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Preface

Professor Yorick Wilks has contributed to a wide range of academic fields including
philosophy, linguistics and artificial intelligence. The main focus of his work has
been the fields of computational linguistics and natural language processing where
his work has advanced an unusually wide range of areas such as machine translation,
word sense disambiguation, belief modelling, computational lexicons and dialogue
modelling. One of the distinguishing features of his work has been his ability to link
the engineering of practical text processing systems with more theoretical issues
about language, particularly semantics. A number of themes have run through his
work and one of the aims of this volume is to show how a body of work on such a
diverse range of topics also forms a coherent program of inquiry. A comprehensive
record of the range and diversity of Yorick’s output is beyond the scope of this
volume. Rather, as part of the Festschrift organized to honour his retirement from
teaching, we chose this volume to contain a selection of representative pieces
including some less accessible papers.

The first paper we have chosen to include (“Text Searching with Templates”)
is surely one few will be familiar with. This was published as a technical report
in 1964 at the Cambridge Language Research Unit, where Yorick first worked on
Computational Linguistics. In this paper Yorick outlines an approach in which texts
are represented using template structures and world knowledge, in the form of an
interlingua, used to define the elements which could be combined into meaningful
units. Later these ideas were developed and incorporated into his work on Preference
Semantics.

The next paper (“Decidability and Natural Language”), published in the
philosophy journal Mind, is a theoretical discussion of whether it is possible to
represent the semantics of natural language in any computable way. Here Yorick
argues against the accepted belief at the time that the syntax and semantics of natural
language utterances should be treated independently, proposing that semantics is
not an extensions of syntax but rather the other way round. He also addresses the
question of whether a deterministic procedure could ever be developed to decide
whether a sentence is meaningful and suggests that a suitable criterion might be
whether a single interpretation of the sentence can be identified. In this paper, Yorick
discusses a theme which he returns to several times: that the possible meanings of
a particular word can only be defined relative to a particular sense inventory and
cannot be thought of as abstract, Platonic entities.

vii



viii Preface

The next paper (“The Stanford Machine Translation and Understanding Project”)
represents Yorick’s important contribution to Machine Translation and provides
detail of the English-French translation system he worked on at Stanford University.
Yorick discusses how the latest advances in linguistics, particularly semantic
analysis, could be used to justify another attempt at the MT problem (this paper
was written only a few years after the 1966 ALPAC report damning machine trans-
lation). He also shows how these ideas could be implemented in a practical way by
describing a system which made use of an interlingua approach and analysed the
input text by transforming it into template structures similar to those introduced in
the first paper.

One of the main outcomes of the Stanford project was Yorick’s influential
Preference Semantic system, various aspects of which are detailed in three of the
papers (“An Intelligent Analyser and Understander of English”, “A Preferential,
Pattern Seeking, Semantics for Natural Language Inference” and “Making Prefer-
ences More Active”). The first paper provides an introduction and shows that,
contrary to standard approaches of the day, syntactic and semantic analysis could
be carried out in parallel. Preference Semantics is based on the use of selectional
restrictions but, rather than treating them as constraints which must be satisfied,
they were interpreted as paradigm cases, indicating normal or prototypical word
usages which may be expected but could be adapted if necessary. The system
represented the preferences using a set of semantic primitives which were also used
to represent the possible meanings of each word (called “formulas”). These were
combined, and their preferences examined to choose the correct meaning, resulting
in a template representing the meaning of the text. The next paper explains how
Preference Semantics can be extended to carry out reasoning about texts to perform
anaphora resolution. In keeping with one of the main motivations behind Preference
Semantics, that a language understanding system should always attempt to provide
a usable interpretation, the approach attempted to resolve a wide range of anaphora.
The system would make a best guess about the meaning of an utterance, as a
human does, and act accordingly. Further experience, gained through additional
knowledge about the situation, may suggest a change in interpretation but to carry
out many language understanding tasks, including machine translation, requires
some commitment to a preferred interpretation. The final paper on Preference
Semantics provides more details about how the flexibility of the system can be used
to interpret a wide range of usages. Yorick points out that word usages which are
often thought of as metaphorical are common in everyday language and that the
burden of interpretation should be placed on the language understanding system.
Yorick argues that formal theories proposed by linguists were not flexible enough
to describe the sort of language used in everyday situations. Yorick motivates this
with the now famous example: “My car drinks gasoline”. Yorick advocates the use
of world knowledge to interpret metaphorical language, in this case we need to
know that cars require the insertion of a liquid (petrol or gasoline) to run.

Preference Semantics relied on a set of semantic primitives to denote the typical,
or preferred, usages although their use had been questioned. In the next paper (“Good
and Bad Arguments about Semantic Primitives”), Yorick replies to these criticisms.
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The main questions posed were what semantic primitives actually meant, and where
these semantics derived from. Yorick proposes a position where primitives can be
though of as part of the language whose semantics they represent. They form a set
of building blocks within the language from which more complex statements can
be formed by combination. Once again, Yorick argues that the meaning of language
is found within the language itself.

Yorick’s position in that paper is a theoretical one which is made practical
in the next paper we selected (“Providing Machine Tractable Dictionary Tools”).
This paper introduces Yorick’s extensive work with Machine Readable Dictionaries
(MRD) by describing several methods for exploiting the information they contain
which had been developed while he led the Computer Research Lab of New Mexico
State University. The first technique, the use of co-occurrence statistics within
dictionary definitions, is a very different approach from Yorick’s previous work on
Preference Semantics and allows meaning to emerge from the dictionary definitions
in an automated way. Another technique described in this paper concerns the
conversion of a MRD into a full Machine Tractable Dictionary, that is a resource
in which the terms used to define word senses are unambiguous and so can be
readily understood by a computer. This represents a computational implementation
of Yorick’s view of semantic primitives. One of the main goals of this project is
to identify a core set of basic terms which can be used to provide definitions and
these were also identified through automatic dictionary analysis. A final application
for the dictionary was to automatically generate lexical entries for a Preference
Semantics system which provided a method for avoiding the bottleneck caused by
the previous reliance on hand coded formulas.

The next paper (“Belief Ascription, Metaphor and Intensional Identification”)
represents Yorick’s work on belief modeling and dialogue understanding which
were implemented in the ViewGen system. His work on this area builds upon the
techniques developed for understanding metaphors within the Preference Semantics
framework.

In the paper entitled “Stone Soup and the French Room” Yorick returns to the
topic of Machine Translation to discuss IBM’s statistical approach. He is character-
istically skeptical of the claims being made and controversially suggests that purely
data-driven approaches could not rival mature Al-based techniques since the later
represent language using symbolic structures. Yorick makes sure to point out that he
does not oppose empirical approaches to language processing by reminding us that
“we are all empricists” and also suggests that the roots of the statistical approach
to translation could be traced back to some of the earliest work on computational
linguistics. The collective memory in language processing is often short and it is
important for researchers to be able to be reminded of earlier work may have been
forgotten all too quickly. To a great extent Yoricks claims have been proved by
recent work on statistical machine translation. During the decade or so since this
paper was published work on statistical machine translation has gradually moved
towards the use of increasingly rich linguistic structures combined with data derived
from text.
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In the final paper (“Senses and Texts”) Yorick discusses recent work on semantic
analysis, specifically two contradictory claims: that the word sense disambiguation
problem cannot be solved since it is not well formed and another that suggested
the problem had, to a large extent, been solved. Yorick points out that the notion
of what is meant by “word sense” is central to these arguments but that it has
not yet been adequately defined and, besides, is only meaningful relative to some
specific lexicon. One of the claims Yorick discusses rests on the assumption that
Computational Linguists had made naïve assumptions about the nature of meaning
and he, once again, reminds us to looked to the past; “In general, it is probably wise
to believe, even if it not always true, that authors in the past were no more naïve
than those now working, and were probably writing programs, however primate
and ineffective, that carry out the same tasks as now.” Yorick points to one of the
motivations behind Preference Semantics, namely that any adequate language under-
standing system must accommodate usages which are different from the meanings
listed in the lexicon but somehow related, as in metaphorical utterances.

Khurshid Ahmad
Christopher Brewster

Mark Stevenson
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Text Searching with Templates

Yorick Wilks
Cambridge Language Research Unit

1.1 Introduction

A ‘template’ (to be abbreviated as ‘T’) is a sequence of atomic marks which are
either

(1) a left-hand bracket or a right-hand bracket
(2) a connective written “:” or “/ ”
(3) an element which is a member of one of the lists (p. 6) of elements selected

from the elements of the C.L.R.U. interlingua “Nub”

and which are combined in the form

(X : p) : (m v / n (Y : q)1)

where p, v, q are elements chosen from given lists. X, Y, l, m, n are variables whose
substitution values are formulae of the interlingua. A formula is defined recursively
in the following manner;

(1) every element is a formula
(2) every formula not itself an element is of the form X b Y where X, Y are

formulae and b is a connective.

l, m, n are only mentioned here for completeness, in that we may require their
presence in the basic formula above when considering more complexities than we
do now. They will not be mentioned again here, and we will therefore consider the
basic formula in the simpler form.

(X : p) : (v / (Y : q))

This is itself a formula on the above recursive definition. We shall refer to X and
Y as text variables, and p, v and q as template variables.

1

K. Ahmad, C. Brewster and M. Stevenson (eds.), Words and Intelligence 1, 1–7.
© 2007 Springer.



2 Wilks

We give as section (1.5) of this note mutually exclusive lists of plausible inter-
lingual elements as substitution values for p and/or q and for v respectively. Not all
the values of the above formula, which are obtained by substituting each of the
members of its appropriate list for each of p, q and v in turn, are T’s.

We give next in (1.5) a table showing which of the concatenated pairs (p q),
formed from this class of values for p and q, can form part of a ‘permitted’ T.

These lists are preceded by an outline of a preprogram (section (1.4)). This
would operate upon a text coded in the interlingua, which we shall call the
datum-text. A digression is required at this point on the construction of this
datum-text.

1.2 The Participation of the Interlingual-dictionary Entries
in the Datum-text

It is assumed that the text is provided in structured interlingual form (whether of
nubs1 or of full entries, for all the words of the original message or only for certain
‘key’ words is discussed below).

i) The interlingual dictionary is made by giving more than one formula, in
general, for each English word; which of these are we to insert in the datum-
text; since the interlingual syntax allows for only one?

In general I think we must hope for a large enough computer to be able
to insert each of the formulae in turn and subsequently to choose the ‘best’
output. We shall require some criterion for the best output even without this –
at least, we shall until the T’s are far less crude than they are at present.

ii) The question then arises as to which part of these formulae “participate” in
the datum-text?

If we insert only the ‘nubs’ we will presumably not then be able to read off
semantically satisfactory values of the ‘text-variables’ (see below) from the
processed data text. However, providing we can re-associate each nub with
the appropriate natural language word we could leave the ‘non-nub’ part of
each formula in the store and change the present syntactic form of a T by
dropping the “bracket and connective restrictions”. On the other hand it has
yet to be shown that inserting the whole formula does produce unmanageably
many contours.

(i) and (ii) are independent in so far as ambiguity is part-of-speech ambiguity (in which
case interlingual entries for an English word have, in general, different nubs, and
this ambiguity can be resolved fairly simply by syntactic considerations), which is to
say that if we insert only nubs in the data text problem (i) will not arise at this stage.

1 “nub” is defined in the interlingua “Nub” (a variant of “Nude”) now being constructed
by J. Burns. Essentially a nub is the last element of the interlingual formula for a word
which also fixes some of its syntactic properties.
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1.3 Contours

The program outlined in (1.4) first divides the datum-text into strings. A string
contains the formulae corresponding to a phrase or clause in the natural language
text, and the latter is divided into phrases and clauses by a modified form of the
C.L.R.U. Syntax-Bracketting program. Within each string the constituent formulae
are re-ordered, if necessary, to make the syntax of the string conform to the rules of
the interlingua. It should be possible to stipulate a maximum length for such strings
in terms of interlingual elements. The aim of the program is to match each of the
strings on the datum-text with the inventory of T’s that is stored in the machine
as concatenated triples of elements. Output for each string is given as a list of
“matched and augmented (i.e. X & Y made explicit) T’s” or “contours”. A contour
is a T in which X and Y are replaced either by formulae or by nothing at all (in
which case the connectives preceding the ‘p’ and ‘q’ elements are deleted also).
We say there is a contour in a given string if the following marks occur in it in
left-right order:-

p): v/q) (1)

where p, v, q represent any of the elements in the appropriate lists (p. 6). Each pair
of marks in the contour, except those forming part of the values of X or Y, may
occur in the string in such a way as to be separated by other marks except that;

the ‘p’ element must be immediately followed by the ‘):’
the ‘v’ element must be immediately followed by the ‘/’
the ‘q’ element must be immediately followed by the ‘)’.

The list 1 above does not represent a necessary condition since we shall recognize
cases in which the marks corresponding to values for the X, Y, v, /, marks do not
occur. We actually define the occurrence of a contour in terms of a subset of the
marks 1, as follows. We shall say that there is a contour in a string if it contains
a substitution value for a “p):” mark followed, but not immediately followed, by a
substitution value for a “q)” mark i.e. by a pair not a triple. This last stipulation
requires some justification.

When searching for contours we might treat as T’s the list of permitted concate-
nated triples (p v q) which we will call full templates by contrast with the (smaller)
set of permitted concatenated pairs, or blank templates (p q). But there are troubles
about this which can be readily illustrated by using the symbol ‘↔’ (whose negation
is ‘�’) to mean ‘can be written for’ which can be roughly interpreted as ‘means
the same as’ i.e. it denotes a symmetrical relation.

Now it is clear from the structure of the given basic T, (and will be quite
transparent from the lists of suggested values for p, v, & q below), that the T’s are
intended to have a ‘sentential feel’, (though we cannot of course assume in advance
that the strings will correspond to sentences in the text), p corresponding roughly
to a subject, v to a verb, and q to an object or complement.
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Generally, in Anglo-Nude, given values from the appropriate classes for p, q &
v it is the case that

a. (p v q) ↔ (p q v) but
b. (p v q) � (v p q) 2

c. (p v q) � (v q p)
d. (p v q) � (q p v)
e. (p v q) � (q v p)

Any doubt about (a) interpreted as a true statement about English word-order can
be laid by making it a necessary condition that for a given (p′ v′ q′) to be admitted
as a full template that (a) be true for those values of p, v, or q.

Now when a matching program is given a definite form, since the string must be
searched from either the left hand end or right hand end in written order, and since
the class of possible values is to be the same for p and q, equivalences rejected
by (c), (d), and (e) can never arise. Since the program as given cannot distinguish
such forms from forms occurring in (a) or (b). So it will be seen from (a) and (b)
that the set of permitted triples is a subset of the set of possible triples, it is in fact
that subset in which the ‘v’ separates or follows the members of the pair. We may
then (having located the pair), look for a ‘v’ element to make it a full template,
searching first between the elements of the pair, (since such an ordering is the
more common construction in English), than after the pair in the given string. This
means no more than that each triple may be considered as being written twice in
the inventory, but in two forms. If no ‘v’ element appears in the search we record
the result as a pair or ‘blank contour’.

When such a pair has been located in a string we say that the string has a
substructure; we can then read off the values of the text variables X, Y as those
elements bracketed with the p and q elements so located.

Two other things should be noted at this point. It will be seen that there may be
many potential contours ‘in’ any given string which satisfy these requirements, and
we shall require that the program locates all the contours in it.

1.4 The Form of the Program

A program to locate a single contour in a given string would operate as follows.
Each element in the string would be examined in turn starting from the ‘left-hand
end’. In each case the examination would consist in enquiring whether the element
occurred on the “p or q” list, if not we pass on to the next element (moving right
on the paper); if it does so occur, we examine the next elements to the right in turn
to see if one of them also occurs on this list, if one does i.e. this pair is designated
‘1’ in the table on p.6 we say we have a blank template, if not we pass on. For

2 We might refer to (b) as the “re-ordering function Q” for ‘question-templates’, though
we shall not make use of this feature here.
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each such blank template a further search for a “v” element is made as follows: the
elements between the “p” and the “q” element in question are examined in left to
right (reverse) order to see if they occur on the “v” list, if one does, and the triple
is on the T list (p.7), we have a full template, if not we proceed to examine (again
in “left to right” order) these elements in the string to the left of the “q” element
and match with the ‘T’ list as before.

A program to extract all the contours would be one that continued in this way i.e.
proceeding as before but as if the matching triple just found did not so match, after
registering each success. It is not difficult to see that for an exhaustive search of a
string of n elements the total number of comparison operations with the T list is:

n∑

r=l

�n − r� �n − r − l�

which is:

n2 − 1 +
n∑

r=1

r2 + �1−2n�
n∑

r=1

r

or:

n3 +6n2 +2n −3
3

i.e. for a string with 12 elements the number is 871.
A routine would be needed to ensure that the “same” contour, even if located

many times, was only recorded once.
Each T may be negated by placing a ‘NOT’ element before its ‘v’ element. (In

this context we ignore the logical distinction between internal and external negation,
which requires separate discussion).

In order to record this in the output we should have a routine which enquired in
the case of each ‘accepted’ “v” element whether or not the preceding element was
a “NOT”.

If all the T’s are extracted it might turn out that one of them in a given string
corresponded to textual features that could be said to be “contained in” the text
corresponding to another T. But it would, I think be misleading to think of this as
one template “being a value of another” or anything like that.

It must be emphasized that we cannot complain of such a program that it locates
the wrong contours. What we can ask of any output are answers to the following
questions:

1. Are the located contours useful for some defined purpose?
2. Is the list of templates used intuitively adequate?
3. Does it correspond with, or at least include, the list of templates found by other

methods; from say, a list of contours located by phonetic stress-point analysis?

A separate note is required to indicate how this program might be achieved with
punched cards, and what the appropriate method of coding both of the interlingua-
word entries and of the template forms would be.
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1.5 The Template List

The T’s on this list are for some part wholly arbitrary, but this need not prevent
the program being carried through and the value of the output assessed. The list of
templates will require ultimate justification in much the same way as the choice of
the basic elements and the individual word formulae. The two lists or the values
of p or q, and v form a restricted sub-interlingua so that some of the elements in
the templates above have idiosyneratic, though consistent, senses. These might well
repay further study.

Values for p or q Values for v
DO PLEASE
FOLK SENSE
KIND BE
MAN FEEL
PART HAVE
WHOLE USE
THING WANT
STUFF CAUSE
GRAIN CHANGE
WORLD PAIR
SIGN

We may thus display the 121 possibilities of ordered pairs in the following table.
In it the elements written on the left hand side of the page represent the occurrence

of the first element of the pair considered, those written vertically the second. An
“O” indicates that the pair represented by that position is not a permitted pair; a
“1” indicates that it is.

D
O

FO
L

K

K
IN

D

M
A

N

PA
R

T

W
H

O
L

E

T
H

IN
G

ST
U

FF

G
R

A
IN

W
O

R
L

D

SI
G

N

DO 1 1 0 1 0 0 1 1 1 0 1
FOLK 1 1 0 1 0 1 1 1 0 1 1
KIND 1 1 1 1 1 1 1 1 1 1 1
MAN 1 1 0 1 1 1 1 0 1 1 1
PART 0 1 1 1 1 1 1 1 0 1 1
WHOLE 0 0 1 1 1 1 1 0 0 1 1
THING 1 1 0 1 0 1 1 1 1 1 1
STUFF 1 1 0 1 1 1 1 1 1 1 1
GRAIN 0 1 1 1 1 1 1 1 1 1 1
WORLD 1 1 0 1 1 1 1 1 0 1 1
SIGN 1 1 1 1 1 1 1 1 1 1 1
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We need to give no justification in terms of ‘logical impossibility’ or what not for
the above exclusion of 21 of the 121 possibilities. We can keep which we like and
simply judge the acceptability of the corresponding results. (Note that all ‘double
elements’ (qq) remain at present).
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Decidability and Natural Language

Yorick Wilks
Stanford University

2.1 Grammaticality and Decidability

It would be absurd to try to construct a procedure that could, formally and generally,
decide whether English sentences were true or false. If that could be done then, at
the very least, there would be no need of scientific experiment wherever English was
spoken. But the absurdity of that possibility should not cause anyone to dismiss two
other, more interesting, questions: one about what are usually called grammatical
English sentences, and the other about meaningful English sentences. Are either of
these sets of sentences decidable? Could there be procedures that would determine
whether a string of English words was, or was not, either grammatical or meaningful?

Attempts have been made to construct both sorts of procedure: in the case of
meaningfulness there is Carnap’s theory of Logical Syntax [1]: and in the case of
“grammaticality” there is Chomsky’s more recent work in the field of linguistics [2].
Carnap’s work rested upon an analogy between the ungrammaticality of sentences
like “Caesar is and” and the apparent meaninglessness of such sentences as “Caesar
is triangular”. Carnap thought that, if the rules of grammar were supplemented and
extended by “rules of logical grammar”, then the meaninglessness of “Caesar is
triangular” could be shown by the same procedures as dealt with the more obviously
odd “Caesar is and”. Carnap’s work in this area was largely programmatic: he did
not construct such a system of rules in any detail and then apply it to actual texts.

Chomsky’s work in linguistics is a natural and proper successor to Carnap’s.
His original suggestion was that a set of “transformational grammar rules” could
produce all and only the grammatical sentences of English from a number of initial
“kernel sentences”, that were themselves produced by rules of a different sort called
“phrase structure rules”. Chomsky’s paradigm of a transformational rule [2:43]
was one which would convert an English sentence into its “equivalent passive”:
i.e. “John loves Mary” into “Mary is loved by John”.

Chomsky’s work is even closer to Carnap’s than is generally realised, in that it
too is an attempt to “explicate” or produce, the class of meaningful sentences, in
spite of Chomsky’s initial intention to dispense with meaning and concentrate on

9
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10 Wilks

grammar. My claim here is not a mystical one about Chomsky’s intentions. It can
be supported by drawing attention to the greatly extended sense in which he has
used “grammar” in the last few years: he has introduced what he calls a “semantic
component” [3] into his grammars, so that grammaticality is now for him a notion
quite different from syntactically correct. But to demonstrate this point in detail
would be a narrowly linguistic enterprise. In this first part of this paper I want to
argue that, whether or not Chomsky is now explicating meaningfulness, he cannot
be explicating grammaticality as he originally set out to do, because grammaticality
lacks the necessary properties for that to be possible. I shall then go on to argue
that meaningfulness differs somewhat from grammaticality in this respect.

One further point: it might be objected at the outset that considerations about
decidability are of a purely syntactic nature in the sense of “syntactic” in which
Gödel’s theorem is said to be a purely syntactic theorem, and so they can have
nothing to do with questions of meaningfulness, or “grammaticality” in a linguistic
sense. The premise is perfectly true, but I am not trying to introduce meaning, truth
or grammaticality where it cannot belong. I am simply raising the question as to
how one might interpret the notion of theoremhood in certain canonical languages
of the kind described by Post [4, 5]. Chomsky himself has observed [6] that his own
system of transformational rules can be viewed as a system of production rules for
a canonical language in Post’s sense. A canonical language has a finite alphabet,
a finite number of productions, or inference rules, and a finite number of axioms.
The axioms are concatenated strings of items in the alphabet, and any string which
can be produced from these axioms by means of a finite number of applications
of the production rules can be called a theorem. The decision problem for the
language is determining whether any given string is a theorem or not. The analogy
between generative grammars and this formulation of proof theory depends upon
considering as “theorems” the strings produced by the operation of grammar rules,
or “rules of inference”. Only the last, or what Chomsky calls the terminal, string
of a production is interpreted as having the property associated with theoremhood,
namely, “grammaticality”. The only “axiom” in Chomsky’s system is then the string
‘S’, for “Sentence”, with which all productions begin.

Chomsky does not claim that transformational grammars are complete, in that
they produce all and only the grammatically correct sentences of English. Nor
does he claim that they are decidable, in that their rules decide of an arbitrary
string of English words whether or not it is grammatically correct. However, he is
presumably trying to construct a system having either or both these properties; for
that is the programme he originally set himself, whatever his subsequent disclaimers
about decision procedures [2:55].

In the case of transformational grammars it is not easy to be clear about their
decidability, or otherwise, because Chomsky is unwilling to give them any general
form. But it does seem generally agreed that a set of transformational rules of the sort
Chomsky has described characterizes a recursively enumerable set of sentences, but
not necessarily a recursive set. That is to say, you can generate as many sentences
as you like with the rules, but you may not be in a position to decide whether or
not a given, ungenerated, sentence can be generated [7].
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In this respect transformational rules differ from phrase structure rules, which are
known to be decidable in a number of cases [8]. In almost all his writings Chomsky
has included a number of arguments against the use of phrase structure grammars
which, he contends, can produce only the sort of “surface grammatical structure”
to be found in, say, school grammar books.

Yet, in this important respect of the decidability of the formal system, phrase
structure grammars seem to start with a distinct advantage; for, whatever the
practical advances made using heuristic transformational parsers (e.g.[9][10])
programmed on computers, it can never be known for certain whether or not a
given transformational grammar can analyse a given sentence.

Chomsky also argues against what are called finite state [2:21] grammars, and
again, by implication, for transformational grammars, on the ground that there are
grammatical English sentences that no finite state grammar of a certain class can
produce [11]. That is to say finite state grammars are incomplete in the sense that
they do not cover the known “theorems”. I do not want to go in detail into this
linguistic dispute, for what is important here for my purposes is to point out the
assumption behind Chomsky’s argument; namely, that there is some survey of what
it is to be a “theorem to be covered” by a generative grammar, which is to say,
a grammatical sentence. My contention is that, on the contrary, there is not as a
matter of fact a survey of the set of sentences Chomsky has in mind, and it is not a
class of sentences about which native speakers can take reasonable decisions, in the
way they can about meaningful sentences. If one asks an informant “Is ‘Colourless
green ideas sleep furiously’ a grammatical sentence?”, one tends to provoke only
puzzlement; though linguists, philosophers and logicians are less unwilling to decide
the question, and the diversity of their answers is an argument against Putnam’s view
[9:38-39] that speakers broadly agree on such questions, and hence the grammatical
sentences of a language are probably a recursive set. Curry [12] thinks such sentences
are grammatical; Ziff [13] thinks they are ungrammatical but not nonsensical;
Jakobson thinks that they are grammatical but false [14]; Putnam [9] thinks they
are at least ungrammatical, and certainly not false. Chomsky’s view has, as I said,
changed on this question: in the original formulation of his views, he contrasted such
sentences with ungrammatical ones, but in Current Issues in Linguistic Theory [3:25]
he argued for the existence of a set of grammatical sentences to be “explicated”,
and that it was a set not dependent on notions like “meaning” for its characterisation:

“…the notion ‘grammatical’ cannot be identified with ‘meaningful’ or
‘significant’ in any semantic sense. Sentences (1) and (2) are equally
nonsensical, but any speaker of English will recognize that only the former
is grammatical.

(1) Colourless green ideas sleep furiously.
(2) Furiously sleep ideas green colourless.”

Chomsky later refers to this quoted passage as a demonstration of the independence
of “grammar” and “meaning”, though there is no demonstration here in any strong
sense, but simply an appeal to observe the difference between two sentences.
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I do see a difference between the two sentences, in that I can think of a number of
things that sentence (1) might mean, whereas I find it less easy to see what sentence
(2) could be about. But even that might be only a question of effort: I could probably
work out an interpretation for “Furiously fought men tired weary”, and might well
be able to do something similar for (2). I can see no other difference between (1)
and (2) unless I am provided with specific grammar rules that (1) abides by and (2)
breaks. By “work out an interpretation” I refer to the ability native speakers of a
language have to explain what they mean by a piece of language embedding it in a
larger explanatory text or conversation. In the case of sentence (1), one might try to
show that it was meaningful by embedding it in some improbable story about the
nature of the brain’s activity during sleep, and its effect on the sleeper’s behaviour.
The story might also make it clear that “green” was being used in the sense of “new
or untried”.

This ability to explain the meaning of something, and so to show that it is
meaningful, is part of the ability to write or speak a language. One thinks of
Wittgenstein’s “words have those meanings which we give them; and we give them
meanings by explanations” [15]. Not so, however, with Chomsky’s intuitions about
grammaticality: I do not share his intuitions about the difference between sentences
(1) and (2), yet I remain unrepentantly a native speaker of English. But in the
case of grammaticality there is no such explanatory, or elucidatory, procedure that
Chomsky can employ in order to convince anyone who fails to share his intuition
of the difference between sentences (1) and (2).

Grammatical knowledge is no part of what it is to speak and understand a
language, for, on the contrary, grammatical explanations and manipulations are
what people who do not speak a language well fall back on. That is not to deny
that for any actual grammar there is a set of sentences well formed with respect to
it. But saying that is quite different from what Chomsky says, for it does not imply
that there is such a set prior to the construction and use of the grammar, nor does
it imply that there are “grammatical mistakes” except in so far as some “rule” is
specified with respect to which they are mistakes.

Since he wrote the passage quoted Chomsky [3:9] has changed his view, and
now considers sentences like (2) above to be “deviant” in that they should not
be produced by a good grammar. Hence, such sentences are now considered to
be ungrammatical by Chomsky. So he might seem to be in some doubt about
what is and what is not a grammatical sentence; yet his whole task of explicating
the set of such sentences depends on there being some independent survey or
characterisation of what it is to be a grammatical sentence. Without such a survey
or characterisation there is no notion of what it is to be a “theorem” for his,
or any other, system of derivations to produce. Putnam [7:191] has argued that
the grammatical sentences of a language are surveyable in that there is general
agreement about the membership of the set, and that this justifies us in considering
them a recursive set capable of being produced by a decidable generative grammar.
The plausibility of his case comes from examples like “Mary goed home”, about
which there would be general agreement that it is ungrammatical. But there is not
this agreement, even among experts, about interesting cases of odd, or deviant,
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sentences such as “Colourless green ideas sleep furiously”. Thus Putnam’s case is
not made.

I may have laid myself open to the charge of simply punning on the words
“decision procedure” by introducing them into a discussion of natural language.
Let me try to get at the main point slightly differently: as is well known, the
Propositional Calculus has a decision procedure; namely, certain computations on
truth tables. However, there is also a partial survey of what it is to be a theorem
independent of the truth tables, for they are not required in order to know that
“p ⊃ p” is true in the Propositional Calculus. If that were not so one could not
discuss completeness or decision procedures at all. For example, when expressing
Gödel’s [16] theorem in the form “no consistent language can be adequate for the
expression of mathematics, and at the same time be capable of proving all true
propositions in elementary number theory”, it is implied that there is some survey
of what it is to be a true proposition in elementary number theory independent of an
axiomatisation and a decision procedure. Otherwise Gödel’s theorem loses its point.
Yet this kind of survey is utterly lacking in the case of grammatical sentences.

Logical truths, then, can be surveyed prior to the construction of any system of
explication, and, moreover, the notion of logical truth can itself be characterised
in terms of other concepts. These characterisations, such as Leibniz’s “true in all
possible worlds”, are ultimately unsatisfying but it is an important fact about logical
truth that they can be proposed and sustained by argument. Similarly the notion
of meaningfulness has been characterised in terms of many other concepts, and
another possible characterisation of it is explored in a tentative fashion in the last
section of this paper. But it is not easy to see how the notion of grammaticality can
be characterised in any similar fashion. “What speakers admit as grammatical” does
not seem quite good enough for, whatever the inadequacies of “those sentences
that are true in all possible worlds” as a characterisation of logical truths, it is
certainly better than “those sentences that speakers (or logicians) admit as logical
truths”.

Chomsky [11], and more recently Ziff [13], have suggested characterisations of
grammaticality independent of the acceptance of sentences by some particular set of
grammatical rules. Chomsky has suggested that an ungrammatical utterance is read
with a falling tone on every word, and Ziff has suggested that an ungrammatical
utterance is one that a native speaker “balks at”. It needs no concentrated analysis
to see that those suggestions will not do, and for the same reasons in each case.

On the one hand perfectly comprehensible sentences like “Mary goed home”
would almost certainly be read by a speaker with the same intonation, and as
little balking, as the more conventional “Mary went home”, even though both
Chomsky and Ziff would consider the first sentence ungrammatical and the second
grammatical. On the other hand, even intelligent and well-disposed speakers balk
at sentences that are perfectly grammatical by our authors’ standards, but which
express some particularly striking falsehood such as “An elephant isn’t really an
animal you know”.

My conclusion from these arguments is not that many mathematical linguists are
wasting their time, or are engaged in some form of linguistic circle squaring. It is
rather that if their enterprise is, as it is usually, one of testing a given string of
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words to see if it has a given property or not, then it would be better to call the
property “meaningfulness” than “grammaticality”, since the latter property does not
admit of being attached to that procedure. Whereas, as I shall try and show below,
meaningfulness is at least a starter in that respect. The relabelling would be quite
appropriate to Chomsky’s changing notion of “grammatical”, which once included
“Colourless green ideas sleep furiously” but now excludes it, and has at present an
extension very like many people’s notion of “meaningful”.

If the arguments of these first and second sections are correct, then meaning-
fulness is not a poor relation of grammaticality, but rather the other way round. If
grammaticality is to have a sense as well as an extension then it must, if it is to be
anything, be a rather more general notion of meaningfulness. And that view is, I
think, consistent with the traditional notion of grammar, though this is not the place
to argue for that. Alice saw the point when she detected a very general meaning,
or message, in the poem Jabberwocky, which has been taken to be a paradigm of
“grammatical nonsense”: “Somebody killed something, that’s clear, at any rate”.

2.2 Characterising Meaningfulness

I have discussed how one might characterise the notion of grammaticality in terms
of other concepts. In this section I want to suggest a characterisation of the notion
of meaningfulness: one that may seem both odd, and at the same time, obvious.
I suggest that we call an utterance meaningful, in some primary sense, if and only
if we can decide which of a number of things that it might mean it actually does
mean. Or to put the suggestion another way: to be meaningful is to have one and
only one of a number of possible interpretations.

If these two apparently different concepts, meaningfulness and sense-resolution,
can be brought together then some light might be thrown on an old puzzle about
meaningfulness: when grammarians deem a sentence meaningless, or when Carnap
deemed a metaphysical sentence [17] meaningless on the grounds of its incorrect
logical syntax, then it might not have been that the sentences had no meaning,
but rather that each had several meanings or interpretations; though taken as single
sentences in isolation from others they could not be resolved as having some
particular interpretation, and so they were deemed meaningless. However, had they
been put back into the context from which they came, or had other suitable context
been constructed around them, each might have admitted of one and only one
interpretation, as in the case of “Colourless green ideas sleep furiously” embedded
in the simple story I suggested for it.

It is a trivial observation that many words have a number of meanings or senses, and
that without adequate context they cannot be resolved, in the sense of being attached
to one and only one dictionary explanation. If I say “I must go down to the post with
these letters” then that sentence can be resolved because it constitutes adequate context
to show that, for example, by “post” I mean “place for depositing mail”, and not
“thing to which horses may be hitched”. But if I say “I found I hadn’t got a jack” it
cannot be resolved, because a hearer cannot resolve “jack” without knowing whether
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the sentence belongs to, say, a card-playing story or a car-breakdown story. What I
am maintaining is that, in some primary sense of “meaningful”, the sentence “I found
Ihadn’tgota jack” ismeaninglessapartfromsomecontext,orcontext-substitute, in just
thewaythat“Colourlessgreenideassleepfuriously”is.

Before answering charges that what I have just claimed is either absurd or
straightforwardly wrong, I want to say a little more to support the claim that
primary meaningfulness is of resolved segments of language. I think some general
justification can be constructed along the lines of Quine’s discussions of synonymy
where, in the course of a detailed examination and criticism of the assumptions of
descriptive linguistics [18, 19, 20], he describes a situation of possible confrontation
with a speaker we do not understand at all. Quine begins by distinguishing what
he calls the activity of the grammarian from that of the lexicographer: the former
seeks to catalogue significant sequences in a language, the latter to catalogue the
synonym pairs within a language, or between languages. Quine points out that their
enterprises are intimately related in that one is concerned with what it is to have
meaning, while the other is concerned with what it is to have the same meaning.

Quine then directs his attention to the lexicographer’s problem, which he
discusses in the conventional terms of substitutions of putative synonyms within
larger contexts that remain synonymous as wholes. That way of discussing “having
the same meaning” is not a referential one at all, where by “referential” is meant
all sense, designation and Fregean dualist theories of meaning. For on any of those
theories one should determine whether or not words are synonymous by inspecting
the objects or concepts (or both) to which they refer, and seeing whether or not
they are the same. Quine’s view is essentially a monistic, intra-linguistic, view of
meaning and it concerns only relations between strings of words. I see no real
difference on Quine’s view of things, between saying that two utterances have the
same meaning and saying that each is a meaning, interpretation, or paraphrase of the
other. The problem then immediately arises of which of a number of possible strings
of other words is the meaning under discussion, and it is here that substitution, or
what Quine calls “a retreat to longer segments”, comes in:

“…a retreat to longer segments tends to overcome the problem of ambiguity
or homonymity. Homonymy gets in the way of the law that if a is
synonymous with b and b with c, then a is synonymous with c. For, if b
has two meanings (to revert to the ordinary parlance of meanings), a may
be synonymous with b in one sense of b and b with c in the other sense of
b. This difficulty is sometimes dealt with by treating an ambiguous form
as two forms, but this expedient has the drawback of making the concept
of form dependent on that of synonymy.

We may continue to characterize the lexicographer’s domain squarely
as synonymy, but only by recognizing synonymy as primarily a relation of
sufficiently long segments of discourse.”

But what other function for a “retreat to longer segments” can there be than an
overcoming of sense ambiguity? What is a “sufficiently long segment” other than
one that resolves such ambiguity? Quine does not say explicitly, but I think one can
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reasonably infer from the quoted passage that he means a segment sufficiently long
to resolve word-sense ambiguity and in particular the ambiguity of the members of
a synonym pair when either of them is substituted in the segment. Quine goes on:
“So we may view the lexicographer as interested, ultimately, only in cataloguing
sequences of sufficient length to admit of synonymy in some primary sense” [21:58].
So the difference between Quine’s primary synonymy of resolved segments and
the non-primary synonymy of their parts is that the former synonymy is a context
independent one. No question arises of substituting resolved segments in anything
longer, for there is no more to make clear. “Resolved” means simply that all sense
ambiguity has been cleared up.

Let us return to the grammarian, who was said by Quine to have the same problem
as the lexicographer. If that is so, then the grammarian, too, will “retreat to longer
segments”. Corresponding to Quine’s remark about “primary synonymy” we might
expect another to the effect that “primary significance is of resolved sequences”.
I do not think that Quine draws this inference in the course of his arguments, but it
seems to me a correct one, and a way of stating the necessary condition involved
in the characterisation of meaningfulness I suggested earlier.

What is one to make of this necessary condition: the claim that a piece of
language is meaningful only if it has one, and only one, interpretation, and hence
that it fails to be meaningful if it has none, or two or more? The claim may sound
reasonable enough for utterances whose meaningfulness is in dispute, where, as
with “Colourless green ideas sleep furiously”, the procedure used to show that
the utterance is meaningful usually consists in constructing a narrative round the
sentence so that it does have a single interpretation. I am using the terms “interpre-
tation” loosely here, and will do something to make it more precise later on, but
I think the general idea is sufficiently clear if we assume some notion of paraphrase,
interpretation or synonymy between utterances. For the moment let us assume it to
be Quine’s “primary synonymy” of resolved utterances.

There may well be an important distinction to be made between “being
ambiguous, and so meaningless, because of two interpretations” and “being ambi-
guous, and so meaningless, because of more than two interpretations”. Poetry can
often preserve two, though not usually more, interpretations over considerable
lengths of text which are properly considered meaningful. But for the moment
I want to consider poetry, allegories and jokes as special cases.

So then, if the utterance “He fell while getting to the ball” is embedded in a
football narrative, then all proper paraphrases of it will be equivalent to “A man
fell to the ground while trying to reach the object in play in the game”. And the
assertion that the second mentioned sentence is a paraphrase of the first would
resolve the first in just the way that inserting it into a football narrative would. In the
case of either procedure, inserting or giving a paraphrase, we would then know that
“ball” was not being used in the sense of a “formal dance”. It is also important
to notice that resolving an utterance by giving a paraphrase or interpretation is not
the same thing as resolving the constituent words. To know that the two sentences
just mentioned are possible paraphrases or interpretations of each other is also to
know that, for example, “ball” is being used in its “round object” sense. But the
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converse is not necessarily true, since the interpretations of sentences are not simply
computed from the interpretations of their constituent words, as anyone knows who
has tried to make himself understood in a foreign language with the aid of only a
dictionary, or even with a foreign grammar book as well.

But aside from sentences whose meaningfulness is in dispute, how reasonable is
the application of the necessary condition to an everyday sentence such as “He fell
while getting to the ball”? Is it not absurd to say that the sentence is meaningless
just because, taken in isolation, we do not happen to know which of two likely
interpretations it bears? However, if challenged to show that, or how, the sentence is
meaningful, a speaker who cannot make use of gestures, and so go outside language,
will certainly embed the sentence in some story or anecdote so as to give it one
of its two more obvious interpretations. And that is the same procedure as the one
adopted by the defenders of the meaningfulness of “Colourless green ideas sleep
furiously”. In other words, use is made of a procedure that does give the questioned
utterance some particular interpretation. I am not taking refuge here in some highly
general view such as “meaningfulness can only be discussed with respect to an entire
language”, or anything like that. I am calling attention to a particular procedure
of sense resolution, in which a particular interpretation is assigned to a questioned
utterance by means of telling a surrounding story, uncovering more of a surrounding
book page, or perhaps simply by producing utterances with the form of dictionary
entries, such as “ball means round object”.

But even if the necessary condition is plausible in itself it does not shed any light
on the “primary significance” that only resolved segments can have. In Quine’s
discussion of a “primary synonymy” he gave a quite different explication of that
notion in behavioural terms. But here I think we can push the characterisation
in terms of sense-resolubility a little further, and get something like a sufficient
condition for primary meaningfulness as well.

The sufficient condition for meaningfulness would be that a text was meaningful
if it had one and not more than one interpretation. But in virtue of what can a text
be said to have a single interpretation? Why does one want to say that “I must take
these letters to the post” has a single interpretation, though “He fell while getting
to the ball” has two? The difference cannot be simply that “ball” has two senses
while “post” has one, for “post” usually has more senses listed in a dictionary than
“ball”.

If an English speaker is asked to explain, in informal terms, how he knows that
“I must take these letters to the post” has only one interpretation, he will probably
say that the notion of “letters” is connected to only one sense of the notion “post”,
and so if the word “letters” is present in an utterance then it can only be the “mail”
sense of “post” that is intended. But in the case of “He fell while getting to the
ball” there is no such overlap of coherence of notions to disqualify either of the
two natural interpretations of the utterance.

This common-sense explanation can be put in linguistic terms quite straight-
forwardly: if classifiers, or markers, can be attached to the senses of words so
as to distinguish the senses from each other, then it is a technical matter to
specify coherence rules, operating on the markers, that select certain word senses
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in preference to others. So for example, if there was a marker MAIL in use, then
we would expect to find it in a table of linguistic information attached to only one
sense of “letters” (not the “alphabetic items” sense) and to only one sense of “post”.
We might then examine the sentence “He took the letters to the post” armed with
the rule “if the marker MAIL is attached to senses of more than one word in the
sentence, then select those senses”. That rule would be a very simple-minded one,
though it would work in this case. However, such rules can be made as complicated
as necessary (e.g.[22]) and there is no more mystery about the attachment of suitable
markers to word-senses than there is to the construction of the conventional entries
in an English dictionary that distinguish the senses of words from one another.

Moreover, the operation of such rules as the simple one involving the marker
MAIL can be equivalent, in effect, to the provision of an interpretation, or
paraphrase, for the utterance under examination. If the marker MAIL pins down, or
selects, one particular sense of “letters”, we can suppose that sense to be expressed
as a conventional dictionary entry such as “letters as papers that are mailed”. That
expression of the sense would be entered, in tables specifying the rules of a possible
linguistic system, along with the marker MAIL, but “letters as items in an alphabet”
would not. Part of the dictionary entry tagged to MAIL, namely “papers that are
mailed”, could then be substituted for “letters” in the original utterance. If this
procedure were repeated for each word of the utterance we would end up with a
new, resolved, utterance that was a paraphrase of the original one. In that sense,
the operation of this sort of rule also provides paraphrases.

Now consider a different example, which I shall call a pseudo-text: “Do you like
my car. I always wear a flower. The seats are leather”. An utterance like that would
almost certainly be said to be meaningless, even though it is not inconceivable that
an ingenious person could embed it within some intelligible story, perhaps as an
entry for a literary competition. It is not easy to say why the pseudo-text seems
meaningless. The simplest way of putting the matter is to say that there is nothing
that it is about, in that the ideas the utterance expresses do not cohere together
sufficiently for there to be an interpretation that is not identical with the utterance
itself.

What is claimed here by the sufficient criterion of meaningfulness, given above,
is that the pseudo-text would be meaningful if there were sufficient coherence
between its constituent concepts, of the sort expressed earlier in linguistic terms by
means of the MAIL marker. Rules specifying such occurrences of markers can be
as complex as necessary, and the specification is a technical matter for linguistics.
What is important for the present discussion is that the meaningfulness criterion,
expressed in terms of “having one and only interpretation”, should refer to an overall
interpretation, located by means of coherence rules of the sort I have discussed. It
cannot refer simply to the sense-resolubility of the individual words of the utterance
under scrutiny.

This last point can be made by looking again at the pseudo-text. Each of its
three constituent sub-sentences is such that one can see, for each word in it, in
which of its senses it is being used. That remains true whether the three sentences
are considered separately or as parts of the pseudo-text. So there is no problem
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about word-sense ambiguity in the pseudo-text, and hence, if the meaningfulness
criterion were expressed simply in terms of word-sense ambiguity resolution, then
the pseudo-text would satisfy the condition, and so be meaningful in terms of it.

I have given only the crudest example of the way in which a vague notion like
“conceptual coherence” can be operationally expressed by means of procedures
involving linguistic markers. In fact such procedures are almost always more
complex than the simple co-occurrence of a single marker, and it is easy to see
that a simple “threshold” notion of coherence will usually not suffice to establish
meaningfulness. Consider another pseudo-text: “All kings wear crowns. All crowns
are coins. All kings wear coins”. That pseudo-text is like the earlier one in that
each sub-sentence is resolved as regards word-sense ambiguity, although the whole
pseudo-text does not seem to admit of a single interpretation. Yet, unlike the last
example, it is not that there seems to be no interpretation, but rather an oscillation
between two alternative ones, depending on the sense of “crown” selected. But
this example would satisfy the very crudest standards of conceptual coherence, in
that each sub-sentence would have an overlap of markers, given any reasonable
choice of markers, with either of the other two sentences comprising the whole
pseudo-text. Hence, any rules applying to such markers would have to be more
structured than the simple one applying to MAIL that I gave earlier.

I have been defending the suggested characterisation of meaningfulness against
charges of absurdity and wrongness, but is it nonetheless vague? After all, what
precisely is being characterised as meaningful? Earlier in this paper, I described a
procedure used when the meaningfulness of an utterance is challenged: a speaker
defending its meaningfulness attempts to embed the utterance in a story or narrative
whose overall meaning is clear. But, in terms of the characterisation, the utterance so
embedded is properly deemed meaningless if it does not have one clear interpretation
in isolation; and, if the whole story containing it is clear and unambiguous, then it
is that whole that is shown to be meaningful by the embedding procedure. Further-
more, no inference can be made from the meaningfulness of the whole story to that
of the embedded utterance, any more than one can infer that p is a theorem because
it is a proper part of the theorem p ⊃ p.

If the last point is correct, then it is not proper to speak, as I did earlier in the paper,
of the procedure of embedding an utterance whose meaningfulness is questioned
as one giving a survey of meaningful utterances. What that discovery brings out
is that the present formulation of the characterisation is incomplete: it requires an
addendum “…one and only one interpretation with respect to some dictionary, or
dictionary substitute”. Consider again the utterance “He fell while getting to the
ball”. My claim was that that is meaningless in isolation, in that one could not decide
whether its proper interpretation contained the “round object” or the “formal dance”
sense of “ball”. But that judgement assumed a conventional dictionary containing
those two senses of the word “ball”, even though a considerable proportion of
English speakers do not know that “ball” can be used to mean “formal dance”,
and so to them the utterance might be said to be unambiguous and so perfectly
meaningful.
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What I am saying here can be put as a series of assertions in which X stands
for the utterance “He fell while getting to the ball” and Y stands for what I shall
call the “dance text”: a story about a dance and containing the sentence X. Then,
in terms of the augmented characterisation, X is meaningful with respect to Y; X
is meaningful with respect to the contracted dictionary containing “ball as round
object” but not “ball as formal dance”; X is meaningful with respect to a text
containing the sentence “a ball is a round object” and X; X is meaningless with
respect to a conventional dictionary containing “ball as round object” and “ball as
formal dance”; Y is meaningful with respect to one contracted dictionary and with
respect to the conventional dictionary.

The words “with respect to” are being used in two different ways here: in
“with respect to a dictionary” they mean considered in regard to such-and-such
possible senses explanations; but in “with respect to a text” the words naturally
mean considered as properly embedded in such a text as proper parts of it. The
main point made is a simple one: the sentence X is not meaningful with respect
to a conventional dictionary; the dance text Y, in virtue of its presumed internal
coherence discussed earlier, is meaningful with respect to the same dictionary. This
extension of the characterisation removes the prima facie absurdity of saying that
X is meaningless, since it is now proper to say that X is meaningful with respect
to any text or dictionary that does duty for Y.

However, if nothing is specified after “with respect to”, then one has to assume
that it is a conventional dictionary that is intended, and in that case the utterance
X remains meaningless. In those terms the rejection of metaphysical sentences
by Carnap was perfectly correct: if sentences of the sort he rejected have, as I
think they can be shown to have, more than one interpretation with respect to
a conventional dictionary, then they are properly rejected when so considered in
isolation. But, and this is the important proviso, why consider such utterances in
isolation in the first place if one’s aim is to understand what is being read. If the
present characterisation is at all correct, then there is no proper inference from such
a judgement of meaning-lessness to “there is no text Y with respect to which this
X is meaningful”. Yet that is precisely the inference that Carnap wanted his readers
to draw.

2.3 Meaningfulness and Decidability

If meaningful utterances can be surveyed and meaningfulness characterised, then it
is possible to ask the important question, is it possible to decide formally of any
utterance whether it is meaningful or not; which is to decide whether any given
arbitrary string of words can be placed into one and only one of two classes, the
meaningful and the meaningless.

There is no general theoretical problem about deciding meaningfulness that can
be expressed in the same form as truth-decision problems. Discussions of Gödel’s
theorem often include informal paradoxes of the following sort: given a table of
named statements, consider the following two items in the table:
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m …“The sentence n is false”
n …“The sentence m is true”

Examples of that sort cannot be produced for the case of meaning, for, if “true” and
“false” in the example are replaced by “meaningful” and “meaningless” respectively,
then there is no paradox. Nor is there any paradox if only one such replacement
is carried out: the result is a pair of statements of the same truth value. The same
goes for Tarski’s example, the one he considered to be an informal representation
of Gödel’s theorem:

The sentence in this square is false.

If “false” is replaced by “meaningless” then again there is no paradox, only a
false statement. It is true, on the other hand, that “The sentence in this square is
meaningless” in the square implies that the same sentence is meaningful, since all
true sentences are meaningful. Thus its truth implies its falsity. But the converse is
not true, and hence there is no paradox in any strong sense.

But the absence of any real “paradoxes of meaning”, and the argued possibility
of characterising the notion of meaningfulness, do not, of course, suffice to show
that meaningfulness is a decidable property. When drawn out, the implication of the
earlier discussion about characterisation is that meaningfulness is not a decidable
property, and that meaningful utterances do not form a recursive set.

Consider again the tentative claim, made earlier, that meaningful utterances can
be surveyed. A parallel was drawn with the Propositional Calculus where some
survey of theorems is possible prior to any particular axiomatisation. However,
in a survey of the Propositional Calculus one also knows, again prior to any
axiomatisation, that p ⊃∼ p is not a theorem. Is there any parallel in the case of
meaningfulness, in that there are utterances known in advance to be meaningless?
In terms of the characterisation discussed, the answer must be no. In the course of
the earlier discussion, two kinds of paradigms of meaninglessness were produced:
those with no interpretations, like the pseudo-text, and those with more than one,
like “He fell while getting to the ball”. But, as became clear in the discussion, those
utterances were deemed meaningless with respect to some particular dictionary, or
surrounding context equivalent to such a dictionary. There is no way of knowing
that those same utterances would not be meaningful with respect to some other,
unconventional, dictionary or context, and in the case of such examples as “He fell
while getting to the ball” it was trivially easy to construct the dictionary required.

And in terms of the presently proposed characterisation there can be no real survey
of meaningful utterances either, other than with respect to particular dictionaries
or contexts, since any paradigm of meaningfulness might be ambiguous, and so
meaningless, with respect to another dictionary. For example, one with an arbitrary
word-sense added to it. The normally unambiguous “I must take these letters to the
post” would be ambiguous with respect to a conventional dictionary plus the entry
“post means franking machine”. The fact that this entry does not describe a use of
“post” in contemporary English is neither here nor there.
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This feature of natural language is quite independent of the particular charac-
terisation of meaningfulness proposed here, for, given any characterisation of the
notion, we can never know of any given string of words that human ingenuity
cannot render it meaningful with the aid of sufficient assumptions of the form “X
means Y” where X is a word in the string, and Y is some other, suitably chosen,
word. Any suggested boundary to meaningfulness defined by means of any set of
rules only constitutes a challenge to that ingenuity. One thinks of Wittgenstein’s
“If someone were to draw a sharp boundary I could not acknowledge it as the one
I too had always wanted to draw, or had drawn in my mind. For I did not want to
draw one at all” [23].

If there can be no true paradigms of meaninglessness, then there can be no
proper survey of meaningful utterances, and hence no reason to expect them to
form a recursive set. The paradigms of meaninglessness discussed earlier were
therefore in something of the same position as the paradigms of ungrammaticalness
discussed in section 1. They were ungrammatical, I argued, only with respect to
some particular set of grammatical rules in each case, and so there was no survey
of such grammatical utterances independent of particular sets of rules.

However, the characterisation of the meaningfulness of utterances with respect to
particular dictionaries or texts, as having one and only one interpretation, can lead
to some formal assessment of meaningfulness. It can, I think, though this suggestion
and what follows is highly tentative, lead to some formal assessment of degree
of meaningfulness of utterances or texts. That would be a quite different matter
from any attempt to divide utterances into the meaningful and the meaningless, in
the way that a decidable logic divides putative theorems into theorems and non-
theorems. It would be quite possible, in principle, to order utterances by degree of
meaningfulness while admitting that any utterance whatever might find a place at
the far end of the scale.

Now consider a possible linguistic system for deciding meaningfulness. Let us
suppose it consists of a system of production rules starting with an initial symbol,
just as generative grammars do. Suppose, too, the rules are of a straightforwardly
decidable sort, like simple phrase structure [8] rules. This stipulation cannot, of
course, make meaningfulness decidable in any sense. It is simply a property of
the formal system used that, for any string, the system either produces it or shows
that it cannot be produced. Now suppose that there is an additional procedure, let
us call it Expand, outside this system of rules, and having the following property:
given an utterance X which the rules certainly cannot produce, Expand produces
an additional rule which, when added to the existing system of rules, allows the
augmented system to generate X. Let us suppose that Expand can be applied
recursively in such a way that we can know that, after some finite number of such
applications, the system of rules attained by that time will be able to produce X.

What can one say about such a constructible series of rule systems? The
metamathematical analogy has now been almost entirely jettisoned, for the
procedure for adding a rule so as to produce a meaningful but rejected X is not
at all related to the procedure Gödel discussed for adding a true, but undecidable,
sentence to the axioms of a logical system. In the present case what is added is not
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the recalcitrant item itself but a different one, namely a fresh rule of inference. In
any case, Gödel’s point was that to add such a sentence to the axioms is useless
because there would always be at least one more true but undecidable sentence. But
in the present case I do not think the procedure I have described need be useless.

Each particular set of rules is decidable and if each is thought of as an explication
of the characterisation of primary meaningfulness proposed here, namely having
and only one interpretation, then rejection by any particular set, in that the rules
cannot produce that utterance, gives no assurance that Expand cannot add sufficient
rules so as to yield a set of rules that does produce the utterance in question. Since
any particular set of rules expresses, among other things, the dictionary with respect
to which meaningfulness is being assessed, then it is quite in accordance with the
proposed characterisation that meaningfulness with respect to any particular set of
rules should be decidable.

However, what is to be said about the whole series of rule systems, constructible
from some initial set of such rules plus the Expand procedure? The set of utterances
that can be produced by the whole series of such systems might possibly explicate
the other, non-primary and more shadowy, sense of “meaningful” that has been
discussed in this paper. In that other sense of meaningfulness, any utterance
whatever might be meaningful, in that it could conceivably be used, or be made
sense of, with respect to some possible dictionary. It was part of the definition
of the Expand procedure that it could add sufficient rules so as to yield a system
of rules capable of producing any utterance whatever. But if there can be no real
boundary to meaningfulness, then that is precisely the sort of explication of the
concept one would expect. It is this non-primary concept of meaningfulness, it will
be remembered, that can be characterised by the ability of speakers to embed any
utterance whatever in some suitable story.

The series of constructible systems of rules could then explicate meaningfulness
usefully only as a matter of degree; in that an utterance X might be said to be
more meaningful than an utterance Y if it required less applications of the Expand
procedure to yield a system of rules capable of producing it. That feature would save
the important intuition that some utterances are undoubtedly more meaningful than
others, even though with sufficient effort and imagination any utterance whatever
might be made meaningful.

All this is very tentative indeed, yet if some procedural and linguistic flesh can
be put on these rather bare bones, it would have another philosophical implication.
It could be argued that all that has been said in the last section of this paper is
merely an elaborate restatement of the contemporary philosophical platitude that all
meaningfulness is with respect to some presupposed area of discourse, or within
some language game. Defences of particular language games, such as theology or
aesthetics, along these lines have become commonplace. However, if some concrete
expression could be given to the constructible series of rules systems sketched
here, then they might also give a hint as to how it is possible to pass, as it were,
from one language game to another. For it is surely an ultimately unsatisfactory
view that human language games, whatever they may be, are wholly separate and
unconnected structures.
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It is not hard to see how, in principle, a system of phrase structure rules could
express the characterisation of primary meaningfulness argued for here: namely,
having one and only one interpretation. Phrase structure rules are simply rules which
allow one item to be rewritten as a string of items. So in a phrase structure grammar,
of the sort discussed in section 2.1, we might expect to find a rule N → A+N, which
simply means that in the course of producing a grammatical representation of a
sentence, a noun symbol “N” can be replaced by an adjective symbol “A” followed
by a noun symbol “N”. It can be seen right away that a conventional dictionary
entry can be put in this form. For example, two different entries for “post” could
be written in phrase structure form as post → items+ that +can+be+mailed, and
post → a + stake + fixed + in + the +ground.

Rules of that sort, constituting a grammar, can produce from some starting symbol
a representation of a sentence as a structured string of part-of-speech symbols.
A string of such symbols that might well be produced would be D+A+N+V+A.
Then, with the aid of a grammar dictionary of rules like D (determiner) → the,
A → old� V → is, and so on, the sentence “the old man is dead” could be produced
from that symbol string. The inferences in common sense terms, would be that in
that sentence “old” is used as an adjective, “man” as a noun and so on. That sort
of inference is not always trivial matter, as can be seen by considering the parsing
of “The old dog the footsteps of the young”. In a sentence like that, just looking
at the odd word or two will not do. The part of speech determination can only be
done reading it off from some representation of the whole sentence.

So much, by way of analogy, for grammar. It is not a considerable step farther
to conceive of similar rules that produce, not structured grammar codes, but struc-
turings of the semantic markers that I discussed earlier. If one can attach markers
like MAN to the dictionary entries for word senses indicating human beings, and
STUFF to the dictionary entries for word senses indicating substances, then one
could interpret strings of such markers directly: MAN +BE +KIND, for example
could be interpreted “a man is of a certain sort” and would be involved in any
“semantic parsing” of a sentence like “The Pope is Italian”. So, with a clearly
ambiguous sentence like “The old salt is damp” one would expect to produce two
structurings for it, MAN+BE+KIND and STUFF+BE+KIND. Such a “semantic
parsing” would be in rather the same position as a grammatical parsing of a sentence
like “They are eating apples”, where it is usually said that two quite different strings
of grammar codes can be produced for that sentence with the same phrase structure
grammar.

This is where the characterisation of primary meaningfulness I argued for would
come in: meaningfulness with respect to a given set of such rules would be translated
naturally as “can be produced by the set of rules in one and only one way”. Thus
the sentence “the old salt is damp” would not pass that test and so would be rejected
by the set of rules. But, of course, if it were produced as part of either a sea story,
or, alternatively, as part of a grocery shop story, then the whole story might well
have a single interpretation, provided there are also rules that produce only certain
combinations of the strings of markers. Just as with the recurrence of the MAIL
marker in the example discussed earlier, there would be rules opting for either
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the MAN +BE +KIND or the STUFF +BE +KIND structure on the basis of the
markers to be found elsewhere in the grocery or sea story. To choose either of
these two structures is to impose a single interpretation on the sentence and hence
to render it meaningful with respect to the story of which it happens to form a part.

If all this seems over optimistic it is because I have simplified considerably
by assuming the attachment of only a single marker to a word, such as MAN to
the “sailor” sense of “salt”, in the way that “N” suffices to pin down the noun
part-of-speech of any word. The dictionary must in fact be more complex than
that, as it also has to be for a realistic grammar parsing, and the structurings of
markers attached to the senses of words have to be as complex as is needed to
distinguish each word-sense from every sense of every other word in the dictionary.
But that is again a matter of linguistic detail, and the principles are not affected. It
cannot be in principle difficult to select, say, the “sailor” sense of “salt” in a sea
story because any English speaker, reading the story and encountering the example
sentence, makes the required inference immediately. Unless this inference is made
by occult means it is reasonable to assume it is done on the basis of the other words
occurring in the story. If the reader also sees “ships”, then he’s pretty sure that it is
the “sailor” sense of “salt” that is in question.

It is equally easy to see how, in principle, the Expand procedure might work.
Suppose a given set of rules fails to produce a representation for some text, and
suppose, too, that it is possible to examine the attempts to produce a representation
with the rules, and to find the word that is holding up the process, as it were, in
that the markers in the dictionary entries for that word do not cohere sufficiently
with the other words of the text for a representation to be produced. Suppose now
that, having found such a recalcitrant word A, Expand can look at the dictionary
entries for all the words in the text and find b, the word-sense of word B which is
closest in meaning, in terms of some defined procedure, to the recalcitrant word in
question. Expand could then add a rule to the system which is equivalent to adding
that close sense b to the possible senses of the recalcitrant word A. With the new
rule added we have a larger rule system and the analysis can be tried again to see
if a representation can now be produced for the text. A reasonable inference, if the
new augmented system does succeed in producing a representation, is that “yes,
this text can be meaningful if A can mean B in it”.

This is not a fanciful suggestion but is, I suggest, how people may actually
cope with difficult texts, especially those, like philosophical texts, that use ordinary
words in new and apparently improbable ways that no one would expect to find
in any conventional dictionary. In a very real sense Spinoza’s Ethic becomes
comprehensible only when such a new possibility has been considered: one might
say that the key-sense extension that a reader must consider is that “substance” in
that work means “the whole Universe”. The interesting question, if one were to
analyse such difficult texts with the aid of a linguistic system [24] based on the
one sketched here, is how many applications of a procedure like Expand would
have to be made in order to resolve any particular text. The Expand procedure
must eventually allow an interpretation to be produced for any text because, after
a sufficiently great number of applications of the procedure, so many word senses



26 Wilks

in the text will have been mutually identified that some trivial resolution will be
produced.

In order to sketch out this small piece of possible experimental philosophy I have
had to make some highly questionable assumptions. There are three assumptions
that I have not mentioned in the body of the paper, and which are assumptions not
made generally by linguists at the present time. Firstly, I have assumed that it makes
sense to talk of senses of words, in that there can be an exclusive classification
of the occurrences of the tokens of any word into sense-classes. Secondly, I have
assumed that it is not just a contingent fact about our language that most words have
more than one sense. Lastly, I have assumed that there can be a generally agreed
starting place in the way of dictionaries: that it can be agreed that such-and-such a
dictionary is a conventional one for some purpose. Without some such assumption
the enterprise sketched in the last section of the paper could never begin. These are
large assumptions, but I feel justified in avoiding discussion of them here, not only
for reasons of space, but because they are assumptions also made by the makers of
an English dictionary. And it would undoubtedly have been a pity if such enterprises
as the Oxford English Dictionary had never begun because of the nature of these
particular assumptions.
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The Stanford Machine Translation Project

Yorick Wilks
Stanford University

Abstract: This paper describes a system of semantic analysis and generation, programmed in LISP
1.5 and designed to pass from paragraph-length input in English to French via an inter-
lingual representation. A wide class of English input forms is covered, with a vocabulary
initially restricted to a few hundred words. The distinguishing features of the translation
system are:

It translates phrase by phrase, with facilities for reordering phrases and establishing
essential semantic connectivities between them. These constitute the interlingual repre-
sentation to be translated. This matching is done without the explicit use of a conventional
syntax analysis.

The French output strings are generated without the explicit use of a generative
grammar. This is done by means of stereotypes: strings of French words, and functions
evaluating to French words, which are attached to English word senses in the dictionary
and built into the interlingual representation by the analysis routines

3.1 Introduction

The on-going project to be described here aims to translate from English to French,
using a reasonably wide vocabulary and paragraph-length texts, and at a later stage
to “understand” the translated material, in the sense of being able to answer questions
about it inanon-linecontext.Themethod tobeused isanon-standardsemanticanalysis
that has been applied to English texts of some length and complexity [13, 15].

It is the semantic approach that is intended to answer the question: “Why start
Machine Translation (MT) again at all?” The generally negative surveys produced
after the demise of most of the MT research of the Fifties in no way established that
a new approach was foredoomed to failure. At this time, it is easy to be unfair to the
memory of that early MT work and to exaggerate the simplicity of its assumptions
about language. But the fact remains that almost all of it was done on the basis of naive
syntactic analysis and without the use of any of the developments in semantic structu-
ring and description that have been noteworthy features of recent linguistic advances.

At this point a word of warning is appropriate about the semantic method used
here. This is intended to be a practical talk, concerned with describing what is
being done in a particular system not with arguing abstractly for the advantages of
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systems based on conceptual connections over other contemporary but better-known
approaches: this has been done elsewhere by writers such as Simmons [12],
Quillian [9], Klein [3], Schank [11], as well as myself. I am not concerned, therefore,
with arguing for a general method, nor shall I set out much in the way of the
now familiar graph structures linking the items of example sentences in order to
display their “real structure.” I am concerned more with displaying the information
structure I use, and how the system applies to certain linguistic examples to get
them into the prescribed form for translation. The display of conceptual or depen-
dency connections between items of real text will only be made in cases where
unnecessary obscurity or complexity would be introduced by displaying the same
connections between items of the interlingual representation.

This project is intended to produce a working artifact, not to settle general questions.
However, because the territory has been gone over so heavily in the past years and
because the questions still at issue seem to cause the adoption of very definite points of
view, it is necessary to make certain remarks before beginning. In particular, different
views are held at the present time on the question of whether the intermediate repre-
sentation between two languages for MT should be logical or linguistic in form.

What the words in the last sentence, “logical” and “linguistic,” actually mean is
not as clear as might appear; for example, they are almost certainly not mutually
exclusive; any “logical coding” of text will require a good deal of what is best
called linguistic analysis in order to get the text into the required logical form:
this could include coping with sense ambiguity, clause dependency, and so on. On
the other hand, few linguistically oriented people would deny the need for some
analysis of the logical relations present in the discourse to be analyzed. However,
for the purposes of the present project certain assumptions may safely be made:

1. Whatever linguists and philosophers may say to the contrary, it has never
been shown that there are linguistic forms whose meaning cannot be represented in
some logical system. Linguists often produce kinds of inferences properly made but
not catered for in conventional existing calculi: for example, the “and so” inference
in “I felt tired and went home;” but nothing follows to the effect that such an
inference could not be coped with by means of a simple and appropriate adjustment
in rules of inference.

2. Whatever logicians may believe to the contrary, it has never been shown that
human beings perform logical transformations when they translate sentences from one
language to another, nor has it ever been shown that it is necessary to do so in order to
translate mechanically. To take a trivial example, if one wants to translate the English
“is,” then for an adequate logical translation one will almost certainly want to know
whether the particular use of “is” in question is best rendered into logic by identity, set
membership, or set inclusion; yet for the purposes of translating an English sentence
containing “is” into a closely related language like French, it is highly unlikely that
one would ever want to make any such distinction for the purpose immediately at hand.

The above assumptions in no way close off discussion of the questions
outstanding: they merely allow constructive work to proceed. In particular,
discussion should be continued on: (a) exactly what the linguist is trying to say
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when he says that there are linguistic forms and common sense inferences beyond
the scope of any logic, and (b) exactly what the logician is trying to say when he
holds in a strong form the thesis that logical form is the basis of brain coding, or
is the appropriate basis for computing over natural language.

On this subject we note the present conjunction of hitherto separate work: the
extended set logic of Montague [7] that he claims copes with linguistic structure
better than does MIT linguistics, and, the work of G. Lakoff [4] which claims that
the transformationalists in general and Chomsky in particular were always seeking
for some quite conventional notion of logical form. However, these problems have
not affected the development of our system which is designed to translate from one
natural language to another and is potentially capable of question-answering and
the additional “understanding” that implies.

