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Foreword

The growth of simulation based methods over the past fifteen years, together
with the accompany improvements in computational power, has ushered in a
new era of applied research in economics generally and environmental and re-
source economics in particular. The analyst is no longer constrained to choose
from among a limited set of models simply because they yield a convenient
functional form for, say, the log-likelihood function in a discrete choice model
or the posterior distribution in a Bayesian analysis. Instead, one can spec-
ify more flexible models that allow agents to reveal patterns in their behavior
through the data. Maximum simulated likelihood procedures can be used to al-
low for complex patterns of correlations among choice alternatives in a mixed
logit or multinomial probit model of discrete choice, rather than having to im-
pose a priori the rigid structure of the more traditional multinomial or nested
logit models. Bayesians can specify prior distributions that reflect their actual
prior beliefs, rather than being limited to a convenient set of conjugate priors.
Indeed, it is increasingly the case that the questions that can be addressed in
applied research are constrained by limitations in the available data, rather than
by the models that can be feasibly estimated.

Despite the promise offered by simulation methods, many practitioners con-
tinue to avoid their use, daunted by the perceived difficulty of the techniques
themselves or the prospect of programming the routines in software packages
such as GAUSS or Matlab. Moreover, graduate students often receive little or
no training in simulation methods and are forced to learn the necessary tools
on their own. This volume provides a valuable resource in this learning process.
Alberini and Scarpa have gathered in one place eighteen papers covering a wide
range of simulation issues and techniques with applications to environmental
and natural resource problems. The topics range from estimation procedures,
such as Train and Weeks (in the opening chapter) use of a Bayesian framework and
MCMC methods to obtain estimates for the mixed logit model, to discussions
of important computational issues (e.g., the choice of random number gener-
ators and the tradeoffs between using Gaussian quadrature versus simulation
methods for integration). The authors, all experienced practitioners in the use
of simulation methods, provide valuable and practical insights into the proce-
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dures. In most cases, step-by-step algorithms are provided for the simulation
method under discussion, with the underlying computer code available from
the respective authors. For those of us who have made extensive use of the mixedf
logit code graciously provided by Kenneth Train in the past, it is clear that such
computer code can substantially lower the learning costs associated with sim-
ulation based methods. Just as important, the authors provide insights into the
limitations and potential pitfalls associated with use of simulation based meth-
ods. Simulation methods greatly expand the set of models that can be feasibly
estimated in a given setting. Unfortunately, this makes it all the more impor-
tant to understand the underlying limitations of a model and how the ways in
which they are structured and estimated, rather than the data itself, can de-
termine the outcomes of an analysis. The complex econometric methods that
simulation techniques allow are still no substitute for sound economic model-
ing and careful data collection. The insights provided in this volume should
help practitioners in the proper use of simulation based methods.

Joseph Herriges
Iowa State University
Ames, Iowa, February 2005
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Anna Alberini
University of Maryland, U.S.A.

aalberini@arec.umd.edu

Riccardo Scarpa
University of Waikato, N.Z. and University of York, U.K.

rs24@york.ac.uk

1. Background and motivation

This volume collects a series of empirical research papers in environmental
and resource economics with one common feature: They all make use of sim-
ulation methods (SMs). The rapid development of the computational power in
computers that we have experienced in the last twenty years has brought about
momentous changes in the techniques used in applied economics.

This has unleashed an unprecedented growth in the versatility of behavioural
models that can be empirically investigated, provided that adequate data be-
come available. The new fruits of this increased computational power are now
being harvested throughout economics, with many applications in environmen-
tal and resource economics.

Anthony Fisher, in his 2004 keynote speech to the European Association of
Environmental and Resource Economists in Budapest was asked to list what he
thought were the three most promising areas of research in the discipline. In his
answer he mentioned the promise of benefit transfer, experimental economics
and simulation based methods.

The growth in computational power and the widespread adoption of SMs
has also posed new questions. With new research frontiers opening up to the
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profession, new challenges have emerged, and now need to be faced and suc-
cessfully tackled. At the same time old distinctions between paradigms—such
as the classical vs the Bayesian dichotomy—have sometimes become blurred
and hence lost some of their rationale and methodological bite (as shown in
chapter 2), and become even complementary (as shown in chapters 7 and 8).

The considerable dynamism that characterizes this area of research makes
it difficult to regularly incorporate such advances into conventional university
courses. It is our perception that—perhaps with the exception of large re-
search establishments—most post-graduate training in environmental and re-
source economics today does not include adequate exposure to SMs. We hope
that this volume will help fill this gap, and that PhD supervisors will refer their
supervisees to it for a primer on the subject.

This collection was hence conceived to bring together in a single volume
a significant selection of research papers by leading practitioners in this field.
Each chapter has been peer-reviewed either by contributors or by other qua-
lified reviewers (see acknowledgements). At the same time the structure of
writing was deliberately pedagogical in nature.

Many areas and research questions within natural resource and environmen-
tal economics naturally lend themselves to the application of simulation meth-
ods. The prevalence of articles on non-market valuation in this volume mirrors
the large role played by this line of research in the profession at the moment.

As any researcher using SMs will recognize, the writing of specific codes to
implement simulation algorithms is a key component of a researcher’s toolkit.
Most of the contributors to this collection have very kindly agreed to making
their respective codes available (of course, without any guarantee). Consid-
ering the amount of time that this activity normally requires, their generosity
should—in our opinion—generate substantial external benefits. We very much
hope that those readers who will use these routines in their own research will
take the time to mention the source of these routines in their published works.

The chapters of the volume were arranged on the basis of some themes. In
what follows we briefly discuss each theme and its chapters.

2. Heterogeneity in discrete choice models

Simulation methods are increasingly being used to estimate discrete-choice
models, and the related welfare measures for non-market goods. Recent re-
search in this area has attempted to incorporate constraints and checks so as to
ensure that measures of marginal prices, willingness to pay, and other relevant
welfare statistics are behaviourally plausible in the presence of unobserved het-
erogeneity. For this reason the first four chapters in this volume are concerned
with heterogeneity in discrete choice models.
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In the first chapter, Kenneth Train and Melvyn Weeks explore the conse-
quences of framing heterogeneity in the WTP space, in contrast with the more
common option of heterogeneity in preference space. The estimation is con-
ducted in a Bayesian framework using Monte Carlo Markov Chains and the
authors highlight correlation issues previously overlooked in the literature.
The novelty of introducing parameter heterogeneity directly in the expendi-
ture function is no doubt very appealing and it has already proven to be a pre-
ferred approach by many non-market valuation analysts since its introduction
by Cameron, 1988 and Cameron and James, 1987 in the contingent valuation
literature.

In Chapter 2, William Greene, David Hensher and John Rose focus on
the use of mixed logit with bounded parameter distributions to achieve be-
haviourally plausible WTP distributions and on the derivation of individual-
specific WTP estimates conditional on observed choices, which they compare
with the conventional population-based statistics. They pay special attention
to large and implausible WTP values. The technique they propose is imple-
mented in Nlogit, a popular econometric package. We expect that the approach
they suggest will be used in numerous applied papers in the future, especially
because some preliminary evidence seems to suggest that the distribution of
these conditional estimates in the sample is less prone to the presence of be-
haviorally implausible value estimates.

Heterogeneity of WTP distributions is also the focus of chapter 3, authored
by David Layton and Klaus Moeltner who present a contingent valuation study
of WTP to avoid power outages. The authors face numerous econometric chal-
lenges and propose an approach that deals with all of these based on a Gamma
distribution with heterogeneity addressed by a scale parameter with log-normal
distribution. Such creative use of mixed and flexible models is one of the gifts
delivered by advances in SMs.1

In the final chapter of this section (chapter 4) Stephane Hess, Michel Bier-
laire and John Polak put forward a potential solution to the problem of con-
founding of correlation between alternatives and taste variation across individ-
uals. To separately address these issues without confounding they use a mixed
generalized extreme value model. As the use of mixed logit error-component
models becomes more established in the environmental economics literature
(see for example Herriges and Phaneuf, 2002 and chapter 13 in this volume)
this line of research will become increasingly important. The estimation is
conducted using BIOGEME, the software developed by Bierlaire and avail-
able from this author.

1These authors employed MatLab code and have decided to make it available upon request.
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In chapter 5, Joe Cooper specifies a multinomial probit model (MNP) for
stated-preference adoption or non-adoption of one of five best management
practices under the federal Environmental Quality Incentive Program given a
hypothetical payment to the farmer. Estimation of the MNP requires max-
imum simulated likelihood methods. Cooper further incorporates the semi-
parametric approach to modeling binary data willingness-to-accept (WTA) re-
sponses first introduced by Creel and Loomis, 1997, and illustrates this model
using the data from a survey of U.S. farmers. A likelihood ratio test confirms
Cooper’s suspicions that farmer WTA for one practice is not independent of
that for another practice. An approach for predicting WTA for one practice
conditional on the bids for the other practice is then proposed.

In chapter 6, Andreas Ziegler is motivated by a broad question about the
role of environmental regulation and firm self-regulation: What factors drive
firms to adopt environmental product innovations? Specifically, is the adop-
tion of such innovations affected by market conditions, including competi-
tive pressure, client relations, etc.? Ziegler compares the multinomial logit
model with the multinomial probit model, where the latter is estimated using
the Geweke-Hajivassiliou-Keane simulator. Ziegler finds that the simulated
ML estimates of the multinomial probit model are unreliable, a result that he
attributes, among other things, to the nature of the multinomial model itself,
where the only explanatory variables are firm characteristics that do not vary
across alternatives. He concludes that the multinomial probit model offers few
new insights above and beyond those of the multinomial logit.

3. Bayesian applications

The following section collects five chapters that employ Bayesian estimation
techniques. They either compare these to classical ones, or show how these
can supplement classical ones. Of course this is another area in which SMs
have had a tremendous impact. In the opening chapter of this section (chap-
ter 7), Ken Train and Garrett Sonnier illustrate the use of efficient Bayesian
estimation in deriving taste-parameter distributions with bounds that reflect
behavioural expectations and full correlation across parameters of the utility
function. The associate GAUSS code has been available for some time from
the web-page of Prof. Train, and it is very flexible. Their empirical applica-
tion reports on a study of preferences for environmentally friendly car engine
solutions, comparing electric, hybrid and conventional engines.

Chapter 8, which we judge very useful from a teaching point of view. is
contribution by Roger van Haefen and Dan Phaneuf, two leading researchers
in the field of demand systems for quality-differentiated goods in the Kuhn-
Tucker framework. This line of research has benefited greatly from the use
of SMs. In this chapter the various challenges that the profession has had to
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face to implement this elegant approach to the travel-cost method are carefully
described, and the role of SMs highlighted in both parameter estimation and
derivation of welfare measures form moose hunting. The authors propose three
estimation approaches, one of which uses Bayesian techniques, and make their
GAUSS code available to the reader. Hopefully this chapter will lead to a
more widespread use of this approach, which is so far the most theoretically
consistent with consumer theory.

Holloway, Tomberlin and Irz in chapter 9 move our attention to the use of
SMs to estimate production efficiency in a trawl fishery with a purely Bayesian
hierarchical approach based on specifically developed error-component model
and MCMC-assisted estimation. Estimation of efficiency frontiers is a ‘classic’a
problem in empirical production economics and of high relevance in the eco-
nomics of fishery resources.2 Powerful and robust Bayesian techniques of this
kind are obvious assets in the tool-kit of applied resource economists.

In chapter 10 Layton and Levine address the issue of how to incorporate
previous information of past studies of pilot and pre-test surveys to improve
the quality of estimation from the final survey data. This is a natural context of
application for a Bayesian analytical framework, especially in multi-stage data
collection in which sequenced updating of posteriors is possible. As computer
aided survey administration becomes more widespread such techniques will
become of greater value. The authors illustrate the value of their approach us-
ing stated preference data on surveys for the protection of the northern spotted
owl in Seattle, Washington.

Arana and Le˜ on in chapter 11 illustrate how to analyze discrete-choice con-´
tingent valuation data single- and double-bounded in a Bayesian framework.
They run Monte Carlo experiments to compare conventional maximum likeli-
hood analysis with Bayesian ones and find the latter improves the performance
of the model, particularly with relatively small samples. This result is of great
interest given the cost of contingent valuation surveying.3

4. Simulation methods in dynamic models

Two chapters in this book are dedicated to the use of SMs for solving and
exploring the characteristics of dynamic models. This area of research is of
germane importance in natural resource economics.

Richard Woodward, Wade Griffin and Yong-Suhk Wui focus on solutions
and on approximation to solutions of dynamic programming (DP) models that
are tied to large simulation models. They compare and discuss the pros and
cons of a direct approach, in which the simulation model is embedded in the

2The authors employ MatLab and the code is available upon request.
3Their GAUSS code is available upon request from the authors.
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DP algorithm, to an indirect one in which functional relationships are approx-
imated using an econometrically estimated meta-model. In their application
they tackle a complex management problem in the red snapper fishery in the
Gulf of Mexico. The policy variables examined here are (i) the total allowable
catch (TAC) for the red snapper fishery, and (ii) the distribution of the TAC
between commercial fishermen and recreational anglers. Woodward et al. find
that the metamodeling approach to be less computationally burdensome, but
the direct approach is superior in terms of plausibility of results, consistency
with economic theory, and forecasting performance.

In chapter 15, Bill Provencher and Kenneth Baerenklau make a valuable
point in emphasizing that most empirical dynamic models—which address is-
sues such as land development decisions, livestock grazing rates, and timing of
timber harvesting—have been based on stylized reduced-form specifications.
They therefore present an approach to structural form estimation and apply
it to the timber harvesting problem of Brazee and Mendelsohn, 1988. They
also discuss the difficulty of distinguishing whether microeconomic data are
generated by static or dynamic behaviour even with maintained structural as-
sumptions about the form of the intra-period utility or profit function. We find
their contribution to present an important pedagogical perspective.

5. Monte Carlo experiments

Chapters 13 and 12 are dedicated to one of the major work-horses of SMs:
context-specific Monte Carlo experiments devised to explore the finite sample
properties of estimators for which econometric theory provides the researcher
only with asymptotic results.

Riccardo Scarpa, Silvia Ferrini and Ken Willis—in chapter 13—focus on
the econometrics of choice experiments in the format commonly used for non-
market valuation in environmental economics. In this context it is customary
to include in each choice set the “status quo” response option in addition to
the other alternatives. Economists and psychologists have, however, worried
about status-quo biases and other undesirable response effects induced by the
inclusion of this response option, and in this chapter Scarpa et al. investigate
these effects. They compare three models, two of which are commonly used by
practitioners (conditional logit with one status-quo alternative-specific constant
and nested logit), while the third is a more flexible mixed logit error component
model which nests the other two under specific conditions. Their Monte Carlo
results suggest that the mixed logit error component model they proposed is
robust to mis-specification errors over a range of commonly employed sample
sizes, and should be preferred over the other more commonly employed two.4

4Their GAUSS code is made available upon request.
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In chapter 12, Margarita Genius and Elisabetta Strazzera follow up on an
influential paper by Carson, Groves and Machina, 2000, in that they study
models appropriate for checking the incentive-compatibility properties of di-
chotomous choice contingent valuation questions. Briefly, in single-bounded
referendum questions the respondent is asked to say whether he would vote
in favor or against a public program if the cost to him or her is X. The re-
sponses to these referendum questions are incentive-compatible, but statisti-
cally inefficient. To refine information about WTP, researchers usually include
dichotomous-choice follow-up questions. However, the follow-up questions
are not incentive compatible.

This paper focuses on bivariate models of WTP, e.g. models in which the re-
sponse to the initial and follow-up payment question are assumed to be driven
by two different-and unobserved-WTP amounts. The two latent WTP amounts
are allowed to be correlated. Specifically, the authors consider (i) a bivariate
model that restricts the coefficients in the first and second equation to be iden-
tical, (ii) a bivariate model with a shift (following Carson et al.), and (iii) a
model that truncates the bivariate distribution to allow for the incentives to be
different for individuals who answer no to the initial payment question, and
individuals who answer yes to the initial payment question.

The authors also worry about using bivariate normal distributions when the
true distribution is not normal, and introduce a Joe copula, i.e., a joint distribu-
tion for two variables with specified marginals. For each of the three possible
data generating processes ((i), (ii) and (iii)), the authors fit all proposed mod-
els, examine the effect of fitting a bivariate normal model when the distribution
of the latent WTP amounts is not a bivariate normal, and experiment with Joe
copula models. They find that the latter are flexible, perform well, and have
a good track record of convergence, especially when the models based on the
traditional bivariate approach do not converge easily.

6. Computational aspects

Although computational aspects are dealt with throughout the volume, the
pedagogical intention of this volume on SMs in environmental and resource
economics required that we examine such issues in some detail. Accordingly,
the last three chapters deal with these specific aspects of simulation-based
methods.

Perhaps one of the main concerns in simulation studies using Monte Carlo
techniques is the quality of pseudo-random generators. Giovanni Baiocchi
deals with these and related aspects such as reproducibility of results and re-
porting in chapter 16. He reports the outcomes of a battery of tests specifically
meant to assess the quality of different pseudo-random generators employed in
software commonly used by resource and environment economists. Many of
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these outcomes are surprising. We believe readers will find this chapter very
useful for learning about potential pitfalls of simulation-based tools.

Bill Breffle, Ed Morey and Donald Waldman in chapter 17—instead— focus
on simulation noise in a comparison between quadrature and simulation tech-
niques with pseudo-random draws in approximating integrals without a closed-
form in binary probit models. Their context of application is stated preference
data from a sample of Green Bay anglers. They find that in some circumstances
quadrature affords computational gains with respect to simulation-based esti-
mation.5

Finally, simulation noise is also the main theme of chapter 18 by John
McPeak. Using his data-set on land use decisions by Kenyan pastoralists,
he focuses on simulation noise due to various sources in the bivariate tobit
model. He considers how variable characteristics influence parameter variabil-
ity across estimation runs, and identifies specific characteristics that influence
variability in his results. While McPeak concludes that in his dataset simu-
lation noise is not large enough to lead the analyst to incorrect conclusions,
his concern is of high relevance to SMs practitioners, who—in our opinion—
should systematically carry out tests to check whether this is indeed the case.
As a consequence his approach is of general interest.6

7. Terminology

In an ideal world there would be a one-to-one mapping between terms and
concepts. Initially we intended to standardize the terminology throughout the
book in as much as possible. Although we tried, we now feel we did not go
very far with it. As a result, for example, many acronyms of models across
chapters may refer to different econometrics specifications. While an apology
in this sense is due to the reader, we feel that the diversity of terms in this book
reflects that in the current literature. Hopefully, in future there will be a natural
evolution of technical jargon towards some kind of standard.

5Their GAUSS code is made available upon request.
6John McPeak also uses code for GAUSS and he makes it available upon request.
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Chapter 1

DISCRETE CHOICE MODELS
IN PREFERENCE SPACE AND
WILLINGNESS-TO-PAY SPACE

Kenneth Train
Department of Economics, University of California, Berkeley

train@econ.berkeley.com

Melvyn Weeks
University of Cambridge, Cambridge, U.K.

mw217@econ.cam.ac.uk

Abstract In models with unobserved taste heterogeneity, distributional assumptions can be
placed in two ways: (1) by specifying the distribution of coefficients in the util-
ity function and deriving the distribution of willingness to pay (WTP), or (2) by
specifying the distribution of WTP and deriving the distribution of coefficients.
In general the two approaches are equivalent, in that any mutually compatible
distributions for coefficients and WTP can be represented in either way. How-
ever, in practice, convenient distributions, such as normal or log-normal, are
usually specified, and these convenient distributions have different implications
when placed on WTP’s than on coefficients. We compare models that use normal
and log-normal distributions for coefficients (called models in preference space)
with models using these distributions for WTP (called models in WTP space).
We find that the models in preference space fit the data better but provide less
reasonable distributions of WTP than the models in WTP space. Our findings
suggests that further work is needed to identify distributions that either fit bet-
ter when applied in WTP space or imply more reasonable distributions of WTP
when applied in preference space.

Keywords: Mixed logit, random parameters, random willingness to pay.
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1. Introduction

In many applications of discrete choice models with random coefficients,
the price coefficient is held constant, especially when the goal is to estimate
the distribution of consumers’ willingness to pay for alternative attributes (e.g.,
Revelt and Train, 1998; Goett et al., 2000; Layton and Brown, 2000; Scarpa
et al., 2002; Hensher et al., 2004) and/or to infer the willingess to pay of indi-
vidual consumers from their observed choices and the population distribution
(Train, 2003, Ch. 11; Scarpa et al., 2005; Greene et al., 2005.) This re-
striction allows the distributions of willingness to pay (WTP) to be calculated
easily from the distributions of the non-price coefficients, since the two distri-
butions take the same form. For example, if the coefficient of an attribute is
distributed normally, then WTP for that attribute, which is the attribute’s coef-
ficient divided by the price coefficient, is also normally distributed. The mean
and standard deviation of WTP are simply the mean and standard deviation of
the attribute coefficient scaled by the inverse of the (fixed) price coefficient.
The restriction also facilitates estimation. As Ruud (1996) points out, a model
with all random coefficients, including the price coefficient, can be practically
unidentified empirically, especially in datasets with only one observed choice
for each decision-maker.

A fixed price coefficient,1 however, implies that the standard deviation of
unobserved utility, which is called the scale parameter, is the same for all ob-
servations. Louviere (2003) discusses the importance of recognizing that the
scale parameter can, and in many situations clearly does, vary randomly over
observations and that ignoring this variation in estimation can lead to erro-
neous interpretation and conclusions. For example, if the price coefficient is
constrained to be fixed when in fact scale varies over observations, then the
variation in scale will be erroneously attributed to variation in WTP.

In this paper we investigate alternative ways to specify random coefficients
and WTP when the price coefficient varies. Cameron and James (1987) and
Cameron (1988) introduced the concept of parameterizing a fixed-coefficient
model in terms of WTP rather than coefficients. We extend their analysis to
models with random coefficients, where distributional assumptions and restric-
tions can be placed on the coefficients or on the WTP’s. The two approaches
are formally equivalent, in the sense that any distribution of coefficients trans-
lates into some derivable distribution of WTP’s, and vice-versa. However, the
two approaches differ in terms of numerical convenience under any given dis-
tributional assumptions. For example, a model with an attribute coefficient that
is normally distributed and a price coefficient that is log-normal implies that
WTP for the attribute is distributed as the ratio of a normal to a log-normal.

1Or, more generally, any fixed coefficient, or uncorrelated random coefficients.
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A researcher working directly in WTP space is unlikely to choose this incon-
venient distribution for WTP’s. Conversely, a model with normal WTP and
log-normal price coefficient implies that the attribute coefficient is the prod-
uct of a normal and log-normal, which is a distribution that has never, to our
knowledge, been applied in preference space. Restrictions are also asymmet-
ric. For example, uncorrelated preference coefficients translate into WTP’s that
are correlated in a particular way that would be hard to implement and test in
the context of WTP distributions, and vice-versa.

We estimate and compare models that are parameterized in terms of coeffi-
cients, called “models in preference space,” and models parameterized in terms
of WTP, called “models in WTP space.” For the models in preference space, a
convenient distribution is specified for the coefficients, and the parameters of
this distribution (such as its mean and variance) are estimated. The distribution
of WTP’s is then derived from the estimated distribution of coefficients. This is
currently the standard practice for application of choice models. For the mod-
els in WTP space, convenient distributions are specified for the WTP’s and the
price coefficient. The parameters of this distribution are estimated, from which
the estimated distribution of utility coefficients is derived.

We find that models using convenient distributions in preference space fit
the data better, both within sample and out-of-sample, than models using con-
venient distributions in WTP space. However, the distributions of WTP that are
derived from these models have unreasonably large variance, which translates
into an untenable implication that many people are willing to pay an enormous
amount of money to have or avoid an attribute. Stating the conclusions in com-
bination: the models that fit better give less reasonable distributions for WTP.
These results suggests that alternative distributional specifications are needed
that either fit the data better when applied in WTP space or imply more reason-
able WTP distributions when applied in preference space.

Our analysis and findings mirror those of Sonnier, Ainslee, and Otter (2003),
with one exception. In similar comparisons as ours they find that their models
in preference space fit the within-sample data better than their models in WTP
space but provide unreasonably large variances in WTP. In these regards, their
results match ours. However, they find that their models in WTP space attain
better out-of-sample fit than their models in preference space, which is oppo-
site of what we find. Sonnier et al. (2003) use a different method for evaluating
out-of-sample fit than we do, which might account for the difference. How-
ever, differences like this one are to be expected over different datasets, since
the issue under investigation is the performance of various distributional spec-
ifications and the appropriate distribution is necessarily situation-dependent.
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2. Specification

In this section we describe the two types of models. Decision-makers are
indexed by n, alternatives by j, and choice situations by t. To facilitate dis-
cussion, we specify utility as separable in price, p, and non-price attributes,
x:

UnjtUU = −αnpnjt + β′
nββ xnjt + εnjt (2.1)

where αn and βnββ vary randomly over decision-makers and εnjt is i.i.d. We as-
sume εnjt is distributed extreme value, though the analysis is the analogous for
other distributions. The variance of εnjt can be different for different decision-
makers: V ar(εnjt) = k2

n(π2/6), where kn is the scale parameter for decision-
maker n.

Though the utility specification is not yet normalized, the current formu-
lation allows us to clarify the circumstances under which the scale parameter
can be expected to vary over decision-makers. A random scale parameter is
conceptually different from random values for α and β. αn and βnββ represent
the tastes of person n, and these parameters vary over decision-makers because
different people have different tastes. In contrast, the scale parameter does not
represent a term within the utility function in any given choice situation but
rather the standard deviation of utility over different choice situations. By al-
lowing the scale parameter to be random, the researcher gives a variance to
a variance. The question arises: what would cause the variance of ε to vary?
Two prominent situations arise:

1 The unobserved term ε might reflect factors that are actually random
or quixotic from the decision-maker’s perspective, rather than, as in the
usual derivation, factors that are known to the decision-maker but un-
known by the researcher. In this situation, the variance of ε reflects the
degree of randomness in the decision-maker’s process, which can be
expected to differ over decision-makers. This concept of randomness
is particularly relevant with stated preference data, where respondents
differ in their attention to the task and in their constructs of unlisted
attributes. However, randomness in behavior can arise in revealed pref-
erence data as well.

2 In panel data settings, each decision-maker faces a sequence of choice
situations with unobserved factors differing in each choice situation. It
is reasonable to believe in this situation that the variance of these unob-
served factors over choice situations for each decision-maker is differ-
ent for different decision-makers, even when the unobserved factors are
known to the decision-maker and unobserved only by the researcher.

These two situations also clarify the converse: When ε represents factors that
are known to the decision-maker but unknown by the researcher, and only one
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choice situation is observed for each decision-maker such that each observation
represents a different decision-maker, there is perhaps little need or meaning
to allowing the scale parameter to vary over decision-makers. In this circum-
stance, the scale parameter captures variance over observations in factors that
the researcher does not observe; this variance is defined on the researcher, not
the decision-maker, and takes a given (i.e., fixed) value for the researcher.

Dividing utility (2.1) by the scale parameter does not affect behavior and yet
results in a new error term that has the same variance for all decision-makers:

UnjtUU = −(αn/kn)pnjt + (βnββ /kn)′xnjt + εnjt (2.2)

where εnjt is i.i.d. type-one extreme value, with constant variance π2/6. The
utility coefficients are defined as λn = (αn/kn) and cn = (βnββ /kn), such that
utility is written:

UnjtUU = −λnpnjt + c′nxnjt + εnjt (2.3)

Note that if kn varies randomly, then the utility coefficients are correlated,
since kn enters the denominator of each coefficient. Specifying the utility
coefficients to be independent implicitly constrains the scale parameter to be
constant. If the scale parameter varies and αn and βnββ are fixed, then the utility
coefficients vary with perfect correlation. If the utility coefficients have corre-
lation less than unity, then αn and βnββ are necessarily varying in addition to, or
instead of, the scale parameter.

Equation (2.3) is called the model in preference space. Willingness to pay
for an attribute is the ratio of the attribute’s coefficient to the price coefficient:
wn = cn/λn. Using this definition, utility can be rewritten as

UnjtUU = −λnpnjt + (λnwn)′xnjt + εnjt, (2.4)

which is called utility in WTP space. Under this parameterization, the variation
in WTP, which is independent of scale, is distinguished from the variation in
the price coefficient, which incorporates scale.2

The utility expressions are equivalent of course. Any distribution of λn and
cn in (2.3) implies a distribution of λn and wn in (2.4), and vice-versa. The
general practice has been to specify distributions in preference space, estimate
the parameters of those distributions, and derive the distributions of WTP from
these estimated distributions in preference space (e.g., Train, 1998.) While
fully general in theory, this practice is usually limited in implementation by
the use of convenient distributions for utility coefficients. Convenient distribu-
tions for utility coefficients do not imply convenient distributions for WTP, and

2Any coefficient can be used as the base that incorporates scale, with each other coefficient expressed as
the product of this coefficient and a term that is independent of scale. The only reason to use the price
coefficient as the base is that the scale-free terms become WTP’s, which are easy to interpret.
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vice-versa. As stated above, if the price coefficient is distributed log-normal
and the coefficients of non-price attributes are normal, then WTP is the ratio of
a normal term to a log-normal term. Similarly, normal distributions for WTP
and a log-normal for the price coefficient implies that the utility coefficients are
the product of a normal term and a log-normal term. The placement of restric-
tions is similarly asymmetric. It is fairly common for researchers to specify
uncorrelated utility coefficients; however, this restriction implies that scale is
constant, as stated above, and moreover that WTP is correlated in a particular
way. It is doubtful that a researcher in specifying uncorrelated coefficients is
actually thinking that WTP is correlated in this way. Similarly, uncorrelated
WTP, which the researcher might want to assume or test, implies a pattern
of correlation in utility coefficients that is difficult to implement in preference
space.

The issue becomes: does the use of convenient distributions and restric-
tions in preference space or WTP space result in more accurate and reasonable
models? The answer is necessarily situationally dependent, since the true dis-
tributions differ in different applications. However, some insight into the issue
can be obtained by comparisons on a given dataset. This is the topic of the next
section.

3. Data

We use the stated-preference data collected by Train and Hudson (2000)
on households’ choice among alternative-fueled vehicles, including gas, elec-
tric, and hybrid gas-electric vehicles. 500 respondents were presented with 15
choice situations apiece. For each choice situation, the respondent was given
a card that described three vehicles and was asked to state which of the vehi-
cles he/she would choose to buy. Each vehicle was described in terms of the
following variables:

Engine type (gas, electric, or hybrid),

Purchase price, in dollars,

Operating cost, in dollars per month,

Performance (grouped into three levels, which we call “low,” “medium,”
and “high,” 3

Range between recharging/refueling, in hundreds of miles,

3Performance was described on the card in terms of top speed and seconds required to reach 60 mph.
However, these two components were not varied independently, and only three combinations of the two
components were utilized.
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Body type (10 types ranging from mini car to large van).

Each of the attributes varied over choice situations and over respondents. Range
varied for electric vehicles but was constant for gas and hybrid vehicles, since
the purpose of this variable was to determine consumers’ response to the rela-
tively restricted range of electric vehicles. All but a few respondents completed
the fifteen choice tasks, giving a total of 7,437 observations for estimation.
These data have been previously used by Hess et al. (2003) and Train and
Sonnier (2005) for other purposes. We use the data to compare specifications
in preference and WTP space.

4. Estimation

4.1 Uncorrelated coefficients in preference space

Our first model is specified in preference space with a random coefficient
for each variable and no correlation over coefficients. As discussed above,
uncorrelated coefficients implies that the scale parameter is fixed. This model
can therefore be seen as a version that does not allow for random scale. It is
compared with models, described below, that allow random scale.

For this and other models in preference space, the attributes that are desir-
able, or undesirable, for everyone are given log-normally distributed coeffi-
cients. These attributes are: price, operating cost, range, a dummy for medium
performance or higher, and a dummy for high performance. The coefficient
for the first of the performance variables captures the extra utility associated
with increasing performance from low to medium, while the coefficient for the
second performance variable reflects the extra utility associated with increas-
ing performance from medium to high. Price and operating cost are entered as
negative, since the log-normal distribution implies positive coefficients. The
other attributes can be either desirable or undesirable, depending on the views
and tastes of the consumer. These attributes are: dummies for electric and hy-
brid engines, whose coefficients reflect the value of these engine types relative
to gas; and dummies for each body type except mid-sized car, whose coeffi-
cients reflect the value of these body types relative to a mid-sized car (holding
other attributes constant, of course.) The coefficients of these variables are
given normal distributions.

The model, and all the ones which follow, was estimated by Bayesian MCMC
procedures, using diffuse priors. These procedures for mixed logit models are
described by Train (2003) in general and by Train and Sonnier (2005) in re-
lation to these particular data. 10,000 iterations were used as “burn-in” after
which every tenth draw was retained from 10,000 additional iterations, pro-
viding a total 1,000 draws from the posterior distribution of the parameters.
Previous analysis of these data by Train and Sonnier, as well as our own anal-
ysis, indicates that the MCMC sequences converged within the burn-in period.
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Table 1.1. Model in Preference Space with Uncorrelated Coefficients

Attribute Parameter Estimate St. error

Price in $10,000’s
Mean of ln(–coeff.) –0.2233 0.0508
Variance of ln(–coeff.) 0.5442 0.0635

Operating cost in $/month
Mean of ln(–coeff.) –3.5540 0.0993
Variance of ln(–coeff.) 0.7727 0.1449

Range in 100’s of miles
Mean of ln(coeff.) –0.7272 0.1298
Variance of ln(coeff.) 0.3317 0.1209

Electric engine
Mean of coeff. –1.9453 0.1354
Variance of coeff. 1.6492 0.2820

Hybrid engine
Mean of coeff. 0.8331 0.1102
Variance of coeff. 1.4089 0.1797

High performance
Mean of ln(coeff.) –3.0639 0.3546
Variance of ln(coeff.) 3.3681 0.8493

Medium or high performance
Mean of ln(coeff.) –1.3030 0.2630
Variance of ln(coeff.) 1.4041 0.5204

Mini car
Mean of coeff. –3.0325 0.1767
Variance of coeff. 3.5540 1.0535

Small car
Mean of coeff. –1.3966 0.1240
Variance of coeff. 1.3086 0.4290

Large car
Mean of coeff. –0.4008 0.1272
Variance of coeff. 1.3084 0.7080

Small SUV
Mean of coeff. –0.8499 0.1072
Variance of coeff. 0.7032 0.3655

Midsize SUV
Mean of coeff. 0.2490 0.1449
Variance of coeff. 0.9772 0.3548

Large SUV
Mean of coeff. –0.1295 0.1765
Variance of coeff. 2.4334 0.9578

Compact pickup
Mean of coeff. –1.3201 0.1507
Variance of coeff. 1.3209 0.4484

Full-sized pickup
Mean of coeff. –0.7908 0.1544
Variance of coeff. 3.1370 0.8326

Minivan
Mean of coeff. –0.5219 0.1441
Variance of coeff. 2.6569 0.6334

Log likelihood at convergence –6,297.81

The Bernstein-von Mises theorem states that, under fairly benign conditions,
the mean of the Bayesian posterior is a classical estimator that is asymptotically
equivalent to the maximum likelihood estimator. Also, the variance of the
posterior is the asymptotic variance of this estimator. See Train (2003) for
an explanation with citations. Therefore, even though the model is estimated
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Table 1.2. Mean and standard deviations of coefficients and WTP, implied by estimated
parameters of model in preference space (Table 1.1)

Attribute Coefficient Coefficient WTP WTP
Mean Std. dev. Mean Std. dev.

Price in $10,000’s –1.0499 0.8948
Operating cost in $/month –0.0421 0.0453 –0.0690 0.1130
Range in 100’s of miles 0.5701 0.3576 0.9365 1.1077
Electric engine –1.9453 1.2842 –3.1957 3.8605
Hybrid engine 0.8331 1.1870 1.3703 2.8062
High performance 0.2518 1.1829 0.4164 2.7611
Medium or high performance 0.5483 0.9581 0.9004 2.1917
Mini car –3.0325 1.8852 –4.9773 5.8563
Small car –1.3966 1.1439 –2.2938 3.1446
Large car –0.4008 1.1439 –0.6598 2.5314
Small SUV –0.8499 0.8386 –1.3952 2.1607
Midsize SUV 0.2490 0.9885 0.4060 2.1527
Large SUV –0.1295 1.5599 –0.2120 3.3620
Compact pickup –1.3201 1.1493 –2.1702 3.0874
Full-sized pickup –0.7908 1.7712 –1.3032 3.9653
Minivan –0.5219 1.6300 –0.8621 3.5859

by Bayesian procedures, the results can be interpreted from a purely classical
perspective.

Table 1.1 gives estimation results for our model in preference space with
uncorrelated coefficients. The estimate for each parameter is the mean of the
1,000 draws from the posterior, and the standard error of the estimate is the
standard deviation of these draws. Presenting the results in this way facili-
tates interpretation by researchers who maintain a classical perspective: the
estimates and standard errors can be interpreted the same as if they had been
obtained by maximum likelihood procedures. The results can also, of course,
be interpreted from a Bayesian perspective, with the mean and standard devi-
ation of the draws providing summary information about the posterior. The
log-likelihood value given at the bottom of table 1.1 is calculated in the classi-
cal way at the parameter estimates.4

For the log-normally distributed coefficients, the estimates in Table 1.1 are
the mean and variance of the log of coefficient, which are difficult to interpret
directly. Table 1.2 gives the estimated mean and standard deviation of the co-

4A Bayesian log-likelihood would be calculated by integrating the log-likelihood over the posterior or, as
described by Sonnier et al. (2003), by integrating the inverse of the log-likelihood over the posterior and
then taking the inverse.
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efficients themselves, derived from the estimated parameters in Table 1.1. The
estimates seem generally reasonable. Electric vehicles are considered worse
than gas vehicles by the vast majority of the population, even if the two types
of vehicles could cost the same and have the same range. The mean and stan-
dard deviation of the electric vehicle coefficient imply that 94 percent of the
population place a negative value of electric vehicles relative to gas. Hybrid
vehicles, on the other hand, are preferred to gas vehicles by most consumers, if
they were to cost the same. The estimated mean and standard deviation imply
that 75 percent have a positive coefficient for the hybrid dummy. Performance
is valued at a decreasing rate, as expected. The average utility associated with
moving from low to medium performance is greater than that for moving from
medium to high performance (0.5483 and 0.2518 respectively.) The standard
deviation of the range coefficient is much lower than of the two performance
variables. This difference indicates that consumers are more similar in their
desire for extra range than in their value for higher top speed and acceleration.
The body type coefficients seem reasonable, with mid-sized cars and SUVs
being preferred, on average, to either smaller or larger versions (holding price
and operating cost constant). And pickups are valued less, on average, than
comparably sized SUVs.

The estimated parameters in preference space imply distributions of WTP.
A draw from the estimated distribution of WTP for an attribute is simulated
by taking a draw from the estimated distribution of the attribute’s coefficient
and dividing by a draw from the estimated distribution of the price coefficient.
Statistics for the distribution of WTP are obtained by taking numerous such
draws and calculating the requisite statistic for these draws. The estimated
mean and standard deviation of the WTP for each attribute is given in the final
two columns of Table 1.2.

The most distinguishing aspect of the estimated distributions of WTP is the
prevalence of large standard deviations. The standard deviation exceeds the
mean for all WTP’s, and are more than twice the means for eight of the fif-
teen. These large standard deviations imply that a nontrivial share of people
are willing to pay enormous amounts of money to obtain/avoid some attributes.
For example, ten percent the population is estimated to have a WTP for range
that exceeds 2. Given the units for price and range, a WTP over 2 means that
the consumer is willing to pay more than $20,000 to have an extra 100 miles
of range. Similarly, ten percent of the population is estimated to be willing to
pay over $20,000 to move from low to medium performance. We return to this
issue after presenting results of a model estimated in WTP space, where the
distribution of WTP is estimated directly rather than derived from estimated
coefficient distributions.

As stated above, a model with uncorrelated coefficients in preference space
implies correlated WTP, with the correlation being the fairly arbitrary outcome
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Table 1.3. Correlations between WTP for attributes, implied by
estimated parameters of model in preference space (Table 1.1)

Attribute Op. cost Range Electric Hybrid Hi Perf Med Perf

Operating cost 1.0000 0.3687 –0.3627 0.2129 0.0679 0.1784
Range 0.3687 1.0000 –0.5029 0.2965 0.0958 0.2496
Electric –0.3627 –0.5029 1.0000 –0.2855 –0.0929 –0.2411
Hybrid 0.2129 0.2965 –0.2855 1.0000 0.0584 0.1433
High perf 0.0679 0.0958 –0.0929 0.0584 1.0000 0.0439
Med–hi Perf 0.1784 0.2496 –0.2411 0.1433 0.0439 1.0000

(in the sense that the researcher does not specify it directly) of the estimated
means and variances of the coefficients themselves. The correlation of WTP
over attributes is given in Table 1.3. To conserve space, the correlation matrix
does not contain the body types. As the table indicates, correlations among
WTP’s are fairly large; researchers assuming uncorrelated coefficients might
not be aware that they are implicitly assuming fairly large correlations among
WTP’s.

4.2 Uncorrelated WTP’s in WTP space

We estimated a model with utility specified as in equation (2.4), where the
coefficient of each non-price attribute is the product of the WTP for that at-
tribute times the price coefficient. This model allows for random scale. If
only scale varies, then the correlation between each pair of coefficients is one;
correlations below one in coefficients imply that WTP varies as well as scale.

The price coefficient −λn is given a log-normal distribution. The elements
of ωn (WTP’s) associated with operating cost, range, and the two performance
variables are also specified to be log-normal, while the elements of ωn associ-
ated with engine and body types are, instead, normal. The WTP’s are assumed
to be uncorrelated over attributes. Note, of course, that when WTP for an at-
tribute is normally distributed and the price coefficient is log-normal, the coef-
ficient of the attribute is not normal (as in the previous model). Also, as stated
above, uncorrelated WTP implies correlated coefficients (unlike the previous
model), due to the common influence of the price coefficient on each other
coefficient. The current model differs from the previous one in both of these
ways.

Table 1.4 gives the estimation results. The log-likelihood is considerably
lower than that for the model in Table 1.1. However, the distributions of WTP
seem more reasonable. Comparing Table 1.5 with Table 1.2, the main dis-
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Table 1.4. Model in WTP Space with Uncorrelated WTP’s

Attribute Parameter Estimate St. error

Price in $10,000’s
Mean of ln(–coeff.) –0.0498 0.0602
Variance of ln(–coeff.) 0.9014 0.1234

Operating cost in $/month
Mean of ln(WTP) –3.4106 0.1100
Variance of ln(WTP) 0.7847 0.1530

Range in 100’s of miles
Mean of ln(WTP) –0.4045 0.1286
Variance of ln(WTP) 0.2706 0.0939

Electric engine
Mean of WTP –2.5353 0.2369
Variance of WTP 1.9828 0.4443

Hybrid engine
Mean of WTP 0.8738 0.1090
Variance of WTP 2.1181 0.2745

High performance
Mean of ln(WTP) –1.8854 0.2840
Variance of ln(WTP) 1.7172 0.5898

Medium or high performance
Mean of ln(WTP) –1.7380 0.2917
Variance of ln(WTP) 2.4701 0.7310

Mini car
Mean of WTP –3.4645 0.1894
Variance of WTP 6.5767 1.3889

Small car
Mean of WTP –1.5992 0.1451
Variance of WTP 1.7010 0.5337

Large car
Mean of WTP –0.6148 0.1716
Variance of WTP 1.9353 0.6750

Small SUV
Mean of WTP –1.0671 0.1287
Variance of WTP 0.8203 0.5776

Midsize SUV
Mean of WTP 0.2173 0.1611
Variance of WTP 1.8544 0.4389

Large SUV
Mean of WTP –0.7559 0.2923
Variance of WTP 8.2263 2.3072

Compact pickup
Mean of WTP –1.4752 0.1398
Variance of WTP 1.2675 0.5266

Full-sized pickup
Mean of WTP –1.1230 0.1843
Variance of WTP 5.7762 1.2558

Minivan
Mean of WTP –0.7406 0.1827
Variance of WTP 3.9847 0.9252

Log likelihood at convergence –6,362.13

tinction is that the means and especially the standard deviations of WTP’s are
smaller for the model in WTP space than the model in preference space. This
difference means that there is a smaller share with unreasonably large WTP’s.
For example, the model in WTP space implies that 1.7 percent are estimated
to be willing to pay more than $20,000 for 100 miles of extra range, while,
as stated above, the model in preference space implies over 10 percent. Sim-
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Table 1.5. Mean and standard of preference coefficients and WTP, implied by
estimated parameters of model in WTP space (Table 1.4)

Attribute Coefficient Coefficient WTP WTP
Mean Std. dev. Mean Std. dev.

Price in $10,000’s –1.4934 1.8123
Operating cost in $/month –0.0732 0.1616 –0.0489 0.0531
Range in 100’s of miles 1.1406 1.7027 0.7636 0.4257
Electric engine –3.7870 5.6565 –2.5353 1.4081
Hybrid engine 1.3053 3.7585 0.8738 1.4554
High performance 0.5335 1.7974 0.3584 0.7563
Medium or high performance 0.8951 4.5679 0.6047 1.9542
Mini car –5.1712 8.6579 –3.4645 2.5645
Small car –2.3849 4.1887 –1.5992 1.3042
Large car –0.9180 3.4259 –0.6148 1.3912
Small SUV –1.5914 2.8561 –1.0671 0.9057
Midsize SUV 0.3151 3.1997 0.2173 1.3618
Large SUV –1.1336 6.8725 –0.7559 2.8682
Compact pickup –2.2029 3.7700 –1.4752 1.1258
Full-sized pickup –1.6858 5.9893 –1.1230 2.4034
Minivan –1.1161 4.8729 –0.7406 1.9962

ilarly, but not as dramatically, the share who are willing to pay over $20,000
to move from low to medium performance is estimated to be 6 percent in the
model in WTP space, which is less than the 10 percent implied by the model
in preference space.

In conclusion, for both preference coefficients and WTP values, the indirect
way of estimating the distributions results in larger means and standard devi-
ations than when the distributions are estimated directly. As discussed above,
the larger standard deviations in WTP imply implausible shares of the popula-
tion willing to pay large amounts for an attribute. The meaning of larger means
and standard deviations of coefficients is not clear.

Table 1.6 gives the correlations between coefficients that are implied by
the estimated distributions of WTP and the price coefficient. The correlations
are fairly high, due to the fact that each WTP is multiplied by the common
price coefficient. These high correlations suggest that models with uncorre-
lated coefficients in preference space are incompatible empirically (as well as
theoretically, of course) with independent WTP’s and price coefficient. Re-
searchers, when considering independence over attributes, must be careful in
distinguishing whether they want to assume that WTP’s are independent or
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Table 1.6. Correlations between preference coefficients of attributes, implied by estimated
parameters of model in WTP space (Table 1.4)

Attribute Price Op. cost Range Electric Hybrid Hi Perf Med Perf

Price 1.0000 0.5526 0.8117 –0.8080 0.4157 0.3570 0.2242
Op cost 0.5526 1.0000 0.4481 -0.4456 0.2322 0.2087 0.1281
Range 0.8117 0.4481 1.0000 -0.6532 0.3375 0.2895 0.1796
Electric –0.8080 –0.4456 –0.6532 1.0000 –0.3343 –0.2853 –0.1857
Hybrid 0.4157 0.2322 0.3375 -0.3343 1.0000 0.1439 0.0945
Hi perf 0.3570 0.2087 0.2895 -0.2853 0.1439 1.0000 0.0794
Med/Hi Perf 0.2242 0.1281 0.1796 –0.1857 0.0945 0.0794 1.0000

that utility coefficients are independent, since independence of one implies
non-independence of the other.

4.3 Correlated coefficients and WTP

In general, neither coefficients nor WTP’s are independent. We estimated
a model in preference space with correlated coefficients and a model in WTP
space with correlated WTP’s. The model in preference space incorporates ran-
dom scale, since it allows correlation between all coefficients. The two models
(in preference space and WTP space) are therefore the same in allowing for
random scale and differ only in the distributional assumptions for coefficients
and WTP. Both models assume a log-normal price coefficient. The model in
preference space assumes normal and log-normal non-price coefficients, which
implies that WTP’s are distributed as the ratio of a normal or log-normal to a
log-normal. The model in WTP space assumes normal and log-normal WTP’s,
which implies coefficients that are the product of a log-normal with a normal
or log-normal.

To save space, we do not present the estimates of these model; they are avail-
able to interested readers upon request. The results are consistent with those
obtained above, namely: (1) the model in preference space obtains a higher
log-likelihood, but (2) the estimated distribution of WTP is more reasonable
(with smaller means and variances) for the model in WTP space. In addition,
several conclusions can be drawn concerning correlations:

The hypothesis that coefficients in preference space are uncorrelated can
be rejected. The model in preference space attains a log-likelihood of
-6,178.12 with correlated coefficients, compared to -6,297.81 for the
model given in Table 1.1 with uncorrelated coefficients. The likelihood
ratio test statistic is therefore 239.4 for the hypothesis that all 120 co-
variances are zero, which is greater than the 99-percentile value of the
chi-square with 120 degrees of freedom.
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The estimated correlations among coefficients are generally small or
moderate in size. 47 of the 160 correlations are below 0.1 in magnitude,
and only 12 are above .4 in magnitude.

The model in WTP space attains a log-likelihood of -6,228.31 when
the WTP’s and price coefficient are all allowed to be correlated and
-6,362.13 when they are constrained to be uncorrelated. The hypothesis
of no correlation can be rejected.

The estimated correlations between WTP’s for the model in WTP space
are generally small or moderate, similar to the estimated correlations
between coefficients for the model in preference space.

The correlations among coefficients that are derived from the model in
WTP space are considerably larger in magnitude than those estimated
directly in the model in preference space. Similarly, the correlations
among WTP’s that are derived from the model in preference space are
considerably larger than those estimated directly in the model in WTP
space. These findings are similar to those given above for variances, i.e.,
that larger variances in coefficients are obtained when they are estimated
indirectly instead of directly, and larger variances in WTP’s are obtained
when estimated indirectly than directly. It seems that the process of
combining estimated distributions (dividing a normal by a log-normal
for WTP or multiplying a normal by a log-normal for a coefficient) tends
to inflate the estimated variances and covariances.

Sonnier et al. (2003) estimated models in preference space and WTP space,
using the terms “linear models” and “nonlinear models” instead of our ter-
minology to denote that the random customer-level parameters enter utility
linearly in the former and nonlinearly in the later. Their results are consis-
tent with our main conclusions, in that they obtained better within-sample fit
for their model in preference space but more reasonable WTP distributions for
their model in WTP space. However, their results differ from ours in one re-
gard. They performed out-of-sample analysis and concluded that their model
in WTP space fits better out-of-sample, even though it fits worse in-sample.

To examine this issue, we divided our sampled respondents into two equal-
sized sub-samples, estimated each model on one sub-sample, and evaluated
the log-likelihood of the estimated models on the other sub-sample. In each
comparison (estimation on first half with evaluation on the second half, and
estimation on the second half with evaluation on the first half), the model in
preference space obtained a higher log-likelihood than the model in WTP space
on the out-of-estimation sub-sample.

Our results therefore differ in this regard from those of Sonnier et al. (2003).
The difference can perhaps be explained by the fact that we used a somewhat
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different method to evaluate out-of-sample fit than they did. We estimated on
half the respondents using all of their choice situations and then calculated the
log-likelihood for all the choice situations for the other half of the respondents,
while they estimated the model on all but one choice situation for each re-
spondent and then calculated the log-likelihood for this one “hold-out” choice
situation for each respondent.

However, there is no reason to expect the same results in different settings,
since the answer to the question “Which distributions fit better?” is necessarily
situation-dependent. The purpose of the explorations is to focus our attention
on the relation between distributions of coefficients and distributions of WTP,
rather than to attempt to identify the appropriate distributions to use in all situ-
ations.

5. Conclusions

This paper examines consumer choice among alternative-fueled vehicles,
including gas, electric, and gas/electric hybrids. The empirical results indicate
that the vast majority of consumers would need to be compensated through
a lower price (i.e., have a negative willingness to pay) for electric vehicles
relative to gas vehicles, even if operating cost, performance, and range were the
same. In contrast, most consumers are willing to pay extra for a hybrid relative
to a gas vehicle with the same non-price attributes. This result is consistent
with the market experience in the U.S. The few electric cars that have been
introduced in the U.S. have fared poorly in the market, and models are being
discontinued. In contrast, the initial offerings of hybrids have been relatively
popular, and more models, such as hybrid SUVs, are being launched.

Discrete choice models were estimated with convenient distributions (nor-
mal and log-normal) in preference space and in willingness-to-pay WTP space.
The models in preference space were found to fit the data better, both within-
sample and out-of-sample, than the models in WTP space. However, the mod-
els in WTP space provided more reasonable distributions of WTP, with fewer
consumers having untenably large WTP’s, than the models in preference space.
This comparison implies that research is needed to identify distributions that
fit the data better when applied in WTP space and/or provide more reasonable
distributions of WTP when applied in preference space.
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Abstract A number of papers have recently contrasted classical inference estimation meth-
ods for logit models with Bayesian methods. It has been argued that two partic-
ularly appealing features of the Bayesian approach are its relative simplicity in
estimation, and its ability to derive, individual-specific willingness to pay (WTP)
measures that are less problematic than the classical approaches in terms of ex-
treme values and unexpected signs. This paper challenges this claim by deriving
both population derived WTP measures and individual-specific values based on
the classical mixed logit model, establishing the extent of unacceptable valua-
tions. Our aim is not to estimate Bayesian contrasts per se but to show that the
classical inference approach is likewise straightforward – indeed the individual-
specific estimates are a by-product of the parameter estimation process. We also
reveal the benefits of calculating WTP measures from ratios of individual param-
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eters which are behaviourally more appealing approximations to the true values
of each individual, in contrast to draws from population distributions that run the
risk of allocating two parameters that are poorly juxtaposed in a relative sense,
resulting in extreme value estimates. Our results suggest that while extreme
values and unexpected signs cannot be ruled out (nor can they in the Bayesian
framework), the overall superiority of the Bayesian method appears overstated.
Both approaches have merit.

Keywords: WTP, mixed logit simulator.

1. Introduction

Discrete choice models are a primary source of estimates of willingness
to pay (henceforth WTP) for specific attributes such as travel time savings.
As choice modelling matures into a suite of models with increasing degrees
of behavioural richness, typified by the progression from multinomial logit,
nested logit (NL), cross-correlated NL and mixed logit, analysts are increas-
ingly exploring the deep parameterisation of WTP, using classical inference
approaches, as a way of accommodating the heterogeneity of trade-offs in a
sampled population. Such distributions of WTP can be derived from a set of
moments portraying the population-level profile of a distribution (i.e., a mean
and standard deviation with a specific analytical distribution (e.g., normal, log-
normal, triangular, constrained triangular, uniform etc.)) or from parameters
that are unique to each sampled individual. For an application of the for-
mer, see Sillano and Ortuzar (2004). In this study, we consider individual-
specific parameters that are derived from conditional distributions in which
known choices are taken into account in the spirit of the Bayesian posterior
distributions.

With a growing interest in the Bayesian approach and claims that it is a more
attractive paradigm than classical inference methods, the objective of this paper
is to show how easy it is to obtain the equivalent information on individual pa-
rameters within the classical inference framework, and to derive such rich indi-
cators of WTP distributions. We contrast the ‘Bayesian-like’ estimates with the
WTP derived from the population moments, the latter more commonly associ-
ated with classical inference. From a policy perspective the empirical evidence
is very revealing, suggesting that the aggregation inherent in the population
approach in which parameters used to derive WTP estimates are random in the
numerator and the denominator, appears (on our initial evidence) to explode
the mean WTP due to the presence of a percentage of extreme values. This is
in contrast to that associated with the WTP derived from the individual-specific
parameterisation that has behaviourally sensible distributions.

The paper is organised as follows. We begin with a brief overview of the
Bayesian approach specifically to gain an appreciation of its contribution then



Classical Simulation-Based Estimators to Estimate Individual WTP 19

follow with a summary of the mixed logit model that will deliver the parame-
ters in a classical inference setting. The data setting is then presented (a stated
mode choice experiment for commuting trips in Sydney in 2003), followed by
the findings and implications for deriving WTP from alternative interpretations
of the mixed logit outputs.

2. The Bayesian approach

Bayesian methods are often promoted as behaviourally different from, and
preferable to classical estimation methods currently used in estimation of ad-
vanced discrete choice models such as mixed logit. Brownstone (2001), Chen
et al. (2000), Geweke (1999) and Train (2001) provide useful overviews of the
Bayesian perspective. Use of information on priors (as structural parameters)
and posterior individual-specific parameter estimates from conditional utility
functions are included as information to capture sources of heterogeneity.

The key difference between Bayesian and classical approaches is that Bayesians
treat the nature of the randomness differently. In the classical view, the ran-
domness is part of the model; it is the heterogeneity of the taste parameters,
across individuals. In the Bayesian approach, the randomness ‘represents’
the uncertainty in the mind of the analyst (conjugate priors notwithstanding).
Therefore, from the classical viewpoint, there is a ‘true’ distribution of the pa-
rameters across individuals. From the Bayesian viewpoint, in principle, there
could be two analysts with different, both legitimate, but substantially differ-
ent priors, who therefore could obtain very different, albeit both legitimate,
posteriors.

Prior knowledge about parameters, θ, is gathered in a prior distribution,
π(θ). The sampling distribution, or likelihood function, is given by f(X|θ)
where X contains all the sample data in the study. After observing the data,
the information about θ is given by the posterior distribution which is derived
using Bayes Theorem;

Pr(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

(2.1)

We note for the purposes explained below, that the posterior density is func-
tionally equivalent to the conditional distribution of the parameters given the
data. All inference is based on this posterior distribution. The usual Bayes esti-
mator is the mean of the posterior distribution, and Bayesian confidence bands
are typically given by the narrowest region of the posterior distribution with the
specified coverage probability. Bayesian confidence regions are interpreted as
fixed regions containing the random parameter θ with the specified coverage
probability (i.e., the ‘highest posterior density’ interval). This is different from
the classical confidence region, which is a region with random endpoints that
contain the true value θ with the specified probability over independent re-
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peated realisations of the data (Brownstone, 2001). Classical inference there-
fore depends on the distribution of unobserved realisations of the data, whereas
Bayesian inference conditions on the observed data. Bayesian posterior infer-
ence is also exact and does not rely on asymptotic approximations to a true
sampling distribution.

The Bayesian approach requires the a priori specification of prior distribu-
tions for all of the model parameters. In cases where this prior is summarising
the results of previous empirical research, specifying the prior distribution is
a useful exercise for quantifying previous knowledge (such as the alternative
currently chosen). In most circumstances, however, the prior distribution can-
not be fully based on previous empirical work. The resulting specification of
prior distributions based on the analyst’s subjective beliefs is the most contro-
versial part of Bayesian methodology. Poirier (1988) argues that the subjective
Bayesian approach is the only approach consistent with the usual rational ac-
tor model to explain individuals’ choices under uncertainty. More importantly,
the requirement to specify a prior distribution enforces intellectual rigour on
Bayesian practitioners.1 All empirical work is guided by prior knowledge and
the subjective reasons for excluding some variables and observations are usu-
ally only implicit in the classical framework. The simplicity of the formula
defining the posterior distribution hides some difficult computational problems,
explained in Brownstone (2001).2

Huber and Train (2001), in particular, have explored the empirical similari-
ties and differences between hierarchical Bayes and classical estimators in the
context of estimating reliable individual-level parameters from sampled popu-
lation data as a basis of market segmentation. The ability to combine informa-
tion about the aggregate distributions of preferences with individuals’ choices
to derive conditional estimates of the individual parameters is very attractive.
They conclude, however, that the empirical results are virtually equivalent con-
ditional estimates of marginal utilities of attributes for individuals.3 What this

1Bayesians are encouraged to carry out sensitivity analysis (although this is not often undertaken) across
other reasonable prior distributions to demonstrate that their empirical results are not just reflections of their
prior beliefs (Brownstone 2001).
2Computing the posterior distribution typically requires integrating over β and this can be difficult for the
number of parameters frequently encountered in choice modelling. Until recently Bayesians solved this
problem by working with conjugate families. These are a family of prior distributions linked to a family
of likelihood functions where the posterior distribution is in the same family as the prior distribution. For
example, the Beta family is a conjugate prior for the binomial with fixed number of trials. Koop and Poirier
(1993) have developed and applied a conjugate prior for the conditional (and multinomial) logit model,
but there do not appear to be tractable conjugate priors for other GEV discrete choice models. Recent
applications have circumvented these difficulties through the use of Gibbs Sampling and Markov chain
Monte Carlo Methods.
3Allenby and Rossi (1999) have carried out an extensive Bayesian analysis of discrete brand choice and
discussed a number of methodological issues relating to the estimation of individual level preferences. In
comparison of the Bayesian and classical methods, they state the simulation based classical methods are
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debate has achieved in particular is to show classical estimation choice mod-
ellers that there is indeed more information in their estimation procedure that
enables one to improve on the behavioural explanation within sample.4 Recent
developments in classical inference methods that are rich in deep parameters
enable the analyst to obtain information that is Bayesian-like. The mixed-logit
model is one choice specification with this capability which we use as the
model for a classical inference.

3. The Mixed Logit Model

To illustrate the “mixed logit”5 model we start by assuming that a sampled
individual (q = 1, . . . , Q) faces a choice among J alternatives in each of T
choice situations. Individual q is assumed to consider the full set of offered
alternatives in choice situation t and to choose the alternative with the highest
utility. The utility associated with each alternative j as evaluated by each in-
dividual q in choice situation t, is represented in a discrete choice model by a
utility expression of the general form:

UjtqU = β′
qxjtq + εjtq (3.1)

where xjtq is the full vector of explanatory variables, including attributes of the
alternatives, socio-economic characteristics of the individual and descriptors
of the decision context and choice task itself in choice situation t. The com-
plexity of the choice task in stated choice experiments as defined by number
of choice situations, number of alternatives, attribute ranges, data collection
method, etc., can be included to condition specific parameters associated with
attributes of alternatives. The components βq and εjtq are not observed by the
analyst and are treated as stochastic influences. Note that the first of these,
unlike its counterpart in other models, is assumed to vary across individuals.

likely to be extremely cumbersome and are approximate whereas the Bayesian methods are much simpler
and are exact in addition. As to whether the Bayesian estimates are exact while sampling theory estimates
are approximate, one must keep in mind what is being characterised by this statement. The two estimators
are not competing for measuring the same population quantity with alternative tools. In the Bayesian ap-
proach, the ‘exact’ computation is of the analysts posterior belief about the distribution of the parameter
(conditioned, one might note on a conjugate prior virtually never formulated based on prior experience),
not an exact copy of some now revealed population parameter. The sampling theory ‘estimate’ is of an un-
derlying ‘truth’ also measured with the uncertainty of sampling variability. The virtue of one over the other
is not established on any but methodological grounds – no objective, numerical comparison is provided by
any of the preceding or the received literature.
4Within-sample priors such as the actual choice can help a great deal. When applying a model out-of-
sample then Bayesians need some subjective priors. Hensher and Jones (2004) discuss the problems in
taking individual parameters from either a Bayesian or classical-inference setting and mapping them to
observations in a hold-out sample. This is an empirical question. We were unable to find (in our data on
firm failures) any exogenous criteria that delivered a predictable mapping. Thus the preference for using
population moments reported from the data used in model estimation.
5It is also referred to in various literatures as random parameter logit (RPL), mixed multinomial logit
(MMNL), kernel logit, hybrid logit and error components logit.
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Individual heterogeneity is introduced into the utility function through βq.
Thus, we write

βq = β + ∆zq + Γvq

= β + ∆zq + ηq
(3.2)

or βqk = βk + δ′
kzq + ηqk where βqk is a random term whose distribution over

individuals depends in general on underlying parameters, zq is observed data
and ηq denotes a vector of K random components in the set of utility functions
in addition to the J random elements in ηtq. Since βq may contain alternative-
specific constants, ηqk may also vary across choices and, in addition, may thus
induce correlation across choices. Note that βq and its components are struc-
tural parameters (β,∆,Γ) and choice situation invariant characteristics of the
person, zq. It does not vary across choice situations or across choices (save for
the extent that components of xjtq are choice-specific).

The mixed logit class of models assumes a general distribution for βqk and
an IID extreme value type 1 distribution for εjtq. That is, βqk can take on
different distributional forms such as normal, lognormal, uniform or triangu-
lar. Denote the marginal joint density of [βq1, βq2, . . . , βqk] by f(βq|Ω, zq)
where the elements of Ω are the underlying parameters of the distribution of
βq, (β,∆,Γ ) and zq is observed data-specific to the individual, such as socio
demographic characteristics. For a given value of βq, the conditional probabil-
ity for choice j in choice situation t is multinomial logit, since the remaining
error term is IID extreme value:

Ljtq(βq|Xtq, zq, ηq) =
exp(β′

qzjtq)∑
j exp(β′

qzjtq)
(3.3)

Equation 3.3 is the simple multinomial logit model, but with the proviso that,
for each sampled individual, we have additional information defined by βq.
This is where the use of the word ‘conditional ’ applies – the probability is
conditional on ηq, that is, on vq, and zq. This additional information influences
the choice outcome.

The unconditional choice probability is the expected value of the logit prob-
ability over all the possible values of βq, that is, integrated over these values,
weighted by the density of βq. From equation 3.2, we see that this probability
density is induced by the random component in the model for βq, vq (Hensher
and Greene, 2003). Thus, the unconditional choice probability is:

Pr(Xtq, zq,Ω) =
∫
β

∫∫
q
Ljtq(βq|Xtq, zq, ηq)f(βq|zq,Ω)dβq

=
∫
η

∫∫
q
Ljtq(βq|Xtq, zq, ηq)f(ηq|zq,Ω)dηq

(3.4)

where, once again, βq = β + ∆zq + ηq. Thus, the unconditional probability
that individual q will choose alternative j given the specific characteristics of
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their choice set and the underlying model parameters is equal to the expected
value of the conditional probability as it ranges over the possible values of βq.
The random variation in βq is induced by the random vector ηq, hence that is
the variable of integration in (3.4). The log likelihood function for estimation
of the structural parameters is built up from these unconditional probabilities,
aggregated for individual q over the T choice situations and the choices actu-
ally made:

lnL =
Q∑

q=1

ln
∫

β

∫∫
q

T∏
t=1

Ljtq(βq|Xtq, zq, ηq)f(βq|zq,Ω)dβq (3.5)

Details on estimation of the parameters of the mixed logit model by maxi-
mum simulated likelihood may be found in Train (2003) and in the manual for
NLOGIT v.3.

One can construct estimates of individual-specific preferences by deriving
the individual’s conditional distribution based (within-sample) on their own
choices (i.e., prior knowledge). For convenience, let Yq denote the observed
information on choices by individual q, and let Xq denote all elements of xjtq

for all j and t. Using Bayes’ Rule, we find the conditional density for the
random parameters,

H(βq|Yq,Xq, zq,Ω) =
f(Yq|βq,Xq, zq,Ω) Pr(βq|zq,Ω)

f(Yq|Xq, zq,Ω)
. (3.6)

The left hand side gives the density of the random parameter vector given
the underlying parameters and the data on individual q. In the numerator
of the right hand side, the first term gives the probability in the conditional
likelihood—this is in (3.4). The second term gives the marginal probability
density for the random βq given in (3.2) with the assumed distribution of ηq.
The denominator is the unconditional choice probability for the individual—
this is given by (3.4). Note that the denominator in (3.6) is the integral of the
numerator, as given in (3.4). This result will be used to estimate the person-
specific parameters, utilities, or choice probabilities as a function of the under-
lying parameters of the distribution of the random parameters. Estimation of
the individual specific value of βq is then done by computing an estimate of the
mean from this distribution. Note that this conditional mean is a direct analog
to its counterpart in the Bayesian framework, the posterior mean in (3.1). We
return to this type of computation in the next section.

The choice probability in the denominator of (3.6) generally cannot be cal-
culated exactly because the integral in (3.4) will not have a closed form. The
integral is approximated by simulation. For a given value of the parameters, Ω,
and the observed data, zq, a value of βq is drawn from its distribution based on
(3.2). Using this draw, the logit formula (3.3) for Ljtq(β) is calculated. This
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process is repeated for many draws, and the mean of the resulting Ljtq(β)’s is
taken as the approximate choice probability giving the simulated probability in
equation (3.7),

f̂(Yq|Xq, zq,Ω) =
1
R

R∑
r=1

Ljq(βqr,Xq, zq,Ω, ηqr), (3.7)

where R is the number of replications (i.e., draws of βqr), βqr is the rth draw,
and the right hand side is the simulated probability that an individual chooses
alternative j.6 In our application of this model, we will use the structure in
(3.2), βq = βq +∆qzq +Γvq where the fixed underlying parameters are Ω =
(β,∆,Γ),β is the fixed mean of the distribution, vq is a set of person-specific
influences (also referred to as ‘heterogeneity around the mean’), ∆ is a matrix
of parameters, vq is a vector of uncorrelated random variables with known
variances on the diagonal of a variance-covariance matrix, Σ, and is a lower
triangular matrix which, because V ar[βq] = ΓΣΓ′, allows free variances and
correlations of the parameters. Thus, a ‘draw’ from the distribution of βq

consists of a ‘draw’ from the distribution of vq which is then used to compute
βq as shown above.

4. An Empirical Example

The empirical study uses a mode choice data set of 223 commuting trips
by a sample of residents of the north-west sector of the Sydney metropolitan
area interviewed in 2003. The centerpiece of the data collection activity is a
stated choice experiment in which each sampled individual reviewed T = 10
mode choice scenarios and chose their preferred alternative.7 The main mode
alternatives are car, existing bus, existing train, existing busway, new light rail
(LR), new heavy rail (HR) and new busway (BW). Each public transport mode
has an access and an egress component (see below). The data was collected
using a Computer Aided Survey Instrument (CAPI), with all data being auto-
matically captured in the CAPI into a data base formatted for immediate choice
model estimation. More details are given in Hensher and Rose (2003).

Table 2.1 shows the descriptive statistics for the sample. 50.4% of the sam-
ple is male and the mean age of the sample is 43.1 years. The average house-
hold size is 3.78 and the annual personal income is $64,100. Table 2.1 shows

6By construction, this is a consistent estimator of PjPP for any R; its variance decreases as R increases. It is
strictly positive for any R, so that ln(SPjPP ) is always defined in a log-likelihood function. It is smooth (i.e.,
twice differentiable) in parameters and variables, which helps in the numerical search for the maximum of
the likelihood function. The simulated probabilities sum to one over alternatives. Train (1998) provides
further commentary on this.
7Readers unfamiliar with stated choice methods may refer to Louviere et al. (2000).
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Table 2.1. Descriptive Statistics for Commuters

N Mean/Percent Std. Dev. Min. Max.

Age 223 43.10 12.50 24 70
Hours worked per week 223 37.60 14.60 0 70
Annual Personal Income ($000’s) 223 64.10 41.80 0 140
Household size 223 3.78 2.30 1 8
No. of children in household 223 1.05 1.09 0 4
Gender (male =1) 223 50.40 0 1

Table 2.2. Percentage of Commuters Who Had a Motor Vehicle Available for the Trip

Car available Frequency Percent

yes 199 89.24
no 24 10.76
Total 223 100

the descriptive statistics. The mean age is 43.1 years with an average annual
gross personal income of $64,100. Table 2.2 reports that 89.24 percent of the
sample had a car available for the surveyed trip. Of the 223 respondents
interviewed as part of the commuter sample, 199 had access to a motor vehicle
for the surveyed trip. This represents 89.24 percent of the sample.

4.1 Stated Choice Experimental Design

The experimental design has 47 variables (46 in four levels and one in six
levels for the blocks) in 60 runs; yielding six blocks of ten scenarios each. The
D-optimal design is almost orthogonal with maximum correlations between
0.06.8 The design allows the estimation of all alternative-specific main effects.
Within each block the runs have been randomized to control for order effect.

8The design minimises the correlations between attributes and maximises the amount of information cap-
tured by each choice task. In designing choice experiments, knowledge of the parameters or at least some
priors (like signs) for each attribute provides a useful input. Insights from past studies determined their
approximate values. A preferred choice experiment design is one that maximises the determinant of the
covariance matrix, which is itself a function of the estimated parameters. The design developed herein takes
into account the expected signs of the parameters (e.g., negative for the time and cost attributes). We found
that in so doing, the search eliminates dominant alternatives, which is sensible since dominant alternatives
do not give any useful information if we know the signs of the parameters. The method used finds the
D-optimality plan very quickly. Carlsson and Martinsson (2003) have recently shown, using Monte Carlo
simulation, that D-optimal designs, like orthogonal designs, produce unbiased parameter estimates but that
the former have lower mean squared errors.
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Table 2.3. Trip Attributes in Stated Choice Design

For existing public For new public transport modes For the existing car mode
transport modes

Fare (one-way) Fare (one-way) Running Cost
In-vehicle travel time In-vehicle travel time In-vehicle Travel time
Waiting time Waiting time Toll Cost (One way)
Access Mode: Walk time Transfer waiting time Daily Parking Cost

Car time Access Mode: Walk time Egress time
Bus time Car time
Bus fare Bus time

Egress time Access Mode Fare (one-way)
Bus fare

Egress time

There are different task configurations: with/without car, inter/intra regional,
new LR and New HR versus new HR and new BW. A maximum number of
complete designs have to be filled within each configuration. This is achieved
in the field as follows: if the first respondent has a car on an intra regional trip
with new LR & HR he is randomly assigned to a block (e.g., block three). If
the second respondent is in the exact same configuration she sees the next im-
mediate block (e.g., block four) otherwise she sees another randomly assigned
block in one of the other configurations. Once all blocks in a configuration
have been viewed, we randomly start at with another block. The trip attributes
associated with each mode are summarised in Table 2.3.

Each design attribute has four levels. These were chosen as the following
variations around the base level: -25%, 0%, +25%, +50%. The base times and
costs used for new modes are shown in Table 2.4 where the locations are rail
or busway stations. An example of a stated choice screen is shown as Figure
1.
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Table 2.4. Base times and costs for new public transport modes

Dollars Busway Heavy Rail Light Rail
$ Min. Min. Min.

Mungerie Road 1.8 33 22 3
Burns Road 1.0 27 18 27
Norwest Business Park 1.0 22.5 15 22.5
Hill Centre 1.0 18 12 18
Norwest Business Park 1.0 22.5 9 13.5
Norwest Business Park 1.0 7.5 5 7.5

Figure 2.1. Example stated preference choice screen

4.2 Findings

The final multinomial logit and mixed logit models are given in Table 2.5.
The overall goodness of fit (pseudo-R2) is similar for MNL and mixed logit.
The log likelihood function for the random parameters model is considerably
larger than that for the MNL, which does suggest the improvement due to the
broader specification. However, a direct test against the null hypothesis of the
simpler model is not possible here. In our random parameters formulation, we
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have specified that βqk = βk + |βk|νqk where vqk has a tent distribution, this
constrains the range of the coefficient to one side of zero. As such, though
the random parameters model introduces the new source of variation in the
model, the individual heterogeneity, it does not introduce any new parameters.
Therefore, the two models are not nested. (A simple likelihood ratio test would
have zero degrees of freedom.) The statistically significant standard deviation
parameters for all time and cost attributes (with a constrained triangular distri-
bution) suggests that there is a structural advantage in selecting the mixed logit
specification.

In-vehicle cost, in-vehicle time for the main mode and egress time from the
main mode were specified as generic across all public transport modes and
alternative-specific for car. The access and wait times were best represented as
generic within all rail alternatives and likewise within all bus alternatives. For
car, the parking cost was treated separately. The personal gross income of the
respondent and their gender have a statistically significant influence on choice
between public transport and car. All others things equal, the probability of
choosing public transport decreases as personal income increases, less so for
males.

All parameters associated with attributes of the modes (except the mode-
specific constants) are specified as random parameters and are statistically sig-
nificant. A constrained triangular distribution was chosen as the analytical
representation of the behavioural profile of preference heterogeneity for each
modal attribute.9 Hensher and Greene (2003) show that when the mean param-
eter equals its spread (i.e. βq = β + βνq , where νq has support from −1 to
+1), the density starts at zero, rises linearly to the mean, and then declines to
zero again at twice the mean. It is peaked, as one would expect, bounded below
at zero and above at a reasonable value that is estimated. The distribution is
symmetric so that the mean is easy to interpret. Thus, the entire distribution is
within the positive range. This is important when deriving estimates of WTP
for specific attributes which have no logic in a two signs domain (for a specific
empirical context). We note in passing, this detailed construction is not unlike
the specification of a prior in the Bayesian context—in this instance, the speci-
fication is strongly based on an expectation of the shape of the true underlying
distribution.

9For example, the usual specification in terms of a normal distribution is to define βi = β + βνi where νi

is the random variable. The constrained specification would be βi = β + βνi when the standard deviation
equals the mean or βi = β + hβνi when h is the coefficient of variation taking any positive value. We
would generally expect h to lie in the [0, 1] range since a standard deviation greater than the mean estimate
typically results in behaviorally unacceptable parameter estimates.
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Table 2.5. Summary of Empirical Results for Commuter Trips

Attribute Alternatives Multinomial Logit Mixed Logit

New light rail constant New light rail 2.451 (7.17) 2.048 (4.33)
New busway constant New busway 1.500 (4.13) 1.093 (2.23)
New train constant New train 2.282 (6.94) 1.844 (3.99)
Existing bus constant Bus 1.996 (6.21) 1.533 (3.38)
Train constant Existing and new Train 1.609 (4.78) 1.056 (2.25)
Existing busway constant Busway 1.836 (5.49) 1.338 (2.86)
Destination inside study area New light rail –.9885 (–3.09) –1.156 (–3.27)
Destination inside study area New heavy rail –1.301 (–3.52) –1.552 (–3.82)
Gender (male = 1) Public transport 1.353 (7.56) 1.899 (7.09)
Personal income Public transport –.0077 (–3.97) –.0126 (–4.17)
Random Parameters in Mixed
Logit (Std Dev = mean for
constrained triangular
distribution)
Main mode in–vehicle cost All public transport –.1970 (–14.1) –.2609 (–13.1)
Main mode in–vehicle cost Car –.1191 (–4.17) –.1630 (–3.51)
Car parking cost Car –.0161 (–2.19) –.0349 (–2.73)
Main mode in–vehicle time Car –.0333 (–8.50) –.0767 (–6.59)
Main mode in–vehicle time All public transport –.0521 (–24.4) –.0680 (–19.9)
Access plus wait time All rail modes –.0372 (–6.49) –.0452 (–6.27)
Access time All bus modes –.0603 (–7.15) –.0737 (–6.81)
Wait time All bus modes –.0727 (–3.01) –.0822 (–2.90)
Egress travel time Car –.0533 (–3.87) –.0855 (–3.68)
Egress travel time All public transport –.0122 (–2.59) –.0145 (–2.60)
Access bus mode fare Where bus is access mode –.0911 (–2.81) –.0950 (–2.62)
Log–likelihood at zero –3580.47 –3580.47
Log–likelihood at convergence –2463.46 –2435.75
Pseudo–R2 0.31 0.32
Sample Size 1,840 1,840

Note: All public transport = (new heavy rail, new light rail, new busway, bus, train, busway);
time is in minutes and cost is in dollars ($2003). t-values in brackets in columns 3 and 4.
* The access mode travel time relates to the chosen access mode associated with public transport main.
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4.3 WTP Derived from Individual Parameters

Of particular interest is the derivation of the conditional individual-specific
parameter estimates and the associated values of travel time savings for each
individual (see von Haefen, 2003 for a discussion of individual-specific welfare
measures in RUM). As described in Train (2003), we can obtain the conditional
estimator for any individual by using Bayes Theorem. The estimator for a
specific parameter would be

E[βq|dataq] =
∫
β

∫∫
q
βq Pr(βq|dataq)dβq

=
∫
β

∫∫
q
βq

Pr(dataq |βq) Pr(βq)
Pr(dataq) dβq

=
∫
β

∫∫
q
βq

Pr(dataq |
q
βq) Pr(βq)∫

β

∫∫
q

Pr(dataq |βq) Pr(βq)dβq
dβq

=
∫

β

∫∫
q

βq Pr(dataq|βq) Pr(βq)dβq∫
β

∫∫
q

Pr(dataq |βq) Pr(βq)dβq
.

(4.1)

This is the classical counterpart to the posterior mean derived from (3.1). The
marginal density, Pr(βq) is implied by the distribution of νq in (3.2) where the
distribution is induced by the stochastic specification of νq. The conditional
density is the contribution of individual q to the likelihood function. The de-
nominator in the conditional mean is the theoretical contribution of individual
q to the likelihood function for the observed data. That is, the choice probabil-
ity defined in (3.7). The numerator of the expectation is a weighted mixture of
the values of βq over the range of βq where the weighting function is, again,
the likelihood function. Since the integrals cannot be computed analytically,
we compute them, once again, by simulation. The simulation estimator of the
conditional mean for βq is

Ês[βq|Individualq] =
1/R

∑R
r=1 βq,rL(βq,r|dataq)

1/R
∑R

r=1 L(βq,r|dataq)
(4.2)

where the weighting function in each case is the contribution to the likelihood
function (not its log), computed at the rth draw of q, r in the simulation (see
equation (3.2)). The approach in (4.2) can also be used to estimate the condi-
tional variance or standard deviation of βq by estimating the expected square
and subtracting the square of the mean. This estimated conditional variance
will be smaller than the average variance obtained simply by computing the
sample variance of the estimated conditional means, as the latter is averaged
over all the data in the sample while the former is averaged with respect only
to the data for individual q. (Scarpa et al. 2005 have done a similar analysis of
individual specific welfare measures based on mixed logit with both finite and
continuous parameter distributions).

VTTS values are computed using the ratios, βk/βCost for the various el-
ements of travel time and in vehicle cost. Thus, the individual estimator of
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Table 2.6. Behavioural Values of Travel Time Savings ($/Person Hour) Based on Individual
Parameters: Mixed Logit Model, Commuter Trips (Mean Gross Personal Income Per Hour =
$32.05)

Willingness to Pay Attribute VTTS ($/person Hour)$$
Mean Range

Main mode in-vehicle time – car 28.20 (6.37–39.80)
Egress time – car 31.61 (15.80–75.60)
Main mode in-vehicle time – 15.71 (2.60–31.50)
public transport
Waiting time – all bus 19.10 (9.90–40.30)
Access time – all bus 17.10 (8.70–31.70)
Access plus wait time – all rail 10.50 (96.60–22.90)
Egress time – all public transport 3.40 (2.0–7.40)

VTTS, based on the theory of (4.1) and (4.2) is, for example, for the main
mode in vehicle time for car:

Ês[V TTSq] =
1/R

∑R
r=1 β̂q,INV T,r/β̂q,INV Cost,rL(β̂q,r|dataq)

1/R
∑R

r=1 L(β̂q,r|dataq)
. (4.3)

Behavioural values of travel time savings (VTTS) based on individual pa-
rameters are summarised in Table 2.6 for the mixed logit commuter trip model.
All of the VTTS have a distribution in the positive range. The mean and range
of VTTS’s are all intuitively plausible. We expect car VTTS to be higher than
public transport with out-of vehicle (i.e. egress) time being higher than for the
main mode in-vehicle time. For public transport, we normally expect out-of-
vehicle times (especially wait time) to be valued higher than in-vehicle time.
This is true when we contrast the VTTS for bus wait time with the other val-
ues. Access time has a significant element of in-vehicle time (e.g., bus to rail
station) and this explains it similarity to the main mode in-vehicle time for
bus. The two values that are relatively low are egress time for public transport
(essentially walking) and the access plus wait time for all rail modes.

4.4 WTP Derived from Population Moments

Behavioural values of travel time savings (VTTS) for the mixed logit model
using the population parameter estimates (i.e., marginals) are summarised in
Table 2.7. These are computed simply by averaging over the entire population
of individuals. For the example suggested above, the estimator would be:

Ês[V TTSq] =
1
R

R∑
r=1

β̂q,INV T,r

β̂q,INV Cost,r

. (4.4)



32 APPLICATIONS OF SIMULATION METHODS

Table 2.7. Behavioural Values of Travel Time Savings ($/Person Hour) Based on Population
Moments: Mixed Logit Model, Commuter Trips (Mean Gross Personal Income Per Hour =
$32.05)

Willingness to Pay Attribute VTTS ($/person Hour)$$
Mean Range

Main mode in-vehicle time – car 36.04 (1.01 – 197)
Egress time – car 40.18 (1.12 – 219)
Main mode in-vehicle time – public transport 19.53 (0.204–99.9)
Waiting time – all bus 23.50 (0.25 – 120)
Access time – all bus 21.15 (0.18 – 108)
Access plus wait time – all rail 12.96 (0.14 – 66)
Egress time – all public transport 4.17 (0.04 – 21.3)

What is particularly noteworthy is the huge and unacceptable range of all
WTP estimates in the positive domain. A closer look at this range shows a
real problem with the upper maximum on all attributes. Approximately 12%
of these values are above the maximum of the range in Table 2.6 derived from
the individual parameters. This is expected given that the numerator and de-
nominator are randomly drawn from the full distribution for each observation
without the benefit of the objective priors available to the posterior approach.
Eliminating approximately 12% of the upper tail and 8% of the lower tail
appears to remove the differences in the mean between the two approaches.
This is not the solution however. Fortunately it appears that taking ratios of
individual-specific parameters resolves this.10

Train (2003) suggests that one possible way to control the values of WTP
to a plausible range is to have either the numerator or denominator fixed when
deriving WTP estimates. However, this commentary appears to be within the
context of using population moments without the benefits of parameter map-
ping associated with individual-specific parameters conditioned on prior infor-
mation on actual choices made. With individual-specific parameters it seems
that the problem disappears.

5. Conclusions

The key result from this study is that it is very straightforward to use the
classical inference paradigm to derive WTP estimates from individual-specific
parameters for the attributes defining the numerator and denominator of the

10Such evidence has been found repeatedly by the authors using many data sets.
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valuation expression.11 We have illustrated the simplicity of estimating indi-
vidual level parameters in the random parameters discrete choice model.

These WTP estimates are behaviourally meaningful at the mean across a
sample and throughout the distribution that represents the preference hetero-
geneity of the sampled population. Establishing such behavioural sense re-
quires judicial selection of analytical distributions for each parameter estimate
(such as the constrained triangular distribution used in this paper), as is re-
quired for all methodologies, Bayesian or classical.

11This can be applied to measures of WTP, or other functions of the model components (see Greene (2003)
for another example). The computation of individual level functions such as WTP or part-worths is a simple
by product of the computation of the simulation estimator (and is already incorporated in NLOGIT 3.0).
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Abstract We use a repeated dichotomous choice contingent valuation survey to elicit
households’ willingness to pay to avoid unannounced interruptions in electricity
service. The data pose multiple econometric challenges including: correlated
responses for a given household, heteroskedastic errors, and a willingness to
pay distribution with large mass near zero. We address these issues by combin-
ing a gamma distribution for outage costs with a lognormally distributed scale
parameter defined as a function of household characteristics, outage attributes,
outage history, and random coefficients. The model is estimated through simu-
lated maximum likelihood. We demonstrate that cost estimates are sensitive to
the interaction of attributes of previously experienced and hypothetical interrup-
tions.
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cients, maximum simulated likelihood.



36 APPLICATIONS OF SIMULATION METHODS

1. Introduction

Sudden power outages can greatly disrupt social and economic activities
of residents and firms in affected areas. Historically, the vast majority of in-
terruptions in electricity supply in the U.S. occurred due to damages to the
distribution network of a utility, usually during inclement weather conditions.
Outages related to generation or transmission failures have been less common,
as regulators required vertically integrated utilities to maintain a generating
margin in electricity production and reliability reserves in their transmission
system. However, with the advent of deregulation of the electric power sector
in many states during the last decade, service interruptions caused by dispari-
ties between supply and demand for electricity have become more frequent. As
became evident during the 2000/2001 power crisis in California, newly imple-
mented deregulation schemes may lack the right incentive structure for gener-
ators to maintain or expand capacity reserves. This shortcoming, in combina-
tion with congested transmission grids and rigidities in retail pricing can result
in market failures, supply shortages, and—ultimately—widespread blackouts
(Faruqui et al., 2001; Joskow, 2001; Borenstein, 2001). Since most existing
deregulation frameworks are still in their infancy and thus may be suscepti-
ble to similar design problems, the risk of generation and transmission type
outages is likely to remain higher in deregulated states compared to regulated
markets in the near future.

Regardless of the specific cause of a service interruption and the regulation
status of the utilities involved, the development of efficient policies to reduce
the risk of blackouts requires knowledge of the economic costs they cause to
customers. In a traditional power market regulators can induce utilities to step
up reliability efforts (for example by replacing distribution lines with under-
ground connections) by allowing them to recoup their increased cost of service
through higher electricity rates. Such rate changes will only be acceptable
to end-users if they are proportionate to their value of improved service re-
liability. In restructured markets, power distributors (retailers) are separate
entities and generally remain under some degree of regulation. Many states
are considering incentive frameworks that link retailers’ rate of return to ac-
tual service performance (Energy Information Administration, 1998). Outage
prevention and service restoration times are commonly used yardsticks in such
performance-based contracts (Warwick, 2000). Naturally, an understanding of
costs incurred by customers during service interruptions will be vital to set per-
formance criteria and design economically efficient incentive structures in this
context. Markets for generation and transmission in process of deregulation
generally rely on an independent system operator (ISO) to ensure acceptable
reliability levels. These control units usually apply a mix of economic and
administrative tools to maintain adequate generation and transmission levels,
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such as transmission tariffs, defaulting fines, and regulations governing ca-
pacity markets. Again, economic efficiency dictates that the costs of system
failure, i.e. service interruptions, ought to enter into the design of these instru-
ments.

The focus of this study is on outage costs to residential customers. This
segment comprises over 85% of retail customers in the U.S. and contributes
more to retail sales and revenues than any other user group (35% and 43%,
respectively; Energy Information Administration, 1998). Also, households are
subjected to the highest risk of interruptions, as they rely on a more extensive
infrastructure of distribution lines, substations, and transformers than larger
commercial and industrial users (Warwick, 2000). We propose an innovative
survey and estimation framework to elicit costs to households associated with
specific power outages. Our model allows for the inclusion of both household
characteristics and outage features, while capturing unobserved heterogene-
ity in household preferences for service reliability. In addition, we extend the
existing outage cost literature by explicitly analyzing the joint effect of expe-
rienced and hypothetical interruptions on welfare losses. Due to the presence
of high-dimensional integrals, the estimation of this model requires the appli-
cation of simulated maximum likelihood techniques.

In the next section we provide a brief discussion of previously used ap-
proaches to estimating residential outage costs and motivate our new approach
based on repeated dichotomous choice valuation questions. In section we de-
velop an econometric model designed for the repeated dichotomous choice
data. In section we discusses the data, estimation results, and policy implica-
tions. Section concludes the paper.

2. Approaches to Estimating Residential Outage Costs

Despite the importance of this topic in a time of continued growth in elec-
tricity reliance (Energy Information Administration, 2001), there exist only a
few studies on outage costs to residential customers in the published literature.
Three general methodologies to derive cost estimates have been proposed in
existing work. In the first approach households are asked directly their will-
ingness to pay (WTP) to avoid a specific outage type (Woo et al., 1991; Been-
stock et al., 1998). The second method, as applied in Wacker et al. (1985)
and Doane et al. (1988a) is based on households’ direct estimates of itemized
costs associated with a given menu of mitigating actions during a service in-
terruption. The third methodology is anchored in a discrete choice framework
where households are asked to select one or rank all of several outage sce-
nario/payment options. Examples are Goett et al. (1988), Doane et al. (1988b)
and Beenstock et al. (1998).
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The first two methods lead to regression models with continuous dependent
variables (cost or WTP in dollars) that are either estimated through simple OLS
(Wacker et al., 1985, Woo et al., 1991), Tobit (Beenstock et al., 1998), or
a 2-Stage Heckman model (Doane et al., 1988b). The latter two estimation
techniques take account of the fact that some residents report zero costs or
WTP for a given power interruption. Studies following the third elicitation
approach apply variants of the conditional logit model (McFadden, 1974) to
generate cost estimates.

Each approach has its benefits and drawbacks. Models based on open-ended
WTP reports, while computationally convenient, are susceptible to strategic re-
sponse and non-response bias (Arrow et al., 1993; McFadden, 1994; Beenstock
et al., 1998). Asking respondents to itemize costs may mitigate these problems
to some extent. However, as such cost menus only capture outlays for a limited
number of actual market transactions (purchase of candles and batteries, din-
ing out, etc.), there is a risk of missing non-market welfare losses associated
with blackouts, such as health and safety concerns, disruption of work or study,
and interference with social events and past-time. Thus, cost estimates from
such lists can only be interpreted as lower bounds for actual welfare losses,
assuming truthful responses to each line item.

Discrete choice elicitation methods based on conditional logit analysis, in
turn, have the theoretical ability to capture both market and non-market values
associated with specific outage types. In the residential outage costs literature
there is some evidence that such multi-choice models may trigger ’status quo’
bias (i.e. a household’s inherent resistance to any changes in service provision)
and asymmetry effects (i.e. the value of service deteriorations categorically
exceeds the value of service improvements), as shown in Doane et al. (1988b),
Hartman et al. (1991), and Beenstock et al. (1998).1

In this study, we promote the use of repeated dichotomous choice questions
to elicit the cost of power outages to residential customers. The dichotomous
choice, or referendum-style, format has been found to provide a more familiar
decision making context to respondents, and to largely avoid creating strategic
response incentives (Arrow et al., 1993; Hanemann, 1994). In our application,
each respondent is presented with a series of hypothetical outage scenarios,
differing in length and time of occurrence. For each scenario, households have
to decide if they would be willing to pay a given amount to avoid a specific
interruption, or tolerate the outage with no change in electricity costs. This
format collects a large amount of information from each respondent and allows

1Furthermore, unlike in most of the studies that have used multi-choice conjoint experiment-designs for
their valuation questions, the policy objective for this study was NOT an examination of the potential for
price-differentiated service packages. Thus there was no need to present more than two relevant “choices”.
In addition, as the power interruptions we model in this study are by definition unannounced random events,
it would appear counterintuitive to ask a given respondent to “choose” from a set of different outages.
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for the valuation of attributes that describe outages. As the econometric model
provides household-level estimates of willingness-to-pay-to-avoid outages, or,
equivalently, outage cost, as a function of outage and household characteristics,
it allows for forecasts of costs to residential customers of new types of outages
not explicitly included in the experimental design.

There are a number of econometric challenges associated with the repeated
dichotomous choice approach. In the next section we develop an econometric
model appropriate for using repeated dichotomous choice data for estimating
the costs of residential power outages.

