiguous
site or where the facilities are not in adjacent city blocks. To qualify as a level 3
change, the same equipment, SOPs, environmental conditions, and controls should
be used in the manufacturing process at the new site, and no changes may be made to
the manufacturing batch records except for administrative information, location, and
language translation, where needed. For level 3 changes in manufacturing site, the
SUPAC guidances recommend one batch with 3 months’ accelerated stability data
reported in a supplement and one batch on long-term stability data reported in an
annual report if a significant body of information is available. If a significant body of
information is not available, up to three batches with 3 months’ accelerated stability
data reported in a supplement and up to three batches on long-term stability data
reported in an annual report are required to support the changes.

12.1.3 Batch Size

Postapproval change in the size of a batch from the pivotal or pilot biobatch material
to a larger or a smaller production batch is referred to as scale-up or scale-down.
As indicated in the SUPAC guidances, submission of additional information such as
validation of scale-up change is required.

The SUPAC guidances define a level 1 change as a change in batch size up to
and including a factor of 10 times the size of the pilot or biobatch, where: (a) the
equipment used to produce the test batch(es) is of the same design and operating
principles, (b) the batch(es) is (are) manufactured in full compliance with current
good manufacturing practices, and (c) the same SOPs and controls, as well as the
same formulation and manufacturing procedures, are used on the test batch(es) and
on the full-scale production batch(es). The SUPAC guidances recommend that one
batch on long-term stability testing be reported in an annual report to support the
level 1 change in batch size. Level 2 changes in batch size are defined similarly with
changes beyond a factor of 10 times the size of the pilot or biobatch. For a level
2 change, one batch with 3 months’ accelerated stability testing and one batch on
long-term stability testing are required to justify the change.

12.1.4 Manufacturing Equipment

Level 1 changes in manufacturing equipment consist of two categories. The first
category applies to changes from nonautomated or nonmechanical equipment to
automated or mechanical equipment to move ingredients, while the second category
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is changes to alternative equipment of the same design and operating principles of
the same or of a different capacity. The SUPAC guidances suggest that one batch on
long-term stability testing be conducted to support the change. A level 2 change in
manufacturing equipment is a change in equipment to a different design and differ-
ent operating principles. For level 2 changes in manufacturing equipment, SUPAC
guidances recommend that one batch with 3 months’ accelerated stability data be
reported in a supplement and one batch on long-term stability data be reported in an
annual report if a significant body of information is available. If a significant body of
information is not available, up to three batches with 3 months’ accelerated stability
data reported in a supplement and up to three batches on long-term stability data
reported in an annual report are required to support the changes.

12.1.5 Manufacturing Process

The SUPAC guidances define a level 1 change in manufacturing process as changes
in mixing times and operating speeds within application or validation ranges of a
manufacturing process. A level 2 change in manufacturing process is a change in
mixing times and operating speeds outside application or validation ranges of a man-
ufacturing process. For a level 1 change, no additional stability testing is required. For
a level 2 change, one batch on long-term stability testing is recommended. Level 3
changes include changes in the type of process used in the manufacture of the product
such as a change from wet granulation to direct compression of dry powder. For level 3
changes, the SUPAC guidances recommend one batch with 3 months’ accelerated sta-
bility data reported in a supplement and one batch on long-term stability data reported
in an annual report if a significant body of information is available. If a significant
body of information is not available, up to three batches with 3 months’ accelerated
stability data reported in a supplement and up to three batches on long-term stability
data reported in an annual report are required to support the changes.

12.1.6 Remarks

Table 12.1 provides a summary of regulatory requirements of stability testing with
respect to different levels of changes in components and composition, manufacturing
site, batch size (scale-up or scale-down), and manufacturing equipment and process.

For dissolution testing for postapproval changes, the SUPAC guidances classify in
vitro dissolution testing into the following three cases:

� Case A: Dissolution of Q = 85% in 15 minutes in 900 mL of 0.1N hydro-
chloride (HCl), using the United States Pharmacopoeia (USP) <711>

Apparatus 1 at 100 revolutions per minute (rpm) or Apparatus 2 at 50 rpm.

� Case B: Multipoint dissolution profile in the application or compendial medium
at 15, 30, 45, 60, and 120 minutes or unit that an asymptote is reached for the
proposed and currently accepted formulation.
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12.1 Scale-Up and Postapproval Changes 237

TABLE 12.1: Stability Testing Requirements for Scale-Up and
Postapproval Changes

Level 3

Post-Approval Information Information
Change Level 1 Level 2 Available Not Available

Components a a, b a, b c, d
and composition

Site NA NA a, b c, d
Batch Size a a, b NA NA
Equipment* a (a, b) or (c, d) NA NA
Process NA a a, b c, d

a: One batch on long-term stability data reported in annual report
b: One batch with 3 months’ accelerated stability data in supplement
c: Up to three batches on long-term stability data reported in annual report
d: Up to three batches with three months’ accelerated data reported in supplement
*: (a, b) If a significant body information is available; (c,d) if a significant body information
is not available

� Case C: Multipoint dissolution profiles performed in water, 0.1N HCl, and USP
buffer media at pH 4.5, 6.5, and 7.5 (five separate profiles) for the proposed
and currently accepted formulations. Adequate sampling should be performed
at 15, 30, 45, 60, and 120 minutes until either 90% of the drug from the drug
product is dissolved or an asymptote is reached. A surfactant may be used with
appropriate justification.

Table 12.2 provides a summary of regulatory requirements of dissolution testing
with respect to different levels of changes in components and composition, manufac-
turing site, batch size (scale-up or scale-down), and manufacturing equipment and
process.

TABLE 12.2: Dissolution Testing Requirements for Scale-Up
and Postapproval Changesa

Postapproval Change Level 1 Level 2 Level 3

Components NA A*, B*, C* B
and Composition

Site NA NA B
Batch Size NA B NA
Equipment NA C NA
Process NA B B

aCases A, B, and C are as defined in Section 12.1.
A*: Case A dissolution testing for high permeability/high solubility products
B*: Case B dissolution testing for low permeability/high solubility products
C*: Case C dissolution testing for high permeability/low solubility products
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12.2 Storage Conditions in Different Climatic Zones

Haynes (1971) pointed out that changes in the field storage temperature could cause
the reaction rate constant of some drug products to change according to the Arrhenius
relationship. Since drug products stored in pharmacies and warehouses for extended
periods of time are exposed to a range of temperatures, the exact determination of drug
shelf-life becomes almost impossible (Kommanaboyina and Rhodes, 1999). Grimm
(1985, 1986) indicated that if the test batches are stored under incorrect conditions,
the results from the tests are also incorrect, and false correlations could be drawn.
The degradation curve of a drug product may not be consistent at different times
under different environmental conditions. This will definitely have an impact on
stability testing of the drug product. Some pharmaceutical companies consider cyclic
testing, in which temperature and humidity are alternately increased and decreased
in a pattern. Haynes (1971) established the mean kinetic temperature for a defined
period. The mean kinetic temperature is a single derived temperature that affords the
same thermal challenge to a drug substance or drug product as would be experienced
over a range of both higher and lower temperatures for an equivalent defined period.
Based on the mean kinetic temperature, the world is divided into four zones that are
distinguished by their characteristic prevalent annual climatic conditions (Grimm,
1985, 1986). At different climatic zones, slightly different requirements for storage
conditions in accelerated testing and long-term stability testing are imposed.

12.2.1 Mean Kinetic Temperature

Haynes (1971) suggested obtaining a single equivalent temperature by substituting
the average rate constants over a defined time period (e.g., a week, a month, or a year)
into the Arrhenius equation. Haynes referred to this single equivalent temperature
as virtual temperature. As indicated in Chapter 2, the loss rate constant in any time
according to the Arrhenius relationship is given by

ki = Ae−�H/RTi , i = 1, . . . , n, (12.1)

where A is a constant for a given reaction, �H is heat of activation, R is the universal
gas constant, and Ti is the absolute temperature in the i th time. It can be verified that
the average of the ki ’s is proportional to the average of e−�H/RTi , i = 1, . . . , n. The
Ti values can be obtained easily for most locations and, with a suitable value of �H ,
used to calculate the average of the e−�H/RTi . This numerical value is defined to be
equal to e−�H/RTK , where TK is the virtual temperature. The solution of this for TK

in absolute degrees is given by (Haynes, 1971)

TK =


 �H/R

− ln

(
ex1 + ex2 + · · · + exn

n

)

 , (12.2)

where TK is the mean kinetic temperature and

xi = −�H/RTi .
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With Equation 12.2, one can determine, from the individual temperatures for a day,
a month, or even a year, the respective mean kinetic temperature that corresponds to
the actual (thermal) stress at different or varying temperatures.

As indicated by Grimm (1985, 1986), a climate is characterized by the temperature
and the partial pressure of water vapor (humidity). Both temperature and humidity
decisively influence stability. The connection between the vapor pressure of water
and the absolute temperature can be expressed by

ln P = −�Hv

R

1

T
+ constant, (12.3)

where �Hv is the molar (latent) heat of evaporation. This can be determined from
the slope of a plot of ln P against 1/T . Simple algebra gives the following equation

ln
P2

P1
= �Hv(T2 − T1)

RT1T2
, (12.4)

where P1 and P2 are the vapor pressures for T1 and T2. At a given temperature,
the partial pressure of water vapor in moist air can become maximally equal to the
vapor pressure of water at the same temperature, that is, the saturation pressure PS .
Unsaturated air contains water vapor whose partial pressure, PD , is lower than the
saturation pressure PS at the given temperature. This gives the relative humidity:

ϕ = PD

PS
× 100%. (12.5)

Grimm (1985, 1986) suggested using Equations 12.2 and 12.4 to derive relevant stor-
age conditions for the various climatic regions. By this means, an exact determination
of drug shelf-life at different climatic regions is possible.

12.2.2 Classification of Climatic Zones

As indicated by Grimm (1985, 1986), the earth can be divided into four climatic
zones to which individual countries can be assigned. The four climatic zones are
characterized as follows:

Climatic Zone Characteristics

I Temperate climate
II Mediterranean-like and subtropical climates
III Hot dry climate, dry regions
IV Hot, humid climate, tropics

Grimm (1985, 1986) noted that if storage conditions are to be derived for a world-
wide stability test for the individual climatic zones, then it must be clearly stated
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what requirements they must fulfill. Grimm provided the following points to consider
when deriving storage conditions for the individual climatic zones:

� The storage condition should deal with climatic influences that apply to the
respective climatic zones in which the drug is to be subsequently used.

� The storage condition must not represent an unrealistic stress, because other-
wise inappropriate expiration dates are derived.

� When determining the mean value for the temperature, Haynes’s formula Equa-
tion 12.2 must be used to calculate the mean kinetic temperature.

� The relative humidity must be considered in addition to variations in tempera-
ture.

� The storage conditions for the individual climatic zones should be logically
interconnected so that an overall assessment for all climatic zones can be made.

� The individual storage conditions for the climatic zones are to be clearly sep-
arate from those of stress studies and, where applicable, from those of the
follow-up investigations.

� The determined storage conditions must be definitively specified and appropri-
ately supervised.

Table 12.3 summarizes storage conditions in terms of temperature and relative
humidity for the individual climatic zones as suggested by Grimm (1985, 1986). An
approach for classification of countries according to climatic zones I, II, III, and IV
can be found in the literature (Dietz et al., 1993; Grimm, 1998).

The ICH guidance Q1A (R2) Stability Testing of New Drug Substances and
Products, which is referred to as the parent guidance, outlines the stability data pack-
age for a new drug substance or drug product that is considered sufficient for a
registration application in territories in climatic zones III and IV (Grimm, 1985 and
1986; Schumacher, 1974). The parent guidance can be followed to generate stability
data packages for registration applications in other countries or regions in zones I and
II. For territories in climatic zones III and IV, the data package as described in the
parent guidance can be considered applicable except for certain storage conditions
(see, e.g., ICH Q1F (2004) Stability Data Package for Registration in Climatic Zones
III and IV).

TABLE 12.3: Storage Conditions for Individual Climatic Zones

Climatic Zones Temperature Relative Humidity

I 21◦C ± 2◦C 45% ± 5%
II 25◦C ± 2◦C 60% ± 5%
III 31◦C ± 2◦C 40% ± 5%
IV 31◦C ± 2◦C 70% ± 5%

Source: Grimm (1985, 1986). Drugs Made in Germany, 28, 196–202 & 29, 39–47.
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TABLE 12.4: Storage Conditions for Climatic Zones I and II

Temperature/Relative Minimum Time Period
Study Humidity (RH) Covered by Data at Submission

Long-terma ±25◦C ± 2◦C / 60% ± 5% 12 months
or 30◦C ± 2◦C / 65% ± 5%

Intermediateb ±30◦C ± 2◦C / 65% ± 5%± 6 months
Accelerated ±40◦C ± 2◦C / 75% ± 5%± 6 months

aIt is up to the applicant to decide whether long-term stability studies are performed at 25◦C ±2◦C/
60% RH ± 5% RH or 30◦C ± 2◦C /65% RH ± 5%RH.
bIf 30◦C ±2◦C /65% RH ± 5% RH is the long-term condition, there is no intermediate condtion.

Source: ICH Q1A (R2) Stability Testing of New Drug Substances and Products.

12.2.2.1 Climatic Zones I and II

The climate in zone I is characterized by cold winters with high relative humidity
and warm summers with low relative humidity. Marked differences occur in both
temperature and relative humidity between 7 a.m. and 2 p.m., whereas the pressure
varies much less. Zone II is a subtropical and mediterranean-like climate, which
includes a large number of countries with different climatic conditions. The ICH
tripartite regions, the European Union (EU), Japan, and the United States, are all in
climatic zones I and II.

As indicated in the ICH Q1A (R2) (2003) guideline for stability, a drug substance
should be evaluated under storage conditions (with appropriate tolerances) that test its
thermal stability and, if applicable, its sensitivity to moisture. The storage conditions
and the lengths of studies chosen should be sufficient to cover storage, shipment,
and subsequent use. Long-term, accelerated, and intermediate stability testing as
suggested in the ICH Q1A (R2) guideline are summarized in Table 12.4. The ICH
Q1A (R2) guideline indicates that if long-term studies are conducted at 25◦C ±
2◦C/60% ± 5% relative humidity and significant change occurs at any time during
the 6 months of testing at the accelerated storage condition, additional testing at the
intermediate storage condition should be conducted and evaluated against significant
criteria. Testing at the intermediate storage condition should include all tests, unless
otherwise justified. The initial application should include a minimum of 6 months’
data from a 12-month study at the intermediate storage condition. Note that the ICH
Q1A (R2) guideline defines significant change of a drug product as follows:

� A 5% change in assay from its initial value or failure to meet the acceptance
criteria for potency when using a biological or immunological procedure.

� Any degradation product’s exceeding its acceptance criterion.

� Failure to meet the acceptance criteria for appearance, physical attributes, and
functionality (e.g., color, phase separation, resuspendibility, caking, hardness,
dose delivery per actuation). However, some changes in physical attributes
(e.g., softening of suppositories, melting of creams) may be expected under
accelerated conditions.
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TABLE 12.5: Storage Conditions for Drug Substances Intended for Storage
in Refrigerators and Freezers

Refrigerator
Study Temperature/Relative Minimum Time Period Covered

Humidity (RH) by Data at Submission

Long-term 5◦C ± 3◦C 12 months
Accelerated 25◦C ± 2◦C/65% RH ± 5%RH 6 months

Freezer
Long-term −20◦C ± 5◦C 12 months

Source: ICH Q1A (R2) Stability Testing of New Drug Substances and Products.

� Failure to meet the acceptance criterion for pH.

� Failure to meet the acceptance criteria for dissolution for 12 dosage units.

For drug substances and products intended for storage in a refrigerator or a freezer,
storage conditions suggested by the ICH Q1A (R2) guideline are given in Table 12.5.
For drug substances and products intended for storage in a refrigerator, if significant
change occurs between 3 to 6 months of testing at the accelerated storage condition, the
proposed retest period should be based on the real-time data available at the long-term
storage condition. However, if significant change occurs within the first 3 months of
testing at the accelerated storage condition, a discussion should be provided to address
the effect of short-term excursions outside the label storage condition, for example,
during shipping or handling. This discussion can be supported, if appropriate, by
further testing on a single batch of the drug substance for a period shorter than 3
months but with more frequent testing than usual. It is considered unnecessary to
continue to test a drug substance through 6 months when a significant change has
occurred within the first 3 months. For drug substances intended for storage in a
freezer, the retest period should be based on the real-time data obtained at the long-
term storage condition. In the absence of an accelerated storage condition for drug
substances intended to be stored in a freezer, testing on a single batch at an elevated
temperature (e.g., 5◦C±3◦C or 25◦C±2◦C) for an appropriate time period should be
conducted to address the effect of short-term excursions outside the proposed label
storage condition, for example, during shipping or handling. For drug substances
intended for storage below −20◦C, the ICH Q1A (R2) guideline suggests it should
be treated on a case-by-case basis.

12.2.2.2 Climatic Zones III and IV

The climate in zone III is hot and dry. A typical example is Baghdad. The climate
in zone IV is hot and humid, which is a typical tropical climate. Manila is a typical
example of climatic zone IV. For the general case, the recommended long-term and
accelerated storage conditions for climatic zones III and IV are given in Table 12.6,
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TABLE 12.6: Storage Conditions for Climatic Zones III and IV

Minimum Time Period
Study Temperature/RH Covered by Data at Submission

Long-term 30◦C ± 2◦C/ 65% ± 5% 12 months
Accelerated 40◦C ± 2◦C/ 75% ± 5% 6 months

Source: ICH Q1F Stability Data Package for Registration Application in Climatic Zones III and IV.

which shows that no intermediate storage condition for stability studies is recom-
mended for climatic zones III and IV. Therefore, the intermediate storage condition is
not relevant when the principles of retest period or shelf-life extrapolation described
in the ICH Q1E (2004) guideline for Evaluation of Stability Data are applied.