The coexistence of the two forms of coding, logical and linguistic, within a single
system might preclude a way of testing the logicist and linguistic hypotheses about
MT against each other. Such a test would be precluded because any translation
into logic within such a system would have much of the work done by linguistic
analysis; so there could be no real comparison of the two paths.

ENGLISH → PREDICATE CALCULUS REPRESENTATION → FRENCH

ENGLISH → LINGUISTIC CONCEPTUALIZATION → FRENCH

However, it might be possible to get translated output by each of the two paths in
a single system and so give some rein to the notion of experimental comparison;
I discuss this below.

3.2 The Structure of the Translation and Organization System

The diagram below represents the overall structure of the system under construction.
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I assume in what follows that processes 2, 4, and 5 are the relatively easy tasks —
in that they involve throwing away information — while 1 and 3 are the harder
tasks in that they involve making information explicit with the aid of dictionaries
and rules.

With all the parts to the diagram and the facilities they imply (including not only
translation of small texts via a semantic representation but also the translation of
axioms in the predicate calculus (PC) into both natural languages) it is clear that
input to the system must be rather restricted. However, there clearly are ways of
restricting input that would destroy the point of the whole activity; for example, if
we restricted ourselves to the translation of isolated sentences rather than going for
the translation of paragraph-length texts. Whatever Bar-Hillel says to the contrary
about MT being essentially concerned with utterances [1], I am assuming that the
only sort of MT of interest here will be the translation of text.

The general strategy of translation is to segment the text in some acceptable
way, produce a semantic representation as directly as possible, and generate an
output French form from it. This involves mapping what I call semantic templates
directly onto the clauses and phrases of English, and trying to map directly from
the templates into French clauses and phrases, though with their relative order
changed where necessary. I also assume that no strong syntax analysis is necessary
for this purpose and that all that is necessary can be done with a good semantic
representation — which leaves us with the question: what is in the semantic box,
and how is it different from what is in the logic box?

I am using “semantic representation” narrowly to mean whatever degree of
representation is necessary for MT — not necessarily for question-answering (that’s
what the logic box is for) or for theories of how the brain works. For this we
may well not need the refinements of “is” mentioned earlier, nor, say, existential
quantification or the analysis of presuppositions given by translation of definite
descriptions. My main assumption here about the difference between the two boxes,
logical and linguistic, is that an “adequate” logical translation makes all such matters
explicit, and that is why it is so much more difficult to translate into the top box
than the bottom one. But the difference between the two remains a pragmatic one,
intended to correspond to two “levels of understanding” in the human being.

3.3 The Processing of English Text

The aim of the text-processing sections of the overall program is to derive from
an English text an interlingual representation that has adequate expressivity as a
representation from which: (1) output in another natural language can be computed,
and (2) it can serve as an analysandum of predicate calculus statements about some
particular universe.

The first pass made of the English input text is the fragmentation and reordering
procedure, whose function is to partition and repack texts of some length and
sentential complexity into the form most suitable for matching with the template
forms mentioned above. This stage is necessary because, like all proposed coding
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schemes, logical, linguistic, or whatever, the template format is a more-or-less rigid
one and the variety of natural language must be made to fit, if the system is to
analyze anything more than simple example sentences.

The principal item of semantic structure used to analyze and express input text
is the template. Templates are semantic frames, intended to express the messages
or “gists” of the sentences and parts of sentences used in normal discourse. The
system has an inventory of these templates available to it and seeks to match them
with the fragments of the input text.

The template is of the basic form, subject-verb-object — or in semantic terms,
actor-act-object — such as MAN HAVE THING, to be interpreted as “some human
being possesses some object,” and which would be matched as the bare template
name of any sentence such as “John owns a car.” MAN, HAVE, and THING are
interlingual elements, and MAN, for example, would be expected to be the principal,
or head, element for any semantic formula representing the English word “John”
in the dictionary. Similarly, HAVE would be the head element in the appropriate
semantic formula for “owns,” and so on. A simple matching algorithm would then
be able to match the acceptable sequence of head elements from the template, MAN
HAVE THING, onto a sequence of formulas drawn from the dictionary for the
words of “John owns a car.”

The details of the matching algorithm are not a matter of concern here; what is
important to see is that an algorithm for matching a bare three-element template
onto a piece of language by inspecting just the head elements of formulas and
searching for acceptable sequences of them will, in the course of making the match,
select not only the head element of the word formula, but with it the whole formula
of which it was the head, where “whole formula” is to be understood at this point
as a coded form that expresses the whole content of the word sense in question. In
the present case “John,” being a mere name, has no sense other than that it refers to
a human being, and its whole formula would be simply (THIS MAN), which says
no more than that.

One of the hypotheses at work here is that there is a finite inventory of templates
adequate for the analysis of ordinary language — a useable list of the messages
that people want to convey with ordinary language — and that in selecting those
sequences of formulas for a fragment that are also template sequences (as regards
their head elements) we pick up the formulas corresponding to the appropriate
senses of the words of the fragment. This description is highly general; the details
of the application of this method of analysis to complicated text appear in [15].

Moreover, it is assumed that any fragment of natural language can be named by
(that is to say, matched with) at least one such bare template, and that the name
will serve as a basic core of meaning for the purpose of translating the fragment. In
other words, we translate from the complex interlingual representation of which the
bare template MAN HAVE THING is the name simply because we know how to
express as an algorithm the message “a person has a thing” in French. The template
is thus an item, or unit, of meaning to be translated.

An example might help to give the general idea of what ties are established between
text items by the matching routines described. Suppose we apply the above template
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to the sentence: “My brother owns a large car.” Let us suppose, furthermore, that
we are not concerned with the problem of selecting the correct sense formulas,
one corresponding to each word as it is used in the sentence. We shall make
the simplifying assumption that each of those six words has only one sense entry
in the dictionary, and that we are considering the relationships set up indirectly
among the words by matching an interlingual representation onto the sentence.

From the point of view of the matching routine, the initial representation of the
sentence is a string of six semantic formulas, whose details I shall discuss later.
What matters at the moment is that the formula for “brother” has the head element
MAN, just as did the one for “John,” and so on for “owns” and “car.” The formulas
for “my” and “large” have the conventional head element KIND, since they specify
what kind of thing is in question. The template-matching routine scans the formula
string from left to right and is able to match the bare template MAN HAVE THING
from the template inventory onto the formulas for “brother,” “owns,” and “car,”
respectively, since those elements, in that order, are the heads of those formulas.
Those three words are, as it were, the points in the sentence at which the template
puts its three feet down.

So far, at the word level, ties that can be written as follows have been established:

brother ↔ owns ↔ car

These are much the same sort of ties that would be established at the word level by
any system of conceptual semantic analysis applied to that sentence [11]. However,
given that all realistically coded words in the dictionary would have many sense
formulas attached to them, only certain selections of formulas would admit of being
matched by an item in the template inventory. For example, in the sentence “This
green bicycle is a winner,” the semantic formula for “winner” that has MAN as its
head and means “one who wins” is never picked up by the matching routine simple
because there is no bare template THING BE MAN in the inventory.

To return to the sentence “My brother owns a large car;” having matched on the
bare template, the system looks at the three formulas it has tied together by means
of their heads to see if it can extend the representation, top-down, by attaching other
formulas and so create a fuller representation. In this case it looks from the formula
for “brother” to the one that preceded it, the formula for “my.” This, it sees, can
indeed qualify the formula for “brother,” and so it opens a list of formulas that
can be tied onto this “brother” formula. Repeating this process, we end up with an
interlingual representation for the sentence in the following schematic form (which
I shall call a full template — though we shall see later that the tied items are not
simply formulas):

F[brother] ↔ F[owns] ↔ F[car]
↑ ↑

(F[my]) (F[large])

where both the horizontal and vertical directions represent dependency ties of the
sort I have described, and F[x] stands simply for the interlingual formula for the
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English word x. Thus, the upwards vertical dependency is that of a list of qualifying
formulas (empty in the case of “owns”) on the main formula.

The corresponding ties between the text words themselves established by this
method are:

brother ↔ owns ↔ car ↔ a
↑ ↑

my large

A point that cannot have escaped the reader is that by having a rigid actor-action-
object format for templates, one ignores the fact that many fragments of natural
language are not of this form, regardless of how the initial input text is partitioned.
This is indeed the case, but by using the notion of dummy parts of templates
one can in fact put any text construction into this very general format. Since the
analysis has no conventional syntactic base, the standard examples of syntactic
homonymity, such as the various interpretations that can be thought up for “they
are eating apples,” are represented only as differing message interpretations. So
for that sentence we would expect to match at least the bare templates MAN DO
THING and THING BE THING.

3.3.1 Fragmentation and Isolation

The fragmentation routine partitions input sentences at punctuation marks and at
the occurrence of any of an extensive list of key words. This list contains almost
all subjunctions, conjunctions, and prepositions. Thus the sentence “John is in the
house” would be returned by such a routine as two fragments (John is) and (in the
house). With the first fragment the system would match MAN BE DTHIS, where
the D of DTHIS indicates that, having failed to find any predicate after “is,” the
system has supplied a dummy THIS to produce the canonical form of template.

If there is more than one available template to choose from, the preferrence is
to the representation with the most conceptual connections (which can be thought
of simply as the number of →s in the word diagrams) and the minimum number
of dummys. For the fragment “in the house,” the matching routine finds itself
confronted with a string of formulas, starting with one for “in,” that has PDO as
its head. Prepositions are, in general, assimilated to actions and so have the P in
the PDO of their heads to distinguish them from straightforward action formulas.
In this case the matching routine inserts a dummy THIS as the left-most member
of the bare template, since it first encounters an action formula — headed by a
PDO — as it scans the formula string from left to right, and “in the house” is finally
matched with the bare template DTHIS PDO POINT. Thus the sentence “John
is in the house” is partitioned into two fragments and matched with a semantic
representation consisting of a string of two templates whose bare template names
are MAN BE DTHIS and DTHIS PDO POINT.

Another example of fragmenting and matching is presented by what might
conventionally be called noun phrases. If, after fragmenting, the system is presented
with “The old black man” as a single fragment, it can supply two such dummies
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during the match and end up with a representation named by the bare template
MAN DBE DTHIS.

The semantic connectivities described so far have been between formulas that
correspond to words occurring in the same fragment of text. But not all semantic
ties in a complex sentence will be internal to fragments — many will be between
items occurring in different, and maybe not even textually contiguous, fragments.
At a later point I shall discuss TIE routines whose function is to provide, in the
full interlingual representation, those inter-fragment dependencies necessary for
translation. However, the major simplifying role of the fragmentation must not be
lost in all this; it allows a complex sentence to be represented by a linear sequence
of templates with ties between them, rather than by a far more complex hierarchical
representation as is usual in linguistics.

The fragmentation, then, is done on the basis of the superficial punctuation
of the input text and a finite list of keywords and keyword sequences, whose
occurrence produces a text partition. Difficult but important cases of two kinds
must then be considered. First, those where a text string is NOT fragmented
even though a key word is encountered. Two intuitively obvious cases are
non-subordinating uses of “that,” as in “I like that wine,” and prepositions
functioning as “post verbs” as in “He gave up his post.” In these cases there
would be no fragmentation before the key words. In other cases text strings
are fragmented even though a key word is NOT present. Four cases are worth
mentioning:

1. “I want him to go” is fragmented as (I want) (him to go). A boundary is in-
serted after any form of the words “say” and “want,” and a further boundary is
inhibited before the following “to.” This seems intuitively acceptable, since “want”
in fact subjoins the whole of what follows it in the sentence. We shall expect
to match onto these fragments bare templates of the form MAN WANT DTHIS
and MAN MOVE DTHIS. respectively, where the first dummy THIS stands for
the whole of the next template. The fragmentation functions operate at the lowest
possible level of analysis; they inspect the semantic formulas given for a word
in the dictionary, but they cannot assume that the choice among the formulas has
been made.

A verb like “advise,” on the other hand, is not of this sort, since we can interpret
“I advise him” in a way in which we cannot interpret “I want him” in the earlier
case. So we would expect “I advise him to go” to receive no special treatment and
to be fragmented as (I advise him) (to go), on a key word basis.

2. Relative clauses beginning with “that” or “which” are located and isolated
and then inserted back into the string of fragments at a new point. For example,
“The girl that I like left” is fragmented as (The girl left) (that I like PD), where the
final period, PD, of the sentence is also moved to close off the sentence at a new
point. Thus, the partition after “like” is made in the absence of any key word.

3. “The old man in the corner left” is, naturally enough, fragmented as (The old
man) (in the corner) (left). The breach made here between the actor and act of the
sentence is replaced later by a tie (see below).
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4. The sentences “John likes eating fish,” “John likes eating,” and “John
began eating fish,” are all fragmented before “eating,” so that these forms are all
assimilated to “John likes to eat fish” (which is synonymous with the first sentence
above), rather than to “John is eating fish,” which would not be fragmented at all.
In template terms “John is eating fish” is to be thought of as MAN DO THING,
while “John likes fish” is MAN FEEL DTHIS + DTHIS DO THING, where the
first DTHIS refers to the whole of the next template, and the second DTHIS stands
in place of MAN (i.e., John).

“Of ” is a key word that receives rather special treatment, and is not used to
make a partition when it introduces a possessive noun phrase. After fragmentation,
each fragment is passed through an ISOLATE function, which looks within each
fragment and seeks for the right-hand boundaries of “of ” phrases and marks them
off by inserting a character “FO” into the text. Thus, “He has a book of mine”
would be returned from the ISOLATE function as “He has a book of mine FO.”
This is done in all cases except those like “I don’t want to speak of him,” where
“of ” effectively functions as a post verb.

It may seem obvious enough why “of ” phrases should remain within the fragment,
since “of John” functions as does “John’s,” but the demarcation of the phrase with
the “FO” character can only be explained by considering the PICKUP and EXTEND
routines.

3.3.2 Pickup and Extend

The PICKUP routines match bare templates onto the string of formulas for a text
fragment. As the routines move through the string of formulas, those contained
between an OF and a FO are ignored for the purpose of the initial match. This
ensures that “of phrases” are only treated as qualifiers. Thus, in the sentence “The
father of my friend FO is called Jack,” the match would never try to make the head
of the formula for “friend” into the root of a template matching the sentence, since
it is sealed between an “of-fo” pair. To illustrate the results of applying PICKUP,
I shall set down the bare templates that would be expected to match onto Nida &
Taber’s [8] suggested seven basic forms of the English indicative sentence. (In this
talk I describe only the indicative mood as it is implemented in the trial version of
this system. Queries and imperatives, like passives, are dealt with by the appropriate
manipulation of the template order.)

In each case I give the basic sentence, the bare template, and a diagramatic
representation of the corresponding dependencies implied between the text items,
where “↔” again links those words on which the bare template is rooted or based,
and “→” links a dependent word to its governor.
A natural question at this point is, what exactly is this inventory of bare templates
to be used in the analysis of input languages? No detailed defense is offered of
the inventory used, nor, I believe, can one be given. The fact is that one uses the
inventory that seems empirically right, revises it when necessary, and concludes
that that, alas, is how things must be in the real world of practical language analysis.
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(1) John ran quickly
MAN MOVE DTHIS

John ↔ ran ↔ �DTHIS�
↑

quickly

(2) John hit Bill John ↔ hit ↔ Bill
MAN DO MAN

(3) John gave Bill a ball
MAN GIVE THING

John ↔ gave ↔ ball
↑ ↑

�to�Bill a

(The establishment of this dependency by EXTEND is discussed below.)

(4) John is in the house.
MAN BE DTHIS DTHIS PBE THING

John ↔ is ↔ �DTHIS� �DTHIS� ↔ in ↔ house
↑

the

(5) John is sick John ↔ is ↔ sick
MAN BE KIND

(6) John is a boy
MAN BE MAN

John ↔ is ↔ boy
↑
a

(7) John is my father
MAN BE MAN

John ↔ is ↔ father
↑
my

The inventory used can be reconstructed from the table of rules set out below
in Backus-Naur Form. It is set out in terms of the action designating semantic
elements, such as FORCE, and the classes of substantive designating elements
(such as *SOFT meaning STUFF, WHOLE, PART, GRAN, and SPREAD) that
can precede such an action as a subject, and follow it as an object to create a
three-element bare template.

<bare template> : := <*PO><DO><*EN> | <*PO><CAUSE><*EN>|
<*PO><CHANGE><*EN> | <*AN><FEEL><*MA>| <*EN><HAVE><*EN>|
<*AL><PLEASE><*AN>|<*AL><PAIR><*EN>|
<*PO><SENSE><*EN>|<*PO><WANT><*EN>|<*PO><USE><*EN>|
<*PO><TELL><*MA>|<*PO><DROP><*EN>|<*PO><FORCE><*EN>|
<*EN><MOVE><DTHIS> |<*PO><GIVE><*EN>|<*AL><WRAP><*EN>|
<*AN><THINK><*AM>|<*SO><FLOW><DTHIS>|<*PO><PICK><*EN>|
<*PO><MAKE><*EN>|<*AL><BE><same member of *AL as last

occurrence>

<*AL>::=<DTHIS|THIS|MAN|FOLK|GRAIN|PART|WORLD|STUFF|
THING|BEAST|PLANT|SPREAD|LINE|ACT|STATE>
(*AL means all substantive elements)
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<*EN>::=<DTHIS|THIS|MAN|FOLK|GRAIN|PART|STUFF|THING|
BEAST|PLANT|SPREAD|LINE>
(*EN means elements that are entities)

<*AN> ::=<MAN|FOLK|BEAST|GRAIN>
<*AN means animate entities, GRAIN is used as
the main element for social organizations,
like the Red Cross)

<*PO>::=<DTHIS|THIS|MAN|FOLK|GRAIN|PART|STUFF|THING|
ACT|BEAST|PLANT|STATE>
(*PO means potent elements, those that can
designate actors. The class cannot be restricted
to *AN since rain wets the grass and the wind
opens doors)

<*SO>::=<STUFF|PART|GRAIN|SPREAD>

<*MA>::=<ACT|SIGN|STATE>
(*MA designates mark elements, those that can
designate items that themselves designate like
thoughts and writings)

I have distorted BNF very slightly to write the bare templates containing BE in a
convenient and perspicuous form. The forms containing MOVE and FLOW also
contain a DTHIS (i.e., they are “dummy templates”) indicating that there cannot
be objects in those bare templates. Thus, MOVE is used only in the coding of
intransitive actions and not to deal with such sentences as “I moved all the furniture
round the room.”

There are dummy templates not included in this list — several occur in the
description of the Nida and Taber sentences above. The remaining rules specifying
them are intuitively obvious, but may be found in detail in [15], with important
ancilliary rules which specify when dummies are to be generated in matching
sentences. Naturally, a dummy MAN BE DTHIS is generated for the first fragment
of (John is) (in the house) simply because a proper three-element bare template
cannot be fitted onto the information available. But in other cases, where a three-
element template can be fitted, dummies are generated as well, since subsequent
routines to be described may prefer the dummy to the bare template. For example,
in the analysis of the first fragment of (The old transport system) (which I loved) (in
my youth) (has been found uneconomic), a reasonably full dictionary will contain
formulas for the substantive sense of “old” and the action sense of “transport.” Thus,
the actor-action-object template FOLK CAUSE GRAIN can be fitted on here but
will be incorrect. The dummy GRAIN DBE DTHIS will also be fitted on and will
be preferred by the EXTEND procedures described below. Such slight complexity



40 Wilks

of the basic template notion is necessary if so simple a concept is to deal with the
realities of language. This matter is described in greater detail in [15].

The matching by PICKUP will still, in general, leave a number of bare templates
attached to a text fragment. It is the EXTEND routines, working out from the three
points at which the bare template attaches to the fragment, that try to create the
densest dependency network possible for the fragment, and thus reduce the number
of templates matching a fragment.

In order to show more clearly how EXTEND does this, it is necessary to say more
about the semantic formulas which make up the full template. A semantic formula
expresses the meaning of one sense of a natural language word in the dictionary.
It is made up of left and right parentheses and of semantic elements. The latter
include THING, STUFF, MAN, etc., for basic items in the world; FORCE, CAUSE,
DROP, CHANGE to describe basic kinds of actions; and so on. The formulas are
binarily bracketed pairs of whatever depth of nesting is necessary to express the
meaning of a particular word sense. The formulas are made up, and interpreted,
with a dependency of the left element, or bracket group, upon the corresponding
right-hand element or bracket group in every case.

So, (MAN KIND) would be interpreted as “of a human sort;” it is a formula for
“human” used as a qualifier. In ((MAN FEEL) CAUSE) the dependency within the
inner bracket is of an actor-act type, whereas that within the outer bracket — of
(MAN DO) on CAUSE — is of the object-of-action on act type. So the whole sub-
formula is to be interpreted as “causes a person to feel something,” and we would
therefor expect to find this sub-formula within any formula for, say, “torment.”
(There are restrictions on the ways in which the elements can combine contained in
a table of “scope notes” for the system of coding: for example, CAUSE cannot be
anything but an action, so ((MAN DROP) CAUSE) could not be the specification
of a sort of cause, but only the causing of something. The most important element
in a formula is its rightmost one, or head, with which PICKUP connects formulas
for words to templates for whole fragments.)

Formulas that can qualify any other substantive formula have the head KIND,
and those that can qualify actions have the head HOW. Most action formulas have
as head DO, BE, MOVE (“run,” for example), or GIVE. GIVE verbs are important
in that they can function in the representation of action constructions like “He left
John his watch,” where an indirect object of an action can appear without any
preceding preposition. GIVE verbs function in much the same way as TRANS
verbs in Schank’s analysis [11], and the appearance of GIVE as a formula head for,
say, the action “left” primes the system to expect such an indirect object. The verb
“tell” also has GIVE as the head of its principal formula, since it can participate in
such indirect object constructions as “John tells me a story.” The lack of necessary
connection between the English word “tell” and the interlingual element TELL is
brought out by the fact that the formula head of “tell” is not TELL but GIVE.
In the case of “say,” on the other hand, the head of its main formula is TELL, since
it cannot occur in the GIVE-type constructions.

Most substantive formulas have as their heads such elements as MAN, STUFF,
THING, ACT (for abstract substantives which are the result of action, such as
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“adjustment”), STATE (abstract substantives such as “friendship,” “happiness”),
GRAIN (abstract substantives any sort of structure such as “system”) and so on.
A formula for a substantive is assumed to be singular unless the element MUCH is
its first item at the top level.

Action formulas can specify a preferred class of actors, or of objects of the action,
or both. Preferred actors are specified by FOR and preferred objects by TO. So
then the formula for the action “talk” will contain the pair (MAN FOR), since most
things that talk are human, and if there is a possibility of setting up a dependency
with a human actor, the system will take it. The restriction cannot be absolute in
this, or most other cases, since machines and dogs talk, in fable if not in fact. The
important facility is to be able to PREFER the usual, if a representation for it is
available, but to be able to accept the unusual if necessary.

The syntax of the action formula is as follows: (X FOR) or (X TO) appears as the
first item at the top level of the action formula if appropriate — in LISP terminology
the pair is simply CONS’d onto the verb formula. If both are appropriate, as in
a formula for “interrogate,” then the (X TO), for the objects, is CONS’d first,
and appears at one level lower in the nesting of the formula than the (X FOR),
specifying the preferred actors. Thus the formula for “interrogate” would read:

((MAN FOR) ((MAN TO) (TELL FORCE))).

The preferred substantives, or classes of them, for qualifiers are indicated in an
extension of this notation, by including (X FOR) as the first item at the top level
in the formula for a qualifier.

In order to keep a small useable set of interlingual semantic elements, and to
avoid arbitrary extensions of the list of elements, many notions are coded by conven-
tional sub-formulas: (FLOW STUFF) is used to designate liquids, for example, and
(WHERE SPREAD) to code spatial area of any sort.

The role of EXTEND was discussed in general terms above: it inspects the strings
of formulas that replace a fragment, and seeks to set up dependencies of formulas
on each other. It keeps a score as it does so, and in the end selects the structuring
of formulas with the most dependencies, on the assumption that it is the right one
(or ones, if two or more structurings of formulas have the same dependency score).

The dependencies that can be set up are of two sorts: (1) those between formulas
whose heads are part of the bare template, and (2) those of formulas whose heads
are not in the bare template upon those formulas whose heads are in the bare
template.

Consider the sentence “John talked quickly,” for which the bare template would
be MAN TELL DTHIS, thus establishing, at the word level, the dependency
John↔talked↔[DTHIS]. Now suppose we expand out from each of the elements
constituting the bare template in turn. In the formula for “talked” there is the
preference for an actor formula whose head is MAN — since talking is generally
done by people. This preference is satisfied here; we can think of it as establishing a
word dependency of “John” on “talked,” which is a type (1) dependency. Expanding
again from the element TELL, we have a formula for “quickly” whose head is
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HOW, and HOW-headed formulas are proper qualifiers for actions. Hence we have
been able to set up the following diagramatic dependency at the word level:

John ↔ talked ↔ �DTHIS�
→ ↑

quickly

(where “↔→ ” indicates a bare template connectivity strengthened by a direct semantic
dependency — springing from the preference of “talked” for a human actor in this
case), and we would score two for such a representation. Furthermore, the formulas
having type (B) dependence would be tied in a list to the main formula on which
they depend. The subtypes of dependence are as follows:

(A) Among the formulas whose heads constitute the bare template
(1) preferred subjects on actions

“John talked”
(2) preferred objects of actions on actions

“interrogated a prisoner”
(B) Of formulas not constituting bare templates on those that do

(1) qualifiers of substantives on substantives
“red door”

(2) qualifiers of actions on actions
“opened quickly”

(3) articles on substantives
“a book”

(4) of — fo phrases on substantives
“the house of my father fo”

(5) qualifiers of actions on qualifiers of substantives
“very much”

(6) post verbs on actions
“give up”

(7) indirect objects on actions
“gave John a…”

(8) auxiliaries on actions
“was going”

(9) “to” on infinitive form of action
“to relax”

The searches for type (B) dependencies are all directed in the formula string in
an intuitively obvious manner: 1, 3, 4, 5, and 8 go leftwards only; 6 and 7 go
rightwards only; and 2 goes rightwards and leftwards.

The purpose of the score of dependencies established will become clear if we
consider an example of (B) (7): the indirect object construction. Let us take the
sentence “John gave Mary the book,” onto which the matching routine PICKUP
will have matched two bare templates as follows, since it has no reason to prefer
one to the other:
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John gave Mary the book
MAN GIVE MAN
MAN GIVE THING

EXTEND now seeks for dependencies, and since the formula for “gave” has no
preferred actors or objects, the top bare template cannot be extended at all, and so
scores zero. In the case of the lower bare template, then, a GIVE action can be
expanded by any substantive formula to its immediate right which is not already
part of the bare template. Again, “book” is qualified by an article, which fact is not
noticed by the top bare template. So then, by EXTENDing we have established in
the second case the following dependencies at the word level and scored two (of
the “→” dependencies).

John ↔ gave ↔ book
↑ ↑

Mary the

Thus the second representation is preferred. This is an application of the general rule
referred to earlier as “pick the most connected representation from the fragment.”

The auxiliary of an action also has its formula made dependent on that of the
appropriate action and the fact scored, but the auxiliary formulas are not listed
as dependent formulas either. They are picked up by EXTEND and examined to
determine the tense of the action. They are then forgotten and an element indicating
the tense is CONS’d onto the action formula. In its initial state the system will
recognize only four tenses of complex actions:

PRES: does hide/is hiding/did hide/are hiding/am hiding
IMPE: was hiding/were hiding
PAST: did hide/had hidden
FUTU: will hide/will be hiding/shall hide/shall be hiding

In the case of the negative of any of these tenses the word “not” is forgotten, and
an atom NPRES, NIMPE, NPAST, or NFUTU attached to the appropriate action
formula instead. At present the system does not deal with passives, though I indicate
later how they are dealt with within the template format.

Even when the representation with the densest dependency has been found, there
may still be more than one representation with that score for a given fragment.
So, in the case of “The man lost his leg” there may well be two representations
of this sentence with the same dependency score, one corresponding to each of
two different senses of “leg” — one as a part of a body, and one as an inanimate
thing that supports some other thing (as in “piano leg”). There is a further routine
in EXTEND, called into play in such cases, that attempts to establish additional
“semantic overlap” of content both between the actor and object formulas of the
template, and between each of the three main formulas of the template and its
qualifiers. If any can be found, the additional dependencies are used to choose
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among representations that have achieved the same score in the EXTEND routines
described earlier. So, in the present case, the formula for “leg of a person” would
be expected to contain the sub-formula (MAN PART), whereas the formula for
“piano leg” would not, and this connectivity with the initial formula of the template,
whose head was MAN, would suffice for one representation to be chosen in
preference to the other, again on the principle of preferring the most connected
representation.

The third and last pass of the text applies the TIE routines, which establish
dependencies between the representations of different fragments. Each text fragment
has been tied by the routines described so far to one or more full templates, each
consisting of three main formulas to each of which a list of dependent formulas
may be tied. The interlingual representation consists, for each text fragment, of one
full template together with up to four additional items of information called key,
mark, case, and phase respectively. The interlingual representation also contains
the English name of the fragment itself.

The key is simply the first word of the fragment, if it occurs on the list of key
words; or, in the cases of “that” and “which” a key use of the word.

The mark for a given key is the text word to which the key word ties the whole
fragment of which it is the key. So, in (He came home) (from the war), the mark
of the second fragment is “came” and the second fragment is tied in a relation
of dependence to that mark by the key “from.” Every key has a corresponding
mark, found by TIE, unless (a) the key is “and” or “but” or (b) the fragment intro-
duced by the key is itself a complete sentence, not dependent on anything outside
itself. The notion will become clearer from examining the example paragraph set
out below.

From the point of view of the present system of analysis, the case of a fragment,
if any, generally expresses the role of that fragment in relation to its key and mark:
it specifies the sort of dependence the fragment has upon its mark. In general, case
markers are attached to fragments on the basis of the key and the mark. It may
be that no case is finally assigned to a fragment, though it will be if a fragment
is introduced by a preposition. The cases are, in a sense, a cross classification
of prepositions, whose correct rendering into, say, French is so vital for adequate
translation

The provisional working list of cases and the English prepositions that can
introduce them is as follows:

RECEIVER: to, from, for
INSTRUMENTAL: with, by
DIRECTION: to, from, towards, outof, for
POSSESSION: with
LOCATION (space and time): at, by, near, after, in, during, before
CONTAINMENT: in
SOURCE: outof, from
GOAL: to, at
OBJECT (as in (I want) (her to leave)): no key word necessary
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The case analysis routines in TIE work by considering the above classification
of prepositions in reverse, as it were: thus, in (He struck the boy) (with a stick),
TIE locates the “with” and finds in the stereotypes for “with” that “with” can
introduce either a POSSESSIVE or INSTRUMENTAL fragment. If, for example,
an INSTRUMENTAL case is in question it will expect a preceding action whose
head is DO, CAUSE, or FORCE, and will also expect a substantive in the
fragment it introduces whose head is THING. In the case mentioned, it finds
these conditions satisfied, since the head of the appropriate formula for “stick”
is THING, and so it ties the second fragment to the mark “hit” and assigns
the INSTRUMENTAL case to the second fragment as a description of that
tie.

In any other situation, where these criteria are not satisfied, the fragment intro-
duced by “with” is tied to the immediately preceding substantive, and the case
POSSESSIVE is assigned to the tie, as in (He struck the boy) (with long hair). In
one special class of cases, the POSSESSIVE case is assigned even though a THING
substantive is found in the “object position” of the second template following a
DO, CAUSE or FORCE action in a preceding template. These are the cases where
the object is a part of the substantive previously mentioned. For, even though a
leg is a THING, we would want to assign a POSSESSIVE case to the second
template of the pair (He hit the boy) (with the wooden leg). How this TIE is
obtained algorithmically is discussed in detail in the section after the description of
STEREOTYPES.

This procedure can be thought of as an ambiguity resolution of the prepositions,
which has not been dealt with at all by the PICKUP routines, since prepositions
are inserted into the formula strings as a single formula and are never considered
ambiguous at that stage. The TIE routines also resolve other semantic ambiguity not
dealt with by the PICKUP routines. If our last example had been (He struck the boy)
(with a bar) we would have expected there to be at least two formulas for “bar” still
in play: corresponding to the heads THING and POINT — the latter corresponding
to the place sense of “bar.” Hence, there would still be two full templates matching
the latter fragment at this stage, both considered by TIE, which would prefer the
template containing the sense of “bar” coded with the head THING, since only in
that case could a dependency tie be made (to “hit” in another fragment, in this case)
on the basis of information extracted from the formulas.

Phase notation is merely a code to indicate in a very general way to the subsequent
generation routines where in the “progress of the whole sentence” one is at a given
fragment. A phase number is attached to each fragment on the following basis by
TIE, where the stage referred to applies at the BEGINNING of the fragment to
which the number attaches.

0: main subject not yet reached
1: subject reached but not main verb
2: main verb reached but not complement or object
3: complement or object reached or not expected
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3.3.3 The Interlingual Representation

What follows is a version of the interlingual representation for a paragraph, designed
to illustrate the four forms of information – key, mark, case, and phase. The schema
below gives only the bare template form of the semantic information attached to
each fragment – the semantic formulas and their pendant lists of formulas that make
up the full template structure are all omitted.

(LATER CM) → (PLUS TARD VG)
nil:nil:nil:0:No Template

(DURING THE WAR CM) → (PENDANT LA GUERRE VG)
DURING:GAVEUP:location:0:DTHIS PBE ACT

(HITLER GAVE UP THE EVENING SHOWINGS CM) →
(HITLER RENONCA AUX REPRESENTATIONS DU SOIR VG)
nil:nil:nil:0:MAN DROP ACT

(SAYING) → (DISTANT)
nil:HITLER:nil:3:DTHIS DO DTHIS

(THAT HE WANTED) → (QU’IL VOULAIT)
THAT:SAYING:object:3:MAN WANT DTHIS

(TO RENOUNCE HIS FAVORITE ENTERTAINMENT) →
(RENONCER A SA DISTRACTION FAVORITE)
TO:WANT:object:3:DTHIS DROP ACT

(OUTOF SYMPATHY) → (PAR SYMPATHIE)
OUTOF:RENOUNCE:source:3:DTHIS PDO SIGN

(FOR THE PRIVATIONS OF THE SOLDIERS PD) →
(POUR LES PRIVATIONS DES SOLDATS PT)
FOR:SYMPATHY:recipient:3:DTHIS PBE ACT

(INSTEAD RECORDS WERE PLAYED PD) →
(A LA PLACE ON PASSA DES DISQUES PT)
INSTEAD:nil:nil:0:MAN USE THING (comment:template active)

(BUT) → (MAIS)
BUT:nil:nil:0:No Template

(ALTHOUGH THE RECORD COLLECTION WAS EXCELLENT CM) →
(BIEN QUE LA COLLECTION DE DISQUES FUT EXCELLENTE VG)
ALTHOUGH:PREFERRED:nil:0:GRAIN BE KIND
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(HITLER ALWAYS PREFERRED THE SAME MUSIC PD) →
(HITLER PREFERAIT TOUJOURS LA MEME MUSIQUE PT)
nil:nil:nil:0:MAN WANT GRAIN

(NEITHER BAROQUE) → (NI LA MUSIQUE BAROQUE)
NEITHER:MUSIC:qualifier:0:DTHIS DBE KIND

(NOR CLASSICAL MUSIC CM) → (NI CLASSIQUE VG)
NOR:INTERESTED:nil:0:GRAIN DBE DTHIS

(NEITHER CHAMBER MUSIC) → (NI LA MUSIQUE DE CHAMBRE)
NEITHER:INTERESTED:nil:0:GRAIN DBE DTHIS

(NOR SYMPHONIES CM) → (NI LES SYMPHONIES VG)
NOR:INTERESTED:nil:0:GRAIN DBE DTHIS

(INTERESTED HIM PD) → (NE L’INTERESSAIENT PT)
nil:nil:nil:l:DTHIS CHANGE MAN

(BEFORELONG THE ORDER OF THE RECORDS BECAME VIRTUALLY
FIXED PD) →
(BIENTOT L’ORDRE DES DISQUES DEVINT VIRTUELLEMENT FIXE PT)
BEFORELONG:nil:nil:0:GRAIN BE KIND

(FIRST HE WANTED A FEW BRAVURA SELECTIONS) →
(D’ABORD IL VOULAIT QUELQUES SELECTIONS DE BRAVOURE)
nil:nil:nil:0:MAN WANT PART

(FROM WAGNERIAN OPERAS CM) → (D’OPERAS WAGNERIENS VG)
FROM:SELECTIONS:source:3:DTHIS PDO GRAIN

(TO BE FOLLOWED PROMPTLY) →
(QUE DEVAIENT ETRE SUIVIES RAPIDEMENT)
TO:OPERAS:nil:3:MAN DO DTHIS (comment: shift to active
template again may give a different but not incorrect
translation)

(WITH OPERETTAS PD) → (PAR DES OPERETTAS PT)
WITH:FOLLOWED:nil:3:DTHIS PBE GRAIN

(THAT REMAINED THE PATTERN PD) → (CELA DEVINT LA REGLE PT)
nil:nil:nil:0:THAT BE GRAIN (comment: no mark because "that"
ties to a whole sentence)

(HITLER MADE A POINT OF TRYING) →
(HITLER SE FAISAIT UNE REGLE D’ESSAYER)
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nil:nil:nil:0:MAN DO DTHIS (comment: some idiom
recognition essential to cope with this)

(TO GUESS THE NAMES OF THE SOPRANOS) →
(DE DEVINER LES NOMS DES SOPRANOS)
TO:TRYING:object:2:DTHIS DO SIGN

(AND WAS PLEASED) → (ET ETAIT CONTENT)
AND:HITLER:nil:3:DTHIS BE KIND

(WHEN HE GUESSED RIGHT CM) → (QUAND IL DEVINAIT JUSTE VG)
WHEN:PLEASED:location:3:MAN DO DTHIS

(AS HE FREQUENTLY DID PD) →
(COMME IL LE FAISAIT FREQUEMENT PT)
AS:GUESSED:manner:3:MAN DO DTHIS

It is assumed that those fragments that have no template attached to them, such
as (LATER), can be translated adequately word-for-word. Were it not for the
difficulty involved in reading it, we could lay out the above text so as to display
the dependencies implied by the assignment of cases and marks at the word level.
These would all be of dependencies of whole fragments on particular words. For
example, the relation of just the first two fragments appears as:

DTHIS ↔ during ↔ war ← the
↓
↓ �location�
↓

Hitler ↔ gave +up ↔ showings ← the
↑

evening

This intermediate stage is an arbitrary one in the English-French processing
that is useful to examine at the surface level. It is often supposed that an
intermediate stage like the present interlingual representation must contain “all
possible semantic information” in some explicit form if it is to be adequate.
But the quoted words are not, and cannot be, well-defined with respect to any
coding scheme. What is the case is that the interlingual representation must
contain sufficient information to admit of the formal manipulations, adequate for
producing translations in natural or formal languages. The IR need not contain
any particular explicit information about a text. The real restriction is that in
its creating no information should have been thrown away that will later turn
out to be important; one of the difficulties of English-French MT is the need
to EXTEND and make explicit in the French things that are not so in the
English.
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Consider the sentence “The house I live in is collapsing,” which contains no
subjunction “that,” though in French it must be expressed explicitly, as by “dans
laquelle.” There need not be any representation of “that” anywhere in the IR. All
that is necessary is that the subordination of the second fragment to the mark
“house” be coded, and generation procedures which know that in such cases of
subordination an appropriate subjunction must occur in the French output. It is
the need for such procedures that constitutes the sometimes awkward expansion of
English into French, but the need for them in no way dictates the explicit content
of the IR.

3.3.4 The Dictionary Format

The dictionary is essentially a list of pairs of semantic formulas (each corresponding
to one sense of an English word), and of explanations of that sense. By “explanation”
I mean not simply an English word or phrase, such as was used in earlier versions of
this system of analysis [15], but what I shall call a French stereotype. For example,
one sense of the English word “colorless” might have appeared in the dictionary as:

(((((WHERE SPREAD) (SENSE SIGN)) NOTHAVE) KIND)
(COLORLESS AS NOT HAVING THE PROPERTY OF COLOR))

The first half of the pair, the formula, expresses the fact that being colorless means
not having a spatial (WHERE SPREAD) sensory property (SENSE SIGN). The
second half of the pair is a sense explanation in English that contains the name of
the word and serves to distinguish that particular sense of “colorless” from other
senses — such as one about human character.

But the senses of the English words may equally well be explained and distin-
guished by means of their French equivalents, at least in cases where the notion of
“a French equivalent to an English word” is an appropriate one. So, for example,
the French words “rouge” and “socialiste” might be said to distinguish two senses
of the English word “red,” and we might code these two senses of “red” in the
dictionary by means of the sense pairs:

(((WHERE SPREAD) KIND) (RED (ROUGE)))
((((WORLD CHANGE) WANT) MAN) (RED (SOCIALISTE)))

The French words “rouge” and “socialiste” are enclosed in list parentheses because
they need not have been, as in this case, single French words. They could be
French word-strings of any length: for example, the qualifier sense of “hunting”
as it occurs in a “a hunting gun” is rendered in French as “de chasse;” hence, we
would expect (HUNTING (DE CHASSE)) as the right-hand member of one sense
pair for “hunting.”

This simplified notion of stereotype is adequate for the representation of most
qualifiers and substantives. Below I shall generalize to the notion of a full stereotype
adequate for the representation of prepositions and actions, in which there may be
more than one list after the English word name in the right-hand member of the
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sense pair. Moreover, they will be lists in which functions will occur as well as the
names of French words.

We should pause at this point to see what the notions of sense pair and stereotype
are doing for us in the system. Earlier I described the structure of a full template as
made up of formulas and lists of formulas. But these would more accurately have
been described as sense pairs and lists of sense pairs; the analysis routines, in fact,
build into the template not just the formulas, but the whole sense pairs, of which the
formulas are the lefthand members. Hence, the full template already contains the
French equivalents of the English words in the fragment. Moreover, the stereotypes
for actions and prepositions contain not only French equivalents but implicit rules
for assembling these equivalents to generate French output: the generation routines
never need consult an English-French dictionary. The full template may appear to
be a complex and cumbrous item of information, containing as it does not only a
conceptual semantic representation of English text, but also French output forms
and implicit generation rules; still, the avoidance of repeated consultation of a large
dictionary of forms and rules in LISP format is no small compensation.

The full stereotype, then, may contain not only French words but also predicates
and functions of interlingual items whose values are always French word strings,
or a blank item, or NIL. The notion of “interlingual item” here covers not only the
interlingual elements that make up the formulas, but also the names of the cases
abbreviated to a standard four-letter format, for example; RECE, INST, DIRE,
POSS, LOCA, CONT, SOUR, GOAL, OBJE, QUAL (see the list of cases given
earlier).

The general form of the stereotype is a list of predicates, followed by a string
of French words and functions that evaluate to French words, or to NIL (in which
case the stereotype fails). The functions may also evaluate to blank symbols for
reasons to be described.

The predicates, which occur only in preposition stereotypes, normally refer,
respectively, to the case of the fragment containing the word and to its mark. If
both these predicates are satisfied the program continues on through the stereotype
to the French output.

Let us consider the verb “advise,” rendered in its most straightforward sense by
the French word “conseiller.” It is likely to be followed by two different construc-
tions, as in the English: (1) I advise John to have patience, and (2) I advise patience.

Verb stereotypes contain no predicates, so we might expect the most usual sense
pair for “advise” to contain a formula followed by

(ADVISE (CONSEILLER A (FN1 FOLK MAN))
(CONSEILLER (FN2 ACT STATE STUFF)))

The role of the stereotypes should by now be becoming clear: in generating from,
in this case an action, the system looks down a list of stereotypes tied to the sense
of the action in the full template. If any of the functions it now encounters evaluate
to NIL, the whole stereotype containing the function fails and the next is tried. If
the functions evaluate to French words, they are generated along with the French
words that appear as their own names, like “conseiller.”
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The stereotypes do more than simply avoid the explicit use of a conventional
generative grammar; they also direct the production of the French translation by
providing complex context-sensitive rules at the required point without any search
of a large rule inventory. This method is, in principle, extendable to the production
of reasonably complex implicit rephrasings and expansions, as in the derivation of
“si intelligent soit-il” from the second fragment of (No man) (however intelligent)
(can survive death), given the appropriate stereotype for “however.”

Preposition stereotypes are, in general, more complex, than those for actions,
but before illustrating them I should mention a point that arises in connection with
stereotypes and their relation to the enumeration of the senses of the input. As
I have described the dictionary so far, many output stereotypes may be attached to
one sense of an English word, that is to a single semantic formula. In the example
sentences above, “advise” is taken as being used in the same sense in the two
sentences, even though different constructions follow the word in the two cases. So
the notion of stereotype in no way corresponds to that of word sense, Indeed, the
notion of word-sense is extremely unclear and resistant to any formal analysis.

In the case of prepositions, I take them as having only a single sense each, even
though that sense may give rise to a great number of stereotypes. Let us consider,
by way of example, “outof” (considered as a single word) in the three sentences:

(1) (It was made) (outof wood)
(2) (He killed him) (outof hatred)
(3) (I live) (outof town)

It seems to me unhelpful to say that here are three senses of “outof,” even though
its occurrence in these examples requires translation into French by “de,” “par,” and
“en dehors de,” respectively, and other contexts would require “parmi” or “dans.”
Given the convention for stereotypes described earlier for actions, let us set down
stereotypes that would enable us to deal with these cases:

(S1) ((PRCASE SOUR) (PRMARK ∗DO) DE (FN1 STUFF THING))
(S2) ((PRCASE SOUR) (PRMARK *DO) PAR (FN2 FEEL))
(S3) ((PRCASE LOCA) EN DEHORS DE (FN1 POINT SPREAD))

Here *DO indicates a wide class of action formulas: any, in fact, whose heads are
not PDO, DBE, or BE.

When the program enters the second fragment of (It was made) (outof wood)
it knows from the whole interlingual representation described earlier that the case
of that fragment is SOURCE and its mark is “made.” The mark word has DO
as its head, and so the case and mark predicates PRCASE and PRMARK in the
first stereotype are both satisfied. Thus, “de” is tentatively generated from the first
stereotype and FN1 is applied, because of its definition, to the object formula in
this template, the one for “wood.” The arguments of FN1 are STUFF and THING,
and the function finds STUFF as the head of the formula for “wood” in the full
template, is satisfied, and generates “bois” from the stereotype for “wood.”
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In the case of the second fragment of (He killed him) (outof hatred), the two
predicates of the first stereotype for “outof” would again be satisfied, but (FN1
THING STUFF) would fail with the formula for “hatred,” whose head is STATE.
The next stereotype (S2) would be tried; the same two predicates would be satisfied,
and now (FN2 FEEL) would be applied to (NOTPLEASE(FEEL STATE)), the
formula for “hatred.” But FN2 by its definition does not examine formula heads,
but rather seeks for the containment of one of its arguments within the formula.
Here it finds FEEL within the formula and so generates the French word stereotype
for “hatred.”

Similar considerations apply to the third example sentence involving the
LOCATION case, though in that case there would be no need to work through the
two SOURCE stereotypes already discussed, since, when a case is assigned to a
fragment during analysis, the only stereotypes left in the interlingual representation
are those that correspond to the assigned case.

In the case of fragments with a key, TIE routines search the stereotypes for
the key until they find one that matches the fragment and its mark except with
respect to case. So in the sentence (I live) (outof town), the analysis routines assign
LOCATION to the second fragment in the first place, because they locate in the
third stereotype for “outof ” a formula for the object of the preposition whose head
is POINT.

3.3.5 The Generation of French

Much of the heart of the French generation has been described in outline in the
last section, since it was impossible to describe the dictionary and its stereotypes
without describing the generative role of the stereotypes.

To complete this sketch we need some description of the way in which generations
from the stereotype of a key and of the mark for the same fragment interlock —
the mark being in a different fragment — as control flows backwards and forwards
between the stereotypes of different words in search of a satisfactory French output.
There is not space available here for description of the bottom level of the generation
program — the concord and number routines — which in even the simplest cases
needs access to mark information (e.g., in locating the gender of “heureux” in (John
seems) (to be happy) translated as “Jean semble etre heureux”).

Again, much of the detailed content of the generation is to be found in the
functions evaluating to French words that I have arbitrarily named FN1, …, etc.
Some of these seek detail down to gender markers. For example, one would expect
to get the correct translations “Je voyageais en France” but “…au Canada” with the
aid of functions, say, FNF and FNM that seek not only specific formula heads but
genders as well. So, among the stereotypes for the English “in” we would expect to
find (given that formulas for land areas have SPREAD as their heads): …A (FNM
SPREAD)) and …EN (FNF SPREAD)).

It is not expected that there will be more than twenty or so of these inner
stereotype functions in all, though it should be noted at this point that there is no
level of generation that does not require quite complicated semantic information
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processing. I have in mind here what one might call the bottom level of generation,
the addition and compression of articles. An MT program has to get “Je bois DU
vin” for “I drink wine,” but “J’aime LE vin” for “I like wine.” Now there is no
analog for this distinction in English and nothing about the meanings of “like” and
“drink” that accounts for the difference in the French in a way intuitively acceptable
to the English speaker. At present we are expecting to generate the difference by
means of stereotypes that seek the notion USE in the semantic codings — which
will be located in “drink” but not in “like,” and to use this to generate the “de”
where appropriate.

The overall control function of the generation expects five different types of
template names to occur:

(1) ∗THIS ∗DO ∗ANY where:
∗THIS is any substantive head (not DTHIS)
∗DO is any real action head (not BE, PDO, DBE) and
∗ANY is any of ∗DO or KIND or DTHIS

With this type of template the number, person, and gender of the verb are deduced
from the French stereotype for the subject part.
(2) type ∗THIS BE KIND is treated with type 1.
(3) DTHIS ∗DO ∗ANY These templates arise when a subject has been split from

its action by fragmentation. The mark of the fragment is then the subject. Or
the template may represent an object action phrase, such as a simple infinitive
with an implicit subject to be determined from the mark.

(4) ∗THIS DBE DTHIS Templates of this type represent the subject split off
from its action, represented by a type (2) template, above. The translation is
simply generated from the stereotype of the subject formula, since the rest is
dummies, though there may arise cases of the form DTHIS DBE KIND where
generation is only possible from a qualifier, as in the second fragment of (I
like tall CM) (blond CM) (and blue-eyed Germans).

(5) DTHIS PDO ∗REAL
Templates of this type represent preposition phrases, and the translation is
generated as described from the key stereotype, after which the translation for
the template object is added (∗REAL denotes any head in ∗THIS or is KIND).

The general strategy for the final stages of the program is to generate French word
strings directly from the template structure assigned to a fragment of English text.
The first move is to find out which of the five major types of template distinguished
above is the one attached to the fragment under examination.

For a fragment as simple as “John already owns a big red car,” the program would
notice that the fragment has no mark or key, hence, by default, the generation is to
proceed from a stereotype which is a function of the general type of the template
attaching to the fragment. The bare name of the template for this one fragment
sentence is MAN HAVE THING, and inspection of the types above will show this
to be a member of type (1). The stereotype is a function, let us say FTEMP, of that
template type and, to conform with the general format for stereotypes described
earlier, this can be thought of as being one of the stereotypes for the “null word.”
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In this case, in the generation of French, function FTEMP evaluates to a French
word string whose order is that of the stereotypes of the English words of the
fragment. This order is directed by the presence of the first type of template,
comprising an elementary sequence subject-action-object. This is done recursively
so that, along with the French words generated for those English words whose
formulas constitute the bare template (i.e., “John,” “own,” and “car”), formulas are
generated that are merely dependent on the main formulas of the template — in
this case the formulas for “already,” “big,” and “red.”

If complex stereotypes are located while generating for any of the words of
the fragment, then generation from these newly found stereotypes immediately
takes precedence over further generation from the last stereotype at the level above
(“complex” simply means full stereotypes which have constituents that are functions
as well as French words).

Now suppose we consider the two-fragment sentence “I order John to leave.”
The fragments will be presented to the generation program in the form described
earlier: with key, mark, case, and phase information attached to each fragment:

(I order John) nil:nil:nil:0
(to leave) to:order:OBJE:2

Also attached to the fragments will be full templates whose bare template names
in this case will be MAN TELL MAN and DTHIS MOVE DTHIS, respectively.

The generation program enters the first fragment, which has no mark or key; so it
starts to generate, as before, from a stereotype for the null word, which again is one
for the first template type. This gets the subject right: “je” from the stereotype for
“I,” later to be modified to “j” by the concord routine. It then enters the stereotypes
for the action, the first being

(ORDONNER A (FN1 MAN FOLK)).

The head of the formula for “John” is MAN. FN1 here is an arbitrary name for a
function that looks into the formula for the object place of a template and, if the head
of that formula is any of the function’s arguments, it returns the stereotype value of
that formula. In this case FN1 is satisfied by “John,” thus that stereotype for “order”
is satisfied. The program generates from it the sequence “ordonner à Jean,” giving the
correct sequence “Je$ ordonner$ à Jean” (where $ indicates the need for further minor
processing by the concord routine). The stereotype has now been exhausted — nothing
in it remains unevaluated or ungenerated; similarly, the fragment is exhausted, since
no words remain whose stereotypes have not been generated, either directly or via the
stereotype for some other word, and so the program passes on to the second fragment.

The program enters the second fragment and finds that it has a mark, namely
“order.” It then consults the stereotype in hand for “order” in the first fragment
to see if it was exhausted. It was, and so the program turns to the stereotypes for
“to,” the key of the second fragment. Among those whose first predicate has the
argument OBJE will be the stereotype.

((PRCASE OBJE) (PRMARK FORCE TELL) DE (FNINF *DO))
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The head of the current formula for “order,” the mark of the second fragment is
FORCE, and PRMARK seeks and compares its arguments with the head of the mark
formula. The predicates are seen to be satisfied and the program generates “de”
after seeing that FNINF is satisfied, since an action formula for “leave” follows,
whose head, MOVE, is in the class *DO.

FNINF on evaluation finds the implicit subject of the infinitive. That is unnec-
essary here, but would be essential in examples only slightly more complex, such
as “Marie regrette de s’etre rejouié trop tôt.” Finally, FNINF itself evaluates to the
French stereotype selected for “leave.” This might give rise to more searching if
the use of “leave” dictated its own sequents, as in “I order John to leave by the first
train.” Here, however, the evaluation terminates immediately to “partir,” since the
sentence stops. Thus the correct French string “Je$ ordonne$ à Jean de partir” has
been generated.

The last example was little more than a more detailed redescription of the
processes described in the dictionary Section, (3.3.4), in connection with the
example “I advise John to have patience.” However, now that we have dealt fully
with a fairly standard case and shown the recursive use of stereotypes in the
generation of French on a fragment-by-fragment basis, we can discuss a final pair
of examples in which a more powerful stereotype can dictate and take over the
generation of other fragments.

If we were to consider in detail the generation of French for the two-fragment
sentence (I throw the ball) (outof the window), we should find the process almost
identical to that used in the last example. In this case, too, the main stereotype
used to generate the French for the first fragment is that of the action — “throw”
in this case — and the stereotype for “throw” is exhausted by the first fragment,
so that nothing in that stereotype causes the program to inspect the second
fragment.

Now consider, in the same format, (I drink wine) (outof a glass). Following the
same procedures as before, we shall find ourselves processing the stereotype for
“drink,” which reads (BOIRE (FN1 (FLOW STUFF)) (FNX1 SOUR PDO THING)
↑ DANS (FNX2 THING)), where “↑” indicates a halt-point. The program begins
to generate tentatively, evaluating the functions left to right and being prepared to
cancel the whole stereotype if any one of them fails. FN1 is applied to the formula
for “wine” and specifies the inclusion in its formula, not of one of two elements,
but of the whole conventional sub-formula for liquids (FLOW STUFF). This, it
finds, is satisfied, and so evaluates to “vin,” to be modified by concord to “du vin.”

The program now encounters FNX1, a function which by definition applies to
the full template for some following fragment. At this point the program evaluates
FNX1 which returns a blank symbol if and only if it finds a following fragment
with a SOURCE case and a template, the last two elements. of whose bare name
are PDO THING, i.e., it is a preposition-type fragment with a physical object as
object. This situation would not obtain if the sentence were “I drink the wine outof
politeness.” If FNX1 is satisfied, as in this case, it causes the generation from this
stereotype to halt after generating a blank symbol. Halting in an evaluation is to
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be taken as quite different from both exhausting (all functions evaluated to French
word strings or a blank) and failing (at least one function evaluates to NIL).

The main control program now passes to the next fragment, in this case “outof
a glass.” It asks first if it has a mark, which it has, namely “drink,” and looks at
the stereotype in hand for the mark to see if it is exhausted, which it is not, merely
halted. The program therefore continues to generate from the same stereotype, for
“drink,” producing “du vin,” then “dans,” followed by the value of FNX2, namely
“verre,” thus giving the correct tanslation “Je bois du vin dans un verre.”

The important point here is that the stereotypes for the key to the second fragment,
“outof,” are never consulted at all. The translations for all the words of the second
fragment will have been entered via a stereotype for the previous fragment, the one
for “drink.” The advantage of this method will be clear: because it would be very
difficult, conceptually and within the framework described, to obtain the translation
of “outof” as “dans” in this context from the stereotype for “outof,” since that
translation is specific to the occurrence of certain French words, such as “boire,”
rather than to the application of certain concepts. In this way the stereotypes can
cope with linguistic idiosyncrasy as well as with conceptual regularity. It should
be noted, too, that since “dans” is not generated until after the halted stereotype
restarts, there is no requirement that the two example fragments be contiguous. The
method I have described could cope just as well with (I drink the wine) (I like
most) (outof a silver goblet).

For clarification about what words are generated through the stereotypes for what
other words, a diagram follows in which lines connect the English word through
whose stereotype a generation is done to the word, for which output is generated.
All generations conventionally start from �, the null word mentioned above; it is,
by convention, the word for which the five basic stereotypes are the stereotype. The
more straightforward case (I threw the ball) (outof the window) would be generated
as follows:

Articles are omitted for simplicity. In this case the new fragment starting with
“outof” returns to � to begin generating again. In the more complex case (I drink
wine) (outof a glass), the generation pattern would be as follows:

The general rule with action stereotypes, then, is that the more irregular the
action, the more information goes into its stereotype and the less is needed in the
stereotypes for its sequents. So, for example, there is no need for a stereotype for
“outof” to contain DANS at all. Again, just as the regular case “I order John to
leave” produced the translation “J’ordonne à Jean de partir” by using the stereotype
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for the key “to,” the less regular case “I urge John to leave,” which requries the
quite different construction “J’exhorte Jean à partir,” would be dealt with by a
halting stereotype for “urge” whose form would be

(EXHORTER(FN1 MAN FOLK) (FNX1 OBJE *DO) ↑ A(FNXINF ∗DO))

In this case, the stereotype for “to” would never be consulted at all.
Finally, it should be admitted that in the actual analysis and generation system,

two items described, “case” and “mark,” shrink in importance, though by no means
disappear. Their role has been overstressed in this paper, in order to make a
clear distinction between the analysis and generation routines and so present a
clear interlingual representation whose format is independent of the algorithmic
techniques employed. What I sought to avoid was any reference to a “seamless
computational whole” all of whose levels seem to presuppose all of the other levels,
and which even if it works, cannot be inspected or discussed in any way.

The assignment of the case and mark information demands access to the French
stereotypes. It would clearly be absurd to consult the stereotypes to assign this
information and then, later, consult them again in order to make use of it in
the generation of French. In fact, the analysis and generation of French. In fact,
the analysis and generation routines fuse at this point, and the case and mark are
located during the generation of the French output. The change in the format that
this requires is that the mark predicate PRMARK is not now simply a predicate
that checks whether the already assigned mark for the fragment in hand meets
the specification: it is a predicate that at the same time actively seeks for a mark
meeting that specification. And, as with the stereotype functions already described,
the failure to find such a mark fails the whole stereotype containing it. There will
now be a number of mark predicates fulfilling different roles. The case predicate,
conversely, is not diversified but vestigial, because there is now no previously
assigned case to a fragment for the predicate to check, and the case is now just a
label in the dictionary of stereotypes to aid the reader.

A last, quick look at a previous example should make all this clear. Consider
again (He hit the boy) (with the wooden leg) as contrasted with the alternative
second fragments (with a stick) and (with long hair). Let us consider the analysis
routines terminating with the provision of full templates for fragments (and phase
information), and let us consider everything that follows that a French generation.

Let us now consider the generation program entering the second fragment, armed
with the following list of stereotypes for “with:”
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((PRMKOB ∗ENT) (POSS) A (FN ∗ENT))
((PRMARK ∗DO) (INST) AVEC (FN THING))
(PRMARK ∗ENT) (POSS) A (FN ∗REAL))

PRMKOB is a directed predicate that seeks for a mark in a preceding fragment
(within a range of two fragments). It looks only at candidates whose heads are
in the class *ENT, that is, THING, MAN, FOLK, BEAST, or WORLD; entities
that can in some sense have parts. In the same sense the heads ACT, STATE,
POINT, etc., are not attached to word senses that we can speak of as having parts.
PRMKOB compares the formulas for potential marks in the third, object, template
position of preceding fragments with the formula for the object in the template for
the fragment in hand. And it is true if and only if the latter formula indicates that
it ties to a word sense that can be a part of the entity tied to the “candidate mark”
formula.

So, in the case of (He hit the boy) (with the wooden leg) PRMKOB finds itself
comparing the formulas for “boy” (head MAN) and “leg” (which contains the
sub-formula (MAN PART). In this case PRMKOB is satisfied and the generation
continues through the first stereotype, correctly generating “à” for “with” and then
the output for “wooden leg.” The ∗REAL in the function in the first stereotype
merely indicates that any object in that fragment should then have its stereotype
generated (any substantive head is in the class ∗REAL), because its appropriateness
has already been established by the satisfaction of PRMKOB.

Following exactly the procedures described in other examples, it will be seen
that (with a stick) fails the first but is translated by the second stereotype, while
(with long hair) fails the first two but is correctly generated by the third.
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An Intelligent Analyzer and Understander of English

Yorick Wilks
Stanford University

Abstract: The paper describes a working analysis and generation program for natural language,
which handles paragraph length input. Its core is a system of preferential choice between
deep semantic patterns, based on what we call “semantic density.” The system is
contrasted: (1) with syntax oriented linguistic approaches, and (2) with theorem proving
approaches to the understanding problem

4.1 Introduction

After the unhappy conclusions of most early attempts at machine translation, some
justification is required for presenting it again as a reasonable computational task.
Minsky [4], among others, argued that there could be no machine translation without
a system that, in an adequate sense, understood what it was trying to translate.
The meaning structures and inference forms that constitute the present system are
intended as an understanding system in the required sense, and as such, justify a
new attack on an old but important problem.

Machine translation is an important practical task; furthermore, it has a certain
theoretical significance for a model of language understanding. For it provides
a clear test of the rightness or wrongness of a proposed system for representing
meaning, since the output in a second language can be assessed by people unfamiliar
with the internal formalism and methods employed. Few other settings for a
theory of language analysis leave room for such objective tests. Dialog systems
are notoriously difficult to assess; and command systems are restricted to worlds
in which commands are relevant, e.g. those of physical objects and the direc-
tions for picking them up, which domain excludes the world of real nonimper-
ative discourse about such subjects as friendship, the United Nations, and the
problems of juvenile delinquency. On the other hand, conventional systems of
linguistics produce only complex representations that can be disputed only on
internal grounds. They are never used to produce objective, discussable output,
like a sentence in another language that would test the adequacy of the whole
representation.
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It should be added here that although the present system is cast in the role of a
machine translation system, the popular forms of example to test “understanding”—
i.e. finding the correct reference of a pronoun on the basis of knowledge of and
inferences about the real world—can all be reconstructed within it, as will be shown.

Since the early machine translation work there has been a considerable devel-
opment in formal linguistics, in particular, the creation of the school of transfor-
mational grammatical analysis. This form of analysis of natural language has little
relation to the work described here, and for three reasons.

Firstly, Transformational Grammar was set up to be quite independent of all
considerations of meaning, context, and inference, which constitutes something of a
disqualification for the present task, namely understanding language. Consider such
an even apparently structural-grammatical matter as the ambiguity of prepositions;
“out of,” for example, is highly ambiguous, which can be seen from any reflection
on such sentences as: I live out of town. I hit her out of anger. I threw the ball
out of the window. The statue is made out of marble. An objective measure of
the ambiguity is that the occurrences of “out of ” in those sentences would be
translated into French in three different ways. Yet, even in such a basic structural
area, Transformational Grammar makes no suggestions whatever as to how the
choice should be made. Whereas in the Preference Semantics system, described
below, the choice is made in a simple and natural manner. Such defects as this
have been to some extent remedied in a recent development of the Transformational
Grammar system, Generative Semantics. However, for our purposes Generative
Semantics, like Transformational Grammar, suffers from the other two defects
below.

Secondly, it is a matter of practical experience, that Transformational Grammar
systems have been extremely resistant to computational application. This practical
difficulty is in part due to theoretical difficulties concerning the definition and
computability of Transformational Grammar systems.

Thirdly, Transformational Grammar and Generative Semantics systems suffer
one overwhelming defect, from the point of view of understanding natural language.
Both have a “derivational paradigm,” which is to say, both envisage a system which
constructs a derivation by running from an initial symbol to a language sentence.
Such derivations have the function of either accepting a sentence or rejecting it
because no such derivation can “reach” the sentence from the starting symbol. Thus
all sentences are sorted into two groups by such systems—the acceptable and the
unacceptable—and by doing this they claim to define the notion of an “acceptable,”
“meaningful,” or “grammatical” sentence.

One can see how far such a task is from the one of understanding language,
for sorting in this way is exactly what human beings do not do when they hear
a sentence. They endeavor to interpret it, changing their rules if necessary as
they do so. Yet, within the Transformational Grammar and Generative Semantics
derivational paradigm, it makes no sense to talk of changing the rules and trying
another set, even though that is just what any “intelligent” understanding system
must do. For example, most conventional grammatical systems are armed with
some rule equivalent to “only animate things perform tasks of acertain class,” which
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compels them to reject such perfectly comprehensible utterances as those which
speak of the wind opening doors and cars drinking gas. (It is unimportant here
whether any particular system employs such a particular rule. The point here is
a general one about behavior in the face of rule failure.) Only an “intelligent”
system, outside the derivational paradigm and able to reconsider its own steps, can
overcome this defect. The limitations of Transformational Grammar and Generative
Semantics systems, from the point of view of this project, have been discussed in
detail in [12 and 13].

The proper comparisons for the present work are with systems of analysis
orginating from within either artificial intelligence or computational linguistics,
none of which (except the work of Woods [17]) owes any strong debt to the Trans-
formational Grammar tradition all of which, in differing degrees, make the concept
of meaning representation central, such as the work of Simmons [11], Winograd
[16], Schank [8], and Sandewall [7].

Some points of difference between these systems and Preference Semantics may
be mentioned briefly.

(i) Preference Semantics is very much oriented toward processing realistic
text sentences of some complexity and of up to 20 to 30 words long.
This difference of emphasis, and the sentence fragmentation and large-scale
conceptual linkages its implementation requires, distinguishes Preference
Semantics from all the approaches mentioned.

(ii) Preference Semantics copes with the words of a normal vocabulary, and with
many senses of them, rather than with single senses of simple object words
and actions. It is not wholly clear that the methods of [16] could, even in
principle, be extended in that way.

(iii) Preference Semantics contains no conventional grammar for analysis or
generation: its task is performed by a strong semantics. This contrasts with
Winograd’s use of a linguistic grammar and simple marker system, and to
some extent with Simmons’ use of case grammar.

(iv) Preference Semantics does not take theorem proving techniques, of whichever
major type, to be the core manipulations for an understanding system, but
rather sees them as techniques to be brought in where appropriate. In this
respect it differs most strongly from Sandewall, whose work assumes some
form of theorem prover of a resolution type, into which his predicate calculus
representations of natural language sentences can be plugged. Preference
Semantics also differs here from Winograd, whose planner-based system
is far more oriented to the proving of truths than the Preference Semantics
system described below. Another major difference between Preference
Semantics and these two other systems is that Preference Semantics inference
rules operate on higher level items, structures of semantic concepts and cases
representing whole sentences and paragraphs of text, rather than on items at
the level of text words and facts (or predicates and features that replace such
items one to one in grammatically parsed structures). The latter approach
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leads to an enormous multiplication of axioms/inference rules, with all the
subsequent difficulty of searching among them.

Nothing here, of course, denies the need for knowledge of the physical world, and
inferences based upon it, for understanding and translation. What is being argued
for here is nondeductive, common sense inference expressed in a formalism that is
a natural extension of the meaning representation itself.

A simple case will establish the need for such inference: consider the sentence
“The soldiers fired at the women, and we saw several of them fall.” That sentence
will be taken to mean that the women fell, so that when, in analyzing the
sentence, the question arises of whether “them” refers to “soldiers” or “women”
(a choice which will result in a differently gendered pronoun in French), we will
have to be able to infer that things fired at often fall, or at least are much more
likely to fall than things doing the firing. Hence there must be access to inferential
information here, above and beyond the meanings of the constituent words, from
which we could infer that hurt beings tend to fall down.

The deductive approaches mentioned claim to tackle just such examples, of
course, but in this paper we will argue for a different approach to them, which
we shall call common sense inference rules. These are expressions of “partial
information” (in McCarthy’s phrase): generalizations, like the one above about hurt
things tending to fall down, which (a) are not invariably true and (b) tend to be of
a very high degree of generality indeed. It is part of the case being made here that
the importance of such apparently obvious truths in natural language understanding
is considerable, but also easy to overlook.