3. The Econometric Model

The econometric model is designed to handle four important features in the
data. First, many households may have a near-zero cost attributable to a power
outage, especially outages of short or momentary length. Second, it can rea-
sonably be assumed that no household obtains positive value from a power
outage. Considering these two points together suggests a distribution of WTP
that is non-negative but can allow for substantial mass near zero.2 Third, the
survey data consists of up to four responses per respondent, and so we antici-
pate that intra-respondent WTP responses will exhibit correlation due to com-
mon unobservables for a given household. Fourth, the interaction of household
unobservables with outage attributes will likely lead to heteroskedastic errors.
As is well known, ignoring such heteroskedasticity in a discrete choice context
will lead to inconsistent parameter estimates, especially if elements of the error
variance are correlated with regressors (e.g. Hanemann and Kanninen, 1999).

The model we develop incorporates these four features. We follow Cameron
(1988) and specify directly a probability density function (pdf) for latent indi-
vidual WTP. Specifically, we choose a gamma kernel for the distribution of
WTP. The gamma distribution for dichotomous choice data has been previ-
ously considered by McFadden (1994) and Werner (1999). It constrains WTP
to be non-negative, but is also flexible enough to allow for exponential or nor-
mal like behavior, with much of the mass near or far away from zero as implied
by the data.3 As in McFadden (1994) and Werner (1999) we express the scale

2See Haab and McConnell (1998) for a detailed discussion of willingness to pay distributions.
3McFadden (1994) and Werner (1999) estimate models with a discrete-continuous distribution for WTP.
The population is modeled as having two components, those with a zero WTP, and those with a positive
WTP. There is a discrete probability of a respondent having a zero WTP. The positive component of the
WTP distribution is modeled using a continuous distribution. This model has come to be called a “spike”
model, given the discrete spike at zero in the WTP distribution modeled with an extra parameter. See
Hanemann and Kanninen (1999) for a more detailed discussion. This approach has not been applied to
repeated dichotomous choice valuation with multiple scenarios. The spike model is difficult to generalize
to multiple response valuation for a number of reasons. First, the spikes for each scenario are unlikely
to be equal requiring additional parameters, or need to be modelled as functions of the attributes of the
scenario, along with the continuous portion of the WTP distribution which may make identification in
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parameter of the gamma distribution as an exponential function of explana-
tory variables. We then extend this specification by modeling some of the
coefficients associated with the regressors as random parameters. In addition
to introducing the desired intra-household correlation across choice occasions
and heteroskedasticity, this specification allows for an explicit analysis of the
interactive effect of various outage attributes on WTP. We describe below the
econometric model and its estimation via simulated maximum likelihood.

First we consider the WTP model without unobserved preference hetero-
geneity. Respondents are presented with a question that asks whether they
would be willing to pay $B (B stands for bid) to prevent a power outage. Each
power outage is described by a set of characteristics, as is each respondent. De-
noting the vector of power outage and household characteristics by x, we model
each respondent i’s WTP for a given outage, j , as a function WTPijPP (xij , θ)
where θ is a set of parameters. Bids can vary across outage types and respon-
dents, and respondents will answer that they will pay Bij if Bij is less than
their WTPijPP . Formally, we follow standard practice, (see Cameron and James
1987) and denote a “yes” response by YijYY = 1, and a “no” response by YijYY = 0.
Then:

YijYY =

{
1, if Bij < WTPijPP (xij , θ)
0, if Bij > WTPijPP (xij , θ)

(3.1)

We take a fully parametric approach. To ensure a positive WTP, one can
either formulate the model in terms of a transformed Bid variable, usually by
taking logs, and assuming that an additive error term is from a normal or logis-
tic distribution (for example, Cameron and James, 1987). The alternative ap-
proach we follow is similar to the suggestions outlined in Haab and McConnell
(1998). Specifically, we consider equation (3.1) as written with the bid, Bij ,
in levels, but utilize a distribution for WTPijPP that takes only non-negative
values. We begin by assuming that the WTPijPP are independently distributed
across households and outages as Gamma(bij , c), so that the density function
f(WTPijPP ) is:

practice difficult. Second, one would expect substantial correlation across scenarios as those who have
a zero WTP for one scenario are far more likely to have a zero WTP in another scenario. This would
necessitate the use of a multivariate distribution over the “spikes” which is difficult to implement. On an
intuitive level, it is not unreasonable in our context to assume that every household experiences at least
incremental costs or disutility from even the shortest outage. In both studies mentioned above, the item
to be valued are wilderness areas or wildlife sanctuaries. In those applications, it seems more likely that
some respondents’ WTP is truly nonpositive, and that this subpopulation is distinctly different from other
stakeholders.
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f(WTPijPP ) =

(
WTPijPP b−1

ij

)c−1 [
exp

(
−WTPijPP b−1

ij

)]
bij × Γ(c)

(3.2)

for 0 ≤ WTPijPP < ∞, with bij , c > 0, and Γ(c) is the gamma function
evaluated at c (e.g. Evans et al., 2000). Following McFadden (1994) and
Werner (1999) we model the scale parameter, bij , as an exponential function
of a linear combination of explanatory variables xij and associated coefficient
vector θi, i.e. bij = exp(x′

ijθi). This ensures that bij > 0, as required. As
indicated above, to capture household heterogeneity and to introduce correla-
tion across intra-household responses we model these coefficients as stochas-
tic terms. Specifically, we let θi follow a multivariate normal distribution with
mean vector µ and variance-covariance matrix Ω, i.e. θi ∼ mvn(µ, Ω). This
specification allows the elements of θi to – a priori – have unrestricted sign and
magnitude. As illustrated in Moeltner and Layton (2002) the estimated covari-
ance terms of Ω can provide additional information on joint effects of different
regressors on the dependent variable.

The assumption of multivariate normality for θi implies a lognormal-gamma
mixture distribution for WTPijPP . Note that in contrast to bij we treat the shape
parameter c as common to all respondent-scenario combinations. The mean
for this distribution can be conveniently expressed as cbij (Evans et al., 2000).
Note that expressing the scale parameter, bij , as an exponential of a linear
function of covariates and outage attributes will make expected outage costs
for a given respondent a non-linear function of all of the covariates and outage
attributes interacted together. We will graphically illustrate the rich results this
feature of the model yields when we discuss our application.

Since each household responded to up to four outage scenario/bid combi-
nations, computation of the joint probability of observing a specific choice
sequence for a given respondent requires computing a multi-dimensional inte-
gral. We approximate these probabilities using the random parameter simulator
as described in Revelt and Train (1998), McFadden and Train (2000), and Lay-
ton and Brown (2000). To simulate the probability of each respondent’s set of
responses, we first compute the gamma probability conditional on the θi, then
we simulate the unconditional probability using draws from θi’s multivariate
normal distribution. Considering (3.1), conditional on θi, the probability that a
respondent says “yes” to a particular valuation question is 1−F (Bij), and the
probability of a “no” is F (Bij) where:

F (Bij) =

Bij∫
0

f(WTPijPP )dWTPijPP ,

and f(.) is the gamma pdf shown in (3.2). F (.) is not closed form, but is read-
ily computed in standard statistical packages. Denote the appropriate “yes”
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or “no” conditional probability for a particular valuation scenario by PijPP |θi.
Under our assumptions, the PijPP |θi are statistically independent for person i,
across all j. Thus the probability, PiPP |θi, of a series of responses conditional on
θi is

PiPP |θi =
j=m∏
j=1

PijPP |θi, (3.3)

where m indexes the number of WTP questions. The unconditional probability
for person i, is:

PiPP =

∞∫
−∞

⎛
⎝
⎛⎛

j=m∏
j=1

PijPP |θi

⎞
⎠
⎞⎞

f(θi)dθi, (3.4)

where the dimension of the integration is equal to the number of random pa-
rameters in θi. Simulation of PiPP is straightforward following Brownstone and
Train (1999) and McFadden and Train (2000). At each iteration of the max-
imum likelihood routine we draw R sets of θi as MV N(µ,Ω), and compute
the simulated PiPP , P̃iPP , as the average over the R draws:

P̃iPP =
1
R

r=R∑
r=1

⎛
⎝
⎛⎛

j=m∏
j=1

PijPP |θir

⎞
⎠
⎞⎞

. (3.5)

The elements of µ and Ω are updated throughout the optimization process.

4. Empirical Analysis

4.1 Data

The data are from a fall 1998 survey of residential customers implemented
by a U.S. utility. The main objective of the survey was to identify priority
neighborhoods for reliability improvements in power distribution based on the
WTP to avoid an outage. Each household was presented with four outage sce-
narios. For each scenario, households could avoid the outage by use of a pre-
installed backup generator for which they would pay a specific fee every time
the generator was activated by a power interruption. The selection of scenarios
was based on Sullivan et al. (1996) and was subjected to further pre-testing
using focus groups. Each scenario differed in terms of season (summer ver-
sus winter), outage timing and duration, and corresponding bid amounts. The
timing and duration were chosen in consultation with the utility. Given the
duration of the outages, bid amounts were based on the open-ended WTP data
from Sullivan et al. (1996) in conjunction with results of the focus groups.
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The following additional considerations guided the experimental design.
First, the bids are such that for a given respondent a one hour outage never
costs less than a momentary outage, a four hour outage never costs less than
a one hour outage, and so on. Given that the open-ended data previously col-
lected by Sullivan et al. (1996) for another utility revealed a fairly long right
tail in the distribution of WTP, we allowed for a number of fairly high bid lev-
els to be able to adequately model the skewed distribution. A wide range of
bids was used to account for the fact that the location (mean, median) of the
WTP distribution for the consumers in question might be significantly higher
or lower than in the previously available data from another utility. Finally, the
survey versions were carefully designed to avoid any implicit ordering of the
bids through the four scenarios.

The mail survey yielded a 63% response rate. After elimination of protest
responses and observations with missing household characteristics, 4,528 ob-
servations from 1,421 households were retained for this analysis. Seven of the
eight administered scenarios were for winter time outages which is our focus
here. Table 3.1 summarizes the seven scenarios we utilize, bid ranges, and
sample counts. Household characteristics were collected as part of the survey
and are supplemented with information available from customer accounts. Ta-
ble describes a set of variables that relate to the types of electricity needs a
household may have, which we utilize in our model estimation.

Table 3.1. Scenario and bid design

Scenario Duration (hrs) Time Bid Levels No. of Obs.

lowest highest

1 1 7 pm 0.5 30 652
2 4 7 pm 1.0 50 642
3 1 8 am 0.5 40 656
4 Moment (1-2 sec.) 7 pm 0.5 30 654
5 1 midnight 0.5 40 665
6 12 7 pm 15.0 100 623
7 1 3 pm 0.5 40 636

Total: 4,528

Note: All outages occur on a winter weekday and are unannounced.

4.2 Model Estimation

Our model specification includes a dummy variable for evening outages
(evening), the log of the duration of a given outage scenario in minutes (
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ln dur), and the household attributes listed in Table 3.2. In various combi-
nations, most of these variables have been considered as determinants of res-
idential outage costs in existing studies (e.g. Doane et al., 1988a; Beenstock
et al., 1998). We add to this traditional set of regressors a dummy variable
for mobile home residences and a dummy variable taking the value of one if
a given household has access to non-electric power sources for heating. The
last two variables in Table 3.2, the number and log of total duration of outages
during the preceding 12 months, are included in the model to measure the ef-
fect of outage history on WTP (or cost) estimates. While other studies have
captured the impact of past outage occurrences on households’ WTP to avoid
future interruptions (Doane et al., 1988b; Hartman et al., 1991; Beenstock et
al., 1998) the separate inclusion of historic outage counts and combined dura-
tion appears to be novel. As we will show, these two indicators have significant
and offsetting effects on cost estimates.

Table 3.2. Household Characteristics

Variable Description Mean Std. Dev.

generate 1 = home has generator 0.17 0.37
business 1 = business at home 0.13 0.34
medical 1 = medical need at home 0.03 0.17
home 1 = someone at home most of the time 0.60 0.49
hh size household size (persons) 2.60 1.45
over64 number of persons over 64 0.36 0.70
inc000 annual income, $1000 53.02 27.83
mobile 1 = mobile home 0.10 0.29
other heat 1 = secondary heating source available 0.49 0.50
ln cons log of avg. monthly electricity consumption in kwh 6.75 0.71
num out number of outages in past 12 months 5.58 8.36
out past log of total duration of outages in past 12 months (hours) 1.17 1.87

We model the outages in the dichotomous choice scenarios as consisting of
two components: A short momentary component of less than a minute, and
then any additional duration beyond one minute. Momentary outages that last
for less than a minute have a particular suite of impacts on some households
but not on others. Sensitive electrical equipment such as medical devices and
home office systems may fail, but most other home electricity uses will not
be greatly affected. Longer outages share this initial effect and as duration
increases other costs begin to mount. The literature suggests that the impact of
outage duration increases, but at a decreasing rate, so we model the effect of
duration beyond the first minute in log form. Following Moeltner and Layton
(2002) we include an intercept term in our model while setting the value of log
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duration for a momentary (1 minute or less) outage scenario to zero. Thus the
intercept term is the effect of a momentary outage on WTP (moment), and the
coefficient on log duration (ln dur) measures the impact of a duration length
longer than a minute.

Specifying all k =15 elements of θi as correlated random coefficients would
require estimation of k elements of µ plus k(k+1)/2 elements of Ω for a to-
tal of 135 parameters. Such a large number of parameters are not likely to
be identified without a prohibitively large data set. Further, estimation is not
computationally feasible given the need to simulate the response probability
at each function evaluation (Keane, 1997). We thus restrict randomness to
variables of primary interest with likely heterogeneity in preferences. These
are past outage duration (out pastp ) and occurrence (num out), as well as the
two main attributes of the hypothetical outage scenarios, ln dur and moment.4

Adding the resulting ten variance-covariance terms in Ω and the gamma shape
parameter c to the 15 elements of θi yields a total number of 26 model param-
eters. We estimate this model through simulated maximum likelihood using
R =1,000 repetitions for the simulated probabilities described in (3.5).

Table 3.3 summarizes the estimation results from the mixed Gamma-Log-
normal model. Generally, the model exhibits a reasonably good fit with the
underlying data with a pseudo-R2 of 0.25. The majority of the coefficient esti-
mates are significant at the 5% level or higher. Specifically, the gamma shape
parameter, c, is estimated with high precision. A value of c less than one in-
dicates a high probability mass near zero (Evans et al., 2000). This result is
compatible with similar findings by Doane et al., (1988a) and Beenstock et al.
(1998), who report a preponderance of zeros in their open-ended WTP elicita-
tions even after purging their data of potential strategic and protest responses.
Evidently, a large share of residential customers in our sample does not con-
sider the bulk of the power outages described as especially bothersome. We
discuss in turn the results for the outage attributes, household characteristics,
and past outage history before elaborating on the covariance estimates. We
conclude this section with a comparison of our results to those available in the
literature.

4.3 Outage Attributes

The effect of evening outages emerges as insignificant compared to a com-
bined baseline of afternoon and morning interruptions. A possible explanation
for this finding may be that the period of daylight during winter is relatively
short in the survey region. Accordingly, electricity needs for lighting are re-

4The evening dummy is specified as a fixed coefficient in part on the basis of preliminary work, which
suggested it had little impact in our data set.
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Table 3.3. Estimation Results

Parameters Coeff. Stand. err.

c 0.232 (0.023) ***
evening –0.015 (0.132)
generate –0.494 (0.174) ***
business 0.338 (0.200) *
medical 0.304 (0.407)
home 0.658 (0.148) ***
hh size –0.124 (0.048) **
over64 –0.215 (0.109) **
inc000 0.026 (0.003) ***
mobile 0.457 (0.222) **
other heat –0.467 (0.134) ***
ln cons 0.133 (0.101)
ln dur 0.455 (0.056) ***
num out –0.033 (0.011) ***
out past 0.260 (0.066) ***
moment –0.933 (0.808)

Variance and Covariance Terms

ln dur 0.077 (0.062)
ln dur / num out 0.001 (0.006)
num out 0.000 (0.000) a
ln dur / out past 0.138 (0.069) **
num out / out past 0.002 (0.010)
out past 0.257 (0.154) *
ln dur / moment –0.899 (0.514) *
num out / moment –0.015 (0.065)
out past / moment –1.647 (0.651) **
moment 10.648 (4.075) ***

Log-likelihood 2,356.100
Pseudo-R2 = 1-[–2,356.1/ln(0.5)] 0.250

Note: Standard Errors in parentheses. a = rounded to zero;
*significant at 10% level; ** significant at 5% level;
*** significant at 1% level.

quired for much of the day. In addition, many businesses in the particular
metropolitan area that generated this sample offer staggered work shifts, which
distributes electricity needs more evenly over a 24 hour time period. An alter-
native explanation is that the limited number of outage scenarios that could
be valued in the survey did not permit sufficient contrast between duration
and time of day. For instance a 12 hour evening outage would cover evening,
late night, and morning, thus mitigating much of the time of day effect. This



Heterogeneity in the Cost of Power Outages 47

suggests that when time of day is a variable of important policy interest in con-
junction with outages of long duration, many survey versions will be required
– perhaps prohibitively many.

Figure 3.1. Outage Costs Versus Duration (mean and 95% confidence intervals averaged over
all households). Outage costs increase at a decreasing rate with outage duration.

As reflected by the insignificant coefficient for moment, a purely instanta-
neous interruption does not cause any sizeable costs to the average household.
This is consistent with findings reported in Caves et al. (1990). Outage costs
and associated WTP values do, however, increase with the duration of an in-
terruption as indicated by the positive sign and high level of significance for
ln dur. Figure 3.1 depicts the resulting duration-cost function for a prototyp-
ical household and an interruption starting at 7pm. The 95% confidence in-
tervals are based on the empirical distribution of household-specific estimated
WTP averaged over all respondents. Given the distributional assumptions in
our model, the expectation of WTPijPP is itself a random variable following a

lognormal distribution with mean E(bijc) = c × exp
(
x′

ijµ + 0.5x′
ijΩxij

)
.

Due to some outliers, this expression generates excessively high values for
some households. We therefore use the median, c× exp(x′

ijµ), as the basis for
our point and interval estimates of WTPijPP .
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Figure 3.1 depicts how median costs change over outage duration. Con-
sistent with results reported by Doane et al. (1988a), outage costs increase
at a decreasing rate with increasing duration. This is intuitively sound as
longer outages give households more time to take countervailing measures.
At the same time, the variability of outage damages to individual households
increases with duration as indicated by the widening spread of the confidence
interval. For example, for a one-hour evening interruption our point estimate
is $13 with a 95% confidence interval of $9 to $18. At a duration of 12 hours
the point estimate is $42, with a 95% confidence interval of $29 to $56.

4.4 Household Characteristics

Turning to the effect of household characteristics, we note from Table 3.3
that the presence of medical needs and annual electricity consumption do not
significantly affect WTP values. As expected, the presence of business activi-
ties run from home, the presence of residents at home during most of the day,
and income have a positive and significant effect on cost estimates. Similarly,
households residing in mobile homes have a significantly higher sensitivity to
power interruptions. This is an anticipated result given the reduced insulation
of such dwellings and the corresponding higher reliance of their occupants on
uninterrupted heating. As expected, the availability of non-electric heating sig-
nificantly reduces the WTP to avoid a specified interruption. The negative and
significant coefficients for household size and the number of persons over age
64 are probably indicative of reduced disposable income for such families.

4.5 Past Outage History

One of the key insights provided by this analysis flows from our specifica-
tion of a rich structure for past outage history. By using two components of
past outage history, log duration and number of occurrences, we show that past
outage history is not a uni-dimensional concept, but instead illustrate that dif-
ferent components of outage history have contrasting effects on WTP. These
contrasting effects derive from the significant and opposite signs for the num-
ber of past outages during the preceding 12 months (num out) and the log of
combined duration of such outages in hours (out pastp ). This implies that an
increase in historic outage frequency, ceteris paribus, decreases a household’s
WTP to avoid further interruptions. This could be indicative of a learning-to-
cope, or preparedness effect induced by frequent outage events. In stark con-
trast, however, estimated WTP increases with the combined duration of recent
interruptions. Evidently, one or more longer blackouts in the recent past stir
up decidedly unpleasant memories in affected respondents and seem to induce
substantially higher costs than they generate learning gains.
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These results may explain the contradicting findings in the existing outage
cost literature on the role of outage history on cost estimates for a specified fu-
ture interruption. Specifically, Doane, Hartman et al. (1988b) find that house-
holds that traditionally experience a larger number of outages have a decreased
WTP to avoid additional blackouts, while Doane et al. (1988a) and Beenstock
et al. (1998) reach the exact opposite conclusion. This apparent discrepancy
could be a result of different average length of past outages in each of these
cases. None of these studies incorporate measures of historic outage duration
in their estimation models.

Figure 3.2. WTP for a One-Hour Outage: Past Duration vs. Past Events. The iso-WTP lines
show that WTP to avoid this particular outage is the same for households that have experienced
one long outage or several shorter interruptions. Alternatively, WTP is lower if a given past
duration is distributed over several outage occurrences. This may be indicative of two counter-
vailing forces: a cost-awareness factor versus a learning-to-cope effect.

Figure 3.2 illustrates these offsetting effects. The surface plane of figure
3.2 connects simulated cost estimates for a hypothesized evening outage of
one-hour duration at different combinations of number and duration of past
interruptions. In each case, cost estimates were first generated for each respon-
dent and then averaged over households. For example, a prototypical house-
hold that experienced one 20-hour outage in the past would be willing to pay
approximately $22 to avoid the stipulated interruption (point A). If the com-
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bined duration of 20 hours is distributed over, say, 10 individual events, WTP
decreases to approximately $16 (point B). The darker lines crossing the cost
surface represent iso-WTP curves for several dollar amounts. For instance, a
WTP value of $15 could be reached with one 6-hour interruption (point C), ten
outages with a combined duration of 16 hours (point D) or any of the frequency
/ duration pairs along the line C-D.

Figure 3.3. Outage Costs by Scenario Duration and Past Duration. The WTP to avoid future
outages of a given duration increases with the combined duration of past outages. This effect is
relatively stronger for longer hypothetical future outages.

Figure 3.3 shows the importance of capturing historic duration effects when
analyzing the value of electric reliability to residential customers from a dif-
ferent perspective. The figure depicts cost estimates associated with a new
unannounced future outage as a function of combined duration of past inter-
ruptions. For ease of interpretation, cost estimates for one, four, and 12-hour
duration are highlighted through cross-section planes. For example, a four-
hour evening interruption causes costs of approximately $7 to a household that
has not experienced any blackouts over the preceding 12 months (point A).
In contrast, WTP to avoid a four-hour outage is about five times higher for a
household with a combined past duration of 20 hours (point B). Comparing
the vertical height of the cross-sections at any historic duration value, one can
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also note that combined past duration affects WTP estimates relatively more
for longer proposed interruptions.

The recognition of these interactive effects of frequency and duration of past
blackouts may offer additional guidance to utilities in identifying residential
neighborhoods with relatively high sensitivity to power interruptions. Clearly,
a sole focus on the number of past outage events in this context may lead to
sub-optimal allocation of reliability efforts.

4.6 Covariance Parameters

The bottom half of Table 3.3 shows estimation results for the random ele-
ments of Ω. Based on a likelihood ratio test, we strongly reject the null hypoth-
esis that all elements of Ω are zero, i.e. that outage features and outage history
have an equal effect on WTP for all customers. The variance term for moment
is relatively large and highly significant. This indicates strong heterogene-
ity in costs from an instantaneous interruption across individual households.
Thus, even though the costs caused by momentary outages are negligible for
the average household, there are some families that experience considerable
damage even from a very short blackout. This mirrors the results for costs
of momentary outages to commercial/industrial firms in Moeltner and Layton
(2002). The remaining elements of Ω that emerge as significant at the 5% level
or higher are the covariance terms for out pastp with ln dur and moment, re-
spectively. The first term is positive and lends itself to an intuitively sound
interpretation: households that are relatively more affected by combined past
duration are also more sensitive to duration as specified in the hypothetical sce-
narios. The negative sign on the second term suggests that households whose
WTP values depend more strongly on the combined duration of experienced
outages are relatively less sensitive to instantaneous interruptions. Conversely,
households whose WTP is affected less strongly by the duration of past in-
terruptions are relatively more concerned about instantaneous blackouts. Pre-
sumably, such residents experience the bulk of outage costs during the initial
period of a blackout and are relatively more capable to cope with prolonged
duration. The negative sign for the covariance term between moment and sce-
nario duration (ln dur) supports this hypothesis even though this term is only
significant at the 10% level.

4.7 Comparison with Previous Estimates

Our results are compared to those stated in other studies in Table 3.4. As
recommended by Caves et al. (1990) and Woo and Pupp (1992) we report out-
age costs in both absolute dollars and in terms of dollars per kwh unserved,
using additional information provided by the Utility on energy consumption
by a prototypical household for the season and time period of consideration.
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Table 3.4. Cross-study Comparison of Cost Estimates

This Study Doane et al. (1988) Doane et al. (1988b) Woo et al. (1991)

Data Year: 1998 1986 1986 1989
Timing: winter winter evening / winter winter

evening morning eve./ mor.
Method: 2-stage Heckman Self-stated OLS

Duration Cost (1998 $)

1 hr 13.45 16.33 13.66 9.83
4 hrs 25.17 29.16 26.79 13.10
8 hrs 34.49 N/A N/A 19.65
12 hrs 41.51 49.39 58.11 30.13

Cost ($/kwh unserved)

1 hr 5.34 14.61 N/A 12.71
4 hrs 2.66 5.29 N/A 7.34
8 hrs 2.29 N/A N/A 4.98
12 hrs 2.06 3.38 N/A 3.28

As can be seen from the table, our cost estimates in absolute dollars are rea-
sonably close to those found in Doane et al. (1988a), and the results based on
self-stated costs in Doane et al. (1988b). The estimates by Woo et al. (1991)
are clearly lower than those produced by this analysis and the other two com-
parison studies for all listed outage durations. To some extent, this may be
related to the fact that Woo et al. (1991) use OLS regression to generate these
cost estimates. This is likely to place the mean of the resulting underlying
cost distribution closer to zero than would be the case in models that impose
non-negativity constraints on outage costs, as applied in the other three stud-
ies. At the same time, these lower estimates may simply indicate a relatively
lower reliance on electric power of the particular population captured in that
analysis. When expressed in terms of dollars per kwh unserved Woo et al.
(1991)’s cost estimates are close to the ones reported in Doane et al. (1988a),
which would lend support to the latter hypothesis. While following the same
general decrease-with-duration pattern, our cost estimates in dollars per kwh
unserved are about 50% smaller in magnitude than those generated by the two
comparison sources. This suggests that cumulative energy consumption by a
representative household from our population during the listed outage periods
is about twice as high as underlying consumption for the sample considered in
Doane et al. (1988a), and approximately three to four times higher than for
households in Woo et al. (1991). This relatively pronounced difference may
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be attributable to the different geographic location, differing sample charac-
teristics, and changes in electricity consumption during the intervening time
periods that separate the three studies.

5. Discussion and Conclusion

We have developed an econometric model that captures the essential fea-
tures of repeated dichotomous choice non-market valuation data. By using a
gamma distribution for the kernel of WTP, the model allows for the distribu-
tion of WTP to have large amount of mass near zero while still constraining
WTP to be non-negative. This is crucial for estimating WTP for goods that
may not be worth much to many households such as preventing a momentary
electricity outage. Our model allows for heterogeneity in WTP by specifying
the scale parameter of the gamma distribution to be lognormally distributed
in the population. The lognormal distribution for the scale parameter captures
both heteroskedasticity and within-subject correlation in responses to the mul-
tiple dichotomous choice valuation questions. This models important features
of the data. For example, as shown by the small mean but large variance for
a momentary outage, a momentary outage imposes little cost on average but it
imposes large costs on some households.

It appears that whether deregulation of the retail electricity market contin-
ues or not, with higher electricity usage and insufficient construction of new
generating capacity in some areas of the country, rational management of the
risks of power outages will become more, not less important in the coming
years. Rational management requires an understanding of whether the benefits
of reliability improving actions outweigh the costs. Given the complexities of
managing a transmission and distribution network, it is crucial that utilities or
regulators be able to disaggregate their costs and benefits as much as possible
so that they can effectively target projects to those that would most benefit.
This is critical as in real world applications available budgets are likely to be
exhausted before all beneficial projects have been implemented. Understand-
ing how marginal WTP behaves as a function of the attributes of an unan-
nounced outage and past outage history are crucial determinants of the relative
benefits of mitigating outages.

Our model provides a rich analysis by using a number of covariates that are
typically observable by utilities, such as the availability of non-electric heating,
or whether the customer lives in a mobile home. The specification of the co-
variates in exponential form allows for non-linear surfaces describing the WTP
to avoid different types of outages. Overall, the results conform to expectations
based on the outage costs literature and experience. These factors can be used
by a utility or a regulatory authority to better target reliability improvements
to neighborhoods (or even at the circuit level) that would most benefit. For



54 APPLICATIONS OF SIMULATION METHODS

example, by conditioning WTP on both the number of previous outages the
household has experienced and the duration of previous outages we can show
that they have differential effects on welfare losses. As illustrated in figure 3.2,
ceteris paribus, households that experience one long outage are willing to pay
more to prevent any kind of future outage than households that have experi-
enced a number of shorter outages. This illustrates another margin on which
we can compare the relative benefits of different reliability improvements.
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Abstract Research in the area of discrete choice modelling can be split into two broad
categories; applications accounting for the prevalence of unobserved inter-
alternative correlation, and applications concerned with the representation of
random inter-agent taste heterogeneity. The difference between these two is
however not as clear-cut as this division might suggest, and there is in fact a high
risk of confounding between the two phenomena. In this article, we investigate
the potential of mixed Generalised Extreme Value (GEV) models to simultane-
ously account for the two phenomena, using a Stated Preference (SP) dataset
for mode-choice in Switzerland. Initial results using more basic modelling tech-
niques reveal the presence of both correlation and random taste heterogeneity.
The subsequent use of mixed GEV models on this dataset leads to important
gains in performance over the use of the more basic models. However, the re-
sults also show that, by simultaneously accounting for correlation and random
taste heterogeneity, the scope to retrieve the individual phenomena is reduced.
This shows that a failure to account for the potential impacts of either of the two
phenomena can lead to erroneous conclusions about the existence of the other



56 APPLICATIONS OF SIMULATION METHODS

phenomenon. This is a strong indication that the use of mixed GEV models
to jointly explain random taste heterogeneity and inter-alternative correlation in
a common modelling framework should be encouraged in the case where the
nature of the error-structure is not clear a priori.

Keywords: Mixed GEV, random taste heterogeneity, inter-alternative correlation, simulation-
based estimation

1. Introduction

Two main streams of model structures can be identified from the existing
body of literature on discrete choice models; models concerned with represent-
ing the correlation between alternatives in the unobserved utility components,
and models concerned with allowing for random variations in tastes across
decision-makers.

An appropriate treatment of the correlation structure is crucial especially in
the case where a model is used for forecasting of market shares after hypo-
thetical changes to the market structure. In this case, the unrealistic substi-
tution patterns of the Multinomial Logit (MNL) model can lead to very mis-
leading forecasts of demand in the case where heightened correlation exists
between some of the alternatives. Acknowledging the potential existence of
random taste heterogeneity is similarly important. Indeed, although for rea-
sons of interpretation, it is always preferable to as much as possible attempt
to explain the variation in decision-makers’ behaviour as a function of socio-
demographic characteristics, the limitations of the data (along with inherent
randomness involved in decision-making) mean that there is usually some re-
maining non-quantifiable (random) variation. By not explicitly accounting for
such heterogeneity in a model, researchers not only discard valuable informa-
tion about variations in choice-behaviour, but are also at risk of reaching false
conclusions, most notably in the form of biased trade-offs between coefficients
(c.f. Hensher and Greene, 2003; Hess and Polak, 2004a).

While the two phenomena of inter-alternative correlation and inter-agent
taste heterogeneity have usually been treated in quite separate ways, it should
be noted that the differences between these two phenomena are not necessar-
ily that clear-cut, and that there is a significant risk of confounding. As an
example, in the classic red bus/blue bus problem (c.f. Train, 2003), the cor-
relation in the unobserved utility of the two different bus types could in fact
be a reflection of the existence of random taste heterogeneity in the preference
for buses. Such random differences would clearly induce correlation in the
unobserved utility components. As such, accounting for (arbitrary) correla-
tion in the unobserved utility components without acknowledging the potential
effects of random taste heterogeneity can mask the presence of the latter phe-
nomenon. The converse can also be the case; as an example, Hess, Bierlaire &
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Polak (2005) have recently shown that the presence of unexplained correlated
attributes across alternatives can lead to the erroneous conclusion that there are
random variations in tastes across decision-makers.

The discussion presented in this article looks at the issues researchers are
faced with in the case of choice scenarios where the two phenomena of unob-
served inter-alternative correlation and random inter-agent taste variation po-
tentially both have an effect on decision-making behaviour. It is in this case
crucial to disentangle the two effects. The discussion also applies to the case
where only one of the two phenomena is present, but where it is not clear a
priori whether the error term reflects the presence of random taste heterogene-
ity or simple inter-alternative correlation, as caused for example by unobserved
shared attributes.

Two different approaches have classically been used in the joint analysis of
these two phenomena; the Multinomial Probit (MNP) model (c.f. Daganzo,
1979), and more recently, the Error Components Logit (ECL) formulation
of the Mixed Multinomial Logit (MMNL) model (c.f. McFadden and Train,
2000). The MNP model rapidly becomes computationally intractable in the
case of complex model structures; the ECL model has similar problems, and
can also become difficult to formulate due to important identification issues. In
this article, we illustrate the potential of an alternative approach, based on the
integration of GEV-style choice probabilities over the distribution of taste co-
efficients, leading to a mixed GEV model (c.f. Chernew et al. 2001, Bhat and
Guo, 2004). This model form not only reduces the number of random terms
in the models to the number of random taste coefficients, but also avoids some
issues of identification that are specific to the ECL formulation (c.f. Walker,
2001).

The remainder of this article is organised as follows. In the following sec-
tion, we give an overview of the theory, looking first at closed-form GEV mod-
els, and then at mixed GEV models. Section 3 presents a summary of the
empirical analysis conducted to explore the potential of mixed GEV models
and to highlight the issues of confounding discussed above. Finally, the fourth
section gives a summary of the findings and presents the conclusions of the
research.

2. Methodology

A random utility model is defined by a choice set C containing J alterna-
tives, and a vector of J random utility functions

U =

⎛
⎜
⎛⎛
⎝⎜⎜

U1UU
...
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where U and ε are random vectors and V ∈ R
J . Each ViVV is defined by

ViVV = f(β, xi), (2.2)

where xi is a vector combining attributes of alternative i and socio-economic
attributes of the decision-maker, and β is a vector of (taste-)parameters esti-
mated from the data.

2.1 Closed-form GEV models

The family of Generalised Extreme Value (GEV) models was derived from
the random utility paradigm by McFadden (1978). This family of models
comprises the basic MNL model (McFadden, 1974), as well as the much-
used Nested Logit (NL) model (Williams, 1977; McFadden, 1978; Daly and
Zachary, 1978).

In a GEV model, the random vector of variables ε in (2.1) has a Cumulative
Distribution Function (CDF) given by

FεFF 1,...,εJ (x1, . . . , xJ) = e−G(e−x1 ,...,e−xJ ), (2.3)

which is such that the marginal distribution of the individual ε terms is Gum-
bel (type I extreme-value). The choice of functional form for the generating
function G() determines the correlation structure in place between the indi-
vidual ε terms, where G() needs to satisfy four main conditions, as set out by
McFadden (1978), and later revised by Ben-Akiva and Francois (1983).

The probability of choosing alternative i within the choice set C for a given
decision-maker is given by

P (i|V, C) =
yiGi(y1, . . . , yJ)
µG(y1, . . . , yJ)

=
eViVV +log Gi(...)∑J

j=1 eVjVV +log Gj(...)
. (2.4)

where J gives the number of available alternatives, yi = eViVV , ViVV is the de-
terministic part of the utility function associated with alternative i, and Gi =
∂G/∂yi. The factor µ is the scale parameter, which, in the absence of separate
population groups, is generally constrained to be equal to 1.

With the most basic choice of generating function

G(y) =
∑
j∈C

yµ
jy , (2.5)

we obtain the MNL model, in which the substitution patterns are governed by
the Independence of Irrelevant Alternatives (IIA) assumption.
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The corresponding generating function for an NL model with M nests is
given by:

G(y) =
M∑

m=1

⎛
⎝
⎛⎛ ∑

j∈Cm

yµm

jy

⎞
⎠
⎞⎞ µ

µm

, (2.6)

where Cm gives the set of alternatives contained in nest m (with m = 1, ...,M ),
µm is the structural parameter for nest m, and where, with this notation, µm is
constrained to be greater than 1, with the correlation between the unobserved
utilities of alternatives sharing nest m being given by 1− 1

µ2
m

. In the NL model,
the nests are mutually exclusive; each alternative belongs to precisely one nest.

An extension of the NL generating function (equation 2.6) leads to a model
form allowing for cross-nesting, whose generating function is given by:

G(y1, . . . , yJ) =
M∑

m=1

⎛
⎝
⎛⎛ ∑

j∈Cm

(αjmyjy )µm

⎞
⎠
⎞⎞ µ

µm

, (2.7)

where αjm is the allocation parameter for alternative j and nest m.
The history of cross-nested Logit (CNL) models reaches back to the initial

developments of the GEV family; first discussions of this structure were given
by Williams (1977) and McFadden (1978). This model form has been used
and analysed under different names by a number of authors, including Small
(1987), Vovsha (1997), Vovsha & Bekhor (1998), Koppelman & Wen (2000),
Wen & Koppelman (2001), Ben-Akiva & Bierlaire (2003), Daly & Bierlaire
(2003), Bierlaire (2004), and Papola (2004). CNL models allow for ambigu-
ous allocation of alternatives to nests, hence reflecting the different degrees of
similarity between them. There are many problems in which this extra flexi-
bility has the potential to offer considerable improvements, even in the case of
a relatively low number of nests or alternatives, as illustrated for example by
Bierlaire et al. (2001).

2.2 Mixed GEV models

In a mixed GEV model, the vector V in equation (2.1) is itself a random
vector. In this case, the probability of choosing alternative i within the choice
set C for a given decision-maker is given by

P (i | C) =
∫

V

∫∫
P (i|V, C)dV, (2.8)

where P (i|V, C) is defined as in equation (2.4).
Historically, the GEV model used inside the integral in equation (2.8)

has been of MNL form, leading to the MMNL model. Two conceptually
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different, yet mathematically identical (as illustrated namely by Ben-Akiva
and Bierlaire 2003) modelling approaches can arise from this notation; the
Random-Coefficients Logit (RCL) model, and the Error-Components Logit
(ECL) model.

In the RCL model, some entries of the vector β in equation (2.2) are spec-
ified to be random variables, capturing taste heterogeneity in the population.
The choice probability of alternative i is then given by:

P (i | C) =
∫

β

∫∫
P (i | C, β)f (β, θ) dβ, (2.9)

where P (i | C, β) is the MNL choice-probability of alternative i, conditional
on β, and where θ is a vector of parameters of the distribution of the elements
contained in the vector β, giving for example the mean and standard deviation
across the population. Recent examples of this approach are given by Revelt &
Train (1998), Bhat (2000), Hess & Polak (2004a,b) and Hess, Train & Polak
(2004).

In the ECL model, the vector V in equation (2.1) is defined as

V = V (β, x) + ξ, (2.10)

where V (β, x) ∈ R
J and ξ is a random vector of disturbances. In this case,

the error term is composed of two parts, and the utility function is given by

U = V (β, x) + ξ + ε, (2.11)

where the vector ξ is generally assumed to follow a multivariate Normal dis-
tribution, with mean zero and covariance matrix Ω, where Ω is usually con-
strained to be diagonal (Walker, 2001). By allowing some alternatives to share
the same error-components, correlation between these alternatives is intro-
duced into the unobserved part of utility. This approach can thus be used to
relax the IIA property of the MNL model, and it has been shown that, with
an appropriate specification of error-components, the ECL structure can theo-
retically approximate any random utility model (and thus also any GEV-style
nesting structure) arbitrarily closely (McFadden and Train, 2000). Another
major advantage of this model structure is that it can be specified so as to al-
low for heteroscedasticity. For recent applications of the ECL formulation, see
for example Bhat (1998) and Brownstone & Train (1999).

The two approaches (RCL and ECL) can be combined straightforwardly,
allowing for the joint modelling of random taste heterogeneity and inter-
alternative correlation. However, while the MMNL model is very flexible (and
more so than the MNP model), important issues of identification need to be
dealt with in the specification of the error-component structure (Walker, 2001).
Furthermore, although the MMNL model has the theoretical property of being
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able to approximate other random utility models arbitrarily closely, this may
not always be as straightforward in practice (Garrow, 2004). Finally, depend-
ing on the correlation structure, the high number of error-components required
can lead to high simulation costs. Indeed, the integral in equation (2.8) does
not generally have a closed form, and numerical techniques, typically simula-
tion, are required during the estimation and application of MMNL models (and
Mixed GEV models by extension). The development of ever more powerful
computers and recent improvements in the efficiency of simulation techniques
( Bhat, 2001, Hess et al. 2003, Hess, Train and Polak, 2004) have significantly
reduced the computational overheads of this process, and the number of ap-
plications using the RCL model especially has increased rapidly over recent
years. Nevertheless, the computational cost of estimating and applying mixed
GEV models remains high, when compared to their closed-form counterparts.

While integration over mixing distributions is necessary in the represen-
tation of random taste heterogeneity, this is not strictly the case for inter-
alternative correlation. Indeed, just as, conditional on a given value of the
taste-coefficients, a model allowing for random taste heterogeneity reduces to
an MNL model, a model allowing for inter-alternative correlation in addition
to random taste heterogeneity can in this case be seen to reduce to a given
GEV model (assuming that an appropriate GEV model exists). As such, the
correlation structure can be represented with the help of a GEV model, while
the random taste heterogeneity is accommodated through integration over the
assumed distribution of β. The use of a more complicated GEV model as the
integrand leads to a more general type of a mixed GEV model, of which the
RCL model is simply the most basic form. Applications of this approach in-
clude, for example, Chernew et al. (2001) and Bhat & Guo (2004). In such
a mixed GEV model, the number of random terms, and hence the number of
dimensions of integration (and thus simulation) is limited to the number of ran-
dom taste coefficients, whereas, in the ECL model, one additional random term
is in principle needed for the representation of each separate nest. It should be
noted that the potential runtime-advantage resulting from this difference in di-
mensions of integration only manifests itself beyond a certain number of nests,
as the more complicated form of the integrand in mixed GEV models initially
gives the ECL model a computational advantage. The use of mixed GEV mod-
els does however have another advantage over the use of the ECL model in that
it avoids the issues of identification that are specific to this latter model form,
although additional GEV-specific formulation and identification issues apply.

Finally, it should be noted that while the error-components method has his-
torically only been used with an MNL model as the basis, the approach can
theoretically also be used when ε is GEV distributed, for example in the case
where some correlation is to be captured by the GEV structure, with a remain-
ing amount of correlation (or indeed heteroscedasticity) to be explained by the
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error-components. This can be useful in the case where existing GEV struc-
tures are incapable of capturing the full array of correlation in the data (GEV
models are homoscedastic and do not allow to capture all types of correlation
structure, c.f. Abbe, 2003), while the exclusive reliance on error-components´
would lead to excessive computational cost or issues of identification. This ap-
proach would thus lead to an error-component GEV model. In this article, we
concentrate on the use of the random-coefficients GEV model, the analysis of
the potential of advanced error-components GEV models (not based on MNL)
is an important area for further research.

3. Empirical analysis

The data used for our empirical analysis form part of the survey data col-
lected to estimate the hypothetical demand for a new high-speed transit system
in Switzerland; the Swiss Metro (Abay, 1999; Bierlaire et al., 2001). The aim
is to build a mag-lev underground system operating at speeds up to 500 km/h in
partial vacuum, connecting the major urban centres along Switzerland’s Mit-
telland corridor; St. Gallen, Zurich, Bern, Lausanne and Geneva1. Aside from
the problems of funding, technological feasibility and commercial viability,
there is an important question about the impact that the development of such
a system would have on the environment. Even though the construction of the
Swiss Metro (SM) is thus rather unlikely in the near future, the data collected
to estimate the demand for the system can give important insights into respon-
dents’ evaluation of hypothetical choice alternatives in general, and transport
modes in particular. Furthermore, the SM alternative can be seen as a proxy
for a high-speed rail alternative; in the face of increasingly congested roads and
skies, the analysis of the potential demand for such advanced public transport
modes is a topic of great interest.

A combined Revealed/Stated Preference (RP/SP) approach was used to col-
lect the data (Abay, 1999). Initial interviews about a specific observed trip
were followed by a set of SP experiments based on this specific trip, where
both car-travellers and rail-travellers were used in the survey. The SP surveys
comprised 9 hypothetical choice scenarios, using the three alternatives of car,
rail and SM, where car was only available to car-owners. The main explana-
tory variables used to describe the alternatives were travel-time, cost/fare and
headway (for train and SM alternatives). Two different seating arrangements
were used for SM alternatives, corresponding to 1st class rail-travel, and busi-
ness class aircraft seats. Fares for SM services were obtained by multiplying
rail fares by a factor of 1.2, while car running costs were set to 1.20 CHF/km.2

1For details, see www.swissmetro.com
21 CHF≈ $0.8
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The aim of the present article is to illustrate the potential of Mixed GEV
models in practice, rather than making policy implications per se. As such,
only the SP survey was used, whereas a more policy-oriented analysis would
have had to make use of the combined RP/SP survey. Also, the potential scale
differences in the error-term between car users and train users were not di-
rectly taken into account, where a treatment of these differences would again
have been important in a more policy-oriented analysis. A separate analy-
sis revealed some differences in scale between the two groups; allowing for
these differences did however not significantly affect the conclusions with re-
gards to the nesting structure or the presence of random taste heterogeneity.
Software limitations meant that it was not possible to jointly accommodate
scale differences and correlation across repeated choice observations; the lat-
ter phenomenon was in this case judged to be more important (c.f. section
3.4). Finally, it should be noted that the sample used in this analysis can be
seen as being choice-based (given the selection of respondents on the basis of
RP choices). As it was not possible to properly take into account the effects of
sampling (the population weights were clearly only known for the two exist-
ing modes), the results of this analysis must be seen as applying to the present
sample only.

Only commuters and business travellers were included in the analysis, and
no distinction was made between these two groups of travellers at this stage,
leading to a sample size of 6,870 observations. The explanatory variables used
in the model fitting exercise included cost, travel-time, and headway. Addi-
tionally, the impacts of seating arrangements for SM, age for rail travellers
(divided into 5 roughly equally sized discrete groups), and season ticket own-
ership for rail-based alternatives were taken into account in the model. While
separate travel-time coefficients coefficients were used for the three different
modes, it was not possible to identify significantly different cost-coefficients
for the three modes. Similarly, the differences between the estimated season
ticket constants for rail and SM were not significant, such that a common coef-
ficient was used. Attempts to account for possible further interactions between
socio-demographic variables and taste coefficients were not successful. Ad-
ditionally, some effort went into experimenting with non-linear specifications
for the marginal utilities of the various explanatory variables; however, this did
not lead to any significant gains in model performance. For reasons of identifi-
cation, the ASC of rail was set to zero, in all model types used in the analysis.
No significant random heterogeneity was identified in any of the models for
either of the three ASCs, such that the three possible normalisation approaches
are equivalent in the mixed models, just as they are in the closed-form models.
Finally, aside from the season ticket variable, other inertia variables, such as
car ownership, license holding and past choices can be expected to have a sig-
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nificant effect on choice behaviour; the analysis of these effects was however
beyond the scope of the present analysis.

For the calibration of the various models discussed in this article, the estima-
tion software BIOGEME (Bierlaire, 2003) was used3. This estimation tool can
be used for all types of closed-form as well as Mixed GEV model structures.
Furthermore, the program can accommodate non-linear utility functions, and
the estimation can be performed so as to account for correlation across repeated
choice observations for the same individual.

When estimating models based on mixing distributions, it is of interest to at-
tempt to minimise the computational overhead of the calibration process (Hess
et al., 2004). This is especially crucial in the case of mixed GEV models that
are based on a more complicated integrand than the simple MNL formula. One
such improvement that can lead to important gains in simulation efficiency is
the use of quasi-random number sequences instead of pseudo-random number
sequences as the basis of the simulation process (Train, 2003). In the present
application, one such quasi-random approach, known as the Halton sequence
(Halton, 1960), was used in conjunction with an iterative drawing procedure.
This procedure is based on the notion that the first few iterations of the maximi-
sation process are rough steps in the general direction of the maximum of the
log-likelihood function, requiring a lower degree of precision in the simulation.
As such, a comparatively lower number of draws can be used for these initial
steps, leading to important reductions in computation time. To this extent, the
model was first estimated to a preset convergence level using a very low num-
ber of draws. This number of draws was then increased, and the final estimates
from the preceding run were used as starting values. This process was repeated
until the preset number of 1,000 draws (per dimension of integration, and per
individual) was reached; a sensitivity analysis showed this to be sufficient to
obtain stable estimates. At each step in this iterative process (increase in the
number of draws), the sequences of Halton draws were newly generated, so
as to obtain as uniform a spread as possible with the given number of draws
used in a specific run. A trust-region algorithm was used in the estimation, and
at each step, a more stringent convergence criterion was used. Overall, this
approach is very similar to that proposed by Bastin (2004), except that in our
approach, the change in the number of draws is controlled externally (and set
prior to estimation), rather than being controlled internally. Furthermore, the
approach of Bastin (2004) allows for occasional decreases in the number of
draws during the estimation process.

3The estimation software, together with examples, and documentation, is available from
http://roso.epfl.ch/biogeme; the data and model files for the application presented in this article are
available from http://roso.epfl.ch/mbi/biogeme/swissmetro
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3.1 Multinomial logit model

As a basis for comparison, a simple MNL model was first fitted to the data;
the estimation results for this model are reported in the first part of table 4.1.
As expected, the results show negative marginal utilities for increases in travel-
time on all three modes, with similar conclusions for cost and headway in-
creases. The model further shows that older people are relatively more likely
to choose rail, while season-ticket holders are more likely to choose rail and
SM (when compared to car). Finally, the results show that in terms of the
seating arrangements for SM, respondents have a preference for first-class rail
seats over business class aircraft seats. In terms of the implied willingness to
pay for travel-time reductions, the results show significantly higher values of
travel-time savings (VTTS) for rail, while the value for SM is only marginally
higher than that for car.

3.2 Nested Logit model

To account for the potential existence of heightened correlation between
some of the alternatives, three separate NL structures were estimated on the
data; grouping together car and rail, car and SM, and rail and SM respectively.
Only the nesting of car and rail, i.e. the grouping of existing modes versus the
hypothetical SM alternative, resulted in a structural parameter that is greater
than 1 (using the notation from section 2.1). The results of this estimation are
shown in the second part of table 4.14. With this model structure, the nesting
parameter (µCR) takes a value of 2.23, implying a high correlation between the
unobserved utilities of the car and rail alternatives of around 0.8. Aside from a
difference in scale, the substantive results of the two models are very similar,
although the VTTS measures are lower than in the corresponding MNL model,
especially so for the car and rail alternatives. This also implies that the results
show a clearer difference between the VTTS for car and SM. Finally, in terms
of model fit, the results show a very significant increase in Log-Likelihood
(LL) by 122.42 units, with one additional parameter. This leads to a likelihood-
ratio test value of 244.84, which has an associated χ2

1 p-value that is identical
to zero (3−55).

3.3 Cross-Nested Logit model

As reported in section 3.2, significant correlation could only be retrieved
between the car and rail alternatives, leading to a nesting of existing versus
hypothetical alternatives. It is however conceivable that such correlation also
exists between the rail and the SM alternatives, given that they have the com-

4The t-test for µCR is expressed with regards to a base-value of 1.
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Table 4.1. Estimation results for MNL, NL and CNL models

MNL NL CNLA CNLB

Parameter Estimate Asy. z-value Estimate Asy. z-value Estimate Asy. z-value Estimate Asy. z-value
ASC Car 0.5731 2.88 0.3013 2.56 -0.3472 -3.93 -0.2832 -2.71
ASC SM 0.8661 4.89 0.5965 4.31 0.0071 0.09 0.047 0.42

Age for Rail 0.2639 6.15 0.178 6.3 0.1538 9.17 0.1652 6.71
Airline seats for SM -0.435 -4.35 -0.2743 -3.05 -0.1725 -3.65 -0.2309 -3.61

Season ticket for Rail/SM 0.9718 5.31 0.7595 7.17 0.6893 7.75 0.6715 6.92
Headway (minutes) -0.0055 -5.55 -0.0037 -5.5 -0.0028 -5.94 -0.0031 -5.74

Cost (CHF) -0.0098 -13.98 -0.0071 -11.75 -0.0065 -14.91 -0.007 -13.53
Travel time Car (minutes) -0.0116 -10.66 -0.0077 -6.67 -0.0062 -10.98 -0.0067 -5.64
Travel time Rail (minutes) -0.0152 -14.03 -0.0106 -10.13 -0.0079 -12.56 -0.0089 -8.7
Travel time SM (minutes) -0.0119 -6.55 -0.0085 -5.06 -0.0067 -9.62 -0.0073 -5

µCR - 2.23 7.76 2.78 9.27 2.67 7.48
µSR - - 5.91 6.61 4.68 6.9

αR,CR - - 0.4293 3.76 0.5 -
αR,SR - - 0.5707 3.76 0.5 -

VTTS Car (CHF/hour) 71.02 65.07 57.23 57.43
VTTS Rail (CHF/hour) 93.06 89.58 72.92 76.29
VTTS SM (CHF/hour) 72.86 71.83 61.85 62.57

Final LL -5328.24 -5205.82 -5162.03 -5167.12
ρ2(0) 0.2471 0.2644 0.2706 0.2698



Capturing correlation and taste heterogeneity with Mixed GEV models 67

mon aspect of being public transport modes. To test for the presence of such
correlation, a CNL model was fitted to the data, allowing the rail alternative
to belong to a rail-SM nest as well as to the car-rail nest. The results of this
estimation process are reported in the third part of table 4.1 (CNLA)5. The re-
sults show that in addition to high correlation between the unobserved utilities
of the two existing modes of car and rail, there is also very high correlation
between the unobserved parts of the utilities for rail and SM. The allocation
parameters αR,CR and αR,SR show the degree of membership of the rail alter-
native to the nests it shares with car and SM respectively, where the estimates
are very similar, with slightly higher allocation to the public transport nest.

The CNL model reduces to the NL model described in section 3.2 when
αR,CR = 1 and αR,SR = 0. In this scenario, the nesting parameter µSR be-
comes obsolete. When µCR further becomes equal to 1, the model reduces
to the MNL model described in section 3.1. Likelihood-ratio tests can thus
be used to compare the CNL model to the MNL and NL models, with 3, re-
spectively 2 degrees of freedom (only one α is actually estimated, given that
αR,CR = 1−αR,SR). The resulting likelihood ratio test values are 332.42 and
87.58, both of which have p-values that are indistinguishable from zero, for
χ2

3 and χ2
2 tests respectively. This shows that important gains in model fit can

be obtained by accounting for the correlation between the two public transport
alternatives; interestingly, this was not possible in the NL model, suggesting
that this correlation can only be explained simultaneously with the correlation
between the car and rail alternatives.

In terms of substantive results, the estimated coefficients are again all of the
expected sign. However, the implied VTTS measures are significantly lower
than those reported with the MNL and NL structures, where a similar observa-
tion can be made for the willingness to pay for headway reductions. This is the
result of an increase in the relative weight of the marginal utility of cost when
compared to the MNL and NL structures, and shows the impact of model struc-
ture on the relative scale of the various coefficients. This thus suggests that, by
accounting for the correlation structure, the cost attribute gains in weight when
compared to the other attributes.

The interpretation that should be given to the allocation parameters in a
CNL model is not clear, although intuitive interpretations exist for example in
the case of route-choice. In the present application, the allocation of the rail al-
ternative was split almost evenly between the car-rail and the rail-SM nest. To
establish the impact of these parameters, the model was re-estimated, with both
allocation parameters constrained to a value of 0.5. The results of this process
are reported in the fourth part of table 4.1 (CNLB). The use of constrained al-

5The t-tests for µCR and µSR are expressed with regards to a base-value of 1, while for αR,CR and
αR,SR, a base-value of 0.5 is used.
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location parameters leads to a slight drop in the estimated correlation in the two
nests. Furthermore, it leads to a 4.6% increase in the estimated VTTS for the
rail alternative. Aside from these two changes, the substantive impacts of the
additional constraint are relatively minor. The constraint leads to a statistically
significant drop in LL by 5.09 units, equating to a likelihood ratio test-value of
10.18, with an associated p-value of 0.0062.

To conclude this section, it should be noted that similar experiments where
conducted with a structure allowing car to belong to a car-rail and a car-SM
nest; no extra correlation between car and SM could however be identified.

3.4 Mixed Multinomial Logit model

As discussed in the introduction to this article, not allowing for potential
random variations in tastes across respondents puts researchers at risk of pro-
ducing seriously biased results. With this in mind, several experiments were
conducted to explore the potential prevalence of random taste heterogeneity
in the population of decision-makers. The repeated choice nature of the data
was taken into account in these experiments, such that tastes vary across in-
dividuals, but not across observations for the same individual (Train, 2003).
This leads to efficient estimates, whereas the purely cross-sectional leads only
to consistent estimates. Attempts were also made to accommodate other SP
panel effects, such as inertia, but none of these was found to have a significant
effect.

Significant random taste heterogeneity was identified for five coefficients;
the three travel-time coefficients, in addition to the dummy coefficients for
age for rail users, and for seating type for SM users. For reasons of simplic-
ity, a Normal distribution was used for all five coefficients. This is a valid
assumption for the two dummy coefficients, but can lead to problems with
the three travel-time coefficients. Indeed, by using a Normal distribution, re-
searchers in effect make an a priori assumption that the coefficient takes a
positive value for some of the respondents. The use of bounded distributions
is in this case preferable (7, Hess, Bierlaire and Polak, 2005). However, in
the present application, the Normal distribution led to very good performance,
while problems in estimation were encountered when using alternative distri-
butions. Furthermore, with the estimated distributional parameters, the proba-
bility of a wrongly signed coefficient was always at an acceptable level.

The results of the estimation are summarised in the first part of table 4.2
(MMNLA). The first observation that can be made is that the MMNL model
leads to an improvement in LL over the MNL model by 229.63 units, with 5
additional parameters. This equates to a likelihood-ratio test-value of 459.26,
giving a χ2

5 p-value of 0. This illustrates the important gains in model fit that
result from accommodating random variations in respondents’ tastes. The re-
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sults further show that the effect of using a Normal distribution for the three
travel-time coefficients is benign, with probabilities of a wrongly signed coef-
ficient of 1%, 0% and 2% for car, rail and SM respectively. Finally, it should
be noted that, with the MMNL model, the estimates of the two ASCs, as well
as that of the mean for the age-dummy for rail-travellers, are not significant at
the usual 95% level of confidence.

In terms of actual estimation results, the model shows that, while age still
has a positive mean effect on the utility of the rail alternative, for about 30%
of respondents, this effect is now negative. Tests with bounded distributions
led to poor results, suggesting that these results do indeed signal the existence
of travellers for which this dummy variable is negative, rather than being sim-
ply an effect of using the Normal distribution. A similar observation can be
made for the coefficient associated with the type of seating, where the results
now indicate that almost 42% of travellers have a preference for aircraft-type
business-class seats over first-class rail-seats. These results illustrate the poten-
tial of the MMNL model; the closed-form models falsely suggest a consistent
positive effect of age and rail-type seats across the population.

In terms of the implied willingness to pay for travel-time reductions, the re-
sults show consistently higher VTTS measures for all three modes than was the
case in the closed-form models. This shows the important bias that can result
from not accounting for random variations in the coefficients involved in trade-
off calculations. Although it was not possible to estimate such a coefficient in
the present analysis, it should be stressed that the risk of bias becomes even
greater in the case of a randomly distributed cost-coefficient. Again, like in the
MNL model, the estimated VTTS for car and SM are very similar, while the
corresponding measure for rail is significantly higher. It is important to note
that the use of fixed coefficients not only leads to a risk of biased results, but
also leads to a loss of all information about the variation in the VTTS across
respondents. The standard deviations reported in table 4.2 for the travel-time
coefficients are very high, and lead to very wide confidence intervals for the
VTTS. As an illustration, the lower and upper 80% quantiles were calculated,
leading to lower limits of 42.13, 82.83, and 36.08 CHF/hour for car, rail and
SM respectively, with corresponding upper limits of 145.12, 144.32 and 156.10
CHF/hour respectively. This shows that while rail has got the highest associ-
ated mean VTTS, it has the narrowest confidence interval, followed by car and
SM. The variation in the VTTS for SM is so important that, while the mean
VTTS for SM lies in between those for car and rail, its lower and upper limits
are more extreme than those of car and rail respectively. This could be seen
as a reflection of the uncertainty involved with the evaluation of a hypothetical
mode.
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Table 4.2. Estimation results for MMNL, Mixed NL and Mixed CNL models

MMNLA Mixed NL MMNLB Mixed CNL
Parameter Estimate Asy. z-value Estimate Asy. z-value Estimate Asy. z-value Estimate Asy. z-value

ASC Car 0.2758 0.92 0.1807 0.89 0.3268 1.11 –0.2222 –1.71
ASC SM 0.4455 1.63 0.3765 1.81 0.49 1.81 –0.0196 –0.16

Age for Rail (µ) 0.1382 1.4 0.0869 1.29 0.0496 0.53 0.1612 5.94
Age for Rail (σ) 0.2579 6.25 0.2553 7.43 0.3064 8.37 - -

Airline seats for SM (µ) –0.3142 –2.09 –0.3376 –2.82 –0.3374 –2.17 –0.2247 –3.54
Airline seats for SM (σ) 1.5553 6.48 0.7717 2.23 1.6191 6.94 - -

Season ticket for Rail/SM 1.2126 3.66 0.8555 4.42 1.3097 3.88 0.6099 4.56
Headway (minutes) –0.0072 –5.48 –0.0052 –5.3 –0.0071 –5.43 –0.0031 –5.94

Cost (CHF) –0.0138 –11.02 –0.0103 –9.07 –0.0139 –11.06 –0.0076 –11.05
Travel time Car (minutes) (µ) –0.0215 –14.99 –0.016 –11.1 –0.0216 –14.5 -0.0089 –8.77
Travel time Car (minutes) (σ) 0.0092 11.25 0.0074 4.1 0.0094 7.36 0.0039 8.10
Travel time Rail (minutes) (µ) –0.0261 –15.13 –0.0175 –12.18 –0.0229 –15.09 –0.0100 –10.28
Travel time Rail (minutes) (σ) 0.0055 6.65 - - - - - -
Travel time SM (minutes) (µ) –0.0221 –13.41 –0.0175 –11.89 –0.0221 –13.43 –0.0086 –6.32
Travel time SM (minutes) (σ) 0.0108 8.77 0.0104 8.07 0.012 10.37 - -

µCR - - 2.28 5.08 - - 4.10 4.27
µSR - - - - - - 4.26 6.03

VTTS (CHF/hour) Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.
Car 93.48 40 93.2 43.11 93.24 40.58 70.25 30.45
Rail 113.48 23.91 101.94 - 98.85 - 78.96 -
SM 96.09 46.96 101.94 60.58 95.4 51.8 67.45 -

Final LL –5098.61 –5026.23 –5105.77 –5086.16
ρ2(0) 0.2795 0.2898 0.2785 0.2813
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3.5 Mixed Nested Logit model

The results in sections 3.2, 3.3 and 3.4 have shown that important gains in
model performance can be obtained both by accounting for the presence of
inter-alternative correlation in the unobserved utility terms, and by allowing
for a random distribution of tastes across decision-makers. However, as high-
lighted in the introduction and theoretical part of this article, it is not clear a
priori whether these results actually signal the presence of separate phenom-
ena, or whether the two approaches simply explain the same phenomenon in
different ways. The aim was now to attempt to jointly model the two phenom-
ena, hence reducing the risk of confounding. For this, a mixed NL model was
fitted to the data.

Whereas, with the MMNL model described in section 3.4, it was possible to
retrieve significant random variation for five taste coefficients, this number was
reduced to four in the mixed NL model. Indeed, the standard deviation associ-
ated with the marginal utility of travel time for rail alternatives was no longer
statistically significant at any reasonable level of significance. This was already
the coefficient with the smallest variation in the MMNL model (c.f. table 4.2),
and by accounting for inter-alternative correlation, the error-term in the model
decreases, reducing the scope for retrieving random taste heterogeneity fur-
ther. This signals possible confounding in the simple MMNL model presented
in section 3.4. The final estimates for the mixed NL model are reported in the
second part of table 4.26. The results show that, compared to the NL model
reported in table 4.1, the use of the mixed NL model leads to a gain in LL by
179.59 units, with 4 additional parameters. This equates to a likelihood ratio
test of 359.18, with an associated χ2

4 p-value of 0. Similarly, the mixed NL
model leads to an improvement in LL by 72.38 units over the MMNL model
from section 3.4. To allow for the use of a nested log-likelihood ratio compar-
ison between the mixed NL and MMNL structures, the MMNL model from
section 3.4 was re-estimated with a fixed coefficient for rail travel-time. The
results of this re-estimation are reported in the third part of table 4.2, showing
that, as expected, the use of a fixed coefficient leads to a significant drop in
LL by 7.16 units. The use of the mixed NL model leads to a highly significant
improvement in LL by 79.54 units when compared to this re-estimated MMNL
model, with a single additional parameter. These results reflect the importance
of jointly accommodating the two phenomena of correlation and random taste
heterogeneity.

In terms of actual estimation results, the values in table 4.2 show that the
mixed NL model retrieves a correlation structure between car and rail alter-
natives that is virtually indistinguishable from that obtained when using the

6Again, the t-test for µCR is expressed with regards to a base-value of 1.
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simple NL model reported in table 4.1. However, the significance level of the
nesting parameter is markedly lower. A similar observation can be made for
all but one of the standard deviations of the randomly distributed coefficients
(when compared to the two MMNL models). This drop in significance levels
is to be expected, given that the mixed NL model decomposes the error-term
further than the NL and MMNL models. It can also be noted that in the mixed
NL model, the mean VTTS measure for rail and SM are now indistinguish-
able, whereas, in the NL and MMNL models, the VTTS for rail was markedly
higher. This could be seen as an effect of using a fixed travel-time coeffi-
cient for rail, when compared to the MMNL model; however, the re-estimated
MMNL model uses the same restriction, yet still yields a slightly higher mean
VTTS for rail than for SM. Any other remaining differences between the two
models are largely down to a difference in scale.

3.6 Mixed Cross-Nested Logit model

The final model fitted during the analysis was a mixed CNL model, using
the same nesting structure as the CNL model described in section 3.3. In sec-
tion 3.5, we observed that, by accounting for the correlation between the car
and rail alternatives, the scope for retrieving significant amounts of random
taste heterogeneity is reduced. When fitting the mixed CNL model, serious es-
timation problems were encountered. These related specifically to the ability
to retrieve random taste heterogeneity, especially when also accounting for the
repeated choice nature of the dataset. These problems reflect the complexity
of the model, but could also be a sign of a lack of explanatory power in the
data, in such that the error-term cannot be partitioned enough to reproduce a
mixed CNL structure with a high number of random taste coefficients. Even-
tually, it was possible to estimate a mixed CNL model with a single randomly
distributed taste coefficient, namely the marginal utility of travel-time for the
car-alternative. For estimation purposes, the allocation parameters were both
constrained to be equal to 0.5. The results of this estimation process are repro-
duced in the fourth part of table 4.2.7

The first observation that can be made from table 4.2 is that, with one ad-
ditional parameter, the mixed CNL model leads to a very significant improve-
ment over the constrained CNL model reported in the second part of table
4.1; the difference in LL is 80.96, leading to a likelihood-ratio test-value of
161.92, which has an associated χ2

1 value of zero. This shows that even a sin-
gle randomly distributed taste coefficient leads to important gains in explana-
tory power. The mixed CNL model also has a higher LL than the two MMNL
models, although no nested likelihood-ratio test can be performed for these

7The t-tests for µCR and µSR are again expressed with regards to a base-value of 1.
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differences. On the other hand, the LL of the mixed CNL model is inferior to
that of the mixed NL model by 59.93 units. This, in combination with the NL
results, suggests that the increased partitioning of the error term resulting from
allowing for cross-nesting adds less explanatory power than the partitioning
resulting from accounting for the additional levels of random taste heterogene-
ity in the mixed NL model. Efforts to explain a larger part of the error term by
accounting for further levels of taste heterogeneity in a mixed CNL framework
are ongoing.

The other main observation that can be made from table 4.2 is that, while
the VTTS measures produced by the mixed CNL model are closer in scale to
those produced by the closed-form models than those produced by the other
mixed models, the VTTS of SM is now lower than the mean VTTS of the
car alternative. This can however be seen as an effect of using a randomly
distributed coefficient for the marginal utility of travel-time for car, while a
fixed coefficient is used for the other two modes. Finally, it should be noted
that, while the estimated value for µSR is very similar to that obtained with the
constrained CNL model in section 3.3, the value estimated for µCR is markedly
higher. This shows that the estimation of the structural parameters is affected
by the use of a utility function containing random coefficients. This in turn
again suggests some interaction between the part of the error-term linked to
random taste heterogeneity and the part linked to inter-alternative correlation.

4. Summary and Conclusions

In this article, we have discussed the issues arising with model specification
in the case of a non-trivial error-structure. We have focussed on two sepa-
rate ways of partitioning the error-term; accounting for (arbitrary) correlation
between alternatives in the unobserved utility components, and allowing for
a random distribution of tastes across decision-makers. The theoretical dis-
cussions presented in this article have highlighted the fact that the distinction
between these two phenomena is not clear-cut, and that there exists a signifi-
cant risk of confounding in the case where researchers account for only one of
the two phenomena.

Our empirical analysis has shown that while it is possible to separately
model the prevalence of correlation in the choice-set and random taste hetero-
geneity in the population of decision-makers, and while both approaches lead
to very significant gains in model fit, the joint modelling of these two phenom-
ena can be more problematic. Indeed, while the mixed NL model described
in section 3.5 retrieves a near identical nesting structure to that obtained with
the simple NL model in section 3.2, random taste heterogeneity can only be
retrieved for four taste coefficients, as opposed to five in the simple MMNL
model (c.f. section 3.4). Even more severe problems were encountered when
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using a mixed CNL model, where random taste heterogeneity could only be
retrieved for a single coefficient. Although, in the mixed CNL model, these
problems were at least party due to model complexity, the overall results do
highlight the issue of confounding of taste heterogeneity and correlation, com-
plementing similar observations made by Cherchi and Ortuzar (2004) with re-
gards to the ECL model. It should also be noted that the various model fitting
exercises described in this article have highlighted the fact that the assump-
tions made with regards to the error-structure can have significant impacts on
substantive results, such as willingness-to-pay indicators.

It should be stressed that the failure to simultaneously account for all het-
erogeneity and correlation should not be seen as a deficiency of the model, but
rather as a sign that the error-term in the model has decreased. Indeed, by ac-
counting for either of the two phenomena, the modeller explains processes that
take place in the unobserved part of utility of the alternatives. This is analo-
gous to the case where the specification of the utility function in the most basic
of discrete choice models is improved by the inclusion of more explanatory
variables. If it were possible to improve the utility specification to the point
were all correlation across alternatives is explained in the observed part of util-
ity, the errors would become independent, and it would no longer be possible
to explain inter-alternative correlation with the help of a nesting structure. As
such, it can often be observed that, while inter-alternative correlation can be re-
trieved in models using a very basic specification of the observed utility, further
refinement of the utility function will lead to problems with retrieving signifi-
cant nesting effects. This should clearly be seen as desirable, as any correlation
is now explained in a deterministic way, through the observed utility function.
A similar process occurs in models jointly allowing for random taste hetero-
geneity and correlation. When only allowing for either of the two phenomena
in a model, the impact of the unrepresented phenomenon will at least be partly
carried over into the other phenomenon. This in turn shows that, by simulta-
neously accounting for the two phenomena, the scope for retrieving apparent
significant effects of either of the two phenomena is reduced. On the other
hand, this however also means that the risk of falsely explaining correlation
by random taste heterogeneity, or vice-versa, is reduced. As such, researchers
should always strive to simultaneously account for the potential prevalence of
both random taste heterogeneity and unexplainable inter-alternative correla-
tion, in the case where the observed utility function is incapable of explaining
sufficient amounts of choice behaviour for the remaining error-term to be dis-
tributed purely iid type I extreme-value.
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Abstract The chapter presents an approach for simultaneously estimating farmers’ deci-
sions to accept incentive payments in return for adopting a bundle of environ-
mentally benign best management practices. Using the results of a multinomial
probit analysis of surveys of over 1,000 farmers facing five adoption decisions in
a voluntary program, we show how the farmers’ perceptions of the desirability
of various bundles change with the offer amounts and with which practices are
offered in the bundle. We also demonstrate an estimator for the mean minimum
willingness to accept for adoption of a practice conditional on the cost share
offers for other practices.

Keywords: best management practices, EQIP, incentive payments, multinomial probit, max-
imum simulated likelihood estimation, simulated multivariate normal, WTA.

1. Introduction

Agri-environmental payment programs play an important part in improving
the environmental performance of agriculture (Claassen and Horan 2000; Batie
1999; Lynch and Smith 1994; Smith 1992; Feather and Cooper 1995; Claassen
et al. 2001). Federal-level interest in developing these programs is currently
strong. For example, the 2002 Farm Act called for a five-fold increase in fund-
ing for the USDA’s Environmental Quality Incentives Program (EQIP). This

which provides incentive payments to encourage producers to adopt environ-
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mentally benign land management practices such as nutrient management, ma-
nure management, and integrated pest management.

For policymaking purposes, it would be useful to know the sensitivity of the
producer’s decision to enroll in response to a schedule of potential incentive
payments and to which practices are bundled together. Such information can
be used to assess the costs of encouraging farmers to try various environmen-
tally benign management practices (commonly known as Best Management
Practices, or BMPs).

EQIP offers the farmer a suite of BMPs to choose from. Existing published
research (Cooper and Keim, 1996) modeled the probability of farmer adop-
tion of BMPs as a function of the incentive payment, with each practice being
modeled independently in a bivariate probit analysis of actual adoption and
hypothetical adoption. In Cooper and Keim, the bivariate normal was used to
jointly model actual and hypothetical use of the same practice as part of a self-
selection procedure. Khanna (2001) also conducts a bivariate probit analysis
of technology adoption, but between two technologies at a time.

There is no compelling reason to assume that the farmer’s decisions to
adopt each of these practices should be independent of each other; these BMPs
should be considered as a bundle of inter-related practices (Amacher and Feather,
1997). If each adoption decision is treated independently in estimation, then
valuable economic information may be lost. If the available set of BMP options
does indeed influence the farmer’s decision as to which practices to adopt, then
the set of adoption decisions follow a multivariate distribution. The multino-
mial probit (MNP) model, which makes use of the multivariate normal (MVN)
distribution, is the appropriate econometric tool for modeling multiple adop-
tion decisions in a joint fashion such that the correlations of the error terms
across the practices are nonzero.

In the numerical illustration, a dataset drawn from surveys of over 1,000
farmers in four U.S. regions is used to simultaneously model five discrete
choices in an EQIP-like cost sharing program. This program offers cost-shares
only for practices that the farmer does not currently use. In the model presented
here, farmers who do not use a desired practice are asked whether or not they
would accept a hypothetical cost share offer to adopt the practice, and each
hypothetical adoption decision is treated jointly. By modeling the decision
making process jointly across the offered BMPs, the resulting estimate of the
correlations across the decisions allows us to examine which BMPs the farmers
consider to be bundles, and to calculate conditional probabilities and summary
statistics. This information can be of policy significance in the design of the
type of agri-environmental payment program discussed here. Before turning to
the econometric model and then to the numerical illustration of the approach,
in the next section we provide the theoretical basis for addressing the incentive
payment program as a bundle of technologies to be adopted.
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2. The Theoretical Model

Consider a farmer who is faced with a set of decisions on what combination
of j = 1, . . . , J BMPs to choose from under a incentive payment program.
The farmer’s discrete decision to accept incentive payments in exchange for
adopting the BMPs can be modelled using the random utility model (RUM)
approach (e.g. Hanemann, 1984).1 From the utility theoretic standpoint, a
farmer is willing to accept a cost share Aj per acre to switch to a new BMP j if
the observable portion of the farmer’s indirect utility with the new practice and
incentive payment, VljVV (s, Aj , ε1; θ), is at least as great as at the initial state,
V0VV (s, ε0; θ), i.e., the farmer’s decision to adopt the practice can be expressed as
VljVV ≥V0VV where 0 is the base state, 1 is the state with the green practice j adopted,
s is a vector of explanatory variables, and θ is a vector of the parameters of the
functions. Say that CjC is the cost share value that solves V1VV j(s, CjC , ε1; θ) =
V0VV (s, ε0; θ), then CjC = C(s, ε; θ) is the minimum willingness to accept (WTA)
for adopting green practice j. Assume, as is commonly done, that V is a simple
linear functional form,V = sθ,where s = {constant, y} and y is income, then
V0VV (s, ε0; θ) = θ01 +θ02y+ε0 and V1VV j(s, CjC , ε1; θ) = θ11 +θ12 (y + Aj)+ε1.

In practice, V1VV j and V0VV are generally not separably identifiable, but their dif-
ference (∆V = VijVV − V0VV ) is. If V has the simple linear functional form above,
then ∆V = θ + θ2Aj + ε. This difference can be expressed in a probabilistic
framework as

Pr{response is “yes”} = Pr{Aj ≥ CjC (·)} (2.1)

= Pr{V1VV ≥ V 0}
= Pr{∆V ≥ 0},

and hence, the parameters necessary to calculating CjC can be estimated through
maximum likelihood. If ∆VεVV = θ + θ2Aj , then Pr{Aj ≥ CjC (.)} =
Pr{ε0−ε1 ≤ ∆VεVV }. The probability of farmer adoption at CjC is FεFF [∆VεVV (CjC )],
where FεFF is a cumulative density function (CDF), and ε = ε0 − ε1. Given
that changes in profit associated with adoption, as well as any nonfinancial
motivations for adoption, are unlikely to be known to the researcher, survey
approaches (such as those that explicitly ask the farmer whether or not she
would adopt for a given incentive payment A) are needed to estimate the pa-
rameters of FεFF (Cooper, 1997; Cooper and Keim, 1996; Khanna, 2001). Now
suppose that three BMPs can be cost-shared, and supposed that the farmers
answers “no” to cost share offers for practices 1 and 3, but “yes” to practice 2.

1In theory, the farmer’s utility maximization process is a combination of the discrete decision to adopt as
well as the continuous decision of how many acres to adopt the BMPs on. We address only the former,
which was the main focus of our survey questions.
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Extending the equation (2.1) above and denoting the joint density by gC :

Pr{no to 1 & 3, yes to 2} = Pr{C1 ≥ A1, C2CC ≤ A2 and C3CC ≥ A3} (2.2)

=
∫ ∞

A

∫∫
1

∫ A2

0

∫∫ ∫ ∞

A

∫∫
3

gC (C1, C2CC , C3CC ) dc1dc2dc3.

As per Hanemann and Kanninen (2001), but applied to the WTA case, let
GC(C1, .., CJ) be the joint distribution function associated with the density
gC(C1, .., CJ) and let G(j)(C1, .., CJ) denote the partial derivative of this joint
distribution with respect to the jth argument:

G(j)(C1, .., CJ) ≡ ∂GC(C1, ..., CJ)/∂CjC .

Then, an equivalent way to express equation (2.2) is (ibid):

Pr{no to 1 & 3, yes to 2} = Pr{C1 ≥ A1, C2CC ≤ A2&C3CC ≥ A3}(2.3)

=
∫ A2

0

∫∫
G(2) (A1, C2CC , A3) dc2

Assuming the ∆VεVV (CjC ) are distributed normally but are correlated through
the error terms, then the multivariate distribution needs to account for
the correlations, where the (J × 1) vector ∆VεVV is distributed as ∆VεVV ∼
F

(
µ1, . . . , µJ ; Σ

)
, where Σ is the (J × J) correlation matrix between the

practices. The next section presents the empirical model for estimating the
parameters of such a distribution.

3. Econometric Model

Assume that N farmers choose among a set of J practices. The farmer’s
RUM associated with the incentive payment offer to adopt the BMP is 2

∆VεijVV = x′
ijβjβ (j = 1, ..., J ; i = 1, ..., N), (3.1)

where xij is a vector of explanatory variables for choice j for farmer i and βjβ
the vector of coefficients associated with choice j. The MNP model assumes
that the correlations between the practices occur through the error terms in
the equations, which are distributed εi ≡ (εi1, ..., εiJ)′ ∼ IIDN(0, Σ), Σ =

2A full MNP model would have variables in the RUMs in equation (2.2) whose values vary across the
J choices. While such variables are possible for some datasets, such as those used in recreational site
choice, such variables are unlikely to be available to researchers modeling the farmer’s technology adoption
process. However, convergence of a MNP model with such variables generally requires restrictions on the
correlation matrix, such as normalizing it along one row
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σij

]
. The MNP log-likelihood function to be estimated is an expanded ver-

sion of the bivariate model (Greene 1997):

L (β, Σ) =
N∑

i=1

log F (ωi, Σ∗), (3.2)

where ωi ≡ (qi1 ∗ ∆VεiVV 1, . . . , qiJ ∗ ∆VεiJVV )′ and, for the model for current
nonuser users only, xij = {xij1 ∗ rij , . . . , xijP ∗ rij}, where dummy variable
rij = 1 if i is a current nonuser of j, and 0 otherwise, p = 1, . . . , P variables,
and

qij =
{

1 if farmer i adopts practice j
−1 if farmer i does not adopt practice j

(3.3)

and
∑∗ = TiTT

∑
TiTT , where TiTT is a J × J diagonal matrix with TiTT ≡

(qi1, . . . , qiJ)′, and where the unrestricted J × J covariance matrix has
(J − 1) × J free elements (after imposing symmetry conditions).

Leaving out the subscript i, the multivariate cumulative normal density func-
tion in equation (3.2) is

F
(

⇀
w, Σ∗

)
=

1√
|Σ∗| (2π)J

∫ w1

−∞

∫∫ ∫ w2

−∞

∫∫
· · ·

∫ wJ

−∞

∫∫
e−

1
2
θ′Σ∗−1θdθ (3.4)

where wj = (ωj −µj)/σjσ , and where σjσ and µj are the standard deviation and
mean of ωj , respectively.

As noted earlier, the computational intractability of the MVN density in
equation (3.4) accounts for the fact that it is rarely used in dimensions higher
than J = 2 (bivariate), or increasingly, J = 3 (trivariate). The traditional
numerical quadrature methods to calculating F (·) tend not only to be unac-
ceptably slow in more than three or four dimensions, they also suffer from
serious shortcoming in numerical accuracy as J increases (e.g., Horowitz,
Sparmon, and Daganzo, 1981). An alternative to quadrature methods, namely
Monte Carlo methods, is necessary to estimate this CDF. Simulation of stan-
dard normal variables is a well-studied problem (see Stern for an overview
of simulation-based methods), although applications in the applied economics
area exist but are rare (e.g. the trivariate model in Dorfman, 1996). To some
extent this state is due to desktop computers only recently having the com-
putational speed to perform this analysis and to a lack of available software.
For this study, the GHK (Geweke-Hajivassiliou-Keane, 1997) importance sam-
pling technique (Stern 1997) and a similar technique proposed by Genz (1992)
were both tried and gave similar results.

Since the Monte Carlo simulator can approximate the probabilities of the
MVN density in equation (3.4) to any desired degree of accuracy, the corre-
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sponding maximum simulated likelihood estimate (SMLE) based on the simu-
lated MVN can approximate the MLE estimator (Hajivassiliou, McFadden, and
Ruud, 1996). For the results to be consistent, the number of simulations must
increase with the sample size at a sufficiently rapid rate (Newey and McFad-
den 1993). One hundred repetitions are used here (as suggested by Geweke,
Keane, and Runkle (1997) for their simulated MNP model).

A potential drawback of the econometric model presented above (or any
other multivariate probit applications that the authors are aware of) is that
it could potentially be subject to biases associated with incorrect specifica-
tions of functional form of the RUM and of the normality assumption. We
extend Creel and Loomis’ (1997) semi-nonparametric (SNP) distribution-free
approach for the univariate discrete choice case to our multivariate discrete
choice model. This approach uses the Fourier functional form (e.g., Fenton and
Gallant, 1996) as a substitute for the parametric functional form of the RUM in
equation (3.1).The Fourier functional form is one of the few functional forms
known to have Sobolev flexibility, which means that the difference between a
function ∆V (x, θ)and the true function f(x) can be made arbitrarily small for
any value of x as the sample size becomes large (Gallant, 1987). Creel and
Loomis’ specification of ∆V modified for the MNP model is:

∆VεFVV (xij , θkj) = x′ijβj+
M∑

m=1

L∑
l=1

(
vlmj cos

[
lr′mjs (xij)

]
− wlmj sin

[
lr′mjis (xij)

]) (3.5)

where the p × 1 vector xij all arguments of the utility difference model, k
is the number of coefficients in θj ,which consists of the βj , vlmj , and wlmj

coefficients to be estimated, M and L are positive integers, and rmj is a p × 1
vector of positive and negative integers that forms indices in the conditioning
variables and that determine which combinations of variables in xij form each
of the transformed variables, and j = 1, · · · , J BMPs.3 The integer m is the
sum of absolute value of the elements in the multi-indexes in vector rm and
L is order of the transformation, and is basically the number of inner-loop
transformations of xi (ignoring the j subscript for clarity of exposition). For
example, if xi contains 3 variables and M = L= 1, then the rm vectors are
(1,0,0), (0,1,0), and (0,0,1), resulting in k = 9 (not counting the constant). The
p × 1 function s(xi) prevents periodicity in the model by rescaling xi so that
it falls in the range [0, 2p–0.000001] (Gallant, 1987). This rescaling of each
element in xi is achieved by subtracting from each element in xi its minimum

3In addition to appending x to the Fourier series in equation (3.5), Gallant suggests appending quadratic
terms when modeling nonperiodic functions. Our experiments suggest that inclusion of the quadratic terms
in the specifications had little impact on the WTA estimates. Hence, we leave them out for the sake of
efficiency.
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value (from across the sample), then dividing this difference by the maximum
value (from across the sample), and then multiplying the resulting value by
[2π − 0.000001]. For example, if bid is the only explanatory variable, then rm

is a (1× 1) unit vector and max (M) equals 1. If furthermore, M = L and bid
offer Aj has more than three unique values, then

∆VεVV (Aj , θkj) = β1j + β2jAj + vjv cos s(Aj) + wwj sin s(Aj) (3.6)

If a variable has only three unique values, then only the v or w transformations
may be performed. In practice, the level of transformation in (3.6) generally
adds sufficient flexibility to the model. To apply this approach to the multivari-
ate discrete model, the ∆VεijVV = x′

ijβj terms in the MLE in (3.2) is replaced
with that in equation (3.6).

The SNP functional form for the RUM adds substantial flexibility to the
model, and if the assumption of the normal distribution is inappropriate, such
an effect should be seen through significant coefficients on the higher ordered
terms, noting that the parametric model (3.1) is nested in the SNP model (3.5).
Of course, statistical differences between the SNP and the parametric-based
MNP approaches may be due to incorrect specification of the functional form
or the density function, but these cannot be separably identified.

Table 5.1. Descriptions of the Farm Management Practices Presented in the Survey

Conservation Tillage (CONTILL) - Tillage system in which at least 30%
of the soil surface is covered by plant residue after planting to reduce soil
erosion by water; or where soil erosion by wind is the primary concern, at least
1,000 pounds per acre of flat small grain residue-equivalent are on the surface
during the critical erosion period.
Integrated Pest Management (IPM) - Pest control strategy based on the
determination of an economic threshold that indicates when a pest population
is approaching the level at which control measures are necessary to prevent a
decline in net returns. This can include scouting, biological controls and cultural
controls.
Legume Crediting (LEGCR) - Nutrient management practice involving the
estimation of the amount of nitrogen available for crops from previous legumes
(e.g. alfalfa, clover, cover crops, etc.) and reducing the application rate of
commercial fertilizers accordingly.
Manure Testing (MANTST) - Nutrient management practice which accounts
for the amount of nutrients available for crops from applying livestock or poultry
manure and reducing the application rate of commercial fertilizer accordingly.
Soil Moisture Testing (SMTST) - Irrigation water management practice
in which tensiometers or water table monitoring wells are used to estimate the
amount of water available from subsurface sources.
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Table 5.2. Frequency of Occurrence of Actual Adoption of Various BMP Combinationsa

CONTILL IPM LEGCR MANTST SMTST Freq (%)

1 0 0 0 0 36.66
0 0 0 0 0 15.32
1 0 1 0 0 9.41
1 1 0 0 0 8.92
1 1 1 0 0 7.37
0 1 0 0 0 3.78
1 0 0 0 1 3.30
1 1 1 1 0 2.33
0 0 1 0 0 1.94
1 1 1 0 1 1.94
1 0 1 1 0 1.36

Total Use of each BMP in the sample (percentage)
74.88 29.78 27.74 7.57 9.70

Notes: Only bundles with a reported frequency of one percent or greater are listed above.
The bundles above represent those reported by 92.33 percent of the farmers in the sample.
Sample size = 1,031. Only 0.87% of sample reported using all five practices.
a Coding: “1” = BMP is used; “0” = BMP is not used.

4. Numerical Illustration

The data used for the numerical illustration are taken from a data collection
and modeling effort undertaken jointly by the Natural Resource Conservation
Service (NRCS), the Economic Research Service (ERS), the U.S. Geologi-
cal Survey (USGS), and the National Agricultural Statistical Service (NASS).4

Data on cropping and tillage practices and input management were obtained
from comprehensive field and farm level surveys of about 1,000 farmers apiece
for cropping practices in each of four critical watershed regions. None of the
respondents indicated that they were enrolled in WQIP (the EQIP-like pro-
gram in existence at the time of the survey). Table 5.1 describes the five BMPs
that were addressed in the survey instrument. Table 5.2 presents the frequency
of occurrence of actual adoption of various BMP combinations in the sample.
As one would expect, the choice of bundles is clearly not distributed equaled
across the possible sets. Out of 32 possible combinations (including the null
set), over 92% of the farmers are accounted for by 11 combinations. How-
ever, Table 5.2 tells us nothing about what the socially optimal bundles are; the
farmer’s choice of bundle is largely a business decision, while the socially op-
timum choice balances economic and environmental costs and benefits. Here

4As the data is discussed in detail in Cooper and in Cooper and Keim (1996), for brevity and to avoid
repetition, we do not discuss the data in detail here.
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we focus on the hypothetical adoption decision by current nonusers of the prac-
tice, with the appendix presenting the analysis of the actual (current) adoption
decision. In the survey, current nonusers of each practice (i.e., those who said
that they did not currently use the practice) were asked if they would adopt the
BMP with an incentive payment of $[X] per acre, a value which was varied
across the respondents in the range 2 to 24.

For any one respondent however, to avoid anchoring biases across the re-
sponses, the offered bid was the same for each practice. Each of the five adop-
tion questions was placed on the same page so that the respondent was concur-
rently aware of all five. As the bid variable (cost share) is uncorrelated with
any other variables by the design of the survey instrument, it is the only rel-
evant variable for examining the relationship between the bid and probability
of acceptance and for calculating the mean benefit for the sample (McFadden
1994), with additional explanatory variables serving largely to stratify the sam-
ple. For brevity then,we present the results for the specifications with just the
bid variable.5 The appendix presents econometric results that relate a number
of explanatory variables to the actual decision to adopt, i.e., the analysis of
adoption where Aj = $0.

As only the adoption decision of current nonusers of the BMPs is analyzed
in the main body of this paper, the estimated probabilities are conditional prob-
abilities, which are conditional on nonadoption, i.e., PrFarmer accepts bid A
in turn for adoption of the BMPfarmer is not current user of the BMP. This
conditional probability is appropriate to the study of this policy goal of exam-
ining the USDA’s Environmental Quality Incentives Program (EQIP). This is
because EQIP offers cost shares only to current nonusers of the BMPs. Hence,
the policy relevant density function for EQIP is PrFarmer accepts bid A in turn
for adoption of the BMP—farmer is not current user of the BMP, and not the
unconditional PrFarmer accepts bid A in turn for adoption of the BMP. In other
words, concern over potential sample selection bias in examining only current
nonusers is eliminated if our policy interest is EQIP-like cost share programs.
In fact, for the purposes of these programs, we are only interested in the sub-
sample of farmers who do not currently use the BMPs.

The likelihood function and maximization routines were programmed by
the author in GAUSS.6 The estimation results are presented in Table 5.3 (cor-
relation coefficients are presented in Table 5.6 in the appendix). The second
and third columns in Table 5.3 are the results using the parametric RUM spec-

5Results for the SNP model with multiple regressors is too lengthy to present here, but are available upon
request from the authors.
6The only commercially available program that the authors are aware of that performs the MNP using the
simulated normal is an optional package in Limdep. However, the author found that modeling the data
on the five BMPs with the commercially available software was too computationally burdensome to be
practical.
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Table 5.3. Restricted and Unrestricted Multinomial Probit Estimates

Parametric SNP
Restricted Unrestricted Restricted Unrestricted

Practice Variable Coefficient Estimates (Asymptotic z-values)

CONTILL CONST –0.7815 –0.8199 –0.7783 –0.7520
–(4.252) –(5.750) –(2.445) –(2.962)

BID 0.0221 0.0187 0.0217 0.0150
(1.834) (1.838) (1.024) (.834)

sin s(BID) 0.0217 0.0738
(.287) (1.427)

cos s(BID) 0.0106 0.0179
(.105) (.239)

IPM CONST –1.0979 –1.0729 –1.1157 –1.0971
–(10.61) –(12.11) –(7.488) –(8.110)

BID 0.0325 0.0256 0.0344 0.0273
(3.970) (3.770) (2.839) (2.542)

sin s(BID) –0.0209 0.0004
–(.537) (.011)

cos s(BID) 0.0037 0.0087
(.069) (.212)

LEGCR CONST –1.7462 –1.4099 –1.5381 –1.3265
–(10.93) –(15.46) –(7.452) –(10.86)

BID 0.0469 0.0301 0.0283 0.0234
(4.118) (4.682) (1.678) (2.533)

sin s(BID) 0.0460 –0.0069
(.744) –(.215)

cos s(BID) –0.1208 –0.0646
–(1.683) –(1.156)

ification and the last two columns represent the SNP RUM model results. The
”restricted” columns present the results for the model where the off-diagonal
terms in the correlation matrix of the five practices are restricted to equal zero.
In this case, the estimated coefficients and standard errors are equivalent to
those from separate probit specifications for each practice. The coefficient on
the offer amount (BID) is of the expected sign and significant to at least the
10% level, and for most cases, the 1% level, except for those for CONTILL
in the SNP models, perhaps due to some collinearity in that case of BID with
the higher order terms. In fact, the bid offer for CONTILL was $2 per acre
lower, and hence, the bid range narrower, than for the other practices (which
all had the same bid offers), as pre-testing of the survey suggested that farm-
ers expected conservation tillage to receive a lower cost share than the other
practices. Note that the only two cases where one of the higher order terms is
significant is that on ”cos s(BID)” and ”sin s(BID)” in the restricted case for
adoption of LEGCR and SMTST, respectively.
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Table 5.3 (continued)
Restricted and Unrestricted Multinomial Probit Estimates

Parametric SNP
Restricted Unrestricted Restricted Unrestricted

Practice Variable Coefficient Estimates (Asymptotic z-values)
MANTST CONST –1.5757 –1.3729 –1.6911 –1.4134

–(12.15) –(13.97) –(8.562) –(10.77)
BID 0.0334 0.0226 0.0442 0.0264

(3.445) (3.033) (2.823) (2.530)
sin s(BID) –0.0817 –0.0482

–(1.634) –(1.382)
cos s(BID) 0.0233 0.0003

(.361) (.007)
SMTST CONST –1.4575 –1.3253 –1.4840 –1.3403

–(12.32) –(15.79) –(9.445) –(10.1)
BID 0.0327 0.0239 0.0311 0.0229

(3.661) (3.938) (2.496) (2.210)
sin s(BID) 0.0802 0.0364

(1.726) (.912)
Cos s(BID) 0.0339 0.0115

(.547) (.238)
ln L –2,511.60 –2,099.42 –2,505.85 –2,106.99

Notes: The unrestricted multinomial probit model estimates the correlation between the five
practices. The restricted model assumes the cross practice correlations are zero, and hence, its
coefficients and standard errors are the same as in individual standard results for each practice.
For each practice, probit the dependent variable = “1” if the farmer agrees to adopt the practice
at the offered bid (cost share), and “0” otherwise.

