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Foreword

Foreword for Cary Conference X, “Ecosystem Function in Heterogeneous
Landscapes.”

Among the most difficult problems in the life sciences is the challenge to
understand the details of how ecosystems/watersheds/landscapes function.
Yet, the welfare of all life, not just the human species, depends upon the suc-
cessful functioning of diverse and complicated ecosystems, each with vari-
ous dimensions and compositions. Central to this “working” is the
dominance, and to a major extent control, of ecosystems by organisms,
which means that these systems are constantly changing as the component
organisms change and evolve. Such changes increase the challenge to
understand the functioning of ecosystems and landscapes. Moreover, under-
standing the interactions among the myriad components of these systems is
mind boggling as there are scores of biotic (probably many thousands of
species when the microbial components are fully enumerated through
genomics) and countless abiotic (ions, molecules, and compounds) entities
all simultaneously interacting and responding to diverse external factors to
produce functional or dysfunctional environments for life.

This book focuses on the problems of connectedness and ecosystem func-
tioning. It is difficult enough to understand how an ecosystem functions
when it is considered in isolation, but all ecosystems are open and con-
nected to everything else. Clearly, the inputs to any ecosystem are the out-
puts from others and vice versa, and as such the fluxes represent major, if
not critical, points for managing or changing the overall functioning of an
ecosystem or landscape. A major challenge is to find appropriate conceptual
frameworks to address these complicated problems. Understanding spatial
heterogeneity is now recognized as one of the most significant aspects of
this challenge. However, because ecologists have ignored spatial hetero-
geneity for so long, there is a pressing need to integrate it into their studies,
theories, and models. With new frameworks and tools, ecology is now poised
to make important strides forward in the focused study of heterogeneity
from an ecosystem and landscape perspective. Ecology has accepted the
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challenge of understanding these complicated systems overall, and is
making good progress toward doing so. Such knowledge is vital to guide
conservation initiatives, sustainable management, mitigation of environ-
mental impacts, and future breakthroughs in understanding.

With funding from The Andrew W. Mellon Foundation, the Institute of
Ecosystem Studies (IES) launched a study of “Ecosystem Function in Mosaic
Landscapes: Boundaries, Fluxes, and Transformations” in 1999. We proposed
that our research would advance the understanding of how heterogeneity
influences ecosystem function by:

“1) rigorously assess[ing] the degree of ecosystem heterogeneity at differ-

ent scales . . .;

2) determin[ing] how ecosystem heterogeneity affects long-term change
in the mosaics of which they are a part;

3) focus[ing] on the role of boundaries between and within ecosystems in
governing ecosystem function; and

4) discover[ing] how fluxes across mosaics affect the organismal, material,
and energetic transformations [within and among] ecosystems.”

The 2003 Cary Conference, “Ecosystem Function in Heterogeneous
Landscapes,” addressed many of these challenges and the results are
brought together in this book. Cary Conferences, started at IES in 1985,
have identified and addressed such major “cutting edge” questions and chal-
lenges in an effort to provide leadership in the field. This Conference was no
exception.

With the leadership of Drs. Lovett, Jones, Turner, and Weathers, the
authors of this volume have brought their diverse talents and experiences to
bear on the topic of how interactions among ecosystems affect not only
their own functioning, but the function of the larger landscape or region in
which they are embedded, and have done so in new and enlightened ways.
By evaluating the linkages at different scales, the authors of this volume
have progressed toward building the “suspension bridge” between ecosys-
tem and landscape ecology, a major goal of the editors of this volume.

There is an important need for revised models, conceptual as well as
mechanistic, that will allow ecologists to bring the many aspects of hetero-
geneity together under one framework. As ecologists continue to develop
these new frameworks for understanding how ecological systems function,
the ideas put forward in this book hopefully will catalyze new studies that
will lead to a more synthetic and unified understanding of heterogeneity,
and in the process, a greater understanding of how ecosystems and land-
scapes “work.”

Gene E. Likens

President and Director
Institute of Ecosystem Studies
July 2005
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1

Ecosystem Function in
Heterogeneous Landscapes

GARY M. LOVETT, CLIVE G. JONES, MONICA G. TURNER,
and KATHLEEN C. WEATHERS

Introduction

The ecosystem concept has been a powerful tool in ecology, as it allows the
use of the quantitative and rigorous laws of conservation of mass and
energy in the analysis of entire ecological systems. These laws require delim-
iting an ecosystem by specifying its boundaries; however, we know that
these boundaries are porous and that all ecosystems are open systems,
which exchange matter, energy, information, and organisms with their sur-
roundings. This openness means that ecosystems defined as spatially sepa-
rate are in fact interconnected parts of a larger landscape. Once we begin to
ask about the source of the inputs or the fate of the outputs, we need to con-
sider the ecosystem in its landscape context.

The role of landscape context in ecosystem functioning has historically
received rather short shrift, and we believe the subject is ripe for synthesis
and conceptual progress. Consequently, the goal of this book is to focus the
attention of the ecosystem science research community on how interactions
among ecosystems affect the functioning of individual ecosystems and the
larger landscape in which they reside. This subject is becoming increasingly
important as ecosystem scientists are being asked to provide information on
environmental problems at local, regional, and global scales—a task that
cannot be accomplished by examining ecosystems in isolation. Fundamen-
tally, the problem of scaling up from individual ecosystems to larger spatial
scales depends on how we conceptualize heterogeneity in a landscape com-
posed of multiple, potentially interacting ecosystems.

This book is an outgrowth of the Tenth Cary Conference, held April
29-May 1,2003, in Millbrook, New York. As with all Cary Conferences, this
conference focused on a difficult conceptual and practical problem in
ecosystem science and brought together leading thinkers and practitioners
to offer different perspectives and try to advance understanding of the issue.
This book brings the same approach to print. It reflects the challenges and
problems identified by the participants in the conference as well as different
perspectives on solutions to those problems, both conceptual and practical.
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Although ecosystem ecology has focused on ecosystem function, particu-
larly the flows of mass and energy, the spatial structure of landscapes has
largely been the province of landscape ecology. Historically, landscape ecolo-
gists have tended to focus on the quantification of landscape structure, often
to understand its influence on animal movement, population persistence, or
disturbance dynamics. It is only recently that landscape ecologists have begun
to consider other ecosystem processes such as mass and energy transfer. Thus,
in some ways, this book is a bridge between ecosystem and landscape ecology,
encompassing both the landscape ecologists’ knowledge of spatial structure
and the ecosystem ecologists’ knowledge of system function. In this book, we
take a broad view of the term landscape, with no particular spatial scale
implied, and we include heterogeneous aquatic as well as terrestrial systems.

We embarked on this project knowing full well that the existence of spatial
heterogeneity would not be a startling revelation to ecologists. Heterogeneity
is everywhere, and most ecosystem ecologists deal with it on a daily basis in
designing their experiments and analyzing their data. Sometimes, ecologists
use heterogeneity as a tool, such as when we contrast riffles and pools in a
stream or forests on different soil types. Other times, we see spatial hetero-
geneity as noise obscuring the pattern we wish to observe. Accounting for spa-
tial heterogeneity in ecosystem processes costs us dearly in time, money, and
statistical agony.The goal of this book is to move beyond the quantification and
description of heterogeneity to understand when it matters to ecosystem func-
tion and when it does not. When can we ignore it, when should we deal with it,
and, if we need to deal with it, what are the best conceptual tools for doing so?

Concepts and Definitions

A few key concepts recur throughout the book and require some introduction.
First, many of the chapters refer to a scheme for organizing different
approaches to spatial heterogeneity proposed by Shugart (1998). Shugart dis-
cussed modeling approaches for terrestrial ecosystems, which he classified as
“homogeneous,” meaning no spatial heterogeneity is represented; “mosaic,”
meaning that spatial heterogeneity is present in that different spatial units in
the model have different characteristics, but there is no interchange between
the units; and “interactive,” meaning that spatial units are distinct and exchange
mass, energy, organisms, or information with one another (Figure 1.1). We
found this a useful way to categorize general conceptual approaches to het-
erogeneity, and this terminology appears repeatedly in the book, beginning
with Chapter 2 by Turner and Chapin. Our goal was to understand the circum-
stances under which each of these approaches is appropriate.

A second concept that occurs throughout the book is that of compositional
versus configurational heterogeneity. Compositional heterogeneity refers to
the number, type, and abundance of spatial units in the landscape, whereas
configurational heterogeneity refers to the spatial arrangement of those units.
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FIGURE 1.1. Schematic representation of three conceptual approaches to hetero-
geneity. Classification follows Shugart (1998).

Interactive

A third concept concerns the representation of heterogeneity in data and
models. In some cases, heterogeneity is expressed in discrete units, usually
called patches. In other cases, heterogeneity is expressed as continuous vari-
ation across the landscape; if this variation is monotonic, it is called a gradi-
ent. There is also a middle ground between these two end-points, for
instance “neighborhood” models in which the properties of a given patch
are influenced by its surroundings and the influence often declines with dis-
tance from the focal patch, and “networks,” which are hierarchically arranged,
interconnected series of patches (see White and Brown, Chapter 3).

Finally, there are a number of terms used in the book that may cause con-
fusion because they have different meanings to different people. In an effort
to minimize semantic confusion, we have defined several important terms in
Table 1.1. These definitions are not meant to be restrictive; rather, they rep-
resent what we consider the most common usage of these terms. We asked
the authors to make it clear in their papers if they used any of these terms
differently.

Organization of the Book

The book has five sections. Section I (“Challenges and Conceptual
Approaches”) contains four chapters that describe the problem of dealing
with spatial heterogeneity in ecosystem science and offer conceptual
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TABLE 1.1. Definitions of Some Commonly Used Terms in the Book

Configuration: A specific spatial arrangement of elements or entities (biotic or abiotic);
often used synonymously with spatial structure or patch structure.

Connectivity: The spatial continuity of an entity or function.

Ecosystem: A spatially explicit unit of the earth that includes all of the organisms, along with
all components of the abiotic environment, within its boundaries.

Ecosystem Function: Attribute related to the performance of an ecosystem that is the
consequence of one or of multiple ecosystem processes. Examples include nutrient
retention, biomass production, and maintenance of species diversity.

Ecosystem Process: Transfer of energy, material, or organisms among pools in an ecosystem.
Examples include primary production, decomposition, heterotrophic respiration, flux and
cycling of elements, and evapotranspiration.

Gradient: Change in a property across a defined spatial extent.

Heterogeneity: The quality or state of encompassing variation in a property of interest, as
with mixed habitats or environmental gradients occurring on a landscape; opposite of
homogeneity, in which variation in the property is negligible.

Landscape: An area that is spatially heterogeneous in at least one factor of interest.

Patch: A surface area that differs from its surroundings in structure or function.

Scale: Spatial or temporal dimension of an object or process, characterized by both grain and
extent.

frameworks to help address the problem. Section II (“Perspectives from
Different Disciplines”) has four chapters that explore various conceptual
and modeling approaches used in other spatial disciplines, specifically pop-
ulation biology, hydrology, epidemiology, and oceanography. Section 111
(“IMustrations of Heterogeneity and Ecosystem Function”) contains seven
chapters that treat the role of spatial heterogeneity in a diverse assortment
of landscapes, such as arid systems, lakes, and boreal forests, with specific
attention to the fundamental issues of what causes spatial heterogeneity,
and when it does—and does not—matter for the functioning of the ecosys-
tem or landscape. Section I'V (“Application of Frameworks and Concepts”)
consists of three chapters that treat the need for knowledge about spatial
heterogeneity in practical resource management issues pertaining to fire,
water, and the design of biological reserves. In the final section, (Section V,
“Synthesis”), five chapters (including a final chapter by the editors) tie
together the various threads of the book, providing synthetic views of the
problem and describing progress in developing overarching conceptual
frameworks.
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Editors’ Introduction to Section I:
Challenges and Conceptual
Approaches

The first step toward building a complete understanding of landscape het-
erogeneity and ecosystem function is to develop a conceptual framework
and identify the challenges that need to be overcome. This is no simple task.
There are many interactions between spatial heterogeneity and ecosystem
processes that occur on multiple temporal and spatial scales; how to struc-
ture our thinking in a way that promises new insights is not readily appar-
ent. This first section of the book offers four different perspectives that
address this daunting topic, perhaps suggesting some of the structural ele-
ments needed for a solid framework.

Monica Turner and Terry Chapin (Chapter 2) briefly describe the back-
ground of research on spatial heterogeneity and ecosystem function in both
ecosystem and landscape ecology. They introduce the concepts of point
processes and lateral transfers to describe situations in which horizontal
movement between units in a landscape is or is not important, respectively.
They discuss ways of conceptualizing heterogeneity (homogeneous, mosaic,
and interactive models) and offer insights to when spatial heterogeneity
may be important in ecosystem studies. This chapter presents the basis of a
conceptual framework that allows ecologists to sort out when heterogeneity
may be important to consider.

Ethan White and Jim Brown (Chapter 3) consider the template upon which
ecosystems function and begin by posing the question, “How and why is the
landscape heterogeneous?” They argue that it is necessary to have a quantita-
tive understanding of heterogeneity before its functional importance can be
understood, and they present three general categories (gradients, patches, and
networks) of environmental heterogeneity. They further suggest that these dif-
ferent types of spatial heterogeneity reflect different causal mechanisms, and
they illustrate these with selected examples. This chapter offers a conceptual
and mathematical framework for characterizing patterns of heterogeneity and
understanding the processes underlying those patterns.

In Chapter 4, John Pastor focuses on three processes that generate pat-
tern in the landscape: physical disturbance, directional transport of energy
and materials, and diffusive instability. He discusses both the conceptual
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basis and the mathematical modeling of these phenomena, using many
chapters from this book as case studies.

Bill Reiners (Chapter 5) offers a very general and comprehensive
conceptual framework for understanding the transport of mass, energy,
organisms, and information on the landscape. He discusses how these trans-
port phenomena are influenced by spatial heterogeneity and how in turn
heterogeneity alters the transport. This conceptual framework should be
particularly helpful for developing models of fluxes between ecosystems
on a landscape, as it describes the fundamental concepts behind transport
phenomena.
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Causes and Consequences
of Spatial Heterogeneity
in Ecosystem Function

MonNICA G. TURNER and F. STUART CHAPIN 111

Abstract

Understanding the causes and consequences of spatial heterogeneity in
ecosystem function represents a frontier in both ecosystem and land-
scape ecology. Ecology lacks a theory of ecosystem function that is spa-
tially explicit, and there are few empirical studies from which to infer
general conclusions. We present an organizing framework that clarifies
consideration of ecosystem processes in heterogeneous landscapes; con-
sider when spatial heterogeneity is important; discuss methods for incor-
porating spatial heterogeneity in ecosystem function; and identify
challenges and opportunities for progress. Two general classes of ecosys-
tem processes are distinguished. Point processes represent rates meas-
ured at a particular location; lateral transfers are assumed to be small
relative to the measured response and are ignored. Spatial heterogeneity
is important for point processes when (1) the average rate must be deter-
mined over an area that is spatially heterogeneous or (2) understanding
or predicting the spatial pattern of process rates is an objective, for exam-
ple, to identify areas of high or low rates, or to quantify the spatial pattern
or scale of variability in rates. Lateral transfers are flows of materials,
energy, or information from one location to another represented in a
two-dimensional space. Spatial heterogeneity may be important for
understanding lateral transfers when (1) the pattern of heterogeneity
influences net lateral transfer and potentially the behavior of the whole
system, (2) the spatial heterogeneity itself produces lateral transfers, or
(3) the lateral transfers produce or alter patterns of spatial heterogeneity.
We discuss homogeneous, mosaic, and interacting element approaches
for dealing with space and identify both challenges and opportunities.
Embracing spatial heterogeneity in ecosystem ecology will enhance
understanding of pools, fluxes, and regulating factors in ecosystems; pro-
duce a more complete understanding of landscape function; and improve
the ability to scale up or down.
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Introduction

Understanding the causes and consequences of spatial heterogeneity in
ecosystem function represents a frontier in both ecosystem and landscape
ecology (Turner et al. 2001; Chapin et al. 2002), and it is recognized as
important in a variety of other disciplines; for example, biological oceanog-
raphy (Platt and Sathyendranath 1999),limnology (Soranno et al. 1999), soil
ecology (Burke et al. 1999), conservation (Pastor et al. 1999), and global
change studies (Shugart 1998; Canadell et al. 2000). Ecosystems do not exist
in isolation, and interactions among patches on the landscape influence the
functioning of individual ecosystems and of the overall landscape. Efforts to
estimate the cumulative effect of ecosystem processes at regional and global
scales have contributed to the increased recognition of the importance of
landscape processes in ecosystem dynamics (Chapin et al. 2002). Transfers
among patches, representing losses from donor ecosystems and subsidies to
recipient ecosystems, are important to the long-term sustainability of
ecosystems (Polis and Hurd 1996; Naiman 1996; Carpenter et al. 1999;
Chapin et al. 2002).

Ecology lacks a theory of ecosystem function that is spatially explicit, and
there are few empirical studies from which to infer general conclusions.
Ecosystem ecology focuses on the flow of energy and matter through organ-
isms and their environment. As such, it addresses pools, fluxes, and regulat-
ing factors. Spatially, ecosystem ecology encompasses bounded systems like
watersheds, spatially complex landscapes, and even the biosphere; tempo-
rally, it crosses scales ranging from seconds to millennia (Carpenter and
Turner 1998). From its initial descriptions of the structure and function of a
diverse variety of ecosystems, ecosystem ecology moved toward increas-
ingly sophisticated analyses of function; for example, food web analyses,
biogeochemistry, regulation of productivity, and so forth (Golley 1993; Pace
and Groffman 1998; Chapin et al. 2002). Typically, ecosystem studies are
conducted within a single ecosystem, such as a lake or a forest stand, and
homogeneous sites are generally chosen to minimize the complications
associated with spatial heterogeneity. From ecosystem studies, ecology has
gained an excellent understanding of the mechanisms underlying many
processes and of temporal dynamics in function. However, understanding
patterns, causes, and consequences of spatial heterogeneity in ecosystem
function remains a frontier.

Landscape ecology explicitly addresses the importance of spatial configu-
ration for ecological processes (Turner et al. 2001), and, in North America,
landscape studies were strongly promoted by ecosystem ecologists (Risser
et al. 1984). Landscape ecology often, but not always, focuses on spatial
extents that are much larger than those traditionally studied in ecosystem
ecology. Early research in landscape ecology emphasized methods to
describe and quantify spatial heterogeneity, spatially explicit models to
relate pattern and process, and understanding of scale effects. Indeed, there
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are numerous metrics for quantifying spatial heterogeneity (e.g., Baskent
and Jordan 1995; McGarigal and Marks 1995; Gustafson 1998; Gergel and
Turner 2002), although the functional interpretation of pattern metrics has
proved challenging (Turner et al. 2001). From landscape studies, ecology has
gained new insights into how disturbances create and respond to landscape
pattern and of population dynamics on heterogeneous landscapes. How-
ever, with a few exceptions, the consideration of ecosystem function has
poorly been represented. This is surprising, given the initial strong links
from ecosystem to landscape ecology (e.g., Risser et al. 1984; Turner 1989).
In this paper, we (1) present an organizing framework that clarifies consid-
eration of ecosystem processes in heterogeneous landscapes; (2) consider
when spatial heterogeneity is important; (3) discuss methods for incorpo-
rating spatial heterogeneity in ecosystem function; and (4) identify chal-
lenges and opportunities for progress.

When Does Space Matter? A Conceptual Framework

Ecosystem processes are heterogeneous. The basic causes of this have been
well-known for a long time (Jenny 1941). Heterogeneity is derived from the
abiotic template, including factors such as climate, topography, and sub-
strate. In addition, ecosystem processes vary with the biotic assemblage, dis-
turbance events (including long-term legacies), and the activities of humans
(Chapin et al. 1996; Amundson and Jenny 1997). However, despite this
recognition, most ecosystem ecologists have focused on knowing the mean
rates, in spite of the “noise” that results from spatial heterogeneity.

Organizing Ecosystem Processes

We suggest distinguishing between two general classes of ecosystem process
when considering ecosystem function in heterogeneous landscapes. Point
processes represent rates measured at a particular location (Figure 2.1a).
Lateral transfers are assumed to be small relative to the measured response
and are ignored. Examples of point processes include site-specific measure-
ments of net primary production, net ecosystem production, denitrification,
or nitrogen mineralization. Lateral transfers are flows of materials, energy,
or information from one location to another represented in a two-dimen-
sional space (Figure 2.1b). Examples of lateral transfers include the flow of
nitrogen or phosphorus from land to water or the movements of nutrients
across a landscape by herbivores.

Spatial heterogeneity can be considered in both the drivers and the
ecosystem response variables (Figure 2.2). For the drivers, one can consider
the spatial heterogeneity of the template—which often is multivariate—and
of spatial processes, such as disturbance, that alter the template (Foster et al.
1998). For the process, one can consider the spatial pattern of occurrence
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(@)
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FIGURE 2.1. Schematic illustration of two general classes of ecosystem processes:
(a) point processes and (b) lateral transfers.

(e.g., where denitrification does or does not occur or where there is nutrient
movement; Figure 2.2a) or of the magnitude of the rates (Figure 2.2b). For
lateral transfers, one can consider the actual pathways of flow (Figure 2.2b).
For both point processes and lateral transfers, an aggregate measure of the
function of the heterogeneous system (e.g., total P input to a lake) can be
considered. When seeking general relationships, it is important to be explicit
about both the type of ecosystem process being considered and the variable
or response for which spatial heterogeneity is being considered.

When Is Spatial Heterogeneity Important?

Understanding the relationship between spatial heterogeneity and ecosys-
tem processes is important in at least the following five situations.

(1) For point processes, spatial heterogeneity matters when it is necessary
to know the average rate of a process over an area that is spatially hetero-
geneous. This is of particular importance when there is a nonlinear relation-
ship between the process and a driver that is spatially variable. Although
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(b)

FIGURE 2.2. Spatial heterogeneity can be considered in (Figure 2.2a) the occurrence
of a process, (Figure 2.2b) the magnitude of the rate or flux and the template, which
is usually multivariate.

this is largely a sampling issue—knowing how to stratify measurements spa-
tially based on the important driver(s)—it is not trivial.

Estimating methane production from a Siberian landscape that is a
mosaic of land and lakes provides an example (Zimov et al. 1997). Lakes
dominate the flux of methane within the landscape, but there is substantial
heterogeneity of CH, flux within lakes. Bubbles of methane that form in ice
over winter give visual evidence of hot spots of methane release from sedi-
ments. Here, the ebullition flux is several orders of magnitude larger than
the diffusive flux, which is the main pathway of CH, flux between areas of
bubbling. Therefore, to estimate the CH, flux from the lake, one must be
aware of these different pathways and the spatial distribution of areas of
ebullition. These hot spots dominate the fluxes of methane within the lake,
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and lakes, in turn, dominate fluxes from landscapes. Estimates of the aver-
age rate of methane flux from this landscape would be inaccurate if the spa-
tial heterogeneity was ignored. This general class of problems is of great
practical importance; ecosystem ecologists remain challenged by develop-
ing regional and global budgets for carbon and nutrient fluxes in heteroge-
neous regions.

(2) Spatial heterogeneity matters when one wants to understand or pre-
dict the spatial pattern of process rates. In so doing, one may want to iden-
tify locations that are qualitatively different in their processing rates from
other areas, or use the spatial pattern or spatial scale of variation as a
response variable of direct interest.

Understanding and predicting the spatial pattern of aboveground net pri-
mary production (ANPP) following the 1988 fires in Yellowstone National
Park, Wyoming, provides an example. Postfire lodgepole pine densities var-
ied from 0 to 500,000 stems ha?' in response to spatial variation fire severity
and in pre-fire serotiny within the stand, rather than from variation in soils,
topography, or climate (Turner et al. 2004). In turn, ANPP varied from 1 to 15
Mega gram ha?' yr?! 10 years after the fires and was explained primarily by
lodgepole pine sapling density. Compared to “classic” curves of NPP through
time (e.g., depicted by Ryan et al. 1997 for spruce in Russia), these patterns
indicate that the spatial variation observed in a single age class can equal or
exceed the range of mean ANPP through successional time.

The spatial pattern or scale of variation in a process rate may be more
informative than the mean, but few studies have explored this. Approaches
derived from spatial statistics can be particularly useful in evaluating the
scale of spatial variation. For example, the importance of land-use legacies
for contemporary forest ecosystems has received increasing attention (e.g.,
Pearson et al. 1998; Foster et al. 1999; Currie and Nadelhoffer 2002;
Dupouey et al. 2002; Mitchell et al. 2002; Turner et al. 2003). Fraterrigo et al.
(2005) used a cyclic sampling design derived from spatial statistics (Clinger
and Van Ness 1976) to determine whether prior land use influenced the spa-
tial variability of soil chemical properties. Cyclic sampling designs use a
repeated pattern of sampled plots that minimizes the number of samples
but provides sample pairs separated by any distance (Burrows et al. 2002).
Thus, this design is efficient for analyses such as semivariograms, correlo-
grams, and spatial regression. Fraterrigo et al. (2005) hypothesized that soil
properties would vary over fine scales in old-growth forest and over coarse
scales in areas of past agriculture, which would have homogenized local
variation. Results showed that prior land use did homogenize the variability
in forest soils, and that the scales of variation for several response variables
depended on past land use as hypothesized.

(3) If the occurrence or rate of a lateral transfer responds directly to spa-
tial heterogeneity, then the spatial pattern (composition and configuration)
becomes one of the independent variables in the analysis. Many examples
can be found in studies of the flux of nutrients from upland to aquatic
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ecosystems (e.g., Richards et al. 1996; Johnson et al. 1997; Jones et al. 2001).
For example, the amount and arrangement of crop fields and riparian
forests influences the delivery of nitrogen and phosphorus to streams
(Peterjohn and Correll 1984; Reed and Carpenter 2002). Both the amount
and spatial arrangement of land cover types must be considered to predict
nutrient delivery. On boreal shield ridges in northwestern Ontario, the spa-
tial arrangement of Pinus mariana-Pinus banksiana forest islands relative
to patches of lichen, moss, and grass influenced N retention in a 2-yr NO;
addition study (Lamontagne and Schiff 1999). These patches have charac-
teristically different N cycles, with the forest patches being N limited and
the lichen patches N saturated; the location of patches in the landscape was
important for N export from the catchment.

(4) Spatial heterogeneity may also generate lateral transfers. For exam-
ple, clearing of natural vegetation for agriculture in western Australia cre-
ated a new landscape pattern that altered climate. A large block of newly
cleared agricultural land was separated from the original heath vegetation
by a rabbit fence, producing a new patch type that had a higher albedo and
therefore absorbed less solar radiation than the adjacent heath (Chambers
1998). The greater sensible heat flux of the darker native heath vegetation
caused the surface air to warm, become more buoyant, and rise. The rising
air over the heath was replaced by moist air advected from the adjacent
croplands, which in turn was replaced by dry subsiding air from aloft. Thus,
the changes in spatial heterogeneity produced a small-scale circulation cell,
analogous to a land-sea breeze, that increased precipitation by 10% over
the heathlands and reduced it by 30% over the croplands, fundamentally
changing this landscape. At a finer spatial scale, the juxtaposition of sub-
strates with different C:N ratios, such as carbon-rich straw adjacent to nitro-
gen-rich mineral soil, may result in nutrient transfers (Mary et al. 1996).
Fungi transport nitrogen to the log so they can produce enzymes to decom-
pose the log. In these examples, spatial configuration is actually producing
flows, which otherwise would not have occurred. Thus, understanding spa-
tial heterogeneity is fundamental to understanding these lateral transfers
and point processes.

(5) Finally, lateral transfers may produce, amplify, or moderate hetero-
geneity in patterns. The Alaska coastal current is an example of lateral
transfers creating patterns. Ocean waters flow counterclockwise parallel to
the coast while fresh water, derived from orographic precipitation as moist
marine air strikes the coastal mountains, flows from the land to the ocean.
This produces two relatively distinct and stable water masses: a low-density
(warm, low salinity), low-nutrient fresh water mass that is adjacent to and
above a dense eutrophic ocean water mass (Royer 1981). The front between
these two water masses generates conditions that maximize productivity of
phytoplankton, zooplankton, and fish. At this boundary, the oligotrophic
ocean water provides nutrients, and the sharp density gradient minimizes
vertical mixing of phytoplankton out of the photic zone. This boundary is
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readily visible from the air from the high chlorophyll content and the con-
centration of foraging sea birds at the frontal zone. Spatial heterogeneity is
a direct consequence of lateral flows.

The lateral transfers of nutrients by animals can also produce spatial pat-
terns in nutrient pools, cycling rates, and productivity. Anadromous fish
transport large quantities of marine-derived nutrients to streams and lakes.
Otters, bears, and other piscivores move these nutrients to riparian forests,
where they can contribute substantially to productivity (Willson et al. 1998;
Naiman et al. 2002). The characteristic N signature of marine-derived
nitrogen is often detectable up to a kilometer from the river, suggesting a
broad corridor of lateral nutrient transfer adjacent to streams with anadro-
mous fisheries. Grazing ungulates also contribute to lateral nutrient transfers.
In Switzerland, for example, the patchy distribution of cattle generated
sharp nutrient gradients between forests and fields (Schutz et al. 2000).
When cattle grazing ceased in national parks, these nutrient gradients
became less pronounced, as native ungulates slowly redistributed these
nutrients into the forests. Even random lateral movements that differ
between predators and prey can generate spatial heterogeneity in ecosystem
processes (Pastor, this volume).

Approaches for Dealing with Spatial Heterogeneity

Given that spatial heterogeneity is frequently important but poorly quanti-
fied, how should we begin to incorporate it into ecosystem studies?
Shugart’s (1998) classification of ecosystem models is also a useful classifi-
cation for our discussion; we also acknowledge a similar classification of
models in Baker’s (1989) review of models of landscape change.

Homogenous Space

The simplest approach has been to assume homogeneity in rates across
space—every point can be represented by the mean value of the rate
(Figure 2.3a). Although this book focuses on spatial heterogeneity, the
assumption of spatial homogeneity remains a valuable starting point or null
model. This assumption is particularly useful for approximating pools or
fluxes to order of magnitude; for some spatial extrapolations; and when
physically averaging a response variable across variability at finer scales
than the scale of interest.

Some processes can be extrapolated to large scales without explicitly con-
sidering landscape interactions. The extrapolation of carbon flux, for exam-
ple, may adequately be represented in the short term from an understanding
of its response to climate, vegetation, and stand age (Chapin et al. 2002: 329).
The simulation of global net ecosystem production (NEP) by the terrestrial
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FIGURE 2.3. Three general approaches to dealing with space: (a) assuming spatial
homogeneity, (b) the mosaic approach, which is often multivariate, and (c) interacting
elements.
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ecosystem model (TEM; McGuire et al. 1995) assumes homogeneity of envi-
ronmental response within biomes to predict global patterns of NEP. This
assumption allows the development of global databases even in areas where
information is sparse or absent. Comparison of the output of these carbon
flux models with seasonal and spatial patterns of atmospheric CO, identifies
areas where assumptions of homogeneity are least justified and where addi-
tional information on spatial heterogeneity is most needed.

Eddy flux towers physically average measurements over an area of about
1 km? The heterogeneity in carbon fluxes resulting from fine-scale variation
in soil aeration and other important ecosystem controls within the tower
footprint is invisible because of the physical mixing of air. Consequently, the
towers provide an accurate integration of the overall flux from the ecosys-
tem (Davidson et al. 2002). These integrated landscape measures may be
more useful than fine-scale information if extrapolation to large areas is
based on satellite imagery that cannot resolve the fine-scale detail in
ecosystem controls. Similarly, ecosystem ecologists frequently measure soil
parameters and microbial processes on composite samples that physically
average much of the fine-scale heterogeneity present in the ecosystem.

Of course, understanding the situations in which the assumption of spatial
heterogeneity is likely to fail is important. Smithwick et al. (2003) used a
forest process model to explore the assumption that carbon dynamics can
be modeled within homogenous patches (e.g., even-aged forest stands) and
then summed to predict broad-scale dynamics. Their results suggested that
the additive approach might not capture C dynamics in fragmented land-
scapes because of edge-induced effects on tree mortality (primarily due to
wind) and light limitations (Smithwick et al. 2003). This study nicely illus-
trates a systematic approach for identifying the conditions under which the
assumption of spatial heterogeneity may produce erroneous conclusions.

Mosaics

Spatial mosaics are the simplest representation of spatial heterogeneity in
ecological processes (Figure 2.3b). Mosaics are particularly useful for docu-
menting and predicting spatial heterogeneity in point processes and for spa-
tial extrapolation. It is important to recognize that the mosaic represents
not only vegetation or land-cover types; more often, it is a complex multi-
variate mosaic of underlying controls. The rate of a process at a given loca-
tion may depend on many factors, such as vegetation type, soil conditions,
slope, aspect, elevation, or time since disturbance.

Mosaic effects on ecosystem processes can be represented using a “paint-
by-numbers” approach that assumes no interaction among spatial elements.
However, this approach is not trivial; it can be very complicated when the
relationship is nonlinear, there are multiple drivers of a process, or the
distributions of drivers change through time. Practically, regression or clas-
sification and regression tree (CART) techniques are often used with
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empirical data for this approach, with the relationship between a process
rate and its drivers represented at each location across a landscape. The
most common representation of spatial mosaics is a raster, or grid-cell,
approach with resolution (or grain size) appropriate for the process of inter-
est (Turner et al. 2001). Employing this approach requires knowing the spa-
tial distribution of each driver. However, the prediction for each site is
based only on the suite of independent variables associated with that loca-
tion. Ecosystem simulation models can also be used to make predictions
across a landscape mosaic. For example, Running et al. (1989) combined
simulation models with remotely sensed data to predict photosynthesis, leaf
area index, and evapotranspiration rate in grid cells representing the land-
scape of western Montana.

Many studies in which ecosystem process rates are extrapolated spatially
use a mosaic approach. For example, Hansen et al. (2000) predicted rates of
ANPP over the western portion of the Greater Yellowstone Ecosystem using
a multiple regression model in the mosaic; Turner et al. (2004) used multiple
regression within the areas of the 1988 Yellowstone fires to predict spatial
variation in ANPP and leaf area index (LAI) within the burn. Similar
approaches have been used for nitrogen mineralization rates (Fan et al.
1998), denitrification rates (Groffman et al. 1992), and other responses.

A mosaic approach may employ static or dynamic representations of spa-
tial patterns. In the latter case, model estimates at each time step must
account for any changes in spatial pattern that have occurred in at least one
driver. These changes in pattern may result from feedbacks between the
rate of the ecosystem process being measured or predicted and the occur-
rence of events that alter the pattern of the drivers—fire is an example of
this. The point process rate, however, is still predicted without considering
neighbors.

An “advanced paint-by-numbers” approach considers the context of the
landscape surrounding a point at which measurements are made. This vari-
ant of the paint-by-numbers approach uses the characteristics of the point
and the surrounding landscape (i.e., the landscape context) to determine the
behavior of a point. In this case, the spatial distribution/pattern of each of
the important driving variables must be known. The predicted value at a
given site depends not only on the values of the predictor variables at that
site, but also on the values of predictor variables in the surrounding area.
There is a large literature using this approach to understand the effects of
landscape context on the presence and/or abundance of organisms (e.g.,
Pearson 1993; Mazerolle and Villard 1999). The approach has also been use-
ful in estimating ecosystem processes. For example, the concentration of dis-
solved organic carbon in lakes and rivers was predicted by the proportion of
wetlands in the surrounding landscape (Gergel et al. 1999).

Ecosystem and landscape ecology have made reasonable progress in using
the mosaic approach to represent variation in process rates, although the
number of studies explicitly sampling for spatial variance remains relatively
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small. However, this approach is limited in its capacity to address dynamic
space, complex feedbacks, or nonlinearities in responses. These components
require a more dynamic consideration of interacting elements.