4.2 A System of Semantics Based Language Analysis

A fragmented text is to be represented by an interlingual structure, called a
Semantic Block, which consists of templates bound together by paraplates and
common sense inferences. These three items consist of formulas (and predicates
and functions ranging over them and subformulas), which in turn consist of
elements.

Some of these semantic items represent text items in a fairly straightforward way
as follows:

Items in semantic Corresponding
representation text items
formula English word sense
template English clause or simple sentence
semantic block English paragraph or text

Paraplates and common sense inferences, as we shall see, serve to bind templates
together in the semantic block. Semantic elements correspond to nothing in a text,
but are the primitives out of which all the above complex items are made up.
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4.3 Semantic Elements

Elements are 70 primitive semantic units used to express the semantic entities,
states, qualities, and actions about which humans speak and write. The elements
fall into five classes, which can be illustrated as follows (elements in uppercase,
and the approximate concept expressed in lowercase):

(a) Entities: man (human being), stuff (substances), sign (verbal and written
symbols), thing (physical object), part (parts of things), folk (human
groups), act (acts), state (states of existence), beast (animals), etc.

(b) Actions: force (compels), cause (causes to happen), flow (moving as liquids
do), pick (choosing), be (exists), etc.

(c) Type indicators: kind (being a quality), how (being a type of action), etc.
(d) Sorts: cont (being a container), good (being morally acceptable), thru (being

an aperture), etc.
(e) Cases: to (direction), sour (source), goal (goal or end), loca (location), subj

(actor or agent), obje (patient of action), in (containment), poss (possessed
by), etc.

In addition to these primitive elements, there are class elements whose names begin
with an asterisk, such as ∗ani for the class of animate elements man, beast, and
folk; ∗hum for human elements man and folk; ∗physob, which denotes the class
of elements containing man, thing, etc., but not, of course, stuff. There are also
action class elements such as ∗do.

The elements are not to be thought of as denotative, even of intensional entities,
but as the elements of a micro-language in which more complex concepts are
expressed. Thus their justification is wholly in terms of their use to construct
semantic formulas.

4.4 Semantic Formulas

Formulas are constructed from elements and right and left brackets. They express
the senses of English words; one formula to each sense. The formulas are binarily
bracketed lists of whatever depth is necessary to express the word sense. Their
most important element is always their rightmost, which is called the head of the
formula, and it expresses the most general category under which the word sense
in question falls. However, an element that is used as a head can function within
formulas as well. So, for example, cause is the head of the formula for the action
sense of “drink” and it may be thought of as a “causing action,” but cause can
also occur within the formula for a word sense, as it does, for example, within
the formula for the action sense of “box,” which can be paraphrased in English as
“striking a human with the goal of causing him pain.”
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It will help in understanding the formulas to realize that there are conventional
two-element subformulas, such as (flow stuff) for liquidity, to avoid the intro-
duction of new primitives. Another such is (thru part) to indicate an aperture.
Formulas can be thought of, and written out, as binary trees of semantic primitives.
In that form they are not unlike the lexical decomposition trees of Lakoff and
McCawley. Here is a selection of formulas that will be needed in later examples.
In each case I give the formulas as a tree of subformulas, with the head as the
rightmost element, then as a table of subformulas, and lastly as a paraphrase in
English. The formulas are for the English words “drink” (as an action), “grasp”
(as a physical action), “fire at.” I also give, in a less extended range of forms, the
formulas for “policeman,” “big,” “interrogates,” “crook” as a human being and as
a physical object, and “singing” as an activity.

Nothing at all depends on these particular codings. What is at issue here is the
claim that codings of this degree of complexity, and containing at least this much
semantic information, are necessary for doing any interesting degree of linguistic
analysis.

“drink” �action� → ��∗ANI SUBJ� ���FLOW STUFF� OBJE�
��SELF IN� ���∗ANI �THRU PART�� TO� �BE CAUSE�����

Formulas are best seen as nestings of subformulas, each of which is either a case
specification or a direct specification on the head itself. Within any subformula
there is a dependence at every level of the left half of a binary pair of the right
half. This dependence relation is normally to be understood as type subspecifi-
cation, in the way that ∗ani specifies the type of agent in the example above.
The mutual relation of the subformulas is not one of dependence, even though
all the other subformulas be thought of as dependent on the rightmost subformula
containing the head. However, the order of the subformulas is significant, since,
for example, an object specification is considered to be the object of all actions
to its right in the formula, whether they are the head or at some other level in the
formula.

Let us now decompose the formula for “drink.” It is to be read as an action,
preferably done by animate things (∗ani sub) ; to liquids, or to substances that flow
((flow stuff)obje) ; causing the liquid to be in the animate thing (self in); and
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Subformula Case/Act Value Explanation
(*ANI SUBJ) SUBJ *ANI the preferred agent is animate

preferred object is liquid
the container is the self, the subject
the direction of the action is a
human
aperture(the mouth)
the action is of causing to be
(somewhere else)

OBJE (FLOW STUFF)
SELFIN

TO

((FLOW STUFF)OBJE)
(SELF IN)
(((* ANI(THRU PART))TO) (* ANI(THRU PART))

(BECAUSE) CAUSE BE

via (to indicating the direction case) a particular aperture of the animate thing, the
mouth, of course. It is hard to indicate a notion as specific as “mouth” with such
general concepts. But we think that it would be simply irresponsible to suggest
adding mouth as a semantic primitive, as do semantic systems that simply add an
awkward lexeme as a new “primitive.”

This notion of “preferring” is important: subj case displays the preferred agents
of actions, and obje case the preferred objects, or patients. We cannot enter such
preferences as stipulations, as many linguistic systems do, such as Fodor and
Katz’s “selection restrictions.” For we can be said to drink gall and wormwood,
and cars are said to drink gasoline. It is proper to prefer the normal (quite
different from probabilistically expecting it, we shall argue), but it would be
absurd, in an intelligent understanding system, not to accept the abnormal if it is
described. Not only everyday metaphor but the description of the simplest fiction
require it.

A formula expresses the meaning of the word senses to which it is attached.
This claim assumes a common sense distinction between explaining the meaning
of a word and knowing facts about the thing the word indicates. The formulas are
intended only to express the former, to express what we might find in a reasonable
dictionary, though in a formal manner.

Now let us consider:

“grasp”�physical action� → ��∗ANI SUBJ���∗PHYSOB OBJE�
(((THIS(MAN PART))INST) (TOUCH SENSE)))))

So, grasping in this sense is something preferably done by an animate thing to a
physical object, done with the hand as instrument: an action of physical contact
with the object. The mental sense of “grasp” is a think action.

Now consider:

“fire at” (action) → ��∗HUM SUBJ���∗ANI OBJE�
((STRIK GOAL) ((THING MOVE)CAUSE))))

The fact that the bullet is the agent of the moving is implicit, and agents are
unmarked except at the top level of the formula, although objects are marked at
every level. So then, “firing at” is causing a thing to move so as to strike an animate
target.



68 Wilks

(*ANI SUBJ) (*PHYSOB OBJE) ( INST)

(THIS      )

(MAN PART)

(TOUCH SENSE)

Subformula

(*PHYSOB OBJE)

((THIS(MAN PART))INST) ((THIS(MAN PART))

(TOUCH SENSE)

Cast/Act Value Explanation
(*ANI SUBJ) SUBJ *ANI

OBJE

INST

SENSE TOUCH

*PHYSOB
the preferred agent is animate
the preferred agent is a physical
object
the instrument is a human part,
the hand
the action is of physical contact

(*HUM SUBJ) (*ANI OBJE) (STRIK GOAL) (          CAUSE)

(THING MOVE)

Subformula

(STRIK GOAL)

(THING MOVE)((THING MOVE)CAUSE)

Cast/Act Value Explanation

(*ANI OBJE )
(*HUM SUBJ) SUBJ *HUM

*ANI
STRIK

OBJE
GOAL

CAUSE

preferably done by a human
preferably done to an animate thing
the aim being to strike the animate
thing
the action is of causing an object
(the bullet) to move

Let me now give the remaining formulas, with only an explanation, if the
principles of the tree and table representation are now clear.

“policeman” → ��FOLK SOUR�����NOTGOOD
MAN)OBJE)PICK ) (SUBJ MAN)))

i.e. a person who selects bad persons out of the body of people (folk). The case
marker subj is the dependent in the last element pair, indicating that the normal
“top first” order for subject-entities in formulas has been violated, and necessarily
so if the head is also to be the last element in linear order.

“big” → ��∗PHYSOB POSS� �MUCH KIND��

i.e. a property preferably possessed by physical objects (substances are not big).

“interrogates” → ((MAN SUBJ) ((MAN OBJE) (TELL FORCE)))
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i.e. forcing to tell something, done preferably by humans, to humans.

“crook” → ����NOTGOOD ACT�OBJE�DO� �SUBJ MAN��

i.e. a man who does bad acts.

“crook” → ������THIS BEAST�OBJE�FORCE��SUBJ
MAN��POSS��LINE THING��

i.e. a straight object possessed by a man who controls a particular kind of animal.

“singing” → ��∗ANI SUBJ���SIGN OBJE���MAN
SENSE�CAUSE�����

which is to say, an act by an animate agent of causing a person to experience a
sign, the song.

4.5 Semantic Templates

Just as the semantic elements have been explained by seeing how they functioned
within formulas, so formulas, one level higher, are to be explained by describing
how they function within templates, the third kind of semantic item in the
system. The notion of a template is intended to correspond to an intuitive
one of message: one not reducible merely to unstructured associations of
word-senses.

A template consists of a network of whole formulas, and its connectivity is
between an agent-, action-, and object-formula, such that from any one of these
members of the basic triple a list of other formulas may depend. In any particular
example, one or more of the formulas may be replaced by a dummy. We shall
discuss such cases further.

The program sees each clause, phrase, or primitive sentence of text (called its
fragments) as strings of formulas, drawn, one for each text word, from a dictionary.
The program attempts to locate one or more templates in each string of formulas
by first looking only at their head elements and seeking for acceptable sequences
of heads.

A bare template is such an acceptable, or intuitively interpretable, sequence of
an agent head, an action head, and an object head (subject again to the proviso
about dummies). If there is a sequence of formulas whose heads are identical to
such a bare template of elements, then the sequence of formulas is a template for
that fragment, taken together with any other formulas that may be found to depend
on those three main formulas.
(cause is the head of the verbal sense of “father”; “to father” is analyzed as “to
cause to have life.”)

The first sequence has no underlying bare template because there is no intuitively
interpretable element triple there, in the sense in which man cause man in the
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small men sometimes father big sons
kind man how man kind man

and kind man how cause kind man

second sequence is intuitively interpretable as “a human causes another human to
exist.” Thus we have already disambigulated “father,” at the same time as picking
up a sequence of three formulas, which is the core of the template for the sentence.
It must be emphasized here that the template is the sequence of formulas (which
are trees or structured lists) and is not to be confused with the bare template, or
triple of elements (heads) used to locate it.

It is a hypothesis of this work that we can build up a finite but useful inventory
of bare templates adequate for the analysis of ordinary language: a list that can be
interpreted as the messages that people want to convey at some fairly high level of
generality (for template matching is not in any sense phrase-matching at the surface
level). The bare templates are an attempt to explicate a notion of a nonatomistic
linguistic pattern: to be located whole in sentences in the way that human beings
appear to when they read or listen.

We would not wish to defend, item by item, the particular template list in use
at any given moment. Such lists are always subject to modification by experience,
as are the formulas and even the inventory of basic elements. The only defense is
that the system using them actually works; and if anyone replies that its working
depends on mere inductive generalization, we can only remind them of Garvin’s
obvious but invaluable remark that all linguistic generalizations are, and must be,
inductive.

Let us now illustrate the central processes of expansion and preference, in
which the formulas become active items guiding the extension of the template
network from a triple of formulas to a full template with preference bonds and
dependent formulas. Let us consider the sentence “The big policeman interro-
gated the crook,” for which we already have the appropriate formulas set out
above.

The template matching algorithm will see this sentence as a string of formulas,
one for each of its words, and will look only at the heads of the formulas. I shall now
write [crook(man)] to denote not the English words in the square brackets but the
formula for the word or words. Then, since man force man is in the inventory of
bare templates, one scan of the string of formulas containing [crook(man)] will pick
up the sequence of formulas [policeman][interrogated][crook(man)], in that order.
Again, when a string containing the formula [crook(thing)], the shepherd’s sense
of “crook,” is scanned, since man force thing is also a proper bare template, the
sequence of formulas [policeman][interrogated][crook(thing)] will also be selected
as a possible initial structure for the sentence. I should add here that the formula
for both tenses of “interrogates” is the same, the tense difference being indicated
by a tense element put into the formula during the process of expansion now being
described.
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We now have two possible template representations for the sentence after the
initial match; both are triples of formulas in actor-action-object form. Next, the
templates are expanded, if possible. This process consists of extending the simple
networks we have so far, both by attaching other formulas into the network and by
strengthening the bonds between those already in the template, if possible. Qualifier
formulas can be attached where appropriate, and so the formula [big] is tied to that
for “policeman” in both templates. But now comes a crucial difference between the
two representations: one which will resolve the sense of “crook.”

The expansion algorithm looks into the subparts of the formulas that express
preferences to see if any of the preferences are satisfied: as we saw, the formula [big]
prefers to qualify physical objects. A policeman is such, and that additional depen-
dency is marked in both templates: similarly for the preference of “interrogate” for
human actors in both representations. The difference comes with preferred objects:
only the formula [crook(man)] for human crooks can satisfy that preference for
human objects, since the formula [crook(thing)] for shepherd’s crooks, cannot.
Hence the former template network is denser by one dependency, and is preferred
over the latter in all subsequent processing: its connectivity is (ignoring the “the’s”):
[big] → [policeman] →↔ [interrogates] ↔← [crook(man)] and so that becomes the
template for this sentence. The other possible template (one arrow for each prefer-
ential dependency established, and a double arrow to mark the standard, nonpref-
erential, link between the three major formulas of the template) was connected as
follows: [big] → [policeman] →↔ [interrogates] ↔ [crook(thing)] and it is now
discarded.

Thus the parts of the formulas that express preferences of various sorts are not
only used to express the meaning of the corresponding word sense, but they can
also be interpreted as implicit procedures for the construction of correct templates.
This preference for the greatest semantic density works well, and can be seen
as an expression of what Joos calls “semantic axiom number one” [2], that the
right meaning is the least meaning, or what Scriven [10] has called “the trick [in
meaning analysis] of creating redundancies in the input.” As we shall see, this
uniform principle works over both the areas that are conventionally distinguished
in linguistics as syntax and semantics. There is no such distinction in this system,
since all manipulations are of formulas and templates, and these are all constructed
out of elements of a single type.

4.6 Templates and Linguistic Syntax

As a further example of linguistic syntax done by preference, let us take the sentence
“John gave Mary the book,” onto which the matching routine will have matched
two bare templates, since it has no reason so far to prefer one to the other, as
follows:
The expansion routine now seeks for dependencies between formulas, in addition
to those between the three formulas constituting the template itself. In the case of
the first bare template, a give action can be expanded by any substantive formula
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John gave Mary the book
man give thing

man give man

to its immediate right which is not already part of the bare template (which is to
say that indirect object formulas can depend on the corresponding action formula).
Again “book” is qualified by an article, which fact is not noticed by the second
bare template. So then, by expanding the first bare template we have established in
the following dependencies at the surface level, where the dependency arrows “→”
correspond to preferential relations established between formulas for the words
linked.

John ↔ gave ↔ book
↑ ↑

Mary the

But ifwe try toexpand thesecondbare templateby thesamemethod,wefindwecannot,
because the formula for “Mary” cannot be made dependent on the one for “give,” since
in that template “Mary” has already been seen, wrongly of course, as a direct object
of giving, hence it cannot be an indirect object as well. So then, the template man

give man cannot be expanded to yield any dependency arcs connecting formulas to
the template; whereas the template man give thing yields two dependency arcs on
expansion, and so gives the preferred representation.

This general method can yield virtually all the results of a conventional grammar
covering the same range of expressions, while using only relations between semantic
elements.

4.7 Case Ambiguity

In the actual implementation of the system, an input text is initially fragmented, and
templates are matched with each fragment of the text. As we shall see, there are then
complex routines for establishing contextual ties between these templates separated
by fragmentation. However, it is claimed here that, for dealing with text containing
realistically long and complicated sentences, some such initial fragmentation is both
psychologically and computationally important.

The input routine fragments paragraphs at the occurrence of any of an extensive
list of key words. The list contains all punctuation marks, subjunctions, conjunctions,
and prepositions. In difficult cases, described in detail in [14], fragmentations are
made even though a key word is not present, as at the slash in “John knows / Mary
loves him,” while in other cases a fragmentation is not made in the presence of a
key word, such as “that” in “John loves that woman.”

Let us consider the sentence “John is / in the country,” fragmented as shown.
It should be clear that the standard agent-act-object form of template cannot be
matched onto the fragment “John is.” In such a case, a degenerate template man
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be dthis is matched onto the two items of this sentence; the last item dthis being
a dummy object, indicated by the d.

With the second fragment “in the country,” a dummy subject dthis fills out
the form to give a degenerate template dthis pbe point. The pbe is the same as
the head of the formula for “in,” since formulas for prepositions are assimilated
to those for actions and have the head pdo or pbe. The fact that they originate
in a preposition is indicated by the p, so distinguishing them from straightforward
action formulas with heads do and be. point (indicates a spatial location that is not
a movable physical object) is the head of the formula for “country,” so this bare
template triple for the fragment only tells us that “something is at a point in space.”
At a later stage, after the preliminary assignment of template structures to individual
fragments, TIE routines attach the structures for separated fragments back together.
In that process the dummies are tied back to their antecedents. So, in “John is in
the country,” the dthis in the man be dthis template for the first fragment of
the sentence ties to the whole template for the second fragment, expressing where
John is.

It is very important to note that a preference is between alternatives. If the
only structure derivable does not satisfy a declared preference, then it is accepted
anyway. Only in that way can we deal naturally with metaphor.

So, in examples like “I heard an earthquake / singing / in the shower” (fragmen-
tation as indicated by slashes), as contrasted with “I heard / an earthquake sing / in
the shower,” we shall expect, in the first case, to derive the correct representation
because of the preference of notions like singing for animate agents. This is done
by a simple extension of the density techniques to relations between structures
for different fragments by considering, in this case, alternative connectivities for
dummy parts of templates.

Thus, there will be a dummy subject and object template for /singing/, dthis

cause dthis, based on the formula for “singing” given earlier.
Now the overall density will be greater when the agent dthis, in the template

for “singing,” is tied to a formula for “I” in a preceding template, than when
it is tied to one for “earthquake,” since only the former satisfies the preference
for an animate agent, and so the correct interpretation of the whole utterance
is made.

But, and here we come to the point of this example, in the second sentence,
with “sing” no such exercise of preference is possible, and the system must
accept an interpretation in which the earthquake sings, since only that can be
meant.

In order to give a rough outline of the system, I have centered our description
on the stages of analysis within the individual fragment. After what has been
described so far, TIE routines are applied to the expanded templates in a context
of templates for other fragments of the same sentence or paragraph. The same
techniques of dependency and preference are applied between full templates for
different fragments of a sentence or paragraph. At that stage, (1) case ties are
established between templates (using the same cases as occur within formulas at a
lower level); (2) dummies are attached to what they stand for as we indicated with
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the earthquake example; (3) remaining ambiguities are resolved; and (4) anaphoric
ties are settled.

4.8 Paraplates and Case Ambiguity

The first of these tasks is done by applying paraplates to the template codings,
using the same density techniques one level further up, as it were. Paraplates are
complex items having the general form:

�list of predicates on mark-template��case�
�list of predicates on case-template�

�generation stereotype�
A stereotype is a context sensitive generation pattern which will be described in the
section on generation below, and in what follows here I shall give the paraplates
without the attached stereotypes. The paraplates are essentially patterns that span
two templates, which I call the mark and case templates, where the mark template
generally precedes, though not necessarily immediately, the case template. If the
predicates are all satisfied by the contents of the two templates, then that paraplate is
considered to match onto the two templates and the case ambiguity of the preposition
that functions as the pseudo-action in the second template is solved. Thus if we
were analyzing “He ran the mile in four minutes” and we considered the template
for the second fragment “in four minutes,” we would find that all the predicates in
some paraplate for timelocation case matched onto the appropriate parts of the
templates for the two template fragments, and we would then know that the case
of the second template was indeed timelocation and not, say, containment, as
it would be in “He ran the mile in a plastic bag.”

The paraplates are attached, as left-right ordered lists, to key words in English,
generally prepositions and subjunctions. Consider the following three schematic
paraplates for senses of “in” written out in order of preference below. These
are presented without generation stereotypes for ease of explanation, but with a
description in lowercase of which sense of “in” is in question in each line. The
notion of mark is the standard intuitive one of the point of dependence of a phrase
or clause. Thus, in “He ran the mile in four minutes” the second clause may be
said to depend on the action “ran,” which is then its mark. Whereas, in “He liked
the old man in the corner,” the mark of the second fragment is “man.”

I will write the three paraplates out, first in linear order as they really are, and
then in tabular form for ease of comprehension. The linear order is to be understood
as corresponding to that of the six major formulas of the mark and case templates.
The predicates in the paraplates may refer to any or all of these. The paraplates are
called in on encountering the ambiguous subjunction, or most usually, ambiguous
preposition that always functions as the pseudo-action of the second template—the
one in hand, as it were. I have put a slash in the paraplate to indicate where the
shift is, from predicates on the mark template to those on the case template. Also,



An Intelligent Analyzer 75

where predicates have atomic arguments, like 2obcas below, it indicates that those
elements are separate arguments of the predicate. Where a predicate, like prmark

below, has an argument that is a list, that list is a subformula that has to be located
whole in the appropriate template formula so as to satisfy the predicate in question.

(1) (PRMARK (MOVE CAUSE))(2OBCAS INST GOAL) /
(TO into) (PROBJE (CONT THING))

(2) (PRMARK ∗DO) (2OBHEAD) / (LOCA make part)
(3) (PRMARK (MOVE CAUSE)) / (TO into) ((PROBJE(CONT THING))

What is not made absolutely clear by that form of the paraplates is where, on the
six formulas of the two templates, each of the above predicates matches. Let us
now set out each paraplate vertically in six lines, corresponding in turn to agent of
first template, action of first template, object of first template, and then the same
order for the second, case template.

Now consider the sentence “I put the key / in the lock,” fragmented at the slash
as shown. Let us consider that two templates have been set up for the second
fragment: one for “lock” as a fastener, and one for the raising lock on a canal. Both
formulas may be expected to refer to the containment case, and so to satisfy (probje

cont). We apply the first paraplate and find that it fits only for the template with
the correct (fastener) sense of “lock,” since only there will 2obcas be satisfied,
i.e. where the formulas for “lock” and “key” both have a subformula under goal

indicating that their purpose is to close something. The third paraplate will fit
with the template for the canal sense of “lock,” but the first is a more extensive
fit (indicated by the order of the paraplates, since the higher up the paraplate
list, the more nontrivial template functions a paraplate contains) and is preferred.
This preference has simultaneously selected both the right template for the second
fragment and the correct paraplate linking the two templates for further generation
tasks.

If we now take the sentence “He put the number / in the table,” with two different
templates for the second fragment (corresponding to the list and flat object senses
of “table” respectively) we shall find that the intuitively correct template (the list
sense) fails the first paraplate but fits the second, thus giving us the “make part
of” sense of “in,” and the right (list) sense of “table,” since formulas for “number”
and (list) “table” have the same head sign, though the formula for (flat, wooden)
“table” does not.

Conversely, in the case of “He put the fork / in the table,” fitting the correct
template with the third paraplate will yield “into” sense of “in” (case direction)
and the physical object sense of “table”; and this will be the preferred reading. Here
we see the fitting of paraplates, and by choosing the densest preferential fit, which
is always selecting the highest paraplate on the list that fits, we determine both
word sense ambiguity and the case ambiguity of prepositions at once. Paraplate
fitting makes use of deeper nested parts (essentially the case relations other than
subj and obje) of the formulas than does the template matching.
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(1)
FIRST AGENT

(PRMARK (MOVE CAUSE)) FIRST ACTION
(2OBCAS INST GOAL) FIRST OBJECT

SECOND AGENT
(TO into) SECOND ACTION

(PROBJE (CONT THING)) SECOND OBJECT
(2)

FIRST AGENT
(PRMARK ∗DO) FIRST ACTION
(2OBHEAD) FIRST OBJECT

SECOND ACTION
(LOCA make part) SECOND AGENT

(3) SECOND OBJECT
FIRST AGENT

(PRMARK(MOVE CAUSE)) FIRST ACTION
FIRST OBJECT
SECOND AGENT

(TO into) SECOND ACTION

(PROBJE (CONT THING)) SECOND OBJECT

∗DO is a wide class of action heads, to and loca are case markers, 2obcas

and 2obhead are simply predicates that look at both the object (third) formulas
of the current template (the second) and of the preceding template, i.e. at two
objects. 2obhead is true iff the two have the same head, and 2obcas is true iff
they contain the same goal or instrument subformula. The fact that those two
predicates actually apply at two of the six places is a notational weakness in the
tabular display above. prmark is a predicate on the semantic form of the mark, or
a word governing the fragment that the key begins. In all the following examples,
the mark is the action in the first fragment, and the predicate is satisfied iff it
is a (move cause) action: an action that causes something to move. Similarly,
probje is a predicate on the semantic form of the object (third formula) of the
current template, and is satisfied if the predicate’s argument is found in the
formula.

4.9 Anaphora and References

The tie routines also deal with simple cases of anaphora on a simple preference basis.
In cases such as “I bought the wine, / sat on a rock / and drank it,” it is easy to see that
the last word should be tied by TIE to “wine,” and not “rock.” This matter is settled by
density after considering alternative ties for “it,” and seeing which yields the denser
representationoverall. Itwill be“wine” in this case since“drink”prefersa liquidobject.

In more complex cases of anaphora that require access to more information than
is contained in formulas, templates, or paraplates, the system brings down what we
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referred to earlier as common sense inference rules.1 Cases that require them will
be ones like the sentence: “The soldiers fired at the women and we saw several
of them fall.” Simple semantic density considerations in TIE are inadequate here
because both soldiers and women can fall equally easily, yet making the choice
correctly is vital for a task like translation became the two alternatives lead to
differently gendered pronouns in French. In such cases the Preference Semantics
system applies a common sense rule, whose form, using variables and subformulas,
would be

�1�THIS STRIK��∗ANI 2�� ↔ ��∗ANI 2��NOTUP BE�DTHIS�

where the variables are restricted as shown, and the final dthis is simply a dummy
to fill out the canonical form. This rule can be made more perspicuous by extending
the informal [ ] notation to denote the template form representation of whatever
is in the square brackets, thus: [1 strikes animate2] ↔ [animate2 falls]. The rules
are applied to “extractions” from the situations to form chains of templates and
template forms, and a rule only ultimately applies if it can function in the shortest,
most-preferred, chain.

The way the common sense inferences work is roughly as follows: they are
called in at present only when TIE is unable to resolve outstanding anaphoras, as
in the present example. A process of extraction is then done, and it is to these
extractions, and the relevant templates, that the common sense rules subsequently
apply. The extractions are new template forms inferred from the deep case structure
of formulas. So for example, if we were extracting from the template for “John
drank the water,” then going down into the tree structure of primitive elements in
the formula for “drink,” given earlier, we would extract that some liquid was now
inside an animate thing (from the containment case in the formula for “drink”),
and that it went in through an aperture of the animate thing (from the directional
case). Moreover, since the extractions are partially confirmed, as it were, by the
information about actor and object in the surrounding template, we can, by simple
tying of variables, extract new template forms equivalent to, in ordinary language,
“the water is in John,” etc. These are (when in coded form) the extractions to which
the common sense rules apply as the analytical procedure endeavors to build up a
chain of extractions and inferences. The preferred chain will, unsurprisingly, be the
shortest.

So then in the “women and soldiers” example we extract a coded form, by
variable tying in the templates, equivalent to [soldiers strike women], since we can
tell from the formula for “fired at” that it is intended to strike the object of the
action. We are seeking for partial confirmation of the assertion [X? fall], and such
a chain is completed by the rule given, though not by a rule equivalent to, say
[something strike X] → [X die], since there is nothing in the sentence as given to

1 The present paper describes the linguistic base, or basic mode, of the system. The
extended mode, requiring the rules of partial information and their application to the deep
structure of formulas, is described in considerable detail in [15].
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partially confirm that particular rule in a chain, and cause it to fit here. Since we
are in fact dealing with sub-formulas in the statement of the rules, rather than with
words, “fitting” means an “adequate match of sub-formulas.”

It is conceivable that there would be another, implausible chain of rules and
extractions giving the other result, namely that the soldiers fall: [soldiers fire] ∧
[X fires] → [X fired at] → [X fall], etc. But such a chain would be longer than the
one already constructed and would not be preferred.

The most important aspect of this procedure is that it gives a rationale for
selecting a preferred interpretation rather than simply rejecting one in favor of
another, as other systems do. It can never be right to reject another interpretation
irrevocably in cases of this sort, since it may turn out later to be correct, as if the
“women” sentence above had been followed by “and after ten minutes hardly a
soldier was left standing.” After inputting that sentence the relevant preferences
in the example might be expected to change. Nonetheless, the present approach is
not in any way probabilistic. In the case of someone who utters the “soldiers and
women” example sentence, what is to be taken as his meaning is that the women
fell. It is of no importance in that decision if it later turns out that he intended to say
that the soldiers fell. What was meant by that sentence is a clear, and not merely a
likelihood, matter.

It must be emphasized that, in the course of this application, the common sense
rules are not being interpreted at any point as rules of inference making truth
claims about the physical world. It is for this reason that we are not contradicting
ourselves in this paper by describing the Preference Semantics approach while
arguing implicitly against deductive and theorem proving approaches to language
understanding. The clearest way to mark the difference is to see that there is
no inconsistency involved in retaining the rule expressed informally as [1 strikes
animate2] → [animate2 falls], and at the same time, retaining a description of
some situation in which something animate was struck but did not fall or even
stagger. There is a clear difference here from any kind of deductive system which,
by definition, could not retain such an inconsistent pair of assertions.

4.10 The Generation System for French

Translating into French requires the addition to the system of generation patterns
called stereotypes. Those patterns are attached to English word senses in the
dictionary, both to key and content words, and are carried into the semantic block for
the sentence, or paragraph, by the analysis. The block contains all that is necessary
for generation, which is then a task of recursively unwrapping the block in the right
way. The generation process is described in considerably more detail in [1].

A content word has a list of stereotypes attached to each of its formulas. When
a word sense is selected during analysis, this list is carried along with the formula
into the block. Thus, for translation purposes, the block is not constructed simply
with formulas but with sense-pairs. A sense-pair is: �formula for a content word�
�list of stereotypes�. We saw in the last section that each key paraplate contains a
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stereotype, which gets built into the block if the corresponding paraplate has been
selected by the TIE routines. This stereotype is the generation rule to be used for
the current fragment, and possibly for some of the fragments that follow it. The
simplest form of a stereotype is a French word or phrase standing for the translation
of an English word in context, plus a gender marker for nouns. For example:

private (a soldier): (masc simple soldat)
odd (for a number): (impair)
build: (construire)
brandy: (femi eau de vie)

Note that, after processing by the analysis routines, all words are already disam-
biguated. Several stereotypes attached to a formula do not correspond to different
senses of the source word but to the different French constructions it can
yield.

Complex stereotypes are strings of French words and functions. The functions
are of the interlingual context of the sense-pair and always evaluate either to a
string of French words, to a blank, or (for content words only) to nil. Hence such
stereotypes are context-sensitive rules, which check upon, and generate from, the
sense-pair and its context, possibly including fragments other than the current one.
When a function in a content word stereotype evaluates to nil, then the whole
stereotype fails and the next one in the list is tried.

For example, here are the two stereotypes attached to the formula for the ordinary
sense of “advise”:

(conseiller (preob a man))
(conseiller)

The first stereotype would be for translating “I advised my children to leave.” The
analysis routines would have matched the bare template man tell man on the
words I-advised-children. The function preob checks whether the object formula
of the template, i.e. the formula for “children” in our example, refers to a human
being; if it does, as in this case, the stereotype generates a prepositional group
with the French preposition “à,” using the object sense-pair and its qualifier list.
Here this process yields “à mes enfants,” and the value of the whole stereotype is
“conseiller à mes enfants.” For the sentence “I advise patience,” however, whose
translation might be “je conseille la patience,” this stereotype would fail, because
the object head in the template, brought in by the concept of patience, is state.
The second is simply “(conseiller),” because no prescription on how to translate
the object needs to be attached to “conseiller” when the semantic object goes into a
French direct object. This is done automatically by the higher level function which
constructs French clauses.

Thus we see that content words have complex stereotypes prescribing the trans-
lation of their context, when they govern an “irregular” construction: one that is
irregular by comparison to a set of rules matching the French syntax onto the
semantic block.
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The general form of the generation program is a recursive evaluation of the
functions contained in stereotypes. Thus, depending on its context of occurrence, a
particular word of the French output sentence may have its origin in stereotypes of
different levels: content word stereotype, or key word stereotype (or stereotypes)
that are part of a set of top level basic functions. The system is formally equivalent
to an augmented transition network in the sense of Woods [17].

Some complexity arises from the fragmented structure of the block and from
dealing with the problem of integrating complex (i.e. context-sensitive) stereotypes.
The program maintains a cursor which points to the fragment which is being
generated from; the purpose of certain functions in a stereotype is to move the
cursor up and down the block.

Integration of complex stereotypes in some contexts requires the reordering of
the stereotype string. Thus, for “I often advised him to leave” going into “Je lui
ai souvent conseille de partir,” the stereotype: (conseiller (preob a man)) needs to
be rearranged. This is done by a feature which permits the values of designated
functions in a stereotype to be lifted and stored in registers. The values of these
registers can be used at a higher level of recursive evaluation to construct a new
correct French string.

Finally, the integration of complex stereotypes requires the implementation of a
system of priorities for regulating the choice of generation rules. Since any word
or key can dictate the output syntax for a given piece of the block, there may arise
conflicts, which are resolved by having carefully settled priorities. The principle,
as in the analysis program, is that a more specific rule has priority over a more
general one. Thus, when a content word stereotype prescribes the translation of
fragments other than its immediate context, it has priority over any key stereotype.
This important process of a stereotype controlling the generation of other fragments
than the one to which it attaches is also described in detail in [1].

4.11 Implementation

The system is programmed in lisp 1.6 and mlisp and runs on line on the pdp 6/10
system at Stanford Artificial Intelligence Laboratory where it is the system dump
named mt. It runs at present over a vocabulary of about 600 words and takes texts
of up to small paragraph length. There is no morphology in the system at present,
every input and output word being treated as a separate lisp atom, since morphology
presents no substantial research questions to compare with those of semantics. An
English sentence is input and a French output, as it might be as follows to show
the ambiguities of the preposition “out of”:

i put the wine on the table and john drinks it out of a glass. he

often drinks out of despair and throws the glasses out of the

window.
je mets le vin sur la table et jean le boit dans un verre. il boit

souvent par desespoir et jette les verres par la fenetre
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After this follows the usual cpu time declaration and the line (common sense
inferences called) if the extended anaphora procedures using partial information are
required. After that comes the whole semantic block for diagnostic purposes.

The format of the block is a list, each item of which, at the top level, is a text
fragment tied to a template, the template being a list of pairs (of formulas and
generation stereotypes) and of sublists of such pairs that are dependents on the main
nodes of the template in the manner described above. In the lists at the same level
as the text fragments are the key generation stereotypes for fragments, as well as
paraplate and inference nodes that declare satisfactory preferred ties.

The block is clearly not wholly target-language independent because it contains
the generative rules; however, it is very largely so. Moreover, the semantic repre-
sentation it expresses could easily be adapted as a data base for some quite different
task, such as question-answering. Indeed, many of the inferences required to set up
the block, like those described in detail above, are equivalent to quite sophisticated
question-answering.

4.12 Discussion

I have presented and argued for a nonstandard approach to the computational
semantics of natural language and, by implication, against the more conventional
linguistic approaches, as well as those from artificial intelligence that assume that
natural language is approximated by restricted micro-worlds of simple object words,
and the use of theorem proving methods.

In particular, I think the onus is on those who believe in strictly linguistic approaches
to show the psychological and computational importance of the structures they impose
with considerable difficulty upon even simple sentences. The present work suggests
that a well defined semantic structure is the heart of the matter, that the “semi-parsing”
of this system may be sufficient to support such structures, and that the heavily hierar-
chical syntax analyses of yesteryear may not be necessary.2�3

2 By the use of nonhierarchical here, I would mean the connected linear structures I have
described, each one approximating a notion of nuclear “message.”

3 The common sense reasoning exhibited here is of a quite different sort from other programs in
linguistics and artificial intelligence, and the only other systems to use “partial information”
of this sort and Schank’s and Rieger’s [[8] and [9]]. Their systems and this one share far
more similarities than differences. The main points of contrast concern: (a) the fact that the
Preference Semantics system emphasizes the notion of choice between alternative competing
structures for a piece of language; (b) a more general contrast in that the description of this
system is weighted more toward the solution of concrete problems and the application of the
system to actual text rather than being the description of a static network of concepts; and
(c) the clear differences in the notion of “phenomenological level” the other systems employ
in describing common sense reasoning: Preference Semantics tries to avoid imposing highly
rationalist analyses of cause and mental phenomena that are very hard to justify in terms of
common sense—if that is indeed to be the basis for understanding ordinary language.
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A Preferential, Pattern-Seeking, Semantics
for Natural Language Inference

Yorick Wilks
Stanford University

Abstract: The paper describes the way in which a Preference Semantics system for natural language
analysis and generation tackles a difficult class of anaphoric inference problems: those
requiring either analytic (conceptual) knowledge of a complex sort, or requiring weak
inductive knowledge of the course of events in the real world. The method employed
converts all available knowledge to a canonical template form and endeavors to create
chains of non-deductive inferences from the unknowns to the possible referents. Its
method for this is consistent with the overall principle of “semantic preference” used to
set up the original meaning representation

5.1 Introduction

This paper describes inferential manipulations in a computer system for representing
the content of a fragment of English, by which I mean the drawing of inferences
about the course of events in the world that are necessary to understand natural
language and, in particular, necessary to resolve pronoun references (anaphora),
and ambiguities in the senses of words.

To take a simple example: When the system sees the sentences JOHN LEFT
THE WINDOW AND DRANK THE WINE ON THE TABLE. IT WAS GOOD,
it decides that the pronoun “it” refers to the wine, whereas if it sees JOHN LEFT
THE WINDOW AND DRANK THE WINE ON THE TABLE. IT WAS BROWN
AND ROUND, it will decide that it is the table being referred to. “Decide” here
must be treated with care since earlier or later textual information might correct
both the decisions. The point is that a standard hearer or reader, having encountered
the amount of text given above, will understand in the way indicated, even if the
speaker or writer intended something different.

The system is programmed in lisp 1.6 and mlisp, and runs as an analyser
of English and a generator of French, on the PDP6/10 at the Stanford AI
Laboratory. This provides a very firm context of verification for a natural language
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understanding program. In the first example above, if “it” emerges as “il” the French
masculine pronoun, it can only refer to “wine” since that is the only masculine
noun in the sentence. The examples dear to the hearts of those who analyse stories
and dialogues can all be reconstructed within a machine translation environment.
This system can be run at Stanford as the self-explanatory dump program MT. The
distinctive lower level capabilities of this system have been described elsewhere
[6–8]: coping with complex sentences without a isolable syntax package; dealing
with wide areas of word sense ambiguity, and the case ambiguity of prepositions.
All this is assumed here, and not described again in detail. Those “front-end capabil-
ities” set up very complex semantic objects, called “semantic blocks” which are
networks of objects called templates, that are themselves complex structures of
semantic primitives. The present system is distinguished not only by the complexity
of the semantic objects it handles, but by its ability to handle objects representing
stretches of discourse longer than simple sentences. The semantic blocks described
below, that are these networks of templates, are representations for small paragraphs
of text, while the templates represent the meaning of clauses and phrases. These
blocks are not merely the result of applying projection rules to dictionaries, as in
most contemporary systems, but are built in part from already available, partially
filled-in, structures which are the templates and other cognate structures (see [7])
that are “fuzzy matched” onto text chunks as wholes.

In this paper, I am concerned not with the setting up of these complex objects,
but with their manipulation in order to draw out semantic information, and with the
application of inference rules to that information in order to solve concrete reference
problems. It is an assumption of this work, and a point of contrast with that of
Minsky and Charniak [1, 2], that these problems cannot be solved independently
of a strong representation [1]. The reason for this being simply that the inferences
themselves determine the representation, in part at least.

I would not defend the details of the semantic codings given in this paper, nor
the particular control structure of the program. What is essential here is (1) the
inferential use of partial information; that is, information weaker than that in dictio-
naries and analytic (logically true) rules. The use of such information constitutes
the EXTENDED MODE of the system described below. The second distinguishing
feature is (2) the preferring of one representation or inferential chain to another.
This is important and a neglected aspect of modern natural language research, where
workers often seem to feel that the first representation or inference their system
finds MUST be the right one.

The common sense rules of inference used in this system are not deductive
consequences about the world, but correspond to likely courses of events which,
if and only if they match onto the available explicit and implicit information in the
text, may be said to apply, and by applying may enable us to identify mentioned
entities and so resolve problems of reference. To deal with the examples above we
need to apply at least a rule equivalent to, in ordinary language, IF SOMEONE
CAUSES AN ENTITY TO MOVE INTO HIMSELF, HE WILL WANT OR
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OTHERWISE JUDGE IT IN SOME WAY. The utility of such a rule is, in
this system, in no way contradicted by mention of obvious exceptions, such as
someone wanting some object but doing nothing to move or otherwise affect it.
The representation of this rule (see below for details) is fuzzy matched onto what
we know from the example, and what we know about drinking, including that
it is an act of causing a liquid to move. These processes, to be described below,
allow the pronoun to be referred correctly in a way consistent with the common
sense inferences a person would make, and are finally reducible to non-deductive
pragmatic forms such as SOMETHING HERE X’s AND FOO X’s, THEREFORE
THE SOMETHING IS FOO.

Such inferences could, of course, be represented in some much stronger system
with deductive machinery, given all the missing frame axioms, quantification, etc.
My point is that nothing would be gained by doing so, because such machinery
can never improve the reliability of the partial information being handled. It is
the content and applicability of inferences like these that should be our concern in
natural language analysis at present, and not the finding of strong systems of logic
in which to represent them. I have set out that case in more detail in [8].

Secondly, with regard to what I called preference, it is premise of this work that
the basic problems of natural language semantics have simply not been solved,
either by the linguists or the AI people in the field, and that insights about the
structure of language are still needed; needed in the same sense in which Papert [3]
has often argued that AI must offer simple rule systems different from the first
sledgehammer you thought of. His persuasive example is that of catching a ball,
done by a simple algorithm and not at all, as one might have thought, by the solution
of complex differential equations. To this end, we avoid the generative grammatical
and semantic systems of the linguists, as well as the deductive systems of logicians.
The essential part of the present system that aims to offer a little of the missing
content is what I call “Preference Semantics”.

The key point is that word sense, and structural, ambiguity in natural language
will always, in any system, give rise to alternative competing structures, all of
which can be said to “represent” whatever chunk of language is under examination.
What I mean by “preference” is the use of procedures, at every level of the system,
for preferring certain derived structures to others on the basis of their. “semantic
density”, and in this paper I shall be particularly concerned with preferring some
inferential chains to others on that basis.

What I am postulating, speaking psychologically, is that humans interpret
language so as to reduce the conceptual density to a minimum; which can be taken
to mean “keeping the amount of new information introduced into the system to a
minimum”. No technical, information theoretic, notion of “information” is intended
here, but only a general suggestive analogy with well-known “laziness hypotheses”
about language structure, such as Zipf’s law. Without some such faculty, however,
a language understanding system cannot function. Thus “Pieces of paper lie about
the floor”, is understood as being about position rather than deception because from
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the preference information in the system about the concept “lying” we will know
that deceptive lying is a concept that prefers an animate agent if it can get it (here
it cannot), while a statement about passive position prefers a physical object as the
apparent agent, which is available here. The satisfaction of a preference increases
the density of the derived representational network and the densest network will
be the one ultimately preferred. But, in understanding “My ideas followed hers
closely”, we want to accept the ideas as the apparent agent, even though our infor-
mation about the concept of following is that it normally prefers an animate agent
if one can be found. Only in that way can the animate sense of “fly” be chosen
correctly as the agent in “The fly followed the ladybird into the web”. The point
is to prefer the normal, but to accept the unusual. A little reflection will show that
conventional, generative, linguistic rules, with fixed word classes, operating with
(unintelligent) derivational rule systems, cannot do this very simple thing.

Preference computations like these, that involve no real world knowledge above
and beyond the conceptual knowledge we have about word meanings, I call the
BASIC MODE of the sytem. I want to distinguish the basic from the extended
mode, that I discuss in detail in this paper, in terms of the kinds of anaphora problem
the modes can tackle. In the basic mode, the system resolves those anaphoras that
depend on the superficial conceptual content of text words. This is done in the
course of setting up the initial semantic representation, a process I have not yet
described. I shall call these type A anaphoras. For example, in “Give the bananas
to the monkeys although they are not ripe, because they are very hungry”, the
system in its basic mode would decide that the first “they” refers to the bananas
and the second to the monkeys. It does that by seeing, in the representation for the
concept of hunger, that it prefers to be applied to something animate, and that the
concept of ripeness prefers to be applied to something plantlike. If every satisfied
preference increases the density of the conceptual network, then we shall get the
densest network when the first “they” is correctly tied to “bananas” and the second
to “monkeys”. The success or failure is clear in the translation mode of the system
because the French equivalents for the two words “bananas” and “monkeys” have
different genders.

The main part of this paper describes an EXTENDED MODE of the system
that tackles two other kinds of anaphora examples I shall call types B and C,
respectively. Consider the correct attachment of “it” in “John drank the whisky
from the glass, and it felt warm in his stomach”. It is clear that the pronoun should
be tied to “whisky” rather than to “glass”, but how that is to be done is not immedi-
ately obvious. Analysis of the example below suggests that the solution requires,
among other things, some inference equivalent to “whatever is in a part of X
is in X”.

Anaphoras like the last I shall call type B, because the inferences required to
resolve them are analytic but not superficial. By analytic I simply mean that the
quoted sentence above, about parts and wholes, is logically true, and not a fact
about the real world, but rather about the meanings of words like “in”. What is
meant by “superficial” in the distinction between types A and B will become clear
below after some discussion of the meaning formalism employed.
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Finally and most importantly, I shall discuss type C anaphoras, which require
inferences that are not analytic, but weak generalisations (often falsified in
experience) about the course of events in the world. Yet their employment here
is not in any sense a probabilistic one. In “The dogs chased the cats, and I heard
one of them squeal with pain”, we shall, in order to resolve the referent of “one”
(which I take to be “cat” not “dog”), need a weak generalisation equivalent to
“animate beings pursued by other animate beings may be unpleasantly affected”.
Such expressions are indeed suspiciously vague, and a reader who is worried at
this point should ask himself how he would explain (say, to someone who did
not know English well) how he knew the referent of “one” in that sentence. It
can hardly be in virtue of a particular fact about cats and dogs because the same
general inference would be made whatever was chasing and being chased. I shall be
surprised if he does not come up with something very like the inference suggested,
and it may be the nature of natural language itself that is worrying him.

The inferences for type C, then, are general expressions of partial information
(in McCarthy’s phrase) and are considered to apply only if they are adequately
confirmed by the context, which is to say that both the “antecedent” and the
“consequent” of such an inference must match onto the text representation, or onto
implicit representations extracted from the original one. What I mean by all that will
become clear in what follows, but in no case do these expressions yield deductive
consequences about the future course of the world, nor is there any assumption here
that the event generalised about ALWAYS happen in such and such a way. Indeed,
they would be foolish if they did because the world’s course cannot be captured
in that way. In the whisky example above, it might have been his earlier dinner
that in fact made him feel good. Yet, nonetheless, the solution of the anaphora
problem for an understander, derived as just described, is definite, for anyone who
writes the sentence about John’s stomach will be taken to mean that the whisky
was in his stomach, whatever he might have intended in the rare case of a glass
swallower.

It is clear that the content of such rules of partial information, like the one above
about judging and causing objects to move, is pretty vacuous. One of the theses being
advanced here is that we do need these rather empty rules for understanding natural
language, that their emptiness is of a quite different sort from logical tautologies
like �a ∨ b ⊃ b ∨ a�, and that their very obviousness is what made it possible to
overlook them. There is an analogy here with what Minsky [2] calls “superframes”
that are always true, for there is a long philosophical tradition of regarding what is
always true as bordering on the vacuous, but not therefore useless!

Wittgenstein expressed something of this notion, of the dependence of our under-
standing on very general facts of nature [14, para 142]:

…if things were quite different from what they actually are—if there were
for instance no characteristic expression of pain, of fear, of joy; if the rule
became the exception and exception rule; or if both became phenomena
of roughly equal frequency—this would make our normal language games
lose their point.
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5.2 Brief Recap of the System’s Basic Mode of Analysis

The heart of the basic mode’s representation is the template (not to be confused
in any way with the usage of that word in visual character recognition to mean a
context-free method of analysis using low-level features). This is an active frame of
complex concepts that seeks preferred categories of concepts to fill its slots, though
if its preferences are not satisfied it will accept whatever it finds in default. What
Minsky has recently called [2] frames are good first approximations to templates,
though there is some difference in the logic of preference and what Minsky calls
the “default values” in frames. For example, the preferences tell you not only what
to assume if you cannot find anything, but also what to look for to put into the slot
if there is a choice available.

The template can be thought of as expressing the communicated gist of a phrase
or clause, or even simple sentence. It is a coherent connectivity of FORMULAS,
which in turn are complex concepts expressing the senses of words, one formula
to a word sense. If F1 etc. stand for formulas, then a template has the following
connectivity:

At nodes F1, F2, F3 are the principal formulas of the template which are always
agent, action and object (in that order), though any of them may be a dummy in
any particular example. But to even be a candidate for filling the agent place in a
template, a formula must be of the right sort, which in the case of an agent means
having a formula head of the right category. (F11, F12, F13) is a list of formulas
dependent on main formula F1, etc. Let me give an example of a template structure
at this point by using the following simplifying notation: any English words in
square brackets [ ] stand for the meaning representation of those words in the
Preference Semantics system. This device is important in that the content of the
[ ]-abbreviated forms can be seen immediately, whereas the complex coded forms
themselves would be as hard to read as, say, a sentence read a word at a time. But it
is important to restate that the rules and formalisms expressed within [ ] are really
formulas and subformulas of structured primitives, and that their tasks could not
be carried out, in the way some still seem to believe, by massaging English words
into standing, as it were, for their own meaning representation.

So then, the template connectivity of formulas for “The black horse passed the
winning post easily” could be written (ignoring any ambiguity problems for the
moment):

�horse� ↔ �passed� ↔ �post�
↑ ↑ ↑

�the black� �easily� �the winning�
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When the system runs, input texts are fragmented into clauses, phrases etc. and
templates are matched to each of these, probably a number of templates to each text
chunk depending on how potentially ambiguous its words are. The first exercise
of preference tries to cut this number down and throw away as many templates as
possible. To see how this is done, we must realise that the formulas at the nodes of
the template network are themselves complex objects. Here, for example, are two
formulas for the English action “grasp”:

“grasp”(action1) →��∗ANI SUBJ���∗PHYSOB OBJE����THIS
(MAN PART))INST)(TOUCH SENSE))))

“grasp”(action2) →��∗HUM SUBJ)((SIGN OBJE)(TRUE THINK)))

There is no space to explain these tree structures of semantic primitives in detail here
(see [6–8]), nor is there any need to do so, for the purposes of this paper, beyond
giving the feeling that their decomposition and interpretation are well defined. We
need only note that the right-most element of each formula is its head, or principal,
element. Thus, grasp1 is principally a SENSE action, as in grasping a block, while
grasp2 is principally a THINK action, as in grasping a theorem. The case subfor-
mulas at the left-hand sides of the formulas express the preferences under discussion.
The subformula with SUBJ at its right expresses preferred agents (animate things for
grasp1, and human things for grasp2), while the subformula with OBJE at its right
expresses the preferred objects of the actions, namely physical objects and SIGNs
respectively, the latter being thoughts and symbols of thoughts. Element names
beginning with a star, ∗, denote classes of elements. Thus the “class primitive”
∗ANI, denoting animate things, contains, among others, the primitive elements
MAN, denoting human beings, and BEAST, denoting non-human creatures.

This should all become clearer if each formula is thought of as a tree of subfor-
mulas. Thus for the first formula above, we have:

The formula is set out here as a tree of sub-formulas all at the same level, each of
which specifies an act or a preferential case restriction of the act. The basic act itself
contains the head element, and is the rightmost subformula. This form of display
removes the binary bracketing of the formula, which is useful for decomposition
purposes, but which introduces too much structure for easy interpretation.
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SUBFORMULA CASE/ACT VALUE EXPLANATION

(∗ANI SUBJ) SUBJ ∗ANI the preferred agent
is animate

(∗PHYSOB
OBJE)

OBJE ∗PHYSOB the preferred agent
is a physical
object

((THIS(MAN
PART))INST)

INST (THIS(MAN
PART))

the preferred
instrument is a
human part, the
hand

(TOUCH SENSE) SENSE TOUCH the action is of
physical contact

Thus, grasping, in this sense, is an action preferably done by animate beings
(∗ANI) to physical objects (∗PHYSOB), and consists in an act of sensing, by touch,
and done with an instrument (INST is the case element) which is a part of the body.
When I say “prefers” here, I mean that, if the preferred agent or object cannot
be found, a template is constructed with whatever is available. Thus, “The robot
grasped the block” would never be rejected; it would only be less preferred than
any possible competing interpretation that had an animate agent.

A few other rules will help to clarify the notion of “knowing our way round a
formula” when interpreting it: Agents are implicit (need not be specified by SUBJ
case) unless (1) they occur at the top level in an action formula as described above,
or (2) they attach to the head of a formula, as in:

“patient”(entity) → ((NOTPLEASE FEEL)(SUBJ MAN))

Here, the normal order, of agents being to the left of (= dependent on) the
corresponding action, is violated, since MAN is the agent for FEEL, while at the
same time being the head of the whole formula. This violation of order in search
is indicated by also violating the order restriction that normally makes the SUBJ
case element the governor (right-hand member) of the pair in which it occurs. The
corresponding rule of analysis is “On encountering SUBJ as dependent, expect
action for the agent to follow to the left”.

Objects, however, are never implicit. Moreover, an object is considered an object
of all actions to its right. This enables us to express the important notion of real
and apparent agents of actions. So, for example, in:

“fire + at” (action) →
��∗HUM SUBJ���∗ANI OBJE���STRIK GOAL�((THING MOVE)CAUSE))))

This action (done preferably by human beings to animate beings) is one of causing
a thing to move (the bullet) with the aim (GOAL case) of striking something. Since
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∗ANI is the object of all actions to its right, it is the object not only of CAUSE, but
also of STRIK. Hence the striking is also of the same animate being. Moreover,
THING (the bullet) is internally the agent of MOVE, not the object of CAUSE,
which is correct as far as the meaning of “fire + at” is concerned.

Let us now return to the construction of templates from formulas. Suppose we are
analysing “John grasped the idea”. The system will attempt to construct a template
corresponding to each “grasp” formula in turn, in both cases inserting the formula
at the action node. Both formulas will have their agent preferences satisfied by the
formula for “John”, at the agent node, because John is both animate and human.
But only grasp2 will have its object preference for a SIGN-like entity satisfied by
the formula for “idea”, at the object node.

So, if we think of each satisfied preference as the strengthening of one of the
linking arrows between formulas on the template diagram for this sentence (in the
same format as the one given above for the “black horse” sentence), then it is
clear that the template with the grasp2 formula at its action node will have the
stronger linkage, in virtue of two strengthened links. Thus, that template structure
will be preferred and the other, with the grasp1 formula, will be rejected and never
considered again.

Conversely, had the sentence under consideration been “John grasped the handrail
firmly” the preferences would have been reversed and the template containing the
grasp1 formula, preferring ∗PHYSOB objects, would have been chosen as having
the stronger conceptual linkage.

After this process the representation of a text (composed of fragments) is a
semantic block, or network of these template networks. The use of “network” here
should not lead a reader to think of systems with pre-existing networks, specified
in advance. Here they are set up by the process just described and are specific to
the phrase or clause they represent.

The templates are interconnected by case ties. The notation of case is discussed
in detail in [7], but for the moment a case can be thought of as a type of link tying
one template to some particular node in another template. In the sentence “He lost
his wallet / in the subway” (fragmented at the stroke) we might say that the second
fragment of the sentence depends on “lost” in the first, and that the dependence is
of the locative case type. Thus in the representation, the template for the second
fragment would be tied to the central, action, node of the first, by a link labelled
LOCA. The node on the first template to which the case tie ties is called the mark
of the second template.

At present we operate with a distinction system of ten cases, which are listed
below, together with (in capital letters) the semantic elements that represent them,
the questions that define them, and examples of subformulas expressing them.
Defining a case is a tricky matter, but the question method is reasonably adequate.
Note that the subformula examples are of those parts of a formula that would
express that notion as part of the meaning of a word. The subformulas are not, of
course, how the system would express the quoted words if encountered in a text,
when they would be represented by a template.
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recipient: FOR
“for a woman” → ((FEM MAN)FOR)
what/who to? what/who for?

instrument: INST
“with a stick” → ((LINE THING)INST)
what with? by what means?

direction: ∗DIRE (see below), TO, FROM
“from the top” → ((UP POINT)FROM)
where to? where from? at what? out of where?

possessive: POSS
“owned by a man” → ((MAL MAN)POSS)
who owns the thing mentioned?

location: LOCA
“at that time” → ((THIS(WHEN POINT))LOCA)
when? where? where at? by what? in what time? near what? at what
time? during when? before when?

containment: IN
“in a glass” → (((((FLOW STUFF)OBJE)WRAP)THING)IN) in what?

source: SOUR
“out of wood” → ((PLANT STUFF) SOUR)
out of what? from what?

goal: GOAL
“so as to strike a woman” → ((((FEM MAN)OBJE)STRIK)GOAL)
to what end? for what purpose?

accompaniment: WITH
“without a glass” → (((((FLOW STUFF)OBJE)WRAP)THING)NOTWITH)
accompanied by what/who? with what/whom? without what/whom?

subject: SUBJ
who did this?

object: OBJE
whom/what was this done to?

Certain cases above have negative forms leading to additional elements NOTFOR,
NOTPOSS, NOTIN, NOTWITH.

Case elements have two functions and occur in two sorts of constructions:
formulas and semantic blocks of templates. In formulas they express part of the
meaning of a word sense. Thus in:

“drink”(entity) → (((WRAPTHING)IN)(((FLOW STUFF)SOUR)THING))

∗ DIRE is the name of the class of direction case elements (TO and FROM) and it occurs
only as the indicator of the case of a fragment, never in formulas. Conversely, POSS
occurs only in formulas, never as the indicator of a fragment case.
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we see that a drink has a liquid source (FLOW STUFF), and is in a container
(WRAP THING). The other function of these elements is, as already explained, the
name of the tie between the template for some fragment and some part of another
template.

Case information is only included in a formula when it is specific: when we can
say what aspect of the case is involved. In the formula for “pour”, for example, we
include a direction specification for downwards ((NOTUP POINT)TO). However,
in the formula for “move” we do not include the element TO or FROM, even
though movement must in fact be in some direction, since we have no reasonable
expectation about it as we do with “pour”. Sentences containing “move” may very
well go on to specify the direction involved, but its association with “move” is
conceptually arbitrary and we cannot expect any confirmation of expectations that
would, say, resolve ambiguities. In this respect the system differs from other systems
that do create case expectations for wide classes of actions, which are essentially
unspecific, as in this example, and so we would claim unhelpful semantically.

Enormous gaps have been left in this brief recapitulation of the basic mode: in
particular (1) how this last process is done with the aid of dummy templates and
highly structured case-locating objects called paraplates, (2) how this superficial
template matching is converted to a deeper representation, effectively eliminating
the dummies, and (3) how the superficial semantic matching and preferring have
done the work of a conventional syntactic component (see further in [11]).

I described earlier, with the bananas and monkeys example, how type A anaphoras
are resolved in this basic mode of preference. Once resolved, these type A anaphoras
also constitute links between templates, from the pronoun variable to its correct
referent. Thus the compressed list form of the whole representation obtained, for a
single fragment of text, from the basic mode is:

(CASE MARK ANAPHORA F1 F2 F3
(F1 dependents)(F2 dependents)(F3 dependents))

The F1 etc., and the lists refer to the nodes on the first diagram above, which
was the basic template connectivity. The additional nodes (indicated in upper case
letters) can be thought of as other pointers tying the whole template connectivity to
nodes in other such connectivities. That is, the CASE, MARK and ANAPHORA
pointers structure the “semantic block” by defining a network of templates. And it
must be remembered throughout that what is actually at the F1 node is a complex
object containing a formula tree, like the ones for “grasp” illustrated earlier.

So, in the earlier example “John left the window and drank the wine on the
table”, the compressed list representation for the fragment “on the table” would
have a dummy agent formula at F1, a pseudo-agent formula for “on” at F2 (since
prepositions are treated as pseudo-actions) and an object formula for “table” at F3.
There would be no dependent lists of formulas since “the” is represented along
with what it qualifies. The CASE tie would be LOCA, since “on the table” has a
location case, and the MARK would be a pointer to the object node in the template
for “John drank the wine”. The ANAPHORA node is unfilled in this example.
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5.3 Quick Sketch of the Extended Mode of Inference

The extended mode of inference, using additional common sense inference rules,
is called whenever the basic mode cannot resolve a pronoun anaphora, as between
two or more candidate referents, using semantic link density alone. In the above
example about John and his stomach, density techniques have no way to decide
whether the glass or the whisky is in his stomach. On a basis of preferred agents and
objects of actions, what I called superficial conceptual information, both are equally
good candidates. The extended inference procedure is called and, if it succeeds, it
returns a solution to the basic mode which then continues with its analysis. If it too
should fail to reduce the number of candidate referents to one, then the top level
of the system tries to solve the problem by default, or what a linguist would call
focus. Roughly, that means: assume that whatever was being talked about is still
being talked about. So, in “He put the bicycle in the shed and when he came back
next week it was gone”, neither density criteria, nor the extended inferences to be
described here, will help at all. So the system may as well assume, in this limited
context, that the bicycle is still the focus of attention, and hence the reference
of “it”.

Consider again the following sentence after all the basic mode’s routines have
been applied:

[1: John drank the+whisky / 2 DIRE : DTHIS from a+glass
/3: and it felt warm / 4 IN: DTHIS in his+ stomach]

Since it is in [ ]-abbreviated form, this object is really four successive list-
compressed-templates like those described above, one for each of the four fragments
of the sentence. The slash marks the fragment boundary and the case names DIRE
(direction) and IN (containment) indicate the dependencies of templates 2 on 1,
and 4 on 3, respectively. The DTHISs are dummies added to fill out the canonical
template triplet in cases of missing agents, objects, etc. Further assume that the “his”
has been tied to “John” by the basic mode, and presents no problem of analysis,
and that the basic mode provided a list of candidates for the reference of “it” (i.e.,
“whisky” and “glass”).

EXTRACTIONS are then made from each template in turn, if and only if it
contains a representation of either a candidate answer word or the variable pronoun
itself. An extraction is the unpacking of every possible case tie: both those in
the formulas of the template and those labelling a link to other templates. In this
example we obtain the following extractions, which are template-like forms as
follows (where the first digit of a pair refers to the fragment above, the second to
the number of the extraction from a particular fragment, and “+” links words with
a single formula):

11: [whisky (IN in) John+part],
12: [whisky (DIRE to) John+part],
21: [whisky (DIRE from) a+glass],
41: [?it (IN in) his+ stomach].
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We can explain how these extractions were made, even in the absence of detailed
knowledge of the structure of formulas: 11, for example, is a new template form
derived from the template for “John drank the whisky” because from the structure
of the formula for “drink” it follows that the liquid drunk is subsequently inside
the drinker. This is because, when making up the formula for the action “drink”,
we express in it that the action consists in causing a liquid to be inside the agent of
the action, as follows:

��∗ANI SUBJ����FLOW STUFF�OBJE���SELF IN�
���WRAP THING�FROM����MAN PART�TO��MOVE CAUSE�����

This requires no more to be understood than earlier example formulas, except to
note that (FLOW STUFF) denotes liquids, the preferred objects of drinking, and
that the action causes that liquid to move into the agent’s self, and that it is (FROM
implies direction case) liquid moved from a container, or (WRAP THING).

Limits of an intuitively obvious sort apply to the process of extraction. For
example, from a representation for “A group of women drank beer” we would
extract a representation for “Women drank beer”. But we would not similarly infer
“John drank beer” from “The parents of John drank beer”. The difference between
the examples is easily stated in terms of preference: the extraction is only performed
where, as in the first example, the apparent agent does not satisfy the action’s
agent preference (of “drink” for an animate agent in this case), but the implicitly
available agent does satisfy it. In the second example, the apparent agents, the
parents, are animate and do satisfy the preference, and so the misleading inference
is not extracted.

So, in this informal [ ] representation we have acquired new template-like objects
that express, in canonical form, new analytic information extracted from the existing
templates, and from which new inferences can be made. It is postulated that the
generation of this inexplicit information from the deeper levels of the formulas is
essential to the process of understanding. These new forms differ from standard
templates only in that their second node, or pseudo-action, has had a case name
CONSd onto whatever the node was before. Note here that the form (IN in) is not
redundant since the case name IN locates the case precisely as containment, while
the English preposition can indicate many cases other than containment, as in “in
five minutes”.

It will be noticed that not all extractions consist is unpacking the formulas of
the template more deeply. Some, such as 21 above, are better called repackings
for a new template form has not been created, but rather a dummy in an existing
template has been filled in. The dummy pseudo-agent of the template based on
“from” has been filled in so as to infer “the whisky came in the direction from the
glass”. It is not appropriate to go into this quite separate matter here, but the criteria
for repacking in this way are actually identical with those that decided that this
template was tied by the DIREction case to its immediate predecessor 1. These case
decisions are made with the aid of structured semantic objects called paraplates,
described in detail in [7, 8, 11] and in practice flags are set when the case pointers
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are set, so that in the extended mode the repacking is done without reapplying all
the semantic criteria that settled the questions of case.

The extractions, repackings and the templates corresponding to the original text
now form an inference pool of canonical template forms upon which the common
sense inference rules operate in the extended mode so as to provide a yet deeper
understanding and representation of some situation. The template forms are to
be thought of active entities, seeking other templates to match. We then try two
strategies in turn: first we try a zero-point strategy, which is to try to “fuzzy match”
an answer template (or extraction) and a variable template (or extraction) directly,
without the use of common sense inference rules [CSIRs].

Another general assumption here, and it is a strong psychological assumption, is
that, in order to resolve these painful ambiguities, the understanding system is going
to use the shortest possible chain of inferences it can. And a zero-point strategy
will, as it were, have no length at all (in terms of a chain of CSIR inferences), since
it consists in “fuzzy matching” template forms together directly without intervening
rules. And so if it works, it will always provide the shortest chain. This preference
for the shortest chain is itself another form of the same psychological “laziness
hypothesis”, of never introducing more information at any point than necessary,
and is consistent with the general principle in use here of always being prepared
to complexify, or deepen, a representation, but never doing so unless the problem
cannot be solved at a more superficial level. This is a very different overall principle
from the wide, forward inference, proposals of Schank [5] and Charniak [1].

The zero-point strategy is adequate for the example under discussion, because
we can (under a suitable definition of template and extraction matching) identify
extractions 11 and 41, and thus identify “?it” and the whisky, and we are home.

If the zero-point strategy fails, we bring down all the CSIR rules that contain an
action subformula occurring in an answer or problem template form in the inference
pool, and attempt to find the shortest chain that leads from some answer to some
problem variable.

Let us return to the first example of the paper: “John left the window and drank
the wine on the table. It was good”. Notice already that we can reject all simple
solutions based on focus (that the wine is referred to because it is what is being
talked about) in view of the contrasting example whose second sentence is “It was
brown and round” where clearly it is the table being referred to. Notice that this
second sentence pair will be dealt with inside the basic mode, because the preference
of concepts of shape for physical object possessors will reject the wine as referent.

Let us now set out that example, using the informal [ ] notation, and label original
templates from the representation with T numbers, and label extracted template
forms with E numbers. We shall then have after extraction:

T1: [John left the + window],
T3: [John drank the + wine],
T3: [wine (LOCA on) the + table],

E21: [wine (IN in) John],
T4: [?it was good].
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These template forms stay in the inference pool because they contain either the
problem variable ?it or one of the possible referents: window, wine or table. The
extended mode now accesses those CSIRs which are stored under the main action
element of their antecedent and consequent.

Here are two examples rules I shall call I1 and I2 respectively, and give in
informal and formal versions, where in both cases the internal natural numbers
distinguish variables, restricted as indicated:

I1: ((∗ANI 1) (SELF IN)(MOVE CAUSE)) (∗REAL 2)) → (1 (£∗JUDG) 2)
i.e., [animate-1 cause-to-move-in-self real-object-2] → [1 £∗judges 2]
I2: (1 BE £(GOOD KIND)) ↔ ((∗ANI 2)(£WANT) 1)
i.e., [1 is £good] ↔ [animate-2 £wants 1]

The pound sign should be ignored for the moment. Its relevance will be clear in the
next section on negation. The class ∗REAL includes all the elements in ∗PHYSOB as
well as STUFF, denoting substances. The class ∗JUDG includes WANT, FEEL, etc.