12.3 Optimal Designs in Stability Studies

As indicated in Chapter 4, many criteria for selection of an appropriate design have
been proposed in the literature. These criteria mainly focus on the power of detecting
factor effect. However, as indicated by Ju and Chow (1995), the primary goal of
stability studies, is to estimate the shelf-life. As a result, Ju and Chow proposed a
criterion such that for a fixed sample size, the design with the best precision for
shelf-life estimation is the best design. For a fixed desired precision of shelf-life
estimation, the design with the smallest sample size is the best design. Hedayat et al.
(2006) provided a mathematical expression for Ju and Chow’s criterion as follows:

d∗
t =

{
d : min

d:n(d)=n
x ′(t)(X ′ X )−x(t)

}
, (12.6)

where X is the design matrix, (X ′ X )− is the generalized inverse of X ′ X , and n(d) is the
sample size for design d . As indicated by Hedayat et al. (2006), the optimal design d∗

t
depends on the time point t because it minimizes the variance of the estimated shelf-
life at time point t. In other words, the design d∗

t , which is optimal at time point t , may
not be optimal at every time point. Thus, it is difficult to compare designs according
to this optimality criterion. To overcome this problem, Hedayat et al. (2006) proposed
the following criteria:

Criterion 1: Among designs with the same sample size, the min–max optimal design
d∗

t at time t is given by

d∗
t =

{
d : min

d:n(d)=n
max

all−level−combination
x ′(t)(X ′ X )−x(t)

}
. (12.7)

The min–max optimal design d∗
t depends on time t . If one needs to compare designs

throughout the whole test period, then criterion 2 should be used.

Binod April 16, 2007 10:0 C9055 Chapter 12



244 Current Issues and Recent Developments

Criterion 2: Among designs with the same sample size, d∗ is uniformly optimal if
d∗ is min–max optimal design at every time point t . The uniformly optimal design
does not always exist. In such a case, to compare designs throughout the whole test
period, criterion 3 is useful.

Criterion 3: Among designs with the same sample size, the min–max optimal design
d∗ is

d∗ =
{

d : min
d:n(d)=n

max
t :t∈dT

max
all−level−combination

x ′(t)(X ′ X )−x(t)

}
, (12.8)

where T is the time vector containing all time points during the test period. This
criterion can be used for comparing designs with the same sample size. If designs
with different sample sizes are compared, this criterion has to be adjusted to the same
sample size. Hedayat et al. (2006) suggested criterion 4.

Criterion 4: The sample-size-adjusted uniformly optimal design d∗ at time t is

d∗
t =

{
d : min

d
max

all−level−combination
x ′(t)(X ′ X )−x(t) × n(d)

}
. (12.9)

Criterion 5: d∗ is sample-size-adjusted uniformly optimal design if d∗ is the sample-
size-adjusted min–max optimal design at every time point t .

Criterion 6: The sample-size-adjusted min–max–max optimal design d∗ is

d∗ =
{

d : min
d

max
t :t∈T

max
all−level−combination

x ′(t)(X ′ X )−x(t) × n(d)

}
. (12.10)

To illustrate the use of the above criteria, Hedayat et al. (2006) compared several
designs for a 2-year long-term stability study. According to the FDA stability guide-
lines, for a 2-year long-term stability study, every selected level combination should
be tested at 0, 12, and 24 months and at least at one additional time point within the
first year. As a result, Hedayat et al. (2006) considered various designs with all pos-
sible time vectors (Table 12.7). These designs include: (a) a balanced design (design
B), (b) a complete one-half design (design C1/2), (c) a complete one-third design
(design C1/3), (d) a complete two-thirds design (design C2/3), (e) a fractional facto-
rial design (design F), and (f) a uniform design (design U). For every type of design,
B, C1/2, C1/3, C2/3, F, and U, Hedayat et al. (2006) suggested the following steps
for searching optimal designs:

� Step 1: List all possible time sets.

� Step 2: List all possible time allocations of time vectors.

� Step 3: For every design, calculate the maximum value of x ′(t)(X ′ X )−x(t) at
time t over all level combinations.
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TABLE 12.7: Time Vectors

Tu0 = {0, 3, 6, 9, 12, 18, 24}
Tu1 = {0, 3, 6, 9, 12, 24}
Tu2 = {0, 3, 6, 12, 18, 24}
Tu3 = {0, 3, 9, 12, 18, 24}
Tu4 = {0, 6, 9, 12, 18, 24}
Tu5 = {0, 3, 6, 12, 24}
Tu6 = {0, 3, 9, 12, 24}
Tu7 = {0, 3, 12, 18, 24}
Tu8 = {0, 6, 9, 12, 24}
Tu9 = {0, 6, 12, 18, 24}
Tu10 = {0, 9, 12, 18, 24}
Tu11 = {0, 3, 12, 24}
Tu12 = {0, 6, 12, 24}
Tu13 = {0, 9, 12, 24}

� Step 4: Among the designs with the same time set, compare the value of

max
all−level−combination

x ′(t)(X ′ X )−x(t)

at time t . Then, the design with the minimum value is the min–max optimal
design at time t , and its corresponding allocation of time vectors is optimal at
time t . If such a design is min–max optimal throughout the whole test period,
its corresponding allocation of time vectors is uniformly optimal.

� Step 5: Among the same type of designs with the same sample size, compare
the min–max optimal designs with different time sets at time t . The design with
the minimum values is optimal, and its corresponding time vector is optimal.

Following the above steps, Hedayat et al. (2006) provided search results for
optimal designs under the model with and without factor interactions. Table 12.8
and Table 12.9 provide min–max x ′(t)(X ′ X )−x(t) under the model without and with
factor interactions, respectively. The trace values from the maximum to the minimum
among designs with the same sample sizes are given in Table 12.10. Table 12.11a and
Table 12.11b provide min–max x ′(t)(X ′ X )−x(t) × n(d) under the model with and
without factor interactions, respectively. Table 12.12 and Table 12.13 provide sum-
maries of designs with the same sample size by sorting the values of

max
all−level−combination

x ′(t)(X ′ X )−x(t)

at each time point from the smallest to the largest under the model without and
with factor interactions, respectively. While Table 12.14 and Table 12.15 provide
summaries of designs with the same sample size by sorting the values of

max
all−level−combination

x ′(t)(X ′ X )−x(t) × n(d)

at each time point from the smallest to the largest under the model without and with
factor interactions, respectively.
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TABLE 12.10: Tr(Cd ) Are Sorted from the Maximum to the Minimum Value
Among Designs with the Same Sample Size

# of Observations Design Time Trace

63 U0 Tu0 7020.00
54 U04 Tu4 6966.00
54 U03 Tu3 6804.00
54 B04 Tu2, Tu3, Tu4 6765.65
54 U02 Tu2 6534.00
54 B03 Tu1, Tu3, Tu4 6223.77
54 B02 Tu1, Tu2, Tu4 6139.20
54 B01 Tu1, Tu2, Tu3 6091.07
54 U01 Tu1 5076.00
51 C2/3 1 Tu2, Tu3, Tu8 6069.76
51 C2/3 2 Tu2, Tu4, Tu6 6052.61
51 C2/3 3 Tu3, Tu4, Tu5 6024.02
45 U10 Tu10 6750.00
45 B23 Tu7, Tu9, Tu10 6513.56
45 U09 Tu9 6480.00
45 U07 Tu7 6318.00
45 B24 Tu8, Tu9, Tu10 6036.66
45 B22 Tu7, Tu8, Tu10 5985.30
45 B20 Tu6, Tu9, Tu10 5972.24
45 B17 Tu6, Tu7, Tu10 5921.30
45 B21 Tu7, Tu8, Tu9 5904.16
45 B14 Tu5, Tu9, Tu10 5862.27
45 B16 Tu6, Tu7, Tu9 5840.92
45 B11 Tu5, Tu7, Tu10 5812.02
45 B10 Tu5, Tu7, Tu9 5732.89
45 B19 Tu6, Tu8, Tu10 5478.02
45 B18 Tu6, Tu8, Tu9 5405.35
45 B13 Tu5, Tu8, Tu10 5374.16
45 B15 Tu6, Tu7, Tu8 5360.58
45 B08 Tu5, Tu6, Tu10 5314.50
45 B12 Tu5, Tu8, Tu9 5303.05
45 B09 Tu5, Tu7, Tu8 5259.23
45 B07 Tu5, Tu6, Tu9 5244.41
45 B05 Tu5, Tu6, Tu7 5201.20
45 U08 Tu8 5022.00
45 U06 Tu6 4860.00
45 B06 Tu5, Tu6, Tu8 4820.71
45 U05 Tu5 4590.00
39 C1/3 1 Tu7, Tu12, Tu13 5161.10
39 C1/3 2 Tu9, Tu11, Tu13 5140.99
39 C1/3 3 Tu10, Tu11, Tu12 5107.47
36 U13 Tu13 4806.00
36 B25 Tu11, Tu12, Tu13 4568.53
36 U12 Tu12 4536.00
36 U11 Tu11 4374.00

Source: Hedayat, A.S., Yan, X., and Lin, L. (2006). Journal of Biopharmaceutical Statistics, 16, 35–59.
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TABLE 12.12: Designs with the Same Sample Size are Sorted from the
Smallest Value to the Largest Value of Max all-level-combination x′(t)(X ′ X )−x(t)
at Each Time Point

Month
# of Max
Obs. 0 3 6 9 12 18 24 Month

63 U0 U0 U0 U0 U0 U0 U0 U0
54 U01 U01 U01 U01 U04 U04 U03 U03
54 U02 U02 U02 U02 U03 U03 U04 U04
54 B01 B01 B01 B01 B04 B04 B04 B04
54 U03 U03 B02 B02 U02 U02 U02 U02
54 B02 B02 U03 U03 B03 B03 B03 B03
54 B03 B03 B03 B03 B02 B02 B01 B01
54 B04 B04 B04 B04 B01 B01 B02 B02
54 U04 U04 U04 U04 U01 U01 U01 U01
51 C2/3 3 C2/3 2 C2/3 2 C2/3 3 C2/3 1 C2/3 1 C2/3 2 C2/3 2
51 C2/3 2 C2/3 3 C2/3 3 C2/3 2 C2/3 2 C2/3 2 C2/3 1 C2/3 1
51 C2/3 1 C2/3 1 C2/3 1 C2/3 1 C2/3 3 C2/3 3 C2/3 3 C2/3 3
45 U05 U05 U05 U05 U09 U10 U10 U07
45 U06 U06 U06 U06 B23 U09 U07 U09
45 B05 B06 B06 B06 U07 B23 B23 B23
45 B06 B05 B05 U08 U10 U07 U09 U10
45 B09 B09 U08 B05 B24 B24 B17 B17
45 B15 B15 B09 B09 B22 B22 B20 B20
45 U07 U08 B15 B15 B21 B21 B16 B16
45 C1/2 6 C1/2 3 B07 B07 B20 B20 B22 B22
45 C1/2 3 C1/2 6 C1/2 3 C1/2 3 B17 B17 B24 B24
45 B07 B07 C1/2 6 C1/2 6 C1/2 6 B16 B21 B21
45 U08 U07 B12 B12 B16 B14 B11 B11
45 B10 B12 U07 B18 C1/2 3 C1/2 6 B14 B14
45 B12 B10 B18 U07 B14 B11 B10 B10
45 B16 B18 B10 B10 C1/2 4 C1/2 4 C1/2 4 C1/2 4
45 B18 C1/2 1 C1/2 1 B08 B11 B10 C1/2 6 C1/2 6
45 C1/2 1 B16 B16 C1/2 1 B19 C1/2 3 C1/2 5 C1/2 5
45 B08 B08 B08 B16 B10 B19 C1/2 1 C1/2 1
45 C1/2 4 C1/2 4 C1/2 4 C1/2 4 U08 C1/2 1 C1/2 3 C1/2 3
45 B21 B21 B21 B21 B18 C1/2 5 B19 B19
45 B11 B13 B13 B13 C1/2 1 B18 B15 B15
45 B13 B11 B11 B19 B15 B15 B18 B18
45 C1/2 2 C1/2 2 B19 B11 C1/2 5 B13 C1/2 2 C1/2 2
45 B17 B19 C1/2 2 C1/2 2 B13 C1/2 2 B08 B08
45 B19 B17 B17 B17 B12 B08 B13 B13
45 B14 B14 B14 B14 C1/2 2 B12 B05 B05
45 U09 U09 C1/2 5 C1/2 5 B08 B09 B07 B07
45 C1/2 5 C1/2 5 U09 B22 B09 B07 B09 B09
45 B22 B22 B22 U09 B07 U08 B12 B12
45 B20 B20 B20 B20 U06 B05 U06 U06
45 B23 B24 B24 B24 B05 U06 U08 U08

(Continued )
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TABLE 12.12: Designs with the Same Sample Size are Sorted from the
Smallest Value to the Largest Value of Max all-level-combination x′(t)(X ′ X )−x(t)
at Each Time Point (Continued)

Month
# of Max
Obs. 0 3 6 9 12 18 24 Month

45 B24 B23 B23 B23 B06 B06 B06 B06
45 U10 U10 U10 U10 U05 U05 U05 U05
42 F1 F1 F1 F1 F1 F1 F1 F1
39 C1/3 2 C1/3 3 C1/3 3 C1/3 3 C1/3 1 C1/3 1 C1/3 2 C1/3 2
39 C1/3 1 C1/3 1 C1/3 1 C1/3 1 C1/3 2 C1/3 2 C1/3 1 C1/3 1
39 C1/3 3 C1/3 2 C1/3 2 C1/3 2 C1/3 3 C1/3 3 C1/3 3 C1/3 3
36 U11 F2 F2 F2 F5 F5 F5 F5
36 F2 U11 F3 F3 F4 U13 U13 U13
36 F3 F3 F4 F4 F3 F4 B25 B25
36 F4 F4 F5 F5 F2 F3 U12 U12
36 F5 F5 U11 U11 U13 F2 U11 U11
36 U12 U12 U12 U12 U12 U12 F4 F4
36 B25 B25 B25 B25 B25 B25 F2 F2
36 U13 U13 U13 U13 U11 U11 F3 F3

Source: Hedayat, A.S., Yan, X., and Lin, L. (2006). Journal of Biopharmaceutical Statistics, 16, 35–59.

Under the model without factor interactions, Tables 12.8, 12.11b, 12.12 and 12.14
lead to the following conclusions:

� Among all types of designs, the complete design U0 is uniformly optimal.

� Among every group of designs with the same sample size, there are no uniformly
optimal designs.

� The min–max–max optimal designs can be found for the designs with the same
sample size. For example, for a design with a sample size of 54, the uniform
design U03 is the min–max–max optimal design.

� The sample-size-adjusted min–max–max optimal designs can be found when
comparing different designs with x ′(t)(X ′ X )−x(t) × n(d). The fractional
design F5 is the sample-size-adjusted min–max–max optimal design among
all designs.

Under the model with factor interactions, from Tables 12.9, 12.11a, 12.13, and
12.15, the following conclusions can be made:

� For each type of designs, the designs with the same time vectors but different
time vector allocations are equivalent to each other under the min–max opti-
mality criterion. In other words, for every design with the same time vectors
and the same type, regardless of the allocation of the time vectors, the value of
maxall−level−combination x ′(t)(X ′ X )−x(t) is the same at time t .