Interacting Elements

An interacting element approach is required to address lateral transfers.
Typically, composition and configuration must both be considered. Ecosys-
tem ecology does not yet have a comprehensive or even a well-developed
approach for dealing with lateral transfers (Figure 2.3c). Empirical methods
are frequently used to determine whether and when spatial pattern influ-
ences lateral transfer rates. Often, the response variable is an indicator of
lateral transfer rather than a direct measurement of the transfer rate itself;
for example, NO; concentration in soil water (e.g., lysimeter studies) may be
used to track the movement and fate of N as it is transported from one
ecosystem type to another. Labeled substances may be used as tracers to
track directly the flow paths and rates or areas that differ in the composition
and configuration of land cover types may be compared. Simulation models
are also employed to predict the consequences of alternative spatial arrange-
ments of cover types on lateral transfers. We consider three approaches of
increasing complexity.

Static Spatial Pattern—-Dynamic Lateral Transfers

The simplest approach to exploring the consequences of spatial pattern for
lateral flows is to evaluate the consequences of a static landscape pattern on
lateral transfers. This approach has been used particularly for studies of
land-water interactions. Shaver et al. (1991), for example, tracked nutrient
flows in a toposequence in Alaska based on the typical configuration of
landscape elements. A comparative empirical approach can be used in
which, for example, the spatial arrangements of land cover in a variety of
watersheds is related to stream nutrient concentrations (e.g., Hunsaker and
Levine 1995; Jones et al. 2001). The flows themselves are not measured
directly, and concentration or loading is the index of magnitude of flow.
Models are also helpful in this arena; for example, Weller et al. (1998)
explored the effects of length, width, and number of gaps in a riparian buffer
on nutrient delivery to a stream by using a simulation model. However,
common to all of these approaches is the absence of feedback from the
lateral transfer to the spatial pattern.

Dynamic Spatial Pattern-Dynamic Lateral Transfers

Here, spatial patterns are not stationary, and flows are assumed to respond
to changes in the landscape template. Landscapes are constantly altered by
natural disturbances and anthropogenic activities, and temporal changes in
the spatial patterns of drivers can be represented. Horizontal flows respond



I. Challenges and Conceptual Approaches 21

to changes in these spatial patterns. For example, in the watershed of Lake
Mendota, Wisconsin, land cover shifted from agricultural to urban uses
between the 1930s and 1990s. The runoff of water from the terrestrial sur-
face to the lake following storm events has become much more “flashy” dur-
ing this period (Wegener 2001), illustrating how lateral transfers can
respond to dynamic patterns over 60 years. Again, the lateral transfers do
not alter the spatial pattern, but they respond to its temporal change.

Dynamic Spatial Pattern—-Dynamic Lateral Transfers—Feedbacks
Between Pattern and Process

Here, spatial patterns change, altering flows, which, in turn, alter the tem-
plate itself. This complex set of relationships is perhaps most interesting,
but poorly understood; again, both empirical and modeling approaches
are informative. On Isle Royale, for example, moose (Alces alces) selec-
tively browse on hardwood trees and balsam fir (Abies balsamea), which
leads to domination of the landscape by conifers such as spruce. In turn,
spruce domination alters patterns of productivity and nutrient cycling
across the landscape, which then influences moose foraging patterns.
These reciprocal interactions between moose and vegetation have been
elucidated through a combination of intensive studies of moose move-
ment and foraging patterns, vegetation dynamics, and nutrient cycling,
along with models that explore the possible behaviors of the system (e.g.,
Mclnnes et al. 1992; Jeffries et al. 1994; Moen et al. 1997, 1998; Pastor et al.
1999). Similar complex relationships between ungulates and vegetation
patterns have been observed in African landscapes (e.g., Seagle and
McNaughton 1992; Augustine 2003).

In river-floodplain ecosystems, we also see reciprocal interactions
between the water and the land. Floodplains and rivers are linked as inte-
grated ecosystems through the exchange of particulate and dissolved mat-
ter (Tockner et al. 1999). The spatial patterns of geomorphology and
vegetation in a floodplain can influence flooding and flow velocity, at least
in years that are not extreme. Geomorphological and biological processes
are inherently linked in a functional hierarchy (van Coller et al. 2000). A
reciprocal interaction approach has also been used to model fire-vegetation
in interior Alaska (Rupp et al. 2000, 2002). The landscape template (vege-
tation configuration and composition) determine both fire spread and sub-
sequent seed dispersal and regeneration pattern. These processes, in turn,
determine the vegetation template on the landscape, which influences fire
probability and spread. Inclusion of these dynamic interactions allows an
evaluation of potential impacts of external factors on either landscape
pattern (e.g., land-use effects on vegetation pattern) or process (e.g., cli-
mate effects on fire probability). This dynamic approach is particularly
important under circumstances where either pattern or process is undergoing
directional change.
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Challenges and Opportunities

If ecologists have recognized for 60 years that ecosystem processes are spa-
tially heterogeneous (Jenny 1941), why is this topic relatively unexplored?
We suggest there are several fundamental reasons then discuss some
approaches for making sustained progress.

One challenge is that the interface between ecosystem and spatial ecol-
ogy lacks a well developed theory (White and Brown, this volume). There is
relatively little to guide us in our empirical studies, so our developing under-
standing has largely been empirical. However, even in empirical studies, the
form of the relationship between response and driver variables is poorly
understood and may well be nonlinear.

The technical sophistication and costs required to sample many ecosys-
tem processes is relatively high. Sophisticated, expensive equipment is
needed for many biogeochemical analyses, sample analysis is costly, and
field sampling is labor-intensive. Adding the spatial dimension to a study
design can substantially increase the number of samples needed. If a study
attempts to understand spatial variance in rates over a large area, the logis-
tics of conducting the sampling become quite challenging. As is true for
many studies of broad-scale patterns, there are few opportunities to conduct
experiments, although there are many opportunities for studying natural
events or management actions from an experimental viewpoint. Even so,
many people trained in ecosystem process studies lack advanced training in
landscape ecology, spatial statistics, and spatially explicit models. Likewise,
many people trained in landscape ecology lack the technical training in
ecosystem ecology and biogeochemistry to address these questions.

Lack of understanding also results, in part, from inherent challenges
related to variance and scale. For example, variance at fine spatial scales is
extremely high for most biogeochemical processes, many of which are regu-
lated by microorganisms. Relatively little is known about how microbial
communities vary through both time and space. Because process rates may
be measured at scales different from those of the controls, noise in the data
can be overwhelming. Sampling adequately to obtain a general trend is
already challenging without the added goal of understanding spatial variation.

Statistical considerations have also prompted ecosystem ecologists to
avoid studies of spatial variation. In an effort to be rigorous, most ecosystem
ecologists design observational or experimental studies that test for statisti-
cal differences between ecosystem types or treatments. This motivates
experimental designs that minimize spatial variation (e.g., one- or two-way
ANOVAs). Pastor (1995 and this volume) argues that this statistical preoc-
cupation has done a disservice to ecosystem ecology, particularly modeling,
where it is often more important to know the shape of a relationship
between control and ecosystem response (e.g., between water availability
and NPP) than to ask a simple yes/no question. Astute spatial sampling
designs that incorporate heterogeneity in presumed control variables can
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provide valuable insights into nonlinearities and thresholds in controls over
ecosystem processes that will never emerge from simple ANOVA designs.

Despite these challenges, there are ways to make progress, as described
below.

Exploit Heterogeneity to Enhance Understanding
of Processes

We urge ecologists to embrace spatial complexity and to treat it as an
opportunity! Variance may be an important clue to our understanding of
processes. For example, the fine-scale variation in microbial activity from
one unit of soil to another could reflect important differences between
processes within versus outside of soil aggregates, just as at larger scales we
know that urine patches differ functionally from the matrix or that lakes dif-
fer from the terrestrial matrix. The extent to which ecosystem ecologists
tend to think of heterogeneity as a nuisance rather than a reflection of
important process controls is still problematic.

The spatial variability in tree N uptake within a small catchment was eval-
uated by Barker et al. (2002) by measuring major fluxes in the N cycle in 50
plots (20 m 3 20 m). Results showed that overstory N uptake varied spa-
tially in the watershed with stand structure, although the variance among
different calculations was even greater. Nonetheless, uptake was correlated
with stand structure. These results also underscore the intensive sampling
required and some of the methodological challenges associated with esti-
mating spatial structure in complex processes.

Conduct Studies at Multiple Scales

It is not possible to measure intensively everywhere, so sampling designs
must be strategic. For example, intensive measurements at a small number
of sites based on hypotheses can provide insights into mechanisms. How-
ever, these studies benefit from extensive measurements of simple integra-
tive indices of these mechanisms at a larger number of sites to provide
context. Nested sampling designs (Webster and Oliver 2001) are also useful.
In addition, “smart” sampling designs derived from spatial statistics can
maximize the power of the data. For example, a cyclic sampling design was
used by Burrows et al. (2002) to maximize information about the variance
of vegetation characteristics surrounding an eddy flux tower at Park Falls,
Wisconsin. The data were also used to derive a spatial map of leaf area index
(LATI) along with a map of spatial error measures for the study area (Bur-
rows et al. 2002). Such methods afford the ability to quantify the scales
of variation along with mean values of factors hypothesized to be impor-
tant. Even though there is now a well developed statistical methodology to
assess process controls at multiple scales, it has seldom been applied in
ecosystem studies. The combination of intensive studies with spatially
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extensive measurements can also be used to see how well the knowledge at
fine scales can be applied more broadly.

Use Empirical and/or Simulation Models
for Extrapolation

Modeling can be a powerful tool for exploring the range of conditions
under which a given set of process controls leads to plausible outcomes. The
simulation results can then be tested against field observations. These
extrapolations represent testable hypotheses about our understanding of
the system, and they should be used more widely as such (Miller et al. 2004).
For example, the extrapolation of a hypothesized relationship using paint-
by-numbers can be tested in the field to determine the limits of the validity
of this presumed relationship. Models provide context and permit explo-
ration of more combinations of conditions than we can assess in the field.
Statistical models can also be used to extrapolate to broad scales and can be
tested with remote sensing data and/or extensive field measurements to see
whether they are consistent with predictions.

Be Creative About When and How to Use Discrete versus
Continuous Representations of Space

There are a variety of ways in which space may be represented in both driv-
ers and response variables. The two most common representations of spatial
heterogeneity include categorical maps and point data (Gustafson 1998). In
categorical maps, variables are mapped in space, and both composition and
configuration can be quantified. A wide variety of metrics is available to
quantify such patterns (e.g., McGarigal and Marks 1995). Although categor-
ical maps are often created from continuous data (e.g., forest cover is often
mapped based on the proportion of a cell occupied by trees), this approach
ignores spatial variation within the units (Gustafson 1998). Point-data
analysis, in contrast, assumes the system property is spatially continuous,
and an area is sampled to generate spatially referenced information about
the system. Analysis techniques include trend-surface analysis, various tech-
niques that address spatial autocorrelation (e.g., correlograms, semivari-
ograms), and interpolation. Platt and Sathyendranath (1999) correctly note,
however, that universal functions for continuous variation of environmental
properties generally have not been discovered.

Careful consideration of how and why space should be represented is cru-
cial, and the representation of heterogeneity should match the question and
be scaled correctly. Point data are required for interpolation methods (e.g.,
kriging) or for using scales of variation as a response variable. However, a
categorical approach might simplify the analysis of biogeochemical hot
spots by eliminating the need to treat all variation in processing rates. For
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example, one might predict locations where a process like denitrification
occurs in a floodplain (or where the rate exceeds some meaningful thresh-
old) rather than predicting the actual rates. We echo Gustafson’s (1998) plea
for moving beyond the patch-based view of spatial heterogeneity and for
recognition of the complementarity between categorical and continuous
representations of space.

Collaborate and Explore Other Bodies of Theory

Intra- and interdisciplinary collaboration often produces new insights, and
we encourage ecologists to look beyond their research specialty. What
theories developed in other disciplines within or outside of ecology might
be helpful? Percolation theory (Stauffer 1985; Stauffer and Aharony 1992),
a branch of physics, offered new modeling and analysis techniques that were
applied in landscape ecology (Gardner et al. 1987) and led to new insights
about crucial thresholds in connectivity (With and King 1997). Within ecol-
ogy, there is an extensive body of literature on source-sink dynamics for
populations—might that theory be relevant for lateral transfers of matter or
energy? Gases and particulates emitted from managed or natural ecosys-
tems (sources) can be transported great distances, altering the recipient
(sink) ecosystems. Boerner and Kooser (1989) studied redistribution of leaf
litter within a 73-ha watershed in Ohio and used donor and sink terminol-
ogy. Donor sites lost 4.5-5.7 ka ha?! yr?! of N and 0.3-0.5 kg ha?' yr?! of P
through redistributed litter; sink areas received subsidies of 2.2-6.1 kg ha?!
yr’! N and 0.2-0.4 kg ha?! yr?! of P. Pastor (this volume) also suggests that
cross-fertilization between ecosystem ecology and evolutionary studies is
likely to produce new understanding about ecosystem function in time and
space.

Looking Ahead

Understanding spatial heterogeneity has been referred to as “the final fron-
tier” in other areas within ecology (e.g., Kareiva 1994). Although new chal-
lenges will continually arise, understanding the causes and consequences of
ecosystem function in heterogeneous landscapes is a challenge that will be
present for some time. Methods to quantify spatial heterogeneity abound;
gaining a functional understanding of spatial pattern should be the priority
rather than the development of new pattern metrics. If knowledge of spatial
heterogeneity and ecosystem function improves, it is appropriate to con-
sider the significance of this enhanced understanding. There are at least
three areas in which advances will be significant to our science.

First, understanding of pools, fluxes, and regulating factors in ecosystems
will be enhanced—and this defines the purview of ecosystem ecology. By
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understanding heterogeneity, what causes it, and when it matters, we will
have a much better understanding of fundamental ecosystem processes.
Broad-scale estimates of biogeochemical processes, which are key for under-
standing regional to global phenomena, require spatial understanding (e.g.,
Groffman et al. 1992). Factors such as disturbance frequency and size, species
distributions, and exotic species invasions that are inherently spatial may
influence not only the magnitude but also the sign of currently observed
ecosystem fluxes within the next century (Canadell et al. 2000). Second, we
will gain a more complete understanding of landscape function. At present,
there is greater knowledge about how certain populations respond to pat-
terns, the role of disturbance dynamics, and even the perceptions and effects
of humans. However, this list conspicuously excludes knowledge of ecosys-
tem function in both natural and anthropogenic landscapes. Indeed, under-
standing spatial heterogeneity and disturbance is one of the key needs for
global studies (Schimel et al. 1997). Third, the ability to scale up or down will
be improved. Using spatial models and spatial extrapolations as hypotheses
should help identify the domains through which certain relationships do and
do not scale (Miller et al. 2004). Ultimately, these gains should lead to
improved predictions of changes in regional systems that involve multiple
feedbacks between pattern and process at multiple scales.
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The Template: Patterns and
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Abstract

Ecosystem processes are inherently variable in space and time, in part
because they occur on a spatially heterogeneous template or landscape. For
many purposes, the patterns of heterogeneity can be characterized as gradi-
ents, patchworks, or networks—or some combination of these fundamental
patterns. Each class of landscape pattern implies that it has been generated
by certain kinds of abiotic or biotic mechanisms, which can be described by
particular mathematical formulations. We illustrate these points with a few
selected, ecologically relevant examples. Quantitatively characterizing the
patterns of variation in the template and understanding their causes, corre-
lates, and consequences are important steps in investigating the influence of
spatial heterogeneity on the structure and function of ecological systems at
all scales from molecular to global.

Introduction

Before getting too far into the consideration of the spatial heterogeneity of
ecological processes, it is usually necessary to ask: How and why is the land-
scape heterogeneous? To understand how ecological processes play out on an
underlying template of abiotic and biotic environmental variation, it is first
necessary to understand that variation. At any given time, this template sets
the initial conditions for the subsequent structural development and dynamic
interactions of the system. So how is the template structured, why is it organ-
ized this way, and how does it change over time? These are big, complicated
questions. The answers draw from many disciplines and remain incomplete.
Nevertheless, we will attempt to provide a conceptual framework to char-
acterize some of the fundamental features of spatial environmental hetero-
geneity. We should make it clear from the outset that we do not consider
ourselves to be either ecosystem or landscape ecologists. We hope to offer
an outsider’s perspective on characterizing and understanding heterogeneity.

31
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What we have done is to collect in one place ideas stretching from physics
and the earth sciences to biology and ecology and to suggest that we can use
these concepts and mathematical tools to begin to characterize heterogene-
ity in a more general framework. We define heterogeneity simply as spatial
variation in the environment. We suggest that this environmental variation
can be characterized as a combination of gradients, patches, and networks.
We discuss how these patterns can be characterized mathematically, how
they are formed, and some of the consequences for the ecological processes
that play out on these templates. Finally, we attempt to illustrate the poten-
tial utility of a centralized approach to dealing with heterogeneity by pro-
viding several examples from the literature.

Patterns and Their Causes

We recognize three categories of patterns: gradients, patchworks, and net-
works. We do this with some trepidation. We are well aware of the pitfalls of
dividing the natural world, and the frameworks that we use to study it, into
compartments that may be artifactual human constructs. Nevertheless, such
a classification seems appropriate in this case for several reasons. First, the
processes that usually create these patterns are often distinct and operate at
different scales. Second, the qualitative differences in the patterns and their
causal processes mean that different mathematical and analytical methods
are necessary to characterize them. Third, some degree of simplification is
appropriate, even desirable, to study ecological processes on complex land-
scapes. The search for syntheses and mechanistic explanations based on first
principles will require some simplifications, but ones that capture the
essence of the phenomena.

Gradients

We define gradients as patterns of continuous variation, typically of a single
focal variable. Under this definition, there can be no more independent
variables than there are Euclidean dimensions of the system. For two-
dimensional space, therefore, there can be only two gradients of orthogonal
variation. If more than two gradients occur on the earth’s surface, there will
be some degree of correlation among them. This can make gradients diffi-
cult to disentangle, especially because several gradients can simultaneously
influence an observed pattern. In practice, we are often concerned with one-
dimensional gradients: for example, with patterns such as temperature vary-
ing with latitude or elevation, temperature and pressure varying with water
depth, and time of exposure varying with height in the intertidal. As in most
of these examples, the pattern of variation itself may be curvilinear, just as
long as it is continuous.
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Gradients are fairly common. They tend to occur whenever there are
strong polar differences in one or more correlated variables with some kind
of averaging, homogenizing process operating in between. They are most
apparent at large spatial scales where physical factors operate over substan-
tial distances to generate relatively continuous variation in temperature,
light, pressure, solute concentrations, and other important features of the
biosphere. For example, the latitudinal gradient of temperature is due to the
position of the earth in relation to the sun, and to the homogenizing effects
of air and water movement. The elevational gradient of temperature is due
to adiabatic heat exchange in response to variation in air pressure and again
to the homogenizing effects of air movement. The gradient concept is fun-
damental to ecology and has been well developed for some time (Whittaker
1967). Where the process generating the gradient is known, it should be pos-
sible to use first principles to describe the quantitative pattern of variation.

Gradients tend to be best behaved at relatively large scales where the
generating process dominates the variability in the observed values. As one
“zooms in” to smaller scales within the gradient, additional processes
become dominant, and the continuous gradient pattern becomes swamped
by the now dominant local processes. Examined in detail on sufficiently
small scales, temperature does not vary smoothly and monotonically with
either latitude or elevation. An example is a thermal inversion in air tem-
perature with elevation, a fairly common phenomenon. Nevertheless, a gra-
dient described by a simple monotonic function usually captures most of the
variation of temperature with respect to latitude, elevation, and water
depth, at scales over which the impacts of the major process (solar incan-
descence, adiabatic cooling, and solar penetration) operate. At smaller
scales, other processes dominate, and the previously smooth relationship
appears increasingly patchy.

Patches

Patches are the pattern that most biologists consider when talking about
spatial heterogeneity. In principle, patches can be defined as discrete units
of area that are more similar to one another in one or more variables than
to their neighbors (Kotliar and Wiens 1990). For example, a patch type
could be defined by an area of some size either containing or lacking nitro-
gen-fixing plants. In practice, many patch types must be based on artificial
cutoffs (e.g., high nitrogen vs. low nitrogen, lowlands vs. highlands), and
resulting arbitrary boundaries. Sometimes, the borders between patch
types are effectively steep gradients, more continuous than discrete
(Gustafson 1998).

Much of this type of discrete spatial heterogeneity is, at its core, due to the
three-dimensional complexity of the earth’s surface. If the earth were a
simple plane or a perfectly smooth sphere, environmental variation would
likely be characterized by simple gradients, with a maximum of two truly
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independent axes. However, the real landscape is heterogeneous and
discontinuous because of geological and biological processes. The geologi-
cal processes of tectonics and erosion have created a crumpled, dimpled,
and layered surface, which interacts with the predictable gradients of solar
energy input, air and water pressure, tidal exposure, and other factors to cre-
ate a complex discontinuous abiotic template.

Biological processes modify this already complex template in several
ways. First, as discrete entities with unique combinations of variables, indi-
vidual organisms serve as patchy environments for other organisms. The
most obvious example of this is hosts serving as patchy environments for
parasites and symbionts. However, this phenomenon is actually much more
general. Gradients and topographical features influence local climate and
soil conditions. This patchy local abiotic environment determines the flora
that can inhabit the area, and the flora, which is patchy as a result of the cli-
mate and soils, combines with the abiotic template to influence the abun-
dances and distributions of animals at the site. Feedbacks between the
animals, plants, and the abiotic environment can then occur, causing addi-
tional variation. For example, organisms can act as engineers, moving mate-
rials or altering flows to create new patches or alter existing ones (e.g., Jones
et al. 1994). Examples include plant canopies creating unique microenvi-
ronments by altering the flows of energy, water, and nutrients. Burrowing
animals can alter soil properties and create unique structures that are used
by still other organisms (e.g., Reichman and Seabloom 2002).

Given the enormous variety of patch types, and of the processes that pro-
duce them, can we draw any generalizations about their properties? Patchy
environments have traditionally proven difficult to describe quantitatively
and thus to model. Perhaps the most promising approach is based on the
application of fractal geometry (Mandelbrot 1983). Interestingly, it appears
that many different kinds of patches have self-similar or fractal-like distri-
butions. This means that, over at least some substantial range of scales, pat-
terns of covariation can be characterized by power laws of the form

Y =Y, X, (3.1)

where Y is some variable that can be considered the dependent variable, Y,
is a normalization constant, X is the independent variable, and b is another
constant, the scaling exponent. Power laws have the useful property of being
linearized by taking the logarithms of both sides of Equation (3.1),

In(Y) = In(Yy) + b In(X), (3.2)

such that a plot of In(Y') as a function of In(X) is a straight line with a slope
of b and an intercept of In(Y). The slope, b, can take on a wide range of val-
ues that produce a wide variety of curves when plotted on linear axes. These
curves can be increasing (b > 0), decreasing (b < 0), or invariant (b = 0), and
the increasing curve can be concave up (b > 1), concave down (0 < b < 1),
or linear (b = 1; Figure 3.1). The variation described by Equation (3.1) is
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FIGURE 3.1. Example plot of power functions with different exponents, b (A, linear
axes; B, logarithmic axes). For all functions, Y, = 1. Note that except when b = 1,
relationships are curvilinear when plotted on linear axes, but all are linear when
plotted on logarithmic axes.

called self-similar or fractal, because the ratios of variables at any scale have
a constant relationship to each other. That is

Y/Y, = (Xl/Xz)b, (3.3)

where Y3, Y5, X, and X, represent measurements of Y and X at two different
scales, 1 and 2, respectively.

Multiple approaches to characterizing the shape and distribution of patches
based on fractal-like behavior of particular features have been proposed
(Milne 1991b). These approaches include the standard box counting and mass
fractal dimensions (approximations of the Hausdorff dimension), the perime-
ter-area fractal dimension, and many others. These different fractal dimensions
characterize different aspects of the patchy environment (Milne 1991b).

Many patches in nature, although they may be characterized in a variety
of different ways, appear to have fundamentally fractal-like properties. This
is true of patches and other landforms created by abiotic geological
processes. The classic case is that of a coastline, which appears self-similar
over a wide range of scales so long as the geological parent material and
formative process is essentially the same (Richardson 1961; Mandelbrot
1983). As the length of the ruler used to measure the coastline gets smaller,
the total length of the coastline increases (coast length o ruler length P,
where D is the fractal dimension). Although the coastline is continuous and
therefore not necessarily patchy in a traditional sense, it is “patchy” in a
mathematical sense when compared to a straight line (i.e., it is not smooth).
More obvious patchiness occurs when a complex geological landscape is
partially filled with water, creating either lakes on land or islands in water.
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One characterization of the fractal nature of patches that we find partic-
ularly intriguing is the scaling of frequency versus magnitude. It is well
established that, for earthquakes, the area involved in a seismic event is
approximately inversely proportional to the number of those events
observed (i.e., there are more smaller events). This is called the Guttenberg-
Richter law and it is the basis for measuring the magnitude of earthquakes
on a logarithmic Richter scale. This relationship between frequency and the
area involved is described by a power-function relationship, with a slope of
approximately —1. This general pattern between frequency and magnitude
has been observed in other systems, in particular forest fires (Malamud et al.
1998) and financial markets (Mandelbrot 1997). Although relatively poorly
studied in ecological systems, there is some evidence that ecological patches
may follow a similar power-function distribution. In particular, lakes,
islands, and vegetation patches have frequency-magnitude distributions
with b = —1 (Figure 3.2; see also Korcak 1938; Hastings et al. 1982; Wetzel

Slope =-1.19 |
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FIGURE 3.2. Plot of the frequency of the Southwest Pacific and Moluccan islands by
island area. Binning method (linear or logarithmic) and bin size complicate estima-
tion of the precise underlying distribution. Thus, we generate the inverse cumulative
distribution function (cdf) for the observed data and then estimate the underlying
probability density function (pdf) by calculating the slope of the cdf using a sliding
window with a 5-point width (Malamud et al. 1998). This approach provides equiva-
lent results to those based entirely on the cdf (Hastings and Sugihara 1993). Data on
island area was taken from Flannery (1995).
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1991; Hastings and Sugihara 1993). This slope is approximately the same as
that for earthquakes and implies that the total magnitude of all events in
any given logarithmic magnitude class is approximately equal. For example,
for the islands in Figure 3.2, the total area of small islands (1 to 10 km? in
area) should be approximately equal to the total area of large islands
(100 to 1000 km? in area). Similar slopes have been observed for forest fire
frequency (Malamud et al. 1998). Peninsulas (Milne 1991b) and forest
patches (N. Baum, unpublished data) also appear to have a power-function
relationship between frequency and area, though the reported exponents
are closer to —2. This suggests that the general form of the power-law rela-
tionship holds for different landscape features but that the specific exponent
depends on the particular feature being observed. Consequently, differences
in exponents may suggest important differences in the processes generating
the patterns and in their effects on biological systems. Lakes, islands, vege-
tation patches, peninsulas, and burns all represent heterogeneously distributed
ecological patches that have important consequences for ecological
processes at scales of organization from the individual to the ecosystem.

Organisms are the source of additional patchiness. And again, some of the
patterns may be fractal-like. For example, most deserts can be characterized
as a mosaic of two patch types: vegetation and bare soil. Figure 3.3 shows
the pattern of perennial vegetative cover on Brown’s long-term study site in
the Chihuahuan desert. Analysis of these patches using the box-counting
method reveals a fractal-like distribution, similar to that for coastlines, with
the area of occupied grid cells increasing as larger cells are used to charac-
terize patches (Figure 3.3B, inset). This relationship is traditionally pre-
sented as a negative relationship between the number of cells occupied with
vegetation and the size of the cells (Figure 3.3B). In addition to broad taxo-
nomic groups like plants, individual species exhibit similar patterns of pres-
ence and absence (e.g., Virkkala 1993; Kunin 1998; Lennon et al. 2002; Olff
and Ritchie 2002; Green et al. 2003).

Many other power laws are related to plant and animal body size. They
are the subject of the large literature on biological allometry (Peters 1983;
Calder 1984; Schmidt-Nielsen 1984; Brown and West 2000; Brown et al.
2002). Within functional groups,such as trees in a forest or animals in a habi-
tat, total population density or number of individuals per unit area, N, often
appears to scale with body mass, M, as

N =N, M3 (3.4)

a power-law scaling relation that appears to reflect the scaling of whole-
organism metabolic rate and hence per-individual resource requirements
(e.g., Damuth 1981; Enquist et al. 1998; Li 2002). In pelagic lake and marine
ecosystems, there are somewhat different scaling relations that hold across
an enormous range of organisms, from unicellular phytoplankton and
prokaryotes to the largest fish and whales. Total density scales as M, so
that total biomass is invariant or scales as M" (e.g., Sheldon et al. 1972; Cyr
et al. 1997; Kerr and Dickie 2001). It is interesting to note that the scaling of
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FIGURE 3.3. Fractal-like pattern of vegetation patchiness at Brown’s long-term
research site near Portal, AZ. (A) Map of the vegetation cover (black) on a 50 X 50 m
plot. (B) Fractal dimension plot, using the box-counting method, of the number of
grid cells on the map occupied by vegetation as a function of the length of the edge
of a grid cell. Insert shows the same data plotted in a different way, with the total
area of occupied grid cells replacing the number of occupied grid cells.
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population density could be considered to be a form of frequency-magnitude
scaling. These scaling relations mean that organisms are distributed on the
landscape with predictable relationships among density, size, and other
correlated variables, such as nearest neighbor distance, stem diameter, canopy
height and radius, and water, mineral, and energy flux for plants; and nearest
neighbor distance, home range size, movement distance, food requirement,
and excretion rate for animals. So, to the extent that organisms constitute
patchy environments or resources for other organisms, these scaling relations
can be used to predict important characteristics of patch structure and
dynamics. In addition, these patterns (e.g., home range size « M') suggest
that organisms of different size interact with the environment at different
scales (e.g., Morse et al. 1985). This should have important consequences for
the scales at which heterogeneity impacts organisms.

We have listed but a few of the possible patchy distributions in ecological
systems. It is clearly important to begin to catalogue and understand how other
attributes of the geological and biological templates scale and to integrate
these patterns into ecological research. For example, what are the relations
among perimeter, area, and elevation for islands or comparable dimensions
of perimeter, area, volume, and depth for lakes? What is the nature of the
distribution of distinctive soil patches, such as serpentine or gypsum, and, if
they can be described as fractal-like, how do the normalization constants
and scaling exponents change across different geological settings? Some of
the answers to these questions are probably available in the geological lit-
erature, but they have not generally been picked up and used by ecosystem
and landscape ecologists.

Another important question is how these varied fractal-like patterns are
related to one another. We stated earlier that there are different fractal dimen-
sions that characterize different features of patchy environments. These differ-
ent fractal dimensions each appear to describe multiple phenomena. It may be
that the components of this diverse assemblage of self-similar relationships are
connected to one another in much the same way as has recently been shown
for hydrologic networks and biological allometries (see “Networks,” below;
some relationships between dimensions are understood, e.g., Hastings and
Sugihara 1993). If this is true, then the confusing labyrinth of fractal landscape
metrics might condense to a small number of important underlying variables.

Networks

Our final pattern is the network, which we define as a system of connected,
hierarchically branching elements of structure and function. Networks rep-
resent combinations of both relatively continuous and discrete variation.
Along the direction of flow, when measured at coarse scales, the variation
appears relatively continuous. For example, the variation in stream proper-
ties from headwaters to mouth are the basis of the river continuum concept
(Vannote et al. 1980). On the other hand, when viewed at a smaller scale, the
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variation is more discrete. So, for example, the properties of a stream change
abruptly when two similar-sized branches join.

The application of networks to heterogeneity is twofold. First, the properties
of a network determine the values of important parameters within that net-
work. For example, the width, depth, and nutrient loading of a stream network
depend on the order of the stream (Rodriguez-Iturbe and Rinaldo 1997). This
creates predictable heterogeneity for processes and organisms operating
within the network. Second, networks often flow over non-network templates
(e.g.,streams over land), and in doing so they create a particular distribution of
the materials that they are fluxing across the landscape (water, nutrients, sedi-
ments, etc.). It is believed that many natural networks are produced by some
process of self-organization, and many of them seem to be fractal-like, at least
over some range of scales (Rodriguez-Iturbe and Rinaldo 1997). Given this
self-similarity we can begin to describe patterns in the network quantitatively.

Some of these natural networks are abiotic. The classic examples are
streams and related networks such as river deltas, desert alluvial fans, and
tidal drains. These branched hierarchies are formed by the physical forces
generated by flowing water, and the resulting continuous reconfiguration of
the channel due to erosion of substrates and deposition of sediments during
both extreme flood events and more usual flows. Geologists and hydrolo-
gists have studied stream networks and their self-organizational formation.
The famous Horton-Strahler system of characterizing the order of branches
was developed for streams (Horton 1945; Strahler 1957). This system
describes the hierarchy of the network and can be illustrated most simply by
thinking about pruning the source (outermost) branches of the stream net-
work sequentially. First prune the source branches. By definition, these are
the first-order branches. Using the pruned network, prune the terminal
branches again. These branches become second order and so on until only
the trunk remains (Melton 1959).

Ordered in this way, networks exhibit fractal-like properties. Examples
include Horton’s ratios (Horton 1945)

nw+1/nw = Rn
lw+1/lw = Rl (35)

aw+1/aw = Ra)
where n,, is the number of streams of order w, [, is the average length of
those streams, a,, is the average area of those streams, and R,,, R;, and R, are
constant ratios between those values at order w + 1 and order w (invariant

ratios across hierarchical levels are characteristic of self-similar patterns).
Another example is Hack’s law (Hack 1957),

Lo« A", (3.6)

which characterizes the relation between the length of the main channel in
a drainage basin, L, and the area of that basin upstream, A, in terms of a
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scaling exponent, /. For a visual description and a complete list of stream
network scaling relationships, see Dodds and Rothman (1999).

The numerous patterns in streams have recently been shown to be related
to one another, thus simplifying the description of multiple empirical scaling
relations to two simple quantitative descriptors: the fractal dimension of
individual streams (D similar to that of the coastline example) and the ratio
of the logarithms of R, and R, (Dodds and Rothman 1999). These patterns
may be explained mechanistically based on the stream networks minimizing
their global energy expenditure (Rodriguez-Iturbe and Rinaldo 1997;
Rinaldo et al. 1998), providing a more process-oriented explanation for
these observed patterns. For an in-depth treatment of river network scaling,
see Rodriguez-Iturbe and Rinaldo (1997) and references above.

Organisms also form hierarchically branching networks. The most obvious
are the fractal-like architectures of both the roots and shoots of most land
plants (Morse et al. 1985; Tatsumi et al. 1989; Fitter and Strickland 1992;
Neilson et al. 1997). Structural and functional properties of some of these
networks are described by scaling laws, which have been used to character-
ize their self-similar organization and the relationships between structural
and functional variables. Most of the work to date has focused on plant
architecture and vascular systems (e.g., McMahon and Kronauer 1976;
Niklas 1994; Neilson et al. 1997; West et al. 1997, 1999; Horn 2000). These
networks form fractal-like habitat for terrestrial and subterranean organ-
isms that use plants (e.g., Morse et al. 1985).

Why a Quantitative Framework?

So far, we have suggested that environmental variability can be divided into
three major categories, and that each of them can, at least in some cases, be
described using a relatively simple quantitative framework. One great
advantage of a having such a quantitative framework for studying hetero-
geneity is that these characterizations can be incorporated into models for
ecological processes (e.g., Ludwig et al. 2000). Consequently, it should often
be possible not only to predict whether heterogeneity is important for the
question being studied, but also to understand precisely how the organiza-
tion of spatial variation affects ecological processes. This provides the
potential to move beyond purely correlative studies to understand the
operation of different processes at different spatial scales (Milne 1991a). It
should be useful in determining which habitat variables, and their associ-
ated patterns of heterogeneity, are important for a particular process. Such
a framework may eventually answer a question that we have been asked to
address: At what scale does heterogeneity become unimportant (i.e., when
can it be ignored)? The answer will surely be that this scale depends on the
question of interest, the type of heterogeneity considered, and the inherent
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scale of the units and processes. Gradients, patches, and networks at the
scale of micrometers are important for microbes but probably unimportant
for elephants and whales (e.g., Addicott et al. 1987; With and Crist 1996).
The way to define this scale for a particular process may be through a com-
bination of quantitative modeling and empirical analysis. Determining this
scale is simply a special case of using these descriptors of heterogeneity to
make quantitative predictions about their effects on ecological systems.
There are several good examples of these quantifications being used to
model and understand ecological processes.