The rules are flexible about expression of restrictions on variables by subformulas
or elements, and any variable can be restricted as much as necessary. They are
to be contrasted with Schank’s inference rules [5] which are not so much pattern
finders as inferences from a single primitive action head. The idea here is to have
far more information in the rules than can be expressed with a single primitive
action. It should be noted that, for economy of expression, the variables are only
shown restricted on the left-hand side of the rules, but in application the rules are
understood as “the right-hand sides can only be satisfied in matching by entities
that satisfy the restriction on the corresponding variable on the left-hand side”.

The matching and inferring strategy searches from both the problem-variable
and from the potential answer template forms, trying chains of length zero first,
then of length one, two and so on. At present it will not attempt to construct a
chain longer than two. This length limit could be easily extended, but I suspect that
understanding of normal situations rarely requires chains longer than three. In a
conventional translation into first order logic, the two rules I1 and I2 would appear
to be of radically different logical types, but in the matching onto the template pool
they are of the same sort, namely, if the “antecedent” has been matched look out
for something matching the “consequent”.

Again, the consequences drawn are not necessarily true, they resolve ambiguities
only where both antecedent and consequent match what we already know or can
semantically extract. Much of the effort of the program is in the inexact matching of
the template forms to the rules. That does not mean the satisfaction of the restrictions
on the variables in the rules, that is not fuzzy, but the closeness requirements
on subformulas in template forms and rules. This always involves decomposing
formulas into case parts, as on the tree diagram earlier, and matching some but
not all the branches—this is a process analogous that sketched by Minsky [2] as
“matching frames by matching their terminals”. It will be clear here that there is
a great deal of content of the system in the template matching rules. For example,
if the whisky had felt warm in the hand then a quite different conclusion would
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have been appropriate, and so the matching must not make body parts correspond
in a random manner. However, this predeliction for short chains with more content
between the matching links of the chain, is I believe more perspicuous than the
alternative of long chains and weak matching.

In the present example “John left the window and drank the wine on the table
and it was £ good”, a chain with two inference rules is set up as follows:

↓

[John drank the + wine]Template 2.
forwards inf. [John causes-to-move-in-self wine]� Template 2.

[John judges wine]by I1, from last line.
[John wants wine]by I2, from line below,

and ∗JUDG⊃WANT.
backwards inf.

↑

[wine is good]by substitution for ?it.
[?it is good]Template 4.

Hence template node [wine] and “?it” are matched, because of the match of the
last two lines of the chain, thus referring the pronoun “it”. It is virtually certain, as
always, that there would be other chains yielding other possible answer-referents,
but none with chains shorter than this one.

5.4 A Note on Negation and a Speculation about Further
Development

We can see the relative unimportance of negation in the system of inference
described in the last section, simply by interpreting the pound sign as NOT, with the
proviso that if it is so interpreted on one side of a rule it must also be so interpreted
if it occurs on the other. It will then be seen that the last inference chain would
do equally well for the sentence “John left the window and drank the wine on the
table and it was not good”. And indeed, identical inference chains are set up by the
system for that sentence with and without the “not”.

Notice immediately that this is not a presuppositional situation, which can be
expressed with an optional not as “I have £ stopped beating my wife” → “I beat
my wife”. For what we have here is “John drank the wine on the table and it was
£ good” → “The wine was £ good”. All that is being pointed out here in fact is
that in cases like this the matching relevance is more important than the presence
of a negation. Nonetheless, it is a useful observation in view of the difficulty of
describing a non-deductive system. For this phenomenon could only be described
in first-order logic with the aid of rules of the form �A → B ∨ B� which would
be so destructive as to make such a system computationally useless. Yet here such
rules function perfectly well. In [2] Minsky calls the frame system he describes
non-deductive, but it might not be clear to a casual reader in what sense it is
non-deductive. After all, mere absence of quantification does not make a system
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non-deductive. But in the form of rules described here is a concrete suggestion for
a non-deductive system.

If we press this notion a little we soon find that negation often is significant in
this system. For instance, if we analyse “John drank no gin in his cocktail but it
felt warm in his stomach anyway”, and we ask the usual questions about the “it”,
we shall see that the candidature of “gin” is ruled out because we have an extracted
template form equivalent to [gin (IN not + in) John], i.e. that the gin is not inside
John, and hence [gin] can never match the ?it in some extracted template form [?it
(IN IN) Johns + stomach]. Thus negation is significant here in ruling out gin as
the referent and leaving us, correctly, with the cocktail.

I cannot pursue this wholly linguistic matter here, but I believe there is no
problem about the reconciliation between the treatment of these two types of
examples within a single system. My speculation, that I cannot justify here, is that
there are reasonably well defined circumstances of match where negation is vital,
and where two template forms that differ by a negation element cannot possibly
match. However, there are other cases, such as direct predications, where a template
and its negated form can fuzzy-match, if no preferred non-negated form can be
found. In such circumstances a negated form is a better relevance match than
nothing.

So, in a rather forced example like “John liked Charles although he was not
good” we might wonder about the formal referral of “he”, and extract from the first
fragment some form equivalent to “Charles was good”, using the sort of partial
rules about liking that we discussed earlier. We shall then find ourselves wanting to
fuzzy match that with the [?he was not + good] of the last fragment, so as to reach
what I take to be the correct solution, namely “Charles”. What I am speculating is
that, unlike the cocktail example, we do not get an exclusion, of Charles, here but
a fuzzy match in the absence of anything better, and this other mode of matching is
triggered by the presence of a predication of a judgment concept like “good” where
relevance matters above logical exclusion of alternatives. But that is a matter for
purely linguistic investigation.

5.5 Discussion

The system described cannot be considered in any way adequately tested, partly
because no one has any very clear idea of what constitutes a test in this area. But
even to qualify, the basic mode must be shown to be stable under a considerable
vocabulary and range of senses for words, and the extended mode must be shown
to be determinate with a decent sized inventory of CSIRs. The present vocabulary
is 500 words yet, though small, it is to my knowledge the largest of any operating
deep-structure semantic analyser. At present, the program swaps in two large core
images of 46K and 50K respectively, plus two small ones of 5K each, all under
control of a SAIL program. A trouble-free paragraph of text is processed in about
6 cpu seconds, while a quite simple sentence requiring inference chaining of the
sort just described may require 6 cpu seconds itself. All that has to be shown in the
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short run is that the inventory of CSIRs is handleable, useable and extensible and
open to some conceivable refutation. That would be by the production of alternative
chains that reached intuitively correct answers, but which were longer than some
other chain that (a) this system would necessarily and wrongly prefer, and which
(b) did not resort to the use of implausible phenomenological levels of description.
A case of the last would be the writing of some of the common sense rules at an
absurd level of primitiveness so as to make the correct chains over-long. This would
be done, for example, by writing rules about eating so that they made reference to
the motions of the teeth, jaws or digestive muscles (some workers in the area have
teetered on the edge of this sort of “primitiveness”).

A great number of questions have been ignored here: the extension of these
anaphora routines to more general inferential processes for resolving sense
ambiguity on the basis of common sense knowledge; the question of wholistic
“settings” for discourses, so that we do not have to keep on resolving every occur-
rence of, say, “bar” when we already know we are discussing a law court. Again,
there is the question of how we get outside a pragmatics of local inference, like
this one, so as to take account of important facts in a discourse that change all
standard interpretations, in the way that a single fact in a detective story can do.
No advance will be made there, I am sure, until we have some idea what it is to
select out certain salient facts as potential sources of future reinterpretation. It is
surely implausible that we search for possibly upsetting information when making
every single decision interpreting what is coming in.

I think the use of the shortest possible CSIR chain can be defended as an extension
of semantic preference used in setting up the basic representation. That preference
was justified as opting for the “semantically densest” interpretation which was,
I claimed, the one “with the least meaning” (in the sense in which a string of
random words carries the maximum possible information). Similarly, the shortest
chain of inferences also minimises the information in play, and introduces the least
extraneous inductive information into the system. It is clear that such a simple notion
of choice is ultimately inadequate. We only have to consider a sentence like “I was
named after my father”, where it seems clear that we exclude one interpretation
simply because it contains virtually no information at all. This alone shows there
must be some qualification to a “minimising information” theory.

The nature of this qualification is reasonably clear in a particular class of anaphora
resolutions. Consider the micro-text “John asked Fred to close the window. He
did it.” The two pronouns in the last sentence are clearly to be resolved together,
and we instinctively reject the interpretation where the second sentence merely
repeats the first: where “he” is John, and “it” is the asking. The system rejects
this interpretation, and we could say that the preference is for the least meaning,
provided it is not zero.

This last example points up another simplistic feature of the system, in that it does
not at present devote the attention to the temporal labelling of asserted events that
some systems do. It basically accepts the most primitive iconic feature of language
(pointed out to me as such by Dr P. Hayes) that what comes later in reading a text
refers to what happened later in the world described. The last example assumed that,
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and it is a fair assumption provided one has special routines for events described
“Before that …”. At the very least, it is a reasonable assumption until a great deal
more theoretical work on the problem has been done.

In this paper, and its predecessors, much emphasis has been placed on the template
as a device to be parsed onto semantic representations of real text, because the
subject investigated in this paper cannot be treated in isolation from an adequate
linguistic base system. The inferring of a correct interpretation is intimately related
to the systematic exclusion of competing interpretations, and any system that does
not allow realistic ambiguity of sense and structure in at the start can hardly
appreciate this point. I have developed elsewhere [10] an abstract view of meaning
along these lines: that to have meaning is essentially to have one meaning RATHER
THAN ANOTHER. Or, put another way, having meaning essentially involves
procedures for the exclusion of alternative interpretations. This, I believe, is the
residual truth lurking beneath the “procedural view of meaning”, a thesis which
when taken at face value is patently false.

There has been no space in this paper for comparisons with the work of others
(but see [12]), though the similarity of the task described here for the extended
mode to the work of Charniak [1] will be obvious. There are overall similarities of
aim and assumptions, too, with the work of Schank [5] and Winograd [13]. One
main difference of emphasis from both of them is the notion of preference. If there
is such a notion in those works it is hidden away in the “hacks” and not brought
to the fore where it belongs. To my knowledge the only other author who has
emphasised the notion, though in a quite different context, is Quillian [4].

Clear differences from [13, 15] are the use of partial information rules to get
outside an unnaturally restricting linguistic micro-world, and the use of a uniform
representation and inference system at all stages of operation: there is no conven-
tional division into syntactic, semantic and deductive or knowledge packets.

Some features very familiar in micro-worlds are missing in the present version
of the system, as alert readers will have detected already. In an earlier example it is
not specified in the notation whether the whisky was, or was not, the Winogradian:
WHISKY, which is to say was it or was it not particular whisky, different from
other samples of whisky. This is a distinction which makes most sense within a
micro-world of inventoried items and samples, and less so outside. A reader in
doubt about this should ask himself which words in the sentence he is now reading
should have attached colons in a proper representation.

A clear difference from [5] is the emphasis on concrete problems of analysis with
definite solutions, and a corresponding description of the system, not abstractly, but
in terms of its procedural application to texts.
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Good and Bad Arguments About Semantic Primitives

Yorick Wilks
University of Essex

Abstract: The paper surveys arguments from linguistics, artificial intelligence and philosophy about
semantic primitives. It concentrates discussion on arguments of Charniak, Hayes, Putnam
and Bobrow and Winograd; and suggests that many of the arguments against semantic
primitives are based on no clear views about what the defenders are arguing for. The
proponents of semantic primitives must share blame for this, as well as for supporting
these entities by a range of highly specious arguments. However, the paper claims that,
provided primitives are supported only by weak and commonsensical hypotheses, they
can continue to play a valuable role in the analysis and processing of meaning

6.1 Introduction

This paper is of a heterogeneous nature, but with the single aim of collecting together
a number of arguments about semantic primitives in one place. The issues that bear
upon ‘semantic primitives’ are raised in psychology, linguistics and philosophy as
well as artificial intelligence (AI) and no comprehensive treatment could be given
of them all within the scope of a paper, even though very similar arguments arise in
the several fields. Moreover, many of the arguments rest upon minsunderstandings
of what advocates of semantic primitives are in fact claiming or need to claim, as
I shall try to show. Again, one of the peculiarities of the semantic primitives issue
is that these entities, whatever they may be, are so open to bad defenses by their
advocates.

This paper attempts four goals:

(i) to set out a number of arguments on the issue, and suggest that some are
good and some are bad.

(ii) while passing briefly over a number of well-known arguments on the issue – in
particular psychological arguments and those concerned with model-theoretic
semantics – to give some detailed attention to arguments of Bobrow and
Winograd (in press), Charniak [7], Hayes [13] and Putnam [30], that seem to
the author to require some reply in defense of the utility of primitives.

(iii) to set out a number of weak claims about primitives which constitute a
position that either answers or avoids the criticisms discussed.
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(iv) to set out in an appendix some detailed description of a method of meaning
description by means of primitives that has been developed since 1967, to
serve as a system in terms of which examples can be given. This description
is in a number of ways more detailed than its predecessors [39, 40, 42].

Like most interesting issues, the present one is of great antiquity and can be traced
back to the “categories of being” of Aristotle, and more obviously to the Universal
Characteristic: the language of universal atoms of meaning with which Seventeenth
Century philosophers believed that problems of reasoning could be definitively
settled. The same issue underlay the various thesaurus projects – culminating in
Rogets Thesaurus to classify the universe in terms of a number of hierarchi-
cally organized categories. Again, I would maintain, the same general motivation
led Ogden and Richards to specify a limited vocabulary, called ‘Basic English’,
within which, they believed, the whole of literature could be more economically
expressed.

However, for practical purposes, the issues can be considered to enter our
consideration with the introduction of a semantic component into a Chomskyan
generative grammar by Katz and Fodor [22]. This required what they called
‘semantic markers’: entities like HUMAN which would be attached in a lexicon to
the sense of bachelor meaning an unmarried man, but not to the sense meaning a
young seal at a certain phase of its development. Later, and within a group known as
‘generative semanticists’ entities called ‘underlying verbs’ were postulated as part
of the meaning of verbs: thus STRIKE would be part of the underlying structure
for remind as it appears in “Max reminds me of Pete” [28].

Thirdly, and simultaneously with the last tendency, Fillmore [11] suggested
that verbs should be derived from structures, ‘below’ the level of the Chomskyan
underlying phrase-marker, that incorporated cases, like AGENT.

In AI, primitive based systems made their appearance in the sixties, with the
system of the Appendix [39] and more recently the system of Schank for verb
decomposition (1972) which is also case based. Norman and Rummelhart [27]
and Joshi [19]. The criticisms (see below) of Charniak, Hayes and Bobrow and
Winograd bear directly upon such systems, as I believe do those of Putnam, although
these last were directed against the marker system of Katz.

In what follows I shall not distinguish between such terms as SEMANTIC
MARKER, SEMANTIC COMPONENT, SEMANTIC CATEGORY, SEMANTIC
PRIMITIVE, CASE, UNDERLYING VERB, UNDERLYING PREDICATE etc.
They are distinct in the literature, and defined as such by their authors, but our
concern is their general status, and at that level the distinctions between them are
not fundamental.

6.2 What then is a Primitive?

We can see easily enough by example what a primitive is – one of the three
above, those in the appendix, or Schank’s PTRANS, for example, primitive action
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underlying actions of physical transfer like give – but we clearly need to ask further
questions.

The first suggestion to come to mind is that since primitives look like English
words, then that is what they are. Zwicky [45] has argued that there are no primi-
tives that do not have obvious ‘English translations’ (even Schank’s PTRANS is
evidently a short form of Physical TRANSfer), and that the fact is not due to
chance.

However, it is strongly denied by Katz [20:156], Postal [28:113] and Schank
[35:8], for example. As Katz puts it “although the semantic markers are given in
the orthography of a natural language, they cannot be identified with the words or
expressions of the language used to provide them with suggestive labels”.

Let us pass over this question temporarily, and return to it after we have
considered arguments as to what primitives might be other than the words they
certainly appear to be.

Whether or not primitives are words, the question must arise as to whether there are
any restrictions on what can be a primitive, and, more generally, whether there
are any overall restrictions on the membership of the set of primitives used in any
system – since primitives are always used within a system or ‘language of primitives’.

Katz is perhaps the most obvious example of a system with very specific
markers – such as SOMETHING-WITH-A-SEAT as a marker on chair – which
suggests that, for him at least, any descriptive phrase in English could be, or indicate,
a semantic marker.

Certain very general restrictions do suggest themselves, however, on the
membership of a natural set of primitives or markers:

a) finitude: a marker set should not, for example, contain the names of the natural
numbers. More seriously, the set should be considerable smaller than the set
of words whose meanings it is to encode.

b) comprehensiveness: the set should be adequate to express and distinguish the
senses of the word set whose meanings it is to encode.

c) independence: there should not be marker X, Y, Z in the set so that there is
some function F such that X = F�Y� Z�. Though this will not be so easy to
achieve if the members are hierarchically organized: if, for example, the set
contains ANIMATE and HUMAN’ for the set would then be non-independent,
perhaps, if there were any marker like RATIONAL in it, where one might
hold that

HUMAN = ANIMATE +RATIONAL�

d) non-circularity: there should not be such non-independencies such that two
markers or primitives can be mutually defined, as in X = F�Z� Y� AND
Z = F′�X� A�.

e) primitiveness: no marker subset should be such that it could plausibly be
replaced by a smaller defining set as in A = F1�P� Q�, B = F2�P� Q�,
C = F3�P� Q�.
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But these desiderata for a marker or primitive set bring us no closer to a definition,
even a provisional one, of what a primitive is. Let us state a provisional definition:

“A PRIMITIVE (or rather a set of primitives plus a syntax etc.) is a
reduction device which yields a semantic representation for a natural
language via a translation algorithm and which is not plausibly explicated
in terms of or reducible to other entities of the same type”.

This definition leaves open, as it is intended to, the serious question of whether
or not primitives are explicable in terms of, or reducible to, entities of some quite
other type. This is a serious question because most attacks on the use of primitives
take the form of demands that they be explicated in terms of some other type of
entity altogether; just as most bad defenses of primitives take the form of offering
some very weak equivalence between primitives and other types of entity.

Sampson likened the role of primitives to that of English pound notes with their
inscription “I promise to pay the bearer on demand the sum of one pound (i.e. in
gold)”: in that although the currency promises, in fact one only gets more currency
for it at a bank, but never gold. In the same way primitives may seem to promise
access to something else, but all one ever gets by way of explanation of their
meaning is more primitives – provided that their set is at least somewhat non-
independent, so that such an explication of one primitive by others can be given. At
the end of this paper, I shall propose the tentative thesis that what Sampson suggests
about primitives is true, but that is quite alright. There is no more trouble about that
situation than there is in the present financial situation where we happily accept
currency for currency at the bank, and just as in dictionaries we accept definitions
of words by more words and never hope for more.

In concluding this section, we should note in passing that on the above ‘prelim-
inary definition’ we shall find there are primitives in many fields: ‘Noun’ in
linguistics, for example, is not further reducible and is not normally considered to
be explicatable in terms of entities of any other type. Saying “it is that syntactic
class whose members refer to physical objects” for example, does not get one far.
In the Propositional Calculus, we have a paradigm case of connectives AND, OR,
IMPLIES (and perhaps IDENTICALLYEQUAL) which appear to be primitives on
the above definition (they are reducible to the single connective “/ ”, the Sheffer
stroke, but only with considerable effort and inconvenience). It was only, later,
when the truth tables were derived by Wittgenstein and Peirce that the possibility of
independent explication of the primitives arose. I.e. only then could one ask “What
does AND in the Prop. Calc. actually mean?”. Thus, if one accepts the truth tables
as ‘giving the meaning’ of the connectives then they are no longer primitives in
our sense. (We shall return to this point later).

There are examples, too, much closer to home, and in areas of AI generally
inimical to the whole notion of ‘primitive’. The variable SHOPPER in Charniak’s
supermarket frames [7], and the Basic Unit PERSON in Bobrow and Winograd’s
KRL–O language [4] are both primitives. They can be bound as variables to
particular shoppers or persons, but nowhere in those systems can one be told what
a shopper or a person is.
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6.3 Escape Arguments

By ‘escape arguments’ I mean attempts, by both advocates and enemies of primi-
tives, to explicate them in terms of some other kind of entity. In that sense, the
claim that semantic primitives were really the words they appear to be and no
more (a claim not made by Katz, Postal, Schank et al.) would not be an escape
argument. Nor would claims (a) that primitives are justified by the overall perfor-
mance of the linguistic or AI system in which they function, nor that (b) primitives
mean exactly what the rules of the primitive language allow them to mean, and
no more or less. Both these are claims to which we shall return, but for now
we shall stay with ‘escape arguments’, most of which are, in my view, weak
arguments.

Katz has given a number of arguments in support of semantic primitives of
this general type. In [20:177] he argued that primitives were psychologically real
and the content of ideas, in some sense. Later [21:88] he withdrew the claim
about psychological reality, and argued instead that primitives referred to abstract
concepts. The latter is, if anything, the weaker claim because it offers less for
possible refutation. The former can at least be discussed in terms of what people
think their general ideas are, but the latter cannot.

There has been some ingenious work within psychology proper on the status
of semantic primitives, mostly in their support, and this too may reasonably
be considered under the general heading of ‘escape arguments’: [17, 26, 18].
However, the psychological approach might seem to suffer from certain enormous
handicaps in that it is very difficult for it, given its assumptions, to eliminate
alternative yet pressing hypotheses.1 So, for example, [17] contains an exami-
nation of recall experiments in which subjects correctly recalled the substance,
though not the surface form, of sentences. Now this is indeed general supporting
evidence for a theory of semantic primitives, but it cannot confirm it over and
above, say a hypothesis that meaning is stored in terms of a theory whose
primes are, let us say, binary numbers, or some other arbitrary, uninterpretable,
secret primes.

There are strong considerations suggesting that there cannot be secret primes:
the most ingenious of these is Zwicky’s ‘substance theory’ [45] that depends on
a projection of notions from chemistry, and in particular the correct view of early
chemists that the primes of chemistry were themselves substances in the world (and
not secret attributes that did not manifest themselves). This might seem a strong
and plausible methodological assumption. There are also general philosophical
considerations, adduced in the last section of the present paper, to the effect that
there is no reason to believe primitives and words distinct, and that we cannot
really conceive of a secret reduction language for our natural language. However,

1 Again, in [18] subjects are asked to define words, and it is found that the most primitive
words are harder to define, in terms of time taken, than the less primitive. However, it
would seem common-sense that there will also be everyday, but not plausibly primitive
words, like unscrew that will be as hard to define as candidates for primitivity like move.
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and this is the present point, these considerations are not psychological ones,
and I do not see how experimental psychology is to rule out the secret prime
hypothesis.

To return to Katz for a moment: he also produces two other, quite different sorts,
of argument. One is that primitives function within a linguistic theory as scientific
entities, like ‘force’ or ‘neutrino’ function in physics [20:181] or as ‘number’ in
mathematics [21:40]. These are not escape arguments: quite the opposite, in fact,
since they are denials of the possibility of independent explication of primitives,
since the point about notions like ‘neutrino’ is that they cannot be explicated
independently of the theories in which they function.

The weakness of this argument, of course, is that the procedures of science that
indirectly explicate concepts like neutrino, that is experiments, are not available
to linguistics in any straight forward sense. However, some general functional
explanation of primitives of this sort – though of an engineering rather than a strictly
scientific sort – may well be a reasonable one.

Another persistent strain of argument in Katz is that markers refer not to merely
psychological entities, but to innate ones, in some stronger sense. As Bierwisch
[2:181] puts it “� � � all semantic structures might finally be reduced to components
representing the basic dispositions of the cognitive and perceptual structure of
the human organism”. Schank, too, has taken a position along these lines, and
incorporates explicit symbols, such as Long Term Memory, into his conceptual
diagrams as names of psycho-physical entities. In this view there is some stronger
commitment to the universality of primitives than on the merely psychological
view. Moreover, this commitment should be an additional constraint on what can
count as a primitive, since, if primitives really refer to entities that are innate or
even ‘hard wired’ into human brains then such notions as the atomic weights of
elements would not seem plausible candidates as semantic primitives describing the
elements!

The general weakness of this ‘escape view’ is that it claims that there is some
correct set of primitives open to discovery. Even if that were true, there is no
conceivable way, here and now, of setting up any correlation between that right set
and the primitives in actual use in linguistic systems.

And suppose the ‘right set’ were one day discovered, how would we reconcile
that fact with the fact that, as Goodman [12:51] puts it “the terms adopted as
primitives of a given system are readily definable in some other system. There is
no absolute primitive, and no one correct selection of primitives”.

If, say, Schank’s primitive actions were located in the brain’s hardware, would
that necessarily constitute an ‘escape justification’ of them superior to that of the
alternative primitives in terms of which they can easily be expressed: the Schankian
PROPEL for example seems to be paraphrasable as Y CAUSE X TO MOVE, and
INGEST as Y CAUSE X TO MOVE INTO Y?

But we need not pursue this choice between possible escape arguments, since the
route via cognitive hardware is no more concrete or real than that via psychological-
cum-mental introspection, or even abstract concepts.
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6.4 Model Theoretic Semantics

Model theoretic semantics is the paradigm case of what I have called ‘escape’
theories of semantic primitives. It is also the subject of a great deal of technical
and philosophical discussion at present, and no justice can be done to that here”.2

I shall simply mention some criticisms by Lewis, Hayes and Heidrich of three
primitive-based systems.

All three criticisms share the assumption that, if primitives are to be used in any
linguistic representation system, then they must denote, or refer to, entities of some
other type – normally some set-theoretic function of individuals. This denotation is
then able (with the aid of technical apparatus derived ultimately from the semantics
Tarski constructed for classical logic) to justify the whole primitive-using system
and hence the primitives themselves.

Lewis’s system [23] is explicitly opposed to that of Katz and Fodor:

“Semantic markers are symbols; items in the vocabulary of an artificial
language we may call Semantic Markerese. Semantic interpretation by
means of them amounts merely to a translation algorithm � � � to the auxiliary
language Markerese. But we can know the Markerese translation of an
English sentence without knowing the first thing about the meaning of
the English sentence. � � � The Markerese method is attractive in part just
because it deals with nothing but symbols”.

There is no space here to discuss Lewis’s alternative model theoretic semantics
(MTS), but it is worth noting that it would be very difficult in principle to provide
one that was not open to the criticisms he himself makes here of Katz and Fodor’s
‘markerese’. A MTS itself turns out to be a translation system to another system
of symbols, and to symbols only, for, after all, how could any formal system lead
to anything else? One of the most puzzling aspects of this mode of criticism is
its persistent belief that it has somehow managed to ‘escape’ to some other non-
symbolic realm. Finally, it is a matter of simple observation that many who master
the technical complexities of MTS cannot discern, for any given formal structure,
what English sentence it is the structure for. Thus it is not clear a priori that Lewis’s
criticisms will not tell against his own position.

What would it be like to satisfy the demand for a MTS for semantic primitives?
Heidrich [15] has attempted to provide one for a fragment of Generative Semantics
analysis, and in particular of the analysis of seek as TRY to FIND, where the two
upper case ‘underlying verbs’ may be considered as primitives for the argument of
this paper.

Heidrich gives, as the denotational meaning of seek, sets of pairs of seekers and
sought things. One of these sets will be that of pairs of humans and the zoological
objects they are in fact seeking: a set which can be written

((Human)(Zoological Object))

2 Though see the chapter on “Philosophy of Language” in [9].
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If John is in fact seeking a unicorn then the pair (John, Unicorn) will be in that set
of pairs. Similarly find can also be expressed as a set of pairs of finders and found,
of which a subset will be that of the human finders and the zoological objects found
and which can also be written as above, although it will not be the same set of
pairs, because not all things that can be sought can be found – such as unicorns.
Lastly, try is defined as a mapping from actors (the triers) to actions (the action
tried). Thus, TRY to FIND will be written

((Human)((Human)(Zoological Objects)))

where the object on the right of this pair is ((Human)(Zoological Object)) i.e. the
pairs which are the denotation of find. The point of the whole system is to give a
guarantee of the equivalence:

seek = TRY to FIND

by defining an operator 0 such that:
0 ((Human)(Zoological Object)) = ((Human)((Human)(Zoological Object)))

which is to say that every seeking of a zoological object by a person is a pair that
is also in the pairs that are the meaning of TRY to FIND.

The heart of Heidrich’s system is the guarantee that can be put as the claim that,
for any sentence like ‘John seeks a unicorn’, the corresponding sentence ‘John tries
to find a unicorn’3 will be synonymous with it. That is to say, a guarantee that is
not given by any pair of inference rules:

�X� �Y� �XseekY � XtrytofindY�

The thesis of this paper – and we shall come to an exposition of it in the final
section – is that any such guarantees must be misguided, for they are wholly
inappropriate to the subject matter, natural language. On the contrary, seek and
try to find are more or less equivalent forms of words, so much so that we might
indeed use those on the right as part of a reduction language in the manner of the
Generative Semantics. But there is no guaranteed equivalence and our usage does
not assume there is – hence no operator like o can guarantee anything, because
there is nothing to guarantee. It is not merely that we can and do use seek so that it
is not equivalent to try to find, as in “I seek your leader” (which is more like “I want
to find”), for my point would hold even if we could always use try to find where
we use seek. The serious point is that the value of such a discovery of equivalence
would not be enhanced at all by the postulation of a 0 operator, or by the notion

3 Heidrich’s system assumes what Zwicky called ‘the substance theory of primes’, namely
that any primes can necessarily also appear in surface sentences Similarly, Sandeewall
[32] criticised Schank’s primitive system radically, and argued it did not have a semantics
at all in his, Sandewall’s, sense, but at the same time pointed out that Schank did not
distinguish two MAN variables in a particular semantic diagram : a non-radical criticism
that Schank was able to remedy immediately.
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that the synonymity in practice rests upon or requires any selection of individuals
in another calculus.

Hayes [13, 14] has produced a number of sophisticated arguments against the
thesis underlying the present paper. One aspect of these criticisms is not radical
Heidrich, too, made such non-radical 4 – in the sense of questioning the very basis
of primitives – but is a demand by Hayes that primitive systems give a more explicit
account of the rules regulating inferences concerning a primitive for substance,
like STUFF. This demand for greater explicitness is a good one, though there is
reason to doubt that any coherent and consistent metaphysics of substance can in
fact be given. Two and a half millenia of philosophy have failed to provide one,
yet throughout that time everyday conversation about substances, such as coal, cil
and air goes on unimpeded. It is important to stress this fact, so as to not fall into
the error of imagining that language about substances requires such a metaphysics
of substances in order to function at all. It clearly does not.

Hayes’ demand for the metaphysics of substance in a primitive system – what,
he is asking, does STUFF actually mean – is also a radical criticism and a demand
for an MTS. For him this demand is closely allied to the demand for a MTS of
programming languages, a demand that the designers of languages like PLANNER
have been slow to meet. In Hayes [14] the two demands are presented in detail in
the same paper and as aspects of the same demand. I feel that the two are different
in the following ways:

We may properly ask for the MTS of a programming language, and hence for
the MTS of any primitive-using natural language understanding program, written in
that language, be it LISP, PLANNER or whatever. Such a program semantics will
specify the objects and sets whose manipulation is isomorphic to the operation of
the program itself. However, and this is my point, there is no reason to suppose that
those sets and objects, yielded by the program semantics, will be the same as the
sets and objects that would be the direct denotations of the primitives, as provided
by a standard MTS for the primitive representation system. Hayes seems to argue
the need for both, yet never argues that they would yield the same result. But, if
they did not, there would be problems for anyone who, like Hayes, believes that
such denotations are the “real meanings” of the primitives – for which set would
then be the real meanings?

The demand for an MTS of a primitive system can be put in one of three
analogical ways: as like that of an MTS for a logic, for a programming language, or
like that of an axiomatisation of a scientific theory. All three trace back to Tarski’s
work, but the demands are normally put somewhat differently. However, in all three
modes, the system to be analysed is normally considered to have some temporal,
if not explanatory, primacy to its axiomatisation of explication: there has to be a
Predicate Calculus to have a semantics for it, a LISP to have a semantics at all, and
a Quantum theory must exist so as to be axiomatised. In that sense, the original
theory cannot be useless without its axiomatisation – the Propositional Calculus

4 Heidrich, too, made such non-radical criticisms when he pointed out that it was unclear
whether the Generative Semantics analyses obeyed a commutativity rule or not.
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was of great interest before the truth tables provided a semantics for it. But in
Hayes’ criticisms it is unclear whether he is arguing that the primitive system is 1)
useless without an MTS or 2) would merely be better with it. It seems to me that
the analogy from logic, science and programming suggests that he must intend the
latter, in which case the author concerned with a primitive system replies; OK but
hang on till I have a full system/program for you to explicate. Nonetheless, many
of Hayes’ criticisms suggest that he actually believes the former – in which case the
MTS is not just an a posteriori explication, but a creative tool in the construction of
the substantive theory, and so should have insights to offer into the subject matter,
natural language. But it is a fact of observation that such insights have been very
slow in coming (though they have very recently been argued for, in a computational
context, by Hobbs and Rosenschein [16]).

6.5 Some Miscellaneous Misunderstandings

Some criticisms of primitives rest only upon misunderstandings; or rather, they
result from taking contingent features of some system using primitive representa-
tions and imagining that a drawback of primitives as such has been found. Let us
look at two very briefly.

In [3] Bobrow argues that the primitive expansion or ‘paraphrase’ requires a
more complex match later than does the original English word that the paraphrase
is for. The point is not argued in detail, but I feel there are two wrong assumptions
behind it: (1) that the whole of a (possibly large) primitive representation must be
accessed if any part of it is, and (2) that one has no access to the original ‘surface
word’ after expansion to primitives, and so there must be both a loss of information
and a horrible complex match for any process using the expansion.

Now it is true that Schank has, in descriptions of his system, appeared to accept
(1), and has denied that any access to the surface word is possible or desirable
after a translation to the primitives of conceptual dependency. But primitive-based
systems do not have to work that way : in the matcher of Wilks [39, 40, 42] only the
head primitives of semantic formulas (see Appendix) are accessed during the initial
text match. Again, when that system is operating as a translator, it is most important
that it has access, not only to the possible semantic formulas (of primitives) for an
input word, but also to the possible French output words to which each formula
can lead. Translation would not be possible without this. No representation in
primitives could be expected to distinguish by its structure hammer, mallet and axe,
for example, even though their translations into another language may be different
and must be got right.

A more serious misunderstanding in [4] occurs when the authors contrast their
proposal for ‘perspectives’ of the representation – perhaps redundantly – of a
number of points of view of the same object or action. “In general, we believe that
the description of a complex object cannot be broken down into a single set of
primitives, but must be expressed through multiple views” (ibid: 5).
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Primitives constitute a language of description of meaning and therefore, in
principle at least, a language in which alternative descriptions of the same thing
can be given. Indeed, it is no accident at all that these who have been concerned
with primitives – and this goes for all the movements mentioned at the start of this
paper – have also been concerned to emphasise the ambiguity of words, surely the
paradigm of multiple description.

Bobrow and Winograd’s error seems to be in assuming that some of the less
defensible claims about primitives, such as their being the absolute and right repre-
sentation of a word’s meaning, must imply that there is also as a matter of fact only
one such description. But, to the best of my knowledge, not even those who have
held the strongest views about primitives have claimed this In Schank [35:264]
for example, he argues that restaurant must have not only a narrative ‘script-like’
representation in primitives, but also another representation to express its ‘physical
sense’ as well. In the system of the Appendix, an object like a house can have both
a formula with head POINT and one with head SPREAD. The former expresses its
aspect as a location in space, and that formula should be attached in the represen-
tation of “John went to Mary’s house”, whereas the latter expresses its aspect as a
spatially extended thing, as in “John lives in a three-bedroomed house”. These two
formulas need not be thought of as defining two senses of house either, merely two
ways that house is treated in the lexicon.

The criticisms discussed in this section rest, I am sure, on a combination of
confused argument, and taking the faults of certain implementations of primitives
as abstract criticisms of the general notion.

6.6 Putnam’s Argument

It may be of interest to note in passing a version of the primitives-versus-facts
dispute within philosophy, or rather as a philosophical attack on the marker system
of Katz. Putnam [30] argued that Katz’s definition of a word sense as a conjunction
of markers is wrong on several grounds. First, because it is simply unrealistic when
we look at the ways meanings are actually defined in dictionaries: not only by
markers, but by synonyms, facts, and even illustrative quotations etc., a point also
made in [6].

Many of Katz’s markers are of the type Putnam criticizes, as when (unmarried)
appears in the lexical entry for bachelor, but many are not, at least in the more
developed forms of his work. In the entry for chair are forms like (something with
legs) and (something with a back) and these have the same content as complex
descriptions in ordinary dictionaries. One quite legitimate criticism of Katz is that
he never gives either a characterization that determines what would and what would
not count as a marker, and that he never gives any syntax, like that of the Appendix
or even of Bierwisch [2], that would allow one to characterize such complex
markers in terms of an inventory of simple ones. Nonetheless, he certainly does
have markers with complex content.
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Moreover, it is not the case, as Putnam alleges [30:193] that for Katz the predi-
cation, of a marker of the word sense, is always analytic. Much of Katz’s motivation
in all this work, is the provision of an algorithmic explication of the notoriously
obscure philosophical notion of analyticity – but, he never claims that “A chair has
legs” is analytic5, in any sense, in virtue of the presence of (has-four-legs) in the
lexical entry for chair.

The notion of analyticity has to come into our discussion, because it is an
important tool – though in quite different ways – for both authors under discussion.
This becomes clear when we see that Putnam’s alternative proposals are to postulate
a stereotype individual [30:196], of the kind under discussion and definition, and
that meaning ‘definitions’ should take the form of the statement of core facts about
the stereotype, as in “A tiger has a striped skin”. The opposition to all forms of
analyticity is implicit in the use of “fact”.

There is a fairly clear similarity between this Katz – Putnam argument, and
the opposition of writers like Bobrow and Winograd to primitives discussed in
the last section: they even, as it happens, share the terminology of stereotypes
and facts.

In the argument under discussion, the opposition is in fact false – although a
real disagreement remains, I shall contend – because, as we saw, Katz’s notion of
marker is so wide that the predication of (something with legs) of chair is just a
notational variant of a Putnam core fact “A chair has legs” about a stereotype chair.
That is to say, not all Katz markers are equivalent to analytic predications, and
many of them are equivalent to the assertion of facts. Hence the opposition Putnam
saw between his proposals and Katz’s, was based on the particular examples from
Katz he discussed like bachelor. Moreover, the notion of stereotype may well have
drawbacks that Katz’s views do not. A stereotype man, surely has two legs, and
therefore “A man has two legs” should be a Putnamian core fact, one that may not
be always true, but a reasonable guide to experience. It will have just the same
status as “A man is an animal”. It is, of course, just the distinction between these
two facts that Katz wishes to keep central – and which Putnam cannot – namely
that the first ‘fact’ may let us down from time to time, but the latter almost certainly
will not. It was just this distinction – one which may well have its role somewhere
in Al systems – that Katz, like all believers in the analytic-synthetic distinction,
wished to maintain.

But this is not the issue between Katz and Putnam that really concerns us. If
I am right, and Putnam’s attack on the nature of Katz’s lexical entries fails to take
account of their flexibility, is there then any issue remaining between them that is
relevant to our concerns here?

I think there is, and that it is our old friend the reduced language of semantic
description. It is not raised explicitly by Putnam, but there is a clear suggestion
that Katz’s marker-language is not co-extensive with ordinary English – and that is
correct about Katz’s intentions – and that the language of core-facts might well be.

5 That is to say, that this sense is true in virtue of meaning, or of logic, or, in any event,
independently of the facts of life.
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This issue is, of course, independent of the above point about core-facts, that they
do not in any way indicate the relative ‘factiness’ of various facts.

To the reduction point, I would reply, as I did in the last section to Bobrow and
Winograd’s stereotypes, that they will in fact turn out to constitute a restricted, or
primitive, language. In KRL, it was clear that certain formal objects were privi-
leged, in the sense of being undefined by others, but in the case of real dictionaries
this is not so clear. The statistical study of the contents of Webster’s Third Inter-
national Dictionary6 have shown that there is use – in the sense of defining words
used very frequently to define others, and which incidentally, are very close to
the primitives of the Appendix – but, naturally, since these frequent words are
also in the dictionary they are precisely not privileged, by being immune from
definition themselves. True but, as I shall argue in the last section, the ultimate
circularity of dictionaries – in that all words are defined by others, also in the
dictionary – does not contradict the ‘primitiveness’ of real dictionary entries. This
is because the key words in the restricted vocabulary or the definitions (like
“substance”, “size”, “animate”) are those which, although in the dictionary, have
highly unilluminating definitions. The usefulness of the dictionary actually presup-
poses that one knows what those primitive words mean, otherwise it is more or less
unusuable.

6.7 Charniak’s Argument

Charniak’s [8] paper is concerned with the use of the concept of case in AI, but it
also presents at least one very general argument against the use of primitives, even
though its particular target is case primitives.

Charniak is among those who demand some explication of primitives in
terms of something else, but he is prepared to consider explicanda for primi-
tives much more congenial to AI than those proposed by logicians. What he
proposes are, in effect, the procedures associated with a particular primitive7:
[8:19].

“meaning (CASE) = The set of inferences one can make about X, knowing
only that X is in case CASE”.

where CASE is some primitive such as TO, FROM, INST (instrument) etc. (see list
of case primitives in Appendix). He argues that no existing primitive using systems
have such inference rules, but that they might well be useful. He proposes one,
using the direction primitive TO: (ibid. p. 20)

“TO (LOC, EVENT) IMPLIES that X (where OBJECT (X, EVENT)) is located
at LOC”.

6 At Systems Development Corporation, Santa Monica, California.
7 This is precisely the sort of AI-oriented explicandum not taken account of in the anti-

primitive arguments of Babrow et al. [5:10].
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However, he proposes four conditions that such a rule must satisfy to be useful :

(1) the rule must be independent of the nature of EVENT
(2) that TO must be a case of more than one primitive action for, if it were only

to appear with, say, action MOVE, then it would be no more than the name
of some argument of MOVE, since MOVE could be written

MOVE (X, Y, Z)

where, say, Y might be always the “direction towards” argument. In a
situation where only move had a TO argument, TO would be dispensible in
favour of “second argument place in MOVE”.

(3) a case primitive in the rule quoted above must not be ridiculously specific,
as would be a direction primitive UP–TO–THIRD–FLOOR.

(4) there should not be a better way of doing things that would invalidate any of
the above three conditions. Charniak suggests two such better ways:

(4a) having only a single movement primitive in a system (in the system of the
Appendix this would involve collapsing MOVE, DROP, FLOW etc.) whose
aspects would be distinguished by cases (in that circumstance FLOW, for
example, would be replaced be a new more general MOVE, but the mover
would always be (FLOW STUFF), a liquid).

Charniak argues that doing this would invalidate condition (2) and so (case)
primitives would no longer confer ‘benefits’ on the system.

(4b) Charniak argues that the result of the proposed TO-inference-rule above
could be installed in the representation initially. Thus, in a primitive
formula (in the Appendix system) for “move” we could place an additional
subformula indicating that the mover ends up at the new location, viz.
(a partial formula):

��∗PHYSOB SUBJ�
︸ ︷︷ ︸

THE MOVER

�����WHERE POINT)SAME)SLOCA��∗PHYSOB BE))CAUSE)
︸ ︷︷ ︸

RESULT : LOWER located at same spatial point

��WHERE POINT)TO)
︸ ︷︷ ︸

MOVE�
︸ ︷︷ ︸

DIRECTIONCASE MAIN PRIMITIVE

Doing this, says Charniak [8:22], would violate condition (3) against very specific
cases.

There are, I think, a number of misapprehensions and confusions – as well as
certain benefits – in Charniak’s arguments, and it may be worth examining these
briefly.

First, he is quite right to emphasise the value of such rules as his proposed
TO-rule, but wrong to suggest that they do not exist in primitive-oriented systems.
In the case of my own system, the extraction rules are just such rules: that take
the case primitives of a formula and make inferences, using the context of the
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text-template in which that formula is in fact embedded (i.e. its variables are bound
to real items). Charniak’s TO-rule could serve as one among the extraction rules
attached to TO, and these rules programmed in the 1973 version of the associated
program [41].

Some of Charniak’s conditions for the usefulness of such rules are odd, (1)
is unobjectionable, and indeed Charniak adds a useful illustration of the way
some systems have confused “TO = movement towards” with “TO = indicating
direction”, in which case a TO-rule would not be event independent because the
rule would not apply to uses of TO coding “change in direction of eyes” since the
eyes do not end up at the object they finally point to! So, his condition (1) could
be a useful requirement on the level of specificity of case primitives.

However, (2) is a return of a very general argument of Charniak’s about the
reducibility of case notation to argument place numbering that I have answered
elsewhere [43]. But here it should be noticed that if case primitives can be reduced
to “argument n of action primitive P” descriptions, then it is quite irrelevant whether
or not condition (2) holds. Case primitive TO is no less reduced if it is “arg.place
n1 of P1 and arg.place n2 of P2” than if it is only the first clause! Reducibility –
if it is a vice, and I believe it not to be in this form – is no worse if TO functions
only within a single action primitive. Thus, condition (2) is idle in conjunction with
Charniak’s much more general argument.

Condition (3) has the right flavour, but no clear force. We are given no idea of
how specific a case primitive may be before it becomes ridiculous.

Condition (4) is where Charniak believes the heart of his argument to be, and
where he makes use of conditions (2) and (3), but it seems to me to lack all force.
Charniak’s (4) has value only if suggestions (4a) and (4b) are in fact better ways
of organizing a primitive using system, but he gives no reasons for believing that
they are!

In (4a), with a single movement primitive, we would have a rather restricted
system – just as a language with only one movement verb would be (think of
baby-talk using only “go”). Suggestion (5b) might violate condition (2) – which
is idle anyway as we saw – but so what if (4a) is a very uncomfortable way of
organizing a language understanding system?

Much the same applies to (4b), for why would it be better to make all infer-
ences explicit in the initial representation? Discussion of some earlier forms of
Schank’s system – where he tended towards embodying many inferences in the
initial representation – have suggested that is not good procedural sense. Why
should Charniak just assume without argument that it is – for his general argument
has no force if it is not a benefit. It is well known in logic that rules of inference
can be replaced by equivalent axioms – but there are excellent arguments against
doing this.

Interestingly enough, even if one did accept Charniak’s assumption that (4b) is
a benefit, condition (3) is not thereby violated as he claims. The partial formula
for “move”. that was written above, so as to incorporate suggestion (4b), does not
require any more specific cases at all, only repetition of argument names. Charniak
is confusing UP–TO–THIRD–FLOOR with UP–TO (third floor).
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6.8 Conclusion: Towards a Clearer View of Semantic
Primitives

What follows is not intended to be systematic, but only a sketch for a position justifying
the use of semantic primitives in an AI system. A position moreover, that avoids the
criticisms of their use discussed in this paper, and avoids relying upon bad defences of
their use as well.

The first basic claim here is that semantic primitives are a useful organizing
hypothesis – in Zwicky’s [45:471] sense – for an AI natural language system.

They will enable useful generalizations to be made – Charniak’s TO-rule will
serve as an example, but all primitive advocating papers contain many more complex
ones – but this does not require the claim that they lead to universal generalization8

across language boundaries, nor even that more than one language is translatable
into a given primitive system.

We need not expect that such generalizations will lead to conventional linguistic
observations at all – only that they will yield a more perspicuous language under-
standing system. The linguistic debate over whether or not “kill” can be represented
in a system of primitives as CAUSE to DIE or CAUSE to BECOME NOT ALIVE
(see [25] and [10] has shown that there is no agreement there over whether or how
such proposals can lead to observations of sentences that will settle the matter.

Thesecondbasicclaimof thispaper is that aprimitive-using representation language
is essentially a natural language. This in no way implies that it is not a suitable language
for AI systems, but only that users of primitives should cease to claim (as Katz and
Schank, for example, do) that the similarity between primitives like CAUSE and
English words like ‘cause’ is mere chance, and of no theoretical significance.

On the contrary, it is the heart of the matter, because the alternative view – what
Yons [24] has called the “conceptual substance” view, that there is a real conceptual
substance, independent of language, and into which precise and clear conceptual
translation can be made – is contrary to commonsense, and the whole weight of
Anglo-Saxon philosophical and linguistic tradition.

The counter claim made in this paper is consistent with what Zwicky [45] has
called the Substance Theory of Primes: that every semantic primitive can appear as
a surface word in a natural language9.

8 Zwicky [45:474] notes that, for him, the “most notable gap in existing treatments of
semantic primes is the absence of assertions of formal or substantive universals involving
them”, but when we see what would count as one such it is not hard to see why no one
would assert them as universals, but only as methodological principles, in an AI system or
in an underlying linguistic base. Zwicky quotes Chomsky’s suggestion of “the condition
that artifacts are defined in terms of certain human goals needs and functions instead of
solely in terms of physical qualities”. This could only be a ‘coding postulate’ and not
anything that could be verified directly by any conceivable linguistic observations.

9 It is unfortunate that ‘substance’, in the Lyons and Zwicky phrases, occurs in diametrically
opposed doctrines.
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This does not require that the same ‘word’ as it appears in the primitive and surface
form must, in any definable sense ‘have the same meaning’. It is simply a claim that
the link between the two cannot be broken10, even though it is often essential that the
two usages do differ, as in the linguistic equation of ‘kill” with CAUSE to BECOME
NOT ALIVE. The latter can only be a representation of ‘kill’ if CAUSE is taken to
mean ‘reasonably immediately cause’. For, if it can cover causation at any distance in
time, then the non-equivalence of the two forms is obvious11 .

The view being defended is not that the semantic representation system of the
Appendix, to take an example close to hand, is really English12. It is rather the
claim that facts we accept about natural languages are also facts about that primitive
language: namely, that it has no correct vocabulary, any more than English has;
that there may be many adequate alternative vocabularies for it, just as there may
be many vocabularies for English. It is not even necessary that the language be
a minimal set, with no member definable by the others. As Goodman [12:51],
puts it:

“In general, the terms adopted as primitives of a given system are readily
definable in some other system. There is no absolute primitive, and no one
correct selection of primitives”.

Graham Ritchie (personal communication) has raised the question : if the primitive
language is also a natural language, then what set is formed by the union of it
and English? The answer is English with some words having senses in addition to
those they have in standard English. A more satisfactory analogy than set theory is
provided by the elusive Wittgensteinian notion of the game. A form like CAUSE
plays different roles in English and the primitive language, just as one rugby player
may play both Rugby Union and Rugby League at different times – there is no
problem, and he is not required to be a schizophrenic.

The clearest consequence of the thesis, that the primitive language is also a natural
language, is that there can be no direct justifications of individual primitives (what
I called ‘escape moves’ earlier) any more than there can be direct justifications, or
meanings, given for the words of English. There just is no non-linguistic realm into
which we can escape from language, and explanations of English words. That is
simply fact.

This does not exclude13 the association of inferential procedures with particular
primitives as partial explanations of them – just as we may explain ‘cause’ in English

10 Prior [29] is the standard argument that the connexion cannot be broken in logic either, for
it is not arbitrary that ‘ ’ means ‘and’.

11 Thalberg [36] is another demonstration of the way CAUSE differs from its commonsense
meaning in the representations of action- theory.

12 Hayes [14] has characterized the position of this paper as “Let’s pretend it (the primitive
language) is English”. On the contrary, it is “Let’s not pretend that it is unrelated to
English”, which is a more reasonable view.

13 Nor does it exclude the association of primitives with complex knowledge structures: of,
say. MAN with a ‘frame-like’ object telling you a lot about humans (see Wilks [44]).
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to someone by producing examples of causal inference or, as the Wittgensteinian
would say, samples of the proper use of ‘cause’.

The third, and final, claim involved in the position of the paper is that we should
pay more attention to the structure of real dictionaries when thinking about primitive
languages. This point has been put many times14, in reply for example, to Katz’s
very rigid views of a semantic dictionary entry, as compared to the function of
actual dictionaries.

One final point should be made here about a possible justification of primitives
on the grounds that actual statistical analysis of large dictionaries15 reveals that
their definitions are, in fact, in terms of a restricted sub-vocabulary, to a large
extent, and that this is close to a natural set of primitives : cause, human, object,
move, substance and so on. It might be argued that this fact, far from supporting
the claims about primitives made in this paper, has the opposite effect: for this
‘defining sub-vocabulary’ for Webster’s Third, say, has all its members actually
in the dictionary as well, whereas the primitives of the Appendix language, for
example, are not, in general, defined in terms of the other primitives. Hence, we
have a clear difference between the primitive language and English as defined by
Webster’s Third International Dictionary.

But this difference is mere apparent than real, because it is a fact of observation
that the dictionary definitions, in Webster’s say, of members of this ‘defining
sub-vocabulary’ are curiously unsatisfactory. Looking up substance or object in a
dictionary (provided you know the language, and are not a foreigner looking up
an unknown lexeme) is unrevealing, precisely because hundreds of entries in the
dictionary assume you already know the meaning of the word. In that sense, such
words function in very much the way the vocabulary of an explicitly primitive
language does. They have a merely organizing role in the dictionary as a whole.

In sum, then, the claim of this paper is that primitives are to be found in all natural
language understanding systems – even those like (Bobrow and Winograd, in press)
that argue vigourously against them. Explicit use of primitives is preferable, and
energy should be concentrated on making the systems that use them work, and not
on justifying the primitives directly and independently, for that may not be possible,
even in principle. However, such systems should be as formal and perspicuous as
possible, although it may be necessary at certain stages to take an inductive, or
descriptive, approach to the primitive language – to discover its generalizations, just
as one might with a natural language – rather than attempting to fix all its possible
well-formed strings and interpretations in advance. Finally, it is most important
not to imagine that a useful representational system can only be achieved if certain
vexatious philosophical problems – concepts, reference, correctness of the primitive
set, etc. – are cleared up first. If the analogy with a natural language has any force,
then that simply cannot be necessary.

14 Viz. Bolinger [6], Wierzbicka [38], Weinreich [37]. It is also a requirement therefore that
a primitive language be as ‘readable’ or ‘habitable’ as possible – an interesting proposal
to do this for Schank’s primitive language is in Shafe [33].

15 John Olney, Systems Development Corp. (personal communication).
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Appendix

The construction of semantic formulas representing word-senses

What follows is a detailed account of how to construct semantic formulas – that
represent the senses of English words – from an inventory of semantic primitives. It
is not intended to give a justification for doing this, that comes elsewhere and from
the overall operation of the program using the formulas – but to give the method.
Everything i this description simply assumes that we are provided with 100 primi-
tives and 7 types of subformulas, and, as I have explained elsewhere [42] I also
believe that demands for their independent justification actually rest upon
confusions.

Another naive, though almost universal, assumption made here is that a word can
be said to have a number of discrete senses – so that we can provide the word with
a number of formulas corresponding to these senses. Any careful thought shows
that actual usages of words in texts are difficult to assign in practice to one and
only one of a set of pre-sorted “senses”: it is not just that a usage may cover more
than one, but that it may be essentially vague between several. However, discrete
senses are a sensible working hypothesis which accords with common sense and,
in any case, no one has much idea at the moment of how to capture “vagueness”
in a formal manner.

An important feature of the formulas is that they are not diagrammatic. That is
to say, they are already in list format, and it does not require a special subtheory
to show how to encode them for computation. Moreover, those who prefer to
see their sense representations diagrammatically should remember that in a clear
sense explanations of word meaning are more natural in a sequential “language-like
form”. The formulas are intended to provide this, and much of their syntax is part
of this effort to produce a “habitable” form (in Watt’s sense) readable and writable
by the user.

The end product of this process, then, is a list of formulas for any English word,
where the formulas may correspond to whatever part of speech in which the word
may be used. It is best to begin with a familiar example, that of the action sense of
the word “break”:
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The general structure of such formulas has been explained in Wilks [39, 40,
41, 42]. They are intended to express the interlingual meaning of the sense of the
word, and the primitives that comprise them are intended to be interlingual even
though they happen to be mostly Anglo-Saxon monosyllables. Formulas are trees
of left right dependencies but the dependence is interpreted differently according to
the type of the subformula, where a subformula is any left – right pair whose two
members are either a primitive or another subformula. Formulas in the dictionary are
thus binary trees, though the one above is written so that the four main subformulas
(connected directly to the top of the tree) are written at the same level as STRIK,
the head of the formula, that is to say its principal primitive element, which is
always the rightmost since the dependencies are always left right. The additional
parentheses that make the above tree binary have been left out for perspicuity –
I shall return to this point later. Subformulas like the four connected to the top
as above, are referred to as the top level subformulas of the formula, and are
usually case subformulas – they have as their principal (rightmost) elements the case
primitives SUBJ (Agent), OBJE (Object), GOAL (Purpose) and INST (Instrument)
respectively. The whole formula is to be interpreted as explaining the meaning of
“break” as a STRIKing, done preferably with an INSTrument that is a THING,
with the GOAL of CAUSing a PHYSICALOBJect to BE NOT WHOLE, and the
action being preferably done by a HUMan SUBJect. A formal version of such loose
explanations will be given below.

The right place to start thinking about the construction of formulas and subfor-
mulas is to see them as built up from seven types of subformulas. These are:

I. Adverbial Subformulas

(TRUE HOW)

equivalent to the English “really” in its straightforward sense. The governor
(righthand element) is the element HOW, and the dependent lefthand member is
always a qualifier element like TRUE, or a qualifier subformula (type II, see below)
equipollent with a qualifier, or a case subformula (type II, see below) as in

((MAN LIKE)HOW)

which is equivalent to (and so could be the formula for) “humanly”.
The head must always be HOW if the subformula is also a formula, that is if it is

to be in the dictionary as the sense of a word. However, if it occurs within formula
a type I can have a head that is not HOW – it can be simply be a qualifier element.
Thus,

(TRUE TELL)

whose meaning is “speaking truthfully” is a subformula of type V (action
groups) where the element TRUE is the dependent, and can be considered a type
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I subformula. For an element can be a subformula but not a formula. Later a full list
will be given of specific conditions on formulas that do not apply to subformulas
(such as not being a single element, and requiring a HOW governor in type I etc.).
These special conditions are required on the formulas because they not only express
meaning but have to participate in higher level structures like templates (q.v.).

Since every grouping in a formula is binary and one of the seven types, we
should ask what is the interpretation of the left right dependency in each of the
types. In a type I subformula, if its governor is HOW then the dependency is just
that of an action qualifier on the name of a relation (HOW), for HOW is then no
more than the name of the relation between the action qualifier, say TRUE and the
action qualified, say, TELL.

II. Case Subformulas

These always have a governor that is one of the case elements (see the list in
full below). A case subformula is never a formula, which is to say that no type II
group is ever listed in the dictionary as the meaning of a word sense. The senses of
English surface prepositions which might be thought to have a casetype formulas
are in fact formulas with one of the pseudo-action heads PDO and PBE, see below.

A typical case subformula would be the

(THING INST)

occurring in the sample formula for “break” above. The dependent is normally a
substantive element or group, or a class element like *HUM which is equivalent
to a class of other elements (see the full element list below). The cases WAY
(manner)GOAL (purpose) and *TLOCA (time location), however, normally take a
depend at which is a full or partial assertion, which is to say groups V, VI and VII.
The “syntax of subformulas” is satisfied if the dependent is any of those types, but,
and we shall return to this point later, the “semantics of formulas” requires that
there be enough information available in the formula so that a “full assertion” (type
VII) can be constructed in certain circumstances. So for example, in the “break”
formula above, the GOAL (purpose case) subformula is:

((((NOTWHOLE KIND)BE)CAUSE)GOAL)

in which the dependent of GOAL is an action (CAUSE) together with its
complement ((NOTWHOLE KIND)BE), i.e. the dependent (on GOAL) is type V.
However, the agent (*HUM) and object (*PSYSOB) can also be used by later
inferences (see below) to create an appropriate semantic object of GOAL, because
the meaning of the purpose case here is that “breaking” is a causing by humans of
physical objects to be not whole. This “semantics of formulas”, distinct from their
syntax, is discussed below under “trans-group rules”.

As with type I, when the governor in type II is a case name (as it always is),
the dependency is of an assertion, or an entity, on the case name itself. Since,
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as we shall see below, type II groups are normally themselves the dependents of
actions, the case name is simply the name of the relation of dependency of the case
dependent entity on the action in the higher level group. So, in the “break” formula,
INST simply names the dependence of THING ON STRIK.

III. Qualifier (or Adjectival) Subformulas

The structure of this type is like that of type I; if the subformula is a formula then
its governor is the special element KIND. Thus we have

(LINE KIND)

which is equivalent to the English adjective “linear”. If the governor is KIND then
the dependent is a qualifier or, as here, a substantive. As can be seen from the

(NOTWHOLE KIND)

subformula in the “break” formula, a subformula of type III can have KIND as a
governor while not itself being a formula. In that example it is of that form, rather
than merely NOTWHOLE as in

(NOTWHOLE BE)

so as to make clear that the subformula

((NOTWHOLE KIND)BE)

is of type V, which includes forms (III BE), a predication of a quality, and
not type VI which includes (IV BE), a predication of equivalence. WHOLE and
NOTWHOLE standing alone are ambiguous between their functions as a quality
and a substantive, and so (NOTWHOLE BE) could be either type V or VI, whereas
(NOTWHOLE KIND) can only be III and so ((NOTWHOLE KIND)BE) – by rules
of type inclusion we shall come to – can only be interpreted as type V, a predication
of a quality.

Two minor points should have emerged in passing. First, that any element can
be negated by becoming the new atom with NOT as its first three characters, the
rest staying the same. Not all elements are ever negated in fact and some of the
case elements could not be interpreted if they were negated. Secondly, that many
of the elements can function in more than one subformula or group, and so in more
than one role – all substantives can also be qualifiers, for example, many action
elements can be qualifiers. This is clarified by the tables attached to the full element
list below.

Not all qualifier elements have a substantive function, for example, GOOD, MAL
(male) are only qualifiers, they cannot be governors in type IV.
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IV. Nominal (or Substantive) Subformulas

These subformulas are those whose governor is a substantive element like MAN,
STUFF, THING:

(FEM MAN)

means a feminine human being, that is to say it has the function of “woman” in
English. As the tables below will show elements like MAN can be governors only
in type IV groups, so a subformula like the one above must be of type IV even if
it functions as a dependent qualifier as in

((FEM MAN)KIND)

which is of type III and equivalent to “feminine” in English.
Three cases POSS (possession), WITH (accompaniment), and LIKE (is similar

to) are dependents in type IV subformulas, rather than being dependents on actions
as are the other cases.

There are also conventional subformulas, whose meaning could not be extracted
from their structure, and which are two-element pairs of type IV that are kept on a
special list, which includes:

(FLOW STUFF) liquid
(GET SIGN) money
(THRU PART) aperture.

It will be clear that these have a dependency structure in which case and action
names appear to be dependents in type IV. However, the table below for the
elements’ functions will not give actions like FLOW and GET, nor cases like THRU,
as possible dependents in type IV, since the conventional subformula dictionary
will always be consulted for the presence of such pairs and therefore no partici-
pation information (for say GET in type IV) is required to parse the conventional
subformulas.

V. Action Subformulas

Types V, VI, and VII all have primitive action elements as their governors –
elements like DO, MOVE, TELL, STRIK, – and it is the nature of the dependents
that determines the type of the subformula.

In type V the dependent is either another action

(CAN DO)

equivalent to “can” in English (since, see below, CAN cannot be the head of an
action formula), or an action qualifier type I, as in

(TRUE TELL)
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or an action complement, itself of type V, as in

(((NOTWHOLE KIND)BE)CAUSE)

or a case subformula of type II, or, if the action is BE, the dependent can be a type
III (qualifier) predication:

((NOTWHOLE KIND)BE)

The relation of dependent on governor in this group is always one of qualification.

VI. Transitive Action Subformulas

In this subformula type the dependent is either an object case type II, as in

((*PHYSOB OBJE)STRIK)

or is an assertion, of type VII, typically dependent on the governors CAUSE,
THINK, FORCE, DROP or WANT.

It is important to note that objects of actions must be marked by the OBJE case: i.e.
the dependent of VI must be or case-headed II and not IV (unless the action is BE)
unless it is itself VI or a full assertion (VII) which need not be marked.16

VII. Assertions (or Full Clause) Subformulas

The dependent of this subformula type is normally an agent, which need not be
marked, as in

(*HUM MOVE)

meaning a human being, or beings, move. The governor may be a primitive action,
or a type V or a type VI group as in

(*HUM((*PHYSOBJ OBJE)STRIK))

which will be made clear if the subformula types are appended at the last parenthesis
of the group as follows

(*HUM((*PHYSOBJ OBJE)STRIK))

II VI VII

16 so, for example, the subformula ((MAN ((*PHYSOB OBJE) HAVE)) CAUSE) would
be interpreted so that the whole “a human has a physical object” would be a type VII
(full assertion, see below) and the object of CAUSE, though it is not marked as such, in
that there is no additional OBJE element dominating the VII subformula.
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If the governor is HAPN, a VII subformula can have a type VII dependent (unmarked
as SUBJ) also.

We can now set out the mutual relations of the subformula types (that are not
single elements) in a table which, together with the tables that follow for the
individual semantic elements, plus any standard parsing algorithm, will yield an
unambiguous labelling of the structure of any formula or subformula.In the table:

0 means cannot be a governor or dependent
1 means can be a dependent but not a governor
2 means can be a governor but not a dependent
3 means can be either a governor or a dependent.

Figure refers to the participation of the column type in the row type

I

CaseII

Adverbial

III

V

VI

VII

IV

I II III V VI VIIIV

0 0 0 1 0 00

0 1 1 0 1f

1b 1a

12

0 1 3 2 20

1 0 0 1e 0 01

1 2d

1c

0 1 1 0 211c

0 0 011c

1d 3d 1g 1h1

Nominal

Transitive

Transitive

Assertional

Qualifier

a only if governor is HAPN.

b only if governor is CAUSE, THINK, or WANT.

c only if governor of II group is WAY, SUBJ, *TLOCA, GOAL or POSS.

d only if governor of II group is POSS, WITH.

e only if governor of V group is BE.

f only if governor of VI group is BE.

g only if governor of II group is OBJE.

h only if governor of II group is SUBJ.

We are now in a position to give the list of semantic primitive elements in full,
with their possibilities of participation in the seven types of subformula.
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Group A: Nineteen Case Primitives

Element names preceded by a star/asterisk are equivalent to a class of other primi-
tives, including themselves and the elements inset to the right below the corre-
sponding class primitive. Following the seven place rows of the table above, the
function of case primitives is given by

�0 2 0 0 1 0 0��

unless indicated otherwise.

*DIRE the general DIRECTION case element
TO direction towards
FROM direction away from something
UP in an upwards direction
THRU direction through some other thing

INST the INSTRUMENT case, indicating the instrument used in some
action

FOR the RECIPIENT case, indicating the normal recipient of an
action

*LOCA the SPATIAL LOCATION case, indicating the place of an activity
or thing

IN the CONTAINMENT case, indicating what contains some other
thing

*TLOCA the TIME LOCATION case, indicating the time location of an
activity (0 2 0 0 1 0 0)

BEFO indicating an action occurs before another (0 2 0 0 1 0 0)
AFT indicating an action occurs after another (0 2 0 0 1 0 0)
SIMUL indicating an action occurs at the same time as another

(0 2 0 0 1 0 0)
GOAL the PURPOSE case, indicating the purpose of an activity
SOUR the SOURCE case, indicating the substance from which some

object came
WAY the MANNER case, indicating the manner or method by which an

activity was performed
OBJE the OBJECTIVE case, indicating the object of an action

(0 2 0 0 0 1 0)
SUBJ the AGENT case, indicating the instigator of an action

(0 2 0 0 0 0 1)
‘subject’ here being taken to refer to a semantic, rather than a
surface, subject

WITH the ACCOMPANIMENT case, indicating the accompanier of an
entity (0 2 0 1 0 0 0)

POSS the POSSESSIVE case, indicating who owns some thing
(0 2 0 1 0 0 0)

Additionally, POSS indicates the preferred object to which a type
III qualifier group applies, as in:
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((*ANI POSS)(WELL THINK) KIND))
meaning, say, “intelligent”, where the initial type II subformula
indicates that it is preferably predicated of animate entities.
So POSS covers both the possession of entities by owners,
and the possession of properties by entities; though not both
situations lead inferentially to conclusions in terms of HAVE
(see below).

LIKE the SIMILARITY case, indicating that the object is like some other
thing (0 2 0 1 0 0 0)

Group B: Thirty Four Action Elements

*DO a dumny element covering all the action elements except PDO and
PBE.
It has the union of the vectors of all action primitives namely,

(0 0 0 0 2 2 2)
The elements below have the same participation vector as *DO unless
otherwise specified.

CHANGE changing the state of a substance or object
COUNT computation or reckoning.
FEEL having of emotional sensations.
GET obtaining some thing or substance.
GIVE yielding up some thing or substance.
GIVTEL telling a story or any utterance, is the formula head of the English

“tell”. It has no semantic difference from TELL (see below), but as
the head of a formula for verbs like “tell” it constitutes a cue for
picking up the indirect object construction. GIVE above has the same
property but, unlike GIVTEL, it can also function within subfor-
mulas that are not formulas (i.e. word senses). The TELL/GIVTEL
distinction is necessary if the syntax of indirect objects is to
be handled in a simple and uniform manner without a separate
syntactic component or a surface case frame.