� The fractional design F1 is equivalent to the complete design U0 under the
uniform optimality criterion. Designs F1 and U0 are the uniformly optimal
designs of all types of designs.
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TABLE 12.13: Designs with the Same Sample Size Are Sorted from the
Smallest Value to the Largest Value of Maxall−level−combinationx ′(t)(X ′X )−x(t) at
Each Time Point

Month

# of Obs. 0 3 6 9 12 18 24 Max Month

63 U0 U0 U0 U0 U0 U0 U0 U0
54 U01 U01 U01 U01 U04 U04 U03 U03
54 U02 U02 U02 U02 U03 U03 U04 U04
54 B01 B01 B01 B01 B04 B04 B04 B04
54 U03 U03 U03 U03 U02 U02 U02 U02
54 B02 B02 B03 B03 B02 B02 B02 B02
54 B03 B03 B02 B02 B01 B01 B01 B01
54 B04 B04 B04 B04 B03 B03 B03 B03
54 U04 U04 U04 U04 U01 U01 U01 U01
51 C2/3 3 C2/3 3 C2/3 3 C2/3 3 C2/3 1 C2/3 1 C2/3 2 C2/3 2
51 C2/3 2 C2/3 2 C2/3 2 C2/3 2 C2/3 2 C2/3 2 C2/3 1 C2/3 1
51 C2/3 1 C2/3 1 C2/3 1 C2/3 1 C2/3 3 C2/3 3 C2/3 3 C2/3 3
45 U05 U05 U05 U05 U09 U10 U10 U07
45 U06 U06 U06 U06 U07 U09 U07 U09
45 B05 B06 B06 B06 B23 B23 B23 B23
45 U07 U08 U08 U08 U10 U07 U09 U10
45 C1/2 6 C1/2 3 B05 C1/2 3 C1/2 6 C1/2 6 C1/2 4 C1/2 4
45 B06 B05 C1/2 3 B05 C1/2 3 C1/2 3 C1/2 1 C1/2 1
45 B09 B15 B15 B15 B24 B22 B16 B16
45 B15 C1/2 6 C1/2 6 C1/2 6 B21 B24 B20 B20
45 C1/2 3 B09 B09 B09 B22 B21 B17 B17
45 U08 U07 U07 U07 U08 U08 U06 U06
45 C1/2 1 C1/2 1 C1/2 1 C1/2 1 C1/2 4 C1/2 4 C1/2 6 C1/2 6
45 B18 B10 B18 B18 C1/2 1 C1/2 1 B15 B15
45 B07 C1/2 4 C1/2 4 C1/2 4 B20 B15 C1/2 3 C1/2 3
45 B12 B18 B10 B10 B16 B16 B18 B18
45 B10 B21 B16 B16 B19 B18 B19 B19
45 C1/2 4 B16 B07 B07 B18 B20 B22 B22
45 B21 B07 B21 B21 B15 B19 B24 B24
45 B16 B12 B12 B12 B17 B17 B21 B21
45 U09 U09 U09 U09 U06 U06 U08 U08
45 C1/2 2 B22 C1/2 2 C1/2 2 C1/2 5 B05 C1/2 5 C1/2 5
45 B14 C1/2 2 C1/2 5 B19 B05 C1/2 5 C1/2 2 C1/2 2
45 B13 C1/2 5 B19 C1/2 5 C1/2 2 C1/2 2 B05 B05
45 B19 B24 B24 B24 B06 B13 B13 B13
45 B23 B11 B13 B20 B10 B10 B10 B10
45 B20 B19 B11 B13 B13 B06 B06 B06
45 B08 B17 B20 B11 B12 B12 B12 B12
45 B22 B20 B17 B23 B08 B08 B08 B08
45 B11 B13 B22 B17 B09 B11 B14 B14
45 C1/2 5 B23 B23 B22 B07 B14 B11 B11
45 B24 B14 B14 B08 B14 B07 B07 B07

(Continued )
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TABLE 12.13: Designs with the Same Sample Size Are Sorted from the
Smallest Value to the Largest Value of Maxall−level−combinationx ′(t)(X ′X )−x(t) at
Each Time Point

Month

# of Obs. 0 3 6 9 12 18 24 Max Month

45 B17 B08 B08 B14 B11 B09 B09 B09
45 U10 U10 U10 U10 U05 U05 U05 U05
42 F1 F1 F1 F1 F1 F1 F1 F1
39 C1/3 3 C1/3 3 C1/3 3 C1/3 3 C1/3 1 C1/3 1 C1/3 1 C1/3 1
39 C1/3 2 C1/3 2 C1/3 1 C1/3 1 C1/3 2 C1/3 2 C1/3 2 C1/3 2
39 C1/3 1 C1/3 1 C1/3 2 C1/3 2 C1/3 3 C1/3 3 C1/3 3 C1/3 3
36 F2 F2 F2 F2 F5 F5 F5 F5
36 U11 F4 F4 F5 F3 F3 F3 F3
36 F4 F5 F5 F4 F2 F2 F2 F2
36 F5 F3 F3 F3 F4 F4 F4 F4
36 F3 U11 U11 U11 U13 U13 U13 U13
36 U12 U12 U12 U12 U12 U12 U12 U12
36 B25 B25 B25 B25 B25 B25 B25 B25
36 U13 U13 U13 U13 U11 U11 U11 U11

Source: Hedayat, A.S., Yan. X. and Lin, L. (2006). Journal of Biopharmaceutical Statistics, 16, 35–59.

� Among all types of designs, the sample-size-adjusted uniformly optimal design
does not exist.

� Among every group of designs with the same sample size, there are no uniformly
optimal designs.

� The min–max–max optimal designs can be found for the designs with the same
sample size. For example, for a design with a sample size of 54, the uniform
design U03 is the min–max–max optimal design.

� The sample-size-adjusted min–max–max optimal designs can be found when
comparing different designs with x ′(t)(X ′ X )−x(t) × n(d). The fractional de-
sign F5 is the sample-size-adjusted min–max–max optimal design among all
designs.

12.3.1 Remarks

Hedayat et al. (2006) focused on searching for optimal design among designs with
two factors (three levels in each factor) based on the proposed optimality criteria
under a model with or without factor interactions. In practice, it is of interest to study
the general case where one factor has m levels and the other factor has n levels. In
such a case, the problem becomes how to allocate k time vectors T1, T2, · · · , Tk to the
m × n tables and how to select the optimal time vector. It is also of interest to study
the case when there are three factors. Furthermore, as indicated in Chapter 6, batch
factor is often considered as random effect. As a result, the search for an optimal
design under a mixed effects model should be explored.
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TABLE 12.14: Designs Are Sorted from the Smallest Value to the Largest
Value of Maxall−level−combination x′(t) (X′ X)− x(t) × n(d) at Each Time Point

Month

0 3 6 9 12 18 24 Max Month

U11 F2 F1 F1 F5 F5 F5 F5
U05 F1 F2 F2 F1 U10 U10 U07
F2 U05 F3 F3 F4 U09 U07 U09
F1 U11 F4 F4 F3 B23 B23 B23
U06 U01 U05 F5 F2 U07 U09 U13
F3 F3 F5 U05 U09 F1 U13 F1
F4 F4 U01 U01 B23 U13 F1 B25
U01 U06 U11 U06 U04 U04 B25 U12
F5 F5 U06 U11 U07 F4 U12 C1/3 2
U12 B06 B06 B06 U10 F3 C1/3 2 U11
B05 U12 U12 U08 U13 F2 U11 C1/3 1
B06 B05 B05 U0 U03 U12 C1/3 1 C1/3 3
B25 B09 U08 U12 B24 C1/3 1 C1/3 3 U10
B09 B25 U02 U02 B22 U03 F4 F4
U02 U02 B09 B05 B04 B24 F2 F2
B15 B15 B25 B01 B21 B25 F3 F3
U07 U08 U0 B09 B20 B22 U03 U03
C1/2 6 B01 B01 B25 U12 C1/3 2 B17 B17
C1/2 3 C1/2 3 B15 B15 B17 C1/3 3 B20 B20
B07 C1/2 6 B07 B07 U02 B21 B16 B16
B01 B07 C1/2 3 B02 C1/2 6 B04 B22 B22
U08 U0 C1/2 6 C1/2 3 B16 B20 B24 B24
B10 U07 C2/3 2 U03 C1/2 3 B17 B21 B21
B12 B12 C2/3 3 C1/2 6 B25 B16 B04 B04
C1/3 2 B10 B12 B03 B14 U11 U04 U04
C1/3 1 U13 U07 B12 C1/2 4 U02 B11 B11
C1/3 3 C1/3 3 B02 C2/3 3 B11 B14 B14 B14
U13 C2/3 2 C2/3 1 B18 U0 C1/2 6 U02 U02
U0 C2/3 3 C2/3 3 U13 B19 B11 B10 B10
B16 C2/3 1 U03 U07 B10 C1/2 4 C1/2 4 C1/2 4
B18 C1/3 1 U13 C2/3 2 U08 B10 C1/2 6 C1/2 6
C1/2 1 C1/3 2 B18 B10 B18 C1/2 3 C1/2 5 C1/2 5
C2/3 3 U03 B10 B04 C1/2 1 B19 C1/2 1 C1/2 1
C2/3 2 B18 B03 B08 C1/3 1 C1/2 1 C1/2 3 C1/2 3
U03 C1/2 1 C1/2 1 C1/2 1 B15 C1/2 5 B19 B19
C2/3 1 B02 C1/3 1 B16 U11 B18 B15 B15
B08 B16 C1/3 2 C2/3 1 C1/2 5 B15 B18 B18
C1/2 4 B08 B16 C1/2 4 C1/3 2 B13 C1/2 2 C1/2 2
B02 C1/2 4 B08 C1/3 3 B13 C1/2 2 B08 B08
B21 B03 C1/2 4 B21 C1/3 3 B08 B13 B13
B03 B21 B04 B13 B12 B12 B05 B05
B11 B13 B21 B19 B03 B09 B07 B07
B13 B04 B13 C1/3 1 C1/2 2 B07 B09 B09

(Continued )
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TABLE 12.14: Designs Are Sorted from the Smallest Value to the Largest Value
of Maxall−level−combination x′(t) (X′ X)− x(t) × n(d) at Each Time Point (Continued)

Month

0 3 6 9 12 18 24 Max Month

C1/2 2 B11 B11 C1/3 2 B08 C2/3 1 B12 B12
B04 C1/2 2 B19 U04 B09 U08 C2/3 2 C2/3 2
B17 B19 C1/2 2 B11 B02 B05 C2/3 1 C2/3 1
B19 B17 B17 C1/2 2 B07 U0 U06 U06
B14 B14 B14 B17 U06 C2/3 2 C2/3 3 C2/3 3
U09 U09 U04 B14 B05 U06 U08 U08
C1/2 5 C1/2 5 C1/2 5 C1/2 5 B01 C2/3 3 B06 B06
B22 B22 U09 B22 C2/3 1 B03 U0 U0
B20 B20 B22 U09 B06 B02 U05 U05
B23 U04 B20 B20 C2/3 2 B06 B03 B03
B24 B24 B24 B24 C2/3 3 B01 B01 B01
U04 B23 B23 B23 U05 U05 B02 B02
U10 U10 U10 U10 U01 U01 U01 U01

Source: Hedayat, A.S., Yan, X., and Lin, L. (2006). Journal of Biopharmaceutical Statistics, 16, 35–59.

Hedayat et al. (2006) proposed using an information matrix Cd to investigate
whether the optimal allocations of time vectors have good properties in terms of
detecting slope differences between levels of one factor under the following model
with common intercept and no factor interactions:

yi jk = α0 + (βAi + βB j )ti jk + εi jk

where εi jk are independent and identically distributed normal with mean 0 and vari-
ance σ 2, i = 1, 2, 3, j = 1, 2, 3, k = 1, 2, · · · , ni j . If one is interested in testing the
hypothesis

H0 : βA1 = βA2 = βA3 ,

the information matrix for βAi is given by

Cd = X ′
1 X1 − X ′

1 X2(X ′
2 X2)− X ′

2 X1,

where

X1 = (XβA1
, XβA2

, XβA3
)

= (I3 ⊗ J3) ⊗




Jn1

...
Jn9


 � T,

and

X2 = (XβB1
, XβB2

, XβB3
)

= (J3 ⊗ I3) ⊗




Jn1

...
Jn9


 � T .
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TABLE 12.15: Designs Are Sorted from the Smallest Value to the Largest
Value of Maxall−level−combination x′ (t) (x′ x)− x(t) × n(d) at Each Time Point

Month

0 3 6 9 12 18 24 Max Month

F1 F1 F1 F1 F5 F5 F5 F5
F2 F2 F2 F2 F1 F1 F1 F1
U11 F4 F4 F5 F3 U10 U10 U07
F4 F5 F5 F4 F2 U09 U07 U09
F5 F3 F3 F3 F4 B23 B23 F3
F3 U05 U05 U05 U09 U07 U09 F2
U05 U11 U01 U01 U04 F3 F3 F4
U06 U01 U11 U06 U07 F2 F2 U13
U01 U06 U06 U11 B23 F4 F4 U12
U12 U12 U12 B06 U10 U13 U13 B25
U02 U02 B06 U08 U13 U04 U12 U11
B05 B06 U08 U0 U03 U12 B25 B23
U07 U08 U02 U12 U12 U03 U11 U10
C1/2 6 U0 U0 U02 B04 B25 U03 U03
B06 C1/2 3 B05 B01 U02 U11 U04 U04
B09 B05 C1/2 3 U03 U0 B04 B04 B04
B15 B15 B15 B25 C1/2 6 U02 U02 U02
C1/2 3 C1/2 6 C1/2 6 U13 C1/2 3 C1/3 1 C1/3 1 C1/3 1
U08 B09 B09 C1/2 3 B24 C1/3 2 C1/3 2 C1/3 2
B25 U07 U07 B05 B21 C1/3 3 C1/3 3 C1/3 3
U13 B25 B01 B15 B22 C1/2 6 C1/2 4 C1/2 4
U0 U13 U03 C1/2 6 U08 C1/2 3 C1/2 1 C1/2 1
B01 B01 B25 B09 B25 B22 B16 B16
U03 U03 U13 U07 U11 B21 B20 B20
C1/3 3 C2/3 3 C2/3 3 B03 C1/2 4 B24 B17 B17
C1/3 2 C2/3 2 C2/3 2 B02 C1/2 1 U08 U06 U06
C1/3 1 C2/3 1 C1/3 3 B04 B20 U0 C1/2 6 C1/2 6
C2/3 3 C1/3 3 C2/3 1 U04 B16 C1/2 4 B15 B15
C2/3 2 C1/3 2 C1/3 1 C1/3 3 B19 C1/2 1 C1/2 3 C1/2 3
C2/3 1 C1/3 1 C1/3 2 C1/2 1 B18 B15 B18 B18
C1/2 1 C1/2 1 B03 B18 B15 B16 B19 B19
B18 B10 B02 C1/2 4 B17 B18 B22 B22
B07 C1/2 4 B04 B10 U06 B20 B24 B24
B12 B18 U04 B16 C1/3 1 B19 B21 B21
B10 B21 C1/2 1 B07 C1/2 5 B17 U08 U08
C1/2 4 B16 B18 B21 B05 U06 U0 U0
B21 B07 C1/2 4 B12 C1/2 2 B05 C1/2 5 C1/2 5
B16 B12 B10 U09 B06 C1/2 5 C1/2 2 C1/2 2
U09 U09 B16 C2/3 3 B10 C1/2 2 B05 B05
B02 B02 B07 C2/3 2 B13 B13 B13 B13
B03 B03 B21 C1/3 1 B12 B10 B10 B10
B04 B04 B12 C1/3 2 B08 B06 B06 B06
U04 U04 U09 C2/3 1 B09 B12 B12 B12

(Continued )
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TABLE 12.15: Designs Are Sorted from the Smallest Value to the Largest
Value of Maxall−level−combination x′ (t) (x′ x)− x(t) × n(d) at Each Time Point

Month

0 3 6 9 12 18 24 Max Month

C1/2 2 B22 C1/2 2 C1/2 2 B07 B08 B08 B08
B14 C1/2 2 C1/2 5 B19 B14 B11 B14 B14
B13 C12 5 B19 C1/2 5 B11 B14 B07 B07
B19 B24 B24 B24 U05 B07 B11 B11
B23 B11 B13 B20 C1/3 2 B09 B09 B09
B20 B19 B11 B13 C1/3 3 U05 U05 U05
B08 B17 B20 B11 B02 C2/3 1 C2/3 2 C2/3 2
B22 B20 B17 B23 B01 C2/3 2 C2/3 1 C2/3 1
B11 B13 B22 B17 B03 B02 C2/3 3 C2/3 3
C1/2 5 B23 B23 B22 U01 B01 B02 B02
B24 B14 B14 B08 C2/3 1 B03 B01 B01
B17 B08 B08 B14 C2/3 2 U01 B03 B03
U10 U10 U10 U10 C2/3 3 C2/3 3 U01 U01

Source: Hedayat, A.S., Yan, X., and Lin, L. (2006). Journal of Biopharmaceutical Statistics, 16,
35–59.

in which T is the time vector, ⊗ represents the Kroncknecker multiplication, and � is
the Hadamard product (i.e., entry-wise multiplication). To investigate the property of
the information of Cd , Hedayat et al. (2006) suggested Kiefer’s theorem (see Hedayat,
2001) be used, which is stated as follows:

Theorem 12.1 Let d∗ ∈ D such that

(a) d∗ maximizes Tr(Cd ).

(b) Cd∗ is completely symmetric, that is, Cd∗ is in the form of a I + bJ .

Then d∗ is uniformly optimal in the class of the design with Cd1 = 0.

12.4 Current Issues in Stability Analysis

As discussed in the previous chapters, statistical methods for analysis of stability data
collected from either short-term or long-term stability studies are well established
in the literature. However, some issues are of particular interest to pharmaceutical
researchers and scientists and biostatisticians (see, e.g., Tsong, 2003). These issues
include the use of overage to account for stability loss prior to expiration dates,
the impact of assay sensitivity on drug shelf-life estimations, stability analysis with
multiple drug characteristics, the use of the 0.25 significance level for other design
factors rather than batch, the impact of random batch effects on statistical inference in
complicated stability studies, the impact of the deviation from linearity on the validity
and reliability of estimated drug shelf-life, and sample size justification based on the
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precision of the estimated drug shelf-life. These practical issues, which may or may
not have been partially or completely resolved in the literature, are briefly described
below.

12.4.1 Overage

In the pharmaceutical industry it is common practice to add an amount of active
ingredients to account for a possible stability loss over a desired expiration period,
provided that the resulting initial value is within the USP/NF upper specification
limit. The additional amount of active ingredient is called an overage of the drug
product. For example, suppose the desired shelf-life of a drug product is 36 months
and the expected stability loss over 36 months is 15% of label claim, and the USP/NF
specification limits are (90%,110%) of label claim. Then, the pharmaceutical company
may consider adding an overage of 5% of the label claim to the drug product to ensure
that the drug product will remain within the (90%,110%) specification limits at the
end of shelf-life. The overage of 5% may result in an initial average potency of 105%.
Adding an overage of 5% may increase the manufacturing cost and increase the chance
of a potential safety problem due to occasional instances of superpotency. If we take
into consideration possible expected and unexpected sources of variation, the true
strength at the time the drug product is manufactured may exceed the upper approved
specification limit of 110%. Thus, when an overage is to be added to account for
the possible stability loss over the desired shelf-life, it is suggested that all possible
sources of variability be taken into account for determining drug shelf-life.

12.4.2 Assay Sensitivity

As discussed in Chapters 3 to 6, it is ideal to have a small σ 2 in order to enjoy
the good statistical property of a small error asymptotic. However, for some drug
products, σ 2 may be large owing to the analytical method used when the drug product
was developed. A large σ 2 will definitely have an negative impact on stability analysis
for estimating an accurate and reliable drug shelf-life because the assay may not be
sensitive enough to detect a samll degradation in a short period of time. As a result,
a stability analysis based on assay results with poor sensitivity may provide a biased
estimate of the drug shelf-life. Consequently, the drug product may fail to meet the
approved specification limit prior to its expiration date. Thus, it is suggested that the
assay sensitivity be taken into consideration when performing a stability analysis for
drug products with poor assay sensitivity, especially for drug products approved by
the FDA prior to 1962.