Examples

An example of the use of a quantified gradient for studying patterns of
species coexistence is provided by Yamamura (1976), who used a theoretical
gradient to explore patterns of the spatial distribution of plant communities.
He showed that by introducing simple continuous gradients into basic pop-
ulation dynamics models (through the influence of spatial position on the
growth rate and competition parameters), he could generate patterns of
species distributions reflecting different combinations of competitive
exclusions and coexistence. Studies of diversity maintenance based on spa-
tial and/or temporal variability in environmental conditions have benefited
from taking a similar quantitative approach (e.g., Chesson 2000). Patterns of
compositional change along a gradient can be explained by combining the
relatively continuous change in one or more key environmental variables
with the impacts of those changes on important population variables for the
species involved. An example of this is provided by Arris and Eagleson
(1994), who used the response of tree species productivity to changes in the
length of the growing season, photosynthetic capacity, potential evapotran-
spiration, and soil moisture availability along a latitudinal gradient to predict
the location of the ecotone transition between boreal and deciduous forests
in the eastern United States. By quantifying the gradients, they were able to
show that through their influence on the rates of production, the gradients
should lead to a transition in the dominant forest type at approximately the
latitude observed. This suggests that the broad-scale heterogeneity in the
environment (i.e., the gradients) produced the ecotone pattern through
influences of abiotic environmental variables on net primary production.

An excellent example of the use of the fractal-like nature of patches to
describe model ecological systems is provided by Ritchie and OIff (1999).
They suggest that due to the fractal-like clustering of resources (Milne 1992,
1997), herbivores of different sizes will see the patchiness of landscapes dif-
ferently and thus respond differently to the patchy pattern of resource.
Small, dense patches can be used by small species, whereas large, less con-
centrated patches are more appropriate for large species. Because resources
are patchily distributed and the different patches are used differently by
different body sizes, these relationships can be used to predict body size
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distributions of coexisting herbivorous mammals and to help understand
how variation in body size facilitates the maintenance of biodiversity
(Hutchinson 1959; Hutchinson and MacArthur 1959). The authors use the
observed fractal-like nature of resource distributions to make specific quan-
titative predictions about the frequency distribution of body sizes and the
number of species that can be supported by a habitat. This example illustrates
how a quantification of heterogeneity can provide explicit predictions about
its impacts on ecological systems.

We are less familiar with the use of networks for characterizing ecological
heterogeneity. They have proved useful in understanding and quantifying
the effects of resource distribution networks on metabolic rates of animals
and plants, and these effects cascade through ecological systems, having
effects at scales from individuals to entire ecosystems (Enquist et al. 2003;
Brown et al. 2004). One area where networks will likely prove important for
characterizing heterogeneity is in aquatic and riparian ecology. The increas-
ingly well quantified and mechanistically understood scaling relations for
stream networks have many obvious ecological implications.

One effort in aquatic ecology is to understand how stream properties, and
hence ecological patterns and processes, vary from source streams to the
main channel. Geologists and hydrologists have developed a solid under-
standing of abiotic variation as a function of stream order through a quanti-
tative approach that uses scaling laws to characterize the hierarchical
self-similarity of river networks (see “Networks,” above). This approach
does not explain all of the important patterns, but it does provide robust,
quantitative characterizations of a suite of important variables (e.g., flow
rate, stream length and width, etc.), thereby providing a first-order model of
abiotic heterogeneity from headwaters to main channels. The next challenge
for stream ecologists is to begin to understand how these abiotic patterns
influence biotic processes. The river continuum concept (Vannote et al.
1980) and the flood pulse concept (Junk et al. 1989) attempt implicitly to
understand how the regular abiotic scaling properties of streams affect the
ecology of riverine and riparian ecosystems. These concepts would seemingly
benefit from the explicit incorporation of the quantitative framework
describing the changes in the abiotic template as a function of stream order.

Conclusions

The emphasis of this book and of the Cary Conference that spawned it is on
the extent to which, and the mechanisms by which, spatial heterogeneity
affects ecosystem function. We define ecosystem function as the fluxes and
transformations of energy, materials, and information (and of organisms
containing those currencies) that occur within and between ecosystems and
other ecological subsystems. These flows and transformations are inherently
heterogeneous. They occur in specific places on the landscape, and they are
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driven by abiotic and biotic processes that are heterogeneously distributed.
These fluxes and transformations are also inherently heterogeneous at all
spatial scales. Some processes, such as biotic weathering of rock surfaces
and microbial uptake of organic compounds, occur at the molecular level of
organization and at the scale of nanometers to micrometers. Other processes,
such as the circulation of the atmosphere and oceans, occur at regional to
global levels of organization and on the scale of 10" kilometers. The struc-
ture and dynamics of these flows are governed largely by the geometric,
physical, and biological characteristics of the spatial template.

An essential task for understanding how habitat heterogeneity affects
ecosystem processes is to characterize the patterns of heterogeneity and to
understand the processes underlying those patterns. A useful framework is
to recognize that patterns of environmental variability across landscapes
can generally be separated into three major categories: gradients, patches,
and networks. Each of these categories can often be described using a rela-
tively simple quantitative framework. By incorporating these quantifications
into the study of biological systems, it should be possible to predict not only
if heterogeneity will have an effect on ecosystem function, but also precisely
what the nature and magnitude of the effect should be. Progress toward
increased understanding, precision, and predictability will also benefit from
incorporating advances from other disciplines, including physics, chemistry,
biology, and the earth sciences, on the laws, principles, and factors that gen-
erate the gradients, patches, and networks and that govern the flows and
transformations of energy, materials, information, and organisms within and
between these heterogeneous landscape elements.
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Thoughts on the Generation and
Importance of Spatial Heterogeneity
in Ecosystems and Landscapes

JOHN PASTOR

Abstract

Landscapes are spatially dynamic because materials and energy spread over
them and change the distribution of ecosystem properties. This heterogeneity
of the distribution of ecosystem properties can either be random or pat-
terned. The landscape becomes patterned when the spread of materials and
energy correlates an ecosystem property in one local neighborhood with
that at another. When the spread of materials and energy does not correlate
properties of different neighborhoods, then the landscape can still be het-
erogeneous but random. Various processes that result in spatial heterogeneity
include physical disturbances (e.g., fire, erosion, etc.) that spread across
neighborhoods and remove materials but whose spread is partly determined
by previous disturbances; directional gradients in the flow of materials,
energy, or information; and different diffusion rates of coupled ecosystem
components combined with positive feedbacks, otherwise known as diffusive
instability. Examples of these processes will be given from other papers in
this conference and elsewhere.

Introduction

The living world is not all green slime or a big leaf; things are different from
place to place. This variety of the living world is what makes it a stunningly
beautiful and interesting place to live. It is also what makes understanding
ecological systems difficult.

Spatial heterogeneity of the distribution of ecosystem processes across
the landscape can be random or patterned (or a combination of both). A
heterogeneous spatial distribution of ecosystem properties is random fif,
given the value of an ecosystem property at a point, the value of that prop-
erty at adjacent points cannot be predicted. In contrast, a heterogeneous
spatial distribution is patterned if, given the value of an ecosystem property
at a point, the value at adjacent points and possibly points further away can
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be predicted with some confidence. Because the spread of materials and
energy across the landscape correlates values of an ecosystem property
between adjacent local neighborhoods, this spread can therefore result in
patterned heterogeneity.

For the most part, we know how to analyze spatially homogeneous distri-
butions through analysis of variance and general linear statistical models.
We know how to model their dynamics through coupled ordinary differen-
tial equations that depict energy and material flows between ecosystem
components and whose parameters do not depend on position in space. In
contrast, we are only beginning to learn how to describe the origin and
dynamics of spatial heterogeneity. These require new mathematical, experi-
mental, and observational tools for their description and analysis.

Physical disturbances create and sustain heterogeneities by removing mate-
rials from ecosystems or transferring materials from one ecosystem or ecosys-
tem component to another. Physical disturbances often have a large random
element, but they also may depend on underlying heterogeneity, which is often
caused by previous disturbances. The spread of a disturbance correlates values
of an ecosystem property at a given point with those at its neighbors and
beyond to the boundary of the patch created by the disturbance.

Transport of energy and materials along a directional gradient, such as
movement of water and suspended sediments or dissolved compounds
downhill, also creates patterned heterogeneity. The transport of energy and
materials along a directional gradient correlates ecosystem properties along
the gradient. Ecosystem properties will therefore be similar for long distances
along transects in the direction of the gradient but become less similar more
rapidly along transects perpendicular to the gradient.

Spatial heterogeneities can also be generated by positive feedbacks
between ecosystem components, such as soil, vegetation, and higher trophic
levels (Meinders and van Breemen this volume). Such patterned hetero-
geneity can arise even in the absence of gradients and physical disturbances
and can create patterned heterogeneity from homogeneity or random het-
erogeneity. This generation of pattern from homogeneity or randomness in
the environment via positive feedbacks between ecosystem components is
sometimes called “self-organized complexity” (Kauffman 1993; Bak 1997;
Meinders and van Breemen this volume).

If two interacting ecosystem components also diffuse or spread across the
landscape, new and surprising heterogeneities can arise even without any
underlying heterogeneity in the physical environment (Okubo and Levin
2002). Under some circumstances, such heterogeneities could be stable. This
seems to be especially prevalent in herbivore-vegetation systems where
both the herbivore populations and the plant species that support them are
diffusing across the landscape. For example, the spatial dynamics of balsam
fir is coupled to the spatial dynamics of spruce budworm populations during
an outbreak. In turn, the changes in the spatial distribution of balsam fir
affect the fate of the outbreak (Holling 1978).
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In this paper, I wish to explore how the spread of physical disturbances,
the directional flows of materials down a gradient, the positive feedbacks
between ecosystem components, and the diffusion of interacting components
across the landscape all generate spatial heterogeneity. I will use the papers
in this volume and additional ones from the literature as examples. My pur-
pose is to seek some general principles of the sources and consequences of
spatial heterogeneity and attempt to reach broad conclusions about similar-
ities and differences between major ecosystem types in order to offer
approaches for organizing future research.

Physical Disturbances

The ecological literature on disturbance is vast, and it is not my intent to
review it here. Instead, I wish to make a few remarks about some aspects of
the nature of spatial heterogeneity caused by disturbances and why these
might differ between terrestrial and aquatic ecosystems. By disturbance 1
mean some physical process that removes a fraction of an ecosystem com-
ponent or adds to it. Thus, I exclude insect outbreaks, for example, because
such biological processes (which are sometimes referred to as “distur-
bances”) could be treated by other approaches involving diffusion of the
population, which I discuss below. Physical disturbances, such as fire, ero-
sion, landslides, avalanches, and so forth, are qualitatively different from
“disturbances” initiated by growth of a population, because the physical dis-
turbance itself is not a component or pool within an ecosystem but a process
by which material is transferred spatially.

Disturbances have two aspects that are important for the generation of
spatial heterogeneity. The first is where the disturbance is initiated, which
has a large random component (e.g., where the lightening strikes) but also
depends on the conditions in the initiation location (e.g., whether there is
sufficient fuel of the right moisture content to ignite when struck by light-
ning). However, once initiated, the disturbance can and often does spread to
adjacent locations whose conditions may not have been right for initiation
but are sufficient for the spread (e.g., if your neighbor catches fire, you may
burn, too). Thus, spatial heterogeneity caused by physical disturbances is
partly random (through initiation) and partly patterned (through conta-
gious spread).

Aquatic ecosystems, especially streams and rivers, are well mixed. Their
components generally have rapid turnover because of short lifetimes of
organisms and because currents break down structures by rolling and mix-
ing of bedload and woody debris. Constant flux of water also dilutes the
introduction of pollutants and contaminants at point sources. The spatial
heterogeneities caused by many disturbances to streams, especially distur-
bances related to point-source pollution, are therefore quickly dissipated
once the disturbance ends (Niemi et al. 1990).
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In contrast, terrestrial ecosystems are not well mixed and often contain
slow-growing perennial individuals. Therefore, the spatial pattern caused by
a disturbance remains for long times. But if the recurrence interval of a dis-
turbance is shorter than the recovery of a disturbed patch, then under some
conditions the initiation and spread of any disturbance may partly depend
on previous disturbances. How a disturbance moves through a landscape
that previous disturbances have created is a major unanswered (and difficult)
question of disturbance ecology.

From a modeling standpoint, this means that simple, first-order Markov
chains, often used as a first approximation to modeling disturbance (see
reviews by Baker 1989 and Pastor et al. 1993), will always be somewhat defi-
cient. First-order Markov models assume that the probability of a transition
in the system is constant and depends only on the current state of a system.
But in fact, whether or not a disturbance happens at a point or propagates
from it depends on disturbances back to some period in the past. Not only
that, but the current state of a system (or local neighborhood) also includes
the distribution of adjacent neighborhoods and their states (hence conta-
gion). Cellular automata approaches are useful in dealing with these higher
order effects because the change in a given cell depends in part on the
state(s) of its neighbors (see review by Neuhauser 2001).

As Turetsky et al. (this volume) and Romme (this volume) show, distur-
bances are a particularly important source of heterogeneity in boreal
regions and in coniferous forests of the arid West perhaps because of the
slow recovery of vegetation owing to the slow growth rates of the species
present (Chapin et al. 1986), because of the slow turnover rate of the soil N
pool (Flanagan and Van Cleve 1983) that supplies the N required for plant
growth (and hence recovery), and because of drought.

An excellent example of the importance of heterogeneity caused by a
physical disturbance such as fire is the landscape of virgin forests of the
Boundary Waters Canoe Area (BWCA) of northern Minnesota (Heinselman
1973). Virtually every stand in the BWCA originated from a fire, but the fire
return intervals (which differ for different stands) are almost all less than
the recovery time from the previous disturbance. Consequently, fires in the
BWCA partly burn through previous burns. For example, some 44% of the
BWCA burned during 1864, but only 20% of the current stands originated
in the 1864 burns: the rest of the current landscape originated in fires that
happened later but which spread to these burned areas from adjacent older
stands that ignited first.

Romme (this volume) shows that the importance of spatial heterogeneity
caused by previous burns in the arid West varies with forest type and climatic
conditions. When the climate is dry and hot, everything burns and previous
spatial heterogeneity is unimportant in fire spread. Thus, we get large-scale
catastrophic fires as in Yellowstone during the late 1980s and in the south-
west during 2001 and 2002. However, during more moderate years or in
higher elevations where extended periods of hot and dry conditions are
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rare, the underlying spatial heterogeneity caused by previous burns is very
important in determining initiation and spread of new fires.

These case studies raise several general questions. How do burns and
other disturbances become overlaid on previous disturbances of the same
type or of different types? Does it matter what the previous disturbance
was, and if so, in what way does it matter? Is there a characteristic fractal or
some other geometry of partly overlapping disturbances? If so, what deter-
mines it? Are these “geometries,” if they exist, characteristic of a particular
ecosystem or are there more general aspects common to two or more other-
wise different ecosystems? These are some of the major questions, as I see
them, which need to be answered to develop a more complete understanding
of how disturbances produce and interact with spatial heterogeneities in
any landscape.

Directional Gradients

Both terrestrial and aquatic ecosystem ecologists have long dealt with gra-
dients in the vertical dimension and its effects on ecosystem properties. The
premier example of such vertical spatial heterogeneity is the extinction of
light through a canopy and water column, the fundamental starting point of
much of forest ecology and limnology. If we assume that leaves are randomly
distributed through the canopy or that the water column is homogeneous,
then this light gradient can adequately be treated by means of a linear
model whereby the change in light through a given layer at some depth d is
some fraction k of the light entering that layer, leading to the familiar expo-
nential extinction curve:

Id = I()eikd. (41)

It is a relatively simple matter to incorporate heterogeneities in the distri-
bution of leaves through the canopy or vertical changes in water column
transparency simply by replacing d with a function describing how leaf area
or transparency change with depth and integrating down to depth d:

1, =1, oKl LAI®)dS (4.2)

This vertical light gradient, /,, often leads to a stratification of both terrestrial
and aquatic communities according to the photosynthetic response curves of
the constituent species (Shugart 1984; Tilman 1988). In terrestrial ecosystems,
when the community is vertically stratified into shade-intolerant species
above shade tolerants, then light-use efficiency and hence net primary produc-
tion by the entire community may be maximized (Pastor and Bockheim 1984;
Tilman 1988).

The most important horizontal directional gradient in landscape ecology
may be topographic, causing water left after transpiration to flow transversely
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and downhill. Watershed studies have typically examined the mass balance
of inputs to the watershed via precipitation and stream outputs, as demon-
strated in an exemplary manner by the Hubbard Brook Ecosystem Study
(Likens et al. 1970; Bormann et al. 1977). However, these watershed studies
typically do not look in detail at the pathways and patterns of nutrients fluxes
between stands within the watershed and how that affects the eventual
transfer of nutrients to the streams (or lakes) at their base. Conversely,
many detailed studies of nutrient cycles of ecosystems or stands within
watersheds implicitly assume that the ecosystem sits on a flat table and
leaching losses take place vertically rather than semihorizontally. To truly
bridge watershed and stand-level approaches, we need to connect stands in
the landscape by means of directional fluxes of nutrients down topographic
gradients. Thus, the input-output balance of an ecosystem at a given point
may depend as much on its position in the landscape and the delivery of
nutrients to it from upslope as on the exchange of nutrients between com-
ponents within it.

This has important consequences in both streams and the watersheds that
surround them, perhaps especially so for the riparian zones. The riparian
zone potentially receives nutrients from every stand above it, but the nutrients
are delivered to it in sequence downslope. Therefore, the sequence of stands
along a slope and their differing input-output balances may determine the
loading of nutrients to the riparian zone.

Heterogeneity in riparian zones may also determine downstream flows of
nutrients. Naiman et al. (this volume) review how sources of heterogeneity
in riparian forests, such as coarse woody debris, denitrification hotspots,
debris jams, formation of bars and side channels, and so forth, may mitigate
large transfers of nutrients to aquatic ecosystems. The strong directional
gradient that transfers nutrients along a topographic sequence may interact
with fine-scale heterogeneity within the riparian zone to determine overall
land-water material transfers. This fine-scale heterogeneity within the ripar-
ian zone may enhance nutrient retention if it increases the path length a
molecule travels before it enters the stream channel, thus increasing its res-
idence time within the riparian zone. The role of heterogeneity within the
riparian zone must therefore be assessed in the context of the overall het-
erogeneity of the landscape and downslope transfers of nutrients to the
riparian zone and how the heterogeneity of the riparian zone affects nutri-
ent retention before the nutrient enters the stream channel. How hetero-
geneity of processes operating at different scales interacts to determine
lateral transfers of material across landscapes is a difficult topic of great
importance.

Urban ecosystems (Band et al. this volume) are distinguished partly by
particular sorts of directional flows along the grid systems of streets. These
directional flows can be parallel (one-way streets) or antiparallel (two-way
streets) along two axes usually at 90 degrees to each other. This grid system is
an attempt to impose some spatial order on travels of humans and commerce
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in a city, but it can have great consequences for the spatial dynamics of cities
as landscapes. For example, city engineers must control downslope flows of
water to prevent erosion and flooding of the roadbeds; these water diversions
into storm sewers and along curbs have large effects on urban stream ecosys-
tems (Band et al. this volume). Furthermore, pollutants from automobiles are
dispersed from sources that move down streets and are dispersed further by
wind tunnels or prevented from dispersing by wind-breaks caused by the
buildings (Band et al. this volume). It would be interesting to learn how this
grid system of directional flows of traffic, water, and wind disperses seeds of
exotic plant species or diseases of boulevard trees.

When directional gradients of fluxes at boundaries of patches are very
steep, the sign of the gradient can determine the degree of heterogeneity
inside the boundary of a patch. Kratz and Maclntyre (this volume) remind
us that there is a very important directional gradient at the surface of a lake,
namely the heat flux gradient, which strongly determines the spatial hetero-
geneity within the lake. When the heat flux gradient at the lake surface is
positive, heat flows out of the lake and the water column physically turns
over, bringing nutrients from the sediment to the surface and oxygen from
the surface to the lower depths. The lake is then also thermally homoge-
neous. But when the heat flux gradient at the lake surface is negative, heat
flows into the lake and it becomes thermally stratified. This phenomenon, so
important to aquatic ecosystems, depends on the fact that fluids such as
water can be well mixed with fast time constants. Similar thermal stratification
of the atmosphere over a city results in the formation of smog. Such spatial
dynamics do not have any counterparts in terrestrial vegetation-soil systems
because these systems cannot be well mixed over any reasonable ecological
timescale.

Finally, positive feedbacks within ecosystems (Tongway this volume; Mein-
ders and van Breemen this volume) can amplify the heterogeneity produced by
directional gradients. Tongway shows how positive feedbacks between plants
and soils in arid systems concentrate and retain soil moisture being delivered at
a point such that water availability becomes raised above threshold levels
required for plant growth, leading to the further development of patches of
vegetation and high resource availability in a sea of low resource availability.

Such feedbacks and the spatial patterns that arise from them are not
confined to arid systems. Peatlands are another excellent example of how
plant-soil feedbacks lead to the formation of spatial patterns (Turetsky et al.
this volume). Horizontal water flow patterns in peatlands are a result of
microtopographic gradients and hydraulic permeability of the peat, both of
which interact with the plant community. Broadly speaking, two different
communities (bogs and fens) can be found in peatlands; these in turn appear
to be related to hydrologic sources of nutrient inputs (Wright et al. 1992). In
bogs, peat accumulation has raised the local water table above the regional
water table; bogs therefore receive their exogeneous nutrient inputs solely
from precipitation. Fens are in lower topographic positions or on the margins
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of peatlands and are not isolated from the regional groundwater table; they
receive nutrient inputs from both precipitation and groundwater. Sphagnum
mosses, ericaceous shrubs, and black spruce (Picea mariana) dominate the
vegetation of bogs while sedges and other graminoids dominate fens.

These vegetation patterns are enhanced by positive feedbacks between
the plant community and the type of peat formed from its litter (Glaser
1992). Sedges and other graminoids produce peat of high hydraulic perme-
ability. Therefore, water preferentially flows through fens and maintains
them. On the other hand, Sphagnum-derived peat has low permeability and
water flow is diverted around it. Sphagnum mosses prefer these relatively
drier conditions, and their continued dominance and production elevates
the peat surface above the water table, leading to the formation of bogs (van
Breemen 1995). These raised bogs shed precipitation to the surrounding
wetter areas, further enhancing the dominance of graminoids there. Direc-
tional flows of water into peatlands from the upland is thus broken up into
patterns of water tracks (occupied by fens) and raised bogs (occupied by
Sphagnum), which are stabilized by these positive feedbacks between the
plant community and the peat formed from it.

The positive feedbacks between peatland vegetation, peat formation, and
hydrologic gradients and flows at local scales may have important implica-
tions for global carbon budgets. Although northern peatlands occupy less
than 2% of the world’s land surface (Post et al. 1982; Bridgham et al. 2001),
they contain one third of the world’s soil carbon and nitrogen pools (Post et al.
1982, 1985; Gorham 1991) and are the source for 6-9% of global methane
emissions (Mathews and Fung 1987; Aselmann and Crutzen 1989; Bartlett
and Harriss 1993). Carbon and nutrient budgets in bogs and fens are very
different: bogs appear to accumulate more carbon and nutrients than fens
(Glaser 1992; Bridgham et al. 1995, 2001). Therefore, the spatial distribution
of bogs and fens and how that distribution arises from positive feedbacks
between the plant community and water flow patterns may determine the
pattern and degree of carbon balances of many northern regions.

Diffusion, Diffusive Instability, and Pattern Formation
and Destruction

Mahadevan (this volume) points out that diffusion of an ecosystem compo-
nent or property destroys heterogeneity by dispersing the property or agent
responsible for it across the landscape or seascape. Thus, a plume of nutrients
or pollutants introduced at a point into a fluid, an insect outbreak at a spot,
or the aggregation behavior of some zooplankton are all dispersed as these
entities diffuse through the landscape or fluid. This dispersal can, to a first
approximation, be described by random Brownian motion, otherwise
known as Fickian diffusion. Thus, under some circumstances, random spatial
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motion destroys spatial heterogeneity (Murray 1989; Okubo and Levin
2003; Mahadevan this volume).

However, dispersing species also interact with each other (through preda-
tor-prey interactions, for example). This trophic interaction of two dispersing
species can create, rather than destroy, spatial heterogeneity under certain
conditions. If the growth of the lowest trophic level involves a positive feed-
back (autocatalysis) with itself (e.g., population growth) or with some under-
lying environmental condition (e.g., enhancement of nutrient availability
through litter feedbacks) or is sustained by inputs from the surrounding envi-
ronment and if the populations of species in different and interacting trophic
levels spread or diffuse at different rates, then conditions are ripe for creation
of a rich variety of spatial heterogeneities and patterns. In this case, the diffu-
sion causes spatial heterogeneity by modifying the trophic interactions as the
interacting populations away from points at different rates. This heterogene-
ity can, under certain circumstances, then be amplified by the interactions
between trophic levels or between species and their resources. This phenom-
enon, known as reaction-diffusion or diffusive instability, was first mathemat-
ically described by Turing (1952) and is often called a Turing mechanism in his
honor. Excellent reviews of this theory rich with ecological examples are
given by Edelstein-Keshet (1988), Murray (1989), Holmes et al. (1994),
Okubo and Levin (2002), and Levin (2003). This theoretical approach gives
explicit conditions for when either spatial heterogeneity or homogeneity is
stable and, through numerical solutions or simulations, it can also give some
predictions about the pattern of heterogeneity. These explicit conditions and
solutions can then be tested in experiments or observations.

To see the conditions under which such spatial heterogeneities arise, con-
sider first a set of coupled equations for the interactions of two species in an
otherwise homogeneous environment:

as

7; = Fl(ShSZ)

ds 4.3)
7: = F5($,,5,),

where S, and S, are prey and predator, respectively, and F; are the differen-
tial equations (e.g., Lotka-Volterra predator-prey equations) describing
their growth and interactions. “Predator” and “prey” are meant here in a
general sense in that the predator “takes up” or consumes the prey. Thus, the
“predator” can be a carnivore consuming an herbivore, an herbivore con-
suming a plant, or a plant species taking up a nutrient “prey” (an example of
this will be given in a moment). For what follows, it is important to keep in
mind that the growth of the “prey” population at the lowermost trophic
level is either self-generating by means of autocatalysis, enhanced by positive
feedbacks with some underlying environmental variable, or sustained by
input from the outside environment.



58 4. Generation and Importance of Spatial Heterogeneity

Assume there is a spatially uniform (homogeneous) equilibrium in the
absence of diffusion such that:

where S| and S represent equilibrium densities of S; and S,. This equilibrium
is spatially homogeneous and stable if small disturbances of size AS; decay
exponentially when the system is near equilibrium. Examples of disturbances
of size AS; could be harvesting or stocking of a population or enhancement of
local nutrient availability by fertilization. The rates by which disturbances
decay or grow are given by the eigenvalues of the Jacobian matrix J of partial
derivatives (sometimes called the “community matrix” by ecologists):

J= [““ “12} (4.5)
ay ap
where a; = 9F; /0S;and J is evaluated at the equilibrium points S} and 5.
Analytical solutions of the eigenvalues near equilibrium are in terms of the
parameters of the dynamical equations F;; these parameters are usually the
rate constants of fluxes between trophic levels of the system or the input-
output terms.

The eigenvalues, \,,, of J give the rates of growth or decay of the perturba-
tions in n dimensions (where #n is the number of compartments of the system):

sl(r)J [Sl(to) - S’}] i

= . [Chwne™, (4.6)
|:Sz(f) En Sy(to) = S,

where S(t,) —S; = AS,is the initial size of the perturbation to S;, w, is the cor-
responding normalized eigenvector to A,,, and ¢, are constants that depend on
initial conditions. Clearly, if all A, <0, then the perturbation S(z,) — S; decays
exponentially, and the system returns to its homogeneous equilibrium state of

S and S5. Spatial homogeneity is then stable under these conditions. This hap-
pens when the trace of J is negative and the determinant is positive, or

tr())=ay+ap<0
and ) " 2 4.7)

det(.]) = a1 ay — 4 dy > (.

Recall that a,; represents the growth of §; with respect to itself, or the auto-
catalytic/positive feedback in the system, and a,, represents mortality of the
predator (S,) with respect to itself.

Now add diffusion terms to each equation (for simplicity, we will consider
diffusion in only one lateral direction):

EXY 9%,
o~ Fi(S1.8) + D\~ %
S, 928,
D2 _ (8,8 + Dy 2,
ot 2(51,5,) P

(4.8)
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where D and D, are rates of random spread or Fickian diffusion across
space (x), and the partial derivatives with respect to x represent density or
concentration gradients of S; and S, across space. (In much of the literature
on reaction-diffusion equations, the prey is termed the “activator” because
of the positive feedback, and the predator is termed the “inhibitor” because
it consumes the prey, but I will continue to use the terms prey and predator
in the general sense as defined above).

Perturbations to this spatially explicitly model (such as changing the pop-
ulation density of either species, corresponding, e.g., to an outbreak, an
irruption, stocking, or harvesting) are introduced not simply at a point in
time but at a point in both space and time. Furthermore, the perturbation
propagates in space because the diffusion terms “spread” the perturbed
population out in the x direction. The perturbation is further modified by
the interactions between the two species who spread or diffuse at different
rates. The Jacobian now becomes:

ayg — D10'2 app
Jovatial = 4.9
spatial |: ay, ay — chrz]’ ( )

where o is the wavenumber, or the number of a peak in population density
assigned in increasing order away from the initial peak that was the pertur-
bation. o is proportional to 2rn/distance between the peaks. The decay or
growth of these perturbations is then necessarily a function of both space
and time and is approximated by:

Sl(xvt):| |:S1(x0,t0) - Si] A
= « |Chwpe™'cos o X. 4.10
[Sz(xﬂ‘) ; Sy(xo,19) — S5 (410)

Note the addition of the term cos ox in comparison with Equation (4.6); this
ensures that the fate of the disturbance depends both on space and on time.
Again, the coexistence between S; and S, is stable and spatially homoge-
neous when the trace of Jy,,, is negative, the determinant is positive, and
hence the real parts of \ are all negative. These conditions obviously depend
on the relative sizes of D; and D,.

Assume that a perturbation is introduced at a point x,, t,. If D; = D,, then
some simple algebra shows that the heterogeneity introduced by the distur-
bance decays. Consequently, the spatially homogeneous distribution is stable
with equilibrium values S} and S [see Okubo and Levin (2002) for mathematical
details and proofs].

But when D, > D, and D,/D, is greater than some crucial value C, then
the homogeneous steady-state distribution is not stable (the determinant
becomes negative), and diffusive instability sets in. Spatial heterogeneity,
rather than homogeneity, becomes the stable state of the system, and the dis-
turbance propagates across space. Under these conditions, the two coexisting
species are distributed heterogeneously across the landscape. Eventually,
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their distribution approaches a stable patterned heterogeneity [see Okubo
and Levin (2002) for mathematical details and proofs].

The crucial value by which C must be exceeded for patterned hetero-
geneities to develop varies with functions F; and F,, but in general
C = f(ax/ay,). Therefore, if

Dy f(“”) > 1, (4.11)

then spatial homogeneity of two interacting populations of different trophic
levels is unstable, and spatial heterogeneity of the two interacting popula-
tions is stable. In other words, for patterned heterogeneity to be stable: (1)
the diffusion rate of the predator must be greater than that of the prey and
greater than some function of the ratio of per capita mortality of the preda-
tor to per capita growth of the prey; (2) the growth of the prey (at least at
low population densities) must involve a positive feedback within its own
population or with some underlying ecosystem property [plant litter-nutrient
availabilities discussed by Meinders and van Breemen (this volume) could
be one such feedback]; and (3) an increase in predator densities decreases
prey density through consumption, and therefore eventually predator den-
sities as well.

To see how this works, first consider a stable predator-prey system with-
out diffusion. A random increase in prey density at a point in a landscape
results in a further increase in both its density and that of the prey, but
increased predator density at the point of random increase in prey density
reduces the prey and is also self-limiting through mortality. The system is
thereby stabilized, and the perturbation in prey density at the point of the
disturbance dies away exponentially.

Introduction of diffusion terms dissipates the negative effect of the
predator. If the diffusion rate of the predator is sufficiently greater than
that of the prey (D, > D,C), then a local randomly introduced peak in
prey density can grow because of autocatalysis or positive feedbacks to its
population. The predator will be able to track the peak in prey density,
causing “dents” to appear and separating the initial peak into two, which
then grow by autocatalysis and the process repeats. Depending on the
magnitudes of D; in both x and y directions and the exact form and mag-
nitude of C, a rich variety of patterned spatial heterogeneities can develop
(Okubo 1978; Murray 1989; Holmes et al. 1994).

The most surprising aspect of this theory is that these spatial hetero-
geneities are due entirely to the interactions of the two components diffus-
ing randomly at different rates and not necessarily due to any persistent
heterogeneity in the underlying environment or preferred directional flow
of one or both species. If there are positive feedbacks in the growth of the
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prey population and greater rates of diffusion of predator than prey, then
spatial patterns (heterogeneities) are almost inevitable. Thus, neither non-
random foraging of a predator nor underlying environmental heterogeneity
is required to produce spatial patterns in generalized predator-prey systems.
This is not to say that predators necessarily forage at random nor does it
deny the existence of underlying environmental heterogeneities. Rather,
such underlying heterogeneities, if present, can modify the patterns further,
and the mere presence alone of a pattern is not sufficient to invoke them.

Further theoretical explorations of this mechanism of generating spatial
heterogeneity have been developed. As opposed to predator-prey models,
Levin (1974) showed that diffusive instability cannot occur in simple two-
species Lotka-Volterra competition models with diffusion, but Evans (1980)
showed that it happens in three-species Lotka-Volterra competition models.
Powell and Richerson (1985) showed that diffusive instability and pattern
formation can happen between two species competing for two resources if
the dynamics of both species and their resources are all modeled.

This mathematical approach has found applications in various ecological
settings, beginning with ocean systems. Malchow (2000) gives an extensive
review of recent developments in the theory of pattern formation in aquatic
systems. Diffusive instability was first proposed to explain fine-scale spatial
heterogeneities of herbivorous zooplankton and phytoplankton in the
oceans by Segal and Jackson (1972) and independently by Steele (1974) and
developed further by DuBois (1975) and Levin and Segal (1976). Later
observations showed that both fine- and coarse-scale patchiness of zoo-
plankton and phytoplankton require not only diffusive instability but also
directional gradients caused by currents and gyres (Weber et al. 1986;
Mahadevan this volume).

Levin (1977) extended the development of this approach by showing that
a positive feedback in the prey is not necessary if the predator consumes
prey according to a saturating function, such as a Michaelis-Menten func-
tion. Okubo (1978) then showed that diffusive instability can occur between
phytoplankton and the concentrations of limiting nutrients in the water col-
umn if one assumes that the phytoplankton take up nutrients in a Michaelis-
Menten function and herbivores are a constant sink for the phytoplankton.

This mechanism of generating patterned spatial heterogeneity is proba-
bly not confined to aquatic systems, even though it has been more exten-
sively investigated in such systems. One aspect of the above examples to
notice is that a herbivore is present in all of them. Some recent studies also
indicate that pattern formation through diffusive instability can arise in ter-
restrial systems with herbivores. Maron and Harrison (1997) showed that
tussock moths attain stable, locally high densities even though they disperse
faster than their host plants because of the even faster dispersal of a more
mobile parasitoid, thus introducing the possibility of diffusive instability in
a plant-herbivore-parasatoid system. Pastor et al. (1999) showed that foraging
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by mobile model moose in a model landscape that was initially random
eventually produced spatial patterns characteristic of diffusive instability.
These theoretical patterns also conformed to field measurements made on
Isle Royale (Pastor et al. 1998). Because the patterns that develop affect the
energy balance of the mobile moose, only certain foraging strategies pro-
duced landscapes in which food was distributed in such a pattern that the
moose sustained positive energy balances and thereby survived. Therefore,
diffusive instability can produce spatially heterogeneous landscapes that
can either be detrimental or crucial to the energy balance of foraging ani-
mals and thus the survival of their populations.