HAVE possessing an object or substance.
MAKE constructing an entity from substance or parts.
PICK choosing from among alternatives.
PLEASE causing good feeling in an animate entity.
SENSE sensing via the physical faculties.
STRIK striking some kind of blow.
USE making use of.
TELL telling a story or any utterance (functions as of the formula head for

the English “say”).
WRAP enclosing or surrounding.
DROP ceasing to do something. It takes a type VI but not type IV (nominal)

object.
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CAUSE17 causing something to happen (can take a V, VI or VII but not a IV
object).

THINK acting mentally in any way (as for CAUSE).
FORCE compelling something, a physical thing or an event to happen (can

take a VII or IV object).
WANT DESIRING SOME THING OR STATE OF AFFAIRS (as for

FORCE)
MOVE self moving in space. It takes no object of any type in vector space

VI. (0 0 0 0 2 0 2)
FLOW freely moving as a liquid (0 0 0 0 2 0 2)
FUNC FUNCTIONING AS OF A MACHINE (0 0 0 0 2 0 2)
HAPN taking place. Its dependent in VII must itself be VII, expressing a

state of affairs (0 0 0 0 2 0 2)
WILL expresses futurity and can only be dependent of another action. The

following five actions are of this “auxiliary” type. (0 0 0 0 1 0 0)
CAN expresses ability to do something (0 0 0 0 1 0 0)
ASK expressing interrogation (0 0 0 0 1 0 0)
LET expresses allowing something to be done (0 0 0 0 1 0 0)
MAY expresses possibility of something happening (0 0 0 0 1 0 0)
MUST expresses necessity of something happening (0 0 0 0 1 0 0)
BE equivalent and predicator (depending on type of object as explained

above under subformula types V and VI) (0 0 0 0 2 2 0)
PDO dummy pseudo-action functioning as the head of formulas for

“action-oriented prepositions” like “to”.
PBE dummy pseudo-action functioning as the head of formulas for “static

prepositions” like “with”.

Group C: Nineteen Substantive Elements (Plus Twelve “Class Elements”
Classifying Them)

All the substantive elements below, except SELF, can function as qualifiers too
with an appropriate shift of interpretation. (i.e. be dependents in types III and IV).
There are no a priori restrictions or agency imposed during the construction of
subformulas, and hence all the substantives below, again excepting SELF, can be
dependents in type VII. All the elements below, unless otherwise marked, have the
participation vector: (0 1 3 3 0 1 1)

SELF used to refer back to agent of next higher order action. Can appear only
as dependent of case element or as agent of (a lower order) type VII.

(0 1 0 0 0 0 1)
WHOLE a totality of some kind.

17 As noted above, the objects of CAUSE (and THINK, WANT, and FORCE) are not marked, if of
types V, VI or VII, but agents are.



Good and Bad Arguments 131

WORLD the physical universe.
POINT a place marking entity, spatial or temporal.
SIGN symbols, thoughts and signs.
SPREAD an extension, as in (WHERE SPREAD), a spatial extension.
STATE a state of affairs.
STUFF any substance.
BEAST any non-human animal (BEAST is not above MAN on some

Aristotelean tree).
THING an inanimate physical object.
LINE a physical line between two points.
MAN a human being.
PART a part of any of the entities listed (see *ENT below).
PLANT any vegetable entity.
EVNT an event.
ACT an act, done by a conscious being.
GRAIN any kind of structure.
FOLK any human group.
THIS an unidentified, but particular, entity of any type.
*ENT any entity (i.e. covered by THIS, POINT, FOLK, MAN, GRAIN,

PART, THING, BEAST, SIGN, SPREAD or LINE).
*ANI any animate entity (i.e. THIS, MAN, FOLK, BEAST or SIGN).
*POT any “potent” entity (i.e. *ANI, STATE, PART, ACT, PLANT).
*MAR any “mark-like” entity (i.e. THIS, SIGN, ACT, STATE).
*ANIMAR*ANI*MAR
*SOF any “malleable” entity (i.e. THIS, PART, WHOLE, GRAIN,

STUFF)
*PLA any “place definer” (i.e. THIS, POINT, SPREAD, PART).
*AC any “act definer” (i.e. THIS, ACT, EVNT).
*PHYSOB any physical object (i.e. THIS, THING, MAN, BEAST,

SPREAD,
*HUM PLANT, PART).
*HUM any human entity (i.e. THIS, MAN, FOLK).
*INAN any inanimate entity (i.e. THIS, PART, GRAIN, STUFF, PART,

THING, LINE, SPREAD).

Group D: Sixteen Qualifier Elements

These qualifiers, unlike group C, cannot also be substantives. Most can qualify only
substantives (i.e. as dependents in type IV) and, unless indicated otherwise, all will
be deemed to have the corresponding participation vector, namely:

(0 0 0 1 0 0 0)
TRUE qualifies only actions and implies correctness in the sense of conformity

with reality. (1 0 0 0 1 0 0)
GOOD morally correct or approved.
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WELL qualifies only actions and implies reaching some (non-moral)
standard (1 0 0 0 1 0 0)

SEE
TOUCH qualify actions, normally SENSE, so as to specify which of the five
HEAR human senses is intended (1 0 0 0 1 0 0)
SMELL
TASTE
MANY qualify substantives: MANY qualifying entities and MUCH

substances.
MORE MORE is not a relation here, like “greater than”. SAME is an
MUCH identifier that relates the entity qualified to the similar entity at the
SAME next level up.
WHEN qualify, normally POINT, to indicate temporal or spatial entities or
WHERE locations. Some of these are on the conventional subformula list,

such as (WHERE STUFF) meaning “space”.
MAL indicate the sex of the entity qualified, so that (MAL MAN) is
FEM equivalent to “man”.

Two miscellaneous elements:

HOW is, as explained, always the head of formulas that are of type I
(2 0 0 0 0 0 0)

KIND the head of formulas of type III is always this element
(0 0 2 0 0 0 0)

Assembling and Interpreting Formulas: The Role of Trans-Group Rules

The participation vectors given for subformula groups and for individual semantic
elements suffice for the construction of actual formulas for English word senses and
for the parsing and interpretation of such formulas by any one of a number of simple
algorithms. We shall now look in detail at the decomposition and interpretation
of the formula for “break” given earlier, and in doing so set out the transgroup
rules that are needed to make the process watertight in the situations where the full
subformula that satisfies the vector has to be constructed inferentially. This process
is quite clear and will be explained at the appropriate point in the discussion.

Interpretations can be constructed from the following general rules for the
building and interpretation of formulas:

i) Each subformula in a formula is of one of the seven types and consists of a left
member depending on a right member, and left or right may be either a single
primitive element or another group. Thus, (*HUM SUBJ) is type II (case),
known to be such because the rightmost member of its pair is the governor and
SUBJ is a primitive element that can be governor of only the Agent case (i.e.
it has a 2 or 3 only in the second place in its vector).

Similarly, within the GOAL-headed subformula, the vectors show that
(NOTWHOLE KIND) must be III, and ((NOTWHOLE KIND)BE) must be V.
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The type assignments to the principal subformulas can thus be written as Roman
numerals after the corresponding closing parenthesis as follows:

((*HUM SUBJ)(*PHYSOBOBJ)((((NOTWHOLE KIND)BE)CAUSE)GOAL)THING INST)STRIK)

Now, the formula as written above, and as written earlier with the tree branches
drawn in, is a slightly abbreviated form of the actual dictionary formula. In the
diagram the main subformulas are shown as being all at the same level, with the tree
branches corresponding to them connected directly to the top of the ‘formula tree’.
However, the formula is in fact a binary tree, and so contains the ‘ghost brackets’
drawn in below the formula above. The formula can now be fully parsed as follows:
the (THING INST)II is dependent on STRIK to form a type V subformula – this is
the only possible interpretation. see line II column V of the table and the vector for
STRIK. Then, the GOAL-headed II depends on that V subformula to form another
V – this must be unique since a II, not headed SUBJ, OBJE, POSS or WITH, can
be dependent on an action only in a V. Consulting the table again shows that, going
leftwards, we obtain next a VI and finally the VII which is the type of the whole
formula.

Thus the full binary structure of the formula, each node labeled with its parsed
subformula type is:
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A reader might perhaps feel that the extra parentheses impose too much structure
on the formula in that, if the whole system is implemented in LISP (as it in fact
is), then that level of structure is expressed by LISP’s own data structure because,
for any formula or subformula F, its governor would be given by CADR F, and its
type properties could be computed from that.

ii) The transgroup rules

If we turn back to the formula for “break” annotated by the type Roman numerals
we shall see that, although the type V-dependent of GOAL is legitimate in that it is
allowed by the table, nonetheless it does not obey the restriction specific to GOAL,
namely that GOAL requires a whole assertion (type VII) as its dependent.

The same consideration applies to the V dependent of the CAUSE – headed
type V formula. The restriction specific to CAUSE (as for THINK and other actions)
is that its dependent be a full (type VII) assertion, whereas in this formula it is
type V.

The full dependents can be constructed inferentially when required during later
processing, as I shall now describe. But we should note that what has been done is
to make the formula “habitable”, as a coding system for human dictionary makers,
by compressing it: making agents and objects function for more than one primitive
action. Agents and objects of actions in a formula are normally sought to the left
of the primitive action element. If the whole formula is for an action (as above
for “break”) the two leftmost subparts of the formula fwill always be the preferred
agent and object of the head primitive, in that order (see below on “full formula”
restrictions). For any actions within the formula (such as CAUSE in the formula
for “break”) its preferred agent and object are normally the next agent and object
to its left – which of course, as in the case of “break”, may turn out to yield the
same entity as the preferred agent of the whole formula, though this need not be
the case. Moreover, in the case of actions within a formula (i.e. not constituting the
head) the agent need not be marked, though the object must be unless it is of type
VII. Thus, within a formula a group like (MAN STRIK) is always interpreted as
an assertion (type VII) group, MAN being an unmarked object to yield a (type VI)
action group i.e. ((MAN OBJE)STRIK).

So, the general form of the transgroup rule for locating agents and objects (to
satisfy restrictions peculiar to certain elements) is:

Search next left at levels higher up in the formula.18

Thus, the dependent of GOAL, as mentioned earlier, must be an assertion,
whereas it is bracketed to only (((NOTWHOLE KIND)BE)CAUSE) which can only
(during inference procedures called ‘extraction’ to be described later) become an
assertion group by the addition of the next agent found to the left namely *HUM.
CAUSE also requires a dependent object that is an assertion (hence (*PHYSOB

18 As we noticed earlier, this method is also applied in type III (KIND-headed) formulas,
where a type II (POSS-headed) subformula indicated the type of entity qualified but can
also be interpreted as the agent of an included action by transgroup rules.
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OBJE) will not do as its object taken alone) and can take, to fill that assertion group,
an entity to its left marked either OBJE or SUBJ whichever is closest. Hence the
dependent of ((NOTWHOLE KIND)BE) is *PHYSOB and the “real” dependent
of CAUSE (found by inference) is (*PHYSOB ((NOTWHOLE KIND)BE))
and so the “real” dependent of GOAL is (*HUM((*PHYSOB((NOTWHOLE
KIND)BE))CAUSE)).

This compression of expression can be argued to be “habitable” (Watt 1968) for
a formula maker. It also avoids to a large extent the defect of other conceptual
representations of this general type, pointed out by [32] that, if the entities like
(*HUM SUBJ) are put into the representation many times but are intended to refer
to the same human, then this must be indicated.

Where such identity must be specific in formulas, but that cannot be achieved by
the above compressed expressions, it is obtained by means of the primitives SAME
and NOTSAME : the same (or not), that is to say, as the next encountered token
of the associated primitive when working leftwards inside the formula.19

Full formula rules

The types I-VII described earlier can, in general, be either whole formulas (repre-
senting the meaning of word senses in the dictionary) or subformulas at any level
within a formula. Any binary structuring of elements, that obeys the syntax rules
given earlier, is a subformula but not every subformula is a formula.
Below are listed rules peculiar to formulas.

i) A type II subformula cannot be a formula.
ii) If a type I subformula is a formula its head must be HOW.

iii) If a type III subformula is a formula its head must be KIND.
iv) PDO, PBE, GIVTEL can be the heads of formulas but not of subformulas.
v) Both the object and the agent of an action formula must be marked, and they

must be respectively the CADR and CAR of the whole. During later processing
a ‘tense primitive’ (not listed here) may be CONSed on as the CAR of the
whole formula, but this does not appear in the dictionary version of an action
formula.

vi) In certain nominal (type IV) subformulas that are formulas the order of the
head and of the OBJE/SUBJ markers may be reversed so as to yield a nominal,
not a case head. For example, consider the following formula for “shephered”
(marked with types):

((((LINE THING)INST) (((THIS BEAST)OBJE)FORCE)) (SUBJ MAN))

IV II IV II VI VI II IV

19 It may be noted that if the formula marker thought that the interpretation of *PHYSOB
would be ambiguous, he could simply repeat it using SAME, so as to yield the subformula
(((SAME*PHYSOB)((NOTWHOLE KIND)BE))CAUSE).
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Here, the agent of forcing (of the sheep) is placed to the right of the associated
action, and the reversal of the SUBJ and MAN elements cues an agent-seeking
routine that the agent is to be found to the right of the action and not, as is normal,
to its left. The reversal is also necessary so that the head of the whole formula
shall be the appropriate MAN, and not the inappropriate SUBJ. It is also necessary
therefore that the participation table allows II to be a governor of IV, and VI to be
a dependent in IV.

It may be worth emphasizing that formulas are not in any straightforward sense
transformable into the more conventional semantic net representations of natural
language. The main reason is that those representations attempt to conflate (in an
unclear way in the author’s opinion) the representation of word senses, real world
knowledge, and actual texts (or sentences). They are all represented in a uniform way
in semantic nets with a bias towards the paradigm of “language-free-knowledge”.
In the present system, on the other hand, the bias is towards representation of texts,
and of “knowledge” as coded forms of texts – these structures are the higher order
structures of templates to be discussed later – but formulas represent the structure
of individual nodes in those representations. Thus the correspondence between
formulas and conventional semantic nets is approximately that a formula for, say
“shepherd” is the structure present at a node in a semantic net that would normally
have just the atom “shepherd” attached to it.20 These, then, are radically different
ways of seeing the representation of meaning and knowledge.

Any attempt to see formulas directly as nets (rather than as the structure of nodes
in nets) will lead to trouble. If this were to be attempted, then the formula for
“break” above would contain not only the net links:

20 A closer analogy exists between formulas and the “stack of slot names” form of word
meaning in KRL (Bobrow and Winograd, in press). It is clear that a formula could be
expressed as a stack of case names and the preferred type of their “fillers” as in

Give UNIT Specialization � � �
object (a Thing)
giver (a Person)
recipient (a Person) etc.

Moreover, it appears that the slots in this “prototype” object for give are not simply filled,
but rather that this object dictated how slots are to be filled in a copy of it elsewhere
rather as formulas dictate how templates are to be constructed.
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but also the quite other type of link

which asserts that the preferred agent of breaking will be human. However, the
top link must not be interpreted as saying that the preferred agent of the primitive
STRIK is human, because that is not an assertion in the present system at all. All the
top link can say is that the primitive action STRIK sometimes takes human agents.
In some other formula, for another surface action whose underlying primitive was
also STRIK, the preferred agent might be *ANI, a wider class. In this system there
are not specific semantic restrictions on the dependents of the primitives, as in, say
Schank (1973). Such restrictions could easily be imposed on the present system by
fiat: by deeming, for example, that in any formula the agent of STRIK must be
*ANI for the formula to be well formed. However, this is, I believe, premature at
the present stage of things, and nothing would be gained from laying down such
restrictions. They could, however, emerge inductively from a survey of a large body
of real formulas. It might be argued, though, that specifying that, say, the object
of CAUSE must be an assertion (type VII) subformula is already a step in this
direction, although it would certainly be misleading to refer to that direction as
the “semantics of formulas” – as opposed to a “syntax of formulas” governed by
the table of participation. There is no difference of type here – all that is being
discussed is the degree of restriction to be stated in terms of the substitutability of
the elements and classes of them.
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Making Preferences More Active

Yorick Wilks
University of Essex

Abstract: The paper discusses the incorporation of richer semantic structures into the Preference
Semantics system: they are called pseudo-texts and capture something of the information
expressed in one type of frame proposed by Minsky (q.v.). However, they are in a
format, and subject to rules of inference, consistent with earlier accounts of this system
of language analysis and understanding. Their use is discussed in connection with the
phenomenon of extended use: sentences where the semantic preferences are broken. It is
argued that such situations are the norm and not the exception in normal language use,
and that a language understanding system must give some general treatment of them.
A notion of sense projection is proposed, leading on to an alteration of semantic formulas
(word sense representations) in the face of unexpected context by drawing information
from the pseudo texts. A possible implementation is described, based on a new semantic
parser for the Preference Semantics system, which would cope with extended use by the
methods suggested and answer questions about the process of analysis itself. It is argued
that this would be a good context in which to place a language understander (rather
than that of question-answering about a limited area of the real world, as is normal)
and, moreover, that the sense projection mechanisms suggested would provide a test-
bed on which the usefulness of frames for language understanding could be realistically
assessed

7.1 Introduction

This paper is intended to suggest how we might deal with extensions of word-sense
in a language understanding system, one manipulating rich structures of meaning
and knowledge, and do so in a general and systematic manner. But two preliminary
points must be dealt with immediately. First, what I shall call new, or extended,
use is the norm in ordinary language use and so cannot be relegated to some mode
of special, but dispensible, treatment. Secondly, that simply to accept extended
uses, in the way I have shown that the Preference Semantics system does [21],
is not sufficient, and that we must seek ways to interpret those uses in an active
manner.
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Suppose we look at some perfectly ordinary sentence of newspaper text chosen,
I promise you, at random:

(1) “Mr Wilson said that the line taken by the Shadow Cabinet, that a Scottish
Assembly should be given no executive powers, would lead to the break up of the
United Kingdom.”

The Times: 5 February 1976
The sentence presents no problem whatever to the normal reader with a general

grasp of British politics, and yet, if we start from the point of view of “selection
restrictions” [9] we notice that, at no less than four (italicized) places in a perfectly
straightforward sentence, they are broken. That is to say, anyone setting out to write
down the selection restrictions for the objects of the verb “take” would not want
to write them in such a way that lines could be said to be taken, and so on for the
other three actions in the sentence.

My first preliminary point is that, whether or not we want to call such usage
“metaphorical”, it is the norm in ordinary everyday language use, and cannot
be relegated to the realm of the exceptional, or the odd, and so dealt with by
considerations of “performance” in the sense of Chomsky [4]. On the contrary it
is, I shall argue, central to our language capabilities, and any theory of language
must have something concrete to say about it. Even if the newspaper usages above
are “extended”, I would suggest that anyone who could not grasp these extensions
could not be said to understand English properly (given adequate knowledge from
which to extend, and we shall come to that later).

No claims are being made here about the murky matter of language learning
beyond saying that, given some grasp of word-senses and some knowledge repre-
sentation, a language understanding system should have mechanisms for extending
that repertory of senses in a systematic way, and this is a much weaker claim than
any general one about language learning as such. For it is only a claim about how
to extend the language from some given starting point.

An additional argument for some such facility, as a glance at any dictionary
shows, is that yesterday’s extended use is today’s normal sense of a word: in other
words, sense-extension is part of the fundamental process underlying language
development, and a natural language cannot be contained within a fixed repertory
of senses, in the way that a logical language can, and this is a fundamental point
of difference between the two.

My second preliminary point concerns the difference between acceptance and
interpretation of extended use. In previous papers describing a programmed system
of natural language understanding (e.g. [22]) I have described how rules operate on
semantic descriptions of word-senses so as to build up text descriptions. The rules
for inserting the word-sense descriptions are what I have described as “preferential”,
in that they seek preferred entities but will accept those that do not satisfy the
preferences. For example, the action of drinking can be said to prefer an animate
agent and so will correctly select as the agent of

(2) The adder drank from the pool
the snake and not the machine. However, in the case of
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(3) My car drinks gasoline
none of the senses available for “car” are animate, and so the system simply accepts
what it is given. I contrasted this approach with that of selection restrictions, not so
much as regards the content of the restriction (to animate in this case), nor the form
of its coding, but as regards the form of the rule that operates on the restriction. I
described a form of rule that would both make the discrimination required for (2)
and accept (3), while the “selection restrictions” approach was specifically intended
to reject (3).

However, it is clear that simply accepting the car as the agent of (3) is not enough,
as far as “understanding the utterance” goes, which we may take as implying at
least some of the structure derived for interpreting later stretches of text. In [18]
I described a feature of an early LISP program in which the system did make an
attempt to interpret “preference-breaking” utterances like (3): by finding a coded
sense for some other word (in the same text) that did satisfy the preference under
examination, and substituting that for the sense that did not fit. In that way the
sense repertory of the non-fitting word (such as “car” in (3)) was extended by
one new sense representation. However, that heuristic depended very much on the
semantically dense structure of the particular texts under examination, and was
almost certainly not of any general application. So, for example, in a text containing
(3) there is no reason to believe that there would be another (animative) drinker
mentioned in the same text, such that “car” could plausibly be said to be being
used to mean that animate drinker. We could easily construct texts to which such
a heuristic would apply, viz:

(4) Smith took the chair at the Board Meeting. Jones came in late, acknowledged
the chair and crept to his seat
where the underlined phrase is used to indicate Smith, who would in this example
be an appropriate type of object for the action “acknowledge”. Nonetheless, there
is no reason to believe that such a heuristic would be much use in dealing with
everyday language like (1).

Clearly something more is required. Let us return to (3) briefly and ask what an
intelligent program might be expected to make of it. First, it should see that non-
animate entitles may be said to drink, and be prepared to revise its agent preference
accordingly in the future.

Secondly, and more importantly, it should notice that cars can be said to drink
in virtue of something already known about cars, namely that they have a fluid
(petrol or gasoline) injected into them in order to make them run. That is to say,
the program should have access to a sufficiently rich knowledge structure for “car”,
and be able to notice that cars stand in a consumption relation to a particular fluid,
that is of the same semantic structure (in the sense of that phrase yet to be defined)
as the relation in which a drinker normally stands to a liquid to be drunk. All this
may sound obvious, but it must surely be that on that similarity the successful
metaphorical force of (3) rests.

It will also come as no surprise to those acquainted with recent Artificial Intelli-
gence (AI) literature to know that the knowledge structures proposed will be within
the recent Minskyan paradigm for larger knowledge structures that are normally
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called “frames” [10]. However, the detailed structures to be proposed here are
consistent with previous accounts of the preference semantics system (see [25]).

A final point to be noted about (3) is that its normal force in English is to suggest
not only that the car consumes gasoline but also that it consumes a great deal of
it. We might distinguish that element in the interpretation as the idiomatic element,
in that there is no way in which a reasoned basis could be established for deducing
it. Like all idioms it would have to be dealt with by crude listing of forms, just as
we have to learn idioms in a foreign language simply because there is no way we
could deduce them unless, by chance, they happen to match our own.

The next section is simply to recap the programmed form of the preference
semantics system. A reader who is familiar with it should precede direct to the
following section which is the nub of the present paper.

7.2 A Brief Recap of the Processes of the Preference
Semantics System

The purpose of these general processes is to construct a unique semantic repre-
sentation for a text. This representation, a semantic block, will consist of template
structures tied together with various case, anaphora and inference ties. Each template
structure corresponds to a phrase or clause of the surface text and expresses
its gist. A template consists of a network formulas that represent word senses.
Every structure in the system consists, directly or indirectly, of semantic primi-
tives (drawn from a vocabulary of one hundred). In order to construct a unique
semantic block for a text, that system may have had to make explicit semantic
information not present in the surface text. This is done (see below) by inferring
template-like objects (extractions) and adding them to the semantic block, even
though they do not correspond to any surface clause in the text. This “deepening”
of the representation is only done if necessary for the isolation of a unique
representation.

The system assumes that every English word-sense in the dictionary has had
a formula associated with it that expresses its meaning. Formulas are trees of
semantic primitives. They consist, at the top level, of case sub-formulas. All depen-
dency, within sub-formulas, and of sub-formulas on others, is left-on-right, with the
result that the right-most primitive—the head of the formula becomes its principal
category. (6) and (7) are two action formulas for two senses of the English “grasp”,
having heads THINK and SENSE respectively, and represent the senses of that
word we would locate in:

(5) It took John four hours of practise to grasp how to grasp a golf-club.
Primitives like ∗ANI (animate) indicate with the asterisk that they are equivalent

to a class of other primitives. The above formulas can be loosely explicated as
follows (a full syntax of formulas is given in [27]):

(6) implies that grasping is a THINKing action, that the SAME SIGN is TRUE,
an action preferably done by an ANImate agent to a SIGN (the same sign as earlier)
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OBJect, and with an INSTrument that is a particular PART of a MAN (human, i.e.
the brain or mind).

(7) implies that grasping is a SENSing action, TOUCH sensing, preferably done
by an ANImate agent, and to a PHYSical OBJect, and again by an INSTrument
that is a particular PART of a MAN (the hand this time).

Templates are the initial, shallow, semantic representations attached to clause
or phrase-length fragments of text. They are networks of formulas consisting of
at least an agent formula, an action formula and an object formula, where other
formulas may depend on each of those three, and any one of the three may be only
a dummy in any particular example.

(6)

(7)
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In what follows, square brackets enclosing English words will stand as shorthand
for the above semantic formula trees and the template networks of them. Thus,
[John] will indicate the formula for “John”, and

(8) [John grasped the +idea]
will indicate the template (of three formulas) for “John grasped the idea”.

The process that constructs the templates is the first operation of “preference” in
the system: the formulas function as active objects, each seeking to specify what
its neighbouring formulas in a template shall be. Thus the preference expressed by
(6) for a SIGN (= symbolic) object is satisfied if (6) goes at the central (action)
node of (8), but not if (7) goes there. The principle of preference is that the
template structure is assigned to a fragment in which the most such preferences
are satisfied. By this method “grasp” is correctly resolved in (8) to (6), not (7).
However, preference-breaking templates are set up if there is no formula available
to satisfy them.

Templates are then tied together by paraplates. These are structures, of no direct
relevance to this paper (see [22] for details), with the form of an inference rule
connecting two template skeletons. If the skeletons match two templates—one for
a main clause, the other for a prepositional phrase—then whatever case name is
attached to the inference arrow is the name of the case tie between the two templates
in the semantic representation. Thus, the second phrase of “John grasped the idea in
the lecture” would be tied to the first by a paraplate with a TLOCA (time location)
inference arrow. But note that the paraplate is only a structure by means of which
this case tie is assigned (and the ambiguity of “in” is resolved); it does not itself
become part of the representation.

Pronoun ties, assigned on similar principles, complete this basic mode of the
system. If a unique semantic block can be constructed in this way then that
representation suffices, but in many cases it cannot and the representation must
be deepened. For this, the system shifts to the extended mode. First, as many
templates are repacked as possible, which means filling in their dummies by
inference. So in the second template for “John drank the whisky from a glass”,
the dummy agent—prepositional phrase templates always have a dummy agent,
with the preposition functioning as a “pseudo-action”—can be repacked by the
formula [whisky], yielding a repacked template [whisky from a + glass] that is
also a true inference. More importantly, the representation is enlarged with extrac-
tions: template-like entities, not represented in the original surface text, but which
are appropriate inferences from the structure of the original, shallow, template
representation.

In what follows, we extend the “short form” of templates (obtained by writing
square brackets round English words, clustered at three nodes to show the distri-
bution of formulas in the full template) by writing extractions as English words
inside double square brackets.

Let us consider
(9) John fired at a line of stags with a shotgun

The result of matching this with templates, applying paraplates, and then performing
case extractions can be written in summary form as follows:
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The extracted templates are tied by dotted lines to the source template from which
they have been extracted, and the case name on the dotted line shows the case type
of the extraction. The inferences cover both those that must be true (like the OBJE
extraction, since to fire at a line of stags is necessarily to fire at stags) and those,
like the GOAL extraction, that are only likely.

The extraction mechanism consists of a “specialist” (to use Winograd’s term) for
each case (and for CAUSE, which is treated as a semi-case during extraction). An
extraction, resulting in a new double-square-bracketted template, as in (10) above,
is made for each case (or CAUSE) sub-formula at the top level of the formulas of
each source template.

Let us see how the extractions in (10) are actually obtained. This will require that
we give more of the content of the first source template in (10), and in particular
the formula for “fire + at”. (11) may be considered a semi-full-form of template for

“John fired at a line of stags”

in that the centre mode has been expanded to its formula but the other two nodes
are left in “short form”.

(11)
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The dependent of OBJE case in (11) shows that “fire at” prefers an ANImate
object, but the formula is in a template whose object is not animate (it is “line”)
and so we have a failed preference. However, an animate object (stags) is available
as a dependent of the surface object in the template. The extraction process takes
the form of filling a new copy of the source template, and imposing the available
preferred animate object, to yield:

[[John fired + at stags]]

The repackings and extractions provided an extended or deeper representation
and chains of inference rules are now constructed in order to resolve any outstanding
pronoun or sense ambiguities. The inference rules, like paraplates, consist of two
template skeletons and again like them do not become part of the representation into
which they insert ties. But, unlike paraplates, they can be chained together, although
the system always prefers the shortest inference chain it can construct between any
two templates. An inference rule would typically express some inductive general-
ization such as “If a human entity wants some object then it will try to obtain it”.
This would tie the two templates representing “John wanted a bicycle. He went to
get his money box”.

One structural change to the system should be mentioned briefly. In [22] it was
suggested that, since there is no theoretical difference of any sort between the
semantic primitives and English words, then more specific entities could be put
into the formulas if necessary, provided that they too were in the dictionary and
had their own formulas there. This would have the effect of making the formulas
more compact.

In [25] this notion was extended, and it was suggested that the formula dictionary
should be thought of as imposing a thesaurus structure on the whole vocabulary.

A thesaurus, like Roget’s, say, is a grouping of English words into semi-
synonymous rows, usually having the same part of speech type. These rows are
grouped under one of about a thousand heads (not to be confused in any way with
“head” meaning the rightmost primitive of a formula), which are in turn grouped
under about ten very general sections.

Thus, under the very general section # volition we would find the head, say 22,
# propulsion and under that we would find a subhead # 221 firer, attached to some
row of “firer” words:
(12) # 221 firer: gun, bow, rifle, howitzer. …

Similarly, row “# 222 projectile”, say, would name a row of projectiles.
This organization is imposed by the formulas in the following way (Fig. 7.1):

each of the above is a word in the dictionary and has a formula, where the inclusion
relations of the formulas should reflect the head, subhead, rowmember, relation.
Thus “gun”, “bow” etc. are co-members of a row, and should have a common part
to their formulas (all are THINGS, all have a goal of hitting something) and this
common part should be the (simpler, more general) formula in the dictionary for
that row’s subhead name “# firer” (which could also mean a person, of course,
and ambiguous words will appear in the thesaurus under more than one head).
This progressive generalization should extend right up the thesaurus to the general
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Fig. 7.1.

section names (# volition, for example, would be associated only with the primitive
elements GOAL and WANT).

Now, we see that the formula for “fire + at” in (11) could be made more specific
if “# 222 projectile” replaced the rightmost THING in it, and “# 221 firer” replaced
the leftmost THING, to yield (11).

These thesaurus subheads would have their own dictionary formulas, hence (11)
would now express more information. They would also, implicitly, point to the
thesaurus row each names, whose first member could, by convention, be an even
more explicit default: “gun”, say, for “# firer”.

Thus in summary:

(i) A formula is a binary tree representing a word sense. It is a dependency
tree all of whose terminal nodes are semantic primitives or non-primitives.
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Primitives come from a list of 100 items with interpretations, and non-
primitives from a hierarchical thesaurus. Interpretation rules specify what
trees are well formed formulas and what their interpretations are.

(ii) A template is a network of formulas representing a clause or phrase of text.
It normally has an agent, action and object formula (in that order), and other
formulas depending on these three nodes, though any of the main formulas
may be a dummy. Again, interpretation rules specify which such networks
are wellformed templates.

(iii) A semantic block is a text representation consisting of a network of templates
and extractions. The ties between the items of a semantic block may be
imposed by paraplates, inference rules, or extraction rules.

(iv) Paraplates are relations between template pairs, and if a paraplate applies
to a particular (usually contiguous) template pair it imposes a case relation
between them. A paraplate consists of six predicates which must apply to
the three major nodes of the two templates, if the relation is to hold.

(v) Inference rules are also relations between template pairs, of the same form as
paraplates, but they impose a relation not of a particular case but of CAUSE,
REASON or CONSEQUENCE.

(vi) An extraction is identical to a template, except that it does not necessarily
correspond to any clause or phrase of surface text (it is inferred from a template).

(vii) An extraction rule produces, from any given template, a set of extrac-
tions. It corresponds to a particular case and produces an extraction for
each occurrence of that case in any formula in a template to which it
applies.

7.3 Preference-breaking Already Accommodated
in the System

The function of this paper is to discuss new ways of accommodating preference
breaking utterances, yet we should mention those preference breakers already
dealt with by the processes described, and most particularly by the extraction
process.

The standard ergative paradigm of verbs like “break” is dealt with in a uniform,
though unconventional, manner. Utterances like

(13) The window broke
and

(14) The hammer broke the window
are well-formed English, but are preference breakers since “break” prefers an
animated agent.

Thus (13), for example, yields initially:
(15) [the + window broke �]

Now, on extraction, the “SUBJ (agent) specialist” sees not only that
(a) the surface subject (window) does not satisfy the (∗ ANI SUBJ) preference

of [break], but
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(b) the same surface subject does satisfy the (∗PHYSOB OBJE) preference
of [break], which is filled by only a dummy in the source template (15). Thus
the “SUBJ specialist” on extraction produces a copy template with the agency
preference satisfied:

[[some + animate broke � ]]
while “OBJE specialist” correspondingly produces:

[[� broke window]]
and these are immediately conflated, on the general preferences [20] principle of
producing the fullest representation possible, as the extraction:

(16) [[some + animate broke window]]
where the agent formula (now, of course, a true agent, not a surface subject) is
merely (THIS ∗ ANI), an extraction from the “break” formula. (14) is dealt with
in a similar manner by the general extraction routine, with the added feature that
[hammer] now cannot fit in the main template and will have to be inserted as
object in the INSTrument extraction from [break].

The standard type of extraction in the last example required the filling in a “new
copy” template extracted from an action formula. Extractions are also made from
substantive formulas (though only in the face of a preference violation) and these
cover a range of examples like

(17) ∗ John received a shock.
where [shock] is

(18)

and so is not the physical object that “received” would prefer. It indicates a shock
is a not-good state possessed by a human who senses a not-pleasing real entity (a
wider class than physical object).

The head of [received] is the primitive GET, and the extraction specialist for
POSS (in [shock]) cued by the relation of POSS and GET can write out a “copy
template” from the formula [shock], namely:

(19) (∗HUM) (SENSE) (NOTPLEASE ∗REAL)
whose agent, at least can be filled in from the context of the template for (17) to
yield the extraction

(20) [[JOHN (SENSE) (NOTPLEASE ∗REAL)]]
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where this entity (20) can now seek further specifications in the text, if present, to
fill its action and object which now have only a very general primitive form. It is
important to see that the extraction is cued by the relation of GET and POSS: it
would not have been cued by

(21) John gave a shock to .� � �
since [give] does not have the head GET.

It should be remembered during what follows that an extraction is a new
template-like object, not present in the surface, or source, text, and which is
produced by inference using case-specialists when there is a preference-breaking
in a source template. This is quite consistent with the methods of Wilks [23]
in which extractions were also produced to deal with problems of word sense
ambiguity.

7.4 Pseudo-texts: A Simple Projection System

We shall now define a new operation in the system, projection, which requires a
new form of coded knowledge, the pseudo-text (PT).

A pseudo-text is a structure of factual and functional information about a concept
or item, and is intended to fall broadly within the notion of frame in the sense of
Minsky, Charniak and Schank [10, 3, 15].

Its form, in the terms developed so far, is simply that of a semantic block: a linear
sequence of template forms tied by case ties, here taken to include CAUSE and
GOAL (reason-for) ties inserted by the mechanisms of [26]. The linear order of the
templates is taken by default to indicate normal time sequence. Thus a pseudo-text
for “car” might start:

The first two lines refer to the insertion of fuel; the next three to the fact that the
petrol using engine moves the car; and the last four to the way the driver turning
the wheel changes the direction of the car.
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This entity is pointed to by “car” which also, of course, points to the formula
[car]; (23).

which says that a car is a thing that a person uses with the purpose of moving
him-or herself, by means of an engine part. Here as in (12) # engine in (23) points
to both a formula for “engine” and to a thesaurus row of types of engines:

(24) # engine: IC engine, turbine, electric motor � � � etc (IC = internal com-
combustion)

just as “car” points to both (22) and (23) from its place in some thesaurus row
under subhead # vehicle, say.

The pseudo-text can be extended to taste to express as much detailed information
about cars as is thought necessary, using exactly the same structure for text repre-
sentation as was described in the earlier (recap) section, with the one addition that
∗ indicates the formula [car] from which we reached this whole “pseudo-text”, so
that ((∗ IN)MAN) indicates “a person inside the car” (i.e. the driver or passenger).

The entities in the templates of the pseudo-text are either dummies ( ), primitive,
elements (USE), formulas of primitive elements ((∗ IN)MAN), words which point
to their own formulas in the thesaurus, such as “turn”, or words preceded by a
sharp sign # liquid, which point to their formula in the thesaurus where it is a head
or sub-head formula. This notion will aid search in that it will indicate that the
formula is not to be found at the bottom level of the thesaurus.

The pseudo-text could clearly have this same information about the function of
an engine, and steering, expressed in a number of different ways at different levels.
For example, the third template in (22) indicates that an IC (internal combustion)
engine uses a liquid, where [IC engine] is a word formula, but [# liquid] is a very
general formula (FLOW STUFF), since # liquid is a thesaurus subheading. It would
have been possible to make the object of that template the more specific formula
[petrol] or [gas] with an increase in specificity.
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In general, these pseudo-texts are intended to be as specific as possible, but,
and this is why they are called pseudo-texts, they have exactly the format of a
text representation in preference semantics, and the intention is that the processes
that operate on such (dictionary) entities shall be identical with those operating
on representations derived directly from surface texts. The emphasis here is the
reverse of the conventional one in this field: we stress the form of representation of
language and seek to accommodate the representation of knowledge to that, rather
than the reverse. And, of course, from a practical point of view it means that, with
our parsing procedures, “pseudo-texts” could be input as texts.

Thus (22) is not a copy of a text representation, or even a script for a possible
text about cars, it is the representation of some, rather general, text about the
basics of driving a car. Notice too, that # vehicle, being a thesaurus sub-head
above “car”, will point to a pseudo-text more general than (22)—one we cannot
assume is steered with a wheel, nor that is running by means of a liquid consuming
engine—and so the thesaurus imposes a hierarchy of pseudo-texts as well as the
associated hierarchy of formulas. That is to say that, just as the thesaurus row-
members (as in (24)) stand in the row in virtue of the fact that their formulas
have some common sub-formula (which should be also the formula for the sub-
heading of the row itself), so should the pseudo-texts of co-row members be related.
Thus, (22) as the pseudo-text for car may be expected to have some strong struc-
tural resemblance to the pseudo-texts for “truck”, “railway train”, “aeroplane”, etc
which are plausible co-row members with “car” in the row whose sub-heading is #
vehicle.

However, the relation may be more complex than can be expressed by any
“single common sub-pseudo-text” relation—as seemed possible with sub-formulas.
Moreover, it may not be possible either to express the relation by saying that there
are “slots” in the pseudo-text for # vehicle that are simply filled differently in
the more specific pseudo-texts for the members of the # vehicle row, like “car”.
This has been suggested in [1], but, although one might express, say, the third line
of (22) by

(Propellant: liquid)
(Motor : IC engine)

where the right members could be replaced differently for “aeroplane”, “railway
engine” etc. It is not obvious that the whole content of (22) is easily captured by
this format—though it may of course turn out that it is possible to do just that.

However, it is certainly possible to imagine the general structure of (22) being
stored only once for the # vehicle row, and a specific repacking function being
assigned to each row that would construct its pseudo-text when and only when
required. Thus, in (22) all the lines given would appear in the pseudo-text for
“aeroplane” except the sixth. Thus the repacking function for the row might well
require that the row-members were ordered so that their pseudo-texts could be
constructed from the one for the row sub-heading (like # vehicle) so that as much
pseudo-text structure was “inherited” as possible as the repacking function was
applied, let us suppose, rightwards along the row. It is not yet clear, however, that
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row members could be simply ordered in terms of the relative generality of their
pseudo-texts in this way. There will also, of course, be more general “inheritances”
of pseudo-texts down the thesaurus hierarchy, but that is not brought out from the #
vehicle: car, etc. row because the head primitive of all the row-members’ formulas
is THING, whose own pseudo-text is pretty vacuous. However, the pseudo-text for
the high level primitive (= thesaurus section) MAN would be highly complex. But
note there is no “inheritance of property” problem in this system: the formula for
“amputee” would have head MAN and would specify the loss of limbs and any
inherited pseudo-text from MAN—asserting “two legs”—would be modified by
[amputee].

Since pseudo-texts are text representations it must be assumed that it will
be possible to “deepen” them by the extraction and other inference procedures
described in [26].

In this paper we shall discuss a particular inference rule called projection that
operates when extended use, in the sense of preference breaking, is encountered in
the input surface text.

Projection results in the replacement of a template formula by a new one
constructed by access to a pseudo-text. Projection is operated only in the presence
of preference breaking, so as to avoid assigning peculiar interpretations to wholly
conventional utterances.

The need for such specific information as (22) provides can be seen if we think
at an intuitive level about the understanding of (3). I suggest that we can understand
(3)—apart from its idiomatic element, noted already,—in two ways:

(i) We are made to feel that the car is in some way human-like as a drinker is.
(ii) We know, more importantly, that “drink” is equivalent to “use” because that

is what car engines do with gasoline.

Element (i) of the meaning might be important to the understanding of:
(25) My car drinks gasoline. His thirst is never slaked,

where we might be helped to refer “his” to the car if we had simply projected the
preferred (MAN) agent of [drink] as the head of [car]. In any case this requires no
more mechanism than the corresponding extraction from (3), which would yield a
form [[(MAN) drink gasoline]].

The important notion (ii) is captured by accessing the pseudo-text for “car” and
seeking the template in it with the closest match to the source template for (3).

If we accept that that is the third one:

[IC Engine (USE) # liquid]

then we would expect to project the formula [use] in place of [drink] to obtain—as
the new representation for (4):

(26) [my + car use gasoline]
But now we notice that we cannot have a rule that produces the “projected”

representation (26) for sentence (3) solely in virtue of the partial match of the
original template for (3) with the third template of pseudo-text (22), because that
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might lead to the same projection for “my car leaks gasoline” for which (26) would
not be a suitable projected representation. So, the general projection principle
of accommodating extended use with a pseudo-text is PROJECT SENSE ONTO
ACTIONS FROM A PSEUDO-TEXT GIVING WHAT WE NORMALLY DO WITH
THE ASSOCIATED OBJECT—but it must be modified somewhat in the light of
“My car leaks gasoline”.

We notice also that the template for (3) also matches the first line of (22), under
an appropriate definition of match, in that [drink] and [inject] are both (MOVE
CAUSE) formulas, but this is a weaker match than with the third line if we consider
the agent and object terminals as yielding a stronger match given by IC engine
being known as a car part from the structure of [car] (23) and # liquid being
the sub-heading of the row containing “gasoline” (which is simply the extensional
idiom for saying that [gasoline] can be seen to contain [liquid], because (FLOW
STUFF) is their common sub-formula).

So, we may risk a new generalization: the projection represented by (26) is done
in virtue of what I called the general projection principle, but requires confirmation
by another weaker match, in the same pseudo-text, on action not object /agent
terminals. This would prevent an undesirable projection on “My car leaks gasoline”
(although it might well be argued that since that sentence involves no preference
breaking we should not consider it as a problem for projection in any case, since
this process, unlike extraction, would never be applied to it), as well as on the
more distant “my car drinks mud” (which would not even achieve the agent /object
terminal match), and “My car chews gasoline”. The projected sense, “use” in (26)
then, carries over more than any alternative projection.

A more complex case would be presented by a recent newspaper headline:
(27) Britain tries to escape Common Market.

We would have the possibility of simply projecting the preferences of [escape]
for a human escaper and a prison-like object—onto the agent and object formulas.
The difficult aspect would be to get the [escape] formula replaced by something
like [disassociate from]. This could not be done by, say, simplifying [escape] to a
[leave] component, because that is still metaphorical.

The interesting feature is that, although we might possibly have a historical
pseudo-text about Britain joining the Common Market, we would not have one
about disassociation. Mere facts are sometimes not enough, even when highly
structured, as here.

We would in fact require a matching algorithm (as is argued for in [23]) that
ignored negation in certain cases in favour of what one might call “mere relevance”.
That is, [joins] would have to be negated before being projected onto [escapes] as
[disassociate from].

We would assume, too, that once having made a plausible projection in a text,
the system should retain it, at least as a trial substitution, to other occurrences of
the same word sense in the text.

In concluding this section, it is important to re-emphasize that it is anticipated
that this projection rule will be required a great deal in the analysis of normal
text, and not only for obscure examples. Those examples discussed here do have a
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non-standard quality, and were chosen for their interest. However, the very same
procedures and pseudo-text would be required twice in so simple an example as
“Johns new car runs on diesel, but it does 100 m.p.h. though” for the preference
failures of “run on” and “do”.

The reader should note ways in which the newly defined projection operation
differs from that of extraction. Extraction adds new template-like forms to a text
representation, “copying them out of” formulas in source templates which are those
actually matched with surface text. But the source templates remain as part of the
representation. Moreover, extraction operates not only in response to preference-
breaking.

In projection, on the other hand, at least one formula of a source template is
replaced by a new formula constructed, either by rule from formulas in the source
templates, or by access to “pseudo-texts” and, as noted before, projection is operated
only in the presence of preference-breaking.

Thus the two processes are distinct in the system though, as always with semantics
the phenomena covered may not divide so neatly. Thus, in dealing with (17)
“John received a shock” by extraction, we added extraction (20) [[John (SENSE)
(NOTPLEASE ∗ REAL)]] to the text. It could be argued here that this is equivalent
to the replacement of [received] in the template for (17) by a minimal formula
consisting only of the primitive SENSE. Thus, in certain cases, projection may
produce the same inferential effect as extraction.

7.5 Some Control Issues

The fact that the proposals of this paper have not yet been implemented in a
working program rather limits discussion of control issues. Some can be forseen but
cannot be settled in advance: for example, any given preference-breaking template
may contain a number of formulas pointing to pseudo-texts, and it would seem
reasonable that the matching algorithms outlined in the last section should apply to
all of them. This is only a particular example of a problem that arises in all “frame
using” systems but has not yet, to my knowledge, been solved in any of them:
many frames are called but few can be chosen, and preferably only one: If different
pseudo-texts called by a given preference-break can yield rival projections, then
some way will have to be found of choosing between them.

Again, the fact that the pseudo-texts are only accessed by preference breaking
templates, and not by “normal” semantic structures, continues the “laziness”
approach of the preference semantics system and remains a point of contrast with
the frame systems of [17] and [3]. It is assumed that such structures should only be
accessed when needed, and that a successful model of understanding will no more
be able to tolerate “information overload” than we can. One specific aspect of that
approach is that, although pseudo-texts contain specific knowledge, the system will
try to work with the most general pseudo-text that it can.

Since it is intended that pseudo-texts for bottom-level formulas in the thesaurus,
like [car], will be constructed from more general ones, like [# vehicle], this means
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that the system will see how far it can get with matching into a pseudo-text using
only the one for the thesaurus sub-head, like # vehicle, and only construct the more
specific pseudo-text if no adequate match is found in the general one. This approach
need not be inconsistent with the assumption stated earlier that “projection rests on
specific knowledge”, since the more specific pseudo-text will in fact be accessed
via the more general one, given the thesaurus structure.

It is important to all this that the thesaurus is not a “bad hierarchy”, and it need
not be, given that

(a) It avoids bad property inheritance in the construction of specific pseudo-texts,
as indicated earlier, and

(b) the thesaurus contains normal cross-referencing, i.e. [knife] would appear
under both [# tool] and [# weapon].

It is hoped that the “higher levels” of the thesaurus will play an important semantic
role and explicate the obscure but important notion of what it might be to have the
most specific possible information about very general concepts.

Let me give an example here:
In the course of discussing the present system of language understanding in

connection with extended use Boden [2] draws attention to a class of examples like:
(27) I see what you mean

where we might say that “see” is being used in an extended sense, at least with
respect to its central sense formula in which it would express a preference for
∗PHYSOB or ∗REAL objects. We must say “with respect to” here, as always,
because the metaphor in (27) might be considered so dead, so normal, as to deserve
its own dictionary entry in virtue of having been learned by our culture. But let us
consider how the system proposed might deal with (27) on the assumption that the
dictionary does not explicitly anticipate it.

We must postulate two initial operations on the second template for (27), i.e. for
“what you mean”. The action “mean” can by extraction impose on the (dummy)
object for the head SIGN (since the formula for “mean” shows that it prefers a
SIGN object). This operation is covered by a simple extension of the extraction
procedures discussed already, namely that, in the presence of template dummies,
formulas elsewhere in the template can impose their preferences on those dummies.
Secondly, we must assume an operation for a relative clause template, like the one
under discussion, in which the routines that tie templates together can postulate
the head SIGN as equipollent with the whole template. This is a perfectly natural
semantic analogue of the fact that the phrase “what you mean” is the object of
“see” in (27).

The important difference here from preceding examples is that the object of “see”
is now given to us only as the semantic primitive SIGN, and not as the name for
an entity (like “car” in (3)). Hence there is no question of accessing a specific
pseudo-text as we did for car, because there cannot be one.
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If we wish to project an appropriate THINK head onto the formula for “see”, in
place of its normal SENSE, we shall have to use more general semantic procedures.

Now the topmost level of a thesaurus is that of the very general section names1

equivalent to Human beings, Entities, etc., and these correspond directly to the
primitives MAN, THING etc. of our system. I have argued elsewhere that there is
no essential difference between primitives and words (see [24]): MAN is just an
English word, even though it happens to have a fundamental organizing role in the
present system of meaning representation. But what would be “pseudo-texts” for
such general primitives?

It is in fact fairly clear what they would be: very general assertion forms,
consisting wholly of heads, like:

MAN HAVE THING
MAN THINK SIGN
MAN WANT THING

These are very general expressions of human activity so general as to be almost
vacuous. However, in the parsing procedures [18, 19, 22] of the present system these
are the bare template triples which define the skeletons of well-formed templates.
Yet it is here, as pseudo-texts for the primitives themselves that they “really belong”
in the knowledge structure of the system.

In [10] he writes of the top levels of a frame being “always true” in the sense
of analytic postulates about the world in question. Most of these 3-primitive forms
would express assertions of that type.

Now what might they do for us here? Well, if we now apply to (27) exactly the
same processes that we applied to “My car drinks gasoline” we shall access the
“pseudo-text” of the preference-breaker and project from there. Here the preference-
breaker is merely SIGN, and its “pseudo-text” will be a stack of bare templates
that list the primitive actions normally done to SIGN, of which the top2 of the
list will of course be THINK, which would also have an agent MAN matching
the “I” of (27), since thinking is what is normally done to and with SIGNS. This
would enable us to project the desired THINK as the head of the (extended) “see”
using exactly the mechanisms we have already created for more specific knowledge
examples.

1 In Roget’s Thesaurus the general section names are different, but again very close to
primitives in the system. Viz: # Abstract relations (GRAIN), # Space (WHERE), # Matter
(STUFF), # Intellect (THINK), # Volition (GOAL) etc.

2 “top” here is loose, and the procedures of the earlier section, applied here, might well
locate more than one “bare template” under SIGN that would have Agent MAN, viz: MAN
CAUSE SIGN as well as MAN THINK SIGN. We must presume upon other, natural,
determinants of closeness that will result in THINK being projected first: for example,
SENSE, THINK, FELL etc will already be grouped as the extension of a more general
primitive ∗AFFEC (affections). These “high-order” primitives impose a tree-structure on
the lower order ones.
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7.6 An Environment for Implementing these Suggestions

Having made a number of suggestions in this paper for restructuring the preference
semantics system, it may be appropriate to give by way of conclusion a very brief
sketch of the proposed implementation environment.

An important feature will be the attempt to make use of both local and global
context as necessary, where any frame-type information can be thought of as a
global context, and intra-template preference as a paradigm of local context. It is
well known that neither of these is adequate taken alone. In

(28) John went hunting with four bucks in his pocket.
we are misled about the sense of “buck” by using only the global context of “hunt”.
Conversely, in

(29) John licked the gun all over and the stock tasted good
we are misled about the sense of “stock” by taking the (local) preference of “taste”
and ignoring the global context given by “gun”. With a little ingenuity one can
produce a total deadlock between the two influences, as with “stock” in:

(30) I licked the gun all over after the soup course when the stock tasted particularly
good.

In the implementation local context will again be the operation of preference
within and between templates via the operation of paraplates and inference rules
[22, 23]. Global context will be the processes operating on the pseudo-texts, the
use of the thesaurus in determining topic context and its minimal ability to express
a more dynamic notion of frame (see [25]) than that dealt with here. The local
and global context features will be, either directly or more likely by simulation,
operated in parallel, so that they can independently, as it were, seek structures
in the incoming text. But, as (30) shows there can be no guarantee of a general
solution.

The aim in doing this is two-fold: first, to retain for the system the ability of
doing less than all possible inference. If whatever problems of analysis the text
presents can be settled without access to pseudo-texts and other frames, so much
the better, in processing terms I have called this the operation of a lazy system.3

Secondly, retaining both local and global processing options, ideally in parallel,
means that we can approach frames experimentally: to see what they do for us
in practice. The ideal arrangement would be the facility in the HEARSAY [12].
Speech Understanding System, where one can switch off one branch of the analysis,
such as local context, to see if that makes any difference. We cannot assume in
advance that extended use, say, must4 require access to frame-level knowledge.
Our preliminary investigations in this paper suggest that sometimes it does and
sometimes it doesn’t.

Another feature of a desirable implementation will be some attempt to incorporate
the sort of global rules of conversation investigated by Grice [8]. As we shall see in

3 A feature now styled as “variable depth processing” [1].
4 Though Fillmore seems to make this assumption about frames in [6].
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the example that follows, such rules can over-ride frame-like knowledge in certain
situations.

The actual environment for the implementation will be an interactive question-
answering facility in English about the construction of a semantic text represen-
tation, including accommodating to “extended use”. This methodology has the
disadvantage that the final semantic representation achieved, though it remains
available for some further task, is nevertheless in an internal linguistic representation
rather than output in English.

However, it has the compensating advantage that the data base is non-trivial,5 as
is almost inevitable in the mini-world situations often chosen, and that the system
will be that much more perspicuous if its semantic choices and inferences can be
followed by a user.

Let us see, in sketch form, how such a system might work with a real example
text: (The Times, April 6, 1975).

(31) “An ambulance driver answering an emergency call, which turned out to
be a hoax, went through red traffic lights and collided with a car, killing its
driver….”

Readers of that sentence generally have no trouble seeing that the last mentioned
driver is the car driver, and not the ambulance driver, though the inferences required
to get that right are not easy to specify in any standard linguistic or logical terms.
That professional language users sometimes use over-simple rules for noun-phrase
reference is seen from the fact that the sentence appeared in The Times under the
(wrong) headline: AMBULANCE DRIVER DIES IN HOAX CALL CRASH!

It will become clear that the understanding of the sentence requires inferences
from both linguistic and real world knowledge. In the ideal dialogue that follows
the user interventions are in upper case, and notes are preceded and followed by
square brackets.

7.7 End of Text Input

1. An ambulance answering an emergency call
2. $ went through red traffic lights
3. and $ collided with a car
4. $ killing its driver

[$ marks missing template agents in the four fragments the text has been cut
into for ease of reference]
All fragments match templates.
Template 2 fails preference for agent.

5 By that I mean no more than that question-answering implementations of frames may be
no test of the analytic power of frames at all, but only of the need of a data base. That is,
if you ask a system that has cinema-frames “what do I buy during the movie intermission”
and get a suitable reply, you have not in any way shown the need for frames in language
understanding.
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Now repacking $ slots:

2. The ambulance driver and ambulance went through red traffic lights. WHY?
A driver and ambulance are mobile, a call not.

3. The ambulance driver and ambulance collided with a car.

Suggest:

4. The ambulance driver killed ? its driver.
[system unsure of $ in (4) 1: ?its is marked as a problem].
WHY?
Active agent preferred for kill (ambulance inanimate).
But now re-inferring as follows:
preference breaking in (2) drives inferences as follows:
traffic lights are aperture (by extraction)
or
went through means passed (by projection).
I select latter and project onto “went through”
[straightforward extraction in (2), plus access to pseudo-text6 for “traffic lights”]
examining preferences in

4. $ killing ?its driver
“It” is lights (number wrong)
or
call
or
car
or
ambulance
Prefer car or ambulance for “it”.
[calls don’t have drivers]
Confirm

4. ambulance driver kills car’s driver
WHY?
First:
from traffic-lights pseudo-text:
passing red traffic lights causes people hurt
[“pass” has replaced “went through” by projection, remember].
[pseudo-texts can have a “cause tied” template pair read out].
this confirms kills both car and ambulance drivers.

Second:
Calling pragmatic over-ride
its = cars

6 Notice that the pseudo-text is being used to analyse the text here, though no general
claim is being made, as in [15] that the frame can be used as a basis for parsing the text.
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means “its” not twice coreferential.7

[a general Gricean-style pragmatics rule that maximizes information in the
fragment. If it = ambulance driver, writer would have used “killed himself ”]
Confirm its = cars.
Representation complete.

The new point brought out of the hat at the end, as it were, shows the persistent
need for general pragmatic principles at the highest level, just as we need preference
at the lowest. The general interest here would be the possibility of two clashing
general principles in the analysis of a given text: that of preference, seeking, in some
sense, to minimize information (argued in [21]), and another seeking to maximize it.

7.8 Relation to Other Systems

There has been little attempt to cope with preference-breaking in recent literature
in Artificial Intelligence. Schank [16:p. 233] allows non-fitting items to be inserted
into his diagrams, marked with an asterisk, but gives no indication of how they
are accommodated. Bobrow and Winograd [1] write of “forcing a match” in their
KRL system, but give no description of how it is to be done, over and above
emphasizing that it would be a nice thing to do. An interesting thesis by Russell
[13] does tackle the problem. She describes a simple program, equipped with
Schanktype conceptual information augmented in an important way: she provides,
for the first time, conceptual coding of nouns for that system (what we here call
noun-formulas). Her program contains rules that attempt to draw inferences from
input examples of “extended use”. So, for example, the program would output (INK
START BE IN CHAIR) from input (CHAIR DRINK INK), and quite properly
give no output for (HE CLOSE INK). The program appears to have only simple
conceptual structures, and to make no general claims over and above those contained
in the extraction procedures of this paper and [20, 23]. But some of its output
seems extremely interesting: divide the input–output pair: (HE CLOSE MIND), (HE
(IPART:MIND) STOP POSSIBILITY-OF START-THINK.) However, this would,
in the terminology of the present paper, almost certainly be extraction rather than
projection.

Another interesting program [7] tackles the different but related task of inferring
the sense of unknown words from semantic structures. However, it is not clear to
this reader, that his program does actually make use of script-like knowledge, since
almost all his inferences seem to be from conceptual content (i.e. formulas), as are
Weber’s.

The pseudo-text proposals, as regards the structure itself rather than its appli-
cation, will have many points of similarity with those of Schank and Charniak,

7 A reader tempted to argue that “its” must refer to the car on syntactic grounds since it has
been mentioned while the ambulance has not should consider “A bicycle rider passing a
stationary truck swerved to avoid a dog and fell over buckling its wheel”.
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among others, who have also extended their “propositional representation” up one
level to an organization of propositional representations (i.e. frames): for example,
the case ties CAUSE and GOAL perform the same functions as Charniak’s [3]
COMES-FROM and LEADS-TO ties. Unlike Charniak, these proposals emphasize
the relation to parsing yet, as should be clear, the relation proposed is not that
envisaged by Schank’s “expectational” methods.

The notion of perspective, much emphasized by Bobrow and Winograd [1] has
always been present in the system as the possibility of multiple formulas for a
word (such as “house as a point in space, a location, a destination” and “house
as a container for people and their activities”, where these two formulas do not
correspond to a sense distinction), and is now made more general with the cross-
referencing feature of the thesaurus where, as noted, a pseudo-text and formula for,
say, knife can be pointed to from the rows subheaded [# tool], [# weapon] etc.

7.9 Discussion

This paper has not been a report on programs written nor on a working system of
language understanding. It is however, based on considerable experience with such
a system, and is intended to indicate extensions to it that will be implemented and
tested as soon as possible. The aim here has been to develop extensions of meaning
and knowledge representation in a way consistent with the earlier assumptions of the
preference semantics system, and to sketch out the sort of practical developments
in the program that would facilitate their testing. It is also clear that some test of
these suggestions for dealing with extended use need not wait upon the arrival of
usable parallel processing.

There has been a great deal of attention to examples in this paper, but there is
intended to be a simple moral, or rather an (ultimately) testable maxim to the effect
that much of what we call “understanding of language” may consist not merely
in the correct and appropriate manipulation of precise knowledge—the “society of
experts” view of knowledge and understanding—but in the manipulation of very
general principles, possibly conflicting general principles, as here. Moreover, the
ambulance driver example suggests that on occasions such principles may be needed
even where all possible detailed knowledge is available.

It is a part of this view that the knowledge structures employed should, where
possible, reflect language structure (hence the use of “pseudo-texts” here for the
frame-like objects) and that the system using them should make general claims
about the nature of language and knowledge—if it does not then no scientific
phenomenon is being investigated and we have no claim to be scientists.

However, these general views can only be justified in the process of implemen-
tation and not by further general discussion. Moreover, a very important point will
arise in such an implementation: the paper has emphasized both the role of detailed
knowledge in projection (as in the car example) and the need to start at a general
level in the hierarchy of pseudo-texts when seeking a match in projection. There is
no contradiction here, but it leaves open the possibility that the rules as described
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will sometimes produce very general projections: in the Common Market example
(27) the projection might produce a very general sense of “escape” as “exit from
any enclosed space”, rather than a fact-based one.

Again, it might, rather than replace [drink] by USE in the analysis of (3), project
instead some very general sense such as “has fluid put into it”. These will be matters
to be worked out in practice, even though fundamental questions about meaning and
understanding hang upon them. They will also require decisions on two other points:

(1) Are the senses produced by projection to be stored or not? Are they to be tried
as possible senses for further uses of the same word in the same text?

(2) After projection has changed a template, should a copy of the original remain
as part of the semantic block for the text, for fear that certain vital “surface”
inferences will be blocked if it is not?

The last point is particularly important in connection with the issue of how general
projections will turn out to be: the more general they are, the more it may be vital
to keep a copy of the original template in the overall text representation.

Readers will also have remarked that the whole formula/pseudo-text distinction
rests on some intuitive meaning/factual distinction that cannot be formally justified.
Why keep it rather than go over to a uniform notation for both, as KRL would
suggest? I think one can only say that the meaning/factual distinction, even if
not philosophically sound, does have some role in our understanding. And in this
system, the formulas are basic to parsing, and that that is a procedural role that
should have some reflection in the system’s structure.

In conclusion, one could hope that the above techniques might produce some
small additional understanding of text in this almost unchartered area. But optimism
is almost certainly out of place where imaginative writing is concerned. Consider:

The sad colonel did not have a nervous breakdown because he had a
friend and because he was too unimaginative to admit defeat. He poured
Rembrandt a glass of his friend. (Pownall 1974, p. 195)

The interpretation of the last word is, alas, both straightforward and totally beyond
the scope of any system conceivable at the moment.
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Abstract: Machine readable dictionaries (mrds) contain knowledge about language and the world
essential for tasks in natural language processing (nlp). However, this knowledge,
collected and recorded by lexicographers for human readers, is not presented in a manner
for mrds to be used directly for NLP tasks. What is badly needed are machine tractable
dictionaries (mtds): mrds transformed into a format usable for nlp. This paper discusses
three different but related large-scale computational methods to transform mrds into
mtds. The mrd used is The Longman Dictionary of Contemporary English (LDOCE).
The three methods differ in the amount of knowledge they start with and the kinds
of knowledge they provide. All require some handcoding of initial information but are
largely automatic. Method I, a statistical approach, uses the least handcoding. It generates
“relatedness” networks for words in LDOCE and presents a method for doing partial
word sense disambiguation. Method II employs the most handcoding because it develops
and builds lexical entries for a very carefully controlled defining vocabulary of 2,000
word senses (1,000 words). The payoff is that the method will provide an mtd containing
highly structured semantic information. Method III requires the handcoding of a grammar
and the semantic patterns used by its parser, but not the handcoding of any lexical
material. This is because the method builds up lexical material from sources wholly
within LDOCE. The information extracted is a set of sources of information, individ-
ually weak, but which can be combined to give a strong and determinate linguistic
data base

8.1 Introduction: The Value of MRDs

Dictionaries are texts whose subject matter is language. The purpose of dictionaries
is to provide definitions of senses of words and, in so doing, supply knowledge
about not just language, but the world. Researchers in computational linguistics
and AI have viewed dictionaries with (1) theoretical interest as a means of inves-
tigating the semantic structure of natural language, and (2) with practical interest
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as a resource for overcoming the knowledge acquisition bottleneck in AI: how
to acquire formal meaning and knowledge representations automatically. Some
researchers have recently begun to seek methods to overcome it, and have had some
success. This difference in attitudes regarding the knowledge acquisition bottleneck
is reflected in a long-standing difference between two alternative methods of lexicon
building: the demo approach and the book approach [39, 5].

The demo approach, which has been the dominant paradigm in natural language
processing (and AI in general) for the last two decades, is to handcode a small
but rich lexicon for a system that analyzes a few linguistic phenomena. This is an
expensive method as each entry in the lexicon is prepared individually. Every entry
is constructed with foreknowledge of its intended use and hence of the knowledge it
should contain. Being designed with only a specific purpose in mind, the knowledge
representation runs into problems when scaled up to cover additional linguistic
phenomena.

One alternative, the book approach, confronts the problem of knowledge acqui-
sition directly. This approach attempts to develop methods for transforming the
knowledge within dictionaries or encyclopedias into some format usable for CL
and AI tasks, usually with the aim of covering as large a portion of the language
as possible. The problem from a computational standpoint with dictionary and
encyclopedia entries is that they are designed for human use.

Sparck Jones [59, 60] was an early proponent of the book approach but at the
time her work was hindered by the absence of mrds. More recently, interest in this
approach has greatly expanded because a number of mrds have become available,
e.g., The Merriam-Webster New Pocket Dictionary [6, 3, 4], Webster’s Seventh
New Collegiate Dictionary [16, 13, 36, 7, 26], and The Longman Dictionary of
Contemporary English [38, 61, 1, 10, 9, 69, 70].

The big advantage of mrds is that both theoretical and practical concerns can now
be investigated by large-scale computational methods. Some of the above research
has been into the underlying semantic structure of dictionaries [e.g., 6, 3, 4, 13, 36,
7, 26]. The remainder of the research has sought to develop practical large-scale
methods to extract syntactic information from mrd entries [e.g., 9] and transform
that information into a format suitable for other users. This latter research has the
effect of transforming an mrd into a limited mtd. We say “limited” because such an
mtd has only syntactic information presented in a format usable by others; semantic
information remains buried in the mrd, though this is the knowledge about language
and the world that is needed as a resource for many CL and AI tasks. Therefore,
the next step is to develop large-scale methods to extract both the syntactic and
semantic information from mrd entries and present that information as a data base
in a format acceptable to potential users.

Within the book approach there are a number of ways such an mtd can be
constructed. One is to extract automatically the semantic information and build a
full mtd. We firmly advocate automatic extraction. A second way is to extract the
semantic information manually and handcode the entire mtd, as is being attempted
in the CYC Project [31, 30]. The main problem here is the volume of effort
required: the CYC Project aims to handcode one million encyclopedia entries,
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an estimated two person-centuries of work. We believe this approach is mistaken
because it wastes precious human resources and makes dubious theoretical assump-
tions, despite Lenat’s claims that their work is theory free (see Section 8.1.4).

Whichever form of the book approach is taken, there are two sets of issues that
must be faced by those developing methods for the transformation of mrds into
mtds: (1) nature of the knowledge in mrds and (2) the design of the database
format of an mtd. Both rest on understanding the structure and content of the
knowledge that is both explicitly and implicitly encoded in dictionaries, but such
understanding rests on certain crucial semantic matters. We examine some of these
in the next section.

8.1.1 Background: The State of Semantic Theory

There are obstacles to the development of methods (whether manual or automatic
for the transformation of semantic information in mrds into mtds; these obstacle are
not present for those developing methods for syntactic analysis. The main obstacle
is that, compared to syntactic theory, semantic theory is less advanced as shown
by the lack of consensus about even the general underlying principle of semantics.
Nevertheless, there is some understanding and local consensus on semantics that
can allow work to proceed.

One’s position on certain basic issues in semantics affects one’s stance concerning
what semantic information should be extracted from an mrd and represented in an
mtd. In developing our own methods for the transformation of mrds into mtds,
we have adopted a particular approach from computational semantics. Examples of
this approach are Preference Semantics [64, 65, 66] and Collative Semantics [17,
18]. The main assumptions of this approach are that the problem of the word sense
is inescapable and that knowledge and language are inseparable.