As the restricted model (i.e., each adoption function is independent of the
other) is nested within the unrestricted model for both the parametric and SNP
cases, the likelihood ratio statistic, namely LR = −2(lnLr − lnLu), can be
used to test the null hypothesis that farmers consider each BMP adoption deci-
sion independently from the other decisions. Given the log-likelihood values at
the bottom of Table 5.3, this hypothesis is not accepted for any reasonable level
of significance in either the parametric or SNP cases. As the unrestricted RUM
is nested within the unrestricted SNP RUM, a likelihood ratio test can be used
to test the null hypothesis that the BMPs are distributed normally with a linear
RUM. This hypothesis is also rejected, but the critical value of 15.14 is much
lower than those comparing the restricted and unrestricted models. In fact,
a simple visual comparison of the coefficients on BID between the restricted
(unrestricted) parametric and restricted (unrestricted) SNP models indicates no
major differences. The appendix provides the results for the MNP analysis of
current users versus nonusers of the BMPs.
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Table 5.4. Definitions of the Explanatory Variables

TACRE - Total acres operated (1123/2034).
EDUC - Formal education of operator (3.194/2.314).
EINDEX - Sheet and rill erosion index.
FLVALUE - Estimated market value per acre of land (1383/1023).
EXPER - Farm operator’s years of experience (24.83/20.15).
BPWORK - Number of days annually operator worked off the farm (42.71/99.15).
NETINC - Operation’s Net farm income in 1991 (24620/26890).
TISTST - Tissue test performed in 1992 (dummy)(0.029/0.149).
CTILL - Conservation tillage used in 1992 (dummy)(0.174/0.457).
PESTM - Destroy crop residues for host free zones (dummy)(0.163/0.355).
ANIMAL - Farm type-beef,hogs,sheep (dummy)(0.207/0.522).
ROTATE - Grasses and legumes in rotation (dummy)(0.049/0.239).
MANURE - Manure applied to field (dummy)(0.147/0.430).
HEL - Highly erodible land (dummy)(0.174/0.457).
IA - Sample located in the Eastern Iowa or Illinois Basin Area (dummy)(0.729/0.721).
ALBR - Sample located in Albermarle-Pamlico Drainage Area (dummy)(0.088/0.209).
IDAHO - Sample located in the Upper Snake River Basin Area (dummy)(0.123/0.341).

Note: values in brackets are mean/standard error.

Two basic conclusions follow from this analysis. One is that none of the
available variables stand out as an important predictor of current use (the SNP
specification was not practical with this larger data set).7 But the most relevant
result for this study is that the restricted MNP model is rejected at any rea-
sonable level of significance, given that the log-likelihood for the unrestricted
MNP model of –2,176, and the log-likelihood value for the (nested) restricted
model (not shown) is –2,223. This result can be interpreted as empirical evi-
dence that the correct decision was made for the hypothetical survey questions
to make the respondent concurrently aware of each of the possible BMPs.

For the analysis of hypothetical adoption, the correlation coefficients be-
tween the practices are significant to at least the 1% level as well, regardless of
whether they are estimated for the parametric or SNP models (Appendix 5.6,
second and third set of numbers). The correlation coefficients for the mod-
els predicting current use (first set of numbers in Table 5.6) tend to be less
significant than the correlations between the hypothetical use results.

This difference in significance is to be expected; whether or not the farmer
is a current user of the BMPs is a result of an evolutionary process, while the

77 The decision on which variables to include in the specifications for each of the practices was based on
whether or not the variables appear justified from a farm management standpoint.
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Table 5.5. Multinomial Probit Regression Results Predicting Actual BMP Use/Nonuse

CONTILL IPM LEGCR MANTST SMTST

Variable Coefficient Estimates (Asymptotic z-values)

CONST –0.0005 –0.7960 –0.9896 –1.5657 –0.8799
–(.002) –(3.123) –(2.743) –(2.934) –(1.995)

EDUC –0.0072 0.1713 0.0928 0.0444 0.0158
–(.198) (4.973) (2.838) (.814) (.226)

CTILL 0.3638 – – – –
(3.583)

TISTST – – -0.1174 -1.9290 –
-(.402) -(2.107)

HEL –0.0665 – – – –
–(.536)

EXPER 0.0018 –0.0027 –0.0015 –0.0064 –0.0053
(.489) –(.706) –(.424) –(1.034) –(.736)

PESTM –0.0046 0.3862 – – –
–(.032) (2.998)

ROTATE 0.0442 –0.0041 0.2687 – –
(.196) -(.018) (1.500)

MANURE –0.1153 –0.1821 0.0957 0.3512 –
–(.954) –(1.336) (.828) (2.167)

ANIMAL –0.0074 –0.2869 –0.0071 0.1424 –0.2030
–(.062) –(2.246) –(.068) (.868) –(.860)

TACRE 7.38E-06 5.66E-05 –3.07E-06 –1.85E-05 3.66E-05
(.235) (1.513) –(.088) –(.466) (.886)

FLVALUE –2.46E-05 5.24E-05 –0.0001 –7.22E-05 –1.86E-05
–(.310) (.739) –(1.636) –(.579) –(.137)

IA 0.4343 –0.0815 0.8586 0.7698 –0.4328
(2.017) –(.398) (2.862) (1.792) –(1.498)

ALBR 0.4087 –0.1323 –0.3991 –0.1349 –1.6877
(1.478) –(.479) –(1.113) –(.261) –(4.01)

IDAHO 0.2278 –0.3957 0.5796 0.4910 0.2289
(.917) –(1.667) (1.805) (1.021) (.795)

BPWORK –0.0002 –0.0003 –0.0008 0.0002 –0.0004
–(.400) –(.534) –(1.541) (.218) –(.382)

NETINC 1.02E-06 6.21E-07 –3.23E-06 –2.19E-06 7.53E-06
(.394) (.286) –(1.524) –(.655) (1.772)

Note: For each BMP, the dependent variable = “1” if the farmer currently uses the BMP
and “0” otherwise. Log-Likelihood = –2,175.86.

hypothetical adoption decisions are made over a bundle of practices offered to
the farmer at one point in time in a survey instrument.8

8An EQIP contract application is submitted at a particular point in time, when the proposed practices have
not yet been adopted. The farmer is paid per year for each of the practices he agrees to adopt over the life
of the contract.
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Table 5.6. Estimates of Correlations Between the BMPs.

Practice CONTILL IPM LEGCR MANTST SMTST

Regression Predicting Actual BMP Use/Nonuse
CONTILL –
IPM 0.1230 (1.6) –
LEGCR 0.2020 (2.7) 0.4010 (7.2) –
MANTST 0.0451 (0.4) 0.4170 (5.2) 0.5310 (6.7) –
SMTST 0.1860 (1.8) 0.2040 (2.1) 0.1240 (1.3) 0.3050 (2.7) –

Regression for the Hypothetical Adoptors Only - Parametric
CONTILL –
IPM 0.7379 (16.1) –
LEGCR 0.7584 (17.7) 0.8151 (22.4) –
MANTST 0.5295 (7.2) 0.7341 (14.7) 0.8936 (28.1) –
SMTST 0.6052 (9.7) 0.6700 (12.3) 0.7857 (15.1) 0.7649(16.9) –

Regression for the Hypothetical Adoptors Only - SNP
CONTILL –
IPM 0.7400 (15.7) –
LEGCR 0.7776 (18.2) 0.8188 (22.5) –
MANTST 0.5545 (7.6) 0.7508 (15.1) 0.8957 (28.3) –
SMTST 0.6120 (9.7) 0.6722 (12.1) 0.7906 (14.8) 0.7749(17.4) –

Next, given that the restricted correlation model is not accepted (i.e., the
BMP adoption decisions are not independent across BMPs), we turn to an
evaluation of how the unrestricted MVN results can be used for analysis of
bundling. The basic value of the multivariate analysis is it allows us to calculate
the joint probabilities as a function of the incentive payments.

Figures 5.1 through 5.4 provide examples of how the joint probability
changes as a function of the incentive payment offers for four of the five
BMPs analyzed here, i.e., the curves represent ∂GC (C1, ..., CJ)/∂CjC calcu-
lated across a wide range of cost share offers. For example, Figure 5.1 plots
the probability of non-acceptance of the conservation tillage cost share as a
function of the cost share offer amount, given the value of the cost share offers
for the other four BMPs. In Figure 5.1, four scenarios (numbers 2 through 5)
with different fixed offers for BMPs other than CONTILL are presented. For
comparison, scenario 1 is the predicted probability for the standard univariate
normal density function that does not explicitly account for the other bid offers.

Given the estimates of the CDFs generated from the analysis of discrete
responses in the figures, the question may arise of how to summarize these
distributions of WTA for practical purposes. In the discrete choice contingent
valuation (CV) literature, the most common summary statistic is the mean of
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Figure 5.1. Conservation tillage. Probability of rejecting offers at different cost share per acre.

Figure 5.2. IPM. Probability of rejecting offers at different cost share per acre.
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Figure 5.3. Legume crediting. Probability of rejecting offers at different cost share per acre.

Figure 5.4. Manure testing. Probability of rejecting offers at different cost share per acre.
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the estimated WTP or WTA distribution. Given the estimated coefficients from
the multivariate probit model, it is possible to calculate measures of conditional
mean WTA. Hanemann (1984) notes that in the case where the benefit measure
CRC is restricted to the non-negative range, its mean value can be found using
the following formula for the mean of a random variable:

CRC =

∞∫
0

F (C)dc, (4.1)

where F (C) = F [−∆VεVV (s, C, θ)] is the cumulative density function for
WTP.910 Here we present a new application, in which the mean of the ben-
efit measure for one good is calculated conditional on the bid offers made for
other goods, an application made possible by the estimation of the multivari-
ate normal CDF. Given a five dimensional version of the multivariate CDF in
equations 2.3 and 3.4, one can take the integral under F with respect to one
of the BMPs, thereby yielding a mean WTA for that BMP, conditional on the
cost share offer amounts for the other BMPs. For example, for BMP j = 2 the
mean WTA, CRC (2), is

CRC (2) =

∞∫
0

F(2)FF (A1, C2CC , A3, A4, A5) dc2 (4.2)

In other words, Equation (4.2) corresponds to the area under the curves in Fig-
ures (5.1) through 5.4. Of course, given that a numerical approach is used to
calculate the multivariate CDF, the mean value must also be calculated numeri-
cally. The lower right hand corner of each figure presents the mean WTA values
for each scenario, with the value associated with scenario 1 calculated using
Equation 4.1 and the values associated with scenarios 2 through 5 calculated
using appropriate variations of Equation (4.2).

In Figures 5.1 through 5.4, the probability functions and mean WTA val-
ues differ little for scenarios 1 and 2, with the latter being consistently lower,
although little perhaps can be said of this comparison as the results are gener-
ated from two different density function assumptions. Bigger differences tend
to occur between scenario 2 and the other joint density scenarios (scenarios 3
through 5 in each figure). As is expected, the lowest minimum WTA in each
figure is associated with scenario 3, the one in which all the BMPs except the
one in question (e.g. CONTILL in Figure (5.1)) are offered at a cost share

9In this study, we are interested in comparisons of E(WTA) between the scenarios and not what the ideal
benefit measure should be. For a discussion of the pros and cons of various benefit measures and issues of
consistency of the estimated distribution with the benefit measure, see Hanemann and Kanninen (2001).
10WTP, the integral is taken over 1 − F (C), where F (C) = F [−∆VεVV (s, C, θ)]
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of $30 per acre. In other words, given that adoption of the practices is posi-
tively correlated (Table (5.6)), one would expect that more a farmer is offered
to adopt a set of related practices, the less she will be willing to accept for
the practice in question. Hence, for comparisons of scenarios 2 through 5,
WTA should be highest under 2 and lowest under 3. This relationship holds
for each of the four figures. However, what is interesting from the standpoint
of bundling the BMPs is that only one or two of the BMPs in scenario 3 in
each figure may be driving much of the reduction in WTA over scenarios 2, 4,
and 5. First take Figure 5.1. In this figure, WTA under scenario 4 is not much
higher than under scenario 3 even though only two of the other costs are being
offered at nonzero cost shares. In fact, as shown in Table 5.2, the bundle CON-
TILL, IPM, LEGCR in scenario 4 is used by 7.37% of the actual users, while
only 0.19% use the bundle CONTILL, MANTST, SMTST in scenario 5.11 In
Figure 5.2, the WTA for IPM in conjunction with CONTILL and SMTST cost
shares at $30 (scenario 5) was almost as low as that with the four BMPs being
offered at $30 in scenario 3 (scenario 3). For Figure 5.3, no pairs of BMPs
offered at $30 in conjunction with LEGCR seemed to offer the bulk of the
decrease in WTA associated with that in moving from scenario 2 to 3. In Fig-
ure 5.4 however, offering CONTILL and SMTST at $30 (scenario 5) yielded a
WTA for MANTST almost as low as that for scenario 3.

5. Conclusion

This chapter develops an econometric model based on the multivariate nor-
mal distribution that identifies producer tendencies to bundle types of manage-
ment practices that may be covered under an incentive payment system. Iden-
tifying producer tendencies to bundle these types of practices may increase
adoption and lower the costs of voluntary adoption programs. Although the
scenario examined here relies on payments to encourage adoption, identifying
these producer tendencies can also lower the government’s costs of voluntary
adoption programs that rely on the dissemination of information to encourage
adoption. Since a critical component of voluntary adoption is producer per-
ceptions, as in the numerical illustration, identifying and packaging BMPs that
are perceived to be jointly beneficial, or bundled, may increase adoption and
lower the costs of the programs. Thus, jointly modeling the observed adop-
tion data across the BMPs can indicate which practices should be bundled into
composite practices.

11Further breakdowns of scenario 4 could be used to test whether IPM or LEGCR are contributing most to
reducing WTA from the level under scenario 2, but are not considered here for the sake of brevity, given that
the target audience for the detailed information on the bundles are managers of the cost sharing program,
and perhaps not the general readership of this journal.
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Our model can be used to identify programs costs in the currently less than
ideal situation facing EQIP (and all similar programs), where the environmen-
tal benefits associated with BMP adoption are unquantified. Research is per-
haps moving in the direction of quantifying (if not monetizing) the environ-
mental benefits of such practices, e.g. the USGS’ Sparrow model may be mod-
ified in the future to measure impacts on sediment and nutrient loadings in
watersheds that are associated with such practices. Given our estimated model
in conjunction with an environmental benefits model, benefit-cost tradeoffs of
BMP adoption can be assessed.
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Abstract Although the estimation of flexible multinomial discrete choice models gener-
ally needs the incorporation of simulation methods, their application is recently
common in environmental and resource economics such as in many other eco-
nomic disciplines (e.g. transportation economics). Based on a firm level data
set of the German manufacturing sector, this paper examines determinants of
environmental innovations by comparing the estimation results in flexible multi-
nomial probit models and restrictive multinomial logit and independent probit
models. The analysis of the two latter models implies that some specific en-
vironmental organizational measures, technological opportunities, and market
pull factors have a significantly positive effect on both environmental product
and process innovations. Taking this into consideration, the flexible multinomial
probit model analysis provides few new insights since the simulated maximum
likelihood estimations are rather unreliable as a consequence of the sole inclu-
sion of firm-specific characteristics as explanatory variables. In this respect,
the incorporation of simulation methods into the maximum likelihood estima-
tions is not crucial since the problems do not decrease if the number of random
draws in the considered Geweke-Hajivassiliou-Keane simulator rises. Further-
more, the difficulties grow if the number of choice alternatives increases. It can
therefore be concluded that the applicability of these flexible multinomial dis-
crete choice models without the incorporation of choice-specific attributes as
explanatory variables is rather limited in practice.

Keywords: Environmental innovations, double dividend, multinomial probit.
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1. Introduction

Although the estimation of flexible multinomial discrete choice models gen-
erally needs the incorporation of simulation methods due to the underlying
multiple integrals, their application has only recently become common in en-
vironmental and resource economics (see e.g. Bjørner et al., 2004, Rennings
et al., 2004) as well as in many other economic disciplines (e.g. transportation
economics, see Bolduc, 1999, Brownstone and Train, 1999, Greene and Hen-
sher, 2003). Based on a firm level data set of the German manufacturing sector,
this paper examines determinants of different types of environmental innova-
tions as a measure of environmental performance by comparing the estimation
results in multinomial probit models (MPM) and multinomial logit models
(MLM). The background is that such environmental innovations receive in-
creasing attention from policy makers and scholars since they are expected to
produce a double dividend, i.e. limit environmental burden and contribute to
the technological modernization of the economy (see Rennings, 2000, Jaffe et
al., 2002).

It is well-known that the popular MLM (see McFadden, 1974) have re-
strictive properties due to the underlying assumptions regarding the stochastic
model components. Whereas the independent MPM are still rather restrictive
(see Hausman and Wise, 1978) due to the independence assumption in these
components, the flexible variants of the MPM (see e.g. Börsch-Supan and¨
Hajivassiliou, 1993) are a general framework since they allow correlations be-
tween the choice alternatives of the dependent variable. Indeed, the application
of flexible MPM requires the inclusion of simulators into an estimation method
due to the underlying multiple integrals in the choice probabilities. In this
paper, the maximum simulated likelihood method (MSL), i.e. the simulated
counterpart of the maximum likelihood method (ML), incorporating the so-
called Geweke-Hajivassiliou-Keane (GHK) simulator (see Börsch-Supan and¨
Hajivassiliou, 1993, Geweke et al., 1994, Keane, 1994) is considered, since its
use seems to be advantageous compared with the use of other combinations of
classical estimation methods and simulators.1

This paper is organized as follows: In the second section, the methodologi-
cal approach as well as the dependent and explanatory variables for the empir-
ical analysis are explained. The third section provides some details concerning
the firm level data set. In the fourth section, the estimation results in the differ-

1A general practical advantage is that the MSL estimation of MPM has been implemented directly in some
software packages (e.g. GAUSSX and LIMDEP) in contrast to other simulated classical estimations of
MPM and also (to my knowledge) in contrast to the MSL estimation of mixed logit models as alternative
flexible multinomial discrete choice models (see e.g. Revelt and Train, 1998, Brownstone and Train, 1999,
McFadden and Train, 2000, Greene and Hensher, 2003, Bjørner et al., 2004).
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ent multinomial discrete choice models are compared. The final section draws
some conclusions.

2. Methodological Approach and Variables

2.1 Background on Determinants of Environmental
Performance

Environmental product and process innovations as specific kinds of conven-
tional product and process innovations (as defined in the Oslo-Manual of the
OECD, 1997) consist of new or modified products and processes to avoid or
reduce environmental harms (see e.g. Rennings and Zwick, 2002). It is often
argued that self-regulated environmental organizational measures such as the
certification for environmental management systems (EMS) are able to pro-
mote such innovations (see e.g. Rennings et al., 2003). In this respect, initia-
tives regarding the encouragement of firms to participate in voluntary pollution
prevention programs play a central role in the discussion of so-called soft en-
vironmental policy instruments (see e.g. Arora and Cason, 1995, Khanna and
Damon, 1999). By analyzing the effect of environmental organizational mea-
sures, this paper differs from other econometric studies that examine determi-
nants of such measures (see e.g. Henriques and Sadorsky, 1996, DeCanio and
Watkins, 1998, Nakamura et al., 2001, Khanna and Anton, 2002). Concerning
the analysis of such measures as determinants of environmental performance,
it rather has some analogies to the studies of Khanna and Damon (1999), Das-
gupta et al. (2000), or Anton et al. (2004). But in contrast to these studies,
this paper considers environmental product and process innovations as indica-
tors for environmental performance instead of narrower proxies such as toxic
chemicals according to the Toxic Release Inventory (TRI) or self-assessed en-
vironmental regulatory compliance.

Jaffe and Palmer (1997) examine the effect of environmental regulatory
compliance expenditures on innovation activities. Indeed, they consider in-
novation activities in general, i.e. not specifically environmental activities. To
my knowledge, the only econometric analyses of determinants of environmen-
tal innovations can be found in Cleff and Rennings (1999), Rennings et al.
(2003), and Brunnermeier and Cohen (2003). However, the former two stud-
ies examine restrictive samples of companies so that the conclusions regard-
ing determinants of environmental innovations are limited. The latter study
does not consider the effects of environmental organizational measures. Fur-
thermore, it measures environmental innovations by the number of successful
environmental patent applications. Instead, this paper considers the end of the
innovation process and thus applies the innovation definition according to the
Oslo-Manual of the OECD (1997). But most notably, Brunnermeier and Co-
hen (2003) only utilize aggregated data at the industry level. This is the reason
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why they are not able to examine firm-specific determinants of environmental
innovations so that the conclusions based on their analysis are again limited. In
contrast, a firm level data set of the German manufacturing sector is analyzed
in this paper.

2.2 Multinomial Discrete Choice Models

This paper particularly considers multinomial discrete choice models. Note
that not only determinants of environmental innovations in general are exam-
ined since the underlying data include information on environmental product
and process innovations. This is the reason why binary discrete choice mod-
els are not analyzed. In the framework of binary logit or probit models for
the explanation of a specific type of environmental innovation (see the re-
sults in Ziegler and Rennings, 2004), the basic choice alternative may also
comprise another type of environmental innovation. Thus, these simple dis-
crete choice models cannot examine determinants of specific types of environ-
mental innovations compared with the absence of environmental innovations
as basic alternative. However, such an analysis is possible with multinomial
discrete choice models by constructing suitable mutually exclusive alterna-
tives. This paper compares the estimation results in three-alternative and four-
alternative discrete choice models. In this framework, it is assumed that a firm
i (i = 1, . . . , N ) realizes one specific type j (j = 1, . . . , J with J = 3 in the
three-alternative and J = 4 in the four-alternative case) of mutually exclusive
types of environmental innovations (including the possibility of the realization
of no environmental innovation). The underlying (unobservable) latent vari-
ables have the following appearance:

UijUU = βjβ ′xi + εij

In this framework, one can imagine UijUU of firm i as an attraction measure for
the profit with reference to the realization of environmental innovation type
j. The vectors xi = (xi1, . . . , xi,24)′ comprise 23 explanatory variables as
discussed below and one constant. The corresponding unknown coefficient
vectors are βjβ = (βjβ 1, . . . , βj,β 24)′. The coefficient vectors β3 in the three-
alternative and β4ββ in the four-alternative discrete choice models are restricted
to zero to ensure the formal identification of the models. The values of the la-
tent variables UijUU cannot be observed and depend on the stochastic components
εij that summarize all unobserved factors that influence the environmental in-
novation decision. Observable are the realizations of the following Bernoulli
variables:

Dij =
{

1 if firm i realizes environmental innovation type j
0 otherwise
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It is assumed that i chooses j if UijUU is greater than all other UijUU ′ (j �=�� j′; j, j′ =
1, . . . , J). In other words, firm i chooses environmental innovation type j if its
realization leads to a higher profit than the realization of all other environmen-
tal innovation types. The probability for the choice of j by i is therefore:

PijPP = P (UijUU > UijUU ′)

The choice probabilities PijPP particularly depend on the unknown parameters,
summarized in the vector θ. This parameter vector comprises the coefficients
of the explanatory variables in βjβ and the variance covariance parameters in the
flexible MPM as discussed below. By incorporating these choice probabilities
PijPP (θ) into the ML estimator and by considering N independent observations,
one obtains the specific ML estimator:

θ̂ = arg max
θ

⎡
⎣ N∑

i=1

J∑
j=1

Dij lnPijPP (θ)

⎤
⎦

If it is assumed that the stochastic components εij (∀i, j) are independently and
identically distributed with Type I extreme value density functions, one obtains
the popular MLM(see McFadden, 1974). Since the choice probabilities PijPP (θ)
have a simple structure, these multinomial discrete choice models can be eas-
ily estimated by the ML, implemented in standard software packages. If it is
assumed that the εij (∀i, j) are independently and identically distributed stan-
dard normal random variables, one comes to the independent MPM. Indeed,
both multinomial discrete choice models are based on the restrictive indepen-
dence assumption in the stochastic components εij . On the one hand, this
leads to the so-called independence of irrelevant alternatives (IIA) property in
the MLM. This property implies that the choice between two alternatives is
independent of the existence of other alternatives and thus may be limiting in
many cases. On the other hand, the independent MPM are likewise restrictive
and have properties similar to the IIA (see Hausman and Wise, 1978).

In contrast, the flexible variants of the MPM (see e.g. Börsch-Supan and¨
Hajivassiliou, 1993) are a general framework since they allow correlations be-
tween the choice alternatives of the dependent variable (i.e. the environmental
innovation types). One obtains these models if it is assumed that the εij are
jointly normally distributed:

εi = (εi1, . . . εiJ) ∼ NJ(0; ΣJ)

The variance covariance matrices ΣJ = (σjjσ ′) contain six or ten different vari-
ance and covariance parameters in three-alternative or four-alternative probit
models. However, not all these parameters are formally identifiable (see e.g.
Dansie, 1985, Bunch, 1991). Only two or five variance covariance parameters
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can at most be formally identified in these MPM. This paper restricts the vari-
ances σJJ and σJ−1,J−1 to the value one and the covariances σjJσ (∀j∀ �=�� J)
to the value zero. Consequently, only one variance and one covariance in the
three-alternative as well as two variances and three covariances in the four-
alternative case are freely estimable. Due to practical aspects, the correspond-
ing standard deviations σjσ (j = 1, . . . , J − 2) and correlation coefficients
corr(εij , εij′) = σjjσ ′/

√
σjjσ σjσ ′j′ (j, j′ = 1, . . . , J − 1; j �=�� j′) are examined in

this paper (for details see Ziegler and Eymann, 2001).
The practical disadvantage of the application of flexible MPM is the in-

convenient form of the choice probabilities PijPP (θ) that are characterized by
(J −1)-dimensional integrals. Therefore, the ML estimations of flexible MPM
with many choice alternatives are computationally infeasible with determinis-
tic numerical integration methods and thus standard software packages cannot
be utilized. But the PijPP (θ) can be quickly and accurately approximated with
(unbiased) stochastic simulation methods, i.e. with R repeatedly transformed
draws of (pseudo-) random numbers (see e.g. the overviews in Hajivassiliou et
al., 1996, or Vijverberg, 1997). In this paper, the GHK simulator (see Börsch-¨
Supan and Hajivassiliou, 1993, Keane, 1994, Geweke et al., 1994) is examined
since it outperforms other simulation methods with regard to the approximation
of the true probability. For the GHK simulator, repeated sequential (pseudo-)
random draws from the truncated standard normal distribution have to be made.
By incorporating the simulated choice probabilities into the ML estimator, the
MSL estimator (see e.g. Gourieroux and Monfort, 1993) is obtained.´

Note that the ML estimations in the present case of three-alternative and
four-alternative probit models would be possible with deterministic numerical
integration methods. Indeed, the conventional ML estimations are not gener-
ally better than the MSL estimations if multiple integrals arise. With regard
to the necessary incorporation of simulation methods into the ML estimations
of MPM with more than four choice alternatives, the influence of the GHK
simulator on the reliability of the estimation results is also examined in this
paper. Note furthermore that the independent MPM are in principle computa-
tionally not problematic due to the independence assumption in the stochastic
components εij as aforementioned.2 The choice probabilities PijPP (θ) are only
characterized by one-dimensional integrals even if the number J of choice al-
ternatives is large. With regard to the comparison to the MSL estimations of
the flexible variants of the MPM, the GHK simulator is also incorporated into
the ML estimations of the independent MPM.

2One obtains these restrictive variants of the MPM if it is assumed that the variance covariance matrix ΣJ

of εi as discussed above is the identity matrix.
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2.3 Dependent and Explanatory Variables

In this paper, environmental product innovations mean the planned intro-
duction of an environmentally improved or a new environmentally friendly
product (e.g. solvent-free paints or energy efficient products such as cars or
washing machines) to the market by the end of 2005. Environmental process
innovations mean the planned realization of a more environmentally friendly
composition of one or more firm-internal processes (e.g. water recycling or
flue gas desulphurization) in this period (independent of the realization of en-
vironmental product innovations). As aforementioned, three-alternative and
four-alternative discrete choice models are examined. Concerning the three-
alternative case, environmental innovation type j = 1 comprises both an en-
vironmental product and a process innovation and j = 2 contains either an
environmental product or a process innovation, but not both types together.
The basic choice alternative j = 3 comprises neither an environmental prod-
uct nor a process innovation. Regarding the four-alternative case, j = 1 is
the same as in the three-alternative case. The environmental innovation type
j = 2 comprises an environmental product, but not a process innovation, and
j = 3 comprises an environmental process, but not a product innovation. The
basic choice alternative j = 4 is identical to the corresponding basic choice
alternative j = 3 in the three-alternative discrete choice models.

Concerning environmental organizational measures as major explanatory
variables, particularly the effects of two different certifications for EMS are
analyzed. The environmental audit regulation EMAS (Eco Management and
Audit Scheme, enacted by the European Union) and ISO 14001 (published
by the International Standard Organization) are the most important standards
for environmental management and eco-audit. Compared with the European
EMAS standard, ISO 14001 has a world-wide dimension. Both standards are
aimed at the improvement of the environmental protection of organizations.
Furthermore, it is argued that the certification for EMAS and ISO 14001 is
able to promote environmental innovations (see e.g. Rennings et al., 2003). In
the following, the dummy variables “ISO14001i” or “EMASi” take the value
one if at least one facility of firm i is presently (in 2003) certified according to
ISO 14001 or EMAS. Beyond these certifications for EMS, the effects of some
specific environmental organizational or management measures are also exam-
ined. The dummy variables “Lifecyclei” or “Disposali” take the value one if
company i presently evaluates products by means of life cycle considerations
or if it presently performs measures concerning the disposal or withdrawal of
products. Finally, another certified non-environmental organizational measure,
namely the certification for the quality management system ISO 9001, is in-
cluded. The corresponding dummy variable “ISO9001i” takes the value one if
one or more facilities of i are presently certified according to ISO 9001.
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This paper also takes into account some insights from industrial economics
(see e.g. Pavitt, 1984, Harabi, 1997, Ebling and Janz, 1999, Gottschalk and
Janz, 2003), i.e. some variables that may influence the realization of inno-
vations in general and thus environmental innovations as specific kinds of in-
novations are considered. Due to the highest explanatory power in prelimi-
nary investigations (see Ziegler and Rennings, 2004), the following explana-
tory variables are examined: As market pull factors, the dummy variables
“Comp-Pressurei”, “Comp-Factor-Clienti”, and “Comp-Factor-Environmenti”
that take the value one if company i states that the pressure of competition on
the most important sales market has increased within the previous three years
(from the beginning of 2001 until 2003), if it states that customer satisfaction
is an important factor to deliver competitive advantages on the most important
sales market, and if it states that environmental issues are similarly an impor-
tant factor to deliver competitive advantages on this market (in each case within
the previous three years). Concerning R&D activities in general as technolog-
ical opportunities, the corresponding dummy variable “R&Di” that takes the
value one if firm i has carried out R&D activities in the previous year (2002)
is considered. Regarding exports, the variable “Exportsi” that takes the value
one if i has exported in the previous year is analyzed.

Concerning firm size as further explanatory firm-specific characteristic,
this paper includes the variable “Ln-Employees-Squaredi” that indicates the
squared logarithm of the number of salaried employees (divided by 10 due to
scaling) of i at the end of the previous year. Regarding present firm age (i.e. the
years since foundation or since the last organizational modification, i.e. fusion
or splitting), the variables “Reciprocal-Agei” and “Reciprocal-Age-Squaredi”
that indicate the reciprocal of the age of firm i and the squared reciprocal of the
age of i (in each case multiplied by ten due to scaling) are considered. Note that
it has also been experimented in preliminary investigations with some other
variables concerning firm size and firm age, i.e. with the unsquared and/or
squared firm size, the unsquared logarithm of firm size, the unsquared and/or
squared firm age, or the unsquared and/or squared logarithm of firm age. How-
ever, although the inclusion of different firm size and firm age variables leads to
qualitatively similar estimation results, the inclusion of the former three vari-
ables has the highest explanatory power. Finally, a dummy variable for the
present number of facilities, eight industry dummy variables, and a regional
dummy variable (for Western Germany excluding Berlin) are also examined.
Note that these explanatory control variables are utilized in all ML or MSL es-
timations of the multinomial discrete choice models, albeit the corresponding
coefficient estimates are not displayed below for brevity. In the following, the
indices i are neglected in the analysis of the explanatory variables.
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3. Data

The utilized data are based on a telephone survey that has been conducted at
the Centre for European Economic Research (ZEW) in Mannheim, Germany,
in the second half of 2003. The population is the universe of all German man-
ufacturing companies (NACE-Codes 15-37) with at least 50 employees. Based
on the database of ”Creditreform” (the largest German credit rating agency),
2,998 addresses were drawn from a stratified representative sample consider-
ing two firm size classes (less than 200 and at least 200 employees), eleven
industries, and two regions (Western and Eastern Germany). It was tried to
reach 2,511 of these 2,998 companies. 112 of these 2511 companies could
not be reached, 1811 have refused to participate, and 588 and thus 24.5% of
the 2,399 reached companies have participated.3 The person responsible for
production in the company has been the target of the interviews. Note that all
firm-specific questions and thus all variables discussed above refer to all facili-
ties of a company in Germany. In contrast, the firm-specific information in the
database of “Creditreform” e.g. concerning the number of employees refer to
all world-wide facilities. As a consequence, the sample comprises some com-
panies with less than 50 (salaried) employees. Altogether, N =390 of the 588
companies that have participated can be examined in the econometric analysis.
Note that besides the companies with missing data regarding the aforemen-
tioned variables, firms that have been founded or organizationally modified in
the years 2002 or 2003 are excluded since many questions refer to the period
from 2001 to 2003. With regard to firm size, industries, and regions, it has
been tested whether the corresponding shares for these N =390 firms com-
ply with the shares from the population. The appropriate two-tailed tests have
shown that the underlying null hypotheses can never be rejected at the 10%
level of significance. Thus, sample selection bias should not be a problem.
However, only these tests could be performed since such population informa-
tion is merely available for these variables. In contrast, there exists e.g. no
information regarding corporate environmental innovativeness in Germany.

Concerning the environmental product and process innovations, the compa-
nies have been questioned whether they have introduced these measures within
the previous three years and whether they plan to realize these measures in the
next two years, independent of any innovative activity in the past. Note that
the past environmental innovations are not utilized in the econometric analysis
because e.g. environmental organizational measures may depend on environ-
mental innovations which makes these explanatory variables endogenous. By
including explanatory variables surveyed for the past and future environmen-
tal innovations or (in other words) by examining lagged explanatory variables,

3This participation rate is rather ordinary in telephone surveys in Germany
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this econometric problem can be reduced (see also Arora and Cason, 1995).
Regarding the different environmental innovation types in the three-alternative
and four-alternative discrete choice models of the N =390 companies, 119
(=30.5%) will realize both an environmental product and a process innovation,
164 (=42.1%) will realize either an environmental product or a process innova-
tion, but not both types together, 137 (=35.1%) will realize an environmental
process, but not a product innovation, 27 (=6.9%) will realize an environmen-
tal product, but not a process innovation, and 107 (=27.4%) will neither realize
an environmental product nor a process innovation.

The ML estimations of the MLM have been performed with the software
package STATA. In doing so, the so-called robust estimates of the standard
deviations of the coefficient estimates (according to White, 1982, for details
see the handbooks of STATA) to calculate the z-statistics are considered. The
MSL estimations of the independent and flexible MPM have been carried out
with a self-developed GAUSS program. For calculating the z-statistics in the
framework of these MSL estimations, the standard deviations of the coefficient
estimates have also been estimated robustly (by means of the GHK simulator,
for details regarding simulated z-tests see Ziegler, 2001). In the following, the
effect of a variable is regarded as insignificant if the absolute value of the cor-
responding z-statistic is smaller than 1.65. Note that for analyzing the MSL
estimations, it has been experimented with different numbers R of random
draws in the GHK simulator due to the inconsistent findings about the reason-
able number in the literature (see e.g. Börsch-Supan and Hajivassiliou, 1993,¨
Geweke et al., 1997, Ziegler and Eymann, 2001).

4. Results

4.1 Multinomial Logit and Independent Probit Analysis

Table 6.1 reports the estimation results in the logit models. According to
this, the variables “Lifecycle” and ”Disposal” have a positive influence on en-
vironmental innovation type j =1 (compared with the absence of environmen-
tal innovations as basic choice alternative) in both MLM at the 5% level of
significance. Furthermore, measures concerning the disposal or withdrawal of
products have a positive influence on j =2 at the same level of significance.
Concerning both types of certified EMS, the variable “ISO14001” has a sig-
nificantly positive effect on j =1 in both MLM, albeit only at the 10% level
of significance. At the same level of significance, it also has a positive influ-
ence on j =2 in the three-alternative and on j =3 in the four-alternative logit
model. In contrast, the EMAS certification has no significant effect in both
MLM. Thus, this analysis implies that specific environmental organizational
measures may stimulate environmental product and process innovations to a
somewhat larger extent than entire EMS. Measures concerning the disposal
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or withdrawal of products additionally have a particularly strong effect on the
realization of environmental product innovations. Finally, the ISO 9001 cer-
tification, like the ISO 14001 certification, has a similar positive influence on
j = 1 in both MLM and on j = 3 in the four-alternative logit model at the
10% level of significance.

Table 6.1. ML Estimates in the Multinomial Logit Models

Explanatory Three-alternative model Four-alternative model
variables β̂1 β̂2 β̂1 β̂2 β̂3

Constant
–4.30 –2.30 –4.34 –6.82 –2.19

(–3.58) (–2.43) (–3.61) (–2.98) (–2.27)

ISO14001
0.78 0.76 0.78 0.66 0.77

(1.69) (1.77) (1.68) (0.92) (1.78)

EMAS
0.24 –0.29 0.24 –0.24 –0.30

(0.35) (–0.45) (0.36) (–0.21) (–0.45)

Lifecycle
1.02 –0.06 0.97 –1.45 0.09

(2.05) (–0.11) (1.97) (–1.19) (0.17)

Disposal
1.00 0.64 1.02 1.19 0.53

(2.84) (2.02) (2.90) (2.21) (1.63)

ISO9001
0.69 0.40 0.65 –0.19 0.54

(1.87) (1.32) (1.77) (–0.33) (1.69)

Comp-Pressure
0.23 –0.44 0.24 -0.02 –0.53

(0.65) (–1.42) (0.69) (–0.04) (–1.66)

Comp-Factor-Client
1.40 0.21 1.43 0.44 0.16

(1.99) (0.48) (2.02) (0.50) (0.37)

Comp-Factor-Environ.
1.06 0.34 1.06 1.34 0.08

(2.70) (0.85) (2.70) (2.32) (0.18)

R&D
1.37 0.68 1.35 0.86 0.66

(3.04) (2.01) (3.01) (1.35) (1.87)

Exports
0.30 0.43 0.33 1.92 0.26

(0.57) (1.14) (0.61) (1.94) (0.67)

ln(Employees-squared)
0.46 0.45 0.47 0.59 0.42

(2.69) (2.66) (2.72) (2.13) (2.39)

Reciprocal-Age
–1.11 –1.09 –1.13 –1.74 –0.96

(–2.66) (–3.00) (–2.69) (–2.72) (–2.58)

Reciprocal-Age-squared
2.89 2.65 2.96 4.34 2.30

(3.08) (3.09) (3.11) (3.44) (2.58)

Remarks.
Basic choice alternative: No environmental innovation. All estimations include a dummy for
the number of facilities, eight industry dummies, and a regional dummy.
Asymptotic z-statistics in parentheses. N=390.

Concerning the variables from industrial economics, firm size and firm
age have a strong effect in both MLM at the 5% level of significance. In
this respect, a U-shaped relationship between firm age and the probability
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of the realization of all considered environmental innovation types (compared
with the probability of the realization of no environmental innovation) can be
identified. The market pull factors “Comp-Factor-Client” and “Comp-Factor-
Environment” have a positive effect on j =1 in both MLM and “Comp-Factor-
Environment” additionally on j =2 in the four-alternative logit model at the
5% level of significance. This analysis thus implies that customer satisfac-
tion and environmental issues as an important competition factor also stimulate
both environmental product and process innovations together. Environmental
issues as an important competition factor additionally have a specific effect on
the realization of environmental product innovations. Finally, R&D activities
strongly stimulate both environmental product and process innovations. The
corresponding variable has a positive effect on j =1 in both MLM and on
j =2 in the three-alternative logit model at the 5% level of significance as well
as on j = 3 in the four-alternative logit model at the 10% level of significance.

After this, the ML estimations of the MLM are compared with the MSL
estimations of the independent MPM for R =200 random draws in the GHK
simulator. Table 6.2 reports the corresponding estimation results in the in-
dependent three-alternative and four-alternative probit models. Note that the
coefficient estimates in Table 6.1 and Table 6.2 are not directly comparable
since the underlying standard normal and Type I extreme value distributions
in the corresponding multinomial discrete choice models have different vari-
ances. Taking this into consideration, extremely strong analogies between the
estimation results appear so that the conclusions from the MLM analysis can
widely be maintained. The only qualitative difference is that the level of signif-
icance regarding the influence of a few explanatory variables slightly changes.
In this respect, the positive effects of the variables “Disposal” and “R&D” on
environmental innovation type j =2 in the independent three-alternative probit
model have a little higher level of significance than the corresponding positive
effects in the three-alternative logit model. In contrast, the positive influence
of the variable “Exports” on j =2 in the independent four-alternative probit
model has a comparatively lower level of significance. It should however be
particularly emphasized that the coefficient estimates and z-statistics in both
independent MPM are extremely reliable and independent of the number R of
random draws in the GHK simulator. The estimation results for R =1,000,
R =500, R =50, and largely even for R =10 are qualitatively nearly identical
to those in Table 6.2.

4.2 Flexible Multinomial Probit Analysis

In contrast, the MSL estimations of the flexible MPM are rather unreliable.
Variations in R lead to quite different estimation results, particularly concern-
ing the variance covariance parameter estimates and the z-statistics. But an
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Table 6.2. SML Estimates in the Independent Multinomial Probit Models (R = 200)

Explanatory Three-alternative model Four-alternative model
variables β̂1 β̂2 β̂1 β̂2 β̂3

Constant
–3.04 –1.68 –3.06 –4.38 –1.52

(–3.57) (–2.25) (–3.63) (–3.68) (–2.05)

ISO14001
0.56 0.52 0.54 0.53 0.52

(1.70) (1.66) (1.68) (1.31) (1.66)

EMAS
0.23 –0.18 0.21 –0.34 –0.21

(0.47) (–0.37) (0.44) (–0.52) (–0.43)

Lifecycle
0.76 –0.12 0.76 –0.72 0.04

(2.17) (–0.32) (2.17) (–1.16) (0.11)

Disposal
0.72 0.44 0.71 0.82 0.35

(2.87) (1.87) (2.86) (2.71) (1.48)

ISO9001
0.47 0.32 0.44 –0.08 0.41

(1.78) (1.32) (1.70) (–0.24) (1.69)

Comp-Pressure
0.19 -0.37 0.21 0.01 –0.41

(0.73) (–1.56) (0.82) (0.04) (–1.71)

Comp-Factor-Client
0.97 0.17 0.97 0.44 0.10

(2.01) (0.48) (2.03) (0.87) (0.28)

Comp-Factor-Environ.
0.80 0.29 0.81 0.90 0.08

(2.82) (0.97) (2.88) (2.57) (0.27)

R&D
1.01 0.51 0.99 0.54 0.50

(3.20) (1.94) (3.16) (1.52) (1.86)

Exports
0.15 0.35 0.17 1.12 0.19

(0.40) (1.16) (0.47) (2.49) (0.63)

ln(Employees-squared)
0.36 0.35 0.35 0.41 0.32

(2.75) (2.69) (2.74) (2.40) (2.43)

Reciprocal-Age
–0.83 –0.85 –0.79 –1.24 –0.74

(–2.79) (–3.14) (–2.69) (–3.42) (–2.72)

Reciprocal-Age-squared
2.17 2.06 2.10 3.05 1.75

(3.33) (3.34) (3.24) (4.06) (2.80)

Remarks.
Basic choice alternative: No environmental innovation. All estimations include a dummy for
the number of facilities, eight industry dummies, and a regional dummy.
Asymptotic z-statistics in parentheses. N=390.

increase in R does not lead to more reliable estimation results so that the incor-
poration of the GHK simulator into the ML estimations is not crucial for these
fundamental difficulties. These problems are obviously a consequence of the
sole inclusion of firm-specific characteristics as explanatory variables (such as
firm size or firm age) that do not vary between the choice alternatives as it is
typical for some empirical applications. Without the incorporation of choice-
specific attributes, the practical identification of MSL or ML estimations of
flexible MPM is often difficult (see Keane, 1992). Although such models are
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formally identified, they can exhibit very small variations in the log-likelihood
function from its maximum over a wide range of parameter values (see also
the estimation results in flexible three-alternative probit models in Rennings
et al., 2004). Note that not only variations in R, but also other classifications
of the environmental innovation types j =1,. . . , J (e.g. the change between
j =1 and j =3) and thus other variance covariance parameter restrictions lead
to quite different estimation results (see Ziegler and Rennings, 20044). Fur-
thermore, different starting values at the beginning of the MSL maximization
process for the parameters and different tolerance limits of the gradient of the
log-likelihood function as discussed in Rennings et al. (2004) have strong ef-
fects in this respect.

Table 6.3 compares the estimation results in the flexible three-alternative
probit models for R = 10, R = 200, and R = 1000 random draws in the
GHK simulator. For R = 10, the coefficient estimates of the explanatory vari-
ables have the same sign as those in the corresponding independent MPM and
furthermore they have a similar size (see Table 6.2). But this is not surprising
since the estimates of the variance covariance parameters σ1 and corr(εi1, εi2)
are not very different from the restrictions σ1=1 and corr(εi1, εi2) = 0 in the
independent three-alternative probit models. In contrast, the variance covari-
ance parameter estimates are clearly higher for R =200 or R =1,000. As a
consequence, the absolute coefficient estimates of the explanatory variables are
mostly higher with respect to j =2 and always clearly higher with respect to
j =1. Another result is that the estimated standard deviations of the coefficient
estimates of the explanatory variables with respect to j =1 are also clearly
higher for R =200 or R =1000. Due to the consequential low z-statistics,
no explanatory variable has any significant effect on j =1 for R =1,000. For
R =10, firm size and firm age have a similar effect on the probability of the
realization of all considered environmental innovation types at the 5% level of
significance as according to the MLM and independent MPM analysis. Fur-
thermore, the variables “ISO14001”, “Disposal”, and “R&D” have a positive
influence on j = 1 and j =2 at the 10% level of significance. However, many
other effects have clearly higher levels of significance than in the ML or MSL
estimations of the corresponding MLM or independent MPM (see Table 6.1
and Table 6.2).

Despite these obvious indications of fundamental practical identification
problems, it should be noticed that the log-likelihood functions in these flexible
three-alternative probit models always converge to a maximum, irrespective of
the number R of random draws in the GHK simulator (note that it has also

4Concerning the comparison of the estimation results in that study with those in Table 6.3 and Table 6.4 in
this paper, note that the description of the environmental innovation types in Ziegler and Rennings (2004)
wrongly implies the same structure as discussed above.
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Table 6.3. SML Estimates in the Flexible Three-alternative Probit Models

Explanatory R = 10 R = 200 R = 1000

variables β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

Constant
–3.02 –1.80 –6.35 –1.98 –5.75 –2.04

(–1.43) (–2.33) (–0.88) (–2.35) (–0.40) (–2.12)

ISO14001
0.63 0.59 0.90 0.62 0.86 0.63

(1.65) (1.76) (1.13) (1.78) (0.83) (1.82)

EMAS
0.22 –0.14 0.58 0.00 0.49 –0.04

(0.36) (–0.26) (0.47) (0.01) (0.25) (–0.07)

Lifecycle
0.75 –0.00 1.89 0.33 1.56 0.25

(0.92) (–0.01) (0.78) (0.80) (0.38) (0.49)

Disposal
0.74 0.48 1.28 0.56 1.17 0.57

(1.84) (1.79) (1.04) (2.27) (0.55) (2.11)

ISO9001
0.44 0.30 0.99 0.44 0.85 0.40

(1.14) (0.99) (0.99) (1.71) (0.52) (1.50)

Comp-Pressure
0.14 –0.33 0.51 –0.31 0.45 –0.28

(0.30) (–0.92) (0.46) (–1.21) (0.20) (–0.85)

Comp-Factor-Client
0.94 0.26 1.83 0.34 1.61 0.33

(1.09) (0.60) (0.75) (0.93) (0.37) (0.73)

Comp-Factor-Environ.
0.81 0.34 1.60 0.59 1.45 0.56

(1.34) (0.62) (1.08) (1.72) (0.49) (1.36)

R&D
1.05 0.60 1.90 0.67 1.75 0.69

(1.89) (1.71) (1.05) (2.48) (0.50) (2.08)

Exports
0.22 0.38 0.32 0.42 0.34 0.41

(0.48) (1.20) (0.43) (1.30) (0.53) (1.27)

ln(Employees-squared)
0.37 0.35 0.53 0.39 0.52 0.39

(2.44) (2.66) (1.60) (2.82) (0.86) (2.78)

Reciprocal-Age
–0.89 –0.93 –1.16 –0.92 –1.07 –0.91

(–2.45) (–3.12) (–1.72) (–3.21) (–1.35) (–3.24)

Reciprocal-Age-squared
2.34 2.26 3.15 2.29 2.91 2.28

(2.61) (3.02) (1.78) (3.51) (1.14) (3.50)
σ̂1 1.12 3.05 2.62

ˆCorr(εi1, εi2) 0.37 0.80 0.72

Remarks.
Basic choice alternative: No environmental innovation. All estimations include a dummy for the number
of facilities, eight industry dummies, and a regional dummy.
Asymptotic z-statistics in parentheses. N=390.

been experimented with R =50 and R =500). In this respect, the MSL es-
timations of flexible four-alternative probit models are even less reliable. It
has again been experimented with R =10, R =50, R =200, R =500, and
R =1,000 random draws in the GHK simulator. The result is that the log-
likelihood functions do not converge to a maximum for R =10, R =200, and
R =500. Therefore, an increase in R again does not systematically lead to
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more reliable estimation results. Table 6.4 reports the estimation results in the
flexible four-alternative probit models for R =20 (this case is examined as
an example of a small R) and R =1,000. As in the MSL estimations of the
flexible three-alternative probit models according to Table 6.3, the coefficient
estimates of the explanatory variables and the variance covariance parameter
estimates vary strongly for both R. It seems again that the higher estimate of
σ1 for R =1,000 leads to clearly higher estimated standard deviations of the
coefficient estimates of the explanatory variables with respect to j =1.

Altogether, the levels of significance regarding the effects of many explana-
tory variables are (irrespective of R) clearly higher than in the MSL estimations
of the corresponding independent MPM according to Table 6.2. Of all ML or
MSL estimations of the four-alternative discrete choice models, the effects of
firm size and firm age on environmental innovation types j =1 and j =3 and of
the variable “R&D” on j =1 are most robust. It should however be mentioned
that the influences of these explanatory variables on j =1 are insignificant in
the flexible three-alternative probit model for R =1,000. Therefore, the flex-
ible MPM analysis provides few new insights compared with the MLM and
independent MPM analysis. It is particularly not clear whether the different
estimation results in the independent MPM and MLM on the one hand and
in the flexible MPM on the other hand are due to a potential misspecification
of the former models or due to the unreliable estimation results in the latter
models. Concerning these unreliabilities, it should be emphasized that they
obviously grow if the number J of environmental innovation types increases
and that the difficulties do not decrease if the number R of random draws in
the GHK simulator rises.

These conclusions can also be confirmed by a small Monte Carlo experiment
that has been performed based on the underlying firm level data set. First of
all, shortened three-alternative and four-alternative logit and independent pro-
bit models have been estimated (with R = 10 in the MSL estimations of the
independent MPM). After this, different data generating processes (DGP) have
been constructed and replicated 20 times based on the ten explanatory variables
(and one constant) for the N =390 companies and on the resulting coefficient
estimates. Note that those explanatory dummy variables whose shares of ones
are smaller than 0.2 or higher than 0.8 have been excluded. The reason for
this procedure is that according to preliminary investigations, the inclusion of
such explanatory variables leads to a one-to-one linkage between one dummy
variable value and Di2 = 1 or Di2 =0 (∀i) in the four-alternative case in some
replications of the DGP.5 The three-alternative and four-alternative logit DGP

5The examined explanatory variables are therefore: “ISO14001”, “Disposal”, “ISO9001”, “Comp-
Pressure”, “Comp-Factor-Environment”, “R&D”, “Ln-Employees-Squared”, “Reciprocal-Age”,
“Reciprocal-Age-Squared”, and the dummy variable for the number of facilities.
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Table 6.4. SML Estimates in the Flexible Four-alternative Probit Models

Explanatory R = 20 R = 1, 000

variables β̂1 β̂2 β̂3 β̂1 β̂2 β̂3

Constant
–2.09 –2.81 –1.50 –4.27 –3.13 –1.64

(–2.51) (–0.96) (–2.13) (–1.58) (–0.80) (–1.98)

ISO14001
0.46 0.52 0.47 0.73 0.49 0.59

(1.85) (1.64) (1.59) (1.41) (1.42) (1.78)

EMAS
0.11 –0.06 –0.16 0.33 –0.34 –0.19

(0.29) (–0.08) (–0.35) (0.42) (–0.46) (–0.34)

Lifecycle
0.35 –0.14 –0.04 1.31 –0.39 0.25

(1.17) (–0.09) (–0.11) (1.30) (–0.27) (0.45)

Disposal
0.54 0.62 0.34 0.93 0.65 0.39

(2.78) (1.65) (1.46) (1.64) (1.47) (1.47)

ISO9001
0.28 0.07 0.41 0.72 0.04 0.46

(1.27) (0.13) (1.70) (1.48) (0.06) (1.64)

Comp-Pressure
0.05 –0.00 –0.40 0.31 –0.08 –0.39

(0.21) (–0.00) (–1.60) (0.53) (–0.20) (–1.43)

Comp-Factor-Client
0.59 0.49 0.09 1.26 0.30 0.15

(1.53) (1.27) (0.26) (1.21) (0.76) (0.38)

Comp-Factor-Environ.
0.58 0.67 0.04 1.16 0.78 0.23

(2.04) (1.64) (0.13) (1.40) (1.16) (0.52)

R&D
0.71 0.58 0.48 1.42 0.49 0.59

(2.85) (2.16) (1.61) (1.74) (1.38) (1.86)

Exports
0.23 0.63 0.15 0.21 0.88 0.25

(0.72) (0.63) (0.51) (0.37) (0.86) (0.62)

ln(Employees-squared)
0.31 0.34 0.31 0.42 0.34 0.34

(3.04) (2.15) (2.42) (2.13) (2.18) (2.45)

Reciprocal-Age
–0.67 –0.95 –0.68 –0.98 –1.03 –0.79

(–2.94) (–1.23) (–2.53) (–1.89) (–2.49) (–2.43)

Reciprocal-Age-squared
1.76 2.33 1.61 2.61 2.59 1.91

(3.36) (1.41) (2.60) (2.07) (2.49) (2.38)
σ̂1 0.30 2.03
σ̂2 0.48 0.20

ˆCorr(εi1, εi2) 0.45 0.25
ˆCorr(εi1, εi3) 0.15 0.46
ˆCorr(εi2, εi3) -0.21 -0.08

Remarks.
Basic choice alternative: No environmental innovation. All estimations include a dummy for
the number of facilities, eight industry dummies, and a regional dummy.
Asymptotic z-statistics in parentheses. N=390.

or independent probit DGP are thus characterized by the coefficient estimates
in the MLM or in the independent MPM and by the corresponding variance co-
variance matrices of εi as discussed in section 2.2. Another DGP is identified
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by the coefficient estimates in the shortened independent three-alternative pro-
bit model and some correlations between the components of εi (with σ1 = 1.5
and corr(εi1, εi2) =0.5).6 Note that the parameter estimates in the shortened
flexible MPM have not been utilized since the corresponding MSL estima-
tions are even less reliable for different R (particularly regarding the variance
covariance parameters) than the MSL estimations of the flexible MPM as dis-
cussed above. Furthermore, the estimation results in the flexible MPM are also
analyzed if the DGP are characterized by the independent MPM.

One result (such as in the empirical analysis of the flexible three-alternative
probit models discussed above) is that the log-likelihood functions in the MSL
estimations of the shortened flexible three-alternative probit models always
converge to a maximum over the 20 replications of both DGP for R =10,
R =50, and R =200 random draws in the GHK simulator. The most reliable
parameter estimates arise for R =10 if the underlying DGP is characterized
by the independent MPM. In contrast, there are some outliers for R =50 and
R =200 and particularly if the underlying DGP comprises the aforementioned
correlations. The spread of the parameter estimates is in this case extremely
large, notably for R =200. Furthermore, the parameter estimates often reach
regions on the boundary of the parameter space, e.g. the estimates of σ1 and
corr(εi1, εi2) are 411.34 and 1.00 in one of the replications of this DGP for
R =200. Such fundamental practical identification problems occur to an even
larger extent in the MSL estimations of the flexible four-alternative probit mod-
els since the log-likelihood function repeatedly does not converge to a maxi-
mum over the 20 replications of the DGP that is characterized by the inde-
pendent MPM. The numbers of these problems are one, seven, and nine for
R =10, R =50, and R =200. Therefore, an increase in R rather leads to a rise
of the problems.

In contrast, the MSL estimations of the independent three-alternative pro-
bit models based on the DGP that comprises the aforementioned correlations
are always very reliable. Compared with the corresponding MSL estimations
based on the DGP that is characterized by the independent MPM, the only dif-
ferences are the somewhat higher biases for the coefficient estimates due to
the underlying misspecification. In this respect, it should be emphasized that
the MSL estimations of the independent three-alternative and four-alternative
probit models lead to extremely reliable and accurate results if the underly-
ing DGP is correctly characterized by the independent MPM. Irrespective of

6Note that four-alternative probit models incorporating some (positive) correlations between the compo-
nents of εi could not be analyzed since even the inclusion of only these ten explanatory variables repeatedly
leads to a one-to-one linkage between one dummy variable value and Di2 =1 or Di2=0 (∀i) in many
replications of the DGP. This is due to the small number of realizations of environmental innovation type
j =2. Other data sets should therefore be examined in future Monte Carlo experiments to analyze MPM
with a higher number J of choice alternatives.
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R = 10, R = 50, or R = 200, the average absolute biases over all coefficient
estimates and over all 20 replications of the DGP are only 0.06 in the three-
alternative and only 0.08 in the four-alternative case. These biases (and also the
root mean squared errors) surprisingly have a similar extent as those in the ML
estimations of MLM if the underlying DGP is likewise correctly characterized
by the MLM. The average absolute biases are 0.09 in the three-alternative and
0.07 in the four-alternative logit model.

5. Conclusions

This paper examines determinants of different types of environmental inno-
vations in the German manufacturing sector by comparing the estimation re-
sults in flexible and restrictive multinomial discrete choice models. The MLM
and independent MPM analysis implies that some specific environmental orga-
nizational measures, technological opportunities, and market pull factors have
a significantly positive effect on both environmental product and process inno-
vations. In contrast, the effects of certified EMS are statistically less reliable.
While the world-wide ISO 14001 standard has a significantly weak positive in-
fluence, the European EMAS standard has no significant effect on environmen-
tal innovations at all. Thus, some specific environmental organizational mea-
sures obviously may stimulate environmental innovations to a somewhat larger
extent than entire EMS. In the framework of the discussion of so-called soft en-
vironmental policy instruments such as initiatives concerning the certification
for EMS, this means that the contribution of such programs to environmental
technological innovation is not completely clear. In the future, it seems to be
promising to analyze how far single measures such as life cycle considerations
are applied. Concerning some incentives for the realization of environmental
organizational measures or more directly for the realization of environmental
technological innovations, policy could consider the opportunity of rewards
e.g. in public procurement apart from only supporting initiatives concerning
the certification for EMS.

Taking the results of the MLM and independent MPM analysis into consid-
eration, the flexible MPM analysis provides few new insights. The MSL esti-
mations of the flexible MPM are rather unreliable due to the arising practical
identification difficulties as a consequence of the sole inclusion of firm-specific
characteristics as explanatory variables. Therefore, it can be concluded that
the applicability of these flexible multinomial discrete choice models without
the incorporation of choice-specific attributes is rather limited in practice. It
should be emphasized that these estimation problems have only been sparsely
noticed in the literature. In this respect, the theoretical advantages of the flex-
ible MPM compared with the restrictive MLM (or also independent MPM)
can be questioned in practice. However, it should also be emphasized that this
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conclusion can merely be maintained if firm-specific characteristics are only
included. If choice-specific attributes are additionally or solely included as ex-
planatory variables, the MSL estimations of flexible MPM (incorporating the
GHK simulator) lead to very reliable results (see e.g. the Monte Carlo exper-
iments in Börsch-Supan and Hajivassiliou, 1993, Geweke¨ et al., 1994, Stern,
2000, or Munizaga et al., 2000, for one-period MPM, and in Geweke et al.,
1997, or Ziegler and Eymann, 2001, for multiperiod MPM).

Concerning the sole inclusion of firm-specific characteristics as explanatory
variables into the flexible MPM, this paper cannot give a conclusive answer on
the reliability of the corresponding MSL estimations. The small Monte Carlo
experiment only confirms the main conclusions from the empirical analysis in
accordance with the study of Keane (1992). According to this, the incorpora-
tion of simulation methods is not crucial for the practical identification prob-
lems since the difficulties do not decrease if the number R of random draws in
the GHK simulator rises. Furthermore, the difficulties grow if the number J
of environmental innovation types increases. Note that only three-alternative
and four-alternative discrete choice models are analyzed. One could there-
fore imagine that the application of flexible MPM with a high number J of
choice alternatives as it is suitable in other empirical studies can lead to even
more practical identification problems, although their use just in these cases is
theoretically clearly more advantageous compared with the use of restrictive
MLM. Thus, a systematic comparison between the estimation results in flexi-
ble MPM with high J and those with rather small J as in this paper would be
desirable in the future. In this respect, the analysis of one-period MPM com-
pared with multiperiod MPM based on panel data (see e.g. the application in
Börsch-Supan¨ et al., 1992) would also be interesting.
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Abstract The use of a joint normal distribution for partworths is computationally attrac-
tive, particularly with Bayesian MCMC procedures, and yet is unrealistic for
any attribute whose partworth is logically bounded (e.g., is necessarily positive
or cannot be unboundedly large). A mixed logit is specified with partworths
that are transformations of normally distributed terms, where the transforma-
tion induces bounds; examples include censored normals, log-normals, and SB

distributions which are bounded on both sides. The model retains the compu-
tational advantages of joint normals while providing greater flexibility for the
distributions of correlated partworths. The method is applied to data on cus-
tomers’ choice among vehicles in stated choice experiments. The flexibility that
the transformations allow is found to greatly improve the model, both in terms
of fit and plausibility, without appreciably increasing the computational burden.

∗A Gauss routine and manual to implement the procedures described in this paper are available on Train’s
website at http:\\elsa.berkeley.edu\ ∼train. We are grateful for comments from Peter Rossi on an earlier
version of this paper.
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1. Introduction

Mixed logit is a flexible discrete choice model that incorporates random
variation in partworths.1 McFadden and Train (2000) show that mixed logit
can approximate any random utility choice model to any degree of accuracy
through appropriate specification of distributions of the partworths. Procedures
for estimating mixed logits have been developed within both the classical (e.g.,
Revelt and Train, 1998, Brownstone and Train, 1999) and Bayesian (Allenby,
1997; Sawtooth Software, 1999) traditions.

Mixed logit models have been used for environmental analysis in numer-
ous contexts, including: households’ response to rebates on energy-efficient
appliances (Revelt and Train, 1998); the impact of fish stock, which is af-
fected by water quality, on anglers’ choice of fishing site (Train, 1998); the de-
mand for wind, hydro and other forms of renewable power generation (Goett et
al., 2000); and consumers’ willingness to pay for water service improvements
(Hensher et al., 2004). Consumers’ choice of vehicle, which is the applica-
tion in the current paper, is particularly important for environmental analysis
since energy consumption and emissions are largely dependent on this choice.
Mixed logits of vehicle choice have been previously estimated by Brownstone
and Train (1999), Brownstone et al. (2000), and Train and Winston (2004).

The distribution of partworths is critical in any application. Normal dis-
tributions are relatively easy to implement in both the classical and Bayesian
methods. However, since the normal is unbounded on each side of zero, its
use in many setting is inappropriate. A normal distribution for a price coeffi-
cient implies that some share of the population actually prefer higher prices.
Also, since the normal distribution overlaps zero, its use for a price coefficient
can preclude the calculation of willingness-to-pay statistics: The willingness-
to-pay for an attribute is the partworth of that attribute divided by the price
coefficient. Since division by zero is undefined, and division by a number ar-
bitrarily close to zero gives an arbitrarily large result, the mean and variance of
willingness-to-pay need not exist when the price coefficient is normal.2 A nor-
mal distribution is also inappropriate for the partworth of a desirable attribute
that is valued (or, at worst, ignored) by all customers or an undesirable attribute
that is disliked (or ignored) by all customers. Similarly, when an attribute con-

1The partworth of an attribute is the coefficient of the attribute in the utility function. The term is used
extensively in marketing, and we adopt it here because it is more succinct than “utility coefficient” and
more specific than “coefficient.”
2The applications cited in the previous paragraph specify the price coefficient to be fixed or log-normal in
order to avoid this issue. See, e.g., Merrill (1928), Geary (1930), Fieller (1932), Marsaglia (1965), and
Hinkley (1969) on the distribution of a ratio of two normally distributed terms.
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sists of various levels, the partworth for each higher level must logically be
no smaller than the partworth for each lower level; normal distributions do not
embody this requirement.

Bounded distributions can and have been used in mixed logits estimated by
both the classical and Bayesian procedures (e.g., Bhat, 1998, 2000; Revelt and
Train, 1998; Train, 1998; Revelt, 1999; Boatwright et al., 1999; Brownstone
and Train, 2000; Johnson, 2000; Train 2001). However, each estimation proce-
dure, while feasible with bounded distributions, entails numerical difficulties
that are intrinsic to its form, as described and illustrated by Train (2001). In
particular: Classical procedures handle triangular, truncated normal, and sim-
ilarly bounded distributions easily while Bayesian procedures are relatively
slow with these distributions. On the other hand, fully correlated partworths
are difficult to handle in classical procedures due to the proliferation of param-
eters, while the Bayesian procedures accommodate these correlations readily.
Obtaining partworths that are bounded and correlated has been relatively diffi-
cult with either procedure.

Bayesian procedures operate effectively with normals because of the conve-
nient posteriors that arise with normals. In this paper, we build upon the obser-
vation in Train (2001) that the Bayesian procedures operate as effectively with
log-normals as normals because the log-normal is simply a transformation of
the normal that does not entail any other parameters. This concept is expanded
by using other transformations that provide various types of bounded distri-
butions. These transformations can operate on correlated normals to provide
correlated partworths with bounded distributions. The numerical advantages
of the Bayesian procedures with correlated normals are retained while having
partworths whose distributions are bounded.

Many useful distributions can be obtained as transformations of normals.
Let scalar β be normally distributed with mean b and variance ω. Bounded dis-
tributions are obtained through the following kinds of transformations. These
transformations are weakly monotonic (non-decreasing in β) and depend only
on β without utilizing b and ω.

Log-normal. The transformation is c = exp(β). The distribution is
bounded below by zero. It is useful for the partworths of attributes that
are liked by all customers. The sign is reversed for undesirable attributes,
such as a price variable, such that the partworth is necessarily negative.

Normal censored from below at zero. The transformation is c =
max(0, β). There is a mass at zero, with the density above zero being the
same as the normal density of β. The share at zero is Φ(−b/ω), where
Φ is the standard normal cumulative distribution. This transformation
is useful for partworths of an attribute that some customers do not care
about (i.e., are indifferent to its presence and simply ignore) and other
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customers find desirable. The estimation of b and ω determines the share
massed at zero and the share distributed above zero.

Johnson’s (1949) SB distribution.3 The transformation c = eβ/(1 + eβ)
creates a partworth that is distributed between zero and one, with mean,
variance and shape determined by the mean and variance of β. 4

For a distribution that has support from � to u, the transformation is
c = �+(u−�)×eβ/(1+eβ). The SB distribution is useful for a variety
of purposes. SB densities can be shaped like log-normals but with an
upper bound and with thinner tails below the bound. SB densities are
more flexible than log-normals: they can be shaped like a plateau with
a fairly flat area between drop-offs on each side (as in Figure 2 for our
application) and can even be bi-modal. When a lower bound other than
zero is specified, the distribution is useful for an attribute that some peo-
ple like and others dislike but for which there is a limit for how much
the person values having or avoiding the attribute.

For multiple partworths, β is generalized to be a vector with length equal
to the number of partworths, with mean vector b and variance matrix Ω. Each
partworth is defined as a transformation of the corresponding element of β. The
covariance among the elements of β induces covariance among the partworths.
As such, the procedure allows for correlated partworths under any combination
of the above distributions.

Numerous authors have implemented log-normal distributions within mixed
logit, though usually without allowing full correlation; see, e.g., Bhat (1998,
2000), Train (1998), and Revelt and Train (1998).5 R. Johnson (2000) exam-
ined censored normals and found that they provided more reasonable results
and better fit than uncensored normals in his application. The use of the SB

distribution seems to be new. We will investigate its usefulness in the context
of our application.

The computational advantage of the method rests on the simplicity of the
posteriors on b and Ω that arise, as described in the next section, when the
transformation of β does not depend on b and Ω. Transformations that depend
on b and Ω can be useful in some settings, but do not provide the same sim-
plicity. For example, truncated normals cannot be accommodated within our
procedure because the necessary transformation entails b and Ω rather than de-

3See also Johnson and Kotz, 1970, p. 23.
4As Johnson and Kotz note, the formulas for the moments are very complex. We calculate them through
simulation as described section 4. The median is 1/(1 + exp(b/

√
ω

√√
)).

5Experience indicates that the parameters of log-normal distributions are hard to estimate with classical
procedures, due to the fact that the log-likelihood surface is highly non-quadratic. The Bayesian procedure
avoids this difficulty.
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pending only on β.6 Since b and Ω affect the utility of each customer through
this transformation, the posteriors for b and Ω conditional on the β’s depend
on the choices of the respondents and no longer have the convenient form that
we utilize. Boatwright et al. (1999) provide MCMC methods for truncated
normals. These methods, which can be generalized to essentially any bounded
distribution, are considerably more difficult and slower computationally than
those we utilize in this paper. The question for the researcher for a particu-
lar application is whether transformations of normals that do not depend on
b and Ω can adequately represent the relevant distributions of partworths. If
so, the simple methods in this paper can be exploited; if not, the methods of
Boatwright et al. can be used.7

While the estimation procedure that we describe is Bayesian, the results can
be interpreted from either a Bayesian or classical perspective. Bayesian inter-
pretation is of course straightforward since the procedure itself is Bayesian.
Classical interpretation is less well recognized. The Bernstein-von Mises the-
orem (see, e.g., Train, 2003, for a discussion with historical references) estab-
lishes that, under conditions that are maintained in our specification, the mean
of the Bayesian posterior is a classical estimator that is asymptotically equiv-
alent to the maximum likelihood estimator. The theorem also establishes that
the covariance of the posterior is the asymptotic sampling covariance of this es-
timator. The results from the Bayesian procedures can therefore be interpreted
by a classical researcher in the same way that the researcher would interpret
estimates obtained by maximum likelihood. To facilitate this interpretation,
we present our results in the format that is standard for classically estimated
models, namely by reporting the parameter estimates (which are the posterior
means) and their standard errors (the posterior standard deviations).

In section 2, we describe Bayesian estimation of a mixed logit with nor-
mally distributed partworths. We then show in section 3 how this procedure is
changed to accommodate transformations of the normal. We apply the method
in section 4 to data on customers’ choice among vehicles.

2. Mixed logit with normally distributed partworths

The behavioral derivation of mixed logit with repeated choices is given by
Revelt and Train (1998) and Train (1998) for general distributions of part-
worths. The Bayesian procedure for estimating the model with normally dis-
tributed partworths was developed by Allenby (1997) and implemented by

6E.g., a one-dimensional normal truncated below at zero is created as c = Φ−1(m(1 − z) + z) · ω + b
where z = Φ((β − b)/ω) and m = Φ(−b/ω).
7Classical estimation procedures accommodate truncated normals as readily as normals; see, e.g., Revelt
(1999.) However, as stated above, classical procedure have difficulty dealing with correlated partworths due
to the proliferation of parameters.
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Sawtooth Software (1999).8 We give the derivation and Bayesian procedure
under normally distributed partworths in this section. The generalization to
transformation of normals is described in the following section.

Person n faces a choice among J alternatives in each of T time periods. J
can be as small as 2, and T can be as small as 1. The person’s utility from
alternative j in period t is

UnjtUU = β′
nββ xnjt + εnjt,

where εnjt ∼ iid extreme value and βnββ ∼ N(b, Ω). The vectors of variables
xnjt and partworths βnββ have length K. Person n chooses alternative i in period
t if UnitUU > UnjtUU ∀j∀ �=�� i. Denote the person’s chosen alternative in period t
as ynt, the person’s sequence of choices over the T time periods as yn =
〈yn1, . . . , ynT 〉, and the set of yn∀n as Y . Conditional on βnββ , the probability
of person n’s sequence of choices is the product of standard logit formulas:

L(yn | βnββ ) =
∏

t

eβ′
nxnyntt∑

j eβ′
nxnjt

.

The unconditional probability is the integral of L(yn | βnββ ) over all values of
βnββ weighted by the density of βnββ :

PnPP (yn | b, Ω) =
∫

L(yn | βnββ )g(βnββ | b, Ω)dβnββ . (2.1)

where g(·) is the multivariate normal density. This unconditional probability is
called the mixed logit choice probability, since it is a product of logits mixed
over a density of partworths.

For Bayesian analysis, it is necessary to specify the priors on the model
parameters b, Ω, and βnββ ∀n. Since we have already specified βnββ to be normal
with mean b and variance Ω, the prior on each βnββ is proportional to this density
times the prior on b and Ω.9 We specify the prior on b to be a diffuse normal,
denoted N(b | 0, Θ), which has zero mean and variance Θ sufficiently large
that the density is effectively flat from a numerical perspective. The advantage

8Related methods for probit models were developed by Albert and Chib (1993), McColluch and Rossi
(1994), and Allenby and Rossi (1999). Bayesian procedures for non-mixed logits are discussed by Koop
and Poirier (1993, 1996) and Poirier (1994, 1996).
9Several terms have been used for these parameters. (1) Often, b and Ω are called population parameters
that describe the distribution of customer-level βn’s in the population. With this usage, the distribution
g(βn | b, Ω) is interpreted as the actual distribution of partworths in the population. (2) In Bayesian
analyses especially, b and Ω are often called hyper-parameters, since the prior on each βn depends on b
and Ω which themselves have priors. Under this usage, g(βn | b, Ω) is interpreted as an aspect of the
researcher’s prior information about βn. (3) Sometimes, the βn’s are called nuisance parameters, to reflect
the concept that they are incorporated into the analysis simply (under this usage) to facilitate estimation of
b and Ω.
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of a normal prior on b is that it provides a conditional posterior on b (i.e.,
conditional on βnββ ∀n and Ω) that is normal and hence easy to draw from, while
the large variance assures that the prior has minimal (effectively no) influence
on the posterior. The standard diffuse prior on Ω is inverted Wishart with K
degrees of freedom and parameter KI where I is the K-dimensional identity
matrix. This density is denoted IW (Ω | K, KI). It provides a conditional
posterior on Ω that is IW and hence easy to draw from. The joint posterior on
βnββ ∀n , b and Ω is

Λ(βnββ ∀n, b, Ω | Y ) ∝
∏
n

L(yn | βnββ )·g(βnββ | b, Ω)·N(b | 0, Θ)·IW (Ω | K, KI).

Information about the posterior is obtained by taking draws from the pos-
terior and calculating relevant statistics, such as moments, over these draws.
Gibbs sampling is used to facilitate the taking of draws (see Casella and
George, 1992, for a general explanation of Gibbs sampling.) In particular,
draws are taken sequentially from the conditional posterior of each parameter
given the previous draw of the other parameters. The sequence of draws from
the conditional posteriors converges to draws from the joint posterior.

The conditional posterior distributions in this model are especially con-
venient. Given β and Ω, the posterior on b is N(β̄,Ω/N) with β̄ =
(1/N)

∑
βnββ .10 This distribution is easy to draw from: A draw of b is cre-

ated as b̃ = β̄ + Lη, where L is the lower-triangular Choleski factor of Ω/N
and η is K-dimensional vector of independent draws from a standard normal
density. A draw of the vector b requires only K draws from a random number
generator, K means over N terms each, and a few arithmetic calculations. It
takes a tiny fraction of a second.

Given b and β, the conditional posterior of Ω is IW (Ω | K+N, KI+NV̄ ),
where V̄ = (1/N)

∑
(βnββ − b)(βnββ − b)′. Draws from the inverted Wishart are

easily obtained. Take K + N draws of K-dimensional vectors of iid standard
normal deviates. Calculate the Choleski factor, M , of (KI + NV̄ )−1. Create
S =

∑
r(Mηr)(Mηr)′. Then Ω̃ = S−1 is a draw. This calculation is also

extremely fast.
The only computationally intensive part is drawing βnββ ∀n. Given b and Ω,

the conditional posterior for βnββ is proportional to L(yn | βnββ )g(βnββ | b, Ω). The
Metropolis-Hasting (M-H) algorithm is used to take draws from this distribu-
tion. (See Chib and Greenberg, 1995, for a general explanation of the M-H
algorithm.) The previous draw is labeled β0

nββ and the new one is β1
nββ . The new

draw is obtained as follows.

10More precisely, the posterior on b approaches N(β̄, Ω/N) as the variance of the prior on b rises without
bound. This variance is specified to be sufficiently high such that the posterior is numerically indistinguish-
able from N(β̄, Ω/N).



124 APPLICATIONS OF SIMULATION METHODS

1. Calculate d = σLη, where η is a draw of a K-dimensional vector of iid
standard normal deviates, L is the Choleski factor of Ω, and σ is a scalar that
the researcher sets in a way to be described below.

2. Create a ”trial” value of β1
nββ as β̃1

nββ = β0
nββ + d.

3. Evaluate the posterior at this trial value and compare it with the posterior
at the previous draw. That is, calculate the ratio

R =
L(yn | β̃1

nββ )g(β̃1
nββ | b, Ω)

L(yn | β0
nββ )g(β0

nββ | b, Ω)
.

4. Take a draw from a standard uniform and label the draw µ.
5. If µ < R, accept the trial draw. Otherwise, reject the trial draw and use

the previous draw as the current draw. That is, set β1
nββ = β̃1

nββ if µ < R and set
β1

nββ = β0
nββ otherwise.

A sequence of draws taken by the M-H algorithm converges to draws from
the target distribution, in this case the conditional posterior. One draw of βnββ
within the M-H algorithm for each person is taken in each iteration of the
Gibbs sampling over b, Ω, and βnββ ∀n. Movement to convergence in the M-H
algorithm for each person and in the overall Gibbs sampling is thereby attained
simultaneously. In our application we used 30,000 iterations for “burn-in” (i.e.,
movement toward convergence) followed by 20,000 iterations, of which the
draws in every 10-th iteration were retained. (Run-times were only 1.5 hours,
even with this large number of iterations.) The 2,000 retained draws are used
to conduct inference. For example, the average of these draws is the simulated
mean of the posterior, which, from a classical perspective, is the estimate of
the parameters. The standard deviation of the draws is the simulated standard
deviation of the posterior and the classicists’ standard error of the estimate.

The value of σ in step (1) affects the acceptance rate in the M-H algorithm.
For smaller values of σ, the acceptance rate is generally higher but the jumps
between draws is smaller so that more draws are needed for the algorithm to
reach convergence and, once at convergence, to traverse the conditional pos-
terior. Gelman et al. (1995) found that the optimal acceptance rate is .4 for
K = 1 and decreases to .23 for higher dimensions. They recommend an adap-
tive acceptance rate to achieve optimality. This adaptation is implemented by
changing σ in each iteration of the Gibbs sampling based on the acceptance
rate among the N trial draws of βnββ ∀n in the previous iteration. Following
Sawtooth Software (1999) and in accordance with the optimal rate found by
Gelman et al., we lower σ if the acceptance rate is below .3 and raise it if the
rate is above .3.

3. Transformation of normals

Denote the partworths of person n as cn, which is a vector with the same
length as βnββ . The partworths are defined by cn = T (βnββ ), where T is a
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transformation that depends only on βnββ and is weakly monotonic (such that
∂ck

n/∂βk
nββ ≥ 0 for each element k of cn and βnββ ). The distribution of cn is

determined by the transformation.
Little is changed in the estimation procedure by this transformation. Nor-

mally distributed βnββ ’s are drawn as before but then transformed to cn’s when
they enter utility. Utility is specified as

UnjtUU = T (βnββ )′xnjt + εnjt.

The probability of the person’s choice sequence given βnββ is

L(yn | βnββ ) =
∏

t

eT (βn)′xnyntt∑
j eT (βn)′xnjt

.

This probability is used in step 3 of the M-H algorithm instead of the probabil-
ity based on untransformed βnββ . The rest of the procedure is same.

In this set-up, βnββ can be considered a latent value that determines the per-
son’s partworths. This latent value is normally distributed, with mean b and
covariance Ω. The conditional posteriors for b and Ω are the same as before,
and the conditional posterior of βnββ changes only by the transformation that
occurs in utility in the logit formula. The advantages of normal distributions
within a Bayesian procedure are maintained while allowing the partworths to
take other distributions. For any given value of βnββ , the partworths cn are cal-
culated, and the distribution of βnββ induces a distribution of cn.

4. Application

We present an analysis of customers’ choice among gas, electric, and hybrid
gas-electric vehicles. We apply the methods described above to investigate
the use of various bounded distributions of partworths, all of which involve
transformations of normals.

Stated choice experiments were designed to elicit customers’ choice among
gas, electric, and hybrid vehicles under various prices, operating costs, and
other attributes. The experiments were conducted as part of a survey of vehicle
owners in California. The state of California is particularly relevant for electric
and hybrid vehicles because the state’s Air Resources Board has implemented,
and is continually revising, regulations that promote these vehicles. Survey
respondents were contacted through random-digit dialing throughout the state.
Respondents intending to purchase a new vehicle within the next three years
were asked to participate in the study. Those who were willing to participate
in the study were sent a packet of materials, including information sheets that
described the new vehicles and the choice experiments. The respondents were
later called to go over the information, obtain their choices in the experiments,
and ask demographic and other questions. A total of 500 respondents were
obtained.
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4.1 Choice experiments

Each choice experiment consisted of three vehicles. For each vehicle, the
following information was listed:

Body type, such as midsize car

Engine type: gasoline, electric, or hybrid

Purchase price

Operating cost in dollars per month

Performance

Range: miles between refueling/recharging.

The respondent was asked to consider the attributes of all three vehicles and
state which one he/she would buy if making the purchase today. Each respon-
dent was presented with 15 choice experiments, with each experiment contain-
ing different vehicles with different attributes.

The choice experiments were designed to provide as wide variation in each
attribute, and as little covariance among attributes, as possible while maintain-
ing plausibility. Ten body types were considered in the experiments: mini car,
small car, midsize car, large car, small SUV, midsize SUV, large SUV, com-
pact pick-up, large pick-up, mini-van. Respondents were given examples of
vehicles with that body type.

Each vehicle in each experiment was listed as being gasoline, electric, or
hybrid. In any one experiment, the respondent might face a choice among two
electric and one hybrid vehicle, among three gasoline vehicles, or any other
combination.

The purchase price and operating cost of each vehicle were chosen randomly
from a range of possible prices and operating costs.

The performance of each vehicle was described in terms of top speed and
the number of seconds required to go from zero to 60 mph. These two perfor-
mance measures were not varied independently, since respondents know that
they are linked. Rather, three performance levels were specified, and each ve-
hicle was randomly assigned one of the three performance levels. The three
levels were: (1) Top speed of 120 mph, and 8 seconds to reach 60 mph. This
level is called “high” performance in the discussions below; however, the re-
spondent did not see the word “high”. The respondent saw the numbers for top
speed and seconds to 60. (2) Top speed of 100 mph, and 12 seconds to reach
60 mph. This level is called “mid” in the discussions below. (3) Top speed
of 80 mph, and 16 seconds to reach 60 mph. This level is called “low.” The
performance for gas and hybrid vehicles was randomly chosen from all three
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levels. The performance for electric vehicles was randomly chosen from the
mid and low levels.

For the miles between refueling/recharging, a range of miles was given for
each vehicle. The miles between refueling was given as “300-500” miles for
gas vehicles and “400-700” miles for hybrid vehicles in all the experiments.
A constant level was used for these vehicles because the study did not intend
to estimate the value of increasing the range of vehicles that are refueled con-
ventionally. The goal was to estimate the value to customers of increasing the
range of electric vehicles. The range for gas and hybrid vehicles was stated
so that the experiments would not place undue emphasis on the electric ve-
hicle range in the eyes of the respondent. (If the range of electric vehicles
was stated in the experiment but not the range of gas or hybrid vehicles, then
respondents might be induced to place more importance on this aspect of elec-
tric vehicles than they otherwise would.) For electric vehicles, the possible
ranges included every 10 mile increment starting with 60-70 and going up to
190-200. The range for each electric vehicles in the choice experiments was
chosen randomly from these levels.

4.2 Models

Price, operating cost, and range are linearized, such that their partworths
represent the value of a one-unit increment. The negative of price and oper-
ating cost are entered, such that their partworths are expected to be positive
(so that log-normal distributions, which have positive support, can be used.)
For performance, the low level is taken as the base and the medium and high
levels are represented in increments. That is, two variables are entered for
performance: a dummy indicating that the vehicle has either medium or high
performance, and a dummy indicating that the vehicle has high performance.
For engine types, gas is taken as the base, such that the partworths of the elec-
tric and hybrid vehicles are the value of these engine types relative to that of
a gas engine. Similarly, the large car is taken as the base body type, with the
partworths for the others representing value relative to the large car.

We start with a model in which all the partworths are distributed jointly nor-
mal N(b, Ω). As stated above, 2000 draws of b, Ω and βnββ ∀n are obtained
from their posterior distribution. The means of the 2000 draws of b and of
the diagonal elements of Ω are given in Table 7.1. (The partworths for body
types are omitted from this and subsequent tables to save space and because
they contain relatively less interpretable content.) From a classical perspective,
these figures represent the estimated mean and variance of the βnββ ’s in the pop-
ulation. And since the βnββ ’s are untransformed, the figures also represent the
mean and variance of partworths in the population. The standard deviations of
the draws of b and the diagonal elements of Ω are given in parentheses. From
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a classical perspective, these are the standard errors of the estimated mean and
variance of βnββ ’s in the population.

Table 7.1. Model of vehicle choice with all normal distributions.

βn’s and partworths for: Mean Variance Share>0

Price (negative): .1900 .0632 .78
(.0127) (.0048)

Operating cost (negative): .0716 .0467 .63
(.0127) (.0032)

Range: 1.213 4.050 .73
(.2442) (.7190)

Electric vehicle: –3.554 16.95 .19
(.4120) (3.096)

Hybrid vehicle: 1.498 6.483 .72
(.1584) (.9729)

High performance: .3092 1.425 .60
(.1004) (.2545)

Mid and high performance: .8056 1.298 .76
(.1030) (.2384)

Log-likehood –6,835.5

For example, for our first model, the partworth associated with range is
normally distributed in the population with an estimated mean of 1.213 and
estimated variance of 4.050. These estimates imply that 73 percent of the pop-
ulation have positive partworth for range while the other 27 percent have a
negative partworth. (These negative partworths for range are of course im-
plausible and the basis for our exploration of other distributions below.) The
standard error on the estimated mean is 0.2442, which gives a t-statistic of
4.97, implying that the mean is significantly different from zero. Similarly,
the standard error on the estimated variance is 0.7190, for a t-statistic of 5.63,
implying that the variance is also significant (that is, the hypothesis of no vari-
ance can be rejected.) The classical log-likelihood of the model is given at the
bottom of the Table. This value is the log-likelihood of the observed choices
calculated at the estimated values of b and Ω (that is, at the mean of the draws
of b and Ω.) We give this statistic, which is not used in Bayesian inference
but is standard in classical analysis, to emphasize the ability of the Bayesian
procedures to provide results that are interpretable classically.

The mean partworth associated with moving from low to medium or high
performance (0.8056) is greater than that for moving from medium to high
performance (0.3092), which is consistent with decreasing marginal utility of
performance. The estimates for the other partworths are self-explanatory.
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The model is implausible in several regards. The estimates imply that 22
percent of the population prefer higher prices. The existence of price co-
efficients with the wrong sign renders the model un-useable for calculation
of willingness to pay and other welfare measures. The estimates also imply
that 37 percent of people prefer higher operating costs, 27 percent prefer elec-
tric vehicles with shorter ranges over those that can be driven further between
recharging, 24 percent prefer low performance over medium or high perfor-
mance, and 40 percent prefer medium performance over high performance.
Also, for any arbitrarily large value in either direction, the model implies that
some people have a partworth in excess of this value. The model therefore
implies that some people would buy a vehicle that is worse in all features than
any other currently-offered vehicle. These implications are the result of using
normal distributions for partworths when actual partworths have known signs
and limited magnitudes.

Table 7.2 gives the correlation among the partworths implied by the estimate
of Ω. The largest correlation (in magnitude) is between the partworths for
range and electric vehicle: the correlation of –0.64 implies that people who
are concerned about the range of an electric vehicle tend not to like electric
vehicles at any range. This result is questionable. It is probably true that
people who are concerned about range tend not to like electric vehicles, since
electric vehicles generally have short ranges. However, the range of the electric
vehicle is explicitly included in the experiments and the model. The negative
correlation in partworths therefore implies that people who care about range
tend to not like electric vehicles for reasons beyond range. It is not clear what
these reasons might be or why they relate to concern about range.

Table 7.2. Correlations among partworths with all normal distributions.

Price 1.00 0.11 –0.10 0.05 –0.18 –0.07 –0.01
Operating cost 1.00 –0.05 0.15 0.01 0.01 –0.01
Range 1.00 –0.64 0.36 –0.01 0.15
Electric vehicle 1.00 0.12 0.02 –0.19
Hybrid vehicle 1.00 0.19 0.06
High performance 1.00 0.17
Med and high performance 1.00

We estimate two models under other distributional assumptions that are easy
to accommodate within our estimation procedure. For the first of these two
models, the two performance variables are given normal distributions that are
censored from below at zero. With this distribution, a share of the population
is completely unconcerned about performance (i.e., have a partworth of zero)
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Table 7.3. Model of vehicle choice with transformations of normals.

βn Partworths
Mean Variance Mean Variance

Price (negative): –2.531 0.9012 0.1204 0.0170
(.0614) (.1045)

Operating cost (negative): –3.572 1.015 0.0455 0.0031
(.1100) (.1600)

Range: –1.222 1.370 0.5658 0.8965
(.2761) (.3368)

Electric vehicle: –1.940 2.651 –1.9006 2.6735
(.1916) (.4965)

Hybrid vehicle: 0.9994 2.870 1.0003 2.8803
(.1267) (.4174)

High performance: –.7400 2.358 0.3111 0.3877
(.2953) (.7324)

Mid and high performance: –.0263 1.859 0.5089 0.5849
(.1538) (.3781)

Log-likehood –6,171.5

while the other share of the population places a positive value of higher perfor-
mance with this value varying over people. The coefficients of price, operating
cost, and range are given log-normal distributions (with the negative of price
and operating cost entering the model.)

The mean and standard deviation of b and the diagonal elements of Ω are
given in Table 7.3. Note that the log-likelihood of this model is consider-
ably higher than that for the model with all normals: –6,171.5 compared to
–6,835.5. As stated above, b and Ω are the mean and variance of the βnββ in the
population, which are transformed to obtain the partworths. The distribution
of partworths is obtained through simulation on the estimated values of b and
Ω.

In particular, draws of βnββ are taken from a normal distribution with mean
equal to the estimated value of b and variance equal to the estimated value of
Ω. Each draw of βnββ is then transformed to obtain a draw of partworths.11 The
mean and variance of these partworths are given in the latter columns of Table
7.3. The specification of the distributions assures that no one in the popula-
tion dislikes (i.e., has a strictly negative partworth for) price reductions, oper-

11An alternative procedure, which is more consistent with Bayesian concepts and less consistent with clas-
sical concepts, is to retain the draw of the partworths (i.e., the transformation of the draw of βn) for each
person in each iteration of the MCMC procedure after convergence and calculate statistics such as means
and variances over these draws.
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ating cost reductions, range improvements, or either of the two performance
improvements.12 The mean partworths are smaller in this model than in the
model with all normal distribution.13 This difference is evidence of how the
use of normal distribution can distort the estimated mean partworths. In par-
ticular: For a desirable attribute, the normal distribution gives an implausible
negative sign for some share of customers; in estimation, the distribution is
moved “up” to avoid the poor fit that these implausible values imply. With
distributions that do not contain implausible values, the estimation procedure
is not distorted to avoid implausible values.