To account for the relative nature of the data variability due to assay sensitivity,
Pogany (2006) suggested that the following capability index be employed:

C p = UCL − LCL

6σ̂
,

where (LCL, UCL) and σ̂ are the acceptance limits and sample standard deviation of
the assay results, respectivley. If C p > 2.5, we conclude that there is little or no data
variability (see also Bar, 2003).
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12.4.3 Multiple Drug Characteristics

Stability analyses with multiple drug characteristics can be classified into three cat-
egories. The first category includes multivariate analyses based on a primary drug
characteristic such as potency (strength) and a secondary drug characteristic such as
color or odor. As indicated in Chapter 8, the primary drug characteristic is a contin-
uous variable, and the secondary drug characteristics may be a discrete response. As
a result, it is a challenge to determine drug shelf-life based on a multivariate analy-
sis with one continuous variable and one discrete response. The second category is
referred to as stability analysis of potency (percent of label claim) and dissolution (not
only USP/NF dissolution testing, but also dissolution profile testing) assuming there
is a correlation between potency and dissolution over time. As indicated in Chapter 1,
stability (potency) and dissolution were the top 3 and 5 reasons for drug recalls in the
fiscal year of 2004. One could consider incorporting both drug characteristics for an
overall assessment of the drug expiration dating period. The third category includes
drug products with multiple components, as discussed in Chapter 9. Chow and Shao
(2007) proposed a method for determining shelf-life for drug products with multiple
components under certain assumptions. These assumptions, however, cannot be veri-
fied because the pharmacological activities of these components and the interactions
among them are usually unknown (Chow, Pong, and Chang, 2006).

Stability analysis with multiple characteristics as described above is a challenge
to pharmaceutical researchers and scientists and biostatisticians. Further research is
needed.

12.4.4 Batch Similarity

As indicated in the 1987 FDA stability guideline, a 0.25 level of significance is
recommended for testing batch similarity. The 0.25 level of significance has been
criticized by many sponsors as being too conservative for future production batches.
Lin and Tsong (1990) pointed out that the level of significance required for a given
minimum relative efficiency of the estimate based on results of the pooling test (in
comparison to simply using the worst batch estimate) depends on sample size, time
points measured, mean slope of all batches, and tightness of the stability data. In
stability analyses the poolability of batches is not limited to batches of the same
strength or package type. In practice, we may have several strengths that are packed
in different types of packages. As a result, it is not clear whether the same 0.25
level of significance should be applied to other design factors when pooling batches
for an overall assessment of drug shelf-life. Current practice is to use the 0.25 level
of significance for the design factor of batch and use 0.05 for the design factors of
strength and package type. In practice, it is of interest to study the impact on shelf-life
estimation using different levels of significance on different design factors. Statistical
justifications for selecting significance levels for design factors need to be provided
in a full-scale stability analysis with all design factors.

In Chapter 6 we introduced several methods for determining drug shelf-life un-
der the random effects model. These methods may be applied to some complicated
situations such as the two-phase analysis for determining drug shelf-life for frozen
products (Chapter 10). This requires further research.
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12.4.5 Deviation from Linearity

Throughout this book estimation of an expiration dating period for a drug product
is based on fitting a linear regression model to the percent of label claim on the
original scale. In other words, the assumption of a linear degradation is made for the
entire range of time points selected in the stability study. However, as pointed out
in Chapter 2, the true degradation function is generally not a linear function rather
than a simple exponential first order function. Morris (1992) compares the differences
in estimated shelf-life between a linear regression and a simple exponential model.
The results indicate that if the total amount of degradation over the entire range of
time points is less than 15% of the label claim, the difference in estimated shelf-life
between the two models is quite trivial. If the loss of strength is expected to be greater
than 15%, the exponential model should be used for estimating the expiration dating
period. Under the current FDA stability guidelines, the acceptable lower specification
limit specified in the USP/NF is usually set to be 90%. This indicates that only a
maximum amount of degradation of 10% is allowed. As a result, the current method
for fitting a linear regression model to the percent of label claim on the original
scale is adequate. An estimated shelf-life based on extrapolation from the estimated
regression line over the range of the time intervals observed may be biased because
it is not known whether an empirical linear relationship between the strength and
time still holds from the last observed time interval to the estimated shelf-life. It is
suggested that the use of extrapolation beyond the range of observed time points be
carefully evaluated. Thus, the 1987 FDA stability guideline requires that an expiration
dating period granted on the basis of extrapolation be verified by stability data up to
the granted expiration time as soon as these data become available.

12.4.6 Time-Dependent Degradation

In the previous chapters, for determination of drug shelf-life, we assume that the
primary drug characteristic such as potency for stability testing is expected to decrease
linearly over time. The degradation rate is a fixed constant. In this case statistical
methods suggested in the FDA stability guidelines can be used to determine the
drug shelf-life based on the collected stability data (FDA, 1987, 1998). However, the
primary drug characteristic of some drug products may not decrease linearly over time,
and the degradation rate may be time dependent. A typical example is drug products
containing levothyroxine sodium, which is the sodium salt of the levo isomer of the
thyroid hormone thyroxine. Thyroid hormones affect protein, lipid, and carbohydrate
metabolism, growth, and development. As indicated in Issue No. 157 of Federal
Register, there is evidence showing significant stability and potency problems with
orally administered levothyroxine sodium products (Federal Register, 1997). These
products fail to maintain potency through the expiration date. In addition, tablets of
the same dosage strength from the same manufacturer vary from lot to lot in the
amount of active ingredient present. This lack of stability and consistent potency has
the potential to cause serious health consequences to the public.

In a stability study Won (1992) reported that levothyroxine sodium exhibits a bipha-
sic first-order degradation profile with an initial fast degradation rate followed by a
slower rate. This observation suggests a time-dependent degradation for drug products
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containing levothyroxine sodium. In this case the usual approach for determining
drug shelf-life is not appropriate. As a result, future research for appropriate statisti-
cal methods for determining drug shelf-life under the assumption of time-dependent
degradation is needed. In addition, it is of interest in studying the impact of assasy
sensitivity on the possible inconsistent potency over time for drug products approved
prior to 1962, such as drug products containing levothyroxine sodium. There was
no standard for the use of a stability-indicating assay for quality control until 1982
(Garnick et al., 1982). The accuracy and reliability of the stability-indicating assay
based on high-performance liquid chromatography may not be sensitive enough to
provide an accurate and reliable estimate of drug shelf-life under the assumption of
time-dependent degradation.

12.4.7 Sample Size Justification

Both the FDA stability guidelines and the ICH guidelines for stability recommend that
stability testing be done at 3-month intervals during the first year, 6-month intervals
during the second year, and annually thereafter. The 1987 FDA stability guideline
also encourages testing an increasing number of replicates at later sampling time
points. However, no statistical justification for these recommendations is provided.
As indicated by Chow, Shao, and Wang (2003), sample size justification can be made
based on either power analysis or precision assessment. Ju and Chow (1995) pointed
out that the primary objective of a stability study is to estimate the shelf-life of a
drug product. Thus, the precision of the estimated shelf-life should be assured. It is
therefore suggested that sample size justification be provided based on the precision
of an estimated drug shelf-life. The sample size justification should include knowl-
edge of assay sensitivity, safety margin (or tolerable limit of the estimated shelf-life),
and design factors. For example, the following statement can be provide to justify the
selected sample size: The selected sample size (e.g., number of batches for each com-
bination of strength and package type, number of replicates at prespecified sampling
time intervals or additional sampling time intervals) will provide a 95% assurance
that the true shelf-life is within the safety margin of 2 months or 24 months assuming
that the assay sensitivity is less than 5% of label claim.

12.5 SAS Programs for Stability Analysis

To assist the sponsors in stability analysis, the Division of Biometrics, Center for
Drug Evaluation and Research (CDER) at the FDA and has developed a SAS/PC
program system STAB for estimating the expiration dating period of a drug product
based on linear regression analysis. The SAS/PC program system STAB was released
on March 23, 1992, and updated on July 13, 2005. The statistical foundation of the
SAS program was documented in the 1987 FDA stability guideline Guideline for
Submitting Documentation for Human Drugs and Biologics. SAS/PC version 6.03 is
required to run the program. DOS version 3 or later is assumed in these instructions,
but not required.
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As indicated on the FDA website (http://www.fda.gov/cder/sas/index.htm), to in-
stall the program, one has to make sure that the CONFIG.SYS file contains the lines

DEVICE=C:\DOS\ANSI.SYS
FILES=50

Then, reboot the system after the changes are made in the CONFIG.SYS file. If the
DOS operating system is not in the directory C:\DOS, create an appropriate directory.
Note that without ANSI.SYS, one cannot leave the SAS display manager by the “X”
command. Without sufficient file handles, the stability program will not run. One can
load the software (presumably from floppy drive A, to the current default drive and
SAS directory) with the following commands or equivalent procedure for loading:

MKDIR\SAS\STAB
XCOPY A:*.* \SAS\STAB

The STAB system contains a data file, six SAS macro files, and an optional
SAS/GRAPH file:

STAB Files

SAS Macro Files Control Files Help Files

ANALYS1.SAS EXAMPLE.DAT HELPSTAB.BAT
ANALYS2.SAS STAB.DAT README.TXT
ANALYS3.SAS STABNC.DAT
ANALYS4.SAS
ANALYS5.SAS
ANALYS6.SAS

STABGRAF.SAS

Stab.dat is a SAS control file, to which the user adds current variable values,
titles, and the data. STABNC.DAT is an alternate SAS control file with a few com-
ments. ANALYS1.SAS to ANALYS6.SAS are the SAS macro programs, while
STABGRAF.SAS is an optional program for SAS/GRAPH. Readme.bat and
Helpstab.bat are optional files to display the document. To apply the STAB system,
one should follow the following steps:

� Step 1: Make a duplicate of the STAB.DAT file (e.g., STAB1.DAT) to avoid
changing the original.

� Step 2: Start SAS (presumably using the display manager with \SAS as the
default directory.)

� Step 3: Load STAB1.DAT by entering INCLUDE ‘STAB/STAB1.DAT’ on the
command line.

� Step 4: When STAB1.DAT is loaded, enter the data and other modifications, as
per the instructions given in comments in STAB1.DAT.
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� Step 5: After completing data and information entry, enter Submit on the com-
mand line to run the STAB system.

� Step 6: Check the log listing for errors, and if there are none, save the output
listing (lst) as detailed in the comments given in STAB.DAT.

� Step 7: If you want high resolution SAS graphs, enter Clear on the command
line of the program window if a program is visible.

� Step 8: The STABGRAF.SAS file uses a permanent dataset created by STAB.DAT,
so STAB.DAT needs to be run before STABGRAF.SAS. Load STABGRAF.SAS
by entering on the command line

INCLUDE ’STAB\STABGRAF.SAS’
� Step 9: Make any modifications needed (check graphics device type and the

axis scales) and run by entering Submit on the command line.

The program may run through a series of graphs. After viewing the current graph,
press the space bar once. The primary SAS programs are listed in Appendix B. For
further information regarding the SAS/PC program system STAB, the readers should
contact Atiar Rahman at rahmanat@cder.fda.gov.
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Appendix A

Guidance for Industry1

Q1A(R2) Stability Testing of New Drug Substances
and Products

This guidance represents the Food and Drug Administration’s (FDA’s) current think-
ing on this topic. It does not create or confer any rights for or on any person and
does not operate to bind FDA or the public. You can use an alternative approach if
the approach satisfies the requirements of the applicable statutes and regulations. If
you want to discuss an alternative approach, contact the FDA staff responsible for
implementing this guidance. If you cannot identify the appropriate FDA staff, call
the appropriate number listed on the title page of this guidance.

A.1 Introduction2

This guidance is the second revision of Q1A Stability Testing of New Drug Substances
and Products, which was first published in September 1994 and revised in August
2001. The purpose of this revision is to harmonize the intermediate storage condition
for zones I and II with the long-term condition for zones III and IV recommended
in the ICH guidance Q1F Stability Data Package for Registration Applications in
Climatic Zones III and IV. The changes made in this second revision are listed in the
attachment to this guidance.

A.1.1 Objectives of the Guidance

This guidance is intended to define what stability data package for a new drug sub-
stance or drug product is sufficient for a registration application within the three

1 This guidance was developed within the Expert Working Group (Quality) of the International Conference
on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH)
and has been subject to consultation by the regulatory parties, in accordance with the ICH process. This
document was endorsed by the ICH Steering Committee at Step 4 of the ICH process, February 2003. At
Step 4 of the process, the final draft is recommended for adoption to the regulatory bodies of the European
Union, Japan, and the United States.
2 Arabic numbers reflect the organizational breakdown in the document endorsed by the ICH Steering
Committee at Step 4 of the ICH process.
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regions of the European Union (EU), Japan, and the United States. It does not seek
to address the testing for registration in or export to other areas of the world. The
guidance exemplifies the core stability data package for new drug substances and
products, but leaves sufficient flexibility to encompass the variety of different prac-
tical situations that may be encountered due to specific scientific considerations and
characteristics of the materials being evaluated. Alternative approaches can be used
when there are scientifically justifiable reasons.

A.1.2 Scope of the Guidance

The guidance addresses the information to be submitted in registration applications
for new molecular entities and associated drug products. This guidance does not
currently seek to cover the information to be submitted for abbreviated or abridged
applications, variations, or clinical trial applications.

Specific details of the sampling and testing for particular dosage forms in their
proposed container closures are not covered in this guidance.

Further guidance on new dosage forms and on biotechnological/biological products
can be found in ICH guidances Q1C Stability Testing for New Dosage Forms and Q5C
Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological
Products, respectively.

A.1.3 General Principles

The purpose of stability testing is to provide evidence on how the quality of a drug
substance or drug product varies with time under the influence of a variety of envi-
ronmental factors, such as temperature, humidity, and light, and to establish a retest
period for the drug substance or a shelf life for the drug product and recommended
storage conditions.

The choice of test conditions defined in this guidance is based on an analysis
of the effects of climatic conditions in the three regions of the EU, Japan, and the
United States. The mean kinetic temperature in any part of the world can be derived
from climatic data, and the world can be divided into four climatic zones, I-IV. This
guidance addresses climatic zones I and II. The principle has been established that
stability information generated in any one of the three regions of the EU, Japan, and
the United States would be mutually acceptable to the other two regions, provided
the information is consistent with this guidance and the labeling is in accord with
national/regional requirements.

FDA’s guidance documents, including this guidance, do not establish legally
enforceable responsibilities. Instead, guidances describe the Agency’s current think-
ing on a topic and should be viewed only as recommendations, unless specific reg-
ulatory or statutory requirements are cited. The use of the word should in Agency
guidances means that something is suggested or recommended, but not required.
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A.2 Guidance

A.2.1 Drug Substance

A.2.1.1 General

Information on the stability of the drug substance is an integral part of the systematic
approach to stability evaluation.

A.2.1.2 Stress Testing

Stress testing of the drug substance can help identify the likely degradation products,
which can in turn help establish the degradation pathways and the intrinsic stability of
the molecule and validate the stability indicating power of the analytical procedures
used. The nature of the stress testing will depend on the individual drug substance
and the type of drug product involved.

Stress testing is likely to be carried out on a single batch of the drug substance.
The testing should include the effect of temperatures (in 10◦C increments (e.g., 50◦C,
60◦C) above that for accelerated testing), humidity (e.g., 75 percent relative humidity
or greater) where appropriate, oxidation, and photolysis on the drug substance. The
testing should also evaluate the susceptibility of the drug substance to hydrolysis
across a wide range of pH values when in solution or suspension. Photostability testing
should be an integral part of stress testing. The standard conditions for photostability
testing are described in ICH Q1B Photostability Testing of New Drug Substances and
Products.

Examining degradation products under stress conditions is useful in establishing
degradation pathways and developing and validating suitable analytical procedures.
However, such examination may not be necessary for certain degradation products
if it has been demonstrated that they are not formed under accelerated or long-term
storage conditions.

Results from these studies will form an integral part of the information provided
to regulatory authorities.

A.2.1.3 Selection of Batches

Data from formal stability studies should be provided on at least three primary batches
of the drug substance. The batches should be manufactured to a minimum of pilot scale
by the same synthetic route as production batches and using a method of manufacture
and procedure that simulates the final process to be used for production batches. The
overall quality of the batches of drug substance placed on formal stability studies
should be representative of the quality of the material to be made on a production
scale.

Other supporting data can be provided.
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A.2.1.4 Container Closure System

The stability studies should be conducted on the drug substance packaged in a con-
tainer closure system that is the same as or simulates the packaging proposed for
storage and distribution.

A.2.1.5 Specification

Specification, which is a list of tests, references to analytical procedures, and proposed
acceptance criteria, is addressed in ICH Q6A Specifications: Test Procedures and
Acceptance Criteria for New Drug Substances and New Drug Products: Chemical
Substances and Q6B Specifications: Test Procedures and Acceptance Criteria for New
Drug Substances and New Drug Products: Biotechnological/Biological Products. In
addition, specification for degradation products in a drug substance is discussed in
ICH Q3A Impurities in New Drug Substances.

Stability studies should include testing of those attributes of the drug substance that
are susceptible to change during storage and are likely to influence quality, safety,
and/or efficacy. The testing should cover, as appropriate, the physical, chemical,
biological, and microbiological attributes. Validated stability-indicating analytical
procedures should be applied. Whether and to what extent replication should be
performed should depend on the results from validation studies.

A.2.1.6 Testing Frequency

For long-term studies, frequency of testing should be sufficient to establish the stability
profile of the drug substance. For drug substances with a proposed retest period of at
least 12 months, the frequency of testing at the long-term storage condition should
normally be every 3 months over the first year, every 6 months over the second year,
and annually thereafter through the proposed retest period.