Terrestrial herbivore populations almost always disperse faster than their
forage species disperse seeds or propagules. If it is also common that a for-
age species is part of a positive feedback with soil properties (Meinders and
van Breemen this volume), then spatial heterogeneity would seem to be
common in terrestrial ecosystems where herbivores have strong effects on
plant community composition and nutrient cycles. If one is working in an
ecosystem in which herbivores exert strong control over species composi-
tion, nutrient cycling rates, or both, then one should immediately suspect
diffusive instability as a possible source of any patterns one finds.

Diffusive instability and spatial pattern formation through trophic inter-
actions is currently an area of theoretical research rich with nontrivial pre-
dictions that can be tested experimentally. Some of these experiments may
involve long-term observations to determine the scales over which spatial
patterns arise (e.g., Grinbaum 1992; Pastor et al. 1998) or to determine if
spatial heterogeneities change with time (e.g., Pastor et al. 1999). Long Term
Ecological Research (LTER) sites, the Joint Global Ocean Flux Study
(JGOFS) sites, and other sites with repeatedly monitored observation grids
are possible sites to gather data to refine and test these theories.

When Is Spatial Heterogeneity Important?

The above considerations beg the questions that the organizers of this con-
ference have explicitly posed: When is spatial heterogeneity important?
When is it not important?

These are difficult questions. In part, the answers depend on what is
meant by “important.” For example, to a moose walking across a landscape,
the conditions in the next step may be important (e.g., whether or not there
is edible food there). They may also be important to a behavioral ecologist
trying to construct individual-based models of moose foraging. But whether
or not they become important at population, ecosystem, and landscape levels
depends on positive and negative feedbacks between the moose and plant
growth and whether the recovery time of the browsed plant is longer or
shorter than the average return time of a moose to each plant (Moen et al.
1998). Thus, the importance of spatial heterogeneity depends on the scale of
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the question being asked, a point made numerous times in the recent eco-
logical literature and at this conference as well.

Disturbances create spatial heterogeneity in all systems almost by defini-
tion. To a crude first approximation, disturbances can be considered random
losses of a certain percentage of biomass, easily modeled through stochastic
linear processes such as Markov chains. Even when the dynamics are ran-
dom and linear and therefore simple, they can be “important.” Certainly, the
loss of 75% of the biomass of an ecosystem over some mean recurrence
interval and distributed more or less randomly over the landscape has large
effects on ecosystem properties. We have gained a great deal of understanding
of disturbances in ecosystems and landscapes through the application of
linear data analysis and modeling techniques. Nonetheless, perhaps the
more interesting and fruitful avenues for further exploration involve higher
order effects of disturbances on landscape patterns, taking into account how
and when heterogeneities created by one disturbance influence the spread
and nature of future disturbances (see Romme this volume). Do these
effects differ for different ecosystems? Do they depend on mean turnover
rate of biomass or nutrient capital within the ecosystem, the rate of dispersal
of component species, or the degree of mixing of materials, climatic condi-
tions, or other forcing functions?

The spatial heterogeneity created by directional flows appears to be
important when it affects the mass balance of materials in a local neighbor-
hood: the position of the local neighborhood with respect to surrounding
neighborhoods that deliver or receive materials from it must then be taken
into account. This is particularly important when the materials limit growth,
such as water, nitrogen, or photons of light, and especially when they are
amplified by positive feedbacks within the local neighborhood, such as
the formation of patterned communities in peatlands and arid lands. But we
have much more to learn about this. When do lateral transfers become
important and for what property or process? Is there a particular ratio of
lateral inputs to internal rates of cycling above which we must consider posi-
tion in the landscape and below which these lateral inputs can be ignored?
Are there particular positions in the landscape such as riparian zones for
which these lateral flows cannot be ignored? Do the importance of lateral
flows increase “down gradient”?

The patterned heterogeneities created when positive feedbacks are coupled
with different rates of diffusion between interacting trophic levels are
important when they modify the success of individuals or populations of
each trophic level in obtaining needed resources. This has obvious evolu-
tionary implications, because it means that the landscape of selection pres-
sures is dynamic precisely because of the interactions of individuals
searching for food. Such dynamics may particularly be important in ecosys-
tems in which herbivores control plant species composition and the cycling
of nutrients and energy, but again we need to refine further these consider-
ations. Does it matter how much the herbivore consumes? Or does the rate
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of recovery of plants from herbivore consumption matter even more? Or do
both matter?

If nothing else, the papers of this conference show that we are only at the
outset of being able to define the questions of how spatial heterogeneity is
created in ecosystems and what are the consequences of it. Making cross-
system comparisons will depend to what extent such questions can be more
precisely defined so that experimental approaches can be brought to bear
on them. The rich array of theoretical approaches to heterogeneity discussed
above may prove useful in helping to define these questions.
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Reciprocal Cause and Effect
Between Environmental
Heterogeneity and Transport
Processes

WILLIAM A. REINERS

Abstract

The objective of this paper is to explore the relationships between environ-
mental heterogeneities and the flows and movements that suffuse through
all environments. Flows and movements are treated as propagations of eco-
logical influence through environmental space. Propagations are composed
of four elements: (1) initiating events or conditions, (2) transport vectors,
(3) transported entities, and (4) deposition or impact processes. All four ele-
ments have multiple dimensions in type and scale, but vectors are the most
convenient means of discussing these phenomena. At a medial level of cau-
sation, 10 major vectors are convenient descriptors. These vectors are
molecular diffusion; transport by fluvial, colluvial, or glacial modes, gravita-
tional sedimentation, currents (tidal and extratidal), wind (with fire as a spe-
cial case) agencies; and by electromagnetic radiation, sound, and animal
locomotion. Obviously, each of these vector types has different behavior.
Propagations can be initiated, or modified by, environmental hetero-
geneities. But also, propagations can create, maintain, and destroy hetero-
geneities. Thus, reciprocal cause and effect relationships exist between
propagations and environmental heterogeneities. Analysis and understand-
ing of these reciprocal interactions between propagations and hetero-
geneities requires some understanding of the mechanics of propagations,
whether they involve wind, waves, or wallabies. In the same sense, analysis
and understanding of how environmental heterogeneities alter propaga-
tions requires an appreciation for the global range of heterogeneity types,
whether they are ripples, runnels, or run-on patches. Spatially explicit two- and
three-dimensional models of propagations in heterogeneous environments
are useful ways to develop understanding and, with caveats, to predict how
processes and patterns interact. Some of the representational issues of
building such models are reviewed in this paper, and three model examples
are described.
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Introduction

Although ecology has always been a geographically based science, for many
decades basic ecological research tended to have a point-model focus. With
some important exceptions (e.g., Watt 1947), this was reflected in the emphasis
on putatively homogeneous sites, whether stands or watersheds, as the appro-
priate representation of nature (Wiens 2000; Reiners and Driese 2004). This
was not true in applied areas of ecology such as forestry, wildlife, fisheries, and
range sciences where spatially distributed representations of nature were
imperative. Point models were of little use for predicting habitat usage by deer
or the dispersal of white pine blister rust. This perspective has changed for basic
ecology in the past two decades, however, as the point-model view of nature has
largely given way to a spatially heterogeneous representation of nature (Turner
et al. 2001; Chapin et al. 2002; Reiners and Driese 2004). With the advent of new
foci such as landscape ecology, conservation biology, and earth system science,
and with the practical application of tools for acquiring and managing spatial
data, the conceptualization of nature and the practice of basic ecology have
made the heterogeneous domain the primary focus (Turner et al. 2001).

A benefit of adopting a spatially distributed view of nature is an easier
incorporation of flows and movements into our visualization and treatment
of a spatially heterogeneous environment. Transport processes—so intrinsic
to the way nature operates—underlie many of the more interesting and
important aspects of ecology. Personal experiences tell us that transport
processes are influenced by environmental heterogeneity. By stepping around
the corner of a building on a windy day, for example, we notice significant
changes in our bodily comfort. A spatial approach to ecology now allows us
to appreciate, analyze, and model how spatial heterogeneity and transport
phenomena are reciprocally related.

The objective of this paper is to review how flows and movements of dif-
ferent kinds affect, and are affected by, environmental heterogeneity. This
paper is organized into six sections: (1) how transport phenomena act as prop-
agations of ecological influence, (2) how transport processes are affected by
environmental heterogeneity, (3) how propagations may produce, maintain,
and destroy environmental heterogeneity, (4) issues in the spatial representa-
tion and modeling of propagations, (5) three examples of propagation model-
ing in heterogeneous environments, and (6) how a propagation perspective
might influence our conceptualization of nature and ecology.

Transport Phenomena as Propagations
of Ecological Influence

Flows and movements can be generalized as propagation phenomena
entailing four components: (1) initiating events or chronic conditions, (2) a
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FIGURE 5.1. Diagram of the four components of propagation phenomena. Redrawn
from Reiners and Driese (2004).

conveyance mechanism or vector operating through one or more media,
(3) a conveyed entity, and (4) a locus of deposition or consequence (Figure 5.1)
(Reiners and Driese 2001,2003,2004). There are analogies between ecolog-
ically relevant propagations and information transfer; indeed, some propa-
gations primarily involve the transfer of information, such as the displays
and sounds of many kinds of animals (Bradbury and Vehrencamp 1998).
Propagations also involve transport of matter, such as slope-wash, or of
energy, such as momentum of wind. Some, but not all, propagations are
viewed as “fluxes” because with propagation, some quantity of an entity
must move through some space or point at some rate. However, quantity
and rate are not the essence of some propagations so that “flux” is too nar-
row as a general descriptor.

Initiating Events or Conditions

Events or conditions initiating propagation can range from spatially dis-
crete and brief phenomena, such as the crack of a twig under a predator’s
paw, to something as large and pervasive as an earthquake resetting slope
angles and stream grades. In fact, initiating causes can vary in at least seven
distinct ways. Initiating causes (1) can be characterized by the kind of envi-
ronment in which the events or conditions occur, (2) may be of abiotic or
biotic origin, (3) can emanate from a natural process or an anthropogenic
action, (4) may be discrete events or chronic conditions, (5) have a spatial
extent, (6) can vary in duration of the action, if they are discrete events, and
(7) may have a periodic character, if they are discrete phenomena.

Properties (4) through (7) in the list above are relativistic problems,
requiring explicit definitions of the scalar context for the immediate case in
question (Peterson and Parker 1998). Determining the origin of cause is,
itself, relativistic as illustrated by the familiar butterfly effect (Gleick 1987).
Definition of causation at a distal level, however, may be philosophically
satisfying but mechanistically frustrating. It really is not useful to know that
the stroke of a butterfly’s wing will ultimately lead to a tornado in Topeka.
It is more useful to seek causation at a more proximal level (sensu Robertson
1989) such as meteorological dynamics over the Central Plains.
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The extent of the initiating cause should not be confused with the extent
of environmental space that is impacted. The extent of crustal displacement
along fault scarps related to earthquakes may only be centimeters to meters,
but the extent of the earth’s surface disturbed by these displacements may
be thousands of square kilometers. Similarly, a chronic condition like an
acid mine seep may occupy square meters, but its outflows may alter stream
chemistry for many kilometers.

Entities

Propagations require that something be transported from the site of initia-
tion to the locus of deposition (Figure 5.1). A neutral word for the item
transported is entity. An initially simple approach is to classify entities into
parcels of energy, matter, or information. Further thought reveals, however,
that many entities one might consider to be energy also involve matter, such
as the energy of atmospheric momentum. Likewise, many forms of matter
bear with them some measure of energy, such as free energy of organic mat-
ter or reduced inorganic matter, or the momentum of transport itself.
Finally, it may be neither the energy nor the material content itself but the
information content that may impact the target destination. This is particu-
larly true of biological targets. The transport of coded light signals generated
by insects or fish, of programmed sounds such as mating calls of birds, or of
genetic information bound in transported spores, pollen, and seeds are
important from an informational point of view, not for incorporated energy
and material content.

The definition of entities is dependent on their locus of deposition and on
the point of view of the observer. Waves beating on the base of sea cliffs may
be viewed as products of wind energy transformed to hydraulic energy
eroding the cliff base through mechanical action. In this sense, the individ-
ual waves are energetic entities. But the waves also consist of water with dis-
solved and suspended substances, so that matter as well as energy is
transported via wave motion. Whether waves moving onshore are material
or energetic entities depends on the observer’s phenomenological interest.

Vectors

Propagations require a transport mechanism to move entities from places of
origin to loci of deposition (Figure 5.1). Vector is a term for any agent pro-
viding transmission of an entity across space (Weins 1992). As with initiating
causes, an operational level has to be selected for determining vectors. It is
possible to generalize broadly and attribute a multitude of vectors under
the category of gravity (e.g., surface and groundwater flows, tides, and mass
wasting events). Obviously, this level of causation does not provide much
useful information. At the other extreme, we can describe vectors in utmost
detail that extends to particular cases, such as exactly the kind of mass wasting
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process (e.g., Summerfield 1991). An intermediate position between most
distal and most proximal definitions of causation underlying vectors is used
in the following discussions.

Consequences

Eventually, transported entities are deposited, resulting in consequences
somewhere in environmental space (Figure 5.1). Deposition may involve
dissipation of heat, the triggering of an epidemic, absorption of sound
waves, or the insertion of a new genetic variant. As emphasized earlier for
causation and entities, definition depends on the viewpoint of the observer.

Propagations as Space-Time Phenomena

In some cases, it is acceptable and appropriate to view propagations at their
terminus of action, or as instantaneous phenomena, so that their trajectories
through time can be ignored. But, the fact that propagations take place over
finite periods of time must be kept in mind. Propagations are both spatial
and temporal phenomena (Kelmelis 1998; Reiners and Driese 2003, 2004).
The areal or volumetric extent of the zone of deposition, impact, or conse-
quence changes over time, whether it is the spatial extent of a snow ava-
lanche rollout during the fractional seconds of its passing, the expanding
seepage zone of a pollutant leak as its plume flows outward over days and
years, or the nearly continuous flux of trade winds. Obviously, the spatial
extent of a propagation is related to the viewer’s temporal scale; the longer
the time, the greater the extent in many, but not all, cases. Extended further,
propagation time-awareness implies that heterogeneities in the environ-
ment, such as depressions and mounds found on forest floors left by tree tip-
ups, are legacies of propagations past. Thus, a local environment, however
defined, is a product of ongoing propagations of varying types, frequencies,
periodicities, and intensities, as well as of propagations of the past.

How Transport Processes Are Affected
by Environmental Heterogeneity

Effects of Heterogeneous Media on Propagation Initiation

Environmental heterogeneities not only influence the transport of entities
but also may be the immediate initiators of propagations (Figure 5.2). A
riverine flood plain meandering through a grass- or shrubland can be a
sand source for dune systems that may stretch for hundreds of kilometers
downwind of the flood plain (Knight 1994). Analogously, an acidic spring
can alter stream chemistry for many kilometers downstream (Schnoor
1996). Initiations caused by heterogeneities may be probabilistic as well as



72 5. Reciprocal Cause and Effect

| PROPAGATIONS ’\
f
T 47

INITIATE CREATE
MODIFY ,
MAINTAIN ~ DESTROY

‘ HETEROGENEOUS DOMAIN l

FIGURE 5.2. Diagrammatic relationships between environmental heterogeneities
and propagations. Heterogeneities can initiate and very frequently modify the flow
paths and intensities of propagations. Propagations, on the other hand, may be
essential to create, maintain, or destroy environmental heterogeneities.

deterministic. There is a higher probability of lightning strikes on high
ground than on low in terrain with relief. There is a higher probability of
high nitrate fluxes from cultivated source areas than forested source areas
on third-order watersheds (Herlihy et al. 1998).

Effects of Heterogeneous Media on
Propagation Flow Paths

On a perfectly homogeneous and infinite plane or in a homogeneous vol-
ume, a physically driven propagation would move across the plane or
through the volume simply as a function of the underlying physics of the
driving vector. In fact, such perfect propagations rarely occur because of
environmental heterogeneity. In a finite world composed of a layered
atmosphere overlying continents of variable roughness interspersed, in
turn, among oceans, the media through which propagations are transmitted
vary in space and time. Further, media interfaces like the land-atmosphere
interface or the sea-atmosphere interface modify transport processes.
Although much transport modeling has concerned itself with ideal cases
involving putatively homogeneous media, for ecologists, the more interest-
ing cases involve cases featuring heterogeneous environments (Kelmelis
1998; Reiners and Driese 2001, 2004).

The influence of heterogeneity on transport processes obviously depends
on the physics or biology of the entities and vectors involved. For example,
molecular diffusion must move from areas of high concentration to low.
Stronger effluxes of biogenic gases emanate from soils where the dog is
buried. Of course, burying the dog was yet another propagation event, in
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this context an accident of history. Once initiated, diffusion rates will be
pathway-controlled, as described in the example in the next section. It
should be noted that the term diffusion is used here strictly in the physical
sense of heat or molecular movement in response to concentration gradi-
ents. Diffusion is also used by others as an analogy for other dispersal
processes, especially those occurring over extents of meters to kilometers,
involving composite transport processes, or even cultural transfers (e.g.,
Banks 1994; Barrell and Pain 1999; Nakicenovic and Grubler 1991; Okubo
and Levin 2001; Turchin 1998).

For all vectors driven by gravity, surface topography or variation in sub-
surface properties are the primary source of heterogeneity. Water, rocks, ice,
and particles move downward in response to gravity in cases of transport by
fluvial, colluvial, or glacial modes and with gravitational sedimentation. In
both subaerial and submarine environments, flows tend to initiate at higher
points in the topography, but then flow directions and flux fields are directed
by topographic variability. For groundwater flows, the effective topography is
subsurface variability in conductivity. To an extent, some currents are also
gravity driven by either astronomical forces or by the earth’s gravity on den-
sity gradients. Although it is ultimately true that tidal currents are initiated
by gravitational pull of the sun, the moon, and other planets, the better expla-
nation at a global level is that irregularities of the sea surface caused by these
attractions lead to water running “downhill” from high areas to low on the
oceanic surfaces (Mellor 1996; Pinet 1998). In this sense, topographically
directed gravitational fields are both initiators and modifiers of fluid flows.

Both aquatic and marine nontidal currents and wind are ultimately
derived from differential heating over space but are then directionally
altered by Coreolis force, boundary constraints (bottom surfaces, islands
and continental interfaces), surface roughness, and by density gradients
established by temperature and salinity differences. Thus, at all scales, cur-
rents and wind are initiated, or powered by, environmental heterogeneities.
Whether these causes are initiating or modifying factors depends on one’s
scale and vantage point. Nocturnal, downslope winds originate at high ele-
vations and dissipate at low elevations. At the scale of a mountain-valley
complex, an observer would describe such winds as differential air densities
associated with altitude. At the scale of a mountain slope segment, an
observer would contend that topography constrained the velocity and
direction of the propagation.

Electromagnetic radiation, including all wavelengths occurring on the
earth, encompasses radiation from the sun and the moon, from all sub-
stances on and in the earth, and biologically generated light (Bradbury and
Vehrencamp 1998). Obviously, radiation originates from sources, sometimes
diffuse, like the atmosphere; sometimes from specific points, as from a bac-
terial cell. Once emitted, radiation can be refracted at media interfaces,
absorbed, scattered, or reflected by substances suspended in any translucent
material. Some of these substances can be large, like plant leaves, producing
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complicated direct light environments (Endler 1993). These large and small
objects then become elements of environmental heterogeneity for radiation
transfer.

Sound is in many ways analogous with light and diffusion. Sound may
come from extensive sources like surf along a beach or from highly concen-
trated sources like a rasping cicada. In either case, sources are discrete
elements of environmental heterogeneity. Sound dispersal is then very
much controlled by heterogeneities in the transporting medium like thermal
layering in air and water or by reflective barriers like hills and sedimentary
plumes in water.

There are many ways in which environmental heterogeneity underlies the
initiating condition for transport by animal locomotion. Pollen transport by
insects from plants in one wetland site to another or forage transformation
of grass to feces could be initiated in an upland grazing site, then trans-
ported to, and deposited in, a lowland watering site. As Aldo Leopold
observed years ago, animals tend to feed high and transport altered materi-
als to low points on the landscape (Leopold 1949).

The previous paragraphs illustrate how many propagations are initiated
and directionally modified by environmental heterogeneities. As with many
things ecological, definition of initiation is scale-dependent. To say that the
Gulf Stream is part of a global transport complex receiving its name from the
Gulf of Mexico is true and useful from a global perspective, but for those liv-
ing on Bermuda, the Gulf Stream is a continuous flux that controls local
water and air temperature. Also, when one views propagations over time, the
importance of differential stochasticity becomes apparent. Some insect out-
breaks leading to out-migrations are more likely to occur in old-growth for-
est stands than younger stands in heterogeneous, forested environments
(Holling 1987). Similarly, mass wasting events are more likely to occur on
slopes oversteepened by lateral cutting by streams below than on slopes
above aggrading portions of the flood plain. Fluvially transported nitrate is
more likely to originate from agricultural fields than from forest plots on a
multiple-use watershed (Herlihy et al. 1998). Depending on the entity and
vector, it is possible to map the probability of initiation and subsequent flow
direction based on patterns of relevant environmental heterogeneities.

How Propagations Produce and Destroy
Environmental Heterogeneity

The Role of Propagations in Creating and
Maintaining Environmental Heterogeneity
The foregoing sections have emphasized the influence of environmental

heterogeneity on propagations, both in their initiation and modification. In
fact, there is a marked reciprocity between propagations and environmental
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heterogeneities inasmuch as the latter are often generated by, and subse-
quently maintained, modified, or obliterated by transport processes. In fact,
one could make an argument that all environmental heterogeneity is caused
by propagations. To take the extreme case, two of the most common and
dominant forms of heterogeneity—topography and surface geology—are
created on one hand by tectonics and volcanism (mass movements of the
earth’s crust), and, on the other hand, by erosion and deposition by various
forms of gravity- or wind-driven transport. Although this extreme case may
be true, such a broad view will be set aside because it defeats the usefulness
of considering propagations as an active part of nature on shorter timescales
typically used by ecologists.

More practically, let us consider the kinds of heterogeneity found in the
environment at less than the scale of landscape evolution. For the purpose
of this discussion, we can divide heterogeneities into those that are anthro-
pogenic, such as road networks and land-use patterns, and those that are
products of more or less natural processes. The latter class includes oceanic
currents, gyres, and eddies (Barber 1988); stream networks (Harmon and
Doe 2001; Smith et al. 1997); intrastream bars and banks (Fisher and Welter
2004); dune systems (Yaalon 1982); forest gap mosaics (Bormann and
Likens 1979; Pastor et al. 1998); fire patches (Romme 1982); and various
kinds of linear, wave-like structures observed in oceans (Mellor 1996), lakes
(Kratz et al. this volume), and on land (Billings 1969; Sprugel 1976; Klaus-
meier 1999; Hiemstra et al. 2002; Wu et al. 2000; Tongway and Ludwig 2004).
Of course, there can be interesting interplay between human-caused versus
naturally caused patterns—an interesting topic in itself.

Within this range of examples, it is difficult to discern a case in which
transport processes at an ecological time frame are not involved in produc-
tion or maintenance of patterns. However, there surely are such cases, and
they must carefully be sought out (Butler et al. 2003). For example, it is pos-
sible that some of Watt’s classic cases of pattern and process of tussock or
clonal patterning are totally autogenic and independent of resource flows
(Watt 1947). A careful review of the large number of cases of environmen-
tal heterogeneities would be necessary to characterize patterns of causa-
tion. Nevertheless, it seems that many heterogeneities are created by either
episodic propagations like glacial advances and retreats, wind storms, fires
(a special case of wind), and other large-scale extremes, or by the interac-
tions between biological damage by propagated physical stressors and
resource sequestration provided by material fluxes.

The latter class of heterogeneities, those caused by interactions between
propagated stresses and resource fluxes, is of particular interest to ecologists
because of the seemingly self-organizing nature of such patterns. Patterned
heterogeneities of this type were first described by Watt (1947) under the
title “pattern and process,” the meaning of which is how pattern reveals, and
is caused by, process. Pattern and process has since been described numer-
ous times. It was reviewed by White in 1979 and by Turner in 1989 and is the



76 5. Reciprocal Cause and Effect

dominant theme of a recent landscape ecology book (Turner et al. 2001).
“Process” in pattern and process actually has dual meanings: the processes
underlying construction and maintenance of the physical pattern (sensu
Watts 1947), and collective processes resulting from the pattern (e.g.,
Schlesinger et al. 1996). In fact, causative processes on one hand, and result-
ing processes on the other, may be restatements of the same phenomena.
That tussocks capture water, organic matter, and nutrients transported
downslope by sheet-wash describes the concentration of resources and
extraordinary plant growth in islands or stripes and explains the result—the
existence of those plants. The coincidences of reproductive mode (or plant
life span) and crucial lengths between resource collection areas versus accu-
mulated stressors leading to plant demise and the existence of vegetated
patches are just interesting details crucial to the local example (Ludwig et al.
2000). The principal point here is that these kinds of self-organizing phe-
nomena often depend on transport processes, so that there is a constructive
relationship between environmental heterogeneity and propagations.

The Role of Propagations in Destroying
Environmental Heterogeneities

The intimate relationship between propagations and environmental hetero-
geneities is enhanced further by the fact that episodic propagations like
tsunamis, hurricanes and tornadoes, ice storms, landslides, floods, fire, and
lightning strikes also obliterate heterogeneities and possibly create new ones.
If the intensity of a propagation event is sufficient and its footprint larger than
the grain of the heterogeneous pattern, destruction of the antecedent hetero-
geneity, patterned or not, will result. Of course, a subsequent heterogeneity
will then be established. Scaling relationships between destructive distur-
bances and heterogeneities probably exist for individual environments and
episodic propagations characteristic of that environment. For example, there
may be a scaling relationship between tree age and windstorm strength for a
given vegetation type that will, most of the time, maintain a gap-phase mosaic
but beyond which will occasionally destroy enough forest to eliminate the
original, finer grained mosaic pattern (Foster et al. 1998).

Spatial Representation and Modeling Propagations

To this point, the discussion of propagations and heterogeneities has been
general and abstract. What about measurement and prediction in realistic
situations? How are propagations through spatially varying media and over
irregular surfaces actually measured in nature? Examples are found in sev-
eral environmental science disciplines such as geomorphology (earth sur-
face processes), hydrology, atmospheric sciences, epidemiology, animal
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behavior, oceanic hydrodynamics, fire science, and aerobiology (Reiners
and Driese 2004). In many, if not the majority of cases, propagations are esti-
mated by scaling up from a few point measurements. Scaling up may be a
simple statistical process, such as kriging, but it usually involves joining
observations with representations of the spatial domain with or without a
Geographic Information System (GIS) (Fischer 2000; Fotheringham 2000)
through some kind of modeling. Large-scale examples are global circulation
models that assist in weather forecasting. These are highly mature three-
dimensional models operating in a spherical geometry and incorporating
(assimilating) point measurements from around the globe to update climate
dynamics in order to estimate fluxes of energy and matter throughout the
atmosphere (Henderson-Sellers and McGuffie 1987).

Modeling propagations over and through heterogeneous environments
introduces two kinds of issues. The first is about environmental representa-
tion with spatial data; the second about simulating transport processes
themselves in variable environmental fields. Discussion of these vital, method-
ological topics goes beyond this paper. Portals to this voluminous literature
are Longley et al. (1999, 2001), Clarke et al. (2000), Varma (2002), and
Reiners and Driese (2004).

Producing Areal Estimates from Point Models of Flux
Through Spatially Distributed Modeling

A commonly desired estimate is for vertical fluxes of energy or matter from
sediment to water column, from water column to atmosphere, from atmos-
phere to soil, and so forth, extrapolated over a heterogeneous spatial domain.
These are usually derived from point models (zero-order models), the outputs
of which are varied according to heterogeneity of the spatial domain. Varia-
tion in the spatial domain can be represented in either vector (discretized
map units based on aggregated environmental features) or raster (regular
or irregular tessellations like rectangular raster) format (Burrough and
McDonnell 1998). Outputs from all of the representative areas are then
summed to give domain-level estimates of flux.

One assumption in such operations is that there are no lateral transfers
between the representative areas within the time frame of the modeled phe-
nomenon. If lateral fluxes do occur, they are parameterized or subsumed
within site properties of the areas represented by the point models. For
example, Reiners et al. (2002) estimated trace gas fluxes over a region using
1-ha cell rasters for six environmental variables. Lateral drainage transfers
probably occur between the 1-ha cells but were assumed to be negligible
over the time frame of the estimates (days to a year). Had the modeling
time frame been extended to decades or centuries, estimates of lateral trans-
fers between map units would have been required.

If some measure of variance with the estimated flux from the entire
modeled domain is desired, it becomes necessary to account for covariance
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relationships for the multiple environmental drivers represented by multi-
ple, overlain data sets. In fact, this is rarely done. In the same example cited
above (Reiners et al.2002), some of the spatially distributed data, such as soil
texture, had statistical distributions rather than singly determined, categori-
cal values (e.g.,landcover type for each raster cell). Iterated model runs using
random values drawn from these distributions served to produce replica-
tions of output from which means and variances, including covariances, could
be calculated. Means from cohorts (tuples) covering the domain were added,
and variances pooled, to gain summations of regional, vertical propagation
with estimates of variance properly incorporating covariance. Regional esti-
mates were also calculated with the typical method of simply summing singly
determined values for cohorts. This latter, more commonly used method led
to an underestimate of 8% for one gas and 18% for another.

Modeling Propagations Moving Laterally Across
Heterogeneous Environmental Fields

Perhaps more interesting are lateral propagations across heterogeneous
environments. As wind blows across, or animals move through, terrain with
variable vegetation cover, environmental heterogeneity influences the trans-
port process itself. In other words, there are explicit interactions between
points on the domain. These cases require two-dimensional spatial modeling,
and in some cases, demand three-dimensional approaches. Two-dimensional
modeling can involve vertically oriented as well as horizontally oriented
planes. Glacial movement and oceanic currents are frequently modeled as
vertical, two-dimensional planes (Holland 1986; Mellor 1996; Konrad et al.
1999). Of course, vertical plane, two-dimensional modeling can be combined
with representations of environmental variation on orthogonal, horizontal
planes to produce a pseudo-three-dimensional system. Two examples follow
in a later section. Others are reviewed in Reiners and Driese (2004).

Modeling Three-Dimensional Processes
in Two Dimensions

Although most propagation phenomena are actually three-dimensional in
physical character, many, if not most, are treated in two dimensions. This is
managed by parameterizing the third dimension as functions of features
represented in the two-dimensional map units. For example, transport by
wind involves eddy formation and turbulent transfer between the atmos-
phere and land and water surface. These interactions are three-dimensional
but are “flattened” to two dimensions by parameterizing roughness length
and effective surface element height for the two-dimensional plane (Garratt
1992). Similarly, subsurface flows in hydrology models are handled in two
dimensions by parameterizing estimated porosities and saturation values of
watershed spatial units (Beven 2001).
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What is lost by flattening propagation processes to two dimensions?
Depending on the objectives, this flattening may be perfectly acceptable. In
fact, given all the additional data, modeling and computations needed to
treat explicitly the third dimension, a two-dimensional approach may be the
more intelligent one. As with admonitions about using the proper data
structure and scale, however, it is essential that investigators be aware that
adoption of widely used practices may be inadequate for the question being
addressed. If, for example, dry deposition to various layers of a three-
dimensional forest canopy must be known, a three-dimensional approach is
necessary. Similarly, if detailed subsurface conditions in the hyporheic zone
are essential to predicting biogeochemical processes (Hedin et al. 1998; Hill
et al. 1998; Schindler and Krabbenhoft 1998; Fisher and Welter, this vol-
ume), and these must be known over a horizontally variable domain, then
three-dimensional modeling will be necessary.

Three-Dimensional Modeling

It would seem that true, three-dimensional propagation modeling would be
important to ecology. The foraging of martens on the ground and up trees,
the spatially distributed deposition of nitric oxide within forest canopies, the
changing redox state of soil aggregates with rainfall events, are all important
phenomena that might best be dealt with in three-dimensional framework.
There has been little development in this area in ecology, partially because
of the enormous computational and parameterization demands of three-
dimensional modeling, but also because of the lack of conventional software
packages equivalent to GIS. Some of the conceptual potentials and problems
in this area are reviewed by Couclelis (1999), Rogowski and Goyne (2002),
and Peuquet (2002). More such work has been done in climate modeling,
groundwater pollution, and oil and gas exploration and “production.”
Three-dimensional vector and voxel (cubic “pixels”) methods are both
available in these fields, and ecologists might be advised to investigate these
possibilities for appropriate ecological problems.

Yet another technological frontier is the addition of the fourth dimension—
time—to these problems. Ecologists usually regard nature in four dimensions,
and the time will come when they will want to model in four dimensions
as well. For thoughtful treatments on four-dimensional representations, see
chapters in Egenhofer and Golledge (1998) and Longely et al. (1999).

Three Examples of Propagation Modeling
in Heterogeneous Environments

To better describe how propagations are modeled for heterogeneous envi-
ronments, this section demonstrates how three vectors have been modeled
to incorporate environmental heterogeneity (from Reiners and Driese
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2004). The three examples are wind transport, molecular diffusion, and ani-
mal locomotion. Particular attention is paid to choice of environmental
variables incorporated into the environmental representation, choice of
environmental data structure, extent of modeling domain, modeling grain
size, time steps used, how three-dimensional processes were handled, and
the data platform and modeling languages typically used.

Wind Transport

Wind is the motion of air relative to objects. It is one of the more perva-
sive transport vectors in the environment and features high variability in
its direction and velocity. Wind entrains, transports, and deposits sensible
heat, latent heat, hydrometeors, gases, and aerosols. Aerosols include con-
densation products of atmospheric chemistry, soot, soil dust, salt spray,
hydrometeors, and biological products. Biological aerosols include detritus,
pollen, spores, seeds, fruits, and living invertebrates (Isard and Gage
2001). The relative importance of wind transport in environmental space
varies locally depending on source strengths, wind trajectories and velocities,
and surface properties (Reiners and Driese 2004).

A model for transport of snow by wind was adapted by Reiners and
Driese (2004) from Hiemstra et al. (2002) for treeline in the Medicine Bow
Mountains, WY. This model was adapted, in turn, from Liston and Sturm
(1998). Static (in the time frame of the model operation) spatial data over
the domain—the elements of environmental heterogeneity—are elevation,
slope and aspect, patches of trees and krummholz, and the snow-holding
capacity of vegetation types (Figure 5.3A). Temporally varying inputs—
other aspects of environmental heterogeneity—include wind speed and
direction, precipitation rate, temperature, and humidity. Model mechanics
are based on calculated wind velocity at the surface and on the shear
strength of the snow. All spatial data are represented in a 5-m rectangular
raster. The entrainment, transport, and deposition of snow are parameter-
ized with respect to topography and boundary layer surfaces. Thus, the third
dimension is parameterized in terms of the surface plane so that this is a
pseudo-three-dimensional model distributed over a two-dimensional sur-
face. (See Figure 5.3B for results of one model run.) This example shows
how a pseudo-three-dimensional approach is adequate for propagation
processes in which the flux or deposition is expressed in terms of area.

Molecular Diffusion

Diffusion is used here in the original sense of heat and mass transfer by the
movement of molecules, or very small particles, due to their kinetic energy
(Harris 1979; Monteith and Unsworth 1995). This is in contrast to the usage
of diffusion described above as a default model for complex phenomena
that are difficult to parameterize at the scale of the actual processes (e.g.,
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FIGURE 5.3. (A) Topography and tree vegetation of the Libby Flats treeline area of
the Medicine Bow Mountains, WY. The area is 500 X 500 m in extent, and the eleva-
tion ranges from 3224 to 3239 m. Lighter shades are associated with higher elevations.
Elevation contours are in black, and the areas occupied by trees are represented as
dark pixels. (B) Modeled snow depths with darker shades indicating more snow. Black
contours are elevation; white contours are snow depth. Snow depth ranges from 51 to
121 cm. Higher, windward (wind flows from left to right) locations tend to have less
snow; positions leeward of topographic highs and trees tend to have more snow.