The estimates imply that 51 percent of the population do not care about an
improvement from low to mid-level performance, and 69 percent of the popu-
lation do not care about an improvement from mid-level to high performance.
These shares seem larger than expected (at least what we expected.) However,
this result might simply indicate that the other attributes that were included
in the choice experiments are more important to a large share of respondents,
such that the partworth for performance appears to be zero for these respon-
dents. If attributes that were considered less important than performance had
been included in the experiments, with variation only over performance and
these less important attributes, then a positive partworth for performance might
have been evidenced.

Table 7.4. Correlations among partworths with transformations of normals.

Price 1.00 0.25 0.14 0.00 0.35 0.12 0.05
Operating cost 1.00 0.08 –0.10 0.17 0.02 –0.04
Range 1.00 –0.05 0.27 0.03 0.02
Electric vehicle 1.00 0.38 0.04 –0.11
Hybrid vehicle 1.00 0.22 0.09
High performance 1.00 0.14
Med and high performance 1.00

Table 7.4 gives the correlation among partworths implied by the estimated
model. The implications are generally more reasonable that for the model
with all normal distributions. People who are concerned about price are also
concerned about operating cost. People who like electric vehicles also tend

12The mean βn is negative for many of these attributes, even though the partworths themselves are positive.
For log-normal distributions, βn is exponentiated such that the partworth is positive even if βn is negative.
In this case, a negative mean for βn implies that the median partworth is between zero and one. Similarly,
if the partworth is a normal censored at zero, a negative mean for βn implies than more than half of the
population does not care about the attribute.
13Even though the means drop, the ratios of means move in both directions relative to those with all normal
distributions.
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to like hybrid vehicles. This result suggests that customers have a willingness
or unwillingness to consider new technologies that transcends the particular
technology. The questionable correlation between the partworths of range and
electric vehicles that arose in the model with all normal distributions is not
evidenced in the model with transformations of normals.

As specified, the partworths for price, operating cost and range have log-
normal distributions, which allow unboundedly large partworths and have
fairly thick tails. It might be more appropriate to give these partworths a SB

distribution. To investigate this question, and to illustrate how various distri-
butions can be tested, we estimated a model that is the same as the one just
described except that the partworths for these three variables are specified as
SB with a lower bound of zero and a high upper bound for each. The up-
per bounds are 1.0 for price and operating cost, and 2.0 for range, which are
high enough to accommodate nearly all of the cumulative distribution under
the respective log-normals and yet allow a different shape of the distribution
within the relevant range. The log-likelihood for this model is higher than
for the previous one: –6,159.7 compared to –6,171.5. For price and operat-
ing cost, the mean and variance of the partworths are about the same with the
SB distribution as the log-normal; however, the shape differed, with the tail
of the SB distribution being considerably smaller even within the support of
the SB . Figure 7.1 illustrates the difference for the price coefficient, with the
solid line representing the SB distribution and the dashed line representing the
log-normal.

For the partworths associated with range, using the SB distribution instead
of the log-normal had a substantial effect. Figure 7.2 shows the estimated
densities under the SB distribution (solid line) and log-normal (dashed line).
The SB distribution provides a plateau shape that cannot be accommodated
with a log-normal. The question arises of whether this shape is the result of
placing a maximum of 2.0 on the SB distribution when the estimated log-
normal distribution gives a non-negligible share above 2. We re-estimated the
model with the maximum of the range coefficient set at 5.0 instead of 2.0.
The estimated SB density with this maximum takes a shape that is similar
to the log-normal. However, the log-likelihood dropped considerably, from
–6,159.7 with the maximum set at 2.0 to –6,163.1 with the maximum set at
5.0. Apparently the improvement in fit that arises from using SB distribution
instead of the log-normal is due to the plateau shape that the SB distribution
takes when its maximum is set at 2.0 for this partworth.

The bounds of the SB distribution can be estimated as parameters, rather
than specified by the researcher. Doing so requires an extra layer of Gibbs
sampling, with the bounds drawn from their posterior distribution conditional
on βnββ ∀n. The conditional posterior is proportional to the logit likelihood
for the entire sample,

∏
n L(yn | βnββ ), times the prior on the bounds, where the
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Figure 7.1. Price coefficients under the SB distribution (solid line) and log-normal (dashed
line).

Figure 7.2. Range coefficients under the SB distribution (solid line) and log-normal (dashed
line).
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utility that is used to calculate the logit formulas in L(·) depends on the bounds
of the SB distributions. A M-H algorithm is used to take draws from this
conditional posterior, similar to that used by Train (2001) for fixed coefficients.

We estimated a model with the upper bound of the SB distribution for
the range coefficient treated as a parameter. Using a flat prior, the estimated
value was 2.86 with a standard error of 0.42. The log-likelihood of the model
dropped slightly from –6,159.7 with the upper bound set at 2.0 to –6,160.56
with the estimated bound. Run time approximately doubled, since the M-H al-
gorithm for the bounds of the SB distribution requires about the same amount
of calculation as the M-H algorithm for βnββ ∀n. As noted above, run times
are fairly short with the procedure such that doubling them is not a burden.
However, identification becomes an issue when the bounds are treated as pa-
rameters, since the difference between the upper and lower bounds, u − �, is
closely related to the variance ω of the latent normal term. An important area
for further work is whether the SB distributions can be re-parameterized in a
way that improves identification of each parameter when the researcher does
not specify the bounds.
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1. Introduction

Policy recommendations arising from economic research often depend crit-
ically on the public’s willingness to pay or willingness to accept for price and
quality changes. To construct these welfare measures, analysts must often
estimate coherent demand systems for the affected commodities. In micro-
econometric applications with numerous quality-differentiated goods, both de-
mand system estimation and welfare calculation can be daunting in practice.

Environmental economists routinely confront these challenges when using
outdoor recreation data to infer the non-market value of changes in site at-
tributes and availability. In this chapter we provide an overview and synthesis
of existing continuous demand system approaches to addressing these issues.
Our discussion is couched in the context of recreation demand analysis and
focused on so-called “Kuhn-Tucker” approaches, or continuous demand sys-
tem models estimated within the primal framework.1 Significant progress has
been made with these models in recent years, and we emphasize throughout
the critical role that simulation has played. We illustrate these advances with
recreation data on Canadian moose hunting.

Frequently in recreation demand applications, the analyst has seasonal trip
data for a sample of individuals and a relatively large number of recreational
sites (10 or more), socio-demographic information, and site attributes. For
a given individual, many sites are unvisited but some are visited more than
once. To consistently derive welfare measures for price and attribute changes
with such data, structural econometric models that behaviorally and statisti-
cally account for the mixture of corner solutions (unvisited sites) as well as
interior solutions (sites with one or more trips) are required. Over the past
three decades, recreation demand modelers have developed an impressive ar-
ray of econometric models to fit data with these characteristics (See Phaneuf
and Smith (forthcoming) for a recent review), but since their introduction by
Hanemann (1978), variations of the discrete choice random utility maximiza-
tion (RUM) model have dominated. In discrete choice RUM models, the recre-
ation season is decomposed into separable choice occasions with independent
discrete trip choices made on each. These models are tractable in estimation,
can account for a potentially large number of sites, and provide a consistent
theoretical framework from which choice occasion welfare measures can be
calculated. However, by focusing on the decision process at the choice oc-
casion, discrete choice models are ill suited for estimating seasonal demands

1Continuous demand system models estimated within the dual framework have also been proposed by Lee
and Pitt (1986). Although Phaneuf (1999) and Wang (2003) have recently used the framework to estimate
preferences for 5 and 15 sites in the recreation demand context, respectively, considerably less progress
has been made with the dual approach relative to the primal framework in terms of estimation and welfare
calculation. Our discussion in this chapter therefore focuses on the primal framework.
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and welfare measures. Although numerous approaches for linking decisions
made on individual choice occasions to decisions made over the season have
been proposed (see Parsons et al. (1999) for an overview and comparison), no
consensus on how this can be consistently done has emerged.

At the time he proposed the discrete choice framework for modeling sea-
sonal recreation choices, Hanemann also developed a continuous demand sys-
tem approach that was based on the primal representation of the consumer’s
constrained optimization problem and exploited the Kuhn-Tucker conditions
in estimation. These “Kuhn-Tucker” models (hereafter KT models), as Wales
and Woodland (1983) called them in separate but concomitant work, consis-
tently account for both the extensive (which sites to visit) and intensive (how
many trips to take) margins of choice and can be used to recover a coherent
representation of an individual’s seasonal preferences. As such, the KT frame-
work has a significant conceptual advantage over discrete choice approaches
for modeling seasonal recreation demand.

Despite its conceptual appeal, no recreation demand application exploited
the KT framework prior to 2000. Moreover, only a handful of empirical studies
have employed the KT framework outside of environmental economics, and
all of these studies used data sets with less than 10 goods and did not report
welfare measures. This historical avoidance of the KT framework in applied
demand analysis can be explained by the absence of computational algorithms
for flexibly estimating the structural parameters of and constructing Hicksian
welfare measures from KT models in realistic, policy-relevant applications.
Over the past 5 years, however, advances in simulation have facilitated the
development of the necessary algorithms and in turn the wider application of
the KT framework.

We begin the chapter by describing the generic KT framework as well as the
estimation and welfare calculation challenges that have historically limited its
application. We then consider three KT specifications that fit within a common
additively separable preference structure but vary in terms of their ability to
flexibly account for unobserved heterogeneity. We use these specifications as
vehicles for discussing recent computational advances in KT estimation and
welfare calculation. Next, we illustrate these advances with an application to
moose hunting in Canada. We close the chapter with an appraisal of current KT
approaches to non-market valuation and recommendations for future research.

2. Modeling framework and challenges

The point of departure for the KT framework is the consumer’s direct util-
ity function U(x,Q, z, β,E) where x is an M -dimensional vector of visits to
the available recreation sites, Q = [q1, · · · ,qM ] denotes an L × M matrix
of site-specific quality attributes for the recreation sites, z is a strictly positive
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numeraire representing spending on other goods, β is a vector of structural
parameters entering preferences, and E is a vector or matrix of unobserved
heterogeneity. Because E is interpreted as the components of the utility func-
tion that are known to the individual but unobserved by the analyst, the setup is
consistent with McFadden’s random utility maximization hypothesis, and the
elements of E have a structural interpretation. The consumer chooses x and z
to maximize utility subject to budget and non-negativity constraints:

max
x,z

U(x,Q, z, β, E) s.t. y = p
x + z, xj ≥ 0, j = 1, · · · , M, (2.1)

where p is an M -dimensional vector of travel costs for the recreation sites
and y is income. Assuming trips are infinitely divisible (i.e., ignoring the non-
negative integer nature of trip demand),2 (2.1) represents a continuous nonlin-
ear programming problem that can be solved using the approach of Kuhn and
Tucker (1951). Assuming U satisfies the standard regularity conditions, the
Kuhn-Tucker conditions that implicitly define the optimal consumption bundle
(x∗, z∗) are

∂U/∂xj

∂U/∂z
≤ pj , j = 1, . . . , M, (2.2)

xj ×
[
∂U/∂xj

∂U/∂z
− pj

]
= 0, j = 1, . . . , M. (2.3)

The left hand side of (2.2) can be interpreted as the Marshallian “virtual”
price of xj , the price that would make the individual freely choose x∗

j if the
non-negativity constraints were somehow relaxed. Each virtual price is an
endogenous function of (x∗, z∗), and as suggested by equation (2.2), its re-
lationship relative to its corresponding travel cost provides the conceptual link
between observable demands and the structure of preferences. For a visited
site (i.e., an interior solution), the site’s virtual and travel cost prices are equal,
and trip demand is chosen such that the marginal rate of substitution between
trips and the numeraire equal the travel cost. For an unvisited site (a corner so-
lution), the site’s virtual price is bounded from above by its travel cost and can
be interpreted as the individual’s reservation price, or the price below which
trip demand will be strictly greater than zero.

Combining the M weak inequalities in (2.2) with distributional assump-
tions for E implies likelihoods for alternative values of (x∗) conditional on β.
As Hanemann (1978) and Wales and Woodland (1983) argued, estimation of
β can proceed by maximum likelihood, but to do so in general requires eval-
uation of complex multivariate integrals whose dimensions equal the number

2See von Haefen and Phaneuf (2003) for an empirical investigation of this assumption.
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of unvisited sites. Hanemann showed how strategic use of convenient distribu-
tional assumptions can imply closed form likelihood functions, but exploiting
such assumptions comes at the high cost of behavioral implausibility. Thus
prior to the development of modern simulation techniques, the computational
difficulties associated with evaluating high dimensional integrals effectively
limited the application of KT models to data sets with four or fewer goods.

Welfare measurement in the KT framework raises additional challenges.
The Hicksian compensating surplus CSH arising from a change in prices
and/or qualities from (p0, Q0) to (p1, Q1) can be defined implicitly using
indirect utility functions:

ν(p0,Q0, y, β,E) = ν(p1,Q1, y − CSH , β,E), (2.4)

or explicitly using expenditure functions:

CSH = y − e(p1,Q1, U0, β,E), (2.5)

where U0 = ν(p0,Q0, y, β,E). Whether the analyst uses equation (2.4) or
(2.5) to solve for CSH , two computational issues must be addressed. First,
both ν(·) and e(·) can be interpreted as endogenous regime switching func-
tions where regimes correspond to the 2M combinations of interior and corner
solutions for the M sites. The functions are endogenous because the rational
individual chooses the regime that maximizes her utility or minimizes her ex-
penditures. Particularly when M is large, solving for ν(·) and e(·) (and thus
CSH ) can be computationally difficult. Second, the unobserved heterogeneity
entering preferences is by definition unknown to the analyst, and thus CSH

is a random variable from the analyst’s perspective and cannot be ascertained
precisely. The analyst can at best compute a measure of its central tendency
such as its expectation, E(CSH), using Monte Carlo simulation techniques.
Although conceptually straightforward, the use of Monte Carlo techniques to
estimate E(CSH) can be computationally intensive when the costs of solv-
ing for CSH conditional on simulated E values are high. Furthermore, this
computational burden is more onerous if confidence intervals for E(CSH) are
desired because the entire routine for estimating E(CSH) must be replicated
for alternative parameter values.

In sum, the computational challenges associated with estimation and welfare
calculation in the KT framework are significant. The lack of tractable compu-
tational procedures to address these challenges explains why no empirical KT
application in environmental economics existed prior to 2000. Moreover, in
the relatively few KT applications outside of environmental economics, the
data used consisted of 10 or fewer goods and no attempt was made to construct
consistent welfare measures. In recent years, however, modeling innovations
by Phaneuf, Kling and Herriges (2000), von Haefen, Phaneuf, and Parsons
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(2004), and von Haefen (2004a) have enabled analysts to estimate and con-
struct welfare measures from KT models in applications with as many as 89
goods (von Haefen, 2004b). The next two sections summarize these innova-
tions in the context of three representative KT specifications that we apply to
moose hunting data in our empirical illustration.

3. Empirical specifications and implementation strategies

All three specifications we consider are variations of the following direct
utility function:

u(·) =
M∑

j=1
Ψj ln(φjxj + θ) + 1

ρzρ

ln Ψj = δ
s + µεj

lnφj = γ
qjq
ρ = 1 − exp(ρ∗)
ln θ = θ∗
lnµ = µ∗,

(3.1)

where s is a vector of individual characteristics, (δ, γ, θ∗, ρ∗, µ∗) are structural
parameters that may vary randomly across individuals in the population to cap-
ture unobserved heterogeneity, and E = (ε1, . . . , εM ) represents additional
unobserved heterogeneity that varies randomly across individuals and sites.
Preferences in (3.1) embody additive separability, and as such, rule out a pri-
ori inferior goods and any Hicksian complementarities among goods. For a
cross section of outdoor recreators, additive separability implies that wealthier
individuals will take more trips to more sites on average. Although plausi-
ble in some applications, these implications may be troubling in others. As
we describe below and in the next section, the appeal of additive separabil-
ity is largely computational, particularly when constructing welfare measures.
In addition, preferences in (3.1) are consistent with weak complementarity
(∂u/∂qjq = 0 if xj = 0,∀j∀ ; see Herriges, Kling, and Phaneuf (2004) and
von Haefen (2004a) for recent discussions) because qjq enters preferences only
through the jth good’s pure repackaging parameter, φj . Finally, for (3.1) to
be a coherent preference specification, the ρ parameter cannot be greater than
one. For numerical simplicity, we strengthen this restriction to ρ < 1.

Maximizing (3.1) with respect to the linear budget and non-negativity con-
straints implies a set of first order conditions that, with some manipulation, can
be written as

εj ≤ 1
µ

(
−δ
s + ln

pj

φj
+ ln(φjxj + θ) + (ρ − 1) ln(y − p
x)

)
,∀j.∀

(3.2)
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We assume each element of E is an independent draw from the normalized type
I extreme value distribution. Hanemann (1978) recognized that this convenient
but restrictive distributional assumption implies a closed form solution for the
likelihood of observing x conditional on (δ, γ, θ∗, ρ∗, µ∗):

l(x|δ, γ, θ∗, ρ∗, µ∗) = |J|
∏
j

[exp (−gjg (·))/µ)]1(xj>0)

× exp [− exp(−gjg (·))] ,
(3.3)

where gjg (·) is the right hand side of (3.2), |J| is the determinant of the Jacobian
of transformation, and 1(xj > 0) is an indicator function equal to one if xj is
strictly positive and zero otherwise.

Our alternative KT specifications differ in their treatment of (δ, γ, θ∗, ρ∗, µ∗)
as fixed or random across the population. For all three specifications, estima-
tion of the model’s structural parameters in principle can proceed within either
classical or Bayesian frameworks (see Train (2003) for a recent discussion of
the subtle but important differences between the two). However, classical esti-
mation approaches are easier to implement for the two more restrictive speci-
fications but more difficult for the more general third. Although classical and
Bayesian paradigms imply very different interpretations for the estimated pa-
rameters, the Bernstein-von Mises theorem suggests that Bayesian posterior
mean estimates, interpreted within the classical framework, are asymptotically
equivalent to their classical maximum likelihood counterparts when the analyst
has correctly specified the data generating process. Following Train (2003), we
interpret this result as suggesting that both approaches should generate qual-
itatively similar inference, and thus the analyst’s choice of which to use in
practice can be driven by computational convenience. We therefore discuss
estimation of the more restrictive specifications in the classical framework and
estimation of the more general specification in the Bayesian framework.

3.1 Fixed and random parameter classical estimation
approaches

Our first empirical KT specification follows Phaneuf, Kling, and Herriges
(2000) and assumes that all elements of (δ, γ, θ∗, ρ∗, µ∗) are equal across the
population. This fixed parameter KT specification can be criticized as im-
plausibly restrictive because only the independent random variables capture
unobserved heterogeneity in the model.3 However, its main appeal is that
simulation is not required in estimation because the likelihood simplifies to
l(x) = l(x|δ, γ, θ∗, ρ∗, µ∗), where the right hand side is as in equation (3.3).

3Phaneuf, Kling, and Herriges also consider a fixed parameter GEV variant of this model that allows for
some correlations in the unobserved determinants of choice.
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This closed form analytical structure implies that recovering maximum like-
lihood parameter estimates using numerical gradient-based search methods is
straightforward even when M is large.4

Our second specification generalizes the fixed parameter specification by al-
lowing a subset of parameters in (δ, γ, θ∗, ρ∗, µ∗) to vary randomly across the
population. As von Haefen, Phaneuf, and Parsons (2004) discuss, estimation of
this random parameter specification in the classical framework requires simula-
tion because the likelihood function no longer has a closed form and numerical
integration techniques can only be used when the dimension of the random pa-
rameter space is sufficiently small. The computational burden in estimation is
consequently far more substantial. However, by strategically holding elements
of (δ, γ, θ∗, ρ∗, µ∗) fixed across the target population and exploiting the same
simulation-based estimation approaches that have been widely used in random
parameter logit applications, estimation of this random parameter specification
is tractable in the classical framework for a relatively large number of goods.

Our choice of which elements in (δ, γ, θ∗, ρ∗, µ∗) are fixed and random is
significantly influenced by computational considerations. To understand why,
consider the general case where all elements of (δ, γ, θ∗, ρ∗, µ∗) are random.
The likelihood function takes the general form:

l(x) =
∫

l(x|δ, γ, θ∗, ρ∗, µ∗)dδdγdθ∗dρ∗dµ∗

=
∫ |J|∏

j
[exp (−gjg (·)/µ) /µ]1(xj>0) dδdγdθ∗dρ∗dµ∗. (3.4)

Simulating l(x) involves: 1) simulating values of (δ, γ, θ∗, ρ∗, µ∗); 2) cal-
culating l(x) = l(x|δ, γ, θ∗, ρ∗, µ∗), conditional on the simulated values; and
3) iterating R times and averaging the simulated likelihoods. With all param-
eters random across the population, the computational difficulty of this task is
substantial because the determinant of the Jacobian of transformation, |J|, is
a function of (γ, θ∗, ρ∗) and must be recalculated on each simulation for each
observation. However, if the analyst assumes (γ, θ∗, ρ∗) are fixed parameters,
(3.4) simplifies to

l(x) =
∫ |J|∏

j

{
[exp (−gjg (·)) /µ]1(xj>0) exp [− exp(−gjg (·))]

}
dδdµ∗,

= |J| ∫ ∏
j

{
[exp (−gjg (·)) /µ]1(xj>0) exp [− exp(−gjg (·))]

}
dδdµ∗.

(3.5)

Because |J| can be pulled outside the integral in (3.5), it must only be cal-
culated once per observation when simulating l(x). This significant compu-

4Using analytical gradient-based search routines is more difficult because the Jacobian of transformation in
general has a complex structure that cannot be easily differentiated. Although they are generally slower and
less precise than analytical gradient-based search routines, our experience has been that numerical gradient-
based search routines are sufficiently fast and precise for estimating KT models.
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tational savings explains why we follow von Haefen, Phaneuf, and Parsons
(2004) and assume (γ, θ∗, ρ∗) are fixed parameters.

To complete our random parameter specification, we make the following as-
sumptions. Although not essential for computational reasons, we assume µ∗ is
fixed. We also assume the elements of δ are draws from the multivariate normal
distribution with mean δ̄ and variance-covariance matrix Σδ. For simplicity, we
restrict the off-diagonal elements of Σδ to zero, although von Haefen (2004b)
has estimated similar KT models with all elements of Σδ unconstrained. Rel-
ative to our fixed parameter specification, this random parameter specification
is in many ways more general because it allows for both heteroskedasticity and
positive correlations in the unobserved determinants of choice across the KT
equations.

Estimation proceeds by maximum simulated likelihood (Gourieroux and
Monfort, 1996). For our model, the simulated likelihood function is

l̃(x) = R−1
R∑

r=1

l(x|δr), (3.6)

where δr is the rth (r = 1, . . . , R) random draw of δ. In our maximum simu-
lated likelihood routine l̃(x) replaces l(x) and numerical gradient-based search
methods are again used to find the parameter values that maximize the sample’s
log-likelihood. As summarized in Train (2003, p. 259), these values are consis-
tent, efficient, asymptotically normal, and equivalent to maximum likelihood
values if R rises faster than that square root of the sample size.

In other applications of maximum simulated likelihood, a common empiri-
cal finding has been that several random draws are necessary before parameter
estimates are unaffected by the addition of more random draws. This finding
has caused many researchers to use a large number of random draws when
calculating l̃(x). As a result, the computational time necessary for model con-
vergence increases substantially. In the mixed logit literature, an increasingly
popular strategy for circumventing this difficulty is to use quasi-random draws
such as Halton sequences (Train, 2003, p. 224) in place of random draws
when simulating the likelihood function. The main advantage of quasi-random
draws is that they can more systematically and completely fill the parameters’
support and in the process increase simulation precision. As a result, the likeli-
hood can be calculated to an arbitrary degree precision with fewer simulations
and less run time. Several studies have documented dramatic gains from the
use of Halton draws relative to random draws. Bhat (2001), for example, found
that 100 Halton draws provided more precision that 1000 random draws in the
context of mixed logit models. In light of these findings, we use Halton draws
to calculate (3.6) in our application.
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3.2 Random parameter Bayesian estimation approaches

In our third and most general specification, we assume β = (δ, γ, θ∗, ρ∗, µ∗)
are distributed multivariate normal with mean β̄ and unrestricted variance-
covariance matrix Σβ . Estimating this random parameter specification in the
classical framework is computationally intensive not only because the Jacobian
of transformation must be recalculated on each simulation, but also because the
dimension of the parameter space is large (if β is a K-dimensional vector, there
are K +K(K +1)/2 unique parameters in (β̄, Σβ)). However, recent develop-
ments in Monte Carlo Markov Chain (MCMC) methods have made the model
tractable in the Bayesian framework.

The Bayesian framework assumes that the analyst has initial beliefs about
the unknown parameters (β̄, Σβ) that can be summarized by a prior probability
distribution function, f(β̄, Σβ). When the analyst observes x, she combines
this choice information with the assumed data generating process to form the
likelihood of x conditional on alternative values of (β̄, Σβ), l(x|β̄, Σβ). The
analyst then updates her prior beliefs about the distribution of (β̄, Σβ) to form
a posterior distribution for (β̄, Σβ) conditional on the data, f(β̄, Σβ |x). By
Bayes’ rule, f(β̄, Σβ |x) is proportional to the product of the prior distribu-
tion and likelihood, i.e., f(β̄, Σβ |x) ∝ f(β̄, Σβ)l(x|β̄, Σβ)/C where C is
a constant. In general, f(β̄, Σβ |x) will not have an analytical solution, and
thus deriving inference about the moments and other relevant properties of
(β̄, Σβ) conditional on the data is difficult. However, Bayesian econometri-
cians have developed a number of procedures to simulate random samples from
f(β̄, Σβ |x) and in the process draw inference about the posterior distribution
of (β̄, Σβ).

We follow Kim, Allenby, and Rossi (2002) and von Haefen (2004a) by spec-
ifying diffuse priors and using a Gibbs sampler with an adaptive Metropolis-
Hastings component to simulate from f(β̄, Σβ |x). By decomposing the pa-
rameter space into disjoint sets and iteratively simulating each parameter set
conditionally on the others, the Gibbs sampler generates simulations from the
unconditional posterior distribution after a sufficiently long burn-in. The algo-
rithm is virtually identical to the one developed by Allenby and Lenk (1994)
and described in Train (2003) for random parameter logit estimation except for
the KT likelihood in (3.3) replacing the logit probability throughout.

We assume the following diffuse priors for β and Σβ :

β ∼ N(βFP , ηIkI ) and Σβ ∼ IW (k, IkI ), (3.7)

where N(·) and IW (·) denote the multivariate normal and inverse Wishart dis-
tributions, respectively, βFP are the fixed parameter maximum likelihood esti-
mates, η is a scalar chosen such that 1/η approaches zero, k is the dimension of
β, and IkI is a k-dimensional identity matrix. These priors, in combination with
our assumed data generating process, imply the following conditional posterior
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distributions for β̄ and Σβ as well as the individual specific βtββ (where we have
added subscript t to index the T individuals in the sample):

f(β̄|β1, · · · , βTββ , Σβ ,x1, · · · ,xT ) ∝ N(B̄,Σβ/T )
f(Σβ |β1, · · · , βTββ , β̄,x1, · · · ,xT ) ∝ IW

[
k + T, (kIkI + T S̄)/(k + T )

]
f(βtββ |β̄, Σβ ,xt) ∝ l(xt|βtββ ) × n(βtββ |β̄, Σβ) ∀t,

(3.8)

where l(xt|βtββ ) is the conditional likelihood function from equation (3.3) for
individual t, n(·) is the multivariate normal density function, T is the sample
size, and

β̄ = T−1
∑

t

βtββ

S̄ = T−1
∑

t

(βtββ − β̄)
(βtββ − β̄).

Aside from the form of the conditional likelihood function, these distributions
are identical to those described in Train (2003) for estimating the mixed logit
model using Bayesian techniques.

The Gibbs sampling algorithm proceeds by iteratively drawing from the
conditional distributions in (3.8), with each draw being made conditional on
the remaining parameters’ most recent draws. As Train (2003) describes, sim-
ulating from the multivariate normal and inverse Wishart distributions is rela-
tively straightforward. However, simulating from βtββ ’s posterior distribution is
more complex and requires an adaptive Metropolis-Hastings algorithm (Chib
and Greenberg, 1995). Thus iteration i of the Gibbs sampler involves the fol-
lowing steps:

Step 1: Simulate β̄i from N(B̄i−1, Σi−1
β /T ). To initialize the algorithm

set Σ0
β = kIkI and β0

tββ = B̄0 = βFP ,∀t .

Step 2: Simulate Σi
β from IW

[
k + T, (kIkI + T S̄i)/(k + T )

]
, where

S̄i = T−1
∑
t

(βi−1
tββ − β̄i)
(βi−1

tββ − β̄i).

Step 3: Simulate βi
tββ for each observation using one iteration from the

following Metropolis-Hastings algorithm:
1) For each observation, simulate a vector β̃i

tββ from N(βi−1
tββ , ri−1Σi

β),
where ri−1 is a constant. To initialize the sequence, set r0 = 0.1.
2) For each observation, construct the following statistic:

χi
t =

l(xt|β̃i
tββ )n(β̃i

tββ |β̄i, Σi
β)

l(xt|βi−1
tββ )n(βi−1

tββ |β̄i, Σi
β)

.
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If χi
t ≥ U i

tUU where U i
tUU is a uniform random draw, accept the candidate

random parameters, i.e., βi
tββ = β̃i

tββ . Otherwise, set βi
tββ = βi−1

tββ .
3) Gelman et al. (1995) argue that the Metropolis-Hastings algorithm
for the normal distribution is most efficient if the acceptance rate of
candidate parameters averages between 0.23 and 0.44. Therefore, set
ri = (1.01)ri−1 if the sample’s proportion of accepted candidate pa-
rameter values is less than 0.3. Otherwise, set ri = (0.99)ri−1.

Step 4: Iterate.

After a sufficiently long burn-in, this algorithm generates random draws from
the posterior distributions of βtββ , β̄, and Σ. In practice, the burn-in length nec-
essary to achieve convergence (i.e., random draws from the posterior distribu-
tions) is difficult to ascertain. However, our experience has been that the Gibbs
sampler algorithm is very fast even in large choice set applications, and thus
the analyst can cheaply add burn-in iterations if convergence is in doubt. Fi-
nally, because the Gibbs sampler induces serial correlation in βtββ , β̄, and Σβ ,
we only use each 10th simulation after the burn-in to construct distributional
summary statistics and, as we discuss below, welfare measures.

3.3 Welfare analysis

Our simulation-based approach to welfare measurement follows von Hae-
fen, Phaneuf, and Parsons (2004) by incorporating the implications of observed
choice. In particular, we simulate the unobserved heterogeneity such that our
model perfectly predicts observed behavior at baseline conditions and use the
model’s structure to predict how individuals respond to price, quality, and in-
come changes. As von Haefen (2003) discusses, this conditional approach to
welfare measurement differs from the more traditional unconditional approach
where the structural model is used to predict both behavior at baseline condi-
tions and responses to price, quality, and income changes. The law of iterated
expectations implies that sample means of conditional and unconditional wel-
fare estimates should converge in expectation assuming the analyst has cor-
rectly specified the data generating process. Similar to the analyst’s choice of
classical or Bayesian estimation approaches, the choice of conditional or un-
conditional welfare measures can thus be governed by convenience. Because
our past experience with the conditional approach to welfare measurement in
the KT framework suggests that it is up to three times faster than the uncon-
ditional approach in achieving an arbitrary level of precision in the welfare
estimates, we employ the approach with our empirical specifications here.5

5An additional rationale for using the conditional approach to welfare measures arises when one finds poor
in-sample trip predictions (von Haefen and Phaneuf (2003)). Incorporating observed choice can mask these
prediction problems and in our view result in more reliable policy inference.
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There are two key steps to constructing the Hicksian consumer surplus
(CSH ) on each iteration of our simulation-based algorithm. The first involves
simulating the unobserved heterogeneity such that it is consistent with ob-
served choice at baseline conditions, and the second involves solving for CSH

conditional on the simulated unobserved heterogeneity values. In the next two
subsections, we discuss our strategies for resolving each of these issues in the
context of our three empirical specifications.

3.4 Simulating the unobserved heterogeneity

To simulate the unobserved heterogeneity entering all three of our specifica-
tions, we need to draw from f(βtββ ,Et|xt) , the joint distribution for individual
t’s structural parameters βtββ = (δt, γtγγ , θ∗t , ρ∗t , µ∗

t ) and independent type I ex-
treme value draws Et conditional on her observed trip demands. The following
decomposition suggests a convenient strategy for accomplishing this task:

f(βtββ ,Et|xt) = f(βtββ |xt)f(Et|βtββ ,xt). (3.9)

Equation (3.9) suggests that simulating from f(βtββ ,Et|xt) can be accomplished
by first simulating from f(βtββ |xt) and then conditionally from f(Et|βtββ ,xt).
For the fixed parameter classical specification, no simulation from f(βtββ |xt) is
required. Moreover for the random parameter Bayesian specification, the ran-
dom draws from f(βtββ |xt) generated as part of the Gibbs sampler can be used in
welfare analysis. For the random coefficient classical specification, however,
simulating from f(βtββ |xt) requires an additional subroutine. Following von
Haefen, Phaneuf, and Parsons (2004), we use an adaptive Metropolis-Hastings
algorithm to simulate from f(βtββ |xt) for this specification. The algorithm is
qualitatively similar to the one used in the Gibbs sampler except that only the
elements in δt vary randomly across the population. The key steps of the algo-
rithm are summarized below:

1 At iteration i, simulate for all T observations a candidate vector of un-
observed heterogeneity δ̃i

t from the normal distribution with location pa-
rameters δi−1

t and scale parameters (ri−1Σδ) where ri−1 is a constant.
To initialize the algorithm, set δ0

t = δ̄ and r0 = 0.1.

2 For all T observations, construct the statistic

χi
t =

l(xt|δ̃i
t)n(δ̃i

t|δ̄, Σδ)
l(xt|δi−1

t )n(δi−1
t |δ̄, Σδ)

(3.10)

where is defined in equation (3.3). If χi
t ≥ U i

tUU where U i
tUU is a uniform

random draw, accept the candidate random parameter (i.e., δi−1
t = δ̃i

t ).
Otherwise set δi

t = δi−1
t .
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3 If the sample’s proportion of accepted candidate parameters is less than
0.3, set ri = (1.01)ri−1. Otherwise, set ri = (0.99)ri−1.

4 Iterate.

After a relatively short burn-in period, this algorithm generates random
draws from f(βtββ |xt) . To reduce the serial correlation in the random draws, we
only use every 10th simulation after the burn-in to construct welfare measures.

Once the parameters of the model have been simulated, drawing from
f(Et|βtββ ,xt) is relatively straightforward. For each element of Et , simula-
tion depends critically on whether a site is visited. If, for example, site j is
visited, the structure of the model, the simulated random parameters, and the
observed trip demands imply that εtj = gtj(·) where gtj(·) equals the right
hand side of equation (3.2). By contrast if site j is unvisited, εtj is strictly
less than gtj(·) and can be simulated from the truncated type I extreme value
distributional assumption using the probability integral transformation, i.e.,

εtj = − ln [− ln(exp(− exp(−gtj(·)))UtjUU )] (3.11)

where UtjUU is a uniform random draw.

3.5 Calculating CSH

Since Phaneuf, Kling, and Herriges (2000) proposed the first strategy to
solve for CSH conditional on the simulated unobserved heterogeneity, nu-
merous refinements to their approach have been developed that reduce the
computational burden of the task significantly. To place these refinements in
context, we first describe the Phaneuf, Kling and Herriges approach. Their
strategy exploits the implicit, indirect utility-based definition of CSH in equa-
tion (2.4) and uses a numerical bisection routine to iteratively solve for the
income compensation that equates utility before and after the price and quality
changes. At each step of the numerical bisection routine the analyst must an-
alytically solve the consumer’s constrained optimization problem conditional
on (p1,Q1, βtββ ,Et) and an arbitrary income level to determine the individual’s
utility. Phaneuf, Kling and Herriges proposed doing this by calculating each of
the 2M regime-specific conditional indirect utility functions and determining
which one generated the highest utility.

Although their approach generates consistent estimates of CSH , several fac-
tors limit its practical appeal. Perhaps the most significant is that analytically
calculating 2M regime-specific conditional indirect utility functions for several
observations and simulated values of (βtββ ,Et) is not practical when M is large.
Phaneuf and Herriges (1999) have shown that the approach is feasible for recre-
ation applications with as many as 15 sites, but with the addition of only a few
more sites, the approach becomes intractable. Moreover, the approach is lim-
iting in the sense that the analyst must choose preference specifications with
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closed form conditional indirect utility functions. Since the number of prefer-
ence specifications that satisfy this condition is relatively small, this constraint
is notable. In addition, the approach is inefficient because it is based on the im-
plicit, indirect utility-based function definition of CSH in (2.4) instead of its
explicit, expenditure-based function definition in (2.5). As a result, the analyst
must use a numerical bisection algorithm to solve for the income compensation
that equates utility.

von Haefen, Phaneuf, and Parsons (2004) significantly refined Phaneuf,
Kling, and Herriges’ approach by introducing an iterative algorithm that nu-
merically solves the consumer’s constrained optimization problem at each iter-
ation of the numerical bisection routine. By using a numerical approach based
on the Kuhn-Tucker conditions to solve for the consumer’s optimal consump-
tion bundle and utility, von Haefen, Phaneuf, and Parsons’ approach can be
applied to preference specifications without closed form indirect utility func-
tions (such as our three specifications in this chapter) as well as data with many
goods. Like Phaneuf, Kling, and Herriges’ approach, however, their approach
exploits the implicit definition of CSH in (2.4) and therefore is not fully effi-
cient. Nonetheless, experience has shown it to be surprisingly fast in practice
regardless of the number of goods.

von Haefen, Phaneuf, and Parsons’ approach can be best appreciated by in-
specting the generic Kuhn-Tucker conditions when preferences are additively
separable (i.e., u(·) =

∑
k uk(xk) + uz(z)):

∂uj(xj)
∂xj

≤ ∂uz(z)
∂z

pj , xj ≥ 0, ∀j∀ (3.12)

and

z = y −
M∑

k=1

pkxk. (3.13)

Notably in (3.12) only xj and z enter the jth Kuhn-Tucker equation. This sim-
ple structure suggests that if the analyst knew the optimal value for z, she could
use equation (3.12) to solve for each xj . Therefore under additive separabil-
ity, solving the consumer’s problem reduces to solving for the optimal value
of z. Based on this insight the following numerical bisection algorithm can be
used to solve the consumer’s problem conditional on values for the exogenous
variables and the simulated unobserved heterogeneity:

1 At iteration i, set zi
a = (zi−1

l + zi−1
u )/2. To initialize the algorithm, set

z0
l = 0 and z0

u = y.

2 Conditional on zi
a, solve for xi using (3.12). Use (3.13) and xi to con-

struct z̃i .
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3 If z̃i > zi
a , set zi

l = zi
a and zi

u = zi−1
u . Otherwise, set zi

l = zi−1
l and

zi
u = zi

a.

4 Iterate until |(zi
l − zi

u)| ≤ c where c is arbitrarily small.

von Haefen, Phaneuf, and Parsons show that the strict concavity of the utility
function implies the algorithm will find the unique solution to the consumer’s
problem. Plugging the optimal solutions into (3.1) allows the analyst to evalu-
ate the consumer’s utility conditional on (p1,Q1, βtββ ,Et) and income. Nesting
this algorithm within the numerical bisection routine that iteratively solves for
the income compensation that equates utility before and after the price and
quality change allows the analyst to construct the individual’s Hicksian com-
pensating surplus conditional on (βtββ ,Et).

Building on von Haefen, Phaneuf, and Parsons’ numerical approach, von
Haefen (2004a) has recently developed a more efficient numerical algorithm
that relies on expenditure functions and the explicit definition of CSH in equa-
tion (2.5). The computational savings arising from his approach are substan-
tial; whereas von Haefen, Phaneuf, and Parsons’ numerical approach requires
the analyst to solve roughly two dozen constrained maximization problems,
von Haefen’s approach requires that the analyst solve only one constrained
minimization problem.

Under additive separability the generic Kuhn-Tucker conditions for the in-
dividual’s expenditure minimization problem are equation (3.12) and

ū =
M∑

k=1

uk(xk) + uz(z). (3.14)

A similar iterative algorithm can be used to solve the individual’s constrained
minimization problem. Assuming utility is strictly concave, the following al-
gorithm finds the values of x and z that minimize expenditure:

1 At iteration i, set zi
a = (zi−1

l + zi−1
u )/2. To initialize the algorithm, set

z0
l = 0 and z0

u = u−1
z (Ū −∑

uj(0)).

2 Conditional on zi
a, solve for xi using (3.12). Solve for ũi = U(xi, zi

a)
using (3.14).

3 If Ũ i < Ū set zi
l = zi

a and zi
u = zi−1

u . Otherwise set zi
l = zi−1

l and
zi
u = zi

a.

4 Iterate until |(zi
l − zi

u)| ≤ c where c is arbitrarily small.

With the optimal solutions for x and z in hand, the expenditure needed to reach
baseline utility under the new prices and quality can be calculated and used to
efficiently compute the compensating surplus via (2.5).
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3.6 Our welfare calculation approach: a restatement

For clarity, we now restate the key steps of our generic approach to con-
structing Hicksian welfare estimates:

1 On iteration i, simulate βtββ initially from f(βtββ |xt) and Et condition-
ally from f(Et|βtββ ,xt). No simulation from f(βtββ |xt) is necessary for
the fixed parameter classical model, and simulations from f(βtββ |xt)
are generated at each step of Gibbs sampler in the random parameter
Bayesian model. For the random parameter classical model, the adap-
tive Metropolis-Hastings algorithm described in section 3.4 can be used
to generate simulations of βtββ . For the classical and Bayesian random
parameter specifications, we use every 10th simulation after the burn-in
to construct welfare estimates to reduce the serial correlation induced by
the Monte Carlo Markov Chain. For each element of Et, set εtj = gtj(·)
if site j is visited and simulate εtj from the truncated type I extreme
value distribution using equation (3.11) otherwise.

2 Conditional on the simulated (βtββ ,Et), compute CSH arising from the
price and quality change using either von Haefen, Phaneuf, and Par-
sons’ indirect utility function-based approach or von Haefen’s expendi-
ture function-based approach.

(a) With the indirect utility function approach, we use numerical bi-
section to find the income differential that equates baseline and
new utility levels. At each iteration of this search routine, use von
Haefen, Phaneuf, and Parsons’ algorithm to solve the consumer’s
constrained optimization problem and utility.

(b) With the expenditure function approach, use von Haefen’s algo-
rithm to compute the minimum expenditure necessary to achieve
baseline utility at the new price and quality values. Because this
approach is significantly faster than von Haefen, Phaneuf, and Par-
sons’, we use it exclusively in our subsequent application.

3 Average each of the simulated compensating surplus values to construct
an estimate of E(CS), the individual’s expected Hicksian surplus mea-
sure.

4. Empirical illustration

To illustrate our estimation and welfare calculation approaches, we use 1992
moose hunting recreation data from Alberta, Canada.6 The data was previously

6We thank Vic Adamowicz and Peter Boxall for generously providing this data.
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analyzed by Adamowicz et al. (1997) and is further documented in McCloud
et al. (1993). Here we present only a few of its salient features. In 1992, a
survey of Alberta moose hunting license holders was conducted to ascertain
the role of alternative forest management policies on moose hunting behavior.
In-person interviews at five centrally located towns in the province were used
to elicit revealed preference, stated preference, and demographic information.
A total of 199 of the original 412 hunters who were initially contacted supplied
complete revealed preference data and are the focus of our analysis.

The revealed preference component of the survey collected information
about trip-taking behavior over the past year to fourteen Wildlife Management
Units (WMUs). These WMUs represent forestry-intensive regions of west-
central Alberta that range in size from roughly 1,000 to 13,000 hectares. Round
trip travel distances were manually calculated with maps and rotary planime-
ters from each individual’s residence to a point near the center of each WMU
that could be reached by road or truck trail. Travel costs were constructed as
the round trip travel distance valued at $0.27/km (1992 Canadian dollars) plus
travel time valued at the wage rate for those who could have worked while they
were hunting and zero for those who could not. Summary statistics for the trip
and travel cost data for the fourteen sites, as well as additional economic and
demographic variables used in our analysis, are given in Table 8.1.

Table 8.1. Summary Statistics (Sample Size = 199, Sites = 14)

Variable Description Mean Std. Err.

Trips Trips to all 14 WMUs 4.925 6.12
Tcost Travel cost to each WMUsa 220 151
Income Income a 51,722 22,809
Edmonton Edmonton resident 0.412 0.493
Age Age/100 0.396 0.107
HS diploma High school diploma 0.91 0.288
Some post Some post-secondary education 0.412 0.493
Col grad College graduate 0.06 0.239
Gen exp General hunting experienceb 2.019 1.024
Moose exp Moose hunting experienceb 1.688 0.987
Moose den Moose densityc 0.568 0.341
FMA Percentage of WMU in Forest Management Area 0.483 0.327

a In 1992 Canadian dollars.
b Years/10.
c Estimated moose hunting population per square hectare.



Kuhn-Tucker Demand System Approaches to Non-Market Valuation 153

5. Results

5.1 Parameter estimates

Table 8.2 reports parameter estimates for three alternative Kuhn-Tucker
specifications.7 The first column contains fixed coefficient classical estimates,
column two contains the restricted random coefficient classical estimates, and
column three contains unrestricted random coefficient Bayesian estimates. All
three sets of estimates are generated from models that consistently account
for the truncation of trips (i.e., the fact that all 199 sample respondents take
a positive number of trips) induced by the sampling design. For the Bayesian
estimates, 78 additional parameters (the off-diagonal elements of the random
parameter variance-covariance matrix) were also estimated but are not reported
in Table 8.2. Thus, the Bayesian random parameter specification with 104 to-
tal parameters estimated can account for a much richer structure of unobserved
heterogeneity relative to the classical random parameter specification with 20
parameters estimated. Moreover, the run time required to produce the Bayesian
estimates was less than one-third the run time needed for the classical random
parameter specification. Combined, these points suggest the significant appeal
of the Bayesian framework when estimating Kuhn-Tucker demand models.

Across all three specifications, the parameter estimates reported in Table 8.2
suggest an increase in moose population per hectare (the moose den variable)
makes a WMU more attractive for hunters, although the Bayesian specifica-
tion indicates there is variation in the strength of this effect in the popula-
tion. Likewise, a percentage increase in protected Forest Management Areas
(FMA) tends to make a WMU more attractive for moose hunters, although
again the Bayesian estimates suggest diversity of preferences across the pop-
ulation. The presence of income effects in the data can be ascertained by the
sign and magnitude of ρ∗, where a large negative estimate implies zero in-
come effects. While the classically estimated models imply income effects are
present, the Bayesian estimates suggest otherwise. This empirical finding is
probably due to the fact that once one allows for a richer pattern for the unob-
served heterogeneity through correlated random parameters, income’s role in
explaining behavior is substantially reduced.

In general, it is difficult to statistically discriminate among the alternative
specifications. A naı̈ve likelihood ratio test that the standard errors jointly¨
equal zero in the random coefficient classical model suggests that random co-
efficient classical model fits the data better (p(( -value = 0.013).8 However, using

7GAUSS code for all estimation and welfare calculations discussed in this chapter is available from either
author upon request.
8Chen and Cosslett (1998) have pointed out that traditional hypothesis testing procedures should not be
used in this context because the null hypothesis essentially restricts the standard error parameters to their
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Table 8.2. Parameter estimatesa

Fixed Coeff. Random Coeff. Random Coeff.
Classical Classicalb Bayesianc

Log-Likelihood –1,590.71 –1,581.85 –
CAIC 3,269.71 3,289.56 –

Ψ Parameters Fixed Mean St. Dev. Mean St. Dev.

Constant
0.0885 –0.8089

–
1.9468 1.5046

(1.095) (1.265) (0.539) (0.322)

Edmonton
0.6303 0.6276 0.0046 0.0241 1.1868
(0.127) (0.122) (0.007) (0.386) (0.216)

Age
–3.0644 –2.935 0.0043 –0.7103 1.6494
(1.161) (0.984) (0.500 ) (1.036) (0.375)

HS diploma
0.1697 0.1892 0.2778 1.448 1.3513
(0.305) (0.257) (0.098) (0.575) (0.297)

Some post
–0.2033 –0.1965 0.2477 –0.4981 1.2161
(0.137) (0.147) (0.288) (0.423) (0.223)

Col grad
–0.2561 –0.2597 0.0038 –0.5564 1.4801
(0.307) (0.322) (0.077) (1.241) (0.357)

Gen exp
0.1604 0.1348 0.0174 –0.0804 1.1057
(0.141) (0.137) (0.026) (0.36 ) (0.256)

Moose exp
0.0916 0.0484 0.1616 –0.2091 1.1461
(0.135) (0.138) (0.053) (0.422) (0.256)

φ Parameters

Moose den
0.9485 0.9097

–
1.0689 0.8817

(0.113) (0.110) (0.183) (0.132)

FMA
1.1185 1.1111

–
1.2773 1.0527

(0.159) (0.153) (0.216) (0.181)

Additional Parameters

ρ∗ –0.8351 –0.6389
–

–6.6153 1.4453
(0.254) (0.228) (1.28 ) (0.354)

θ∗ 2.1208 2.1487
–

2.2868 1.1136
(0.176) (0.169) (0.229) (0.201)

µ∗ 0.6704 0.624
–

0.2983 0.559
(0.027) (0.028) (0.076) (0.047)

a For the classical models robust standard errors are reported in parentheses. For the Bayesian model pos-
terior standard errors are reported in parentheses.
b Parameter estimates generated with 500 Halton draws.
c Posterior mean and standard error estimates generated with 50,000 Gibbs sampler iterations. Simula-
tions from the first 25,000 iterations were discarded as burn-in, and simulations from every tenth iteration
thereafter were used to construct the reported estimates.

lower bound values (i.e., zero). As a result, naı̈ve hypothesis tests as we use here to discriminate fixed and¨
random coefficient classical models will tend to reject the null hypothesis too infrequently. Because we
reject the null hypothesis using the more stringent naı̈ve critical values, we can conclude that we would¨
have also rejected the hypothesis if we had used the correct critical values.
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the more stringent Consistent Akaike Information Criteria (CAIC in Table 8.2)
to discriminate between the models, we would choose the fixed coefficient
specification. Although the Bernstein-von Mises theorem implies the Bayesian
estimates have a classical interpretation, formally comparing the overall statis-
tical fit of the Bayesian to the two classical models is difficult because of the
fundamentally different paradigms used to derive the estimates.

Table 8.3. Welfare estimates

Policy Scenario Fixed Coeff. Random Coeff. Random Coeff.
Classicala Classicalb Bayesianc

Increase in moose density to minimum $22.14 $21.28 $25.38
threshold (0.5 per hectare) at all WMUs (3.239) (3.507) (6.95)
$25 increase in entrance –$93.15 –$92.55 –$91.81
fees at all WMUs (0.777) (0.884 ) (1.233)
Closure of WMU-344 –$14.23 –$13.88 –$18.37
to moose hunting (0.752) (0.769) (4.619)

For the classical estimates parametric bootstrap standard errors estimates based on 200 iterations are re-
ported in parentheses. For Bayesian estimates posterior standard error estimates are reported in parenthe-
ses.
a For the classical estimates parametric bootstrap standard errors based on 200 iterations are reported in
parentheses. For Bayesian estimates posterior standard errors are reported in parentheses.
b Welfare estimates generated with 2,500 draws. The first 500 were discarded as burn-in, and every tenth
iteration thereafter was used to construct the reported estimates.
c Posterior means and standard errors generated with 50,000 Gibbs sampler iterations. Simulations from the
first 25,000 iterations were discarded as burn-in, and every tenth iteration thereafter was used to construct
the reported estimates.

5.2 Welfare estimates

Table 8.3 reports Hicksian welfare estimates for three separate policy sce-
narios:

an increase in moose density to a minimum threshold of 0.5 moose per
hectare in each WMU;

a $25 increase in per trip entrance fees at all WMUs; and

closure of WMU-344 to moose hunting.

The first policy scenario affects six of the most logged WMUs in the region
and is designed to inform policy makers of the potential benefits of a more re-
strictive forestry policy in these regions. The second policy affects all fourteen
sites equally and could assist policy makers in determining the welfare impli-
cations of a per trip increase in moose hunting fees. The third policy affects
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only WMU-344, where past and present logging practices have substantially
diminished moose populations.

The results in Table 8.3 suggest the three specifications imply qualitatively
similar policy inference for all three scenarios. The welfare estimates for
the fixed and random coefficient classical specifications are virtually identi-
cal across all three policy scenarios, and the random coefficient Bayesian es-
timates are slightly larger in absolute value for the first and third scenarios,
but very similar for the second. Although these results might suggest that lit-
tle is gained from moving from simpler to more complex models, we caution
against drawing such an inference. In separate work, von Haefen, Phaneuf,
and Parsons (2004) found relatively large welfare differences between fixed
and random coefficient classical models, and although we are not aware of
any previous studies that compare classical and Bayesian welfare measures,
our sense is that the greater flexibility afforded by the Bayesian models might
very well translate into meaningful differences in welfare estimates in future
applications.

6. Discussion

Each chapter of this volume has highlighted how recent innovations in
simulation-based methods have advanced the practice of environmental eco-
nomics. In our view, the gains from simulation in KT approaches to nonmar-
ket valuation have been transformational. Over twenty years ago Hanemann
and Wales and Woodland proposed behavioral micro-econometric models that
consistently account for interior and corner solutions, but only recently have
simulation techniques been developed that allow these models to answer pol-
icy relevant questions. As a result, the last five years have seen KT models
used to measure the benefits of a wide variety of environmental goods includ-
ing beach nourishment programs, nonpoint source pollution abatement, and
increases in angler catch rates. These advances have also permitted a reconsid-
eration of fundamental issues arising in nonmarket valuation such as the role
of weak complementarity (Herriges, Kling, and Phaneuf, 2004; von Haefen,
2004a) and site definition (Phaneuf and Herriges, 1999). Our objective in this
chapter has been to summarize and illustrate the recent simulation-based in-
novations that have made these applications and methodological investigations
possible. While five years ago the practical usefulness of KT models for non-
market valuation was in doubt, it is now the case that parameter estimates and
welfare measures for large demand systems that account for rich patterns of
unobserved heterogeneity can be recovered in single overnight runs.9

9Indeed, all of the point and standard error estimates reported in this paper (admittedly for a relatively
small data set) were generated in runs that took less than an afternoon of computer time, and the Bayesian
estimation and welfare results in particular were generated in less than an hour.
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Despite this progress, we should emphasize in closing that the KT approach
to nonmarket valuation remains in its infancy. For the approach to mature and
realize its full potential, considerable progress along several dimensions must
be achieved. Perhaps the most significant is the development of tractable esti-
mation and welfare calculation techniques for more flexible preference struc-
tures than the additively separable specifications considered in this chapter. Al-
though we have focused exclusively on demand system approaches estimated
within the primal framework here, our sense is that the dual (e.g., Phaneuf,
1999) as well as the primal approaches may be fruitful frameworks for devel-
oping these more general models. Wang’s (2003) dissertation, in particular,
suggests how the dual framework and Bayesian estimation techniques can be
used to recover non-additive preference parameters for moderately large de-
mand systems (15 goods) that flexibly allow for unobserved variation in tastes.

Two other lines of research may also produce significant improvements in
existing KT modeling. The first involves a reconsideration in the KT frame-
work of the economic and statistical insights that have been generated else-
where in the recreation literature. In some sense, this process has already
begun in that a number of the simulation-based estimation and welfare cal-
culation techniques discussed in this chapter were first developed and used in
the discrete choice context. Other possibilities include the use of spike and
zero-inflated models to more fully address nonparticipation (von Haefen and
Phaneuf, 2003), latent consideration set models to address choice set definition
issues (von Haefen, 2004), and exploiting estimation procedures developed in
the count data literature to address the problem of endogenous stratification
arising with on-site sampling. In addition, KT models will likely benefit from
a careful consideration of what insights from the aggregate data consumer de-
mand system literature might transfer. Our sense is that the wealth of esti-
mation strategies, demand specifications, and economic insights derived in the
more traditional demand systems literature has the potential to significantly
advance current KT practice.
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Abstract We present, pedagogically, the Bayesian approach to composed error models un-
der alternative, hierarchical characterizations; demonstrate, briefly, the Bayesian
approach to model comparison using recent advances in Markov Chain Monte
Carlo (MCMC) methods; and illustrate, empirically, the value of these tech-
niques to natural resource economics and coastal fisheries management, in par-
ticular. The Bayesian approach to fisheries efficiency analysis is interesting for

∗Copies of computer code used to process the data in this study are available from David Tomberlin at:
David.Tomberlin@noaa.gov. We are grateful to several colleagues with whom we enjoyed discussions.
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indebted to William Daspit and Brad Stenberg of the Pacific States Marine Fisheries Commission who were
extremely helpful with data access and interpretation. Responsibility for error remains ours.
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at least three reasons. First, it is a robust and highly flexible alternative to com-
monly applied, frequentist procedures, which dominate the literature. Second,
the Bayesian approach is extremely simple to implement, requiring only a mod-
est addition to most natural-resource economist tool-kits. Third, despite its at-
tractions, applications of Bayesian methodology in coastal fisheries management
are few.

Keywords: Hierarchical production efficiency, coastal trawl fishery

1. Introduction

Since its inception (Lindley and Smith, 1972)1 the hierarchical, normal, lin-
ear model has been an important investigative structure for applied Bayesian
practitioners. Arguably, its impact has been greatest in situations in which un-
observed heterogeneity confounds traditional approaches to estimation, infer-
ence and model comparison. One important context — the topic of this paper
— is the allocation of efficiency measures across subunits within a sample.
In coastal fisheries analysis it is desirable to have available robust methods for
comparing efficiency across firms (incumbent vessels), across time dimensions
(years or seasons in which the vessels have operated), and across other dimen-
sions important to the sampling process (including species and spatial aspects
of the fishing activity). One feature of the data-generating environment is the
likelihood that firm or seasonal effects are linked and that this linkage, in turn,
leads to an underlying but random relationship in the data. The hierarchical
approach allows one to draw these relationships together in a probabilistically
consistent, but random, fashion. It allows one to make statements about the
performance of subunits or units or the sample as a whole, recognizing the
inter-linkages and the intra-linkages across time or across sample units. It is
also advantageous from an inferential perspective. As Robert (2001) notes (p.
458):

“A general characteristic of the hierarchical modelling is that it improves the
robustness of the resulting Bayes estimators: while still incorporating prior in-
formation, the estimators are also well performing from a frequentist point of
view (minimaxity and admissibility), although these two requirements are diffi-
cult to reconcile.”

One additional motivation for hierarchical analysis is that it often opens ad-
ditional avenues for empirical enquiry. Such avenues have often the ability

1For discussions of hierarchical models see Berger (1985); Gelman et al. (1995); and Robert (2001).
More detailed representations appear in Deely and Lindley (1981); Dumouchel and Harris (1981); George
(1986); and Draper (2000). Although Lindley and Smith (1972) are often credited with its first appearance,
the hierarchical modelling concept is actually embedded in ideas originating from Good (see the references
in Good (1980) and Good (1983) for origins).
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to reap deeper insights from the target population and, usually, although not
always, the policy environment. As Robert, again, notes (p. 458):

“Additional justifications of hierarchical Bayes modelling stem from real life,
since there are settings in medicine, biology, animal breeding, economics, and
so on, where the population of interest can be perceived as a sub-population of
a meta-population, or even as a subpopulation of a subpopulation of a global
population.”

To this list of applications we hope, within this chapter, to add the subjects
‘natural resource economics’ and ‘fisheries economics’ in particular. In fish-
eries economics interest centres on the efficiency of sampling units (usually
the vessels that operate within the fishery) and post-estimation processing of
the efficiency measures. Almost exclusively, it seems, these studies employ
frequentist techniques, raising scope for alternative methodology (Fernandez`

A typical investigation applies the maximum-likelihood procedure to a sam-
ple – most often a cross-section, although occasionally a panel – of boats within
the fishery. The investigator then derives estimates of the relationship between
the covariates affecting random catch and the catch level (usually referred to
as the ‘production frontier’) and derives estimates of the distance by which
each sub-unit differs from the frontier. The inefficiency measures so derived
are then used to make statements that are relevant for policy and for the man-
agement of the fishery. At the heart of the investigation is the composed-error
model of Aigner et al. (1977), which evolved from the deterministic frame-
work of Aigner and Chu (1968). The composed error model has spawned a
vast and seemingly endless literature and is the model of choice presently. In
our context, the presence of panel data affords additional opportunity for anal-
ysis. Are the efficiencies of the boats in question constant across time periods,
or have they changed in a directional manner? Are the efficiencies of the time
periods constant, or have they also altered during the sample period? And,
why? Through a carefully chosen subdivision of the panel units, some deeper
questions arise. Are the efficiencies of the firms that exit lower than those that
remain? Do recent entrants operate relative to the same frontier? And, so on.

At this point, it seems natural to outline, briefly, the way Bayesian investi-
gation proceeds. Generally speaking, the objective is to derive a conditional

tion to conditional probability, which summarizes all of the information avail-
able to the researcher. Bayesians set B equal to data (usually denoted y) and
set A equal to some unknown quantity of interest, usually a set of model
parameters (and usually denoted θ). Sometimes deriving probability state-
ments about the model itself is the objective. In this case we set A equal
to the data and condition on the model of interest by setting B equal to the
characteristics embedded in the model, say M. Estimation of parameters, for

et al., 2002) is the notable exception).

distribution, say π(A|B) (see Mood et al., 1974) for an excellent introduc-
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example, proceeds by extracting the form of the function π(θ|y) and, where
θ is multidimensional, the marginal distributions of its component parts, say
π(θ1|y), π(θ2|y), . . . , π(θK |y). In the case of model comparison, the objec-
tive is to derive what is termed the predictive density for the data, π(y|M). This
is, essentially, the nature of the exercise. The procedure, therefore, is conceptu-
ally straight-forward, but the mechanics of characterizing π(θ|y) and π(y|M)
often prove troublesome. It is noteworthy that several of the other chapters
within this important volume devote effort to explaining these mechanics. Our
primary interest is the development of the hierarchical model. In the hierarchi-
cal approach we allow subsets of the data to evolve from distinctly different
parameter values but require those values to be related, in turn, in a consis-
tent stochastic manner to the common values in θ. The hierarchical approach,
we argue, affords additional layers of insight that a purely conventional ap-
proach does not and, while we postpone more detailed discussion, one point
seems particularly noteworthy at this stage. In the context of panel analysis
with multiple dimensions (such as the example that follows), a natural ques-
tion at the heart of policy is the linkage between the subunits that comprise the
whole. Here we refer to the intrinsic, latent level of efficiency that characterizes
the fishery as ‘the whole’ and note its importance. Regulators comparing the
performances of alternative fisheries may seek a single, summary measure by
which to rank and select; and analysts may seek the same measure, because,
although ancillary to specific objectives, it enables robust analysis. In short,
the presence of an over-arching or under-pinning summary measure is useful
because it allows the model to better replicate data generation.

When the data are multi-dimensional questions often arise about the inter-
linkages of the sub-units within the hierarchical chain. In the fishery that we
analyse, the data consist of a panel of 13 years (1987-1999) of observations
across a cross-section of 13 boats which fished a single location, namely, off-
shore Washington State. How the inefficiency measures evolve within this fishery
is the topic of attention. Inevitably this question leads to a set of comparisons
across models which, for various reasons, we deem competitive. An important
contribution of this chapter is to lay out, as cogently as possible, how this model
comparison proceeds; how it relates to Bayesian estimation of the composed
error model using MCMC (Markov Chain Monte Carlo) techniques; and how the
added information that it offers in the context of fisheries efficiency analysis is
useful. The model-comparison technique is developed in a seminal paper by Chib
(1995) and, although some time has elapsed since its introduction, it remains
hitherto under-exploited in the natural-resource and fisheries-economics liter-
atures.2 Comparing alternative specifications of efficiency in the Washington

2Notably, the model-comparisons technique is employed in at least one of the other chapters in this volume
(Layton and Levine, this volume chapter 10).
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fishery, we showcase the Chib (1995) calculation in an important empirical
setting. Designed for the novice, we lay out pedagogically the details of hier-
archical analysis; demonstrate that Bayesian composed error modelling sheds
light on important questions in the coastal fishery; and, because it offers a flex-
ible and tractable alternative to current methodologies, offers enormous scope
for innovation in fisheries efficiency analysis. Section two reviews, briefly,
recent literature on fisheries efficiency. Section three presents key aspects of
the Bayesian hierarchical approach to composed error modelling. Section four
presents the background to the empirical model and section five presents the
data. Empirical results are presented in section six and conclusions are offered
in section seven. Extensions are also discussed.

2. Coastal fisheries efficiency measurement

Until the late 1990s, examples of measurement of technical efficiency in
fisheries were few (Bjorndal et al., 2002). Recent contributions, however,
are numerous (Andersen, 2002) and we now turn, briefly, to review the litera-
ture on efficiency measurement in fisheries; present the predominant methods
used; discuss the practical and conceptual difficulties involved; and summarize
lessons emerging from this work.

2.1 Why measure technical efficiency in fisheries?

Technical-efficiency-in-fisheries studies improve our understanding of the
relationship between the inputs employed and the catch obtained in fishing
operations. The results often culminate in indices of economic performance
and often characterize relative performances among vessels. The common ob-
jective is to suggest policies that may enhance the overall productivity of the
fishery. More recently, the results have been used to evaluate the performance
of various regulatory and conservation policies. Examples include Kompas et
al. (2003); Viswanathan and Omar (2001); Alvarez (2001); and Pascoe et al.
(2001).

2.2 Modelling Technical Efficiency

Focusing on technical efficiency excludes analyses of allocative and eco-
nomic efficiency, which abound in the general economics literature. However,
allocative- and economic-efficiency studies require price data and require that
the principal objective of boat captains consists of maximising profits or min-
imising costs. Here we restrict attention to the purely technical relationships
between inputs and outputs. One branch of early empirical work comparing
catch per unit of effort of the operating boats has been criticized (Wilen, 1979)
because it takes into account neither the multi-dimensional nature of effort nor
the randomness of the fisheries production process. Hence, recent studies rely
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on multi-dimensional frameworks and accommodate random shocks in the pro-
duction process. These studies are attractive for reasons other than the fact that

one compelling reason for their prevalence in applied econometric work.
Methods of efficiency measurement (reviewed in Coelli et al., 1998 and in

Fried et al., 1993) are divisible into two categories, namely parametric and
non-parametric approaches. Data envelopment analysis (DEA) (Charnes et
al., 1978) is the predominant non-parametric approach. The method has been
used extensively in agriculture and in banking but has been used only rarely in
fisheries (Walden et al. (2003) is one recent exception). The relative unpopu-
larity of non-parametric approaches stems from their inability to accommodate
randomness, which, because of the biological processes impacting marine re-
sources (weather, resource availability and environmental influences), is fun-
damental to fisheries-efficiency analysis (Bjorndal et al., 2002; Kirkley et al.,
1995). In addition, non-parametric methods generate little information about
the nature of the harvesting technology, such as its returns to scale or the de-
gree of substitutability among inputs and outputs, both of which have important
implications for fisheries management.

First generation, parametric methods (Aigner and Chu, 1968; Afriat, 1972)
rely on deterministic frontiers and do not accommodate randomness. Although
now largely obsolete, these methods are noteworthy because they include the
first recorded fisheries efficiency study (Hannesson, 1983). Nowadays, para-
metric studies are derived from stochastic (composed-error) production frame-
works (first proposed by Aigner et al., 1977). Unlike its precursor, composed-
error models allow technical inefficiency to be distinguished from random
shocks. A generic formulation has structure

yi = f(xi; β) + ui − zi, (2.1)

where yi denotes output of boat i and f(xi; β) is the production function
that depends on a vector of parameters β and a vector of inputs xi. The
stochastic component of the model includes a random shock ui, which is usu-
ally assumed to be identically, independently and symmetrically distributed
with variance σ2; whereas the inefficiency term, zi, follows a one-sided, non-
negative distribution. The likelihood function can be expressed algebraically
and maximized numerically to produce estimates of the unknown parameters.
Typically, the inefficiency components take half-normal, truncated-normal or
gamma distributed forms and predicted inefficiencies can be computed for each
boat (Jondrow et al., 1982). One major limitation of this approach is that the
efficiency scores cannot be estimated consistently (Khumbhakar and Lovell,
2000). Fisheries applications are numerous (see, for example, Kirkley et al.,
1995; Grafton et al., 2000).

they can be implemented with only input and output quantities, but this remains
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A somewhat deeper issue absorbing considerable econometric attention is
locating the determinants of inter-vessel differences in efficiency; but the task,
it seems, is beset with difficulty. Because, during estimation, it is usually nec-
essary to invoke the assumption that the zi are iid across firms, it is inconsistent,
in a second step, to explain efficiency levels by firm-specific characteristics
(see Coelli et al., 1998; for discussion). A one-step procedure is developed by
Battese and Coelli (1995) whereby the distribution of the zi ≥ 0 is truncated
normal with mean i determined according to

ui = w′
iδ, (2.2)

where wi ≡ (w1i, w2i, . . . , wKi)′ denotes the variables conjectured to influ-
ence efficiency and δ ≡ (δ1, δ2, . . . , δK)′ denotes their impact on the condi-
tional mean, µi. A statistically significant coefficient associated with any wij

indicates that the variable in question affects boat efficiency. This model has
been applied extensively in fisheries research and remains popular currently.
Recent examples include Pascoe and Coglan (2002); Squires et al. (1999); An-
dersen (2002); and Pascoe et al. (2003). The model’s popularity is almost surely
due to its ease of estimation as facilitated by FRONTIER, the freely-available
software developed by Coelli.

Panel data remain mostly unexploited in fisheries efficiency analyses. In
fact, with the exception of Squires et al. (2003) each of the aforementioned
studies have panel structures with repeated (time series) observations on each
boat. Yet, the potential richness of the panel structure remains untapped (Al-
varez, 2001). In an effort to address this issue two recent approaches are note-
worthy. One approach consists of modifying the previous framework to allow
inefficiencies to vary parametrically over time. The most popular model here
is the one advocated by Battese and Coelli (1992). They suggest that the inef-
ficiency terms zi1, zi2, . . . , ziT evolve according to

zit = zi exp [−η(t − T )] , (2.3)

where the zi are iid normal with mean µ, truncated at zero; t denotes the present
time period; T denotes the terminal period; and η denotes a parameter to be
estimated. In this model, technical inefficiencies are a monotonic function of
time, which is increasing for η < 0 and decreasing for η > 0 and, thus, the
estimation of η is paramount. The underlying idea, they claim, is that managers
should learn from previous experience and technical inefficiency should evolve
in some consistent pattern (Coelli et al., 1998). Applications include Herrero
and Pascoe (2003), Pascoe et al. (2003) and Bjorndal et al. (2002).

A second approach to time-varying efficiency adjusts standard panel esti-
mation techniques. The advantages are that panel-data models do not require
the strong distributional and independence assumptions made in maximum-
likelihood estimation and that panel models permit the consistent estimation

µ
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of efficiency scores (Schmidt and Sickles, 1984). One common reformula-
tion of equation (2.1) assumes the existence of a firm-specific, non-stochastic
effect. Under the assumption that zi is itself dependent on a vector of covari-
ates the model is estimated using ordinary least squares (OLS) and produces
consistent estimates of the efficiency scores (Kumbakhar and Lovell, 2000).
Unfortunately, the approach has additional limitations. Most notably, the fixed
effects provide reliable estimates of firm-level technical efficiency if (and only
if) each of the frontier covariates is time-variant. Time-invariant covariates cre-
ate major problems, which is a point worth emphasizing in the current context.
In fisheries investigations boat characteristics remain largely invariant over the
sample period and many of the frontier covariates will be time-invariant (see
Alvarez, 2001 for a detailed discussion). Consequently, the fixed-effects model
has rarely been applied to fisheries efficiency investigations (although Alvarez
et al. (2003) lists Squires and Kirkley (1999) and Kirkley et al. (1995) as
exceptions).

The introduction of random-effects into fisheries efficiency studies is im-
portant for two reasons. First, their introduction enables the time-invariance
issue to be circumvented. Second, the (classical) random-effects methodology
provides an important link to the hierarchical methodology that we exploit.
As noted by McCulloch and Rossi (1994), in the Bayesian context there is no
distinction between fixed and random-effects (because the parameters them-
selves are random), there is only a distinction between hierarchical and non-
hierarchical analyses. However, Koop et al. (1997) suggest that it is useful,
for pedagogic purposes, to retain this (frequentist) terminology. Applications
of the random-effects methodology in fisheries include Squires and Kirkley
(1999) and Alvarez and Perez (2000).

2.3 What have we learned?

We now attempt to draw general lessons from the technical-efficiency-in-
fisheries literature. One natural question is whether fishing operations are tech-
nically efficient. Generally speaking, authors using maximum-likelihood test
the null hypothesis of absence of inefficiencies (Viswanathan and Omar, 2001;
Pascoe and Coglan, 2002; Squires et al., 2003; Kirkley, et al., 1995; Bjorn-
dal et al., 2002; Kompas et al., 2003). In virtually all cases, the stochastic
frontier specification is accepted over the alternative hypothesis consisting of
a single, symmetric error. Hence, non-negligible inefficiency appears to be
the rule rather than the exception. This point is important because inefficiency
affects the equity and efficiency impacts of regulation. Second, refutation of
full efficiency guides additional empirical inquiry. Because the parameters of
a production function estimated conventionally are biased when inefficiencies
are present, the statistical significance of inefficiency implies that important
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characteristics (such as returns to scale or input-output jointness) are best in-
vestigated using a stochastic frontier.

The distribution of technical performance in fishing fleets is largely context-
specific. Estimates of average efficiencies vary from less than 40 percent for
the otter trawlers of the North Sea demersal fishery in the early 1990s (Bjorndal
et al., 2002) to 88 percent for the Malaysian gill net artisanal fishery (Squires et
al., 2003). Higher moments of the distribution also vary widely across studies.
For example, Viswanathan and Omar (2001) find a large spread of efficiency
scores for the Malaysian trawl fishery, which contrasts with the relatively con-
centrated distribution reported by Pascoe and Coglan (2002) for the English
Channel fishery. The literature, it seems, does not lead to meta-conclusions
concerning the overall distribution of efficiency scores.

Because of its policy implications and its link to the theoretical literature,
the analysis of how regulations and management influence fisheries efficiency
is a matter of much interest. Here, again, the literature presents a wide range of
results. However, distinct themes do emerge. First, measures aimed at solving
the open-access nature of fisheries tend to increase the general level of tech-
nical efficiency in the fishery. Second, this positive influence is greater the
more flexible is the policy intervention. For example, Pascoe et al. (2003)
find that area restrictions increase efficiency due to reductions in congestion
and ‘crowding out.’ Felthoven (2002) concludes that the move towards well-
defined property rights leads to increased technical efficiency and reduces ex-
cess capacity. And Grafton et al. (2000) find that the introduction of individual
vessel quotas results in increased efficiency, although it seems that gains were
slow to materialize and remained somewhat limited by restrictive regulations
on property rights, such as bundling or limiting transferability, duration and
divisibility.

The effect of the introduction of alternative regulations is the focus of some
attention. For example, Kompas et al. (2003) find that increasing restrictions
on vessel size and engine capacity has a negative effect on technical efficiency
and Pascoe et al. (2003) conclude that gear restrictions and restrictive TACs
have negative impacts on efficiency. Finally, Andersen (2003) establishes that
a move from monthly limits towards more flexible yearly catch limits enhances
technical efficiency.

A second strand of the literature aims to test the so-called ‘good captain hy-
pothesis.’ This hypothesis posits that differences in catches among vessels is
largely explained by the distribution of skills among skippers. The composed-
error model appears particularly suited to test this hypothesis because it dis-
tinguishes the effect on production of luck (random events captured by the
symmetric error term ui in equation (2.1) as distinct from the effect of man-
agement decisions (embodied in the non-negative term zi). Initial studies on
this topic (see Alvarez et al. 2003 for a review) lend support to the hypothesis.
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For example, Viswanathan and Omar (2001) find that skipper skills are key
determinants of production, but that the concept of skill is difficult to relate to
the socio-demographic attributes of the skipper. More recently, Alvarez et al.
(2003) demonstrate that luck per se is more important than skill in explaining
catch. Their estimates suggest that skills accounted for up to 9% of the total
variation in catches between boats compared to approximately 11% for luck.
Pascoe and Coglan (2002) reach similar conclusions. Generally speaking, both
skipper skills and luck matter when explaining variations in boat catches, but
their relative importance cannot be disentangled a priori.

Finally, several studies explain technical performance by factors other than
regulations or skills. In particular, vessel characteristics appear to be particu-
larly important explanatory factors. For example, Pascoe and Coglan (2002)
and Pascoe et al. (2003) find that vessel age has a negative impact on techni-
cal efficiency. This finding is important because it suggests that boat vintages
should be considered when measuring fleet capacity. There are also indica-
tions that larger vessels tend to achieve higher levels of technical efficiency
(Andersen 2003, Basch et al., 2002; Kompas et al., 2003; Pascoe et al., 2003),
although examples to the converse (most notably, Eggert, 2001) exist. Alto-
gether, it is fair to conclude that the factors explaining technical efficiency in
fisheries differ considerably by locality, time period, and the full heterogeneity
of the extant conditions (see Squires et al. 2003 for further discussion).

In summary, studies of technical efficiency in fisheries are innovative, highly
heterogeneous and mostly policy-driven; the potential richness of the panel-
data environment remains mostly untapped; and the literature to date is domi-
nated by the maximum-likelihood procedures developed by Battese and Coelli
(1992, 1995). Notwithstanding the importance of previous work, it seems that
scope exists for analysis with alternative methodology.

3. Bayesian composed error model development

By way of notation, let θ denote a vector of parameters of interest, π(θ)
the prior probability density function (pdf) of θ and π(θ|y) the posterior pdf,
where y ≡ (y1, y2, . . . , yN )′ denotes data. Frequently we reference the data-
generating model f(y|θ) which, when viewed as a function of θ, is the like-
lihood function. Sometimes we make use of variants of the f(·|·) notation in
order to reference particular probability density functions. The pdfs that we
refer to are:

the m-dimensional multivariate normal pdf:

fN (x|µ,Σ) ≡ (2π)−m/2|Σ|−1/2 exp{−1
2(x − µ)′Σ−1(x − µ)};

the univariate truncated-normal pdf:

fTN (x|µ, σ) ≡ (2π)−1/2σ−1/2 exp{−1
2σ−2(x−µ)′(x−µ)}/(1−Φ);
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the gamma distribution:

fG(x|ρ, λ) ≡ Γ(ρ)−1λρxρ−1 exp{−λx}
and two variants, namely the inverted-gamma pdf:

f IG(x|v, s) ≡ (2/Γ(v/2))(vs2/2)v/2(1/xv+1) exp{−vs2/2x2}
and the exponential pdf:

fE(x|λ) ≡ λ exp{−λx}.

Often, we reference just the variable part of the density (in other words, the
part with the integrating constant excluded) by noting its proportionality to a
true pdf and by using the symbol ‘∝’. Thus, the multivariate normal pdf, for
example, is proportional to the scale factor ‘exp{−1/2(x − µ)′Σ−1(x − µ)}’
and we write f(x|µ, Σ) ∝ exp{−1/2(x−µ)′Σ−1(x−µ)}. Finally, we use i =
1, 2, . . . , N to denote the upper-level units within the panel; j = 1, 2, . . . , NiNN
to denote sub units; k = 1, 2, . . . , NijNN to denote lower-level units, and so on. In
this way, a sample observation with three dimensions relevant to its generation
is denoted by subscripts ‘ijk’.

3.1 Composed Error Frontier Model With Exponential
Inefficiency

Because a part of our remit is pedagogic, we first introduce a basic cross-
section model to which we manufacture subsequent extensions. The basic
formulation is the composed-error model with a normal distribution for the
sampling error and an exponential distribution for the inefficiency. This con-
struction has many limitations, but serves to illustrate the types of calculations
that we encounter subsequently.

The observational equation is:

yi = x′iβ + ui − zi; (3.1)

where yi denotes the level of output produced by sample unit i; xi denotes a
K-vector of covariates relevant to the production frontier; the vector β denotes
the relationship between the frontier and the K covariates; ui denotes random
error; and zi denotes displacement between the frontier and the output of sam-
ple unit i. We assume that sampling error is normally distributed with mean
zero and variance σ2 and assume that the displacement value, zi, is positive.
Thus, zi, denotes the level of ‘inefficiency’ corresponding to sample unit i and,
because larger values of zi correspond to output realizations farther below the
frontier, sample units (firms) with larger zi are ‘less efficient’. For a similar
development in the context of cost-function frontiers see Koop et al. (1997).

Much of our illustration centres around alternative specifications of the inef-
ficiency term, zi, and many of the early developments in the literature involve
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generalizations of their structure. However, a convenient starting point is to
assume that the zi are derived from a common exponential distribution. For-
mally, assume that z ∼ fE(zi|λ). While this assumption may be inappropriate
for many empirical settings, it serves as a benchmark from which to incorpo-
rate additional institutional detail. Its immediate advantage is simplicity.

With a normal distribution assumed for the sampling error and an expo-
nential distribution assumed for the inefficiency, the data density for a single
observation is

f(yi|θ) = fN (yi|x′iβ − zi, σ) × fE(zi|λ), (3.2)

which is the product of a (conditional) normal distribution for the observed
data and a (marginal) exponential distribution for the unobserved inefficiency.
Throughout the paper we follow the convention that (lower-case) Roman nu-
merals denote data and (lower-case) Greek symbols denote parameters. It is
worth emphasizing that the observable entities in the sampling model in (3.2)
are the output level, yi, and the vector of covariates xi. The unobservable el-
ements are the scale parameter, σ; the vector of location parameters, β; the
parameter λ underlying the inefficiency distribution, fE(·|·); and the level of
inefficiency itself, zi. The interpretation of the zi terms deserves discussion.
Although they are unknown, estimated from the data, and justify interpretation
as ‘parameters’ of the model, we prefer to view them as ‘latent’ or ‘missing
data.’ This distinction is important for two reasons. The first concerns whether
a prior is placed directly on the zi’s or, instead, on the upper level parameter,
λ, that constitutes the hierarchy. In our analysis we consider priors only on
the upper-level components. Second, the specific interpretation of the zi’s be-
comes important when we estimate the model’s marginal likelihood, which is
the key input to model comparison. When the zi’s are latent they are not con-
sidered part of the model parameters and, so, a prior and a posterior density
value, which appear for each model parameter, do not enter calculations. Con-
sequently we use θ ≡ (σ, β′, λ)′ to denote the model parameters (which are
unknown) and use z to denote the vector of N inefficiencies (also unknown)
across the sample. Hence, assuming independence across observations, the
density of the data, y, given the parameters, θ, is3

f(y|θ) =
N∏

i=1

f(yi|θ). (3.3)

3Another issue concerns notation. With z ≡ (z1, z2, . . . , zN ) latent, it is sometimes important to dis-
tinguish between the observed-data likelihood, generically, f(y|θ) and the so-termed complete-data like-
lihood f(y|θ, z) which is conditioned by the latent data. The likelihood in (3.3) is actually the latter, in
which the latent z is suppressed.
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The econometrician observes y but not θ; forms a prior pdf for the unknowns,
π(θ); and conducts posterior inference with respect to the resulting posterior,

π(θ|y) ∝ f(y|θ)π(θ), (3.4)

which is proportional to the product of the data density and the prior pdf. As-
suming that information a priori is diffuse, we employ the improper measure
(the so-called Jeffrey’s prior) π(θ) ∝ σ−1. Consequently, the posterior pdf
assumes the form

π(θ|y) ∝ σ−1
N∏

i=1

fN (yi|x′
iβ − zi, σ)fE(zi|λ) (3.5)

and the key ingredients of our Bayesian approach are now in place. The pos-
terior, however, is difficult to work with. The objective, which is common
to all Bayesian exercises, is to derive the marginal distributions that summa-
rize knowledge about the parameters, θ, conditional on the data, y. Here, the
phrase ‘difficult to work with’ means that at least one of the required posterior
marginal distributions – respectively, π(σ|y), π(β|y) and π(λ|y) – is not avail-
able in closed form. The density π(σ|y) is the inverted-Gamma form and the
density π(β|y) is the multivariate-T distribution, but the marginal distribution
π(λ|y) is not easily derived. The reason is that the posterior distribution for
λ depends on the zi’s and, although the conditional distribution of λ, namely
π(λ|y, z), has a simple form (this conditional distribution is the Gamma distri-
bution), the marginal distribution is slightly more difficult to obtain.

Although, in this simplified setting, this integration can be achieved (the
integration invnn olves the well-known Gamma integral, see, for example, Mood

not possible, leaving us with a major impediment to analysis. However, a
solution exists. The solution is to use Gibbs sampling.

3.2 Gibbs sampling the composed error model

The necessary conditions for Gibbs sampling the composed error model, or
any model, for that matter, are two. First, the fully conditional distributions
comprising the joint posterior must be available in closed form. Second, these
forms must be tractable in the sense that it is easy to draw samples from them.
In the present setting each of the full conditional distributions has a conve-
nient form. Specifically, the conditional distribution of the regression standard
error, π(σ|β, λ, z, y), is the inverted-Gamma pdf; the distribution of the loca-
tion vector, π(β|λ, σ, z, y), is the multivariate-Normal pdf; the distribution of
the mean inefficiency, π(λ|σ, β, z, y), is the Gamma pdf; and the fully condi-
tional distribution of the vector of latent inefficiencies, π(z|σ, β, λ, y), is the
truncated-normal distribution. In addition, we note that π(σ|β, λ, z, y) and

et al., 1974; p. 534), in other, more general settings such integration is usually
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π(β|λ, σ, z, y) are independent of λ ; that π(λ|σ, β, z, y) is independent of σ,
β and y; and that π(z|σ, β, λ, y) is dependent on all of the conditioning vari-
ables. Hence, we focus attention on π(σ|β, z, y), π(β|σ, z, y), π(λ|z) and
π(z|σ, β, λ, y) and turn to two issues that, although now de-emphasized in the
theoretical and applied literatures, are of much importance to pedagogic devel-
opment.

The Gibbs sampler has origins that stem from a seminal work in the 1950’s
(Metropolis et al., 1953), its exploration in the 1980’s (Geman and Geman,
1984) and its subsequent re-interpretation under Bayesian assumptions in the
early 1990’s (Gelfand and Smith, 1990; Gelfand et al., 1990). Essentially, it-
erative sampling from the component conditional distributions comprising the
joint posterior forms a Markov chain. Under weak regularity conditions, this
chain converges in distribution to the true marginal quantities (the marginal
posterior pdfs) that we seek (Tierney, 1994). Since the early 1990s, this realiza-
tion has spawned a veritable explosion in Bayesian applications in the pure and
social sciences. An excellent introduction to the Gibbs sampler is Casella and
George (1992) and an excellent introduction to the closely related Metropolis-
Hastings algorithm is Chib and Greenberg (1995). Other useful introductions
to some of the techniques employed here include Gelman et al., 1990; Robert
and Casella, 1999; Robert, 2001; and Liu, 2001. The other issue that present
extensions of the literature de-emphasize,  is the process by which we confirm
the forms of the fully conditional distributions. Rather than relegate derivations
to an appendix, it seems pertinent and informative to motivate them in the
context of the simple, exponential formulation. The procedure is very simple and
relies only on knowledge of the forms of the component distributions, somef
basic algebra and the notion that only the shapes of the distributions in question
are of interest. Specifif cally, we view the posterior from four different vantage
points, conditioning on alternative sets of quantities each time. This practice is

π(θ|y, z) ∝ σ−1fN (y|xβ − z, σ2IN)fE(z|λ), (3.6)

where x ≡ (x′
1, x

′
2, . . . , x

′
N )′ and IN denotes the N-dimensional identity ma-

trix; and working, sequentially, with respect to σ, β, λ and z.
First, when the posterior is viewed as a function solely of the regression

standard error, σ, the pdf representing the exponential inefficiencies drops out
(because σ does not appear as a function of the exponential distribution). In
addition, the remaining terms in the multivariate normal distribution that do
not contain σ are ignored and we are left with the expression

π(σ|β, z, y) ∝ σ−(N+1) exp{−.5σ−2(y − xβ + z)′(y − xβ + z)}, (3.7)

made simpler by reformulating the posterior (equation (3.5)) in terms of the
vector ; writing
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as the form of the conditional posterior for σ. Now, with reference to a standard
source (for example, Zellner, 1996 equation (A.37b), p. 371), the form of the
function on the right-side of (3.7) and the form of the inverted Gamma distri-
bution are seen to be the same when all inconsequential constants are ignored.
Hence, we redefine ν ≡ N and νs2 ≡ (y − xβ + z)′(y − xβ + z). Con-
sequently, π(σ|β, z, y) has the inverse-Gamma form; we write π(σ|β, z, y) ≡
f IG(σ|ν, s2); and we note that one component of the Gibbs-sampling algo-
rithm will be a draw from the inverted-Gamma distribution. There are several
algorithms available to simulate a draw from an inverse-Gamma distribution,
one of which, used currently, involves drawing from the so-called scaled in-

Second, we view the posterior solely as a function of the location vector
β. Once again, the exponential distribution drops out, constants preceding the
kernel are ignored and we are left with

π(β|σ, z, y) ∝ exp{−.5σ−2(y − xβ + z)′(y − xβ + z)}. (3.8)

This form can be brought into the multivariate normal form by the process
of ‘completing the square’ in β (see Zellner, pp. 380-381, for an example).
Redefining a ≡ y + z, the right side of equation (3.8) is:

exp{−.5σ−2(a − xβ)′(a − xβ)} ∝
exp{−.5σ−2{−a′xβ − β′x′a + β′x′xβ}} ∝

exp{−.5{β′(σ−2x′ x)β − β′(σ−2x′a) − (σ−2a′x)β} ∝
exp{−.5(β − β̂)′C−1

β̂
(β − β̂)}

where β̂ ≡ (x′x)−1x′a and Cβ̂ ≡ σ2(x′x)−1. This form is the same as that
for the multivariate normal distribution presented in Zellner (equation (B.1),
p. 379) with the redefinitions x ≡ β , θ ≡ β̂ and Σ ≡ Cβ̂. Consequently,

π(β|σ, z, y) ≡ fMN (β|β̂, Cβ̂) and the second component of the algorithm
will be a draw from the multivariate-normal distribution.

Third, we seek the full conditional distribution for the latent z. In contrast
to the previous two situations, the elements of z span both distributions and
the derivation is slightly more complex, but only slightly. Ignoring irrelevant
constants, we have

π(z|σ, β, λ, y) ∝ exp{−.5σ−2(y − xβ + z)′(y − xβ + z)} (3.9)

× exp{−λz}.
Upon completing the square, we derive that π(z|σ, β, λ, y) ≡ fTN (z|ẑ, Cẑ),
which is the truncated normal distribution with parameters ẑ ≡ −y+xβ−λσ2

and Cẑ ≡ σ2IN and it is useful to note, in passing, that this derivation is the

verse chi-squared distribution (see Gelman et al., 1995).
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same as one in Koop et al. (1997) under the nomenclature ‘marginal efficiency
distribution.’ To simulate a draw from the truncated normal distribution, two av-
enues are available. One is to draw from the normal distribution, accepting the
draw if it satisfies the constraint requirements. The second method (advocated,
for example, by Geweke (1992), and by Chib (1992), and employed currently)
is to construct efficient one-for-one draws by modifying a draw from the stan-
dard uniform distribution through the probability integral transform (see, for
example, Mood et al., 1974, p. 202). In the interests of completeness, a draw
from the standard normal distribution, say v (a scalar), truncated below by a
and from above by b is simulated by transforming a draw from the standard
uniform distribution x ∼ fU (x|0, 1) as v = Φ−1(x((Φ(b) − Φ(a)) + Φ(a)),
where Φ(·) denotes the cumulative distribution function (cdf) corresponding to
the standard normal distribution and Φ−1(·) denotes its inverse.

Finally, we outline the draw for the location parameter underlying the inef-
ficiency distribution. Focusing in (3.5) on λ , the normal density drops out and
we are left with

π(λ|z) ∝ λN exp{−λι′N z}. (3.10)

This density is in the form of a Gamma distribution and is specified, for ex-
ample, in Zellner (equation (A.30), p. 369) with parameters α ≡ N + 1 and
γ ≡ ι′Nz with ιN the N-dimensional unit vector. Consequently, π(λ|z) is the
Gamma distribution and we write π(λ|z) ≡ fG(λ|α, γ). It follows that one
additional step is to draw a pseudo-random number from the Gamma distri-
bution, for which a number of alternative algorithms exist. In short, robust
estimates of the exponential inefficiencies, composed error model are obtained
by sampling iteratively in the algorithm:

Step 1: Simulate a draw σ(s) from (3.7).

Step 2: Simulate a draw β(s) from (3.8).

Step 3: Simulate a draw z(s) from (3.9).

Step 4: Simulate a draw λ(s) from (3.10).

Once again, although it is not emphasized in the notation, the condition-
ing in each draw is on the previous values of the model parameters θ(s) ≡
(σ(s), β(s)′, λ(s))′ and the latent data z(s). Sampling iteratively from Steps 1-
4 until the draws are independent of the starting values, say β(0), z(0) and
λ(0); we continue to sample g = 1, 2, . . . , G; collect outputs {θ(g)}G

g=1 and

{z(g)}G
g=1; and conduct posterior inference. This procedure is simple; relies

only on a basic understanding of random-number generation; requires modest
amounts of computer memory in order to collect samples of reasonable size
(say, G = 5, 000); and leads to robust estimates of parameters of the composed-
error model.
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3.3 Composed-error models comparison

Bayesian model comparison relies on the estimation of Bayes factors (see
Berger (1985) or Berger and Perrichi (1996) for discussion). The essential
inputs in Bayes factors calculations are the marginal likelihoods of competing
models. The marginal likelihood, denoted m(y), is nothing other than the
integrating constant that allows us to write equation (3.5) as a strict equality
instead of two quantities that are proportional to each other. Until recently,
the computation of marginal likelihoods has proved extremely troublesome for
all but the simplest of models. The innovation that paves the way for general
application is Chib (1995). Briefly, the marginal likelihood

m(y) =
∫

f(y|θ)π(θ)dθ, (3.11)

can be written, alternatively, as the product of the sampling density and the
prior for θ divided by the posterior for θ,

m(y) =
f(y|θ)π(θ)

π(θ|y)
(3.12)

By exploiting this basic marginal likelihood identity we are able to derive ro-
bust estimates of m(y). Once converted to the (computationally convenient)
log scale, an estimate of the log of the marginal likelihood, say, ln m̂(y) is
available as

ln m̂(y) = ln f(y|θ∗) + lnπ(θ∗) − ln π̂(θ∗|y), (3.13)

where f(y|θ∗), π(θ∗) and π(θ∗|y) denote estimates of, respectively, the sam-
pling density, the prior ordinate and the posterior ordinate at the point θ = θ∗.
In the context of our formulation, θ∗ ≡ (σ∗, β∗′, λ∗) and β∗ ≡ (β∗

1 , . . . , β∗
K)′.