We believe that it is acceptable for a semantics to be based on the notion of
word sense as used by traditional lexicography in constructing dictionaries. To put
the matter another way, the inability of programs to cope with lexical ambiguity
was a major reason for the failure of early computational linguistics tasks like
machine translation. Yet, does it follow from that failure that the lexical ambiguity
distinguished by conventional dictionaries has any real significance for CL, e.g., in
the claim that a word such as play has eight senses that are then distinguished and
described?

The point can perhaps be put most clearly by considering the suggestion that
there never was lexical ambiguity until dictionaries were written in roughly the form
we now have them, and that lexical ambiguity is no more or less than a product
of scholarship: a social product, in other words. Translation between languages,
as well as more mundane understanding tasks, had been going along for millenia
before such scholarly products and therefore cannot require them.

This suggestion would be very much to the taste of certain formal semanticists
who have never found the idea of lexical ambiguity interesting or important. For
them, it is a peripheral phenomenon, one that can be dealt with by subscripting
symbols as play1, play2, etc., (as Wittgenstein first did in his Tractatus) and
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claiming that there is, in any case, no real ambiguity in the world itself: Symbols
designate disjoint classes of things and that fact can best be captured by disjoint
(subscripted) symbols.

The answer to this position would be that when people translated “ambiguous
words” before the advent of dictionaries, they went through a process that cannot
be modeled by computer without some representation of lexical ambiguity. The
subscripting position just presented, in parody form, is vacuous unless it also offers
mechanical procedures for assigning the subscripts.

Another problem to be faced by those who make this last response (and who
want to construct a lexical ambiguity data base, or customize an existing one) is
the arbitrariness in the selection of senses for a word: different dictionaries may
give 1, 2, 7, 34 or 87 senses for a single word and at first glance it seems that they
cannot all be right. Byrd [11] has referred to this as the “mapping problem.” This
arbitrariness does not only appear between different dictionaries in their different
sense ranges for the same word — it is also observable within a single dictionary
when the sense-distinctions made for the definition of a word do not match the uses
of that word in the definitions of other words in the dictionary. Worse yet, different
dictionaries will segment usage into senses for a given word in non-comparable
ways: Perhaps play3 (the third of three) in dictionary A could not be associated
with any one of the eight senses of ‘play’ in dictionary B. However, the way in
which the different dictionaries “cannot all be right” is no different from the way
in which different humans (with differing sense ranges for the same word) cannot
all be right, even though none is clearly wrong. In short, they fail to agree but none
of them is wrong.

The answer to the last problem is extensibility: A dictionary and sense-resolution
algorithm are most plausible if they can extend so as to capture new senses, not
already in the dictionary, on the basis of textual material presented. In that way
differing dictionaries could, in principle, be tuned to “sense compatibility” (though
it might serve no practical purpose), just as people can be if exposed to the same
texts. The position defended here is that that phenomenon is utterly central for
language understanding itself, and for the viability of machine dictionaries that start
from different data bases.

Furthermore, any attempt to extract semantic information from a machine
dictionary must acknowledge that the words used in dictionary entries may
themselves be lexically ambiguous and must be disambiguated. When human
readers see ambiguous words used in the definitions of real dictionaries, they appear
to recognize those words as used in a particular sense, understand the intended
senses of the words and hence disambiguate the words in the dictionary definitions.
Three simple solutions then suggest themselves. The first is to mimic what humans
appear to do and run a program on dictionary definitions and disambiguate those
definitions when using them. The second solution is to remove beforehand the
lexical ambiguity from the dictionary definitions and thus have definitions which
contain only word-senses, a solution proposed by Quillian [45] and Amsler [3],
among others. The third solution is to avoid the problem until it becomes essential
that it be dealt with. In this paper we adopt two more subtle solutions. The first (part



Machine Tractable Dictionary Tools 171

of what is called Method II below) is due to Guo and involves identifying “defining
senses” of ldoce words and cycles of redefinition based on them. It involves some
handcoding followed by an automatic procedure, but is much less labor intensive
than Amsler’s method. Our other approach is almost circular, but not quite: we call
it a “spiral method.” A method of automatic network clustering, due to Plate and
McDonald, is described below as Method I. This lexically disambiguates some of
the words in ldoce definitions, and the results are then used by Slator’s ldoce

parser (Method III), which in turn disambiguates the full ldoce definitions. This is
a non-circular two-step procedure described in detail below.

Our position on the inseparability of knowledge and language is that this goes
further than is normally thought and that particular language structures — text
structures — are in fact a paradigm for knowledge structures [68] or, to put it
very crudely, knowledge for certain purposes should be stored in text-like forms
(as opposed to, say, predicate calculus-like ones). Examples of such knowledge
structures include the planes of Quillian’s Memory Model [45], pseudo-texts from
Preference Semantics and sense-frames from Collative Semantics. Our position is
that common principles underlie the semantic structure of text and of knowledge
representations.

Given that the purpose of dictionaries is to provide definitions of words and
their senses, it might well be expected that, of all forms of text, it would be in
dictionaries that the semantic structure of language would be the most explicit
and hence accessible for examination and comparison with the semantic structure
of knowledge representations. And indeed, the semantic structure of dictionaries
has been analyzed and compared to the underlying organization of knowledge
representations, and similarities have been observed. Dictionary entries commonly
contain a genus and differentia and the genus terms of dictionary entries can
be assembled into large hierarchies [3, 13]. Likewise in the study of knowledge
representation, a frame can be viewed as containing a genus and differentia and a
semantic network is viewed as a hierarchy of terms.

These positions on semantics suggest the following for those engaged in trans-
forming mrds into mtds. First, the problem of lexical ambiguity must be faced
by any method seeking to extract semantic information from an mrd to build an
mtd. Because lexical ambiguity exists in the language of dictionary definitions and
in language generally, it follows that the language in mrd definitions needs to be
analyzed at the word-sense level. Second, the format of the mtd, while being of
principled construction, should be as language-like as possible.

Next, we focus attention on some basic issues in transforming mrds, issues
concerning the nature and accessibility of the knowledge in dictionaries.

8.1.2 The Analysis of MRDs

We hold that those who advocate the extraction (both manual and automatic)
of semantic information from dictionaries (and even encyclopedias) have made
certain assumptions about the extent of knowledge in a dictionary, about where
that knowledge is located and how that knowledge can be extracted from the
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language of dictionary definitions. These are not assumptions about semantics but,
rather, are assumptions about the extraction of semantic information from text.
These assumptions are methodological because they underlie the decisions made in
choosing one method for semantic analysis rather than another. These assumptions
are about sufficiency, extricability and bootstrapping.

Sufficiency addresses the issue of whether a dictionary is a strong enough
knowledge base for English, specifically as regards linguistic knowledge and, above
all, the knowledge of the real world needed for subsequent text analysis. Sufficiency
is of general concern, even for handcoding projects like CYC [30:1180].

Different positions have been taken within computational lexicography. Some
researchers believe that there is not enough knowledge in dictionaries in principle
[e.g., 25], i.e., that certain specific semantic information is not available anywhere in a
dictionary and hence must be derived from another, outside, source. Other researchers
believe that dictionaries do contain sufficient knowledge, though that knowledge may
be implicit, but that it must be made explicit by using information from entries in other
parts of a dictionary [eg., 3, 58, 9, 28]. We explain our position shortly.

Extricability is concerned with whether it is possible to specify a set of compu-
tational procedures that operate on an mrd and, without any human intervention,
extract general and reliable semantic information on a large scale, and in a general
format suitable for a range of subsequent nlp tasks.

Bootstrapping refers to the process of collecting the initial information that is
required by a set of computational procedures for extracting semantic information
from the sense definitions in an mrd. The initial information needed is commonly
linguistic information, notably syntactic and case information, which is used during
the processing of dictionary sense-definitions into an underlying representation from
which semantic information is then extracted.

Bootstrapping methods can be internal or external. Internal methods obtain the
initial information needed for their procedures from the dictionary itself and use
procedures to extract that information. This is not as circular as it may seem. A
process may require information for the analysis of some sense-definition (e.g.,
some knowledge of the words used in the definition) and may be able to find
that information elsewhere in the dictionary. By contrast, external bootstrapping
methods obtain initial information for their procedures by some method other than
the use of the procedures themselves. The initial information may be from a source
external to the dictionary or may be in the dictionary but impossible to extract
without the use of the very same information. For example, the word noun may have
a definition in a dictionary but the semantic information in that definition might
not be extractable without prior knowledge of a sentence grammar that contains
knowledge of syntactic categories, including what a noun is.

There are differences of opinion in computational lexicography regarding extrica-
bility and bootstrapping. Slocum and Morgan [58] are pessimistic about the use of
machine readable dictionaries in machine translation. Others [e.g., 3, 9, 28] appear
to believe that the semantic information in dictionaries can be extricated only with
some external bootstrapping, that is, with some prior knowledge handcoded into an
analysis program.
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8.1.3 LDOCE: A Basic MRD

ldoce, the mrd we use, is a full-sized dictionary designed for learners of English
as a second language that contains more than 55,000 entries in book form and
41,100 entries in machine-readable form (a type-setting tape). We define an entry
as a collection of one or more sense definitions that ends at the next head. The
head is the word, phrase or hyphenated word defined by an entry. A sense entry is
the sense definition, examples and other text associated with one sense of a head.
If an entry includes more than one sense definition then each sense definition will
have a number.

The preparers of ldoce claim that entries are defined using a “controlled” vocab-
ulary of about 2,000 words and that the entries have a simple and regular syntax.
Table 8.1 shows some basic data derived from our analysis of the machine-readable
tape of ldoce (because of a tape error, words that follow alphabetically after zone
have not been analyzed). The figure of 2,166 is arrived at as follows. The list of
controlled vocabulary contains 2,219 words. We have removed 58 prefixes and
suffixes that are listed as controlled vocabulary items and have removed 35 items
that did not have heads. Furthermore, the analysis shows that some words are not
part of the controlled vocabulary yet are used frequently in definitions; for example,
the word aircraft is not part of the controlled vocabulary, yet it is used 267 times
in sense definitions. About 30 such words have been added to the list of controlled
vocabulary, giving 2,166 words. The criteria for adding a word were that it was
used at least 13 times in definitions or examples without indication that it was a
cross reference, and that at least one of these uses was outside of its definition.
Most of these words added are compound words, such as aircraft.

The interesting thing to note from Table 8.1 is the extremely high number of
senses for words belonging to the controlled vocabulary. Although there are only
about 2,166 words in the controlled vocabulary, more than 24,000 of the 74,000
senses defined in ldoce are senses of these words (including senses of phrases
beginning with a word from the controlled vocabulary). To put this another way,
controlled vocabulary items are roughly six times as ambiguous as non-controlled
items: Words from the controlled vocabulary have an average of twelve senses
while other words have an average of two.

The book and tape versions of ldoce both use a system of grammatical codes
of about 110 syntactic categories which vary in generality from, for example, noun
to noun/count to noun/count/followed-by-infinitive-with-TO.

The machine readable version of ldoce also contains “box” and “subject” codes
that are not found in the book. The box codes use a set of primitives such as

Table 8.1. Head counts for words, entries and sense entries in ldoce.

Heads Words Entries Sense Entries

Controlled vocabulary 2,166 8,413 24,115
Non-controlled vocabulary 25,592 32,687 49,998
Totals 27,758 41,100 74,113
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“abstract,” “concrete” and “animate,” organized into a type hierarchy. The primitives
are used to assign type restrictions to nouns and adjectives, and type restrictions on
the arguments of verbs.

The subject codes, referred to here as “pragmatic” codes to avoid confusion with
the grammatical subject, use another set of primitives organized into a hierarchy.
This hierarchy consists of main headings such as “engineering” with subheadings
such as “electrical.” These primitives are used to classify words by their subject
area; for instance, one sense of current is classified as “geology-and-geography”
while another is marked “engineering/electrical.”

8.1.4 The Production of MTDs

One principal issue here concerns the format that mtds should have. Certainly,
the format must be versatile for a variety of consumers in CL and AI to use it.
These consumers need a range of semantic information. To meet these needs mtd

formats should be unambiguous and preserve much of the semantic structure of
natural language, and should contain as much information as is feasible. However,
this does not mean that the format of an mtd must consist of just a single
type of representation, because it is possible that different kinds of information
require different types of representation. For example, two kinds of information
about word use are (1) the use of senses of words in individual dictionary
sense definitions, and (2) the use of words throughout a dictionary, i.e., co-
occurrence data. It is not clear that a single representation can record both (1)
and (2): The former requires a frame-like representation of the semantic structure
of sense definitions that records the distinction between genus and differentia,
the subdivision of differentia into case roles, and the representation of sense
ambiguity; whereas the latter requires a matrix or network-like representation of
word usages that encodes the frequency of occurrence of words and of combinations
of words. Hence, an mtd may consist of several representations, each internally
uniform.

Given the arguments presented in Section 8.1.1, we believe that the first of these
representations should be modeled on natural language though it should be more
systematic and unambiguous. Hence, this component representation should be as
text-like as possible and should distinguish word senses.

The other form of representation can be construed as a connectionist network
based on either localist [e.g., 14, 62] or distributed approaches [e.g., 34, 48].
Like our position on semantics, connectionism emphasises the continuity between
knowledge of language and the world, and many connectionist approaches have
paid special attention to representing word senses, especially the fuzzy boundaries
between them [e.g., 14, 62, 48]. Localist approaches assume symbolic network
representations whose nodes are word senses and whose arcs are weights that
indicate their relatedness.

An interesting new approach, described in Section 8.2, uses a network whose
nodes are words and whose arc weights are derived from co-occurrence data for
words. Although this approach initially appears to be localist, it is being used to
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derive more distributed representations which offer ways of avoiding some serious
problems inherent in localist representations. Such frequency-of-association data do
not appear in standard knowledge representation schemes, but are complementary
to the knowledge in such schemes, and may be useful in their own right for CL
tasks such as lexical ambiguity resolution.

8.1.5 Three Providers

We now move to describe three methods of extraction from ldoce, which share
some, but not all, of the principles advocated above. We shall argue that they
yield different but consistent extractions from ldoce, and at the end of the paper
we discuss how to combine their separate “weak methods” [40] into a single
strong source, to serve as a data base for a wide computational community.
These three methods are extensions of fairly well established lines of research.
The method in Section 8.2 is in the spirit of distributional analysis [24]. In
Section 8.3, an attempt is made to develop an empirically motivated controlled
vocabulary in the spirit of Amsler’s, work [3] on the role of defining vocabulary
in dictionaries. Section 8.4 describes the construction of a large-scale parser for
the extraction of genus and differentia terms, expanding upon other similar work
[e.g., 13, 1, 7].

All three methods pay special attention to the underlying methodological assump-
tions concerning the extraction of semantic information from dictionaries distin-
guished in Section 8.1.2 above. With respect to sufficiency and extricability, all
three methods assume that dictionaries do contain sufficient knowledge for at least
some CL applications, and that such knowledge is extricable. But the methods differ
over bootstrapping, i.e., over what knowledge, if any, needs to be handcoded into
an initial analysis program for extracting semantic information.

The three methods differ in the amount of knowledge they start with and the
kinds of knowledge they produce. All begin with a degree of handcoding of initial
information but are largely automatic. In each case, moreover, the degree of hand-
coding is related to the source and nature of semantic information required by that
method.

• Method I, a statistical approach due to Plate and McDonald, uses the least
handcoding; the co-occurrence data it generates is the simplest form of semantic
information produced by any of the three.

• Method II, a compositional-reduction method due to Guo, derives a natural set
of semantic primitives of about 2,000 “seed senses” (1,000 words) from ldoce.
These seed senses are used to construct an mtd that contains highly structured
semantic information.

• Method III, a parsing of ldoce dictionary entries due to Slator, requires
handcoding a grammar and semantic patterns used by a parser, but not the
handcoding of any lexical material. This is because the method builds up lexical
material from sources wholly within ldoce.
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8.2 Method I: Statistical Lexical Disambiguation

In this section we explore the co-occurrence of words in ldoce. We claim that co-
occurrence data can provide an automatically-obtainable measure of the “semantic
relatedness” of words. Also, we will investigate the possibility that statistics of
co-occurrence of words in ldoce can (1) give some empirical evidence for word
sense distinctions, and (2), be used in conjunction with sense definitions to perform
lexical disambiguation within ldoce.

A semantic theory of language that treats word-senses as the basic unit of meaning
makes a prediction about distribution of word senses. That prediction is that two
word-senses occurring in the same sentence will probably be semantically related.
This is because most sentences are coherent wholes, and in a coherent whole every
item is involved in some relationship and every pair of items is linked by some chain
of relationships. This prediction is weak, uncontroversial and essentially irrefutable.
We make a much stronger claim, in three parts. First, the probability of a relationship
between two word-senses occurring in the same sentence is high enough to make
it possible to extract useful information from co-occurrence statistics. Second, the
extent to which this probability is above the probability of chance co-occurrence
provides an indicator of the strength of the relationship. Third, if there are more and
stronger relationships among the word-senses in one assignment of word-senses to
words in a sentence than in another, then the first assignment is more likely to be
more correct.

So, we are interested in the possiblility of inferring semantic information from
the observed distribution of words. However, there are two major obstacles to
doing this. The first obstacle is that such statistics concern the distribution of
words, whereas the semantic theory of distribution concerns the distribution of
word-senses. In Section 8.2.3.2 we give an indication of how purely distributional
statistics can indicate the presence of several word senses in a corpus. The network
reduction technique we use to accomplish this separation of senses is one method
for dealing with the obstacle that our distributional statistics are about words rather
than senses. In our technique for lexical disambiguation we use another way to deal
with this obstacle: we look up senses in the dictionary and use the definitions to
provide information about them. In this technique we also have to deal with the
same problem because the words in the definition of a sense are also ambiguous.
We deal with this by allowing each word to contribute information from all of its
senses and by considering that information contributed from several words is more
informative: The irrelevant senses have less weight [32].

The second obstacle to extracting semantic information from co-occurrence
statistics is that non-semantic factors can influence the choice of words and thus
the distribution of sense-uses. Some of these factors, some of which overlap, are
listed below.

• The pragmatic goal of avoiding ambiguity may lead to choosing the sense of
one word rather than an equivalent sense of a different word to express an idea
in a particular context.
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• The distribution of topics in the sample of text will influence the distribution
of sense-uses. This is further discussed in Section 8.2.4.2, on using ldoce as a
source of co-occurrence statistics.

• The style of the sample of text will affect the distribution of sense-uses. This
too is discussed in Section 8.2.4.2.

• The social and cultural context of a text will influence the distribution of sense-
uses in it.

• The collocability and idomatic uses of words will influence the choice of
senseuses.

The extent to which the above factors will prevent the collection of useful infor-
mation from co-occurrence statistics is an empirical question. It may even be
possible that some of the above factors, especially the last, may be useful things to
have information about.

8.2.1 Obtaining Measures of Relatedness of Words from ldoce

There are two aspects to obtaining measures of relatedness of words from ldoce

using co-occurrence statistics. One is the collection of statistics of co-occurrence of
words in ldoce. The other is the interpretation of those statistics, i.e. the function
we use to compute measures of relatedness from statistics of co-occurrence.

8.2.1.1 Collecting Statistics of Co-Occurrence from ldoce

Co-occurrence data record the frequencies of co-occurrence of pairs of words within
some textual unit. All the co-occurrence data used in the experiments reported in
this section were collected using the sense-entry as the textual unit. Sense-entries
were chosen to be the textual units because they are moderately sized, coherent
samples of text focused on one topic.

We have taken advantage of the controlled vocabulary of ldoce in order to
reduce the amount of co-occurrence data to be collected. Statistics were collected
only for words in a version of the controlled vocabulary modified as described in
Section 8.1.3; this version has no prefixes or suffixes and has 31 additional words.

The definition of word that has been used is as follows. Plurals of nouns are
considered the same word as the singular form, and conjugations of verbs are
considered the same word as the infinitive form. Some forms of words have more
than one morphologically possible root; e.g., rose could be a flower or the past
tense of rise. Such difficulties have been ignored and the root form has been chosen
arbitrarily. So, for instance, rose is always taken to be the flower, even in a sentence
such as the sun rose. This is only a problem for the very few words (rise, rose, leaf,
and leave) which have derived forms that are identical to other words, or derived
forms thereof, in the controlled vocabulary. In some cases two words derived from
the same root but having different parts of speech are the same word, and in other
cases they are not. For example, quick and quickly are considered to be the same
word, but beauty and beautiful are not. ldoce’s controlled vocabulary was used to
determine this — if a root form and a derived form of a word were included as
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separate items in the controlled vocabulary, then they were regarded as different
words. If just the root form was included, then all derived forms were regarded as
the same word as the root.

• For the purposes of this section, when word is used to refer to a word in the
controlled vocabulary, it also refers to all variants of that word that do not
appear separately in the vocabulary.

• The textual unit is the sense-entry, which is the definition and example text for
one word sense. The number of textual units is N �= 74� 113�.

• The frequency of co-occurrence of two words x and y� fxy, is the number of
textual units (also referred to as events) in which both of those words occur.

• The independent frequency of occurrence of a word x� fx, is the number of
events in which it occurs.

8.2.1.2 Deriving Relatedness from Co-occurrence

If it is true that related words are more likely to occur together than unrelated
words, then co-occurrence statistics should be able to provide some indication of
the relatedness of words — related words will occur together more frequently than
by chance. Co-occurrence data can also indicate negative relatedness, where the
probability of co-occurrence is less than by chance. This has been determined to
be uninteresting because initial investigation revealed that all negative relatedness
occurred with closed-class words (e.g., for and to). Thus we seek exclusively to
measure positive relatedness.

The problem is to find some function of frequencies of occurrence and co-
occurrence that will rank the relatedness of pairs of words, i.e. a function that will
indicate whether or not words x and y are more strongly related than words v and
w. The easiest way of ranking is to have a function that maps to a point on a linear
scale of relatedness, and such functions will be refered to as relatedness functions.

Relatedness functions should be unbiased and sensitive across the domain of
independent frequencies; that is, for all possible independent frequencies of words,
the frequency of co-occurrence that is expected by chance should map to minimum
relatedness and the maximum possible frequency of co-occurrence should map to
maximum relatedness. We are unsure as to whether relatedness functions should
be symmetric. An argument in favor of symmetry is that it is not possible to tell
from co-occurrence data that word x “causes” word y to appear more than word
y “causes” word x to appear. Assymetry in a relatedness functions can only arise
from differential independent frequencies of words x and y. An argument against
symmetry is that assymetry might be useful and that the above argument is invalid
because we are not measuring how much one word “causes” another to appear.

The relatedness functions used in the experiments are shown in Table 8.2 along
with comments as to their bias, sensitivity, symmetry and motivation.

We had hoped to find a relatedness function which would give a low relatedness
value to word pairs where one word was a closed-class word (especially determiners
and very common prepositions). This would provide a principled way of ignoring
such words, as they seem to provide very little information. The sdd function
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Table 8.2. Relatedness functions

NAME VALUE COMMENTS

cp�x� y�
fxy

fy

�= Pr�x�y�� Conditional probability of x given y.
Assymmetric. Insensitive and heavily
biased for all fx and fy, except low,
equal values. Same as fxy for a given
y. Included for comparison.

dcp�x� y� Pr�x�y�−Pr�x� Deviation of cp. Difference between
Pr�x�y� and Pr�x�. Assymmetric. More
sensitive than cp but still biased and
fails to map to full range for most
values of fx and fy. An attempt to
remove some of the bias of cp.

dcpmin�x� y� min�dcp�x� y��dcp�y� x�� Minimum of dcp in both directions.
Symmetric. Sensitive if fx and fy are
similar, but maps to zero if they are
considerably different. An attempt to
remove more of the bias of cp than dcp
removes.

iou�x� y� Pr�x and y�x or y� Intersection over union. Produced by
dividing number of events in which
both x and y occur by the number of
events at least one of them occurs in.
Attempt to remove bias from cp. More
sensitive than dcpmin when fx and fy

are different.

dex�x� y�
fxy −fx ·fy

min�fx� fy�−fx ·fy

Dependency extraction. Normalizes fxy

by mapping it to [0,1] according to its
scaled position between the minimum
and maximum possible values.
Symmetric. Fully sensitive for all fx

and fy. Attempt at a sensitive, unbiased
symmetric relatedness function.

sdd�x� y�

fxy − fx ·fy

N√
fxfy · �N −fx��N −fy�

N 2 · �N −1�

Standard deviation distance. Based on
Fisher’s exact method for deciding
whether two samples have identical
distribution, which uses the
hypergeometric distribution for
co-occurrence of x and y, assuming
that x and y are independent.
Symmetric. We use a normal
approximation to measure the
number of standard deviations
that the observed value of fxy is
from its expected value (assuming
independence).
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Table 8.3. Twenty words most strongly related to bank for each function

cp a, account, an, and, as, bank, be, by, for, from, have, in, money, of, on, or, river,
the, to, which

dcp a, account, as, at, bank, be, by, from, have, in, keep, money, of, on, pay, river,
rob, the, to, water

dcpmin account, bank, cheque, criminal, earn, flood, flow, lake, lend, money, pay,
prevent, promise, rate, river, rob, rock, safe, sand, sum, thief

iou account, bank, busy, cheque, criminal, earn, flood, flow, interest, lake, lend,
money, overflow, pay, river, rob, safe, sand, thief, wall

dex a, account, bank, be, by, cheque, clerk, dollar, in, messenger, money, of,
overflow, participle, pay, river, rob, September, the, to

sdd account, bank, busy, cheque, clerk, criminal, dollar, flood, international, keep,
lake, lend, money, overflow, pay, river, rob, sand, thief, water

seemed to do this reasonably well — a and the were the 27th and 51st words most
strongly related to bank as measured by sdd. dex and dcpmin gave higher values for
function words, but not as high as did cp. However, none of the functions produced
significantly better results than cp in the lexical disambiguation task.

The types of words these relatedness functions select as highly related are shown
in Table 8.3, which gives the 20 words most strongly related to bank, as measured
by each of the relatedness functions. There are 21 words for dcpmin because of ties.

We have used all six of the above functions and raw frequency of co-occurrence
as measures of relatedness in various experiments (but not all in all experiments).
Despite the theoretical considerations, none was markedly superior; all worked
reasonably well (given appropriate choices of other parameters). Surprisingly, raw
conditional probability was slightly superior in the two experiments in which it
was used, namely comparison with human judgments (Section 8.2.2.3), and lexical
disambiguation using word sets (Section 8.2.3).

8.2.2 The Use of Co-Occurrence Information for Lexical Disambiguation

The ability to find sets of words related to a word allows us to formulate a technique
for lexical disambiguation based on local context. The general idea behind this
technique is to compare the local context of the word we want to disambiguate
with the sense-entry for each of the senses of that word. For all of the experiments
reported, the local context of a word was taken to be the sentence in which it
appeared. The sense-entry that the local context is most similar to is likely to be the
correct sense. This technique is not completely straightforward because the sense-
entry of a particular sense, and a sentence in which a use of that sense appears,
often have no words (in the controlled vocabulary) in common. For example, the
definition of sense 4.1 of bank is shown below, with the words in the controlled
vocabulary in parenthesis. Note that we use the convention of numbering the M th

sense in the N th entry (homograph) for a word as ‘senseN�M’. Homographs or
senses unnumbered in ldoce are labelled with ‘0’. Note also that for the purposes
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of the experiments described in this section the following words were omitted from
the controlled vocabulary: a, and, be, for, in, of, or, than, that, the this, those, to,
what, when, where, which, who and with.
bank4 1 a place in which money is kept and paid out on demand, and where

related activities go on (activity, demand, go, keep, money, on, out, pay, place,
related)

An example of the use of sense 4.1 of bank is (from the definition of ‘savings
account’):

BrE any of various kinds of bank accounts earning higher interest than a
deposit account (account, any, earn, high, interest, kind, various)

The context of the use of sense 4.1 of bank and its sense-entry have no words
in common. This is not unexpected given the small number of words in the sense-
entry. A consequence is that we cannot use the straightforward technique of looking
for the sense-entry with maximum word overlap with the context.

Using relatedness functions we can expand contexts and sense-entries to included
related words, making the technique of looking for maximum overlap more reliable.
Lesk [32] reported a similar technique for performing sense disambiguation. In his
technique definitions of words were used to find related words, rather than relat-
edness functions based on co-occurrence data, and only contexts were expanded.
Sparck Jones [59] also presented a closely related technique, based on finding
chains of synonyms that linked senses of words in the sentence. Sparck Jones’s
technique differs from the one presented here in that all words in the sentence were
disambiguated at once. We have avoided doing this because of the problems of
combinatorial explosion — for each word in a sentence the number of possible
sense-assignments is multiplied by the number of senses that word has. For the
sentence above there are 276,480 possible sense-assignments for the words listed
in parenthesis alone. It is quite possible that better results could be got by disam-
biguating all the words in a sentence at once, but an efficient search technique would
be required. Simulated annealing and genetic searching are potentially suitable
search techniques for this.

8.2.2.1 Vectors for Words, Senses and Contexts

Using the co-occurrence data we can judge the similarity of sense-entries and
contexts even though they might have no words in common, like the context and
sense-entry in the example shown above. We do this by expanding sense-entries
and contexts to include related words. It is then possible to judge their similarity
by using some function that counts overlap.

We represent the expanded contexts and senses as vectors rather than sets because
we want to have a weight associated with each word. The weight is used to record
the number of words related to words in the context, or related to words in the
sense definition, and to record the number of words further related to these recorded
words. We do not use the relative values of relatedness functions to weight words:
A word is judged as related just if it exceeds some threshold. For consistency we
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also represent the sets of words related to a word as vectors, though the only values
in the word-vectors are zero and one.

Let the vector of related words for word x be denoted by the vector Rx, such that
Rx

y = 1 if f�x� y� > t (and if y is not one of the 20 words said just above to have
been omitted), and 0 otherwise, where f is some relatedness function, and t is a
threshold. Two methods for setting t were used. One was to fix its value so that it
was the same for all word-vectors, and the other was to adjust t for each x so that
the number of 1s in Rx, i.e. the number of words judged to be related, was near to
some constant value s. It could not always be made exactly equal to s because of
ties in relatedness function values.

We build a vector of words RS for a sense-entry (a sense-vector) by summing the
vectors of related words of each of the words, except for the word being defined,
in the sense-entry. Similarly, we build a vector of words RC for the context (a
context-vector) of the word to be disambiguated by summing the vectors of related
words of each of the words in the context, again with the exception of the word
being disambiguated.

8.2.2.2 Judging the Similarity of Sense-Vectors and Context-Vectors

There are many ways one can judge the similarity of two vectors. All the functions
we used can be seen as some measure of overlap. Some ignore the weights on
words in word-vectors; others take them into account.

The following simple functions are used in the definitions of the vector similarity
functions: Z1 maps vectors to vectors, non-zero elements are mapped to 1 and
zero elements are mapped to 0. SUM maps vectors to scalars; its result is the sum
of all the elements of the vector. The dot-product function ‘·’ maps two vectors
to a scalar in the conventional way. The pairwise sum ‘⊕’ maps vector pairs
to vectors.

The first vector similarity function treats the vector as a set, and computes the
size of the intersection over the size of the union (hence the name IOU).

IOU�V�W� = Z1�V� ·Z1�W�

SUM�Z1�V ⊕W��
(1)

The second vector similarity function counts the “hits” of V in W (i.e., it sums the
elements of W for which the corresponding element in V is non-zero) and divides
this value by the sum of the elements in W .

HIT→�V�W� = Z1�V� ·W
SUM�W�

(2)

The third function takes the symmetric product of HIT→.

HIT×�V�W� = HIT→�V�W�HIT→�W�V� (3)
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The fourth is the normalized dot-product (the cosine of the angle between the two
vectors)

NDP�V�W� = V ·W√
V ·V +W ·W (4)

We tried all of the above functions and found HIT× and NDP to produce the best
results.

8.2.2.3 The Lexical Disambiguation Experiment

The disambiguation of the 197 occurrences of the word bank in ldoce was attempted
in the manner just described.1 All the sentences were first disambiguated by hand
by the authors and the occurrence of bank in each was labeled with a sense from
the sense distinctions made in ldoce. This was not an easy task, as some of the
usages of bank did not seem to fit any of the definitions very well. The method
was judged to have assigned the correct sense to a word in context if it chose the
same sense as that represented by the hand-labeling.

Bank was chosen as a test case for a number of reasons. It has a moderate number
of senses (13), and these senses can be split into two main groups: financial senses
and earth or river senses. These two groups account for seven of the 13 senses and
nearly all of the usages of bank in ldoce. Within these two sense-groups there
are finer distinctions, some semantic and some syntactic. For example, one of the
three financial senses of bank is transitive and one is intransitive. As the method
ignores syntactic information, we would not expect it to be able to make correct
distinctions between the three financial senses of bank. We might also expect it
to have difficulty distinguishing the earth senses of bank which have only fine
semantic differences. However, we do expect it to do well in making gross semantic
distinctions. Given these considerations, completely accurate performance on this
task would be very strange and would indicate something wrong; a rate of not much
more than 50% exactly correct is expected.

The 13 senses of bank listed in ldoce are shown in complete form below. In
order to judge how well the method makes grosser semantic distinctions, the 13
senses were allocated (by the authors’ judgment) to six sense-groups (labeled (A),
(B), etc.); the performance on assigning a usage to the correct sense-group was also
measured. The number of times each sense was used in the dictionary, including
the definitions and examples shown here, is given in square brackets at the end of
each sense-entry.

All combinations of the six relatedness functions (cp was used in both direc-
tions, making a seventh), four vector similarity functions (HIT→ was used in both
directions, making a fifth), and ten criteria for choosing word sets (five fixed sizes,

1 Bank occurs slightly more often than this, but only in examples of use of its phrasal verb
forms (defined separately in ldoce and not shown here). These were omitted because
they are easily identifiable and thus can be disambiguated by other means.
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n = 5� 10� 20� 40� 70 and 100, and five fixed thresholds, which varied for each
relatedness function) were tried. This was a total of 350 experiments.2

bank1 n1 (A) land along the side of a river, lake, etc. [32] 2 (A) earth which is
heaped up in a field or garden, often making a border or division [5] 3 (A) a
mass of snow, clouds, mud, etc.: The banks of dark cloud promised a heavy
storm [2] 4 (B) a slope made at bends in a road or race-track, so that they are
safer for cars to go round [0] 5 (A) sandbank: The Dogger Bank in the North
Sea can be dangerous for ships [6]

bank2 � (B) (of a car or aircraft) to move with one side higher than the other, esp.
when making a turn — see also bank up [0]

bank3 n (C) a row, esp. of oars in an ancient boat or keys on a typewriter [0]

bank4 n1 (D) a place in which money is kept and paid out on demand, and where
related activities go on — see picture at street [143] 2 (E) (usu. in comb.) a
place where something is held ready for use, esp. organic products of human
origin for medical use: Hospital bloodbanks have saved many lives [1] 3 (F)
(a person who keeps) a supply of money or pieces for payment or use in a
game of chance [2] 4 (F) break the bank to win all the money that the bank4
(3) has in a game of chance [1]

bank5 v1 (D) to put or keep (money) in a bank [0] 2 (D) to keep one’s money
(esp. in the stated bank): Where do you bank? [1]

After elimination of ‘— see …’ constructions, substitution of the definition of
sandbank for the definition by cross reference of sense 1.5, and conversion to the
root forms of the controlled vocabulary (minus the words listed at the beginning
of Section 8.2.2), we have the following definitions with which the system works.
These are presented in alphabetical order to emaphasize that all syntactic and
morphological information has been removed.

Bank1.1 along, lake, land, river, side
Bank1.2 border, division, earth, field, garden, heap, make, often, up
Bank1.3 cloud, dark, heavy, mass, mud, promise, snow, storm
Bank1.4 at, bend, car, go, make, race, road, round, safe, slope, so, they, track
Bank1.5 can, danger, ship, high, water, sand, north, sea
Bank2.0 aircraft, car, high, make, move, one, other, side, turn
Bank3.0 ancient, boat, key, on, row
Bank4.1 activity, demand, go, keep, money, on, out, pay, place, related

2 For interest’s sake, note that if all the experiments were random, the probability of all
350 experiments producing 30 or less correct sense assignments would be 0.96. In fact,
fewer than 145 of the 350 experiments produced 30 or less correct sense-assignments.
Thus, the successes cannot be attributed to having a large enough number of random
experiments.
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Bank4.2 have, hold, human, live, many, medicine, origin, place, product, ready,
save, something, use, organ, hospital

Bank4.3 chance, game, keep, money, pay, person, piece, supply, use
Bank4.4 all, break, chance, game, have, money, win
Bank5.1 keep, money, put
Bank5.2 do, keep, money, one, state, you

8.2.2.4 Results of the Lexical Disambiguation Experiment

The experiments with the top scores for sense-assignment and group-assignment
are shown in Table 8.4. For comparison, the results of doing lexical disambiguation
by computing overlap between context and sense-entry without expanding either
are also shown (relatedness function for this technqiue is equivalence: =.)

The most successful experiment has labeled bank with the correct sense in 45%
of the sentences. This was a large improvement on the result achieved (23%) when
senses and contexts were not expanded to include related words.

Labeling bank with the correct sense was a difficult task. In 38 of the 350 exper-
iments bank was labeled with the correct sense at least 35% of the time. Labeling
with the correct sense group was a far easier task: In 120 of the experiments, bank
was labeled with the correct sense group at least 85% of the time. A less stringent
test of correct sense labeling was to label a word with the top three senses as
judged by the technique and to see if the correct sense was among those. In 36 of
the experiments, the correct sense was among the top three rated at least 85% of
the time.

The best relatedness and vector similarity functions were determined by
examining the top 20 scores for correct sense and correct sense group. To assign to
the correct sense (e.g., Bank 1.1, Bank 1.2, etc.), the best relatedness functions were
cp, dcp, and sdd and the best vector similarity functions were HIT× and NDP. To
assign to the correct sense group (e.g., A, B, C, etc.) dcp was the best relatedness
function and HIT→�RC�RS� was the best vector similarity function.

We also conducted experiments in which expanded only the contexts, but not the
sense. These experiments were conducted using only the sdd relatedness function.
The best of these experiments labeled bank with the correct sense 41% of the time.
In general, performance dropped very slightly (2% to 4%) compared to those cases
in which senses were also expanded. These experiments are more comparable to

Table 8.4. The parameters and results of some of the experiments

Word-vector criteron t = 0�1 t = 0�03
Relatedness function = cp�x� y� dcp�x� y�
Vector similarity function NDP HIT× HIT→�RC�RS�
Assignment to correct sense 23% 45% 15%
Correct was in top 3 40% 85% 74%
Assignment to correct group 52% 79% 97%
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the experiments done with the Pathfinder networks, as described in Section 8.2.4,
because senses were not expanded in those experiments.

Experiments were also conducted with different sets of closed-class words being
ignored. In one experiment the three prepositions were introduced back into the
sense entries and word sets, and in another all the ignored words were re-introduced.
The performance of the technique declined in both cases, but less (only five or ten
hits lower for both cases) when the sdd relatedness function was used. This was
expected because it was the function which seemed to draw the fewest closed-class
words into word sets. The set of words we chose to ignore seems reasonably optimal
in that the performance also declined when more prepositions were added to the set
of words to be ignored.

8.2.2.5 Discussion of the Lexical Disambiguation Experiment

The technique was able to assign the correct sense in up to 45% of the test
sentences, which is quite good performance for disambiguating the work bank.
Precise assignment of the correct sense of bank was very difficult, if not impossible
in some contexts. This is because syntactic information, including morphology, was
ignored. Bank has both nominal and verbal forms of a very similar sense and it
is unreasonable to expect any method that takes no notice of syntax to be able to
distinguish these reliably. Additionally, bank has quite a few senses which are very
close to each other. If the critereon for success was relaxed a little by requiring
fewer close sense distinctions (i.e. assigning to a sense in the correct sense-group),
then the hit rate increased to greater than 90%. However, to evaluate fully the value
of this technqiue, experiments would have to be conducted for a number of words
other than bank.

The technique of expanding contexts and sense entries to include related words
(judged to be related by some relatedness function) was reasonably successful.
Without expansion, the correct sense assignment was made 23% of the time, and
with expansion the highest rate of correct sense assignment was 45%. The example
given at the beginning of Section 8.2.2, of a sentence with no controlled vocabulary
words in common with the definition correct of the correct sense of bank, was
assigned the correct sense in a number of experiments, demonstrating that the
technique can work for some more difficult cases.

The relative success of conditional probability as a relatedness function is
surprising; it might indicate that the data in ldoce is poor for all but the most
frequent words.

There might be serveral ways to improve the technique. One way might be to
disambiguate all the senses in a sentence at once, as discussed at the beginning
of Section 8.2.2. Another would be to improve the sets of related words by
combining this technique with the techniques of Lesk [32] and Sparck Jones [59].
Or the co-occurrence might be improved by collecting data over a larger corpus
than ldoce. Another possibility is to start to collect co-occurrence data for word
senses rather than for words, using sentences that have been disambiguated by this
technique.
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8.2.3 Pathfinder Networks Based on Co-Occurrence Information

One of the problems with co-occurrence data is the sheer quantity of it. Co-
occurrence data for words in the ldoce controlled vocabulary contain nearly 2.5
million frequencies of co-occurrence (the triangle of a 2,200-by-2,200 matrix). This
much data cannot be examined in raw form, and so the amount of information must
be reduced. This must be done without eliminating large amounts of interesting or
useful information. That is to say, a mechanism is needed to eliminate noise in the
data without destroying useful information.

A technique for data reduction that has proved quite interesting is to use the
Pathfinder algorithm [50, 51], which was developed to discover the network
structure in psychological data. The algorithm takes a completely connected network
as input and removes most of the links, leaving networks sufficiently concise to
be viewed directly while still retaining much interesting information. The networks
have interesting stucture, and the remaining links correspond quite well to intuitive
ideas of which nodes should have relationships between them. We have also used
Pathfinder networks to do lexical disambiguation in preliminary judgments of
whether any useful information is discarded in reducing the amount of data using
the Pathfinder algorithm.

8.2.3.1 The Theory of Pathfinder

Pathfinder is a psychometric scaling method based on the mathematical theory of
graphs and networks [12, 23]. We use the terms nodes and links to describe the
entities in a graph, and weight to describe the value on a link in a network. In
our application of graphs, nodes represent words, links represent pair-wise relations
between words and weights represent the strength of the relations.

Pathfinder is implemented as an algorithm based on the idea that a link should
be present in an output network if and only if that link is a minimum weight path
between the nodes. The weight, W�P�, of a path, P, is a function of the weights on
links in the path computed using the Minkowski r-metric, as follows:

W�P� = �wr
1 +wr

2 + � � �+wr
k�

1/r (5)

where k is the number of links in P, wi is the ith link weight, and r ≥ 1.
This use of the r-metric in path weight measurement allows Pathfinder to accom-

modate different assumptions about the level of measurement associated with
distance estimates. Ordinal level measurement requires r = �, in which case W�P�
is equivalent to the maximum weight in the path. Ratio-level measurement allows
any value of r ≥ 1.

The other parameter used by the Pathfinder algorithm is q, the maximum number
of links in searched paths. Limiting the number of links in a path can result in
significant savings in computation time and space when working with large numbers
of nodes.3

3 The theory of Pathfinder is discussed in much greater depth in [51, 50].
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8.2.3.2 Pathfinder Networks of Co-occurrence Data

Pathfinder analyses were performed on a conditional probability matrix for 2,177
of the 2,187 words in the constrained vocabulary. The ten most frequent words, all
of which were function words, were omitted. Retaining these was found to reduce
the usefulness of the resulting network because these words provided meaningless
pathways between many pairs of words. The weights on the links were computed
according to the function 1 – iou.4 Because of the nature of this transformation, the
most that can be assumed is that the data have ordinal properties. Therefore, the
Pathfinder r parameter was always set at infinity in the analyses reported here. The
q parameter was varied from 2 to 32, resulting in networks that ranged from 16,955
links to 2,204 links. When the q parameter was set to 5, the resulting network had
3,136 links. A subnetwork of this network is shown in Figure 8.1a. This subnetwork
contains all the nodes (and links among them) that were within three links of the
node for bank in that network. This subnetwork required spatial organization to
make it readable, but the link structure is unaltered.

These networks demonstrate how pure distributional statistics can be used to
show that a word has several different meanings (senses), something which some
linguists, e.g., Lyons [33:613], have claimed is impossible. In Figure 8.1a, two
distinct clusters can be observed, each corresponding to one of the two main
senses of the word bank. These two clusters correspond to the two dominant
senses of bank (senses 1.1 and 4.1 in Section 8.2.2.3), which account for 91%
of the uses of the word in ldoce. Thus we would not expect any other of its
senses to be represented in this network. However, if the data did include more
senses, it is not certain that clusters for the other senses would take shape as
distinctively as the clusters in Figure 8.1a, since the other senses are less intuitively
different.

A hierarchical cluster analysis [27] on the words in Figure 8.1a, (minus the
word bank), is shown in Figure 8.1b. For the cluster analysis, the distance between
words was also computed according to iou, and the distance between clusters was
the minimum of the distance between any two words in each cluster. This cluster
analysis shows more objectively the two distinct clusters for two senses of bank;
the words in the lower cluster are exactly those in the lower half of the Pathfinder
network. The word bank was omitted because once it became a member of one
cluster, all other clusters quickly became clustered with that cluster. This is not
surprising in that all the words were chosen because of their strong relationship to
bank.

8.2.3.3 Using Pathfinder for Lexical Disambiguation

The networks that result from the Pathfinder were used to select the related-word
sets for each word. Related sets were formed by selecting words that were directly
linked to each word in the network. The number of links connected to each word

4 The Pathfinder algorithm uses “distances,” whereas iou is a similarity measure.
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Fig. 8.1a. A subnetwork of a Pathfinder network of 2,177 words
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Fig. 8.1b. Hierarchical cluster analysis of words from Figure 8.1a
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varies, depending on the extent to which other words consistently co-occur with it.
This means that related-sets also varied in size.

Sense sets were formed for the test word by combining the related-word sets for
the words in each sense entry. The union of the related-word sets was used in the
experiments described here, although schemes which differentially weight words in
the sense sets might be valuable.

As with the sense sets, the context set was formed from the related-word sets for
the words in the context sentence. However, our approach here has been progres-
sively to expand the size of the context set by increasing the number of links, or
network distance, used in determining relatedness. This is analogous to causing
activation to spread from the words in the context sentence until all of the words
in the sense sets are contacted, although in practice a fixed distance is used.

Finally, a measure of match was computed for each sense entry at each distance
from the context set. Several measures have been considered, but two are examined
in these experiments: (1) the ratio of the number of items in the intersection of the
sense-sets and the context-set divided by the number of items in the union of these
two sets (intersection over union), and (2) the ratio of the number of items in the
intersection divided by the number of items in the definition set.

8.2.3.4 Results and Discussion of the Experiments with Pathfinder Networks

We compared three Pathfinder networks (Q2 = 16� 955 links; Q5 = 3� 136 links;
Q32 = 2� 204 links) for their utility in identifying the correct sense of the word
bank in the 197 example sentences from ldoce. In these tests the sense definition
sets contained only the words in the definitions themselves (i.e. no related words
and no weights). The context set was progressively expanded by including words
directly connected to the words in the context set (Step 1), then to words related
to the related words (Step 2), etc. At each step the evaluation function was used to
compute a measure of strength for each of the sense definitions. Although several
evaluation functions were compared, we will report results using the function iou.

The results of these comparisons are relatively straightforward. In terms of
absolute performance, the network with the fewest links (Q32) performed best,
allowing bank to be correctly sense-tagged in 104 of the 197 example sentences
(53%). Maximum performance occurred when the context set had been expanded
to include items three links away (average context set size = 102). Performance
with the Q5 network was next best (91 hits at Step 2; average context-set size = 81)
and worst with Q2 (82 hits at Step 1; average context-set size = 91). Although all
of the networks were superior to Step 0 performance i.e., using only the words in
the context sentence, the performance of the Q32 network is particularly surprising
and encouraging (see Figure 8.2).

Selecting the correct sense from a large set of highly similar senses (there are
13 senses for bank) may be too stringent a test. Therefore, we also examined
performance with the Q32 network when only the four homograph entries for bank
were considered. The hit rate improved to 85% (167 out of 197), a far more useful
result. Furthermore, several modifications to our methodology offer the potential
of improved performance; these include using different probability functions as the



192 Wilks et al.

Fig. 8.2. Sense-labeling performance for different networks

basis for network computation, weighting the context and sense definition set words
in terms of importance, etc. At present, it appears that Pathfinder is able to capture
the important relationships in the co-occurrence data without losing anything of
value, at least for our application.

8.2.4 General Discussion and Conclusion

Lexical disambiguation using co-occurrence data is possible. The Pathfinder
algorithm seems to be a good way of reducing the amount of information about the
co-occurrence of words that must be stored in order to do lexical disambiguation.

Frequencies of co-occurrence of pairs of words in a text and frequencies of word
occurrence are only some of the distributional statistics that can be collected about
words in a text. Other statistics, such as frequencies of co-occurrence of triples of
words, or frequencies of contiguous co-occurrence of pairs of words, are potentially
additional sources of distributional statistics.

8.2.4.1 Combining with Other Methods and Iterative Improvement

This technique for lexical disambiguation could be classified as a “weak method.”
As such, it might be quite suitable for combining with other methods for processing
ldoce entries, and language in general. For example, Slator’s method, presented
in Section 8.4, uses syntactic information and classifies words by part of speech,
among other things. These classifications could be used to constrict the judgments
of the technique presented in this section, resulting in more accurrate sense labeling.
Sampson [49], presented a statistical technique for assigning part-of-speech labels;
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this also would be an excellent candidate for combination with the technique
presented in this section.

Another type of potentially useful distributional statistic is the co-occurrence
of words in particular syntactic relationships, e.g., an adjective with a noun that
it modifies. Collection of these statistics would be possible if either of the two
techniques just mentioned, or other syntactic techniques, were used in combination
with this type of work.

Further possibilities for combining our technique with others are discussed in
Section 8.5, where we indicate how our technique and Slator’s might be used in a
“spiral” of improvement.

8.2.4.2 Sources of Co-Occurrence Data

ldoce is theoretically a good source of co-occurrence data for a number of reasons,
some of which have to do with the factors contributing to the distribution of
sense uses which were discussed in Section 8.2.1. The distribution of topics in
ldoce is broad, covering most concepts expressible in a word or short phrase.
The style of ldoce is of short textual units with a single topic (although examples
sometimes diverge). Another aspect of the style is the controlled vocabulary, which
makes co-occurrence data easier to collect. Only a limited number of the senses of
words in the controlled vocabulary are used in the dictionary, and co-occurrence
data will not reflect relationships between words where the relationships are based
on unused senses. Another consequence of the controlled vocabulary appears to
be that ldoce contains relatively few defintions by synonym compared to other
dictionaries.

The topics chosen for examples also affect the co-occurrence data. For example,
bank-robbery is a surprisingly common theme: 24 of 143 uses of sense 4.1 of bank had
to do with bank robberies, and this is reflected in the Pathfinder network for bank.

There is more information in ldoce which could probably be used to improve
the relatedness judgments of senses and words. The box codes and pragmatic codes
discussed in Section 8.4 contain potentially useful information. It may also be useful
to restrict the gathering of co-occurrence information to more syntactically close
words, e.g., the genus and differentia terms in a definition.

Co-occurrence data could be collected from other texts. One could look just
for co-occurrences of words from Longman’s controlled vocabulary, or for co-
occurrences of all words (if one had a powerful enough computer). The practical
value of co-occurrence data from other texts would need to be verified.

8.2.4.3 Word Senses in ldoce

The senses defined for bank in ldoce do not seem very good; they do not even
adequately cover the uses of bank in the dictionary. For example, the definition of
Dam2.0 is “a wall or bank built to keep back water.” But it is not clear whether the
sense of bank used here is 1.1 or 1.2 — neither seems to describe the usage very
well. It and similar uses were decided by the authors to be sense 1.1 (see Page 184).
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This is likely to be a problem for any technique for automatically extracting
information from an mrd. The only solution will be to have some technique for
extending the coverages of sense definitions in ldoce, or for creating new ones.
The former alternative is likely to be easier, and should fall naturally out of an
iterative improvement scheme such as that outlined above.

8.3 Method II: Constructing an MTD from LDOCE

This section discusses another method for constructing an mtd from ldoce. The
mtd under construction is intended to be a basic facility for a whole spectrum of
natural-language processing tasks. The goal of this approach is the derivation of
a natural set of semantic primitives from ldoce and the use of these primitives
in the construction of an mtd. Consistent with the semantic-primitive approach is
a set of well-defined construction procedures; among these is a very specialized
bootstrapping process.

Inductive learning systems often assume the existence of a set of hierarchically-
arranged primitives that allows new concepts, new rules and new domain theories
to be generalized [71, 15]. Such primitives take the form of semantic primitives [67]
in an inductive learning system that acquires knowledge from natural language text.
There are two alternative approaches to the development of a set of semantic primi-
tives: the prescriptive approach and the descriptive approach. In the prescriptive
approach, a set of primitives is defined, or prescribed, prior to or in the course of
designing and developing a system. An example of a prescribed set of semantic
primitives is the set of semantic features used as “box codes” in the electronic
version of ldoce. The descriptive approach [67:198] on the other hand, allows a
natural set of semantic primitives to be derived from a natural source of data, such
as a dictionary.

The mtd has two components, a lexical base and a knowledge base. The lexical
base contains the same lexical information as ldoce about each word sense, except
that the definition of the word sense is given in terms of numbered word senses
instead of words. The knowledge base consists of a network of semantic relations
among the word senses defined in the lexical base. These semantic relations include
case relations (agent, patient, recipient, time, location, goal, cause and reason),
part/whole relations, class/membership relations and other schematic relations.

Important to this study is the distinction of four types of words and “word senses”
contained in ldoce. Each type of word and word sense is a subset of the next set
of words and word senses given below. The four types are as follows.

Seed senses are the semantic primitives derived from the dictionary. The words
that the seed senses are senses of are called seed words.

Controlled words are words from the list of the “controlled vocabulary” given
at the back of the ldoce dictionary. ldoce uses the controlled vocabulary words
in all its word sense definitions and usage examples. All the word senses of the
controlled words defined in ldoce are controlled senses.

Defining words are used to define the meanings of all the controlled words in
their sense definitions. Note that not every controlled word is used in the definitions
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Fig. 8.3. Schematic representation of the mtd project

of the controlled words themselves. “Defining senses” are individual word senses
of the defining words that are actually found used in the definitions of the meanings
of the controlled words.

Any word contained in ldoce is an ldoce word. Any word sense of any ldoce

word is an ldoce sense.
The subsetting relationship between the four types of words and word senses is

shown in Figure 8.3.

8.3.1 Overview of Construction Procedures

The construction of the mtd proceeds in the following four steps:

Step 1: Determination of the defining senses of ldoce, i.e., those word senses
used in the definitions of 2,139 controlled words of ldoce. The words defined
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by the defining senses constitutes the set of defining words of the dictionary.
ldoce defining words constitute a subset of the controlled words. There are
2,002 defining words in ldoce.

Step 2: Derivation of a natural set of semantic primitives from ldoce. These
semantic primitives are, in fact, the seed senses of ldoce. Seed senses are a
subset of the defining senses of the 2,002 defining words, which are sufficient
to define the set of defining senses of Step 1. There are approximately 2,000
seed senses in ldoce. The words which the seed senses are senses of constitute
the set of seed words of the dictionary. There are approximately 1,000 seed
words in ldoce.

Step 3: Handcrafting the lexical and the knowledge bases for the natural set of
semantic primitives derived from ldoce.

Step 4: Constructing a mtd for the rest of the controlled words and the rest of the
ldoce words by means of bootstrapping from the initial, handcrafted lexical
and knowledge bases. The bootstrapping process is a process of knowledge
acquisition from dictionary definition text.

Figure 8.3 illustrates the four-step project.

8.3.2 Step 1: Derivation of the Defining Senses of LDOCE

Of ldoce’s 2,139 controlled words, we found that 137 do not participate in defining
the word senses of the controlled words. This leaves a reduced set of 2,002 controlled
words. In this study, this reduced set is called the “defining words” of ldoce.
The word senses of the defining words that are used in the definition of the

aunt (0, 1): the sister of one’s father or mother,
the wife of one’s uncle, or a woman
whose brother or sister has a child

by (1, 16): having (the stated male animal, esp. a
horse) as a father

get (0, 17): to become the father of � BEGET
grandfather (0, 0): the father of someone’s father or

mother
grandmother (0, 0): the mother of someone’s father or

mother
parent (0, 1): the father or mother of a person
uncle (0, 1): the brother of one’s father or mother,

the husband of one’s aunt, or a man
whose brother or sister has a child

uncle (0, 3): a man who takes the place of a father,
especially in relation to the children
of a woman who is or was married to
someone else
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2,139 controlled words are the defining senses of ldoce. Because of inadequate
computational techniques, human judgment is used in determining which sense(s)
of the defining words are the defining senses in ldoce. For each of the 2,139
controlled words, a file is created of all the occurrences of the word in the definition
text of the controlled words, using Tony Plate’s “thruld” program [see 69]. Those
word senses that are found to be used in defining the meanings of the controlled
words are recorded as the defining senses of those words. Below is an example
of a file of all occurrences of the word father in the definition text of the 2,139
controlled words.
The word father can be either a noun or a verb. ldoce provides eight senses
for father as a noun. Among them are “male parent” and “priest.” In the above
example, only the “male parent” sense of father is used to define the word senses
of other controlled words. Hence “a male parent” (father (1, 1), i.e., the first
sense of the first homograph of father) is recorded as the defining sense of the
word in ldoce. This process repeats itself until the defining senses of all the
defining words are determined. Now 3,860 word senses of the 2,002 defining words
constitute the defining senses of ldoce. Also, 1,051 defining words have single
defining senses; 526 have two defining senses; and 425 have three or more defining
senses.

8.3.3 Step 2: Derivation of a Natural Set of Semantic Primitives
from LDOCE

To derive the seed words for ldoce after Step 1, we proceed as follows:

1. Obtain a “hunch set” for the seed words using frequency of occurrence criteria.
The seed words of ldoce are generated from an initial hunch set of some 400
words. The words of the initial hunch set are the intersection of three basic lexicons:
the 4,000 most frequently used words in all sense definitions in ldoce [70]; the
850 words of basic English [41]; and the 500 most common words in The Brown
Corpus [29]. The underlying assumption here is that a large portion of that subset
of the English vocabulary which may function as the seed words in ldoce is highly
likely to appear in all the above-mentioned word lists.

2. Test the hunch set in terms of its ability to account for all the controlled
words accounted for within three or four defining cycles. ‘Defining cycle’ refers
to the process of one group of words defining another in a dictionary, resulting
in the other group of words being defined. At the end of a defining cycle, those
words whose defining senses have been defined then join the words that define
their meanings, so to define more words at the next defining cycle. The first of such
defining cycles starts with the hunch set and the last ends with the meanings of all
the ldoce words defined. For all practical purposes, this means that the defining
senses should be accounted for within two or three defining cycles. A defining
sense is accounted for if its definition text contains only words from the hunch set
and/or words whose defining senses have been accounted for.

According to our studies, the first defining cycle in ldoce starts with a set of
some 1,200 seed words. At the end of the first defining cycle, about 700 more
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controlled words join the seed words to define more words at the next defining
cycle. The second defining cycle defines another 200 or so controlled words. By the
end of the third defining cycle, all the controlled words are defined. It takes another
one or two defining cycles to have all ldoce words defined. Note that the results
reported here, on the seed words of ldoce, are preliminary. Research is under way
to pin down the exact number of the seed words and seed senses. The number of
ldoce seed words is expected to be about 1,000, with about 2,000 seed senses.

3. If the hunch set proved to be capable of accounting for all the senses of the
controlled words accounted for within three or four defining cycles, the hunch set
becomes the seed words. Otherwise revise the hunch set and go back to 2.

To test the hunch set, we first test whether it is able to account for the 3,860
defining senses within two or three defining cycles. The testing is carried out by a
computer program. The program looks at each word in the definition text of each
of the defining senses to see whether it is a word from the hunch set. If all the
words in the definition text of a defining sense are from the hunch set, the defining
sense becomes a candidate to be entered into a “success file.” This file keeps a
record of all words that have been accounted for. Note that the success file holds
words, not word senses. For a word to be included in the file, all its defining senses
must have been accounted for. The word senses that are not accounted for enter a
“fail file.” This file also keeps a record of the words that cause word senses to be
unaccounted for. These words are called “problematic words.” At the end of first
defining cycle, words recorded in the success file join the hunch set to start the
next defining cycle. Notice that our hunch set remains unchanged at this point. Our
program starts checking again for the second defining cycle. This time the program
examines the definition text of the yet-unaccounted defining senses to see whether
the words are from the initial hunch set and/or the set of words that has just been
added. It builds another success file and another fail file. Since the 3,860 defining
senses are not all accounted for at the end of the second defining cycle, we keep
revising the hunch set.

An issue involved in the revision of the hunch set is the size we would like it to
be. We could add all words recorded in the fail file. The maximum number of words
that can thus be put in the hunch set equals the number of the defining words. Or we
could add words that are more problematic than others, i.e. more frequently recorded
in the fail file as problematic. This latter approach is adopted. A computer program
examines the problematic words in the fail file and picks out those that occur more
often than others. These words become candidate words to be added to the hunch set.

Before we actually add any words to the hunch set, we make sure that no
candidate words to be added have been recorded in the success files. Hence we
delete any candidate words that are found in the success files after previous defining
cycles. The deletion helps to reduce the size of the seed words without causing
any word sense to be left unaccounted for at the end of three or four cycles. The
process of deriving the seed words for ldoce is an empirical process of much trial
and error. However, each time we revise the hunch set, the chance increases of
confirming it as the set of seed words.
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A final remark on the derivation of the seed words for ldoce concerns some
70 words from the definition text of the controlled words which are not found in
the 2,139-word controlled vocabulary list. Among these words are hole, tendency,
success and American. These 70-odd words are simply put into the hunch set and
become part of the seed words.

Our hunch set gradually climbs from 400 to about 1,200 items, when it is finally
confirmed as the set of ldoce seed words. About half of these have one defining
sense, one quarter have two defining senses, and those in the remaining quarter
have three or more defining senses. Our preliminary studies produced a set of some
2,000 seed senses as the natural set of semantic primitives derived from ldoce.

The discovery of the seed senses greatly reduces the amount of handcrafting
needed for bootstrapping, topics to be discussed in the next two subsections.

8.3.4 Step 3: Handcrafting the Initial Lexical and Knowledge Bases

Lexical information concerning the seed senses derived from ldoce is handcoded
into the initial lexical base. Explicit word-sense numbers are manually attached
to each word in the definition text of each semantic primitive. For the initial
knowledge base, informants are asked to name a semantic relation they perceive
to exist between pairs of ldoce semantic primitives. These relations may include
case relations, part/whole relations, ISA relations, or other schematic relations. The
elicited information is then handcoded into the knowledge base. Efforts are being
made to reduce the number of judgments that have to be made by humans. The
ideal situation occurs when only critical pairs of semantic primitives are examined.
According to a related study, critical pairs of primitives can be reduced to 1% of
all possible pairs using Pathfinder network techniques [51].

8.3.5 Step 4: Knowledge Acquisition and the Bootstrapping Process

The acquisition of lexical and world knowledge from dictionary definitions for the
rest of the controlled words (and the rest of the entire ldoce vocabulary) involves
a carefully controlled bootstrapping process.

The process acquires lexical and world knowledge from dictionary definition text
using two processes: language analysis and semantic relation designation. Analysis
of definitions is both syntactic and semantic. The result of the analysis is a parse
tree with numbered word senses. These parse trees replace the original word-sense
definition, thus expanding the lexical base of the mtd. Semantic relation designation
involves assigning semantic relations to a pair of related word senses in the parse
tree. For example, the semantic relation between the head noun of the subject and
the head verb of the predicate could be “agent/action.”

Bootstrapping requires the pre-existence of a lexical base and a knowledge base.
The process proceeds in accordance with a “bootstrapping schedule” that fits the
defining cycles of the dictionary. This schedule determines which word senses are
to be processed first and which later. The bootstrapping schedule is needed because
both lexical and world knowledge about words used in the definition of a word
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sense have to be present in the mtd before the definition text of that particular word
sense can be analyzed and new lexical and world knowledge acquired. Lexical
information is found in the lexical base where word-sense definitions are given in
word senses instead of words. World knowledge information is in the network of
semantic relations among the word senses defined in the lexical base. Lexical and
world knowledge acquired from analyzing the definition text of a word sense from
an earlier defining cycle assists the analysis of the definition text of word senses at
later defining cycles. The success files discussed earlier are records of which word
senses are defined at which defining cycle. These files provide an adequate basis for
the establishment of an accurate bootstrapping schedule. The bootstrapping process
terminates when an mtd is built for all word senses defined in ldoce.

Following is an example from the electronic version of ldoce showing the
general process of bootstrapping associated with the three noun senses of nurse.
(The definitions are in the form of Prolog assertions.)

Sense 1

(nurse,n,1,[a,person,typically,a,woman,who,is,trained,to,
take,care,of,sick,hurt,or,old,people,esp,as,
directed,by,a,doctor,in,a,hospital]).

Sense 2

(nurse, n,2,[a,woman,employed,to,take,care,of,a,young,child]).

Sense 3

(nurse,n,3,[wet,nurse]).

Cross-reference

(wet_nurse, n, 0, [a, woman, employed, to, give, breast, milk,
to, another, woman’s, baby]).

The bootstrapping process produces the following as part of the lexical information
to be included in the lexical base of the mtd. Note that the word sense definitions
are now given in word senses with explicit word sense numbers attached.

Sense 1

(nurse,n,1,[al,personl,typicallyl,al,woman1,who2,is2,
trained2,tol,take_care_ofl,sick1,hurt1,
or2,old1,people1,especially2,as5,directed3,
by5,al,doctor2,in1,al,hospitall]).

Sense 2

(nurse,n,2,[al,woman1,employed1,tol,take _ care _ of1,al,young1,
child2])
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Sense 3

(nurse,n,3,[wet_nursel]).

Cross-reference

(wet_nurse,n,1,[al,woman1,employed1,to1,give5,breast1,
milk1,to9,another2,woman1’s,baby1]).

Table 8.5 summarizes how the word senses involved in defining the three noun
senses of nurse are themselves defined. Most of these senses are seed senses.
Information concerning these word senses is handcoded into the lexicon. They
can be identified by a ‘+’ sign in the ‘seed sense’ column. Some are defined at

Table 8.5. Summary of bootstrapping process for three noun senses of nurse.

WORD SENSE SEED SENSE FIRST DC SECOND DC THIRD DC

al + − − −
another2 + − − −
as5 + − − −
baby1 − + − −
breast1 − − two + −
by5 + − − −
child2 + − − −
directed3 + − − −
doctor2 − − attend to + −
employed1 + − − −
especial1 − + − −
give5 + − − −
hospital1 − − cure + −
hurt1 + − − −
in1 + − − −
is2 + − − −
milk1 + − − −
old1 + − − −
or2 + − − −
people1 + − − −
person1 + − − −
sick1 − + − −
to1 + − − −
to9 + − − −
take_care_of1 − − responsible + −
trained2 + − − −
typically1 − + − −
who2 + − − −
woman1 + − − −
young1 + − − −
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the “first defining cycle”, i.e., by the seed words. They are ‘baby1’, ‘especially2’,
‘sick1’ and ‘typically1’, indicated by a ‘+’ sign in the table’s ‘first dc’ column.
Others are defined at the “second defining cycle”, i.e., by the seed words plus
words defined at the first defining cycle. ‘Breast1’ and ‘take_care_of1’ belong to
this group. Note that the word given after a ‘−’ sign in the table is the word that
keeps the word sense in question from being defined at a particular defining cycle,
e.g., the word cure that appears in the definition text of the first word sense of
hospital (‘hospital1’) keeps the word sense from being defined until the second
defining cycle.

8.4 Method III: A Lexicon-Provider

A lexicon-provider system is outlined in this section. The system provides
text-specific lexicons from selected mrd definitions from ldoce. The input to this
system is unconstrained text; the output is a collection of lexical semantic objects,
one for every sense of every word in the text. Each lexical-semantic object in this
lexicon contains grammatical and subcategorization information, often with general
(and sometimes specific) grammatical predictions; most of these objects also have
semantic selection codes, organized into a type hierarchy; and many have encoded
contextual (pragmatic, ldoce subject code) knowledge as well. As a natural
by-product of the lexicon construction, a relative contextual score is computed for
each object that bears such a pragmatic code; these scores provide a simple metric
for comparing competing word senses for text-specific contextual coherence, and
so directly address the problem of lexical ambiguity resolution. Besides exploiting
those special encodings supplied with the dictionary entries, the text of selected
dictionary definitions are analyzed, further to enrich the resulting representation.
This lexicon-providing subsystem takes ldoce as a database and produces a
structured (and much smaller) knowledge base of lexical semantic objects organized
by pragmatic context. Figure 8.4 shows an overview of the lexicon-providing
system and the lexicon-consumer, a Preference Semantics parser for text [54].