At the accelerated storage condition, a minimum of three time points, including
the initial and final time points (e.g., 0, 3, and 6 months), from a 6-month study is
recommended. Where an expectation (based on development experience) exists that
the results from accelerated studies are likely to approach significant change criteria,
increased testing should be conducted either by adding samples at the final time point
or including a fourth time point in the study design.

When testing at the intermediate storage condition is called for as a result of
significant change at the accelerated storage condition, a minimum of four time points,
including the initial and final time points (e.g., 0, 6, 9, 12 months), from a 12-month
study is recommended.

A.2.1.7 Storage Conditions

In general, a drug substance should be evaluated under storage conditions (with
appropriate tolerances) that test its thermal stability and, if applicable, its sensitivity
to moisture. The storage conditions and the lengths of studies chosen should be
sufficient to cover storage, shipment, and subsequent use.

The long-term testing should cover a minimum of 12 months’ duration on at least
three primary batches at the time of submission and should be continued for a period
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of time sufficient to cover the proposed retest period. Additional data accumulated
during the assessment period of the registration application should be submitted to
the authorities if requested. Data from the accelerated storage condition and, if ap-
propriate, from the intermediate storage condition can be used to evaluate the effect
of short-term excursions outside the label storage conditions (such as might occur
during shipping).

Long-term, accelerated, and, where appropriate, intermediate storage conditions
for drug substances are detailed in the sections below. The general case should apply
if the drug substance is not specifically covered by a subsequent section. Alternative
storage conditions can be used if justified.

A.2.1.7.1 General Case

Minimum Time Period Covered
Study Storage Condition by Data at Submission

Long-term* 25◦C ± 2◦C/60% RH ± 5% RH 12 months
or

30◦C ± 2◦C/65% RH ± 5% RH

Intermediate** 30◦C ± 2◦C/65% RH ± 5% RH 6 months

Accelerated 40◦C ± 2◦C/75% RH ± 5% RH 6 months

*It is up to the applicant to decide whether long-term stability studies are performed at 25◦C ± 2◦C/60%
RH ± 5% RH or 30◦C ± 2◦C/65% RH ± 5% RH.
** If 30◦C ± 2◦C/65% RH ± 5% RH is the long-term condition, there is no intermediate condition.

If long-term studies are conducted at 25◦C ± 2◦C/60% RH ± 5% RH and signif-
icant change occurs at any time during 6 months’ testing at the accelerated storage
condition, additional testing at the intermediate storage condition should be con-
ducted and evaluated against significant change criteria. Testing at the intermediate
storage condition should include all tests, unless otherwise justified. The initial ap-
plication should include a minimum of 6 months’ data from a 12-month study at the
intermediate storage condition.

Significant change for a drug substance is defined as failure to meet its specification.

A.2.1.7.2 Drug Substances Intended for Storage in a Refrigerator

Minimum Time Period Covered
Study Storage Condition by Data at Submission

Long-term 5◦C ± 3◦C 12 months
Accelerated 25◦C ± 2◦C/60% RH ± 5% RH 6 months

Data from refrigerated storage should be assessed according to the evaluation section
of this guidance, except where explicitly noted below.
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If significant change occurs between 3 and 6 months’ testing at the accelerated
storage condition, the proposed retest period should be based on the real time data
available at the long-term storage condition.

If significant change occurs within the first 3 months’ testing at the accelerated
storage condition, a discussion should be provided to address the effect of short-term
excursions outside the label storage condition (e.g., during shipping or handling). This
discussion can be supported, if appropriate, by further testing on a single batch of
the drug substance for a period shorter than 3 months but with more frequent testing
than usual. It is considered unnecessary to continue to test a drug substance through
6 months when a significant change has occurred within the first 3 months.

A.2.1.7.3 Drug Substances Intended for Storage in a Freezer

Minimum Time Period Covered
Study Storage Condition by Data at Submission

Long-term −20◦C ± 5◦C 12 months

For drug substances intended for storage in a freezer, the retest period should be based
on the real time data obtained at the long-term storage condition. In the absence of an
accelerated storage condition for drug substances intended to be stored in a freezer,
testing on a single batch at an elevated temperature (e.g., 5◦C ± 3◦C or 25◦C ± 2◦C)
for an appropriate time period should be conducted to address the effect of short-
term excursions outside the proposed label storage condition (e.g., during shipping
or handling).

A.2.1.7.4 Drug Substances Intended for Storage Below −20◦C

Drug substances intended for storage below −20◦C should be treated on a case-by-
case basis.

A.2.1.8 Stability Commitment

When available long-term stability data on primary batches do not cover the proposed
retest period granted at the time of approval, a commitment should be made to continue
the stability studies postapproval to firmly establish the retest period.

Where the submission includes long-term stability data on three production batches
covering the proposed retest period, a postapproval commitment is considered un-
necessary. Otherwise, one of the following commitments should be made:

� If the submission includes data from stability studies on at least three production
batches, a commitment should be made to continue these studies through the
proposed retest period.

� If the submission includes data from stability studies on fewer than three produc-
tion batches, a commitment should be made to continue these studies through



A.2 Guidance 279

the proposed retest period and to place additional production batches, to a
total of at least three, on long-term stability studies through the proposed retest
period.

� If the submission does not include stability data on production batches, a com-
mitment should be made to place the first three production batches on long-term
stability studies through the proposed retest period.

The stability protocol used for long-term studies for the stability commitment
should be the same as that for the primary batches, unless otherwise scientifically
justified.

A.2.1.9 Evaluation

The purpose of the stability study is to establish, based on testing a minimum of three
batches of the drug substance and evaluating the stability information (including, as
appropriate, results of the physical, chemical, biological, and microbiological tests),
a retest period applicable to all future batches of the drug substance manufactured
under similar circumstances. The degree of variability of individual batches affects the
confidence that a future production batch will remain within specification throughout
the assigned retest period.

The data may show so little degradation and so little variability that it is apparent
from looking at the data that the requested retest period will be granted. Under these
circumstances, it is normally unnecessary to go through the formal statistical analysis;
providing a justification for the omission should be sufficient.

An approach for analyzing the data on a quantitative attribute that is expected to
change with time is to determine the time at which the 95 percent, one-sided confidence
limit for the mean curve intersects the acceptance criterion. If analysis shows that the
batch-to-batch variability is small, it is advantageous to combine the data into one
overall estimate. This can be done by first applying appropriate statistical tests (e.g.,
p values for level of significance of rejection of more than 0.25) to the slopes of the
regression lines and zero time intercepts for the individual batches. If it is inappropriate
to combine data from several batches, the overall retest period should be based on the
minimum time a batch can be expected to remain within acceptance criteria.

The nature of any degradation relationship will determine whether the data should
be transformed for linear regression analysis. Usually the relationship can be repre-
sented by a linear, quadratic, or cubic function on an arithmetic or logarithmic scale.
Statistical methods should be employed to test the goodness of fit of the data on all
batches and combined batches (where appropriate) to the assumed degradation line
or curve.

Limited extrapolation of the real time data from the long-term storage condition be-
yond the observed range to extend the retest period can be undertaken at approval time
if justified. This justification should be based, for example, on what is known about
the mechanism of degradation, the results of testing under accelerated conditions,
the goodness of fit of any mathematical model, batch size, and/or existence of sup-
porting stability data. However, this extrapolation assumes that the same degradation
relationship will continue to apply beyond the observed data.
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Any evaluation should cover not only the assay, but also the levels of degradation
products and other appropriate attributes.

A.2.1.10 Statements/Labeling

A storage statement should be established for the labeling in accordance with rele-
vant national/regional requirements. The statement should be based on the stability
evaluation of the drug substance. Where applicable, specific instructions should be
provided, particularly for drug substances that cannot tolerate freezing. Terms such
as ambient conditions or room temperature should be avoided.

A retest period should be derived from the stability information, and a retest date
should be displayed on the container label if appropriate.

A.2.2 Drug Product

A.2.2.1 General

The design of the formal stability studies for the drug product should be based on
knowledge of the behavior and properties of the drug substance, results from stabil-
ity studies on the drug substance, and experience gained from clinical formulation
studies. The likely changes on storage and the rationale for the selection of attributes
to be tested in the formal stability studies should be stated.

A.2.2.2 Photostability Testing

Photostability testing should be conducted on at least one primary batch of the drug
product if appropriate. The standard conditions for photostability testing are described
in ICH Q1B.

A.2.2.3 Selection of Batches

Data from stability studies should be provided on at least three primary batches of the
drug product. The primary batches should be of the same formulation and packaged
in the same container closure system as proposed for marketing. The manufacturing
process used for primary batches should simulate that to be applied to production
batches and should provide product of the same quality and meet the same specifica-
tion as that intended for marketing. Two of the three batches should be at least pilot
scale batches, and the third one can be smaller if justified. Where possible, batches
of the drug product should be manufactured by using different batches of the drug
substance.

Stability studies should be performed on each individual strength and container
size of the drug product unless bracketing or matrixing is applied.

Other supporting data can be provided.

A.2.2.4 Container Closure System

Stability testing should be conducted on the dosage form packaged in the container
closure system proposed for marketing (including, as appropriate, any secondary
packaging and container label). Any available studies carried out on the drug product
outside its immediate container or in other packaging materials can form a useful part
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of the stress testing of the dosage form or can be considered as supporting information,
respectively.

A.2.2.5 Specification

Specification, which is a list of tests, references to analytical procedures, and pro-
posed acceptance criteria, including the concept of different acceptance criteria for
release and shelf life specifications, is addressed in ICH Q6A and Q6B. In addition,
specification for degradation products in a drug product is addressed in ICH Q3B
Impurities in New Drug Products.

Stability studies should include testing of those attributes of the drug product that are
susceptible to change during storage and are likely to influence quality, safety, and/or
efficacy. The testing should cover, as appropriate, the physical, chemical, biological,
and microbiological attributes, preservative content (e.g., antioxidant, antimicrobial
preservative), and functionality tests (e.g., for a dose delivery system). Analytical
procedures should be fully validated and stability indicating. Whether and to what
extent replication should be performed will depend on the results of validation studies.

Shelf life acceptance criteria should be derived from consideration of all available
stability information. It may be appropriate to have justifiable differences between
the shelf life and release acceptance criteria based on the stability evaluation and
the changes observed on storage. Any differences between the release and shelf life
acceptance criteria for antimicrobial preservative content should be supported by a
validated correlation of chemical content and preservative effectiveness demonstrated
during drug development on the product in its final formulation (except for preser-
vative concentration) intended for marketing. A single primary stability batch of the
drug product should be tested for antimicrobial preservative effectiveness (in addition
to preservative content) at the proposed shelf life for verification purposes, regardless
of whether there is a difference between the release and shelf life acceptance criteria
for preservative content.

A.2.2.6 Testing Frequency

For long-term studies, frequency of testing should be sufficient to establish the stability
profile of the drug product. For products with a proposed shelf life of at least 12
months, the frequency of testing at the long-term storage condition should normally
be every 3 months over the first year, every 6 months over the second year, and
annually thereafter through the proposed shelf life.

At the accelerated storage condition, a minimum of three time points, including
the initial and final time points (e.g., 0, 3, and 6 months), from a 6-month study
is recommended. Where an expectation (based on development experience) exists
that results from accelerated testing are likely to approach significant change criteria,
increased testing should be conducted either by adding samples at the final time point
or by including a fourth time point in the study design.

When testing at the intermediate storage condition is called for as a result of
significant change at the accelerated storage condition, a minimum of four time points,
including the initial and final time points (e.g., 0, 6, 9, 12 months), from a 12-month
study is recommended.
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Reduced designs (i.e., matrixing or bracketing), where the testing frequency is
reduced or certain factor combinations are not tested at all, can be applied if justified.

A.2.2.7 Storage Conditions

In general, a drug product should be evaluated under storage conditions (with ap-
propriate tolerances) that test its thermal stability and, if applicable, its sensitivity
to moisture or potential for solvent loss. The storage conditions and the lengths of
studies chosen should be sufficient to cover storage, shipment, and subsequent use.

Stability testing of the drug product after constitution or dilution, if applicable,
should be conducted to provide information for the labeling on the preparation, storage
condition, and in-use period of the constituted or diluted product. This testing should
be performed on the constituted or diluted product through the proposed in-use period
on primary batches as part of the formal stability studies at initial and final time points,
and if full shelf life, long-term data will not be available before submission, at 12
months or the last time point for which data will be available. In general, this testing
need not be repeated on commitment batches.

The long-term testing should cover a minimum of 12 months’ duration on at least
three primary batches at the time of submission and should be continued for a period of
time sufficient to cover the proposed shelf life. Additional data accumulated during the
assessment period of the registration application should be submitted to the authorities
if requested. Data from the accelerated storage condition and, if appropriate, from
the intermediate storage condition can be used to evaluate the effect of short-term
excursions outside the label storage conditions (such as might occur during shipping).

Long-term, accelerated; and, where appropriate, intermediate storage conditions
for drug products are detailed in the sections below. The general case should apply
if the drug product is not specifically covered by a subsequent section. Alternative
storage conditions can be used if justified.

A.2.2.7.1 General Case

Minimum Time Period Covered
Study Storage Condition by Data at Submission

Long-term* 25◦C ± 2◦C/60% RH ± 5% RH 12 months
or

30◦C ± 2◦C/65% RH ± 5% RH
Intermediate** 30◦C ± 2◦C/65% RH ± 5% RH 6 months
Accelerated 40◦C ± 2◦C/75% RH ± 5% RH 6 months

*It is up to the applicant to decide whether long-term stability studies are performed at 25◦C ± 2◦C/60%
RH ± 5% RH or 30◦C ± 2◦C/65% RH ± 5% RH.
**If 30◦C ± 2◦C/65% RH ± 5% RH is the long-term condition, there is no intermediate condition.

If long-term studies are conducted at 25◦C ± 2◦C/60% RH ± 5% RH and significant
change occurs at any time during 6 months’ testing at the accelerated storage condi-
tion, additional testing at the intermediate storage condition should be conducted and
evaluated against significant change criteria. The initial application should include
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a minimum of 6 months’ data from a 12-month study at the intermediate storage
condition.

In general, significant change for a drug product is defined as one or more of the
following (as appropriate for the dosage form):

� A 5 percent change in assay from its initial value, or failure to meet the accep-
tance criteria for potency when using biological or immunological procedures

� Any product’s degradation exceeding its acceptance criterion

� Failure to meet the acceptance criteria for appearance, physical attributes, and
functionality test (e.g., color, phase separation, resuspendibility, caking, hard-
ness, dose delivery per actuation). However, some changes in physical attributes
(e.g., softening of suppositories, melting of creams) may be expected under
accelerated conditions

� Failure to meet the acceptance criterion for pH

� Failure to meet the acceptance criteria for dissolution for 12 dosage units

A.2.2.7.2 Drug Products Packaged in Impermeable Containers

Sensitivity to moisture or potential for solvent loss is not a concern for drug products
packaged in impermeable containers that provide a permanent barrier to passage
of moisture or solvent. Thus, stability studies for products stored in impermeable
containers can be conducted under any controlled or ambient humidity condition.

A.2.2.7.3 Drug Products Packaged in Semipermeable Containers

Aqueous-based products packaged in semipermeable containers should be evaluated
for potential water loss in addition to physical, chemical, biological, and microbio-
logical stability. This evaluation can be carried out under conditions of low relative
humidity, as discussed below. Ultimately, it should be demonstrated that aqueous-
based drug products stored in semipermeable containers can withstand low relative
humidity environments. Other comparable approaches can be developed and reported
for nonaqueous, solvent-based products.

Minimum Time Period Covered
Study Storage Condition by Data at Submission

Long-term* 25◦C ± 2◦C/40% RH ± 5% RH 12 months
or

30◦C ± 2◦C/35% RH ± 5% RH
Intermediate** 30◦C ± 2◦C/65% RH ± 5% RH 6 months
Accelerated 40◦C ± 2◦C/not more than 6 months

(NMT) 25% RH

*It is up to the applicant to decide whether long-term stability studies are performed at 25◦C ± 2◦C/
40% RH ± 5% RH or 30◦C ± 2◦C/35% RH ± 5% RH.
**If 30◦C ± 2◦C/35% RH ± 5% RH is the long-term condition, there is no intermediate condition.
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When long-term studies are conducted at 25◦C ± 2◦C/40% RH ± 5% RH and
significant change other than water loss occurs during the 6 months’ testing at the
accelerated storage condition, additional testing at the intermediate storage condition
should be performed, as described under the general case, to evaluate the temperature
effect at 30◦C. A significant change in water loss alone at the accelerated storage
condition does not necessitate testing at the intermediate storage condition. However,
data should be provided to demonstrate that the drug product will not have significant
water loss throughout the proposed shelf life if stored at 25◦C and the reference
relative humidity of 40 percent RH.

A 5 percent loss in water from its initial value is considered a significant change
for a product packaged in a semipermeable container after an equivalent of 3 months’
storage at 40◦C/NMT 25 percent RH. However, for small containers (1 mL or less) or
unit-dose products, a water loss of 5 percent or more after an equivalent of 3 months’
storage at 40◦C/NMT 25 percent RH may be appropriate if justified.

An alternative approach to studying at the reference relative humidity as recom-
mended in the table above (for either long-term or accelerated testing) is performing
the stability studies under higher relative humidity and deriving the water loss at the
reference relative humidity through calculation. This can be achieved by experimen-
tally determining the permeation coefficient for the container closure system or, as
shown in the example below, using the calculated ratio of water loss rates between
the two humidity conditions at the same temperature. The permeation coefficient for
a container closure system can be experimentally determined by using the worst case
scenario (e.g., the most diluted of a series of concentrations) for the proposed drug
product.