Pastor et al. 1998; Turchin 1998; Choy and Reible 2000; Hemond and Fechner-
Levy 2000; Okubo and Levin 2001). Molecular diffusion involves transport
lengths of only millimeters to centimeters but occurs over enormous surface
areas ranging from the aggregate surface areas of bacterial cell walls to the
ocean-atmosphere interface.

Reiners and Driese (2004) modified SNOWDIFF, a model originally for-
mulated to simulate one-dimensional gas diffusion from soil through the
snow pack to the atmosphere at one place on the landscape (Massman et al.
1997), to a two-dimensional mode. Diffusion is based on Fick’s law with the
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FIGURE 5.3. (Continued)

concentration gradient based on measured soil and atmosphere concentra-
tions and resistances estimated from individual layers by thickness, porosity,
tortuosity, and temperature. Environmental variables used in the point
model—the elements of environmental heterogeneity—are snow depth and
porosity by layers. There is no estimate of lateral diffusion between points
(cells). CO, diffusion is extrapolated over the same 500 X 500 m treeline
domain described previously for the wind model by running the model for
each 5-m cell in a raster representation of landscape for which snow prop-
erties are known. Because flux is entirely a property of diffusion of gas
through snow and largely controlled by snow depth, estimates of gas flux
(Figure 5.4) are very similar to estimates of snow depth (Figure 5.3B). This
is actually a one-dimensional model run repeatedly over a two-dimensional
grid of snow profile properties to estimate a vertical flux in a pseudo-three-
dimensional space without lateral transport.
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FIGURE 5.4. CO, efflux rates as a function of snow distribution (Figure 5.3B) resulting,
in turn, from factors represented in Figure 5.3A. Black contours represent elevation;
white contours indicate snow depth (see legend for Figure 5.3B). Lighter shades
indicate higher CO, flux rates. Flux rates in this model output range from 3.9 to 9.1

mgmu Zsu .

Animal Locomotion

Locomotion is found in some stage of all members of the earth’s biota but is
particularly marked in animals and protists. As animals disperse, forage, flee,
and mate, they move through environmental space—both aquatic and ter-
restrial, fluid and solid. In their movement, animals act as vectors by trans-
porting their own biomass and leaving a trail of their influences, whether it
is foraged materials, mechanical alterations of the medium, or exuvia.
Reiners and Driese (2004) produced a pine marten movement model to
illustrate how some simple rules and environmental representations could
lead to movements similar to those recorded in the field. The landscape
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FIGURE 5.5. Map of simulated pine marten travel trajectory in a heterogeneous
Rocky Mountain subalpine environment. The dark black patch in the center of the
figure is a lake, a habitat type that is crossed quickly due to exposure to predators. The
dark gray is the best habitat, medium gray is moderate quality, and light gray is poorest
quality habitat. The line trace indicates 500 simulated movements of 5 m each.

configuration is based on actual U.S. Forest Service land cover data for an
area of 1 X 1 km in the Medicine Bow National Forest. It is a two-dimensional
vector-based representation of three levels of habitat suitability (high,
medium, and low), plus water (Figure 5.5). In this case, environmental het-
erogeneity is represented as relatively large polygons relative to scale of
animal movement. Rules for marten behavior were derived from observa-
tions on tracks in the snow. These were converted to probabilities of
martens crossing habitat boundaries and turning angles made in transit
through the environment as functions of the habitat type. Field data showed
that angles were more acute in favorable habitat and obtuse in unfavorable
habitat like water. Animal location and movement in the model is vector-
based in the two-dimensional environment represented by the vector habi-
tat layer (Figure 5.5). For heuristic purposes, users can vary turning angles
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associated with habitat types, number of time steps, and distance traveled
per time step. This example illustrates how individual animal movement
modeling may be done and subsequently coupled with animal impacts such
as predation or habitat alteration.

How Might a Propagation Perspective Influence Our
Conceptualization of Nature and Ecology?

How we individually create mental frameworks for environmental hetero-
geneity and propagations is conditioned by our personal experiences, our
intellectual predilections toward what we see, and our methods for representing
nature. This is as true in natural science as it is in philosophy, religion, and
art. The ways that ecologists view a landscape or seascape are influenced by
what they know and how they individually represent nature based on their
personal and disciplinary experiences. Interviews with several ecologists
examining a common scene can reveal disparate “visions” of the scene.
Some ecologists instinctively seize upon common color or textural “blocks”
in the landscape (patch mosaic or patch matrix) as a means of mentally
organizing variation in the domain in question regardless of what the eyes
see. Others force a landscape image into raster cells similar to a remotely
sensed image by ignoring unifying elements (continuous variation). Some
ecologists will “see” environmental gradients, whereas others will “see” the
imprints of historical events. Some see clues of ongoing change, whereas
others see static patterns. Outside of ecology, many atmospheric scientists
and oceanographers “see” their realms in terms of wave spectra. Our envi-
ronmental cognitions vary in surprising ways and to considerable degrees.

How might a sense of flows and movements in all their variety influence
our views of nature? Combined with sensitivity for heterogeneity at all
scales, how would this alter our views of the environment? In the extreme,
we might envisage the world as composed of temporary structures having
more or less heterogeneity at given scales and bathed in a range of flows of
variable intermittency and influence that alternatively create and destroy
the heterogeneous features. Such a vision would return ecology to the spa-
tial and geographic science that it once was.
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Perspectives from Different
Disciplines



Editors’ Introduction to Section II:
Perspectives from Different
Disciplines

Many different scientific disciplines have to deal with spatial heterogeneity
as a normal part of their systems of study. In this section, we asked repre-
sentatives of four different disciplines to discuss how spatial heterogeneity
is treated in their discipline, particularly in conceptual and mathematical
models. The disciplines we chose are all tangentially related to ecosystem
science—close enough to be relevant, but distant enough to be instructive.
The result is a series of four distinct papers, each illuminating in its own way.

Lenore Fahrig and Bill Nuttle (Chapter 6) discuss the role of spatial het-
erogeneity in population ecology, beginning by tracing developments that
led from a nonspatial approach to a spatially explicit perspective in this field.
They emphasize the importance of separating the effects of compositional
and configurational heterogeneity of the landscape and hypothesize that the
effects of composition will generally be more important in determining pop-
ulation persistence. They reason that the effects of landscape configuration
will be mediated primarily through influence on organismal movement and
suggest conditions under which this influence may be important for popula-
tion persistence. They then extend these ideas to consider when landscape
configuration may influence ecosystem processes.

Christina Tague (Chapter 7) reviews the importance of spatial hetero-
geneity in hydrological models, including heterogeneity in inputs and
parameters as well as the heterogeneity in underlying physical processes.
She provides an overview of the different approaches used to represent spa-
tial heterogeneity in hydrologic models, including spatial averaging and the
use of “effective parameters,” probabilistic distributions of parameters, and
aggregation and partitioning strategies. These modeling techniques should
be very useful to ecosystem scientists, who have to deal with similar prob-
lems: enormous variation across multiple scales of interest and insufficient
data to characterize the fine-scale variation. As Tague points out, develop-
ment of coupled ecological-hydrological models is complicated but is likely
to advance both disciplines.

David Smith (Chapter 8) points out some interesting parallels between epi-
demiology and ecology; for instance, from the point of view of an infectious
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agent, a host organism is a habitat patch, and determining who comes in con-
tact with whom is analogous to configurational heterogeneity in a landscape.
Smith discusses the overwhelming complexity of disease transmission and
argues for parsimony in modeling it. As he says, . . . heterogeneity should be
weighed and ignored, whenever possible.” Nonetheless, he notes that hetero-
geneity usually does matter in disease transmission, and understanding the
influence of spatial processes on the nonlinear aspects of epidemics often
requires a model. He summarizes various modeling approaches used in epi-
demiology and gives examples of case studies in which heterogeneity was
found to be important

The final in this paper in this section (Chapter 9) is by an oceanographer,
Amala Mahadevan. This paper could just as easily have been included in
Section I1I (Illustrations of Heterogeneity and Ecosystem Function), but we
chose to include it here because of its unique perspective in integrating tem-
poral and spatial heterogeneity. Mahadevan views heterogeneity as a
dynamic entity, constantly created and dissipated by processes in the upper
ocean. She mathematically describes the balance between generation and
dissipation of heterogeneity as a function of the scale of the process being
considered and describes how heterogeneity can be shifted from one scale
to another. She also discusses how nonlinearities in processes can make it
difficult to scale up.

Taken together, these four papers present a broad range of techniques
and perspectives that can be used to conceptualize and model spatial het-
erogeneity in ecosystem processes. Each paper emphasizes the complexity
of fully incorporating spatial processes into conceptual and mathematical
models, and each discusses approaches to simplification that make the prob-
lem tractable.
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Population Ecology in Spatially
Heterogeneous Environments

LENORE FAHRIG and WILLIAM K. NUTTLE

Abstract

Historically, population ecologists have equated environmental spatial het-
erogeneity with habitat spatial structure. Early models represented habitat
spatial structure simply as population subdivision into habitat patches.
Later models included at first partially and then fully explicit representation
of the spatial relationships among habitat patches. More recently, landscape
population ecologists have broadened the view of spatial heterogeneity to
include the composition and configuration of the whole landscape. A
change in landscape composition refers to a change in the cover types in the
landscape, the proportions of each, or both. A change in landscape configu-
ration refers to a change in the spatial pattern of cover types, independent
of any change in landscape composition. We hypothesize that changes in
landscape composition generally have much larger effects on population
persistence than changes in landscape configuration. Landscape configura-
tion should have a large effect on population persistence when both (i) con-
figuration has a large effect on among-patch movement of the organism and
(ii) among-patch movement has a large effect on population persistence.
The first condition should hold for species whose movement direction is
constrained, and the second condition should hold either (i) when coloniza-
tion of empty habitat is important for persistence or (ii) for species that
require more than one type of habitat. We discuss extensions of these ideas
to the effects of landscape configuration on ecosystem processes.

Introduction

The potential effects of environmental spatial heterogeneity on population
dynamics and interactions have been of concern to population ecologists for
decades. In this chapter, we review the ways in which spatial heterogeneity
of the environment has been incorporated in models of population dynamics
and interactions. We then discuss the current view of spatial heterogeneity
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in landscape population ecology, and we review the evidence for effects of
compositional heterogeneity and configurational heterogeneity on popula-
tion ecology. Finally, we present a hypothesis that predicts the circumstances
in which a change in landscape configuration should have a large effect on
population ecology, and we discuss possible extensions of the hypothesis to
effects of landscape configuration on ecosystem processes.

History of Environmental Spatial Heterogeneity
in Population Ecology

The ways in which population ecologists incorporate environmental hetero-
geneity into population models have changed markedly over time. In this sec-
tion, we review the implicit and explicit representation of environmental
spatial heterogeneity in models of population dynamics and population inter-
actions. Our review is limited to models in which the underlying environment
is spatially heterogeneous in some way. We do not include the many spatially
explicit population models in which the underlying environment is assumed
to be homogeneous, such as reaction-diffusion models of population spread in
a homogeneous environment (e.g., Lewis 1997), cellular automata models of
disease spread in a homogeneous environment (e.g., Holmes 1997), or models
exploring the generation of population spatial pattern in a homogeneous
environment (e.g., Pacala and Levin 1997). Note that this review is not
exhaustive; we have selected representative examples for each method of
incorporating environmental spatial heterogeneity into models. In each case,
we focus on the earliest examples that we know of, even though all the views
of spatial heterogeneity persist simultaneously in the current literature.

Population Subdivision

The first theories of population ecology assumed spatial homogeneity of the
environment (e.g., Verhulst 1838; Lotka 1925; Volterra 1926; Nicholson and
Bailey 1935). However, with Gause’s classic experiments in 1934, population
biologists began to understand that population theories based on spatial
homogeneity are likely to fail in the real world. Gause showed that a predator-
prey relationship was “inherently self-annihilative”; it could persist only when
a portion of the prey population was protected by a “privileged sanctuary,” or
when reintroductions of prey occurred at intervals. This implied that persist-
ence of natural populations depends on environmental patchiness or spatial
heterogeneity. Laboratory experiments by Huffaker (1958) and Pimentel
(1963) supported this conclusion.

Theoretical examination of the influence of environmental spatial het-
erogeneity on populations began with models that represented spatial het-
erogeneity as habitat subdivision, resulting in separation of the population
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into a number of subpopulations inhabiting habitat patches (e.g., Levins
1969, 1970; Reddingius and den Boer 1970; Hassell and May 1973; Roff
1974a,b; Vandermeer 1973; Levin 1974; Slatkin 1974; Hastings 1977; den
Boer 1981; Shmida and Ellner 1984; Chesson 1985). Metapopulation or
patch occupancy models predicted the proportion of patches that were
occupied, based on rates of local extinction and colonization (Figure 6.1).
Local population dynamics were not included in these models; the patches
were either occupied or not occupied. The rate of colonization of empty
patches was assumed to be independent of the spatial location of the patch
(i.e., the models were not spatially explicit). In patchy population models, the
population was divided into a number of subpopulations within which popula-
tion dynamics and interactions occurred. Dispersal between subpopulations

Representation of Spatial Heterogeneity in Population Models
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FIGURE 6.1. Representation of the progression of spatial heterogeneity in population
models over four decades of ecological research. Time period for each model type
represents the period over which it was established. Research using all model types
continues to the present. Light gray rectangles represent habitat patches. In the
metapopulation, or patch occupancy models, arrows represent colonization of
patches; arrows only enter patches, to indicate that these models do not include emi-
gration from patches. In the source-sink model, the patch sizes represent relative
patch quality. In the spatially explicit models, the arrows represent movement paths
of individuals. In the spatially explicit model with heterogeneous matrix, white, dark
gray, and black areas represent matrix cover types; the black cover type represents a
movement barrier (e.g., roads).
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was “global,” meaning that all patches were equally accessible to dispersers.
Conceptually, this can be thought of as a dispersal pool into which a pro-
portion of each subpopulation entered, and from which the dispersers were
then redistributed among the subpopulations; again, these models were not
spatially explicit (Figure 6.1).

This early theory suggested that under specific conditions, habitat subdi-
vision could stabilize single-species population dynamics and species inter-
actions. When local disturbances are asynchronous, population subdivision
was predicted to stabilize single species dynamics by reducing the probabil-
ity of simultaneous extinction of the whole population. Environmental
patchiness was predicted to enhance the persistence of a predator-prey sys-
tem if the prey species dispersed more readily than the predator species.
Patchiness was also predicted to enhance two-species coexistence if there
was a trade-off between dispersal rate and competitive ability. This trade-
off, along with asynchronous disturbances that locally removed the superior
competitor, would allow the inferior competitor (but superior disperser) to
colonize the empty patches first, before being later displaced by the superior
competitor.

Spatially Explicit Habitat Pattern

Although the early theory did examine the effect of spatial heterogeneity
per se (habitat subdivision or patchiness), it was not spatially explicit; the
spatial relationships among subpopulations were not modeled. The first
approaches to including such spatial relationships in a heterogeneous envi-
ronment were intermediate between patch occupancy or patchy population
models and fully spatially explicit models. In dispersal corridor models, the
population was again assumed to be composed of several subpopulations in
patches. However, dispersal was only possible between a pair of subpopula-
tions if they were spatially connected (Figure 6.1). Spatial connection could
represent patches that were close enough to each other for dispersal to
occur or patches that were connected by a dispersal route or dispersal cor-
ridor. Lefkovitch and Fahrig (1985) used this type of model to predict that
population persistence depends on the number of patches and how they are
interconnected. The source-sink model (Pulliam 1988) was a version of the
dispersal corridor model for a population divided into two linked subpopu-
lations in patches of unequal quality. Dispersal between the subpopulations
was asymmetric, with a higher dispersal rate from the high-quality patch to
the low-quality patch (Figure 6.1). Source-sink models were conceptually
the end-points of one-dimensional models in which habitat quality was rep-
resented as a continuous environmental gradient that influences dispersal
rate (Thomas and Kunin 1999). Such models predicted that the interaction
between organism movement and an environmental gradient can alter
predator-prey dynamics (McLaughlin and Roughgarden 1991; Benson et al.
1993; Pascual and Caswell 1997).
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Models in which immigration or colonization depended on patch size and
isolation (e.g., Fahrig and Paloheimo 1988; Hanski 1991, 1994) also repre-
sented an intermediate approach between non-spatially-explicit patchy or
metapopulation models and the truly spatially explicit models discussed
below. They generally predicted that population persistence increases with
increasing patch size and decreasing patch isolation. Particular patches (large,
nonisolated ones) were predicted to be important for metapopulation per-
sistence and persistence of systems of interacting species (e.g., Moilanen and
Hanski 1995). Hanski (2001) labeled this type of model spatially realistic.

Although metapopulation models and patchy population models have con-
tinued to be used and developed in population ecology, fully spatially explicit
population models, called grid or lattice models, have been used in population
ecology since about the late 1980s (e.g., Nachman 1987; Fahrig 1991; Perry and
Gonzalez-Andujar 1993; Dytham 1995; Wilson et al. 1998; Bonsall and Hassell
2000; Schiegg et al. 2002). These models represent the landscape as a spatial
grid, in which each grid cell is either habitat or nonhabitat. Individuals or por-
tions of the patch or cell populations move through the grid, according to
movement parameters that determine movement distance and direction.
Shugart (1998) labelled this type of model interactive.

A few grid models represent habitat quality as a continuous variable
rather than the usual two-state variable (habitat or nonhabitat). For exam-
ple, Colasanti and Grime (1993) assigned different resource levels to cells
on a grid, arranged in a resource gradient. Engen et al. (2002) presented a
model in which habitat quality varied continuously over the landscape and
spatial heterogeneity was represented as spatial autocorrelation in local
carrying capacities. Thomas and Kunin (1999) proposed representing habi-
tat spatial heterogeneity in grid models by assigning a neighborhood value
to each cell, which is a function of the distances to and qualities of all other
cells on the grid.

Several studies have shown that the predictions of spatially explicit pop-
ulation models can be very different from the predictions of analogous
non-spatially-explicit models (Adler and Nuernberger 1994; Bascompte
and Sol€ 1994; Durrett and Levin 1994; Swihart et al. 2001; Buttel et al. 2002;
Higgins and Cain 2002). For example, Swihart et al. (2001) compared pred-
ator-prey interactions in a patchy population model with global dispersal
versus a spatially explicit model. They found large differences between the
models in the predicted equilibrium levels of the predator and prey popula-
tions. The spatially explicit model predicted much higher abundances of the
predator, and much lower sensitivity of the predator to habitat removal than
did the non-spatially-explicit model. Higgins and Cain (2002) compared two-
species competition in a metapopulation model and a spatially explicit
model. They found that coexistence in the metapopulation model depended
on a trade-off between competitive and dispersal abilities, whereas this
trade-off was not necessary for coexistence to occur in the spatially explicit
model.
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What do spatially explicit population models predict regarding the effect
of habitat spatial heterogeneity on population persistence? Spatial hetero-
geneity is typically highest at intermediate levels of habitat amount. Het-
erogeneity increases with increasing fragmentation of habitat, where
fragmentation is defined as the breaking apart of habitat, independent of
habitat loss (Figure 6.2). Spatially explicit population models predict that
population persistence increases with increasing amount of habitat on the
landscape and decreases with increasing fragmentation of the habitat
(Henein et al. 1998; Hill and Caswell 1999; With and King 1999; Fahrig
2001; Flather and Bevers 2002). These models therefore predict that (i) a
reduction in habitat from a high to a moderate amount (A/B to C/D in Fig-
ure 6.2) should produce a negative effect of increasing heterogeneity on
population persistence, (ii) an increase in habitat from a low to a moderate
amount (E/F to C/D in Figure 6.2) should produce a positive effect of
increasing heterogeneity on population persistence, and (iii) a shift from
low to high fragmentation (A/C/E to B/D/F in Figure 6.2) should produce
a negative effect of increasing heterogeneity on population persistence.

Empirical studies confirm the predicted positive effect of habitat
amount but do not generally confirm the predicted negative effect of
habitat fragmentation (breaking apart of habitat; reviewed in Fahrig
2003). We are aware of 13 empirical studies of the effects of habitat frag-
mentation (independent of habitat amount) on the abundance and/or dis-
tribution of individual species (McGarigal and McComb 1995; Collins
and Barrett 1997; Wolff et al. 1997; Collinge and Forman 1998; Meyer et
al. 1998; Rosenberg et al. 1999; Trzcinski et al. 1999; Drolet et al. 1999;
Flather et al. 1999; Villard et al. 1999; Caley et al. 2001; Langlois et al.
2001; Hovel and Lipcius 2001; reviewed in Fahrig 2003). In general, these
studies indicate that habitat loss has a much larger effect than habitat
fragmentation on population abundance and/or distribution. Of the
species that were found to be affected by fragmentation, 9 showed
declines and 17 showed increases in abundance or distribution with
increasing fragmentation. Note that the observed positive effects of frag-
mentation cannot simply be explained as responses by “weedy,” habitat
generalist species. For example, McGarigal and McComb (1995) studied
abundances of bird species that nest only in mature forest, in response to
forest amount and fragmentation. They found that of the seven species
that responded to fragmentation, six responded positively. Therefore, the
direction of the relationship between habitat heterogeneity and popula-
tion persistence is not consistently positive or negative. Possible explana-
tions for both positive and negative effects of fragmentation are reviewed
in Fahrig (2003).

For predator-prey or host-parasite interactions, increasing habitat het-
erogeneity by reducing habitat amount and/or increasing habitat frag-
mentation can result in outbreaks or persistently higher levels of the of
the prey/host (Kareiva 1987; Roland 1993). It is hypothesized that habitat
loss and fragmentation disrupt the ability of the predator or parasite to
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FIGURE 6.2. Effects of habitat fragmentation and habitat loss on habitat heterogene-
ity. Habitat heterogeneity increases from high to moderate habitat amount (from A to
C, or B to D) and from low to moderate habitat amount (from E to C, or F to D), and
increases with increasing habitat fragmentation (from A to B, or C to D, or E to F).

find and control the prey/host populations in time to avoid outbreaks.
With et al. (2002) demonstrated the plausibility of this mechanism in
an experimental study of the effects of habitat loss and fragmentation
on patterns of aggregation of an insect predator-prey system. Some
researchers have modeled effects of spatial heterogeneity of habitat on
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predator-prey interactions using reaction-diffusion equations, where
diffusion occurs along an environmental gradient (McLaughlin and
Roughgarden 1991; Benson et al. 1993; Pascual and Caswell 1997). These
models predict that the environmental gradient interacts with organism
movement to determine predator-prey dynamics, which can include out-
breaks and chaos.

Landscape Composition and Configuration

Most of the literature discussed so far deals implicitly or explicitly with only
one kind of habitat, the habitat used by the species in question. Within this
framework, consideration of spatial heterogeneity has increased over time
from homogeneity to patchiness with global dispersal, to variation in patch
sizes and connectedness, and finally to explicit spatial representation of the
habitat on the landscape (Figures 6.1 and 6.2). The vast majority of current
studies of the effect of environmental spatial pattern on population ecology
still describe the landscape in terms of habitat and nonhabitat (nonhabitat
is also called matrix).

In real landscapes, the matrix is not homogeneous but is composed of var-
ious cover types (final panel in Figure 6.1). Some of the cover types will rep-
resent habitat for the species in question. These may include different
habitat cover types representing habitats that vary in quality resulting in, for
example, different reproductive rates. Different cover types may also pro-
vide different types of resources that are needed at different times during
the organism’s life history (e.g., feeding habitat, mating habitat). Other
cover types represent nonhabitat, which, again, may differ in quality, for
example, in the probability of mortality of the organism while it is in the
cover type.

What effect does taking account of this additional spatial heterogeneity
have on our understanding of population ecology? Landscape ecologists
describe landscape structure in terms of two main components: landscape
composition and landscape configuration (Dunning et al. 1992; McGarigal
and McComb 1995). Landscape composition refers to the different cover
types present in the landscape and the proportions of each. Compositional
landscape heterogeneity increases as the number of different cover types
increases (Figure 6.3, from A to B or C to D), and if they occur in more sim-
ilar proportions (Figure 6.3, from A to C or B to D). Compositional hetero-
geneity can be measured using, for example, the Shannon-Wiener diversity
index applied to the number and proportions of cover types in the land-
scape (e.g., Jonsen and Fahrig 1997).

A change in landscape configuration refers to a change in the spatial pat-
tern of cover types independent of any change in landscape composition
(Figure 6.4). Configurational landscape heterogeneity increases with
increasing interspersion of the different cover types, accompanied by
increasing edge density in the landscape (Figure 6.4, from A to B or from C
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FIGURE 6.3. Illustration of the two components of compositional heterogeneity.
Compositional heterogeneity increases with increasing number of cover types (from
A to B, or C to D) and with increasing degree of evenness of representation of the
cover types (from A to C, or B to D).

to D). Configurational heterogeneity can be measured using, for example,
indices of edge density, shape complexity, edge contrast, and landscape sub-
division (McGarigal 2002). Note that it is possible for landscape configuration
to change without a change in landscape composition (Figure 6.4). Similarly,
a change in the cover types while maintaining patch locations represents a
change in landscape composition, with no change in landscape configuration.
However, landscape composition and configuration are not completely
independent; in particular, it is not possible to change the proportions of the
different cover types (a change in composition) without changing landscape
configuration.
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FIGURE 6.4. Illustration of configurational heterogeneity in comparison to composi-
tional heterogeneity. (A) and (B) have the same compositional heterogeneity (50%
of each of two cover types), but (B) has higher configurational heterogeneity than
(A) because there is more interdigitation of the cover types. Similarly, (C) and (D)
have the same compositional heterogeneity (20% of each of five cover types), but
(D) has higher configurational heterogeneity than (C).

Effects of Compositional and Configurational
Heterogeneity on Population Ecology

There has to date been very little study of the effects of landscape hetero-
geneity on population ecology, so the following arguments represent mainly
inference and conjecture. If the species relies on one kind of habitat only,
then, as discussed above, an increase in compositional heterogeneity can
imply a reduction in the amount of preferred habitat, which will cause a



II. Perspectives from Different Disciplines 105

reduction in population persistence probability. For example, in Figure 6.3,
landscape D contains less dark gray habitat than does landscape C, and D is
more heterogeneous than C. If dark gray represents wetland and the species
of interest relies solely on wetland habitat, this increase in heterogeneity
will result in a reduction in the persistence probability of the population.

However, if the species relies on more than one kind of habitat, an
increase in compositional heterogeneity may permit the species to persist in
a landscape in which it otherwise would not. For example, Figure 6.3C con-
tains no white habitat. If the species requires both dark gray and white habi-
tats for persistence, it will not occur in landscape C but may occur in
landscape D. This represents a positive effect of compositional heterogeneity
on population persistence. The cooccurrence of two or more required habi-
tat types within a landscape was labeled landscape complementation by
Dunning et al. (1992). The importance of landscape complementation was
demonstrated by Pope et al. (2000), who showed that leopard frog popula-
tions were more likely to occur in landscapes containing both large numbers
of breeding ponds and accessible terrestrial habitat for foraging during the
summer. Similarly, Thies and Tscharntke (2002) found that heterogeneous
landscapes were more likely to harbor populations of parasites of an agricul-
tural pest species than were homogeneous landscapes, presumably because
the heterogeneous landscapes provided habitats containing resources for the
parasites in addition to those offered by the habitats containing the pests.

Species that require landscape complementation may also be positively
affected by increasing configurational heterogeneity. For the same landscape
composition, a more heterogeneous landscape will have more interdigitation
of different habitat types (Figure 6.4: from A to B, and from C to D). This
should increase landscape complementation (Law and Dickman 1998;
Tscharntke et al. 2002).

Relative Effects of Landscape Composition and
Configuration on Population Persistence: A Hypothesis

The only empirical studies of which we are aware that have examined the
relative effects of landscape composition and landscape configuration are
the studies discussed above (and reviewed in Fahrig 2003) on the effects of
habitat fragmentation (a component of landscape configuration) and habitat
loss (a component of landscape composition). These studies indicate that
effects of fragmentation are generally much weaker than the effects of habi-
tat loss. Does this conclusion hold for landscape composition and configura-
tion in general? Are there situations in which the effect of landscape
configuration is expected to be large? In this section, we propose a hypothesis
for the conditions under which configuration should have a large effect on
population persistence.
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Before presenting the hypothesis, we emphasize that landscape spatial
structure must be described from the point of view of the particular species
of interest. For example, if a species of bird is susceptible to nest predation
and nest predators occur preferentially in forest edges, then a configurational
change to the forest that results in more forest edge (e.g., forest fragmenta-
tion) will have a negative effect on the bird species. However, because for-
est edges are of lower quality for the species than is the interior of forested
areas, forest fragmentation also represents a compositional change to the
landscape (i.e., a decrease in amount of high-quality habitat and an increase
in amount of low-quality habitat). Therefore, to avoid potential ambiguity
between composition and configuration effects, for this species it would be
important to map forest edge as a separate cover type of lower quality. Con-
versely, if a species prefers habitat edges or shows higher growth rates in
edges (e.g., Bowers and Dooley 1999), then edges should be mapped as a
separate cover type of higher quality. The question can then be asked: Is
there an effect of a change in landscape configuration (i.e., fragmentation)
over and above the effect of changing landscape composition (i.e., increase
in the amount of edge cover type)? As another example, for some species,
very small patches of forest are of very low quality (Burke and Nol 2000),
and patches smaller than some minimum patch size will not be occupied at
all (Huhta et al. 1998). Such small patches should not be mapped as breed-
ing habitat. In all of the discussion below, we are assuming that the land-
scape maps represent the landscape cover types correctly from the
perspective of the particular species of interest.

Landscape composition has large, direct effects on population dynamics
and persistence through its direct effects on reproduction and mortality.
Landscape configuration, on the other hand, generally affects population
dynamics indirectly through its effect on among-patch movement. To see
this, imagine a species that does not move at all. Assume we begin with 100
individuals in each of landscapes A and B in Figure 6.4, equally divided
between the light gray and dark gray areas (50 individuals in each). The
overall reproductive rate and mortality rate will be exactly the same in
the two landscapes, even though their configurations are very different.
The only way that the difference in landscape configuration can affect pop-
ulation dynamics is if it affects among-patch movement and if among-patch
movement affects population dynamics.

The effect of configuration on population persistence could also occur
indirectly through its effect on among-patch movement of any mass, energy,
or information that can influence the population in question. For example,
if landscape configuration affects movement of a predator species, and pre-
dation by that species has a large effect on a prey species, this could produce
an indirect effect of landscape configuration on the prey population dynam-
ics. In this case, even though configuration is not affecting the movement of
the prey, it affects the prey through its effect on the movement of the pred-
ator. Similarly, a population of denitrifying bacteria may indirectly be
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affected by landscape configuration if landscape configuration affects
among-patch movement of nitrate. This leads to the interesting conclusion
that landscape configuration could indirectly affect a population through its
effect on an ecosystem process. In the section “Application to Ecosystem
Processes” below, we present some examples of how landscape configura-
tion might affect ecosystem processes. In the following, we present our
hypothesis ignoring these indirect effects; we limit our consideration of
movement to the movement of the organism in question.

We hypothesize that the effect of landscape configuration on population
persistence is through its effect on (organism) movement, either facilitating
or hindering habitat accessibility. Landscape configurations that facilitate
habitat accessibility can indirectly increase the number of births and
decrease the number of deaths in the population. This can occur through
two processes, “landscape complementation” and “landscape supplementa-
tion” (Dunning et al. 1992). As discussed above, landscape complementa-
tion occurs when all required cover types are accessible to an organism that
needs more than one landscape cover type to complete its life history. Land-
scape supplementation occurs when the organism can move among several
resource patches of the same type to obtain sufficient resources for survival
and reproduction. In either case, landscape configuration may facilitate or
limit the ability of the organism to move about and obtain the resources
required to avoid mortality and to reproduce successfully. For example, if
roads represent a barrier to movement of the organism, then the particular
placement of roads on a landscape may affect the ability of the organism to
obtain crucial resources, which will affect the reproduction and/or mortality
rate of the population, ultimately affecting its persistence.

Landscape configuration affects among-patch movement within the land-
scape when movement direction is highly constrained by the landscape. For
example, some species are very reluctant to cross certain types of bound-
aries in the landscape (Tischendorf 2001). If the probability of crossing a
boundary into a particular cover type (e.g., road surface) is low, this cover
type represents a movement barrier in the landscape. If an organism is very
reluctant to cross the boundary of its habitat into matrix, the configuration
of habitat can have a large effect on population persistence. In this case,
each habitat patch is isolated, so the persistence of the population in the
landscape depends on the size of the largest piece of habitat (Figure 6.5).
Movement within a stream network represents another example of highly
constrained movement; Cumming (2002) showed that the form of the
stream network can have a large effect on overall movement rate through
the network.

Recent simulation studies suggest that strong effects of boundary type on
boundary-crossing rates leads to a large effect of landscape configuration on
among-patch movement rate through the landscape. Goodwin and Fahrig
(2003) conducted simulations of animal movement on a grid containing
habitat and two matrix cover types. They assumed that animal movement
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FIGURE 6.5. Comparison of the effect of landscape configuration on a species that
does not respond to boundaries (top) versus a species that will not cross the habitat-
matrix boundary (bottom). Landscape configuration has no effect on persistence of
the species with no boundary response (A vs. B). For the species with strong bound-
ary response, population persistence will be higher in the less fragmented configura-
tion (C) than the more fragmented configuration (D).

rates and directionalities differed between the matrix cover types but that
the animal showed no boundary responses. In contrast, Bender (2002) con-
ducted simulations of animal movement in which different matrix cover
types elicited different boundary-crossing probabilities by the simulated
organism. Goodwin and Fahrig found no effect of matrix configuration on
among-patch movement rate, whereas Bender found a very large effect of
matrix configuration on among-patch movement rate. This suggests that
landscape configuration is likely to have a large effect on movement rate
for organisms that show strong behavioral responses to boundaries in the
landscape.

A second way in which constrained movement can create an effect of
landscape configuration on population persistence is when movement has
an overall direction within the landscape. For example, if larval fish can only
move downstream, the relative position of larval habitats and spawning
habitats within the stream system can have a large effect on population per-
sistence. Stream systems with larval habitat downstream relative to spawn-
ing habitat are more likely to contain viable populations than stream
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systems with larval habitat upstream of spawning habitat, even if they have
the same amount of habitat (M. Power, personal communication).

It is important to note here that a large effect of landscape configuration
on among-patch movement does not necessarily imply a large effect of
landscape configuration on population persistence, relative to the effect of
landscape composition, for several reasons. First, landscape composition
also affects among-patch movement. Two empirical studies have examined
the independent effects of landscape composition (habitat amount) and
configuration (habitat fragmentation) on animal movement (Bélisle et al.
2001; With et al. 2002). Both found much larger effects of composition than
configuration on movement. Second, population persistence at the land-
scape scale is ultimately determined by numbers of births and deaths, not
movement within the landscape. Movement of an individual from one loca-
tion to another within the landscape does not by itself affect overall popu-
lation size. It can only affect population size indirectly if, by entering a new
location, the individual changes its chance of reproducing or surviving.
Landscape composition affects births and deaths directly, as well as indi-
rectly through its effect on animal movement. Landscape configuration, on
the other hand, only affects births and deaths indirectly through its effect on
movement. Finally, some theoretical studies predict an interaction effect
between composition and configuration, in which configuration affects pop-
ulation persistence only below certain threshold composition values (Fahrig
1998; Flather and Bevers 2002).

If landscape configuration affects population persistence through its
effect on among-patch movement, then landscape configuration should
have a large effect on population persistence when both (i) configuration
has a large effect on among-patch movement and (ii) among-patch move-
ment has a large effect on population persistence.