8.4.1 Constructing the Lexicon

The lexicon-providing subsystem includes the program for constructing lexical-
semantic knowledge bases. This program takes online mrd entries and, first,
produces corresponding basic lexical-semantic objects (frames), as follows:

(technician
(POS . n)
(SENSE-NUM . 0)
(GRAMMAR
((C) . N/Count)))

(PRAGMATIC
(ON (Occupations)))
(TYPE
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((H) (RESTRICTION . Human/Sex-Unspecified)))

(current
(POS . n)
(SENSE-NUM . 3)
(GRAMMAR
((C) . N/Count))

(PRAGMATIC
(EGZE (Engineering/Electrical)))

(TYPE
((T) (RESTRICTION . Abstract))))

(measure
(POS . v)
(SENSE-NUM . 1)
(GRAMMAR
(or
((I) . V/Intransitive)
((T1) . V/Transitive/N+-or-PRON+-Follows)))

(PRAGMATIC nil)
(TYPE
((H T -)
(SUBJECT . Human/Sex-Unspecified)
(OBJECT1 . Abstract)
(OBJECT2))))

(ammeter
(POS . n)
(SENSE-NUM . 0)
(GRAMMAR
((C) . N/Count)))

(PRAGMATIC
(EGZE (Engineering/Electrical)))

(TYPE
((J) (RESTRICTION . Solid/Movable)))

This program is straightforward and provides a useful and consistent knowledge
base for parsing [69, 70]. These basic frame-objects are further manipulated in two
ways: (1) they are organized into a hierarchical contextual structure and (2) they are
enriched by means of further processing of the texts of the dictionary definitions
themselves, as described below. Consider, for example, the following short text:

(1) Current can be measured.
The technician measures alternating current with an ammeter.
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Fig. 8.4. The lexicon-provider subsystem.

The basic lexicon for this text contains 30 frames for content words5 (not counting
18 senses of the infinitive be and ten senses of the auxiliary can). Each basic frame
has five slots:

POS or part of speech, the top level of the GRAMMAR hierarchy.
SENSE-NUM, the sense number.
GRAMMAR slots, which are filled with category code information (such as
transitive for V, count for N, etc.) and predictions from the LDOCE

grammar for English with its 110-odd members [46, 47].
PRAGMATIC slots, which are filled with contextual domain terms like

engineering or religion.
TYPE slots, which are filled, in the case of nouns and adjectives, with selection

restrictions like solid, human or abstract and, in the case of verbs, with
selection restrictions on the functional arguments to the verb such as human
subject and abstract direct object.

8.4.1.1 Contextual Structure

The system for constructing the lexicon also establishes the conceptual domain of
texts. In the basic lexicon construction process, all word senses for all parts of
speech of all words in the text are looked up, giving a text-specific lexicon. Along
the way, an ordered list of pragmatic (subject) codes is collected for a “content

5 These 30 frames are alternate (three adjective senses, one verb sense), ammeter (one
noun sense), can (two nouns, two verbs), current (three adjectives, four nouns), measure
(eight nouns, three verbs, one adjective), technician (one noun sense), and the phrase
alternating current (one noun sense). ldoce defines about 7,000 phrases.
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assessment” procedure [61] where lists of frequently occurring ldoce pragmatic
codes are compiled by simply counting up the instances found in the various senses
of the words in the text). The ldoce pragmatic coding system divides the world
into 124 major subject categories ranging from “aeronautics” and “agriculture”
to “winter sports” and “zoology.” Many of these subjects are further subcatego-
rized (for example, under “agriculture” is “soil-science” and “horticulture,” and
under “zoology” is “entomology,” “ornithology” and “ichthyology”), so there are
369 different subject codes in the ldoce pragmatic system. However, the ldoce

hierarchy is flat (only two layers deep), and the 124 major categories have equal
and unrelated status; for example, business and economics are both at the top of
the tree and are unconnected; the same is true of science and zoology (Figure 8.5).

The lexicon-providing subsystem relates these codes through a manually restruc-
tured hierarchy, making communication, economics, entertainment, household,
politics, science and transportation the fundamental categories. Every word sense
defined with a pragmatic code therefore has a position in the hierarchy, attached
to the node for its pragmatic code. Every node in the hierarchy is assigned a value
by the lexicon-provider according to the number of words in the original text that
bear that code; values lower in the structure are propagated by summing upwards
towards the root. At the end of this process a single pragmatic code for one of the
seven fundamental categories, high in the hierarchy and therefore general in nature,
asserts itself as the domain description term for the text. The result is a structure
for lexical ambiguity resolution because this process also yields a set of preferred
word senses that cohere with the subject domain of the text (in the sense that a set
of, say, engineering terms is coherent with respect to engineering). The implication
of discovering a global domain description term for a text is that the global domain
description term carries with it an entire sub-hierarchy of more specific pragmatic
codes. The Preference Semantics parsing algorithm strongly prefers these word

Fig. 8.5. The ldoce Pragmatic Hierarchy (with words from (1)). The parenthetical numbers
are from the ‘Before Restructuring’ column of Table 8.6.
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senses coherent with (i.e., in the same subject area with) the domain description
term established for the text; the more specific the word sense (the lower in the
restructured pragmatic hierarchy), the higher the preference.

The scheme implemented here imposes deeper structure onto the ldoce pragmatic
world (Figure 8.6), relating pragmatic categories in a natural way, in order to discover
important relationships between concepts within text. This particular restructuring is
not one to be defended point by point; there has been, for instance, an arbitrary division
made at the highest level. What can be defended is the notion that, for example, words
classified under botany have pragmatic connections to words classified as plant names,
as well as connections with other words classified under science (connections not made
by the ldoce pragmatic hierarchy as given), and that these connections are useful to
exploit when attempting to determine the subject matter of a text, or when attempting
to choose the correct sense of polysemous words.

To illustrate, again consider the text of (1).

(1) Current can be measured.
The technician measures alternating current with an ammeter.

Without context, the correct sense of current in the first sentence cannot be selected
until after the second sentence is processed; with context, a strong candidate can
be preferred.6

Fig. 8.6. The ldoce Pragmatic Hierarchy (with words from example (1).) The parenthetical
numbers are from the ‘After Restructuring’ column of Table 8.6.

6 It would be natural to expect this process to work better on longer text, the longer the
better, and indeed this appears to be true in tests we have run. However, good results can
be got even with these relatively short fragments.
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Table 8.6. Pragmatic codes and domain descriptors for example (1)

CODE BEFORE Score CODE AFTER Score
RESTRUCTURING RESTRUCTURING

MS measures, weights 6 SI science 16
EGZE engineering/electrical 6 CM communications 6
MU music 3 MS measures, weights 6
PL political-science 2 EG engineering 6
LT literature 2 EGZE engineering/electrical 6
LW law 2 AF art 5
GO geology, geography 2 PL political-science 4
FOZP food/food-processing 2 MU music 3
ON occupations 1 HH household 3
RE recording 1 LT literature 2
HH household 1 LW law 2
BO botany 1 GO geology, geography 2
CA calendar 1 FO food 2

… FOZP food/food-processing 2
EC economics 1
BZ business 1
ON occupations 1
RE recording 1
BO botany 1
HR horology-clocks 1
CA calendar 1

In Table 8.6, the before restructuring column is compiled simply by counting
up the ldoce pragmatic codes found in the various senses of the words in the text
(as in content assessment). The after restructuring column gives the scores
resulting from the deeper pragmatic structure. Note that descriptors like ‘economics’
and ‘science’ have been introduced, and that the status of ‘science’ as a domain
descriptor for the text only asserts itself after restructuring. Beforehand, ‘science’
is not on the list and ‘engineering/electrical’, ‘measures-and-weights’, etc. are of
equal and unrelated status. This is clearly an over-compartmentalized view of the
world. The deeper hierarchy gives a far better intuitive ordering of the important
concepts in each text than the given ldoce hierarchy, and using these orderings as
a word-sense selection heuristic is computationally useful.

8.4.2 Enriching Frames

The basic frames (as given in Section 8.4.1) are a large step towards the knowledge
required for parsing by a lexicon-consumer operating over non-dictionary text [54].
However, there is a hidden wealth of further information within the genus and
differentia of the text of the definitions. When the needs of a knowledge-based parser
increase beyond this initial representation (as is the case of, say, resolving lexical
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ambiguity or making non-trivial attachment decisions), the frame representations
are enriched by appeal to parse trees constructed from the dictionary entries of the
relevant word senses. That is, the text of the definition entry itself is analyzed to
extract genus and differentia terms [4]. This additional information further enriches
the semantic structures.

A chart parser has been developed that accepts ldoce definitions as Lisp lists and
produces phrase-structure trees. The grammar is still being tuned, but it currently
covers the language of content-word definitions in ldoce, achieving a 95% success
rate in a test of 1,200 entries. This chart parser is not, we emphasize, a parser for
English — it is a parser for the sub-language of ldoce definitions (Longmanese),
and in fact only for the open-class or content word portions of that language. ldoce

sense definitions are typically one or more complex phrases composed of zero or
more prepositional phrases, noun phrases and/or relative clauses. The syntax of sense
definitions is relatively uniform, and developing a grammar for the bulk of ldoce

has not proven to be intractable. Chart parsing was selected for this system because
of its utility as a grammar testing and development tool. The chart parser is driven
by a context-free grammar of more than 100 rules and has a lexicon derived from
the 2,219 words in the ldoce core vocabulary. The parser is left-corner and bottom-
up, with top-down filtering (taken from [57]), producing phrase-structure trees. The
context-free grammar driving the chart parser is unaugmented and, with certain
minor exceptions, no procedure associates constituents with what they modify.
Hence, there is little or no motivation for assigning elaborate or competing syntactic
structures since the choice of one over the other has no semantic consequence [43].
Therefore, the trees are constructed to be as “flat” as possible. The parser also
has a “longest string” (fewest constituents) syntactic preference. A tree interpreter
extracts semantic knowledge from these phrase-structure definition trees [56].

8.4.2.1 The Tree Interpreter

The output of the chart parser, a phrase-structure tree, is passed to an interpreter for
pattern matching and inferencing. The tree interpreter first picks off the dominating
phrase and, after restructuring it into genus and feature components by reference
to the currently active grammar version, inserts it into the current basic frame under
a genus slot.7 Further strategies for pattern-matching are being developed to extract
more detailed differentia information.

The relationship between a word and its definition can trivially be viewed as an
ISA relation; for example, an ammeter is “an instrument for measuring … electric
current.” The frame created for each word-sense from its definition, then, represents
the intension of that word-sense. This observation motivates the assumption that
portions of this intensional material can be isolated and given a label for eventual
preference matching. For example, by noting that an ammeter is “for measuring” it
becomes reasonable to create a slot in the ‘ammeter’ frame that is labeled purpose

7 If the grammar is modified, the restructuring rules change automatically.
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Fig. 8.7. Pattern matching against tree constituents

and filled with ‘measuring’. This kind of knowledge is precisely what is needed to
compute case roles and preferences (Figure 8.7):

Consider once again this sentence from (1): The technician measures alternating
current with an ammeter.

The pattern ‘for <verb>-ing’ in the differentia of a noun strongly predicts a
purpose case role for that noun, and the preposition with in English predicts various
case roles for its noun-phrase object, principally accompaniment (“a man ate
a meal with a friend”), possession (“a man ate a fish with many bones”) and
instrument (“a man ate a fish with his fingers”). In this instance, the definition
for ammeter contains a pattern indicating it is a constituent that prefers to fill a
purpose and, in particular, prefers to be for measuring. In cases like this a parser
should prefer the instrument reading over both the accompaniment case relation
and the possession noun phrase complement alternatives because the object of the
with preposition (ammeter), has a purpose case-role marker (filled with measuring),
that suggests an instrument attachment. Other case roles that appear extractable
from ldoce differentia, but still subject to further investigation, include part-of,
member-of, means-of and measure-of.

8.4.3 Comparison to Other Work

The most closely related pragmatic work, and that from which the ideas for this
scheme arose, is by Walker and Amsler [61] who used the ldoce pragmatic (subject)
coding system to do content assessment on wire service stories from The New
York Times News Service. The focus of that work was to arrive at a list of codes
that, taken together, would reflect the subject matter of each story. Their work
differs from ours in that they accepted the ldoce pragmatic hierarchy as given,
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getting good results because their texts, while arguably general, were by nature
highly coherent.

The pragmatic hierarchy scheme has roots in a far older tradition, one that dates to
the days of “mechanical translation.” Wilks [63] describes a system for word-sense
disambiguation used by the Cambridge Language Research Unit [37]. The idea was
to choose the correct senses for the words in a sentence by looking them all up in a
thesaurus, finding the thesaural heads for each, and then determining which thesaural
heads were held in common. Then the sets of words found under the common
thesaural heads for each word were themselves compared for commonality, and any
that were in the intersection of these sets became sense descriptors for that particular
instance of the word in the sentence. This method worked remarkably well, and its
major shortcoming was that it failed to take into account word usage that was other
than the most “coherent”; therefore, the only sense of mass discovered in a physics
text would be “mass as weight” and a phrase like “a mass of data” in a physics
text would have the wrong sense assigned to it [59, 60]. The pragmatic hierarchy
scheme is essentially equivalent to this older idea (although their thesaurus, like
ldoce as given, was only two layers deep and so was not well able to discriminate
between competing senses).

Little machine-readable dictionary work has focused on the dictionary as a
language resource for semantic, knowledge-based parsing. Approaches to extracting
semantic knowledge from machine-readable sources, such as “sprouting” [13], or
employment of paid “disambiguators” [6, 3], typically labor to construct taxonomies
from an unconstrained definition vocabulary, such as in Webster’s Seventh. The
ldoce work that we know of, principally at Cambridge University, has mainly
concentrated on explicating the grammar codes for use with unification-based
parsing [2, 9]. Other efforts at extracting semantic information from machine-
readable sources include recent work on locating meaningful patterns in definition
text using ldoce at Cambridge [1]; searching for and explicating the so-called
“defining formulas” of definitions using Webster’s Seventh [36]; and recent work at
IBM that has taken an approach to interpreting definition parse trees by applying a
pattern matcher and a rule-based inference mechanism to assign mycin-like proba-
bilities [52] to attachment alternatives (the numbers arrived at by intuition and
tuning), again using Webster’s Seventh as a knowledge base [7, 26].

8.5 Conclusion and Future Directions

The tools produced by the methods described in this paper all take as input the
forms of information given on the ldoce tape (English definitions, syntax codes,
subject and pragmatic codes) and provide either:

• From Method I, a clustered network of ldoce words whose clusters correspond
to empirically derived senses.

• From Method II, a formalized set of definitions of sense entries in a nested
predicate form, where the predicates are a “seed set” of senses, half the size of
the existing controlled vocabulary of ldoce.
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• From Method III, frame-like structures containing a formalization of the English
definitions using predicates that are (initially) English words (not senses) from
the controlled vocabulary, as well as the given ldoce codes.

Let us now consider two intended extensions to the three methods, which would
have the effect, we claim, of combining these separate “weak” sources of semantic
and syntactic information so as to provide stronger tools for text analysis.

8.5.1 The SPIRAL Procedure

This procedure would be one that cycled information between Slator’s (Method III)
ldoce parser and Plate and McDonald’s (Method I) distributional-network so as to
yield a sense-tagging of the words in the frames Slator outputs from parsing ldoce;
at the same time it would provide a filter for the networks so as to reduce the
search space required. It also gives senses (rather than words) at the network nodes.
This passing of material between the provider modules (shown in Figure 8.8) is
not circular but a spiral that yields, from a combination of weak sources, a stronger
semantic data base.

In the following stages, the numerals 1, 2 and 3 index the integer labels in
Figure 8.8.

Stage 1: Slator’s ldoce parser passes part-of-speech disambiguated words to the
network algorithm, thus filtering its work by a large factor.

Stage 2: The network procedures give sense-tagging to the words in the ldoce

definitions.
Stage 3: The ldoce parser now parses the sense-tagged entries in the dictionary,

and passes the result back again to the network system, enabling the nodes in
the network to be sense-tagged.

8.5.2 The ARC Procedure

In the arc procedure, the arcs of Plate and McDonald’s networks can be labeled
automatically with either predicates (yielding a conventional semantic net) or with
numerical values (yielding a connectionist network [34]). The latter would follow
fairly directly from Pathfinder techniques, but the former presents a great challenge.
ARC can be thought of as a fourth stage of the spiral procedure and our initial
approach to it will be to extend stage 3 of the spiral technique of the previous
section.

The first phase of arc is driven from the frames already obtained from Slator’s
Method III: For each appropriate predicate in a frame that has two word-senses
s1 and s2 as its arguments, we seek nodes n1 and n2 in a Plate and McDonald
network corresponding to those senses. When found, we label the connecting arc
with the predicate from the frame. This method simply transfers information from
the frames to the networks.
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A second phase now begins from the networks: For any two nodes in a network
n1 and n2, both representing English word senses, and not already connected by
a labeled arc, we seek their occurrence in ldoce entries, immediately linked by
plausible predicate and case forms (e.g. IS, ON, USED-FOR, PART-OF, etc.)
and in senses that Slator’s ldoce parser asserts are the appropriate ones. If the
occurrences in the entire dictionary are consistent, that is, are like:

hand (=bodyhand) IS-A-PART-OF body (=human body)

with no other predicate appearing where PART-OF does in any ldoce entry, then
that label could be attached, at that point, to an arc of the network. This is only
one of a range of empirical possibilities that we shall explore in extending this
work. Naturally, many of the co-occurences of the two word-senses in the body of
ldoce will be in forms for which Slator’s parser may not provide a predicate unless
augmented with inferential techniques: For instance, if we seek co-ocurrences of
‘bridge’ and ‘tower’ in the text, a form like ‘tower bridge’ will not, without deeper
analysis of the kind developed within noun-phrase analysis systems, provide any

Fig. 8.8. The SPIRAL procedure
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linking predicate, showing the type of linkage of the two concepts. Of course, we
hope to provide this level of analysis in our work.

An interesting empirical question, after the application of the spiral and
arc techniques, will be whether the sense-tagged frames (from Method III and
augmented by methods I and II) and the labeled network (of Method I augmented by
Method III) will then be equivalent, consistent or even contradictory “strengthened”
semantic data bases, each formed from a different combination of the same weak
methods. Notice that, in the two phases of arc as described above, that since the
second but not the first phase ranges over the examples in the dictionary text, the
two sorts of information may be expected to be different, though, it is to be hoped,
consistent.
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Abstract: This article discusses the extension of ViewGen, an algorithm derived for belief
ascription, to the areas of intensional object identification and metaphor. ViewGen repre-
sents the beliefs of agents as explicit, partitioned proposition sets known as environ-
ments. Environments are convenient, even essential, for addressing important pragmatic
issues of reasoning. The article concentrates on showing that the transfer of infor-
mation in metaphors, intensional object identification, and ordinary, nonmetaphorical
belief ascription can all be seen as different manifestations of a single environment-
amalgamation process. The article also briefly discusses the extension of ViewGen
to speech-act processing and the addition of a heuristic-based, relevance-determination
procedure, and justifies the partitioning approach to belief ascription

9.1 Introduction

An AI system that takes part in discourse with other agents must be able to reason
about the beliefs, intentions, desires, and other propositional attitudes1 of those
agents, and of agents referred to in the discourse. This is especially so in those
common situations where the agents’ beliefs differ from the system’s. Thus, the
question of how to represent and reason about propositional attitudes is central to
the study of discourse.

Clearly, this question is really about the beliefs, and so forth, that the system
ascribes to the agents, on the evidence presented by the discourse itself and by
context and prior information, because persons have no direct access to each
other’s mental states. We view the ascription problem as being a fundamental one.

1 We use the term “propositional attitude” to cover beliefs, intentions, and so on, without
intending to imply any specific philosophical view, such as one in which a state of belief
(say) is a relationship between an agent and a “proposition.”
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It has been the focus of our past work on propositional attitudes [4, 5, 6, 8, 9,
10, 11, 12, 13, 14, 15, 16, 65, 66, 67, 68, 69, 70]. Ascriptional reasoning is
profoundly dependent on the communicative context, general information that the
system has about the world, and special information the system has about the
agents at hand. Moreover, there are major pragmatic features of discourse, such as
speech acts, metaphor, and the determination of the intensional entities in play in a
discourse, that any system for ascribing beliefs to agents must address. We would
go further, and assert that even the most apparently superficial aspects of natural
language understanding depend on belief ascription: such as prepositional phrase
attachment. Anyone hearing a sentence with the all-too-familiar structure:

He told his mother about the murder in the park.

will interpret it differently according to whether he believes that the speaker believes
there was a murder in a park and whether the speaker believes that the hearer
believes it too. The function of our basic program ViewGen is to create, or as we
shall call it, ascribe, environments into which appropriate beliefs can be segregated
so that parsing and reasoning can be done in that limited environment.

We have described the basic algorithm in ViewGen in the publications above,
and we address basic parsing issues seen as belief phenomena elsewhere. Here,
our purpose is simply to review the basic ascription mechanism and then show its
extension to the pragmatic phenomena in the title of the article.

In interpreting an utterance by an agent, the system must ascribe a speech
act to that agent; and doing this is a matter of ascribing specific intentions,
beliefs, desires, expectations and so on to the agent. Thus, speech-act ascription
is an important special case of ascriptional reasoning. That speech-act considera-
tions make reasoning about propositional attitudes essential for the computational
modeling of discourse has been established at least since the work of Perrault and
his colleagues [e.g., 51]. A major difference between that work and ours is that
they took the content of belief environments to be already established, whereas
our approach is based on the real-time computation of the contents of such belief
environments.

As for metaphor, to consider it at all in a study of propositional attitudes might
initially seem unmotivated or overly ambitious. However, we are among those who
hold that metaphor is central, not peripheral, to language use, and indeed, cognition
in general [for related positions see, e.g., 17, 32, 33, 35, 38, 39]. We believe,
in particular, that metaphor is inextricably bound up with propositional attitude
processing for three main reasons:

1. A key aspect of a metaphorical view of a topic is seeing it as something else:
even in such simple, conventionalized cases as John caught a cold, where a cold is
seen as a missile or other object. This, we suggest, is no more than a special case
of an agent’s view of a topic, in the sense of a set of beliefs.

2. Many, if not most, beliefs arising in ordinary discourse and reasoning are at
least partly metaphorical in nature. Consider, for instance, the beliefs that Terrorism
is creeping across the globe, Sally’s theory is threatened by the experiment, and
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Prussia invaded France in 1871, all of which are, in a broad sense, metaphorical.
As an example of the difficulties that such beliefs raise, notice that the last one
cannot in general be adequately represented by any literal sense representation for
Prussia, since it may be important to take into account exactly how the believer
may be viewing the invasion:

• as a matter of the army of Prussia doing something,
• of the Prussian government doing something,
• or of the Prussian people as a whole doing something, and so on.

The simple predicate notations commonly used in belief research lead us to overlook
such basic representational issues.

3. People commonly (if not universally) think of minds and mental functioning
in highly metaphorical terms—for instance, as physical containers of ideas, beliefs,
intentions, and so on—those contents themselves being viewed metaphorically as
active or passive physical objects of some sort. Thus, in a sentence like, Mike
believes that George believes that P, we confront the issue of possible metaphorical
views Mike may hold of George’s beliefs. This issue, which is an important special
case of (2), is studied by Barnden [14, 15, 16], but for reasons of space is not
addressed here.

The similarity in (1) is the main topic of this article. Note also that Davidson
[24] said that metaphor “is simply false belief.” Our aim could be said to show
that this is correct, but in a surprising and computationally realizable way. Our
previous work was based on the use of explicit belief environments. Each of
these is a group of propositions, manipulable as an explicit entity in the system,
and which can, in ways we shall show, be thought of as nested within other
such entities. The relation of nesting or containment represents the intuitive
notion of a believer (an outer proposition group) having beliefs about other
entity (the inner group). Our belief environments are akin to the belief spaces
and other types of cluster or partition discussed more recently by authors such
as Fauconnier [29] and Dinsmore [25]. We also share a general belief in the
primacy of intensional representation with Shapiro and Rapaport [58] and their
SNePS system. However, SNePS does not have any natural analogue of parti-
tions or nestings of belief sets (the boxes that appeared in diagrams in [53],
just being a notational convenience), and so lacks a crucial feature of what we
propose.

Maida’s work [42, 43] shared many of the current concerns here: Maida linked
belief ascription to analogical reasoning, and his diagrammatic representations of
nested beliefs were isomorphic to those of Wilks and Bien [69] and Shadbolt
[56]. Maida’s concerns were with the problem of shared reasoning strategies
between believers and how, for example, it could be established that a dialogue
partner also used modus ponens. We argue, on the contrary, that this phenomenon
is best handled by general default assumptions, as are the concrete contents of
beliefs. No finite set of dialogue observations could ever establish conclusively that
another believer was using modus ponens. That being so, concentration on such
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issues that are not susceptible to proof seems, to us, only to delay the central
issue, which is how to infer heuristically the actual beliefs of other believers.
Maida [41] was also concerned with the very important, and we believe quite
separable issue, of a heuristic rule for identifying intensional individuals under
different descriptions. Konolige’s [37] work had strong similarities to that just
noted; Konolige considered what he called views, for which he wrote, for example,
v = John�Sue�Kim to mean John’s view of Sue’s view of Kim’s beliefs. But he
had no effective construction for the content of such views. Rather, Konolige was
concerned with giving an account of limited deduction in such views, an important
process, but not relevant to issues of constructing individuals’ views. Dinsmore [25]
was concerned with what he termed the “algebra of belief spaces” but, although the
term is highly general, the focus of his attention was always, in fact, the notions
of presupposition and counterfactuals, which are not notions we treat explicitly
here, and his treatment of them may well be compatible with our own general
approach.

Our work has been closer in spirit to that of Perrault and others [e.g., 19, 51];
though without their (then) commitment to the language of speech-act theory and,
most importantly, without their key assumption that the partitions among beliefs
are all present at the beginning of the speech-act reasoning procedures. Our work
makes no such assumption: For us, nested beliefs are not merely accessed, but
constructed and maintained in real time, a position we find both computationally and
psychologically more plausible. The Gedankenexperiment here is to ask yourself if
you aready know what Mr. Gorbachev believes the U.S. President believes about
Colonel Qaddafi. Of course you can work it out, but how plausible is it that
you already have precomputed such nested viewpoints, in advance of any such
consideration?

In general, our work has been, since that of Wilks and Bien [69, 70], to construct
a formalism and programs (some would not abstain from the word “theory” here,
but that difference of taste need not detain us, or see [64]) that capture the heuristic
belief ascriptions that individuals actually perform in the process of understanding
and participating in dialgoue: That is to say, concrete beliefs and not merely meta-
beliefs about the reasoning architecture of others, activities we suspect are rarely,
if ever, undertaken. Thus, we have been less concerned with the general expressive
powers of particular notations and demonstrations of their adequacy (as has been
the central feature of most work on propositional attitude representation) than with
the content of belief ascription. We suspect that the procedures we offer here could
be applied to a large range of representational systems already available in the
field.

The plan of this article is as follows: Sections 9.2 to 9.3 describe ViewGen,
our present belief ascription system based on explicit proposition groups known
as environments, and present justifications for the use of explicit environments.
Section 9.4 discusses two issues that are important both for belief ascription and
reasoning in general. The first is the notion of relevance, which is essential to
realistic processing; the second is the intensional identification of objects, which,
among other things, has a strong bearing on determining relevant beliefs. Section 9.5
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forms the core of the article: It explains some profound connections that we see
between belief ascription and metaphor, and describes how our current system is
being extended to embody these connections. Section 9.6 considers the bearing
of these issues on the processing of speech acts. Section 9.7 contains a general
discussion, and Section 9.8 is the conclusion.

9.2 ViewGen: The Basic Belief Engine

A computational model of belief ascription is described in detail elsewhere [5, 8,
65, 69, 70] and is embodied in a program called ViewGen. The basic algorithm of
this model uses the notion of default reasoning to ascribe beliefs to other agents
unless there is evidence to prevent the ascription. Perrault [49, 50] and Cohen &
Levesque [20] also recently explored a belief and speech-act logic based on a
single explicit default axiom. As our previous work showed the default ascription
is basically correct, but the phenomena are more complex (see the following) than
are normally captured by an axiomatic approach.

ViewGen’s belief space is divided into a number of topic-specific partitions (topic
environments). These environments can be thought of as a less permanent version
of frames [18, 48], or more suitably, in terms of Wilks [62], as “pseudotexts.”
In effect, a pseudotext is a set of unsorted, unrefined items of knowledge. These
pseudotexts are general items, and can be not only about individual objects, but also
about abstract ideas and groups of things. The hierarchical and inheritance relations
of pseudotexts are discussed in Wilks [62] and Ballim & Wilks [8]. We jusify the
general notion of explicit environment in the next section.

ViewGen also generates a type of environment known as a viewpoint. A viewpoint
is some person’s beliefs about a topic. Within ViewGen, all beliefs are ultimately
beliefs held by the system (e.g., the system’s beliefs about France, what the system
believes John believes about cars, etc.) and so, trivially, lie within the system’s
viewpoint. The system’s view of some topic (say, atoms) is pictorially represented
as in Figure 9.1.

This diagram contains two types of environments: First, there is the box labeled
with “system” at the bottom. This is a “believer environment” or “viewpoint.”
Viewpoints contain “topic environments,” such as the box labeled with “atom”
at the top of it. A topic environment contains a group of propositions about the
“topic.” So, for example, the diagram in Figure 9.1 conveys that the system believes
that atoms are light and small. Topic boxes are motivated by concerns of limited

Fig. 9.1. The system’s view of an atom.
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reasoning (see Section 9.4.1 on relevance, and also [70]). In short, it is envisaged that
reasoning takes place “within” a topic environment, as if it were the environment
of a procedure in a programming language.

Within ViewGen, environments are dynamically created and altered. ViewGen’s
“knowledge base” can be seen as one large viewpoint containing a large number
of topic environments, with each topic environment containing a group of “beliefs”
that the system holds about the topic. The reader should note that each proposition
in a topic environment has at least one symbol identical to the name of the topic.
Each such proposition is, therefore, explicitly about the topic. There are, however,
implicit ways in which a proposition can be “about” (or “relevant to”) a topic. The
simplest cases are generated by inheritance in the usual way: For example, if John is
a man, then any proposition in a “man” topic environment is implicitly or indirectly
about John. However, we choose not to put such a proposition in the John topic
box, and will justify that decision in Section 9.4.1 on relevance. Again, the same
proposition can occur in more than one box, as would the expression asserting that
an elephant was larger than an atom, for it is about both atoms and elephants, and
should appear under both topics.

If the topic of a topic environment is a person then the topic environment may
contain, in addition to the beliefs about the person, a viewpoint environment
containing particular beliefs held by that person about various topics. Normally,
and for obvious reasons of efficiency, this is only done for those beliefs of a given
person that are, as some would put it, reportable, which often means beliefs that
confict with those of the system itself. For example, suppose the system had beliefs
about a person called John who believes that the Earth is flat. (This is pictorically
represented as in Figure 9.2.)

The John viewpoint, shown as the box with “John” on the lower edge, is a
nested viewpoint, as it is enclosed within the system viewpoint shown (through
an intervening topic environment about John, shown as the box with “John” on
its upper edge). For simplicity, in the diagram of a nested viewpoint we often
leave out propositions that are not in the innermost topic box: In this example, we
would leave out the beliefs that John is a man, and that he is six feet tall. Further
simplifying this, we often omit all but the innermost topic box, leaving only it

Fig. 9.2. The organization of beliefs about and of John.
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and the viewpoint boxes. Hence, the diagram in Figure 9.2 would be simplified as
in Figure 9.3.2

The system stores its own beliefs, and the beliefs of other agents that differ
from the system’s own beliefs. Others’ viewpoints are generated on demand a
position we find both computationally and psychologically more plausible than
the “prestored nesting” view mentioned in Section 9.1. The process of generating
a viewpoint can be regarded as an amalgamation mechanism that ascribes
beliefs from one viewpoint to another (or, “pushing one environment down into
another”): ascribing certain beliefs, transforming some, and blocking the ascription
of others.

The simplest form of this algorithm, described in Wilks and Bien [69, 70], is
that a viewpoint should be generated using a default rule for ascription of beliefs.
The default ascriptional rule is to assume that another person’s view is the same
as one’s own except where there is explicit evidence to the contrary. An important
special case of such examples is when the topic is the same as the agent, and we can
illustrate with that. Suppose that at a certain stage in dialogue, the system, acting as
a medical diagnostician, has the view that John is not healthy, and is six feet tall,
although John believes himself to be healthy. This basic situation is represented
pictorially in Figure 9.4. The more complex environment for the system’s view of
John’s view of himself can be generated by trying to ascribe the beliefs from the
system’s topic enviornment about John to the topic environment about John within
John’s viewpoint (where, as always, the last expression must be glossed as “the
system’s view of..”). One of the two beliefs survives the attempt but the other is
blocked, giving the state in Figure 9.5. This can be pictured in the simplified (or as
we shall call it, compressed) manner as in Figure 9.6.

We see that in examples of this sort, where the topic is also the agent into
whose environment as ascription is being attempted, propositions in an outer topic
environment E are pushed inwards into a topic environment (for the same topic)

Fig. 9.3. The system’s view of John’s view of the Earth.

2 We do not discuss here the issue of different mental descriptions under which John might
have beliefs about the Earth. A case in which, say, John believes that a certain planet is
flat, describing it mentally as the third planet from the Sun, can be handled in our system
by having a complex topic-environment label, on the lines of the complex labels used on
some occasions later in the article. Also, our techniques allow John to fail to realize that
the third planet from the Sun is Earth (see 4.2.2).
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Fig. 9.4. Beliefs pertinent to John.

within a viewpoint nested within E�3 Such inward pushing is central to our later
observations of intensional identification and metaphor.

The example just outlined demonstrates the basic ascription algorithm and a
simple case of ascriptions being blocked. However, belief ascription is a far more
complex phenomenon, and the key to our method is the delimitation and treatment
of cases where the default algorithm is incorrect. But even the default algorithm
requires, for its operation, a notion of blocking beyond that of explicit contradiction:
For example, the proposition Healthy(John) should be able to block Sick(John), if
Sick and Healthy are known to be incompatible predicates. Similarly, we appeal
later to blocking that arises from incompatible function values, as in the blocking

Fig. 9.5. Generating John’s beliefs about himself.

3 In our example we do take John to be having beliefs which he recognizes as being
about himself. There are also unusual cases in which it is appropriate to take John’s
concept of himself to differ from that concept of his that most closely corresponds to the
system’s concept of him. (For example, he may be an amnesiac who has forgotten who
he is, but nevertheless has beliefs involving a person that the system would say was he;
c.f. [53]). Such cases can easily be handled within the approach to intensional objects in
Section 9.4.2.2, below, basically by having two environments on the topic of John within
John’s viewpoint.
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Fig. 9.6. Simplified form of Figure 9.5.

of Eye-color(Frank) = Green by Eye-color(Frank) = Blue. The more significant
complication is that there is an entire class of beliefs that require the opposite
of the default-ascription rule given above. We call these atypical beliefs and they
include technical expertise, self-knowledge (itself a form of expertise), and secrets.
For example, beliefs that I have about myself, such as how many fillings I have
in my teeth, are beliefs that I would not normally ascribe to someone else unless
I had reason to do so (if, say, the person, to whom I was ascribing the belief was
my dentist). A representation based on lambda expressions is used in dealing with
atypical beliefs, and is described elsewhere [5, 8, 65], and follows a suggestion
originally made by McCarthy and Hayes [47]. This combination of a basic default
ascription rule, augmented by a mechanism for dealing with atypical belief, is an
original algorithm and has not, to our knowledge, been described or tested elsewhere
in the literature.

The essential feature of this notation is that lambda expressions, as in the
following example

�∃X���X = ��y�Cure−for y�tuberculosis��

can only be evaluated by qualified believers (e.g., physicians or informed lay people
in this case) in appropriate environments. Yet, anyone can believe the Fregean
triviality expressed by the above sentence when it is unevaluated (and it is vital that
they can) but a nontrivial interpretation can only be placed on it by those who can
evaluate the lambda expression in an environment. In a crude sense therefore, the
lambda expressions correspond to intensional representations, and their evaluations
correspond, when available, to extensions, or at least other intensions in those
situations where the evaluation of such an expression produces yet another lambda
expression (see also [41]).

The above expressions, for example, might evaluate to another lambda expression
using a predicate Sulfonamide-drug, for whose evaluation a particular drug might
be appropriate. Each evaluation would require an environment whose “holder” was
qualified to perform it. It is really this possibility of successive evaluations of
expressions that justifies the abstraction capacity of the lambda notation, because
it could well result in expressions, such as a conjunction of predicates, for which
there is no single predicate that deals with the problem of the over-application of
the main default rule of ascription, since the ascription of unevaluable expressions,
about, say, the number of my own teeth, to you does not lead to undesirable results.
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It should be noted that in blocking the ascription of a proposition, from one
environment to another, we often need to consider not just whether it contradicts
a proposition in the target environment, but also whether some combination of
propositions in the source environment contradict some propositions in the target
environment. This is considered in more detail in Ballim and Wilks [8].

While on the subject of ascription blocking, we should mention that, in principle,
a proposition P should not be ascribed from an environment E1 to an environment
E2 if some presuppositions used in deriving P are blocked from being ascribed to
E2. Thus, in principle, the issues addressed by truth-maintenance systems arise for
us, although they are not yet addressed by ViewGen.

9.3 Why Explicit Environments?

In a realistic discourse, the system has to make rapid decisions about the sets
of propositions believed by the agents. Now, ascription can involve a significant
amount of work in modifying an existing proposition before ascribing it, or in
checking that there is no contrary proposition blocking the ascription [8, 65].
Therefore, it is beneficial to minimize the number of propositions ascribed (as long
as the techniques for minimization do not themselves take up too much time).
One technique for limiting the ascription is to ascribe only those propositions that
are deemed relevant according to some set of efficient relevance-determination
heuristics (see Section 9.4.1).

Suppose the system has already constructed its own topic environment R,
containing system beliefs about Reagan. The “default-ascription rule” used in
ViewGen to construct or expand John’s topic environment JR concerning Reagan
is then just to push propositions in R down into JR. The pushing of a proposition
may be blocked, because, for instance, it is explicitly contradicted by a proposition
in JR, or because it is political expertise which should not be ascribed to the
politically inexpert John. Also, propositions may need to be modified rather than
blocked [65]. Therefore, the pushing process as applied to R does require separate
processing of individual propositions in R. However, the explicitness of R as a
group is nevertheless important because R is likely to be the result of a significant
amount of knowledge-intensive, relevance-determination work (see Section 9.4.1).
This work may have involved the processing of system beliefs that are not about
Reagan in any directly obvious, explicit way. Once the system has created R for the
purposes of its own reasoning about Reagan, R is immediately available to help in
constructing environments such as JR, for the purposes of the system’s reasoning
about various other agents’ reasoning about Reagan. If beliefs were not parceled up
in explicit environments, the ascription beliefs about Reagan to those agents would
be likely to involve essentially duplicated relevance-determination work similar
to what is necessary to create R. In sum, one justification for environments—
proposition groups that are explicit in the above sense—is that they serve to reduce
the amount of work dictated by considerations of relevance.

Also, the pushing down of system beliefs about Reagan into John’s view-
point could involve the conjoint examination of several such beliefs, rather than
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examination of them one at a time. It makes it especially important for the system
to be able to determine quickly which of its beliefs are relevant to Reagan. A similar
observation holds for pushing of beliefs at deeper levels of nesting, as in the
attempted pushing down of John’s beliefs about Reagan into a Bill viewpoint nested
within John’s.

People talk explicitly or implicitly about sets of beliefs (and other proposi-
tional attitudes) held by agents. For instance, someone might say “John’s beliefs
about New Mexico are confused.” This sentence is best interpreted as conveying
that John’s beliefs are, as a set, inconsistent in some sense, rather than as
conveying something about individual beliefs of John. Explicit topic environments
and viewpoints give us a handle on dealing with such cases.

Work by other researchers tends to support the importance of explicit environ-
ments. Fauconnier’s [29] mental space theory used environment-like entities to
explore a number of the same issues as in this and previous articles, from a linguisitic
perspective. Although Fauconnier’s account was not procedural in nature, there
are certainly analogies between our default-ascription mechanism and his notion
of “maximizing similarity” in a belief space, using notions like “in the absence of
explicit contrary stipulation,” and so on. This is very similar to our own statements
of the default rule [e.g., 69], although it does not capture the sort of work we
have described here and elsewhere on the strong limitations to the applicability
of that rule in conditions of atypical belief [5, 8, 65]. The main point to note is
that Fauconnier made great headway with difficult issues such as counterfactuals,
presuppositions, and ambiguities of propositional attitude reports by applying an
environment-like “mental space” idea.

Of similar relevance is Johnson-Laird’s [36] use of explicit, nested groups of
representational items in an application of his mental-model theory of human
commonsense reasoning to propositional attitudes. In a different vein, there is a
growing amount of work emanating from the modal-logic tradition that is bringing in
notions of belief clusters to make the belief logics more accurately reflect common-
sense views of belief. See, for example, Fagin and Halpern’s [26] local reasoning
logic. It is, however, strange that in this logic it is only in the semantics that any
notion of clusters is made at all explicit, as “frames of mind.” What is important for
reasoning processes is, of course, clustering made explicit in the representational
expressions.

The propositions in John’s Reagan environment are not necessarily the ones
(about Reagan) that John is aware of, in any sense of “aware” that is closely linked
to the ordinary notion of conscious awareness. We are reacting here against the use
of the term “awareness” in Fagin and Halpern [26]. The propositions in a belief
environment have no necessary relationship to “explicit beliefs” as used by, say,
Levesque [40], because no clear idea is given, by authors using the term, of exactly
what explicitness is meant to capture. However, insofar as other authors’ explicit-
belief notions seem to get at the idea of beliefs agents actually use in reasoning,
those notions are exactly our notion of propositions within a belief environment.
Our orientation is different, though: We are not interested in massaging modal logic
so as to give an appropriate deductive logic of explicit and implicit belief, but
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rather in devising plausible commonsense-reasoning mechanisms for constructing
the explicit-belief sets in the first place.

9.4 Extensions to ViewGen: The Belief Engine Firing
on all Cylinders

This section reports progress on two extensions to the ViewGen approach: relevance
and intensional object identification. Both of these are complex issues that we
have not fully resolved, but we can say enough about them to illuminate various
other considerations in this article. The relevance subsection gives an idea of the
envisaged complexity of relevance determination, and this complexity was appealed
to in the earlier section justifying the use of explicit environments. The intensional
identification subsection, together with a later section on metaphor, supports the
notion that intensional identification, belief ascription, and metaphoric information
transfer are three corners of one hat.

It should be noted that, in what follows, we make no firm distinction between
beliefs about meaning and beliefs about matters of fact. Hence,

John believes Thalassemia is a province of Greece

reports just another belief (false in this case). Representational consequences follow
from this such as that word meanings should also be considered propositional
in form, so that they, too, can take part in all the belief-ascription processes we
describe. That is no more shocking than noticing that conventional frame repre-
sentations of meaning can easily be considered to consist of propositions like
Animate(human), as can any standard form of net representation, linked by set
membership and inclusion arcs. And such propositions are clearly about meaning,
in some sense, since the fact that humans are animate is hardly a fact about the
physical world. As will be seen in Section 9.7, in treating metaphor we cannot
separate issues of fact and meaning.

There would be a considerable philosophical trade-off if we could do away with
this conventional distinction: (1) a Quinean one (in the sense of wanting to substitute
talk about beliefs and sentences for talk about word meaning; [52]) where we let
the representation of meaning be a function of belief representation, even though
this is the inverse of the conventional view; and (2) neo-Quinean, in the sense of
aligning ourselves with some current AI-oriented philosophers (e.g., Schiffer, at
least in 1972, if not now) who have adopted the view that a self-contained theory
of meaning is vacuous, and that such a theory cannot be had independently of a
theory of belief and action.

9.4.1 Relevance

An ascriptional reasoning system must address the issue of relevance simply
because, in ascribing a belief or other attitude to an agent, a system should seek to
ensure that the belief is relevant to the discourse interpretation needs of the moment.
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This can involve considerable complexity for a variety of reasons, as will be seen
later. Relevance is a complex, variegated notion that has received intense study in
its own right, for instance in formal logic [e.g, [2]], discourse theory [30, 59, 63],
AI problem solving [60], and elsewhere closer to the present work [57, 46]. Our
general strategy, at present, is to seek simple, powerful heuristics that will provide
a useful basis for the environment-generation processes that are our current focus.

In the following, we consider the fate of a proposition, P, entering the system
through the interpretation of natural language input. We assume this proposition is
to be taken as a belief of some agent, A. We consider the question of whether the
proposition should be inserted into a topic environment E, for some topic T , within
A’s viewpoint, because of being construed as being relevant to T . We assume that,
initially, P is placed at the top level within A’s viewpoint, that is, not inside any
particular topic environment. Notice that if P is placed inside E, it may later be a
candidate for pushing into some other environment, and so on.

The overarching strategic question about the role of relevance in our system is
about when relevance determination is done: To what extent should the determin-
ation be “zealous” or “lazy”? A totally zealous approach would consider inserting
P in E as soon as P arrives. A totally lazy approach would leave all relevance to
be determined on demand; that is, during the course of reasoning about A’s view
of T , certain beliefs in A’s viewpoint (but outside E) would be determined to have
become relevant, and therefore to have become candidates for pushing into E.

Our approach will be zealous at least to the extent of having a basic rule which
zealously deems as relevant those propositions that explicitly mention the topic.
Thus, if T is John, then the proposition seriously-ill(wife-of(John)) is relevant.
This explicit-mention rule has been the basis of our initial approach to relevance.
The presently reported extensions will only account for a limited portion of the
full relevance capability that a complete environment-generating system should
have. However, they present interesting and significant problems in themselves.
A significant problem to be addressed is that of deciding what other manageable
and useful types of zeal should be added.

One source for additional zeal is equality statements. Suppose T is John, E

contains a proposition stating that John is Peter’s father, and P says that Peter’s
father is seriously ill. Then, surely, P is relevant to John and is a candidate for
being pushed into E zealously, just as much as the proposition stating directly that
John is seriously ill would be.

Another possible addition of zeal involves inheritance down taxonomic links.
Suppose again that John is the topic. Let E state that John is a (medical) patient, and let
P say that patients are afraid of the disease thalassemia. Should P be deemed relevant
zealously? We suggest that (usually) it should not be, because of the possibly large
number of general propositions about patients (and superordinate categories). On the
other hand, if the topic were a joint one involving patients in general, as well as John,
thenP wouldstand tobedeemedrelevantanyway, simplyby thebasicexplicit-mention
rule. In this specific example we could also consider the possibility of P’s being
marked as medical expertise, so that it would only be deemed relevant if the agent A in
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whose viewpoint E lies was believed to be expert on medical matters. Such attention
to agent-relative extent of expertise is a feature of the current ViewGen program.

A special case of the taxonomic issue is when, instead of a proposition like the
above P—saying patients are afraid of thalassemia—we consider a proposition P
that is itself taken to be taxonomic, such as one saying that patients are clients. It
may be that such taxonomic information indirectly related to the given topic (John)
should be zealously deemed as relevant. The question of how zealously the relevance
processing should traverse taxonomic chains is a matter we are investigating.

Inheritance down taxonomies is traditionally concerned with (quasi-) universal
statements about categories of objects, for example, all (or most) patients are afraid
of thalassemia. However, existential statements about categories could also come
into play in the relevance issue. Consider a proposition P saying that some patient
or other in a particular hospital ward is afraid of thalassemia, and suppose John is
held to be in that ward. Then P is, in principle, relevant to John (though it need not
zealously be deemed to be), because it lends a nontrivial amount of support to the
hypothesis that John is afraid of thalassemia. Separate work on belief convictions
[7] will eventually allow investigation of existential statements.

9.4.2 Intensional Objects and Their Identification

It is natural in a system of partitioned environment notation to treat environments
as intensional objects: to treat the Jim-object, pushed down into the Frank-object,
as not just yielding by computation an environment that is Frank’s-view-of-Jim,
but also as a sort of intensional object we might call Jim-for-Frank.4 Consider now
two simple cases of intensional objects to see how the basic default algorithm deals
with them:

Case 1 (or Two-for-me-one-for-you): The system believes that Frank and Jim’s
father are two people, but that Mary, whose point of view is being computed,
believes them to be the same person.

Case 2 (or One-for-me-two-for-you): Mary believes Frank and Jim’s father to
be separate people, whereas the system believes them to be the same individual.

Scenarios such as these are common, and arise over such mundane matters as
believing or not believing that John’s house is the same as the house-on-the-corner-
of-X-and-Y -streets.

4 The names and descriptions attached to environments correspond to the names and
descriptions in play in constituent propositions, but we should resist any tendency to think
of the environments as being a meaning or referent of the expressions they are named for.
The environment names, as far as their meanings go, are simply derivative: dependent,
in the best Fregean tradition, on whatever meanings the environment names are assigned
on the basis of their participation in the (contained) propositions.
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9.4.2.1 Two-for-me-one-for-you

Processing of the first case will begin with the system having three topic environ-
ments: for Frank, Jim’s father, and Mary. Two questions that arise are: What
intensional object(s) (i.e., environments) should Mary’s viewpoint contain? And
what should be the beliefs about those intensional objects? Let us say that the
system has beliefs about Frank and Jim’s father as shown in Figure 9.7.

The first question can be rephrased as “given certain intensional objects in one
viewpoint (the system, in this case), what are the corresponding intensional objects
in the system’s version of another viewpoint (Mary’s)?” Extending the normal
default rule for belief ascription to cope with intensional object ascription, we
would say, naturally enough, that intensional objects in one environment directly
correspond to identically named (or described) intensional objects in another
environment, unless there is counter evidence to believing this. This notion of corres-
pondence of intensional objects between environments can be expressed as beliefs,
but these beliefs must be of a different type from those previously discussed.

There are two reasons for this: (a) they are beliefs about intensional (mental)
objects5 that (b) express the believed relationship between intensional objects in
one space and intensional objects in another space. We represent such beliefs by
a predicate called co-ref. An occurrence of such a predicate, in an environment
about an agent (say, agent X), indicates a correspondence between certain objects
in the belief space of the agent (say agent Y ) holding the beliefs about agent X,

Fig. 9.7. System beliefs about Frank and Jim’s-father.

5 Beliefs about co-reference are special. Consider the following belief: “John Believes
tall(Mike).” This belief expresses that John believes about the person Mike, that he is tall.
However, the belief “John believes co-ref(Mike, Jim’s-father)” expresses a relationship
between two intensional descriptions, not the things of which they are a description.
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and objects in agent X’s belief space. The predicate expresses that the intensional
object mentioned for the first person, correspond (as a set) to the intensional objects
mentioned for the second person. We are only interested (here) in one-to-one, one-
to-many, and many-to-one correspondences. Note that (by default) we assume a
one-to-one correspondence. In Section 9.4.3, we discuss the relationship of co-ref
to the more standard “equality” predicate. It should be noted that the correspon-
dence of intensional objects between belief spaces was discussed previously by
Fauconnier [29], Maida [43,44] Wiebe and Rapaport [61], and Ballim [5].

In the case at hand (Case 1), Mary’s viewpoint ends up containing a single
intensional object O (a topic environment) corresponding both to the system’s
Frank object (topic environment) and to the system’s Jim’s-father object (topic
environment). The question now is to decide what should be put inside the
environment O. One possibility is to combine the information in the system’s Frank
and Jim’s-father objects symmetrically, removing any conflicting information. In
the present case, this would result in O stating that Frank/Jim’s father is male
and tall, but stating neither that he has blue eyes nor that he has green eyes.
However, we claim that in realistic situations it will often be more appropriate to
take an asymmetrical view, in which we choose to give precedence either (a) to the
information in the system’s Frank object over the information in the system’s Jim’s-
father object, or (b) vice versa. Choice (a) reflects the presumption that there is a
stronger or closer correspondence between Mary’s idea of Frank and the system’s
idea of Frank than there is between her idea of Frank and the system’s idea of Jim’s
father. This difference of closeness would be plausible, for instance, if the system
regarded Mary’s view of Frank as being essentially the same as its own except in
making the (presumed) mistake of taking Frank to have the property of being Jim’s
father. Choice (b) reflects the converse presumption, which would be most likely to
arise from a hypothesis that Mary is focussing on the person-description “father of
Jim,” and that she happens to hold that this description identifies Frank. Our claim
is that in realistic situations there is more likely to be a reason for making one of
these choices than for taking the symmetrical approach.

As an example of such asymmetrical situations arising in discourse, consider the
following fragment, in which the boy referred to is Jim.

Mary was listening to what Frank was saying to the boy. It led her to
conclude that he was the boy’s father.

With reasonable assumptions about the discourse context, it would be apparent that
Mary, to some degree, was already knowledgeable about Frank, and was adding
to her knowledge the notion that he was the boy’s father. This corresponds to
asymmetry choice (a) above. To see the potential force of this asymmetry, suppose
that the system takes the boy’s father to be German, but Frank, American. Then,
the asymmetry we are proposing makes the system take the reasonable course of
ascribing the “American belief” to Mary, rather than the “German belief.” On the
other hand, consider the following fragment.
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Mary had met Jim’s father on several occasions, although he had never told
her his name. Under the mistaken impression that he was Frank Timson,
she…

It is plausible in this case that Mary was in some respects knowledgeable about
the person she thought of as the boy’s father, and was augmenting her knowledge
with the proposition that this person was Frank. This corresponds to asymmetry
choice (b) above. If, again, the system takes Frank to be American, and Jim’s father
to be German, the asymmetry leads to the reasonable ascription of the “German
belief” to Mary.

With either choice of asymmetry, what happens can be affected by the presence
of beliefs, that, on the basis of other evidence, the system takes Mary to have
had. For instance, if, in the case of asymmetry choice (b), the system has already
decided that Mary believed Frank Timson was French, then the imposition of the
intensional identification in question should not generally lead to the system going
back on its decision. That is, the “French belief” blocks the ascription of both the
“American belief ” and the “German belief.”

The influences on choices of ascription in such examples are more complex
than is implied by this brief discussion, but the examples serve to suggest that
asymmetry in a particular direction will be well-motivated in many realistic
examples.

We handle the asymmetrical choices as follows. For choice (a), the system
constructs an intensional object O called “Frank-as-Jim’s-father” inside Mary’s
viewpoint.6 This object is so-called because it is, so to speak, “the Jim’s-father view
of Frank” (according to Mary). Notice that this phrase does not say that the object
is the view of Frank that Jim’s father holds (according to Mary); rather, the object
is a view of Frank that is colored by the idea that he is Jim’s father. This way of
regarding Mary’s intensional object O is directly reflected in the proposed process
for constructing O, as will be seen in a moment. Mary’s Frank-as-Jim’s-father
object, O, arises in two stages, as follows (see Figure 9.8).
Stage 1: The system’s view of Frank as Jim’s father is created. This view is created
as a topic environment O′ inside the system’s viewpoint. The creation occurs in
three substages:

1a. Initially, a copy of the system’s Frank object (topic environment) is placed
inside the Jim’s-father object (topic environment). Intuitively, the idea so far
is that we have not yet tried to identify Frank as Jim’s father, but have merely
established a view of Frank that is, so to speak, in the context of Jim’s father.
That context does not have an effect until Substage 1b.

1b. We now respect the required identification of Frank as Jim’s father. We try to
push the beliefs in the system’s Jim’s-father object inwards into the Frank object
embedded within it, using the ordinary default rule, with the slight modification
that Jim’s father is replaced by Frank in a pushed belief. Thus, the beliefs that

6 There may already be such an object, as we note later.
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Fig. 9.8. Forming the Frank-as-Jim’s-father environment.

Jim’s father is male and is tall are successfully pushed inwards (although the
former happens to duplicate a belief already in the embedded-Frank object),
but the belief that Jim’s father has blue eyes is blocked by the green-eye belief
already in the embedded-Frank object.

1c. The final substage in constructing the system’s Frank-as-Jim’s-father object
O′ is to pull out the Frank object that is embedded within the Jim’s-father
object, making it into an object (topic environment) O′ at top level within
the system’s viewpoint. In doing this we replace the “Frank” topic-name
by the name “Frank-as-Jim’s-father,” and similarly change the Frank
symbols inside the environment to Frank-as-Jim’s-father. The diagram in
Figure 9.8 shows the result, with the arrow notation indicating the pull-out
process.

Stage 2: We now ascribe the system’s beliefs about Frank as Jim’s father, that is,
the beliefs inside O′, to Mary, once again using the ordinary default rule. On the
assumption that there is no prior information about Mary’s view of Frank/Jim’s
father (e.g., that his eyes are brown), all that will happen is that a copy O of O′ will
be created inside the Mary viewpoint, giving the revised Mary viewpoint shown in
Figure 9.9. If we had had prior information from discourse input that Mary believes
the person’s eyes to be brown, then there would already have been a Frank-as-
Jim’s-father object (topic environment) O inside Mary’s viewpoint, and the beliefs
in O′ would all have been pushed into that object except for the green-eye belief.

If the sytem had decided to give precedence to the Jim’s-father information rather
than to the Frank information in doing the intensional identification (that is, if it had
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Fig. 9.9. Ascribing the new environment to Mary.

Fig. 9.10. Analogous ascription, with precedence to Jim’s father.

made choice (b) above) then it would have generated the state shown in Figure 9.10
by an analogous process.

It might be thought that a symmetric intensional object, with the feature differ-
ences appearing as disjunctions (e.g., Eye_color Blue OR Green) would be appro-
priate as a construct for the Mary environment. We suggest that this is, in fact,
psychologically less plausible, and that subjects do construct stronger, and more
refutable, hypotheses.

An important thing to notice about the process just described is that the crucial
pushing of information from the Jim’s-father environment into the embedded-Frank
environment (or vice versa) is exactly the type of “inward” pushing used in a
particular class of examples with which we illustrated basic belief ascription in
Section 9.2. That was the class where the topic was identical to the believer to
whom beliefs were being ascribed. In Sections 9.5 and 9.7, we seek to show
that belief ascription (e.g., Jim’s-father’s-view-of-Frank), intensional identification
(e.g., Frank-as-Jim’s-father), and even metaphor are all different forms of a single
fundamental computational process.

The issue of relevance, in the sense discussed in the earlier section, interacts
with that of intensional identification in at least two ways. First, if, in the previous
example touching upon the ascription of a German or American nationality belief
to Mary, it so happened that nationality was irrelevant to the current concerns of
the discourse-understanding process, then there would be no need even to address
the conflict between nationalities of Frank and Jim’s father. This elementary point
underscores the importance of devising a good treatment of relevance.
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The second point is more complex and remains a matter for further investigation,
hinging as it does on the degree of zealousness adopted in dealing with inheritance
of potentially relevant information down taxonomic links. We touched upon this
type of zealousness in our earlier discussion of relevance. Consider again the
choice (b) case of a Frank/Jim’s-father situation. Under choice (b), precedence is
asymmetrically given to the system’s Jim’s-father object. Suppose that the system
believes that fathers are usually responsible citizens and there is nothing in the
system’s beliefs about Jim’s father that suggests that he is an exception, but on
the other hand the system believes that Frank is not a responsible citizen. Assume
also that societal attributes are in focus during the discourse understanding. If the
system acted zealously with regard to inheritance, it would adopt the explicit belief
that Jim’s father is a responsible citizen. The system would then ascribe to Mary
the belief that Frank/Jim’s father is a responsible citizen because of the choice
(b) asymmetry.

However, one might argue that intensional identification using specific beliefs,
such as that Frank is not a responsible citizen, should be done first, and only then
should inheritable defaults be considered. In this example, the belief just mentioned
about Frank would be ascribed to Mary, because there would be nothing in the
system’s beliefs about Jim’s father to block it; and, if the system now did inheritance,
the possible belief that Jim’s father is a responsible citizen would no longer be
ascribable to Mary.

Under the latter procedure the system could still have proceeded zealously, as
long as it had marked its beliefs that Jim’s father was a responsible citizen as
having been derived by inheritance. It could therefore have been barred from taking
part in the specific-belief part of the intensional identification. We suspect that a
full treatment of intensional identification will have to pay careful attention to the
different types of origin of beliefs.

9.4.2.2 One-for-me-two-for-you

In the second case, where the system believes in one individual but Mary two,
the natural computation of Mary’s view either of Frank or Jim’s father is simply
to push the system’s single representation, changing “Frank” to “Jim’s father” as
necessary. This is shown in Figure 9.11.

These are not merely aliases, but are best thought of as dual ascriptions, performed
by making two identical copies. Further information about Mary’s beliefs would
then presumably cause the contents of the two environments to differ, because she
presumably has at least some differing beliefs about what she believes to be distinct
individuals.

9.4.2.3 Discussion

Neither Case 1 nor Case 2 turns out to be particularly problematic, and the situation
is no different if the entities about whose identity there is dispute are nonbelievers
rather than believers. Those would be like the classic but natural cases such as
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Fig. 9.11. Treatment of CASE 2 on the Frank/Jim’s-father example.

a difference between dialogue participants as to whether Tegucigalpa and Capital-
of-Honduras are, or are not, the same, or as to whether Rome or Avignon should
be identified with City-of-the-Popes.

More difficult cases, which bring in all the panoply of philosophical distinction
and discussion, are those conventionally discussed under the de re/de dicto
distinction. One type is the following: The system reasonably believes Feynman
to be a famous physicist but encounters Frank who, on the strength of a single
appearance on the TV screen, believes Feynman to be a famous TV performer.
For the sake of this example, it is essential to accept that the two occupations are
incompatible. Suppose the discussion now forces the system to construct its view
of Frank’s view of Feynman. Now, there will be no point at all in performing that
computation unless the system believes Frank’s beliefs to be de re. Frank no doubt
considers his own beliefs de re, as we all do. The crucial thing is that the system
believe this, and the test would be some proposition in the Frank environment, and
ABOUT Frank, equivalent to (“Feynman” names Feynman). If that is not present,
the system should infer that Frank has another person in mind: that his beliefs are
de dicto FOR THE SYSTEM, and hence any push-down computation would be
pointless.

Consider the relation of this example to the former, simpler cases, where the
system can identify or separate distinct environments. This last case would be
similar if the system knew which non-Feynman individual Frank was confusing
Feynman with, perhaps Johnny Carson. In that case, the system could perform a
push down, even though it believed Frank’s beliefs to be de dicto as far as Feynman
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was concerned, for they would be de re with respect to Johnny Carson. The system
could then push Carson into Frank, while changing the resulting environment’s
name to “Feynman.” To summarize, the absence of (“Feynman” names Feynman)
in the Frank environment is only a reason for not pushing down Feynman, but
leaves open the possibility of some other de re push down.

9.4.3 Co-reference versus Equality

A special point about intensional identification (and relevance) arises from the
issue of equality versus co-reference, where the former is the deeming of referents
as identical and the latter the deeming of (different) intensional descriptions as
co-referential. Our use of environments corresponds naturally to the use of inten-
sional entities deemed co-referential, and hence, to the implicit use of a co-reference
(rather than equality) operator. In that sense our assumptions are very like those
of the CASSIE group [45, 58] except that we see no need to make any strong
claim, as they do, that only co-reference will ever be used, and that all entities in
the system are intensional. The crucial point in our system is that the environment
notation moves, as it were, the belief predicate, at any level of nesting, out to
the environment boundary or partition, and so, within an environment, we have
precisely the conditions of a belief space that sanction substitution of co-referents
without problems, as in the de dicto/re examples above.

The use of co-reference statements linking terms denoting intensions, as in co-ref
(Father-Of(Peter), Boss-Of(Jim)), has a well-known advantage over the use of
equality statements linking the corresponding ordinary terms, for example, father-
of(peter) = boss-of(jim).7 The advantage is that the co-reference statements allow
more controlled separation of inference about a thing under different descriptions
than the equality statements do; and the separation gives us, in turn, an extra, explicit
handle on relevance (Section 9.4.1). Since co-reference statements do not sanction
substitution in the way that equality statements do, we could have the expression
Strict-Boss(Boss-Of(Jim)) without being automatically tempted to produce the
expression Strict-Boss(Father-Of(Peter)). (Strict-Boss is a function that takes a
person-concept and delivers a concept of that person being a strict boss.)

We could view all this as having special axioms that sanction co-reference-
based substitutions only under certain conditions, rather than having to adopt a
nonstandard meaning for the equality predicate or having knowledge-intensive,
behind-the-scenes heuristics that limit the application of equality-based reasoning.
For instance, we could have an axiom schema of the (very rough) form:

P�T� and co-ref�T� U� and C −P�U�

7 Here we are appealing to the notation of Creary [23], where the noncapitalized symbols
denote ordinary subjects, functions and predicates in the domain, whereas the capitalized
symbols denote intensional objects and functions. For instance, Boss-Of is a function that
takes a person-concept and delivers a concept of that person’s boss as such.
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provided that: P is an “intensional predicate” in a domain D1, T is an intensional
term describing something using the resources of D1, U is an intensional term
describing something using the resources of some domain D2, and C is a formula
stating that the system is currently considering cross-inferences between D1 and D2.

If D1 and D2 are the employment and family domains respectively, then an
example of P, T and U could be Strict-Boss, Boss-Of(Jim), and Father-Of(Peter).
What we would need behind the scenes is a single heuristic giving lower priority
to equality-based reasoning than to co-reference-based reasoning.

However, there is no need for such an axiom schema if we know our inferences
are limited to the appropriate environments; that is precisely what our partitioning
provides, as, in principle, do all systems that look back to [31] partitioned networks,
although his work, of course, provided no analogue of belief ascription.

9.5 Metaphor: Shifting the Belief Engine to a Higher Gear

Metaphor is normally explicated, formally or computationally, by some process that
transfers properties by some structural mapping from one structure (the vehicle) to
another (the tenor). A classic example in AI would be the work of Falkenhainer,
Forbus and Gentner [27], and Indurkhya [34]. All these authors were concerned,
as we are, with metaphor and analogy viewed as some form of structural mapping;
the difference between what they offered and what we offer here is the linkage
between that process and those of intensional identification and belief ascription.
Some would object here about the issue of transferring properties versus transferring
structure, but we shall not enter this argument here because, although the following
examples transfer properties within propositional beliefs, it will be clear from the
discussion in Section 9.7 that we consider our current representation inadequate and
only illustrative, and that a fuller representation would display mapping of more
complex structures. Again, in this section we shall play fast and loose with the
metaphor versus metonymy and the metaphor versus analogy distinctions. For our
purposes here, those distinctions affect nothing.

We are exploring the possibility of applying our basic belief algorithm to
metaphor, as an experiment, to see if it gives insight into the phenomenon. That
should not be as surprising as it may sound: Metaphor has often been viewed,
in traditional approaches, as “seeing one thing as something else,” a matter of
viewpoints, just as we are presenting belief. We propose that propositions in the
topic environment for the vehicle of a metaphor be “pushed inward” (using the
standard algorithm, presented before), into an embedded environment for the tenor,
to get the tenor seen through the vehicle, or the view of the tenor-as-vehicle. This
process was already described in Section 9.4.2 on intensional identity.

The key features here are:

1. One of the conceptual domains is viewed as a “pseudobeliever”.
2. The pseudobeliever has a metaphorical view of a topic or domain.
3. The generation of such a view is not dissimilar from ascribing beliefs by real

believers.
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4. Explicating this by pushing or amalgamating environments yields new inten-
sional entities after an actual transfer of properties.

So, in the classic historical case of atom-as-billiard-ball, given the environments
for atom and billiard ball as shown in Figure 9.12, we generate the environment
for atoms as billiard balls as follows. The environment for atoms is nested
within the environment for billiard balls, and then the contents of the billiard ball
environment are pushed down into the nested-atom environment, replacing the term
“billiard ball” by “atom” wherever it occurs in propositions being pushed. The
overriding of properties would follow in the same way as for standard beliefs:
For example, Light(atom) overrides the incoming Heavy(billiard ball). However,
Round(billiard ball) would survive as the property Round(atom)—correctly for
the original analogy—because there would be no preexisting shape property in the
system’s belief set for atoms. Then, the nested-atom environment is pulled out
to form a new environment “atom-as-billiard-ball,” replacing such occurrence of
“atom” with “atom-as-billiard-ball.” This new environment is the metaphoric view
of atoms as billiard balls. Figure 9.13 uses an arrow, as before, to illustrate the
process. Similarly, in

Jones threatened Smith’s theory by reimplementing his experiments.

we would know we had a preference-breaking, and potentially metaphorical,
situation from the object-feature failure on “threaten” (which expects a person
object). Or, rather, Wilks [62] argued that metaphors could be identified, proce-
durally at least, with the class of preference-breaking utterances (where, in a wide
sense, assertions relating two generic classes, as in “An atom is a billiard ball”
or “Man is an animal,” can be preference breaking). The awkward cases for that
broad delimitation are forms like “Connors killed McEnroe,” which breaks no verb
preferences but is read metaphorically by some as “beat soundly at tennis.” Here,
one might consider taking the classic Marcus escape and using our procedural
definition to rule this example out of court as a “garden-path metaphor.” However,
as we shall see in later discussion (Section 9.7), there is a deeper way in which
preferences and metaphor are linked.

Fig. 9.12. System beliefs about atoms and billiard balls.
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Fig. 9.13. Forming the atom-as-billiard-ball environment.

We could now plausibly form a metaphoric view of theory-as-person using the
same process as above, and using the assumption that the basic preferences of
the concept “threaten” [62] are for a person as agent and as object (if that is not
accepted, a metaphorical push down can begin from whatever such preferences an
objector would be prepared to assign to the action.) Figure 9.14 shows possible
system environments for theory and person, and the resulting theory-as-person
environment.