Example of an approach for determining water loss: For a product in a given
container closure system, container size, and fill, an appropriate approach for deriving
the water loss rate at the reference relative humidity is to multiply the water loss rate
measured at an alternative relative humidity at the same temperature by a water loss
rate ratio shown in the table below. A linear water loss rate at the alternative relative
humidity over the storage period should be demonstrated.

For example, at a given temperature (e.g., 40◦C), the calculated water loss rate
during storage at NMT 25 percent RH is the water loss rate measured at 75 percent
RH multiplied by 3.0, the corresponding water loss rate ratio.

Alternative Reference Ratio of Water Loss Rates at a
Relative Humidity Relative Humidity Given Temperature

60% RH 25% RH 1.9
60% RH 40% RH 1.5
65% RH 35% RH 1.9
75% RH 25% RH 3.0

Valid water loss rate ratios at relative humidity conditions other than those shown
in the table above can also be used.
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A.2.2.7.4 Drug Products Intended for Storage in a Refrigerator

Minimum Time Period Covered
Study Storage Condition by Data at Submission

Long-term 5◦C ± 3◦C 12 months
Accelerated 25◦C ± 2◦C/60% RH 6 months

± 5%RH

If the drug product is packaged in a semipermeable container, appropriate infor-
mation should be provided to assess the extent of water loss.

Data from refrigerated storage should be assessed according to the evaluation
section of this guidance, except where explicitly noted below.

If significant change occurs between 3 and 6 months’ testing at the accelerated stor-
age condition, the proposed shelf life should be based on the real time data available
from the long-term storage condition.

If significant change occurs within the first 3 months’ testing at the accelerated
storage condition, a discussion should be provided to address the effect of short-term
excursions outside the label storage condition (e.g., during shipment and handling).
This discussion can be supported, if appropriate, by further testing on a single batch
of the drug product for a period shorter than 3 months but with more frequent testing
than usual. It is considered unnecessary to continue to test a product through 6 months
when a significant change has occurred within the first 3 months.

A.2.2.7.5 Drug Products Intended for Storage in a Freezer

Minimum Time Period Covered
Study Storage Condition by Data at Submission

Long-term −20◦C ± 5◦C 12 months

For drug products intended for storage in a freezer, the shelf life should be based
on the real time data obtained at the long-term storage condition. In the absence of
an accelerated storage condition for drug products intended to be stored in a freezer,
testing on a single batch at an elevated temperature (e.g., 5◦C ± 3◦C or 25◦C ± 2◦C)
for an appropriate time period should be conducted to address the effect of short-term
excursions outside the proposed label storage condition.

A.2.2.7.6 Drug Products Intended for Storage Below −20◦C

Drug products intended for storage below −20◦C should be treated on a case-by-case
basis.
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A.2.2.8 Stability Commitment

When available long-term stability data on primary batches do not cover the proposed
shelf life granted at the time of approval, a commitment should be made to continue
the stability studies postapproval to firmly establish the shelf life.

Where the submission includes long-term stability data from three production
batches covering the proposed shelf life, a postapproval commitment is considered
unnecessary. Otherwise, one of the following commitments should be made:

� If the submission includes data from stability studies on at least three produc-
tion batches, a commitment should be made to continue the long-term studies
through the proposed shelf life and the accelerated studies for 6 months.

� If the submission includes data from stability studies on fewer than three produc-
tion batches, a commitment should be made to continue the long-term studies
through the proposed shelf life and the accelerated studies for 6 months, and
to place additional production batches, to a total of at least three, on long-term
stability studies through the proposed shelf life and on accelerated studies for
6 months.

� If the submission does not include stability data on production batches, a com-
mitment should be made to place the first three production batches on long-term
stability studies through the proposed shelf life and on accelerated studies for
6 months.

The stability protocol used for studies on commitment batches should be the same
as that for the primary batches, unless otherwise scientifically justified.

Where intermediate testing is called for by a significant change at the accelerated
storage condition for the primary batches, testing on the commitment batches can be
conducted at either the intermediate or the accelerated storage condition. However,
if significant change occurs at the accelerated storage condition on the commitment
batches, testing at the intermediate storage condition should also be conducted.

A.2.2.9 Evaluation

A systematic approach should be adopted in the presentation and evaluation of the
stability information, which should include, as appropriate, results from the physical,
chemical, biological, and microbiological tests, including particular attributes of the
dosage form (e.g., dissolution rate for solid oral dosage forms).

The purpose of the stability study is to establish, based on testing a minimum of
three batches of the drug product, a shelf life and label storage instructions applicable
to all future batches of the drug product manufactured and packaged under similar
circumstances. The degree of variability of individual batches affects the confidence
that a future production batch will remain within specification throughout its shelf life.

Where the data show so little degradation and so little variability that it is apparent
from looking at the data that the requested shelf life will be granted, it is normally
unnecessary to go through the formal statistical analysis; providing a justification for
the omission should be sufficient.
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An approach for analyzing data of a quantitative attribute that is expected to change
with time is to determine the time at which the 95 percent one-sided confidence limit
for the mean curve intersects the acceptance criterion. If analysis shows that the
batch-to-batch variability is small, it is advantageous to combine the data into one
overall estimate. This can be done by first applying appropriate statistical tests (e.g.,
p values for level of significance of rejection of more than 0.25) to the slopes of the
regression lines and zero time intercepts for the individual batches. If it is inappropriate
to combine data from several batches, the overall shelf life should be based on the
minimum time a batch can be expected to remain within acceptance criteria.

The nature of the degradation relationship will determine whether the data should
be transformed for linear regression analysis. Usually the relationship can be repre-
sented by a linear, quadratic, or cubic function on an arithmetic or logarithmic scale.
Statistical methods should be employed to test the goodness of fit on all batches and
combined batches (where appropriate) to the assumed degradation line or curve.

Limited extrapolation of the real time data from the long-term storage condition
beyond the observed range to extend the shelf life can be undertaken at approval time
if justified. This justification should be based, for example, on what is known about
the mechanisms of degradation, the results of testing under accelerated conditions,
the goodness of fit of any mathematical model, batch size, and/or existence of sup-
porting stability data. However, this extrapolation assumes that the same degradation
relationship will continue to apply beyond the observed data.

Any evaluation should consider not only the assay but also the degradation prod-
ucts and other appropriate attributes. Where appropriate, attention should be paid to
reviewing the adequacy of the mass balance and different stability and degradation
performance.

A.2.2.10 Statements/Labeling

A storage statement should be established for the labeling in accordance with relevant
national/regional requirements. The statement should be based on the stability evalu-
ation of the drug product. Where applicable, specific instruction should be provided,
particularly for drug products that cannot tolerate freezing. Terms such as ambient
conditions or room temperature should be avoided.

There should be a direct link between the label storage statement and the demon-
strated stability of the drug product. An expiration date should be displayed on the
container label.

A.3 Glossary

The following definitions are provided to facilitate interpretation of the guidance.

Accelerated testing: Studies designed to increase the rate of chemical degra-
dation or physical change of a drug substance or drug product by using ex-
aggerated storage conditions as part of the formal stability studies. Data from
these studies, in addition to long-term stability studies, can be used to assess
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longer term chemical effects at nonaccelerated conditions and to evaluate the
effect of short-term excursions outside the label storage conditions such as
might occur during shipping. Results from accelerated testing studies are not
always predictive of physical changes.

Bracketing: The design of a stability schedule such that only samples on the
extremes of certain design factors (e.g., strength, package size) are tested at
all time points as in a full design. The design assumes that the stability of
any intermediate levels is represented by the stability of the extremes tested.
Where a range of strengths is to be tested, bracketing is applicable if the
strengths are identical or very closely related in composition (e.g., for a tablet
range made with different compression weights of a similar basic granula-
tion, or a capsule range made by filling different plug fill weights of the same
basic composition into different size capsule shells). Bracketing can be ap-
plied to different container sizes or different fills in the same container closure
system.

Climatic zones: The four zones in the world that are distinguished by their
characteristic, prevalent annual climatic conditions. This is based on the con-
cept described by W. Grimm (Drugs Made in Germany, 28:196–202, 1985 and
29:39–47, 1986).

Commitment batches: Production batches of a drug substance or drug product
for which the stability studies are initiated or completed postapproval through
a commitment made in the registration application.

Container closure system: The sum of packaging components that together
contain and protect the dosage form. This includes primary packaging compo-
nents and secondary packaging components if the latter are intended to provide
additional protection to the drug product. A packaging system is equivalent to
a container closure system.

Dosage form: A pharmaceutical product type (e.g., tablet, capsule, solution,
cream) that contains a drug substance generally, but not necessarily, in associ-
ation with excipients.

Drug product: The dosage form in the final immediate packaging intended for
marketing.

Drug substance: The unformulated drug substance that may subsequently be
formulated with excipients to produce the dosage form.

Excipient: Anything other than the drug substance in the dosage form.

Expiration date: The date placed on the container label of a drug product
designating the time prior to which a batch of the product is expected to remain
within the approved shelf life specification, if stored under defined conditions,
and after which it must not be used.
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Formal stability studies: Long-term and accelerated (and intermediate) studies
undertaken on primary and/or commitment batches according to a prescribed
stability protocol to establish or confirm the retest period of a drug substance
or the shelf life of a drug product.

Impermeable containers: Containers that provide a permanent barrier to the
passage of gases or solvents (e.g., sealed aluminum tubes for semi-solids, sealed
glass ampoules for solutions).

Intermediate testing: Studies conducted at 30◦C/65% RH and designed to
moderately increase the rate of chemical degradation or physical changes for
a drug substance or drug product intended to be stored long-term at 25◦C.

Long-term testing: Stability studies under the recommended storage condition
for the retest period or shelf life proposed (or approved) for labeling.

Mass balance: The process of adding together the assay value and levels of
degradation products to see how closely these add up to 100 percent of the
initial value, with due consideration of the margin of analytical error.

Matrixing: The design of a stability schedule such that a selected subset of
the total number of possible samples for all factor combinations is tested at
a specified time point. At a subsequent time point, another subset of samples
for all factor combinations is tested. The design assumes that the stability of
each subset of samples tested represents the stability of all samples at a given
time point. The differences in the samples for the same drug product should be
identified as, for example, covering different batches, different strengths, dif-
ferent sizes of the same container closure system, and, possibly in some cases,
different container closure systems.

Mean kinetic temperature: A single derived temperature that, if maintained
over a defined period of time, affords the same thermal challenge to a drug
substance or drug product as would be experienced over a range of both higher
and lower temperatures for an equivalent defined period. The mean kinetic tem-
perature is higher than the arithmetic mean temperature and takes into account
the Arrhenius equation.

When establishing the mean kinetic temperature for a defined period, the
formula of J. D. Haynes (J. Pharm. Sci., 60:927–929, 1971) can be used.

New molecular entity: An active pharmaceutical substance not previously
contained in any drug product registered with the national or regional authority
concerned. A new salt, ester, or noncovalent bond derivative of an approved
drug substance is considered a new molecular entity for the purpose of stability
testing under this guidance.

Pilot scale batch: A batch of a drug substance or drug product manufactured
by a procedure fully representative of and simulating that to be applied to a full
production scale batch. For solid oral dosage forms, a pilot scale is generally,
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at a minimum, one-tenth that of a full production scale or 100,000 tablets or
capsules, whichever is larger.

Primary batch: A batch of a drug substance or drug product used in a formal
stability study, from which stability data are submitted in a registration appli-
cation for the purpose of establishing a retest period or shelf life, respectively.
A primary batch of a drug substance should be at least a pilot scale batch. For a
drug product, two of the three batches should be at least pilot scale batch, and
the third batch can be smaller if it is representative with regard to the critical
manufacturing steps. However, a primary batch may be a production batch.

Production batch: A batch of a drug substance or drug product manufactured
at production scale by using production equipment in a production facility as
specified in the application.

Retest date: The date after which samples of the drug substance should be ex-
amined to ensure that the material is still in compliance with the specification
and thus suitable for use in the manufacture of a given drug product.

Retest period: The period of time during which the drug substance is expected
to remain within its specification and, therefore, can be used in the manufacture
of a given drug product, provided that the drug substance has been stored under
the defined conditions. After this period, a batch of drug substance destined for
use in the manufacture of a drug product should be retested for compliance with
the specification and then used immediately. A batch of drug substance can be
retested multiple times and a different portion of the batch used after each retest,
as long as it continues to comply with the specification. For most biotechnolog-
ical/biological substances known to be labile, it is more appropriate to establish
a shelf life than a retest period. The same may be true for certain antibiotics.

Semipermeable containers: Containers that allow the passage of solvent, usu-
ally water, while preventing solute loss. The mechanism for solvent transport
occurs by absorption into one container surface, diffusion through the bulk
of the container material, and desorption from the other surface. Transport is
driven by a partial pressure gradient. Examples of semipermeable containers
include plastic bags and semirigid, low-density polyethylene (LDPE) pouches
for large volume parenterals (LVPs), and LDPE ampoules, bottles, and vials.

Shelf life (also referred to as expiration dating period): The time period
during which a drug product is expected to remain within the approved shelf
life specification, provided that it is stored under the conditions defined on the
container label.

Specification: See ICH Q6A and Q6B.

Specification, Release: The combination of physical, chemical, biological, and
microbiological tests and acceptance criteria that determine the suitability of a
drug product at the time of its release.
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Specification, Shelf life: The combination of physical, chemical, biological,
and microbiological tests and acceptance criteria that determine the suitability
of a drug substance throughout its retest period, or that a drug product should
meet throughout its shelf life.

Storage condition tolerances: The acceptable variations in temperature and
relative humidity of storage facilities for formal stability studies. The equip-
ment should be capable of controlling the storage condition within the ranges
defined in this guidance. The actual temperature and humidity (when controlled)
should be monitored during stability storage. Short-term spikes due to open-
ing of doors of the storage facility are accepted as unavoidable. The effect of
excursions due to equipment failure should be addressed and reported if judged
to affect stability results. Excursions that exceed the defined tolerances for more
than 24 hours should be described in the study report and their effect assessed.

Stress testing (drug substance): Studies undertaken to elucidate the intrinsic
stability of the drug substance. Such testing is part of the development strategy
and is normally carried out under more severe conditions than those used for
accelerated testing.

Stress testing (drug product): Studies undertaken to assess the effect of severe
conditions on the drug product. Such studies include photostability testing (see
ICH Q1B) and specific testing of certain products (e.g., metered dose inhalers,
creams, emulsions, refrigerated aqueous liquid products).

Supporting data: Data, other than those from formal stability studies, that
support the analytical procedures, the proposed retest period or shelf life, and
the label storage statements. Such data include; (1) stability data on early
synthetic route batches of drug substance, small-scale batches of materials,
investigational formulations not proposed for marketing, related formulations,
and product presented in containers and closures other than those proposed for
marketing; (2) information regarding test results on containers; and (3) other
scientific rationales.

References3

ICH Q1B Photostability Testing of New Drug Substances and Products

ICH Q1C Stability Testing for New Dosage Forms

ICH Q3A Impurities in New Drug Substances

3 We update guidances periodically. To make sure you have the most recent version of a guidance, check
the CDER guidance page at http://www.fda.gov/cder/guidance/index.htm
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ICH Q3B Impurities in New Drug Products

ICH Q5C Quality of Biotechnological Products: Stability Testing of Biotech-
nological/Biological Products

ICH Q6A Specifications: Test Procedures and Acceptance Criteria for New
Drug Substances and New Drug Products: Chemical Substances

ICH Q6B Specifications: Test Procedures and Acceptance Criteria for
New Drug Substances and New Drug Products: Biotechnological/Biological
Products

Attachment

List of Revision 2 Changes

The revisions to this Q1A guidance result from adoption of the ICH guidance Q1F
Stability Data Package for Registration Applications in Climatic Zones III and IV.
The following changes were made.

1. The intermediate storage condition has been changed from 30◦C ± 2◦C/60%
RH ± 5% RH to 30◦C ± 2◦C/65% RH ± 5% RH in the following sections:

� II.A.7.a (2.1.7.1) Drug Substance - Storage Conditions - General case
� II.B.7.a (2.2.7.1) Drug Product - Storage Conditions - General case
� II.B.7.c (2.2.7.3) Drug products packaged in semipermeable containers
� Glossary (3) Intermediate testing

2. 30◦C ± 2◦C/65% RH ± 5% RH has been added as a suitable alternative long-
term storage condition to 25◦C ± 2◦C/60% RH ± 5% in the following sections:

� II.A.7.a (2.1.7.1) Drug Substance - Storage Conditions - General case
� II.B.7.a (2.2.7.1) Drug Product - Storage Conditions - General case

3. 30◦C ± 2◦C/35% RH ± 5% RH has been added as a suitable alternative long-
term storage condition to 25◦C ± 2◦C/40% RH ± 5% and the corresponding
example for the ratio of water-loss rates has been included in the following
section:

� II.B.7.c (2.2.7.3) Drug products packaged in semipermeable containers

Midstream switch of the intermediate storage condition from 30◦C ± 2◦C/60% RH
± 5% RH to 30◦C ± 2◦C/65% RH ± 5% RH can be appropriate provided that the
respective storage conditions and the date of the switch are clearly documented and
stated in the registration application.

It is recommended that registration applications contain data from complete studies
at the intermediate storage condition 30◦C ± 2◦C/65% RH ± 5% RH, if applicable,
by three years after the date of publication of this revised guideline in the respective
ICH tripartite region.