The hypothesis can be summarized as follows. (1) Landscape composition
generally has a much larger effect than landscape configuration on popula-
tion persistence, because composition directly affects births and deaths,
whereas configuration only affects births and deaths indirectly through its
effect on movement. (2) Landscape configuration has a large effect on
among-patch movement for species whose movement direction is highly
constrained. (3) Among-patch movement has a large effect on population
persistence (i) when colonization of empty habitat is important for persist-
ence or (ii) for species that require more than one type of habitat (land-
scape complementation). Note that condition (i) will occur when the
probability of local extinction is high (e.g., high seasonal mortality) and fol-
lowing habitat restoration (Huxel and Hastings 1999). (4) Finally, landscape
configuration has a large effect on population persistence when conditions
under both (2) and (3) hold simultaneously. We emphasize that this is a gen-
eral hypothesis; it is not limited to any particular sorts of species or land-
scapes, but it does depend on the assumption that the landscapes are
correctly mapped from the point of view of the species of interest (see
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above). Interestingly, this hypothesis is not consistent with metapopulation
theory, which predicts large effects of landscape configuration on popula-
tion persistence, even for randomly moving organisms (Hill and Caswell
1999); a possible explanation for this difference is discussed in Fahrig
(2002).

Recall here that the effect of landscape configuration on a population can
also occur indirectly through its effect on movement of an interacting
species or other mass, energy, or information that affects the species of
interest. Our hypothesis can therefore be extended to state that landscape
configuration can have a large effect on a population when both (i) move-
ment direction of the interacting species, other mass, energy, or information
is highly constrained, and (ii) the interacting species, other mass, energy, or
information has a large effect on population persistence.

At this point, our hypothesis is supported only through the verbal argu-
ments above; to date it has not been directly tested. Empirical testing will
require comparisons across species and across landscapes. For example, we
may know from previous studies that small mammal populations undergo
frequent local extinctions (Merriam and Wegner 1992), which implies that
movement is important for small mammal population persistence. From our
hypothesis, we could then predict that the abundance of a small mammal
species that shows strong avoidance of roads (i.e., its movement is highly
constrained by roads) should be affected by a change in landscape configu-
ration, whereas the abundance of a small mammal species that shows no
behavioral response to roads should not be affected by a change in land-
scape configuration. To test this prediction, we would need first to study
small mammal movement responses to roads to identify species that avoid
roads and species that do not respond to roads. We would then compare the
abundances of these small mammal species across a set of landscapes that
vary in configuration (e.g., degree of habitat fragmentation). It will be
important to select the landscapes in such a way that we can control for the
effects on small mammal abundance of both road density and the amount of
small mammal habitat (e.g., forest) in the landscapes. In particular, it is
important that neither of these landscape composition variables is corre-
lated with landscape configuration across the set of landscapes chosen for
the study. There are clearly several challenges inherent in this type of
research; these are discussed in Brennan et al. (2002).

Application to Ecosystem Processes

We suggest that our hypothesis can be extended to the effects of landscape
composition and configuration on ecosystem processes. A few examples
illustrate parallels among the movement and persistence of organisms on
the landscape and the flux and transformation of energy and nutrients that
control ecosystem processes. Here, too, the composition of the landscape
exerts the most direct influence over the net ecosystem functions of the
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entire landscape. Indeed, the trophic state of an ecosystem (i.e., olig-
otrophic, mesotrophic, or eutrophic) is often defined in terms of the type
and biomass density of the primary producers (i.e., composition).

Landscape configuration may influence ecosystem function, depending
on the distribution of areas of production and uptake relative to the pattern
of movement of nutrients and energy, which may be affected by barriers
that impede these fluxes. For example, consider the net processing of nutri-
ents that move through an ecosystem in surface water and groundwater.
Clearly, there will be a different effect on nutrient processing of wetlands
taking up nutrients mobilized from farm fields, depending on whether the
wetlands are located generally upstream or downstream of the farm fields.
Where the conformation of the landscape generally acts to retard flow,
nutrients are more subject to uptake and transformation by vegetation and
microbial processes or to sequestration by sorption and sedimentation (Vol-
lenweider 1975; Seitzinger 2000; Mitsch et al. 2001). Indeed, reengineering
the landscape to promote these processes constitutes one of the principal
tools used in environmental remediation and restoration (Mitsch et al. 2001;
NRC 2002; Toth et al. 2002). Barriers to the movement of organisms can also
affect ecosystem function. For example, fencing to exclude direct access by
livestock to natural water bodies is an effective strategy for reducing the
flux of nutrients into these surface water bodies and consequent effects on
water quality and ecosystem processes downstream (NRC 2002; Mitsch
et al. 2001). In the ocean, the seasonal development of strong, thermal strati-
fication constrains phytoplankton from moving below the photic zone, and this
triggers the increase in primary productivity observed as the spring plank-
ton bloom (Sverdrup 1953). All these examples suggest that landscape
configuration has its largest effect on ecosystem processes in situations
where movement is constrained and/or directional.

The hypothesis may also apply to the propagation of disturbances across
a landscape. For example, it appears that landscape configuration affects
the spread of forest fire only when the fire is strongly limited by forest
boundaries. In this situation, the total amount of forest burned is lower in
landscapes where the forest is fragmented into small patches than in land-
scapes where the forest occurs in large tracts. Fires that start in small
patches are unlikely to spread to the rest of the forest because there is low
fuel availability between forest patches (Weir et al. 2000; Ricotta et al.
2001; Pitkdnen et al. 2003). However, this boundary response can be
reduced or eliminated in high winds, in very dry weather conditions, and in
landscapes where there is a small difference in fuel load across the edge
(Hargrove et al. 2000; Bessie and Johnson 1995; Moritz 2003). In these con-
ditions, landscape configuration is unlikely to affect fire spread (Ricotta et
al.2001). Thus, landscape configuration only affects fire spread in situations
where fire movement is constrained by forest boundaries (Figure 6.5,
where the arrows now represent movement of fire rather than movement
of organisms).
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Temporal Heterogeneity

In this paper, we have discussed the effects of spatial heterogeneity on pop-
ulation ecology. We do not mean to imply that temporal heterogeneity is
unimportant. A small number of studies (all theoretical) have examined the
combined effects of spatial heterogeneity and temporal heterogeneity on
population persistence and population interactions. In general, these studies
find that the rate and frequency of change of the landscape is extremely
important. Fahrig (1992) and Bhar and Fahrig (1998) predicted that the rate
of change of the landscape is much more important than habitat configura-
tion in affecting population persistence. Keymer et al. (2000) predicted that
the rate of landscape change has a large effect on the extinction threshold
(i.e., the minimum amount of habitat required for population persistence).
Finally, Bowers and Harris (1994) and Gourbiere and Gourbiere (2002)
predicted that the outcome of interspecific competition depends strongly on
the rate of environmental change.

Conclusions

The incorporation of environmental spatial heterogeneity into population
ecology has been a gradual process over a period of several decades. The
concept itself has evolved from simple population subdivision, to effects of
patch size and isolation, to spatially explicit representations of habitat, to
spatially explicit representations of landscapes. At each level of heterogene-
ity, there are important predicted effects on population ecology. The overall
picture is quite complicated, however, because although the way that popu-
lation ecologists view environmental spatial heterogeneity has changed over
time (Figure 6.1), all these views persist simultaneously in the current litera-
ture. In addition, the characteristics of the species studied (e.g., movement
behavior) influence how the different aspects of spatial heterogeneity affect
a population. Successful generalization will depend on cross-study compar-
isons, which, in turn, will depend on clear delineation of the important
aspects of heterogeneity and species attributes. For example, it will be impor-
tant to differentiate clearly between compositional heterogeneity and con-
figurational heterogeneity, as these two aspects can have different predicted
effects (Fahrig 2003).

Nevertheless, some tentative generalizations are possible. First, where
increasing compositional heterogeneity reduces the amount of habitat avail-
able for a species, this will have a negative effect on population persistence.
Second, information on organism movement behavior, in particular the
responses of organisms to boundaries, will be important for predicting the
likely effect of configurational heterogeneity on population ecology. Third,
species that require landscape complementation can benefit from increases
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in both compositional and configurational heterogeneity. Landscape com-
plementation will therefore be a central issue in developing a general under-
standing of the effects of spatial heterogeneity on population ecology.
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Heterogeneity in Hydrologic
Processes: A Terrestrial Hydrologic
Modeling Perspective

CHRISTINA TAGUE

Abstract

Heterogeneity of land surface and atmospheric processes contributes to all
aspects of the hydrologic cycle. Understanding the types and sources of this
heterogeneity is a fundamental component of both theoretical and applied
hydrology. Observations of heterogeneity occur at multiple scales ranging
from within-canopy variation in water-holding capacity of a single leaf to spa-
tial variation in precipitation at continental to global scales. Consequently,
strategies for addressing heterogeneity in hydrologic modeling depend on the
scale and type of process being modeled. Further, hydrologic models must
address heterogeneity in both inputs and parameters as well as the represen-
tation of underlying physical processes. This paper provides an overview of
heterogeneity and its implications for hydrologic modeling. Crucial examples
of heterogeneity in inputs, parameters, and underlying physical processes are
described, and approaches used to deal with heterogeneity within hydrologic
modeling are discussed. In particular, the use of effective parameters, proba-
bilistic approaches, and landscape tessellation are described as strategies to
address heterogeneity in parameters and inputs. Explicit consideration of
process heterogeneity is also considered from the perspective of physically
based hydrologic modeling, and the implications for the coupling between
hydrologic and ecological process models is discussed.

Introduction

Analysis of heterogeneity in hydrology, as in other sciences, seeks to charac-
terize and ultimately to explain spatial and temporal patterns of water in all
of its forms—solid, liquid, and gas—and the pathways by which water is
transported and stored on the surface of the earth. Observation of hetero-
geneity depends both on the spatial-temporal scale of observation and the
particular hydrologic phenomena that are being observed. Observations can
include fluxes (e.g., evapotranspiration) and stores (e.g., snowpacks, regional

119



120 7. Heterogeneity in Hydrologic Processes

groundwater) as well as measures of quantity, quality, and/or timing. Under-
standing and quantifying heterogeneity in these different variables across a
range of scales and exploring how heterogeneity changes across scales and
between measures can be viewed as one of the basic challenges in hydrologic
science.

Many of the fundamental research areas as well as practical applications
of hydrology must deal with heterogeneity. In theoretical studies, analysis of
heterogeneity with respect to different components of the hydrologic cycle
often provides insight into the underlying controlling mechanisms. In
applied studies, prediction of system behavior and its sensitivity to change
often depends on estimates of heterogeneity. In both these arenas, hetero-
geneity must be considered both as a cause and as an effect. Heterogeneity
of variables of interest (i.e., streamflow, soil moisture, groundwater storage,
etc.) is linked to heterogeneity in other related variables (soil hydraulic
conductivity, land cover) that describe underlying controlling processes or
characteristics of the system. Thus, hydrologic analysis must deal both with
the characterization, explanation, and prediction of heterogeneity of hydro-
logic measures of interest and with assessing the role that heterogeneity in
related measures plays in shaping these patterns. Hydrologic modeling
attempts both to capture relevant heterogeneity in outputs and to represent
crucial heterogeneity in inputs, parameters, and processes.

Hydrologic models are used to address a variety of basic and applied
research questions. The extent to which heterogeneity matters depends on
the research question being asked. This is true both in terms of the ability of
models to represent heterogeneity of response and the extent to which
models must incorporate information about heterogeneity in the underly-
ing system in order to capture relevant dynamics. Models designed to esti-
mate flood conditions in urban environments, for example, might not need
to capture spatial-temporal heterogeneity in low flow volumes (response)
nor incorporate heterogeneity in deeper soil hydraulic properties (parame-
ters). Nonetheless, for many hydrologic models, there are commonalities
both in terms of key inputs, parameters, and processes for which hetero-
geneity is often an issue and in terms of the techniques used to incorporate
heterogeneity within a modeling framework. This paper will provide an
overview of common sources of heterogeneity in hydrologic systems and
then discuss some of the approaches used to account for heterogeneity at
different scales within hydrologic models. It is important at this point to dis-
tinguish between heterogeneity and variability. Heterogeneity typically
implies a difference in type or class (i.e., differences in soil texture classes).
Variability can denote a difference in amount or degree, often within a type
or class (i.e., differences in values for hydraulic conductivity within a soil
class). How the type or class is defined can determine whether observed
variation might be called heterogeneity. For example, if different soil struc-
tures result in variation in hydraulic conductivity, it might be reasonable
to examine heterogeneity in hydraulic conductivity. Given this semantic
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problem, I will consider both heterogeneity and variability that likely arises
from underlying structural differences of the property in question.

Observations of Heterogeneity in Hydrology

In hydrology, the basic unit of analysis can range from a block of soil or the
surface of a leaf at small scales, to hillslopes and watersheds at local to
regional scales, and to the full hydrologic cycle at global scales. All of these
systems, however, can be examined from the perspective of inputs and out-
puts of water and the internal state variables/parameters and processes that
transform inputs to outputs. Heterogeneity of outputs at any scale may
reflect heterogeneity in inputs, internal system parameters, and/or the
processes involved.

Heterogeneity in Inputs

One of the most important factors contributing to spatial heterogeneity in
hydrologic response variables, including soil moisture, evapotranspiration,
and streamflow, is spatial-temporal variation in precipitation inputs. At the
continental scale, heterogeneity in all hydrologic processes can be explained
based on the annual amount and seasonal variation in precipitation. Thus,
annual differences in the amount and timing of streamflow in the north-
eastern versus southwestern United States can clearly be attributed to dif-
ferences in the amount and timing of precipitation.

Most hydrologic models are constrained by an energy or mass balance
equation where (Inputs — Outputs = AStorage). For mass-balance models in
hydrology, precipitation is a fundamental input; thus, heterogeneity in pre-
cipitation can be seen as the starting point for heterogeneity of all hydrologic
processes within the system. Quantifying heterogeneity in precipitation and
incorporation of this heterogeneity into models, particularly at more local
scales, is often confounded by limited rain gauge density. Smith et al. (1996)
found that even a high density of rainfall gauges resulted in a significant
underestimation of storm event precipitation when compared to radar esti-
mates. Advances in rainfall observations through radar have contributed to
mapping the heterogeneity in precipitation; however, data availability and
error assessment remain issues (Krajewski and Smith 2002).

Irrigation and interbasin transfers of water can confound analysis of het-
erogeneity where precipitation is assumed to be the only input. In areas
where interbasin transfers of water are significant, monitoring of these addi-
tional inputs can be essential for accurate modeling of streamflow and evap-
otranspiration. In the South Platte Basin of Colorado, for example, it is
estimated that almost 25% of flow is imported from outside basin with more
than 15 interbasin diversions (Dennehy et al. 1993). Further, heterogeneity
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in baseflow and annual flow patterns of subbasins within the South Platte can
often be attributed to differences in irrigation regimes (Strange et al. 1999).

At the watershed scale, the temporal scale of interest often determines the
extent of relevant heterogeneity in precipitation. Spatial heterogeneity at the
timescale of individual storm events is often, but not always, greater than that
of longer term (seasonal-annual) patterns. The mechanisms that generate pre-
cipitation events are important controls on the associated spatial length scales
and their relationship with temporal scale. For a given storm event, convective
rainfall, for example, varies at length scales of < 1 km, whereas frontal
cyclonic storms may be organized over hundreds of kilometers (Bloschl and
Sivapalan 1995). Thus, modeling runoff for individual storms for a first-order
watershed may need to account for spatial variability in precipitation inputs,
particularly in regions dominated by convective rainfall. Modeling runoff
response to a flood producing storm event in Fort Collins, Colorado, for
example, would need to account for a doubling of precipitation input within
less than a kilometer (Ogden et al. 2000). For storm-events modeling at larger
space scales, such as the Colorado Front Range, interpolation of rain gauge
data for input into hydrologic models must account for both typical length
scales of storm events and the stochastic nature of individual events.

At longer-term (i.e., annual) timescales, heterogeneity in precipitation
within a given climatic region may often show a consistent spatial pattern.
Precipitation, for example, is often dominated by topographic controls such
that there is a significant relationship between mean annual precipitation and
elevation across climatic regions of North America (Dingman 1994). Human
modifications to the land surface may also contribute to a consistent long-
term spatial variation of precipitation at relatively local scales. Urban heat
island contributions to the frequency and intensity of convective rainfall, for
example, can generate heterogeneity at storm event to annual timescales
(Changnon 1992). In these cases, where heterogeneity in precipitation is tem-
porally consistent, these patterns must be considered in longer term models
of continuous streamflow, evapotranspiration, and so forth. Inputs, in this
case, are often derived from atmospheric climate models such as Regional
Atmospheric Modeling System (RAMs) (Walko et al. 2000) or models such
as Parameter-elevation Regressions on Independent Slopes Model (PRISM)
(Daly et al. 1994) that provide spatial estimates of precipitation by interpolat-
ing rain gauge data using topographic, wind direction, and other controls on
spatial patterns.

Finally, in addition to precipitation inputs, energy balance approaches in
hydrology must consider energy inputs or solar insolation as a key control
on heterogeneity in response characteristics. Energy inputs often vary in
structured predictable ways following topography (slope, aspect) and, at
larger scales, latitude. As with precipitation, capturing this heterogeneity in
input often requires going beyond available measured data and using mod-
els, such as Mtn-Clim (Running et al. 1987), to estimate spatial variation in
radiation input.
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Heterogeneity in System Characteristics or Parameters

Distinctions between heterogeneity of system characteristics or parameters
(i.e., variation in soil hydraulic conductivity) and heterogeneity of processes
(i.e., saturation excess vs infiltration excess as runoff production mecha-
nisms) depend on both the scale and the model being employed. Coefficient-
based models in hydrology estimate runoff volumes as a function of
precipitation using parameters related to land surface characteristics. The
curve number approach developed by the US Soil Conservation Service, for
example, compiled data to determine standardized precipitation-runoff rela-
tionships for a variety soil (i.e., sandy loam, clay, silt) and land-use character-
istics (i.e., high density urban, commercial, forest ). In these models, spatial
heterogeneity in runoff coefficients can represent both a change in para-
meters or in the strength of relationships (i.e., an increase/decrease in
infiltration capacity) and/or a mechanistic shift between dominant runoff
production mechanisms (i.e., from subsurface to surface overland flow). In
more process-based models, processes are explicitly represented, and param-
eters tend to reflect measurable characteristics that control the rates of these
processes. In both types of models, however, several commonly used, physi-
cally based parameters are often the main drivers of heterogeneity in hydro-
logic responses. Key parameters include various measures that describe soil,
vegetation/land cover, and topography as well as several measures of chan-
nel characteristics including channel geometry and surface roughness.

Soil parameters such as depth, texture, hydraulic conductivity, and porosity
are often key inputs into hydrologic models. Significant efforts have been
made in recent years to develop national databases (e.g., SSURGO;
http://www.ncgc.nres.usda.gov/branch/ssb/products/ssurgo) that provide data
on soil properties at scales ranging from 1:12,000 to 1:63,360. Nonetheless,
significant uncertainty around the impact of soil properties on hydrologic
behavior often remains, particularly at smaller (first order) watershed scales.
For example, heterogeneity in soil characteristics is often represented by
aggregate measures of hydraulic conductivity and has been shown to vary
across multiple scales. Variation in hydraulic conductivity is often tied to soil
type (i.e., fraction of sand, silt and clay; (e.g., Clapp and Hornberger 1978);
however, site-specific variation within soil types can be significant. In particu-
lar, macropores—generated by roots, soil structure, and so forth—can result
in significantly higher effective hydraulic conductivities than implied by
the soil matrix (McDonnell 1990). Similarly, the role played by bedrock frac-
tures, soil crusting, and so forth, can confound attempts to map heterogeneity
in soil hydraulic characteristics based on typically available soil classification
information. Given these uncertainties, soil hydraulic conductivity is often left
as a calibrated parameter in hydrologic modeling (Beven and Binley 1992).

Heterogeneity in land cover characteristics often drives spatial hetero-
geneity in hydrologic processes, particularly infiltration, interception, and
evapotranspiration. Mapping of this type of heterogeneity, and subsequent
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incorporation into hydrologic models has greatly been improved by remote
sensing and, in particular, remote sensing estimates of leaf area index, which
is a key parameter in many physically based hydrologic models (Waring and
Running 1998). In more urban environments, land cover characteristics are
typically derived from land use maps (i.e., Moglen and Casey 1998; Rose et al.
2001), although there is a potential for incorporating much finer and poten-
tially more hydrologically relevant characteristics (i.e., impervious/pervious
area) using remote sensing data. In both of these applications, scale becomes
a crucial issue and is tied to the resolution of available sensors and/or map-
ping information.

It is important to consider that human activities, both agriculture and
urbanization, can have a significant impact on heterogeneity of not only land
cover but of other hydrologic parameters as well. Agricultural practices
(such as tile drainage and plowing) can alter effective soil properties (i.e.,
infilitration rates, hydraulic conductivity) and even topography. More than
20.6 million acres within the U.S. Midwest can be classified as under agricul-
tural drainage. The hydrologic impact of these agricultural drainage practices
typically include both impacts on streamflow (i.e., increases peak runoff
rates) and soil hydrologic conditions (i.e., reduction of swamp and wetland
area) (Fausey et al. 1995). In these watersheds, human design often over-
whelms natural controls on heterogeneity, and differences in agricultural
practices can play a crucial role in defining hydrologic properties across a
range of scales (Skaggs et al. 1994). Similarly, urbanization can increase
watershed scale drainage efficiency through the development of storm sewer
networks and impervious surfaces (Chester and Gibbons 1996). As discussed
in Chapter 13 (Band et al. this volume), the net impact of urban design can
alter heterogeneity in parameters and ultimately hydrologic behavior,
although there is evidence of both increases and decreases in heterogeneity
of response depending on the scale, location, and specific process of interest.

Heterogeneity in topography (slope, aspect, elevation) is probably the
most accurate and readily available parameter used in hydrologic modeling.
The geomorphic unit hydrograph (Rodrigues-Iturbe and Valdes 1979), for
example, illustrates how topographic relationships readily derived from a
digital elevation model (DEM) can account for spatial differences in storm-
flow behavior. Many simple coefficient-based rainfall-runoff models (i.e.,
Soil Conservation Service Curve number approach) use variation in slope
to adjust or select coefficients that determine the relationship between
rainfall and runoff for particular land-use types. Other models such as
TOPMODEL (Beven and Kirkby 1979), which also consider within-watershed
hydrologic conditions, use topographic indices to account for heterogeneity
in soil moisture patterns as well as streamflow. Heterogeneity in topography
occurs at multiple scales, and its impacts on hydrologic processes vary with
these scales. At the plot scale, topographic heterogeneity might be
expressed as surface irregularities that account for a surface detention stor-
age capacity. At the hillslope scale, slope varies such that in particular
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regions, characteristic profiles emerge; for instance, Piedmont hillslopes are
characterized by broad, gently sloping uplands, steep side slopes, and flat
bottomlands, whereas the western Cascade mountains are characterized by
steep slopes and narrow riparian zones. These characteristic profiles con-
tribute to explanations for the rate that water moves through the landscape
and within hillslope spatial variation in soil moisture. At these scales, differ-
ences in mean hillslope topographic characteristics (slope, aspect, elevation)
account for heterogeneity in hydrologic responses.

In addition to topographic control on the rate of flow, topographic param-
eters can be used to indicate heterogeneity due to the magnitude and timing
of latent and sensible heat fluxes. Variation in insolation follows both slope
and aspect and contributes to spatial patterns of evapotranspiration and soil
moisture, particularly in water-limited environments (Moore et al. 1988).
Variation in air temperature associated with a change in elevation can
explain heterogeneity in soil moisture due to differences in the timing and
rate of snow melt. At larger, regional to continental scales, topographic vari-
ation reflects dominant geologic controls. However, at these large scales, the
impact of topography on variation in hydrologic response is often second-
ary to differences in climatic regime.

Finally, it is worth noting that at all scales, the relationship between topo-
graphic parameters and processes and associated responses such as stream-
flow and spatial patterns of soil moisture can be complex. For example,
Western et al. (1999) found topographic indices were highly correlated to
measurements of soil moisture patterns during wetting and drying periods
for the Tarrawarra catchment in Western Australia. During very dry periods,
however, this relationship breaks down. The dynamic relationship between
topography and soil moisture reflects a shift in the dominant control on
heterogeneity—f{rom topography, in a hydrologically connected landscape,
to local soil properties in a drier, hydrologically disconnected landscape.
Similar limitations to using topographic parameters as surrogates for other
hydrologic properties occur in areas where the underlying bedrock topog-
raphy does not follow surface topography and acts as the main control for
the redistribution of soil moisture.

Heterogeneity in Process

Ultimately, heterogeneity in hydrologic systems behavior may reflect hetero-
geneity in process. From a modeling perspective, spatial or temporal hetero-
geneity cannot always be easily represented by variation in parameters such
as hydraulic conductivity, surface slope, or inputs such as the amount of rain-
fall. In these cases, heterogeneity is best explained by variation in space and
time in the type of underlying processes rather than the intensity of those
processes. For example, heterogeneity associated with differences in climate
often reflects a shift in underlying controlling processes. Variation in temper-
ature, for example, can result in a shift from rain to snowmelt-dominated
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hydrology. Snowmelt dynamics can then become the dominant control on the
shape of seasonal hydrographs. Similarly, a shift from a climate dominated by
short duration, high-intensity convective rainfall to one dominated by lower
intensity frontal systems is often associated with a shift in runoff generation
mechanisms from overland flow to subsurface throughflow. Modeling climate
change impacts on hydrology, therefore, must be sophisticated enough to
incorporate not only changes in input but also potential change in dominant
controlling processes.

Incorporating Heterogeneity in Hydrologic Modeling:
Approaches

Given ample evidence of significant heterogeneity in parameters and inputs
typically associated with hydrologic models, strategies for incorporating this
heterogeneity into hydrologic models are needed and have been the subject
of considerable research. The particular approach used depends on the spe-
cific modeling objective and the response to the following questions:
(a)When and where does heterogeneity matter?(b)What data are available
to characterize this heterogeneity? (c)What are the costs (in terms of com-
plexity, computation efficiency, etc.) of including this heterogeneity in a
given model?

There are a variety of ways in which heterogeneity of parameters and/or
inputs can be incorporated into models. Models range from lumped to qua-
sidistributed to fully explicit representations (Watts 1997) where the transi-
tion from lumped to distributed type models is often evoked specifically to
account for spatial heterogeneity. For example, representation of the expan-
sion and contraction of saturated areas (and hence spatial heterogeneity in
soil moisture and runoff production) can explicitly be represented in a spa-
tially distributed model. In contrast, a lumped bucket model (i.e., a model
that produces runoff in proportion to rainfall only after a single finite hills-
lope scale volume/store has been filled) might underestimate flow during
the runoff period following a storm (recession period) because it ignores
this heterogeneity.

Subunit Heterogeneity

Both lumped and spatially distributed models require estimation of parame-
ters and inputs at the scale of the fundamental modeling unit. For a given
modeling unit, the simplest approach is to use an estimate of the mean value
of the parameter. Error associated with using a mean value will depend on
the degree of nonlinearity of the process dependent on this parameter or
input. Many hydrologic processes show significant nonlinearities. Numerous
researchers have shown that nonlinearities in the relationship among soil
properties, soil moisture, and evapotranspiration can result in under- or
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overestimation of evapotranspiration based on mean soil conditions (Kabat
et al. 1997; Lammers et al. 1997). Runoff, particularly saturated overland
flow, can also be highly nonlinear, given the threshold nature of the response.
Many studies (reviewed by Giorgi and Avissar 1997) use soil-vegetation-
atmospheric transfer (SVAT) models to estimate the coupling of land surface
hydrology to the atmosphere for global climate models (GCMs) and have
shown nonlinearities in the relationship between land surface characteriza-
tions and associated energy and moisture fluxes. Further, these studies show
that these nonlinearities can result in significant errors in estimating these
fluxes based on parameters averaged at the scales typically used in GCMs
(e.g., Famiglietti and Wood 1994; Giorgi and Avissar 1997).

Spatial or temporal averaging of parameters to account for heterogeneity
can also lead to errors when the scale at which the parameter is measured
does not match the scale of application. For example, hydraulic conductivity
is measured in the field at scales of the order centimeters to meters. Hills-
lope hydrology models, however, often include hydraulic conductivity as a
parameter at scales of the order meters to kilometers. At this scale, hetero-
geneity in soil structure such as macro-pores, cracks, and so forth often
increase effective conductivity (McDonnell 1990). Thus, mean soil hydraulic
conductivity no longer controls the rate of flow. Instead, shallow subsurface
resistance to flow is a complex function of soil matrix characteristics and the
organization of flowpaths that produce an effective hydraulic conductivity.
An alternative in this case is to use secondary field data, such as streamflow
or lysimeter data, to infer effective parameter values through calibration.
Even with calibration, however, the issue of using a single effective param-
eter to represent a distribution of conditions remains a problem when there
is significant nonlinearity in the relationship between parameter values and
response. Thus, a calibrated value for mean hillslope hydraulic conductivity
may still result in error if distribution of actual values of hydraulic conduc-
tivity within the hillslope result in a nonlinear relationship between soil
moisture and runoff production.

Parameter Distribution Approaches

One alternative to the use of a single averaged or effective parameter value
is to run the model over a distribution of parameter values for each model-
ing unit. Avissar (1992) defined this approach as a statistical dynamical
approach and has used it to incorporate heterogeneity in stomatal resist-
ance, leaf area index, and albedo in SVAT models of land surface evapo-
transpiration (Avissar 1992; Avissar 1993). Hartman et al. (1999) illustrated
an increase in correspondence between observed and predicted runoff
when a distribution rather than mean value for snow accumulation was
used. Use of a distribution in this case accounted for heterogeneity in
within-grid cell snow cover due to significant wind-driven redistribution of
snow in alpine regions.
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The well-known TOPMODEL (Beven and Kirkby 1979) also uses prob-
ability distributions of a wetness index (7.1) to incorporate the effect of
topography and soil characteristics on soil moisture and runoff production.

1 ( aT; ) (7.1)
L= n — .
Wi T,tanB /)’

where 7; and T, are local and mean watershed saturated soil transmissivity,
respectively, tan {8 is the tangent of the local slope, and a is upslope con-
tributing area. Soil transmissivity is calculated as:

T=J K,e'~s"™ds, (7.2)

Si

where K, is saturated hydraulic conductivity at surface, s is a saturation
deficit (or depth from the surface to the water table), s, is local saturation
deficit, and m is a soil parameter that scales hydraulic conductivity with
depth.

In TOPMODEL, the wetness index distribution is used to compute the
distribution of local saturation deficits and runoff production. One of the
strengths of TOPMODEL is that the topographic component of the wet-
ness index distribution is easily derived from a DEM. Estimation of the
distributions of K, and m (which define local soil characteristics), how-
ever, presents a greater challenge and is often cited as explanation for dif-
ferences between observed and predicted saturation deficits (Blazkova et
al. 2002).

In most applications, TOPMODEL is calibrated by adjusting a mean m and
K, to achieve a best fit between observed and modeled streamflow. Calibra-
tion in this case reflects a method to deal with uncertainty in some of the
underlying parameters—including the extent to which macropore flow and
other heterogeneities in soil parameters impact the response. Calibration can
also compensate for errors in estimating the distribution of the wetness index.
In particular, the estimation of the TOPMODEL index has been shown to be
sensitive to the resolution of the underlying DEM where too coarse a resolu-
tion will truncate the tails of the distribution and change the corresponding
estimate of streamflow. Consequently, calibrated values for parameters based
on DEMs of differing resolution tend to vary (Saulnier et al. 1997).

Errors in TOPMODEL as well as the need for calibration illustrate the
extent to which the estimation of the required probability density function
can be problematic. For other parameters that are not easily measured, such
as stomatal resistance or deeper groundwater conductivities, deriving a rea-
sonable distribution may depend solely on ancillary data or another model.
The use of probability density function can also be problematic in a more
complex model, with multiple parameters, given that modeling over a distri-
bution is considerably more computationally and mathematically intensive
than the use of a single effective parameter.
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Nonetheless, there are many cases where the probability distribution can
readily be derived and may be important in terms of capturing significant
nonlinearities in response. Representing land cover (particularly in urban
environments, where the length scale of heterogeneity is small) by the use of
a distribution may be very useful and help to avoid a situation where large
areas (i.e., major drainage basins encompassed within urban areas) must be
modeled at very fine scale resolutions (i.e., individual lawns, houses, streets).
Even in cases where high resolution data may be available to delineate
these objects, the associated computational and data storage costs would
preclude spatially explicit modeling, except for small localized neighbor-
hoods.

Aggregation or Partitioning Strategies

In spatially distributed models, an alternative to representing heterogeneity
of inputs/parameters as either a probability density function (pdf) or an
effective value is to explicitly represent heterogeneity through landscape
tessellation. Defining the basic spatial modeling unit to minimize within-
unit heterogeneity, however, again requires key issues of parsimony to be
addressed including (a) When does heterogeneity matter? and (b) How
simply can this heterogeneity be adequately described? Further, the use of
effective or averaged parameters must be considered in conjunction with
the strategy used to partition the landscape.

Numerous researchers have endeavored to derive optimal modeling units
for representing landscape heterogeneity, given a specific hydrologic model-
ing task (e.g., Lammers et al. 1997). For many inputs/parameters/processes,
aggregation often reduces heterogeneity. Wood et al. (1988) developed the
concept of a representative elementary area to explore this effect with
respect to runoff production. Evidence from both rainfall-runoff models and
observed streamflow data illustrates that variability between different catch-
ments within the same region tends to decrease as catchment size increases,
such that a representative elementary area (REA) where variability between
samples is minimized can be obtained (Woods et al. 1995). This effect is gen-
erally attributed to averaging of soil and topographic variability. At larger
scales, of course, variability often increases again as regional scale climatic
and geologic controls become important. For rainfall-runoff modeling at the
regional scale, the concept of a REA provides a useful construct for dealing
with heterogeneity. It illustrates that as the scale of the response variable (in
this case runoff) changes, the scale of important heterogeneity also changes.
The REA is a method to characterize this for topographic control of stream-
flow. The concept of a REA and associated scale analysis could also be
applied to other hydrologic properties, such as effective hydraulic conduc-
tivity. In hydrologic modeling, however, response variables of interest may
not necessarily be at the scale of a REA or, further, the response variable
of interest or relevant inputs/parameters may not show this kind of scaling
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relationship. For example, a model designed to provide hydrologic informa-
tion for the purposes of characterizing aquatic habitat must address stream-
flow defined at the scale of habitat sensitivity rather than scale (such as a
REA) that simplifies analysis of streamflow behavior.

Theoretically, in situations where heterogeneity of the parameter pro-
duces nonlinear responses, the issue of heterogeneity in parameter values
can be dealt with by partitioning the landscape into units with minimal
within-unit parameter variation. RHESSys (Band et al. 2000), for example,
allows patch size and shape to vary based on available input data and asso-
ciated parameter variability. Proposed partitioning strategies based on
topographic indices (slope, aspect, accumulated area) and land cover have
been shown to reduce errors associated with averaging of observed nonlin-
ear parameters/inputs (e.g., Lammers et al. 1997). In practice, however, the
minimum modeling unit is often constrained by (a) resolution of available
data and (b) computation memory/time. For example, distributed represen-
tation of land cover characteristics is often limited by the resolution of
remote sensing data. On the other hand, as higher resolution data become
available, computational limitations emerge.

Spatial Connectivity

Finally, it is important to recognize that even fully explicit representations
aggregate or lump the landscape at the scale of the fundamental modeling
unit (e.g., a 30-m grid cell). It is useful, therefore, to distinguish between a
single lumped model that is replicated over an array of spatial units and a
fully explicit representation. In the fully explicit representation, in addi-
tion to accounting for spatial variation in inputs and parameters, the
connectivity between units and the spatial organization of the units is
considered.

In SVAT modeling to support atmospheric modeling, Giorgio and Avissar
(1997) note that spatial heterogeneity can in fact generate meteorological
behavior due to gradients created by heterogeneity in land surface charac-
teristics. In this case, the organization of heterogeneous patches and fluxes
between them must be considered in addition to the distribution of differ-
ent patch characteristics. Similarly, in hydrologic models of biogeochemical
cycling, the potential for uptake of nutrients along hydrologic flowpaths
means that spatial organization of heterogeneity cannot be ignored. Fur-
ther, connectivity between heterogeneous areas and the potential for that
connectivity to change must then be represented in accounting for the
impact of heterogeneity on water quality.