It is important to note the simplicity of this relationship. Because equa-
tion (3.13) holds at any point in the parameter space, all that is required in
order to evaluate it are three quantities. The sampling density for y is not avail-
able directly from equation (3.3) because we have, in effect, used f(y|θ∗, z)
when we require f(y|θ∗) =

∫
f(y|θ∗, z)dz. Nevertheless, an estimate is avail-

able from exploiting the Rao-Blackwell method (Gelfand and Smith, 1990),
drawing estimates of the sampling density conditional for the draws for the
latent data; in other words,

f (̂y|θ∗) ≡ G−1
G∑

g=1

f(y|θ∗, z(g)). (3.14)

The prior probability densities are available directly once specified and the
ones that we employ are, respectively, π(σ) ≡ f IG(σ|ν0, s

2
0), ν0 = 1,



176 APPLICATIONS OF SIMULATION METHODS

s2
0 = 0.001; π(β) ≡ fN (β|β̂0, Cβ̂0

); where β̂0 = 0K and Cβ̂0
= IK × 1000;

and π(λ) ≡ fE(λ|δ0), δ0 = 0.001. These are the natural conjugate prior distri-
butions, respectively, for the inverted-Gamma, Normal and Exponential distri-
butions and they reflect weak prior information about the model parameters. In
terms of the steps in equations (3.7) through (3.10), they imply minor changes
to the parameters defining the component conditional distributions. Specifi-
cally, in f IG(σ|ν, s2), ν ≡ N +ν0 and νs2 ≡ (y−xβ+z)′(y−xβ+z)+ν0s

2
0;

in fMN (β|β̂, Cβ̂), β̂ ≡ Cβ̂(σ−2x′a + C−1

β̂
C

0

β̂0) and Cβ̂ ≡ (σ−2x′x + C−1

β̂0

);

and in fG(λ|α, γ), α ≡ N + 1 and γ ≡ ι′Nz + δ0.
An estimate of the posterior ordinate is available from decomposing the

posterior as π(θ∗|y) = π(σ∗|β∗, λ∗, y) × π(β∗|λ∗, y) × π(λ∗|y) and the
estimation of the posterior quantity involves three steps. Recalling that the
fully conditional distribution for λ is independent of σ, β and also y, but
is dependent on z; the first step involves averaging over the draws in the
original Gibbs run at the point λ = λ∗ to obtain the estimate π̂(λ∗) =
G−1

∑G
g=1 π(λ∗|z(g)). Second, recalling that π(β|σ, z, y), is independent of

λ, we compute π̂(β∗|y) = G−1
∑G

g=1 π(β∗|σ(g), z(g), y) at the point β = β∗

from the original Gibbs run. Third, recalling that π(σ|β, y) is also independent
of λ, we set β = β∗ and run the algorithm for one additional run obtaining the
estimate π̂(σ∗|β∗, y) = G−1

∑G
g=1 π(σ∗|β∗, z(g), y). At the end of this one

additional run each of the components of the marginal likelihood is available
and posterior inference about model comparison beckons.

Several points are noteworthy. First, as emphasized in Chib (1995), this
computation is attractive because all that is required are some modest amend-
ments to the basic Gibbs algorithm. Second, although any point θ∗ will suffice
for computation, efficiency arguments motivate choosing θ∗ at a high-density
point (for example, the maximum-likelihood point). Third, a measure of the
variability of the estimate in repeated implementation (with the same data)
is available from exploiting a result in Newey and West (1987) and the delta
method for deriving estimates of the variance of non-linear functions. Specifi-
cally, defining

h(g) ≡

⎛
⎜
⎛⎛
⎜⎜⎜⎝⎜⎜

h1(z)
h2(z)

h3(σ, z)
h4( z)

⎞
⎟
⎞⎞
⎟⎟⎟⎠⎟⎟ =

⎛
⎜
⎛⎛
⎜⎜⎜⎝⎜⎜

π(y|θ∗, z(g))
π(λ∗|z(g))

π(β∗|σ(g), z(g),y)
π(σ∗|β∗, z(g),y)

⎞
⎟
⎞⎞
⎟⎟⎟⎠⎟⎟ (3.15)

where π(y|θ∗, z) ≡ f(y|θ∗, z) denotes the complete-data density, ĥ ≡
G−1

∑G
g=1 h(g) and Ωs ≡ G−1

∑G
g=s+1(h

(g) − ĥ)(h(g−s) ˆ ′− h) ; the variance
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of the vector ĥ is

var(ĥ) = G−1
q∑

s=0

(
1 − s

q + 1

)
(Ωs + Ω′

s), (3.16)

where q denotes the value at which the autocorrelation function of the Gibbs
sample tapers off (Chib, 1995, p. 316). Using the delta method, an estimate
of the numerical standard error of the marginal likelihood on the logarithmic
scale is

se ln(ĥ) =
√

h
√√

−1′var(ĥ)h−1, (3.17)

where h−1 ≡ (h−1
1 , h−1

2 , h−1
3 , h−1

4 )′. In short, a complete set of composed-
error model estimates is available from combining ideas in Gelfand and Smith
(1990), Koop et al. (2001) and Chib (1995).

3.4 Truncated-normal, panel data estimation

The cross-sectional exponential formulation has served its purpose. Two
major limitations preclude using it in empirical work. First, and most im-
portantly, the model is actually under-identified. Second, because of its sim-
plicity, the exponential distribution places undue restriction on the pattern of
inefficiency, motivating search for more flexible formulations. A simple count-
ing procedure motivates the intuition about why the cross-sectional model is
under-identified. There are, in total, N +3 parameters being estimated, namely
the N inefficiency measures z1, z2 . . . , zN ; the two parameters characterizing
the sampling distribution, namely σ and β ; and the parameter λ character-
izing the inefficiency distribution. Yet, only i = 1, 2 . . . , N sample points
avail themselves for estimating these N + 3 unknowns. This point is taken
up in Fernandez` et al. (1997), where a simple remedy is also suggested. As
long as we have panel data and the inefficiency terms are held constant across
subsets of the data (usually its time dimension), the complete set of model pa-
rameters is fully identified. The second problem concerns the actual shape of
the inefficiency distribution across the firms. The exponential distribution is
a single-parameter distribution, offering considerable tractability, and, while
highly useful for expositional purposes, it severely restricts the underlying in-
efficiencies. The form on which we focus attention in the remainder of the
paper is the truncated-normal distribution. In the panel with j = 1, . . . , NiNN
subunits (say, periods) corresponding to each of the i = 1, . . . , N sample units
(say, firms), we consider (firm) inefficiencies z1, z2 . . . , zN ∼ fTN (zi|λ, γ),
constant across time periods; and sampling errors uij ∼ fN (uij |0, σ) for all
j = 1, 2 . . . , NiNN , i = 1, 2 . . . , N and the availability of panel data has two
implications. It circumvents the under-identification issue and it affords great
tractability permitting multiple linkages across sub-units and across time peri-
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ods. In the empirical application such flexibility, we will show, is extremely
important. In short, panel data raises scope for nuanced empirical inquiry.

With a diffuse prior on the parameters θ ≡ (σ, β′, λ, γ)′ the posterior has
the form

π(θ|y, z) ∝ σ−1γ−1
N∏

i=1

fN (yi|xiβ − ιizi, σ
2INi)fTN (zi|λ, γ) (3.18)

which should be compared to (3.5). The differences are important. First, yi is
an NiNN × 1 series of observations on firm i’s production; xi denotes an NiNN × K
matrix of covariates defining the frontier; β remains as before; ιi is an NiNN
vector of ones; and INiI denotes the NiNN -dimensional identity matrix. The total
number of observations in the sample is S = ΣiNiNN and the counting problem
is usually overcome because the S = ΣiNiNN data points are now estimating
N + K + 3 quantities, namely z ≡ (z1, . . . , zN )′, β ≡ (β1, . . . ,βK)′, σ, λ
and γ.

Despite the added flexibility of the truncated-normal framework, the Gibbs
algorithm follows closely the steps that we derived for the exponential model
and each of the fully conditional distributions is one that we have already en-
countered. The regression standard error has an inverse-Gamma distribution
π(σ|β, z, y) ≡ f iG(σ|v, s2), v ≡ N, vs2 ≡ (y−xβ +wz)′(y−xβ +wz), y ≡
(y′1, y′2, . . . , yN )′, x ≡ (x′1, x′2, . . . , x′N )′ and w ≡ diag(ι1, ι2, . . . , ιN ), of
dimension S × N , denotes an appropriate arrangement of the unit vectors
corresponding to each element of z in the regression y = xβ − wz + u
where u ≡ (u′

1, u
′
2, . . . , uN ′)′ , The frontier parameters have the multivari-

ate normal distribution π(β|σ, z, y) ≡ fN (β|β̂, Cβ̂), β̂ ≡ C−1

β̂
σ−2x′(y+wz),

Cβ̂ ≡ σ2(x′x)−1. The vector of inefficiency terms is multivariate-Normal with

truncation at zero, π(z|σ, β, γ, z, y) ≡ fTN (z|ẑ, Cẑ), ẑ ≡ C−1
ẑ (chλ − w′ba),

Cẑ(w′bw+c), a ≡ y−xβ, b ≡ σ−2IsI , c ≡ γ−2INI and h is the N -dimensional
unit vector. The inefficiency standard deviation has an inverse-Gamma distri-
bution π(γ|λ, z) ≡ f IG(γ|ρ, t2), ρ ≡ N, pt2 ≡ (z − hλ)′(z − hλ) and the
mean inefficiency has a truncated-normal distribution

π(λ|z) ≡ fTN (λ|λ̂, vλ̂), λ̂ ≡ (h′h)−1h′z, vλ̂ ≡ γ2(h′h)−1.

A single pass through these five distributions simulates a draw from the
joint posterior; is easily implemented using available software; and is read-
ily extended to accommodate marginal likelihood calculations. In fact, the
truncated-normal, composed-error model is almost fully operational once the
simpler, exponential specification is in place.
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3.5 Estimation in a two-layer hierarchy

One advantage of the truncated-normal set-up – the subject of this section
– is its ability to interlay additional levels of plausible empirical distributions.
When data arrive in multidimensional forms (such as those in the example that
follows) it is natural to consider implanting additional layers in the hierarchy.
These notions, of course, have more than academic appeal because, as we have
already argued, they enhance the robustness of model estimation. Turning to a
two-layer extension of the single-level set-up, almost all of the developments
are identical to the ones above, and we can be terse with the presentation.

Suppose, in the panel, with k = 1, 2, . . . , NijNN production ‘cycles’ in each
of j = 1, 2, . . . , NiNN time periods across i = 1, 2, . . . , N firms; inefficiencies
zij , j = 1, 2, . . . , NiNN , i = 1, 2, . . . , N evolve according to a two-layer chain
zij ∼ fTN (zij |αi, ω), αi ∼ fTN (αi|λ, γ); and suppose, in addition, that
sampling error follows uijk ∼ fN (uijk|0, σ). In this model inefficiencies are
permitted to vary across time periods and across firms but are constrained to
be constant over the intra-firm, intra-period production cycles. The sampling
errors are, once again, assumed to be iid Normal. A notion that has much
importance and one to which we return is conceptualising the i, the j and the
k.

In the fisheries empirical application a natural interpretation of the sequence
i-j-k is that i denotes a boat, j denotes a season and k denotes a voyage. In
other words, a boat-season-voyage interpretation of i-j-k seems natural and
observed quantity yijk thus denotes the quantity of catch by boat i in period
j in which voyage k was undertaken. But a season-boat-voyage interpreta-
tion may be equally plausible. Moreover, such an interpretation may have
quite significant implications for the way in which we process the posterior
information and, in particular, the pattern of inefficiencies that are estimated
across the sample. This issue—choosing a preferred specification of the hi-
erarchical chain—is important and can be reconciled empirically as part of
a model selection exercise. Placing a diffuse prior on the model parameters
θ ≡ (σ, β′, ω, γ, λ)′ the posterior distribution has the form

π(θ|y, α, z) ∝ 1
(σωγ)−1

fN (yij |xijβ − ιijzij , σ
2INij)

×fTN (zij |αi, ω)fTNff (αi|λ, γ), (3.19)

which should be compared to (3.18), above. Presently, yij ≡
(yij1, . . . , yijNijNN )′ is an NijNN × 1 series of observations on firm i’s output in
production ‘cycles’ occurring in period j; xij ≡ (x′ij1, . . . , x′ijNij)

′ denotes an
NijNN × K matrix of covariates affecting the frontier; β ≡ (β1, . . . , βK)′ as
before; ιij denotes an NijNN unit vector; and INij denotes the NijNN -dimensional
identity matrix. There are now S = ΣiΣjNijNN total observations in the sam-

N∏
i=1

N

j=1

∏
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ple. There are P = ΣiNiNN latent quantities in the vector z ≡ (z′1, z′2, . . . , z′N )′,
z1 ≡ (z11, . . . , z1N1), z2 ≡ (z21, . . . , z2N2)′ , . . . , zN ≡ (zN1, . . . , zNNN )′;
there are N latent quantities in the vector α ≡ (α1, . . . , αN )′; and there are
now K + 4 model parameters in θ ≡ (σ, β′, ω, λ, γ)′. Our objective is to ex-
tract samples {θ(g)}G

g=1, {α(g)}G
g=1 and {z(g)}G

g=1 and make inferences about
posterior quantities of interest.

Once again, the conditional distributions are easy to sample. The re-
gression standard-error has an inverse-Gamma distribution π(σ|β, z, y) ≡
f IG(σ|ν, s2), ν ≡ S, νs2 ≡ (y−xβ +wz)′(y−xβ +wz), y ≡ (y′1, . . . , y′N )′,
y1 ≡ (y′11, . . . , y′1N1)

′, y2 ≡ (y′21, . . . , y′2N2)
′, . . . , yN ≡ (y′N1, . . . , y′NNN )′

; x ≡ (x′1, . . . , x′N )′, x1 ≡ (x′11, . . . , x′1N1)
′ , x2 ≡ (x′21, . . . , x′2N2)

′, . . .,
xN ≡ (x′N1, . . . , x′NNN )′; w ≡ diag(v1, . . . , vN ),vi ≡ diag(ιi1, ιi2..., ιiN ),
ιij denotes anNijNN -dimensional unit vector and, thus, w denotes an appropri-
ate arrangement of the unit vectors corresponding to the zij’s within the re-
gression y = xβ−wz + u. The frontier parameters have the multivariate
normal distribution π(β|σ, z, y) ≡ fN (β|β̂, Cβ̂), β̂ ≡ (x′x)−1x′(y + wz),
Cβ̂ ≡ σ2(x′x)−1. The vector of inefficiency terms is multivariate-Normal with

truncation at zero, π(z|σ, β, ω, α, z, y) ≡ fTN (z|ẑ, Cẑ), ẑ ≡ Cẑ(cvz − w′ba),
Cẑ ≡ (w′bw + c)−1, a ≡ y − xβ, b ≡ σ−2Is, c ≡ ω−2Ip and v ≡
diag(v1, v2, .., vN ) is the P × N -dimensional binary matrix that is consis-
tent with z. The inefficiency standard deviation in the first level of the hierar-
chy has an inverse-Gamma distribution π(ω|α, z, y) ≡ f IG(ω|δ, q2), δ ≡ P ,
δq2 ≡ (z − hα)′(z − hα). In the upper level of the hierarchy the mean ineffi-
ciency has a truncated-Normal distribution π(α|ω, γ, λ, z) ≡ fTN (α|α̂, Cα̂),
α̂ ≡ Cα̂(v′cz + dhλ), Cα̂ ≡ (vc′v + d)−1, d ≡ γ−2

N . The inefficiency
standard deviation in the upper level of the hierarchy has an inverse-Gamma
distribution π(γ|λ, α) ≡ f IG(γ|ρ, t2), ρ ≡ N , ρt2 ≡ (α − hλ)′(α − hλ).
And the upper-level mean inefficiency has the truncated-Normal distribution
π(λ|z) ≡ fTN (λ|λ̂, vλ̂), λ̂ ≡ (h′h)−1h′α , vλ̂ ≡ γ2(h′h)−1. One pass
through these six distributions simulates a draw from the joint posterior and the
algorithm can be applied to derive estimates of model parameters or marginal
likelihoods. Thus, a tractable extension of the single-layer hierarchy avails
itself to nuanced empirical inquiry.

4. Empirical evidence from the Pacific Coast Groundfish
Fishery

In the 1960s and 1970s, the United States government undertook various
measures to develop the domestic fishing fleet, including the exclusion of for-
eign vessels and investment incentives for US fishermen. Even as the num-
ber of boats in the domestic fleet was increasing, new technologies enabled
boats to fish more efficiently. In the Pacific Coast groundfish fishery, by the
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early 1980s concern was growing about the effect of the fleet on particular fish
stocks. Since 2000, the fishery has operated in a climate of crisis. The fishery
has been formally designated a disaster, most of the continental slope has been
closed to trawling, and the federal government has administered a buyback
program that retired approximately one third of the fishing fleet.

The groundfish fishery is managed by the Pacific Fisheries Management
Council, composed of representatives of the states, tribes, industry groups,
recreational fishermen, and the federal government. The Council’s goals are
to protect fish stocks while attempting to meet the needs of commercial, recre-
ational, and tribal fishermen. The Council’s groundfish regulatory measures
initially consisted primarily of trip limits, but have since evolved into a com-
plex combination of trip limits, monthly and bi-monthly limits, gear restric-
tions, area closures, and seasonal restrictions. Some of the more significant
regulatory changes in recent years have been the adoption of small-footrope
requirements, which discourage fishermen from fishing in areas where there
are rocks on the ocean floor, and depth-based area restrictions. Each year the
Council sets total allowable harvests for management complexes, i.e., groups
of species in particular management zones. During the year, the Council ad-
justs regulations in an attempt to see that the total catch target is met but not
exceeded.

Increasingly strict regulation has not averted persistent overfishing: nine
species of groundfish are now designated overfished by the federal govern-
ment. Coupled with overfishing is the problem of overcapacity, i.e., the fleet’s
ability to catch fish exceeds the total allowable catch. In a 2001 report, the
Council’s Scientific and Statistical Committee estimated that only 27-41% of
the trawl vessels with groundfish permits would be needed to harvest the 2000
quotas, and asserted that overcapacity was the most pressing groundfish man-
agement problem. In 2000, the Secretary of Commerce designated the fishery
a disaster, a prelude to the allocation of funds for job retraining, data collection,
and buyouts of fishing licenses and boats. Then in 2003, the federal govern-
ment oversaw a buyout of groundfish permits, with the dual goals of protecting
fish stocks and restoring profitability to the fishery. A total of $46 million in
financing from the industry and the federal government was used to purchase
the fishing rights of boats in the limited-entry fishery. Those boats perma-
nently relinquished their fishing permits and may never fish again anywhere in
the world.

This brief description of the fishery suggests several ways in which the anal-
ysis of technical efficiency relates to important questions in fisheries manage-
ment. In addition to giving managers an aggregate indication of the fleet’s
condition, efficiency measures can provide a comparison of efficiency among
sub-groups (e.g., boat size or home port), which may cast light on equity is-
sues such as the differential impacts of regulatory changes. Common fisheries
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regulations, including both input and output restrictions, are likely to affect
the technical efficiency (hence profitability) of fishing fleets. Because these
changes also affect the likely future impact of the fleet on fish stocks, techni-
cal efficiency analysis can also inform fish stock projections. More generally,
questions of the relative impact on fishing enterprises’ viability of time-varying
factors that affect all boats (ocean conditions and regulations being the most
obvious) versus boat-specific factors (such as skipper skill) suggest that many
policy issues might be illuminated by the application of hierarchical composed-
error models as developed previously in this chapter.

5. Data

Groundfish trawlers with federal limited-entry permits are required to keep
trip logs, including information on departure and return ports, location and du-
ration of fishing, catch, crew, fuel consumption, and numbers of tows. These
logbook data (maintained by the Pacific States Marine Fisheries Commission)
are used to estimate truncated-normal stochastic production frontiers. We limit
analysis to data from the state of Washington in order to keep the observational
units fairly homogeneous; in order to avoid complications due to inter-state
variation in regulations and data collection; and because Washington has the
highest logbook reporting compliance rate of the three West Coast states. Fur-
ther, because our primary focus is the way in which the hierarchical structures
affect the results, we restrict attention to a panel that is, ostensibly, ‘square, ’
consisting of the thirteen most prolific vessels in operation in the thirteen year
period 1987-1999. The resulting sample consists of 5,030 tows and the vari-
ance of this sample across the respective partitions (boats or years) is important
in what follows. The mean number of years (boats) in which a boat (year) ap-
pears is 10.69 and the standard deviation of the tows partitioned across boats
is 3.38 and partitioned across years is 1.38. The mean number of tows per boat
(tows per year) is 386.92 and the standard deviation across boats is 104.7 and
across years is 90.37. Thus, slight variations in deviations exist, but they are
small in relation to the respective sample means.

In terms of our notation, the data are the catch (in pounds) for trips ‘k’ in
years ‘j’ by vessels ‘i’ (namely, yijk) and the covariates (xijk) conjectured
to condition catch levels. Among the covariates to which we have access,
we adopt a fairly parsimonious specification consisting of just four, namely
proxies for boats’ capital services (horsepower), labor inputs (number of crew
per trip), effort intensity (total duration of tows), and a measure designed to
reflect possible differences in tow-duration technology between trips (the to-
tal number of tows undertaken). Prior to estimation, each of the variables is
transformed to natural logarithms and, thus, technological possibilities are con-
strained to be Cobb-Douglas.
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6. Results

Table 9.1 reports results of respective applications to the groundfish data.
The first two columns of entries are the estimates of the truncated-normal
model with single-layer hierarchies (Fishery-Boats (FB) and Fishery-Years
(FY), respectively) and the third and fourth columns report estimates with two-
layer hierarchies (Fishery-Boats-Years (FBY) and Fishery-Years-Boats (FYB),
respectively). Generally speaking, the estimates across the four formulations
are quite similar and one particularly consistent feature across specifications is
the signs of the coefficient estimates. The output elasticity of a change in horse-
power ranges from a low of 1.45 (FB design) to a high of 1.93 (FBY design)
and is, perhaps, the most homogeneous of the estimates. The output elastici-
ties of the remaining covariates (number of crew, duration of tows and number
of tows) are positive but variable across specifications. Important outputs of

Table 9.1. Model Estimates

Hierarchical Designs

Fishery Fishery Fishery Fishery
Boats Years Boats Years

Years Boats

βhorse-powerββ 1.45 1.22 1.93 1.66
(1.40, 1.52) (1.17, 1.30) (1.73, 2.12) (1.50, 1.91)

βnumber-of-crewββ 0.03 0.49 0.14 0.25
(–0.12, 0.18) (0.36, 0.60) (–0.10, 0.39) (0.01, 0.47)

βtotal-duration-of-towsββ 0.18 0.44 0.11 0.11
(0.10, 0.26) (0.37, 0.51) (0.01, 0.18) (0.02, 0.20)

βtotal-number-of-towsββ 0.67 0.58 0.81 0.81
(0.58, 0.76) (0.51, 0.65) (0.71, 0.91) (0.71, 0.91)

σ 0.96 1.01 0.87 0.87
(0.94, 0.98) (1.03, 1.06) (0.85, 0.89) (0.85, 0.90)

γ 0.61 0.24 0.55 0.06
(0.37, 1.10) (0.14, 0.44) (0.30, 1.03) (0.01, 0.24)

λ 1 0.55 3.90 2.36
(0.47, 1.57) (0.26, 0.95) (2.62, 5.04) (1.47, 3.73)

ω 0.5 0.66
(0.41, 0.60) (0.55, 0.79)

Mean eff. score 0.90 0.94 0.69 0.79
Std err. 0.06 0.03 0.06 0.07

Log max. like. –6971.53 –6945.45 –6763.88 –6763.89
Log marg. like. –7007.59 –6981.25 –6813.19 –6812.74

nse. 0.0033 0.002 0.0174 0.0113

Note: Numbers in brackets are 99 percentile highest posterior density regions.
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the estimation are the percent efficiency scores. These scores are derived from
the well-known Farrell measures of efficiency and are computed as the ratio
of the predicted value of the regression to the maximum predicted value as
in Jondrow et al. (1982). Significantly, the mean efficiency scores depend
fundamentally on the nature of the hierarchical structure. The estimated per-
cent efficiency scores under the single layer specifications (0.90 under FB and
0.94 under FY, respectively) decline dramatically under the two-layer speci-
fications (to 0.69 under FBY and 0.79 under FYB, respectively) and suggest
that the mean efficiency level predicted for the fishery is highly sensitive to
the form of the hierarchical structure. From a model-selection perspective,
an interesting informal comparison is the way in which the estimated noise—
evidenced by estimates of σ—varies across the respective formulations. It is
significantly higher in the single-layer specifications compared to the two-layer
models. To the extent that this reduction in noise is desirable, it appears, at least
prima facie, that adding layers in the hierarchy significantly improves fit. In-
evitably, it raises scope for a formal comparison of the various formulations.
The maximized likelihood values reported at the base of the table, suggest that
the two-layer formulations are, indeed, the dominant structure supported by
the data. This conclusion is supported formally by comparing the marginal
likelihood values of each of the models, where the accuracy of the respective
estimates—indicated by the numerical standard error (nse) values in the last
line of the table—is particularly noteworthy. Again, the two-level specifica-
tions are overwhelmingly dominant. Under the prior, the data marginally sup-
port the Fishery-Year-Boats formulation over the Fishery-Boats-Years formu-
lation, with estimated odds of 1.57 in favour of the former. The odds favouring
both of the two-layer specifications over either of the single-layer formulations
are in the billions. This finding makes clear that, among the candidate models
that we implement, the preferred specification is a two-layer hierarchy with in-
efficiency levels held constant either across boats (within years) or across years
(within vessels). Specifications that fail to account for this important distinc-
tion are likely to grossly overstate mean levels of efficiency among trawling
operations. Moreover, as evidenced by the proximity of the maximized and
marginalized likelihood values reported in the base of the table, these conclu-
sions are fairly insensitive to the type of prior information adopted. In short,
the two-layer designs afford greater flexibility than is present in the single-layer
designs; are almost as easy to implement; and affect significantly posterior in-
ferences about production efficiency in the coastal Washington fishery.

7. Conclusions and Extensions

Focusing mostly on pedagogic developments, this chapter has pre-
sented a fairly comprehensive guide to implementing Bayesian, hierarchical,
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composed-error models. With reference to two of its simplest structures (the
exponential and the truncated-normal forms) we outlined the essential inputs
for posterior inference and model comparison. The Bayesian hierarchical ap-
proach, we argue, is a robust and flexible method of estimation that is insightful
and intuitive and has the potential to enhance the current stock of simulation
techniques available to natural-resource and environmental economists. Re-
cent innovations and the continued availability of high-speed computing raise
additional scope for application in the natural-resource and environmental-
economics literatures. Extensions of the current effort pertain to distributional
form, prior elicitation and a host of features too numerous to itemize. They are
contained in a growing body of work including van den Broeck et al. (1994),
Fernandez` et al. (1997, 2000, 2002a, forthcoming), Griffin and Steel (2004),
and Koop and Steel (2001). In addition, readers will note that we have re-
stricted attention to log-linear frontiers that remain linear in parameters. When
the frontier is non-linear, the algorithm is easily extended to include a Metropo-
lis step in place of the usual Gibbs draw. Net of model comparison, the remain-
ing steps in the basic algorithm go through without modification, and model
comparison can be undertaken by implanting extensions outlined in Chib and
Jeliazkov (2001). Also, the hierarchical structures are restricted to the inef-
ficiency alone, begging an obvious question: What if the production frontier
itself is hierarchical?—a matter taken up in some detail by Tsionas (2002).
That contribution, similar in spirit to this Chapter, is particularly relevant. It
showcases the extreme versatility of the hierarchical approach in empirical in-
quiry, guiding heterogeneous, interrelated sample units to a common whole
and, ultimately, a model selection exercise using Chib’s (1995) computations.
Finally, a 2005 issue of the Journal of Econometrics (see Dorfman and Koop,

opments, which natural-resource and environmental economists should
find appealing.

2005 for an overview) highlights many recent composed-error model devel-
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1. Introduction

Bayesian econometric approaches to modeling non-market valuation data
have not often been applied. A quick literature search turns up just a few papers
including: Leon and Le´ on (2003) who model double bounded contingent val-´
uation data, León et al. (2002) who consider benefits transfer from a Bayesian
perspective, Layton and Levine (2003) who model stated preference (SP) data
with complex response patterns, and Train (2003) who develops a Bayesian
based algorithm for estimating mixed-logit models. There is a longer tradition
in the marketing literature (e.g. Huber and Train (2001)). Applications in other
areas of environmental economics are infrequent as well. Notable examples in-
clude Fernandez et al. (2002) who modeled fisheries data and Koop and Tole
(2004) who considered mortality due to air pollution.

Bayesian approaches offer a number of advantages relative to the standard
frequentist approach (e.g. maximum likelihood) for use in non-market valu-
ation. First, with a wealth of prior studies, we often have useful prior infor-
mation that can be used within the Bayesian approach to obtain more precise
estimates of Willingness to Pay (WTP), or similar precision with a more eco-
nomical sample size. This is simply not possible within the standard frequentist
approach employed in nearly all non-market valuation studies. Further, even
without prior studies to draw upon, pre-tests, which are almost always used in
survey based approaches, might be used as priors. This can be considered even
if the final survey instrument has been heavily edited in response to pre-test
results (results here might mean actual estimates from pre-tests data, or focus
group responses, peer reviewer comments, etc.). From a maximum likelihood
perspective, researchers are forced to choose between including the pre-test
data in the final analysis as if it were generated from an identical survey instru-
ment (perhaps with accounting for differential variance) or omitting it. The
Bayesian approach maps neatly into how we imagine most researchers view
their pre-tests and final surveys – similar but different. Another issue raised
by Train (2003), Huber and Train (2001), and in Layton and Levine (2003) is
that sometimes the Bayesian approach based on Markov chain Monte Carlo
methods may be computationally simpler than estimation by maximum likeli-
hood. As suggested by the benefits-transfer application in León et al. (2002),
Bayesian approaches offer alternative methods for utilizing the information
in data generated by different collection mechanisms. Finally, the Bayesian
approach does not require the researcher to invoke large sample results, e.g.
asymptotic normality of the sampling distribution of the estimated coefficients
in order to discuss the precision of the results. Many data sets are rather small,
or small relative to the complexity of the models estimated, to reliably invoke
asymptotic properties.
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With all of the potential advantages, why the paucity of applications? One
reason may be legitimate differences in statistical philosophy that makes the
Bayesian approach unattractive to researchers. This no doubt occurs, but more
importantly is the fact that even when Bayesian approaches afford some com-
putational advantages, they still come with computational difficulties when ap-
plied to discrete choice data common in non-market valuation.

We illustrate computationally feasible approaches for handling a series of
SP data sets that all relate to a common set of attributes and policy issues. We
begin with a noninformative prior for the first SP set and then estimate the
model. Using the results to form a prior for the next survey in the sequence we
then find the next set of results and so on. This allows us to use the information
contained in a series of SP data sets without having to resort to overly strong
pooling assumptions. Another issue we tackle is how to estimate Bayes factors
for model comparison. For discrete choice models this is extremely challeng-
ing given the need to compute the marginal likelihood for each model. For a
small subset of models we illustrate how this can be accomplished.

In section 2 we outline our Bayesian econometric approach for estimating
multinomial probit models and describe necessary algorithms. In section 3 we
describe a series of SP surveys that examined policies to conserve old growth
forests, northern spotted owls, and salmon in the Pacific Northwest. The data
are ideal for this study as each survey data set is too small to reliably invoke
asymptotic results, yet taken together we illustrate how one survey can be used
as a prior for another, and how we base our inferences on the small sample pos-
terior distribution of WTP. Section 4 presents our results. Section 5 concludes
with a discussion of the implications of the results and interesting directions
for future research.

2. The Econometric Model and Bayesian Estimation
Approach

We follow the standard random utility formulation (McFadden, 1981) in
that we relate the attributes of the alternatives to utilities that the subject per-
ceives. Based on the subject’s utilities, the subject makes some kind of choice
or decision that only partially reveals their utilities to us, the researchers. In
specifying the model we find it useful to state the model in what might ap-
pear to be somewhat non-standard notation for those accustomed to maximum
likelihood estimation. Still, the basic ingredients of the model specification
are identical to what has become known as the random parameters approach
to discrete choice modeling. Our case is the Bayesian analog of a multinomial
probit model with normally distributed random parameters first estimated via
maximum likelihood by Hausman and Wise (1978) and first estimated in its
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Bayesian form by McCulloch and Rossi (1994) and Geweke et al. (1994). Our
model set-up and notation follow Layton and Levine (2003).1

2.1 Model Specification

Let UijUU denote the utility of alternative j for individual i. We denote the
J−1 vectors of utilities over all J alternatives for individual i by UiUU . We relate
these utilities to the covariates of interest through the linear mixed model (see
Searle, Casella, and McCulloch, 1992, Chapter 9). We will use boldface to
indicate matrix quantities.

UiUU = Xi β + Ri γiγγ + εi

εi ∼ NJN (0, Σ)
(2.1)

where Xi denotes a J ×K design matrix over the “fixed” effects, Ri denotes a
J ×L design matrix over the “random” effects, β is a K-vector of coefficients
that are common to all subjects and γiγγ is an L-vector of subject specific coef-
ficients. εi has a J dimensional normal distribution with a zero mean vector
and dispersion matrix Σ (covariance matrix). In some, but not all cases, L will
equal K. In non-market valuation, the most common specification is that Ri

is a subset of Xi, where all variables in Xi except for the price or cost variable
are present in Ri so that L = K − 1.

We apply a hierarchical Bayesian model by specifying a hierarchy of prior
distributions for the unknown parameters (β, γiγγ , Σ). In particular, we assume
the following prior distributions.

β ∼ NKN
(
β̄, A

)
γiγγ ∼ NLN (0, Σγ)

Σ−1
γ ∼ Wishart (νγνν , Vγ) .

(2.2)

The mean is a known K-vector β̄, and A is a known K × Kdispersion ma-
trix (covariance matrix) for the normal prior on β. γiγγ is assumed normally
distributed with mean zero and dispersion matrix Σγ. The precision matrix,
Σ−1

γ is specified as having a Wishart distribution with known parameters νγνν
and Vγ (see McCulloch and Rossi (1994)). The fact that γiγγ is specified as
being normally distributed and depending upon other deeper parameters that
themselves are random variables, the Σγ, leads to the term “hierarchical”. It
would be possible, but computationally demanding, to add still further layers
to the hierarchy, but we do not pursue this here as it is doubtful that additional
hierarchical levels will add much to our fit or interpretation. The Wishart prior

1For an excellent development of Bayesian Mixed (random parameter) Logit models see Train (2003).
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on H = Σ−1
γ has density:

p(H|νγνν ,Vγ) ∝ |H|(νγνν −L−1)/2 exp [tr(−0.5HVγ)] . (2.3)

The trace of the matrix is denoted by tr. We can rewrite (2.1) as:

UiUU = Xi β + τiττ

τiττ = Ri γiγγ + εi ∼ NJN
(
0, Σ + RiΣγRT

i

)
so that:

UiUU ∼ NJN
(
Xiβ,Σ + RiΣγRT

i

)
.

(2.4)

The matrix transpose is denoted by T . Finally, as is typical in non-market
valuation based on random parameters models, we assume that the dispersion
matrix, Σ, of the alternatives specific errors, εi, is an identity matrix. Thus the
model outlined in 2.1-2.4 above is the Bayesian interpretation of the random
parameters multinomial probit model of Hausman and Wise (1978).

2.2 Bayesian Estimation

In order to obtain estimates of the parameters of interest (β,Σγ), we need
to relate the utilities, UiUU , to an observed response. For instance, in the most
common elicitation task the response is a choice, which then implies that if
alternative j is chosen by person i, that

UijUU > U ik ∀k �=�� j. (2.5)

In maximum likelihood, one then finds the probability that the UiUU fall into
the region implied by (2.5) and inserts it into the likelihood. Denoting the
observed responses of all subjects by Y and the entire set of parameters to
be estimated by θ, the likelihood is p(Y |θ).2 In the frequentist approach, one
maximizes p(Y |θ) over θ. The Bayesian approach seeks the posterior density
of the parameters, p(Y |θ), via Bayes’ Rule (see for instance Gelman et al.
(1995)):

p ( θ|Y ) =
p (Y |θ) p ( θ)

p ( Y )
, (2.6)

where p(Y ) is the marginal or integrated likelihood (see for instance Chib
(1995)), and p(θ) is the prior so that

p (Y ) =
∫

p ( Y |θ) p ( θ) dθ. (2.7)

2We use the notation p() to denote densities or probabilities - the context should make it clear.
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Given that p(Y ) is a constant of proportionality, albeit a critical one for model
comparison, (2.6) is commonly utilized in the following form where the poste-
rior is proportional to the likelihood times the prior:

p ( θ|Y ) ∝ p (Y |θ) p ( θ) . (2.8)

In both frequentist and Bayesian approaches, the presence of p(Y |θ) makes
estimation computationally demanding. In the Bayesian approach, Albert and
Chib (1993) and McCulloch and Rossi (1994) showed how one could use
Monte Carlo Markov chain simulation methods combined with Data Augmen-
tation (Tanner and Wong (1987)) to circumvent the computation of terms re-
lating to p(Y |θ). When applied to the Multinomial Probit model, one applies
a specific form of MCMC known as Gibbs sampling. The Gibbs sampling
method involves sampling from the posterior density, p(θ|Y ), via an iterative
series of conditional densities, inducing a Markov chain with stationary den-
sity being the posterior density. Thus one can sample from the posterior density
without having to know its form. This proves convenient for the multinomial
probit model once one augments with unobserved utilities (Tanner and Wong’s,
1987). Below we describe the form of the Gibbs sampling algorithm we apply
for our model.

Analytical and numerical calculation of the posterior distribution from the
model in (2.1) is infeasible due to the latent variable model subject to the linear
inequality restrictions in (2.5). However, the prior specifications allow the ap-
plication of the Gibbs sampler to draw Monte Carlo posterior inferences. The
Gibbs sampler generates a sample θ(1), . . . , θ(T ) from the posterior density
p(θ|Y ) without having to sample directly from this unknown posterior den-
sity. In our model, the sampler iteratively draws from the full conditional den-
sities p(β|U, γ,H, Y ), p(γ|U, β,H, Y ), p(H|U, γ, β, Y ), p(U |β, γ,H, Y ) so
that the sample induces a Markov chain with stationary distribution p(β,H|Y ).
Here we have dropped the i subscripts for convenience and are viewing the rel-
evant quantities in vector form.

In (2.4) we combine the random effects and the error terms. This formula-
tion suggests that we may generate utilities U from a density dependent on the
random effects γ only through the dispersion Σγ (or precision Σ−1

γ ). Since
the fixed effects β are drawn from a regression of utilities on the design ma-
trix Xi with a known covariance matrix, this Gibbs step is also independent
of the individual random effects γ. Thus once we know the error dispersion,
I + RiΣγRT

i , knowledge of the actual γ is redundant for updating the utili-
ties and the fixed effect coefficients. This blocking of the Gibbs sampler is the
Chib and Carlin (1999) approach of marginalizing the distribution of U over
the random effects γ.

The conditional densities required follow. Let Ωi = I + RiΣγRT
i , and

note that this density is before differencing with respect to the first choice.
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Then each iteration of the Gibbs sampler makes a single draw from each of the
following conditional densities in turn:

β|U,H, Y ∼ NKN
(
β̂, Σ̂β

)
γiγγ |U, β,H, Y ∼ NLN

(
γ̂iγγ , Σ̂γi

)

H|U, β, γ, Y ∼ Wishart

(
νγνν + n,Vγ +

n∑
i=1

(γiγγ − γ̄) (γiγγ − γ̄)T

)

UijUU |UiUU :−j,β,H, Y ∼ Truncated Normal
(
mij , η

2
ij ; τ

+
ijττ , τ−

ijττ
)

(2.9)

where i = 1, . . . , n j = 1, . . . , J and UiUU :−j is the (J − 1)-vector of UiUU with the
jth element removed, γ̄ is the sample mean of the γiγγ , and

β̂ = Σ̂β

{
i=n∑
i=1

(
XT

i Ω−1
i UiUU

)
+ A−1β̄

}

Σ̂β =

(
i=n∑
i=1

(
XT

i Ω−1
i Xi

)
+ A−1

)−1

γ̂iγγ = Σ̂γi

{
RT

i (UiUU − Xiβ)
}

Σ̂γi
=

(
H + RT

i Ri

)−1

mij = xijβ + FT (UiUU ;−j − Xi;−jβ)

η2
ij = ωi (j; j) − ωi (j;−j)F

F = Ω−1
i (−j;−j)ωi (−j; j) .

(2.10)

Here xij is the jth row of Xi,Xi;−j is Xi with the jth row removed, ωi(j; j)
is the (j, j) element of Ωi. ωi(j;−j) and ωi(−j; j) are the j-th row and col-
umn of Ωi with the jth element removed, and Ω−1

i (−j;−j) is Ωi with the
jth row and column removed. The conditional means and dispersions above
follow from general normal linear model theory.

The truncated normal distribution in (2.9) has mean mij , variance η2
ij , and

upper and lower truncation points τ+
ijττ and τ−

ijττ respectively. The truncation
points allow us to account for the ordinal content of the SP data. Specifically,
the truncations bound each utility according to the subjects’ responses. For
instance, for a choice, one would use (2.5) to define the truncation points.
This can be implemented by first differencing each utility with respect to the
most preferred choice, resulting in (J − 1) utility differences that are each
less than 0. This also illustrates that in a given application τ+

ijττ or τ−
ijττ might

equal +∞ or −∞. Drawing the utilities from the appropriate truncated normal
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distributions is the Data Augmentation step, which allows the algorithm to
avoid the computation of the likelihood.

Note that this form of the sampler handles any ordinal structure in the SP
responses (choices, ranking, partial rankings, First/Worst, etc.). To model
SP data with a different ordinal structure, one simply draws the utilities in
(2.9) from the appropriate truncated normal distribution. For instance, if the
structure of the model is that alternative A is revealed preferred to alterna-
tive B, but is A is worse than C and D, one simply draws truncated nor-
mal utilities UAU , UBU , UCUU , UDU , that meet these conditions. Conditional on the
utilities, the other distributions remain unaltered. In other words, to repre-
sent different types of SP tasks, one needs to adjust p(U |β, γ,H, Y ), but not
p(β|U, γ,H, Y ), p(γ|U, β,H, Y ), p(H|U, γ, β, Y ).

The Gibbs sampler successively samples from each of the conditional dis-
tributions listed in (2.9). The utility simulation is in itself another application
of a Gibbs sampler. The overall algorithm is thus a Gibbs sampler embedded
within a Gibbs sampler requiring updates of (n(J − 1) + n + 2) conditional
densities (recalling that there are (J − 1) utilities after differencing). In our
experience, the Gibbs sampler above requires a burn-in of only 102 or 103. For
further details regarding the implementation of the sampler, see Layton and
Levine (2003).

2.3 Model Comparison and Marginal Likelihood
Computation

For a Bayesian approach to model comparison one can compute the Bayes
factor (see Kass and Raftery (1995) for an in-depth discussion). The Bayes
factor, BF12FF , for comparing two models M1MM and M2MM (with equal prior proba-
bilities) is:

BF12FF =
p (Y |M1MM )
p (Y |M2MM )

= exp {ln p (Y |M1MM ) − ln p (Y |M2MM )} , (2.11)

where p(Y |MsM ) is the marginal likelihood for model s (as in (2.7) with an ex-
plicit conditioning on a particular model). The second representation in (2.11)
is useful since the marginal likelihood algorithm we will employ yields the log
marginal likelihood.

There are a variety of possible approaches to computing p(Y ) (dependence
upon the model indicator is suppressed for the time being). A number of these
are developed in Newton and Raftery (1994). Unfortunately, some of the eas-
iest approaches, such as forming a simulation estimate by drawing from the
prior p(θ) and then averaging p(Y |θ), and a harmonic mean simulator using
draws from the posterior, may perform poorly as discussed in Newton and
Raftery (1994) and Chib (1995). Bos (2002) provides Monte Carlo evidence
that in even a simple normal regression model these approaches may be com-
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pletely unreliable. So instead we follow Chib (1995) and use the Gibbs output
to estimate the marginal likelihood. While this is computationally demand-
ing and time consuming to code, it appears to work well in practice (see Bos
(2002) for Monte Carlo results).

Following Chib (1995) note that the marginal likelihood p(Y ) for the model
in (2.9) can be written as:

p (Y ) =
p (Y |U, β, γ1, . . . , γnγγ ,H) p (U, β, γ1, . . . , γnγγ ,H)

p (U, β, γ1, . . . , γnγγ ,H|Y )
, (2.12)

where p (U, β, γ1, . . . , γnγγ ,H) and p(U, β, γ1, . . . , γnγγ ,H|Y ) are the prior and
posterior densities, respectively, over these parameters. Extending on the re-
sults of Chib (1995) and Yu and Chan (2001), we may use our Gibbs algorithm
to estimate this quantity. Note the following.

Likelihood:

p (Y |U, β, γ1, . . . , γnγγ ,H) = 1 (2.13)

since the responses are deterministic once the utilities are given and
known.

Prior:

p (U, β, γ1, . . . , γnγγ ,H) =

{
i=n∏
i=1

p (UiUU |β, γ1, . . . , γnγγ ,H)

}
×

p (β) ×
{

i=n∏
i=1

p (γiγγ |H)

}
× p (H) ,

(2.14)

where the prior distributions for β, γ1, . . . , γnγγ ,H are given in (2.2).

Posterior:

p (U, β, γ1, . . . , γnγγ ,H|Y ) = p (U |β, γ1, . . . , γnγγ ,H, Y )×
p (β|γ1, . . . , γnγγ ,H, Y )×
p (γ1, . . . , γnγγ |H, Y ) × p (H|Y ) ,

(2.15)

where each conditional distribution on the right side may be estimated
using a part of the Gibbs sampler output from (2.9).

We can thus estimate the marginal likelihood in (2.12) using these three pieces.
Estimation of the posterior is complicated, and so we provide details in Ap-
pendix B. Using the marginal likelihood we can compare models and select a
model using the Bayes factor in (2.11).
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3. The Stated Preference Data Sets

The SP survey data sets we use represent three different but related surveys.
All of the surveys were written in the early/mid 1990’s and explored Washing-
ton State residents’ values for protecting old (ancient) growth habitat and the
northern spotted owl. This was a major policy issue at the time because protect-
ing the northern spotted owl meant protecting an enormous amount of its old
growth forest habitat, with an associated decrease in logging and timber pro-
duction.3 The basic design of the surveys consisted of information and context,
and then a SP valuation question in which respondents were asked to provide
their most and second most preferred choices from five different alternatives.
The alternatives varied in terms of their costs (in $ per year for ten years), the
amount of ancient forest protected and the probability that the northern spotted
owl would survive in the wild for the next 150 years. The third of the three
surveys included the percentage of salmon stocks within the northern spotted
owl’s range that would survive for 150 years. This salmon survival attribute
was added in the third survey as protecting ancient forests also impacts salmon
survival. Salmon conservation is an important and ongoing issue in the U.S.
Pacific Northwest.

All of the surveys were in written form and self-administered in a controlled
setting to randomly recruited residents of Seattle, Washington. Below we de-
scribe each survey and how we will include it in our analysis. For an example
choice set see Appendix A.

Survey 1: The basic attributes were the probability of survival of the north-
ern spotted owl, acres of old growth habitat conserved, and the cost. The survey
presented five alternatives and the respondents picked their most and second
most preferred alternatives. 108 useable surveys were obtained in Seattle in
November 1993. We will use the results of this survey to form a prior for
survey 2.

Survey 2: The same basic survey instrument as survey 1, but with a bet-
ter experimental design for the attributes (recall that SP survey experimental
design has evolved considerably in the last decade). This survey was adminis-
tered during March of 1995, more than a year after survey 1. It was used to add
more variability to the experimental design matrix. It has 46 useable surveys,
which makes analysis of the data by itself via maximum likelihood fruitless,
yet given that a year had elapsed, one might be concerned about whether the
two surveys could be pooled. One could test this, but given the limited sample
sizes one might question the results.

3The development team for these surveys was led by Gardner Brown of the University of Washington, with
assistance and input from David Layton, Jeffrey Lazo, Bill Schulze, Mike Dekay, and Gary McClelland.
For more detail than contained here, see Brown et. al. (1994), and Layton (1995).
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Survey 3: This survey added an attribute (and necessary discussion) for
the percentage of salmon stocks preserved. It was designed to test how and if
values for the spotted owl and old growth forests changed with the inclusion
of salmon. This survey was administered in Seattle during March of 1995 and
has 161 useable responses. We will use the posterior from survey 2 to form
priors for the common attributes in survey 3. These consist of price, habitat,
and owl survival.

4. Results

We compare the following five models. Note that the sum total of param-
eters includes the number of fixed effects and number of covariance terms on
the random effects.

Model I (“main effects”): The simplest model has no random effects
and no interactions. This model fits fixed effects on price, owl survival,
salmon survival, and habitat preservation. Thus, β is 4×1, there are no γiγγ
parameters and consequently no dispersion matrix H, yielding a grand
total of 4 parameters.

Model II (“main effects + environmental interactions”): We may con-
sider adding interaction terms to Model I. This model fits fixed effects
on price, owl survival, salmon survival, and habitat preservation as well
as the three two-way interactions between the environmental variables.
β is 7×1, yielding a grand total of 7 parameters.

Model III (“main and quadratic effects + interactions”): We may con-
sider adding quadratic terms for the environmental variables to Model
III. This model contains ten parameters: four main effects, three interac-
tion terms, and three quadratic terms. β is 10×1, yielding a grand total
of 10 parameters.

Model IV (“main + price interactions”): An alternative to Model II con-
siders interactions with price. This model again fits fixed effects on
price, owl survival, salmon survival, and habitat preservation as well
as the three two-way interactions between price and environmental vari-
ables. β is 7×1, yielding a grand total of 10 parameters.

Model V (“hierarchical model”): This model fits a fixed effect on price
(one parameter), fixed (three parameters) and correlated random effects
on owl survival, salmon survival, and habitat preservation variables.
Thus, β is 4×1, the γiγγ are 3×1 vectors parameterized by H a 3×3 ma-
trix, for a grand total of 10 parameters.

These models cover a range of popular specifications, some of which al-
low WTP to be a non-linear function of habitat and species survival probabil-
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ities. Model I represents the most limited and common type of model esti-
mated. Models II and III add in interactions among the environmental quality
attributes, Model IV includes price and environmental quality interactions as
one way of capturing income effects, and Model V is the hierarchical analog
of a random parameters multinomial probit model. In all cases we utilize the
partial ranking data we have available in which the respondent provided their
most and second most preferred alternatives. As discussed in Section 2, the
Gibbs sampler is modified to handle this kind of data by altering the truncation
points in the utility sub-sampler so that the utility of the most preferred alterna-
tive is always greater than the utility of the second most preferred alternative,
and in turn that the utility of second most preferred alternative is greater than
the remaining three alternatives.

Model I was first fit using survey data set 1 with a proper but noninformative
prior. This prior is:

βdata set 1 ∼ NKN

⎛
⎝
⎛⎛⎡

⎣
⎡⎡

0
0
0

⎤
⎦
⎤⎤

,

⎡
⎣
⎡⎡

1000 0 0
0 1000 0
0 0 1000

⎤
⎦
⎤⎤⎞
⎠
⎞⎞

. (4.1)

The posterior distribution given this data set was then used to form a new prior
distribution for data set 2. A normal distribution was fit to the posterior dis-
tribution for use as the prior distribution in fitting data set 2. As discussed in
Train (2003), the posterior distribution is asymptotically normal. Given the
size of our data sets, we do not feel comfortable invoking asymptotic results
for our final estimates, but for use as a prior fitting a normal to the posterior
seems reasonable. This prior is shown below.

βdata set 2 ∼ NKN

⎛
⎝
⎛⎛⎡

⎣ −.0062
.8872
.1000

⎤
⎦ ,

⎡
⎣ .0000 −.0003 −.0005

−.0003 .1109 −.0104
−.0005 −.0104 .0134

⎤
⎦
⎤⎞
⎠
⎞⎞

. (4.2)

We note that there is surprisingly little variance in the cost parameter (the val-
ues are rounded to four places). One could choose to inflate this variance in
order to make the final results less sensitive to the prior, but we decided to use
the prior unaltered from the data set 1 estimation. We then estimated Model
I using data set 2 and the prior in (4.2). We again fit a normal distribution to
the posterior distribution from the data set 2 for use in fitting models I-V using
data set 3. This prior is in (4.3).

βdata set 3 ∼ NKN

⎛
⎝
⎛⎛⎡

⎣ −.0039
.9885
.1257

⎤
⎦ ,

⎡
⎣ .0000 −.0000 −.0000

−.0000 .0213 −.0004
−.0000 −.0004 .0008

⎤
⎦
⎞
⎠
⎞⎞

. (4.3)

Again we note little variance in the cost parameter or covariance with other pa-
rameters. Note that data sets 1 and 2 do not have the Salmon survival attribute,



Bayesian Approaches to Modeling Stated Preference Data 199

so for the Salmon survival attribute we choose a zero mean and variance of
1,000 as in the initial priors on Cost, Owls, and Habitat. Any other parameters,
such as those on the interaction or quadratic terms are also given a mean 0 with
variance of 1000. For model V we also need to choose a prior for H. We chose
νγνν = 4, and

Vγ =

⎡
⎣ 1 0 0

0 5000 0
0 0 900

⎤
⎦ . (4.4)

The values in Vγ were chosen based upon inflating the variances obtained
from some earlier maximum likelihood estimation of a random parameters
multinomial probit model (Layton (1995)). The final results are not sensitive
to further inflating Vγ.

We then run Models I-V on data set 3, using the priors as outlined above.
As noted in section 3, our blocking of the Gibbs sampler results in fast conver-
gence, requiring only 102 or 103 burn-in iterations. The results of the models
are shown in Table 10.1. Our results are based on a very conservative 104

burn-in, and we base our estimates on an additional 40,000 draws. The units
for each main effect variable are: Cost is in dollars ($) per year; Owl and
Salmon survival probability are both represented in decimals (55% is entered
as 0.55); Habitat preservation is measured in millions of acres. For each pa-
rameter in Table 1, the posterior mean is provided, along with 95% interval
estimates (equal-tailed) in parentheses. Note that these interval estimates do
not assume asymptotic normality but are computed directly from the 40,000
draws of the posterior provided by the Gibbs sampler.

We use the approach described in section 2.3 for computing marginal like-
lihoods for each of the five models.4 Table 10.1 shows that the hierarchical
model performed best, displaying a larger marginal likelihood on the log scale.
We compute Bayes factors for each of Models I-IV compared to Model V (the
best fitting model), using (2.11). Using the scale suggested in Kass and Raftery
(1995), any Bayes factor greater than 100 represents decisive evidence against
the competing model (Models I-IV). With a minimum value of 1,225 for Model
II, we find decisive evidence that Model V is the best model to use for policy
analysis.

The hierarchical model V in Table 10.1 has mean estimates for Cost, Owls,
and Salmon that are of the expected sign, and interval estimates that do not
cross zero. The intervals are reasonably tight. The estimates for Habitat indi-
cate a negative value which is unexpected if one perceives habitat protection

4Note the Gibbs sampler and the marginal likelihood computations are enormously simplified in Models
I-IV compared to Model V. The marginal likelihood could be computed directly by the method of Chib
(1995) with the addition of a likelihood simulator for models I-IV.
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Table 10.1. Posterior Mean and 95% Interval Estimates

Parameter Model I Model II Model III

Cost –0.005 –0.009 –0.009
(–0.009,–0.002) (–0.014,–0.005) (–0.014,–0.004)

Owls 1.759 –3.024 –6.572
(0.577,2.974) (–6.542,0.487) (–13.826,0.581)

Salmon 2.603 1.901 12.225
(0.348,4.939) (–1.324,5.196) (–9.324,33.869)

Habitat 0.065 0.178 0.24
(–0.161,0.289) (–0.291,0.652) (–0.316,0.787)

owl×owl –0.656
(–5.018,3.726)

sal×sal –9.503
(–28.748,9.847)

hab×hab –0.034
(–0.104,0.037)

owl×sal 7.936 13.872
(1.905,14.092) (–0.938,28.735)

owl×hab 2.243 0.485
(–29.554,34.250) (–58.478,59.670)

sal×hab –30.47 –1.455
(–80.256,19.546) (–61.042,58.641)

ln p = (y|MsM ) –424.667 –422.968 –432.603
Bayes Factors 6,701 1,225 18,736,799

Notes: The (equal tailed) interval estimates are in parenthesis.
ln p = (y|MsM ) is the log marginal likelihood.
The Bayes Factors are for comparing Model V versus the other models.

as good, but is expected if one views it as imposing economic hardship. In
any event, the interval estimate is wide, around plus or minus five times the
mean and covers zero. In effect there is little evidence to support any value
other than 0. The H matrix is not precisely estimated, but clearly contributes
to the model’s predictive power as shown by the Bayes factors. These results
are qualitatively similar to those often seen in random parameters models es-
timated by maximum likelihood. A decrease in the scale of the error term is
shown by the increase in the magnitude of the main effects and a large im-
provement in fit.

Table 10.2 provides WTP estimates for model V. These are easy to compute
given the structure of the model and the availability of the posterior draws for
the parameters. Draws for the WTP distribution for an incremental increase
in one of the environmental attributes are made by dividing the draws of Owl,
Salmon, and Habitat parameters by the corresponding draw of the negative of
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Table 10.1 (continued)
Posterior Mean and 95% Interval Estimates

Parameter Model IV Model V

Cost –0.013 –0.207
(–0.032,0.006) (–0.274,–0.151)

Owls 1.01 11.703
(–0.431,2.486) (2.178,22.630)

Salmon 2.814 165.073
(–0.095,5.789) (119.891,218.672)

Habitat 0.2 –0.354
(–0.054,0.455) (–2.238,1.570)

owl×cost 1.403
(0.292,2.507)

hab×cost 1.324
(–0.575,3.230)

sal×cost –25.909
(–45.960,–5.852)

H11 3.844
(0.002,14.497)

H21 –0.432
(–2.159,0.000)

H22 –3.973
(–27.788,5.214)

H31HH 0.062
(0.000,0.385)

H32HH 0.654
(–0.322,4.827)

H33HH 9.192
(0.028,67.496)

ln p = (y|MsM ) –429.962 –415.857
Bayes Factors 1,335,745 —

Notes: The (equal tailed) interval estimates are in parenthesis.
ln p = (y|MsM ) is the log marginal likelihood.
The Bayes Factors are for comparing Model V versus the
other models.

the Cost parameter (that is, element by element division times –1). This yields
40,000 WTP draws, which are summarized in Table 10.2. In interpreting Table
10.2, note that these WTP’s are per year for ten years. Finally, note that these
WTP’s are based on a model which implies that WTP is a linear function of
species survival probability. This would be an overly restrictive assumption
to make at the outset, but we did estimate models that allowed for non-linear
WTP in species survival, and used model selection techniques to choose our
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final model. It is simply the case that the available data best supported a model
with linear WTP.

Table 10.2. Posterior Mean and 95% Interval Estimates of WTP from Model V

Owls Salmon Habitat

Mean 0.5696 8.0432 –1.9408
(95% interval estimate) (0.109,1.058) (6.378,10.014) (–11.799,7.056)

Notes: Model V is the Hierarchical model. WTP is measured in 1995 $ per year for 10 years.
Owls units are per % improvement in the probability of species survival for 150 years.
Salmon units are per % of stocks surviving for 150 years.
Habitat units are per million acres of ancient forest preserved.

Space precludes a complete interpretation of the policy implications of our
results, but we can briefly point out the assumptions necessary to put estimates
such as these into terms useful for benefit-costs analysis, and what the likely
outcome of such an analysis would be. Montgomery et al. (1994) considered
the marginal cost of northern spotted owl preservation, where the margin is
defined in terms of the probability of species survival for 150 years, as in our
SP survey data. Indeed, the SP survey was designed to provide benefits suit-
able for comparison with the costs estimates of Montgomery et al. (1994).
Montgomery et al. (1994) provided cost estimates for three programs under
federal consideration at that time. These programs would have yielded a 95%,
91%, and 82% survival probability at a cost of 46, 33, and 21 billion 1990 US
$ respectively, or about 53, 38, and 24 billion in March 1995 US$ (as in our
survey). Our values are in a series of 10 year payments, so we need to convert
them to a lump sum, which means picking a discount rate. Using a 10% rate
(2%-3% percent higher than 10 year bonds or 1 year adjustable mortgages at
that time), we find that our values for 95%, 91%, and 82% survival are respec-
tively $325, $312, and $281 per household.5 To cover the costs of the programs
as listed above would require approximately 141 million, 106 million, and 75
million households. In 1995 there were about 97 million households in the
U.S., so even heroically assuming that all U.S. households had values similar
to those of Seattle Washington residents, only the 82% program would yield
positive net benefits. Obviously, the extent of the market might be significantly
smaller, say Washington, Oregon, and California households, in which case
none of the programs would yield positive net benefits based on the WTP to

5Assuming 0% survival probability as the baseline. Our survey actually used 5% as the status quo baseline.
One could adjust the numbers for the 5% baseline but it will not change the nature of the results. We assume
that the payments begin at the end of year 1.
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preserve the northern spotted owl (using 14 million households in these three
states). If one were to use the upper bound of the interval estimate, which is
86% higher than the mean estimate, then the national population of households
is sufficient to cover the costs, but still California, Oregon, and Washington, are
not sufficient.6

The programs clearly preserve more than owls, but the habitat value is es-
sentially zero in our results. Salmons are an important component, but present
a challenge in scaling the effects of the programs to salmon stocks preserved,
so we postpone such an analysis to future research. The above should give the
reader a good feel for the nature of the results based on the owl survival values
alone.

5. Conclusion

In this research we have shown how one can use Bayesian estimation to
handle a series of surveys, or pre-tests, to form priors for the final survey. This
allows one to use information from earlier efforts, even of very small sample
size, without having to assert that the parameter estimates (to scale) would be
the same. The point of survey pre-testing is to improve the instrument and
one expects that values are likely to be conditional upon the instrument (at
least the less-tested early versions). Further, by using the MCMC sampling
approach, we obtain draws from the posterior which can be used to form point
and interval estimates without resorting to normal approximations for our final
estimates. We think this is important, as the sample sizes we used here were
not large. We have seen a number of published studies with samples sizes of
similar magnitude.

We also illustrated a method for computing the marginal likelihood of a
model, a critical component in Bayesian model comparison. This calculation
is complicated to say the least. We have found, as discussed in Train (2003), a
number of computational advantages to Bayesian estimation of discrete choice
models. However, the ability to avoid the computation of the likelihood has
a hidden cost in that model comparison requires it, or some quantity related
to it. In the MCMC set-up, the marginal likelihood calculation can be as time
consuming (or more) as the original estimation, but is still preferable to some
of the easiest approaches to computing the marginal likelihood, which may not
perform well in practice. We believe that finding faster, and more intuitive,
algorithms for the types of models environmental economist typically use will
be crucial to their gaining wider acceptance. Model estimation without model
comparison is justifiably unsatisfying to readers and reviewers.

6All household data is from U.S. Census Bureau estimates accessed on the internet on July 30, 2004, at:
http://eire.census.gov/popest/archives/household/sthuhh6.txt.
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Appendix A: Example Choice Set

1) $0 per year for ten years to preserve no additional ancient forests.

Protect 1.5 million acres (21%) of ancient forest habitat.

Protect 450 northern spotted owl pairs (13%).

The northern spotted owl would have a 5% chance of surviving in the
wild for the next 150 years (a 95% chance of becoming extinct).

50% of the current salmon stocks would survive for the next 150 years.

2) $60 per year for ten years to preserve some additional ancient forests.

Protect 2 million acres (29%) of ancient forest habitat.

Protect 1,000 northern spotted owl pairs (29%).

The northern spotted owl would have a 55% chance of surviving in the
wild for the next 150 years (a 45% chance of becoming extinct).

58% of the current salmon stocks would survive for the next 150 years.

3) $109 per year for ten years to preserve more of the remaining ancient
forests.

Protect 2.8 million acres (40%) of ancient forest habitat.

Protect 1,600 northern spotted owl pairs (46%).

The northern spotted owl would have a 63% chance of surviving in the
wild for the next 150 years (a 37% chance of becoming extinct).

63% of the current salmon stocks would survive for the next 150 years.

4) $169 per year for ten years to preserve still more of the remaining ancient
forests.

Protect 4 million acres (57%) of ancient forest habitat.

Protect 1,900 northern spotted owl pairs (54%).

The northern spotted owl would have a 81% chance of surviving in the
wild for the next 150 years (a 19% chance of becoming extinct).

70% of the current salmon stocks would survive for the next 150 years.

5) $241 per year for ten years to preserve almost all of the remaining ancient
forests.
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Protect 5.5 million acres (79%) of ancient forest habitat.

Protect 2,400 northern spotted owl pairs (69%).

The northern spotted owl would have a 98% chance of surviving in the
wild for the next 150 years (a 2% chance of becoming extinct).

76% of the current salmon stocks would survive for the next 150 years.

Note that owl pairs and survival probability completely co-vary, so in effect
there is one attribute one could call “owl survival”. Similarly, the percentage
of ancient forest habitat preserved and the total amount of habitat completely
co-vary as well.

Appendix B: Estimation of the Posterior Density for
Computation of the Marginal Likelihood

Here we provide the details for computation of the marginal likelihood in
(2.12). The posterior distribution as written in (2.15) requires estimation of
four conditional distributions. The asterisked variables represent the posterior
mean of these quantities as obtained from the output of the Gibbs sampler in
(2.9).

p (H|Y ) can be found by marginalizing over UiUU , β, and γ = γ1, . . . , γnγγ .

p (H|Y ) =
∫

p (H|U, β,γ, Y ) p (U, β,γ|Y ) dU dβ dγ (7.1)

This quantity may be estimated from a set of T Gibbs samples from (2.9)
via

p̂ (H∗|Y ) =
1
T

t=T∑
t=1

p
(
H∗|U (t), β(t), γ(t), Y

)
(7.2)

p ( γ1, . . . , γnγγ |H, Y ) can be found by first noting that the γ1, . . . , γnγγ are
conditionally independent, so we can focus on a single γiγγ without loss
of generality. Marginalizing over UiUU , β:

p ( γiγγ |H∗, Y ) =
∫

p ( γiγγ |U, β,H∗, Y ) p (U, β|H∗, Y ) dU dβ (7.3)

We may obtain a Monte Carlo estimate of this quantity given samples
from p (U, β|H∗, Y ). Such samples may be drawn by running the Gibbs
sampler in (2.9), substituting H∗ for H and thus not sampling values for
H during this sampler. We thus obtain:

p̂ ( γ∗
iγγ |H∗, Y ) =

1
T

t=T∑
t=1

p
(

γ∗
iγγ |U (t), β(t),H∗, Y

)
(7.4)
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p ( β|γ1, . . . , γnγγ ,H, Y ) can be found by marginalizing over the UiUU .

p (β|, γ∗,H∗, Y ) =
∫

p (β|U,γ∗,H∗, Y ) p (U |γ∗,H∗, Y ) dU (7.5)

We may obtain a Monte Carlo estimate of this quantity given samples
from p ( U |γ∗

1 , . . . , γ∗
nγγ ,H∗, Y ). Such samples may be drawn by running

the Gibbs sampler in (2.9), substituting H∗ for H and γ∗
iγγ for all γiγγ and

not sampling the H or any γiγγ values during the sampler. We obtain:

p̂ (β∗|, γ∗,H∗, Y ) =
1
T

t=T∑
t=1

p
(

β∗|U (t), γ∗,H∗, Y
)

(7.6)

Note too that in our Gibbs sampler, the conditional distribution for β
does not directly depend on any of the γiγγ , so that in effect the γ∗

iγγ do not
actually enter the computation above.

p ( U |β, γ1, . . . , γnγγ ,H, Y ). We first recognize that the UiUU , i = 1, . . . , n,
are conditionally independent. We may thus focus on a single UiUU without
loss of generality. The Gibbs sampler in (2.9) works on each UijUU , so
we estimate each of the corresponding univariate densities. Note too
that in our Gibbs sampler, the conditional distribution for UijUU does not
directly depend on any of the γiγγ . We may thus eliminate them from the
conditioning argument. At the jth step in the Gibbs sampler for utilities,
we have values for the first j−1 utilities. So we can plug in the posterior
mean values for these quantities.

p
(

UijUU |U∗
iUU 1, . . . , U

∗
iUU (j−1), β

∗,H∗, Y
)

=∫
p
(

UijUU |U∗
iUU 1, . . . , U

∗
iUU (j−1), UiUU (j+1), . . . , UiJ,UU β∗,H∗, Y

)
× p

(
UiUU (j+1), . . . , UiJUU , |U∗

iUU 1, . . . , U
∗
iUU (j−1), β

∗,H∗, Y
)

× dUiUU (j+1) × . . . × dUiJUU

(7.7)

We may obtain a Monte Carlo estimate of this quantity given samples

from p
(

UiUU (j+1), . . . , UiJUU |U∗
iUU 1, . . . , U

∗
iU (j−1), β

∗,H∗, Y
)

. Such samples

may be drawn by running the Gibbs sampler in (2.9) substituting poste-
rior mean values where appropriate. In particular, we sample only the
utilities following UijUU , namely, UiUU (j+1), . . . , UiJUU . We obtain:

p̂
(

U∗
ijUU |U∗

iUU 1, . . . , U
∗
iUU (j−1), β

∗,H∗, Y
)

=

1
T

t=T∑
t=1

p
(

U∗
ijUU |U∗

iUU 1, . . . , U
∗
iUU (j−1), U

(t)
iU (j+1), . . . , U

(t)
iJUU , β∗,H∗, Y

) (7.8)
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Over all j we have

p̂ (U∗
iUU |β∗,H∗, Y ) =

j=J∏
j=1

p̂
(

U∗
ijUU |U∗

iUU 1, . . . , U
∗
iUU (j−1), β

∗,H∗, Y
)

(7.9)

The marginal likelihood may be estimated at any parameter values, but
preferably a point of high density, Chib (1995). We chose the posterior
mean. We evaluate the prior and posterior distributions in (2.14) and
(2.15) at the posterior mean value for each parameter. The estimated
posterior (2.15) is:

p̂ ( U∗, β∗, γ∗,H∗|Y ) =

{
i=n∏
i=1

p̂ ( U∗
iUU |, β∗, γ∗,H∗, Y )

}

× p̂ (β∗|γ∗,H∗, Y )

×
{

i=n∏
i=1

p̂ ( γ∗
iγγ |H∗, Y )

}
× p̂ (H∗|Y )

(7.10)

The estimated log marginal likelihood is then

ln p̂ ( Y ) = ln p̂ (U∗, β∗, γ∗,H∗) − ln p̂ (U∗, β∗, γ∗,H∗|Y ) (7.11)
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1. Introduction

Contingent valuation (CV) is a method that is commonly used among
economists and social scientists for measuring the benefits society receives
from non-market or environmental goods. The method involves the use of
survey work, in which individuals are asked an elicitation question inquiring
their willingness to pay (WTP) or willingness to accept (WTA) for a partic-
ular change in their choice set. There are a number of ways of posing this
question to the subject, going from the open ended format to the most recent
multiple choice experiments. The dichotomous choice format requests a sim-
ple binary yes/no responses from the individual facing a particular definition
of the change in the non-market good or policy proposal. This method was first
proposed by Bishop and Herbelein (1979) and further developed by Hanemann
(1984).

Dichotomous choice questions have several advantages over other ap-
proaches. First, they are straightforward and simple to answer. That is, the
individual is posed with a simple decision about their preferences with respect
to a particular profile of some policy proposal (or non-market good). Both open
ended questions and multiple choice experiments are generally much harder for
the subject to answer. Second, Hoehn and Randall (1987) show that dichoto-
mous choice questions have the potential to be incentive compatible. With this
format the subject perceives that the offered price is exogenous, and therefore
she cannot influence the amount that would eventually pay if the policy pro-
posal is approved. Obviously, this condition is not satisfied for open ended
or multiple choice experiments, since the subject is given the opportunity to
choose the characteristics of the good to be offered, including the price.

Nevertheless, it is known that by departing from dichotomous choice the
researcher can increase the amount of information about the subject’s pref-
erences. An elicitation method which moves slightly from the single binary
question is the double bounded (or dichotomous choice with follow up) for-
mat. It involves posing the subject a second binary WTP question for the same
level of provision of non-market good asked in the first binary question. If
the answer to the first price is yes (no) then the second price is accordingly in-
creased (and viceversa). This method has been the subject of some controversy
because it lacks the potential for incentive compatibility (e.g. Harrison and
Kristrom, 1995), and because it may generate responses which are internally¨
inconsistent1 (Bateman et al., 2001). However, it also increases the amount of
information about the individual’s preferences, and it has been shown to lead to
more efficient estimators than the single bounded question format (Hanemann

1The term “internally inconsistent” refers to the fact that the distribution of underlying preferences implied
by answers to the initial question may not be the same as that implied by the entire sequence of replies.
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et al., 1991). Further elicitation questions offer more scope for bias effects and
do not seem to be worth pursuing in terms of furthering the efficiency gains
(Cooper and Hanemann, 1995; Scarpa and Bateman, 2000).

In spite of the potential trade-offs between single, double and multiple-
bounded elicitation in terms of efficiency and other strategic response bias
effects, there is a need to develop estimation methods which increase the pre-
cision and accuracy of the welfare estimates. In this chapter we focus on the
contribution that can be provided by the application of Bayesian inference to
dichotomous choice models in contingent valuation. Fernandez et al. (2004)
show how Bayesian inference can be conduced for interval-data dichotomous
choice models, such as double bounded, by demonstrating the propriety of the
posterior distribution. Bayesian estimation methods are capable of incorporat-
ing prior information from experts and provide exact inference with relatively
small samples.

In the next sections we consider the potential improvements of adopting a
Bayesian estimation method. First, we outline a general Bayesian approach to
dichotomous choice modelling. The method involves Gibbs sampling and data
augmentation to overcome the technical problems encountered in simulating
the posterior distribution. These techniques solve the problem of complex in-
tegration, thereby allowing the researcher to simulate the posterior distribution.
Section 3 presents the empirical survey data for the application of the model.
This section also discusses the results of the Bayesian modelling and compares
them with the standard maximum likelihood approach. Finally, section 4 sum-
marises the main findings and implications of the paper.

2. Modeling

The dichotomous choice elicitation method involves a binary yes/no ques-
tion on the value of an environmental good for a given price. The response to
this question is expected to be based on the individual’s maximum willingness
to pay (WTP), which is unobservable for the researcher. Following Cameron
(1988), let us assume WTP is comprised of two components, a deterministic
parameter µ and an unobservable random variable ε with zero mean and σ stan-
dard error. Thus, the response of individual i to binary question j is specified
as WTPijPP = µi + σεi, where µ and σ are the location and scale parameters
(mean and standard deviation respectively) of WTP. The location parameter
can be expressed as a linear predictor associated with a k × 1 regression pa-
rameter vector β and a covariate vector xi, that is µi = x′

iβ.
By observing a subject’s response (Yes/No) to an arbitrary first bid price Bi1

it is assumed that her true valuation is higher (“Yes”) or lower (“No”) than Bi1.
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Therefore, the probability of a “ Yes” response is given by:

Pr(WTPiPP 1 ≥ Bi1) = Pr

(
εi ≥ Bi1 − µi

σ

)
= FεFF

(
Bi1 − µi

σ

)
(2.1)

As can be seen, the linear predictor for the location parameter is linked to the
probability of a positive response by a known cumulative distribution function
F (·), or link function.

For a given sample of n independent observations, Cameron and James
(1987) show that the joint function for the data f (Y |Bi1, X, β, σ) can be ex-
pressed as the following likelihood function:

L =
n∏

i=1

[
FεFF

(
Bi1 − x′

iβ

σ

)]yi1

×
[
1 − FεFF

(
Bi1 − x′

iβ

σ

)]1−yi1

(2.2)

where the indicator variable yi1 = 1 if a positive response is observed, and 0
otherwise. In order to obtain more information about individuals preferences
and account for potential heterogeneity, an increasing number of studies in-
corporate additional questions asking subjects if their WTP is strictly positive,
zero or negative (Kriström, 1997; Haab, 1999, and Huhtala, 2000, among oth-¨
ers).2 The model can be extended to incorporate this additional information
by incorporating a binary variable zi, which takes the value of 1 if WTP is
strictly positive and zero otherwise, thereby considering the negative part of
the distribution, the contribution of the individual observation to the likelihood
function would take the following form:

FεFF

(
Bi1 − x′

iβ

σ

)yi1zi
[
1 − FεFF

(
Bi1 − x′

iβ

σ

)](1−yi1)zi

FεFF

(−x′
iβ

σ

)1−zi

(2.3)
As Cameron and James (1987) pointed out, “the presence of Bi1 in the like-

lihood function makes possible that it can be maximized with respect to both
the vector of coefficients (β) and the standard deviation (σ) by applying maxi-
mum likelihood methods”. However, the properties of the ML estimators relay
on asymptotic conditions and they may not be hold in finite samples (Griffith,
Hill and Pope, 1987). The use of Bayesian methods is a reasonable alterna-
tive for small or finite samples, which may lead to more accurate estimation
(McCulloch and Rossi, 1994).

Let us assume that some prior information is available about the parameters
of the binary model. In this case, we can proceed by estimating the model in a
Bayesian setting. For the sake of convenience, let us assume prior distributions

2The motivations of zero responses can be further separated in true zeros and protest responses (Strazzera
et al. 2003).
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β/σ2 ∼ N(β0, V1VV ) and σ2 ∼ IG(a1/2, b1/2), where N is the normal distribu-
tion with mean vector β0 and covariance matrix V1VV ; IG is the inverted gamma
in where a1/2 and b1/2 are the scale and shape parameters respectively.

The posterior distribution can be evaluated by using a Gibbs sampling algo-
rithm with data augmentation, similarly to Chib (1992) and Albert and Chib
(1993). Data augmentation involves generating continuous variables defined in
the censored intervals resulting from the discrete responses of the dichotomous
choice method (Tanner and Wong, 1987). That is, a set of random variables
WTPiPP 1 is generated for positive WTP , such that WTPiPP 1 > Bi1 if yi1 = 1
and WTPiPP 1 < Bi1 if yi1 = 0. In addition, the negative part of the distribu-
tion is modelled by considering zi to be a binary variable taking value one if
the individual’s WTP is strictly positive, and zero otherwise. Since the de-
pendent variables follow a normal distribution, i.e. WTPiPP 1 ∼ N(x′

iβ, σ2),
the Gibbs algorithm involves sampling for

{
β, σ2, WTPiPP 1, E (WTPiPP 1)

}
it-

eratively from their posterior conditional density distributions, which are as
follows:

f(WiWW 1 |Y,Z, θ) =

⎧⎨⎧⎧
⎩
⎨⎨ φ

(
WiWW 1 | x′

iβ, σ2
)

T [Bi1,∞] if ziyi1 = 1
φ
(
WiWW 1 | x′

iβ, σ2
)

T [0, Bi1] if zi(1 − yi1) = 1
φ
(
WiWW 1 | x′

iβ, σ2
)

T [−∞, 0] if zi = 0
(2.4)

π
(
β|Y, Z, W11WW , ...WnWW 1, σ

2
)

= φ
(
β|β̂WTP , Ṽ

)

π
(
σ2|Y, Z, W11WW , ...WnWW 1, β

)
= fIGff

(
σ2|a2

2
,
b2

2

)
(2.5)

where WiWW 1 is WTPiPP 1; Y = (y11, ..., yn1) ; Z = (z1, ..., zn) ; φ(·) T[a, b] is the
density of a normal distribution truncated to the interval a, b, fIGff is the density
function of an inverted gamma distribution, and

Ṽ =
(

1
σ2

n∑
i=1

xix
′
i + (V1VV )−1

)−1

,

β̂WTP = Ṽ

(
1
σ2

n∑
i=1

xiWTPiPP 1 + (V1VV )−1β0

)
,

b2 = b1 +
n∑

i=1
(WTPiPP 1 − x′

iβ)2 , a2 = a1 + r, and r =
n∑

i=1
zi.

The Gibbs sampling algorithm can be summarized in the following steps:

0. Determine the initial values for β and σ. These values can be obtained
from maximum likelihood or OLS estimation.

1. Generate sample values of WiWW 1 from distribution (2.4) conditioning on
the previous values of β and σ.
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2. Obtain the arithmetic average of WiWW 1, i=1,. . . ,n. This is a sample value
of E(WTP ).

3. Sample β from distribution (2.5) conditioning on the most recent values
of σ and WiWW 1obtained in step 1.

4. Sample from σ distribution (2.5) conditioning on the most recent values
of β and WiWW 1 obtained in step 1.

5. Repeat steps 1 to 4 until convergence is achieved.

After an initial “burn-in” period, the values thus generated may be regarded
as drawn from the joint distribution of E {(WTP ) , β, σ2 |Y }. These series of
simulated values are utilized to estimate the posterior moments for the param-
eters after discarding the first d values in the chain.

As discussed in section 1, more information about WTP can be obtained
by posing the subject with a second binary question, so as to increase the ef-
ficiency of the welfare estimates (Hanemann et al. 1991). The second bid
offered (Bi2) is higher than Bi1 if individual i answers positively to the first
price and vice-versa. Thus, the probabilities of the possible bounds for WTP
are defined as follows:

πi
yy = Pr (WiWW 2 > Bi2) =

∫∞
B

∫∫
i2

fεff
(

WiWW 2−µi

σ

)
dWiWW 2

πi
yn = Pr (Bi1 < WiWW 2 ≤ Bi2) =

∫ Bi2

B

∫∫
i1

fεff
(

WiWW 2−µi

σ

)
dWiWW 2

πi
ny = Pr (Bi2 < WiWW 2 ≤ Bi1) =

∫ Bi1

B

∫∫
i2

fεff
(

WiWW 2−µi

σ

)
dWiWW 2

πi
nn = Pr (0 < WiWW 2 ≤ Bi2) =

∫ Bi2

0

∫∫
fεff

(
WiWW 2−µi

σ

)
dWiWW 2

πi
0 = Pr (WiWW 2 ≤ 0) =

∫ 0
−∞

∫∫
fεff

(
WiWW 2−µi

σ

)
dWiWW 2

(2.6)

where fεff (·) is the density function of ε. Let yi2 be a second indicator variable
taking values 0,1 for a “no” and “yes” answer to the second question, respec-
tively. The contribution of the individual observation to the sample likelihood
function is:{

(πi
nn)(1−yi1)(1−yi2)(πi

yy)
yi1yi2(πi

ny)
(1−yi1)yi2(πi

yn)yi1(1−yi2)
}zi {

πi
0

}(1−zi)

(2.7)
Parameters β and σ can be estimated by maximum likelihood methods applied
to equation (2.7) (e.g. Hanemann et al. 1991). However, Bayesian estima-
tion is feasible using Gibbs sampling and data augmentation, as in the case of
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the single bounded model, and may have practical advantages in small sam-
ples. For estimation purposes, step 1 in the Gibbs sampling algorithm involves
sampling for WiWW 2 from the following conditional distribution:

f(WiWW 2|YijYY , θ) =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

φ
(
WiWW 2|x′

iβ, σ2
)

T [Bi2,∞] if yi1yi2zi = 1
φ
(
WiWW 2|x′

iβ, σ2
)

T[Bi1, Bi2] if yi1(1 − yi2)zi = 1
φ
(
WiWW 2|x′

iβ, σ2
)

T[Bi2, Bi1] if yi2(1 − yi1)zi = 1
φ
(
WiWW 2|x′

iβ, σ2
)

T [0, Bi2] if (1 − yi1)(1 − yi2)zi = 1
φ
(
WiWW 2| x′

iβ, σ2
)

T [−∞, 0] if zi = 0

(2.8)

YjYY =(Y1YY j , Y2YY j , ...YnjYY ) for j = 1, 2; x is a vector of covariates, and WiWW 2 =
(WTP12PP , WTP22PP ,..., WTPnPP 2), where n is the number of individuals in the
sample.

Appendix 1 outlines a method to draw samples from the truncated normal
distributions involved in (2.4) and (2.8).

3. Application and results

The empirical data to which the models are applied were obtained from a
contingent valuation survey on the recreational value of Teide National Park
in the island of Tenerife (Canary Islands, Spain). This park contains represen-
tative landscapes and ecosystems of the Canary Islands and the highest peak
in Spain with 3,721 mts. The survey was carried out in 1997, interviewing
local and foreign visitors. A total number of 1,045 on-site interviews were
conducted. This number was reduced to 941 valid observations after screen-
ing from protest responses and excluding those cases with missing values in
the covariates. Protest responses were attributed to those subjects who stated
that the public authorities should pay for the natural area. There were also 96
individuals answering a zero value because they objected to pay for access to
a public space for ethical reasons. The models developed in this paper allow
us to specifically model zero and negative responses. In our case, these indi-
viduals can be treated either as zero or negative responses, thus they are not
excluded for modelling purposes.

The valuation scenario considered a hypothetical entrance fee to be paid for
access to the park. The utilisation of the money was justified with the aim of
preservation. The valuation question reads as follows:

“In this question we would like to know how much you value the experi-
ence you are having in Teide National Park. Let us consider you had to pay an
entrance fee to enjoy the park. All visitors would have to pay and the money
would be used for conserving the park in its current state. If you were asked to
pay an entrance fee to enjoy the National Park, would you be willing to pay
euros?”.
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The elicitation process involved a first and a follow-up dichotomous choice
questions. The starting prices were randomly distributed across the sample.
The initial bid vector for the first dichotomous choice question was chosen
from the analysis of the distribution for the responses to an open-ended ques-
tion in the pre-test samples. These responses, together with the information
from studies on the value of other natural areas in Spain, allowed us to deter-
mine a prior distribution for the responses to the WTP elicitation questions,
from which the prior parameters were evaluated. A five bid vector design
was derived from this joint empirical distribution following Cooper (1993).
In order to generate equal intervals across the sample, the second upper and
lower bids were set equal to the successive bid in the first vector. Table 11.1

Table 11.1. Explanatory variables in the models

BEFORE
= 1 if the subject had been before in the NationalPark (NP)
= 0 otherwise

PINFOR
= 1 if the subject had information about the NP before

the arrival to the island
= 0 otherwise

MIMP
= 1 if subject said that visit the NP was very important in

the choice of travel to the island.
= 0 otherwise

YEDU Years of education of the subject
PINC Annual personal income of the subject

displays the various socioeconomic covariates found to be significantly asso-
ciated with WTP. For the Bayesian estimation method we have assumed very
non-informative or diffuse priors, as a convenient setting for estimation pro-
cess. That is, since we have no prior information on model parameters we
assumed a1 = 0, b1 = 0, V1VV = 109 × IkI , where IkI is the identity matrix
of dimension k (number of covariates including the intercept). The starting
values for Gibbs sampling were taken from maximum likelihood estimation,
and the number of iterations was 10,000. The computation of the posterior
moments involved a burn-in of the first 2,000 observations, i.e. the results of
these iterations were discarded for the final estimates. Convergence checks as
in Raftery and Lewis (1992) and Geweke (1992) do not indicate any problems,
and this is corroborated by visual inspection of trace plots and rerunning the
samplers many times from different starting values. All the computations were
undertaken with GAUSS.

Table 11.2 presents the results for the first stage in the elicitation process to-
gether with those for the second stage, or double bounded results, by using the
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Table 11.2. Bayesian estimates for single and double bounded models.

Variables Single bounded Double bounded

Intercept
2.7097
(1.5915)

3.3472
(0.955)

BEFORE
-3.382
(1.2327)

-3.5975
(0.8129)

PINFOR
2.1819
(1.0088)

1.701
(0.6312)

MIMP
1.6777
(0.9423)

1.3424
(0.5848)

YEDU
0.2347
(0.974)

0.1854
(0.0595)

PINC
0.0008
(0.0005)

0.0008
(0.0003)

σ
9.532
(0.815)

6.893
(0.272)

Mean WTP (Euros)
95% HDI.

8.58
[8.02, 9.12]

8.00
[7.72, 8.26]

Median WTP (Euros)
95% HDI

8.55
[7.99, 9.11]

7.81
[7.52, 8.09]

Standard errors in brackets.

Bayesian estimation method. The results for maximum likelihood estimation
were quite similar for both models, and therefore are not reported here. The
functional form for the valuation function is assumed to be linear with a nor-
mal distribution for WTP. This assumption was preferred over the lognormal
transformation because it allowed us to model the negative part of the distri-
bution and also provided slightly better results according to standard goodness
of fit measures. The explanatory variables presented the expected results for
both models, with WTP rising with income, education, the access to previous
information, and the importance of the visit to the park, while declining for
those subjects who had been before in the park.

As it is often observed in these comparisons, mean and median WTP are
slightly larger for the single bounded method. Although there is some over-
lapping in the confidence intervals of these welfare estimates, it can be shown
that they are significantly different at the 80 percent level. Nevertheless, the
differences amount to a 7% (8%) reduction in the mean (median) in the double
model with respect to the single. As expected, the double bounded assumption
leads to more efficient results, as shown by the narrower confidence intervals.

The relative performance of the two estimation methods can be compared
with a Monte Carlo experiment. True dichotomous choice data were simulated
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under the assumption that the true parameters for the data generating process
βT and σT were coming from the single bounded model estimates reported
above. The simulated data for the second stage responses are also based on the
WTP from this data generating process, and are therefore absent from collateral
biases such as “yea saying” or strategic behavior. The Monte Carlo experiment
can be summarized in the following steps:

1 For each individual, true WTP is defined by applying parameters(
βT , σT

)
to the valuation function, i.e. WTP T

iPP = x′
iβ

T + σT εi , where
i is a random realization from a standard normal distribution.

2 From the sample observations, 150 random subsamples were taken of
three alternative sizes, 150, 300 and 700 observations.

3 The responses for each individual in the subsample for the first question
were generated by comparing the bid price received with WTP T

iPP , i.e. if
WTP T

iPP > Bi1 then yi1 = 1.

4 The responses for each individual in the subsample for the second ques-
tion were generated by comparing the second bid price received with
WTP T

iPP , i.e. if WTP T
iPP > Bi2 then yi2 = 1.

5 The single and double bounded models were estimated for each subsam-
ple utilizing both the maximum likelihood and Bayesian methods.

6 The performances of the models were evaluated with the root mean
squared error statistic (RMSE) as a percentage of the true mean WTP.

Table 11.3. Monte Carlo simulation results of root mean squared error (RMSE) as a percentage
of true mean WTP

Sample size
n = 150 n = 300 n = 700

Estimation method Single bounded
Maximum Likelihood 43.61 34.82 26.57
Bayesian 29.76 23.78 19.62

Double bounded
Maximum Likelihood 42.00 31.12 20.34
Bayesian 27.36 19.38 17.51

Table 11.3 presents the results of the Monte Carlo simulations for both estima-
tion methods. For either the single or double bounded models, the results show
that the Bayesian estimation method leads to a better performance according to



Bayesian estimation of DC CV with follow-up 219

the RMSE at all sample sizes considered. These size cover the normal range of
CV applications. The Bayesian improvements over maximum likelihood are
substantially larger at small sample models. Double bounded estimates deliver
larger improvements than single bounded one at small sample sizes: for n=300,
the reduction in RMSE amounts to 31.7% with single bounded and 37.7% with
double bounded.

Thus, the Bayesian approach to dichotomous choice provides a better rep-
resentation of the true data generating process even at relatively large samples
in the context of contingent valuation. This ultimately leads to a more accurate
estimation of the parameters, hence to a more exact estimation of the wel-
fare measures. The implication is that the Bayesian estimation through Gibbs
sampling and data augmentation enhances the test comparisons commonly un-
dertaken in CV research which often relies on small subsamples with different
treatments.

These results are of difficult generalization because they are conditioned on
the bid design and the assumption of the true distribution of WTP. Yet, they
are promising. Our bid design was based on the methodology proposed by
Cooper (1993) for a predetermined number of bids. However, several alter-
native designs are available (Boyle et al, 1988, Nyquist, 1990, Duffield and
Paterson, 1991, Kanninen, 1993 and Alberini, 1995, among others). Some of
these designs have been compared by using Monte Carlo simulations, finding
that both welfare estimations and efficiency levels are sensitive to the design of
the bid vector (Kanninen, 1995; Alberini, 1995; Scarpa and Bateman, 2000).
The Bayesian estimation method could affect the trade-offs to be obtained from
more efficient bid designs and the use of more efficient elicitation methods.

On the other hand, we have also assumed that the true conditional WTP
distribution is a normal distribution, which can be unrealistic for some empir-
ical data. There is evidence in some contexts that the WTP distribution can
be multimodal and/or asymmetric, which yields maximum likelihood estima-
tions based on symmetric distributions to be biased (Carson, 1994). Previ-
ous studies testing the effects of potential WTP misspecifications on welfare
estimations can be found in Cooper and Hanemann (1995) and Crooker and
Herriges (2004), among others. The Bayesian estimation methods could be
compared with maximum likelihood under alternative assumptions for the true
distribution and for the one utilized by the researcher. Potential trade-offs can
be found from this analysis, in which misspecification errors are to be reduced
by the utilization of more accurate Bayesian methods, particularly with small
samples.
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4. Conclusions

Dichotomous choice models based on binary yes/no questions constitute
a straightforward and efficient method of estimating willingness to pay for
environmental or non-market goods using a stated preference approach. Es-
timation with these models has been mostly based on maximum likelihood
methods. Bayesian techniques allow the researcher to incorporate prior infor-
mation and provide exact inference at small sample sizes. In this chapter we
have shown how Bayesian estimation methods can be useful for conducting
inference with single and double bounded dichotomous choice models. The
methods are based on Markov chain Monte Carlo techniques combining Gibbs
sampling and data augmentation, which allow the research to bypass the com-
mon problem of integrating over complex integrals to evaluate the posterior
distribution in a Bayesian framework.