Appendix B

SAS Macro Files for STAB System
for Stability Analysis

ANALYS1.SAS

*==========================================================;
* First Macro File of the Stability Analysis Program ;
*==========================================================;

OPTIONS MPRINT NOSOURCE; /* Debugging line */

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* MTITLE %;
* Title Macro %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;

%MACRO MTITLE;
%LET NT=1;
%DO I=1 %TO 6;
%IF %QUOTE(&&TT&I) NE %THEN %DO;
%LET NT=%EVAL(&NT+1);

TITLE&NT “&&TT&I”; %END; %END;
%MEND MTITLE;

*****************************************************************;
* Program for Reading Input Data and Printing Hard Copy *;
*****************************************************************;

DATA STABLE; SET LIB.&SSDNAME;

IF “&UNIT”=“WEEK” THEN TIME=TIME*(7/30);

PROC SORT DATA=STABLE; BY BATCH TIME;

* Print data in a compact format;

DATA STABLE1; SET STABLE; BY BATCH TIME;
RETAIN REP;
IF FIRST.TIME THEN REP=0;

293
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REP=REP+1;

PROC SORT DATA=STABLE1; BY TIME REP;

* Macro variable NBATCH = Number of batch;

DATA TEMP; SET STABLE; BY BATCH;
IF LAST.BATCH;

DATA TEMP; SET TEMP;
CALL SYMPUT(‘NBATCH’, N );

DATA STABLE1; SET STABLE1; BY TIME REP;
PROC TRANSPOSE DATA=STABLE1 OUT=STABLE2;
ID BATCH;
BY TIME REP;
VAR LEVEL;
PROC PRINT DATA=STABLE2(DROP=REP NAME ) NOOBS;
%MTITLE
RUN;

ANALYS2.SAS

*==========================================================;
* Second Macro File of the Stability Analysis Program ;
*==========================================================;

* Tests for equalities of intercepts and slopes;

*****************************************************************;
* OUTSTAT= option in the PROC GLM statement produced an output *;
* data set that contains: *;
* SOURCE : contains the name of the model effect or contrast *;
* label from which the corresponding statistics are *;
* generated; * e.g. ERROR, INTERCEPT ...; *;
* -TYPE : contains the values SS1,SS2,SS3,SS4 or CONTRAST,; *;
* corresponding the various types of sums of squares *;
* NAME : contains the name of one of the dependent variables; *;
* in the data set; *;
* also contains SS: sum square *;
* DF: degree of freedom *;
* F: F values *;
* and PROB: probabilities *;
* respectively, for each model generated in the analysis; *;
*****************************************************************;
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TITLE;
PROC GLM DATA=STABLE OUTSTAT=SSTABLE NOPRINT;
CLASS BATCH;
MODEL LEVEL=TIME BATCH TIME*BATCH/INT SS1 SOLUTION;
RUN;
OPTION MISSING=‘ ’;
PROC SORT DATA=SSTABLE; BY NAME ;

*****************************************************************;
* The following program generates statistical analysis *;
* from OUSTSTAT of the following form *;
* SOURCE TYPE | SOURCE *;
* BATCH SS1 | B *;
* TIME*BATCH SS1 | C *;
* ERROR ERROR | D *;
* INTERCEPT SS1 | E *;
*****************************************************************;
DATA SSTABLE; SET SSTABLE; BY NAME ;
RETAIN SSE DFE SSA DFA 0 DFD SSD;
KEEP SOURCE SS DF MS F P;
P=PROB;
IF TYPE = ‘ERROR’ THEN DO; SOURCE = ‘D’;

MS=SS/DF; DFD=DF; SSD=SS; F=.; P=.; OUTPUT; END;
ELSE DO;

SSE=SSE+SS;
DFE=DFE+DF;
IF SOURCE =‘BATCH’ THEN DO;

SOURCE=‘B’;
SSA=SSA+SS; DFA=DFA+DF;
MS=SS/DF; OUTPUT; END;

IF SOURCE =‘TIME*BATCH’ THEN DO;
SOURCE=‘C’;
SSA=SSA+SS; DFA=DFA+DF;
MS=SS/DF; OUTPUT; END;

END;
IF LAST. NAME THEN DO;

SOURCE=‘A’; SS=SSA; DF=DFA;
MS=SS/DF; F=MS*DFD/SSD; P=1-PROBF(F,DF,DFD); OUTPUT;

F=.; P=.;
SOURCE=‘E’; SS=SSE; DF=DFE;

MS=SS/DF; OUTPUT;
END;
RUN;
PROC SORT DATA=SSTABLE; BY SOURCE;
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PROC PRINT DATA=SSTABLE;
VAR SS DF MS F P;
ID SOURCE;

%MTITLE
OPTIONS PS=35;
FOOTNOTE1 ‘**************************************************’;
FOOTNOTE2 ‘* Statistical Analysis: *’;
FOOTNOTE3 ‘* Key to sources of variation *’;
FOOTNOTE4 ‘* A = sep. intercep, sep slope | com intercep, com slope *’;
FOOTNOTE5 ‘* B = sep. intercep, com slope | com intercep, com slope *’;
FOOTNOTE6 ‘* C = sep. intercep, sep slope | sep intercep, com slope *’;
FOOTNOTE7 ‘* D = Residual *’;
FOOTNOTE8 ‘* E = Full Model *’;
FOOTNOTE9 ‘**************************************************’;
RUN;

ANALYS3.SAS

*==========================================================;
* Third Macro File of the Stability Analysis Program ;
*==========================================================;

*****************************************************************;
* Model selection *;
* (Tests for poolability of stability batch data) *;
* Based on the P-values P A P B P C *;
* MODEL1: common intercept and common slope *;
* Single Common Regression *;
* P B >= 0.25 P C >= 0.25 *;
* MODEL2: separate intercepts and common slope *;
* Analysis of Covariance model *;
* P B < 0.25 P C >= 0.25 *;
* MODEL3: separate intercepts and separate slope *;
* Individual Regressions *;
* P B < 0.25 P C < 0.25 *;
*****************************************************************;
OPTIONS PS=58;
DATA MODEL(KEEP=P A P B P C) DF(KEEP=DF D);

SET SSTABLE(KEEP=SOURCE P DF);
FOOTNOTE;
RETAIN P A P B P C DF B DF C DF TEMP 0;
IF SOURCE=‘A’ THEN P A=P;
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IF SOURCE=‘B’ THEN DO;
P B=P; DF B=DF; END;

IF SOURCE=‘C’ THEN DO;
P C=P; DF C=DF;
IF (P B GE .25) AND (P C GE .25) THEN DO;

CALL SYMPUT (‘M’, ‘MODEL1’); DF TEMP=DF B+DF C; END;
ELSE IF (P B LT .25) AND (P C GE .25) THEN DO;

CALL SYMPUT (‘M’, ‘MODEL2’); DF TEMP=DF B; END;
ELSE DO; CALL SYMPUT (‘M’, ‘MODEL3’); DF TEMP=0; END;

OUTPUT MODEL; END;
IF SOURCE=‘D’ THEN DO;

DF D=DF+DF TEMP; OUTPUT DF; END;
FOOTNOTE;
* Create data points for fitting the curve;
PROC MEANS MAX DATA=TEMP NOPRINT;
VAR TIME;
OUTPUT OUT=MAXTIME MAX=MAXT;
RUN;

DATA STABLE3; MERGE TEMP (KEEP=BATCH) MAXTIME (KEEP=MAXT);
KEEP BATCH TIME LEVEL MAXT UTIME;
RETAIN MAXTEMP;
IF N =1 THEN MAXTEMP=MAXT;
ELSE MAXT=MAXTEMP;
IF MAXT GE 24 THEN UTIME=MIN(96+(MAXT-24)*3, 84);
ELSE UTIME=4*MAXT;
DO TIME=0 TO UTIME;

LEVEL=.; OUTPUT; END;
CALL SYMPUT (‘MCTIME’, UTIME);
DATA STABLNEW;

MERGE STABLE3 STABLE; BY BATCH TIME;
RUN;

ANALYS4.SAS

*==========================================================;
* Fourth Macro File of the Stability Analysis Program ;
*==========================================================;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* MMODEL1 %;
* MODEL 1 - COMMON INTERCEPT & COMMON SLOPE %;
* STDP=standard error of the mean predicted value %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
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%MACRO MMODEL1;
PROC SORT DATA=STABLNEW; BY TIME LEVEL;
DATA MODELX; SET STABLNEW;

BY TIME;
* IF FIRST.TIME NE 1 THEN DO;
IF NOT (FIRST.TIME) THEN DO;
IF LEVEL > .;
END;
PROC REG DATA=MODELX OUTEST=FITTED NOPRINT;

* PROC GLM DATA=MODELX NOPRINT;
MODEL LEVEL = TIME;
OUTPUT OUT=LIB.MODELXP PREDICTED=PREDICT STDP=STD ERR;
%MODELX

DATA LIB.MODELXP; SET LIB.MODELXP;
BATCH=‘All’;
proc sort data=lib.modelxp; by batch time;

* %LET NBATCH=1;
%MEND MMODEL1;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* MMODEL2 %;
* MODEL 2 - SEPARATE INTERCEPTS & COMMON SLOPE %;
* STDP=standard error of the mean predicted value %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
%MACRO MMODEL2;
DATA STABLNEW TEMP2 (KEEP=BNO BATCH); SET STABLNEW; BY BATCH;
RETAIN BNO 0;
IF FIRST.BATCH THEN DO; BNO=BNO+1; OUTPUT TEMP2; END;

%DO I = 1 %TO %EVAL(&NBATCH-1);
IF BNO = &I THEN DUMMY&I=1;
ELSE DUMMY&I=0;

%END;
OUTPUT STABLNEW;

PROC REG DATA=STABLNEW OUTEST=FITTED NOPRINT;
MODEL LEVEL = %DO I=1 %TO %EVAL(&NBATCH-1);

DUMMY&I
%END; TIME;

OUTPUT OUT=LIB.MODELXP P=PREDICT STDP=STD ERR;

DATA FITTED; SET FITTED(RENAME=(INTERCEP=TEMP));
KEEP INTERCEP TIME BNO;

%DO I=1 %TO %EVAL(&NBATCH-1);
BNO=&i;
INTERCEP=TEMP+DUMMY&I;
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OUTPUT;
%END;

INTERCEP=TEMP;
BNO=&NBATCH;
OUTPUT;

DATA FITTED; MERGE FITTED TEMP2; BY BNO;
%MODELX

%MEND MMODEL2;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* MMODEL3 %;
* MODEL 3 - SEPARATE INTERCEPTS & SEPARATE SLOPE %;
* STDP=standard error of the mean predicted value %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
%MACRO MMODEL3;

PROC SORT DATA=STABLNEW; BY BATCH;
PROC REG DATA=STABLNEW OUTEST=FITTED NOPRINT;
MODEL LEVEL = TIME;
BY BATCH;
OUTPUT OUT=LIB.MODELXP PREDICTED=PREDICT STDP=STD ERR;

PROC FREQ DATA=STABLE; TABLE BATCH/NOPRINT OUT=DF;
DATA DF; SET DF (KEEP=BATCH COUNT);

DROP COUNT;
DF D=COUNT-2;

%MODELX
%MEND MMODEL3;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* MODELX %;
* Expiration Date Macro %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
%MACRO MODELX;
DATA LIB.MODELXP; MERGE LIB.MODELXP DF;

%IF &M=MODEL3 %THEN
%DO;

BY BATCH;
%END;

RETAIN T INV;
KEEP BATCH LEVEL TIME PREDICT STD ERR

EXP L BOUND U BOUND ALPHA2;
LABEL TIME=‘MONTH’

LEVEL=‘PERCENT OF CLAIM’;

IF %IF &M=MODEL3 %THEN
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%DO;
FIRST.BATCH

%END;
%ELSE
%DO;

N =1
%END; THEN DO;

ALPHA2=(1-&ALPHA)*100;
CALL SYMPUT (LEFT(‘ALPHA3’),ALPHA2);
IF &MTEST=1 THEN DO; ALPHA1=&ALPHA; END;
ELSE DO; ALPHA1=0.5*&ALPHA; END;
T INV=TINV(1-ALPHA1,DF D);
END;

L BOUND = PREDICT - T INV * STD ERR;
U BOUND = PREDICT + T INV * STD ERR;

EXP=‘ ’;
IF &MTEST=1 AND “&BOUND”=“L” THEN DO;

IF (L BOUND LE &LL) THEN EXP=‘*’;
* IF L BOUND GE 80;

END;
ELSE IF &MTEST=1 AND (”&BOUND”=“U”) THEN DO;

IF (U BOUND GE &UL) THEN EXP=‘*’;
IF U BOUND LE 120;
END;

ELSE DO;
IF (L BOUND LE &LL) OR (U BOUND GT &UL) THEN EXP=‘*’;

* IF L BOUND GE 80 AND U BOUND LE 120;
END;

%MEND MODELX;

ANALYS5.SAS

*==========================================================;
* Fifth Macro File of the Stability Analysis Program ;
*==========================================================;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* MPLOT %;
* Plot Macro %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
%MACRO MPLOT;
PROC PLOT DATA=LIB.MODELXP
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/* FORMCHAR=‘B3C4DAC2BFC3C5B4C0C1D9’X */ ;
%IF &M NE MODEL1 %THEN
%DO;

BY BATCH;
%END;
PLOT LEVEL*TIME=‘O’

PREDICT*TIME=‘P’
%IF &MTEST=1 %THEN

%DO;
%IF “&BOUND”=“L” %THEN
%DO;

L BOUND*TIME=‘L’
%END;
%ELSE

%DO;
U BOUND*TIME=‘U’

%END;
%END;
%ELSE

%DO;
L BOUND*TIME=‘L’
U BOUND*TIME=‘U’

%END;
/OVERLAY

VREF= 90 110 HAXIS=0 TO &MCTIME BY 3
VAXIS=80 TO 120;

%MEND MPLOT;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* MACRO TO PRINT FITTED REGRESSION LINES %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;

%MACRO PRINTSUM ;
DATA NULL ;

SET LIB.MODELXP1;
BY BATCH ;

IF FIRST.BATCH THEN DO ;
COUNT+1 ;
CALL SYMPUT(‘START’||LEFT(COUNT), N ) ;
CALL SYMPUT(‘BATCH’||LEFT(COUNT),LEFT(BATCH));
END;
IF LAST.BATCH THEN DO;

CALL SYMPUT(‘LAST’||LEFT(COUNT), N ) ;
END ;
* IF EOF THEN CALL SYMPUT(‘TOTAL’,COUNT) ;
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RUN ;

DATA NULL ; SET FITTED;
COUNT+1 ;
CALL SYMPUT(‘INTRCP’||LEFT(COUNT),INTERCEP);
CALL SYMPUT(‘TIME’||LEFT(COUNT),TIME);

RUN ;

%DO K=1 %TO &NBATCH;
TITLE7 “Batch &&BATCH&K” ;
TITLE8 “Fitted Line : Y = &&INTRCP&K + &&TIME&K X “ ;

PROC PRINT DATA=LIB.MODELXP (FIRSTOBS=&&START&K OBS
=&&LAST&K) NOOBS;

VAR TIME L BOUND PREDICT U BOUND STD ERR EXP;
RUN;

%END;
%MEND PRINTSUM;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* STAB MACRO %;
* Model Selection %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
%MACRO STAB;

%IF &M=MODEL1 %THEN
%DO;

%MMODEL1
%END;
%ELSE

%IF &M=MODEL2 %THEN
%DO;

%MMODEL2
%END;
%ELSE

%DO;
%MMODEL3

%END;

PROC SORT DATA=LIB.MODELXP; BY BATCH;
TITLE7;
%MPLOT

PROC SORT DATA=LIB.MODELXP NODUPKEY OUT=LIB.MODELXP1;
BY BATCH TIME;
RUN;
%PRINTSUM
RUN;
%MEND STAB;

%STAB
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ANALYS6.SAS

*==========================================================;
* Sixth Macro File of the Stability Analysis Program ;
*==========================================================;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* TILMTEST %;
* Title of test %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
%MACRO TILMTEST;
%IF &MTEST=1 %THEN

%DO;
%IF “&BOUND”=“L” %THEN
%DO;

TITLE7 “&ALPHA3% One-Sided Lower Confidence Limit”;
%END;

%ELSE
%DO;
TITLE7 “&ALPHA3% One-Sided Upper Confidence Limit”;
%END;

%END;
%ELSE

%DO;
TITLE7 “&ALPHA3% Two-Sided Confidence Limit”;
%END;

%MEND TILMTEST;

*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
* MTIMODEL %;
* Model title %;
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%;
%MACRO MTIMODEL;
%IF &M=MODEL1 %THEN
%DO;

TITLE9 “Common Intercept and Common Slope”;
%END;
%ELSE

%IF &M=MODEL2 %THEN
%DO;

TITLE9 “Separate Intercepts and Common Slope”;
%END;

%ELSE
%DO;

TITLE9 “Separate Intercepts and Separate Slopes”;
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%END;
%MEND MTIMODEL;

*****************************************************************;
* Summary Output Program *;
*****************************************************************;
DATA SUMMARY; SET LIB.MODELXP(KEEP=TIME BATCH EXP);

WHERE (EXP=‘’);
RUN;

DATA SUMMARY; SET SUMMARY; BY BATCH;

IF last.BATCH;
%TILMTEST
%MTIMODEL
PROC PRINT DATA=SUMMARY D SPLIT=‘*’ NOOBS;
LABEL TIME=‘ESTIMATED*DATING PERIOD*(MONTHS/WEEKS)’;

VAR BATCH TIME;

RUN;
TITLE;
RUN;

STABGRAF.SAS

*==========================================================;
* SAS/PC/STABGRAF.SAS (version 1) ;
* This program draws high resolution SAS graphs for stability analysis. ;
*==========================================================;
* Before submitting this program, the user may need to modify ;
* the libname, or statements which tell SAS the types of ;
* graphics devices you are using. See SAS Graphics Manual if ;
* you have a device which is not listed here. ;
*==========================================================;

LIBNAME LIB ‘\SAS\STAB’; /* Check that this is where STAB is */

/* Next line defines choice of graphics adapter for display on screen */
GOPTIONS DEVICE=ps2ega;

PROC SORT DATA=LIB.MODELXP; BY BATCH;