TOPMODEL is an approach that represents connectivity between
heterogeneous landscape units implicitly, rather than explicitly. The higher
wetness afforded to units with higher upslope contributing areas [a in Eq.
(7.1)] implies a movement of water to lower areas. TOPMODEL, however,
does not actually move the water from one cell to another; thus, it does not
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necessarily account for processes where explicit connection is important.
For example, in an urbanizing watershed, some upslope cells may have
higher water loads due to lawn watering, and downslope cells that are
hydrologically connected to these upper cells should be wetter than those in
similar topographic positions but whose upland areas have not yet been
developed.

In addition to ignoring specific upslope/downslope linkage, implicit
approaches such as TOPMODEL typically assume a constant connectivity.
With respect to subsurface flow, field evidence has shown that under dry
conditions, upland areas within a watershed may be disconnected from
lower regions (Western et al. 1999). Similarly, in urban environments, sewers
and roads may act to alter topographically based hydrologic connectivity and
result in the bypass of lowland areas (Djokic and Maidment 1991; Tague and
Band 2001). These examples serve to illustrate (a) the need in some cases to
account for explicit connections between heterogeneous areas and (b) the
potential for those connections to vary with time. Models such as DHSVM
(Wigmosta et al. 1994), RHESSys (Tague and Band 2001), Topog (Vertessy
et al. 1996), and EPA’s SWIMM account for explicit connections, although
the adequacy of submodels and parameters used to define the strength of
connectivity is an area of continued research.

Physically Based versus Empirical Coefficient Models

Classification of hydrologic models also distinguishes between empirical-
coefficient driven and physically based or process-based models (Watts
1997). This distinction, however, is a loose one because, as argued by Beven
(1992), all physically based models include parameters derived from empir-
ical relationships. Nonetheless, physically based models are more explicit in
their representation of process heterogeneity. For example, observed differ-
ences in evapotranspiration and snowmelt between north- and south-facing
slopes can be estimated in a physically based model that drives submodels
of snowmelt and evapotranspiration with solar radiation inputs across spa-
tially variable terrain (e.g., Band et al. 1993; Wigmosta et al. 1994) The
increasing complexity of a physically based model, however, also increases
the sources for potential error.

Physically based models are generally sensitive to interactions between
specific inputs and/or processes. Soil moisture at any given point will be a
function of rainfall, parameters controlling drainage such as hydraulic con-
ductivity, and the representation of processes such as subsurface through-
flow and evapotranspiration, which are both in turn dependent on current
soil moisture conditions. The ability of process-based models to account for
spatial/temporal heterogeneity assumes that the significant controls on vari-
ability, as well as covariation between different controls, inputs, and param-
eters, have been incorporated into the model structure (Beven 2002). In
spite of these potential sources of error, physically based models do provide
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an important heuristic tool by explicitly representing the impact of domi-
nant processes and landscape features on hydrologic response. In this sense,
they are distinct from coefficient-based approaches to the extent to which
they can be used as tools to assess the implications of different explanations
for causes and consequences of heterogeneity.

For example, Pauwels and Wood (1999) illustrate that incorporation of
freeze/thaw cycles and distinct overstory (forest) and understory (moss)
layers into a physically based model has a significant impact on the estima-
tion of evaporative fluxes in a high-latitude boreal forest landscape. These
results suggest that spatial and temporal patterns of these processes may
play a significant role in boreal forest hydrology. Similarly, Bonan (1995)
showed that including a distinct lake surface submodel in a SVAT approach
significantly altered estimates of evaporative fluxes. By altering model
structure rather than parameters, adaptive physically based models can be
used where the research focus is understanding rather than prediction.
However, using models to address process heterogeneity requires that
model design be flexible enough that alternative models and/or additional
processes can easily be implemented (Leavesley et al. 2002).

Conclusions

Figure 7.1 presents a framework that summarizes the multiple avenues
through which heterogeneity becomes an important consideration in hydro-
logic modeling. From one perspective, hydrologic models can be used to
predict heterogeneity in variables of interest. Characterizing heterogeneity
in hydrology responses such as streamflow is often a prerequisite for envi-
ronmental planning directed at managing water resources. Simply quantify-
ing heterogeneity in space and time of hydrologic fluxes (streamflow,
evaporation, precipitation, and so forth.) remains a challenge that is cur-
rently being addressed both by extension of monitoring networks and by
hydrologic modeling. Limited spatial-temporal coverage of monitoring net-
works and the potential for error in inputs, parameters, and the structure of
hydrologic models, however, must be recognized and evaluated as sources
of uncertainty in this information.

Both resource managers and scientists need a more complete under-
standing of the controls on heterogeneity in hydrologic responses. At the
same time, the complementary issue of how heterogeneity in particular
land surface characteristics impacts the way in which water moves through
the landscape must also be recognized and evaluated. Hydrologic models
are key tools that explore and illustrate both of these scenarios. The testing
of hydrologic models against empirical data, therefore, improves the
understanding of the role that heterogeneity of inputs, parameters, and
processes plays in hydrology. By exploring the conditions under which dif-
ferent representations of heterogeneity (i.e., through effective parameters,
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FIGURE 7.1. A framework for considering the role of heterogeneity in hydrologic
modeling. The framework acknowledges the distinction between heterogeneity in
inputs, parameters, and processes and summarizes different approaches commonly
used in hydrologic modeling to account for effect on model predictions.

probability density functions, or process algorithms) can adequately cap-
ture observed responses, hydrologic models are improved along with a
basic understanding of key landscape controls on relevant hydrologic
processes.

Linking hydrology with ecology broadens the context in which hydro-
logic models are used. Coupled hydro-ecological models employ many of
the same techniques used in more classic hydrologic approaches. In these
models, additional controls and feedbacks can become important drivers of
heterogeneity. For example, models that couple vegetation carbon and
nutrient cycling with hydrology must consider feedbacks between soil mois-
ture and vegetation productivity and thus consider heterogeneity in both.
The added complexity of considering interactions between hydrology and
ecology means that parsimony becomes a crucial issue in model design.
Ecological considerations, however, also help to bound the precision over
which heterogeneity is relevant. For instance, for many ecological predic-
tions, a 10% difference in streamflow or soil moisture may not be important.
Further work that extends both the technical advances in addressing het-
erogeneity in hydrologic modeling and provides an ecological context for
interpreting and evaluating model results, will, likely make valuable contri-
butions to both disciplines.
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Spatial Heterogeneity in Infectious
Disease Epidemics

DaviDp L. SMITH

Abstract

Infectious disease epidemics in populations are inherently spatial—infectious
agents are spread by contact from an infectious host to a susceptible host
nearby. Among-host differences can determine which hosts suffer disease and
the population dynamics of infectious disease epidemics. From the perspective
of the infectious agent, a host is a habitat patch; among-host differences that
are epidemiologically important are related to the concepts of compositional
and configurational heterogeneity in landscape ecology. Heterogeneous mixing
in epidemiology encompasses factors that determine who comes into contact
with whom; it is analogous to configurational heterogeneity in landscape ecol-
ogy. Other sorts of heterogeneity are analogous to compositional heterogeneity,
including among-host differences in the duration of an infection, susceptibility
to infection, or the amount of an infectious agent that is dispersed from an
infected host. In real epidemics, compositional heterogeneity and configura-
tional heterogeneity can introduce an overwhelming amount of complexity.
Mathematical modeling provides a method for understanding epidemic
processes and for taming the complexity. The idea of epidemic distance is
introduced as a way of comparing and contrasting two different epidemic
processes, and it is used to compare and contrast some of the mathematical
models used to understand the role of space and spatial heterogeneity in epi-
demiology. In understanding real epidemics, the notion of parsimony is a
guiding principle—heterogeneity should be weighed and ignored whenever
possible. Several case studies are presented in which compositional and con-
figurational heterogeneity are shown to be important.

Introduction

Infectious disease epidemics in populations are inherently spatial. Infec-
tious agents persist by spreading from an infectious host to a susceptible

137



138 8. Spatial Heterogeneity in Infectious Disease Epidemics

host nearby. Each host has a location, although “nearby” and “location”
have a different meaning for each infectious agent. Infectious agents spread
along a network of hosts characterized by the biology of the host population,
the transmission mode of the infectious agent, and the course of an infec-
tion. Location in an epidemic network may be determined by geographical
position, position in a social or sexual network, proximity to vector breeding
sites, the movement of hosts or infectious agents through commerce, air
travel, wind, or something else. For example, the influenza A virus is spread
by airborne particles; airborne transmission requires that two people must
be within a few meters of the same place within a few minutes. In contrast,
an Anopheles mosquito becomes infectious 10 days or more after becoming
infected with malaria; the next host infected may be several kilometers
away. Thus, location may have a different meaning for each infectious agent
in each host population.

Infectious disease epidemics are complex processes involving heterogeneous
host populations and genetically diverse parasite populations. Heterogeneous
host factors may include genetics, behavior, immune status, or any epidemio-
logically important trait that is spatially distributed among hosts. From the per-
spective of a parasite, a host is a habitat patch. Epidemiologically important
differences among hosts fall into two categories. The first category includes any
factor that affects the position of a host in a contact network or the configura-
tion (topology) of the network. Collectively, these differences are called het-
erogeneous mixing. Heterogeneous mixing is analogous to configurational
heterogeneity in landscape ecology. In contrast, compositional heterogeneity
refers to other differences among hosts. Important kinds of compositional het-
erogeneity include differences in the duration of the infectious period, suscep-
tibility to infection following exposure, or the amount of an infectious agent
that is shed or dispersed into the environment from an infected host.

Infectious disease epidemics are complex, nonlinear processes. Under-
standing epidemics involves statistical analysis combined with mathemati-
cal modeling. Homogeneous population models—those that assume all
individuals are alike—are a useful starting point in a hierarchical approach
to model building and play a role similar to statistical null models. Hetero-
geneous population models modify the simple assumptions of homoge-
neous models to incorporate heterogeneity in the distribution of some
epidemiologically significant trait, whether it is configurational or composi-
tional. Heterogeneity is often manifested in unique ways in each system. Put
another way, homogeneous populations are all alike, but each heteroge-
neous population is heterogeneous its own way, like unhappiness in the
Karenina family in Tolstoy’s Anna Karenina. Heterogeneity is not some-
thing that can or should be studied for its own sake; heterogeneity must be
understood in context. Thus, understanding heterogeneity is often limited to
case studies, although some important generalizations can be made.

Some general observations about the effects of heterogeneity may be best
understood by considering simple departures from homogeneity, such as the
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variance in the number of contacts per unit time. Associating an effect with
heterogeneity amounts to an analysis of structural stability or sensitivity analy-
sis on higher order terms; this may require building suites of mathematical
models and associating cause and effect by comparing models, either by elab-
orating simple models or simplifying complex ones (Mollison 1984; Black and
Singer 1987). Heterogeneity may or may not be biologically important depend-
ing on the question being asked. Determining the biological importance of het-
erogeneity through model building and analysis, model fitting, and model
selection is an important activity in science, especially if one regards science as
a process of successive approximation (Burnham and Anderson 1998). Some
models are intrinsically bad, but no good model serves every purpose. George
Box (1979) famously said, “All models are wrong, some models are useful.”

Hundreds of epidemic models have been developed and analyzed, thou-
sands more are plausible, and an infinite number of models are possible
(Hethcote 1994). To avoid the sheer tedium of analyzing model after model,
itis necessary to ask what makes one model different from another and how
much do the models differ. One way to measure the differences is to ask
how the models generate different predictions about the time course of an
epidemic and the distribution of time to infection. In some sense, the ques-
tion of whether to incorporate space or spatial heterogeneity into an epi-
demic model is a question about the most parsimonious way to represent
the mixing patterns or the distribution of important epidemiological traits
in a population of hosts.

Heterogeneity should be weighed and ignored, unless it is biologically
important. In the following essay, I will present my own view of spatial het-
erogeneity in epidemiology with a specific focus on those situations where it
cannot or should not be ignored. In epidemiology, configurational hetero-
geneity is particularly confusing because there are two natural points of
departure: random mixing and homogenous space. The two are opposites, in
some sense. The mathematical assumption of homogeneous mixing models
is equivalent to rapid and even stirring of chemicals in a chemostat, whereas
homogeneous spatial models assume a uniform distribution of individuals
on a landscape. To avoid oversimplifying, I will consider the well-mixed
models and homogeneous spatial models as two different points of depar-
ture for understanding configurational heterogeneity.

Epidemic Models and Spatial Heterogeneity

Mathematical models have played an important role in the population biology
of infectious diseases as conceptual tools, for statistical inference, and for
developing and evaluating policy. Bernoulli’s smallpox model in 1760
explored the efficacy of variolation, a precursor to modern vaccination that
involved blowing the scabs from surviving small pox patients into the nose
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to induce a mild case of smallpox. Hamer published the first deterministic
model for measles dynamics in 1906, followed by a mathematical model for
malaria by Ross in 1911. Mathematical epidemiology was firmly established
in 1927 by Kermack and McKendrick, and it has been a very active area of
research during the past 25 years (Anderson and May 1991; Hethcote 2000).
Some important contributions of mathematical models to epidemiological
theory have been the following:

1. To establish a deterministic epidemic threshold, the basic reproductive
number, R,,.

2. To establish an endemic threshold, a minimum population size or popu-
lation birth rate for an infectious agent to persist in a stochastic epidemic.

3. To describe the relationship between epidemiological parameters and
the long-term average prevalence or the fraction infected during an
epidemic.

4. To explain periodicity in epidemics.

Most of these developments have been done under the classical assump-
tions that the population is homogeneous and well mixed; in other words, all
individuals are alike, and a population is mixing uniformly and rapidly
enough to prevent any pattern formation. Heterogeneous models modify
one or more of these classical theoretical assumptions. Despite their sim-
plicity, even well-mixed models are spatial in a limited sense; hosts are sep-
arate from one another, but the assumptions about mixing guarantee that
location is irrelevant (see below). This is sometimes called pseudospace.
Indeed, Levin’s metapopulation model in ecology, developed to illustrate
the qualitative aspects of space, is mathematically identical to a simple epi-
demic model (Levins 1969). Epidemic models have incorporated more real-
istic representations of space, but one important question is how these
representations of space differ from one another. Is qualitative space good
enough or is some more complicated spatial model necessary?

Comparing Epidemic Models

Qualitative representations of space may differ from the familiar definition
of the Cartesian distance between two hosts, because distance depends on
context. The earth is not really flat or homogeneous, so the shortest effective
distance between two points is different for birds, antelopes, and earth-
worms moving about on the same landscape. In some sense, different
notions of epidemic space are motivated by the different ways an infectious
agent moves through a population. To pave the way for a more rigorous
understanding, I will define epidemic distance, motivated by the formula:
distance = rate X time. Intuitively, distance in an epidemic is related to the
length of a transmission chain from one host to another.

The “average path” metric is the expected time for an epidemic to reach
one individual from another. Time units are measured as the average disease
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FIGURE 8.1. A simple network with three
hosts, (A, B, and C). The infection rates
are asymmetric between A and B (wa g #
wp ) but they are symmetric between B
and C (wpc = wcp).

generation, the average time elapsed between infection and transmission to
another host; epidemic distance is the number of disease generations before
an agent gets from one host to another. The distance between some pairs of
hosts may be less than one because transmission rates between some hosts
are higher than average. Thus, the epidemic distance concept is not simply
analogous to the degrees of separation from network theory (popularized in
the Kevin Bacon game and the movie Six Degrees of Separation), although
the two are conceptual cousins (Watts 1999).

For an epidemic model defined on well-characterized set of discrete
hosts, epidemic distance can be defined and computed. Graphs are one way
of representing contact networks. A contact network can be represented as
a weighted graph—each host is a vertex (Figure 8.1). Each pair of vertices is
connected by two directed edges. The weight assigned to each weighted
edge is the contact rate, w; ;, the inverse of the expected waiting time for a
new infection to be transmitted from one host to the other. In some pairs,
w;; = 0,implying no direct connection. For an epidemic in a population of N
individuals, the distance is determined entirely by the direct pairwise con-
nections, w; ;, for each of the N?—N ordered pairs of individuals. This formu-
lation of distance is more accurately described as a directed distance
concept—the distance from A to B may be longer than from B to A. For
example, if a sexually transmitted disease is more easily transmitted from
males to females than vice versa, the expected time to infection in a sexual
partnership may be different from him to her than from her to him, even
though transmission would occur through the same sexual acts. The degree
of separation would be equivalent to epidemic distance if transmission were
symmetric (w;; = w;;) and all direct contacts had weights of either zero or
one.

Distance in Simple Epidemics

In a well-mixed, closed, homogeneous population model, every host is alike
and population density is a constant N. In the simplest epidemic models,
individuals are either uninfected and susceptible to infection, infected and
infectious, or recovered and immune; the density of individuals in each state
is denoted S, I, and R respectively. These models typically assume that
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individuals recover at a constant per capita rate, a, without respect to the
time they became infected; recovery times are exponentially distributed
with average infectious period of 1/a. In this model, the infectious period
also defines a disease generation; the average time elapsed between consec-
utive infections. In an S-I-S model, individuals return to the susceptible state
after infections, and S + I = N. In S-I-R models, recovered individuals
become immune,and S + 7/ + R = N.

The rate of infection for each susceptible in a population can be described
by a general function B(/); 1/B(I) gives an instantaneous estimate of the
expected waiting time to infection. In density-dependent models, the rate of
infection in the population is proportional to the density of infectious and of
susceptible individuals, B(I/)S = BIS. This assumption is also called mass-
action in chemistry or a mean-field assumption in physics. This formula
assumes that contact rates are proportional to the average crowding index,
the squared density of hosts, N°. Frequency dependent mixing assumes that
mixing occurs at a constant rate, and the rate of infection is proportional to
fraction of contacts that are infectious, BIS/N. Density and frequency
dependent mixing models may be appropriate for different diseases.

For density dependent S-I-S and S-I-R models, the number of infected
individuals over time is described by the equation dI/dt = BSI — al. In the
S-I-R model, a second equation is necessary: dR/dt = al.

The Basic Reproductive Number, R,

A brief detour is necessary to introduce the concept of the basic repro-
ductive number, R, a number that summarizes many important properties
of an epidemic model. The term has its origins in demography where the
basic reproductive number measures the lifetime reproductive output, the
expected number of females born to an average female in a lifetime (Dietz
1993). For infectious agents, reproductive output could be measured
either as the rate of reproduction within a host or as the rate of transmis-
sion among hosts. Because an infectious agent persists by maintaining an
unbroken chain of infection from host to host, transmission is the more
relevant measure of reproductive output. For epidemics, Rj, is defined as
the expected number of new infectious cases caused by the first case intro-
duced into an otherwise naive population. At the beginning of the simple
epidemic defined above, each individual infects others at the rate BN and
remains infectious for the 1/a days; thus, R, = BN/a. This formula applies
to both S-I-S and S-I-R models; the development of immunity is irrelevant
with respect to an infectious agent’s ability to invade a naive population.
The number of cases in the nth disease generation is approximately R,". If
R, >1, the number of cases increases geometrically, at least until the epi-
demic depletes the number of susceptible individuals. Thus, R, plays a
focal role in theory for infectious diseases by establishing an endemic
threshold.
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Shortest Path and Average-Path Metrics

Because every individual is alike and all individuals mix randomly, distance
is one of two numbers; the distance from each individual to itself is zero, and
the distance to any other individual is a positive number. This is the defini-
tion of pseudospace or qualitative space. The distance between any two
individuals is the average or least number of disease generations elapsed for
an infection to reach the individual, but how long does it take for the aver-
age person to become infected?

Assuming an epidemic occurs (R, > 1), the time to infection in the first
generation is 1/B3; average time to infection in the first generation is o/ =
NI/R, . The “average path” metric depends on the time course of the whole
epidemic, I(#). In the S-I-S model, recovered individuals become susceptible
again, so multiple infections are possible. All individuals become infected
for the first time eventually, unless a stochastic epidemic fades out. In the
S-I-R model, the epidemic depletes the susceptible population and eventu-
ally burns itself out; some fraction of the population remains uninfected.
Using a definition that corrects for fade-out, epidemic distance is defined for
R, > 0 (see the Appendix for details).

The distance from any host to itself is always zero. In homogeneous, well-
mixed populations every host is equidistant from every other host. How far
apart are two hosts? For the S-I-S and S-I-R models, average epidemic dis-
tance is very similar (Figure 8.2). The epidemic distance depends on R, and
population size. Holding B constant, the epidemic distance decreases with
population size because Ry is increasing (Figure 8.2a). Holding R, constant,
the epidemic distance increases with population size because it takes more
generations to reach all the population (Figure 8.2b).

Heterogeneous Models

A heterogeneous model is one that departs from the assumptions of homo-
geneous well-mixed models. Simple departures in the composition of the host
population, called compositional heterogeneity, tends to increase R, relative
to a homogeneous model with the same average, all else being equal (Adler
1992; Dushoff and Levin 1995). Thus, an infectious disease is more likely to
sustain a chain of transmission in a population with heterogeneous shedding,
heterogeneous susceptibility, and heterogeneous duration of the infectious
period relative to a homogeneous population with the same average.
Heterogeneity in the configuration of hosts, or heterogeneous mixing,
implies a more complicated departure from homogeneous models. Since
contact involves two individuals, mixing is inherently nonlinear (i.e., BSI).
Thus, the mathematics of heterogeneous mixing is always more complicated.
An important departure from homogenous mixing is positive assortative
mixing (preferred mixing) in which the most active individuals mix prefer-
entially with similar individuals, increasing R, (Dushoff and Levin 1995).
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FIGURE 8.2. Epidemic distance varies with R, and population size. The average path
metric for the S-I-S or S-I-R model with demographic stochasticity. The average path
was estimated by simulating epidemics; the average was computed for an ensemble of
10,000 realizations. (a) Epidemic distance declines as population size increases, hold-
ing per capita transmission rates constant because R, increases. Here, R, ranges from
1 to more than 14. (b) Epidemic distance increases as a function of population size
holding R, constant at 2. (Published in Mahadevan and Campbell, 2003).
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These assumptions have been applied most commonly to the spread of sex-
ually transmitted diseases (see Garnett and Anderson 1996, for example),
but they may also reflect other kinds of population structure, such as age or
grade in school, two factors that are important for childhood diseases. Spatial
models are another kind of heterogeneous mixing; individuals are more
likely to contact one another if they are close to the same place (Levin and
Durrett 1996).

Networks

Networks are a very general way of thinking about contact. Networks
encompass a wide range of configurations, including random networks, in
which the contacts are generated randomly, completely connected networks,
and spatial networks (i.e., grids). Because a contact network on a finite set
of hosts can be changed from a random network to a spatial network by
making and breaking connections, networks provide a unified way of think-
ing about contact. From the network perspective, random mixing and spatial
networks are special, limiting cases. An exhaustive study of epidemics on
networks is beyond the scope of this paper (see Watts 1999 for a longer
introduction).

In some cases, networks are the natural way of describing contact, such as
sexual contact networks. Random mixing may be a reasonable approximation
to many networks, as long as a given neighbor’s neighbors are not impor-
tantly different from a random subset of all individuals. In practice, infor-
mation about the structure of a contact network is extremely difficult to
obtain. For many diseases, the spatial distribution of individuals is easier to
characterize, the distance from an infected individual is a simple and reli-
able surrogate for the contact rate. Thus, space may be regarded as one use-
ful way of understanding complicated contact networks.

Homogeneous Spatial Models

The most common notion of space is the surface of the earth, although some
habitats are roughly one-dimensional (e.g., a river) or three-dimensional
(e.g.,alake). On a surface, the definition of a homogeneous spatial epidemic
is ambivalent. A homogeneous spatial distribution of hosts is the uniform
distribution, the points on a lattice or a uniform density in uncomplicated
continuous space (Figure 8.3a), the variance is zero implying a departure
from complete spatial randomness. A random distribution of points is
drawn from a probability distribution function with a uniform expectation,
the statistical definition of complete spatial randomness (Figure 8.3b). In a
random distribution of hosts, the variance is equal to the mean. The major
difference between these two distributions is the absence of pairs at very
short distances in the uniform distribution (Figure 8.3c); in a uniform distri-
bution (i.e., the trees in an orchard), hosts are arranged at regular intervals.
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FIGURE 8.3. A homogeneous spatial epidemic is defined on a uniform distribution
of points, not for random points drawn from a uniform distribution. The distribution
of pairwise distances is similar for 400 uniform points or random points; the random
distribution (dashed) has slightly more pairs at very short distances compared with
the uniform one (gray). (Published in Mahadevan and Campbell, 2003).

In random distributions, some pairs are closer together than that interval.
Very close pairs may be important for an infections agent to invade and per-
sist in a population.

Aggregated distributions, in which the variance is greater than the mean,
are clearly heterogeneous. Thus, we can establish a rule of thumb for three
informal but meaningful classes of spatial epidemics. Homogeneous spatial
epidemics occur in a completely uniform distribution of hosts. Heteroge-
neous distributions are those that are statistically indistinguishable from a
uniform expectation (the variance is close to the mean), and those that are
more aggregated (the variance is greater than the mean).

The most important property of a spatial distribution is that the majority
of hosts are far away, but two hosts that have a close direct connection to a
third host also have a fairly close direct connection to each other. This is not
necessarily true for arbitrary networks. In space, if A and B are both close to
C, then A and B must have some connection, even if C is removed. In con-
trast, A and B may be connected indirectly in an arbitrary contact network
only through C; removing C may completely isolate A from B. Thus, when
epidemics begin in geographic space, infected individuals are clustered. Epi-
demics spread as a front, and R, is proportional to the number of individuals
in the neighborhood rather than the population density (Durrett and Levin
1994; Mollison and Levin 1995; Levin and Durrett 1996; Holmes 1997).
Thus, spatial epidemics are characterized by a particular distribution of
pairwise epidemic distances (Figure 8.3¢). The same graph for pseudospace
would have a spike at the one-distance.

Homogeneous spatial models can be classified by the representation of
hosts as discrete or not and space as continuous or broken into patches
(Durrett and Levin 1994). Reaction-diffusion equations (continuous space,
no discrete individuals) are a straightforward extension of homogeneous
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mixing; nonspatial models can be transformed into spatial reaction-diffu-
sion models by adding diffusion terms (Durrett and Levin 1994; Murray et
al. 1986). Spatially structured populations (discrete space) subdivide a con-
tinuous landscape into a set of discrete patches. Each patch holds a popula-
tion, and the local populations are well mixed. Epidemics spread by the
movement of infected hosts or by dispersal of the infectious agent among
patches. These models are typically deterministic with no discrete individuals,
but directly analogous stochastic models can be built that incorporate
demographic stochasticity and discrete individuals. For example, if patches
are arranged on a grid and the net flux of individuals is proportional to the
relative density, the model is a discrete analogue of the reaction-diffusion
equations.

Interacting particle systems (discrete individuals on a lattice) are stochastic,
grid-based models with at most one individual at each point on a lattice. On
a grid, an individual has exactly four nearest neighbors, except possibly near
the edge. In one common formulation of an epidemic on the grid, the prob-
ability of becoming infectious in some small interval of time is proportional
to the number of infected neighbors. Alternatively, the infectious neighbor-
hood can be expanded to the eight neighbors two-steps away, or the 4k
neighbors k-steps away, ignoring edges. Spatial point processes (continuous
space, discrete individuals) allow individuals to occupy any point in contin-
uous space. Typically, the points are fixed representing the stem of a plant or
the center of a territory or home range. The per capita probability of infec-
tion for an individual in a very small interval of time is approximately the
sum of all infectious neighbors weighted by the probability of transmitting
from some distance away, 23(x)I(x) dx.

Heterogeneous Spatial Models

Spatial heterogeneity in epidemic models may include both configurational
or compositional heterogeneity. A common type of configurational hetero-
geneity is a heterogeneous distribution of hosts because of variability in the
quality of habitat. Host populations are usually distributed unevenly on a
landscape, such as the distribution of humans in large cities and small towns.
Alternatively, hosts may move faster through some areas, or the infectious
agent may disperse among patches, effectively warping space. Heterogeneity
may have been incorporated into interacting particle system models by
eliminating some neighbors (Holmes 1997). Heterogeneity in spatial point
processes may involve increasing the aggregation of the hosts.

Compositional heterogeneity includes heterogeneity in the distribution
of an epidemiologically important trait. For example, heritable genetic traits
that increase susceptibility to infection can be unevenly distributed among
hosts on a landscape. Because epidemics can have demographic and/or
selective effects on the host populations, compositional and configurational
heterogeneity can be generated by an epidemic itself.
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FIGURE 8.4. Structured epidemic models emphasize large-scale patchiness by ignor-
ing local spatial structure (i.e., they assume that populations are locally well mixed).
They are analogous to structured metapopulation models in ecology. Different sub-
populations may have different sizes, represented here by the radius of the circle. For
this distribution, the pairwise distances are much more heterogeneous than geographic
space (compare with Figure 8.3). Published in Mahadevan and Campbell, 2003.

Structured Population Models

Structured population models (also called structured metapopulations) are
a particularly useful hybrid between a well-mixed population model and a
network model. A large population is subdivided into a set of local sub-pop-
ulations connected by transmission or movement (diagram in Figure 8.4).
Transmission in local subpopulations (patches) is well mixed, and local
subpopulations are connected by transmission or the movement of hosts;
the connectivity relationships among local subpopulations can be random
hierarchical, spatial, or they can take any form specified by the network
(Watts 1999). Adjacency is specified by a weighted graph describing the
migration of individuals among local subpopulations (graph in Figure 8.4).
Thus, structured population models emphasize spatial patchiness at large
spatial scales by ignoring local spatial structure.

Models and Data

To deal with the complexity of malaria, Sir Ronald Ross developed an
approach to inference involving two complementary approaches that he
called a priori and a posteriori (McKenzie 2000). A priori methods flow
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from cause to effect using mathematical models to understand the logical
consequences of assumptions. A posteriori approaches involve reasoning
from effect to cause by exploring patterns in data. Ideally, statistical infer-
ence proceeds within the general framework Ross described, although the
a posteriori approach is far more familiar to most epidemiologists. Recent
conceptual advances in likelihood, information theory, and complexity com-
bined with the availability of inexpensive high-speed computers have made
Ross’s approach available to mainstream epidemiologists (Mollison 1984;
Burnham and Anderson 1998).

More widespread use of a priori methods has been hampered by misper-
ception and miscommunication. A model is a complicated hypothesis that
explores the consequences of a set of assumptions. Mathematical models
flow in the same direction of causation, from cause to effect, but the conclu-
sions are only as good as the assumptions. In weighing the merits of a par-
ticular model or hypothesis, the standard is another model or hypothesis.
Science proceeds by formulating different models and testing them against
each other. Models must be judged critically by testing the assumptions or
evaluating how well a model describes information in data. A perfect, but
untested model may not have been formulated, a possibility that colors all
conclusions with some skepticism. In the meantime, steady improvement in
our approximating models provides a practical avenue to advance science.
From this perspective, mathematical models are critical because they asso-
ciate a biological mechanism with the pattern it generates. Moreover,
because each effect has an associated effect size, mathematical models allow
each effect to be quantified and interpreted.

Mathematical models are often criticized for being too simple, but popu-
lation biology, like other academic disciplines, is guided by the principle of
parsimony, a concept that has developed substantially since William of
Occam’s advice that we “shave away all that is unnecessary.” Parsimony
implies an appropriate level of complexity. Model building and inference
for epidemics is a process of successive approximation, moving from simple
to complex. In statistical inference, the best approximating model has an
appropriate trade-off between bias and variance; explicit parsimony criteria
have been derived from information theory as measures of information loss
(Burnham and Anderson 1998). Formal measures of parsimony that are
appropriate for scientific inference may not be appropriate for all uses. For
example, models built for policymakers should robustly maximize an explicit
policy outcome. Models that are too complex to be understood by policy-
makers are not useful, and those that are too simple to describe a complex
system are not credible. The best model for making policy may not be the
best model for inference (Ludwig and Walters 1985).

Deterministic models are easy to analyze and interpret, and the time
course of an epidemic is entirely determined by the initial conditions. In
stochastic models, an individual may be infected immediately in one real-
ization but not in another. Stochastic epidemic models can be repeated as



150 8. Spatial Heterogeneity in Infectious Disease Epidemics

often as necessary. In contrast, real epidemics happen once, so everything
about a complicated network must be inferred from the one and only epi-
demic. Moreover, real epidemics are extremely complicated and expensive
to study. From this perspective, it should be obvious that even if everything
about a real epidemic were perfectly observed, some information about the
underlying process is lost (Anderson and May 1991)

Mathematical models help fill in the gaps; they are useful for developing
concepts and quantitative intuition, synthesizing data from various sources,
estimating and interpreting parameters, and integrating parameter estimates
into a coherent picture of a whole process. Mathematical models are also a
useful way to understand complex systems and evaluate the effects of hetero-
geneity. Epidemic distance may be a useful concept for comparing and con-
trasting models that are used for many purposes and selecting a simple one.

Case Studies

The role of heterogeneity in infectious disease epidemiology has been
demonstrated in a number of studies, especially those at the interface
between basic and applied sciences. An important class of questions is the
geographical spread of an invasive infectious disease, how fast does an epi-
demic wave move across a landscape? Spatial heterogeneity in the well-
studied case of invasive rabies is discussed. Heterogeneity may also play a
key role in the ability of an infectious agent to invade and persist in a local
population. Examples include the role of spatial heterogeneity in an
endemic plant disease, a vector-borne human disease, and the ongoing epi-
demic of antibiotic resistant bacteria. Finally, heterogeneity also has impli-
cations for the control of infectious diseases, including vaccination programs.

Geographical Spread of Invasive Infectious Diseases

The invasive spread of infectious diseases in naive populations are an inter-
esting problem with potentially important management implications. For
planning spatially oriented control measures, it is useful to identify areas
where the spread is naturally inhibited by the landscape or by low popula-
tion density (Murray et al. 1986; Shigesada et al. 1995). The rate of spread
may be affected by configurational heterogeneity, such as differences in the
spatial distribution of hosts or particular features of the landscape. Invasive
infectious diseases, like invasive species, are prone to rare but important
long-distance translocation events that establish nascent epidemic foci well
in advance of an invading front (Mollison 1986).

One disease that has been well studied in both respects is rabies. The local
movement of hosts tends to produce well defined and predictable traveling
waves of infected hosts. In the case of rabies, geographical distance is a good
proxy for epidemiological distance. Long-distance translocation tends to
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“homogenize” the landscape, effectively reducing the distance between any
two hosts that are far apart.

Fox Rabies

Epidemics of fox rabies in Europe at the end of World War II motivated the
development of reaction-diffusion models for rabies epidemics in wildlife
(Murray et al. 1986). On a homogeneous landscape with reaction-diffusion
equations, an invasive disease spreads outward from the source in concentric
circles. The speed of propagation of the epizootic wave-front depends on the
local density of foxes. Heterogeneous distributions of foxes can speed up
where hosts are most dense and slow down in areas where host density is too
low to sustain an epidemic. High fox densities in the United Kingdom led to
fears of a rabies epidemic there; the course of the epidemic was projected
based on a population density map for foxes (Murray et al. 1986).

Other work on the fox rabies epidemic emphasizes the role of long-distance
translocation in determining the speed of propagation and the shape of the
invasive front (Mollison 1986). Diffusion implies rather strict conditions on the
distribution of newly infected hosts; random movement or random dispersal
may be modeled by many mathematical functions, including many fat-tailed
distributions for which a relatively large fraction are dispersed long distances
(Mollison 1991; Shigesada et al. 1995; Lewis and Pacala 2000).

Raccoon Rabies

A recent epidemic of rabies in raccoons in the northeastern United States
began in 1977 near the border between Virginia and West Virginia. Exten-
sive testing of animals, including many that were behaving suspiciously,
allowed the progress of the epidemic to be tracked over large spatial scales
(Childs et al. 2000). Unfortunately, the location of raccoons that tested pos-
itive for rabies was recorded by county, or occasionally by township (usually
a subdivision of a county). The political boundaries do not necessarily cor-
respond to ecological boundaries, and the natural scale of the epidemic
process is much smaller than the political unit. Thus, some spatial informa-
tion about the epidemic was lost.