Fig. 9.14. Forming a theory-as-person environment.
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By this maneuver, a new and complex metaphorical property of theories is
derived. It might be, of course, that this procedure of belief overriding as a basis for
metaphor would produce no different a set of plausible properties transferred than
any other system [e.g., 27]; that would be, again, an experimental question. But its
importance or originality would lie in the fact that it was further application of an
algorithm designed to explicate another phenomenon altogether (i.e., belief) and,
therefore, yield a procedural connection between the notions, one that has other
intellectual justifications, as will be shown in a moment.

In principle, the method should extend to other phenomena widely considered
to be metaphorical [22] but with a quite different grammatical basis, such as
“rubber duck.” Here, we can envisage the push down of environments (duck and
rubber object), after which properties like animacy from the DUCK environment
would be canceled by the pre-existing property (alias belief) “inanimate” within
the RUBBER environment so that we did not end up with rubber ducks (alias
rubber-as-a-duck) being animate. Cohen and Margalit argued that there could be
no principled basis for property transfer in metaphor explication, but, in a sense,
all computational accounts, including this one, consider this an empirical claim,
one which AI researchers believe is false. Here, the principled basis would fall
back on a relevance algorithm (see Section 9.4.1) supplemented by the default-
belief algorithm. The intuitive support for what we propose comes from a deep
connection between belief and metaphor: taking metaphor-as-false-belief [24]
seriously, in that metaphors for a particular believer are just special beliefs, ones
which can, of course, become more generally believed (e.g., Men are beasts! Women
are cats!).

There is a further interesting aspect to the connection between belief and
metaphor. We have stressed a procedural connection that may seem improbable to
some people. There is also the important but neglected phenomenon of the content
of belief being inherently metaphorical, and in a way that conventional theorists
totally neglect by their concentration on simplistic belief examples like “John loves
Mary.” A far more plausible candidate might be a truth such as:

Prussia threatened France before invading it successfully in 1871.

What are we to say of this historically correct belief? What are the entities
referred to by “Prussia” and “France”? Simple translation into some first-order
expression like Invade(Prussia, France, 1870) just obscures the real problem, one
for which the semantics of first-order logic are of no help at all. Are the entities
referred to somehow metaphorically the Prussian people, or army, or a part of
the army?

Following the approach described earlier, we might expect to detect breaking
of linguistic preferences of the verb “threaten” and perform a trial push down of
properties of the “people” environment (given by the conventional preferences of
“threaten”) into an environment for Prussia (= a land mass, the basic representation).
An important safeguard, which there is no space to discuss here, would be that we
examine our inventory of representations to see if we have one for “Prussia” that
already expressed the (dead) metaphor of a country-name-as-a-polity (some would
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insist that this was a metonymy, but we decided not to make this a significant issue
in this article).

The possibility of a metaphorical belief belonging to some agent other than
the system itself underscores the benefits of our method of unifying metaphorical
transference with belief ascription. Suppose that (according to the system) Bill has
a certain metaphorical belief B, perhaps the Prussia/France one if we assume that it
does indeed involve a country-as-person metaphor. Suppose, now, that the system
takes Bill to attribute this belief B to Sally in the ordinary default way (subject to
the check that, according to Bill, Sally is “qualified” to have beliefs about European
history). Here we have a combination of metaphorical transference (from the person
domain to the country domain) and belief ascription: A combination that could, of
course, appear at any level of nesting of belief. These processes essentially work by
the same mechanisms in our method. This obviates the need that would otherwise
exist to create a suitable interface between mechanisms for belief ascription and
(previously unrelated) mechanisms for metaphorical transference.

Furthermore, we may anticipate a point we make later about fuzziness of the
distinction between intensional identification and metaphor. Our method allows the
system to be neutral as to whether a belief B of an agent Bill is viewed by him
as being metaphorical or not. If it is, then the environment manipulation involved
in constructing, say, a country-as-person environment is consistent with the system
taking Bill to be thinking metaphorically. On the other hand, if Bill does not regard
B as metaphorical, then the same environment manipulation is consistent with the
system taking Bill to be (partially) confusing the notion of a country with the notion
of a person, and thus performing an intensional identification (albeit one between
general concepts rather that concepts of individuals). With our method, there is
simply no need for the system to have to adjudicate on whether Bill is engaged in
metaphorical thinking or not.

Notice, finally, that in the environment-based processing of metaphor there is an
asymmetry of available push down, much as with the construction of intensional
entities in an earlier section. This asymmetric duality of metaphor is exactly that of
the alternative treatments of:

My car drinks gasoline.

in Wilks [62], where one can consider the statement as being a car-as-drinker
metaphor OR as a drinking-as-using metaphor, and only overall coherence with
a database of cases and knowledge structures will tell one which is right. In that
work, the model was not one of beliefs, but (in the spirit of its age) of framelike
structures expressing dictionary information. But the underlying point is the same:
Preference violations are the cues or triggers for metaphorical processes but do
not settle which metaphor (depending on the directionality of the preferences)
should establish itself in the context. That is a matter for other, more general
inference processes and the coherence of what they produce. In the examples here,
we have simplified the matter by considering only a single push down for each
example.
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9.6 Towards a General Theory of Speech Acts

Much work has been done in recent years in developing natural language processing
(NLP) systems that interpret sentences in terms of speech acts8 [1, 21, 49]. As
noted earlier, the relation of our basic belief-ascription method to that work is that
those authors assumed some partition of the beliefs needed for understanding into
viewpoints and to any required depth of nesting. That is to say, they assumed
those environments were already in existence as a database before speech-act
computations were done. In our view, this is psychologically and computationally
unrealistic and, for us, the creation and maintenance of nested viewpoints is the
primary computational and theoretical task. Seen in that way, we are not so much
building on their work as providing a foundation for it, by building a processing
model of their key assumption.

Our approach can thus be seen as (a) a demand for more realistic complexity in
belief-environment computation and, at the same time, (b) a reaction against the
complexities of speech-act analysis in, for example, the work at the University of
Toronto (and we believe that [50], made this latter move, too). If we treat belief
less simplistically, we get a simpler treatment of speech acts as a reward. But our
main assumption in treating speech acts is similar to that of the other approaches
mentioned: We locate a belief environment, usually of the beliefs of the system
about the beliefs of another agent about the system itself, within which reasoning
is done so as to make sense of otherwise incomprehensible dialogue input. This
most general assumption also serves to link the treatment of speech acts to that
of metaphor: A belief environment is created that “makes sense” of otherwise
anomalous input. However, by including speech acts in this article, we intend only
this connection of ideas, and not that speech acts are phenomena that, like metaphor
and intensional identification, can be seen as modeled by the same process as belief
ascription.

As many commentators have pointed out, the construction of plans corresponding
to speech acts on each occasion they are encountered is implausible. For example,
it would be inefficient to work out that the surface interrogative:

Can you give me your departure time?

was a request each time it was encountered. In our view such “speech-act interpre-
tation shifts,” which do not undergo significant changes over time in a language,
are best seen as stored, learned wholes.

All this is purely programmatic, but we are concerned here with establishing that
speech acts are part of a family of notions, along with intensional identification,
metaphor, and belief itself that are inseparably linked. It is not only that speech
acts rest upon some belief calculus for their formal expression, but that speech-act
phenomena themselves are not always separable from metaphor, say.

8 See [3] and [55].
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A real and interesting murder case in Britain in the 1950s concerned robbers
called Craig and Bentley. Craig shot and killed a policeman on a roof, but was
16 and not hanged. Bentley was hanged for shouting at Craig “Let him have it.”
His (unsuccessful) defense at this trial was that he intended by those words that
Craig should give the policeman the gun but was misunderstood. Guilt being (in
theory) based on intention rather than causality, that was a reasonable defense,
whether or not it was honest. It was part of his defense that he intended the literal
meaning of the words and not the (conventionalized or dead) metaphor “shoot.”
Clearly, both alternatives admit of similar speech-act analysis, but the interesting
issue relevant here is under what conditions the beliefs in an environment lean
towards an interpretation of input as metaphorical (by some such methods as we
have discussed) because that would be a determination prior to any determination
of what speech act was in play.

9.7 The General Issue of Belief, Intensional Identification,
and Metaphor

The goal of this article has been the application of notions derived for belief to
the explication and modeling of intensional entities and metaphor understanding.
In this section we recap our views both on this idea and on the other fundamental
links between belief processing and metaphor. First, we summarize our views on
the question of how, in our view, intensional identification fits with both belief
ascription and metaphor.

9.7.1 Belief Ascription and Intensional Identification

Intensional identification intrinsically involves some sort of combination of two
or more bodies of information, whether or not one follows our environment-based
approach. We also claim that intensional identification is likely to have an asymmet-
rical quality as a matter of fact, and this makes the asymmetric aspect of belief
ascription a plausible technique for constructing the intensional entities. In the
Mary example, this might be because Mary’s Frank/Jim’s-father idea is likely to
corres-pond more closely to one of our two person-ideas than to the other, and we
might also expect there to be dialogue clues from which we could infer Mary’s
presumed direction of conflation. This is not to deny the possibility of more complex
situations where there is no clear precedence, but the approach is a heuristically
plausible one.

9.7.2 Intensional Identification and Metaphor

The identification of intensional objects A and B (done with bias towards A) is a
matter of taking A as B. We hold that this “as” is the same as in taking a metaphorical
target A as the vehicle B of the metaphor (e.g., atom as billiard ball). In both cases,
one view is imposed upon another (information about B is imposed upon A). This
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correspondence does not amount to saying that there are no differences between
typical intensional identification and typical “metaphorizing.” Certainly, the latter
is likely to involve more unusual, unexpected, or category-crossing impositions
of information. Nevertheless, the two processes are similar, both conceptually and
from the procedural point of view of the detailed computational processes taking
place. Moreover, in cases where someone uses a phrase like “God the Father,”
we might not be able to say whether that was an example of the conflation of
two (independent) intensional entities, or a metaphor. The method of this article
suggests that, if the basic computational technique were the same for treating both,
we would not have to decide that question.

9.7.3 Belief and Metaphor

Here we return to the core idea of this article, namely, that representational and
processing notions derived for belief can usefully be applied to the explication and
modeling of metaphor understanding. The core idea has a general force derived
from the fact that metaphor has often, in the literature, been seen as a point-of-
view phenomenon, or “seeing something as something else.” But all that is very
general support: The crucial idea here has been the application of a precise notion of
computational belief ascription to metaphor, and transferring properties (expressed
as believed propositions) by our standard algorithm in order to create a metaphorical
point of view of an entity.

One type of analogy that can be drawn in mundane discourse is between
different people’s states of mind or belief frameworks. Consider, for instance, the
discourse fragment “Bill is a chauvinist … John is like Bill.” Assuming there is
no interruption of coherence here, the reported analogy between John and Bill
is one of belief framework. That is, chauvinist beliefs of Bill’s can be trans-
ferred (by default) to John. What we have here is straightforward belief ascription
that is also a case of analogical tranference, which is essentially the same thing
as metaphorical transference. This intersection provides considerable additional
support to the basing of metaphorical transference on the extended belief-ascription
mechanism.

However, we also wish to mention, although there is no space here to defend it
fully, the force and generality of the converse notion: Belief ascription, as a funda-
mental psychological and computational process, is also logically and empirically
dependent on metaphor.

In one sense, that claim is trivial, because all computational approaches to
propositional attitudes ultimately rest on underlying metaphors: Most commonly,
metaphors that bring in the idea of “possible worlds” or “situations,” or others
that cast the mind as holding, possessing, or being otherwise related to abstract
objects akin to natural language sentences or logical formulae. Our approach rests
on a metaphor in the latter class, namely the mind-as-container metaphor, under
which the minds and belief sets of others are seen as porous containers that can be
nested like buckets or jars. This metaphor carries with it the explicit grouping idea
emphasized in Section 9.3.
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But we intend something much more general here, independent of any particular
prevalent metaphor for the mind or belief states. First, consider the precept that, in
plausibly hypothesizing what some agent X believes on some topic T , one proceeds
largely by trying to ascribe one’s own beliefs about T to X, perhaps failing to do
so because of contrary beliefs about T one already knows X to have. What we are
now suggesting is that this activity is very much like metaphorizing: the process of
“ascribing” information from the metaphor vehicle to the tenor, perhaps failing to
do so because of contrary existing tenor information that one wishes to preserve.
Specifically, in a belief-ascription activity one uses one’s current belief state about
the topic T as the vehicle of a metaphor, the target being the other agent’s belief
state. In brief: One uses one’s own state of mind as a metaphor for other people’s.
This has a general similarity to Maida’s [43] view.

A second very general aspect of the dependence of belief processing on metaphor
can be seen by considering the unexamined assumption we have made throughout
this article, which is also one that virtually all AI researchers and logicians use for
discussing beliefs: Beliefs can be conveniently expressed as simple propositions,
which contain predicates, which unfortunately look like words, but, in fact (so the
assumption goes), univocally denote entities that are concepts or world referents.

Everyone knows that this assumption, underlying all modern formal semantics as
it does, is a claim of highly dubious content, and it is particularly so if we consider
the fact—always cited in the research of (e.g.,[62]) on preference semantics—that
many, if not most English sentences in real texts like newspapers, are preference
breaking: That is to say, the concepts contained in them are used out of their
dictionary-declared contexts of constraint, as in “Prussia attacked France.” This
is no more than a repetition of the now common observation that much normal
discourse is “metaphorical” in a broad sense, but what is not so often concluded,
as it must be, is that this has strong and destabilizing consequences for any formal
semantic representation of language [35, 38], and for belief ascription in particular.

In the face of such observations, the notion of univocal predicates as the basis
of formal representations of a natural language, freed from the contamination of
languages like English, becomes hard to sustain, and the problem is in no way
solved by allowing for non-univocality (i.e., indexing predicates for particular
dictionary word senses; e.g., POST1 and meaning only a stick) because the ubiquity
of metaphor or preference-breaking use suggests that a natural language is used
normally and comprehensibly even when no such indexing to conventional senses
can be done. And, it should not need adding, this difficulty is not alleviated at all
by those who say things like “we do not use predicates, only axiomatic structures,
or sets of n-tuples.” To them, the answer is simply that the only way they have of
knowing which set or axiom is which must be by means of the associated predicate
name, and then the above problems return unsolved.

If we now return to our central theme and consider that those comprehensible
sentences, containing non-sense-indexible metaphorical uses, are the stuff of beliefs
also, and that they must also be ascribed by believer to believer, then what trust can
we put in the sorts of naive representations used in this and every other article on
the subject? The short answer is none, unless we can at least begin to see how to
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move to a notion of representation of meaning for belief ascription that also takes
the metaphoricity of beliefs and language as basic.

At present, we can do little more than draw attention to this phenomenon, so
that we cannot, in the future, be accused by our successors of more naivety than
necessary. However, we believe we know where to look, and what other aspects
of current research to draw into work on belief ascription. One essential for the
future is to link the present work fundamentally to work on meaning that is both
dictionary based and shows how to extend beyond that, so that new usages can be
represented, usually within networks of associations as the basis of discrete senses
[28, 71, 72]. Another essential is that the sorts of explorations we have carried out
here on explicating the notion of metaphor via belief ascription be boot-strapped
back into the belief-ascription process, so that we can ascribe a belief from believer
A to believer B that “Smith attacked Jones’s notion of continuity” in such a way
as to assume that the metaphorical content of “attack” here also transfers from
environment to environment (saving here the assumption that culturally similar
believers may be assumed to have the same metaphorical processing mechanism,
just as they do the same belief-ascription mechanism. But those assumptions, too,
might have to be relaxed in certain situations). Such transfers are central to work
by Barnden [14, 15, 16].

One interesting class of cases of this phenomenon will be those where a system
believes that another believer has false (as opposed to metaphorical) beliefs about
word meaning. To return to the believer who thinks Thalassemia is a province
of Greece, he is confronted by the input phrase “The cure for Thalassemia.”
A system might predict that, faced with what should be a radical preference
violation, the believer will give up and ask for help, and so the system might wait
and see and make no ascriptions. But a plausible zealous strategy would be to
ascribe the results of a metaphorical push down (based, in the system’s own view,
on wholly false beliefs about meaning). Anyone who considers this implausible
should consider the locution, heard recently on American television, “The cure
for Panama.”

If we can escape from the basic representational assumption, made here and
everywhere else (because it is so hard to think of anything else!) that the predicates
in the (ascribed) representation for belief are sense-determinate in some simple
denotational way, then the problem may be soluble, and require, as we noted, only
some method of metaphor processing (by belief-like methods such as those we
propose here) during the belief-ascription process.

An alternative, and lazier, possibility is that we move to a representational
phase where we make no strong referential assumptions about the meanings of the
predicates in beliefs ascribed from believer to believer (just as one can assume that
if natural languages are very close, like Dutch and German, we may not need to
sense-resolve words transferred between them, allowing the target understander to
do the work). Then we could use a process like the metaphor processor described
here only on demand, when required to push an interpretation below/beyond its
metaphorical expression. This again is consistent with certain strong and plausible
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assumptions about human processing. Whichever of these alternatives is ultimately
chosen, both require recognition of the intimate dependence of belief ascription on
the metaphoricity of language and belief representations.

9.8 Conclusion

This article advocates a highly “pragmatic” approach to propositional attitudes.
Rather than being concerned with traditional issues such as devising an elegant
axiom set, satisfying semantics, or adequate proof procedure for a belief logic,
we believe that concern should be focused on a commonsense plausible reasoning
schema about propositional attitudes. In particular, we are interested in ascriptional
reasoning about attitudes. We claim that for ascriptional reasoning, it is important
to concentrate on environments: groups of propositions that can be manipulated as
explicit units, rather than as implicit groups arising only behind the scenes.

Our main concern has been to demonstrate some of our reasons for thinking
that belief processing and metaphorizing are strongly interdependent, and indeed
very similar in some respects. The essence of metaphorizing is assimilable into a
generalization of the environment-manipulation procedures we originally devised
for handling ordinary belief ascription. Conversely, belief ascription is, in large
measure, assimilable into metaphorizing, in that one’s ascriptional activities use
one’s states of mind as metaphors for other people’s states of mind. Moreover,
Barnden [14, 16] argued that metaphors for the mind, which are commonly used
by people in ordinary discourse, have to be given a central role in representational
approaches to propositional attitudes. Our ViewGen work already observes this
to a useful extent by adopting, via environments, the prevalent mind-as-container
metaphor.

We have also presented our reasons for perceiving deep connections between
intensional identification on the one hand, and both belief ascription and
metaphorizing on the other. Part of our view is a claim about intensional identifi-
cation being typically asymmetrical. A corollary of these connections is a strength-
ening of the bond between belief processing and metaphor. We are investigating
the extension of our approach to deal with speech acts, and the incorporation of
a sophisticated but heuristically restricted treatment of relevance. The expense of
relevance processing is one reason for wanting to use explicit groupings of beliefs.
Finally, we resist the possible objection that our linkage of belief to metaphor
requires the problem of metaphor to be fully solved first: a huge task. Rather,
research on metaphor to date can serve as a basis for useful progress with belief
processing, and vice versa.
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Abstract: The paper argues that the IBM statistical approach to machine translation has done rather
better after a few years than many sceptics believed it could. However, it is neither as
novel as its proponents suggest nor is it making claims as clear and simple as they would
have us believe. The performance of the purely statistical system (and we discuss what that
phrase could mean) has not equaled the performance of SYSTRAN. More importantly,
the system is now being shifted to a hybrid that incorporates much of the linguistic
information that it was initially claimed by IBM would not be needed for MT. Hence,
one might infer that its own proponents do not believe “pure” statistics sufficient for
MT of a usable quality. In addition to real limits on the statistical method, there are also
strong economic limits imposed by their methodology of data gathering. However, the
paper concludes that the IBM group have done the field a great service in pushing these
methods far further than before, and by reminding everyone of the virtues of empiricism
in the field and the need for large scale gathering of data

10.1 History

Like connectionism, statistically-based machine translation is a theory one was
brought up to believe had been firmly locked away in the attic, but here it is back
in the living room. Unlike connectionism, it carries no psychological baggage, in
that it seeks to explain nothing and cannot be attacked on grounds of its small scale
as connectionist work has been. On the contrary that is how it attacks the rest of us.

It is well known that Western Languages are 50% redundant. Experiment
shows that if an average person guesses the successive words in a completely
unknown sentence he has to be told only half of them. Experiment shows that
this also applies to guessing the successive word-ideas in a foreign language.
How can this fact be used in machine translation? [7].

Alas, that early article told us little by way of an answer and contained virtually no
experiments or empirical work. Like IBM’s approach it was essentially a continu-
ation of the idea underlying Weaver’s original memorandum on MT: that foreign
languages were a code to be cracked. I display the quotation as a curiosity, to show
that the idea itself is not new and was well known to those who laid the foundations
of modern representational linguistics and AI.
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I personally never believed Chomsky’s arguments in 1957 against other theories
than his own any more than I did what he was for: his attacks on statistical
and behaviorist methods (as on every thing else, like phrase structure grammars)
were always in terms of their failure to give explanations, and I will make no
use of such arguments here, noting as I say that how much I resent IBM’s use
of “linguist” to describe everyone and anyone they are against. There is a great
difference between linguistic theory in Chomsky’s sense, as motivated entirely by
the need to explain, and theories, whether linguistic/AI or whatever, as the basis
of procedural, application-engineering-orientated accounts of language. The latter
stress testability, procedures, coverage, recovery from error, non-standard language,
metaphor, textual context, and the interface to general knowledge structures.

Like many in NLP and AI, I was brought up to oppose linguistic methods
on exactly the grounds IBM do: their practitioners were uninterested in perfor-
mance and success at MT in particular. Indeed, the IBM work to be described
here has something in common with Chomsky’s views, which formed the
post-1957 definition of “linguist”. It is clear from Chomsky’s description
of statistical and Skinnerian methods that he was not at all opposed to
relevance/pragmatics/semantics-free methods – he advocated them in fact – it was
only that, for Chomsky, the statistical methods advocated at the time were too
simple a method to do what he wanted to do with transformational grammars.
More recent developments in finite state (as in phrase structure) grammars have
shown that Chomsky was simply wrong about the empirical coverage of simple
mechanisms.

In the same vein he dismissed statistical theories of language on the ground that
sentence pairs like:

I saw a
the.
triangular whole.

are equally unlikely but utterly different in that only the first is ungrammatical. It
will be clear that the IBM approach discussed here is not in the least attacked by
such an observation.

10.1.1 Is the Debate about Empiricism? No.

Anyone working in MT, by whatever method, must care about success, in so far as
that is what defines the task. Given that, the published basis of the debate between
rationalism and empiricism in MT is silly: we are all empiricists and, to a similar
degree, we are all rationalists, in that we prefer certain methodologies to others and
will lapse back to others only when our empiricism forces us to. That applies to
both sides in this debate, a point I shall return to.

An important note before continuing: when I refer to IBM machine translation
I mean only the systems referred to at the end by Brown et al. IBM as a whole
supports many approaches to MT, including Mc Cord’s [10] prolog-based symbolic
approach, as well as symbolic systems in Germany and Japan.
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10.1.2 Is the Debate about How we Evaluate MT? No.

In the same vein, I shall not, as some colleagues on my side of the argument would
like, jump ship on standard evaluation techniques for MT and claim that only very
special and sensitive techniques (usually machine-aided techniques to assist the
translator) should in future be used to assess our approach.

MT evaluation is, for all its faults, probably in better shape than MT itself, and
we should not change the referee when we happen not to like how part of the game
is going. Machine-aided translation (MAT) may be fine stuff, but IBM’s approach
should be competed with head on by those who disagree with it. In any case, IBM’s
method could in principle provide, just as any other system could, the first draft
translation for a translator to improve on line. The only argument against that is
that IBM’s would be a less useful first draft if a user wanted to see why certain
translation decisions had been taken. It is a moot point how important that feature
is. However, and this is a point Slocum among others has made many times, the
evaluation of MT must in the end be economic not scientific. It is a technology and
must give added value to a human task. The ALPAC report, it is often forgotten,
was about the economics of contemporary MT, not about its scientific status: the
report simply said that MT at that time was not competitive, quality for quality,
with human translation.

SYSTRAN won that argument later by showing there was a market for the
quality it produced at a given cost. We shall return to this point later, but I make
it now because it is one that does tell, in the long run, on the side of those who
want to emphasize MAT. But for now, and for any coming showdown between
statistically and non-statistically based MT – where the latter will probably have
to accept SYSTRAN as their champion for the moment, like it or not – we might
as well accept existing “quasi-scientific” evaluation criteria, Cloze tests, test sets
of sentences, improvement and acceptability judged by monolingual and bilingual
judges, etc. None of us in this debate and this research community are competent
to settle the economic battle of the future, decisive though it may be.

10.2 Arguments Not to Use Against IBM

There are other well known arguments that should not be used against IBM, such
as that much natural language is mostly metaphorical and that applies to MT as
much as any other NLP task and statistical methods cannot handle it. This is a
weak but interesting argument: the awful fact is that IBM cannot even consider a
category such as metaphorical use. Everything comes out in the wash, as it were,
and it either translates or it does not and you cannot ask why. Much of their success
rate of sentences translated acceptably is probably of metaphorical uses. There may
be some residual use for this argument concerned with very low frequency types
of deviance, as there is for very low frequency words themselves, but no one has
yet stated this clearly or shown how their symbolic theory in fact gets such uses
right (though many of us have theories of that). IBM resolutely deny the need of
any such special theory, for scale is all that counts for them.
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10.3 What is the State of Play Right Now?

Away with rumor and speculation; what is the true state of play at the moment?
In recent reported but unpublished DARPA-supervised tests the IBM system
CANDIDE did well, but significantly worse than SYSTRAN’s French-English
system over texts on which neither IBM nor SYSTRAN had trained. Moreover,
CANDIDE had far higher standard deviations than SYSTRAN, which is to say that
SYSTRAN was far more consistent in its quality (just as the control human trans-
lators had the lowest standard deviations across differing texts). French-English is
not one of SYSTRAN’s best systems but this is still a significant result. It may be
unpleasant for those in the symbolic camp, who are sure their own system could,
or should, do better than SYSTRAN, to have to cling to it in this competition as
the flagship of symbolic MT, but there it is. IBM have taken about 4 years to get
to this point. French-English SYSTRAN was getting to about IBM’s current levels
after 3–4 years of work. IBM would reply that that they are an MT system factory,
and could do the next language much faster. We shall return to this point.

10.4 What is the Distinctive Claim by IBM About How to Do
MT?

We need to establish a ground zero on what the IBM system is: their rhetorical
claim is (or perhaps was) that they are a pure statistical system, different from their
competitors, glorying in the fact that they did not even need French speakers. By
analogy with Searle’s Chinese Room, one could call theirs a French Room position:
MT without a glimmering of understanding or even knowing that French was the
language they were working on! There is no space here for a detailed description
of IBM’s claims (see [2, 3]). In essence, the method is an adaptation of one that
worked well for speech decoding [8].

The method establishes three components: (a) a trigram model of English
sequences; (b) the same for French; (c) a model of quantitative correspondence
of the parts of aligned sentences between French and English. The first two are
established from very large monolingual corpora in the two languages, of the order
of 100 million words, the third from a corpus of aligned sentences in a parallel
French-English corpus that are translations of each other. All three were provided by
a large machine-readable subset of the French-English parallel corpus of Canadian
parliamentary proceedings (Hansard). (1) and (2) are valuable independent of the
language pair and could be used in other pairings, which is why they now call
the model a transfer one. A very rough simplification: an English sentence yields
likeliest equivalences for word strings (sub-strings of the English input sentence),
i.e., French word strings. The trigram model for French re-arranges these into the
most likely order, which is the output French sentence. One of their most striking
demonstrations is that their trigram model for French (or English) reliably produces
(as the likeliest order for the components) the correct ordering of items for a
sentence of ten words or less.



Stone Soup and the French Room 259

What should be emphasized is the enormous amount of pre-computation that this
method requires and, even then, a ten word sentence as input requires an additional
hour of computation to produce a translation. This figure will undoubtedly reduce
with time and hardware expansion but it gives some idea of the computational
intensity of IBM’s method.

The facts are now quite different. They have taken in whatever linguistics has
helped: morphology tables, sense tagging (which is directional and dependent on
the properties of French in particular), a transfer architecture with an intermediate
representation, plural listings, and an actual or proposed use of bilingual dictionaries.
In one sense, the symbolic case has won: they topped out by pure statistics at around
40% of sentences acceptably translated and then added whatever was necessary
from a symbolic approach to upgrade the figures. No one can blame them: it is
simply that they have no firm position beyond taking what ever will succeed, and
who can object to that?

There is then no theoretical debate at all, and their rhetorical points against
symbolic MT are in bad faith. It is Stone Soup: the statistics are in the bottom
of the pot but all flavor and progress now come from the odd trimmings of our
systems that they pop into the pot.

They are, as it were, wholly pragmatic statisticians: less pure than, say, the
Gale group (e.g., [6]) at AT&T: this is easily seen by the IBM introduction of
notions like the one they call “informants” where a noun phrase of some sort is
sought before a particular text item of interest. This is an interpolation of a highly
theoretically-loaded notion into a routine that, until then, had treated all text items
as mere uninterpreted symbols.

One could make an analogy here with localist versus distributivist sub-symbolic
connectionists: the former, but not the latter, will take on all kinds of categories and
representations developed by others for their purposes, without feeling any strong
need to discuss their status as artifacts, i.e., how they could have been constructed
other than by handcrafting.

This also makes it hard to argue with them. So, also, does their unacademic habit
of telling you what they’ve done but not publishing it, allegedly because they are
(a) advancing so fast, and (b) have suffered ripoffs. One can sympathize with all
this but it makes serious debate very hard.

10.5 The Only Issue

There is only one real issue: is there any natural ceiling of success to PURE
statistical methods? The shift in their position suggests there is. One might expect
some success with those methods on several grounds (and therefore not be as
surprised as many are at their success):

• There have been substantial technical advances in statistical methods since
King’s day and, of course, in fast hardware to execute such functions, and in
disk size to store the corpora.
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• The redundancy levels of natural languages like English are around 50% over
both words and letters. One might expect well-optimized statistical functions
to exploit that to about that limit, with translation as much as another NLP
task. One could turn this round in a question to the IBM group: how do they
explain why they get, say, 40–50% or so of sentences right, rather than 100%? If
their answer refers to the well-known redundancy figure above, then the ceiling
comes into view immediately.
If, on the other hand, their answer is that they cannot explain anything, or there
is no explaining to do or discussions to have, then their task and methodology
is a very odd one indeed. Debate and explanation are made impossible and,
where that is so, one is normally outside any rational or scientific realm. It is the
world of the witch-doctor: Look – I do what I do and notice that (sometimes)
it works.

• According to a conjecture I propounded some years ago, with much anecdotal
support, any theory whatever no matter how bizarre will do some MT. Hence
my surprise level is always low.

10.6 Other Reasons for Expecting a Ceiling to Success
with Statistics

Other considerations that suggest there is a ceiling to pure statistical methods are
as follows:

1. A parallel with statistical information retrieval may be suggestive here: it
generally works below the 80% threshold, and the precision/recall tradeoff
seems a barrier to greater success by those methods. Yet it is, by general
agreement, an easier task than MT and has been systematically worked on for
over 35 years, unlike statistical MT whose career has been intermittent. The
relationship of MT to IR is rather like that of sentence parsers to sentence
recognizers. A key point to note is how rapid the early successes of IR were,
and how slow the optimization of those techniques has been since then!

2. A technical issue here is the degree of their reliance on alignment algorithms as
a pre-process: in ACL91 they claimed only 80% correct alignments, in which
case how could they exceed the ceiling that that suggests?

3. Their model of a single language is a trigram model because moving up to
even one item longer (i.e., a quadgram model) would be computationally
prohibitive. This alone must impose a strong constraint on how well they can
do in the end, since any language has phenomena that connect outside the
three item window. This is agreed by all parties. The only issue is how far
one can get with the simple trigram-model (and, as we have seen, it gives a
basic 40%), and how far can distance phenomena in syntax be finessed by
forms of information caching. One can see the effort to extend the window
as enormously ingenious, or patching up what is a basically inadequate model
when taken alone.
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10.7 The Future: Hybrid Approaches

Given the early success of IBM’s methods, the most serious and positive question
should be what kinds of hybrid approach will do best in the future: coming from the
symbolic end, plus statistics, or from a statistical base but inducing, or just taking
over, whatever symbolic structures help? For this we can only watch and wait,
and possibly help a little here and there. However, there are still some subsidiary
considerations.

10.7.1 IBM, SYSTRAN, and the Economics of Corpora

In one sense, what IBM have done is partially automate the SYSTRAN construction
process: replacing laborious error feedback with statistical surveys and lexicon
construction. And all of us, including SYSTRAN itself, could do the same. However,
we must always remember how totally tied IBM are to their Hansard text, the
Rosetta Stone, one might say, of modern MT. We should remember, too, that their
notion of word sense is only and exactly that of correspondences between different
languages, a wholly unintuitive one for many people.

The problem IBM have is that few such vast bilingual corpora are available in
languages for which MT is needed. If, however, they had to be constructed by hand,
then the economics of what IBM has done would change radically. By bad luck,
the languages for which such corpora are available are also languages in which
SYSTRAN already has done pretty well, so IBM will have to overtake, then widen
the gap with, SYSTRAN’s performance a bit before they can be taken seriously
from an economic point of view. They may be clever enough to make do with less
than the current 100 million word corpora per language, but one would naturally
expect quality to decline as they did so.

This resource argument could be very important: Leech has always made the
point, with his own statistical tagger, that any move to make higher-level structures
available to the tagger always ended up requiring much more text than he had
expected.

This observation does not accord with IBM’s claims, which are rather the reverse,
so an important point to watch in future will be whether IBM will be able to obtain
adequate bilingual-corpora for the domain-specialized MT that is most in demand
(such as airline reservations or bank billings). Hansard has the advantage of being
large but is very very general indeed.

10.7.2 Why the AI Argument About MT Still Has Force

The basic AI argument for knowledge-based processing does not admit defeat and
retreat, it just regroups. It has to accept Bar Hillel’s old anti-MT argument [1] on
its own side – i.e., that as he said, good MT must in the end need knowledge
representations. One version of this argument is the primitive psychological one:
humans do not do translation by exposure to such vast texts, because they simply
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have not had such exposure, and in the end how people do things will prove
important. Note that this argument makes an empirical claim about human exposure
to text that might be hard to substantiate. This argument will cut little ice with our
opponents, but there may still be a good argument that we do need representations
for tasks in NLP related to MT: e.g. we cannot really imagine doing summarization
or question answering by purely statistical methods, can we? There is related
practical evidence from message extraction: in the MUC competitions [9], the
systems that have done best have been hybrids of preference and statistics, such as
of Grishman and Lehnert, and not pure systems of either type.

There is the related argument that we need access to representations at some
point to repair errors. This is hard to make precise but fixing errors makes no sense
in the pure IBM paradigm; you just provide more data. One does not have to be
a hard line syntactician to have a sense that rules do exist in some linguistic areas
and can need fixing.

10.7.3 Hard Problems Do Not Go Away

There remain, too, crucial classes of cases that seem to need symbolic inference:
an old, self-serving, one will do such as “The soldiers fired at the women and I saw
several fall” [11].

I simply cannot imagine how any serious statistical method (e.g., not like
“pronouns are usually male so make “several” in a gendered translation agree with
soldiers”!) can get the translation of “several” into a gendered language right (where
we assume it must be the women who fall from general causality). But again, one
must beware here, since presumably any phenomenon whatever will have statisti-
cally significant appearances and can be covered by some such function if the scale
of the corpus is sufficiently large. This is a truism and goes as much for logical
relations between sentences as for morphology. It does not follow that that truism
leads to tractable statistics or data gathering. If there could be 75,000-word-long
Markov chains, and not merely trigrams (which seem the realistic computational
limit) the generation of whole novels would be trivial. It is just not practical to have
greater-than-three chains but we need to fight the point in principle as well!

Or, consider the following example (due to Sergei Nirenburg):

PRIEST IS CHARGED WITH POPE ATTACK
(Lisbon, May 14)

A Spanish priest was charged here today with attempting to murder the
Pope. Juan Fernandez Krohn, aged 32, was arrested after a man armed
with a bayonet approached the Pope while he was saying prayers at Fatima
on Wednesday night.
According to the police, Fernandez told the investigators today he trained
for the past six months for the assault. He was alleged to have claimed the
Pope ‘looked furious’ on hearing the priest’s criticism of his handling of
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the church’s affairs. If found guilty, the Spaniard faces a prison sentence
of 15–20 years.

(The Times 15 May 1982)

The five italicized phrases all refer to the same man, a vital fact for a translator
to know since some of those phrases could not be used in any literal manner in
another language (e.g. “the Spaniard” could not be translated word-for-word into
Spanish or Russian). It is hard to imagine multiple identity of reference like that
having any determinable statistical basis.

10.8 Is the Pure Statistics Argument What is Being
Debated? No

Everything so far refers to the pure statistics argument, from which IBM have
now effectively backed off. If the argument is then to be about the deployment of
hybrid systems and exactly what data to get from the further induction of rules and
categories with statistical functions (e.g., what sort of dictionary to use) then there
is really no serious argument at all, just a number of ongoing efforts with slightly
differing recipes. Less fun, but maybe more progress, and IBM are to be thanked
for helping that shift.

10.8.1 IBM as Pioneers of Data Acquisition

I can add a personal note there: when I worked on what I then called Preference
Semantics [11] at McCarthy’s Stanford AI Lab, McCarthy always dealt briefly with
any attempt to introduce numerical methods into AI – statistical pattern-matching
in machine vision was a constant irritation to him – by saying “Where do all those
numbers COME from?” I felt a little guilty as Preference Semantics also required
at least link counting. One could now say that IBM’s revival of statistical methods
has told us exactly where some of these numbers come from! But that certainly
does not imply that the rules that express the numbers are therefore useless or
superseded.

This touches on a deep metaphysical point: I mentioned above that we may feel
word-sense is a non-bilingual matter, and that we feel that there are rules that need
fixing sometimes, and so on. Clearly, not everyone feels this. But it is our culture
of language study that tells us that rules, senses, metaphors, representations etc. are
important and that we cannot imagine all that is just a cultural artifact. An analogy
here would be Dennett’s recently restated theory of human consciousness [5] that
suggests that all our explanations of our actions, reason, motives, desires etc. as
we articulate them may be no more than fluff on the underlying mechanisms that
drive us.

IBM’s work induces the same terror in language theorists, AI researchers and
linguists alike: all their dearly-held structures may be just fluff, a thing of schoolmen
having no contact with the reality of language. Some of us in AI, long ago, had
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no such trouble imagining most linguistics was fluff, but do not want the same
argument turned round on us, that all symbolic structures may have the same status.

Another way of looking at this is how much good IBM are doing us all: by
showing us, among other things, that we have not spent enough time thinking about
how to acquire, in as automatic a manner as possible, the lexicons and rule bases
we use. This has been changing lately, even without IBM’s influence, as can be
seen from the large-scale lexical extraction movement of recent years. But IBM’s
current attempts to recapitulate, as it were, in the ontogeny of their system, much
of the phylogeny of the AI species is a real criticism of how some of us have spent
the last twenty years.

We have not given enough attention to knowledge acquisition, and now they are
doing it for us. I used to argue that AIers and computational linguists should not
be seen as the white-coated laboratory assistants of linguistic theorists (as some
linguists used to dream of using us). Similarly, we cannot wait for IBMers to do
this dirty work for us while we go on theorizing. Their efforts should change how
the rest of us proceed from now on.

10.9 Conclusion: Let Us Declare Victory and Carry
on Working

Relax, go on taking the medicine. Brown et al.’s retreat to incorporating symbolic
structures show the pure statistics hypothesis has failed. All we should be haggling
about now is how best to derive the symbolic structures we use, and will go on
using, for machine translation.
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Senses and Texts

Yorick Wilks
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Abstract: This paper addresses the question of whether it is possible to sense-tag systematically,
and on a large scale, and how we should assess progress so far. That is to say, how to
attach each occurrence of a word in a text to one and only one sense in a dictionary –
a particular dictionary of course, and that is part of the problem. The paper does not
propose a solution to the question, though we have reported empirical findings elsewhere
[5, 22, 21], and intend to continue and refine that work. The point of this paper is to
examine two well-known contributions critically: The first [13], which is widely taken
to show that the task, as defined, cannot be carried out systematically by humans and,
secondly [25], which claims strikingly good results at doing exactly that

11.1 Introduction

Empirical, corpus-based, computational linguistics has reached by now into almost
every crevice of the subject, and perhaps pragmatics will soon succumb. Semantics,
if we may assume the sense-tagging task is semantic, has shown striking progress
in the last five years and, in Yarowsky’s most recent work [25], has produced very
high levels of success in the 90s%, well above the key bench-mark figure of 62%
correct sense assignment, achieved at an informal experiment in New Mexico about
1990, in which each word was assigned its first sense listed in LDOCE (Longman
Dictionary of Contemporary English).

A crucial question in this paper will be whether recent work in sense-tagging has
in fact given us the breakthrough in scale that is now obvious with, say, part-of-
speech tagging. Our conclusion will be that it has not, and that the experiments so
far, however high their success rates, are not yet of a scale different from those of
the previous generation of linguistic, symbolic-AI or connectionist approaches to
the very same problem.

A historian of our field might glance back at this point to Small et al. [16] which
surveyed the AI-symbolic and connectionist traditions of sense-tagging at just the
moment when corpus-driven empirical methods began to revive, but had not been
published. All the key issues still unsettled are discussed there and that collection
showed no naivety about the problem of sense resolution with respect only to
existing lexicons of senses. It was realised that that task was only meaningful against
an assumption of some method for capturing new (new to the chosen lexicon, that
is) senses and, most importantly, that although existing lexicons differed, they did
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not differ arbitrarily much. The book also demonstrated that there was also strong
psychological backing for the reality of word senses and for empirical methods of
locating them from corpora without any prior assumptions about their number or
distribution (e.g. in early versions of Plate’s work, published later in Wilks et al.
[20]; see also Jorgensen [12]).

Our purpose in this paper will be to argue that Kilgarriff’s negative claims are
wrong, and his errors must be combated, while Yarowsky is largely right although
we have some queries about the details and the interpretation of his claims. Both
authors, however, agree that this is a traditional and important task: one often cited
as being a foundational lacuna in, say, the history of machine translation (MT),
because of the inability of early NLP systems to carry it out. It was assumed by
many, in that distant period, that if only word-sense ambiguity could be solved,
by the process we are calling sense-tagging, then MT of high quality would be
relatively straightforward. Like many linguistic tasks, it then became an end in
itself, like syntactic parsing and, now that it is, we would claim, firmly in sight
(despite Kilgarriff) it is far less clear that its solution will automatically solve a
range of traditional problems like MT. But clearly it would be a generally good
tool to have available in NLP and a triumph if this long-resistant task of CL were
to yield.

11.2 The Very Possibility of Sense-Tagging

Kilgarriff’s paper [13] is important because it has been widely cited as showing that
the senses of a word, as distinguished in a dictionary such as LDOCE, do not cover
the senses actually carried by most occurrences of the word as they appear in a
corpus. If he can show that, it would be very significant indeed, because that would
imply that sense-tagging word occurrences in a corpus by means of any lexical data
based on, or related to, a machine-readable dictionary or thesaurus is misguided.
I want to show here that the paper does not demonstrate any such thing. Moreover,
it proceeds by means of a straw-man it may be worth bringing back to life!

That straw-man, Kilgarriff’s starting point, is the ‘bank model’ (BM) of lexical
ambiguity resolution, which he establishes by assertion rather than quotation, though
it is attributed to Small, Hirst, and Cottrell as well as the present author. In the
BM, words have discrete meanings, and the human reader (like the ideal computer
program) knows immediately which meaning of the word applies [13:367], “given
that a word occurrence always refers to one or the other, but not both” of the main
meanings that a word like ‘bank’ is reputed to have. In the BM, the set of senses
available for a word does not depend on which particular dictionary you start with,
but is somehow abstractly fixed. The main argument of Kilgarriff’s paper is to
distinguish a number of relationships between LDOCE senses that are not discrete
in that way, and then to go on to an experiment with senses in a corpus. But first we
should breathe a little life back into the BM straw-man: those named above can look
after themselves, but here is a passage from Wilks [18:12] “…it is very difficult
to assign word occurrences to sense classes in any manner that is both general and
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determinate. In the sentences “I have a stake in this country” and “My stake on the
last race was a pound” is “stake” being used in the same sense or not? If “stake”
can be interpreted to mean something as vague as “Stake as any kind of investment
in any enterprise” then the answer is yes. So, if a semantic dictionary contained
only two senses for “stake”: that vague sense together with “Stake as a post”, then
one would expect to assign the vague sense for both the sentences above. But if, on
the other hand, the dictionary distinguished “Stake as an investment” and “Stake
as an initial payment in a game or race” then the answer would be expected to be
different. So, then, word sense disambiguation is relative to the dictionary of sense
choices available and can have no absolute quality about it”.

QED, one might say, since the last sentences seem to show very much the
awareness (a quarter of a century ago, but in the context of a computer program
for sense tagging) that sense choice may not be exclusive if defined, as it must be,
with respect to a particular dictionary. Hence, in my view, BM is no more than a
straw man because writers of the dark ages of CL were as aware as Kilgarriff of
the real problems of dictionary senses versus text occurrences.

In general, it is probably wise to believe, even if it is not always true, that
authors in the past were no more naive than those now working, and were probably
writing programs, however primitive and ineffective, to carry out the very same
tasks as now (e.g. sense-tagging of corpus words). More importantly, the work
quoted, which became an approach called preference semantics, was essentially a
study of the divergence of corpus usage from lexical norms (or preferences) and
developed in the Seventies into a set of processes for accommodating divergent /non-
standard/metaphorical usage to existing lexical norms, notions that Kilgarriff seems
to believe only developed in a much later and smarter group of people around
1990, which includes himself, but also, for example, Fass whose work was a
direct continuation of that quoted above. Indeed, in Wilks [18] procedures were
programmed (and run over a set of newspaper editorials) to accommodate such
“divergent” corpus usage of one word to that of an established sense of a different
word in the same text, while in [19] programmed procedures were specified to
accommodate such usage by constructing completely new sense entries for the word
itself.

A much more significant omission, one that bears directly on his main claim and
is not merely an issue of historical correctness, is the lack of reference to work
in New Mexico and elsewhere [e.g. 5] on the large-scale sense tagging of corpora
against a machine readable dictionary (MRD) derived lexical data base. These were
larger scale experiments whose results directly contradict the result he is believed
to have proved. I shall return to this point in a moment. The best part of Kilgarriff’s
paper is his attempt to give an intuitive account of developmental relations between
the senses of a word. He distinguishes Generalizing Metaphors (a move from a
specific case to a more general one) from Must-be-theres (the applicability of one
sense requires the applicability of another, as when an act of matricide requires
there to be a mother) from Domain Shift, as when a sense in one domain, like
“mellow” of wine, is far enough from the domain of “mellow” (of a personality)
to constitute a sense shift.
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It is not always easy to distinguish the first two types, since both rest on an
implication relationship between two or more senses. Again, the details do not
matter: what he has shown convincingly is that, as in the earlier quotation, the choice
between senses of a given word is often not easy to make because it depends on
their relationship, the nature of the definitions and how specific they are. I suspect
no one has ever held a simple-minded version of the BM, except possibly Fodor
and Katz, who, whatever their virtues, had no interest at all in lexicography.

The general problem with Kilgarriff’s analysis of sense types is that he conflates:

I. text usage different from that shown in a whole list of stored senses for a given
word e.g. in a dictionary, (which is what his later experiment will be about)
with

II. text usage divergent from some “core” sense in the lexicon.

Only the second is properly in the area of metaphor/metonymy or “grinding” [4]
work of the group in which he places himself, and it is this phenomenon to which
his classification of sense distinctions summarized above properly belongs. This
notion requires some idea of sense development; of the senses of a word extending
in time in a non-random manner, and is a linguistic tradition of analysis going back
to Givon [8]. However, the straw-man BM, and the experiment he then does on
hand-tagging of senses in text, all attach to the first, unrelated, notion which does
not normally imply the presence of metonymy or metaphor at all, but simply an
inadequate sense list. Of course, the two types may be historically related, in that
some of the (I) list may have been derived by metaphorical/metonymic processes
from a (II) word, but this is not be so in general. This confusion of targets is a
weakness in the paper, since it makes it difficult to be sure what he wants us to
conclude from the experiment. However, since we shall show his results are not
valid, this distinction may not matter too much.

One might add here that Kilgarriff’s pessimism has gone hand in hand with
some very interesting surveys he has conducted over the Internet on the real need
for word-sense disambiguation by NLP R&D. And one should note that there are
others [e.g. 11] who have questioned the practical usefulness of data derived at
many sites from MRDs. Our case here, of course, is that it has been useful, both in
our own work on sense-tagging [5, op. cit.] and in that of Yarowsky, using Roget
and discussed below.

Kilgarriff’s experiment, which what has been widely taken to be the main message
of his paper, is not described in much detail. In a footnote, he refuses to give the
reader the statistics on which his result was based even though the text quite clearly
contains a claim (p. 378) that 87% of (non-monsemous) words in his text sample
have at least one text occurrence that cannot be associated with one and only one
LDOCE sense. Hence, he claims, poor old BM is refuted, yet again.

But that claim (about word types) is wholly consistent with, for example, 99%
of text usage (of word tokens) being associated with one and only one dictionary
sense! Thus the actual claim in the paper is not at all what it has been taken to
show, and is highly misleading.
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But much empirical evidence tells also against the claim Kilgarriff is believed to
have made. Informal analyses [9] by Georgia Green suggested that only some 20%
of text usage (i.e. to word tokens) could not be associated with a unique dictionary
sense. Consistent with that, too, is the use of simulated annealing techniques by
Cowie et al. [5] at CRL-New Mexico to assign LDOCE senses to a corpus. In
that work, it was shown that about 75%–80% of word usage could be correctly
associated with LDOCE senses, as compared with hand-tagged control text. It was,
and still is, hoped that that figure can be raised by additional filtering techniques.

The two considerations above show, from quite different sources and techniques,
the dubious nature of Kilgarriff’s claim. Wierzbicka [17] following Antal [1]
has long argued that words have only core senses and that dictionaries/lexicons
should express that single sense and leave all further sense refinement to some
other process, such as real world knowledge manipulations, AI if you wish, but not
a process that uses the lexicon.

Since the CRL result suggested that the automatic procedures worked very well
(nearer 80%) at the homograph, rather than the sub-sense, level (the latter being
where Kilgarriff’s examples all lie) one possible way forward for NLP would be to
go some of the way with Wierzbicka’s views and restrict lexical sense distinctions
to the homograph level. Then sense tagging could perhaps be done at the success
level of part-of speech tagging. Such a move could be seen as changing the data to
suit what you can accomplish, or as reinstating AI and pragmatics within NLP for
the kind of endless, context-driven, inferences we need in real situations.

This suggestion is rather different from Kilgarriff’s conclusion: which is also an
empirical one. He proposes that the real basis of sense distinction be established by
usage clustering techniques applied to corpora. This is an excellent idea and recent
work at IBM [2] has produced striking non-seeded clusters of corpus usages, many
of them displaying a similarity close to an intuitive notion of sense.

But there are serious problems in moving any kind of lexicography, traditional
or computational, onto any such basis. Hanks [10] has claimed that a dictionary
could be written that consisted entirely of usages, and has investigated how those
might be clustered for purely lexicographic purposes, yet it remains unclear what
kind of volume could result from such a project or who would buy it and how
they could use it. One way to think of such a product would be the reduction of
monolingual dictionaries to thesauri, so that to look up a word becomes to look up
which row or rows of context bound semi-synonyms it appears in. Thesauri have a
real function both for native and non-native speakers of a language, but they rely on
the reader knowing what some or all of the words in a row or class mean because
they give no explanations. To reduce word sense separation to synonym classes,
without explanations attached would limit a dictionary’s use in a striking way.

If we then think not of dictionaries for human use but NLP lexicons, the situation
might seem more welcoming for Kilgarriff’s suggestion, since he could be seen
as suggesting, say, a new version of WordNet [14] with its synsets established
not a priori but by statistical corpus clustering. This is indeed a notion that has
been kicked around in NLP for a while and is probably worth a try. There are
still difficulties: first, that any such clustering process produces not only the clean,
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neat, classes like IBM’s [2] (Hindu Jew Christian Bhuddist) example but inevitable
monsters, produced by some quirk of a particular corpus. Those could, of course,
be hand weeded but that is not an automatic process.

Secondly, as is also well known, what classes you get, or rather, the generality of
the classes you get, depends on parameter settings in the clustering algorithm: those
obtained at different settings may or may not correspond nicely to, say, different
levels of a standard lexical hierarchy. They probably will not, since hierarchies are
discrete in terms of levels and the parameters used are continuous but, even when
they do, there will be none of the hierarchical terms attached, of the sort available
in WordNet (e.g. ANIMAL or DOMESTIC ANIMAL). And this is only a special
case of the general problem of clustering algorithms, well known in information
retrieval, that the clusters so found do not come with names or features attached.

Thirdly, and this may be the most significant point for Kilgarriff’s proposal, there
will always be some match of such empirical clusters to any new text occurrence
of a word and, to that degree, sense-tagging in text is bound to succeed by such
a methodology, given the origin of the clusters and the fact that a closest match
to one of a set of clusters can always be found. The problem is how you interpret
that result because, in this methodology, no hand-tagged text will be available as a
control since it is not clear what task the human controls could be asked to carry
out. Subjects may find traditional sense-tagging (against e.g. LDOCE senses) hard
but it is a comprehensible task, because of the role dictionaries and their associated
senses have in our cultural world. But the new task (attach one and only one of
the classes in which the word appears to its use at this point) is rather less well
defined. But again, a range of original and ingenious suggestions may make this task
much more tractable, an senses so tagged (against WordNet style classes, though
empirically derived) could certainly assist real tasks like MT even if they did not
turn out wholly original dictionaries for the book buying public.

There is, of course, no contradiction between, on the one hand, my suggestion for
a compaction of lexicons towards core or homograph senses, done to optimize the
sense-tagging process and, on the other, his suggestion for an empirical basis for
the establishment of synsets, or clusters that constitute senses. Given that there are
problems with wholly empirically-based sense clusters of the sort mentioned above,
the natural move would be to suggest some form of hybrid derivation from corpus
statistics, taken together with some machine-readable source of synsets: WordNet
itself, standard thesauri, and even bilingual dictionaries which are also convenient
reductions of a language to word sets grouped by sense (normally by reference to
a word in another language, of course). As many have now realised, both the pure
corpus methods and the large-scale hand-crafted sources have their virtues, and
their own particular systematic errors, and the hope has to be that clever procedures
can cause those to cancel, rathr than reinforce, each other. But all that is future
work, and beyond the scope of a critical note.

In conclusion, it may be worth noting that the BM, in some form, is probably
inescapable, at least in the form of what Pustejovsky [15] calls a “sense enumerative
lexicon”, and against which he inveighs for some twenty pages before going on
to use one for his illustrations, as we all do, including all lexicographers. This is
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not hypocrisy but a confusion close to that between (I) and (II) above: we, as
language users and computational modellers, must be able, now or later, to capture
a usage that differs from some established sense (problem (II) above), but that is
only loosely connected to problem (I), where senses, if they are real, seem to come
in lists and it is with them we must sense-tag if the task is to be possible at all.

11.3 Recent Experiments in Sense-Tagging

We now turn to the claims in Gale et al. [7], abbreviated to GCY, see also Yarowsky
[23, 24, 25] that:

1. That word tokens in text tend to occur with a smaller number of senses than
often supposed and, most specifically,

2. In a single discourse a word will appear in one and only one sense, even if
several are listed for it in a lexicon, at a level of about 94% likelihood for non-
monosemous words (a figure that naturally becomes higher if the monosemous
text words are added in).

These are most important claims if true for they would, at a stroke, remove a major
excuse for the bad progress of MT; make redundant a whole sub-industry of NLP,
namely sense resolution, and greatly simplify the currently fashionable NLP task
of sense-tagging texts by any method whatever [e.g. 5, 3].

GCY’s claim would not make sense-tagging of text irrelevant, of course, for it
would only allow one to assume that resolving any single token of a word (by
any method at all) in a text would then serve for all occurrences in the text, at a
high level of probability. Or, one could amalgamate all contexts for a word and
resolve those taken together to some pre-established lexical sense. Naturally, these
procedures would be absurd if one were not already convinced of the truth of the
claim.

GCY’s claims are not directly related to those of Kilgarriff, who aimed to show
only that it was difficult to assign text tokens to any lexical sense at all. Indeed,
Kilgarriff and GCY use quite different procedures: Kilgarriff’s is one of assigning
a word token in context to one of a set of lexical sense descriptions, while GCY’s
is one of assessing whether or not two tokens in context are the same sense or not.
The procedures are incommensurable and no outcome on one would be predictive
for the other: GCYs procedures do not use standard lexicons and are in terms of
closeness-of-fit, which means that, unlike Kilgarriff’s, they can never fail to match
a text token to a sense, defined in the way they do (see below).

However, GCYs claims are incompatible with Kilgarriff’s in spirit, in that
Kilgarriff assumes there is a lot of polysemy about and that resolving it is tricky,
whereas GCY assume the opposite.

Both Kilgarriff and GCY have given rise to potent myths about word-sense
tagging in text that I believe are wrong, or at best unproven. Kilgarriff’s paper, as
we saw earlier, has some subtle analysis but one crucial statistical flaw. GCY’s is
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quite different: it is a mush of hard to interpret claims and procedures, but ones
that may still, nonetheless, be basically true.

GCY’s methodology is essentially impressionistic: the texts they chose are, of
course, those available, which turn out to be Grolier’s Encyclopaedia. There is no
dispute about one-sense-per-discourse (their name for claim (2) above) for certain
classes of texts: the more technical a text the more anyone, whatever their other
prejudices about language, would expect the claim to be true. Announcing that the
claim had been shown true for mathematical or chemical texts would surprise no
one; encyclopaedias are also technical texts.

Their key fact in support of claim (1) above, based on a sense-tagging of 97
selected word types in the whole Encyclopaedia, and sense tagged by the statistical
method described below, was that 7569 of the tokens associated with those types
are monosemous in the corpus, while 6725 are of words with more than two senses.
Curiously, they claim this shows “most words (both by token and by type) have only
one sense” I have no idea whether to be surprised by this figure or not but it certainly
does nothing to show that [op. cit., 1992] “Perhaps word sense disambiguation is
not as difficult as we might have thought”. It shows me that, even in fairly technical
prose like that of an encyclopaedia, nearly half the words occur in more than one
sense.

And that fact, of course, has no relation at all to mono- or poly-semousness in
whatever base lexicon we happen to be using in an NLP system. Given a large
lexicon, based on say the OED, one could safely assume that virtually all words
are polysemous. As will be often the case, GCY’s claim at this point is true of
exactly the domain they are dealing with, and their (non-stated) assumption that
any lexicon is created for the domain text they are dealing with and with no relation
to any other lexicon for any other text. One claim per discourse, one might say.

This last point is fundamental because we know that distinctions of sense are
lexicon- or procedure-dependent. Kilgarriff faced this explicitly, and took LDOCE
as an admittedly arbitrary starting point. GCY never discuss the issue, which makes
all their claims about numbers of senses totally, but inexplicitly, dependent on the
procedures they have adopted in their experiments to give a canonical sense-tagging
against which to test their claims.

This is a real problem for them. They admit right away that few or no extensive
hand-tagged sense-resolved corpora exist for control purposes, So, they must adopt
a sense-discrimination procedure to provide their data that is unsupervised. This is
where the ingenuity of the paper comes in, but also its fragility. They have two
methods for providing sense-tagged data against which to test their one-sense-per-
discourse claim (2).

The first rests on a criterion of sense distinction provided by correspondence to
differing non-English words in a parallel corpus, in their case the French-English
Canadian Hansard because, as always, it is there. So, the correspondence of “duty”
to an aligned sentence containing either “devoir” or “impot” (i.e. obligation or tax)
is taken as an effective method of distinguishing the obligation/tax senses of the
English word, which was indeed the criterion for sense argued for in Dagon and Itai
[6]. It has well known drawbacks: most obviously that whatever we mean by sense
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distinction in English, it is unlikely to be criterially revealed by what the French
happen to do in their language.

More relevantly to the particular case, GCY found it very hard to find
plausible pairs for test, which must not of course SHARE ambiguities across the
French/English boundaries (as interest/interet do). In the end they were reduced to
a test based on the six (!) pairs they found in the Hansard corpus that met their
criteria for sense separation and occurrence more than 150 times in two or more
senses. In GCYs defence one could argue that, since they do not expect much
polysemy in texts, examples of this sort would, of course, be hard to find. Taking
this bilingual method of sense-tagging for the six word set as criterial they then run
their basic word sense discrimination method over the English Hansard data. This
consists, very roughly, of a training method over 100 word surrounding contexts for
60 instances of each member of a pair of senses (hand selected) i.e. for each pair
2×60×100 = 12� 000 words. Notice that this eyeballing method is not inconsistent
with anything in Kilgarriff’s argument: GCY selected 120 contexts in Hansard for
each word that DID correspond intuitively to one of the (French) selected senses.
It says nothing about any tokens that may have been hard to classify in this way.
The figures claimed for the discrimination method against the criterial data vary
between 82 and 100% (for different word pairs) of the data for that sense correctly
discriminated.

They then move on to a monolingual method that provides sense-tagged data in
an unsupervised way. It rests on previous work by Yarowsky [23] and uses the
assignment of a single Roget category (from the 1042) as a sense-discrimination.
Yarowsky sense-tagged some of the Grolier corpus in the following way: 100-word
contexts for words like “crane” (ambiguous between bird and machinery) are taken
and those words are scored by (very roughly, and given interpolation for local
context) which of the 1042 Roget categories they appear under as tokens. The
sense of a given token of “crane” is determined by which Roget category wins
out: e.g. 348 (TOOLS/MACHINERY) for the machinery contexts, one hopes, and
category 414 (ANIMALS/INSECTS) for the bird contexts. Yarowsky [23] claimed
93% correctness for this procedure over a sample of 12 selected words, presumably
checked against earlier hand-tagged data.

The interpolation for local effects is in fact very sophisticated and involves
training with the 100 word contexts in Grolier of all the words that appear under
a given candidate Roget head, a method that they acknowledge introduces some
noise, since it adds into the training material Grolier contexts that involve senses
of a category 348 word, say, that is not its machinery sense (e.g. crane as a bird).
However, this method, they note, does not have the sense-defined-by-language2
problems that come with the Hansard training method.

In a broad sense, this is an old method, probably the oldest in lexical computation,
and was used by Masterman (reported in [18]) in what was probably the first clear
algorithm ever implemented for usage discrimination against Roget categories as
sense-criterial. In the very limited computations of those days the hypothesis was
deemed conclusive falsified; i.e. the hypothesis that any method overlapping the
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Roget categories for a word with the Roget categories of neighbouring words would
determine an appropriate Roget category for that word in context.

This remains, I suspect, an open question: it may well be that Yarowsky’s local
interpolation statistics have made the general method viable, and that the 100-word
window of context used is far more effective than a sentence. It may be the 12
words that confirm the disambiguation hypothesis at 93% would not be confirmed
by 12 more words chosen at random (the early Cambridge work did at least try to
Roget-resolve all the words in a sentence). But we can pass over that for now, and
head on, to discuss GCY’s main claim (2) given the two types of data gathered.

Two very strange things happen at this point as the GCY paper approaches its
conclusion: namely, the proof of claim (2) or one-sense-per-discourse. First, the
two types of sense-tagged data just gathered, especially the Roget-tagged data,
should now be sufficient to test the claim, if a 93% level is deemed adequate for a
preliminary test. Strangely, the data derived in the first part of the paper is never
used or cited and the reader is not told whether Yarowsky’s Roget data confirms
or disconfirms (2).

Secondly, the testing of (2) is done purely by human judgement: a “blind” team of
the three authors and two colleagues who are confronted by the OALD main senses
for one of nine test words, and who then make judgements of pairs of contexts for
one of the nine words drawn from a single Grolier article. The subjects are shown
to have pretty consistent judgements and, of fifty-four pairs of contexts from the
same article, fifty-one shared the same sense and three did not.

Notice here that the display of the OALD senses is pointless, since the subjects
are not asked to decide which if any OALD sense the words appear in, and so
no Kilgarriff-style problems can arise. The test is simply to assign SAME or
NOTSAME, and there are some control pairs added to force discrimination in some
cases.

What can one say of this ingenious mini-experiment? Lexicographers traditionally
distinguish “lumpers” and “splitters” among colleagues: those who tend to break up
senses further and those who go for large, homonymic, senses, of which Wierzbicka
would be the extreme case. Five GCY colleagues (one had to be dropped to get
consistency among the team) from a “lumper” team decided that fifty-one out of
fifty-four contexts for a word in a single encyclopaedia article (repeated for eight
other words) are in the same sense. Is this significant? I suspect not very, and
nothing at all follows to support the myth of discovery that has grown round the
paper: the team and data are tiny and not disinterested. The Grolier articles are
mini-texts where the hypothesis would, if true, surprise one least. Much more testing
is needed before a universal hypothesis about text polysemy enters our beliefs. Of
course, they may in the end be right, and all the dogma of the field so far be wrong.

More recently, Yarowsky [24, 25] has extended this methodology in two ways:
first, he has established a separate claim he calls “one sense per collocation”, which
is quite independent of local discourse context (which was the separate “one-sense-
per-discourse” claim) and could be expressed crudely by saying that it is highly
unlikely that the following two sentences (with the “same” collocations for “plants”)
can both be attested in a corpus:
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Plastic plants can fool you if really well made (=organic)
Plastic plants can contaminate whole regions (=factory)

One’s first reaction may be to counter-cite examples like “Un golpe bajo” which
can mean either a low blow in boxing, or a score one below par, in golf, although
“golpe” could plausibly be said to have the same collocates in both cases. One can
dismiss such examples (due to Jim Cowie in this case) by claiming both readings
are idioms, but that should only focus our mind more on what Yarowsky does mean
by collocation.

That work, although statistically impressive, gives no procedure for large-scale
sense-tagging taken alone, since one has no immediate access to what cue words
would, in general, constitute a collocation sufficient for disambiguation independent
of discourse context. An interesting aspect of Yarowsky’s paper is that he sought
to show that on many definitions of sense and on many definitions of collocation
(e.g. noun to the right, next verb to the left etc.) the hypothesis was still true at
an interesting level, although better for some definitions of collocation than for
others.

In his most recent work [25] Yarowsky has combined this approach with an
assumption that the earlier claim ((2) = one-sense-per-discourse) is true, so as
to set up an iterative bootstrapping algorithm that both extends disambiguating
collocational keys [24] and retrains against a corpus, while at the same time filtering
the result iteratively by assuming (2): i.e. that tokens from the same discourse will
have the same sense. The result, on selected pairs (as always) of bi-semous words
is between 93 and 97% (for different word pairs again) correct against handcoded
samples, which is somewhat better than he obtained with his Roget method (93%
in 1991) and better than figures from Schuetze and Pederson (1995) who produce
unsupervised clusterings from a corpus that have to be related by hand to intelligible,
established, senses.

However, although this work has shown increasing sophistication, and has the
great advantage, as he puts it, of not requiring costly hand-tagged training sets but
instead “thrives on raw, unannotated, monolingual corpora – the more the merrier”,
it has the defect at present that it requires an extensive iterative computation for
each identified bisemous word, so as to cluster its text tokens into two exclusive
classes that cover almost all the identified tokens. In that sense it is still some way
from a general sense-tagging procedure for full text corpora, especially one that
tags with respect to some generally acceptable taxonomy of senses for a word.
Paradoxically, Yarowsky was much closer to that last criterion with his 1991 work
using Roget that did produce a sense-tagging for selected word pairs that had some
“objectivity” predating the experiment.

Although Yarowsky compares his work favorably with that of Schuetze and
Pederson in terms of percentages (96.7 to 92.2) of tokens correctly tagged, it is not
clear that their lack of grounding for the classes in an established lexicon is that
different from Yarowsky, since his sense distinctions in his experiments (e.g. plant
as organic or factory) are intuitively fine but pretty ad hoc to the experiment in
question and have no real grounding in dictionaries.
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11.4 Conclusion

It will probably be clear to the reader by now that a crucial problem in assessing
this area of work is the fluctuation of the notion of word sense in it, and that
is a real problem outside the scope of this paper. For example, sense as between
binary oppositions of words is probably not the same as what the Roget categories
discriminate, or words in French and English in aligned Hansard sentences have in
common.

Another question arises here about the future development of large-scale sense-
tagging: Yarowsky contrasts his work with that of efforts like Cowie et al. [5] that
were dictionary based, as opposed to (unannotated) corpus based like his own. But
a difference he does not bring out is that the Cowie et al. work, when optimized
with simulated annealing, did go through substantial sentences, mini-texts if you
will, and sense-tag all the words in them against LDOCE at about the 80% level.
It is not clear that doing that is less useful than procedures like Yarowsky’s that
achieve higher levels of sense-tagging but only for carefully selected pairs of words,
whose sense-distinctions are not clearly dictionary based, and which would require
enormous prior computations to set up ad hoc sense oppositions for a useful number
of words.

These are still early days, and the techniques now in play have probably not
yet been combined or otherwise optimised to give the best results. It may not
be necessary yet to oppose, as one now standardly does in MT, large-scale, less
accurate, methods, though useful, with other higher-performance methods that
cannot be used for practical applications. That the field of sense-tagging is still
open to further development follows if one accepts the aim of this paper which is
to attack two claims, both of which are widely believed, though not at once: that
sense-tagging of corpora cannot be done, and that it has been solved. As many will
remember, MT lived with both these, ultimately misleading, claims for many years.
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