PROC GPLOT DATA=LIB.MODELXP;
PLOT LEVEL*TIME=1 PREDICT*TIME=2

L BOUND*TIME=3 U BOUND*TIME=4/FRAME
OVERLAY AUTOHREF VREF=90 110 LHREF=34 LVREF=1
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HAXIS=AXIS1 VAXIS=AXIS2 LEGEND=LEGEND;
BY BATCH;

/* More material which may need modification: */
/* Next statement defines the range of the horizontal axis and */
/* the number of marks */

AXIS1 VALUE=(H=1.0 F=duplex) LABEL=(H=1.3 F=complex)
ORDER=0 TO 55 by 6;

/* Next statement defines the range of the vertical axis and */
/* the number of marks */

AXIS2 VALUE=(H=1.0 F=duplex) LABEL=(H=1.3 F=complex A=90 R=0)
ORDER=80 to 120 BY 10;

LEGEND VALUE=(H=1.3 F=COMPLEX);

SYMBOL1 V=STAR C=WHITE; SYMBOL2 I=JOIN L=20 C=RED ;
SYMBOL3 I=JOIN L=1 C=GREEN; SYMBOL4 I=JOIN L=1 C=GREEN;

RUN;

Example for Use

*==========================================================;
* DATE : March 9, 1992 ;
*==========================================================;
OPTIONS FORMCHAR=‘B3C4DAC2BFC3C5B4C0C1D9’X;

%LET PATH=\SAS\STAB; /* line A */

LIBNAME LIB “&PATH”;
OPTIONS MPRINT NODATE PS=50 MISSING=‘.’;

%MACRO DEFAULT;
%GLOBAL NLINES SSDNAME MTEST ALPHA LL UL BOUND PRTSEL NUM

UNIT TT1 TT2 TT3 TT4 TT5 TT6 NBATCH TIME INTERCEP;
%LET SSDNAME=STAB;
%LET ALPHA=0.05; /* .05 is customarily required by FDA. */

%LET LL=90; /* line B */
%LET UL=110; /* line B */
%LET BOUND=L; /* line C */
%LET MTEST=1; /* line C */
%LET UNIT=MONTH; /* line D */
%LET TT1=Stability Analysis ; /* line E */
%LET TT2= ; /* line E */
%LET TT3= ; /* line E */
%LET TT4= ; /* line E */
%LET TT5= ; /* line E */
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%LET TT6= ; /* line E */
%MEND DEFAULT;
%DEFAULT

DATA LIB.&SSDNAME;
INPUT BATCH $ TIME LEVEL;
CARDS;

; /* end of input data */

%INCLUDE “&PATH\ANALYS1.SAS”;
%INCLUDE “&PATH\ANALYS2.SAS”;
%INCLUDE “&PATH\ANALYS3.SAS”;
%INCLUDE “&PATH\ANALYS4.SAS”;
%INCLUDE “&PATH\ANALYS5.SAS”;
%INCLUDE “&PATH\ANALYS6.SAS”;
RUN;
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model-dependent methods, 211
model-independent methods, 212

dissolution testing, 16, 17, 22
drug characteristics, 54–55
drug product, definition of, 2
drug product stability, 280

batch selection, 280
commitment, stability, 286
container closure system, 280–281
evaluation, 286–287
photostability testing, 280
specification, 281
statements/labeling, 287
storage conditions, 282

below -20ºC, 285
in freezer, 285
general case, 282–283
impermeable containers, 283
in refrigerator, 285
semipermeable containers, 283–284

testing frequency, 281–282
drug recalls

owing to stability problems, 15–16
top 10 reasons for, 16

drug shelf-life, see Shelf-life; Shelf-life
estimation
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drug stability
definition of, 2
goals and meanings of, 25

drug substance stability
batch selection, 275
commitment, stability, 278–279
container closure system, 276
evaluation, 279–280

statements/labeling, 280
specification, 276
storage conditions, 276–278

below –20ºC, 278
in freezer, 278
general case, 277
in refrigerator, 277–278

stress testing, 275
testing frequency, 276

duration of testing, minimum, 6–7

E

EM algorithm procedure, 168–172
European Pharmacopeia, 205
European Union (EU), 2– 7, 75,

241, 274
evaluation, 279–280

statements/labeling, 280
Evaluation of Stability Data (ICH Q1E),

243
exaggerated storage condition, 18, 25
Expert Working Group (EWG), 3, 4
expiration dating period, 53; see also shelf-life

estimation
concepts of, basic, 53
drug characteristics, 54–55
model and assumptions, 55

extrapolation, 18, 25, 269, 279, 287
Eyring equation, 18, 25

F

factorial design, 81–83
FDA, see United States Food and Drug

Administration (FDA)
Federal Food, Drug, and Cosmetic Act, 11
Federal Register, 11
first-order, 27–31, 37–41, 46, 49–51
first-phase shelf-life, estimating, 196–197
fixed batches, stability analysis with,

99–100
batch similarity, preliminary test for,

100–105
discussion, 121–123
example, 115–121

multiple batches, minimum approach for,
105–111

pooling batches, multiple comparison
procedure for, 112–115

remarks, 115
fixed effects, 136
Fmax test, 122
fractional factorial design, 19–20,

80–81, 98
frozen drug products, 21–22, 193

discussion, 202
example, 199–202
stability data and model, 195–199
two-phase stability study, 193–195

frozen study, 193–195; see also Frozen
drug products

G

gas chromatography (GC), 8, 13
G-efficiency, 95
generalized linear models, 183
global similarity, 212–213
glossary, 287–291
guidance for industry

drug product, 280
batch selection, 280
commitment, stability, 286
container closure system,

280–281
evaluation, 286–287
photostability testing, 280
specification, 281
statements/labeling, 287
storage conditions, 282–285
testing frequency, 281–282

drug substance stability
batch selection, 275
commitment, stability, 278–279
container closure system, 276
evaluation, 279–280

statements/labeling, 280
specification, 276
storage conditions, 276–278
stress testing, 275
testing frequency, 276

glossary, 287–291
objectives of, 273–274
principles of, general, 274
references, 291–292
revision 2 changes, list of, 292
scope of, 274

Guide to Inspection of Bulk Pharmaceutical
Chemicals (FDA), 14
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H

high-density polyethylene (HDPE) bottle, 85
high-performance liquid chromatography

(HPLC), 8, 12, 13
hypotheses testing, 226–230
hypotheses testing, for similarity factors,

221–224

I

ICH guideline(s), 3, 4–6
ICH Q1A guideline, 4, 5
ICH Q1A (R2) guideline, 4, 5, 6, 9
ICH Q1B, 9
ICH Q6A, 9
ICH Q2B, 9, 11
impurities

in official articles, 12–13
ordinary, 13

impurities test, 12
organic or volative, 13

impurity, definition of, 12
inactive ingredient, definition of, 2
Information matrix, 264
in-house specification, 205–206
inspectional approach, 14
intercepts, equality of, 99, 100, 104–105
International Conference on Harmonization

(ICH) guidelines for stability, 1, 2
interval estimates, 70–71
inverse method, 61–64
investigational new drug application (IND),

25, 91–92
in vitro, 203, 210, 212, 236
in vivo, 2, 22, 210

J

Japan, 2–8, 75, 241, 274

L

labeled shelf-life, determining, 60, 65, 70, 99,
137, 143

Latin square, 89
least protective package, 8
least squares estimate(s), 20, 31, 33, 35
least stable batch, 8
Level 1, 234–237
Level 2, 234–237
Level 3, 234–237
levo isomer, 11
levothyroxine sodium, 11, 71

linearity, deviation from, 269
linear mixed effects model, 165–166
linear regression, simple, 32, 34
linear regression with random coefficients,

126–127
linear trend model, 200–202
liquid chromatography/mass

spectrometry/mass spectrometry
(LC/MS/MS), 8–9

local similarity, 212–213
long-term stability designs, 80–81

bracketing design, 88–89
classification of designs, 93
factorial design, 81–83
matrixing design, 85–88
reduced designs, 83–85
uniform matrix designs, 89–90

factors acceptable for, 91–93
lot, definition of, 2
lower prediction bound, 158–161

example, 161–162
lower specification limit, 20, 125, 194

M

manufacturing equipment, 235–236
manufacturing process, 236
manufacturing site, 234–235
marketing requirements, 74–75
marketing stability study, 13–14
marketplace storage conditions, 18, 25
matrixing, 19–20
matrixing design, 85–88
maximum likelihood estimation (MLE), 127,

167–168
mean kinetic temperature, 22, 238–239
mean squared error (MSE), 65
minimum approach, 105–111
Ministry of Health, Labor, and Welfare

(MHLW), 6, 7
min-max, 243–246–251, 253–258, 260
min-max-max, 244, 260, 262
mixed effects models, 165

discussion, 173–174
EM algorithm procedure, 168–172
example of, 172–173
linear, 165–166
maximum likelihood estimation, 167–168
poolability, hypothesis test for determining,

166–167
model assumptions, examinations of, 40–43
model-dependent methods, 211
model-independent methods, 212
moment, 94
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multiple batches
comparison of methods for, 152–158

example, 154–156
minimum approach for, 105–111

multiple components, 21, 187
basic idea of, 187–188
discussion, 192
example, 190–192
models and assumptions, 188–189
shelf-life determination, 189–190

multiple drug characteristics, 268
multivariate generalized model (threshold

approach), 183–184

N

new drug application (NDA), 7, 13–14
nonlinear regression model, 38–40, 46,

51–52
nonparametric method, 67–69
nonparametric method of shelf-life estimation,

67–69
null hypothesis

of batch similarity, 105
of equal intercepts, 102, 104, 167
of equal slopes, 102, 108
of equal within-batch variability, 122
of lack of fit, 42–43, 46, 50
of zero reaction rate, 33

numerical numbers, 224
hypotheses testing, 226–230
time series model, 224–226

O

one-half design, 83
one-third design, 83
optimal design, 243–267
optimality criteria, 233, 243, 260, 262
ordinal responses

binary approach, 184
generalized linear models, 183
threshold approach (multivariate generalized

models), 183–184
ordinary impurities test, 12
ordinary least squares, 125,

127–130
overage, 267

P

PE (polyethylene) tubes, 80
photostability testing, 280
PhRMA Stability Working Group, 91

poolability, hypothesis test for determining,
166–167

pooling batches, multiple comparison
procedure for, 112–115

post-approval testing, 13–14
potency, definition of, 2
potency testing, 16–17
pre-approval testing, 13–14
prediction, statistical analysis and,

30–39
prediction bound, 162, 224
prediction bound, lower, 158–161

example, 161–162
principles of, general, 274
probability lower bound, 205–210
PROC GLM models, 79–80
product sampling, 4
profile testing, 210

concept of similarity, 212
local/global similarity, 212–213
other similarity factors, 215
remarks, 216
ƒ2 similarity factor, 213–214, 215

dissolution profile comparison, 211
model-dependent methods, 211
model-independent methods, 212

scale-up and post approval changes,
210–211

PVC (polyvinyl chloride) blister, 80

Q

quadratic trend model, 196
quality assurance and quality control

(QA/QC), 16
Quality Assurance approval, 74

R

random batch effect, 127–128
batch-to-batch variation, testing for,

128–135
batch variation, estimation of, 135

random batches, 137–138, 177–180
Chow and Shao’s approach, 138–139

balanced case, 139–142
sampling distribution of estimated

shelf-life, 143–147
unbalanced case, 142–143

stability analysis with, 125–126
comparison of methods for multiple

batches, 152–158
example, 154–156

concluding remarks, 162–163
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linear regression with random
coefficients, 126–127

lower prediction bound, 158–161
example, 161–162

random coefficients, 126–127
random effects, 125–126
rank regression, 122
rate constants, 31, 35, 43, 45, 48
recall, 1, 15–16
reduced design, 83–85
references, 291–292
regulatory inspection, 14–16

drug recalls owing to stability
problems, 15–16

inspectional approach, 14
stability testing, 15

regulatory requirements, 3
replicates, 8
residual plot, 42
revision 2 changes, list of, 292
room temperature, definition of, 7

S

safety margin, 70
sample size determination, 79
sample size justification, 79, 270
sampling considerations, 4
sampling distribution, 143–147
sampling plan, 204–205
sampling time points, 8, 77–78, 93
SAS macro files for STAB system,

293–306
SAS programs for stability analysis,

270–271
scale-up and post approval changes,

210–211
batch size, 235
components and composition, 234
manufacturing equipment, 235–236
manufacturing process, 236
manufacturing site, 234–235
remarks, 236–237

scope of, 274
second-phase shelf-life, estimating, 197–199
selective stability-indicating assay method, 10
shelf-life, determining

lower prediction bound, based on, 158–162
shelf-life, extension of, 7
shelf-life estimation

comparison of methods, 64–65
direct method of, 60
FDA’s approach to, 56–58
inverse method of, 61–64

other methods of
interval estimates, 70–71
nonparametric, 67–69
slope approach, 69–70

random batches, 137–147
remarks on, 65, 71–72

short-term stability study, 7, 13, 18, 23,
25, 75

similarity, concept of, 212
local/global similarity, 212–213
other similarity factors, 215
remarks, 216
ƒ2 similarity factor, 213–214, 215

similarity, statistical methods for assessing,
216

hypotheses testing for similarity factors,
221–224

time series model, 217–221
ƒ1 similarity factor, 215
ƒ2 similarity factor, 213–214, 215
simple linear regression without intercept, 32,

34
slope approach, 69–70
slopes, equality of, 19, 99–100, 104–105,

112, 114
small error asymptotic, 59–60, 62
specification, 276
specification limit, lower, 20, 125, 194
specific stability-indicating assay method, 10
stability data and model, 195–196

first-phase shelf-life, estimating, 196–197
second-phase shelf-life, estimating,

197–199
Stability Data Package for Registration in

Climatic Zone (ICH Q1F), 240
stability designs, 73

basic design considerations, 73–74
background information, 74–75
factors, 76–77
other considerations, 80
regulatory information, 75–73
sample size, 78–79
sampling time considerations, 77–78
statistical analysis, 79–80

discussion, 97–98
long-term, 80–81

bracketing design, 88–89
classification of designs, 93
factorial design, 81–83
matrixing design, 85–88
reduced designs, 83–85
uniform matrix designs, 89–90

factors acceptable for, 91–93
for long-term stability studies at room

temperature, 84–85
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selection of, 94
D-efficiency, 94
G-efficiency, 95
moment, 94
remarks on, 96–97
statistical power, 95–96
uncertainty, 94–95

stability-indicating assay, 9–10
stability-indicating method, definition of, 9
stability loss, 55, 266–267
stability testing, 8–9, 15
Stability Testing of New Drug Substances and

Products (ICH Q1A), 240
STAB system, SAS macro files for, 293–306
standard operating procedures (SOPs), 234
statements/labeling, 280, 287
statistical analysis and prediction, 30–39
statistical power, 95–96
storage conditions, drug product, 282

below -20ºC, 285
in freezer, 285
general case, 282–283
impermeable containers, 283
in refrigerator, 285
semipermeable containers, 283–284

storage conditions, drug substance, 276–278
below –20ºC, 278
in freezer, 278
general case, 277
in refrigerator, 277–278

storage conditions, in different climatic zones,
238

classification of climatic zones, 239–241
climatic zones I and II, 241–242
climatic zones III and IV, 242–243

mean kinetic temperature, 238–239
storage conditions in different climatic zones,

238
classification of climatic zones, 239–241

climatic zones I and II, 241–242
climatic zones III and IV, 242–243

mean kinetic temperature, 238–239
strength (of drug), definition of, 2
stress testing, 275
SUPAC guidance’s, 211–214, 233–236

IR, 210, 214, 233, 234
MR, 210, 233
SS, 211, 233

T

tentative expiration dating period, 35–40,
46–47, 50–5113

tentative shelf-life, 7, 75

test for batch-to-batch variability, 128–135,
180–181

test for equality of intercepts, 19, 99, 100,
104–105

test for equality of slopes, 19, 99–100,
104–105, 112, 114

test for similarity, 221–224
testing frequency, 276
testing procedure, 11, 111
thawed study, 193–195
thermal stability accelerated testing, 28–29
thin-layer chromatographic (TLC) plate, 13
three-stage acceptance criteria, 204
three-stage sequential dissolution testing

rules, 204–205
threshold approach (multivariate generalized

models), 183–184
thyroid function, 11–12
thyroid hormone thyroxine (T4), 11
time considerations, sampling, 4
time-dependent degradation, 269–270
time intervals, 19, 87
time points

deterministic, 55, 61
in dissolution profile testing, 210–216
sampling, 8, 77–78, 93
selection of, 50

time protocol, 83
time series model, 217–221, 224–226
time vector, 83, 245
true shelf-life, 21, 53, 137
Tukey-Kramer procedure, 114
two-phase stability study, 193–195
two-thirds design, 84

U

unbalanced case, 142–143
uncertainty, 94–95
uniform matrix designs, 89–90

factors acceptable for, 91–93
United States Food and Drug Administration

(FDA), 1, 2, 3
Report to the Nation, 16
shelf-life estimation, approach to, 56–58
stability guideline(s), 2–4, 5

United States Pharmacopeia-National
Formulary (USP-NF)

dissolution testing, 203–204
probability lower bound, 205–210
three-stage acceptance criteria, 204
three-stage sequential dissolution

testing rules, 204–205
standards, 8–14
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United States Pharmacopeia (USP), 1–2
United States Pharmacopeial Convention, 12
USP Committee of Revision, 11
USP-NF, see United States

Pharmacopeia-National Formulary
(USP-NF)

USP tests, 16

V

validation parameter, 11
volative impurities, 13

W

Walsh average of residuals, 68
weighted least squares (WLS) approach, 127
weight variation testing, 16–17
worst batches, 99, 112, 113, 120

Z

zero-order rate constant, 27
zero-order reaction, 26–28, 47, 49–51

differential equation for, 26–27
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