We feel that the comparison between conventional maximum likelihood
methods and their Bayesian counterparts could help researches to decide as
to what methods are more appropriate in each particular situation. Our sim-
ulation results show that the Bayesian estimation approach may increase the
performance of the double bounded model (dichotomous choice with follow
up) when compared with the single bounded (or single binary question) model,
especially with small and relatively small samples. In any case, the Bayesian
estimation approach always delivered a better representation of the empiri-
cal data than the maximum likelihood estimation, with either single or double
bounded model. The improvements in performance with the Bayesian meth-
ods are larger and more important at small sample sizes, but we feel that they
also deserve some consideration at relatively large sample sizes.

A practical implication of the results in this chapter is that stated preference
researchers using CV techniques could find it useful to conduct inference with
Bayesian methods when their sample sizes are not sufficiently large, which is
commonly the case in most research studies. In particular, the comparisons
between treatments which are common with methodological studies of CV
and stated preference methods could benefit substantially from conducting a
Bayesian inference based approach.

However, in order to fully understand the potential advantages of using
Bayesian estimation techniques in CV studies more research is needed. Of
particular interest would be to test the sensitivity of the results presented here
to variations in bid design and in assumptions on implicit distribution for con-
ditional WTP. To disentangle these effects maximum likelihood and Bayesian
estimation should be compared under alternative bid designs and distribution
assumptions. It is well known that welfare estimates are sensitive to bid de-
signs, and there could be scope for some trade-offs between improved bid
designs and the use of more efficient estimation methods as explored earlier
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in the context of maximum likelihood (Alberini 1995; Scarpa and Bateman
2000). Similarly, since the error in the distribution assumption might bias wel-
fare estimates, it should also be explored whether more accurate estimation
techniques are capable of overcoming misspecification bias. Some relevant
works in this line are Kriström (1991), Li (1996), Chen and Randall (1997),¨
Creel and Loomis (1997) and Arana and Leon (2005).˜

Appendix

A draw from the truncated normal distribution 2.4 can be obtained using
the inverse distribution method proposed by Devroye (1986). By applying this
method, the truncated normal distribution can be sampled as follows:

WiWW 1 =

⎧⎨⎧⎧
⎩
⎨⎨ x′

iβ + σΦ−1(U11UU ) if ziyi1 = 1
x′

iβ + σΦ−1(U12UU ) if zi(1 − yi1) = 1
0 if zi = 0

(A1)

where U11UU is generated from a uniform density distribution in interval[
Φ

(
−x

′
iβ

σ

)
, Φ

(
Bi1−x

′
iβ

σ

)]
, and U21UU from a uniform density distribution in

interval
[(

Φ
(

Bi1−x′
iβ

σ

)
, 1

)]
. A draw from the truncated distribution in 2.8

can be obtained in a similar way,

WiWW 2 =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪
⎪
⎨⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

x′
iβ + σΦ−1(U12UU ) if ziyi1yi2 = 1

x′
iβ + σΦ−1(U22UU ) if ziyi1(1 − yi2) = 1

x′
iβ + σΦ−1(U32UU ) if ziyi2(1 − yi1) = 1

x′
iβ + σΦ−1(U42UU ) if zi(1 − yi1)(1 − yi2) = 1

0 ifzff i = 0

(A2)

where U12UU is generated from a uniform density distribution in the interval[(
Φ

(
Bi2−x′

iβ
σ

)
, 1

)]
;

U22UU is generated by a uniform density distribution in the interval[(
Φ

(
Bi1−x′

iβ
σ

)
, Φ

(
Bi2−x′

iβ
σ

))]
;

U32UU is generated by a uniform density distribution in the interval[(
Φ

(
Bi2−x′

iβ
σ

)
, Φ

(
Bi1−x′

iβ
σ

))]
;

and U42UU is generated by a uniform density distribution in the interval[
0,

(
Φ

(
Bi2−x′

iβ
σ

))]
.
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Abstract A Monte Carlo analysis is conducted to assess the validity of the bivariate model-
ing approach for detection and correction of different forms of elicitation effects
in double bound contingent valuation data. Alternative univariate and bivariate
models are applied to several simulated data sets, each one characterized by a
specific elicitation effect, and their performance is assessed using standard selec-
tion criteria. The bivariate models include the standard bivariate probit model,
and an alternative specification, based on the Copula approach to multivariate
modeling, which is shown to be useful in cases where the hypothesis of nor-
mality of the joint distribution is not supported by the data. It is found that the
bivariate approach can effectively correct elicitation effects while maintaining
an adequate level of efficiency in the estimation of the parameters of interest.

Keywords: Double Bound, Elicitation effects, Bivariate models, Probit, Joe Copula

1. Introduction

In the conclusions of their extensive overview of the state of the art of the
contingent valuation (CV) method, Carson, Flores and Meade (2001) remark
that:

“ at this point in the development of CV, the key objective in terms of method-
ological development should shift to trying to determine how to reduce the cost
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of conducting CV studies while still maintaining most of the quality of the very
best studies now being conducted.”

Since costs are mainly driven by the survey administration, the crucial ques-
tion is how to obtain valid and reliable estimates for the population WTP from
smaller samples than those employed in benchmark high quality CV studies.
A substantial stream of research has been conducted in the last decade aimed
at finding an optimal method for elicitation of WTP, apt to combine the two
properties of unbiasedness and statistical efficiency.

There seems to be a fairly general agreement in the literature (one notable
exception is Green, Jacowitz, Kahneman and McFadden, 1998) that the sin-
gle bound method is potentially valid in terms of incentive compatibility, i.e.
in terms of incentive for the respondent to truthfully reveal her preferences.
Unfortunately, the single bound method is inefficient in terms of information
conveyed by the elicitation process, and small size surveys can be particularly
affected by this problem. As is well known after the seminal paper by Hane-
mann, Loomis and Kanninen (1991), a follow-up question helps to improve
efficiency of the estimates: the double bound procedure shows a dramatic in-
crease in the precision of the estimates.1 The problem is that, as pointed out
by Carson, Groves and Machina (1999) and discussed more thoroughly in the
following of this chapter, an iteration of the elicitation question may lead re-
spondents to misrepresent their true preferences.

Yet, the double bound elicitation method may still be a preferred choice
if the statistical analysis could detect the presence of elicitation effects in a
reliable manner; and if, after the correction of the estimates for such effects,
the statistical efficiency of the method were preserved. A recent trend is to
base the statistical analysis of double bound data on the use of bivariate probit
models. This line of research was initiated by Cameron and Quiggin (1994),
who compare estimates from several competing specifications based on the
bivariate probit to those from the univariate double bound model. The approach
is further pursued by Alberini, Carson and Kanninen (1997), who use bivariate
probit specifications to model different behavioral hypotheses induced by the
reiteration of the WTP elicitation question. Such hypotheses are then tested as
competing models by means of standard specification tests.

In a neoclassical theoretical framework, such as that considered by Carson,
Groves and Machina, elicitation effects are deemed to affect the response to
the second bid offer, no matter whether the observed response to the first bid is
positive or negative. A different approach has been taken by DeShazo (2002),
who theorizes that respondents who reject the first bid tender have no incentive
to misrepresent their valuation when facing the second bid, while the opposite

1The addition of further follow-ups is relatively less beneficial in terms of efficiency gains, as shown by
Scarpa and Bateman (2000).
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holds for the others. For data affected by this form of distortion (“framing
effects”), DeShazo proposes that only the single bound response should be
used. If needed, information from the second elicitation question should be
limited to the sub-sample of respondents who say “no” to the first price offer.
In an application, DeShazo models the resulting censored data by means of a
bivariate probit with sample selection.

The present chapter is aimed at assessing the validity of the bivariate ap-
proach to modeling double bound data for detection and correction of different
forms of elicitation effects. The analysis is based on Monte Carlo methods, in-
volving generation of several simulated data sets, each one characterized by a
specific form of elicitation problem. Alternative univariate and bivariate mod-
els are applied to the simulated data, and their performance is assessed using
standard selection criteria. The univariate models considered in the present
work are the single bound and the double bound estimators, plus a univariate
censored model, applied to data characterized by DeShazo’s framing effects.
The bivariate models include the standard Bivariate Probit model, based upon
the Bivariate Normal distribution, and the bivariate probit with sample selec-
tion proposed by DeShazo.

It is well known that the normality assumption for the distribution of WTP
(or its logarithm) is often not supported by the data. In these cases the use of a
bivariate probit would result in biased estimates: we therefore extend our ana-
lysis to alternative bivariate models, namely Copula models, which are charac-
terized by a great flexibility in the distributional shape of their marginals, and
in their dependence structure. In particular, the Joe Copula, which is character-
ized by asymmetry and fat tails, is applied to the double bound data generated
in our experiments, and its performance is compared to the models mentioned
above.

The paper is organized as follows: in section 2 we examine the behavioral
hypotheses underlying the decision to respond strategically to WTP questions.
Section 3 presents the bivariate modeling approach to fit double bound data,
which can be based on the conventional Bivariate Probit, or, alternatively, on
Copula models, here introduced. Section 4 describes the experimental design
of the Monte Carlo analysis: underlying behavioral assumptions, data con-
struction, and statistical models applied to the simulated data; in section 5 we
discuss results; section 6 concludes the paper.

2. Behavioral hypotheses

Carson, Groves and Machina (1999, henceforth CGM) set a theoretical
framework to analyze the incentive properties of different formats for elici-
tation of WTP in contingent valuation surveys. They deem the single bound
protocol as valid, as long as some conditions hold: the valuation procedure
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should be presented as a referendum, involving the supply of a new public
good with a coercive contingent payment (for example, a tax), or the choice
between two new public goods. Moreover, the survey should be seen by re-
spondents as consequential, i.e. having the potential effect of influencing the
agency decisions.

Unfortunately, the incentive properties of the single bound are not shared
by the double bound method. CGM list several reasons as to why a follow-
up question may produce elicitation effects. For example, if the initial bid is
considered by the respondent as informative about the real cost of provision
of the good, the second bid may induce uncertainty about the cost distribution.
For risk averse agents this would result in a lower reservation price (because
of the risk premium), so that the WTP elicited after the second question would
be shifted downward 2.

The same consequence on the final WTP value could also be produced by a
strategic type of reaction to the new bid tender: agents may consider the iter-
ative procedure as a bargaining game, where it would be strategically optimal
not to reveal a higher WTP than the second price offered.

A third behavioral hypothesis considered by CGM is that individuals take
the offered bids as informative data on the true cost of provision of the good:
if, as is often the case in contingent valuation studies, the respondent does
not possess some a priori information, the bid offered in the first elicitation
question can be taken as conveying information on the price distribution of
the good, and the second bid may be used as a Bayesian update of that infor-
mation. CGM observe that this could have either positive or negative effects
on the underlying WTP distribution, according to the sign of the answer to
the first elicitation question. This problem, often referred to as “anchoring”
or “starting point bias,” is analyzed for applications to double bound data by
Herriges and Shogren (1996), who propose an econometric model that incor-
porates a Bayesian updating mechanism to detect and correct anchoring bias.
They show in an application that correcting for starting point bias reduces the
difference between the double bound and the single bound estimator, both for
point estimates and confidence intervals. Analogous results are obtained by
McLeod and Bergland (1999) in two other applications of the updating model,
and they conclude that :

“the increased precision in the estimated WTP by asking a follow-up question is
not as large, or even non-existent, when Bayesian updating is accounted for in
the estimation”.

2By the same argument, some doubts may be cast on the One and One Half bound method, recently proposed
by Hanemann, Loomis and Signorello (2002), which confronts the individual with an initial bid distribution,
rather than a single first bid.
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This point of view seems largely subscribed by Whitehead (2002), but with an
important qualification: the double bound model should be used, with appro-
priate corrections for anchoring or other kinds of bias, when the initial bids
are poorly chosen, i.e. they do not represent adequately the population’s WTP
distribution. In such a case the double bound still allows relevant efficiency
gains, even after controlling for elicitation effects.

The updating econometric models described above are specified as univari-
ate distributions. Cameron and Quiggin (1994) argue that when the underlying
WTP values from the two elicitation questions are different, the assumption of
a unique distribution is unduly restrictive, and propose a bivariate modeling ap-
proach, based on the bivariate probit model, which is also applied by Alberini
(1995) and Alberini, Carson and Kanninen (1997) to several data sets. In gen-
eral, these papers empirically support the view that the two underlying WTP
values obtained through the double bound method are not identical, and while
for the most part the data seems unaffected by a systematic form of bias, some
(Alaska study, in Alberini, Carson, Kanninen) show evidence of a downward
shift in the WTP elicited through the follow-up question.

An alternative theoretical framework is proposed by DeShazo (2002).
Building upon theoretical results from Prospect Theory (Kahneman and Tver-
sky, 1979), he argues that strategic behavior may only emerge for respondents
who answer “yes” to the first price offer, while incentives for the others would
be unaltered across elicitation questions. The reason is that if the respondent’s
true WTP is above the first bid, she expects to gain some consumer surplus,
which may be taken as a reference point. Conversely, no consumer’s surplus
is expected, and no reference point is created, by people whose WTP is below
the first bid tender. Under the double bound protocol, a “yes” response to the
first bid question leads to a higher second bid (ascending sequence), while the
converse holds in the case of a negative answer (descending sequence). Ac-
cording to DeShazo’s theory, ascending sequences are susceptible to strategic
behavior, induced by the creation of a reference point (framing effect), which
does not affect descending sequences. He devises a test to verify if such as-
sumptions are tenable: if so, the suggestion is to use single bound data, or to
use the double bound data from descending sequences only, using the single
bound response for the rest of the sample.

3. Bivariate Models

The bivariate model for discrete dependent variables is a two-equation sys-
tem:

Y1YY i = x1i′β1 + u1i

Y2YY i = x2i′β2 + u2i, (3.1)
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the dichotomous dependent variables are y1i = 1 if Y1YY i > 0; y2i = 1 if
Y2YY i > 0; x.i are vectors of exogenous variables; β1, β2 are vectors of unknown
parameters; and u1i, u2i are error terms with zero means, variances σ2

1, σ
2
2 ,

marginal distribution functions F1FF , F2FF and with a joint distribution function
H .

The bivariate probit model as applied in the contingent valuation literature
is defined by equation 3.1 and the following:

y1i = 1 if Y1YY i > t1i; y2i = 1 if Y2YY i > t2i

where t1, t2 are the bids proposed and H is a bivariate normal with zero vector
of means, unit variances and correlation coefficient ρ. Denoting the bivari-
ate normal with zero means, unit variances and correlation ρ by Φ(., ., ρ) and
defining t1i−x1i′β1

σ1
and t2i−x2i′β2

σ2
, the log-likelihood for the bivariate probit is

given by:

lnL(β1, β2, ρ) =
n∑

i=1

(1 − y1i)(1 − y2i) ln [Φ(a1i, a2i, ρ)] +

y1iy2i ln [Φ(−a1i,−a2i, ρ)] +
(1 − y1i)y2i ln [Φ(a1i,−a2i,−ρ)] +
y1i(1 − y2i) ln [Φ(−a1i, a2i,−ρ)] . (3.2)

The four terms in the log-likelihood correspond to “no-no”, “yes-yes”, “no-
yes” and “yes-no” responses to the two bid tenders respectively.

The double bound model results from 3.2 if ρ = 1 and the parameters are
the same across equations. If the two error terms are not perfectly correlated
then the responses to the two bids are governed by a bivariate model, with
parameters that may or may not be the same across equations.

The assumption of normality for the WTP distribution is often not supported
by the data, and this may give rise to serious misspecification problems. When
the model is univariate, the analyst can pick from a wide range of possible
distributions the one that better fits the data. When the model is bivariate,
the choice is usually constrained to the bivariate normal distribution, and a
bivariate probit as above is applied. In practice, WTP is often assumed to
have a log-normal distribution, which accounts for the skewness that gener-
ally characterizes WTP distributions, and the bivariate normal is applied to the
logarithm of WTP. Unfortunately, also the log-normal assumption may not be
supported by the data, which implies that the bivariate probit would not be a
valid estimator (as also seen in Alberini, 1995): distributional misspecification
of the marginals will, in general, result in inconsistent estimates of the param-
eters since it implies misspecification of the model for the conditional mean of
the binary dependent variable (see Ruud, 1983). On the other hand, alternative
bivariate distributions, such as the bivariate logistic or the bivariate extreme
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value, are not as flexible, in terms of correlation allowed between marginals,
as the bivariate normal.

As suggested by Hanemann and Kanninen (1999) a possible solution to the
problem could be the following: even if the stochastic parts of the two equa-
tions are specified as non-normal, they can be transformed into random vari-
ables that are characterized by the bivariate normal distribution. This trans-
form, which involves the use of the inverse standard normal distribution, is
a special case of a bivariate copula function, and is known in econometrics
after Lee’s (1982, 1983) applications to sample selection models. A general
definition for bivariate copulas is:

Definition: A 2-dimensional copula is a function C : [0, 1]2 → [0, 1] , with
the following properties:

(a) For every u ∈ [0, 1], C(0, u) = C(u, 0) = 0;
(b) For every C(u, 1) = u and C(1, u) = u;
(c) For every (u1, ν1), (u2, ν2) ∈ [0, 1] × [0, 1] with u1 ≤ u2 and

ν1 ≤ ν2: C(u2, ν2) − C(u2, ν1) − C(u1, ν2) + c(u1, ν1) ≥ 0.
The last condition is the two-dimensional analogue of a nondecreasing one-

dimensional function.
The theoretical basis for multivariate modeling through copulas is provided

by a theorem due to Sklar (1959).
Sklar’s Theorem Let H be a joint distribution function with margins F1FF

and F2FF , which are, respectively, the cumulative distribution functions of the
random variables x1 and x2. Then, there exists a function C such that:

H(x1, x2) = C (F1FF (x1), F2FF (x2)), for every {x1, x2} ∈ R̄,

where R̄ represents the extended real line. Conversely, if C is a copula and F1FF
and F2FF are distribution functions, then the function H defined above is a joint
distribution function with margins F1FF and F2FF .

Since the copula function “links a multidimensional distribution to its one-
dimensional margins” (Sklar, 1996), the name “copula” (connection) is ex-
plained. The parametric copula approach ensures a high level of flexibility to
the modeler, since the specification of the margins F1FF and F2FF can be separated
from the specification of the dependence structure through the function C and
an underlying parameter θ governing the intensity of the dependence.

Although the Lee copula allows flexibility in the choice of the margins,
it maintains some restrictive properties (for example, symmetry) of elliptical
distributions. More interesting for applied work is the class of Archimedean
copulas. These are functions generated by an additive continuous, convex de-
creasing function ϕ, with ϕ(1) = 0. In general, Archimedean copulas have the
following form:

ϕ(CθCC (u, ν)) = ϕ(u) + ϕ(ν).
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The additive structure of Archimedean copulas makes maximum likelihood es-
timation and calculation of the score function relatively easy. Furthermore, the
family is sufficiently large so as to allow a wide range of distributional shapes
(right or left skewness, fat or thin tails, etc.). A particular feature of most
Archimedean copulas is monotonicity, i.e. they cannot accommodate nega-
tive dependence, and this may limit their application in some contexts. In the
present application, where the margins represent the underlying WTP distribu-
tions elicited by the double bound method, it is realistic to exclude negative de-
pendence, and use of Archimedean copulas is warranted. Specifically, drawing
from previous work (Genius and Strazzera, 2004), we choose the Joe copula,
which is defined as follows:

C(u, v) = 1 − (
(1 − u)θ + (1 − ν)θ − (1 − u)θ(1 − ν)θ

)1/θ
, θ ∈ [1,∞),

where u and ν are univariate distributions, and θ is a dependency parameter.
A relevant part of our analysis deals with the estimation of the dependency

between equations. When dealing with elliptical copulas (such as the BVN, or
the Lee Copula) a valid measure of dependence is linear correlation; however,
this does not hold when the bivariate distribution is not elliptical (see figure
12.1 for a comparison of distributional shapes: the Joe copula is not ellipti-
cal). Alternative measures of dependence include Kendall’s τ(KτKK ) which is a
measure of concordance. It is defined as follows:

KτKK = Pr
(
(X − X̃)(Y − Ỹ ) > 0

)
− Pr

(
(X − X̃)(Y − Ỹ ) < 0

)
,

where (X, Y ) and (X̃, Ỹ ) are two independent random vectors with a common
distribution function H whose margins are F and G. Kendall’s τ can also be
expressed in terms of copulas (see Nelsen, 1999):

KτKK = 4
∫ ∫

[0

∫∫
.1]2

C(u, ν)dC(u, ν) − 1

For continuous random variables the above measure is a measure of concor-
dance, which implies that it takes values in [−1, 1], taking the value zero when
we have independence. We recall that the linear (or Pearson) correlation is not
a measure of dependence: for example, ρ(x, y) =0 does not imply indepen-
dence of the two variables.

Since our estimations involve both elliptical (Normal) and not elliptical
(Joe) bivariate distributions, for comparison purposes we report results for the
Kendall’s τ rather than for the correlation parameter or the dependence param-
eter θ.

4. Experimental Design

The experiments presented in this chapter are aimed at analyzing the per-
formance of competing models when some specific forms of bias affect the
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Figure 12.1. Contour plots of Bivariate Normal and Joe Copula when marginals are N(0, 1).

responses to the second bid question in the double bound format. Each form of
response effect implies a specific bivariate data generating process (DGP) for
the two WTPs. The first DGP we consider introduces a mild form of elicitation
effect, where the underlying WTP elicited after the second question is the same
as the first, but because of some disturbance in the elicitation process they are
not perfectly correlated:

Y1YY i = xi′β + u1i

Y2YY i = xi′β + u2i (4.1)

0 < ρ < 1

where ρ is the correlation parameter, and u1i and u2i are identically dis-
tributed random variables with mean zero, and variance σ2. If the random
errors are assumed to be distributed as a Normal, this specification gives rise
to a BVN model, where parameters of the two equations are constrained to
be equal, while the correlation parameter is unconstrained. In Cameron and
Quiggin this was deemed as the best specification to fit their double bound
data (a well known Australian study for the Kakadu area), which were mod-
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eled by means of the univariate interval data (or double bound) model, and
several alternative specifications of the bivariate probit model. The simulated
data are constructed using the following specification: intercept parameter
α =10, slope coefficient β =3, standard deviation σ =5, and a BVN dis-
tribution, with correlation ρ =0.7. The corresponding value of τ is given by
τ = (2/π) arcsin(ρ) =0.493. The variable x is generated from a uniform,
with mean 3.95 and standard deviation 2.05.

The same BVN and interval data specifications used by Cameron and Quig-
gin were analyzed again by Alberini (1995) on a slightly different sample from
the same data, and in this case the preferred specifications was as in 3.1, but
with different estimated variances for the two latent dependent variables. The
underlying behavioral hypothesis could be that the cognitive process after the
second elicitation question is more “disturbed” — and indeed Alberini (1995)
finds that the estimated standard deviation of the second equation is substan-
tially higher than the first. This more general structure has been analyzed again
in Alberini, Carson and Kanninen (1997). Our Monte Carlo analysis considers
both cases, which can be respectively referred to as restricted and unrestricted
random effects models, with an equality restriction imposed on the standard
deviation parameters of the former (experiment A). In the latter DGP, the stan-
dard deviation of the second equation is set at 7 (experiment B).

Another experiment (C) studies the performance of different models when
the double bound elicitation method produces more serious forms of bias, lead-
ing to a downward shift of the second equation WTP: CGM indicate several
possible causes of this effect, briefly reported in section 2 of this chapter. In its
simplest form the bivariate model with shift is structured as follows:

Y1YY i = xi′β + u1i

Y2YY i = δ + xi′β + u2i (4.2)

0 < ρ < 1, δ < 0,

i.e. the shift is simply a leftward translation of the WTP distribution. While
more complex specifications may model the shift effect as dependent on some
covariates, in our experiment we hold to this basic model, setting δ =–2, the
other data being constructed as in experiment B.

The Framed model proposed by DeShazo is relatively new, and, to our
knowledge, has not been as yet studied by means of Monte Carlo methods.
Here the structure of the DGP is somewhat more complex, since the model
involves a mechanism of sample selection. Theoretically responses to both
questions should be dictated by model B but because of framing effects a per-
centage of respondents belonging to the “yes,yes” class produce responses in
the “yes,no” class. In DeShazo’s proposed method to estimate such data af-
fected by framing effects, follow-up responses from individuals who faced a
downward sequence of bids enter the second equation, while for individuals
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facing an upward sequence only the first response is considered, as if it were
a single bound elicitation. The bivariate model for descending sequences pro-
posed by DeShazo is the following:

Y1YY i = xi′β + u1i

Y2YY i = xi′β + u2i (4.3)

0 < ρ < 1

where Y2YY is modeled for respondents in a descending sequence only (i.e. in-
dividuals who responded No to the first elicitation question). The parameter
values are constructed as in experiment B above but we switch randomly a
percentage of “yes,yes” responses to “yes,no”. In order to evaluate the per-
formance of the bivariate estimator versus its univariate counterpart, we also
estimate a univariate Framed model: it is a censored double bound model,
with the second bid included in the equation for respondents in the descending
sequence only.

In another experiment (E) we study the performance of different estimators
when the initial bids are poorly chosen: in particular, the initial bids of this
experiment leave uncovered the left tail of the true WTP distribution, being
placed at the 45, 65, and 85 percentile of the distribution. As discussed in
section 2, this is a case where the double bound method is generally deemed
superior to the single bound, since the follow-up question allows inspection of
the previously excluded part of the distribution. All other aspects of the data
generation process are as in experiment B.

Finally, in experiments F and G we analyze the case where the DGP departs
from the Bivariate Normal distribution. WTP distributions are commonly spec-
ified as non normal: logistic or extreme value (for WTP or its log) or gamma
distributions are typical choices in CV data analysis. Application of bivariate
models to WTP data may induce a misspecification problem, if the standard
bivariate probit is adopted. In this experiment we are especially interested in
analyzing the performance of the bivariate probit estimator when the assump-
tion of bivariate normality is wrong. We first simulate a bivariate distribution
with normal marginals, but with a dependency structure different from linear
correlation: i.e. the Joe copula distribution with normal marginals (JOE-N:
experiment F). In experiment G, we use as a DGP a bivariate model with ex-
treme value marginals, again linked by a Joe copula (JOE-E). The dependency
parameter τ is set at the value 0.499 which corresponds to a value of θ equal
to 2.85. All other settings are as in experiment B. The reader is referred to
the Appendix for the algorithm used to generate the data by means of the JOE
copula.

Given the above scenarios we analyze the performance of different esti-
mators: the univariate single and double bound models; a univariate model
for descending sequences (in experiment D only); the bivariate probit model;
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the bivariate model based on the Joe Copula with normal marginals for experi-
ments A-F; a bivariate Joe Copula with extreme value marginals for experiment
G; and the bivariate probit with sample selection for descending sequences.

a1i = t1i−xi′β
σ and a2i = t2i−xi′β2

σ2
.

Table 12.1. Likelihood of Estimated Models

LIKELIHOOD TERMS: LIKELIHOOD TERMS:
MODELS Experiments (A) to (F) Experiment (G), where the cdf for

extreme value is given by,
G(a) = exp(-exp(-a))

SINGLE P(yes): 1-Φ(a1i) P(yes): 1-G(a1i)
P(no): Φ(a1i) P(no): G(a1i)

DOUBLE P(n,n): Φ(a2i) P(n,n): G(a2i)
P(n,y): Φ(a1i)-Φ(a2i) P(n,y): G(a1i)-G(a2i)
P(y,n): Φ(a2i)-Φ(a1i) P(y,n): G(a2i)-G(a1i)
P(y,y): 1-Φ(a2i) P(y,y): 1-G(a2i)

FRAMED1 P(n,n): Φ(a2i) P(n,n): G(a2i)
(experiment P(n,y): Φ(a1i)-Φ(a2i) P(n,y): G(a1i)-G(a2i)
D only) P(yes): 1-Φ(a1i) P(yes): 1-G(a1i)

BVN P(n,n): Φ(a1i, a2i, ρ)
P(n,y): Φ(a1i,-a2i,-ρ)
P(y,n): Φ(-a1i, a2i,-ρ)
P(y,y): Φ(-a1i,-a2i, ρ)

JOE P(n,n): C(Φ(a1i), Φ(a2i), θ) P(n,n): C(G(a1i), G(a2i), θ)
COPULA P(n,y): Φ(a1i)-C(Φ(a1i), Φ(a2i), θ) P(n,y): G(a1i)-C(G(a1i), G(a2i), θ)

P(y,n): Φ(a2i)-C(Φ(a1i), Φ(a2i), θ) P(y,n): G(a2i)-C(G(a1i), G(a2i), θ)
P(y,y): 1-P(n,n)-P(n,y)-P(y,n) P(y,y): 1-P(n,n)-P(n,y)-P(y,n)

FRAMED2 P(n,n): Φ(a1i, a2i, ρ) P(n,n): C(G(a1i), G(a2i), θ)
P(n,y): Φ(a1i,-a1i,−ρ) P(n,y): G(a1i)-C(G(a1i), G(a2i), θ)
P(yes): 1-Φ(a1i) P(yes): 1-G(a1i)

5. Results

The results of the experiments are based on the parameter estimates of the
models reported in Table 12.1, under the different scenarios considered in the

The respective likelihoods for each experiment are given in Table 12.1, where
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previous section. The Monte Carlo analysis involved 400 replications, and was
performed using a Gauss 386-i code.3

The maximum likelihood estimation required imposition of constraints on
the dependence parameters for the bivariate models: specifically, for bivariate
models based on the bivariate normal distribution −1 < ρ < 1 is imposed
while for bivariate models based on the Joe copula the constraint is given by
θ ≥ 1. Summary statistics of these results are reported in Tables 12.2-12.8. In
particular, we show results for bias, standard deviation and empirical size of the
α, β, and σ estimates, and the bias and standard deviation of the dependency
parameter τ . Bivariate models are in general susceptible to convergence prob-
lems, so we also report the number of successful replications: it will be seen
that convergence failures can be a serious problem in some circumstances. In
our study the definition of failure includes cases where the maximum number
of iterations was exceeded and cases where the Hessian failed to invert. For the
BVN model the first type of failure was very often associated with the estimate
of ρ being on the boundary of the parameter space.

No equality constraints are imposed on the α, β, and σ coefficients across
equations, since this would be the first approach that a modeler would take to
check for those forms of elicitation bias that would result in different parame-
ters across equations, in addition to imperfect correlation.

The results of experiment A show that even a minor elicitation effect, result-
ing in imperfectly correlated distributions of the error terms, produces some
bias in the double bound estimates. On the other hand they are characterized
by standard errors so small that the Mean Squared Error (MSE) criterion would
rank the double bound estimator best for all sample sizes (as also found in Al-
berini, 1995).

However, it should be noted that the empirical size of the parameters of the
double bound model worsens for large samples.

The BVN model, which is the correct specification, estimates correctly the
correlation coefficient, and proves to be a valid instrument to detect an elici-
tation effect problem. For experiments A and B we also report the estimates
obtained from the more parsimonious BVN model, where the α and β param-
eters are constrained to be equal across equations for both experiments while
σ is constrained only in experiment A (so corresponding to the true DGP). It
can be observed that the constrained BVN model brings a substantial gain in
efficiency, such that the MSE of the BVN estimates gets close to that of the
DOUBLE model. Unfortunately, the BVN model seems susceptible to conver-
gence failure, especially in the large sample experiment. Using a Joe copula
when estimating the bivariate model (JOE-N) produces good results in terms

3We consider sample sizes 200, 400 and 1,000 but report only the latter two in this chapter. Results for the
200 case are available from the authors upon request.
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Table 12.2. Experiment A: α = α2 =10, β = β2 =3, σ = σ2 =5,ρ =0.7,τ =0.493.

Size 400

α β σ α2 β2 σ2 τ reps

–0.047 0.016 0.008 – – – – –
SINGLE 1.240 0.310 0.583 – – – – –

(0.068) (0.068) (0.065) – – – – –
0.201 –0.060 –0.186 – – – – –

DOUBLE 0.705 0.174 0.297 – – – – –
(0.083) (0.078) (0.135) – – – – –
–0.104 0.031 0.037 –0.169 0.041 0.113 –0.030 370

BVN 1.216 0.304 0.581 0.955 0.240 0.600 0.211 –
(0.057) (0.054) (0.054) (0.032) (0.032) (0.068) – –
–0.107 0.026 0.056 – – – –0.007 382

BVN 0.797 0.199 0.396 – – – 0.207 –
Restricted (0.045) (0.037) (0.052) – – – – –

0.021 –0.008 –0.111 –0.059 0.003 –0.032 0.242 377
JOE-N 1.173 0.299 0.588 0.900 0.225 0.534 0.249 –

(0.078) (0.069) (0.098) (0.061) (0.061) (0.111) – –
0.025 0.001 –0.049 -1.721 0.283 1.443 –0.184 344

FRAMED2 1.157 0.295 0.566 4.182 0.919 3.651 0.429 –
(0.058) (0.061) (0.073) (0.049) (0.052) (0.055) –

Size 1,000

α β σ α2 β2 σ2 τ reps

SINGLE –0.018 –0.001 –0.034 – – – – –
0.862 0.204 0.379 – – – – –

(0.050) (0.050) (0.055) – – – – –
DOUBLE 0.200 –0.055 –0.165 – – – – –

0.490 0.112 0.171 – – – – –
(0.110) (0.105) (0.160) – – – – –

BVN –0.072 0.012 –0.022 –0.068 0.017 0.060 0.027 357
0.810 0.193 0.366 0.667 0.162 0.374 0.187 –

(0.042) (0.045) (0.056) (0.076) (0.064) (0.050) – –
BVN –0.069 0.014 0.026 – – – 0.029 363
CONST. 0.557 0.130 0.252 – – – 0.180 –

(0.066) (0.066) (0.055) – – – – –
JOE-N 0.058 –0.020 –0.109 0.051 –0.019 –0.068 0.277 379

0.791 0.193 0.388 0.640 0.156 0.342 0.217 –
(0.061) (0.071) (0.110) (0.090) (0.087) (0.108) – –

FRAMED2 0.004 –0.004 –0.053 –0.835 0.124 0.699 0.082 339
0.857 0.202 0.377 2.072 0.507 1.675 0.372 –

(0.050) (0.050) (0.068) (0.032) (0.050) (0.053) – –

a The three values in each block are: Bias, Standard Deviation and Empirical Size (Nominal size 5%).
b Number of replications where convergence is achieved and the Hessian is invertible.
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of relatively small bias and standard errors, but empirical sizes are higher than
nominal, and the dependency parameter is overestimated. This is a general
feature that can be observed in all experiments where the Joe copula is fitted
instead of the correct BVN distribution. On the other hand, the copula model is
often more robust to convergence problems, and may be useful for preliminary
exploration of the data.

A much higher rate of failures than the BVN characterizes the Bivariate
Framed model proposed by DeShazo, which we assess also in the experiments
with “unframed” data. The convergence problem is observed in all experi-
ments, including experiment D with “framed” data: this fragility may be seen
as a limit to its practical usefulness, although, as is discussed below for other
experiments, it generally performs quite well in the estimation of the first equa-
tion parameters.

In experiment B variances are different across equations, the second being
higher than the first. The relative performance of the double bound model de-
creases compared to experiment A and the empirical size is above 5% (reach-
ing 0.998 for σ in the larger sample). Overall, the estimates of the bivariate
models for the dependence and the first equation parameters are more correct
and precise than the corresponding estimates in experiment A and are superior
to the single bound model estimates in terms of the MSE criterion. As in the
previous experiment, some convergence problems are observed, but they seem
to reduce when the constrained model is estimated. Again, it can be noticed
how the adoption of the constrained BVN model can effectively correct elic-
itation effects, while maintaining a high precision in the estimates of the first
equation parameters.

Experiment C simulates a response bias characterized by a downward shift,
which means that the intercept in the second WTP equation is smaller; and, as
in B, by higher variance in the same equation. As discussed in section 2, a
downward shift of the WTP distribution elicited after the second bid offer can
be due to strategic behavior or risk aversion, behavioral attitudes that can be
thought of as heterogeneously varied among individuals, giving rise to higher
disturbance in the second WTP model. The double bound estimates are now
more evidently biased, as it can also be seen from the empirical size values,
which in the large sample are 32% for the constant, and 99.3% for the scale
parameter. Both the bivariate probit and the JOE-N model perform quite well
in the estimates of the first equation, and are superior to the SINGLE in terms
of MSE for the relevant parameters.

As expected, given the data generating process used for this experiment, the
BVN is superior to the copula model in estimating the dependence parame-
ter, but it is more susceptible to convergence problems, and such vulnerability
seems independent of sample size. As usual, the FRAMED2 model is even
more fragile in this respect than the others, with 26% of the replications lost
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Table 12.3. Experiment B: α = α2 =10, β = β2 =3, σ =5, σ2 =7,ρ =0.7,τ =0.493

Size 400

α β σ α2 β2 σ2 τ reps

SINGLE –0.047 0.016 0.008 – – – – –
1.240 0.309 0.583 – – – – –

(0.068) (0.068) (0.065) – – – – –
DOUBLE 0.313 –0.097 0.809 – – – – –

0.796 0.195 0.344 – – – – –
(0.1) (0.115) (0.678) – – – –

BVN –0.073 0.021 0.005 –0.173 0.040 0.177 0.005 362
1.192 0.308 0.557 1.195 0.304 1.210 0.171 –

(0.058) (0.061) (0.058) (0.044) (0.033) (0.127) – –
BVN –0.077 0.016 0.020 – – 0.128 –0.002 372
Restricted 0.961 0.240 0.474 – – 1.010 0.156 –

(0.046) (0.056) (0.046) – – (0.116) – –
JOE-N 0.145 –0.032 –0.074 –0.097 0.003 –0.087 0.255 359

1.136 0.292 0.524 1.500 0.387 1.693 0.250 –
(0.089) (0.095) (0.072) (0.081) (0.075) (0.301) – –

FRAMED2 –0.062 0.019 –0.022 –1.346 0.216 1.639 –0.101 340
1.263 0.315 0.576 3.811 1.018 4.358 0.309 –

(0.059) (0.065) (0.068) (0.071) (0.071) (0.103) – –

Size 1,000

α β σ α2 β2 σ2 τ reps

–0.018 –0.001 –0.034 – – – – –
SINGLE 0.862 0.204 0.379 – – – – –

(0.050) (0.050) (0.055) – – – – –
0.259 –0.075 0.837 – – – – –

DOUBLE 0.549 0.124 0.219 – – – – –
(0.108) (0.100) (0.998) – – – – –
–0.063 0.011 –0.011 –0.108 0.026 0.081 0.011 367

BVN 0.819 0.194 0.355 0.837 0.201 0.772 0.133 –
(0.049) (0.046) (0.057) (0.06) (0.044) (0.125) – –
–0.064 0.012 –0.009 – – 0.047 0.007 375

BVN 0.643 0.148 0.310 – – 0.623 0.120 –
Restricted (0.059) (0.051) (0.053) – – (0.096) –

0.185 –0.046 –0.069 0.102 –0.044 –0.372 0.313 371
JOE-N 0.762 0.185 0.345 1.094 0.261 1.126 0.208 –

(0.078) (0.086) (0.078) (0.119) (0.127) (0.553) – –
0.001 –0.006 –0.050 –0.654 0.083 0.750 –0.050 343

FRAMED2 0.864 0.202 0.374 2.209 0.566 2.510 0.259 –
(0.064) (0.067) (0.052) (0.087) (0.067) (0.108) – –

a The three values in each block are: Bias, Standard Deviation and Empirical Size (Nominal size 5%).
b Number of replications where convergence is achieved and the Hessian is invertible.
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in the large sample experiment. It can also be observed that the shift has pro-
duced an increase in bias for the estimates of the second equation, especially
for FRAMED2.

Table 12.4. Experiment C: α1 =10, α2 =8, β = β2 =3, σ =5, σ2 =7,ρ =0.7, τ =0.493

Size 400

α β σ α2 β2 σ2 τ reps

SINGLE –0.047 0.016 0.008 – – – – –
1.240 0.309 0.583 – – – – –

(0.068) (0.068) (0.065) – – – – –
DOUBLE –0.789 –0.099 0.802 – – – – –

0.849 0.199 0.361 – – – – –
(0.130) (0.105) (0.648) – – – – –

BVN –0.087 0.031 0.031 –0.206 0.039 0.150 0.001 348
1.190 0.300 0.571 1.619 0.340 1.099 0.154 –

(0.049) (0.060) (0.057) (0.052) (0.049) (0.083) – –
JOE-N 0.005 –0.008 –0.082 0.167 –0.037 –0.162 0.242 371

1.162 0.299 0.561 2.134 0.433 1.632 0.233 –
(0.092) (0.094) (0.097) (0.143) (0.129) (0.332) – –

FRAMED2 –0.04 0.015 –0.032 –1.528 0.088 4.411 –0.097 309
1.234 0.307 0.577 4.419 0.834 4.173 0.312 –

(0.071) (0.068) (0.065) (0.104) (0.068) (0.123) – –

Size 1,000

α β σ α2 β2 σ2 τ reps

SINGLE –0.018 –0.001 –0.034 – – – – –
0.862 0.204 0.379 – – – – –

(0.050) (0.050) (0.055) – – – – –
DOUBLE –0.869 –0.072 0.841 – – – – –

0.590 0.129 0.220 – – – – –
(0.320) (0.110) (0.993) – – – – –

BVN –0.068 0.009 0.005 –0.093 0.014 0.086 0.005 348
0.841 0.198 0.355 1.060 0.209 0.731 0.123 –

(0.052) (0.055) (0.057) (0.063) (0.055) (0.086) – –
JOE-N 0.004 –0.016 –0.042 0.434 –0.077 –0.325 0.266 381

0.798 0.188 0.347 1.474 0.278 1.186 0.206 –
(0.063) (0.058) (0.089) (0.228) (0.189) (0.430) – –

FRAMED2 0.017 –0.006 –0.041 –1.310 0.151 1.177 –0.074 295
0.838 0.199 0.370 3.713 0.678 3.317 0.247 –

(0.051) (0.044) (0.061) (0.105) (0.088) (0.136) – –

a The three values in each block are: Bias, Standard Deviation and Empirical Size (Nominal size 5%).
b Number of replications where convergence is achieved and the Hessian is invertible.

The data created for experiment D incorporate framing effects in some of
the second responses. In this case it could very well happen that the joint distri-
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Table 12.5. Experiment D: α = α2 =10, β = β2 =3, σ =5, σ2 =7,ρ =0.7,τ =0.493

Size 400

α β σ α2 β2 σ2 τ reps

–0.047 0.016 0.008 – – – – –
SINGLE 1.240 0.309 0.583 – – – – –

(0.068) (0.678) (0.065) – – – – –
1.884 –0.904 0.134 – – – – –

DOUBLE 0.663 0.149 0.260 – – – – –
(0.770) (-1.000) (0.073) – – – – –
0.210 –0.030 0.598 – – – – –

FRAMED1 0.910 0.258 0.461 – – – – –
(0.080) (0.053) (0.218) – – – – –
–0.067 0.032 0.077 -6.588 –0.375 13.738 –0.666 337

BVN 1.186 0.300 0.577 5.453 0.792 9.002 – –
(0.056) (0.053) (0.039) (0.018) (0.166) (0.018) – –
–0.014 0.002 –0.024 –1.792 –0.854 5.146 –0.385 395

JOE-N 1.236 0.315 0.585 2.214 0.368 2.876 – –
(0.078) (0.084) (0.084) (0.048) (0.570) (0.638) – –
–0.055 0.019 –0.038 –1.362 0.211 1.612 –0.107 342

FRAMED2 1.259 0.314 0.571 3.800 1.018 4.320 – –
(0.061) (0.067) (0.067) (0.064) (0.067) (0.096) – –

Size 1,000

α β σ α2 β2 σ2 τ reps

–0.018 –0.001 –0.034 – – – – –
SINGLE 0.862 0.204 0.379 – – – – –

(0.050) (0.050) (0.055) – – – – –
1.964 –0.844 0.058 – – – – –

DOUBLE 0.458 0.096 0.152 – – – – –
(0.985) (-1.000) (0.035) – – – – –
0.197 –0.036 0.587 – – – – –

FRAMED1 0.600 0.155 0.262 – – – – –
(0.083) (0.075) (0.578) – – – – –
–0.120 0.04 0.071 -5.581 –0.428 12.395 –0.670 328

BVN 0.888 0.209 0.395 4.060 0.537 6.648 – –
(0.052) (0.055) (0.049) (0.076) (0.308) (0.598) – –
–0.003 –0.005 –0.041 –1.062 –0.865 4.307 –0.456 392

JOE-N 0.858 0.206 0.382 1.229 0.222 1.371 – –
(0.054) (0.054) (0.061) (0.069) (0.949) (0.980) – –
–0.022 0.001 –0.03 –0.609 0.076 0.734 –0.050 341

FRAMED2 0.865 0.205 0.383 2.117 0.547 2.531 – –
(0.056) (0.065) (0.050) (0.080) (0.067) (0.106) – –

a The three values in each block are: Bias, Standard Deviation and Empirical Size (Nominal size 5%).
b Number of replications where convergence is achieved and the Hessian is invertible.
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bution of observed responses has changed with respect to the joint distribution
of “unframed responses” or that the dependence structure has changed. The
average estimate of Kendall’s τ is negative for the BVN model (the average
ρ estimate is also negative), and smaller than in previous experiments for the
JOE-N — while this does not apply to the sample selection FRAMED2 model.

Two salient features of this experiment are that now the DOUBLE model is
the worst one in terms of MSE for α and β, with empirical sizes often above
98% and that the estimate of τ is highly biased especially for BVN. For this
experiment we tested the univariate censored model FRAMED1 described in
the previous section: although its estimates for α and β are satisfactory, we
observe that the estimate of σ is strongly biased, and that empirical sizes in-
crease with sample size and are beyond 5%. All bivariate models perform
quite well in estimating the first equation parameters, with JOE-N generally
slightly better than BVN, which may suggest that the underlying distribution
of observed responses might have changed. More importantly, the rate of suc-
cessful replications of the JOE-N model in experiment D, compared to that of
the other two bivariate models confirms the robustness of this copula model,
and its usefulness at least at the exploratory stage of the analysis.

In experiment E the initial bids have been changed, while it is maintained
the behavioral hypothesis underlying experiment B, resulting in imperfect cor-
relation of the WTP equations plus different associated standard deviations.
Except for the DOUBLE, whose results are fairly close to the results in ex-
periment B, the estimates of all other models have worsened in terms of bias,
inefficiency and empirical sizes for all models, especially for the small sample
case. The JOE-N model performs relatively better than the others, even though
its empirical sizes tend to increase for larger samples. In any case, all bivariate
models, and especially the correctly specified BVN, give a good estimate of the
dependence parameter, and therefore are able to signal the presence of some
response effect. The DOUBLE model is more robust to poorly chosen starting
bids but it is biased, as can be seen from the estimate of the scale parameter
which remains biased for large samples.

In experiments F and G we analyze two cases of departure from the as-
sumption of bivariate normality for the WTP distributions. In F the data are
generated by a bivariate distribution derived from a Joe copula with normal
marginals, while in G the Joe copula links two extreme value distributions. All
other settings are as in experiment B, with the qualification that the correct
specification now is the JOE copula: in experiment F the Joe copula with nor-
mal marginals (JOE-N), in experiment G the Joe copula with extreme value
marginals (JOE-E). It can be seen from Tables 12.7 and 12.8 that the two cop-
ula models estimate correctly all the parameters. While the BVN performs
relatively well with normal marginals, its application to a bivariate with non
normal marginals results in biased estimates of the first equation parameters.
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Table 12.6. Experiment E: α = α2 =10, β = β2 =3, σ =5, σ2 =7, ρ =0.7,τ =0.493

Size 400

α β σ α2 β2 σ2 τ reps

–0.189 0.044 0.030 – – – – –
SINGLE 1.802 0.375 0.653 – – – – –

(0.040) (0.038) (0.053) – – – – –
0.276 –0.058 0.914 – – – – –

DOUBLE 0.876 0.193 0.367 – – – – –
(0.073) (0.073) (0.770) – – – – –
–0.280 0.063 0.051 –0.485 0.104 0.402 –0.022 366

BVN 1.711 0.356 0.636 1.807 0.392 1.644 0.211 –
(0.041) (0.044) (0.050) (0.052) (0.057) (0.010) – –
0.065 –0.004 –0.021 –0.405 0.071 0.187 0.265 376

JOE-N 1.608 0.339 0.628 2.693 0.555 2.553 0.254 –
(0.074) (0.072) (0.080) (0.090) (0.093) (0.253) – –
–0.160 0.044 –0.008 –1.230 0.178 1.255 –0.130 356

FRAMED2 1.798 0.373 0.660 3.955 1.005 3.748 0.306 –
(0.053) (0.048) (0.059) (0.062) (0.065) (0.070) – –

Size 1,000

α β σ α2 β2 σ2 τ reps

–0.036 0.004 –0.010 – – – – –
SINGLE 1.250 0.252 0.450 – – – – –

(0.043) (0.040) (0.053) – – – – –
0.260 –0.054 0.936 – – – – –

DOUBLE 0.597 0.132 0.231 – – – – –
(0.090) (0.098) (0.990) – – – – –
–0.070 0.010 0.009 –0.231 0.047 0.249 0.007 342

BVN 1.199 0.243 0.436 1.081 0.234 0.989 0.177 –
(0.067) (0.053) (0.050) (0.044) (0.044) (0.155) – –
0.220 –0.044 –0.054 –0.014 –0.007 –0.136 0.296 375

JOE-N 1.147 0.233 0.413 1.528 0.317 1.535 0.232 –
(0.080) (0.077) (0.075) (0.109) (0.123) (0.469) – –
0.022 –0.007 –0.050 –0.742 0.106 0.730 –0.065 343

FRAMED2 1.216 0.245 0.434 2.282 0.558 2.097 0.274 –
(0.044) (0.044) (0.055) (0.032) (0.032) (0.050) – –

a The three values in each block are: Bias, Standard Deviation and Empirical Size (Nominal size 5%).
b Number of replications where convergence is achieved and the Hessian is invertible.
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Table 12.7. Experiment F: α = α2 = 10, β = β2 = 3, σ = 5, σ2 = 7, ρ = 0.7, τ = 0.499

Size 400

α β σ α2 β2 σ2 τ reps

–0.107 0.028 0.008 – – – – –
SINGLE 1.239 0.306 0.589 – – – – –

(0.053) (0.055) (0.070) – – – – –
0.371 –0.098 0.797 – – – – –

DOUBLE 0.837 0.201 0.366 – – – – –
(0.088) (0.110) (0.635) – – – – –
–0.224 0.038 0.039 –0.179 0.091 0.470 –0.049 379

BVN 1.211 0.298 0.558 1.391 0.352 1.326 0.169 –
(0.050) (0.055) (0.050) (0.050) (0.045) (0.077) – –
–0.132 0.031 0.003 –0.259 0.074 0.269 0.026 397

JOE-N 1.205 0.299 0.554 1.425 0.362 1.280 0.209 –
(0.060) (0.073) (0.060) (0.055) (0.053) (0.101) – –
–0.055 0.015 –0.017 -3.360 0.527 3.305 –0.358 304

FRAMED2 1.279 0.316 0.596 4.573 1.097 5.137 0.342 –
(0.0658) (0.069) (0.082) (0.039) (0.023) (0.069) – –

Size 1,000

α β σ α2 β2 σ2 τ reps

–0.035 0.010 0.015 – – – – –
SINGLE 0.859 0.209 0.371 – – – – –

(0.053) (0.050) (0.043) – – – – –
0.377 –0.084 0.834 – – – – –

DOUBLE 0.498 0.121 0.221 – – – – –
(0.113) (0.113) (0.98) – – – – –
–0.192 0.026 0.030 0.018 0.043 0.253 –0.027 364

BVN 0.830 0.202 0.362 0.844 0.215 0.924 0.138 –
(0.047) (0.055) (0.049) (0.058) (0.047) (0.113) – –
–0.078 0.018 0.012 –0.123 0.039 0.169 0.009 398

JOE-N 0.798 0.194 0.355 0.822 0.203 0.770 0.155 –
(0.043) (0.053) (0.048) (0.038) (0.050) (0.090) – –
–0.034 0.007 0.015 -4.327 0.743 4.405 –0.415 305

FRAMED2 0.864 0.206 0.372 8.079 1.808 9.123 0.257 –
(0.056) (0.039) (0.052) (0.056) (0.036) (0.059) – –

a The three values in each block are: Bias, Standard Deviation and Empirical Size (Nominal size 5%).
b Number of replications where convergence is achieved and the Hessian is invertible.
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Table 12.8. Experiment G: α = α2 = 10, β = β2 = 3, σ = 5, σ2 = 7, τ = 0.499

Size 400

α β σ α2 β2 σ2 τ reps

–0.070 0.019 –0.027 – – – – –
SINGLE 1.177 0.286 0.596 – – – – –

(0.065) (0.055) (0.065) – – – – –
0.224 –0.073 0.937 – – – – –

DOUBLE 0.795 0.186 0.400 – – – – –
(0.075) (0.098) (0.715) – – – – –
–0.463 0.039 –0.315 –0.950 0.154 –0.100 0.012 343

BVN 1.183 0.291 0.538 1.312 0.312 1.003 0.166 –
(0.055) (0.052) (0.149) (0.052) (0.044) (0.195) – –
–0.090 0.017 –0.059 –0.223 0.067 0.196 0.039 394

JOE-EXT 1.135 0.271 0.539 1.142 0.295 0.989 0.225 –
(0.069) (0.056) (0.053) (0.056) (0.051) (0.084) – –
–0.008 0.005 –0.037 –1.466 0.342 0.804 0.023 345

FRAMED2 1.155 0.274 0.588 2.950 0.889 2.579 0.220 –
(0.070) (0.052) (0.064) (0.023) (0.038) (0.049) – –

Size 1,000

α β σ α2 β2 σ2 τ reps

0.017 –0.003 0.012 – – – – –
SINGLE 0.794 0.185 0.382 – – – – –

(0.065) (0.050) (0.048) – – – – –
0.212 –0.058 0.989 – – – – –

DOUBLE 0.501 0.116 0.240 – – – – –
(0.063) (0.080) (0.992) – – – – –
–0.299 –0.019 –0.350 –0.588 0.067 –0.398 0.080 360

BVN 0.729 0.178 0.325 0.767 0.181 0.624 0.164 –
(0.056) (0.067) (0.264) (0.081) (0.039) (0.419) – –
–0.037 0.004 –0.009 –0.068 0.025 0.077 0.041 393

JOE-EXT 0.736 0.174 0.359 0.707 0.181 0.621 0.182 –
(0.056) (0.051) (0.059) (0.038) (0.048) (0.092) – –
0.047 –0.008 –0.001 –0.978 0.169 0.466 –0.007 352

FRAMED2 0.781 0.184 0.381 1.799 0.471 1.367 0.219 –
(0.060) (0.054) (0.048) (0.006) (0.031) (0.028) – –

a The three values in each block are: Bias, Standard Deviation and Empirical Size (Nominal size 5%).
b Number of replications where convergence is achieved and the Hessian is invertible.
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The bad performance of the BVN in this experiment is particularly evident for
smaller sample sizes, but it can also be observed that the bias of the variance
estimate increases with sample size. Note also that in experiment G the BVN
is at high risk of convergence failure: over 10% of the replications for the large
sample size are lost.

6. Conclusions

The need to obtain valid and reliable estimates for the value of non market
goods under tighter budget constraints than those characterizing most bench-
mark CV studies has spurred research to a quest for an elicitation method that
maximizes the amount of information obtained from respondents. More effi-
cient elicitation methods allow smaller sample sizes, and this in turn results
in less expensive surveys. The double bound method meets this efficiency re-
quirement, but at the cost of potentially inducing elicitation effects, and hence
unreliable estimates; on the other hand, the single bound method may not in-
duce response effects, but it is statistically inefficient, and requires large sam-
ples in order to give reliable estimates. A solution could be at hand if appropri-
ate statistical analysis could enable the modeler to detect and correct response
bias from double bound data, so preserving the property of unbiasedness of
the single bound method, and efficiency of the double bound. In this paper
we have analyzed the performance of the bivariate modeling approach to the
treatment of double bound data affected by elicitation bias. Several experi-
ments were conducted, addressing different types of elicitation problems, and
alternative distributional assumptions. We find that the bivariate approach can
effectively detect the presence of elicitation effects, and produce correct esti-
mates while maintaining a satisfactory level of efficiency. We have shown that
application of a correctly specified bivariate model can lead to efficiency lev-
els close to those reported for the double bound model. Clearly, the bivariate
approach should be based on well specified models, since application of, say, a
bivariate probit to non normal bivariate distributions would result in biased es-
timates. This was clearly shown in one experiment, where the bivariate probit
was applied to a bivariate distribution with extreme value marginals.

We propose the adoption of copula models as a flexible instrument to fit
non-normal bivariate distributions. Specifically, in this analysis we adopted the
Joe copula, which turns out to be quite robust to convergence problems, and
therefore can be used in preliminary analysis of the data to check for presence
of response effects.

Finally, we found that convergence problems often affect the bivariate pro-
bit model, and even more seriously the bivariate probit with sample selection
proposed by DeShazo to model data affected by framing effects. We showed
that even when data are characterized by this type of bias, the sample selection
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model does not perform better than the bivariate models with no selection, es-
pecially the Joe copula: it is possible that framing produces some effect on the
dependency structure, which can be better modeled by asymmetric bivariate
distributions, such as the Joe copula.

Obviously, our results only apply to the forms of response bias considered
in the present work: further research is called for to explore the effectiveness
of the bivariate approach for correction of other relevant sources of bias, such
as anchoring effects.

Appendix

The algorithm below can be used to generate pairs of pseudo random num-
bers with arbitrary marginal distribution functions but with a Joe copula as a
joint distribution function: see Embrechts et al. (2003). The Joe copula is
defined by,

C(u, ν) = 1 − [
(1 − u)θ + (1 − ν)θ − (1 − u)θ(1 − ν)θ

]1/θ
, θ ∈ [1,∞)

and has a generator given by ϕ(t) = − ln[1− (1− t)θ]. For any Archimedean
copula the function KcKK defined as, KcKK (t) = t − ϕ(t)/ϕ′(t) is the distribution
function of the copula C. The algorithm goes through the following steps:

1 draw a pair of independent random variables s, q ∼ U [0, 1].

2 choose the value of θ and set t = K−1
cK (q). Since there is no closed form

expression for the inverse of KcKK , the equation t − ϕ(t)/ϕ′(t) − q = 0
has to be solved numerically using a root finding procedure.

3 set u = ϕ−1[sϕ(t)] and ν = ϕ−1[(1 − s)ϕ(t)] , where ϕ−1(t) =
1 − (1 − e−t)1/θ for the Joe copula. The pseudo random numbers u, ν
are uniformly distributed on [0,1] and have a Joe copula as a joint distri-
bution function.

4 for arbitrary distribution functions F1FF and F2FF define,

r1 = F−1
1FF (u) and r2 = F−1

2FF (ν).

The pseudo random numbers r1, r2 have marginal distributions given
by F1FF and F2FF respectively while their joint distribution is given by a
Joe copula. If we use the inverse normal transformation in both cases
above, then we have generated pseudo random numbers with normal
marginal distributions and a Joe copula as a joint distribution. If the
inverse of the extreme value distribution is used instead, then the pseudo
random numbers have extreme value marginals with a Joe copula as a
joint distribution.
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Abstract Environmental economists have advocated the use of choice modelling in envi-
ronmental valuation. Standard approaches employ choice sets including one al-
ternative depicting the status-quo, yet the effects of explicitly accounting for sys-
tematic differences in preferences for non status-quo alternatives in the econo-
metric models are not well understood. We explore three different ways of
addressing such systematic differences using data from two choice modelling
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studies designed to value the provision of environmental goods. Preferences
for change versus status-quo are explored with standard conditional logit with
alternative-specific constant for status-quo, nested logit and a less usual mixed
logit error component specification (kernel logit). Our empirical results are con-
sistent with the hypothesis that alternatives offering changes from status-quo do
not share the same preference structure as status-quo alternatives, as found by
others in the marketing literature, in the environmental economic literature and
in food preference studies. To further explore the empirical consequences of
such mis-specification we report on a series of Monte Carlo experiments. Evi-
dence from the experiments indicates that the expected bias in estimates ignoring
the status-quo effect is substantial, and—more interestingly—that error compo-
nent specifications with status-quo alternative specific-constant are efficient even
when biased. These findings have significant implications for practitioners and
their stance towards the strategies for the econometric analysis of choice mod-
elling data for the purpose of valuation.

Keywords: choice-modelling, stated-preference, environmental valuation, status-quo bias,
Monte Carlo simulations, water resources.

1. Introduction

Since their early appearance in the environmental economics literature in the
middle-to-late nineties (Roe et al. 1996; Boxall et al., 1996; Garrod and Willis,
1997; Adamowicz et al., 1998) “choice experiments”1 have enriched and fur-
ther diversified the non-market valuation applications based on stated prefer-
ences. The number of studies on this methodology has been rapidly growing
(Layton 2000; Morrison et al., 2002; Foster and Mourato, 2002; Garrod et al.
2002) with applications covering many non-market valuation contexts. Over-
all, the role of this approach in diversifying the field of non-market valuation
has been eloquently praised (Randall, 1998).

The basic method requires respondents to indicate a preference ordering —
by ranking, rating or identifying a preferred choice — over a set of experimen-
tally designed alternatives. Although the inclusion or exclusion of the status-
quo (henceforth abbreviated in SQ) in the choice-set depends on the objective
of the survey (see Breffle and Rowe, 2002 for a discussion), to increase realism
(Ortuzar and Willumsen, 2001) most studies in transportation and environmen-´
tal economics are based on survey designs that include a SQ alternative. This is
often described to respondents in terms of the attribute values that are experi-
enced and associated with the SQ. An issue that remains little explored to date
is whether or not respondents “perceive”—and as a consequence evaluate—the
alternatives associated with change from the SQ somewhat differently from the
SQ alternative. This asymmetry would be consistent with reference-dependent

1Or “choice modelling”, or “conjoint choice analysis” or more generally multi-attribute stated preferences.
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utility theories (Kahneman and Tversky, 1979; Hartman et al. 1991; Samuel-
son and Zeckhauser, 1988; Bateman et al. 1997). This is a key issue because
if such a difference exists, then it raises, amongst others, three problems rele-
vant for choice experiments. First, how should one explicitly account for this
effect in the analysis? Second, what are the consequences of accounting for it
in an incorrect fashion, that is, the consequences of mis-specification? Third,
what difference should one expect when using different sample sizes within
the conventional range?

We find that these issues have yet to be satisfactorily addressed in the multi-
attribute stated preference literature, and so, the main objective of this chapter
is to explore such problems focusing on the finite sample properties of welfare
estimates using experiments based on empirical results.

We compare three different ways of modelling diversity in perception of SQ
versus alternatives involving change. All three are based on the conventional
random utility framework.

In principle, one can argue that there are two kind of effects when a SQ
alternative is present in all choice-sets. The first is a systematic effect which
can be easily estimated by means of an alternative-specific SQ constant in the
utility function. The second is an effect on the stochastic error structure pos-
tulated by the researcher. For example, designed alternatives involving change
from the SQ one can share an error structure with a stochastic behaviour that
is more similar to each other than it is to the error associated with the SQ alter-
native. In other words, designed alternatives involving change are correlated,
and their error component is hence not independent. Such correlation can be
accommodated within a nested logit framework.

In the literature SQ effects are typically dealt with by two specifications: the
conditional logit with alternative-specific SQ constants and the nested logit.
The first addresses systematic SQ effects, the second the correlation across
utilities of designed alternatives. Both have been tested and found statistically
significant. In this paper we propose a third specification, which flexibly and
simultaneously addresses both types of effects by means of an error compo-
nent mixed logit specification with alternative-specific SQ constant. This flex-
ible model induces a correlation pattern in the utility of alternatives involving
change, as well as capturing a systematic effect due to the SQ in the indirect
utility.2. In one of the two datasets employed here is found to be a significant
improvement over its competitors.

As a backdrop to such an investigation we report on findings from a large-
scale survey designed to value the public good provision associated with water
supply to the residents of the counties of Yorkshire, in the U.K. The analysis

2We are grateful to Joseph Herriges for suggesting this last specification during the 2004 EAERE meeting
in Budapest, where a previous version of this paper was presented.
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of these data provide evidence in support of the hypothesis of a systematic
difference in customers’ evaluations of SQ and non-SQ alternatives across the
three specifications.

The finite sample properties of each of these three estimators are then an-
alyzed using Monte Carlo experiments. These are conducted at three sample
sizes that cover the range most commonly employed in the literature. The re-
sults of these experiments provide valuable information on the potential size
of the bias in the estimates in the presence of SQ effects. They also pro-
vide suggestions on the relative efficiency of various estimators under mis-
specification.

The remainder of the paper is organized as follows. The next section briefly
outlines the motivations for the investigation. Section 3 defines a common
notation for the various models. In section 4 we describe the studies from
which we draw inspiration for the Monte Carlo experiment. The results of the
studies are presented in section 5, while the evidence from the Monte Carlo
experiments is discussed in section 6. In section 7 we conclude.

2. Motivation for the study

2.1 The nature of SQ effects

For the purpose of this paper we define “SQ effects” as the systematic in-
clination of respondents to display a different attitude towards SQ alternatives
from those reserved to alternatives involving some change, over and beyond
what can be captured by the variation of attributes’ levels across alternatives.

In the context of public economics, of which environmental economics is a
sub-discipline, we are often concerned with a SQ resulting from previous pol-
icy outcomes, and incorporating public views on property rights, institutional
arrangements etc. This extends to endowment of passive use and non-use val-
ues, which overall represent a bundle of issues conceptually quite different
from those embedded in the SQ alternative employed in transportation and
market research choice experiments, where the emphasis is on use values.3

However, regardless of its prevailing nature in environmental economics,
this effect seems quite general. In their much quoted paper on consumer ratio-
nality and SQ effects (or “bias”) Hartman et al. (1991) write:

This analysis suggests, for example, that consumers attach “undue” importance
to their current commodity bundle, demonstrating “apparently irrational” reluc-
tance to alternative bundles. (Page 141)

The explanatory nature of such a general phenomenon is quite complex. For
example, in a previous contribution on the topic Samuelson and Zeckhauser

3In transportation the tendency to systematically prefer the SQ alternative is termed “attrition”, e.g. Bradley
and Daly, 1997; Cantillo and Ortúzar, 2004.´
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(1988) identified and validated with evidence three major categories of expla-
nations for this type of behaviour:

1 rational decision making in the presence of transition costs and/or un-
certainty;

2 cognitive mis-perceptions (e.g. loss aversion and prospect theory as pro-
posed by Kahneman and Tversky (1979))

3 psychological commitment stemming from misperceived sunk costs, re-
gret avoidance, or a drive for consistency.

In their conclusions from the study Samuelson and Zeckhauser write:

In choosing among alternatives individuals display a bias toward sticking with
the status quo.[...] Assuming the status quo bias proves important, rational mod-
els will present excessively radical conclusions, exaggerating individual’s re-
sponses to changing economic variables and predicting greater probability than
observed in the world.

In our experience with SQ effects in choice experiments such effects can show
both, a predilection for the SQ or a reluctance to stick with it.4

Because of this multiple causes of SQ bias, we do not find fruitful to elab-
orate on a conceptual model, which inevitably will leave some explanations
unaccounted for. Hence, in what follows we maintain the conceptual definition
quite general, yet we specifically focus on the analysis of multinomial discrete
choices for environmental valuation under a random utility framework.

2.2 SQ effects in choice experiments

Above we have referred to some evidence from psychology and experimen-
tal economics suggestive that people evaluate what they know, and are familiar
with (i.e. the SQ), in a systematically different fashion from how they evaluate
hypothetical alternative scenarios. This has a direct bearing in the applica-
tion of choice experiments to non-market valuation of public goods. Whether
the technique is used to expand the set of modelling approaches existing in
practice (as is often argued in support of mixing stated and revealed prefer-
ence data (e.g. Hensher et al., 1999), the so called “data fusion” approach),
or is employed as a way to elicit trade-offs that will eventually lead to a richer
description of people’s preference for environmental goods (e.g. when respon-
dents are asked to evaluate SQ scenarios against hypothetical changes), a check
for what we loosely call “SQ effects” should be performed. The specification
that best addresses such an effect will depend on circumstances.

4For further reference to status quo effects in power outages discrete choice elicitation studies see section 2
in this volume.
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If a “generic” SQ effect exists in the evaluation of alternatives of choice-
experiments for non-market goods, then an adequate practical understanding
of the various econometric approaches accounting for such bias needs to be
developed. By investigating the finite sample properties of common estima-
tors we contribute to the on-going research on the understanding of the im-
plications of modelling choices for the derivation of welfare estimates from
choice-experiments investigating non-market goods.5

In particular, a systematic investigation of standard RUM-based modelling
approaches to SQ effects in non-market valuation seems to be missing, and this
is what we set out to provide here.

Some work on this issue is to be found in market research (Haaijer 1999;
Haaijer et al. 2001), but this is limited to comparing Nested logit and con-
ditional (or multinomial)6 logit with alternative-specific constant for the SQ.
Furthermore, the study is prevalently concerned with technical aspects proper
of market research (coding effects, brand effects, market shares etc.). Their
results suggest that the violation of the independence of irrelevant alternative
makes the use of models not reliant on such restriction appealing, an argument
that is often used in promoting the use of random parameter specifications for
the indirect utility (Layton, 2000; Garrod et al., 2002; Kontoleon and Yobe,
2003). This is a suggestion that we explore in more detail here by using more
flexible models, but focussing on a basic error components specification, rather
than on one with random parameters.

In practice we report the results of an investigation comparing multinomial
logit with an alternative specific constant for the SQ (MNL-Asc), nested logit
(NL), and an error component mixed logit (MXL-ε) which also includes an
an alternative specific constant for the SQ. These encompass those models to
which most practitioners would turn to, at least in the first instance, when trying
to account for SQ effects in econometric specifications. In general our results
show that the conventional practice of using simply a MNL-Asc may often be
unsound. In particular, the proposed error component model with alternative-
specific constant for the SQ, that would appear to be novel in this literature,
seems to perform better than others in most of the circumstances examined
here.

In the following we focus on the case in which the choice set contains only
three alternatives: the SQ and two other alternatives, all of which are described

5For example, an original avenue of investigation based on hurdle models and more broadly centred on
non-participation is to be found in von Haefen and Adamovicz (2004). Their results, like ours, show the
sensitivity of welfare estimates to the treatment of SQ and non-participation choices.
6Somewhat loosely, the terms conditional and multinomial logit are used as synonymous in this chapter.
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on the basis of attribute levels, and from which respondents are asked to select
the one they prefer.7

Although there are many variations on the theme, the prevalent set-up for
choice experiments in environmental economics tends to present respondents
with a choice task that involves the identification of a preferred alternative
from a choice set including the SQ and often two (e.g. Boxall et al., 1996;
Hanley et al., 1998; Rolfe et al., 2000; Foster and Mourato, 2003; Scarpa et
al., 2003; Lehtonen et al., 2003) or sometimes few more (e.g. Kontoleon and
Yabe, 2003) experimentally designed alternatives. This set-up is often argued
on the basis of a lower cognitive burden on respondents than that associated
with other choice contexts in which the complexity of choice task is higher. In
experiments involving ranking – for example – especially with many experi-
mentally designed alternatives, it has long been noticed that the hypothesis of
identical preference across decisions at different ranks is empirically violated
(Hausman and Ruud 1987; Ben-Akiva et al. 1992).

3. Econometric specifications accounting for SQ and their
rationale

3.1 Common notation

It is useful to start by defining a common notation for the various models,
referring as much as one can to convention. The reference structure is the case
where the analytical objective is to obtain maximum likelihood estimates of
a 1 × k row vector of utility weights β for a column vector x of k × 1 at-
tributes for the individual linear indirect utility function VjVV . The available data
are choices from choice tasks including a SQ (indexed as sq) and a minimum
of two experimentally designed alternatives (indexed with subscripts c1, c2).
This basic implementation is often encountered in the published literature, but
it can be extended without loss of generality. For the purpose of valuation,
welfare estimates can be obtained as (non-linear) functions of the estimates,
using the usual difference between the logsums weighted by the inverse of the
cost coefficient.

3.2 Conditional logits with and without SQ-Asc

The basic random utility consistent model for analyzing choice experiment
data is the conditional logit, which we consider here as a baseline.

When unj , the stochastic component of utility for respondent n and alterna-
tive j, is identically and independently Gumbel distributed across all alterna-

7The main results of our study can, however, be generalised to many other contexts in which respondents
are asked to rank any set of alternatives including the one depicting the SQ.
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tives, then the choice probability is expressed by the well-known formula:

PnPP (i) =
exp(λViVV )∑
j exp(λVjVV )

, j = sq, c1, c2 (3.1)

where λ is the scale parameter of the unobserved stochastic component. This
is the conventional conditional logit model, which we refer to as MNL. Here
any diversity in preference for the alternatives different from the SQ may be
explicitly made part of the non-stochastic component of utility, for example in
the form of an alternative specific constant (Asc) which takes the form of an
indicator function Asc = 1 iff j = sq.

For a simple example of a positive value on the SQ Asc consider the ten-
dency for respondents who perceive the cognitive task of assessing all the al-
ternatives as too daunting, to fall back on the familiar SQ, rather than engaging
into a costly and unrewarded cognitive task.

In practice, significance of Asc parameter represents the most immediate
SQ test. Although often the ASCs are associated with the designed alternatives,
and the SQ is left as a baseline (Hanley and Wright 2003), we prefer here to
use a dummy variable for the alternative describing the SQ, rather than one
for each of the alternatives involving change, as advocated in Adamovicz et
al. (1998). This specification allows the analyst to account for diversity in the
probability of choice between hypothetical alternatives and experienced SQ.
Notice, however, that this solution does not change the stochastic structure of
the model as it only enters the deterministic component of utility, leaving the
stochastic error structure unchanged. As such it does not allow for a varying
correlation structure across alternatives, which instead we find to be quite a
plausible hypothesis in behavioural terms.

Under linear indirect utility VjVV = β′xj our parsimonious specification is
therefore:

P (c1) =
eβxc1

e(Asc+βxsq) + eβxc1 + eβxc2
(3.2)

P (c2) =
eβxc2

e(Asc+βxsq) + eβxc1 + eβxc2
(3.3)

P (sq) =
e(Asc+βxsq)

e(Asc+βxsq) + eβxc1 + eβxc2
(3.4)

where—for convenience—the subscript n denoting individuals is ignored, and
the scale parameter λ is standardized to 1 and hence it is omitted.

Note that if hypothetical changes are expected to increase utility, then the
sign of Asc will be negative, and positive if the effect has the opposite direc-
tion. This is the alternative specific constant conditional logit model, which we
refer to as MNL-Asc.
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3.3 Nested logit

The different nature of the SQ alternative vis-a-vis the two experimentally`
designed ones may translate into a difference in the substitution patterns, and
hence in a different correlation structure of the unobserved components of
the individual utilities. One assumption consistent with this case is when the
stochastic component of utility is distributed according to a generalized ex-
treme value (GEV) distribution, then different patterns of correlation across the
utility of alternatives can be generated, although these are subject to consider-
able restrictions (Train, 2003). In fact, correlations are imposed to be similar
within nests, but for alternatives in different nests the unobserved components
are uncorrelated, and indeed independent. This is the case of the nested logit
in which the unobserved components of utility have the GEV cumulative dis-
tribution:

exp

⎡
⎣
⎡⎡
−

G∑
g=1

⎛
⎝
⎛⎛∑

j∈J

exp(−uig/ηg)

⎞
⎠
⎞⎞ηg

⎤
⎦
⎤

(3.5)

where g denotes nests. In the set-up we consider here, with one SQ alterna-
tive and two experimentally designed ones, the assumption that the correlation
amongst unobserved stochastic components differs between the two sets of al-
ternatives generates two nests. The first is a degenerate one associated with the
SQ alternative. The second is associated with changes from the SQ and con-
tains both the experimentally designed ones. This gives rise to the following
probability structure for the first decision stage:

P (change) =
eηV I

eηV I + eβ′xsq
and P (sq) = 1 − P (change)

While for the second decision stage, which is given the decision of embracing
some change, is:

P (c1|change) =
eβxc1

eβxc1 + eβxc2
and P (c2|change) =

eβxc2

eβxc1 + eβxc2
(3.6)

P (cjc ) = P (change)P (cjc |change) =
eηV I

eηV I + eβxsq
× eβxcj

eβxcj + eβxc�=�� j
(3.7)

where V I = ln [exp (βxc1) + exp (βxc2)] and can be interpreted as a measure
of the expected utility of accessing the nest with the alternatives associated
with change. The reader is reminded that the coefficient η is a measure of
dissimilarity between alternatives in the various nests, while the value 1 − η
is a proxy for correlation for alternatives within the same nest. In this context
a higher value of η can be intuitively interpreted as higher utility weight of
moving away from the SQ.
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A number of recent choice experiment studies in environmental economics
have used nested logit models to account for SQ effects and found them supe-
rior in terms of fit to their MNL counterparts (Blamey et al. 2002; Hanley and
Wright, 2003; Lehtonen et al., 2003; Li et al., 2004).

It is noteworthy that although this model maintains the independence of
irrelevant alternatives (IIA) property across alternatives belonging to the same
nest, it allows for differences in cross-elasticities across nests.

3.4 Error components via mixed logit

Notice that neither the MNL-Asc nor the NL specifications simultaneously
identify both the systematic and stochastic components of the SQ effect, nor
do they allow for taste-heterogeneity, or break completely8 away from the IIA
assumption. A specification that may overcome all these limitations is the
mixed logit with error components. It does so by allowing flexible patterns of
substitution via an induced correlation structure across utilities.

This is, of course, a special case of the large family of mixed logit, which—
as described in McFadden and Train (2002)—with adequate data quality, may
in principle be used to approximate any type of RUM.

The richness and flexibility of mixed logit models have been shown to gen-
erate a large variety of correlation patterns (Brownstone and Train, 1999; Train,
2003; Munizaga and Alvarez, 2001; Herriges and Phaneuf, 2002). Train (2003,
page 156) discusses eloquently how mixed logit can give rise to two quite dif-
ferent interpretations, the random parameter and, under some restrictions, the
error component one (or kernel logit (Ben-Akiva et al. 2001)). Further consid-
erations, more specific to transportation applications, can be found in Cherchi
and Ortuzar (2004), and some potential drawbacks are discussed in Hensher´
and Greene (2003).

Specifications using random utility parameters are well-known and often
employed in choice experiments designed for the valuation of environmen-
tal goods in their panel form, so as to account for repeated choices, break
away from the IIA assumption and address unobserved heterogeneity. How-
ever, in our study we wish to maintain comparability across the underlying
assumptions of the MNL-Asc and NL specifications, which do not allow taste-
heterogeneity. We hence focus on the decomposition of the unobservable com-
ponent of utility, rather than on random effects in the indirect utility, and adopt
only an error component interpretation, something that is less frequently seen
in this kind of literature. We exploit the fact that the inclusion of additional
zero-mean error components in the structure of utility of each nest induces cor-
relation patterns (Herriges and Phaneuf, 2002). In the presence of SQ effects

8The nested logit maintains it within each nest.
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different correlation patterns exists between the unobservable components of
utility of the SQ alternative, and those in alternatives involving change.

For example, in our choice experiment the error component approach takes
the following basic utility form9:

U(c1) = βxc1 + ũc1 = βxc1 + εc1 + uc1 ,

U(c2) = βxc2 + ũc2 = βxc2 + εc2 + uc2 ,

U(sq) = Asc + βxsq + usq

(3.8)

where, in our case, εc1 εc2 ∼ N(0, σ2) are additional error components to
uc1 and uc2 , which are Gumbel-distributed with variance π2/6, thereby leading
to the following error covariance structure :

Cov(ũc1 , ũc2) = σ2, V ar(ũc1 , ũc2) = σ2 + π2/6, (3.9)

Cov(ũcj , ũsq) = 0, V ar(ũcj , ũsq) = π2/6, j = 1, 2; (3.10)

where ũcj = εcj + ucj . Note that this is an analog of the nested logit model
in the sense that it allows for correlation of utilities across alternatives in the
same nest, but different correlation for those across nests. However, there is
no IIA restriction, and the Asc captures any remaining systematic effect on the
SQ alternative.

Conditional on the presence of the error component εj the choice probability
is logit, and the assumption above leads to the following expression for each
marginal choice probability:

P (i) =
∫

ε

∫∫
P (i|ε)f(ε|θ)dε

P (i) =
∫ +∞

−∞

∫∫
eβxi+εi∑
j eβxj+εj

φ(0, σ2)dε, j = c1, c2, sq

(3.11)

where φ(·) is the normal density, and εj = 0 when j = sq.
Notice, however, that the additional error component can be either indepen-

dent across choices (for example in a non-panel structure) or it can be the same
for all choices made by the same individual (in a panel implementation). This
is relevant in choice experiments as it breaks away from assumption of inde-
pendence in the error structure across choices by the same respondent, which is
implicit in both conditional and nested logit assumptions. While in random pa-
rameter specifications it is more plausible to assume fixity of parameter across
choices by the same respondent by means of panel estimators, it is less clear

9In fact, as expanded upon by Brownstone and Train (1999) and Herriges and Panheuf (2002), more general
forms than this may be empirically appealing.

=
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that this is the case for error components. Ultimately this remains an empiri-
cal issue to be assessed case-by-case, and within the same category of model
and estimation procedure it can be assessed on the basis of log-likelihood val-
ues. In this paper we focus on a non-panel application and hence dwell on
the conventional assumption of independence of error across choices by the
same respondent. This assumption ensures comparability of the error compo-
nent results with those from the other two specifications which also implies
independence across choices.

In what follows, we refer to this error component mixed logit model with
Asc as MXL-ε.

It is important to note that such model nests the other three, in the sense that
a restriction of σ = 0 is consistent with the MNL-Asc model, a restriction of
Asc = 0 is consistent with an analog of the NL model. Both restrictions return
the MNL model.

3.5 Estimation issues

All models are estimated in GAUSS 3.6 by maximum likelihood methods,
except for equation (3.11), which is estimated by maximum simulated likeli-
hood (MSL) with Halton draws10 (Train, 2000, 2003). The choice probability
for alternative i is approximated by:

P (i) ≈ P̃ (i) =
1
S

S∑
s=1

eβxi+εs
i∑

j eβxj+εs
j

(3.12)

where εs
j = 0 when j = sq, and s denotes simulation draws.

4. The Yorkshire Water choice modelling studies

In spring and summer 2002, as a part of a large-scale investigation into the
preference structure of its customers, Yorkshire Water (YW) conducted a set
of choice experiments. The aim was to characterize the preference for fif-
teen different attributes related to water provision, called here service factors
(SFs). As a result of focus-group activities and discussion with the manage-
ment, these SFs were separated into five groups, giving rise to five separate
choice experiments. The first three were mostly concerned with SFs of a pri-
vate good nature, and are ignored here.11 In this chapter we are concerned with

10Model estimates were found to be stable at 50 Halton draws and obtained by using the GAUSS code
made available by Kenneth Train. However, error component models can be estimates also in Nlogit by
formulating adequate dummy variables and using the subcommand “dummy(n,*,0)” which restricts the
mean of normally distributed parameter to be equal to zero.
11For a more extensive report the interested reader is referred to Willis and Scarpa, 2002 or Willis et al.
2004.
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the two choice experiments that addressed attributes of the service that can be
commonly interpreted as ‘public goods’.

4.1 Study 1

The first choice experiment, defined here as ‘study 1’, looked at four ser-
vice factors as attributes: area flooding by sewage (AF); river quality (RQ);
nuisance from odour and flies (OF); and cost of service (change in water bill
payment). There were eight levels of payment expressed as either increases or
decreases on the current bill, while all other attributes were expressed at four
levels as reported in Table 13.1. The design chosen was an orthogonal main
effect factorial with a total of 32 profiles, which were split into sequences of
four choices for each respondent. The design was obtained using SAS (for a
survey of experimental designs for logit models using SAS see Kuhfeld, 2004).

The expected signs for the coefficient estimates were as follows. The per-
cent of areas protected from sewage escape is indicated as AF (area flooding)
and it is expected to show a positive sign. The percent of river length capa-
ble of supporting healthy fisheries is indicated as RQ (river quality) and it is
also expected to show a positive sign. Finally, the number of households and
business affected by odour and flies (OF) is expected to show a negative sign.
Notice that this is more a club good than a public good, but it certainly has
public good characteristics.

4.2 Study 2

The second choice experiment looked at three service factors as attributes:
water amenities for recreation (AM) expected to be positive, quality of bathing
water (BB) also expected to be positive, and cost of service obviously expected
to be negative. There were seven levels of payment always expressed as in-
creases on the current bill, while all other attributes were expressed at three
levels (Table 13.1). The orthogonal main effect factorial design was obtained
with SAS and gave a total of 27 cards, which were also split in sequences of
four choices for each respondent.

4.3 Sampling method

The survey instrument was tested in a pilot study and further refined as a
consequence. It was administered in person, by enumerators experienced with
stated-preference questionnaires through a computer-assisted survey instru-
ment. A representative sample of 767 Yorkshire Water residential customers
completed the sequence of choices in study 1, for a total of 2,921 choices. A
representative sample of 777 residential customers completed the sequence for
study 2 experiment with a total of 3,108 choices. More detailed information
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Table 13.1. Service levels (SF) for residential and business customers.
Abbreviation Factor Description Scaling levels : –1 levels : 0 levels : +1 levels : +2

AF Sewage escape % of areas protected from 1 Coded Coded Coded Coded
to land sewage escape in gardens, =20% =35% =50% =100%

roads, paths and open areas
RQ Ecological % of river length 1 Coded Coded Coded Coded

quality capable of supporting healthy =60% =75% =85% =90%
of rivers fisheries and other aquatic

life in the long term
OF Odour and flies Number of households and 0.01

businesses affected by
odour and high numbers 2000 600 300 150

of flies from sewage Coded Coded Coded Coded
treatment works =20 =60 =30 =15

AM Ability to Number of areas with
use inland waste water discharges designed 1 0 4 12
waters for to allow recreational

recreational use activities on rivers
BB Bathing beaches Sewage works and disinfections 1 Meets current Improvement: Improvement:

water quality designed to meet government existing 50% better than 100% better than
standards for bathing water gov’nt standards gov’nt standard gov’nt standard

coded =100% coded =150% coded= 200%
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on the sampling methodology and the samples employed is available from the
report to the water company (Willis and Scarpa, 2002).

5. Results and discussion

5.1 Estimates for study 1

The estimates for study 1 are reported in Table 13.2. Notice that the utility
weights all have the anticipated signs for the attributes of the alternatives, and
are statistically significant in all models. The inclusive value estimate in the
nested logit model is in the (0-1] interval, and hence is consistent with utility
maximization. The estimated spread of the error component (σ) is virtually
zero in the MXL-ε model, which basically is equivalent to the MNL-Asc and
NL models.

Table 13.2. Estimates for study 1, SFs: AF, RQ, OF. N = 2,921.

Coefficient MNL MNL-Asc NL MXL-ε

AF
0.011 0.017 0.018 0.017
(10.1) (13.5) (13.3) (13.5)

RQ
0.057 0.070 0.075 0.07
(17.5) (19.0) (19.3) (19.0)

OF
–0.125 –0.130 –0.137 –0.130

(–19.91) (–18.8) (–18.4) (–18.8)

Cost
–0.159 –0.135 –0.142 –0.135
(–25.7) (–20.5) (–20.7) (–20.5)

σε
0.040

(0.121)

η
0.899

(112.9)

SQ-Asc
0.604 0.604
(10.7) (10.7)

MRSAF
0.07 0.13 0.13 0.13

(0.06,0.08) (0.10,0.15) (–0.16,0.36) (0.10,0.15)

MRSRQ
0.36 0.52 0.53 0.52

(0.32,0.39) (0.46,0.59) (0.06,0.08) (0.46,0.59)

MRSOF
–0.79 –0.96 –0.96 –0.96

(–0.87,–0.71) (–1.10 ,–0.85) (–1.17,–0.09) (–1.10,–0.085)

ln-L or ln-SimL –2,245 –2,185 –2,185 –2,185
AIC 4,498 4,500 4,500 4,502

Confidence intervals around marginal rates of substitution obtained with Krinsky and Robb (1986) method.
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We observe that all three models accounting for SQ achieve a very similar fit
according to the Akaike Information Criteria (AIC=-2lnL+2p2 ).12 The lowest
log-likelihood is fitted by the conventional conditional logit.

The evidence is consistent with the hypothesis that there is a systematic and
significant difference in perception and substitutability between experimentally
designed alternatives and experienced SQ.

From the viewpoint of policy evaluation it is clear that customers of YW,
feel strongly for the public goods associated with various water provision
strategies. For example, the implicit WTP for a one percent increase in the
area protected from sewage escape is valued by the average household between
0.07 and 0.13 pence.

Relatively more valuable is the percent increase in the length of river capable
of supporting long-term fisheries, which gives a value ranging from 0.36 to
0.53 pence. A reduction of one hundred properties suffering nuisance from
odour and flies is valued between 0.79 and 0.96 pence if we consider the point
estimates across specifications.

In this sample, it is evident that choosing estimates that account for SQ
bias in some form, does make a substantial difference, as the MNL model
provides lower estimates than the other three models. However, within those
accounting for SQ effects, the welfare estimates are of similar magnitude, with
the exception of the NL estimates for AF.

5.2 Estimates for study 2

A similar pattern of considerations can be made for study 2 in which the
experimentally designed alternatives never allowed for a decrease in public
good provision, something that – instead – was allowed for in study 1, and that
undoubtedly may increase the likelihood of violation of the IIA property.

Again, the estimates are consistent with the hypothesis that respondents per-
ceived experimentally designed alternatives and SQ differently. Neglecting this
fact would lead the analyst to infer lower WTP estimates for the public goods
examined and to select models that were significantly worse in terms of AIC
value. In study 2 (Table 13.3), however, there seems to be support for the
hypothesis that the difference in perception between SQ and change should be
incorporated in the stochastic component of utility, rather than in the system-
atic one. In fact, allowing for different correlation patterns (NL) improves the
AIC by a much larger amount than allowing only for a systematic SQ effect in
the deterministic component of utility (MNL-Asc).

12This criterion can be used to discriminate between un-nested models by placing a penalty on the number
of parameters p, since NL is nested neither in the MNL nor in the MXL-ε. The model associated with the
minimum value is to be considered the best (Akaike, 1973).
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Table 13.3. Estimates for study 2, SFs: AM, BB. N = 3,180.

Coefficient MNL MNL-Asc NL MXL-ε

AM
0.067 0.079 0.095 0.114
(13.0) (13.4) (13.8) (14.2)

BB
0.132 0.148 0.170 0.210
(21.0) (20.0) (19.9) (19.3)

Cost
–0.161 –0.158 –0.167 –0.196
(–22.2) (–21.5) (–21.2) (–19.9)

σε
3.702
(7.5)

η
0.833
(44.9)

SQ-Asc
0.290 –1.024
(4.3) (3.1)

MRSAM
0.42 0.50 0.57 0.58

(0.36,0.47) (0.43,0.57) (0.49,0.64) (0.51,0.65)

MRSBB
0.82 0.94 1.02 1.07

(0.6,1.01) (0.8,1.03) (0.8,1.14) (0.8,1.26)

ln-L or ln-SimL –2,776 –2,766 –2,748 –2,719
AIC 5,558 5,540 5,504 5,450

Confidence intervals around marginal rates of substitution obtained with Krinsky and Robb (1986) method.

When the IIA property is not imposed (MXL-ε) the model fits the data best,
and its estimates identify substantial positive correlation (0.9) amongst non SQ
alternatives: the estimated total variance for non SQ utilities is 15.335, much
larger than the Gumbel error variance of π2/6 � 1.645. This large variance is
only in part surprising, as the public goods components in the attributes under
valuation are of much more pervasive interest to the population of customers
in study 2 than in study 1. Public goods are known to be subject to much larger
variation in individual valuations than private goods. A negative Asc reveals
that respondents are in fact more inclined to support change from the SQ. This
attitude would be consistent with a perception of under-provision of the public
goods under valuation. A similar finding is reported in Lehtonen et al. 2003.

In terms of the policy implications for amenity provision and quality of
bathing waters the estimates imply the following. An average WTP per house-
hold between 0.42 and 0.57 pence for an increase in one unit in the number of
areas with waste water discharges designed to allow recreational activities on
rivers; and 0.81 and 1.07 pence per household for a one percent increase in the
current government standards for bathing waters.
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WTP estimates do not vary much in magnitude across models, with the no-
table exception of the obviously mis-specified MNL model, which provides
lower point estimates. Considering the confidence intervals — obtained using
the Krinsky and Robb method (1986) — a significant difference is observed
only for the value estimates of AM.

6. Monte Carlo experiments

6.1 Monte Carlo Design

The analyses of the two data-sets lead to results with contrasting interpre-
tations. The first set of results indicates that the three SQ specifications are
statistically equivalent. The second highlights that differences across SQ spec-
ifications can be statistically significant, although—at this sample size—they
are not so for the implied WTP estimates. This issue raises the question of eval-
uating the relative finite-sample performance of the three SQ specifications.

To explore such an issue we focussed on the effects of reciprocal mis-
specifications in these models, and their sensitivity to sample size, by means
of Monte Carlo (MC) experiments.

We ran a series of systematic experiments with GAUSS (routines are avail-
able from the authors) aimed at describing selected features of the finite sam-
ple properties of each of these specifications. The experiments were run using
sample sizes (number of choices) that reflect those frequently encountered in
the literature (N = 700, 1,400 and 2,900) so as to provide practitioners with
some guidance about the expected efficiency gains achievable by increasing
the sample size under different specifications and data generating processes.

Without loss of generality, we employ the data matrix of study 1 because it
includes decreases of some valuable attribute levels. We use as data generating
processes (DGPs) the set of estimates from this sample (Table 13.2), the only
exception being the variance for the error component in MXL-ε. In this case
the estimated σε was not significant, so we choose to use a larger, yet realistic
value (the estimated value from study 2, in Table 13.3). The steps involved are:
1) Compute the deterministic part of the utility for each alternative by using the
maximum-likelihood (ML) or simulated-ML estimates reported in Table 13.2
and the original matrix of attribute levels X.
2) Generate the unobserved stochastic component of the utility of each alter-
native by using pseudo-random draws (with seed) from the inverse cumulative
distribution function suitable for each model.13

3) Derive an indicator of choice yr from the alternative associated with the
highest computed utility.

13Gumbel errors for models MNL, MNL-Asc and for the uj of equation (3.8) the MXL-ε; GEV for the NL
as for equation (3.5); and a re-scaled standard Normal for the εc1 and εc2 of equation (3.8) for MXL-ε.
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4) Proceed to the estimation of the parameters of all models based on the simu-
lated choice responses yr and matrix of attribute levels X, and save the relevant
results of estimation (parameter estimates, t-values, log-likelihood at conver-
gence etc.).
5) Repeat the previous steps for R=550 times.

Given the results in chapter 16 in this volume by G. Baiocchi, we report
results of the MC experiment by using pseudo-random draws obtained with R
and loaded into GAUSS. Overall the results were qualitatively similar to those
previously obtained in GAUSS. The results presented here are from draws ob-
tained from the free software R (those obtained in GAUSS are available from
the authors upon request).