The incidence of raccoon rabies was recorded by township in Connecticut.
Mathematical models for the epidemic in Connecticut considered the spread
along a network of townships defined by geographic adjacency. The study
sought to quantify spatial heterogeneity in the rate of spread and identify
factors that would explain such heterogeneity. Models predicted that rabies
would spread faster where host density was highest (Murray et al. 1986); rac-
coon density tends to be highest in suburban parkways (Hoffman and
Gottschang 1977; Jones et al. 2003). Rivers were investigated as a possible
barrier to dispersal. The effect of spatial heterogeneity was quantified and
tested by fitting homogeneous and heterogeneous models to the data. Rivers
were associated with a sevenfold slowing in the propagation of the epidemic
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FIGURE 8.5. Large rivers can delay the spatial spread of an infectious disease. In Con-
necticut, rabies invaded from the east (arrows) but slowed at the rivers (lines) by a fac-
tor of seven; the delay is illustrated by degree of shading for each of the 169 townships
plotted at the centroid of each township (circles). In the southeast corner, rivers would
have delayed rabies by approximately 16 months. The configuration of the rivers
determined the magnitude of the delay; for example, rabies can sometimes spread
around the headwaters of the river faster than it would cross a river. In the actual epi-
demic, the rivers had a less important effect because of long-distance translocation.
Rabies crossed the Connecticut River (middle line) early in the epidemic.

wave front (Figure 8.5), but no association was found between the speed of
the traveling wave and human population density (Smith et al. 2002).

In Connecticut, rabies was detected in several townships in advance of
the epidemic front, evidence that long-distance translocation of rabid rac-
coons was relatively frequent and important. At least one long-distance
translocation event jumped the Connecticut river early in the epidemic.
Such long-distance translocation events can minimize the slowing caused by
heterogeneity, such as obstacles or areas of low population density, by occa-
sionally leaping ahead of them (Smith et al. 2002).

Spatial Heterogeneity and Endemicity

Measles epidemics have been instrumental in developing the concept of the
critical community size (Anderson and May 1991). Threshold criteria
describe the ability of an infectious agent to increase when rare, but the abil-
ity to persist depends on other aspects of the epidemiology. After the initial
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epidemic, infectious agents may fade-out and go extinct, especially if new
susceptibles are generated too slowly to sustain a chain of infections. For
example, childhood diseases with lifelong immunity tend to persist only in
populations with high birth rates. Other aspects of persistence involve more
ecological concepts, including metapopulations, source-sink and core-satel-
lite relationships. The case studies that follow illustrate different concepts of
epidemic distance.

A Foliar Pathogen

Configurational heterogeneity plays a particularly important role in the
persistence of the fungal pathogen Triphragmium ulmariae and its host
plant Filipendula ulmaria found growing on islands of the Skeppsvik Arch-
ipelago, northern Sweden (Burdon et al. 1995). The pathogen is host specific
and virtually harmless. The host is a perennial plant that grows on the upper
part of the shore. The host populations varied in size, and some islands had
multiple host populations. The islands were created by glaciation, and chan-
nels of deep water arranged the islands into drumlin lines.

The complex life-cycle of the pathogen is mirrored by complex dispersal
modes. As the host plant dies back to an underground rootstock during the
winter, survival of the pathogen during this period is exclusively as
teliospores found on dead leaf and stem fragments. 7. ulmariae persists by
reinfecting host plants as new stems grow through the spores in the detritus
of the previous year’s infected plant tissue, or possibly washed ashore as
flotsam. New infections may also spread by windborne spores during the
summer.

During the period 1990-2000, epidemiological patterns in the incidence,
prevalence, and severity of disease were followed in this metapopulation.
Model building and model selection were used to test different hypotheses
about the role of configurational heterogeneity drawn from metapopulation
and landscape theory. A suite of models incorporated different combina-
tions of variables including the location and size of the host populations,
hierarchical relationships among host populations imposed by the geology
of the archipelago.

The study found strong evidence that the persistence of the parasite is
determined by the configuration of the host populations. These are best
described as core-satellite relationships; large host populations sustained
stable populations of the parasites. A complex hierarchy in the spatial
arrangement of host populations had a strong, secondary effect on persist-
ence. Infection rates among populations on the same island were an order of
magnitude greater than among islands in the same island chain. In turn,
infection rates among populations on the same island chain were orders of
magnitude higher than the baseline rate (Smith et al. 2003). Despite the
obvious spatial distribution of the host populations, simpler population
models that incorporated the natural spatial hierarchy performed as well as
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those that modeled the probability of infection as a function of distance.
Structured population models were easier to understand, easier to inter-
pret, and less computationally intensive.

Antibiotic Resistance in Hospitals

Antibiotic resistance in nosocomial (hospital-acquired) infections is becom-
ing increasingly frequent (NNIS 2001). As the name implies, transmission
tends to be localized in hospitals, but compositional and configurational
heterogeneity play an important role in understanding the spread of antibi-
otic resistance. Two of the most important bacterial pathogens are methi-
cillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant
enterococci (VRE). A crucial feature of the epidemiology is the distinction
between infection and colonization. Infections with VRE or MRSA, such as
wound or bloodstream infections, are acute, serious clinical situations requir-
ing treatment. In contrast, many people are colonized with VRE or MRSA;
they carry bacteria in their gut, nasal passages, or skin without suffering illness.
These carriers may shed resistant bacteria for years. Increased frequency of
infection with antibiotic resistant bacteria in hospitals is a side effect of a
largely silent epidemic of colonization with antibiotic resistant bacteria.

When bacteria persist for years, carriers move among institutions trans-
mitting bacteria wherever they go. These individuals link all the institutions
in a geographical region. Thus, antibiotic resistance epidemics are compli-
cated spatial processes. Because the average frequency of resistance has
been increasing, resistance must be spreading somewhere faster than it is
lost. An important component of the public health response to epidemics of
resistant bacteria is to identify where resistance is spreading.

Using structured population models, it is clear that some information about
what kinds of institutions are responsible for transmission may be found by
examining the time course of an epidemic (Smith et al. 2004b). Several sim-
ple models of well-mixed populations have focused on the spread primarily
in hospital populations, but these models predict fairly fast epidemics; the
average length of stay in a U.S. hospital is about 5 days.

Hospitals, long-term care facilities, and the community have different
average lengths of stay, which are reflected in the dynamics of spread. As a
rule, rapid increases in prevalence are driven by high transmission in insti-
tutions with fast turnover—usually hospitals (Figure 8.6a). Slower increases
in the average prevalence of resistance in hospitals may occur because of
epidemics sustained in places that have slower turnover, such as long-term
care facilities or the community. Alternatively, in structured populations,
resistant bacteria may increase in the catchment population of a hospital,
even if no individual hospital or long-term care facility can sustain an epi-
demic. Increases in the frequency of resistant bacteria have had fast phases,
including the epidemic of VRE in U.S. hospitals in the late 1980s and early
1990s, but these early epidemics have been followed by slow, steady increases
since then (NNIS 2001).
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FIGURE 8.6. Configurational and compositional heterogeneity affect the time course
of an epidemic of antibiotic-resistant bacteria; the epidemic, in this case, is a steady
accumulation of antibiotic resistance carriers. (a) Population structure matters little
for epidemics of hospital-acquired pathogens with short persistence times. Fast
turnover of patients implies fast dynamics (dashed line). With persistent colonization,
population structure is important. The rapid increase in the prevalence of resistance in
the hospital (the proportion who are colonized by resistant bacteria) (solid line) is fol-
lowed by a slow and steady rise in the number of carriers in the community, hence the
proportion who return to the hospital still colonized (dashed line). (b—) Composi-
tional heterogeneity dramatically alters the time-course of an epidemic, compared to
the homogeneous model. Daily transmission rates, per capita, are the same in the hos-
pital and community in (b) and (c) and the average time to hospitalization is the same.
In the bottom panel, heterogeneity in the frequency of hospitalization corresponds to
the average hospitalization rates and composition of the elderly and nonelderly popu-
lations in the United States. Average prevalence in the hospital (black solid line) and
in the community (black dashed line) increases more rapidly everywhere because of
the elderly. Prevalence in the hospitalized elderly (gray solid line) and among the eld-
erly in the community (gray dashed line) is always higher than average.
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Heterogeneity in transmission rates associated with different health care
institutions and the community, a kind of configurational heterogeneity, inter-
act with other kinds of heterogeneity that are analogous to compositional het-
erogeneity. In the United States, there are about 600 people in the community
for every occupied hospital bed, and the average period between hospital vis-
its is about 8.7 years. These average measures of hospitalization ignore the
fact that the elderly account for about 13% of the total population, but half
the total days of care in hospitals. Correcting for this kind of heterogeneity,
the elderly are hospitalized once every 2.2 years, on average, while nonelderly
are hospitalized about once every 15 years (Figures 8.6b and 8.6c¢).

Frequently hospitalized populations are much more likely to be colonized
from previous hospital visits and much more likely to remain colonized
when they are readmitted to a hospital. These individuals represent a major
challenge to hospital infection control programs. The elderly are one kind of
population that is hospitalized much more frequently than average, but
other populations may also play a role, including those on dialysis, cancer
patients, and the mentally ill. In general, heterogeneity in the frequency of
hospitalization interacts with heterogeneity in transmission making it much
easier for antibiotic resistant bacteria to spread and persist.

The Distribution of Risk in Mosquito-Borne Diseases

Malaria control programs have a long history with notable successes and
failures, but malaria remains a leading cause of preventable death in children
today, with the majority of deaths occurring in Africa (Killeen et al. 2003).
Early models of Ross and MacDonald were instrumental in formulating
malaria control policies (Ross 1911; Macdonald 1957). From these models,
an estimate of R, was derived in terms of the basic parameters; in the con-
trol context, R, provides a measure of the factor by which transmission must
be reduced to eliminate a disease. Early control focused on vector biting
behavior and adult mosquito survivorship based in part on the analysis of
these models; R is most sensitive to these parameters (Macdonald 1957).

The Ross-MacDonald models assumed well-mixed, constant mosquito
populations, but ignoring heterogeneity generates dramatic underestimates
of R, and the difficulty of locally eliminating malaria. Mosquitoes prefer
some hosts to others, for a variety of reasons (Takken and Knols 1999). Mos-
quito biting preferences generate heterogeneity in the human biting rate
and large corresponding differences in R, (Dietz 1980; Dye and Hasibeder
1986). Spatial heterogeneity has increasingly been identified as an impor-
tant issue because of small-scale spatial variability in the risk of disease
(Staedke et al. 2003; van der Hoek et al.,2003). New technologies and high-
speed computing have made it possible to develop continent-wide maps
using remote sensing and GIS (Hay 1997; Rogers et al. 2002). Mathematical
models can help guide studies that identify the distribution of risk at spatial
scales ranging upwards from the daily flight distance of a mosquito.
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Spatial variability in the distribution of larval habitat and humans can
have similar effects. A common assumption about malaria, dengue and other
mosquito-borne diseases is that the two main components of the risk of
human infection—the rate at which people are bitten (human biting rate)
and the prevalence of infection in mosquitoes—are positively correlated. In
fact, these two risk factors are generated by different processes and may be
negatively correlated in spatially heterogeneous environments. The uneven
distribution of larval habitat creates a spatial mosaic of demographic sources
and sinks. Mosquitoes seek blood meals; they tend to aggregate around areas
where blood meals are readily available. Heterogeneous distribution of lar-
val habitat and the populations that provide blood meals can generate com-
plicated patterns in the distribution of risk for vector-borne diseases.

Models predict that the risk of human infection is highest near breeding
sites where adult mosquitoes emerge or around aggregations of humans
(Figure 8.7). In contrast, the prevalence of infection in mosquitoes reflects
the age-structure of mosquito populations; it peaks where old mosquitoes
are found, far from mosquito breeding habitat, and while mosquito density
is declining (Aron and May 1982; Smith et al. 2004a).

Measles

A century of measles reporting in the United Kingdom generated a long,
detailed record of measles cases. Detailed analysis of the time series has
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FIGURE 8.7. Vector searching behavior, the heterogeneous distribution of larval habi-
tat, and heterogeneous distributions of humans can generate complicated patterns in the
distribution of risk of mosquito-borne diseases. The prevalence of infection in humans
(dashed line) is related to the entomological inoculation rate (EIR), the number of
infectious bites, per human, per day (EIR, solid line). When larval habitat (dark hashed
bars) and humans (gray background) are heterogeneously distributed, the distribution
of risk is determined by (a) the distribution of larval habitat and (b) the behavior of adult
female mosquitoes seeking a blood meal. These figures illustrate biting patterns that
form on two different heterogeneous landscapes characterized by a) homogeneous
hosts, but adult vector mosquitoes emerge from a point-source and b) homogeneous
emergence of adult vector mosquitoes, but heterogeneously distributed hosts.
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provided some important insights into the spatio-temporal persistence of
childhood diseases (Bolker and Grenfell 1995). Despite complicated age
structure and school structure, the spatio-temporal record of cases is
explained well by a relatively simple model (Grenfell et al. 1995). The pat-
terns are driven by stochastic fade-out of measles in small cities with net
population birth rates too low to sustain epidemics and by persistence of
measles in large cities. In large cities, such as London, measles is more or less
always present. After stochastic fade-out in the smaller cities and the regen-
eration of the pool of susceptible individuals, the epidemics are reinitiated
when an infectious individual moves from a city where measles has per-
sisted. The spatio-temporal patterns across the United Kingdom reflect
these stochastic dynamics; large cities synchronize the epidemics across the
United Kingdom by initiating new epidemics in smaller cities where
measles has gone locally extinct (Grenfell et al. 2001).

Heterogeneity and Disease Control

Heterogeneity should be an important consideration in the planning and
implementation of disease control. In simple models with vaccination, a dis-
ease may be eliminated if the population is susceptibles is reduced such that
R, <1.This is possible if the fraction protected exceeds 1 — 1/R, (Anderson
and May 1985, 1991). This is more difficult than expected in aggregated or
otherwise heterogeneous populations, but the efficiency of vaccination pro-
grams can be improved by targeting those groups that are most susceptible or
mixing at the highest rates (Anderson and May 1985). Uneven implementa-
tion of vaccine programs can generate heterogeneity, leading to their failure.

Measles

Measles vaccination programs interact with heterogeneity in community
size and many types of compositional or configurational heterogeneity. In
Israel where regular vaccination was commonplace, a majority of measles
cases occurred in the ethnic minority Bedouin population. In this case, the
heterogeneity may have been generated by the uneven implementation of
the vaccination program itself. One study concluded that improving vacci-
nation coverage in the Bedouin population would have a disproportionate
positive effect on measles elsewhere (Agur et al. 1993).

The special role played by large cities in sustaining measles may also pro-
vide an opportunity for vaccination. Measles may fade-out stochastically in
small cities if vaccination is efficient enough in the larger cities (Anderson
and May 1985). On the other hand, vaccination decreases the role that large
cities play in synchronizing epidemics in small cities. Because epidemic
peaks and troughs in the small cities tend to occur at different times, it is less
likely that transmission will be interrupted everywhere all at once (Bolker
and Grenfell 1996).
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Foot-and-Mouth Disease

The virus causing foot-and-mouth disease is highly contagious, with R, esti-
mated to be near 40 in the absence of control with frequent long-distance
translocation (Haydon et al. 1997; Keeling et al. 2001). The elimination of
foot-and-mouth disease in the United Kingdom focused on the farms that
were near an infected farm. More recent studies of foot-and-mouth disease
in England emphasized the role of large farms that were both more suscep-
tible and more contagious than smaller farms; similar arguments apply to
cattle farms compared with sheep farms (Keeling et al. 2001). This sort of
compositional heterogeneity is important for management; vaccinating
herds on the largest cattle farms would be substantially more efficient than
a strategy that ignores heterogeneity (Keeling et al. 2003).

Polio

The eradication of poliomyelitis would mark a great achievement, but serious
challenges remain (Dowdle et al. 2003). Wild-type polio virus has been elim-
inated from many places. The polio eradication initiative is now focused on
interrupting transmission in a few populations, those with high birth rates,
poor hygiene, and low vaccine coverage. Once transmission of the wild-type
virus has ended, debate will turn to the “endgame issues.” When and how
will vaccination end? (Technical Consultative Group to the World Health
Organization on the Global Eradication of Poliomyelitis 2002).

A serious obstacle to polio eradication may be the live oral poliovirus
vaccine (OPV) itself. OPV is relatively inexpensive and easy to administer,
and OPV viral strains are shed from vaccinated individuals, potentially
exposing contacts who may also develop immunity. These advantages of
OPV have made it the tool of choice for eliminating transmission of wild-
type polio virus. On the other hand, a serious risk exists that the vaccine
strain may revert to the wild-type in a vaccinated person or after transmis-
sion (Fine and Carneiro 1999; Nathanson and Fine 2002).

Mathematical modeling will be used to advise decision makers on the
endgame strategies (Technical Consultative Group to the World Health
Organization on the Global Eradication of Poliomyelitis 2002). The decision
of how to weigh compositional and configurational heterogeneity will be an
important feature of these models. After exposure to the vaccine strain, a
small fraction of individuals become chronic shedders, a sort of compositional
heterogeneity in the duration of infectiousness (Kew et al. 2004). In some
places with high birth rates and poor hygiene, the population may be large
enough to sustain a new epidemic in 2-5 years after the end of vaccination,
especially in areas where polio has been difficult to eliminate. After the last
wave of vaccination, polio may persist long enough to initiate a new epidemic
through some combination of persistent shedding, transmission, and rapid
regeneration of conditions suitable for transmission. The combination of
configurational heterogeneity and compositional heterogeneity cast serious
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doubts on the prospects of ending the vaccination programs using only
OPV. In the endgame, the polio eradication initiative may have to use inac-
tivated polio vaccine (IPV) to eradicate OPV.

Conclusions

Most epidemic theory for infectious diseases has been developed under the
assumptions that all individuals are alike and that populations are well mixed.
Epidemiological theory often stands in sharp contrast to studies that empha-
size the role of compositional and configurational heterogeneity. Obviously,
heterogeneity does affect who gets sick and the population dynamics of infec-
tious diseases over time and space. Moreover, disease control programs are
likely to create heterogeneity. Heterogeneity should be weighed and ignored,
whenever possible, but in many cases, ignoring heterogeneity can mislead pol-
icymakers about the true nature of a problem and generate misguided policy.

Heterogeneity matters in epidemiology, but the details vary among dis-
eases and populations. Understanding heterogeneity involves careful study,
system by system. Mathematical epidemiologists must become familiar with
the peculiar sorts of heterogeneity that are important in particular systems.
To understand the interplay between heterogeneity and the nonlinear aspects
of epidemics, modeling must become an integral part of infectious disease
surveillance and control.
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Appendix

The “average path” metric takes into account the expected time to infection
considering all possible paths. For any finite population of hosts, we let epi-
demic distance between two individuals, A and B, denoted d(A,B), have
following properties:

1. The epidemiological distance from an individual to itself is 0 [d
(AA) =0].

2. The epidemic distance from A to B is the expected number of epidemic
generations for an infection to reach B from A multiplied by the inverse
of the probability that an infection starting at A reaches B. More precisely:



II. Perspectives from Different Disciplines 161

(a) p(A.,B) denotes the probability that an epidemic started at A infects
B before going extinct. The epidemiological distance for every pair is
computed assuming that A is the index (i.e., first) case.

(b) 7(A,B) denotes the average time for an infection started at A to
reach B, conditioned on the epidemic reaching B.

(c) x denotes the generation time of the infectious agent.

(d) d(A,B) = 7(A,B) / [x p(A,B)]. This “average path” metric satisfies
the mathematical requirements of a distance metric. In particular,
the distance between any two different individuals is always positive
[d(A.B) > 0 when B = A) and the distance satisfies the triangle
inequality (d(A,B) = d(A,C) + d(C,B)], as the expected time from A
to B is computed using all possible paths, including the one through
C. As noted previously, it is not necessarily true that the distance
from A to B is the same as the distance from B to A.
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9
Spatial Heterogeneity and Its

Relation to Processes in the
Upper Ocean

AMALA MAHADEVAN

Abstract

In the ocean, the spatial distribution of biogeochemical tracers is affected
by their physical transport in the fluid medium. Many tracer distributions
such as sea surface chlorophyll and temperature are highly correlated at
length scales of 1-100 km on account of a commonality in the transport
processes that affect them. We characterize and differentiate between the
spatial heterogeneity of the tracers by using a variance-based measure for
“patchiness.” When we analyze the satellite-derived fields of surface
chlorophyll and temperature, we find that chlorophyll is more patchy than
temperature (i.e., a greater proportion of its variance occurs at small
scales). We explain such differences in heterogeneity by taking the
approach that the observed spatial heterogeneity of a tracer results from
a balance between processes that generate variance and those that shift
the variance from one length scale to another. The longevity of the tracer
determines the extent to which the variance can be shifted to another
scale. In the surface ocean, variance introduced at large scales due to geo-
graphic variations can be driven to smaller scales by the horizontal stirring
and stretching of fluid filaments. On the other hand, small-scale vertical
motion associated with fronts introduces small-scale variance that spreads
to larger scales if the tracer anomalies are long lasting. For the latter case,
we derive a quantitative relationship between a tracer’s patchiness and
the timescales of processes that modify its concentration in the upper
ocean. This relationship links the observed spatial heterogeneity in the
system to the processes that contribute to its generation. It lends hope to
our being able to use quantitative measures of spatial heterogeneity, like
the patchiness parameter defined here, to gain information about
processes or vice versa, to predict how the spatial heterogeneity might be
modified as a result of a change in processes.
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Introduction

A key factor that influences spatial heterogeneity in the ocean and distin-
guishes it from heterogeneity in landscapes is that substances or properties in
the ocean are transported within the fluid medium, which is in motion. Hence,
the variability in the distribution of properties is largely linked to the dynam-
ics of the fluid, which is complex, as it varies in both space and time. Spatial het-
erogeneity in the ocean is constantly evolving in time, in contrast to terrestrial
systems, where the variability of the underlying medium (e.g., the geology or
soil conditions) is more or less static on the timescales of relevance in the
ocean. The fluid dynamical processes act over a wide range of time and length
scales. In addition, there are a number of processes like warming or cooling at
the surface, evaporation and precipitation, biological production of phyto-
plankton, and air-sea gas exchange that alter the properties of the ocean. Some
processes generate variability and others annihilate it; our objective is to
understand the net effect of these factors on the distribution of properties.

Transport in the ocean occurs through the process of advection, which
carries properties along with the flow, and diffusion, due to which sub-
stances or energy can spread through the fluid. Diffusion is generally asso-
ciated with small scales; it is important to individual plankton and bacteria
and they may rely, for example, on the spatial variation in the concentration
of a nutrient for its transport. A net diffusive flux occurs without the input
of energy when the concentration gradient of a substance is spatially vary-
ing. The molecular diffusivity k, of most substances is small and thus diffu-
sive transport (quantified as kVc, where c is the tracer concentration and V
the gradient operator) is relevant only at small length scales [the diffusive
length scale Ly ~ (kT)”~ 1 mm, for k = 107> ms ™2 and a time interval
T = 10 s]. At longer times 7, and at length scales greater than a centimeter
or so in the upper ocean where typical velocities U are in the range of 0.01
to 1 ms™!, advective transport by the fluid by far dominates diffusion. A net
advective flux of tracer, u - Vc occurs when there is a concentration gradient
in the tracer Vc,in the direction of the fluid velocity u. The length scale asso-
ciated with advection, L,q4,.. ~ UT, increases linearly with time 7, as com-
pared to the 1/2 power in the case of diffusion. Hence, with increasing time,
advection affects larger length scales than diffusion. A process of consider-
able relevance in the ocean, and somewhat different from pure advection
and diffusion, is mixing. It transfers energy and property gradients from
larger to smaller scales and results in the homogenization of properties over
the region on which it operates on relatively short timescales. Mixing, which
is often induced by shear and convective instability, contributes much more
to the flux of energy and tracers than molecular diffusivity, which is rela-
tively negligible for length scales of more than a few centimeters. The effec-
tive flux of energy or tracer generated by random turbulent motions is often
parameterized as a diffusion-like process by using an enhanced “eddy” dif-
fusivity keqay-
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Another aspect that differentiates the ocean from the land surface is that
it is a three-dimensional medium. However, the rotation of the earth, the
small geometrical aspect ratio of depth to length scales in the ocean, and
density stratification all contribute to the fact that motion in the horizontal
plane dominates vertical motion. In fact, vertical velocities are several
orders of magnitude smaller than horizontal velocities when one considers
length scales of the order tens of meters or more. Hence, even though the
ocean is three-dimensional, it is highly layered. The variation (i.e., the gradi-
ent) of properties is much stronger in the vertical than horizontal, but
motion is much more rapid in the horizontal. Hence, the distributions of
properties evolve more rapidly in the horizontal plane. The upper ocean, in
particular, is more energetic and fast moving than the deep. Hence, the
property distributions are rife with a highly transient variability that is influ-
enced strongly by advection and mixing within the fluid, as well as forcing
factors that modify the properties. Figure 9.1 displays the kind of spatial
variability that results from the coupling between the biological and fluid
transport processes.

In this chapter, we focus largely on upper ocean heterogeneity that has a
transience time scale of the order weeks and a coherence length scale in the
range 1-100 km. Because the fluid dynamical transport processes are com-
mon to the various substances or properties in the ocean, it is no surprise
that the distributions of different tracers in the ocean are correlated on
these length and time scales. Yet, the spatial heterogeneity of one property
can vary from that of another to which it is closely linked. One challenge is
therefore to quantitatively relate the heterogeneity of properties to the
processes that affect them. Such an understanding might enable us to use
one property as a proxy for the distribution of another and, second, to learn
something about the processes at play from the characteristics of the distri-
bution. Further, we might be able to anticipate a change in spatial hetero-
geneity resulting from a change in the processes or controlling parameters.

In general, the spatial and temporal heterogeneity of a system depends on
the length and time scales of relevance and the process under consideration.
Questions concerning the importance of heterogeneity, how we may model it,
and how it might affect the ecosystem function are difficult to generalize and
best viewed in a specific context. But, a somewhat general set of questions
about heterogeneity and its link to processes that I would like to consider are:

1. What role does heterogeneity play for the question at hand? What is the
effect of varying the heterogeneity (or some measure of it) on an ecosys-
tem function, an ecosystem response, or on an integrated measure of
interest?

2. How might one quantify the heterogeneity of the system?

3. What are the most important parameters/factors/processes behind the
heterogeneity? How does the heterogeneity vary as a function of these
parameters?
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FIGURE9.1. An example of spatial heterogeneity in the ocean is seen in this Advanced
Very High Resolution Radiometer (AVHRR) satellite image of a coccolithophore
bloom south of Iceland in June 1991. Coccolithophores are a kind of phytoplankton
that grows calcium carbonate plates that are shed, making the water appear milky in
these images. The small crosses in the figure are 110-km apart. The image shows the
strong coupling between physical flow fields and the biological distributions in the
upper ocean. (AVHRR image received at the NERC Receiving Station Dundee and
processed at the Plymouth Marine Laboratory. Courtesy Steve Broom.)

4. What is the relationship between the heterogeneity, the ecosystem
response, and the parameters on which the heterogeneity depends?

5. Isit possible to account for the heterogeneity without explicitly modeling
or measuring it? How might one sample a variable to correctly estimate
an integrated measure of it?

Discussed below are some thoughts relating to these questions. Following
this, I describe a study that attempts to explain and relate the spatial het-

Au: “Broom”
or “Groom”?
see Acknowl-
edgment
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erogeneity of different tracers at the sea surface over length scales in the
range 1-500 km.

The Relevance of Heterogeneity

Most oceanic processes are intermittent in space and time, and it is often
important to account for variability to gain an accurate estimate of a process
or flux. This is particularly true when a processes in nonlinear, in which case,
even an integrated flux measure across the system’s boundary requires a
description of the heterogeneity. Let us consider, for example, the flux of car-
bon dioxide (CO,) across the air-sea interface. We would like a time-
integrated estimate of the flux of CO, into or out of the ocean, though the
flux varies in time depending on the properties of the sea water, wind, and
surface conditions. The air-sea gas flux is generally parameterized as the
product of a gas exchange coefficient k, the solubility of the gas, and the dif-
ference in the partial pressure of the gas ApCO, between sea and air. The gas
exchange coefficient k is estimated empirically and is typically a function of
the wind speed raised to a power that varies between 1.6 and 3, depending on
the formulation (Liss and Merlivat 1986; Wanninkhof 1992; Wanninkhof and
McGillis 1999). This nonlinear dependence implies that short bursts and
gusts of wind are more effective in fluxing CO, across the air-sea interface
than a constant wind of the same mean intensity. Because the average of the
instantaneous wind speed when squared is not the same as the square of the
wind speed averaged in time, the averaging period and the frequency of sam-
pling the wind speed become relevant to the estimate of air-sea gas transfer
that one would obtain from such a relationship. An estimate for the global
air-sea flux of CO, can vary by a factor of two depending on whether we use
monthly averaged or 6-hourly winds to compute the fluxes. Any covariance
between the variables k, s, and ApCO, also affects the estimate and requires
accounting for each of their variabilities independently over short
timescales. Thus, the required resolution or the permissible period of averag-
ing that is required to capture a process is highly dependent on the process
and the distributions of the variables themselves. In this case, the integrated
flux in and out of the system is dependent on the heterogeneity at the bound-
ary, as the process has nonlinear dependencies.

As another example, consider the new production rate of phytoplankton
in the subtropical gyres of oceans. New production (as opposed to the pro-
duction that feeds off recently recycled organic matter) is derived from the
supply of fresh nutrients from the subsurface, a processes that is highly
episodic in time and space. A snapshot view of the ocean does not ade-
quately represent this process, but the time-integrated effect of the process
affects its state. Though the transport of nutrient by fluid advection may be
considered a linear process, it is dependent on the spatial gradients in the
nutrient. Quicker uptake of nutrient in the upper ocean and more efficient
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lateral transport at the surface ensures a steeper vertical gradient in the
nutrient concentration and a greater net flux to the surface from below.
Patchy upwelling generates a heterogeneous surface distribution of nutri-
ent. This enhances the lateral nutrient transport and leads to stronger verti-
cal nutrient gradients at the upwelling sites, consequently resulting in a
greater supply of nutrients from the subsurface as compared to the situation
where the upwelling is uniformly distributed in space (Martin et al.2002). In
this case, the transport of nutrient within various components of the system
are linear processes, but the net productivity is nonetheless affected by the
heterogeneity in the processes and distributions within a system. The net
productivity in turn, affects the surface distribution of pCO, and the flux of
CO, in and out of the system.

On much smaller scales, the transport of oxygen to a patch of decaying
organic matter is dependent on the spatial heterogeneity in the oxygen dis-
tribution, as the diffusive flux is proportional to the second spatial deriva-
tive of the concentration. If the supply of oxygen is rate-limiting to the
process, then the heterogeneity of the oxygen distribution that may be gen-
erated by the bacterial uptake itself is crucial for this activity. In such a case,
the “patch” of decaying matter is not self-contained and depends on the
spatial heterogeneity generated by itself or its neighbors for its survival. The
turbulent diffusion of mechanical energy also occurs on a similar length
scale to that at which diffusion operates because the molecular diffusivity of
momentum is comparable to that of a trace substance in the fluid. However,
turbulent dissipation is itself intermittent, and the intermittency in the
turbulent energy dissipation rate is found to account for a decrease in
zooplankton-phytoplankton encounter rates by 25-50%, an increase in the
nitrogen flux to nonmotile phytoplankton cells by 6-62%, and a decrease in
the coagulation and sedimentation of phytoplankton cells by 25-40% in
experiments (Seuront 2001).

What Causes Spatial Heterogeneity?

One way of thinking of spatial heterogeneity is that it results from compet-
ing processes: one set that tends to homogenize the distribution of a prop-
erty and another that tends to introduce variance or heterogeneity in the
system. If one considers, for example, temperature in the ocean, it is homog-
enized by mixing and diffusion at small scales, but unequal heating or cool-
ing generates spatial heterogeneity in its distribution on very large scales. At
the intermediate scale, one could think of long-wave radiation as relaxing
the temperature to ambient atmospheric conditions and advective motions
in the fluid as generating heterogeneity by stirring. The observed spatial dis-
tribution would be more homogeneous if the diffusion-like mixing processes
were relatively vigorous or the relaxation to an ambient state were more
rapid, and more heterogeneous if the unequally heated regions were stirred
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into fine scale structures more rapidly than can be homogenized. Processes
like diffusion or relaxation to an ambient state tend to generate uniformity
in the fields, whereas specific sources for the properties, like biological
reproduction or generation by nucleation, create heterogeneity. In the case
of phytoplankton, heterogeneity is generated by the variable response of
phytoplankton to varying physical properties and the availability of light
and nutrients but also by their reproduction, which is dependent on the pres-
ence of mature phytoplankton cells. They are, however, removed or reduced
to an ambient state of low concentration by predation, death, and sinking.
Their distributions are also homogenized by mixing and made more hetero-
geneous by advection, which can generate narrow filamentous structures by
stirring.

Relating Heterogeneity to Process TimeScales

The extent of the spatial heterogeneity in the distribution of a property
results from the balance between the processes that homogenize and gener-
ate heterogeneity. These processes can be quantified in terms of the timescale
on which they alter the concentration of the property. Hence, the rate of
change of concentration c of a property can be expressed as

de_c_< 9.1)
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where 7, is a timescale on which variance is increased in the system, and 7
is a timescale on which the distribution is homogenized. In the case where ¢
describes the concentration of phytoplankton whose heterogeneity is con-
sidered over length scales ranging from 0.1 to 1 m, 7, could be the timescale
of net growth or reproduction, while 7, might be the timescale of diffusion
~L*/k,where L is a length scale and « is the kinematic or eddy diffusivity. In
the statistically steady-state, it is the balance between the right-hand-side
terms in the above equation that determines the characteristics of the dis-
tribution. Hence, it is the ratio of timescales 74/7, that determines the
degree of spatial heterogeneity of the system. Later in this paper, we will
show how the patchiness or spatial heterogeneity varies with the ratio /7,
when variance is introduced at the small scales. It turns out the dependence
is logarithmic, so that the distributions are more sensitive to the ratio 74/7,
when it is small.

Accounting for Heterogeneity

We have earlier seen that the spatial heterogeneity of different properties
can vary substantially. Thus, the grid resolution required in models and
observation networks depends on the spatial heterogeneity of the property,
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given that one would like to observe the majority of its variance. Highly het-
erogeneous distributions require more resolution. Once again, the factor by
which the resolution needs to be scaled up when going from one property to
another more heterogeneous one can be related to the ratio 7/, for each
of these. The question of how to account for heterogeneity is a more difficult
one. It depends on the function or process that one wishes to account for
(how it depends on the heterogeneous property) and also on the statistical
characteristics of the property’s distribution.

Quantifying Heterogeneity

Several methods have been used to quantify heterogeneity in the oceans.
The most common among these are spectral analysis (Platt and Denman
1975; Gower et al. 1980), semi-variogram analysis (Yoder et al. 1987; Yoder
et al. 1993; Glover et al. 2002; Deschamps et al. 1981) and autocorrelation
analysis (Campbell and Esaias 1985), probability density functions (pdf’s),
structure functions and multifractals (Seuront et al. 1999). In general, these
methods analyze the variability of a distribution as a function of the length
scale. A method that we have chosen to use in this presentation character-
izes the variance as a function of the size of the region. When a greater pro-
portion of the variance lies at smaller length scales, we tend to refer to the
distribution as more heterogeneous, patchy, or intermittent. Once again, this
depends on the range of length scales that one is considering.

In terms of processes, one may think of those that tend to shift the vari-
ance in a distribution to smaller scales or others that obliterate (smear) it. In
a fluid, advection or stirring tends to drive variance to smaller scales
because fluid filaments interleave and fold, generating finer scale filaments.
Thus, stirring two fluids generates one in which variance moves downscale
with time. Hence, the length scale at which the variance or heterogeneity is
initially introduced is relevant. If it be at the large scale, then variance can
increase with time due to advection by the fluid. But if a process introduces
heterogeneity at the small scale, then it gets annihilated with time due to
processes like diffusion that smear gradients and reduce variance.

The Distribution of Biogeochemical Tracers
at the Sea Surface

Sea surface temperature (SST) and chlorophyll (Chl) are two properties of
the ocean that can be remotely measured from satellite