As a criterion to evaluate the performance of the various estimators we focus
our attention on the expected difference between squared errors:

∆SE = E
(
(γ̂ − γ0)2 − (γ̃ − γ0)2

)
(6.1)

where γ̂ is the estimator under mis-specification, γ̃ is the estimator correctly
specified, and γ0 is the true value from the DGP. The larger this value the worse
is the consequence of mis-specification.

We prefer ∆SE to the more frequently employed difference between mean
squared errors:

E(γ̂ − γ0)2 − E(γ̃ − γ0)2 (6.2)

because of the lower variance associated with its estimator, which we estimate
by:14

∆̄SE =
1
R

R∑
r=1

(
(γ̂rγγ − γ0)2 − (γ̃rγγ − γ0)2

)
(6.3)

Since only relative values matter in the coefficient estimates in random util-
ity models, we focus on the marginal rates of substitution (γ = MRS), which
are computed relative to the money coefficient. These measures—under cer-
tain conditions—can be interpreted as marginal WTP values, and hence are
meaningful per se. Further, parameter estimates are asymptotically normally
distributed, but MRS are non-linear functions and as such they do not have a
well-defined sampling distribution.

14As Davidson and MacKinnon (1993) point out (page 740), the variance of equation (6.2) is: R−1V (γ̂)+
R−1V (γ̃)− 2R−1Cov(γ̂, γ̃) and for a positive covariance this variance is inferior to the variance associ-
ated with the difference of the mean squared errors. A positive covariance across estimates is very likely in
our implementation because the estimates are obtained using the same pseudo-random draws.
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Four types of concise measures are reported from the Monte Carlo experi-
ments.15

First, we report the mean of the differences of the squared errors as from
equation (6.2). Mis-specified models associated with large values of these are
troublesome. Negative values indicate that the mis-specification is on aver-
age less biased than the correct estimator at that sample size, which can be
explained by a compensating higher efficiency. To give a more readily inter-
pretable measure of efficiency we also report the values of the inter-quartiles
of these differences. The smaller these intervals the more efficient the mis-
specification.

Secondly, we report the percent of cases in which the mis-specified esti-
mator produces an estimate which is closer to the true value than the correct
estimator. We report this in two forms, one for each MRS, I(AF ), I(RQ),
and I(OF ) and one reporting the percent of cases in which this happens for
all three attributes I(AF, RQ, OF ).

Thirdly, we report the mean of the relative absolute error:

RAE = 1
R

R∑
r

∣∣∣∣∣∣∣∣∣∣ γ̂rγγ − γ0

γ0

∣∣∣∣∣∣∣∣∣∣. (6.4)

This measure gives an idea of the relative magnitude of the bias of the estimate.
Finally, we report the fraction of MC experiments in which the estimated

MRS is placed within a 5% interval around the true value, as a measure of
efficiency computed as:

Γ0.05 = 1
R

R∑
r

1(γ̂rγγ ∈ γ0 ± γ0 × 0.05). (6.5)

Where 1(·) is an indicator function. This count gives an idea of how clustered
estimates are around the true values.

In addition, select points are illustrated using plots of the kernel smoothing
of the obtained distributions of estimates, using the normal kernel with optimal
bandwidth [4].

6.2 Monte Carlo Results

The results reported in tables 13.4-13.6 indicate that the values for ∆̄SE
16

and their dispersion—as described by the size of the inter-quartile intervals in

15We omit to report the simulation performance of the AIC as a selection criterion for the correct specifica-
tion. In brief, the simulation results showed that AIC was a stable indicator of performance and performed
extremely well at all sample sizes and across all models.
16These values are scaled up by 1,000.
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brackets —decrease as the sample size increases. Notice that in some cases—
as evidenced by non-positive values of ∆̄SE—the mis-specified model outper-
forms the true model in terms of the size of the expected squared-bias. This
happens at all sample sizes and for all attributes when the true DGP is MNL-
Asc and the specification is MXL-ε (Table 13.4). Under this DGP the specifi-
cation MXL-ε seems to perform at least as well as the NL one, except at small
sample sizes, and limited to Γ0.05 and to individual I(·) values.

In terms of expected squared bias, when the DGP is NL the MXL-ε (Table
13.5) performs either as well (AF), or better than the correct specification at
small sample sizes, but not at medium to high. Interestingly, at this sample size
the MNL-Asc specification outperforms the true one for one attribute (OF).
However, for this attribute the mis-specification MXL-ε gives more accurate
estimates than the true specification 16% of the times, versus a 4 and 11% for
the MNL and MNL-Asc, respectively. In terms of cases within the 5% interval
around the true values, MXL-ε performs very similarly to the true specification
at all sample sizes.

Notice, though, that the results in Table 13.6 show that when the true DGP is
MXL-ε the mis-specifications never outperform the true specification in all the
criteria, across all sample sizes. When, instead, MXL-ε was not the true DGP
the mis-specifications never substantially outperform it. This is suggestive that,
in the absence of a strong a-priori information on the true specification, the
MXL-ε is preferable across the board.

In figure 13.1 we present a kernel plot of the distributions of the RAE for the
WTP for Area Flooding when the true model is a nested logit, with N=2,900.
From this figure it is evident how the real choice is between MNL, and the
group MNL-Asc, NL and MXL-ε. Similar patterns emerge when the DGP is
MNL-Asc, suggesting that these three models are effectively interchangeable.
A stronger difference across specifications accounting for SQ emerges when
the DGP is MXL-ε, as shown in figure 13.2. Here the true specification (dot-
dashed line) shows a distribution of RAE values that outperforms the other
two (dotted and continuous line) in that it is much more tightly concentrated
on zero, while the MNL (dashed line) remains strongly biased.

7. Conclusions

Our empirical results from the analysis of the preferences of customers of
Yorkshire Water are consistent with the fact that they are willing to pay for
environmental improvements via an increase on their water bill. The estimated
amount of WTP for quasi-public goods and pure public goods is plausible, and
it is quite stable across the specifications used.

The models providing best statistical fit are found amongst those accounting
for SQ effects, that was loosely defined as a systematic effect to choose the
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Table 13.4. Summary statistics of Monte Carlo distributions of WTP estimates for DGP MNL-Asc.

MNL MNL-Asc NL MXL-ε
Sample size 700 1,400 2,900 700 1,400 2,900 700 1,400 2,900 700 1,400 2,900

∆̄AF
SE

3.33 2.49 2.8 0.12 0.15 0.16 –0.01 0 0
(6.39) (3.86) (3.71) (0.07) (0.05) (0.03) (0.02) (0.01) (0)

∆̄AF
SE

5.39 26.09 26.52 0.96 0.87 1.02 –0.01 –0.04 –0.01
(19.07) (40.07) (34.76) (0.97) (0.7) (0.46) (0.38) (0.21) (0.1)

∆̄AF
SE

–11.97 21.83 29.98 –1.56 –0.8 –0.4 –0.29 –0.02 –0.02
(17.09) (49.53) (47.01) (2.94) (1.88) (1.63) (1.6) (0.48) (0.26)

I(AF ) 9 4 0 56 53 48 55 53 51
I(RQ) 24 4 0 50 51 51 47 50 53
I(OF ) 41 16 9 57 51 47 51 54 49
I(AF, RQ, OF ) 4 1 0 18 22 21 20 22 21
RAE(AF ) 0.49 0.41 0.43 0.17 0. 10 0.07 0.17 0.1 0.08 0.17 0.1 0.06
RAE(RQ) 0.19 0.32 0.32 0.13 0.08 0.05 0.13 0.08 0.06 0.13 0.08 0.05
RAE(OF ) 0.11 0.18 0.18 0.14 0.08 0.06 0.13 0.08 0.06 0.14 0.08 0.06
ΓAF

0.05 0 0 0 17 34 46 19 32 45 18 34 45
ΓRQ

0.05 9 0 0 25 38 55 25 39 54 24 37 55
ΓOF

0.05 24 3 0 22 39 49 24 43 49 23 40 50

True absolute values of WTP are AF = 0.13, RQ = 0.52, OF = 0.97. The ∆̄SE values are multiplied by 1,000.



Perform
ance

oferror
com

ponentm
odels

for
status-quo

effects
269

Table 13.5. Summary statistics of Monte Carlo distributions of WTP estimates for DGP NL.

MNL MNL-Asc NL MXL-ε
Sample size 700 1,400 2,900 700 1,400 2,900 700 1,400 2,900 700 1,400 2,900

∆̄AF
SE

3.38 2.57 2.85 0.02 0.01 0 0 0 0
(6.23) (4.02) (3.83) (0.12) (0.04) (0.03) (0.07) (0.45) (0.05)

∆̄RQ
SE

5.14 27.19 27.1 0.07 0.05 0.02 –0.01 0.01 0.03
(19.6) (41.03) (36.06) (0.79) (0.69) (0.33) (0.72) (0.56) (0.31)

∆̄OF
SE

–10.82 22.55 28.53 0.87 0.77 0.32 –0.44 0.07 0.07
(16.25) (50.21) (48.16) (5.58) (2.98) (1.68) (3.3) (1.9) (1.11)

I(AF ) 1 2 0 43 43 43 50 47 45
I(RQ) 24 1 0 47 51 47 48 47 46
I(OF ) 42 15 5 43 41 45 50 47 49
I(AF, RQ, OF ) 4 0 0 11 11 12 16 18 18
RAE(AF ) 0.48 0.41 0.43 0.16 0.09 0.07 0.16 0.09 0.07 0.16 0.1 0.07
RAE(RQ) 0.18 0.32 0.31 0.13 0.07 0.05 0.13 0.07 0.05 0.13 0.07 0.05
RAE(OF ) 0.12 0.18 0.18 0.14 0.09 0.06 0.14 0.08 0.06 0.14 0.08 0.06
ΓAF

0.05 0 0 0 19 37 41 20 37 41 20 36 41
ΓRQ

0.05 10 0 0 25 45 56 26 44 56 25 43 56
ΓOF

0.05 23 4 0 25 35 50 25 36 51 25 35 51

True absolute values of WTP are AF = 0.13, RQ = 0.52, OF = 0.97. The ∆̄SE values are multiplied by 1,000.
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Table 13.6. Summary statistics of Monte Carlo distributions of WTP estimates for DGP MXL-ε.

MNL MNL-Asc NL MXL-ε
Sample size 700 1,400 2,900 700 1,400 2,900 700 1,400 2,900 700 1,400 2,900

∆̄AF
SE

8.12 6.21 6.55 0.31 0.14 0.07 0.28 0.13 0.06
(13.98) (8.87) (8.28) (1.22) (0.55) (0.31) (1.14) (0.53) (0.27)

∆̄AF
SE

13.56 38.95 40.44 2.89 3.15 1.21 6.31 2.45 0.88
(38.55) (60.17) (54.96) (14.18) (13.86) (5.45) (17.9) (9.72) (3.96)

∆̄AF
SE

–13.8 28.16 30.61 13.68 8.57 4.96 17.86 13.59 10.32
(19.95) (65.16) (55.3) (53.66) (33.41) (19.93) (79.52) (48.89) (33.35)

I(AF ) 2 0 0 37 31 32 35 35 36
I(RQ) 22 2 0 39 38 41 31 38 39
I(OF ) 58 15 8 42 40 38 42 37 31
I(AF, RQ, OF ) 2 0 0 8 6 6 5 9 8
RAE(AF ) 0.73 0.64 0.65 0.21 0.13 0.1 0.21 0.13 0.09 0.17 0.17 0.08
RAE(RQ) 0.26 0.39 0.39 0.17 0.13 0.09 0.19 0.13 0.08 0.14 0.1 0.07
RAE(OF ) 0.14 0.2 0.19 0.19 0.12 0.09 0.19 0.13 0.11 0.16 0.09 0.07
ΓAF

0.05 0 0 0 16 25 32 14 27 34 19 30 38
ΓRQ

0.05 6 0 0 18 24 39 18 26 43 23 31 45
ΓOF

0.05 19 4 0 16 25 38 18 25 30 16 33 46

True absolute values of WTP are AF = 0.13, RQ = 0.52, OF = 0.97. The ∆̄SE values are multiplied by 1,000.
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Figure 13.1. Plot of kernel-smoothed distribution of the Relative Absolute Error of WTP esti-
mates for Area Flooding. True data generating process (Continuous line NL): MXL-ε dashed-
dotted line; Dashed line MNL; Dotted line MNL-Asc.

SQ or the alternatives different from the SQ beyond what can be explained
on the basis of the attributes values alone. We found that in our samples the
conditional logit model, that ignores any source of SQ effect, produces the
lowest estimates of benefits from provision of externalities. While from the
societal viewpoint such a conservative estimate would guide investments in
a cautious way, it would still represent a sub-optimal resource allocation, as
many potentially beneficial proposals would fail the Pareto efficiency test by
providing too low a benefit estimate.

Following other authors (Haaijer, 1999; Kontoleon and Yabe 2003), we have
argued that there are very good reasons for investigating the existence of SQ
effects in the application of choice-experiments, and that these reasons might
be particularly compelling in non-market valuation of environmental goods.
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Figure 13.2. Plot of kernel-smoothed distribution of the Relative Absolute Error of WTP esti-
mates for Area Flooding. True data generating process: MXL-ε (dashed-dotted line). Continu-
ous line NL; Dashed line MNL; Dotted line MNL-Asc.

We examined three specifications that can be used to account for these effects:
the conventional logit model with alternative-specific constant, the nested logit
model and and the less conventional mixed logit with error components and
alternative specific constant.

Secondly, we reported how we observed different forms of statistical ev-
idence of SQ effects in two separate studies on preferences for water man-
agement attributes, which include important public goods, such as number of
areas protected by flooding and number of households protected from odour
and flies. While in a study we observe that all three specifications account-
ing for SQ afford similar statistical performance and WTP estimates, in the
other application we observe that the mixed logit with error component and
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alternative-specific constant statistically dominates the nested logit and MNL-
Asc, but this dominance does not implies statistically different estimates.

Finally, we investigated the effects of mis-specification using in turn the
three SQ data generating processes by means of Monte Carlo experiments over
a plausible range of sample sizes. The results of the experiments suggest a
number of points.

First, when SQ effects are a concern, the use of simple conditional logit
specifications may produce strongly biased estimates for the taste parameters.
These will also produce biased welfare measures.

Secondly, when the true DGP is mis-specified, the MXL-ε specification gen-
erally provides a good performance in our Monte Carlo experiments. Such per-
formance is not matched neither by the NL model nor by the MNL-Asc model
when the true DGP is MXL-ε.

In conclusion, our empirical results confirm the existence of a systematic ef-
fect of the status-quo alternative on choice selection. This was previously dis-
cussed and evidenced in general terms by Samuelson and Zeckhauser (1988)
and Hartman et al. (1991). Such effect was examined more specifically in the
context of choice-experiment in market research by Haaijer (1999) and Haaijer
et al. (2001) and addressed in environmental economics by Hanley and Wright
(2003), and Li et al. (2004) by means of nested logit models.

We find that a less usual specification, namely the MXL-ε consistently
achieves better results than MNL with an alternative-specific constant for the
SQ and NL specifications. The MXL-ε model is parsimonious, yet, it cap-
tures SQ effects in both the systematic component of preference via alternative-
specific constant, and the unobserved heterogeneity associated with hypothet-
ical changes described by unfamiliar attribute levels. It also breaks away from
the restrictive independence of irrelevant alternatives.

Of course the usual caveats pertaining to Monte Carlo results apply here.
Namely, these results might be not very general and perhaps they are due to
the particular data employed in this study. Nevertheless we find quite plausi-
ble that a specification that accommodates status-quo effects simultaneously in
both the stochastic and deterministic component of utility outperforms specifi-
cations that only address one at the time.

Further research should investigate how general these preliminary results
are, and how status-quo effects can be related to the various features of the
experimental design, investigating — for example — the relationship between
choice-complexity and degree of familiarity with attributes levels defining the
status-quo vis-a-vis the proposed changes.`
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Abstract Although it is well established that dynamically optimal policies should be
“closed loop” so that policies take into account changing conditions of a system,
it is rare for such optimization to actually be carried out in large-scale simula-
tion models. Computational limitations remain a major barrier to the study of
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tinue to inhibit the identification of dynamically optimal policies for the foresee-
able future. In this chapter, we explore in detail the problem of solving dynamic
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optimization problems for large-scale simulation models and consider methods
to work around the computational barriers. We show that a reasonable approach
is to solve a small-scale problem to identify an approximate value function that
can then be embedded directly in the simulation model to find approximately op-
timal time-paths. We present and compare two ways to specify the small-scale
problem: a traditional “meta-modelling” approach, and a new “direct approach”
in which the simulation model is embedded directly in the dynamic optimiza-
tion algorithm. The methods are employed in a model of the Gulf of Mexico’s
red snapper fishery and used to identify the dynamically optimal total allowable
catch for the recreational and commercial sectors of the fishery.

Keywords: Dynamic programming, Bellman’s equation, curse of dimensionality, Moores
law, General Bio-economic Fishery Simulation Model (GBFSM), value func-
tion, Gulf of Mexico Fishery Management Council, Red snapper.

1. Introduction

As the chapters in this book demonstrate, simulation modelling is a critical
tool for applied economic analysis. This is particularly true when interdis-
ciplinary analysis is to be carried out. Natural systems are complicated, and
although economists may be comfortable with general specifications of the
physical characteristics of such systems, the best available models are often
quite detailed, representing the system using many variables and empirically
estimated relationships. This presents an important challenge for the analyst.
If a large simulation model is to be used, in which the state of the system is
represented by dozens if not hundreds of variables, then it is computationally
impossible for the analyst to identify dynamically optimal policy paths. In this
chapter we explore means by which (approximate) dynamically optimal paths
can be found, even for very large simulation models.

This paper is tied closely to Woodward, Wui and Griffin (2005, hereafter
WWG) in which we spell out the problem of carrying out dynamically optimal
policy analysis when working with a large scale simulation model. In that
paper we propose a new way of solving such problems, which we call the direct
approach. In the direct approach the complete simulation model is embedded
in the dynamic programming algorithm. This is distinguished from the meta-
modelling approach, in which a system of equations is estimated that, in effect,
simulate the simulation model itself. We were unable to find any analysts that
had applied the direct approach previously, while the meta-modelling approach
is quite frequently used.

In this chapter we implement and compare the direct and meta-modelling
approaches. Although we cannot draw general conclusions as to which method
might be preferred, in our application the direct approach seems to be preferred,
yielding a better approximation of the simulated system and, therefore, is prob-
ably preferred for dynamic policy analysis.



Dynamic Optimization in Large Scale Simulation Models 277

The chapter is organized as follows. In the next section we spell out
the difficulty and importance of combining simulation analysis with dynamic
optimization—what we call DPSim modelling. Section 2 summarizes two ap-
proaches that can be used to carry out DPSim analysis. The following section
discusses our empirical application and discusses how the two approaches were
implemented in this case. The results of our modelling are presented and the
direct and meta-modelling approaches are compared. The conclusion summa-
rizes our findings and discusses issues that require further research.

2. The need for and difficulty of dynamic optimization in
large scale simulation models

Simulation modelling plays an important role in policy analysis. However,
except for extremely small and simple models, it is computationally impossible
to analyze all possible policy paths that might be pursued. Hence, truly optimal
policy paths cannot be identified. This is an important limitation for simulation
modelers since many policies have important dynamic consequences, affecting
both future outcomes and future options. To the extent that simulation mod-
elling can assist in identifying preferred policies, it is certainly desirable that
dynamically optimal policies be presented.

The standard approach to solving empirical dynamic optimization problems
is numerical dynamic programming (DP) (Bertsekas 1976, Kennedy 1986). In
such problems, the state of the system is defined by a vector of state variables,
x. Under fairly generalizable conditions, almost any dynamic optimization
problem can be solved to yield an optimal policy rule, z∗(x), and an optimal
value function, v(x). Assuming an infinite horizon,1 the value function is de-
fined implicitly by the Bellman’s equation,

v(xt) = max
z

E(u(xt, zt) + βv(xt+1)) (2.1)

s.t. xt+1 ∼ g(xt, zt)

where u(·) defines the benefits in the current period as a function of x and
choices, z; g(·) defines the conditional probability distribution over future
states, xt+1; E is the expectation operator; and β is the discount factor.2

If the function v(x) were known then starting at a known initial state, x0, an
optimal policy path could be simulated by successively solving the problem

z∗(xt) = arg max
z

E(u(xt, zt) + βv(xt+1)). (2.2)

1All of our analysis below is also applicable to finite horizon problems. We present the infinite horizon case
because it is notationally cleaner.
2In our empirical analysis we use an annual discount rate of seven percent as specified in Executive Office
of the President (1992).
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In the traditional simulation analysis, a policy rule (frequently expressed as a
constant policy) is simulated for a number of periods. Simulating an optimal
path has advantages both normatively and positively. From a normative per-
spective, policies that follow a dynamically optimal policy path will tend to
yield greater net benefits. From a positive perspective, simulating a dynami-
cally optimal path frequently makes more sense because decision makers do
adjust over time to changing conditions. Hence, equation (2.2) provides a pre-
ferred foundation for policy simulation.

As noted by WWG, if v(x) were known, then the optimal paths could be
simulated by repeatedly solving equation (2.2) with the complete simulation
model used to simulate the optimal policy path. For simulation analysis, there-
fore, the goal of a DP exercise should not be to find the optimal policy function,
z∗(x), but to find an approximate value function, v(·). Once this function is
found, an approximately optimal policy path can be found by including the
full simulation model in the policy optimization problem, equation (2.2). In
this manner, dynamically optimal analysis can be carried out without aban-
doning the large simulation model. We call this approach, which combines
simulation analysis with dynamic optimization, DPSim modelling.

The challenge of DPSim modelling is, of course, that the value function is
not known a priori. In principle, v(·) can be found using the methods of nu-
merical DP. In practice, however, it can only be identified for relatively small
systems. Regardless of the solution method employed, solving DP problems
requires that a separate optimization problem be solved at a large number of
points in the state space. Hence, the computational size of a dynamic optimiza-
tion problem tends to grow exponentially with the number of state variables; a
fact that Bellman referred to as the “curse of dimensionality”.

Suppose that there are nx variables in the state space and that each of these
is represented by m different values. In this case to solve the DP problem
mnx different optimization problems would need to be solved repeatedly. If
nx increases by one, the size of the problem grows m-fold.

Because of the curse of dimensionality, dynamic optimization problems can
be solved only for relatively small systems: nx < 10, and usually less than 3.
Certainly DP problems cannot be solved for the large systems in which 100 or
more variables are used to replicate complicated dynamic systems. Although
enormous improvements in the computational speed have been achieved in
recent years, this computational burden will continue to limit the size of DP
problems for many years to come. “Moore’s law” describes the regular ten-
dency for the density of computer circuitry (and processor speed) to double
every eighteen months (Schaller 1997). This “law”, which has held up surpris-
ingly well since its conception in 1965, has startling implications for simula-
tion modelers: a simulation model could double in size every 1.5 years without
slowing down. The implications for DP, however, are not nearly so promising.
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For example, in a model in which each state variable takes on just 8 possible
values, it would be 4.5 years before just one state variable could be added with-
out increasing the run time of the program. The solution of DP problems with
hundreds of state variables lies only in the far distant future.3

3. Two approaches to DPSim modelling

We describe here two ways in which to work within the computational limits
to solve a dynamic optimization problem linked to a large simulation model.
To formalize our discussion we need to introduce some notation. Let XtXX be
the (large) vector of state variables used in the simulation model and ZtZZ be a
vector of policy options. A policy path is denoted Z = {Z0ZZ , Z1, . . .}, where
ZtZZ is the vector of policies implemented in period t. The simulation model can
be thought of as a pair of mappings S1 and S2 from choices and conditions
in period t, ZtZZ and XtXX , into future conditions, XtXX +1, and net benefits in t, ut,
respectively.

To illuminate the general discussion in this section, we will frequently refer
to our case study that we examine in detail below. Our case study is a fish-
eries management problem in which we use the General Bioeconomic Fishery
Simulation Model (GBFSM) as our model foundation. GBFSM is a highly de-
tailed model that has been parameterized for the Gulf of Mexico’s red snapper
fishery. In the model, red snapper stocks fall into 360 different groups dis-
tributed across two depth zones (depths 2 and 3 in the model) for a total of 720
depth-cohort groups. Hence, the complete vector of state variables, XtXX would
include 720 elements. One of the policies being considered in the case study is
the total allowable catch (TAC) of red snapper, so that ZtZZ is the TAC chosen.
A run of GBFSM for a single year takes a starting stock, XtXX , and a specified
TAC level, ZtZZ , and yields a prediction of the stock in the following year, XtXX +1,
and the producer and consumer surplus generated by the fishery, ut.

In general, if in each period there are nz possible policies, then the total
number of possible paths over T periods is NzN = nzT . Since NzN grows ex-
ponentially in T, for all but extremely simple or short-run cases it is compu-TT
tationally infeasible to evaluate every possible policy path. Hence, in most
simulation exercises only a small subset of all possible policy paths are eval-
uated. Hence, instead of simply optimizing over this extremely large set of
policy paths, it is usually better to solve for v(·) in equation (2.1).

As we noted above, since DP problems with hundreds of state variables can-
not be solved, the alternative way to identify approximate solutions to the DP

3Of course brute computational force is not the only option available to the analyst. Improvements in the
efficiency of DP algorithm (e.g., Judd 1998 and Mrkaic 2002) and opportunities exist for very efficient pro-
gramming including the use of parallel processors (Rust, 1997b) or Rust’s randomization approach (1997a),
which can avoid the geometric growth in some problems.
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problem is to specify an approximating DP problem in terms of a small set of
variables, x, which approximate the complete set in X. The problem of iden-
tifying an approximating value function for a simulation model is presented
graphically in Figure 14.1 (taken from Woodward et al. 2005). For simplicity,
we present the model as if it is deterministic and references to Z and S2 are
suppressed to focus on the dynamic processes of the system, S .

Figure 14.1. A conceptual diagram of a simulation model (Reproduced with the permission
of American Agricultural Economics Association).

The top half of Figure 14.1 presents the dynamics of the state variables in
the simulation model while the bottom half of the figure represents a smaller
set of state variables, x, which are used in the DP specification to approximate
X. Let x ∈ x ⊂ R

n be a vector of state variables chosen so that the approximat-
ing problem can be solved in a “reasonable” length of time while still capturing
critical features of the simulation model. In our example, the vector x consists
of aggregate stocks of juvenile and adult stocks. The vector-valued function A:
X → x, maps from the full set of state variables into the small set of variables.
As in our example, where A simply adds up young and adult fish in the two
depths, the function A typically takes the form of a linear aggregation or aver-
age. For each vector X ∈ X there is a single vector x = A(X). However, the

1
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converse is not true—there might be an infinite number of vectors X that could
give rise to a particular vector x. Hence, f(x) defines not a single vector X,
but a set of vectors that might have given rise to x and the probability density
function over that set. We say that X ∈ f(x) if A(X) = x.

To identify the approximate value function, v(x), a DP problem in the space
of the aggregate state variables, x, must be solved. For our example, v(x) is
the fishery’s value as a function of the aggregate stocks. Finding this function
requires the mappings s1, from (xt, ZtZZ ) to xt+1, and s2, from (xt, ZtZZ ) to ut,
where ut = U(ZtZZ , XtXX , εt). As shown in the Figure 14.1, the true mapping s1

involves three steps: from xt to XtXX , then from XtXX and ZtZZ to XtXX +1 through S1,
and finally from XtXX +1 to xt+1, i.e., s1(xt, ZtZZ ) = A(S1[f(xt), ZtZZ ]). As we
have noted, however, the mapping f is one-to-many. Hence, even if X1 and
X2 ∈ f(x), the vectors can differ so that S1(X1, Z) �=�� S1(X2, Z). Hence,
like f(x), the composite mapping s1(·) is also a mapping into a probability
space; given any value of xt and a choice vector ZtZZ , there is a distribution of
values for xt+1 that might result.4

The challenge of DPSim analysis, therefore, is the development of represen-
tations of simulation models to approximate the composite mappings s1 and s2.
Regardless of how this is done, it is clear that the DP model is stochastic, even
if the simulation model itself is deterministic. In general, the functions s1 and
s2 can be deterministic only in the unlikely case A−1(x) exists.

There are two basic approaches that might be used to capture s1 and s2.
Both approaches have in common that they begin by carrying out a wide range
of simulation runs to generate observations of X that are used as “data”. The
traditional approach, which we call the “meta-modelling” approach, approxi-
mates the mappings s1 and s2 using postulated functional forms, say ŝ1(xt, ZtZZ )
and ŝ2(xt, ZtZZ ). For example, xt+1 might be predicted using a set of possibly
high-order polynomials of xt and ZtZZ . In the meta-modelling approach the
coefficients of ŝ1(·) and ŝ2(·) are econometrically estimated using the “data”
and these functions are then used to solve the DP problem. In our case study,
therefore, the meta-model allows us to predict future aggregate stocks based
on current aggregate stocks and the TAC level. This approach, represented by
the dotted lines in Figure 14.1, has been applied by many researchers such as
Bryant, Mjelde and Lacewell (1993), Watkins, Lu and Huang (1998), and van
Kooten, Young, and Krautkraemer (1997).

In a meta-modelling specification, the simulation model is bypassed entirely
once ŝ1(·) and ŝ2(·) are found. In the alternative, which we call the direct ap-
proach, the large simulation model is used directly in the course of solving the
DP problem. To accomplish this, it is necessary to approximate the correspon-

4The argument would also hold for s2 and ut.
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dence f, i.e. the arrow up fromff xt to XtXX in Figure 14.1. This provides a means
by which to approximate the full vector of state variables XtXX so that the large
simulation model can be used directly to predict XtXX +1 and ut.

interpreted as observations of the joint probability distribution of XtXX and xt

and econometric methods are used to estimate the one-to-many mapping, f.ff
Once the mapping f is approximated, the direct approach involves three steps.
First, given a value of xt, the disaggregate vector XtXX is predicted. Then the
large simulation model is run to obtain an XtXX +1 and ut. Finally, using the
aggregation function A, xt+1 is found as A(XtXX +1). In our case study these
three steps are: 1) the 720 cohort-depth groups are predicted based on the
aggregate stocks in xt; 2) GBFSM is run incorporating a TAC policy, yielding
a value of consumer and producer surplus and the cohort-depth groups in t+1,
XtXX +1; and 3) the stocks are aggregated, yielding, xt+1, a prediction of the
next-period’s aggregate young and old fish stocks. This three-step process is
repeated numerous times following standard Monte Carlo methods to obtain
the distribution of ut and xt+1, which are then used in the standard way to
solve the DP problem.

It is clear that although either the meta-modelling approach or the direct ap-
proach might be employed to solve the DPSim problem, neither approach will
exactly solve the true DP problem. Both models find an approximate value
function, v(xt), which calculates the value of the system as a function of the
aggregate variables xt instead of the true value function, which would be a
function of XtXX . Estimation errors are introduced because the simulation model
is based on X, while the DP model is solved based on x. The meta-modelling
approach introduces errors in the use of functional forms to approximate the
complete mappings s1 and s2. The direct method introduces errors in the pre-
diction of XtXX . It is not possible to a priori rank the two methods. We can
say, however, that the meta-modelling approach will have a clear advantage
in terms of computational speed since it only has to evaluate the small set of
functions incorporated in ŝ1(·) and ŝ2(·). In the remainder of this chapter we
present our case study in more detail and use it to compare the two methods.

4. An empirical application of DPSim analysis: The Gulf
of Mexico Red Snapper Fishery

4.1 The policy setting

Our empirical application of the methods outlined is for the red snapper
fishery of the Gulf of Mexico. This fishery is an important economic asset:
commercial harvests of red snapper were valued at nearly $12.0 million from
5.08 million pounds in 2000 (U.S. Department of Commerce) and recreational

In the direct approach the “data” generated from the simulation model are
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harvests in the same year were estimated at 4.15 million pounds (Gulf of Mex-
ico Fishery Management Council).

The two policy variables we consider here are the total allowable catch
(TAC) for the red snapper fishery, and the distribution of the TAC between
the commercial and recreational sectors. The TAC is a fundamentally dynamic
choice variable. Reducing the TAC is essentially an investment decision: ben-
efits today are foregone to increase the value of the fishery in the future. The
value of this investment depends not only on biological factors, but also on
the extent to which future policies respond to changes in the stock. Dynamic
optimization is, therefore, essential to the identification of the appropriate TAC
policies.

To some degree, the need for a dynamically optimal policy has been rec-
ognized by the Gulf of Mexico Fishery Management Council (the council) in
their plan to rebuild the red snapper fishery. The management alternatives eval-
uated by the Council call for re-evaluation of the policies every five years based
on updated indicators of the fishery’s health. Although the management alter-
natives considered by the Council are somewhat more rigid and limited than
what might be desirable under a dynamically optimal policy, it appears that
they will react to the changing conditions over time.

4.2 The simulation model: GBFSM

The simulation model that is at the heart of our analysis is the General Bio-
economic Fishery Simulation Model (GBFSM). GBFSM permits a high degree
of flexibility, allowing for multiple species, depths, areas, cohorts, fishing ves-
sels, and more. The model was originally developed to predict how alternative
management policies would affect fisheries (Grant, Isaakson, and Griffin) and
has been used extensively for analyzing the effects of management policies in
the Gulf of Mexico (Blomo et al., 1978; Grant and Griffin, 1979; Griffin and
Stoll, 1981; Griffin and Oliver, 1991; Gillig et al., 2001). GBFSM consists of
two main parts: a biological submodel and an economic submodel. The bi-
ological submodel represents the recruitment, growth, movement, and natural
and fishing mortality of shrimp and finfish. The economic submodel, which
includes a harvesting sector and a policy sector, represents the monetary and
industry impact. Entry and exit in the commercial sector follow the standard
bio-economic approach based on economic rents. Recreational effort is pre-
dicted using econometrically estimated recreation-demand functions (Gillig et
al., 2001). The model is parameterized using coefficients from the literature,
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econometrically estimated functions, and calibration, so that to the greatest
extent possible, the model replicates historical trends in the fishery.5

Forty GBFSM simulations were run, each for fifty years. These simulations
generated simulated data that were then used to parameterize the direct and
meta-modelling approaches. We also used this data to determine the relevant
range for the simulations, so that the only values for the aggregate state vari-
ables were those that were in the neighborhood of values that were actually
observed in the simulations.

4.3 Solving the DP problem: The direct method

The direct approachrequires estimation of functions mapping a state-vector,
x, into a vector of states for the full set of state variables in the simulation
model. Three aggregate variables are used: the recreational catch per day of
effort (CPUE) in the previous year, xc, the stocks at the beginning of the year
of young red snapper (2-years old or less), xy, and adult red snapper (3-years
old and above), xa. The CPUE variable, xc, coincides exactly with a variable
in the simulation model so that a one-to-one mapping is possible for this vari-
able. For the population variables, however, the size of the array X is much
larger than could be incorporated into a DP model. The red snapper popula-
tion in GBFSM is composed of 720 depth-cohort groups. Using the simulated
data, a conditional expectation function was estimated for each depth-cohort
combination, xdc:

E(lnXdc) = α0dc + α1dc lnxc + α2dc lnxy + α3dc lnxa (4.1)

The double-log specification was used to avoid the prediction of negative
stocks.

Overall, these estimated equations were able to predict the cohort popula-
tions quite accurately. The goodness of fit is the most important diagnostic
variable. As can be seen in Figure 14.2, for cohorts less than 13 years old,
most of the R2s exceeded 80%. Although the R2s drop off for older cohorts,
the failure of the model to predict these older stocks is less critical since the
population is dominated by younger fish due to natural and fishing mortality.
On average across the simulations, only about 5% of all fish were 14 years or
older. These results indicate that the distribution of XtXX conditional on xt is rel-
atively “tight” so that it is possible to predict XtXX quite accurately, giving a high
degree of confidence in the direct approachfor solving the DP model. Higher-
order polynomial specifications of the approximating function were evaluated

5There are many details that are suppressed here. A detailed description of GBFSM and its calibration are
available at http://gbfsm.tamu.edu. The discount rate used in the analysis is the federally mandated rate of
7% per annum (Executive Office of the President).
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and these specifications improved the overall goodness of fit. However, such
specifications resulted in some unrealistic predicted values of X, particularly at
points on the edge of the state space. Monte Carlo methods were used to esti-

Figure 14.2. R2 values from equations used to predict cohort populations in the direct method.

mate the expectations Ev(xt+1) and Eut. The distribution f(xt) is made up of
720 jointly distributed variables. This distribution was estimated by drawing
nmc =50 observations of vectors of residuals from the econometric model so
that the ith observation of each depth-cohort group was

ln X̂i
dc = α0dc + α1dc lnxi

c + α2dc lnxi
y + α3dc lnxi

a + εi
dc

in this case since it avoids the need to make an ad hoc assumption about the
distribution (e.g., joint normality), which almost certainly does not hold true.

The vectors predicted using equation (4.2) do not typically sum exactly to
their associated aggregate variable, e.g., xi

y �=�� ∑
∀d

∑
c≤2 X̂i

dc. Hence, after

obtaining this initial prediction X̂i
dc using equation (4.2), all cohorts were pro-

portionally scaled up or down so that for the cohort vectors used in the GBFSM
it holds that A(X) = x.

A three-dimensional 20 × 20 × 20 uniform grid was generated to approxi-
mate the state space. However, in the simulated data there was a high degree of
correlation among the three aggregate state variables and many potential com-
binations of state variables were never observed. To take advantage of this and
to avoid making prediction in portions of the state space that are never realisti-
cally observed, only vertices of the grid that were adjacent to points in the data
were included in the state space. This reduced the number of points in the state
space from 8,000 vertices to only 519.

(4.2).
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4.4 Solving the DP problem: The meta-modelling
approach

The meta modelling specification was parameterized with the same data
used for the direct method that is discussed above. Four functions were esti-
mated, three to predict each of the state variables, xt+1, and a fourth to predict
the fishery’s annual surplus. The independent variables in each of these func-
tions are the state of the fishery in year t as described by the aggregate state
variables, xt, and the control variables, ZtZZ . We experimented with a variety of
specifications, all of which can be represented by the function:

ŷk = ak +
5∑

i=1

np∑
j=1

bijk(vi)j +
4∑

i=1

5∑
j=i+1

cijk(vivj),

where ŷk is a predicted variable, an element of xt+1 or surplus in period t, np

is the order of the polynomial, and the v’s are the independent variables with
v1 through v3 equal to the elements of the state space, and v4 and v5 equal to
values of the control variables. Double-log specifications were also used, in
which case, for example, ŷk = ln(x̂1

t+1) and v1 = ln(x1
t ). Using second and

third-order polynomials, a total of four specifications were estimated.

Table 14.1. R-squared Values for the Specifications Used in the Meta-Modelling Approach

Equation

ut xt+1

Specification (benefits) xc xy xa

Second order polynomial 0.889 0.990 0.992 0.998
Double-log second order polynomial 0.965 0.978 0.990 0.996
Third order polynomial 0.944 0.991 0.993 0.999
Double-log third order polynomial 0.966 0.981 0.990 0.996

The estimated functions for the meta-modelling approach appear to offer a
strong statistical foundation for simulating the simulation model. The R2 val-
ues for each of the 16 equations are presented in Table 14.1, and clearly all
the specifications are able to explain most of the variation found in the data.
As we will discuss below, the second-order non-log specification was used to
solve the meta-modelling application of the DP problem. The coefficients for
this specification are presented in Table 14.2. In this specification, approxi-
mately two-thirds of the parameters are significantly different from zero at the
5% level and similar levels of significance held for the other specifications as



Dynamic Optimization in Large Scale Simulation Models 287

well. Interestingly, the vast majority (85%) of the coefficients on the third-
order polynomials were significantly different from zero at the 5% level.

Table 14.2. Coefficients for Second-Order Polynomial Specification of Meta-Modelling Pa-
rameters (Standard Errors in Parentheses)

Benefits xc xy xa

Est. St. Err. Est. St. Err. Est. St. Err. Est. St. Err.

Intercept 17.147 1.660 –1.227 0.214 16.542 1.364 –2.26 0.456
xc 1.074 1.209 –0.499 0.156 –4.476 0.993 0.231 0.332
x2

c –4.093 0.358 –0.102 0.046 1.898 0.294 –0.403 0.098
xy 0.047 0.086 0.106 0.011 0.101 0.070 0.322 0.024
x2

y 0.002 0.001 –0.002 0.000 0.011 0.001 –0.004 0.000
xa 0.047 0.300 0.203 0.039 2.578 0.246 0.233 0.082
x2

a –0.116 0.017 0.001 0.002 0.077 0.014 –0.012 0.005
ZTZZ 0.320 0.069 –0.031 0.009 0.033 0.001 –0.142 0.019
Z2

TZZ –0.003 0.001 0.000 0.000 0.001 0.001 0.001 0.000
ZD 0.549 0.101 0.017 0.013 –0.038 0.083 –0.036 0.028
Z2

D –0.017 0.003 0.000 0.000 0.005 0.025 0.004 0.028
xc · xy 0.097 0.03 0.033 0.004 0.007 0.025 0.039 0.008
xc · xa 1.457 0.154 –0.011 0.020 –0.683 0.127 0.087 0.042
xc · ZTZZ –0.079 0.038 –0.015 0.005 0.039 0.031 –0.035 0.010
xc · ZD 0.289 0.054 0.006 0.007 –0.114 0.044 –0.022 0.015
xy · xa –0.035 0.007 –0.001 0.001 –0.033 0.006 0.009 0.002
xy · ZTZZ 0.003 0.002 0.001 0.000 –0.003 0.001 0.002 0.000
xy · ZD –0.003 0.003 0.000 0.000 0.001 0.002 –0.004 0.001
xa · ZTZZ 0.013 0.009 0.002 0.001 –0.003 0.007 0.003 0.002
xa · ZD –0.028 0.012 –0.005 0.002 0.020 0.010 0.002 0.003
ZTZZ · ZD –0.016 0.004 0.001 0.001 –0.003 0.003 0.005 0.001

R2 0.889 0.99 0.992 0.998

Monte Carlo simulation was carried out taking into account both the vari-
ation in the parameter estimates and in the residuals accounting for cross-
equation correlation assuming that both parameter estimates and the residuals
are jointly distributed normally.

5. Results

Figures 14.3 and 14.4 depict the value functions obtained using the direct
and the meta-modelling approaches. Of the meta-modelling specifications
used, only the second-order polynomial non-log specification is presented. As
we note above, higher order polynomials can be unstable in the DP algorithm
as they give highly variable predictions at the boundaries of the state space
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Figure 14.3. Value function obtained using the direct method.

and this is what occurred in the model specified here; the log and third-order
polynomial specifications did not converge so those results are not presented.
As seen in Figure 14.4, even the second-order specification gives rather un-
intuitive results with the value function falling as higher stocks are reached.
The failure to achieve convergence in some of the meta-modelling specifica-
tions may surprise some readers who have been assured of the convergence
of the successive approximation approach to solving DP problems. However,
the contraction mapping properties of the algorithm do not necessarily hold
when the value function is predicted over a continuous state space. An alter-
native solution approach that might have been more successful would be to
implement the collocation method advocated by Judd (1998). However, this
method requires the specification of a functional form for the value function.
The functional form preferred by Judd is a Chebyshev polynomial. However,
since Chebyshev polynomials must be defined over a rectangular grid, they are
unsuitable for the non-uniform grid that we favor in this application to avoid
extrapolation to unrealistic state-space combination.

Figure 14.5 presents the DPSim results, the simulated optimal policy paths
for both the direct and meta-modelling approaches. At each point along these
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Figure 14.4. Value function obtained using the meta-modelling approach, using coefficients
from Table 14.2.

paths an optimal policy is found by solving the static optimization problem,
equation (2.1), with ut and xt+1 found by GBFSM and the value function,
v(xt+1), obtained from the solution of the optimization problem as presented
in Figures 14.3 and 14.4. Once an optimal policy is identified, that policy is
introduced into GBFSM to determine the state of the fishery in the next year.
Both simulations start with the same stock at t=0, but because the policies differ
the predicted stocks underlying the simulated policy paths differ. As seen in
Figure 14.6, the red snapper stock recovers significantly when policies from the
direct-method are followed, while the stock stays essentially stable if policies
from the meta-modelling approach are used. The reason for the differences
in the policies chosen must be attributable to the value functions presented
in Figures 14.3 and 14.4. Because of the upward slope in the value function
identified using the direct method, there is an identified benefit to increasing
the stock. In contrast, the value function found using meta-modelling approach
was not monotonically increasing so that stock enhancements were not treated
favorably when equation (2.1) was evaluated to identify the optimal policies at
each point in time.
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Figure 14.5. Simulated optimal policy paths with direct and meta-modelling specifications.

Figure 14.6. Simulated spawning stock along paths using direct and meta-modelling ap-
proaches.
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The above figures give reason to believe that in this application the direct
method is more reliable than the meta-modelling method. What is the rea-
son for this? Recall that either method introduces potential errors. The direct
method introduces errors through the incorrect prediction of the disaggregated
stocks in period t, which then leads to errors in the prediction of ut and xt+1.
The meta method introduces errors more directly through the inaccurate pre-
diction of ut and xt+1. One cannot say a priori which errors will be more
important. To compare the relative accuracy of the two methods, we compared

Figure 14.7. Comparison of actual and predicted next-period state variables. Actual values
from GBFSM (lines), Direct-method predictions (Empty symbols) and Meta-modelling predic-
tions (solid symbols).

the mean predicted values for surplus and each of the state variables with the
values that actually were found in the simulation model along the direct method
policy path in Figure 14.5.6 The results of these comparisons are presented in
Figures 14.7 and 14.8. As seen in Figure 14.7, either method is reasonably
precise in the prediction of the next period state variables and neither method
is preferred. Both methods err significantly in the prediction of the adult stock
in the first few periods, but after four periods none of the prediction of the
next period’s stock differed by more than five percent and the largest error in
the prediction of the catch per unit effort was just over eight percent. The re-

6The results for the meta-method path are qualitatively similar to those from the direct-method path, but are
less interesting because of the relatively constant optimal TAC policies used along that path.
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Figure 14.8. Comparison of actual and predicted surplus. Actual values from GBFSM (line),
Direct-method predictions (Empty symbols) and Meta-modelling predictions (solid symbols).

sults for surplus in each period, however, show important differences between
the two methods. The direct method is quite accurate in its prediction of ut,
never deviating by more than four percent from the value actually predicted by
GBFSM. This indicates either that the model is quite good at predicting the
disaggregated stocks (as is suggested by Figure 14.2 above) or that the distri-
bution of the predicted returns in a year is not very sensitive to the distribution
of the cohorts, or both. In contrast, the meta-modelling approach is quite in-
accurate in its prediction of returns in a year, particularly in the first several
years when the optimal TACs are low. In the first several years, the prediction
of ut are as much as 23% below the value predicted by GBFSM. This poor
prediction of the surplus when the TAC and stocks are low, is probably an im-
portant part of the reason that low TACs are avoided in the predicted optimal
path found using the meta-modelling approach as shown in Figure 14.5.

6. Conclusions

This chapter has presented an approach to DPSim modelling, conducting
dynamic optimization with a large simulation model. When analysts have
sought to unify a simulation model to dynamic optimization, they have typ-
ically taken the meta-modelling approach. We offer an alternative, which we
call the direct method. The meta-modelling approach has an important advan-
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tage in that its computational burden is significantly less than for the direct
method. But we find that this benefit may have costs - in our application the
direct method provided better results. First, the value function found using
the direct method was much more plausible and did not violate monotonic-
ity as does the meta-modelling approach. Secondly, the policy path seemed
intuitively more reasonable, with low TACs initially, and higher TACs once
the stock has recovered. Finally, and most importantly, we found that the di-
rect method’s prediction of annual surplus was much better than the prediction
from the meta-modelling approach.

As was found in WWG, we believe that optimal TAC management for the
Gulf of Mexico’s red snapper fishery will involve reductions in the TAC in the
short term, followed by expansion in the TAC in the long-term. This policy
recommendation follows from the results of the direct method. If we instead
used the meta-modelling approach, the policy recommendation would be quite
different: greater harvests in the short term and lower harvests in the long term.
The solution method makes a difference.

We wish to emphasize two important points. First, in DPSim analysis the
optimal simulation runs are carried out with the full simulation model; regard-
less of the approach taken, the DP models’ results are used only to calculate
the value of future stocks so that optimal policies at each point in time can
be identified. Secondly, although the direct method was preferred here, either
approach is a plausible way to work around the curse of dimensionality. Un-
less general results can be found on which of the two methods is preferred
under what conditions, we recommend that analysts use and compare both ap-
proaches when attempting to carry out dynamic optimization linked to large
simulation models.
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Abstract In the analysis of dynamic decision problems, the vast majority of the literature
has focused on normative aspects: what should a resource manager do to maxi-
mize a particular objective function? Rarely have resource economists attempted
to answer the positive question: what decision problem does a resource manager
actually solve? There are several candidate explanations for this emphasis on
normative modeling, but in this chapter we take the perspective that although
structural estimation of discrete dynamic decision problems is not especially dif-
ficult, it is difficult enough that most analysts require some explanation of why
they should bother with it at all. We develop a general model of a discrete dy-
namic decision problem, distill it to a tractable form, and present the estimation
methodology. We then provide an empirical example and investigate the impli-
cations of using a reduced-form static model of behavior when the underlying
data-generating process is dynamic.

Keywords: Dynamic optimization, structural estimation, multinomial logit.

1. Introduction

In the analysis of dynamic decision problems (DDP’s), the vast majority of
the literature has focused on the normative aspects of such problems: what
resource managers should do to maximize a particular objective function. Ex-
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amples are ubiquitous in the literature, covering a range of issues from the land
development decision, to the optimal rate of livestock grazing on arid land, to
the well-known Faustmann model (and its many derivatives) of when to har-
vest a timber stand. Rarely have resource economists directly employed their
structural dynamic models in the pursuit of the positive question, What de-
cision problem do resource managers actually solve? The typical empirical
study instead presents dynamic structural models in a theoretical discussion to
motivate the choice of regressors in a reduced-form statistical analysis.1 The
primary explanation for this weakness in the literature is that such estimation
is computationally very difficult. It usually requires a large amount of com-
puter processing time, and perhaps more importantly, it requires a substantial
amount of difficult programming by the analyst. Another explanation is that in
the estimation of a parametric structural model the analyst is required to declare
specific functional forms—state variable transition functions and benefit/utility
functions, for instance—for which there is very little supporting evidence. This
alone may give the analyst pause. A third explanation provides the justifica-
tion for this chapter: by and large, resource economists remain fundamentally
unfamiliar with the methods used to estimate the structure of DDP’s.

This chapter takes the perspective that structural estimation of discrete
DDP’s is not especially difficult, and yet is difficult enough that most ana-
lysts require some explanation of why they should bother with it at all. In the
next section we present the basic logic of structural estimation of discrete dy-
namic decision problems by developing the general case and distilling it to the
tractable form most often found in the literature. In section 3 we illustrate the
method using as a case study a modified version of the timber harvesting prob-
lem examined by Brazee and Mendelsohn (1988) (hereafter, the modified BM
model). In section 4 we discuss, in the context of the modified BM model, the
estimation of reduced-form and static models in lieu of structural estimation
of the “true” dynamic model. We show that reduced-form estimation recovers
the behavior engendered by the modified BM model with surprising ease, but
that such estimation lacks policy-relevant empirical content. Moreover, insofar
as one can relabel reduced-form estimation as structural estimation of a static
decision model, it is not possible to distinguish empirically whether microe-
conomic data is generated by static or dynamic behavior, without maintained
structural assumptions about the form of intra-period benefit (utility, profit)
functions, and even then it may not be possible. In the last section we briefly
discuss future research directions and opportunities.

1Some exceptions in resource economics are Provencher (1995a,b), Provencher and Bishop (1997), and
Howitt et al. (2002).
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2. Structural Estimation of a Discrete Dynamic Decision
Problem

Suppose an agent can make one of S +1 choices in each period t. We index
these choices by s = 0, . . . , S. The amount of the payoff in a period depends
on the state variables x , which evolve over time according to the probability
density function f (xt+1|xt, s); the decision-specific random shock εs; and
perhaps other variables, denoted by y, that are invariant over time. The random
shocks are contemporaneously observed by the agent but never observed by the
analyst. For simplicity we assume these shocks are additive, and identically
and independently distributed over time. Letting Rs (xt,y) + εs

t denote the
decision-specific payoff at time t, the relevant decision problem can be stated
in Bellman’s form,

v (xt, εt,y) = max
s

[
Rs (xt,y) + εs

t + βExEE ,ε|xt,s {v (xt+1, εt+1,y)}] , (2.1)

where the expectation of future value is taken over both the observed state
variables x and unobserved state variables ε =

(
ε0, ..., εS

)
, conditional on the

current values of observed state variables and the decision s.
The problem in (2.1) reflects Bellman’s principle of optimality; in partic-

ular, it implicitly recognizes that regardless of the decision at time t, optimal
decisions are made in the future. This problem can be solved via the recursive
methods of dynamic programming. The solution is an optimal decision rule
s (x, ε,y; Γ), where Γ is the set of structural parameters associated with the
decision problem. This includes the parameters implicit in Rs (x,y), the pa-
rameters of the density function f (·), the parameters of the distribution of ε,
and the discount factor β.

Now suppose there exist observations over time t = 1, . . . , T, and across
agents j = 1, . . . , J, of decisions SjtS and variables xjt and yj . Then defining,

vs
t = Rs (xt,y) + ExE ,ε|xt,s {v (xt+1, εt+1,y)}

the probability that agent j makes choice 0 at time t is given by,

Pr (sjt = 0|xjt,yj ; Γ) = Pr
(
v0
t + ε0

t � v1
t + ε1

t ; ...; v
0
t + ε0

t � vS
t + εS

t

)
=

∫
ε0
t �∆v1,0

t +ε1
t

...

∫
ε0
t �∆vS,0

t +εS
t

g
(
ε1

) · · · g (
εS

)
dε1...dεS , (2.2)

where ∆vs,0
t = vs

t −v0
t , and g (·) is the common distribution of the unobserved

state variables εs
t . The probability that in period t agent j makes a different

choice sjt = 1, . . . , S can be constructed in similar fashion.
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Denoting by sO
jt the observed decision by agent j in period t, and assuming

agent decisions are independent of one another, the likelihood function is

L (Γ) =
J∏

j=1

T∏
t=1

Pr
(
sO
jt|xjt,yj ; Γ

)
. (2.3)

Estimation of the parameters Γ is a complicated and computationally in-
tensive exercise, much more so than is found with typical static models. The
search for the parameter vector that maximizes the likelihood function involves
solving the dynamic decision problem (2.1) each time new parameter values
are evaluated in the search; this is apparent by the presence of vs

t in the limit of
integration in (2.2). Solving the decision problem (2.1) requires dynamic pro-
gramming, and so a DP simulation must be run each time new parameter val-
ues are evaluated in the search for the maximum likelihood value. Maximum
likelihood estimation thus involves nesting an “inner” dynamic programming
algorithm within an “outer” hill-climbing algorithm.

As a general matter, the inclusion of the unobserved state variables seri-
ously impacts the tractability of the dynamic programming problem (2.1), as
the expectation of the value function must be taken over the random com-
ponents of the observed state vector x and the S-dimensional vector ε. For
all but the smallest problems this is not computationally feasible given that
(2.1) must be solved many times during the course of the search for Γ∗, the
likelihood-maxmizing value of Γ. Making matters even more difficult is the
multi-dimensional integration in (2.1) associated with each observation. The
reader familiar with the literature on random utility models will recognize that
the properties of the Gumbel distribution can be used to resolve the difficulty of
the integration in (2.2). In a seminal paper Rust (1989) shows that these same
properties of the Gumbel distribution can be used to resolve the difficulty of
the integration implicit in the expectation in (2.1), as follows.

We assume that ε is iid Gumbel-distributed with location parameters θε =(
θ0, ..., θS

)
and common scale parameter ηε. Moreover, for expositional rea-

sons we define

V (xt, st; Γ) = ExEE ,ε|xt,st
{v (xt+1, εt+1,y)} , (2.4)

in which case the decision problem (2.1) can be restated,

v (xt, εt,y) = max
s

[Rs (xt,y) + εs
t + βV (xt, s; Γ)] . (2.5)

Then from the standard properties of the Gumbel distribution (see Ben-Akiva
and Lerman (1985)), integrating both sides of (2.5) with respect to ε on day
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t + 1 yields,

EεE v (xt+1, εt+1,y) =
1
ηε

ln

(
S∑

s=0

eηε(Rs(xt+1,y)+θs+βV (xt+1,s;Γ))

)

+
γ

ηε
,

(2.6)

where γ is Euler’s constant (≈0.577). Substitution of (2.6) into (2.4) at time
t + 1 yields,

V (xt, st; Γ) = ExEE |xt,st

1
ηε

ln

(
S∑

s=0

eηε(Rs(xt+1,y)+θs+βV (xt+1,s;Γ))

)

+
γ

ηε
.

(2.7)

If v(·) is known, the determination of V (·)—necessary to solve the decision
problem (2.5)—is now a relatively simple affair involving integration over the
random elements in the observable state vector xt+1. In practice, though, v(·)
is not known; but V (·) can be determined via successive approximation (back-
wards recursion) due to the contraction mapping properties of Bellman’s form.
Initially V (·) is set identically equal to zero, and the value function v(·) is ap-
proximated from (2.5) using standard techniques for approximating a function,
such as linear or Chebychev polynomial interpolation. Then the expectation of
v(·) with respect to ε is calculated from (2.6), and an approximation of V (·) is
obtained from (2.7) using standard techniques of function interpolation and nu-
merical integration. The approximation of V (·) is then used in (2.5) to obtain
a new estimate of v(·), and so on. This iterative mechanism terminates under
conditions for convergence, such as sufficiently small changes across iterations
in the optimal decision rule, s (x, ε,y; Γ).

It deserves emphasis that the algorithm described above identifies the op-
timal decision rule – and, more to the point, the associated expected value
function V (·|Γ) – conditional on a particular set of parameters Γ. With the ex-
pected value function in hand, the assumption that ε is iid Gumbel-distributed
allows a restatement of (2.2) in the analytical form,

Pr (sjt = 0|xjt,yj ; Γ) = Pr
(
v0
t + ε0

t � v1
t + ε1

t ; ...; v
0
t + ε0

t � vS
t + εS

t

)
=

eηε(R0(xt,y)+θ0+βV (xt,0;Γ))
S∑

s=0
eηε(Rs(xt,y)+θs+βV (xt,s;Γ))

. (2.8)

The upshot is that although it remains the case that a DP algorithm must be
nested within the estimation algorithm used to find Γ∗, assuming the unob-
served state variables are iid Gumbel-distributed greatly simplifies the algo-
rithm.
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Examination of (2.8) also shows that a well-documented weakness of static
multinomial logit models—the property of independence of irrelevant alterna-
tives (IIA)—does not hold in a dynamic model employing Gumbel-distributed
random variables. The IIA property derives from the fact that, from the per-
spective of the analyst, the odds that one alternative is chosen over another in
a static model depends only on the attributes of the two alternatives. So, for
instance, in the example presented by Bockstael, the IIA property implies the
unlikely result that the odds of visiting a saltwater beach instead of a freshwater
lake does not depend on whether a third beach is itself a saltwater or freshwater
site. However, the log odds ratio for the dynamic model can be stated,

log
(

Pr (sjt = i)
Pr (sjt = k)

)
= ηε

(
Ri (xt,y) + θi + βV (xt+1, i; Γ)

)−
ηε

(
Rk (xt,y) + θk + βV (xt+1, k; Γ)

) (2.9)

And so, by virtue of the presence of xt and y in V (·), the odds of choosing
alternative i over alternative k depends on the attributes (state of nature) of all
the alternatives.

3. An Illustration: The Brazee-Mendelsohn Timber
Harvest Problem

In this section we attempt to clarify the discussion above by examining a
modification of the Brazee-Mendelsohn (BM) model of optimal harvesting
when timber prices are stochastic (Brazee and Mendelsohn 1988). This is a
simple but illuminating example. In the original BM model the forest owner
faces, in each period, the binary decision to either harvest a timber stand or
to postpone harvest. This decision depends on two state variables: the age of
the timber stand a, and the price of timber p. Timber volume at stand age a is
given by

W (a) = eφ1−φ2
a , (3.1)

where φ1 and φ2 are growth parameters.
Timber prices are independent and identically normally-distributed with

mean price µp and standard deviation σpσ ; we denote the probability density
function by g (µp, σpσ ). The forest owner solves the the problem,

v(at, pt) = max [βEpEE v(at + 1, pt+1), ptW (at) − c + βEpEE v(1, pt+1)] (3.2)

where c is the cost to harvest and replant. The problem is easily solved by or-
dinary dynamic programming techniques. The optimal harvest policy s(p, a)
is a reservation price policy in which, for a given stand age, the forest owner
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harvests if and only if the observed timber price is above a reservation price.
Graphically this is represented by the harvest isocline shown in Figure 15.1;
harvest occurs for all combinations of price and stand age above the isocline.
When applying this model to actual data the analyst must account for the pos-

Figure 15.1. Brazee-Mendelsohn Optimal Harvest Policy

sibility that observed harvest decisions deviate from the normative decision
rule. This is accomplished by introducing the decision-specific state variables
ε = (ε0, ε1). This paradox—that the normative model does not fully describe
the decision problem faced by “real world” dynamic optimizers, and so the
normative model is, as a practical matter, not normative at all—is almost in-
variably the case for dynamic problems of resource allocation, because norma-
tive models distill a rich decision environment to a world fully described by
just several state variables. The addition of the unobserved state variables can
be viewed as a somewhat crude attempt to account for the richness of the real
world.

The modified decision problem is,

V (at, pt, εt)
= max

[
ε0
t + βEpEE v (at + 1, pt+1) , ptW (at) − c + ε1

t + βEpEE v (1, pt+1)
]

= max[ε0
t + βV (at, 0; Γ) , ptW (at) − c + ε1

t + βV (at, 1; Γ)]
(3.3)

where the control variable takes a value of 1 if the stand is harvested and 0
otherwise. Note that (3.3) is a special case of (2.1) in which only one of the ob-
served state variables is stochastic (p), and the distribution of the state variable
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is not conditional on the current value. In this framework, one possible inter-
pretation of ε is that it is the utility received from the standing forest (though in
this simple case, the utility received is not conditional on stand age – generally
an unrealistic specification).

Assuming that ε is iid Gumbel-distributed with choice-specific location pa-
rameters θi, i = 0, 1, and common scale parameter ηε, the expected value
function can be stated (using a modified version of (2.7):

V (at, 0; Γ) =

∞∫
−∞

1
ηε

ln
(
M0

)
g (p; µp, σpσ ) dp +

γ

ηε

V (at, 1; Γ) =

∞∫
−∞

1
ηε

ln
(
M1

)
g (p; µp, σpσ ) dp +

γ

ηε
,

(3.4)

where:

M0 = eηε(θ0+βV (at+1,0;Γ)) + eηε(pt+1W (at+1)−c+θ1+βV (at+1,1;Γ))

and:

M1 = eηε(θ0+βV (1,0;Γ)) + eηε(pt+1W (1)−c+θ1+βV (1,1;Γ)),

Given parameters Γ =
{
β, φ1, φ2, µp, σpσ , ηε, θ

0, θ1
}

, V (·) can be approxi-
mated by a simple iterative recursion. In the first iteration, V (·) in M0 and M1

is set to an arbitrary value, and an update of V (·) is found by solving (3.4) for
each stand age a (this requires numerical approximation of the integral taken
over timber prices). The update is then used on the right-hand side of (3.4) in
the second iteration, and so on, until a convergence criterion is met.

For the analyst with observations on the state variables p and a, as well as
the actual harvest decision sjt ∈ {0, 1}, the probability of the observed harvest
decision by forest owner j at time t is:

Pr (sjt|pt, ajt; Γ) =

(1 − sjt) eηε(θ0+βV (ajt,0;Γ)) + sjte
ηε(ptW (ajt)−c+θ1+βV (ajt,1;Γ))

eηε(θ0+βV (ajt,0;Γ)) + eηε(ptW (ajt)−c+θ1+βV (ajt,1;Γ))
,

(3.5)

and the likelihood function takes the form,

L (Γ) =
J∏

j=1

T∏
t=1

Pr
(
sjt|pt, ajt; Γ

)
. (3.6)

It is important to understand that even though the harvest problem involves four
state variables—the observed state variables a and p and the unobserved state
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variables ε0 and ε1—equation (3.4) is the basis of the “inner” DP algorithm
used in estimation, and so the only state variable affecting the dimensionality of
the algorithm is stand age (a). For a given set of parameters Γ, V (·) is found by
iteration over (3.4), as described above. With V (·) in hand, the likelihood value
is calculated from (3.5) and (3.6). The outer search algorithm then chooses an
alternative set of parameters, and so on, until convergence.

The most useful measure of forest value is the value conditional on stand age
and observed price. From (3.3) and the properties of the Gumbel distribution,
the expected value of the forest land for a given stand age and timber price is,

Eεv (at, pt, εt) =

EεE max
[
ε0
t + βV (at, 0; Γ) , ptW (at) − c + ε1

t + βV (at, 1; Γ)
]

=
1
ηε

ln
(
eηε(θ0+βV (at,0;Γ)) + eηε(ptW (at)−c+θ1+βV (at,1;Γ))

)
+

γ

ηε
.

(3.7)

3.1 Some Numerical Results Illustrating the Model

For a given timber price and stand age, harvest is probabilistic because it de-
pends on the values of ε generated for the period. Figures 15.2 to 15.4 presents
probabilities of harvest for three variations of the modified BM model (that is,
the BM model with ε included). All models consider the case of Loblolly Pine
on a low quality site, using parameter values found in Brazee and Mendel-
sohn (1988). Timber growth is implied by volume parameters φ1 =12.09 and
φ2 =52.9 (see (3.1)). Timber prices are normally distributed with mean $167.4
per thousand board feet, and standard deviation $40.41. The discount rate is
3% (discount factor = .97). Harvest and replanting costs are $147, and θ = 0.

The models underlying the panels of Figures 15.2 to 15.4 differ in the value
of the scale parameter, ηε, with this value falling across the three panels. Im-
portantly, the scale parameter of the Gumbel distribution is inversely propor-
tional to the variance (variance= π2

/
6η2

ε ), and so the variance in the distri-
bution of ε is rising across the panels. In the first panel the scale parameter is
especially large in the context of the model (ηε= 20.0). Consequently, values of
ε are invariably close to zero, and so the model is, for all intents and purposes,
the same as the original BM model; that is, for a given stand age, the timber is
harvested if and only if the timber price is above the reservation price for the
stand age. Graphically this is represented in Figure 15.2 by a distinct “proba-
bility ledge” tracing the harvest isocline of the original BM model: as the stand
ages the reservation price falls (see Figure 15.1). Henceforth we refer to this
model as the “virtually no variance” (VNV) model. In Figure 15.3, ηε =2.0
(the “low variance” (LV) model), and so the reservation price policy no longer
applies, as indicated by the transformation of the probability “ledge” of Figure
15.2 to a steep probability “hill” in Figure 15.3. An unexpected result apparent
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Figure 15.2. Probability of Harvest with ηε= 20.

in the figure is that harvest often occurs at very young stand ages. This is the
case because growth at these ages is relatively low, and so if, at these young
stand ages, the difference ε1−ε0 is sufficiently high—a distinct possibility be-
cause of the relatively low value of the scale parameter—it is advantageous to
harvest the stand and start over. In Figure 15.4, ηε = 0.2 (the “high variance”
(HV) model), and the probability surface is noticeably smoother than in Figure
15.3. Essentially the harvest decision is now heavily driven by the observed
values of ε0 and ε1.

Figures 15.5-15.6 presents simulated data from the VNV and LV models.
The data involve 500 timber stands of varying ages observed over an 80-year
sequence. Initial stand ages for the sequences are pseudo-random draws from
a uniform distribution in the range [1,150]. Prices for the sequences were
pseudo-random draws from the price distribution (a single 80-year price se-
quence applies to all timber stands in the figures). The figures show that the
distribution of timber harvests is very different for the two models. The VNV
model has relatively few harvests, and these are concentrated in several years.
The HV model has many more harvests spread fairly evenly over time, reflect-
ing the very young rotation ages engendered by the relatively high variation
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Figure 15.3. Probability of Harvest with ηε= 2.

in ε. Although this is not realistic (generally southern pine must be at least
30 years old to be harvested for sawtimber), the sharp contrast with results
from the VNV is useful because it allows us to explore whether qualitative dif-
ferences in data affect the structural estimation of discrete dynamic decision
processes.

Table 15.1 presents estimation results for the simulated data. We present
results for both the full simulated samples of the VNV and LV models, and for
partial samples in which estimation is based on only the last 40 and 20 years
of the sequences.2 For all seven estimations, the exogenous parameters – the
price parameters µp and σpσ and the volume parameters φ1 and φ2 – are fixed
at their actual values.3 This leaves four potential parameters to be estimated:

2Reducing the sample in the time dimension reflects the judgment that it is easier for researchers to obtain
a large cross section of timber harvest data than a large time series.
3In actual estimation, the corresponding approach is to estimate the growth function and timber price process
exogenously (that is, outside the main estimation algorithm), and to use the estimated parameter values in the
main estimation algorithm, thereby significantly reducing the size of the estimation problem. This approach
of estimating exogenous processes outside of the main estimation algorithm is common in the literature.
Alternatively, the analyst could decide, for instance, that timber owners may be using an incorrect price
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Figure 15.4. Probability of Harvest with ηε= 0.2.

β, θ0, θ1, ηε. But because the values of not harvesting and harvesting are linear
in ε0 and ε1, respectively, only the difference in the location parameters θ1

and θ0 can be identified. To see this, observe from (3.3) that the timber owner
harvests if

ptW (at) − c + β (V (at, 1; Γ) − V (at, 0; Γ)) + ε1
t − ε0

t > 0. (3.8)

Defining ∆θ = θ1 − θ0, it follows from the properties of the Gumbel distribu-
tion that the harvest decision can be cast as logistic with location parameter,

ptW (at) − c + β (V (at, 1; Γ) − V (at, 0; Γ)) + ∆θ,

and scale parameter ηε; significantly, only the difference ∆θ can be identified.
This is reflected in Table 15.1, where we fix θ0 at zero and estimate θ1.

When the full sample is used, estimation results are generally excellent for
both the VNV and the LV models. For all models except the LV model with

process, in which case the parameters of the price process would be included in the set of parameters to be
estimated in the main estimation algorithm. In this case an iterative estimation algorithm suggested by Rust
(1994b) would be useful.
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Figure 15.5. Simulated Harvest Data for the VNV model (ηε = 20 ).

half the sample (Model 5 in Table 15.1), the estimate of the discount rate is
within 0.002 of the actual value, and even for Model 5 the true value is within
two standard deviations of the estimated value. This no doubt reflects the
tremendous influence of the discount rate on the harvest decision. By com-
parison, in estimations using partial samples the estimates of ηε and θ1 tend
to be statistically different than the true values of these parameters. Are these
differences significant as a practical matter? Yes and no. In an investigation
of timber harvest behavior, the analyst is primarily interested in two questions:
the effect of stand age and timber price on the likelihood of harvest, and the
expected value of bare forestland (In particular, the nontimber value of forest-
land). On both counts, Models 2, 3, and 6 generate results very similar to the
true model. The exception to these generally favorable estimation results is
Model 5, for which the estimated discount factor is considerably lower than
the true discount factor. This lower discount factor (higher discount rate) has
two significant effects. First, the estimated value of bare land is much higher
for Model 5 than the actual value: $9,282 per acre versus an actual value of
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Figure 15.6. Simulated Harvest Data for the LV Model (ηε = 2 ).

$1,456 per acre. Of course, the large standard error on the estimate of the dis-
count factor in Model 5 signals the analyst that the estimate of bare land value
is imprecise. Second, for timber stands that by chance mature past age 20 or so,
the predicted harvest age is lower for Model 5 than for the true model.4 Figure
15.7 tells the story on this. It presents the difference in harvest probabilities
between the true model and the estimated Model 5. The deep trough in Figure
15.7 beginning at about stand age 25 in the price range of roughly $200-$270,
indicates that for older stands Model 5 overpredicts the probability of harvest,
and so underpredicts the expected harvest age. This result is entirely consis-
tent with the usual literature on optimal timber harvesting that indicates the

4It is worth emphasizing that in both the true model and Model 5, the odds of a timber stand reaching age
10 is extremely low. This is apparent from Figure 15.3, which shows that for ηε=2.0, the probability of
harvest in each of the first ten years is roughly 0.4, and Figure 15.7, which shows that in the first ten years
the probability of harvest in Model 5 is virtually the same as in the true model.
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Table 15.1. Estimation Results from Simulated Data (see text)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Parameter VNV VNV VNV LV LV LV

[true value] {1...80}† {40...80} {60...80} {1...80} {40...80} {60...80}
β 0.9708 0.9703 0.9686 0.9697 0.9313 0.9702

[0.97] (0.003) (0.002) (0.002) (0.004) (0.037) (0.050)
ηε 18.43 17.58 61.22 - - -

[20.0] (1.12) (0.51) (2.46)
ηε - - - 2.07 5.25 4.36

[2.0] (0.14) (0.21) (0.4)
θ1 –0.014 –0.051 0.124 0.016 0.094 0.081

[0.0] (0.019) (0.083) (0.013) (0.010) (0.002) (0.007)
Log Likelihood –357 –226 –21 –26701 –14007 –7164

VNV=“Virtually No Variance” model, with ηε = 20.0 ; LV=“Low Variance” model, with ηε = 2.0.
† {x, y} indicates that only sample observations between and including years x and y in the 80-year se-
quence of simulated prices are included in the estimation. Standard errors are given in parentheses. Ad-
ditional explanation about this Table is found in the text. Starting values for all estimations: β = 0.95,
ηε = 10.0, θ1 = 0.20.

expected harvest age falls with an increase in the discount rate (decrease in the
discount factor).

It should be emphasized that the low estimated discount rate in Model 5 is
not a fluke associated with the particular starting values used in estimation. In
a search across a range of starting values, including the parameters of the true
model, we could not find estimates generating a higher likelihood value for the
sample than those presented in Model 5. It should also be emphasized that the
deep probability trough observed in Figure 15.7 occurs outside the range of
the simulated data. Of the 8,621 harvests observed in the data, 8,561 (99.3%)
occur at stand age 10 or less, and all harvests occur at a stand age less than 20.
In other words, for very few observations is the stand age greater than 10, and
for no observations is it greater than 20. Perusal of Figure 15.7 shows, then,
that in the range of the data the harvest probability of Model 5 is virtually
the same as for the true model. This teaches an old and familiar lesson, one
certainly not unique to the estimation of DDP’s: in the absence of a good range
in the data, identification of a model can be difficult.

4. Comments on Reduced Form (Static) Estimation of
Discrete Dynamic Decision Problems

Given the difficulty of structural estimation of a discrete DDP, it is reason-
able to question whether the effort is worth the gain. In particular, why not
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Figure 15.7. Harvest Probability Difference between the True Model and Model 5
(PrTrue −PrModel5).

simply estimate a reduced-form version of the problem? Inspection of the
timber harvesting decision (3.8) makes clear that one can specify the decision
problem as one in which the forest owner harvests trees if:

F (pt, at) + ∆εt > 0, (4.1)

where ∆εt is distributed logistically. This leads to a straightforward appli-
cation of logistic maximum likelihood estimation. A similar reduced form
can be used to approximate the optimal decision rule of any discrete DDP. Of
course, the presence of the value functions in (3.8) argues for a flexible form
in the approximation, and even then the quality of the approximation may be
poor. Figures 15.8-15.10 presents harvest probabilities from first-, second-,
and third-order estimation of (4.1) for the case where the true model is the
LV model (σε = 2.0), and so the figure against which the panels of Figures
15.8-15.10 are to be judged is Figure 15.3. Estimates are based on simulated
data of the same size as used in Table 15.1 – namely, pooled time-series, cross-
sectional data of length 80 years and width 500 forest stands. The structural
counterpart in estimation is Model 4 (see Table 15.1), which generated harvest



Estimation of Discrete Dynamic Decision Processes 311

probabilities virtually identical to the true harvest probabilities (that is, it gen-
erates a probability surface that looks exactly like the probability surface of the
true model presented in Figure 15.3, so we do not bother presenting the surface
here). A comparison of Figure 15.8 and Figure 15.3 indicates that when F (·)
takes the simple linear form,

F = α0 + α1p + α2a,

the approximation to the harvest probability surface is very poor, and the prob-
ability of harvest decreases as the stand age increases. Figure 15.9 indicates
that when F (·) takes the quadratic form,

F = α0 + α1p + α2a + α3p
2 + α4a

2 + α5p · a
the approximation is considerably improved, and Figure 15.10 indicates that
when F (·) takes the cubic “form,”

F = α0 + α1p + α2a + α3p
2 + α4a

2 + α5p · a
+α6p

3 + α7a
3 + α8p

2 · a + α9p · a2,

the approximation is excellent. Seemingly and not surprisingly, even a fairly
low-order polynomial will do a good job of approximating fairly complex de-
cision rules.

The conceptual weakness of reduced form estimation is the same for DDPs
as it is for any economic model; it does a reasonably good job of describing
the effect of various state variables on decision variables, but the estimation
is otherwise devoid of economic content. It identifies the variables affecting a
dynamic decision, but it provides no insight about the mechanism of the rela-
tionship. In the illustrative example presented here, reduced form estimation
tells the analyst that timber price and stand age do affect the harvest decision,
but it is silent about the discount rate used in the harvest decision, an important
issue in the long debate about whether forest owners harvest timber too soon
(and therefore require incentives to take the long view); it says nothing about
the nontimber benefits of forestland (as embodied in ε), a major issue in the
allocation of land across various uses; it says nothing about the overall value of
forestland; and it says nothing about the price expectations of forest owners.5

A related issue is whether it is safe to assume that a decision problem is
static. For our timber example, one might simply posit that in each period the
forest owner harvests if the intra-period utility from harvesting is greater than

5In the structural models estimated in this chapter, price distribution parameters are fixed at their true val-
ues. In other estimations conducted in preparation of the chapter but not presented here, price distribution
parameters were included in the set of parameters to be estimated. Generally results were excellent, though
a bit sensitive to starting values. Provencher (1995a,1995b) estimates models of pulpwood harvesting in
which the price process is autoregressive.
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Figure 15.8. Harvest Probability Surface for Linear Reduced-Form (Logit) Model.

the utility of not harvesting. For instance, letting H(at) denote the money-
metric utility derived from a standing forest at age at, and assuming that har-
vest occurs at the beginning of the period and H(0) = 0, harvest occurs if

ptW (at) − c + ε1
t > H(at) + ε0

t

⇒ ptW (at) − c − H(at) > ∆εt,
(4.2)

which, under the same assumptions about the distribution of ε used above, is
the basis of a simple logistic regression. However, this approach can be prob-
lematic. For many problems—timber harvesting surely among them—it is not
reasonable to assume away dynamic behavior. For problems where dynamic
behavior is an open question, things are a bit complicated. Baerenklau and
Provencher (2004) examine the issue of whether recreational anglers allocate a
“fishing budget” over the course of a season. We estimate both a structural dy-
namic model and a reduced form static model of trip taking behavior and find
significantly different welfare estimates across models. More troubling, we
also demonstrate theoretical inconsistencies and identification problems with
the static model when behavior is truly dynamic.
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Figure 15.9. Harvest Probability Surface for Quadratic Reduced-Form (Logit) Model.

Furthermore, although dynamic models encompass static ones, actually test-
ing for static behavior is problematical for the simple reason that if one spec-
ifies a sufficiently flexible form for the static utility function, the static model
will provide an excellent fit to the data. Put another way, a reduced form model
can be relabeled as a structural, albeit static, model, and as already demon-
strated, reduced-form models can provide an excellent fit to the data. In our
timber example, a sufficiently flexible static form requires making H(·) a func-
tion of p as well as a, and this is difficult to justify. Such structural restrictions
are ultimately necessary to test static versus dynamic models.

For many problems there is little a priori knowledge about the intraperiod
benefit (utility, profit) function, and so it is difficult to distinguish static from
dynamic behavior. For such problems, out-of-sample forecasting may shed
light on whether behavior is static or dynamic, but this is a quite expensive
diagnostic. Baerenklau and Provencher (2004) conduct such a test and find
that in general a dynamic model does a better job of predicting out-of-sample
trip-taking behavior than does a static model.
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Figure 15.10. Harvest Probability Surface for Cubic Reduced-Form (Logit) Model.

5. The Future of Structural Estimation of Dynamic
Decision Processes

For years, structural estimation of DDP’s simply was not practical because
of the substantial barrier posed by the computational requirements of estima-
tion. Rapid advances in computational speed in the mid-1990s reduced this
barrier considerably, yet the literature estimating DDP’s is decidedly modest,
and there is no evidence that it growing. This is partly because the economet-
ric modeling is difficult to understand and implement; this chapter attempts to
clarify the estimation method. Perhaps it also reflects two related objections.

First, estimation requires strong parametric assumptions about the decision
problem generating the data. In the example considered in this chapter, we
maintained the strong assumption that the forest owner knows the growth func-
tion of trees and, perhaps even more unlikely, that the forest owner knows the
stochastic process generating timber prices. In the real world, such assump-
tions are complicated by the requirement that the analyst correctly specify the
parametric form of various dynamic processes, where by the ”correct” process
we mean the process actually used by the decision-makers.
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Second, the estimation maintains that agents are dynamic optimizers. In a
working paper entitled, “Do People Behave According to Bellman’s Principle
of Optimality?”, Rust (1994a) makes the important point that any data set of
state variables and decision variables can be rationalized as the outcome of
dynamically optimizing behavior. The issue becomes, then, whether the data
generated can be rationalized by dynamically optimal behavior circumscribed
by plausible parametric specifications of the intra-period benefit function and
dynamic processes. The issue returns, in other words, to a variation of the first
objection: Is the parametric specification of the dynamic model plausible in
some theoretical or practical sense?

Given that a flexible static model can fit a data set as well as a dynamic
one, and that dynamic optimization per se does not imply testable restrictions
(and thus is not refutable), how might an analyst who suspects that behavior
is dynamic proceed? In our view, estimation of DDP’s should be informed by
agent self-reporting about expectations of future states and the relative impor-
tance of the future in current decisions. So, for instance, if agents respond in
surveys that future states are unimportant to their current decisions, it would
seem difficult to justify a dynamic model. If agents report that they believe
the best guess of prices tomorrow is the current price, a random walk model of
price expectations (or at least, a specification of prices that allows a test for a
random walk) is warranted.

Yet even as economists are uneasy about the strong parametric assumptions
to be made in the estimation of DDP’s, there exists a longstanding uneasiness in
the profession about using agent self-reports to aid in the estimation of dynamic
behavior. Manski (2004) argues that with regards to agent expectations, this is
not much justified. The author states,

Economists have long been hostile to subjective data. Caution is prudent, but
hostility is not warranted. The empirical evidence cited in this article shows
that, by and large, persons respond informatively to questions eliciting proba-
bilistic expectations for personally significant events. We have learned enough
for me to recommend, with some confidence, that economists should abandon
their antipathy to measurement of expectations. The unattractive alternative to
measurement is to make unsubstantiated assumptions (pg. 42).

Although the role of self-reports in an analysis can be informal, giving the
analyst a rough basis on which to choose a static vs. a dynamic model, to
choose one parametric specification of dynamic processes over another, and
so forth, a useful direction of future research is to incorporate survey data in
the estimation problem itself, similar in principle to the way revealed- and
stated-choice data are integrated in the estimation of random utility models.
We anticipate that in the next ten years insights gained from experimental psy-
chology, experimental economics, and survey research will provide the basis
for richer and more accurate models of dynamic economic behavior.
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sults to be effectively and accurately communicated to and independently repro-
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1. Introduction to Monte Carlo Methods

At the turn of the last century, Mr. Student (pseudonym of W. S. Gossett),
after ascertaining the exact sampling distribution of the ratio between the es-
timated sampling error of the mean and its standard error, conducted an ex-
periment to test his theory. The laborious procedure is described in Student
(1908):

The measurements were written out on 3,000 pieces of cardboard, which
were then very thoroughly shuffled and drawn at random. As each card was
drawn its numbers were written down in a book which thus contains the mea-
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surements of 3,000 criminals in a random order. Finally each consecutive set
of 4 was taken as a sample —750 in all— and the mean, standard deviation,
and correlation of each sample determined. The difference between the mean of
each sample and the mean of the population was then divided by the standard
deviation of the sample, ...

Today, using a computer, an analogous experiment can be repeated with con-
siderable less effort from the part of the experimenter. The following, almost
self-explanatory, “one liner” written in R code1 can be used to perform the
experiment on most computers in merely a fraction of a second.2

ts <- {}
for (i in 1:750) { x<-rnorm(4); ts[i]<-sqrt(4)*mean(x)/sd(x) }

Figure 16.1 uses a histogram to graph the computed results, which represents
the sampling distribution of the statistic. This is an example of early use of
what we today call a “Monte Carlo” simulation.3 A Monte Carlo simulation
is basically a statistical experiment performed using a computer. The name
Monte Carlo for this kind of experiments appeared first in Metropolis and
Ulam (1949). Ulam (1977) recounts that the method was named in honor of
his uncle, who was an assiduous frequenter of the Monte Carlo world-famous
gambling casino, on the French Riviera. Treating Monte Carlo methods clearly
as experiments, highlights the fact that Monte Carlo investigations should be
treated as seriously as any other scientific experiment. This has two important
implications:

1 Monte Carlo simulations should be designed carefully, and

2 enough details should be provided for the simulations to be indepen-
dently reproduced.

Good design is a desirable feature of the simulations as it is the key to reducing
the cost of a project. Instances of Monte Carlo applications in Environmental
Economics conceive to help the conduction of empirical studies abound.

1R is an open-source implementation of the S language available from the WWW’s Comprehensive R
Archive Network (CRAN) located at http://cran.r-project.org/ where source code, additional libraries, doc-
umentation, and links to binaries distributions of R are available for various platforms, including Win32,
Mac, and Unix/Linux. (see, e.g., Ihaka and Gentleman, 1996).
2The hardware used in this Chapter was a Dual Intel Pentium IV (Prestonia) Xeon Processors 3.06 GHz
with HT Technology with 4 GB of RAM running on Microsoft Windows XP/2002 Professional (Win32
x86) 5.01.2600 (Service Pack 2). We used R release 2.0.0, the standard Win32 release available at the time
of writing the present paper. The default normal random number generator in R implements the inverse
method. The underlying default uniform random number generator is the Mersenne Twister developed by
Matsumoto and Nishimura (1998), a modification Matsumoto’s TGFSR generator of Matsumoto and Kurita
(1992, 1994). This generator has a huge Mersenne prime period length of 219937 − 1 ≈ 106000 and its
output is “twisted” to free it of long-term correlations when considered from a viewpoint of 623 dimensions.
3Some authors (see, e.g., Ripley, 1987) prefer to use the term stochastic simulation.
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Figure 16.1. Histogram of 750 statistics with Student’s t distribution.

Reproducibility is an important tenet of experimental sciences. The repro-
ducibility of Monte Carlo experiments is regarded as particularly crucial. In
fact, it can be argued that Monte Carlo experiment should be strictly repro-
ducible. Reproducibility implies that, ideally, identical results should be ob-
tainable in a short amount of time, without requiring expensive computational
resources, proprietary data, licensed software, and any application-specific
knowledge. Moreover, for reproducibility to be of practical use, code and data
should be carefully organized and documented.

In this chapter we briefly review some of the contribution to environmen-
tal and resource economics of Monte Carlo applications, illustrate guidelines
for Monte Carlo results to be effectively and accurately communicated to and
independently reproduced by other researchers and students, and survey the
main methods and software options for executing Monte Carlo experiments.
The chapter is organized as follows. In Section 2 we review a few areas in
which Monte Carlo methods have contributed to the advancement of environ-
mental economics. Section 3 looks at some issues in designing Monte Carlo
studies. In Section 4 we highlight the importance of reproducible computa-
tional results in environmental economics. Section 5 illustrates guidelines for
Monte Carlo results to be effectively and accurately communicated to and in-
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dependently reproduced by other researchers and students. Section 6 looks at
the issue of random number generation. Section 7 discusses useful criteria for
the selection of a suitable random number generator for a Monte Carlo study.
In Section 9, random number generators provided by commonly used software
application are reviewed and tested. Section 10 concludes.

2. Monte Carlo Methods in Environmental Economics

The role of Monte Carlo methods in environmental economics and its sub-
disciplines, has increased in importance during the past several years. A quick
search through environmental economic journal databases reveals that, though
most applications of Monte Carlo methods are recent, they are growing in num-
ber. The choice between theoretical and simulation models is rapidly tilting
toward simulation methods as computation becomes ever cheaper. This trend
should become more evident in an applied discipline such as environmental
economics as simulations are particularly well suited at answering “what if”
questions whereas the standard analysis approach is more suited to further un-
derstanding of the model. Monte Carlo methods comprise a wide set of tech-
niques and have a wide range of possible applications. They are commonly
employed to:4

solve problems that are inherently complex (the so called “NP complete”
problems),

optimize (simulated annealing, genetic algorithms),

simulate complex systems,

establish finite sample properties of estimators,

estimate complex models (Simulation-based methods, Bayesian meth-
ods),

compare competitive estimators, algorithms, etc.,

test hypotheses (non-parametric tests, bootstrap, permutation tests),

A typical econometric-oriented application of Monte Carlo methods in En-
vironmental Economics that has generated a sizable strand of literature, fo-
cusses on various aspect of the distributions of estimators. For instance, in
the CV literature, to construct confidence intervals and standard deviations
for welfare measures, Monte Carlo methods have often been preferred over
first order approximation methods (delta method). For instance, Park, Loomis,

4This classification is not meant to be exhaustive or mutually exclusive. In fact, many applications of Monte
Carlo could fit in most categories simultaneously.
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and Creel (1991) employed the Monte Carlo method proposed by Krinsky and
Robb (1986) to construct confidence intervals for benefits from CV dichoto-
mous choice studies; Duffield and Patterson (1991) used the Boostrap method
in an analogous study. Kling (1991) compares the Monte Carlo, the bootstrap,
and the first order approximation methods to estimate confidence intervals and
standard deviations of welfare measures using two Monte Carlo experiments

Bias resulting from incorrect model specification has been investigated us-
ing Monte Carlo simulations. For instance, Herriges and Kling (1997) sup-
plement analytical tools with Monte Carlo results to examine bias resulting
from incorrect model specification of welfare estimates derived from nested
logit model estimates (see also, e.g., Kling and Thompson, 1996, Huang and
Smith, 2002, and reference therein). Alberini (1995) investigates the robust-
ness of WTP estimators against deviations from underlying model assump-
tions. Among others, Cooper and Hanemann (1995) and Scarpa and Bateman
(2000) compare welfare estimate efficiency of various CV bid designs. Kling
(1997) looks at efficiency gains of combining revealed preference and stated
preference methods.

Another important area of application of Monte Carlo method is the es-
timation of more complex and realistic models. Allowing for more plausi-
ble behavioral assumptions, such as non-independence between alternatives,
comes at the price of additional computational complexity. Simulation meth-
ods that enabled researchers to estimate model such as the multinomial pro-
bit and the mixed logit were introduce and developed by McFadden (1989),
Boersch-Supan and Hajvassiliou (1990), McFadden and Ruud (1994) to name
just a few. Among the earliest applications of simulation-based mixed logit
models to environmental issues we can include Revelt and Train (1998) and
McFadden and Train (1996, 2000).

Another approach to the estimation of more complex models, is based on the
Markov Chain Monte Carlo (MCMC) method. Though the history of MCMC
is as long as the history of Monte Carlo method itself, the method was in fact
developed during the second world war and was published later by Metropolis
et al. (1995), application in environmental economics are still rare.

An early application of the MCMC method to the valuation of natural re-
sources is given by Hausman, Leonard, and McFadden (1995). In the paper the
author develop an algorithm for computing welfare impacts with random utility
models using a Monte Carlo Markov chain simulator for generalized extreme-
value variates. As Layton and Levine in chapter 10 point out, Bayesian econo-
metric approaches to modeling non-market valuation data have not often been
applied. Among others, Leon and Le´ on (2003) modeled double bounded con-´
tingent valuation data, León et al. (2002) considered benefits transfer from a
Bayesian perspective, Layton and Levine (2003) modeled stated preference
data with complex response patterns, and Train (2003) and Train and Sonnier
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in chapter 7 illustrate a Bayesian approach in the estimation of mixed-logit
models.

As an application of MCMC to an inherently complex problem, Fukami
(2004) used a Monte Carlo approach to compute the degree of linearity of a
input-output table in physical units. This measure, which provides an informa-
tion on how materials are recycled in an economy, is computationally hard to
obtain. Optimization problems are also routinely solved in environmental and
in resource economics using MCMC methods. For instance, simulated anneal-
ing has been used in forest economics, fisheries, etc. (see, e.g., Boston and
Bettinger, 1999, and references therein). Meilby, Strange, and Thorsen (1999)
proposed an application to other renewable resources.

Based on this, necessarily short, review on Monte Carlo areas of application
in environmental economics, we conclude that these methods are having and
will continue to have a considerable impact on the discipline. The potential
for applications is enormous. Due to the increasing power of computers and
the development of sophisticated software, Monte Carlo and other computer-
based simulation methods have emerged and established themselves as a third
approach for advancing environmental economics along side with traditional
theory and empirical applications. It is worth noting that the greatest develop-
ment appear to be made in the development and application of Monte Carlo
Markov chains and quasi-random methods: the first method generates sam-
ples that are neither independently nor identically distributed, the latter appear
clearly non-random, as they attempt to span systematically the outcome space.
Moreover, traditional econometric based Monte Carlo methods tend to use a
minimum amount of data and a large number of computer (floating-point) op-
erations. Monte Carlo methods used to fit more realistic models are both com-
putation and data intensive.

3. Designing A Monte Carlo Study

With the possible exception of very small “quick-and-dirty” experiments, a
Monte Carlo experiment should be carefully designed. Monte Carlo studies are
ordinarily straightforward to implement. A successful Monte Carlo application
in environmental and resource economics requires knowledge of:

1 the basic principles of simulation, and

2 the structure of the problem at hand.

Knowledge of the problem at hand should be used to make sure that the
study is relevant to answer the researcher’s original question. The quality and
usefulness of the Monte Carlo study critically depends on a good understand-
ing of the specific theoretical and empirical issues underpinning the environ-
mental issues under scrutiny. A review and critical evaluation of the exist-
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ing literature on the topic being researched is probably the best way to start a
Monte Carlo study.

Also, knowledge of simulation principles can help to economize the use of
the researcher’s time. As resources are limited, it is usually feasible to perform
only a relatively small number of experiments. On the one hand, we need to
consider practical issues such as the experimenter’s own time and the available
computational resources, and on the other, it is imperative to obtain results that
are sufficiently accurate for the purpose at hand. An important problem is to
determine the number of random draws needed. Most methods to derive the
necessary number of random draws to achieve some predetermined level of
accuracy are based on two fundamental results in mathematical statistics from
the theory of convergence of sequences of random variables:

1 the (weak) law of large numbers, which states that given a sequence
X1, . . . , XnXX of i.i.d. random variables, with mean E(XiXX ) = µ and vari-
ance σ2 < ∞, then the sample average X = 1

n

∑n
1 XiXX converges (in

probability) to µ, and

2 the (classical) central limit theorem, which states that, under the same

conditions,
√

n(Xn−µ)
σ converges (in distribution) to N(0, 1) (for more

details and extensions, see Feller, 1968, and references therein).

The law of large numbers ensures that if the sample is large enough, the sample
average will be near to the population mean. The central limit theorem allows
us to quantify the probability of the discrepancy, and therefore the sample size
needed to achieve a certain accuracy. As an application of the above mentioned
results, consider the problem of determining the size of a test statistics (i.e., the
probability of committing a type I error). Following Davidson and MacKinnon
(1993, p. 739), let’s denote with p the quantity to be estimated. The sample
of replications can be represented by n random variables, X1, . . . , XnXX , where
XiXX = 1 if in replication i the test statistics exceeds the nominal critical value,
and XiXX = 0 if it does not exceed it. Each replication can be thought as an in-
dependent Bernoulli trial with probability of “success” fixed to p across trials.
The number of rejections SnSS = X1+X2+ · · ·+XnXX is therefore approximately
binomially distributed with parameters n and p. An estimator for p is provided
by p̄ = SnSS /n which is the proportion of rejections for n replications. The
mean and the variance of the estimator are p and n−1p (1 − p), respectively.

Assume that it is desired that the estimator, p̄ should differ from the popula-
tion mean p, by a small quantity no larger than ε, with confidence level 1 − α,
0 < α < 1, or greater, i.e,

P (|p̄ − p| ≤ ε) ≥ 1 − α.
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Standardizing p̄ the problem becomes,

P

(∣∣∣∣∣∣∣∣∣∣∣∣∣ (¯− p)√
p

√√
(1 − p)/n

∣∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ε

√
n√

p
√√

(1 − p)

)
≥ 1 − α.

Since the distribution of the standardized p̄, by the central limit theorem, can
be approximated by the standard normal,

P

(
|Z| ≤ ε

√
n√

p
√√

(1 − p)

)
= 2P

(
Z ≤ ε

√
n√

p
√√

(1 − p)

)
− 1 ≥ 1 − α.

or

P

(
Z ≤ ε

√
n√

p
√√

(1 − p)

)
≥ 1 − α/2.

so that the required sample size is

n ≥
(

Φ−1
(
1 − α

2

)√
p

√√
(1 − p)

ε

)2

.

Assuming α = .01, the .995-quantile is z.995 ≈ 2.576. For ε = 1
100 , and using

the fact that p (1 − p) ≤ 1/4 for every p, a very safe number of replications
would be n ≈ 16, 590. For a more plausible p = .05, the sample size reduces
to n ≈ 3, 152. It is worth bearing in mind that these convergence results are
based on large numbers (n → ∞) and i.i.d. sequences. Both conditions do not
hold for computer generated random sequences.

More robust methods are available but with a higher computational burden.
The quality of the approximation will depend on the rate at which the distribu-
tion of the standardized estimator converges to the normal. In general, as the
rate of convergence depends on the application, the normal approximation has
to be regarded as an additional source of error. A worse-case scenario sample
size can be derived using Chebyshev’s inequality which states that for a ran-
dom variable X assumed to have a distribution with finite variance, σ2 < ∞,
and mean, µ = 0, for every positive k,

P

( |X − µ|
σ

≥ ε

)
≤ 1

k2
.

In our example, X − µ = p̄ − p and σ = n−1p (1 − p), so that

P (|p̄ − p| < εσ) ≥ 1 − p (1 − p)
nε2

.

Given a confidence level 1 − α, the sample size

n ≥ p (1 − p)
αε2

,
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will satisfy the required error specification. Again, since p (1 − p) ≤ 1/4 the
worst-case scenario sample size becomes

n ≥ 1
4αε2

,

for all p ∈ [0, 1]. For the choice of parameters in our example ε = 1/100, and
α = .01, the worst-case scenario sample size is n ≥ 40, 000.

Sometimes, with particularly computer-intensive applications, instead of
asking how many observations are needed to achieve a desired level of accu-
racy, the researcher will be constrained to ask the, methodologically less satis-
factory, “inverse” question, i.e., how accurate are the results given the number
of observations used in the Monte Carlo study. The problem of feasibility be-
comes central in this case.

4. Reproducibility of Monte Carlo Results

Claerbout (see, e.g., Buckheit and Donoho, 1995), has recently championed
the issue of reproducibility in the computational sciences. Reproducing com-
putation results from published work often proofs to be a difficult and daunting
task. Reproducibility relies on a plethora of implementation details that are dif-
ficult to communicate through conventional printed publications. Buckheit and
Donoho (1995) point out that in the field of computational experiments:

researchers often cannot reproduce their own work, even a few months
after the study has been completed,

research students have difficulties in presenting their problems to their
academic advisers, and

researchers cannot reproduce computational results of other researchers
and other published work.

Reproducibility implies that, ideally, identical results should be obtain-
able in a short amount of time, without requiring expensive computational
resources, proprietary data, licensed software, and any application-specific
knowledge. Moreover, for reproducibility to be of practical use, code and data
should be carefully organized and documented.

Schwab et al. (2003) classify their computational problems according to
their degree of reproducibility in:

Easily reproducible result files can be regenerated within ten minutes
on a standard workstation.

Non-reproducible result files, such as hand-drawn illustrations or
scanned figures, cannot be recalculated by the reader.
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Conditionally reproducible result files require proprietary data, li-
censed software, or more than 10 minutes for their re-computation. The
author nevertheless supplies a complete set of source files and rules to
ensure that readers can reproduce the results if they possess the neces-
sary resources.

Based on this stringent requirements, most computational results in economics
and in environmental economics would be classified under the headings of
“conditionally reproducible” at best. In a recent investigation, Vinod (2001)
found that approximately 70 per cent of articles from prestigious economic
journals were not reproducible. He attributed this problem to sloppy record
keeping, inaccurate software, and the lack of maintenance of software and data,
in particular, after publication.

Environmental Economics does not fare much better in this respect. In my
experience, obtaining a datasets and the software code needed to reproduce
published work proofs at best to be a difficult task. Recently two attempts
from my part of obtaining data and code for the purpose of reproducing pub-
lished computational results, have failed. The authors blamed a computer virus
and a computer crash to explain the loss of data and code. In one instance, I
was able to obtain the data used for a paper on a leading journal in environmen-
tal economics, but was unable to exactly reproduce the computational results.
Similar instances were experienced by the editors of this volume (personal
communication), and indeed seem to be frequent in the profession.

Of course, insisting on exact and easily reproducible results is not always
practical. In applied work, it is quite frequent that a particular commercial
software, dataset, or expensive equipment makes research results difficult to
reproduce.

A particularly frequent problem is that in many environmental economic ap-
plications data used in published work is considered confidential and not made
available. Researchers might, in fact, collect data themselves at a considerable
cost, pay other institutions to analyze the data, etc. Other times the data is
provided, but it is in a format that makes it difficult to use or is insufficiently
documented.

Environmental economics journal do not maintain databases of data and
codes of published papers. Typically, a much milder policy is implemented.
For instance, consider the Journal of Environmental Economics and Manage-
ment’s policy for replication as stated in their “Guide for Authors.” According
to the current policy, all data must be clearly documented and computational
methods must be explained with sufficient details to enable replication by other
researchers. The only requirement concerning the dataset is that it must be
made available on request. The findings of Dewald, Thursby, and Anderson
(1986) suggests that this type of policy is not adequate to guarantee repro-
ducibility of computer-based results. In their Journal of Money, Credit and
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Banking project, they attempted to replicate computation results published or
submitted to the journal. Of the 92 authors asked to supply data according
to the journal policy, 75 responded, and 68 submitted something. The first
35 datasets were examined and only 7 were judged to be free of problems.
The authors attempted to replicate the results of 9 papers for which they had
obtained data and software code; only four computational results could be re-
produced closely. Based on their findings, Dewald et al. (1986) recommended
that journals require the submission of data and programs from authors at the
time empirical papers are submitted.

5. Reporting Monte Carlo Results

Results based on Monte Carlo experiments should be reported as carefully
as any other scientific experiment. Hoaglin and Andrews (1975) provided a
slightly outdated list of items that should accompany any Monte Carlo based
result. In principle, any information useful to assess the accuracy of the results
and to facilitate their reproduction, should be supplied. As a minimum, taking
into account recent development, the study should provide:

information on the simulation, including the uniform random number
generator used and method used to generate non-uniform variates, which
should be fully adequate for the needs of the study,

details on any measure employed to reduce variance,

a justification for the sample size chosen possibly in terms of standard
deviation of the estimates obtained in the study,

detailed information of programming languages or software applications
used, vendor, version, serial number, alternative platforms on which it
runs, etc., and

information on the computer used, including details on the CPU, and
operating system.5

Geweke (1996) suggests also that any published result should be checked for
robustness to the choice of generator. All the items listed above provide infor-
mation to help assess the accuracy of the Monte Carlo computer-based results.
It is assumed that computations follow the current state of the art. Preference
should be given to well-known, good algorithms and software available in the

5It is worth remembering that in the fall of 1994, a serious design flaw was discovered in the Intel Pentium
processor, commonly referred to as the “Pentium floating-point-division bug” or “Pentium bug” in short.
As a consequence, certain floating-point division operations performed by the Pentium processor produced
incorrect results.
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public domain. Random number generators not in the public domain that have
not being tested before, should be assessed both theoretically and empirically
before use (see Section 7).

Typically Monte Carlo results are presented in a tabular form. However,
sometimes other forms can convey the results from the Monte Carlo experi-
ments more effectively. For instance, when the distributional characteristics of
the sampling distribution of a test statistic are of interest, graphical methods,
such as histograms and density estimates, can be used. When a large number
of Monte Carlo experiments are performed, other methods, such as estimating
a response surface, have been effectively used in the past to summarize the
results (see, Davidson and MacKinnon, 1993, for more details on the use of
response surfaces in relation to Monte Carlo experiments).

6. Random Number Generation

As we noted, a Monte Carlo method is a controlled statistical experiment ex-
ecuted on a computer using algorithms that produce deterministic, repeating,
sequences of computer numbers, referred to as pseudo random numbers, that
“appear” as random samples drawn from a known distribution, typically, sam-
ples of independent and identically distributed U(0, 1) random variables. An
algorithm that generates such sequences of pseudo-random numbers is com-
monly known as a random number generator (RNG).

Many programming languages, adopt the so called linear congruential gen-
erator (LCG) introduced by Lehmer (1949). It is obvious that the pseudo-
random number sequences produced by such a generator can be considered
“random” only in some limited sense. Nonetheless, their imitation of “truly”
random behavior is often good enough for our purposes. The LCG is defined
by the difference equation:

XnXX +1 = (aXnXX + c) mod m, X(0) = X0, n ≥ 0, (6.1)

for a multiplier a, 0 ≤ a < m, shift (or increment) c, 0 ≤ c < m, and a
modulus m, 0 ≤ m, all integers. The sequence of pseudo-random numbers UnUU
is determined by equation 6.1 and by the normalization

UnUU = XnX /m,

once the seed, X0 is given. See Section 7.1 for more information about these
parameters. For a quick “back-of-the-envelope” Monte Carlo experiment, to
generate non-uniform variates, a direct application of standard theorems from
mathematical statistics (see, e.g., as Hogg, McKean, and Craig, 2005), sum-
marized in Figure 16.2, can be used. For instance, to generate pseudo-random
normal numbers is the Box-Muller method. It exploits the fact that given two
independent, uniformly distributed random variables, U1UU and U2UU , the random
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Figure 16.2. Relationships between the Standard Normal and related distributions.

variables, N1NN and N2NN , obtained from the transformation:

N1NN =
√−2 log(U1UU ) cos(2πU2UU )

N2NN =
√−2 log(U1UU ) sin(2πU2UU )

are independent standard normal random variables (see, e.g., as Hogg, McK-
ean, and Craig, 2005, pages 290–291). To generate non-uniform variates re-
lated to the standard normal the “composition” theorems from mathematical
statistics as summarized in Figure 16.2, can be used.

These approaches are simple to implement when feasible, however they are
generally very inefficient and should not be used for serious research.

In general, it is preferable to avoid “reinventing the wheel” by re-writing the
code implementing a random number generator when well-known good code
is already available. Many useful generators are coded in languages such as
FORTRAN and C (see, e.g., Gentle, 2003).

Modern statistical and econometric software application provide many use-
ful functions for random number generation. R, for instance, offers a variety of
uniform and non-uniform random number generators. The function RNGkind
can be used to select among various uniform and normal generators. It also
allows user-defined function to be used. For instance, the command

RNGkind( kind = "Knuth-TAOCP", normal.kind = "Box-Muller" )
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Table 16.1. R Functions for Random Number Generation.

Name Distribution Parameters Defaults

rbeta beta shape1, shape2 -, -
rbinom Binomial size, prob -, -
rcauchy Cauchy loc, scale 0, 1
rchisq chi-square df -
rexp exponential - -
rf F df1, df2 -, -
rgamma Gamma shape -
rgeom Geometric prob -
rhyper Hypergeometric m, n, k -,-,-
rlnorm log-normal mean, sd (of log) 0, 1
rlogis logistic loc, scale 0, 1
rnbinom Negative Binomial size, prob -, -
rnorm normal mean, sd 0, 1
rpois Poisson lambda -
rstab stable index, skew -, 0
rt Student’s t df -
rtukey Studentized Range nmeans, df, nranges -, -, 1
runif uniform min, max 0, 1
rweibull Weibull shape, scale -, 1
rwilcox Wilcoxon Rank Sum Statistic m, n -, -
rsignrank Wilcoxon Signed Rank Statistic n -

selects the Knuth-TAOCP RNG (see, Knuth, 1998), as the default uniform
random number generator, and the Box-Muller algorithm as the default nor-
mal RNG. The selected uniform random number generator is then used to
obtain all other non-uniform variates. Table 16.1 shows the names and the
parameters of some the uniform R’s various non-uniform RNG functions use-
ful for parametric and nonparametric Monte Carlo methods. For instance, to
generate a sample of size 20 from a binomial distribution with 10 independent
Bernoulli trials, with probability of success fixed to 0.4 across trial, we can use
the following command.

> rbinom(20,10,.4)
[1] 5 2 5 5 5 3 3 5 3 4 5 4 6 5 6 3 3 1 2 4

Modern languages offer many other functions and specialized libraries, that
can facilitate Monte Carlo studies. Consider the case of bootstrapping. For
instance, to obtain samples of size 12, with replacement, from a vector (in this
case the sequence of integers between 1 and 12), in R we can type

> sample(1:12, size=12, replace=T)
[1] 8 5 9 11 4 4 10 11 10 9 4 10
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It is important to always carefully look for the available options in a software
instruction reference before implementing a Monte Carlo study.

7. Quality of Random Number Generators

Three types of considerations should guide the practitioner in the choice of
the appropriate RNG: theoretical, empirical, and practical. These three aspects
should always be jointly considered when selecting a suitable random number
generator for a Monte Carlo study.

7.1 Theoretical Arguments: Period Length

From a theoretical point of view one of the most critical issues concern-
ing a random number generator is its period length. The finite period of the
generators implies that there is a limit on how many random numbers can be
actually generated with a particular RNG. Arguments based on the “drawing
without replacement” analogy and on more refined spatial considerations, have
been used to justify the need to choose a generator with a period much larger
than the number of random numbers actually needed for a Monte Carlo study.
The recommended minimum length of the period, p, is taken to be a func-
tion of the number of random draws, n, used in the Monte Carlo experiment.
Knuth, for instance, (1998, p. 185) recommended p > 1000 · n. Other authors
have made more conservative suggestions. MacLaren (1992) recommended
p > n2, while Hellekalak (1998) and Ripley (1987, p. 26) recommended a
much more conservative p � 200 · n2. For instance, if 8 million numbers
are required, p should be at least 8 · 109 ≈ 233 following Knuth’s recommen-
dation, and 12, 800 · 1012 ≈ 254, following Ripley’s suggestion. Empirical
evidence supports these recommendations (see, e.g., L’Ecuyer, 1998, and ref-
erences therein). It is worth highlighting that the above mentioned arguments
relegate the use of a single LCG only to exploratory or small Monte Carlo
projects. Any serious or intensive application would require generators with
much larger periods.

Another approach, suggested by Knuth (1998), is to set the parameters of a
LCG (see, Equation 6.1) to different values every time a few million numbers
have been generated. For instance, in GAUSS, the functions rndcon and rnd-
mult can be used to reset the constant shift parameter, c, and the multiplier, a,
respectively of the uniform RNG. All parameters must be integers in the range
[0, 231 − 1]. The default values are c = 0, a = 397204094, and m = 232.
We can immediately see, that some choices will produce numbers that do not
appear random at all. For instance, setting seed = 312479559, a = 1, and



332 APPLICATIONS OF SIMULATION METHODS

c = 0 produces a sequence with constant value seed/m = 312479559/232. In
R,6

seed <- 312479559
a <- 1
c <- 0
m <- 2ˆ32
x <- ( a * seed + c ) %% m
u <- x / m
u

returns 0.07275482 (by default R displays only 7 digits7). Other choices are
much harder to assess. For instance, in GAUSS, if we change the default mul-
tiplier, from a = 1 to a = 65539, using the following set of commands:

seed = 312479559; a = 2ˆ16 + 3; rndmult a; rndseed seed;

we obtain a well-known “bad” RNG. As Figure 16.3 clearly illustrates, though
the generated uniform random sequence, when plotted in pairs in the unit
square does not arouse e any suspicion, it appears extremely correlated when
plotted in triplets in the unit cube. In fact, all the points lie on 15 planes in
the three-dimensional space. This should highlight the fact that setting the
parameter of a LCG requires considerable care.

For a theorem on how to choose a and c in order to guarantee that the max-
imum period is achieved and to obtain parameter values that are known to
produce reasonable generators, consult Knuth (1998).

7.2 Empirical Support

Theoretical arguments alone are not enough to help in the selection of the
appropriate RNG method. In fact, even if supported by sound theoretical ar-
guments, a particular implementation of a RNG in a software application still
requires testing, as they might be implemented incorrectly.

Many random number generators implemented in various software applica-
tion are known to fail even simple test of randomness (see, e.g., Sawitzki, 1985;
Park and Miller, 1988; and McCullough, 1999, 2000). It is advisable to per-
form many tests before concluding that it is safe to use a particular generator.
The quality of non-uniform random variates depends closely on the quality
of the uniform random numbers on which they are based. For instance, the
Box-Muller method is not recommended by the literature on random number
generation because of its slowness and sensitivity to the underlying uniform
random number generator (see, e.g., Ripley, 1987).

6Note that R uses double-precision arithmetic and not integer arithmetic as required to implement the
LCG. Even using the function as.integer the RNG cannot be correctly reproduced since 232 overflows
in R whereas it is ignored in computer system implementing two’s complement arithmetic.
7The version of GAUSS used for this chapter actually produces 0.072754817 with those settings.
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Figure 16.3. Plots of 100,000 draws from GAUSS’s LCG with a = 215 + 3, c = 0, and
m = 232.

(a) Two-dimensional plot of pseudo-random
pairs (UiUU , UiUU +1).

(b) Three-dimensional plot of pseudo-random
triplets (UiUU , UiUU +1, UiUU +2).

There are several collection of tests for uniform RNG in wide use today
(see, e.g., Gentle, 2003). A popular collection is the DIEHARD battery of
randomness tests introduced by Marsaglia (1996). This battery of tests pro-
vides a wide range of statistical tests for evaluating the stream of output of
RNGs. The DIEHARD program, provided as an MSDOS executable or as C
source code, is freely available from http://stat.fsu.edu/∼// geo. The DIEHARD
battery of tests8 requires as input a specially formatted binary file of 10 to 11
megabytes size. The RNG should produce 32-bit positive integers that need
to be saved in a text file in hexadecimal form, 8 hex ‘digits’ per integer, 10
integers per line, and with no intervening spaces. Consider testing a random
number generator in GAUSS for Windows. The rndKMi function in GAUSS
returns a matrix of random integers, between 0 and 232, and the state (seed)
of the random number generator. A file containing 3 millions uniform random
numbers can be created by typing the following commands in the GAUSS for
Windows command prompt:

seed = 799;
output file = rndKMi.dat reset;
{ x, new_seed } = rndKMi( 3e6, 1, seed);
screen off; print x; output off;

8The version available at the moment of writing was: DOS, Jan 7, 1997.
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We can create an hex file satisfying the stated conditions using the following
Perl9 script:

open( IN, "rndKMi.dat" );
open( OUT, ">rndKMi.hex" );
while ( $line = <IN> ) {

chomp $line;
printf OUT "%08x", $line; # prints random 32-bit integer
if ( $. % 10 == 0 ) { printf OUT "\n" }
; # new line every 10 no.

}

which saves the output in a file named rndKMi.hex. The MSDOS auxiliary
program, asc2bin.exe, provided in the test suit, can then be used to convert
the hexadecimal file into a binary file, that can be directly fed to the main
DIEHARD program. The following script runs the auxiliary asc2bin util-
ity and the main diehard programs providing them with the necessary input
arguments. The results from the 18 DIEHARD tests is saved in the file rnd-
KMi.out.

# converts hex file to binary file using utility program asc2bin
open( INPUT, "| asc2bin" );
select(INPUT);
print "\n";
print "\n";
print "\n";
print "rndKMi.hex\n"; # hex input file name
print "rndKMi.bin\n"; # binary output file name
close(INPUT);

# performs DIEHARD test
open( INPUT, "| diehard" );
select(INPUT);
print "rndKMi.bin\n"; # binary input file name
print "rndKMi.out\n"; # test output file name
print "111111111111111\n"; # asks for all 18 tests
close(INPUT);

These tests are general and are not able to detect all possible problems a
generator might encounter in practice. With a specific application in mind it is
possible to design ad hoc tests that are more suitable to assess the usefulness
of a generator for a particular application.

9Perl, an acronym for Practical Extraction and Report Language is a cross-platform, high-level, open-
source programming language with network and object-oriented programming support. Perl is derived
mainly from the C programming language and to a lesser extent from sed, awk, grep, and the Unix shell.
Perl’s process, file, and text manipulation facilities make it particularly well-suited for a wide range of tasks
such as data preparation and processing. Perl can also automate what would otherwise be tedious, repetitive,
and error prone activities. Perl can be downloaded from the WWW’s Comprehensive Perl Archive Network
(CPAN) located at http://www.cpan.org/, where the source package, modules, documentation, and links to//
binaries distributions of Perl are available for various platforms, including Win32, Mac, and Unix/Linux.
For more on Perl and its uses in econometrics and statistics, see Baiocchi (2003) and Baiocchi (2004).
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For non-uniform variates a chi-squared or a Kolmogorov-Smirnov
goodness-of-fit test cab be used to test the quality of the generator. For more
information of generating and testing non-uniform random variates, consult
Devroye (1986), Ripley (1987), and Gentle (2003).

8. Practical Issues

Several important practical issue can play a role in the choice of a generator.
We will briefly mention only two here for the sake of time and space: execution
time and available software options.

Execution time considerations are not usually thought to be relevant for eco-
nomic applications (see, e.g., Geweke, 1996). The assumption is that compu-
tations using the pseudo-random numbers are generally much more time con-
suming than generating them. However, for some applications considerable
savings can be afforded by using the appropriate generation method. For in-
stance, Train (1999) and Bhat (2000, 2001) by introducing an alternative type
of random number generator in the estimation of mixed logit models, found
that the accuracy of the results is greatly improved. For four and five dimen-
sion integrals, the quasi-random approach based on Halton sequences required
125 draws to achieve the same level accuracy as 2,000 draws obtained using
standard pseudo-random number sequences. They found that, in terms of ex-
ecution time, using quasi-random numbers can take only 10 per cent of the
time required with pseudo-random numbers to deliver the same degree of ac-
curacy. Figure 16.4 illustrates the difference between the two random number
generation approaches.10 The figure clearly illustrates that quasi-random pairs
provide a much better coverage in [0, 1]2. For implementation in practice ta-
bles of parameters for good random number generators (see, e.g., Knuth, 1998,
page 106) are needed. Portability is an issue of practical relevance. For repro-
ducibility purposes a portable implementations a generator should be prefer-
able. Portability issues are often related to hardware structure, differences in
the supporting software standard, etc.

Ideally, the software and algorithms used in a Monte Carlo should be both
subject to peer review and based on openly published and freely available al-
gorithms and source code. Freely available and open-source software would
also guarantee the highest degree of quality and reproducibility. Also, though
most university have a portfolio of software applications useful to economists,
there will always be researchers with no access to all these applications. Fi-
nally, vendors of proprietary software rarely describe the algorithms used to
implement econometric and statistical procedures, nor do they provide suffi-
ciently detailed information about their reliability. This is a serious omission

10The Halton sequences were obtained using R’s rnorm.halton function provided by the fOptions library.
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Figure 16.4. 5,000 draws in two dimensions from uniform distribution.

(a) Plot of pseudo-random pairs (UiUU , UiUU +1). (b) Plot of quasi-random pairs (UiUU , UiUU +1).

that makes the use of “black box” packages less attractive for academic re-
search.

9. Testing the Random Number Generators

The results of Marsaglia’s DIEHARD batteries of tests of the uniform ran-
dom number generators in GAUSS for Windows version 6.0, LIMDEP version
7.0,11 and R version 2.0.0, are shown in Table 16.2. Care is required when
analyzing the output of the tests. The “p“ -values” of the DIEHARD test are ac-
tually values of the CDF of the test statistics. For instance, consider the output
line taken from a DIEHARD test output file.

chisquare for 99 degrees of freedom=100.946; p-value= .573288

The “p“ -value” is the value at 100.946 of the cumulative chi-squared distribution
function with 3 degrees of freedom, as the following calculation in R shows.

> pchisq(100.946,99)
[1] 0.5732773

When testing the random numbers we want to reject not only when the ob-
served frequencies are too different from the expected ones, but also when they
agree too closely.12 The standard practice of doubling the one-sided p-value to

11The results for LIMDEP are taken from McCullough (1999, p. 199).
12Fisher (1936) suggested that the null in a goodness-of-fit test could also be rejected if the p-value is too
large. Sometimes the agreement between observed and expected frequencies is “too good” to have arisen
by chance only. According to Fisher (1936):
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obtain a two-sided p-value is inappropriate for an asymmetric distribution. The
CDF scale can be conveniently used to assess the results of the tests. A large
CDF-value corresponds to a small p-value and indicates a significant result. A
small CDF-value indicates a close match between observed and expected fre-
quencies. In theory, if the CDF-value is less that 0.025 or greater than 0.975 we
reject the null at the 5 per cent significance level, however, in practice, because
of the large number of tests, unless stated differently, a test is considered failed
if all CDF-values are either zero or one. Table 16.2 summarizes all the results
of the DIEHARD tests.

LIMDEP uses L’Ecuyers (1999) multiple part random number generator.
This generator has a period of roughly 2191.

GAUSS implements two generators. The functions rndi (and rndus) is
based on the multiplicative (c = 0) congruential generator with period 232.
GAUSS’ rndKMi (and rndKMu) function is reportedly (see, Ford and Ford,
2001) based on the “KISS” and on the “Monster” uniform generators intro-
duced by Marsaglia (2000) and has period of greater then 108888 and dimen-
sion greater than 920. The KISS generator is used to initialize the 920 seeds
that the Monster generator number generator requires. The initialization of
this generator requires 920 random numbers. Marsaglia’s KISS generator has
a period of about 2124 and itself requires 6 seeds to be initialized. In order
to simplify the use of rndkmi all but one of these seeds are chosen according
to Marsaglia’s suggestions (Marsaglia, 2000). In practice, for the the KISS
generator, only one seed requires setting.

Results in table 16.2 show that R passes all the tests13 and, given its long
period, appears to be suitable for large projects. According to McCullough
(1998) results, LIMDEP passes almost all tests, and because of its shorter pe-
riod is useful for small projects. The results for the GAUSS rndi (and rndus)
function agrees with Vinod’s (2000) findings. The rndKMi (and rndKMu),
which was not tested before, fails 5 tests. We agree with Vinod’s conclusions
that GAUSS fails too many tests to be trusted for serious Monte Carlo simula-
tions.

These test results should be interpreted with extreme caution. The
DIEHARD tests were designed with generators with a 232 period in mind.
The observed inverse relationship between period length and number of failed
tests suggests that further testing is required, before a more definite conclusion
on the safety of a generator can be reached.

Fictitious data can seldom survive a careful scrutiny, and, since most men
underestimate the frequency of large deviations arising by chance, ...

13For details on the generator used by R see footnote 2.
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Table 16.2. Marsaglia’s DIEHARD tests.

Test GAUSS rndi GAUSS rndKMi LimDep R

Birthday Spacings faila failb pass pass
Overlapping 5-Permutation pass pass pass pass
Binary Rank (31 × 31) passc passd pass pass
Binary Rank (32 × 32) fail fail pass pass
Binary Rank (6 × 8) faff ile failfll pass pass
Bitstream (p-values) failg failg pass pass
OPSO failh pass fail pass
OQSO failh pass pass pass
DNA failh pass pass pass
Count the 1’s (stream of bytes) fail fail pass pass
Count the 1’s (specific byte) passi pass pass pass
Parking Lot pass pass pass pass
Minimum Distance pass pass pass pass
3-D Spheres pass passjss pass pass
Squeeze pass pass pass pass
Overlapping Sums pass pass pass pass
Runs pass pass pass pass
Craps pass pass pass pass

aThe CDF-value of KS test of uniformity for the 9 CDF-values is 1.
bThe CDF-value of KS test of uniformity for the 9 CDF-values is 1.
cThe CDF-value of the χ2 goodness-of-fit test is 0.987400.
dThe CDF-value of the χ2 goodness-of-fit test is 0.999997.
eThe CDF-value of KS test of uniformity for the 25 CDF-values is 1.
fThe CDF-value of KS test of uniformity for the 25 CDF-values is 0.999940.ff

gAll 20 CDF-values are equal to 1.
hMost CDF-values are either 1 or 0.
i8 CDF-values out of 25 are equal to 1. Two are below 0.005.
jThe CDF-value of KS test of uniformity for the 20 CDF-values is 0.005550.
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10. Conclusion

In this chapter we have briefly reviewed some areas of application of the
Monte Carlo method in environmental and resource economics and discussed
several important issues related to the implementation of Monte Carlo studies.

First, we have focussed on design issues that the practitioner should bear in
mind when setting up a Monte Carlo study. Though the quality and usefulness
of the Monte Carlo study critically depends on a good understanding of the
specific theoretical and empirical issues underpinning the environmental issues
under scrutiny, knowledge of simulation principles can help to economize the
use of the researcher’s time, and ensure that the results are correct and of high
quality.

Second, we have considered the important issues of reproducibility of
Monte Carlo computer-based simulation and illustrated the guidelines for
Monte Carlo results to be effectively and accurately communicated.

Third, we have briefly introduced random number generation on computers
and discussed the theoretical, empirical, and practical issues involved in the
selection of the appropriate random number generator for Monte Carlo appli-
cations. We have highlighted the importance of selecting a random number
generator with good theoretical properties, that has been thoroughly tested us-
ing current best available methods, and that is reasonably easy to implement in
practice.

Finally, we have demonstrated how to test a random number generator in
practice and compared several popular software application used by environ-
mental and resource economists. We have highlighted the potential dangers of
using existing software without careful consideration.

Monte Carlo methods are now routinely used in environmental economics
to solve problems that were considered intractable only a few years ago. With
more computationally intensive tools available to the practitioner for the devel-
opment, estimation, and testing of more realistic environmental and resource
economics models, I reckon that the challenges for the future will be:

the further development and exploration of quantitative methodologies
for environmental policy analysis, including more realistic and useful
behavioral model, understanding the condition for their applicability and
their limitations,

integration with other discipline, such as geography (for instance, use of
spatial data) and other social sciences,

the development and dissemination of good practice in the obtainment,
reporting, and reproduction of computer-based simulation results, and

as our capacity to deal with more complex models is increased, the abil-
ity to identify more complex models will hinge upon the improvement



340 APPLICATIONS OF SIMULATION METHODS

of experimental designs and collection of more detailed, high quality,
comprehensive, and integrated data.
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Abstract In environmental economics, numerical simulation using random draws is the
method most commonly used to estimate joint probabilities of individual choices
in discrete-choice, random-parameters models. This paper compares simulation
to another method of estimation, Gaussian quadrature, on the basis of speed and
accuracy. The comparison is done using stated preference data consisting of the
answers to choice questions for fishing in Green Bay, a large bay on Lake Michi-
gan. Each sampled individual chose between a pair of Green Bay scenarios with
different fishing conditions. Quadrature is found to be as accurate as simulation
based on random draws, but Gaussian quadrature attains stability in estimated
parameters considerably faster.
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1. Introduction

Simulation is the most common numerical method used to estimate random
parameters models. Using pseudo-random draws to simulate moments of a
distribution dates back to McFadden, 1989,1 and has been used to model de-
mand for an array of environmental commodities. Its use is likely to increase
as a result of this volume and the recent book by Train, 2003.2

While simulation studies are numerous, little research has been conducted
to examine the speed and accuracy of the simulation method, or the impor-
tance of addressing simulation noise (variance due to simulation). Brown-
stone and Train (1999) examine the sensitivity of average probabilities, the
log-likelihood function, and parameter gradients to different numbers of draws
and different sets of pseudo-random numbers (that is, different values for the
random number generator seed), holding constant the values of the parameters
that generate the data as they conduct the tests (that is, a new model is not es-
timated for every value of the seed). Breffle and Morey (2000) determine the
minimum number of draws needed to stabilize the parameter estimates, and to
minimize the simulation noise in estimated expected consumer surplus.

The purpose of this chapter is to compare simulation to another method of
estimation, Gaussian quadrature (see Butler and Moffit, 1982; Waldman, 1985;
Geweke, 1996). The comparison is done using stated preference data consist-
ing of the answers to choice questions for fishing in Green Bay. Each sampled
individual chose between a pair of Green Bay scenarios with different fishing
conditions. Choices were made over multiple pairs with varied characteristics.

2. A choice model with random parameters

Assume individual i answers J pair-wise choice questions. Assume the
utility from choosing alternative K in pair j is:

UK
ijUU = β

′
iββ xK

ij + εK
ij , (2.1)

where the L × 1 vector xK
ij contains the observed characteristics of alterna-

tive K. The stochastic component εK
ij is assumed to be i.i.d. and normally

distributed, generating a probit model. Under the assumption of random het-
erogeneous preferences,

βiββ = β + ui, where u ∼ N(0,Σ), (2.2)

1See Hajivassiliou et al., 1992, McFadden and Ruud, 1994, and Stern, 1992.
2See, for example, Train, 1998, Brownstone and Train, 1999, Revelt and Train, 1998, Layton and Brown,
2000, and Breffle and Morey, 2000. Train, 2003 includes additional examples. This volume contains many
more.
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where ui is a random L × 1 vector representing the differences between the
mean marginal utilities of the characteristics and individual i’s marginal utili-
ties, and Σ is the variance-covariance matrix of u. Assuming that ui is con-
stant across choice occasions causes an individual’s different choices to be
correlated. Under the assumption that Σ is diagonal (that is, the random pa-
rameters are uncorrelated with one another), the joint probability of observing
the J pair-wise choices of individual i, PiPP , is:

PiPP = P (Uk
iUU 1 > U3−k

iUU 1 , ..., Uk
iJUU > U3−k

iJUU )

= P (ε3−k
i1 − εk

i1 < β
′
iββ (x3−k

i1 − xk
i1), ..., ε

3−k
iJ − εk

iJ < β
′
iββ (x3−k

iJ − xk)

=

+∞∫
−∞

· · ·
∫ J∏

j=1

Φ
[
−(β + u)

′
(x3−k

ij − xk
ij)

]
f(u)du1...duL (2.3)

where k = 1 if alternative 1 was chosen and 2 if alternative 2 was chosen;
Φ(·) is the univariate, standard-normal CDF and f(·) is the L-variate, normal
density function. That is, Φ(·) is one dimensional, f(u) is L-dimensional, Φ(·)
is standard normal, and f(u) is normal, but not standard normal.

The order of magnitude of the integral in Equation 2.3 is the number of
random parameters (the number of non-zero diagonal elements in Σ). For ex-
ample, if there are two random parameters and the parameters are ordered such
that the two random parameters are in the first and second positions, Equation
2.3 simplifies to:

PiPP =

+∞∫ ∫
−∞

J∏
j=1

Φ
[
−(β + u

0 )
′
(x3−k

ij − xk
ij)

]
f(u)du1du2 (2.4)

where u now has only two elements and 0 is a vector of dimension (L−2)×1.

The likelihood function is
N∏

i=1
PiPP . The PiPP can be approximated using either

simulation or Gaussian quadrature.

3. Simulation

Using simulation, the multiple integral, Equation 2.3, is approxi-
mated in steps: first, a pseudo-random draw, ud, is taken from u ∼
N(0,Σ), then PiPP is computed conditional on that draw, PiPP (ud) =
J∏

j=1
Φ

[
−(β + ud)

′
(x3−k

ij − xk
ij)

]
.3 These two steps are repeated for D draws.

3Note that the u draw is conditional on Σ. When one simulates probabilities in the context of maximum
likelihood estimation, the process is called maximum simulated likelihood. The objective is to estimate the
β and Σ, but at each iteration, PiPP (ud) is conditional on the current iterative values of β and Σ.
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The simulated PiPP is the average of the conditional PiPP (ud)’s. Details may be
found in Train (1998). The attractive feature of simulation is its versatility: it
can be used to approximate many different types of probability integrals.

A problem with simulating probabilities is “simulation noise”. That is, for
a given β and Σ, the simulated PiPP is different each time it is re-simulated with
a new set of random draws. A simulated PiPP is an approximation that differs
every time the approximation formula is reapplied, so PiPP has a distribution.
If the number of draws is “small” this distribution will have a variance suf-
ficiently large that substantively different parameter estimates will result each
time the model is estimated. Simulation noise declines, for a given sample size,
as the number of draws increases, becoming trivial if the number of draws is
large enough.4 Put simply, the minimum number of draws required for es-
timation by simulation is the number necessary for model parameters to be
stable.5 Determining this number is time consuming. For example, to check
whether 1, 000 draws is sufficient one must re-estimate the model many times
with 1, 000 draws to make sure the parameter estimates are “almost” the same
in each simulation. If they are not, one has to repeat this exercise with a larger
number of draws.

4. Gaussian-Hermite quadrature

Alternatively, Equation 2.3 can be approximated using a form of Gaus-
sian quadrature called Hermite polynomial quadrature, or Gaussian-Hermite

quadrature. Put simply, any integral of the form
+∞∫
−∞

g(v)dv =
+∞∫
−∞

e−v2
h(v)dv

can be approximated by

+∞∫
−∞

e−v2
h(v)dv ≈

M∑
m=1

wmh(vm) (4.1)

where M is the number of evaluation points.6 Put simply, the function to be
integrated, minus the e−v2

term, is first evaluated at a number of carefully se-
lected evaluation points, the vm, m = 1, 2, ..., M ; then the value of the function
at each evaluation point, h(vm) is weighted by wm.7 The approximation of the
integral is the sum of these weighted values. Implementation is simple: tables
(such as table 25.10 in Abramowitz and Stegun, 1964) report the (vm, wm)

4In addition, for a given number of draws in the simulation, simulation noise decreases as the number of
answered choice-pairs increases.
5Stability is subjective and depends on how the parameter estimates will be used.
6The accuracy of the approximation increases with the number of evaluation points. Typically, 10 or fewer
are sufficient for parameter stability, not hundreds or thousands as with simulation.
7As explained below wm = e−v2

.
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pairs for different ascending values of M ; one just has to use them to calculate

the wmh(vm) terms. It is called Gaussian quadrature because
+∞∫
−∞

e−v2
dv is

the Gaussian integral, sometimes called the probability integral.8 Gaussian
quadrature requires fewer evaluation points than ordinary quadrature (approx-
imately half).

The v1, v2, ..., vM are the M roots of the Hermite polynomial HMH (v); this
is why the technique is called Hermite polynomial quadrature.9 The numerical
weights, the wm, are more difficult to explain, but implementation does not
require one to understand why they are the number they are.10

To solidify how Hermite polynomial quadrature works, we use it here to
determine the area under a univariate, normal density function with zero mean,
fuff (0, σ) = 1√

2πσ
e−u2/2σ2

, which we know is 1.

Begin by noting that
+∞∫
−∞

1√
2πσ

e−.5(u2/σ2)du =
+∞∫
−∞

1√
π
e−v2

dv where

v = u√
2σ

. Then note that
+∞∫
−∞

1√
π
e−v2

dv is a simple, special case of

+∞∫
−∞

e−v2
f(v)dv, where f(v) is simply the constant 1√

π
.

Therefore,
+∞∫
−∞

1√
π
e−v2

dv =
M∑

m=1
wmf(vm) = 1√

π

M∑
m=1

wm.

8Note that
+∞∫
−∞

e−v2
dv =

√
π.

9Hermite polynomials are a set of orthogonal polynomials with domain (−∞, +∞). By way of example,
H0(v) = 1, H1(v) = 2v, H2(v) = 4v2 − 2, H3(v) = 8v2 − 12v, H4HH (v) = 16v4 − 48v2 + 2
and H10(v) = 1024v10 − 23040v8 + 161280v6 − 403200v4 + 302400v2 − 30240. Visually, these
polynomials become more and more wave-like as M increases. The M roots of HM (v), the vm, are those
values of v that make the Hermite polynomial zero. For example H2(v) has two roots: ±.5

√
2 . And, the

four roots of H4HH (v) are ± 1
2

√√
34 + 6and ± 1

2

√
6 −√

34. Mathematica, for example, generates Hermite
polynomials with the command HermiteH[M, v].

10Here are some of the wm, reported with their corresponding values of vm

M vm wm

2 ± 1
2

√
2 = ±0.707107 1

2

√
π = 0.886227

3 0 2
2

3

√
π = 1.18164

± 1
2

√
6 = ±1.22474 1

3

6

√
π = 0.295409

4 ±
√

3−√
6

2
= ±0.524648

√
π

4(3−√
6)

= 0.804914

±
√

3+
√

6
2

= ±1.65068
√

π

4(3+
√

6)
= 0.0813128

For each M , the weights sum to
√

π.
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If M = 2, this is 1√
π
(0.886227 + 0.886227) = 1. 000 000 1; if M = 4 it is

1√
π
(0.804914+0.804914+0.0813128+0.0813128) = 0.999 999 86, a closer

approximation, but both are close enough.
As noted above, Gaussian quadrature requires that the integral be of the form

+∞∫
−∞

e−v2
h(v)dv; Equation 2.3 is of this form. For the case of one random-

parameter, Equation 2.3 simplifies to

PiPP =

+∞∫
−∞

J∏
j=1

Φ

[
−

(
β + u

0

)′

∆

]
φ(u)du (4.2)

=

+∞∫
−∞

J∏
j=1

Φ

[
−

(
β + u

0

)′

∆

] [
1√
2πσ

e−u2/2σ2

]
du

where ∆ is (x3−k
ij −xk

ij), u is a scalar and 0 is a vector of dimension (L−1)×1.
With a change of variable v = u√

2σ
, this becomes

PiPP =

+∞∫
−∞

J∏
j=1

Φ

[
−

(
β + vσ

√
2

0

)′

∆

] [
1√
2πσ

e−(vσ
√

2)2/2σ2

]
d(vσ

√
2)

=
1√
π

+∞∫
−∞

J∏
j=1

Φ

[
−

(
β + vσ

√
2

0

)′

∆

] [
e−v2

]
dv

=
1√
π

+∞∫
−∞

h(v)
[
e−v2

]
dv ≈ 1√

π

M∑
m=1

wmh(vm) (4.3)

where h(v) =
J∏

j=1
Φ

[
−

(
β + vσ

√
2

0

)′

∆

]
.
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If there are two random parameters, as in Equation 2.4, and one adds the
assumption they are uncorrelated,

PiPP =
∫

−∞

∞∫ J∏
j=1

Φ

⎡
⎢
⎡⎡
⎣⎢⎢−

⎛
⎝
⎛⎛

β +
u1

u2

0

⎞
⎠
⎞⎞′

∆

⎤
⎥
⎤⎤
⎦⎥⎥ fuff 1(u1)fuff 2(u2)du1du2

=

+∞∫
−∞

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
⎩⎪⎪

+∞∫
−∞

J∏
j=1

Φ

⎡
⎢
⎡⎡
⎣⎢−

⎛
⎝
⎛⎛

β +
u1

u2

0

⎞
⎠
⎞⎞′

∆

⎤
⎥
⎤⎤
⎦⎥ fuff 1(u1)du1

⎫⎪⎫⎫⎬⎪⎪
⎪
⎬⎬
⎭⎪⎪ fuff 2(u2)du2

=
1
π

+∞∫
−∞

⎧⎪⎧⎧⎨⎪⎪
⎪
⎨⎨
⎩⎪⎪

+∞∫
−∞

J∏
j=1

Φ

⎡
⎢
⎡⎡
⎣⎢−

⎛
⎝
⎛⎛

β +
v1σ

√
2

v2σ
√

2
0

⎞
⎠
⎞⎞′

∆

⎤
⎥
⎤⎤
⎦⎥ e−v2

1dv1

⎫⎪⎫⎫⎬⎪⎪
⎪
⎬⎬
⎭⎪⎪ e−v2

2dv2

≈ 1
π

M2MM∑
m1=1

wm2

[
M1∑

m1=1

wm1h(v1m1 , v2m2)

]
(4.4)

where

h(v1m1 , v2m2) =
J∏

j=1

Φ

⎡
⎢
⎡⎡
⎣⎢⎢−

⎛
⎝
⎛⎛

β +
v1m1σ

√
2

v2m2σ
√

2
0

⎞
⎠
⎞⎞′

∆

⎤
⎥
⎤⎤
⎦⎥⎥ (4.5)

In summary, Gaussian-Hermite quadrature is easy to apply if one assumes a
small number of uncorrelated normally-distributed random parameters, a com-
mon assumption in many applications.

5. An application: Green Bay fishing under different

conditions

The sample consists of 647 randomly-sampled anglers who purchased li-
censes in eight counties near the bay of Green Bay, a large bay on Lake Michi-
gan, and who fished the bay at least once in 1998. Each angler was presented
eight pairs of Green Bay alternatives. Anglers made their selections on the
basis of the average time to catch a fish for four species (PERCH , TROUT ,
WALLEY E, and BASS), a fish consumption advisory index (FCA), and
a boat launch fee (FEE). The FCA index takes one of nine discrete lev-
els, the first being no advisory, and contains combined information on separate
advisories for the four species.

The four parameters on the catch rates and the eight parameters on the
FCA dummy variables are all assumed to be random and normally distributed.
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Specifically, for each angler and each pair, it is assumed that the conditional
indirect utility function for alternative is K is

V K
iVV = (βc + uci)

× [
βpββ PERCHK + βtββ TROUTK + βwββ WALLEY EK + βbBASSK

]
+(βFCA + uFCAi)

[
βFCA2FCAK + ... + βFCA9FCAK

]
+βyββ (−FEEK) (5.1)

where

f(uc, uFCA) = N

(
0
0 ,

σc 0
0 σFCA

)
(5.2)

The parameter βyββ is the marginal utility of money. The parameter βc is the
mean catch-parameter; the βpββ ,βtββ ,βwββ and βb allow the means and variances
of the catch parameters to vary by species; βFCA is the mean FCA param-
eter; and the βFCA2, ..., βFCA9 allow the means and variances of the FCA
parameters to differ by FCA regime. With this specification, the ratio of the
mean parameter to the standard deviation is the same for each of the four catch
rates, and for each of the eight FCA levels, so only two standard deviation
parameters need to be estimated, σc and σFCA. Assuming that the standard
deviation varies in proportion to the mean is a common way of dealing with
heteroskedasticity and a reasonable way to limit the number of random pa-
rameters that need to be estimated. It also causes an individual’s four catch
parameters to be correlated with one another, and his eight FCA parameters
to be correlated with one another; something one would expect, and this is ac-
complished in a way that does not require that one assumes separate ucp and
uct that are correlated. Of course, this specification for the random structure
is not necessarily appropriate for other applications and is in no way required
for quadrature to work. βpββ is set to one to identify the catch parameters and
βFCA2 is set to one identify the FCA parameters.11

This model was estimated using both Hermite quadrature and simulation
with pseudo-random draws. Parameter estimates are reported in Table 17.1.
Results from various model runs show that 500 draws in simulation and 9
evaluation points using quadrature are sufficient for parameter estimates to be
stable. That is, for quadrature parameter-estimates, when more than 9 evalua-
tion points are used, the individual parameter estimates are never more than 2%
different from the estimates obtained with 9 evaluation points. When at least
500 draws are used in simulation, parameter estimates vary by at most 2%
across runs. An important finding is that simulation took almost three times
longer than quadrature to reach this level of stability.

11Code for both estimation techniques can be found at http://www.colorado.edu/Economics/morey/dataset.html.
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Results are also reported for 100 draws using simulation, and 3 and 6 eval-
uation points for quadrature,but one should not make too much of these. Com-
paring the properties of estimates estimated with too few quadrature points to
estimates estimated with too few random draws is a questionable endeavor:
one would never present either as one’s parameter estimates.

6. Conclusions

In conclusion, this paper provides an example of a choice question probit
model with two random parameters. We demonstrate that to obtain a high level
of accuracy, quadrature is faster than simulation with pseudo-random draws.
What should be made of this? When it comes to estimating random-parameter
models, there is an alternative to the ubiquitous method of simulation with
random draws, and it can be faster and more accurate. It’s best suited to appli-
cations with a small number of uncorrelated random parameters.

An interesting issue is what happens to the magnitudes of the simulation
errors as one increases the number of draws and what happens to the approx-
imation errors as one increases the number of evaluation points. One would
hope that simulation noise always decreases as the number of draws increases;
that is, it would be comforting to those doing simulation to know that if they
re-estimate their model with more draws, there will be less simulation error
in the parameter estimates. Unfortunately, this is not always the case as we
demonstrate below.

Those using quadrature would hope that re-estimating their model with
more evaluation points will always decrease the approximation errors in the
parameter estimates. This is the case.

To investigate, we define the bias in parameter β as Biasβ =
∣∣∣∣∣∣∣β̂ − β

∣∣∣∣∣∣∣ where

β is our stable estimate of β (obtained with either 1,000 draws or 10 evaluation
points). To make this measure of bias comparable across parameters (by ac-
counting for the relative flatness of the likelihood-function), we divide each by

the standard error, s.e., of the stable β,
∣∣∣∣∣∣∣β̂ − β

∣∣∣∣∣∣∣ /(s.e.β). Averaging these over

all of the parameters provides one possible measure of aggregate bias, denoted
Bias. By definition, this measure of aggregate bias is, in our example, zero
for simulation with 1,000 draws and quadrature with 10 evaluation points.

Note that this measure of aggregate bias, Bias, will change every time one
reruns the simulation program, even if one takes the same number of draws in
each run - the draws are random. There is no comparable variation in Bias
when the the parameters are estimated with quadrature - Bias does not vary
across runs when the number of evaluation points is held constant because the
parameter estimates are always the same.

Our measure of aggregate bias is plotted in Figure 1 for the parameter esti-
mates obtained with 100, 300, 500 and 1000 draws. This example plot proves,
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Figure 17.1. Example simulation bias with 100, 300, and 500 draws.

by example, that Bias does not always decrease as the number of random
draws increases (the biggest “error” for these three sets of estimates is with
500 draws). Every time one re-estimates the model with 100, 300, 500 draws
Figure 17.1 will change, and while one would expect it to usually be monoton-
ically decreasing, it does not have to be, as our example demonstrates.12

Figure 17.2 plots Bias for 3, 6 and 9 and 10 evaluation points and the plot
is invariant to reruns. Aggregate bias is monotonically decreasing in the num-
ber of evaluation points, as it must when the integral evaluated is of the form
+∞∫
−∞

e−v2
h(v)dv . Note the big drop from 9 to 10 evaluation points.

What should be concluded? Use enough pseudo-random draws or evalua-
tion points to get stable parameter estimates. Determining whether one’s pa-
rameter estimates are stable is more difficult with simulation than with quadra-
ture. With quadrature, just keep increasing the number of evaluation points
until the estimates with e evaluation points and e + 1 evaluation points differ
by less than some predetermined percentage. With simulation, increase the
number of draws until the parameter estimates differ by less than that predeter-

12Consider another measure of bias,
∣∣∣∣∣∣∣aveβ̂ − β

∣∣∣∣∣∣∣ where aveβ̂ = ave[β̂1 + ... + β̂R] and β̂r is the esti-

mate of β obtained the rth time the parameters are simulated holding constant the number of draws (Hess

et al., 2004, Sandor and Train, 2004).
∣∣∣∣∣∣∣β̂ − β

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣aveβ̂ − β

∣∣∣∣∣∣∣ for quadrature but not for simulation; for

simulation there is less randomness in
∣∣∣∣∣∣∣aveβ̂ − β

∣∣∣∣∣∣∣ than in
∣∣∣∣∣∣∣β̂ − β

∣∣∣∣∣∣∣. Therefore,
∣∣∣∣∣∣∣aveβ̂ − β

∣∣∣∣∣∣∣ is likely to

be monotonically decreasing in the number of draws, particularly for large R. However, there is no great
practical significance to this likelihood unless the researcher plans to run the simulation program multiple
times with each number of random draws.
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Figure 17.2. Quadrature bias with 3, 6, and 9 evaluation points.

mined percentage, then increase the number of draws some more to make sure
the stability was not a random fluke.

A body of literature is now emerging on simulation with non-random draws;
that is, taking systematic draws from the density of interest. Halton draws
are one example, and a few applications with environmental implications are
available.13 These methods have the potential to significantly reduce simula-
tion noise and the required number of draws. Train, 2003 devotes much of his
Chapter 9 to a discussion of simulating with systematic draws. After estimat-
ing the same model twice, first with 1,000 random draws and then with 100
Halton draws, Train summarizes:

These results show the value of Halton draws. Computer time can be reduced
by a factor of ten by using Halton draws instead of random draws, without re-
ducing, and in fact increasing, accuracy. These results need to be viewed with
caution, however. The use of Halton draws and other quasi-random numbers in
simulation-based estimation is fairly new and not completely understood.

Future research might compare quadrature with simulation using systematic
methods of drawing parameter vectors.

In closing, consider a direct mathematical comparison of the simulation for-
mula and quadrature formula for PiPP . Consider the case of one random param-

13See Goett et al., 2000b, Hess et al., 2004, and Sandor and Train, 2004.
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eter. With simulation

PiPP ≈ 1
D

D∑
d=1

h(ud) (6.1)

and for quadrature

PiPP ≈ 1√
π

M∑
m=1

wmh(vm) (6.2)

where h(ω) =
J∏

j=1
Φ

[
−(β + ω

0 )
′
(x3−k

ij − xk
ij)

]
. It is evaluated at ωm =

vmσ
√

2 for quadrature and at ωd = ud with simulation, quadrature carefully
selecting the evaluation points, simulation randomly selecting the evaluation
points. One should not be surprised that when the draws are carefully selected
(e.g., Halton draws), simulation does better than when they are randomly se-
lected. The other big difference is the weights: simulation uses equal weights
independent of of how the draws are made; quadrature uses carefully selected
weights, each specific to the point at which the function is evaluated.
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Table 17.1. Parameter Estimates and Computing Time.

Method Gaussian Hermite quadrature Simulation

Evaluation points/random draws 3 6 9 100 500

Utility parameters
βc –0.637 (–11.638) –.649 (–11.487) –0.645 (–11.607) –0.639 (–11.439) –0.648 (–11.607)
βPCA –0.288 (–3.961) –0.348 (–4.499) –0.327 (–4.916) –0.329 (–4.671) –0.324 (–4.513)
βpβ 1.0 (fixed) 1.0 (fixed) 1.0 (fixed) 1.0 (fixed) 1.0 (fixed)
βt 0.0470 (6.332) 0.0477 (6.248) 0.0480 (6.384) 0.0488 (6.341) 0.0478 (6.348)
βw 0.0636 (7.855) 0.0643 (7.842) 0.0647 (7.985) 0.0661 (7.949) 0.0650 (7.989)
βb 0.0534 (7.220) 0.0554 (7.285) 0.0544 (7.295) 0.0561 (7.346) 0.0544 (7.306)
βFCA2 1.0 (fixed) 1.0 (fixed) 1.0 (fixed) 1.0 (fixed) 1.0 (fixed)
βFCA3 1.616 (4.937) 1.610 (5.941) 1.618 (6.224) 1.621 (6.010) 1.643 (5.774)
βFCA4 2.232 (5.003) 2.129 (6.094) 2.189 (6.519) 2.172 (6.179) 2.215 (5.938)
βFCA5 3.080 (4.743) 2.856 (5.713) 2.963 (6.151) 2.916 (5.847) 3.000 (5.608)
βFCA6 2.499 (4.602) 2.393 (5.551) 2.463 (5.944) 2.450 (5.654) 2.503 (5.437)
βFCA7 3.633 (4.506) 3.421 (5.414) 3.531 (5.857) 3.494 (5.545) 3.578 (5.326)
βFCA8 4.980 (4.339) 4.622 (5.160) 4.813 (5.607) 4.741 (5.296) 4.881 (5.098)
βFCA9 5.471 (4.324) 5.091 (5.087) 5.300 (5.526) 5.209 (5.226) 5.384 (5.035)
βy 0.0545 (15.322) 0.0555 (15.206) 0.0555 (15.267) 0.0556 (15.282) 0.0556 (15.282)
Standard deviationsa

σc 0.423(–5.397) 0.432(–5.131) 0.428(–5.270) 0.417(–5.334) 0.431(–5.322)
σFCA 0.247(–5.232) 0.342(–4.478) 0.302(–5.638) 0.317(–5.099) 0.296(–5.238)
Run time (hrs.) on the same computer 0.43 1.14 1.97 1.13 5.56

at-statistics are for the natural logarithms of the standard deviations.
The parameters were exponentiated in estimation to restrict them to be positive.
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Abstract This study investigates issues surrounding the nature and importance of simula-
tion noise when using maximum simulated likelihood methods in bivariate tobit
estimation of panel data. The application presented considers land use decisions
made by nomadic herders in northern Kenya. The study focuses on issues of
parameter instability arising from the use of simulation methods to control for
an unobserved household specific effect. It is found that parameters are more
stable across estimation runs for variables for which there is a higher degree of
within household variability and when the parameter is estimated with a higher
degree of precision in the initial run. The study also finds that there is less vari-
ability in simulating estimation results when different draws are used to simulate
results of a given estimation run than when results from different estimation runs
generated by using different draws are used for simulation. It is also found that
simulation noise does not have a large impact on a main policy finding of the
estimation and simulation: reducing risk of accessing remote grazing areas can
improve the spatial distribution of grazing pressure and thus address localized
degradation and a failure to provide security can lead to environmental degrada-
tion.

Keywords: Bivariate Tobit, Maximum Simulated Likelihood, Simulation Noise, Pastoral-
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1. Introduction

In a recently published study, I used full information maximum simulated
likelihood to estimate a bivariate tobit model of land use decisions made by
nomadic herders in northern Kenya (McPeak 2003). This earlier study devel-
oped a model to investigate how herder and rangeland heterogeneity could be
used to explain localized degradation in a commons, and illustrated how pol-
icy measures based on simple common property models may have unintended
consequences when degradation is localized rather than widespread. One mo-
tivation for the previous study was the observed pattern of rangeland degrada-
tion in northern Kenya. Areas around towns in northern Kenya are overused
and showing signs of degradation, while vast areas distant from towns are un-
derused and show no sign of degradation. In addition, the data that is avail-
able suggests that there was no time in recorded history when the study area’s
ecological carrying capacity was exceeded by aggregate stocking levels. The
study set out to investigate how degradation of sub-areas within a commons
can occur, and what policies can be identified to address such degradation.

To simplify analysis in the previous study, information from only one of
two areas in which I gathered data was analyzed. The reasoning was that land
use decisions could differ parametrically due to differences between the areas
in which data were gathered, making pooling of the data set questionable.1

In addition, the way in which the land use variable of satellite camp use was
recorded differed between the two areas due to differences in the way satellite
camps are used.2 Satellite camps are temporary settlements located in remote
grazing areas, and will be explained in more detail below.

This paper uses the data set from the other area in which data was gathered to
investigate land use decisions, but places greater emphasis on methodological
issues arising from the use of full information maximum simulated likelihood
(FIMSL) and simulation of estimation results. To clarify, simulation has two
meanings in the methodology of this study. First, simulation means Monte
Carlo integration to control for an unobserved household specific random effect
in bivariate tobit estimation of panel data. Second, simulation means taking a
set of estimation results and calculating expected values of dependent variables

1Data was gathered in two areas: Chalbi, used in the previous study, and Dukana-Sabarei, used in this study.
The areas differ in that there are many water points in the Chalbi area, but few in the Dukana Sabarei area.
In addition, the Chalbi area is lower in altitude, lower in rainfall, has larger permanent settlements, and is
better connected to other areas in Kenya (roughly speaking, Chalbi has one truck a day headed to the capital
of the District, while in Dukana there is one truck a week headed to the District capital).
2In the Chalbi area, the satellite camp variable recorded the size of the household labor force sent to satellite
camp. In the Dukana area, the satellite camp variable recorded the size of the household herd sent to satellite
camp. In Chalbi, satellite camps tends to rely on household labor, while in Dukana there appears to be more
labor sharing across households in satellite camps.
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to assess the quantitative importance of changes in given variables of policy
interest.

When conducting the earlier study I noted two main issues arising from use
of FIMSL to generate parameters to use in simulating results of policy inter-
est. First, it was clear that there was variation in parameter estimates across
different estimation runs that relied on different pseudo-random draws to rep-
resent the random effect term, and that the magnitude of this variation differed
for different parameters.3 Second, different pseudo-random draws to represent
the random effect term in simulating estimation results using a given set of
parameter estimates led to different simulation results.

This study is an attempt to follow up on these issues in detail. I first inves-
tigate the degree of parameter change across estimation runs. I then illustrate
there is some degree of predictability to this variation. I then turn to the issue
of simulation of results. I focus on a particular variable influencing land use
decisions that has clear policy implications—insecurity. One explanation for
the spatial pattern of rangeland use is that underused areas are not utilized be-
cause these areas are insecure. Results are simulated by changing the value of
a dummy variable recording whether an armed raid took place anywhere in the
rangelands used by herders in this area in the period or not. First, results are
simulated for the parameter estimates obtained from the different estimation
runs. Second, results are simulated for a given parameter vector using multiple
draws to account for the random effect. These results are then compared.

The overall objectives of this study are twofold. First, from a methodologi-
cal standpoint, as the use of FIMSL methods becomes increasingly common, it
is important to understand both the nature and importance of simulation noise.
While generalizing the results of a single empirical study such as this one must
be viewed with caution, as the results may be specific to this data set and
application, the findings do present information which can be compared and
contrasted with future applications to build towards a generalized understand-
ing of the nature and importance of simulation noise in this estimation setting.
Second, the study is intended to investigate a question of policy relevance—
can we empirically identify the magnitude of the impact insecurity has on land
use patterns in a common property rangeland? While it seems quite intuitive
to suggest that it has an impact, how large is this impact?

3One option available when there is parameter instability across runs is to continue increasing the number
of pseudo-random draws used in the estimation procedure to reduce overall variability. A different question
that could be investigated using this data is how parameter variation decreases as the number of draws
increases. However, as will be discussed below, I became intrigued by the fact that different parameters at a
given number of draws behaved quite differently in terms of variability across runs, leading to the question
of whether these variations were predictable. Relative differences in variability in parameters would still be
an issue no matter how many draws were selected, although it is certainly true that overall variability should
decrease.
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The outline of the paper is as follows. Section two describes the context
of the study and the data used in the estimation. Section three discusses esti-
mation issues and presents empirical results. Section four presents simulation
results, and section five concludes.

2. Empirical Analysis of Land-Use Decisions

Data for this study were gathered from 49 Gabra nomadic households who
graze their animals between the towns of Dukana and Sabarei in Marsabit Dis-
trict, Kenya. Dukana and Sabarei are two towns close to the Ethiopian border
in northern Kenya. Gabra are pastoral herders who reside in an extremely
arid environment in which cultivation is impossible. Instead, they rely on their
herds of camels, cattle, sheep and goats to generate livestock products and cash
income.

The data set records household specific information for four time periods
(two rainy seasons and two dry seasons4) per-year from 1993 to 1997. The
longitudinal nature of the data allows empirical exploration of how land-use
decisions made by users of a common rangeland change in response to changes
in the state of nature as well as changes in the household’s own characteristics.
The data gathering methodology was retrospective, and the sampling frame-
work was based on a transect. Enumerators walked between towns of the study
area, interviewing herders at compounds they encountered along their way.

The focus of the analysis presented in this section is estimation of land use
decisions by nomadic herders. The first decision considered is the herder’s
base camp location. The base camp is defined as the location of the main
dwelling of the pastoral household, and is where women and children tend to
be permanent residents, and males are resident when not at satellite camps as
defined below. Base camps are mobile, with the dwelling being disassembled,
loaded onto camels, and moved to a new location every few months. The
base camp distance variable used in this study measures the number of hours
it takes to walk from the base camp to the nearest town. As degradation in this
area tends to take the form of a circle of approximately five hour’s walk radius
around towns (Schwartz et al., 1991), this definition allows us to estimate when
a household is in the degraded zone or out of the degraded zone. Also included
in the estimation is a variable recording the base camp location in the previous
period. Use of the lagged variable reflects the fact that base camp moves may
be costly, as such moves require dismantling, loading, and reconstructing the
base camp dwelling.

4There are two rainy seasons per-year in northern Kenya. What is called the long rains occurs in March-
May while the short rains occur in mid-September- mid-December. Two dry seasons of approximately three
months length separate the rainy seasons.
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A herder’s decision to send animals to a satellite camp is viewed as sending
animals completely out of the zone of degradation.5 Satellite camps have lit-
tle infrastructure besides night enclosures for animals and windscreens behind
which herders can shelter and cook. The satellite camp decision is recorded by
a variable indicating the share of the household herd sent to a satellite camp.
The lagged variable is again used as there are some sunk costs in terms of
labor and logistics involved with establishing a satellite camp. Together, the
base camp distance from town and the satellite camp labor variables capture
decisions that determine the share of a herder’s animals located in the zone of
degradation in different time periods.

A variable that controls for the influence of raid threats on location decisions
is a dummy variable that records periods when raids occurred. This informa-
tion was gathered in a meeting with community elders, where they were asked
to report any period in which a raid occurred in the grazing lands used by peo-
ple from this area. A particularly violent raid occurred in March 1997 in which
over fifty people were killed, and a smaller set of raids occurred in early 1998
in which three people were killed. There are certain areas where raids are more
likely to occur than others, but the impact of a raid in any area used by herders
is to increase overall anxiety and lead to increased caution in migration and
location decisions, leading to an overall movement towards where others are
for mutual security - that is a general fall back towards town.

The food aid variable used in the estimation records total maize deliveries
recorded at Kalacha and North Horr for each time period.6 Maize is the main
component of food aid in this area. Food aid was available from 1993 un-
til mid-1995 and again in early 1997. Food aid data were not available for
the Dukana-Sabarei area, but since they are next in line on the road that goes
through Kalacha and North Horr, the information from the latter two sites is
used as a proxy for the former two sites.

Rainfall conditions are included as exogenous variables in the estimation
procedure. Three variables are used to capture these changing conditions. The
first records the average of North Horr and Kalacha rainfall in a given six-
month period (these are the nearest sites to the Dukana area that had rain-
fall records available). The second and third are dummy variables indicating

5While there may be multiple objectives behind sending animals to a satellite camp (species specific grazing
needs, risk diversification, labor issues), for the purpose of the study this is the most relevant aspect. The
survey data suggest base camp proximity to town and satellite camp establishment are positively correlated,
as the average base camp distance from town for observations when there is only a base camp and no satellite
camp is just under 11 hours, compared to just under 5 hours for observations where a satellite camp and
a base camp was used. Based on my field experience, satellite camps are only established in areas distant
from towns.
6Data were obtained by the author at the Catholic mission in North Horr and the A.I.C. mission in Kalacha.
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whether the three month period in question is either of the annual rainy sea-
sons.

Household characteristics are also included as exogenous variables in the
estimation procedure. A quadratic representation of the age of the household
head is utilized, as is a measure recording the size of the household in adult
equivalents.7 Because ownership of baggage camels may reduce the cost of
changing locations, a separate variable records the number of pack camels
owned by the household. Also included is a quadratic representation of a
household’s animal wealth recorded in Total Livestock Units (TLUs).8 House-
hold specific variables are defined to reflect conditions at the start of the three-
month period in question, and are thus exogenous to the land-use decisions
within the period. Table 18.1 reports the descriptive statistics of the variables
used in the estimation.

Table 18.1. Descriptive statistics for estimation variables.

Average St. dev.

Distance base camp to town (Hours) 8.17 8.15
Satellite camp (% of household herd) 0.24 0.31
Distance last period (hours) 8.40 8.29
Satellite camp last period (%) 0.24 0.30
Rain in past 6 months (mm) 60.94 44.28
Long rains dummy 0.21 0.41
Short rains dummy 0.26 0.44
Food aid delivered to town (tons) 62.72 87.26
Raid dummy 0.11 0.31
Number of Pack camels 0.49 0.82
Herd size in TLU 18.79 6.86
Age of oldest male (years) 53.23 12.09
Age of oldest female (Years) 36.61 10.03
Age ratio oldest male to oldest female 1.52 0.44
Adult equivalents in household 4.15 0.99

Number of observations = 931. Number of households = 49.
Number of time periods = 19.

7The household equivalent scale follows Martin (1985). Males and females older than 15 years old equal
1 household adult equivalent, ages 5-14 equal 0.6 household equivalent, ages 2-5 equal 0.3 household
equivalent, and ages below 2 equal 0.1 household equivalent.
8Herd size is measured in Tropical Livestock Units (TLUs), where 0.7 camel=1head of cattle=10 smallstock
(goats and sheep). This differs slightly from the weighting scheme reported in Schwartz et al. (1991) as
this source suggests 11 goats = 10 sheep = 1 TLU. The data set records the combined smallstock herd size,
so no distinction is made between sheep and goats.
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3. FIMSL Estimation of a Bivariate TOBIT

In this section, we develop an econometric model for estimating the land use
decisions of how far from town to locate a base camp and the share of the herd
that will be sent to a satellite camp. The econometric specification is based on
the behavioral model presented in McPeak (2003). Three major issues must be
confronted when using the panel data on land use decisions described above.
First, both dependent variables are by definition non-negative and have ob-
servations at zero (3% for the distance variable, 56% for the satellite camp
variable). Second, the two decision variables are obviously related to each
other as they are both decisions that place livestock in particular rangeland ar-
eas. Third, the data set is longitudinal in nature, introducing the possibility that
there are household specific effects. The first two issues are addressed by use
of simultaneous tobit estimation methodology following Amemiya (1974) and
Maddala (1983). The third is addressed by explicitly controlling for household
specific effects. Define d as the distance from town variable, f as the satellite
camp variable (f stands for fora which is the local term for satellite camp),
β as coefficients on exogenous variables, x as exogenous variable matrices, a
as time-invariant household specific effects, and u as unobserved terms. The
d and f notation is used as a label when on the right hand side in the model
and as a dependent variable when on the left hand side of the model. Define
the following bivariate tobit model, where i indexes households and t indexes
time.

di
t = βd′xdi

t + adi
t + udi

t if RHS > 0 (3.1)

di
t = 0 if RHS ≤ 0

f i
tff = βf ′xf i

tff + af i
tff + uf i

tff if RHS > 0
f i

tff = 0 if RHS ≤ 0.

The approach taken in this study to control for household specific effects
follows Mundlak (1978) by defining a household specific effect for the base
camp decision by adi = λd′xi + ωdi and for satellite camp decision by
af i = λf ′xi + ωf i. Let xi record the mean of household specific variables
for household i, t = 1, . . . , T . In the estimation procedure, household spe-
cific means are included for the age of the household head, the age ratio of the
husband or eldest son to his wife or mother, the size of the household herd,
and the size of the household in adult equivalents. The random effects repre-
sented by the parameters are dealt with following the methodology outlined by
Gourieroux and Monfort (1993). Assume that ωdi is drawn from a N(0, σ2

ωd)
distribution and ωf i is drawn from a N(0, σ2

ωf ) distribution. Take (n,H)
pseudo-random draws from two separate N(0, 1) distributions, and assign all
t = 1, . . . , T observations for household i = 1, . . . , n in draw h = 1, . . . , H a
unique pair of these draws. The 2 × (n, H) draws are multiplied by a (2 × 1)
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scaling parameter δ that is estimated. The parameter (δd)2 provides an esti-
mate of σ2

ωd, and (δf )2 provides an estimate of ω2
ωf . Gourieroux and Monfort

(1993) state that provided n and H go to infinity in such a way that
√

n
H → 0,

the parameters resulting from this estimation are consistent and asymptotically
efficient. In the results presented below, n = 49, H = 500.9

State the log-likelihood function for this estimation by defining four differ-
ent regimes (r) as follows:

r1 = 1 if di
t > 0, f i

tff > 0, 0 otherwise;

r2 = 1 if di
t > 0,f i

tff = 0, 0 otherwise;

r3 = 1 if di
t = 0,f i

tff > 0, 0 otherwise;

and r4 = 1 if di
t = 0,f i

tff = 0, 0 otherwise.

Assume that udi
t and uf i

tff when normalized by their standard deviations σd

and σf respectively are distributed bivariate standard normal with a correla-
tion coefficient defined by ρ = σdf

σd·σf
. Denote the probability density function

for the standard normal density by φ(.), the probability density function for
the standard bivariate normal by φ(., ρ) the cumulative distribution function
for the standard normal distribution by Φ(.), and the cumulative distribution
function for the standard bivariate normal by Φ(., ρ). Recognize that simula-
tion methods are being used to control for the random effects ω by introducing
redi(h)and ref i(h) to represent the hth pseudo-random draw from a standard
normal for household i for the distance estimation and the satellite camp esti-
mation respectively and rearranging equation 3.1 to the following.

udi
t(h) = di

t − βd′xdi
t − λd′xi − δd · redi(h), (3.2)

uf i
tff (h) = f i

tff − βf ′xdi
t − λf ′xf − δf · ref i(h),

I suppress the h notation in what follows, but keep in mind that the likelihood
function is being expressed conditional upon a particular set of pseudo-random
draws for each of the 49 households. Next, take the equations in 3.2 above and
normalize them to allow use of the standard normal distribution functions.

udni
t =

udi
t

σd
(3.3)

ufni
t =

uf i
tff

σf

9The use of 500 draws matches the number of draws in McPeak (2003). This number was chosen for three
main reasons. First, it appeared in the earlier study to be a level at which parameters and the log-likelihood
did not change very much across runs. Second, it was within the range of draws found in the literature which
use this technique (draws tend to range between 500 and 1000). Third, since this study involved repeated
estimation and each run took about two days on a desktop computer at 500 draws (and computation time
increases in the number of draws used), practical considerations of run time led me to choose 500 draws.
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Then make use of the properties of the standard bivariate normal distribution
to express one unobserved term conditional on another to allow regimes two
and three to be expressed as the product of φ and Φ as described by Pudney
(1989) and Cornick et al. (1994).

ufdi
t =

(
uf i

tff − ui
t ·

(
σdf

σ2
d

))
√

σ2
f − (σ2

df )

σ2
d

(3.4)

udf i
tff =

(
udi

t − uf i
tff ·

(
σdf

σ2
f

))
√

σ2
d − (σ2

df )

σ2
f

(3.5)

This allows us to state the contribution of a particular observation to the
likelihood function in the following form:

Li
t = r1i

t · φ(udni
t, ufni

t, ρ) + r2i
t ·

(
1
σd

)

·φ(udni
t) · Φ(ufdi

t) + r3i
t ·

(
1
σf

)
(3.6)

·φ(ufni
t) · Φ(udf i

tff ) + r4i
t · Φ(udni

t, udf i
tff , ρ)

Reintroduce the h notation to make clear the role of the simulation methods,
and express the likelihood function as follows:

L =
N∑

i=1

Li =
N∑

i=1

1
H

·
H∑

h=1

T∐
t=1

Li
t(h) (3.7)

The optimization method used in this study relies on the log of this expres-
sion, and is performed on this function using the OPTMUM library in GAUSS.
The objective function can be expressed as a transformation of equation 3.7:

ln(L) =
N∑

i=1

ln(Li) =
N∑

i=1

ln

(
1
H

·
H∑

h=1

T∐
t=1

Li
t(h)

)
(3.8)

Estimation was conducted in turn for eleven separate pseudo-random draws
with H =500. The first three columns of tables 18.2 and 18.3 report the stan-
dard output from the first run; the coefficient estimates, the standard errors of
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the estimate, and the corresponding t-ratio.10 Column four reports the aver-
age coefficient estimate for the ten different runs that followed the initial run,
and column five reports the coefficient of variation for the coefficient estimates
across the ten following runs. The first run is chosen as the standard of com-
parison for no reason other than it was the first run.

Table 18.2. Results for the FIMSL estimation (Distances).

Coeff. Stan. t-stat. Coeff. Coeff.
Variables run 1 error run 1 average of var.

run 1 10 runs 10 runs

DISTANCE(×10−1)
Constant 1.2122 0.8484 1.4287 0.7909 0.2650
Lagged distance(×10−1) 0.4610 0.0333 13.8560 0.4637 0.0042
Herd size in TLU(×10−2) 0.7384 1.7703 0.4171 0.6477 0.1339
Herd size2 in TLU(×10−3) –0.2314 0.3390 –0.6825 –0.2049 –0.1031
Age male(×10−1) –1.2404 2.0149 –0.6156 –1.1411 –0.0554
Age male2 (×10−3) 0.4517 0.3347 1.3496 0.3473 0.1892
Household size in AE(×10−1) 1.5705 0.8289 1.8948 1.5572 0.0069
Food aid (×10−2) 0.0275 0.0679 0.4050 0.0276 0.0034
Raid dummy –0.1534 0.1097 –1.3988 –0.1533 –0.0015
 of pack camels –0.0326 0.0567 –0.5745 –0.0392 –0.3151
Rainfall in six months(×10−2) –0.1987 0.1648 –1.2059 –0.1982 –0.0044
Rainfall in six months2(×10−4) 0.1259 0.0964 1.3064 0.1258 0.0056
Long rains dummy –0.0326 0.1097 –0.2970 –0.0322 –0.0081
Short rains dummy –0.0668 0.0468 –1.4277 –0.0668 -0.0005
Time trend(×10−1) 0.3867 0.6882 0.5619 0.3888 0.0042
Time trend2(×10−2) –0.1243 0.1339 –0.9289 –0.1241 –0.0036
Average herd size(×10−1) 0.0354 0.1115 0.3171 0.0522 0.4158
Average age male(×10−1) 0.7541 1.7782 0.4241 0.7689 0.0084
Average age ratio 0.0062 0.1253 0.0496 0.0150 1.7091
Average household size(×10−1) –1.0791 0.9931 –1.0866 –0.8737 –0.1754
Scaling parameter RE –0.2733 0.0403 –6.7860 –0.2464 –0.0714
Sigma 0.5488 0.0132 41.5940 0.5494 0.0007

I calculated t-statistics for parameter difference for the ten different runs
compared to the results of the first run. One variable (the average age ratio
between the husband and wife in the satellite camp estimation) generated t-
statistics that indicated significant difference at a 10% level or less in five out

10For the quadratic expressions, the joint test of parameter significance generated the following Wald χ2
(2)

statistics. Herd size in the distance equation, 0.9. Herd size in the satellite camp equation, 0.1. Age in the
distance equation, 1.9. Age in the satellite equation, 0.8.
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of ten runs. All other variables in all other runs generate results indicating
the parameters are not significantly different from the first run results at any
standard level of statistical significance. The average of the absolute value of
the t-statistic for parameter equality across runs was between 0.001 and 0.01
for 34% of observations, 0.01 and 0.1 for 36% of observations, 0.1 and 1.0
for 27% of observations, and above 1.0 for 2% of observations (the 1 variable
noted above, which had an average absolute value of the t-statistic of 1.45).
From the standpoint of statistical significance, I can conclude that there is no
significant difference in results across parameter runs (with the possible excep-
tion of the one troublesome variable).

Table 18.3. Results for the FIMSL estimation (Satellite Camp).

Coeff. Stan. t-stat. Coeff. Coeff.
Variables run 1 error run 1 average of var.

run 1 10 runs 10 runs

Satellite Camp %
Constant 0.1419 2.3575 0.0602 0.1115 2.7185
Lagged distance(×10−1) 0.7335 0.0710 10.3280 0.7312 0.0073
Herd size in TLU(×10−2) 0.5035 3.6253 0.1389 0.2329 0.6060
Herd size2 in TLU(×10−3) –0.0975 0.9145 –0.1066 –0.0289 –1.2455
Age male(×10−1) –0.5476 0.6215 –0.8811 –0.4997 –0.1905
Age male2 (×10−3) 0.0607 0.8207 0.0740 0.0141 7.0879
Household size in AE(×10−1) 0.1128 0.5457 0.2068 0.1259 0.1563
Food aid (×10−2) 0.0625 0.0373 1.6768 0.0622 0.0059
Raid dummy –0.1123 0.0652 –1.7228 –0.1116 –0.0040
Rainfall in six months(×10−2) –0.1552 0.0932 –1.6643 –0.1553 –0.0074
Rainfall in six months2(×10−4) 0.0883 0.0552 1.5992 0.0878 0.0053
Long rains dummy –0.0067 0.0878 –0.0763 –0.0064 –0.0416
Short rains dummy –0.0606 0.0251 –2.4147 –0.0605 –0.0027
Time trend(×10−1) 0.4886 0.3498 1.3967 0.4876 0.0063
Time trend2(×10−2) –0.1182 0.0680 –1.7369 –0.1176 –0.0085
Average herd size(×10−1) –0.1867 0.1702 –1.0968 –0.1513 –0.4067
Average age male(×10−1) 0.4470 0.9456 0.4728 0.4628 0.0468
Average age ratio 0.2167 0.0823 2.6333 0.1191 0.7066
Average household size(×10−1) –1.0218 1.7321 –0.5900 –1.2581 –0.2623
Scaling parameter RE –0.3714 0.1218 –3.0482 –0.3654 –0.0629
Sigma 0.2171 0.0084 25.8870 0.2170 0.0014
Sigma 12 –0.0021 0.0048 –0.4414 –0.0021 –0.0309

However, there is still variability in parameter estimates across runs. The
mean coefficient of variation for the parameter estimates across runs is 0.46,
and the median is 0.04. The percent of parameters that have a coefficient of
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variation in the range: below 0.001, 5%; from 0.001 to 0.01, 41%; from 0.01
to 0.1, 18%; from 0.1 to 1, 27%; from 1 to 10, 9%. Clearly there are a few high
values that pull the mean far above the median. What variable characteristics
could be influencing this variation? One possibility is that colinearity across
variables could be playing a role. In fact, a few of the variables were inten-
tionally defined to be highly colinear to see if this could be an issue (including
ages, average age, and a time trend leads to a highly colinear variables). I re-
gressed each variable on the other variables in the regressor matrix in turn to
obtain an R2 measure and use this derived result as a measure of colinearity.

A second possibility was that the degree of variation in the variable could
influence the stability of the parameters across runs. I calculated two measures
of parameter variation: first, the overall coefficient of variation for the variable;
second, the average of the household level coefficient of variation for this vari-
able (absolute values were used for both). The first reflects overall variation
in the data set, while the second reflects how much of this variation is within
household units.

A third possibility was that scaling issues influenced parameter stability,
so I used the absolute values of the variable mean and the absolute value of
the parameter estimate obtained from the first run of the estimation. A final
possibility was that the precision of the estimate as reflected in the t-value of
the first run influenced parameter stability across runs.11

These six regressors were used in an estimation of the absolute value of the
coefficient of variation for the parameter estimates across runs. A log transform
of the dependent variable was adopted due to the pattern of the dependent
variable reported above. Table 18.4 reports the results of this regression.

Overall, the adjusted R2 is 0.53 and n = 44 as that is the total number of
coefficients estimated in tables 18.2 and 18.3. The main findings from this
analysis are as follows. First, the degree of colinearity does not seem to have
a significant impact on parameter stability across runs. Second, the degree
of variation for the variable as measured by the overall coefficient of varia-
tion does not significantly influence parameter stability, but the same can not
be said of household level variation. The results suggest that increased within

11This list of characteristics to be used in this regression was derived from reflecting on the kinds of things
that could matter in such a setting based both on econometric theory and on past experience with optimiza-
tion in GAUSS. As such, it is admittedly a rather ad hoc list of “the usual suspects”. I suspected colinearity,
since highly colinear variables are difficult to identify with precision according to basic econometric theory.
Variation both overall and within the household over time was suspected to matter since greater variation in
the regressor allowed independent estimation from the intercept term in the case of overall variation or the
household specific effect in the case of household level variation. Scaling issues were suspected since op-
timization methods in my experience can be impacted by scaling. The initial t-statistic was included since
I suspected that the higher confidence with which we can view the precision of an estimate as reflected by
the t-statistic in a given run will also be related to the precision with which the variable is estimated when
we compare runs.
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Table 18.4. Determinants of parameter instability across runs.

Coeff. St. err. t-stat

Intercept –1.1950 0.7230 –1.6529
R2 regression on other regressors 0.3145 0.8037 0.3913
Coefficient of variation overall 0.3761 0.8861 0.4244
Average HH coefficient of variation –2.4526 0.8090 –3.0316
Absolute value of variable –0.1818 0.1110 –1.6377
Absolute value of parameter run 1 –1.1752 0.7398 –1.5885
Absolute value of t-stat run 1 –0.1606 0.0396 –4.0595

Note: ln(|cv|) is dependent variable.

household variation (variation over time for a given household) leads to greater
parameter stability across runs. The scaling parameters are close to being sig-
nificant at the 10% level, and suggest there is some possibility that larger values
are more stable. Finally, it is clearly indicated that the greater the degree of pre-
cision with which a parameter is estimated in an initial run as measured by the
t-ratio, the greater the stability of this parameter across runs.

4. Simulation of Estimation Results

While we may be reasonably confident that the variation across parameter
runs is not significant in a statistical sense, it is reasonable to ask whether the
variation we still observe makes a qualitative difference when interpreting esti-
mation results. This is a particularly important issue to consider in the context
of non-linear estimation, as simulation of estimation results relies on use of the
entire parameter vector, rather than a single parameter. Does variability in pa-
rameter estimates translate into variation in marginal effects that can lead one
to draw incorrect policy conclusions based on simulation noise?

One issue of interest in practical terms is the role of insecurity in land use
decisions. As illustrated by the model presented in McPeak (2003), differen-
tial riskiness of rangeland sub-area use may lead to localized degradation in
a commons. Simply put, if going to some areas exposes herders to the threat
of armed raiders shooting them and stealing their animals, they are less likely
to go to these areas. As a general rule, areas away from towns in the study
area are less secure than those nearer to town. In addition, the areas around
town are showing signs of overuse that indicate the long term productivity of
the rangelands is declining. To what extent does the fear of raiding lead to
spatial concentration of grazing pressure, and what is the prospect of improved
security to reduce localized pressure on rangeland resources?
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The joint significance of the raid dummy in the land use estimation has
a p-value of 0.06, and the coefficients for both decisions indicate that the raid
dummy has a negative sign. This is consistent with the argument that increased
fear of raids leads herders to send fewer animals to extensive grazing camps
and move closer to town. Quantitatively, how important is this variable on land
use decisions? I use this question to explore methodological issues.

To conduct the simulation I begin with the following, with variables defined
as above. To simplify, I define βd′xdi

t + adi ≡ Di
t and βf ′xf i

tff + afiff ≡ Fi
t.

By the law of total probability E[di
t, f

i
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Focus on the distance equation for simplicity, as the satellite camp calculation
will follow the same general pattern. Returning to the idea of each of the four
sub-components of equation 3.8 as a regime, narrow attention to the first two
regimes (as the expected value of distance in the final two regimes is 0).
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The probability weights needed to calculate 4.2 can be obtained through ma-
nipulation of the following elements:
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The expected value of the unobserved term can be obtained using the formulas
and notation from Maddala (1983, p. 368).12

gi
t =

(−Di
t/σd

)
, ki

t =
(−Fi

t/σf

)
, (4.4)

g∗it = (1 − ρ2)−0.5 × (gi
t − ρki

t) , k∗i
t = (1 − ρ2)−0.5 × (f i

tff − ρgi
t).

12Note that I have changed Maddala’s original use of h for the first term with g, to avoid confusion with the
prior use of h to represent the number of pseudo-random draws.
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Then the expression:
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provides the expectation of the unobserved term in regime one. Turning to
regime two, we can use the finding that
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to derive the expectation of the unobserved term in regime two by substituting
in what is known to solve for E[udi

t|udi
t > gi

t, uf i
tff < ki

t].
Armed with all these components, I can simulate the expected distance a

herd settles from town and the expected herd size sent to a satellite camp which
is by assumption in an area distant from town. I use the approximation that the
area around town is represented by a circle with a radius the size of a five hour
walk from town as noted above. This is based on the idea that that is about
the limit for feasibility for making a round trip to town in a single day given
the effort involved walking in the intense heat of this area and also provides a
rough approximation to the area identified as degraded on a map of rangeland
condition in the area (Schwartz et al. 1991). I simulate estimation results to
calculate the aggregate herd size that settles in this zone as the sum of all base
camp herd sizes when the base camp is five hours or less from town minus the
herd sent by these base camps to distant satellite camps.

Returning to the overall theme of this study, there are two places where
the simulation methods used in estimation may influence the simulation of
estimation results. First, as discussed at some length in the previous section,
the vector of estimated parameters varied across estimation runs conditional
upon the particular H =500 pseudo-random draw used. Second, for a given
vector of estimated parameters, there is still an issue of how to represent the
household specific effect in the simulation, as the household specific effect
is partially composed of the random effect that was controlled for by the use
of the H =500 pseudo-random draw. How does each component impact the
findings when I simulate estimation results?

The simulation exercise calculates stocking pressure in the zone around
town. Table 18.5 presents percentage reduction in the herd size in the area
around town when the raid dummy is set to zero compared to when the raid
dummy is set to 1. The calculation is conducted for each of the 19 time periods
covered in the study. The first two columns report on variation in simulation
results that are generated by using the different parameter vectors from the
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different estimation runs. The third and forth columns report on variation in
simulation results resulting from using 10 different draws for the household
specific effect for the parameter vector in the initial run.

Table 18.5. Simulation: reduction of stocking pressure.

Time Different Different Different Different
period runs runs draws draws

average st. deviation average st. deviation

2 87% 0.0199 89% 0.0006
3 86% 0.0501 87% 0.0470
4 92% 0.0418 100% 0.0000
5 67% 0.0588 71% 0.0159
6 91% 0.0481 94% 0.0001
7 78% 0.0719 90% 0.0001
8 96% 0.0281 100% 0.0000
9 56% 0.0630 75% 0.0050
10 87% 0.0833 89% 0.0035
11 88% 0.0787 96% 0.0021
12 99% 0.0244 100% 0.0000
13 70% 0.0539 80% 0.0003
14 60% 0.0497 55% 0.0003
15 71% 0.0459 65% 0.0402
16 84% 0.0782 89% 0.0004
17 68% 0.0667 64% 0.0204
18 75% 0.0511 67% 0.0001
19 43% 0.0434 38% 0.0002
20 89% 0.0499 94% 0.0127

Average 78% 0.0530 81% 0.0078

Note: raid dummy = 0 vs raid = 1.

From a policy standpoint, it is clear that increasing security in a way that
lowers the possibility of raids could have a major impact on reducing stocking
pressure on overused areas and that an increased insecurity will have a major
impact in increasing stocking pressure in overused areas. From a methodologi-
cal standpoint, it is clear that the variation in simulation outcomes generated by
using different estimation results is greater than that that is generated by using
a given set of estimation results with different pseudo-random draws. How-
ever, neither form of simulation noise is large enough to lead to an incorrect
policy conclusion.



Simulation Noise and the Estimation of Land Use Decisions 371

5. Discussion and conclusion

When using simulation methods in estimation, there is reason to be con-
cerned that simulation noise could potentially lead the analyst to incorrect
conclusions. While simulation noise can be made “small” and statistically
insignificant, it is still worth investigating the nature and importance of simu-
lation noise on questions of policy relevance. In this study, the issue of how
simulation noise impacts variables differently was analyzed. It was found that
parameter variability increased across runs the lower the coefficient of varia-
tion in household variables and the lower the t-statistic of the original estima-
tion run. Scaling issues played a minor role, and colinearity between variables
played an insignificant role. The results clarify that the type of variation in
regressors that is desirable in this context is within household variation rather
than overall variation in the variable. They also provide some measure of re-
assurance, in that simulation is more likely to be conducted on variables for
which there is a relatively high t-statistic given conventional practice in the
field.

The study also compared the impact of simulation noise generated by using
different draws to estimate the parameter vector with the use of different draws
to simulate results using a given parameter vector. The first overall conclusion
that can be drawn is that in neither case is the simulation noise large enough
to lead one astray from the overall policy implication—increasing security by
eliminating the possibility of raids has the potential to drastically reduce stock-
ing pressure on overused rangeland sub-areas and increased insecurity has the
opposite effect. While there is some ambiguity about how large the impact of
insecurity is on stocking levels due to simulation noise, the ambiguity is small
relative to the overall impact of changing the value of the variable. It is also
clear that the simulation noise across estimation runs is greater than the noise
introduced by using different draws to simulate the results of a given run.

The findings of this current study are intended to be of help to other re-
searchers who have concerns about the impact of simulation noise in their esti-
mation procedure. The findings are of course specific to this data set, and other
studies using different data sets may lead to different conclusions. However,
both by encouraging further development of the underlying statistical theory
that helps shape these results and by allowing other researchers to compare the
findings of this study to their own work, it is hoped that this study contributes
to the effort to identify generalizable findings about the nature and importance
of simulation noise.
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Börsch-Supan, A. and Hajivassiliou, V.A. (1993). Smooth unbiased multivari-¨
ate probability simulators for maximum likelihood estimation of limited de-
pendent variable models. Journal of Econometrics, 58:347–368.
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enebene: Ein Überblick. Discussion Paper 97-02, ZEW, Mannheim, Ger-
many.

Harrison, G. W. and Kristrom, B. (1995). On the interpretation of responses in¨
contingent valuation surveys. In Johansson, P.-O., Kriström, B., and M¨ äler,¨
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